Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 10293, column 7
Value stored to 'Redeclaration' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "clang/Sema/Template.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/StringExtras.h"
43#include <map>
44#include <set>
45
46using namespace clang;
47
48//===----------------------------------------------------------------------===//
49// CheckDefaultArgumentVisitor
50//===----------------------------------------------------------------------===//
51
52namespace {
53 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
54 /// the default argument of a parameter to determine whether it
55 /// contains any ill-formed subexpressions. For example, this will
56 /// diagnose the use of local variables or parameters within the
57 /// default argument expression.
58 class CheckDefaultArgumentVisitor
59 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
60 Expr *DefaultArg;
61 Sema *S;
62
63 public:
64 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
65 : DefaultArg(defarg), S(s) {}
66
67 bool VisitExpr(Expr *Node);
68 bool VisitDeclRefExpr(DeclRefExpr *DRE);
69 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
70 bool VisitLambdaExpr(LambdaExpr *Lambda);
71 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
72 };
73
74 /// VisitExpr - Visit all of the children of this expression.
75 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
76 bool IsInvalid = false;
77 for (Stmt *SubStmt : Node->children())
78 IsInvalid |= Visit(SubStmt);
79 return IsInvalid;
80 }
81
82 /// VisitDeclRefExpr - Visit a reference to a declaration, to
83 /// determine whether this declaration can be used in the default
84 /// argument expression.
85 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
86 NamedDecl *Decl = DRE->getDecl();
87 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
88 // C++ [dcl.fct.default]p9
89 // Default arguments are evaluated each time the function is
90 // called. The order of evaluation of function arguments is
91 // unspecified. Consequently, parameters of a function shall not
92 // be used in default argument expressions, even if they are not
93 // evaluated. Parameters of a function declared before a default
94 // argument expression are in scope and can hide namespace and
95 // class member names.
96 return S->Diag(DRE->getLocStart(),
97 diag::err_param_default_argument_references_param)
98 << Param->getDeclName() << DefaultArg->getSourceRange();
99 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
100 // C++ [dcl.fct.default]p7
101 // Local variables shall not be used in default argument
102 // expressions.
103 if (VDecl->isLocalVarDecl())
104 return S->Diag(DRE->getLocStart(),
105 diag::err_param_default_argument_references_local)
106 << VDecl->getDeclName() << DefaultArg->getSourceRange();
107 }
108
109 return false;
110 }
111
112 /// VisitCXXThisExpr - Visit a C++ "this" expression.
113 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
114 // C++ [dcl.fct.default]p8:
115 // The keyword this shall not be used in a default argument of a
116 // member function.
117 return S->Diag(ThisE->getLocStart(),
118 diag::err_param_default_argument_references_this)
119 << ThisE->getSourceRange();
120 }
121
122 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
123 bool Invalid = false;
124 for (PseudoObjectExpr::semantics_iterator
125 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
126 Expr *E = *i;
127
128 // Look through bindings.
129 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
130 E = OVE->getSourceExpr();
131 assert(E && "pseudo-object binding without source expression?")(static_cast <bool> (E && "pseudo-object binding without source expression?"
) ? void (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 131, __extension__ __PRETTY_FUNCTION__))
;
132 }
133
134 Invalid |= Visit(E);
135 }
136 return Invalid;
137 }
138
139 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
140 // C++11 [expr.lambda.prim]p13:
141 // A lambda-expression appearing in a default argument shall not
142 // implicitly or explicitly capture any entity.
143 if (Lambda->capture_begin() == Lambda->capture_end())
144 return false;
145
146 return S->Diag(Lambda->getLocStart(),
147 diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
171 EST = EST_BasicNoexcept;
172
173 switch(EST) {
174 // If this function can throw any exceptions, make a note of that.
175 case EST_MSAny:
176 case EST_None:
177 ClearExceptions();
178 ComputedEST = EST;
179 return;
180 // FIXME: If the call to this decl is using any of its default arguments, we
181 // need to search them for potentially-throwing calls.
182 // If this function has a basic noexcept, it doesn't affect the outcome.
183 case EST_BasicNoexcept:
184 return;
185 // If we're still at noexcept(true) and there's a nothrow() callee,
186 // change to that specification.
187 case EST_DynamicNone:
188 if (ComputedEST == EST_BasicNoexcept)
189 ComputedEST = EST_DynamicNone;
190 return;
191 // Check out noexcept specs.
192 case EST_ComputedNoexcept:
193 {
194 FunctionProtoType::NoexceptResult NR =
195 Proto->getNoexceptSpec(Self->Context);
196 assert(NR != FunctionProtoType::NR_NoNoexcept &&(static_cast <bool> (NR != FunctionProtoType::NR_NoNoexcept
&& "Must have noexcept result for EST_ComputedNoexcept."
) ? void (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __extension__ __PRETTY_FUNCTION__))
197 "Must have noexcept result for EST_ComputedNoexcept.")(static_cast <bool> (NR != FunctionProtoType::NR_NoNoexcept
&& "Must have noexcept result for EST_ComputedNoexcept."
) ? void (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __extension__ __PRETTY_FUNCTION__))
;
198 assert(NR != FunctionProtoType::NR_Dependent &&(static_cast <bool> (NR != FunctionProtoType::NR_Dependent
&& "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? void (0) : __assert_fail
("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __extension__ __PRETTY_FUNCTION__))
199 "Should not generate implicit declarations for dependent cases, "(static_cast <bool> (NR != FunctionProtoType::NR_Dependent
&& "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? void (0) : __assert_fail
("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __extension__ __PRETTY_FUNCTION__))
200 "and don't know how to handle them anyway.")(static_cast <bool> (NR != FunctionProtoType::NR_Dependent
&& "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? void (0) : __assert_fail
("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __extension__ __PRETTY_FUNCTION__))
;
201 // noexcept(false) -> no spec on the new function
202 if (NR == FunctionProtoType::NR_Throw) {
203 ClearExceptions();
204 ComputedEST = EST_None;
205 }
206 // noexcept(true) won't change anything either.
207 return;
208 }
209 default:
210 break;
211 }
212 assert(EST == EST_Dynamic && "EST case not considered earlier.")(static_cast <bool> (EST == EST_Dynamic && "EST case not considered earlier."
) ? void (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __extension__ __PRETTY_FUNCTION__))
;
213 assert(ComputedEST != EST_None &&(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 214, __extension__ __PRETTY_FUNCTION__))
214 "Shouldn't collect exceptions when throw-all is guaranteed.")(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 214, __extension__ __PRETTY_FUNCTION__))
;
215 ComputedEST = EST_Dynamic;
216 // Record the exceptions in this function's exception specification.
217 for (const auto &E : Proto->exceptions())
218 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
219 Exceptions.push_back(E);
220}
221
222void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
223 if (!E || ComputedEST == EST_MSAny)
224 return;
225
226 // FIXME:
227 //
228 // C++0x [except.spec]p14:
229 // [An] implicit exception-specification specifies the type-id T if and
230 // only if T is allowed by the exception-specification of a function directly
231 // invoked by f's implicit definition; f shall allow all exceptions if any
232 // function it directly invokes allows all exceptions, and f shall allow no
233 // exceptions if every function it directly invokes allows no exceptions.
234 //
235 // Note in particular that if an implicit exception-specification is generated
236 // for a function containing a throw-expression, that specification can still
237 // be noexcept(true).
238 //
239 // Note also that 'directly invoked' is not defined in the standard, and there
240 // is no indication that we should only consider potentially-evaluated calls.
241 //
242 // Ultimately we should implement the intent of the standard: the exception
243 // specification should be the set of exceptions which can be thrown by the
244 // implicit definition. For now, we assume that any non-nothrow expression can
245 // throw any exception.
246
247 if (Self->canThrow(E))
248 ComputedEST = EST_None;
249}
250
251bool
252Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
253 SourceLocation EqualLoc) {
254 if (RequireCompleteType(Param->getLocation(), Param->getType(),
255 diag::err_typecheck_decl_incomplete_type)) {
256 Param->setInvalidDecl();
257 return true;
258 }
259
260 // C++ [dcl.fct.default]p5
261 // A default argument expression is implicitly converted (clause
262 // 4) to the parameter type. The default argument expression has
263 // the same semantic constraints as the initializer expression in
264 // a declaration of a variable of the parameter type, using the
265 // copy-initialization semantics (8.5).
266 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
267 Param);
268 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
269 EqualLoc);
270 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
271 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
272 if (Result.isInvalid())
273 return true;
274 Arg = Result.getAs<Expr>();
275
276 CheckCompletedExpr(Arg, EqualLoc);
277 Arg = MaybeCreateExprWithCleanups(Arg);
278
279 // Okay: add the default argument to the parameter
280 Param->setDefaultArg(Arg);
281
282 // We have already instantiated this parameter; provide each of the
283 // instantiations with the uninstantiated default argument.
284 UnparsedDefaultArgInstantiationsMap::iterator InstPos
285 = UnparsedDefaultArgInstantiations.find(Param);
286 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
287 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
288 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
289
290 // We're done tracking this parameter's instantiations.
291 UnparsedDefaultArgInstantiations.erase(InstPos);
292 }
293
294 return false;
295}
296
297/// ActOnParamDefaultArgument - Check whether the default argument
298/// provided for a function parameter is well-formed. If so, attach it
299/// to the parameter declaration.
300void
301Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
302 Expr *DefaultArg) {
303 if (!param || !DefaultArg)
304 return;
305
306 ParmVarDecl *Param = cast<ParmVarDecl>(param);
307 UnparsedDefaultArgLocs.erase(Param);
308
309 // Default arguments are only permitted in C++
310 if (!getLangOpts().CPlusPlus) {
311 Diag(EqualLoc, diag::err_param_default_argument)
312 << DefaultArg->getSourceRange();
313 Param->setInvalidDecl();
314 return;
315 }
316
317 // Check for unexpanded parameter packs.
318 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
319 Param->setInvalidDecl();
320 return;
321 }
322
323 // C++11 [dcl.fct.default]p3
324 // A default argument expression [...] shall not be specified for a
325 // parameter pack.
326 if (Param->isParameterPack()) {
327 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
328 << DefaultArg->getSourceRange();
329 return;
330 }
331
332 // Check that the default argument is well-formed
333 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
334 if (DefaultArgChecker.Visit(DefaultArg)) {
335 Param->setInvalidDecl();
336 return;
337 }
338
339 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
340}
341
342/// ActOnParamUnparsedDefaultArgument - We've seen a default
343/// argument for a function parameter, but we can't parse it yet
344/// because we're inside a class definition. Note that this default
345/// argument will be parsed later.
346void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
347 SourceLocation EqualLoc,
348 SourceLocation ArgLoc) {
349 if (!param)
350 return;
351
352 ParmVarDecl *Param = cast<ParmVarDecl>(param);
353 Param->setUnparsedDefaultArg();
354 UnparsedDefaultArgLocs[Param] = ArgLoc;
355}
356
357/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
358/// the default argument for the parameter param failed.
359void Sema::ActOnParamDefaultArgumentError(Decl *param,
360 SourceLocation EqualLoc) {
361 if (!param)
362 return;
363
364 ParmVarDecl *Param = cast<ParmVarDecl>(param);
365 Param->setInvalidDecl();
366 UnparsedDefaultArgLocs.erase(Param);
367 Param->setDefaultArg(new(Context)
368 OpaqueValueExpr(EqualLoc,
369 Param->getType().getNonReferenceType(),
370 VK_RValue));
371}
372
373/// CheckExtraCXXDefaultArguments - Check for any extra default
374/// arguments in the declarator, which is not a function declaration
375/// or definition and therefore is not permitted to have default
376/// arguments. This routine should be invoked for every declarator
377/// that is not a function declaration or definition.
378void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
379 // C++ [dcl.fct.default]p3
380 // A default argument expression shall be specified only in the
381 // parameter-declaration-clause of a function declaration or in a
382 // template-parameter (14.1). It shall not be specified for a
383 // parameter pack. If it is specified in a
384 // parameter-declaration-clause, it shall not occur within a
385 // declarator or abstract-declarator of a parameter-declaration.
386 bool MightBeFunction = D.isFunctionDeclarationContext();
387 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
388 DeclaratorChunk &chunk = D.getTypeObject(i);
389 if (chunk.Kind == DeclaratorChunk::Function) {
390 if (MightBeFunction) {
391 // This is a function declaration. It can have default arguments, but
392 // keep looking in case its return type is a function type with default
393 // arguments.
394 MightBeFunction = false;
395 continue;
396 }
397 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
398 ++argIdx) {
399 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
400 if (Param->hasUnparsedDefaultArg()) {
401 std::unique_ptr<CachedTokens> Toks =
402 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
403 SourceRange SR;
404 if (Toks->size() > 1)
405 SR = SourceRange((*Toks)[1].getLocation(),
406 Toks->back().getLocation());
407 else
408 SR = UnparsedDefaultArgLocs[Param];
409 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410 << SR;
411 } else if (Param->getDefaultArg()) {
412 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
413 << Param->getDefaultArg()->getSourceRange();
414 Param->setDefaultArg(nullptr);
415 }
416 }
417 } else if (chunk.Kind != DeclaratorChunk::Paren) {
418 MightBeFunction = false;
419 }
420 }
421}
422
423static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
424 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
425 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
426 if (!PVD->hasDefaultArg())
427 return false;
428 if (!PVD->hasInheritedDefaultArg())
429 return true;
430 }
431 return false;
432}
433
434/// MergeCXXFunctionDecl - Merge two declarations of the same C++
435/// function, once we already know that they have the same
436/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
437/// error, false otherwise.
438bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
439 Scope *S) {
440 bool Invalid = false;
441
442 // The declaration context corresponding to the scope is the semantic
443 // parent, unless this is a local function declaration, in which case
444 // it is that surrounding function.
445 DeclContext *ScopeDC = New->isLocalExternDecl()
446 ? New->getLexicalDeclContext()
447 : New->getDeclContext();
448
449 // Find the previous declaration for the purpose of default arguments.
450 FunctionDecl *PrevForDefaultArgs = Old;
451 for (/**/; PrevForDefaultArgs;
452 // Don't bother looking back past the latest decl if this is a local
453 // extern declaration; nothing else could work.
454 PrevForDefaultArgs = New->isLocalExternDecl()
455 ? nullptr
456 : PrevForDefaultArgs->getPreviousDecl()) {
457 // Ignore hidden declarations.
458 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
459 continue;
460
461 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
462 !New->isCXXClassMember()) {
463 // Ignore default arguments of old decl if they are not in
464 // the same scope and this is not an out-of-line definition of
465 // a member function.
466 continue;
467 }
468
469 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
470 // If only one of these is a local function declaration, then they are
471 // declared in different scopes, even though isDeclInScope may think
472 // they're in the same scope. (If both are local, the scope check is
473 // sufficient, and if neither is local, then they are in the same scope.)
474 continue;
475 }
476
477 // We found the right previous declaration.
478 break;
479 }
480
481 // C++ [dcl.fct.default]p4:
482 // For non-template functions, default arguments can be added in
483 // later declarations of a function in the same
484 // scope. Declarations in different scopes have completely
485 // distinct sets of default arguments. That is, declarations in
486 // inner scopes do not acquire default arguments from
487 // declarations in outer scopes, and vice versa. In a given
488 // function declaration, all parameters subsequent to a
489 // parameter with a default argument shall have default
490 // arguments supplied in this or previous declarations. A
491 // default argument shall not be redefined by a later
492 // declaration (not even to the same value).
493 //
494 // C++ [dcl.fct.default]p6:
495 // Except for member functions of class templates, the default arguments
496 // in a member function definition that appears outside of the class
497 // definition are added to the set of default arguments provided by the
498 // member function declaration in the class definition.
499 for (unsigned p = 0, NumParams = PrevForDefaultArgs
500 ? PrevForDefaultArgs->getNumParams()
501 : 0;
502 p < NumParams; ++p) {
503 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
504 ParmVarDecl *NewParam = New->getParamDecl(p);
505
506 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
507 bool NewParamHasDfl = NewParam->hasDefaultArg();
508
509 if (OldParamHasDfl && NewParamHasDfl) {
510 unsigned DiagDefaultParamID =
511 diag::err_param_default_argument_redefinition;
512
513 // MSVC accepts that default parameters be redefined for member functions
514 // of template class. The new default parameter's value is ignored.
515 Invalid = true;
516 if (getLangOpts().MicrosoftExt) {
517 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
518 if (MD && MD->getParent()->getDescribedClassTemplate()) {
519 // Merge the old default argument into the new parameter.
520 NewParam->setHasInheritedDefaultArg();
521 if (OldParam->hasUninstantiatedDefaultArg())
522 NewParam->setUninstantiatedDefaultArg(
523 OldParam->getUninstantiatedDefaultArg());
524 else
525 NewParam->setDefaultArg(OldParam->getInit());
526 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
527 Invalid = false;
528 }
529 }
530
531 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
532 // hint here. Alternatively, we could walk the type-source information
533 // for NewParam to find the last source location in the type... but it
534 // isn't worth the effort right now. This is the kind of test case that
535 // is hard to get right:
536 // int f(int);
537 // void g(int (*fp)(int) = f);
538 // void g(int (*fp)(int) = &f);
539 Diag(NewParam->getLocation(), DiagDefaultParamID)
540 << NewParam->getDefaultArgRange();
541
542 // Look for the function declaration where the default argument was
543 // actually written, which may be a declaration prior to Old.
544 for (auto Older = PrevForDefaultArgs;
545 OldParam->hasInheritedDefaultArg(); /**/) {
546 Older = Older->getPreviousDecl();
547 OldParam = Older->getParamDecl(p);
548 }
549
550 Diag(OldParam->getLocation(), diag::note_previous_definition)
551 << OldParam->getDefaultArgRange();
552 } else if (OldParamHasDfl) {
553 // Merge the old default argument into the new parameter unless the new
554 // function is a friend declaration in a template class. In the latter
555 // case the default arguments will be inherited when the friend
556 // declaration will be instantiated.
557 if (New->getFriendObjectKind() == Decl::FOK_None ||
558 !New->getLexicalDeclContext()->isDependentContext()) {
559 // It's important to use getInit() here; getDefaultArg()
560 // strips off any top-level ExprWithCleanups.
561 NewParam->setHasInheritedDefaultArg();
562 if (OldParam->hasUnparsedDefaultArg())
563 NewParam->setUnparsedDefaultArg();
564 else if (OldParam->hasUninstantiatedDefaultArg())
565 NewParam->setUninstantiatedDefaultArg(
566 OldParam->getUninstantiatedDefaultArg());
567 else
568 NewParam->setDefaultArg(OldParam->getInit());
569 }
570 } else if (NewParamHasDfl) {
571 if (New->getDescribedFunctionTemplate()) {
572 // Paragraph 4, quoted above, only applies to non-template functions.
573 Diag(NewParam->getLocation(),
574 diag::err_param_default_argument_template_redecl)
575 << NewParam->getDefaultArgRange();
576 Diag(PrevForDefaultArgs->getLocation(),
577 diag::note_template_prev_declaration)
578 << false;
579 } else if (New->getTemplateSpecializationKind()
580 != TSK_ImplicitInstantiation &&
581 New->getTemplateSpecializationKind() != TSK_Undeclared) {
582 // C++ [temp.expr.spec]p21:
583 // Default function arguments shall not be specified in a declaration
584 // or a definition for one of the following explicit specializations:
585 // - the explicit specialization of a function template;
586 // - the explicit specialization of a member function template;
587 // - the explicit specialization of a member function of a class
588 // template where the class template specialization to which the
589 // member function specialization belongs is implicitly
590 // instantiated.
591 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
592 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
593 << New->getDeclName()
594 << NewParam->getDefaultArgRange();
595 } else if (New->getDeclContext()->isDependentContext()) {
596 // C++ [dcl.fct.default]p6 (DR217):
597 // Default arguments for a member function of a class template shall
598 // be specified on the initial declaration of the member function
599 // within the class template.
600 //
601 // Reading the tea leaves a bit in DR217 and its reference to DR205
602 // leads me to the conclusion that one cannot add default function
603 // arguments for an out-of-line definition of a member function of a
604 // dependent type.
605 int WhichKind = 2;
606 if (CXXRecordDecl *Record
607 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
608 if (Record->getDescribedClassTemplate())
609 WhichKind = 0;
610 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
611 WhichKind = 1;
612 else
613 WhichKind = 2;
614 }
615
616 Diag(NewParam->getLocation(),
617 diag::err_param_default_argument_member_template_redecl)
618 << WhichKind
619 << NewParam->getDefaultArgRange();
620 }
621 }
622 }
623
624 // DR1344: If a default argument is added outside a class definition and that
625 // default argument makes the function a special member function, the program
626 // is ill-formed. This can only happen for constructors.
627 if (isa<CXXConstructorDecl>(New) &&
628 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
629 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
630 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
631 if (NewSM != OldSM) {
632 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
633 assert(NewParam->hasDefaultArg())(static_cast <bool> (NewParam->hasDefaultArg()) ? void
(0) : __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 633, __extension__ __PRETTY_FUNCTION__))
;
634 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
635 << NewParam->getDefaultArgRange() << NewSM;
636 Diag(Old->getLocation(), diag::note_previous_declaration);
637 }
638 }
639
640 const FunctionDecl *Def;
641 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
642 // template has a constexpr specifier then all its declarations shall
643 // contain the constexpr specifier.
644 if (New->isConstexpr() != Old->isConstexpr()) {
645 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
646 << New << New->isConstexpr();
647 Diag(Old->getLocation(), diag::note_previous_declaration);
648 Invalid = true;
649 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
650 Old->isDefined(Def) &&
651 // If a friend function is inlined but does not have 'inline'
652 // specifier, it is a definition. Do not report attribute conflict
653 // in this case, redefinition will be diagnosed later.
654 (New->isInlineSpecified() ||
655 New->getFriendObjectKind() == Decl::FOK_None)) {
656 // C++11 [dcl.fcn.spec]p4:
657 // If the definition of a function appears in a translation unit before its
658 // first declaration as inline, the program is ill-formed.
659 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
660 Diag(Def->getLocation(), diag::note_previous_definition);
661 Invalid = true;
662 }
663
664 // FIXME: It's not clear what should happen if multiple declarations of a
665 // deduction guide have different explicitness. For now at least we simply
666 // reject any case where the explicitness changes.
667 auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
668 if (NewGuide && NewGuide->isExplicitSpecified() !=
669 cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
670 Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
671 << NewGuide->isExplicitSpecified();
672 Diag(Old->getLocation(), diag::note_previous_declaration);
673 }
674
675 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
676 // argument expression, that declaration shall be a definition and shall be
677 // the only declaration of the function or function template in the
678 // translation unit.
679 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
680 functionDeclHasDefaultArgument(Old)) {
681 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
682 Diag(Old->getLocation(), diag::note_previous_declaration);
683 Invalid = true;
684 }
685
686 return Invalid;
687}
688
689NamedDecl *
690Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
691 MultiTemplateParamsArg TemplateParamLists) {
692 assert(D.isDecompositionDeclarator())(static_cast <bool> (D.isDecompositionDeclarator()) ? void
(0) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 692, __extension__ __PRETTY_FUNCTION__))
;
693 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
694
695 // The syntax only allows a decomposition declarator as a simple-declaration,
696 // a for-range-declaration, or a condition in Clang, but we parse it in more
697 // cases than that.
698 if (!D.mayHaveDecompositionDeclarator()) {
699 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
700 << Decomp.getSourceRange();
701 return nullptr;
702 }
703
704 if (!TemplateParamLists.empty()) {
705 // FIXME: There's no rule against this, but there are also no rules that
706 // would actually make it usable, so we reject it for now.
707 Diag(TemplateParamLists.front()->getTemplateLoc(),
708 diag::err_decomp_decl_template);
709 return nullptr;
710 }
711
712 Diag(Decomp.getLSquareLoc(),
713 !getLangOpts().CPlusPlus17
714 ? diag::ext_decomp_decl
715 : D.getContext() == DeclaratorContext::ConditionContext
716 ? diag::ext_decomp_decl_cond
717 : diag::warn_cxx14_compat_decomp_decl)
718 << Decomp.getSourceRange();
719
720 // The semantic context is always just the current context.
721 DeclContext *const DC = CurContext;
722
723 // C++1z [dcl.dcl]/8:
724 // The decl-specifier-seq shall contain only the type-specifier auto
725 // and cv-qualifiers.
726 auto &DS = D.getDeclSpec();
727 {
728 SmallVector<StringRef, 8> BadSpecifiers;
729 SmallVector<SourceLocation, 8> BadSpecifierLocs;
730 if (auto SCS = DS.getStorageClassSpec()) {
731 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
732 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
733 }
734 if (auto TSCS = DS.getThreadStorageClassSpec()) {
735 BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
736 BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
737 }
738 if (DS.isConstexprSpecified()) {
739 BadSpecifiers.push_back("constexpr");
740 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
741 }
742 if (DS.isInlineSpecified()) {
743 BadSpecifiers.push_back("inline");
744 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
745 }
746 if (!BadSpecifiers.empty()) {
747 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
748 Err << (int)BadSpecifiers.size()
749 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
750 // Don't add FixItHints to remove the specifiers; we do still respect
751 // them when building the underlying variable.
752 for (auto Loc : BadSpecifierLocs)
753 Err << SourceRange(Loc, Loc);
754 }
755 // We can't recover from it being declared as a typedef.
756 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
757 return nullptr;
758 }
759
760 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
761 QualType R = TInfo->getType();
762
763 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
764 UPPC_DeclarationType))
765 D.setInvalidType();
766
767 // The syntax only allows a single ref-qualifier prior to the decomposition
768 // declarator. No other declarator chunks are permitted. Also check the type
769 // specifier here.
770 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
771 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
772 (D.getNumTypeObjects() == 1 &&
773 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
774 Diag(Decomp.getLSquareLoc(),
775 (D.hasGroupingParens() ||
776 (D.getNumTypeObjects() &&
777 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
778 ? diag::err_decomp_decl_parens
779 : diag::err_decomp_decl_type)
780 << R;
781
782 // In most cases, there's no actual problem with an explicitly-specified
783 // type, but a function type won't work here, and ActOnVariableDeclarator
784 // shouldn't be called for such a type.
785 if (R->isFunctionType())
786 D.setInvalidType();
787 }
788
789 // Build the BindingDecls.
790 SmallVector<BindingDecl*, 8> Bindings;
791
792 // Build the BindingDecls.
793 for (auto &B : D.getDecompositionDeclarator().bindings()) {
794 // Check for name conflicts.
795 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
796 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
797 ForVisibleRedeclaration);
798 LookupName(Previous, S,
799 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
800
801 // It's not permitted to shadow a template parameter name.
802 if (Previous.isSingleResult() &&
803 Previous.getFoundDecl()->isTemplateParameter()) {
804 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
805 Previous.getFoundDecl());
806 Previous.clear();
807 }
808
809 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
810 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
811 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
812 /*AllowInlineNamespace*/false);
813 if (!Previous.empty()) {
814 auto *Old = Previous.getRepresentativeDecl();
815 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
816 Diag(Old->getLocation(), diag::note_previous_definition);
817 }
818
819 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
820 PushOnScopeChains(BD, S, true);
821 Bindings.push_back(BD);
822 ParsingInitForAutoVars.insert(BD);
823 }
824
825 // There are no prior lookup results for the variable itself, because it
826 // is unnamed.
827 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
828 Decomp.getLSquareLoc());
829 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
830 ForVisibleRedeclaration);
831
832 // Build the variable that holds the non-decomposed object.
833 bool AddToScope = true;
834 NamedDecl *New =
835 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
836 MultiTemplateParamsArg(), AddToScope, Bindings);
837 if (AddToScope) {
838 S->AddDecl(New);
839 CurContext->addHiddenDecl(New);
840 }
841
842 if (isInOpenMPDeclareTargetContext())
843 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
844
845 return New;
846}
847
848static bool checkSimpleDecomposition(
849 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
850 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
851 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
852 if ((int64_t)Bindings.size() != NumElems) {
853 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
854 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
855 << (NumElems < Bindings.size());
856 return true;
857 }
858
859 unsigned I = 0;
860 for (auto *B : Bindings) {
861 SourceLocation Loc = B->getLocation();
862 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
863 if (E.isInvalid())
864 return true;
865 E = GetInit(Loc, E.get(), I++);
866 if (E.isInvalid())
867 return true;
868 B->setBinding(ElemType, E.get());
869 }
870
871 return false;
872}
873
874static bool checkArrayLikeDecomposition(Sema &S,
875 ArrayRef<BindingDecl *> Bindings,
876 ValueDecl *Src, QualType DecompType,
877 const llvm::APSInt &NumElems,
878 QualType ElemType) {
879 return checkSimpleDecomposition(
880 S, Bindings, Src, DecompType, NumElems, ElemType,
881 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
882 ExprResult E = S.ActOnIntegerConstant(Loc, I);
883 if (E.isInvalid())
884 return ExprError();
885 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
886 });
887}
888
889static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
890 ValueDecl *Src, QualType DecompType,
891 const ConstantArrayType *CAT) {
892 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
893 llvm::APSInt(CAT->getSize()),
894 CAT->getElementType());
895}
896
897static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
898 ValueDecl *Src, QualType DecompType,
899 const VectorType *VT) {
900 return checkArrayLikeDecomposition(
901 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
902 S.Context.getQualifiedType(VT->getElementType(),
903 DecompType.getQualifiers()));
904}
905
906static bool checkComplexDecomposition(Sema &S,
907 ArrayRef<BindingDecl *> Bindings,
908 ValueDecl *Src, QualType DecompType,
909 const ComplexType *CT) {
910 return checkSimpleDecomposition(
911 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
912 S.Context.getQualifiedType(CT->getElementType(),
913 DecompType.getQualifiers()),
914 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
915 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
916 });
917}
918
919static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
920 TemplateArgumentListInfo &Args) {
921 SmallString<128> SS;
922 llvm::raw_svector_ostream OS(SS);
923 bool First = true;
924 for (auto &Arg : Args.arguments()) {
925 if (!First)
926 OS << ", ";
927 Arg.getArgument().print(PrintingPolicy, OS);
928 First = false;
929 }
930 return OS.str();
931}
932
933static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
934 SourceLocation Loc, StringRef Trait,
935 TemplateArgumentListInfo &Args,
936 unsigned DiagID) {
937 auto DiagnoseMissing = [&] {
938 if (DiagID)
939 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
940 Args);
941 return true;
942 };
943
944 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
945 NamespaceDecl *Std = S.getStdNamespace();
946 if (!Std)
947 return DiagnoseMissing();
948
949 // Look up the trait itself, within namespace std. We can diagnose various
950 // problems with this lookup even if we've been asked to not diagnose a
951 // missing specialization, because this can only fail if the user has been
952 // declaring their own names in namespace std or we don't support the
953 // standard library implementation in use.
954 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
955 Loc, Sema::LookupOrdinaryName);
956 if (!S.LookupQualifiedName(Result, Std))
957 return DiagnoseMissing();
958 if (Result.isAmbiguous())
959 return true;
960
961 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
962 if (!TraitTD) {
963 Result.suppressDiagnostics();
964 NamedDecl *Found = *Result.begin();
965 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
966 S.Diag(Found->getLocation(), diag::note_declared_at);
967 return true;
968 }
969
970 // Build the template-id.
971 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
972 if (TraitTy.isNull())
973 return true;
974 if (!S.isCompleteType(Loc, TraitTy)) {
975 if (DiagID)
976 S.RequireCompleteType(
977 Loc, TraitTy, DiagID,
978 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
979 return true;
980 }
981
982 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
983 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 983, __extension__ __PRETTY_FUNCTION__))
;
984
985 // Look up the member of the trait type.
986 S.LookupQualifiedName(TraitMemberLookup, RD);
987 return TraitMemberLookup.isAmbiguous();
988}
989
990static TemplateArgumentLoc
991getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
992 uint64_t I) {
993 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
994 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
995}
996
997static TemplateArgumentLoc
998getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
999 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1000}
1001
1002namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1003
1004static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1005 llvm::APSInt &Size) {
1006 EnterExpressionEvaluationContext ContextRAII(
1007 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1008
1009 DeclarationName Value = S.PP.getIdentifierInfo("value");
1010 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1011
1012 // Form template argument list for tuple_size<T>.
1013 TemplateArgumentListInfo Args(Loc, Loc);
1014 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1015
1016 // If there's no tuple_size specialization, it's not tuple-like.
1017 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
1018 return IsTupleLike::NotTupleLike;
1019
1020 // If we get this far, we've committed to the tuple interpretation, but
1021 // we can still fail if there actually isn't a usable ::value.
1022
1023 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1024 LookupResult &R;
1025 TemplateArgumentListInfo &Args;
1026 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1027 : R(R), Args(Args) {}
1028 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1029 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1030 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1031 }
1032 } Diagnoser(R, Args);
1033
1034 if (R.empty()) {
1035 Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
1036 return IsTupleLike::Error;
1037 }
1038
1039 ExprResult E =
1040 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1041 if (E.isInvalid())
1042 return IsTupleLike::Error;
1043
1044 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1045 if (E.isInvalid())
1046 return IsTupleLike::Error;
1047
1048 return IsTupleLike::TupleLike;
1049}
1050
1051/// \return std::tuple_element<I, T>::type.
1052static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1053 unsigned I, QualType T) {
1054 // Form template argument list for tuple_element<I, T>.
1055 TemplateArgumentListInfo Args(Loc, Loc);
1056 Args.addArgument(
1057 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1058 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1059
1060 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1061 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1062 if (lookupStdTypeTraitMember(
1063 S, R, Loc, "tuple_element", Args,
1064 diag::err_decomp_decl_std_tuple_element_not_specialized))
1065 return QualType();
1066
1067 auto *TD = R.getAsSingle<TypeDecl>();
1068 if (!TD) {
1069 R.suppressDiagnostics();
1070 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1071 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1072 if (!R.empty())
1073 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1074 return QualType();
1075 }
1076
1077 return S.Context.getTypeDeclType(TD);
1078}
1079
1080namespace {
1081struct BindingDiagnosticTrap {
1082 Sema &S;
1083 DiagnosticErrorTrap Trap;
1084 BindingDecl *BD;
1085
1086 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1087 : S(S), Trap(S.Diags), BD(BD) {}
1088 ~BindingDiagnosticTrap() {
1089 if (Trap.hasErrorOccurred())
1090 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1091 }
1092};
1093}
1094
1095static bool checkTupleLikeDecomposition(Sema &S,
1096 ArrayRef<BindingDecl *> Bindings,
1097 VarDecl *Src, QualType DecompType,
1098 const llvm::APSInt &TupleSize) {
1099 if ((int64_t)Bindings.size() != TupleSize) {
1100 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1101 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1102 << (TupleSize < Bindings.size());
1103 return true;
1104 }
1105
1106 if (Bindings.empty())
1107 return false;
1108
1109 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1110
1111 // [dcl.decomp]p3:
1112 // The unqualified-id get is looked up in the scope of E by class member
1113 // access lookup
1114 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1115 bool UseMemberGet = false;
1116 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1117 if (auto *RD = DecompType->getAsCXXRecordDecl())
1118 S.LookupQualifiedName(MemberGet, RD);
1119 if (MemberGet.isAmbiguous())
1120 return true;
1121 UseMemberGet = !MemberGet.empty();
1122 S.FilterAcceptableTemplateNames(MemberGet);
1123 }
1124
1125 unsigned I = 0;
1126 for (auto *B : Bindings) {
1127 BindingDiagnosticTrap Trap(S, B);
1128 SourceLocation Loc = B->getLocation();
1129
1130 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1131 if (E.isInvalid())
1132 return true;
1133
1134 // e is an lvalue if the type of the entity is an lvalue reference and
1135 // an xvalue otherwise
1136 if (!Src->getType()->isLValueReferenceType())
1137 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1138 E.get(), nullptr, VK_XValue);
1139
1140 TemplateArgumentListInfo Args(Loc, Loc);
1141 Args.addArgument(
1142 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1143
1144 if (UseMemberGet) {
1145 // if [lookup of member get] finds at least one declaration, the
1146 // initializer is e.get<i-1>().
1147 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1148 CXXScopeSpec(), SourceLocation(), nullptr,
1149 MemberGet, &Args, nullptr);
1150 if (E.isInvalid())
1151 return true;
1152
1153 E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
1154 } else {
1155 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1156 // in the associated namespaces.
1157 Expr *Get = UnresolvedLookupExpr::Create(
1158 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1159 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1160 UnresolvedSetIterator(), UnresolvedSetIterator());
1161
1162 Expr *Arg = E.get();
1163 E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
1164 }
1165 if (E.isInvalid())
1166 return true;
1167 Expr *Init = E.get();
1168
1169 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1170 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1171 if (T.isNull())
1172 return true;
1173
1174 // each vi is a variable of type "reference to T" initialized with the
1175 // initializer, where the reference is an lvalue reference if the
1176 // initializer is an lvalue and an rvalue reference otherwise
1177 QualType RefType =
1178 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1179 if (RefType.isNull())
1180 return true;
1181 auto *RefVD = VarDecl::Create(
1182 S.Context, Src->getDeclContext(), Loc, Loc,
1183 B->getDeclName().getAsIdentifierInfo(), RefType,
1184 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1185 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1186 RefVD->setTSCSpec(Src->getTSCSpec());
1187 RefVD->setImplicit();
1188 if (Src->isInlineSpecified())
1189 RefVD->setInlineSpecified();
1190 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1191
1192 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1193 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1194 InitializationSequence Seq(S, Entity, Kind, Init);
1195 E = Seq.Perform(S, Entity, Kind, Init);
1196 if (E.isInvalid())
1197 return true;
1198 E = S.ActOnFinishFullExpr(E.get(), Loc);
1199 if (E.isInvalid())
1200 return true;
1201 RefVD->setInit(E.get());
1202 RefVD->checkInitIsICE();
1203
1204 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1205 DeclarationNameInfo(B->getDeclName(), Loc),
1206 RefVD);
1207 if (E.isInvalid())
1208 return true;
1209
1210 B->setBinding(T, E.get());
1211 I++;
1212 }
1213
1214 return false;
1215}
1216
1217/// Find the base class to decompose in a built-in decomposition of a class type.
1218/// This base class search is, unfortunately, not quite like any other that we
1219/// perform anywhere else in C++.
1220static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
1221 SourceLocation Loc,
1222 const CXXRecordDecl *RD,
1223 CXXCastPath &BasePath) {
1224 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1225 CXXBasePath &Path) {
1226 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1227 };
1228
1229 const CXXRecordDecl *ClassWithFields = nullptr;
1230 if (RD->hasDirectFields())
1231 // [dcl.decomp]p4:
1232 // Otherwise, all of E's non-static data members shall be public direct
1233 // members of E ...
1234 ClassWithFields = RD;
1235 else {
1236 // ... or of ...
1237 CXXBasePaths Paths;
1238 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1239 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1240 // If no classes have fields, just decompose RD itself. (This will work
1241 // if and only if zero bindings were provided.)
1242 return RD;
1243 }
1244
1245 CXXBasePath *BestPath = nullptr;
1246 for (auto &P : Paths) {
1247 if (!BestPath)
1248 BestPath = &P;
1249 else if (!S.Context.hasSameType(P.back().Base->getType(),
1250 BestPath->back().Base->getType())) {
1251 // ... the same ...
1252 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1253 << false << RD << BestPath->back().Base->getType()
1254 << P.back().Base->getType();
1255 return nullptr;
1256 } else if (P.Access < BestPath->Access) {
1257 BestPath = &P;
1258 }
1259 }
1260
1261 // ... unambiguous ...
1262 QualType BaseType = BestPath->back().Base->getType();
1263 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1264 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1265 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1266 return nullptr;
1267 }
1268
1269 // ... public base class of E.
1270 if (BestPath->Access != AS_public) {
1271 S.Diag(Loc, diag::err_decomp_decl_non_public_base)
1272 << RD << BaseType;
1273 for (auto &BS : *BestPath) {
1274 if (BS.Base->getAccessSpecifier() != AS_public) {
1275 S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
1276 << (BS.Base->getAccessSpecifier() == AS_protected)
1277 << (BS.Base->getAccessSpecifierAsWritten() == AS_none);
1278 break;
1279 }
1280 }
1281 return nullptr;
1282 }
1283
1284 ClassWithFields = BaseType->getAsCXXRecordDecl();
1285 S.BuildBasePathArray(Paths, BasePath);
1286 }
1287
1288 // The above search did not check whether the selected class itself has base
1289 // classes with fields, so check that now.
1290 CXXBasePaths Paths;
1291 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1292 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1293 << (ClassWithFields == RD) << RD << ClassWithFields
1294 << Paths.front().back().Base->getType();
1295 return nullptr;
1296 }
1297
1298 return ClassWithFields;
1299}
1300
1301static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1302 ValueDecl *Src, QualType DecompType,
1303 const CXXRecordDecl *RD) {
1304 CXXCastPath BasePath;
1305 RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
1306 if (!RD)
1307 return true;
1308 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1309 DecompType.getQualifiers());
1310
1311 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1312 unsigned NumFields =
1313 std::count_if(RD->field_begin(), RD->field_end(),
1314 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1315 assert(Bindings.size() != NumFields)(static_cast <bool> (Bindings.size() != NumFields) ? void
(0) : __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1315, __extension__ __PRETTY_FUNCTION__))
;
1316 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1317 << DecompType << (unsigned)Bindings.size() << NumFields
1318 << (NumFields < Bindings.size());
1319 return true;
1320 };
1321
1322 // all of E's non-static data members shall be public [...] members,
1323 // E shall not have an anonymous union member, ...
1324 unsigned I = 0;
1325 for (auto *FD : RD->fields()) {
1326 if (FD->isUnnamedBitfield())
1327 continue;
1328
1329 if (FD->isAnonymousStructOrUnion()) {
1330 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1331 << DecompType << FD->getType()->isUnionType();
1332 S.Diag(FD->getLocation(), diag::note_declared_at);
1333 return true;
1334 }
1335
1336 // We have a real field to bind.
1337 if (I >= Bindings.size())
1338 return DiagnoseBadNumberOfBindings();
1339 auto *B = Bindings[I++];
1340
1341 SourceLocation Loc = B->getLocation();
1342 if (FD->getAccess() != AS_public) {
1343 S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
1344
1345 // Determine whether the access specifier was explicit.
1346 bool Implicit = true;
1347 for (const auto *D : RD->decls()) {
1348 if (declaresSameEntity(D, FD))
1349 break;
1350 if (isa<AccessSpecDecl>(D)) {
1351 Implicit = false;
1352 break;
1353 }
1354 }
1355
1356 S.Diag(FD->getLocation(), diag::note_access_natural)
1357 << (FD->getAccess() == AS_protected) << Implicit;
1358 return true;
1359 }
1360
1361 // Initialize the binding to Src.FD.
1362 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1363 if (E.isInvalid())
1364 return true;
1365 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1366 VK_LValue, &BasePath);
1367 if (E.isInvalid())
1368 return true;
1369 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1370 CXXScopeSpec(), FD,
1371 DeclAccessPair::make(FD, FD->getAccess()),
1372 DeclarationNameInfo(FD->getDeclName(), Loc));
1373 if (E.isInvalid())
1374 return true;
1375
1376 // If the type of the member is T, the referenced type is cv T, where cv is
1377 // the cv-qualification of the decomposition expression.
1378 //
1379 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1380 // 'const' to the type of the field.
1381 Qualifiers Q = DecompType.getQualifiers();
1382 if (FD->isMutable())
1383 Q.removeConst();
1384 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1385 }
1386
1387 if (I != Bindings.size())
1388 return DiagnoseBadNumberOfBindings();
1389
1390 return false;
1391}
1392
1393void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1394 QualType DecompType = DD->getType();
1395
1396 // If the type of the decomposition is dependent, then so is the type of
1397 // each binding.
1398 if (DecompType->isDependentType()) {
1399 for (auto *B : DD->bindings())
1400 B->setType(Context.DependentTy);
1401 return;
1402 }
1403
1404 DecompType = DecompType.getNonReferenceType();
1405 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1406
1407 // C++1z [dcl.decomp]/2:
1408 // If E is an array type [...]
1409 // As an extension, we also support decomposition of built-in complex and
1410 // vector types.
1411 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1412 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1413 DD->setInvalidDecl();
1414 return;
1415 }
1416 if (auto *VT = DecompType->getAs<VectorType>()) {
1417 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1418 DD->setInvalidDecl();
1419 return;
1420 }
1421 if (auto *CT = DecompType->getAs<ComplexType>()) {
1422 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1423 DD->setInvalidDecl();
1424 return;
1425 }
1426
1427 // C++1z [dcl.decomp]/3:
1428 // if the expression std::tuple_size<E>::value is a well-formed integral
1429 // constant expression, [...]
1430 llvm::APSInt TupleSize(32);
1431 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1432 case IsTupleLike::Error:
1433 DD->setInvalidDecl();
1434 return;
1435
1436 case IsTupleLike::TupleLike:
1437 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1438 DD->setInvalidDecl();
1439 return;
1440
1441 case IsTupleLike::NotTupleLike:
1442 break;
1443 }
1444
1445 // C++1z [dcl.dcl]/8:
1446 // [E shall be of array or non-union class type]
1447 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1448 if (!RD || RD->isUnion()) {
1449 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1450 << DD << !RD << DecompType;
1451 DD->setInvalidDecl();
1452 return;
1453 }
1454
1455 // C++1z [dcl.decomp]/4:
1456 // all of E's non-static data members shall be [...] direct members of
1457 // E or of the same unambiguous public base class of E, ...
1458 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1459 DD->setInvalidDecl();
1460}
1461
1462/// \brief Merge the exception specifications of two variable declarations.
1463///
1464/// This is called when there's a redeclaration of a VarDecl. The function
1465/// checks if the redeclaration might have an exception specification and
1466/// validates compatibility and merges the specs if necessary.
1467void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1468 // Shortcut if exceptions are disabled.
1469 if (!getLangOpts().CXXExceptions)
1470 return;
1471
1472 assert(Context.hasSameType(New->getType(), Old->getType()) &&(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1473, __extension__ __PRETTY_FUNCTION__))
1473 "Should only be called if types are otherwise the same.")(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1473, __extension__ __PRETTY_FUNCTION__))
;
1474
1475 QualType NewType = New->getType();
1476 QualType OldType = Old->getType();
1477
1478 // We're only interested in pointers and references to functions, as well
1479 // as pointers to member functions.
1480 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1481 NewType = R->getPointeeType();
1482 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1483 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1484 NewType = P->getPointeeType();
1485 OldType = OldType->getAs<PointerType>()->getPointeeType();
1486 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1487 NewType = M->getPointeeType();
1488 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1489 }
1490
1491 if (!NewType->isFunctionProtoType())
1492 return;
1493
1494 // There's lots of special cases for functions. For function pointers, system
1495 // libraries are hopefully not as broken so that we don't need these
1496 // workarounds.
1497 if (CheckEquivalentExceptionSpec(
1498 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1499 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1500 New->setInvalidDecl();
1501 }
1502}
1503
1504/// CheckCXXDefaultArguments - Verify that the default arguments for a
1505/// function declaration are well-formed according to C++
1506/// [dcl.fct.default].
1507void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1508 unsigned NumParams = FD->getNumParams();
1509 unsigned p;
1510
1511 // Find first parameter with a default argument
1512 for (p = 0; p < NumParams; ++p) {
1513 ParmVarDecl *Param = FD->getParamDecl(p);
1514 if (Param->hasDefaultArg())
1515 break;
1516 }
1517
1518 // C++11 [dcl.fct.default]p4:
1519 // In a given function declaration, each parameter subsequent to a parameter
1520 // with a default argument shall have a default argument supplied in this or
1521 // a previous declaration or shall be a function parameter pack. A default
1522 // argument shall not be redefined by a later declaration (not even to the
1523 // same value).
1524 unsigned LastMissingDefaultArg = 0;
1525 for (; p < NumParams; ++p) {
1526 ParmVarDecl *Param = FD->getParamDecl(p);
1527 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1528 if (Param->isInvalidDecl())
1529 /* We already complained about this parameter. */;
1530 else if (Param->getIdentifier())
1531 Diag(Param->getLocation(),
1532 diag::err_param_default_argument_missing_name)
1533 << Param->getIdentifier();
1534 else
1535 Diag(Param->getLocation(),
1536 diag::err_param_default_argument_missing);
1537
1538 LastMissingDefaultArg = p;
1539 }
1540 }
1541
1542 if (LastMissingDefaultArg > 0) {
1543 // Some default arguments were missing. Clear out all of the
1544 // default arguments up to (and including) the last missing
1545 // default argument, so that we leave the function parameters
1546 // in a semantically valid state.
1547 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1548 ParmVarDecl *Param = FD->getParamDecl(p);
1549 if (Param->hasDefaultArg()) {
1550 Param->setDefaultArg(nullptr);
1551 }
1552 }
1553 }
1554}
1555
1556// CheckConstexprParameterTypes - Check whether a function's parameter types
1557// are all literal types. If so, return true. If not, produce a suitable
1558// diagnostic and return false.
1559static bool CheckConstexprParameterTypes(Sema &SemaRef,
1560 const FunctionDecl *FD) {
1561 unsigned ArgIndex = 0;
1562 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1563 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1564 e = FT->param_type_end();
1565 i != e; ++i, ++ArgIndex) {
1566 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1567 SourceLocation ParamLoc = PD->getLocation();
1568 if (!(*i)->isDependentType() &&
1569 SemaRef.RequireLiteralType(ParamLoc, *i,
1570 diag::err_constexpr_non_literal_param,
1571 ArgIndex+1, PD->getSourceRange(),
1572 isa<CXXConstructorDecl>(FD)))
1573 return false;
1574 }
1575 return true;
1576}
1577
1578/// \brief Get diagnostic %select index for tag kind for
1579/// record diagnostic message.
1580/// WARNING: Indexes apply to particular diagnostics only!
1581///
1582/// \returns diagnostic %select index.
1583static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1584 switch (Tag) {
1585 case TTK_Struct: return 0;
1586 case TTK_Interface: return 1;
1587 case TTK_Class: return 2;
1588 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1588)
;
1589 }
1590}
1591
1592// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
1593// the requirements of a constexpr function definition or a constexpr
1594// constructor definition. If so, return true. If not, produce appropriate
1595// diagnostics and return false.
1596//
1597// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1598bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
1599 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1600 if (MD && MD->isInstance()) {
1601 // C++11 [dcl.constexpr]p4:
1602 // The definition of a constexpr constructor shall satisfy the following
1603 // constraints:
1604 // - the class shall not have any virtual base classes;
1605 const CXXRecordDecl *RD = MD->getParent();
1606 if (RD->getNumVBases()) {
1607 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1608 << isa<CXXConstructorDecl>(NewFD)
1609 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1610 for (const auto &I : RD->vbases())
1611 Diag(I.getLocStart(),
1612 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
1613 return false;
1614 }
1615 }
1616
1617 if (!isa<CXXConstructorDecl>(NewFD)) {
1618 // C++11 [dcl.constexpr]p3:
1619 // The definition of a constexpr function shall satisfy the following
1620 // constraints:
1621 // - it shall not be virtual;
1622 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1623 if (Method && Method->isVirtual()) {
1624 Method = Method->getCanonicalDecl();
1625 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1626
1627 // If it's not obvious why this function is virtual, find an overridden
1628 // function which uses the 'virtual' keyword.
1629 const CXXMethodDecl *WrittenVirtual = Method;
1630 while (!WrittenVirtual->isVirtualAsWritten())
1631 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1632 if (WrittenVirtual != Method)
1633 Diag(WrittenVirtual->getLocation(),
1634 diag::note_overridden_virtual_function);
1635 return false;
1636 }
1637
1638 // - its return type shall be a literal type;
1639 QualType RT = NewFD->getReturnType();
1640 if (!RT->isDependentType() &&
1641 RequireLiteralType(NewFD->getLocation(), RT,
1642 diag::err_constexpr_non_literal_return))
1643 return false;
1644 }
1645
1646 // - each of its parameter types shall be a literal type;
1647 if (!CheckConstexprParameterTypes(*this, NewFD))
1648 return false;
1649
1650 return true;
1651}
1652
1653/// Check the given declaration statement is legal within a constexpr function
1654/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1655///
1656/// \return true if the body is OK (maybe only as an extension), false if we
1657/// have diagnosed a problem.
1658static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1659 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
1660 // C++11 [dcl.constexpr]p3 and p4:
1661 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1662 // contain only
1663 for (const auto *DclIt : DS->decls()) {
1664 switch (DclIt->getKind()) {
1665 case Decl::StaticAssert:
1666 case Decl::Using:
1667 case Decl::UsingShadow:
1668 case Decl::UsingDirective:
1669 case Decl::UnresolvedUsingTypename:
1670 case Decl::UnresolvedUsingValue:
1671 // - static_assert-declarations
1672 // - using-declarations,
1673 // - using-directives,
1674 continue;
1675
1676 case Decl::Typedef:
1677 case Decl::TypeAlias: {
1678 // - typedef declarations and alias-declarations that do not define
1679 // classes or enumerations,
1680 const auto *TN = cast<TypedefNameDecl>(DclIt);
1681 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1682 // Don't allow variably-modified types in constexpr functions.
1683 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1684 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1685 << TL.getSourceRange() << TL.getType()
1686 << isa<CXXConstructorDecl>(Dcl);
1687 return false;
1688 }
1689 continue;
1690 }
1691
1692 case Decl::Enum:
1693 case Decl::CXXRecord:
1694 // C++1y allows types to be defined, not just declared.
1695 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
1696 SemaRef.Diag(DS->getLocStart(),
1697 SemaRef.getLangOpts().CPlusPlus14
1698 ? diag::warn_cxx11_compat_constexpr_type_definition
1699 : diag::ext_constexpr_type_definition)
1700 << isa<CXXConstructorDecl>(Dcl);
1701 continue;
1702
1703 case Decl::EnumConstant:
1704 case Decl::IndirectField:
1705 case Decl::ParmVar:
1706 // These can only appear with other declarations which are banned in
1707 // C++11 and permitted in C++1y, so ignore them.
1708 continue;
1709
1710 case Decl::Var:
1711 case Decl::Decomposition: {
1712 // C++1y [dcl.constexpr]p3 allows anything except:
1713 // a definition of a variable of non-literal type or of static or
1714 // thread storage duration or for which no initialization is performed.
1715 const auto *VD = cast<VarDecl>(DclIt);
1716 if (VD->isThisDeclarationADefinition()) {
1717 if (VD->isStaticLocal()) {
1718 SemaRef.Diag(VD->getLocation(),
1719 diag::err_constexpr_local_var_static)
1720 << isa<CXXConstructorDecl>(Dcl)
1721 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1722 return false;
1723 }
1724 if (!VD->getType()->isDependentType() &&
1725 SemaRef.RequireLiteralType(
1726 VD->getLocation(), VD->getType(),
1727 diag::err_constexpr_local_var_non_literal_type,
1728 isa<CXXConstructorDecl>(Dcl)))
1729 return false;
1730 if (!VD->getType()->isDependentType() &&
1731 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1732 SemaRef.Diag(VD->getLocation(),
1733 diag::err_constexpr_local_var_no_init)
1734 << isa<CXXConstructorDecl>(Dcl);
1735 return false;
1736 }
1737 }
1738 SemaRef.Diag(VD->getLocation(),
1739 SemaRef.getLangOpts().CPlusPlus14
1740 ? diag::warn_cxx11_compat_constexpr_local_var
1741 : diag::ext_constexpr_local_var)
1742 << isa<CXXConstructorDecl>(Dcl);
1743 continue;
1744 }
1745
1746 case Decl::NamespaceAlias:
1747 case Decl::Function:
1748 // These are disallowed in C++11 and permitted in C++1y. Allow them
1749 // everywhere as an extension.
1750 if (!Cxx1yLoc.isValid())
1751 Cxx1yLoc = DS->getLocStart();
1752 continue;
1753
1754 default:
1755 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1756 << isa<CXXConstructorDecl>(Dcl);
1757 return false;
1758 }
1759 }
1760
1761 return true;
1762}
1763
1764/// Check that the given field is initialized within a constexpr constructor.
1765///
1766/// \param Dcl The constexpr constructor being checked.
1767/// \param Field The field being checked. This may be a member of an anonymous
1768/// struct or union nested within the class being checked.
1769/// \param Inits All declarations, including anonymous struct/union members and
1770/// indirect members, for which any initialization was provided.
1771/// \param Diagnosed Set to true if an error is produced.
1772static void CheckConstexprCtorInitializer(Sema &SemaRef,
1773 const FunctionDecl *Dcl,
1774 FieldDecl *Field,
1775 llvm::SmallSet<Decl*, 16> &Inits,
1776 bool &Diagnosed) {
1777 if (Field->isInvalidDecl())
1778 return;
1779
1780 if (Field->isUnnamedBitfield())
1781 return;
1782
1783 // Anonymous unions with no variant members and empty anonymous structs do not
1784 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1785 // indirect fields don't need initializing.
1786 if (Field->isAnonymousStructOrUnion() &&
1787 (Field->getType()->isUnionType()
1788 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1789 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1790 return;
1791
1792 if (!Inits.count(Field)) {
1793 if (!Diagnosed) {
1794 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
1795 Diagnosed = true;
1796 }
1797 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1798 } else if (Field->isAnonymousStructOrUnion()) {
1799 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1800 for (auto *I : RD->fields())
1801 // If an anonymous union contains an anonymous struct of which any member
1802 // is initialized, all members must be initialized.
1803 if (!RD->isUnion() || Inits.count(I))
1804 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1805 }
1806}
1807
1808/// Check the provided statement is allowed in a constexpr function
1809/// definition.
1810static bool
1811CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1812 SmallVectorImpl<SourceLocation> &ReturnStmts,
1813 SourceLocation &Cxx1yLoc) {
1814 // - its function-body shall be [...] a compound-statement that contains only
1815 switch (S->getStmtClass()) {
1816 case Stmt::NullStmtClass:
1817 // - null statements,
1818 return true;
1819
1820 case Stmt::DeclStmtClass:
1821 // - static_assert-declarations
1822 // - using-declarations,
1823 // - using-directives,
1824 // - typedef declarations and alias-declarations that do not define
1825 // classes or enumerations,
1826 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1827 return false;
1828 return true;
1829
1830 case Stmt::ReturnStmtClass:
1831 // - and exactly one return statement;
1832 if (isa<CXXConstructorDecl>(Dcl)) {
1833 // C++1y allows return statements in constexpr constructors.
1834 if (!Cxx1yLoc.isValid())
1835 Cxx1yLoc = S->getLocStart();
1836 return true;
1837 }
1838
1839 ReturnStmts.push_back(S->getLocStart());
1840 return true;
1841
1842 case Stmt::CompoundStmtClass: {
1843 // C++1y allows compound-statements.
1844 if (!Cxx1yLoc.isValid())
1845 Cxx1yLoc = S->getLocStart();
1846
1847 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1848 for (auto *BodyIt : CompStmt->body()) {
1849 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1850 Cxx1yLoc))
1851 return false;
1852 }
1853 return true;
1854 }
1855
1856 case Stmt::AttributedStmtClass:
1857 if (!Cxx1yLoc.isValid())
1858 Cxx1yLoc = S->getLocStart();
1859 return true;
1860
1861 case Stmt::IfStmtClass: {
1862 // C++1y allows if-statements.
1863 if (!Cxx1yLoc.isValid())
1864 Cxx1yLoc = S->getLocStart();
1865
1866 IfStmt *If = cast<IfStmt>(S);
1867 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1868 Cxx1yLoc))
1869 return false;
1870 if (If->getElse() &&
1871 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1872 Cxx1yLoc))
1873 return false;
1874 return true;
1875 }
1876
1877 case Stmt::WhileStmtClass:
1878 case Stmt::DoStmtClass:
1879 case Stmt::ForStmtClass:
1880 case Stmt::CXXForRangeStmtClass:
1881 case Stmt::ContinueStmtClass:
1882 // C++1y allows all of these. We don't allow them as extensions in C++11,
1883 // because they don't make sense without variable mutation.
1884 if (!SemaRef.getLangOpts().CPlusPlus14)
1885 break;
1886 if (!Cxx1yLoc.isValid())
1887 Cxx1yLoc = S->getLocStart();
1888 for (Stmt *SubStmt : S->children())
1889 if (SubStmt &&
1890 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1891 Cxx1yLoc))
1892 return false;
1893 return true;
1894
1895 case Stmt::SwitchStmtClass:
1896 case Stmt::CaseStmtClass:
1897 case Stmt::DefaultStmtClass:
1898 case Stmt::BreakStmtClass:
1899 // C++1y allows switch-statements, and since they don't need variable
1900 // mutation, we can reasonably allow them in C++11 as an extension.
1901 if (!Cxx1yLoc.isValid())
1902 Cxx1yLoc = S->getLocStart();
1903 for (Stmt *SubStmt : S->children())
1904 if (SubStmt &&
1905 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1906 Cxx1yLoc))
1907 return false;
1908 return true;
1909
1910 default:
1911 if (!isa<Expr>(S))
1912 break;
1913
1914 // C++1y allows expression-statements.
1915 if (!Cxx1yLoc.isValid())
1916 Cxx1yLoc = S->getLocStart();
1917 return true;
1918 }
1919
1920 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1921 << isa<CXXConstructorDecl>(Dcl);
1922 return false;
1923}
1924
1925/// Check the body for the given constexpr function declaration only contains
1926/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1927///
1928/// \return true if the body is OK, false if we have diagnosed a problem.
1929bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1930 if (isa<CXXTryStmt>(Body)) {
1931 // C++11 [dcl.constexpr]p3:
1932 // The definition of a constexpr function shall satisfy the following
1933 // constraints: [...]
1934 // - its function-body shall be = delete, = default, or a
1935 // compound-statement
1936 //
1937 // C++11 [dcl.constexpr]p4:
1938 // In the definition of a constexpr constructor, [...]
1939 // - its function-body shall not be a function-try-block;
1940 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1941 << isa<CXXConstructorDecl>(Dcl);
1942 return false;
1943 }
1944
1945 SmallVector<SourceLocation, 4> ReturnStmts;
1946
1947 // - its function-body shall be [...] a compound-statement that contains only
1948 // [... list of cases ...]
1949 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1950 SourceLocation Cxx1yLoc;
1951 for (auto *BodyIt : CompBody->body()) {
1952 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1953 return false;
1954 }
1955
1956 if (Cxx1yLoc.isValid())
1957 Diag(Cxx1yLoc,
1958 getLangOpts().CPlusPlus14
1959 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1960 : diag::ext_constexpr_body_invalid_stmt)
1961 << isa<CXXConstructorDecl>(Dcl);
1962
1963 if (const CXXConstructorDecl *Constructor
1964 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1965 const CXXRecordDecl *RD = Constructor->getParent();
1966 // DR1359:
1967 // - every non-variant non-static data member and base class sub-object
1968 // shall be initialized;
1969 // DR1460:
1970 // - if the class is a union having variant members, exactly one of them
1971 // shall be initialized;
1972 if (RD->isUnion()) {
1973 if (Constructor->getNumCtorInitializers() == 0 &&
1974 RD->hasVariantMembers()) {
1975 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1976 return false;
1977 }
1978 } else if (!Constructor->isDependentContext() &&
1979 !Constructor->isDelegatingConstructor()) {
1980 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")(static_cast <bool> (RD->getNumVBases() == 0 &&
"constexpr ctor with virtual bases") ? void (0) : __assert_fail
("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1980, __extension__ __PRETTY_FUNCTION__))
;
1981
1982 // Skip detailed checking if we have enough initializers, and we would
1983 // allow at most one initializer per member.
1984 bool AnyAnonStructUnionMembers = false;
1985 unsigned Fields = 0;
1986 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1987 E = RD->field_end(); I != E; ++I, ++Fields) {
1988 if (I->isAnonymousStructOrUnion()) {
1989 AnyAnonStructUnionMembers = true;
1990 break;
1991 }
1992 }
1993 // DR1460:
1994 // - if the class is a union-like class, but is not a union, for each of
1995 // its anonymous union members having variant members, exactly one of
1996 // them shall be initialized;
1997 if (AnyAnonStructUnionMembers ||
1998 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1999 // Check initialization of non-static data members. Base classes are
2000 // always initialized so do not need to be checked. Dependent bases
2001 // might not have initializers in the member initializer list.
2002 llvm::SmallSet<Decl*, 16> Inits;
2003 for (const auto *I: Constructor->inits()) {
2004 if (FieldDecl *FD = I->getMember())
2005 Inits.insert(FD);
2006 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2007 Inits.insert(ID->chain_begin(), ID->chain_end());
2008 }
2009
2010 bool Diagnosed = false;
2011 for (auto *I : RD->fields())
2012 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
2013 if (Diagnosed)
2014 return false;
2015 }
2016 }
2017 } else {
2018 if (ReturnStmts.empty()) {
2019 // C++1y doesn't require constexpr functions to contain a 'return'
2020 // statement. We still do, unless the return type might be void, because
2021 // otherwise if there's no return statement, the function cannot
2022 // be used in a core constant expression.
2023 bool OK = getLangOpts().CPlusPlus14 &&
2024 (Dcl->getReturnType()->isVoidType() ||
2025 Dcl->getReturnType()->isDependentType());
2026 Diag(Dcl->getLocation(),
2027 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2028 : diag::err_constexpr_body_no_return);
2029 if (!OK)
2030 return false;
2031 } else if (ReturnStmts.size() > 1) {
2032 Diag(ReturnStmts.back(),
2033 getLangOpts().CPlusPlus14
2034 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2035 : diag::ext_constexpr_body_multiple_return);
2036 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2037 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
2038 }
2039 }
2040
2041 // C++11 [dcl.constexpr]p5:
2042 // if no function argument values exist such that the function invocation
2043 // substitution would produce a constant expression, the program is
2044 // ill-formed; no diagnostic required.
2045 // C++11 [dcl.constexpr]p3:
2046 // - every constructor call and implicit conversion used in initializing the
2047 // return value shall be one of those allowed in a constant expression.
2048 // C++11 [dcl.constexpr]p4:
2049 // - every constructor involved in initializing non-static data members and
2050 // base class sub-objects shall be a constexpr constructor.
2051 SmallVector<PartialDiagnosticAt, 8> Diags;
2052 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
2053 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
2054 << isa<CXXConstructorDecl>(Dcl);
2055 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2056 Diag(Diags[I].first, Diags[I].second);
2057 // Don't return false here: we allow this for compatibility in
2058 // system headers.
2059 }
2060
2061 return true;
2062}
2063
2064/// isCurrentClassName - Determine whether the identifier II is the
2065/// name of the class type currently being defined. In the case of
2066/// nested classes, this will only return true if II is the name of
2067/// the innermost class.
2068bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
2069 const CXXScopeSpec *SS) {
2070 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2070, __extension__ __PRETTY_FUNCTION__))
;
2071
2072 CXXRecordDecl *CurDecl;
2073 if (SS && SS->isSet() && !SS->isInvalid()) {
2074 DeclContext *DC = computeDeclContext(*SS, true);
2075 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2076 } else
2077 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2078
2079 if (CurDecl && CurDecl->getIdentifier())
2080 return &II == CurDecl->getIdentifier();
2081 return false;
2082}
2083
2084/// \brief Determine whether the identifier II is a typo for the name of
2085/// the class type currently being defined. If so, update it to the identifier
2086/// that should have been used.
2087bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2088 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2088, __extension__ __PRETTY_FUNCTION__))
;
2089
2090 if (!getLangOpts().SpellChecking)
2091 return false;
2092
2093 CXXRecordDecl *CurDecl;
2094 if (SS && SS->isSet() && !SS->isInvalid()) {
2095 DeclContext *DC = computeDeclContext(*SS, true);
2096 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2097 } else
2098 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2099
2100 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2101 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2102 < II->getLength()) {
2103 II = CurDecl->getIdentifier();
2104 return true;
2105 }
2106
2107 return false;
2108}
2109
2110/// \brief Determine whether the given class is a base class of the given
2111/// class, including looking at dependent bases.
2112static bool findCircularInheritance(const CXXRecordDecl *Class,
2113 const CXXRecordDecl *Current) {
2114 SmallVector<const CXXRecordDecl*, 8> Queue;
2115
2116 Class = Class->getCanonicalDecl();
2117 while (true) {
2118 for (const auto &I : Current->bases()) {
2119 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2120 if (!Base)
2121 continue;
2122
2123 Base = Base->getDefinition();
2124 if (!Base)
2125 continue;
2126
2127 if (Base->getCanonicalDecl() == Class)
2128 return true;
2129
2130 Queue.push_back(Base);
2131 }
2132
2133 if (Queue.empty())
2134 return false;
2135
2136 Current = Queue.pop_back_val();
2137 }
2138
2139 return false;
2140}
2141
2142/// \brief Check the validity of a C++ base class specifier.
2143///
2144/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2145/// and returns NULL otherwise.
2146CXXBaseSpecifier *
2147Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2148 SourceRange SpecifierRange,
2149 bool Virtual, AccessSpecifier Access,
2150 TypeSourceInfo *TInfo,
2151 SourceLocation EllipsisLoc) {
2152 QualType BaseType = TInfo->getType();
2153
2154 // C++ [class.union]p1:
2155 // A union shall not have base classes.
2156 if (Class->isUnion()) {
2157 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2158 << SpecifierRange;
2159 return nullptr;
2160 }
2161
2162 if (EllipsisLoc.isValid() &&
2163 !TInfo->getType()->containsUnexpandedParameterPack()) {
2164 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2165 << TInfo->getTypeLoc().getSourceRange();
2166 EllipsisLoc = SourceLocation();
2167 }
2168
2169 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2170
2171 if (BaseType->isDependentType()) {
2172 // Make sure that we don't have circular inheritance among our dependent
2173 // bases. For non-dependent bases, the check for completeness below handles
2174 // this.
2175 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2176 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2177 ((BaseDecl = BaseDecl->getDefinition()) &&
2178 findCircularInheritance(Class, BaseDecl))) {
2179 Diag(BaseLoc, diag::err_circular_inheritance)
2180 << BaseType << Context.getTypeDeclType(Class);
2181
2182 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2183 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2184 << BaseType;
2185
2186 return nullptr;
2187 }
2188 }
2189
2190 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2191 Class->getTagKind() == TTK_Class,
2192 Access, TInfo, EllipsisLoc);
2193 }
2194
2195 // Base specifiers must be record types.
2196 if (!BaseType->isRecordType()) {
2197 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2198 return nullptr;
2199 }
2200
2201 // C++ [class.union]p1:
2202 // A union shall not be used as a base class.
2203 if (BaseType->isUnionType()) {
2204 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2205 return nullptr;
2206 }
2207
2208 // For the MS ABI, propagate DLL attributes to base class templates.
2209 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2210 if (Attr *ClassAttr = getDLLAttr(Class)) {
2211 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2212 BaseType->getAsCXXRecordDecl())) {
2213 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2214 BaseLoc);
2215 }
2216 }
2217 }
2218
2219 // C++ [class.derived]p2:
2220 // The class-name in a base-specifier shall not be an incompletely
2221 // defined class.
2222 if (RequireCompleteType(BaseLoc, BaseType,
2223 diag::err_incomplete_base_class, SpecifierRange)) {
2224 Class->setInvalidDecl();
2225 return nullptr;
2226 }
2227
2228 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2229 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2230 assert(BaseDecl && "Record type has no declaration")(static_cast <bool> (BaseDecl && "Record type has no declaration"
) ? void (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2230, __extension__ __PRETTY_FUNCTION__))
;
2231 BaseDecl = BaseDecl->getDefinition();
2232 assert(BaseDecl && "Base type is not incomplete, but has no definition")(static_cast <bool> (BaseDecl && "Base type is not incomplete, but has no definition"
) ? void (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2232, __extension__ __PRETTY_FUNCTION__))
;
2233 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2234 assert(CXXBaseDecl && "Base type is not a C++ type")(static_cast <bool> (CXXBaseDecl && "Base type is not a C++ type"
) ? void (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2234, __extension__ __PRETTY_FUNCTION__))
;
2235
2236 // A class which contains a flexible array member is not suitable for use as a
2237 // base class:
2238 // - If the layout determines that a base comes before another base,
2239 // the flexible array member would index into the subsequent base.
2240 // - If the layout determines that base comes before the derived class,
2241 // the flexible array member would index into the derived class.
2242 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2243 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2244 << CXXBaseDecl->getDeclName();
2245 return nullptr;
2246 }
2247
2248 // C++ [class]p3:
2249 // If a class is marked final and it appears as a base-type-specifier in
2250 // base-clause, the program is ill-formed.
2251 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2252 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2253 << CXXBaseDecl->getDeclName()
2254 << FA->isSpelledAsSealed();
2255 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2256 << CXXBaseDecl->getDeclName() << FA->getRange();
2257 return nullptr;
2258 }
2259
2260 if (BaseDecl->isInvalidDecl())
2261 Class->setInvalidDecl();
2262
2263 // Create the base specifier.
2264 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2265 Class->getTagKind() == TTK_Class,
2266 Access, TInfo, EllipsisLoc);
2267}
2268
2269/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2270/// one entry in the base class list of a class specifier, for
2271/// example:
2272/// class foo : public bar, virtual private baz {
2273/// 'public bar' and 'virtual private baz' are each base-specifiers.
2274BaseResult
2275Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2276 ParsedAttributes &Attributes,
2277 bool Virtual, AccessSpecifier Access,
2278 ParsedType basetype, SourceLocation BaseLoc,
2279 SourceLocation EllipsisLoc) {
2280 if (!classdecl)
2281 return true;
2282
2283 AdjustDeclIfTemplate(classdecl);
2284 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2285 if (!Class)
2286 return true;
2287
2288 // We haven't yet attached the base specifiers.
2289 Class->setIsParsingBaseSpecifiers();
2290
2291 // We do not support any C++11 attributes on base-specifiers yet.
2292 // Diagnose any attributes we see.
2293 if (!Attributes.empty()) {
2294 for (AttributeList *Attr = Attributes.getList(); Attr;
2295 Attr = Attr->getNext()) {
2296 if (Attr->isInvalid() ||
2297 Attr->getKind() == AttributeList::IgnoredAttribute)
2298 continue;
2299 Diag(Attr->getLoc(),
2300 Attr->getKind() == AttributeList::UnknownAttribute
2301 ? diag::warn_unknown_attribute_ignored
2302 : diag::err_base_specifier_attribute)
2303 << Attr->getName();
2304 }
2305 }
2306
2307 TypeSourceInfo *TInfo = nullptr;
2308 GetTypeFromParser(basetype, &TInfo);
2309
2310 if (EllipsisLoc.isInvalid() &&
2311 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2312 UPPC_BaseType))
2313 return true;
2314
2315 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2316 Virtual, Access, TInfo,
2317 EllipsisLoc))
2318 return BaseSpec;
2319 else
2320 Class->setInvalidDecl();
2321
2322 return true;
2323}
2324
2325/// Use small set to collect indirect bases. As this is only used
2326/// locally, there's no need to abstract the small size parameter.
2327typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2328
2329/// \brief Recursively add the bases of Type. Don't add Type itself.
2330static void
2331NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2332 const QualType &Type)
2333{
2334 // Even though the incoming type is a base, it might not be
2335 // a class -- it could be a template parm, for instance.
2336 if (auto Rec = Type->getAs<RecordType>()) {
2337 auto Decl = Rec->getAsCXXRecordDecl();
2338
2339 // Iterate over its bases.
2340 for (const auto &BaseSpec : Decl->bases()) {
2341 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2342 .getUnqualifiedType();
2343 if (Set.insert(Base).second)
2344 // If we've not already seen it, recurse.
2345 NoteIndirectBases(Context, Set, Base);
2346 }
2347 }
2348}
2349
2350/// \brief Performs the actual work of attaching the given base class
2351/// specifiers to a C++ class.
2352bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2353 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2354 if (Bases.empty())
2355 return false;
2356
2357 // Used to keep track of which base types we have already seen, so
2358 // that we can properly diagnose redundant direct base types. Note
2359 // that the key is always the unqualified canonical type of the base
2360 // class.
2361 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2362
2363 // Used to track indirect bases so we can see if a direct base is
2364 // ambiguous.
2365 IndirectBaseSet IndirectBaseTypes;
2366
2367 // Copy non-redundant base specifiers into permanent storage.
2368 unsigned NumGoodBases = 0;
2369 bool Invalid = false;
2370 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2371 QualType NewBaseType
2372 = Context.getCanonicalType(Bases[idx]->getType());
2373 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2374
2375 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2376 if (KnownBase) {
2377 // C++ [class.mi]p3:
2378 // A class shall not be specified as a direct base class of a
2379 // derived class more than once.
2380 Diag(Bases[idx]->getLocStart(),
2381 diag::err_duplicate_base_class)
2382 << KnownBase->getType()
2383 << Bases[idx]->getSourceRange();
2384
2385 // Delete the duplicate base class specifier; we're going to
2386 // overwrite its pointer later.
2387 Context.Deallocate(Bases[idx]);
2388
2389 Invalid = true;
2390 } else {
2391 // Okay, add this new base class.
2392 KnownBase = Bases[idx];
2393 Bases[NumGoodBases++] = Bases[idx];
2394
2395 // Note this base's direct & indirect bases, if there could be ambiguity.
2396 if (Bases.size() > 1)
2397 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2398
2399 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2400 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2401 if (Class->isInterface() &&
2402 (!RD->isInterfaceLike() ||
2403 KnownBase->getAccessSpecifier() != AS_public)) {
2404 // The Microsoft extension __interface does not permit bases that
2405 // are not themselves public interfaces.
2406 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
2407 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2408 << RD->getSourceRange();
2409 Invalid = true;
2410 }
2411 if (RD->hasAttr<WeakAttr>())
2412 Class->addAttr(WeakAttr::CreateImplicit(Context));
2413 }
2414 }
2415 }
2416
2417 // Attach the remaining base class specifiers to the derived class.
2418 Class->setBases(Bases.data(), NumGoodBases);
2419
2420 // Check that the only base classes that are duplicate are virtual.
2421 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2422 // Check whether this direct base is inaccessible due to ambiguity.
2423 QualType BaseType = Bases[idx]->getType();
2424
2425 // Skip all dependent types in templates being used as base specifiers.
2426 // Checks below assume that the base specifier is a CXXRecord.
2427 if (BaseType->isDependentType())
2428 continue;
2429
2430 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2431 .getUnqualifiedType();
2432
2433 if (IndirectBaseTypes.count(CanonicalBase)) {
2434 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2435 /*DetectVirtual=*/true);
2436 bool found
2437 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2438 assert(found)(static_cast <bool> (found) ? void (0) : __assert_fail (
"found", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2438, __extension__ __PRETTY_FUNCTION__))
;
2439 (void)found;
2440
2441 if (Paths.isAmbiguous(CanonicalBase))
2442 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
2443 << BaseType << getAmbiguousPathsDisplayString(Paths)
2444 << Bases[idx]->getSourceRange();
2445 else
2446 assert(Bases[idx]->isVirtual())(static_cast <bool> (Bases[idx]->isVirtual()) ? void
(0) : __assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2446, __extension__ __PRETTY_FUNCTION__))
;
2447 }
2448
2449 // Delete the base class specifier, since its data has been copied
2450 // into the CXXRecordDecl.
2451 Context.Deallocate(Bases[idx]);
2452 }
2453
2454 return Invalid;
2455}
2456
2457/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2458/// class, after checking whether there are any duplicate base
2459/// classes.
2460void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2461 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2462 if (!ClassDecl || Bases.empty())
2463 return;
2464
2465 AdjustDeclIfTemplate(ClassDecl);
2466 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2467}
2468
2469/// \brief Determine whether the type \p Derived is a C++ class that is
2470/// derived from the type \p Base.
2471bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2472 if (!getLangOpts().CPlusPlus)
2473 return false;
2474
2475 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2476 if (!DerivedRD)
2477 return false;
2478
2479 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2480 if (!BaseRD)
2481 return false;
2482
2483 // If either the base or the derived type is invalid, don't try to
2484 // check whether one is derived from the other.
2485 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2486 return false;
2487
2488 // FIXME: In a modules build, do we need the entire path to be visible for us
2489 // to be able to use the inheritance relationship?
2490 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2491 return false;
2492
2493 return DerivedRD->isDerivedFrom(BaseRD);
2494}
2495
2496/// \brief Determine whether the type \p Derived is a C++ class that is
2497/// derived from the type \p Base.
2498bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2499 CXXBasePaths &Paths) {
2500 if (!getLangOpts().CPlusPlus)
2501 return false;
2502
2503 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2504 if (!DerivedRD)
2505 return false;
2506
2507 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2508 if (!BaseRD)
2509 return false;
2510
2511 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2512 return false;
2513
2514 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2515}
2516
2517static void BuildBasePathArray(const CXXBasePath &Path,
2518 CXXCastPath &BasePathArray) {
2519 // We first go backward and check if we have a virtual base.
2520 // FIXME: It would be better if CXXBasePath had the base specifier for
2521 // the nearest virtual base.
2522 unsigned Start = 0;
2523 for (unsigned I = Path.size(); I != 0; --I) {
2524 if (Path[I - 1].Base->isVirtual()) {
2525 Start = I - 1;
2526 break;
2527 }
2528 }
2529
2530 // Now add all bases.
2531 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2532 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2533}
2534
2535
2536void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2537 CXXCastPath &BasePathArray) {
2538 assert(BasePathArray.empty() && "Base path array must be empty!")(static_cast <bool> (BasePathArray.empty() && "Base path array must be empty!"
) ? void (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2538, __extension__ __PRETTY_FUNCTION__))
;
2539 assert(Paths.isRecordingPaths() && "Must record paths!")(static_cast <bool> (Paths.isRecordingPaths() &&
"Must record paths!") ? void (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2539, __extension__ __PRETTY_FUNCTION__))
;
2540 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2541}
2542/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2543/// conversion (where Derived and Base are class types) is
2544/// well-formed, meaning that the conversion is unambiguous (and
2545/// that all of the base classes are accessible). Returns true
2546/// and emits a diagnostic if the code is ill-formed, returns false
2547/// otherwise. Loc is the location where this routine should point to
2548/// if there is an error, and Range is the source range to highlight
2549/// if there is an error.
2550///
2551/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2552/// diagnostic for the respective type of error will be suppressed, but the
2553/// check for ill-formed code will still be performed.
2554bool
2555Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2556 unsigned InaccessibleBaseID,
2557 unsigned AmbigiousBaseConvID,
2558 SourceLocation Loc, SourceRange Range,
2559 DeclarationName Name,
2560 CXXCastPath *BasePath,
2561 bool IgnoreAccess) {
2562 // First, determine whether the path from Derived to Base is
2563 // ambiguous. This is slightly more expensive than checking whether
2564 // the Derived to Base conversion exists, because here we need to
2565 // explore multiple paths to determine if there is an ambiguity.
2566 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2567 /*DetectVirtual=*/false);
2568 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2569 if (!DerivationOkay)
2570 return true;
2571
2572 const CXXBasePath *Path = nullptr;
2573 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2574 Path = &Paths.front();
2575
2576 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2577 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2578 // user to access such bases.
2579 if (!Path && getLangOpts().MSVCCompat) {
2580 for (const CXXBasePath &PossiblePath : Paths) {
2581 if (PossiblePath.size() == 1) {
2582 Path = &PossiblePath;
2583 if (AmbigiousBaseConvID)
2584 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2585 << Base << Derived << Range;
2586 break;
2587 }
2588 }
2589 }
2590
2591 if (Path) {
2592 if (!IgnoreAccess) {
2593 // Check that the base class can be accessed.
2594 switch (
2595 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2596 case AR_inaccessible:
2597 return true;
2598 case AR_accessible:
2599 case AR_dependent:
2600 case AR_delayed:
2601 break;
2602 }
2603 }
2604
2605 // Build a base path if necessary.
2606 if (BasePath)
2607 ::BuildBasePathArray(*Path, *BasePath);
2608 return false;
2609 }
2610
2611 if (AmbigiousBaseConvID) {
2612 // We know that the derived-to-base conversion is ambiguous, and
2613 // we're going to produce a diagnostic. Perform the derived-to-base
2614 // search just one more time to compute all of the possible paths so
2615 // that we can print them out. This is more expensive than any of
2616 // the previous derived-to-base checks we've done, but at this point
2617 // performance isn't as much of an issue.
2618 Paths.clear();
2619 Paths.setRecordingPaths(true);
2620 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2621 assert(StillOkay && "Can only be used with a derived-to-base conversion")(static_cast <bool> (StillOkay && "Can only be used with a derived-to-base conversion"
) ? void (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2621, __extension__ __PRETTY_FUNCTION__))
;
2622 (void)StillOkay;
2623
2624 // Build up a textual representation of the ambiguous paths, e.g.,
2625 // D -> B -> A, that will be used to illustrate the ambiguous
2626 // conversions in the diagnostic. We only print one of the paths
2627 // to each base class subobject.
2628 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2629
2630 Diag(Loc, AmbigiousBaseConvID)
2631 << Derived << Base << PathDisplayStr << Range << Name;
2632 }
2633 return true;
2634}
2635
2636bool
2637Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2638 SourceLocation Loc, SourceRange Range,
2639 CXXCastPath *BasePath,
2640 bool IgnoreAccess) {
2641 return CheckDerivedToBaseConversion(
2642 Derived, Base, diag::err_upcast_to_inaccessible_base,
2643 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2644 BasePath, IgnoreAccess);
2645}
2646
2647
2648/// @brief Builds a string representing ambiguous paths from a
2649/// specific derived class to different subobjects of the same base
2650/// class.
2651///
2652/// This function builds a string that can be used in error messages
2653/// to show the different paths that one can take through the
2654/// inheritance hierarchy to go from the derived class to different
2655/// subobjects of a base class. The result looks something like this:
2656/// @code
2657/// struct D -> struct B -> struct A
2658/// struct D -> struct C -> struct A
2659/// @endcode
2660std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2661 std::string PathDisplayStr;
2662 std::set<unsigned> DisplayedPaths;
2663 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2664 Path != Paths.end(); ++Path) {
2665 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2666 // We haven't displayed a path to this particular base
2667 // class subobject yet.
2668 PathDisplayStr += "\n ";
2669 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2670 for (CXXBasePath::const_iterator Element = Path->begin();
2671 Element != Path->end(); ++Element)
2672 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2673 }
2674 }
2675
2676 return PathDisplayStr;
2677}
2678
2679//===----------------------------------------------------------------------===//
2680// C++ class member Handling
2681//===----------------------------------------------------------------------===//
2682
2683/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2684bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
2685 SourceLocation ASLoc,
2686 SourceLocation ColonLoc,
2687 AttributeList *Attrs) {
2688 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")(static_cast <bool> (Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? void (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2688, __extension__ __PRETTY_FUNCTION__))
;
2689 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2690 ASLoc, ColonLoc);
2691 CurContext->addHiddenDecl(ASDecl);
2692 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2693}
2694
2695/// CheckOverrideControl - Check C++11 override control semantics.
2696void Sema::CheckOverrideControl(NamedDecl *D) {
2697 if (D->isInvalidDecl())
2698 return;
2699
2700 // We only care about "override" and "final" declarations.
2701 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2702 return;
2703
2704 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2705
2706 // We can't check dependent instance methods.
2707 if (MD && MD->isInstance() &&
2708 (MD->getParent()->hasAnyDependentBases() ||
2709 MD->getType()->isDependentType()))
2710 return;
2711
2712 if (MD && !MD->isVirtual()) {
2713 // If we have a non-virtual method, check if if hides a virtual method.
2714 // (In that case, it's most likely the method has the wrong type.)
2715 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2716 FindHiddenVirtualMethods(MD, OverloadedMethods);
2717
2718 if (!OverloadedMethods.empty()) {
2719 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2720 Diag(OA->getLocation(),
2721 diag::override_keyword_hides_virtual_member_function)
2722 << "override" << (OverloadedMethods.size() > 1);
2723 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2724 Diag(FA->getLocation(),
2725 diag::override_keyword_hides_virtual_member_function)
2726 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2727 << (OverloadedMethods.size() > 1);
2728 }
2729 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2730 MD->setInvalidDecl();
2731 return;
2732 }
2733 // Fall through into the general case diagnostic.
2734 // FIXME: We might want to attempt typo correction here.
2735 }
2736
2737 if (!MD || !MD->isVirtual()) {
2738 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2739 Diag(OA->getLocation(),
2740 diag::override_keyword_only_allowed_on_virtual_member_functions)
2741 << "override" << FixItHint::CreateRemoval(OA->getLocation());
2742 D->dropAttr<OverrideAttr>();
2743 }
2744 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2745 Diag(FA->getLocation(),
2746 diag::override_keyword_only_allowed_on_virtual_member_functions)
2747 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2748 << FixItHint::CreateRemoval(FA->getLocation());
2749 D->dropAttr<FinalAttr>();
2750 }
2751 return;
2752 }
2753
2754 // C++11 [class.virtual]p5:
2755 // If a function is marked with the virt-specifier override and
2756 // does not override a member function of a base class, the program is
2757 // ill-formed.
2758 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
2759 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
2760 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
2761 << MD->getDeclName();
2762}
2763
2764void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
2765 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
2766 return;
2767 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2768 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
2769 return;
2770
2771 SourceLocation Loc = MD->getLocation();
2772 SourceLocation SpellingLoc = Loc;
2773 if (getSourceManager().isMacroArgExpansion(Loc))
2774 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
2775 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
2776 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
2777 return;
2778
2779 if (MD->size_overridden_methods() > 0) {
2780 unsigned DiagID = isa<CXXDestructorDecl>(MD)
2781 ? diag::warn_destructor_marked_not_override_overriding
2782 : diag::warn_function_marked_not_override_overriding;
2783 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
2784 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
2785 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
2786 }
2787}
2788
2789/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
2790/// function overrides a virtual member function marked 'final', according to
2791/// C++11 [class.virtual]p4.
2792bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
2793 const CXXMethodDecl *Old) {
2794 FinalAttr *FA = Old->getAttr<FinalAttr>();
2795 if (!FA)
2796 return false;
2797
2798 Diag(New->getLocation(), diag::err_final_function_overridden)
2799 << New->getDeclName()
2800 << FA->isSpelledAsSealed();
2801 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2802 return true;
2803}
2804
2805static bool InitializationHasSideEffects(const FieldDecl &FD) {
2806 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2807 // FIXME: Destruction of ObjC lifetime types has side-effects.
2808 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2809 return !RD->isCompleteDefinition() ||
2810 !RD->hasTrivialDefaultConstructor() ||
2811 !RD->hasTrivialDestructor();
2812 return false;
2813}
2814
2815static AttributeList *getMSPropertyAttr(AttributeList *list) {
2816 for (AttributeList *it = list; it != nullptr; it = it->getNext())
2817 if (it->isDeclspecPropertyAttribute())
2818 return it;
2819 return nullptr;
2820}
2821
2822// Check if there is a field shadowing.
2823void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
2824 DeclarationName FieldName,
2825 const CXXRecordDecl *RD) {
2826 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
2827 return;
2828
2829 // To record a shadowed field in a base
2830 std::map<CXXRecordDecl*, NamedDecl*> Bases;
2831 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
2832 CXXBasePath &Path) {
2833 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
2834 // Record an ambiguous path directly
2835 if (Bases.find(Base) != Bases.end())
2836 return true;
2837 for (const auto Field : Base->lookup(FieldName)) {
2838 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
2839 Field->getAccess() != AS_private) {
2840 assert(Field->getAccess() != AS_none)(static_cast <bool> (Field->getAccess() != AS_none) ?
void (0) : __assert_fail ("Field->getAccess() != AS_none"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2840, __extension__ __PRETTY_FUNCTION__))
;
2841 assert(Bases.find(Base) == Bases.end())(static_cast <bool> (Bases.find(Base) == Bases.end()) ?
void (0) : __assert_fail ("Bases.find(Base) == Bases.end()",
"/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2841, __extension__ __PRETTY_FUNCTION__))
;
2842 Bases[Base] = Field;
2843 return true;
2844 }
2845 }
2846 return false;
2847 };
2848
2849 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2850 /*DetectVirtual=*/true);
2851 if (!RD->lookupInBases(FieldShadowed, Paths))
2852 return;
2853
2854 for (const auto &P : Paths) {
2855 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
2856 auto It = Bases.find(Base);
2857 // Skip duplicated bases
2858 if (It == Bases.end())
2859 continue;
2860 auto BaseField = It->second;
2861 assert(BaseField->getAccess() != AS_private)(static_cast <bool> (BaseField->getAccess() != AS_private
) ? void (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2861, __extension__ __PRETTY_FUNCTION__))
;
2862 if (AS_none !=
2863 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
2864 Diag(Loc, diag::warn_shadow_field)
2865 << FieldName << RD << Base;
2866 Diag(BaseField->getLocation(), diag::note_shadow_field);
2867 Bases.erase(It);
2868 }
2869 }
2870}
2871
2872/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2873/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2874/// bitfield width if there is one, 'InitExpr' specifies the initializer if
2875/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2876/// present (but parsing it has been deferred).
2877NamedDecl *
2878Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2879 MultiTemplateParamsArg TemplateParameterLists,
2880 Expr *BW, const VirtSpecifiers &VS,
2881 InClassInitStyle InitStyle) {
2882 const DeclSpec &DS = D.getDeclSpec();
2883 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2884 DeclarationName Name = NameInfo.getName();
2885 SourceLocation Loc = NameInfo.getLoc();
2886
2887 // For anonymous bitfields, the location should point to the type.
2888 if (Loc.isInvalid())
2889 Loc = D.getLocStart();
2890
2891 Expr *BitWidth = static_cast<Expr*>(BW);
2892
2893 assert(isa<CXXRecordDecl>(CurContext))(static_cast <bool> (isa<CXXRecordDecl>(CurContext
)) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2893, __extension__ __PRETTY_FUNCTION__))
;
2894 assert(!DS.isFriendSpecified())(static_cast <bool> (!DS.isFriendSpecified()) ? void (0
) : __assert_fail ("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2894, __extension__ __PRETTY_FUNCTION__))
;
2895
2896 bool isFunc = D.isDeclarationOfFunction();
2897 AttributeList *MSPropertyAttr =
2898 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2899
2900 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2901 // The Microsoft extension __interface only permits public member functions
2902 // and prohibits constructors, destructors, operators, non-public member
2903 // functions, static methods and data members.
2904 unsigned InvalidDecl;
2905 bool ShowDeclName = true;
2906 if (!isFunc &&
2907 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
2908 InvalidDecl = 0;
2909 else if (!isFunc)
2910 InvalidDecl = 1;
2911 else if (AS != AS_public)
2912 InvalidDecl = 2;
2913 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2914 InvalidDecl = 3;
2915 else switch (Name.getNameKind()) {
2916 case DeclarationName::CXXConstructorName:
2917 InvalidDecl = 4;
2918 ShowDeclName = false;
2919 break;
2920
2921 case DeclarationName::CXXDestructorName:
2922 InvalidDecl = 5;
2923 ShowDeclName = false;
2924 break;
2925
2926 case DeclarationName::CXXOperatorName:
2927 case DeclarationName::CXXConversionFunctionName:
2928 InvalidDecl = 6;
2929 break;
2930
2931 default:
2932 InvalidDecl = 0;
2933 break;
2934 }
2935
2936 if (InvalidDecl) {
2937 if (ShowDeclName)
2938 Diag(Loc, diag::err_invalid_member_in_interface)
2939 << (InvalidDecl-1) << Name;
2940 else
2941 Diag(Loc, diag::err_invalid_member_in_interface)
2942 << (InvalidDecl-1) << "";
2943 return nullptr;
2944 }
2945 }
2946
2947 // C++ 9.2p6: A member shall not be declared to have automatic storage
2948 // duration (auto, register) or with the extern storage-class-specifier.
2949 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2950 // data members and cannot be applied to names declared const or static,
2951 // and cannot be applied to reference members.
2952 switch (DS.getStorageClassSpec()) {
2953 case DeclSpec::SCS_unspecified:
2954 case DeclSpec::SCS_typedef:
2955 case DeclSpec::SCS_static:
2956 break;
2957 case DeclSpec::SCS_mutable:
2958 if (isFunc) {
2959 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2960
2961 // FIXME: It would be nicer if the keyword was ignored only for this
2962 // declarator. Otherwise we could get follow-up errors.
2963 D.getMutableDeclSpec().ClearStorageClassSpecs();
2964 }
2965 break;
2966 default:
2967 Diag(DS.getStorageClassSpecLoc(),
2968 diag::err_storageclass_invalid_for_member);
2969 D.getMutableDeclSpec().ClearStorageClassSpecs();
2970 break;
2971 }
2972
2973 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2974 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2975 !isFunc);
2976
2977 if (DS.isConstexprSpecified() && isInstField) {
2978 SemaDiagnosticBuilder B =
2979 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2980 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2981 if (InitStyle == ICIS_NoInit) {
2982 B << 0 << 0;
2983 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2984 B << FixItHint::CreateRemoval(ConstexprLoc);
2985 else {
2986 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2987 D.getMutableDeclSpec().ClearConstexprSpec();
2988 const char *PrevSpec;
2989 unsigned DiagID;
2990 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2991 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2992 (void)Failed;
2993 assert(!Failed && "Making a constexpr member const shouldn't fail")(static_cast <bool> (!Failed && "Making a constexpr member const shouldn't fail"
) ? void (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2993, __extension__ __PRETTY_FUNCTION__))
;
2994 }
2995 } else {
2996 B << 1;
2997 const char *PrevSpec;
2998 unsigned DiagID;
2999 if (D.getMutableDeclSpec().SetStorageClassSpec(
3000 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3001 Context.getPrintingPolicy())) {
3002 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3003, __extension__ __PRETTY_FUNCTION__))
3003 "This is the only DeclSpec that should fail to be applied")(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3003, __extension__ __PRETTY_FUNCTION__))
;
3004 B << 1;
3005 } else {
3006 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3007 isInstField = false;
3008 }
3009 }
3010 }
3011
3012 NamedDecl *Member;
3013 if (isInstField) {
3014 CXXScopeSpec &SS = D.getCXXScopeSpec();
3015
3016 // Data members must have identifiers for names.
3017 if (!Name.isIdentifier()) {
3018 Diag(Loc, diag::err_bad_variable_name)
3019 << Name;
3020 return nullptr;
3021 }
3022
3023 IdentifierInfo *II = Name.getAsIdentifierInfo();
3024
3025 // Member field could not be with "template" keyword.
3026 // So TemplateParameterLists should be empty in this case.
3027 if (TemplateParameterLists.size()) {
3028 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3029 if (TemplateParams->size()) {
3030 // There is no such thing as a member field template.
3031 Diag(D.getIdentifierLoc(), diag::err_template_member)
3032 << II
3033 << SourceRange(TemplateParams->getTemplateLoc(),
3034 TemplateParams->getRAngleLoc());
3035 } else {
3036 // There is an extraneous 'template<>' for this member.
3037 Diag(TemplateParams->getTemplateLoc(),
3038 diag::err_template_member_noparams)
3039 << II
3040 << SourceRange(TemplateParams->getTemplateLoc(),
3041 TemplateParams->getRAngleLoc());
3042 }
3043 return nullptr;
3044 }
3045
3046 if (SS.isSet() && !SS.isInvalid()) {
3047 // The user provided a superfluous scope specifier inside a class
3048 // definition:
3049 //
3050 // class X {
3051 // int X::member;
3052 // };
3053 if (DeclContext *DC = computeDeclContext(SS, false))
3054 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3055 D.getName().getKind() ==
3056 UnqualifiedIdKind::IK_TemplateId);
3057 else
3058 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3059 << Name << SS.getRange();
3060
3061 SS.clear();
3062 }
3063
3064 if (MSPropertyAttr) {
3065 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3066 BitWidth, InitStyle, AS, MSPropertyAttr);
3067 if (!Member)
3068 return nullptr;
3069 isInstField = false;
3070 } else {
3071 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3072 BitWidth, InitStyle, AS);
3073 if (!Member)
3074 return nullptr;
3075 }
3076
3077 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3078 } else {
3079 Member = HandleDeclarator(S, D, TemplateParameterLists);
3080 if (!Member)
3081 return nullptr;
3082
3083 // Non-instance-fields can't have a bitfield.
3084 if (BitWidth) {
3085 if (Member->isInvalidDecl()) {
3086 // don't emit another diagnostic.
3087 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3088 // C++ 9.6p3: A bit-field shall not be a static member.
3089 // "static member 'A' cannot be a bit-field"
3090 Diag(Loc, diag::err_static_not_bitfield)
3091 << Name << BitWidth->getSourceRange();
3092 } else if (isa<TypedefDecl>(Member)) {
3093 // "typedef member 'x' cannot be a bit-field"
3094 Diag(Loc, diag::err_typedef_not_bitfield)
3095 << Name << BitWidth->getSourceRange();
3096 } else {
3097 // A function typedef ("typedef int f(); f a;").
3098 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3099 Diag(Loc, diag::err_not_integral_type_bitfield)
3100 << Name << cast<ValueDecl>(Member)->getType()
3101 << BitWidth->getSourceRange();
3102 }
3103
3104 BitWidth = nullptr;
3105 Member->setInvalidDecl();
3106 }
3107
3108 Member->setAccess(AS);
3109
3110 // If we have declared a member function template or static data member
3111 // template, set the access of the templated declaration as well.
3112 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3113 FunTmpl->getTemplatedDecl()->setAccess(AS);
3114 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3115 VarTmpl->getTemplatedDecl()->setAccess(AS);
3116 }
3117
3118 if (VS.isOverrideSpecified())
3119 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
3120 if (VS.isFinalSpecified())
3121 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
3122 VS.isFinalSpelledSealed()));
3123
3124 if (VS.getLastLocation().isValid()) {
3125 // Update the end location of a method that has a virt-specifiers.
3126 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3127 MD->setRangeEnd(VS.getLastLocation());
3128 }
3129
3130 CheckOverrideControl(Member);
3131
3132 assert((Name || isInstField) && "No identifier for non-field ?")(static_cast <bool> ((Name || isInstField) && "No identifier for non-field ?"
) ? void (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3132, __extension__ __PRETTY_FUNCTION__))
;
3133
3134 if (isInstField) {
3135 FieldDecl *FD = cast<FieldDecl>(Member);
3136 FieldCollector->Add(FD);
3137
3138 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3139 // Remember all explicit private FieldDecls that have a name, no side
3140 // effects and are not part of a dependent type declaration.
3141 if (!FD->isImplicit() && FD->getDeclName() &&
3142 FD->getAccess() == AS_private &&
3143 !FD->hasAttr<UnusedAttr>() &&
3144 !FD->getParent()->isDependentContext() &&
3145 !InitializationHasSideEffects(*FD))
3146 UnusedPrivateFields.insert(FD);
3147 }
3148 }
3149
3150 return Member;
3151}
3152
3153namespace {
3154 class UninitializedFieldVisitor
3155 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3156 Sema &S;
3157 // List of Decls to generate a warning on. Also remove Decls that become
3158 // initialized.
3159 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3160 // List of base classes of the record. Classes are removed after their
3161 // initializers.
3162 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3163 // Vector of decls to be removed from the Decl set prior to visiting the
3164 // nodes. These Decls may have been initialized in the prior initializer.
3165 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3166 // If non-null, add a note to the warning pointing back to the constructor.
3167 const CXXConstructorDecl *Constructor;
3168 // Variables to hold state when processing an initializer list. When
3169 // InitList is true, special case initialization of FieldDecls matching
3170 // InitListFieldDecl.
3171 bool InitList;
3172 FieldDecl *InitListFieldDecl;
3173 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3174
3175 public:
3176 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3177 UninitializedFieldVisitor(Sema &S,
3178 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3179 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3180 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3181 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3182
3183 // Returns true if the use of ME is not an uninitialized use.
3184 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3185 bool CheckReferenceOnly) {
3186 llvm::SmallVector<FieldDecl*, 4> Fields;
3187 bool ReferenceField = false;
3188 while (ME) {
3189 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3190 if (!FD)
3191 return false;
3192 Fields.push_back(FD);
3193 if (FD->getType()->isReferenceType())
3194 ReferenceField = true;
3195 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3196 }
3197
3198 // Binding a reference to an unintialized field is not an
3199 // uninitialized use.
3200 if (CheckReferenceOnly && !ReferenceField)
3201 return true;
3202
3203 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3204 // Discard the first field since it is the field decl that is being
3205 // initialized.
3206 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3207 UsedFieldIndex.push_back((*I)->getFieldIndex());
3208 }
3209
3210 for (auto UsedIter = UsedFieldIndex.begin(),
3211 UsedEnd = UsedFieldIndex.end(),
3212 OrigIter = InitFieldIndex.begin(),
3213 OrigEnd = InitFieldIndex.end();
3214 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3215 if (*UsedIter < *OrigIter)
3216 return true;
3217 if (*UsedIter > *OrigIter)
3218 break;
3219 }
3220
3221 return false;
3222 }
3223
3224 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3225 bool AddressOf) {
3226 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3227 return;
3228
3229 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3230 // or union.
3231 MemberExpr *FieldME = ME;
3232
3233 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3234
3235 Expr *Base = ME;
3236 while (MemberExpr *SubME =
3237 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3238
3239 if (isa<VarDecl>(SubME->getMemberDecl()))
3240 return;
3241
3242 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3243 if (!FD->isAnonymousStructOrUnion())
3244 FieldME = SubME;
3245
3246 if (!FieldME->getType().isPODType(S.Context))
3247 AllPODFields = false;
3248
3249 Base = SubME->getBase();
3250 }
3251
3252 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3253 return;
3254
3255 if (AddressOf && AllPODFields)
3256 return;
3257
3258 ValueDecl* FoundVD = FieldME->getMemberDecl();
3259
3260 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3261 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3262 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3263 }
3264
3265 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3266 QualType T = BaseCast->getType();
3267 if (T->isPointerType() &&
3268 BaseClasses.count(T->getPointeeType())) {
3269 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3270 << T->getPointeeType() << FoundVD;
3271 }
3272 }
3273 }
3274
3275 if (!Decls.count(FoundVD))
3276 return;
3277
3278 const bool IsReference = FoundVD->getType()->isReferenceType();
3279
3280 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3281 // Special checking for initializer lists.
3282 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3283 return;
3284 }
3285 } else {
3286 // Prevent double warnings on use of unbounded references.
3287 if (CheckReferenceOnly && !IsReference)
3288 return;
3289 }
3290
3291 unsigned diag = IsReference
3292 ? diag::warn_reference_field_is_uninit
3293 : diag::warn_field_is_uninit;
3294 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3295 if (Constructor)
3296 S.Diag(Constructor->getLocation(),
3297 diag::note_uninit_in_this_constructor)
3298 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3299
3300 }
3301
3302 void HandleValue(Expr *E, bool AddressOf) {
3303 E = E->IgnoreParens();
3304
3305 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3306 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3307 AddressOf /*AddressOf*/);
3308 return;
3309 }
3310
3311 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3312 Visit(CO->getCond());
3313 HandleValue(CO->getTrueExpr(), AddressOf);
3314 HandleValue(CO->getFalseExpr(), AddressOf);
3315 return;
3316 }
3317
3318 if (BinaryConditionalOperator *BCO =
3319 dyn_cast<BinaryConditionalOperator>(E)) {
3320 Visit(BCO->getCond());
3321 HandleValue(BCO->getFalseExpr(), AddressOf);
3322 return;
3323 }
3324
3325 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3326 HandleValue(OVE->getSourceExpr(), AddressOf);
3327 return;
3328 }
3329
3330 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3331 switch (BO->getOpcode()) {
3332 default:
3333 break;
3334 case(BO_PtrMemD):
3335 case(BO_PtrMemI):
3336 HandleValue(BO->getLHS(), AddressOf);
3337 Visit(BO->getRHS());
3338 return;
3339 case(BO_Comma):
3340 Visit(BO->getLHS());
3341 HandleValue(BO->getRHS(), AddressOf);
3342 return;
3343 }
3344 }
3345
3346 Visit(E);
3347 }
3348
3349 void CheckInitListExpr(InitListExpr *ILE) {
3350 InitFieldIndex.push_back(0);
3351 for (auto Child : ILE->children()) {
3352 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3353 CheckInitListExpr(SubList);
3354 } else {
3355 Visit(Child);
3356 }
3357 ++InitFieldIndex.back();
3358 }
3359 InitFieldIndex.pop_back();
3360 }
3361
3362 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3363 FieldDecl *Field, const Type *BaseClass) {
3364 // Remove Decls that may have been initialized in the previous
3365 // initializer.
3366 for (ValueDecl* VD : DeclsToRemove)
3367 Decls.erase(VD);
3368 DeclsToRemove.clear();
3369
3370 Constructor = FieldConstructor;
3371 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3372
3373 if (ILE && Field) {
3374 InitList = true;
3375 InitListFieldDecl = Field;
3376 InitFieldIndex.clear();
3377 CheckInitListExpr(ILE);
3378 } else {
3379 InitList = false;
3380 Visit(E);
3381 }
3382
3383 if (Field)
3384 Decls.erase(Field);
3385 if (BaseClass)
3386 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3387 }
3388
3389 void VisitMemberExpr(MemberExpr *ME) {
3390 // All uses of unbounded reference fields will warn.
3391 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3392 }
3393
3394 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3395 if (E->getCastKind() == CK_LValueToRValue) {
3396 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3397 return;
3398 }
3399
3400 Inherited::VisitImplicitCastExpr(E);
3401 }
3402
3403 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3404 if (E->getConstructor()->isCopyConstructor()) {
3405 Expr *ArgExpr = E->getArg(0);
3406 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3407 if (ILE->getNumInits() == 1)
3408 ArgExpr = ILE->getInit(0);
3409 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3410 if (ICE->getCastKind() == CK_NoOp)
3411 ArgExpr = ICE->getSubExpr();
3412 HandleValue(ArgExpr, false /*AddressOf*/);
3413 return;
3414 }
3415 Inherited::VisitCXXConstructExpr(E);
3416 }
3417
3418 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3419 Expr *Callee = E->getCallee();
3420 if (isa<MemberExpr>(Callee)) {
3421 HandleValue(Callee, false /*AddressOf*/);
3422 for (auto Arg : E->arguments())
3423 Visit(Arg);
3424 return;
3425 }
3426
3427 Inherited::VisitCXXMemberCallExpr(E);
3428 }
3429
3430 void VisitCallExpr(CallExpr *E) {
3431 // Treat std::move as a use.
3432 if (E->isCallToStdMove()) {
3433 HandleValue(E->getArg(0), /*AddressOf=*/false);
3434 return;
3435 }
3436
3437 Inherited::VisitCallExpr(E);
3438 }
3439
3440 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3441 Expr *Callee = E->getCallee();
3442
3443 if (isa<UnresolvedLookupExpr>(Callee))
3444 return Inherited::VisitCXXOperatorCallExpr(E);
3445
3446 Visit(Callee);
3447 for (auto Arg : E->arguments())
3448 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3449 }
3450
3451 void VisitBinaryOperator(BinaryOperator *E) {
3452 // If a field assignment is detected, remove the field from the
3453 // uninitiailized field set.
3454 if (E->getOpcode() == BO_Assign)
3455 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3456 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3457 if (!FD->getType()->isReferenceType())
3458 DeclsToRemove.push_back(FD);
3459
3460 if (E->isCompoundAssignmentOp()) {
3461 HandleValue(E->getLHS(), false /*AddressOf*/);
3462 Visit(E->getRHS());
3463 return;
3464 }
3465
3466 Inherited::VisitBinaryOperator(E);
3467 }
3468
3469 void VisitUnaryOperator(UnaryOperator *E) {
3470 if (E->isIncrementDecrementOp()) {
3471 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3472 return;
3473 }
3474 if (E->getOpcode() == UO_AddrOf) {
3475 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3476 HandleValue(ME->getBase(), true /*AddressOf*/);
3477 return;
3478 }
3479 }
3480
3481 Inherited::VisitUnaryOperator(E);
3482 }
3483 };
3484
3485 // Diagnose value-uses of fields to initialize themselves, e.g.
3486 // foo(foo)
3487 // where foo is not also a parameter to the constructor.
3488 // Also diagnose across field uninitialized use such as
3489 // x(y), y(x)
3490 // TODO: implement -Wuninitialized and fold this into that framework.
3491 static void DiagnoseUninitializedFields(
3492 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3493
3494 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3495 Constructor->getLocation())) {
3496 return;
3497 }
3498
3499 if (Constructor->isInvalidDecl())
3500 return;
3501
3502 const CXXRecordDecl *RD = Constructor->getParent();
3503
3504 if (RD->getDescribedClassTemplate())
3505 return;
3506
3507 // Holds fields that are uninitialized.
3508 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3509
3510 // At the beginning, all fields are uninitialized.
3511 for (auto *I : RD->decls()) {
3512 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3513 UninitializedFields.insert(FD);
3514 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3515 UninitializedFields.insert(IFD->getAnonField());
3516 }
3517 }
3518
3519 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3520 for (auto I : RD->bases())
3521 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3522
3523 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3524 return;
3525
3526 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3527 UninitializedFields,
3528 UninitializedBaseClasses);
3529
3530 for (const auto *FieldInit : Constructor->inits()) {
3531 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3532 break;
3533
3534 Expr *InitExpr = FieldInit->getInit();
3535 if (!InitExpr)
3536 continue;
3537
3538 if (CXXDefaultInitExpr *Default =
3539 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3540 InitExpr = Default->getExpr();
3541 if (!InitExpr)
3542 continue;
3543 // In class initializers will point to the constructor.
3544 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3545 FieldInit->getAnyMember(),
3546 FieldInit->getBaseClass());
3547 } else {
3548 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3549 FieldInit->getAnyMember(),
3550 FieldInit->getBaseClass());
3551 }
3552 }
3553 }
3554} // namespace
3555
3556/// \brief Enter a new C++ default initializer scope. After calling this, the
3557/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3558/// parsing or instantiating the initializer failed.
3559void Sema::ActOnStartCXXInClassMemberInitializer() {
3560 // Create a synthetic function scope to represent the call to the constructor
3561 // that notionally surrounds a use of this initializer.
3562 PushFunctionScope();
3563}
3564
3565/// \brief This is invoked after parsing an in-class initializer for a
3566/// non-static C++ class member, and after instantiating an in-class initializer
3567/// in a class template. Such actions are deferred until the class is complete.
3568void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3569 SourceLocation InitLoc,
3570 Expr *InitExpr) {
3571 // Pop the notional constructor scope we created earlier.
3572 PopFunctionScopeInfo(nullptr, D);
3573
3574 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3575 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3576, __extension__ __PRETTY_FUNCTION__))
3576 "must set init style when field is created")(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3576, __extension__ __PRETTY_FUNCTION__))
;
3577
3578 if (!InitExpr) {
3579 D->setInvalidDecl();
3580 if (FD)
3581 FD->removeInClassInitializer();
3582 return;
3583 }
3584
3585 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3586 FD->setInvalidDecl();
3587 FD->removeInClassInitializer();
3588 return;
3589 }
3590
3591 ExprResult Init = InitExpr;
3592 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3593 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
3594 InitializationKind Kind =
3595 FD->getInClassInitStyle() == ICIS_ListInit
3596 ? InitializationKind::CreateDirectList(InitExpr->getLocStart(),
3597 InitExpr->getLocStart(),
3598 InitExpr->getLocEnd())
3599 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
3600 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3601 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3602 if (Init.isInvalid()) {
3603 FD->setInvalidDecl();
3604 return;
3605 }
3606 }
3607
3608 // C++11 [class.base.init]p7:
3609 // The initialization of each base and member constitutes a
3610 // full-expression.
3611 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
3612 if (Init.isInvalid()) {
3613 FD->setInvalidDecl();
3614 return;
3615 }
3616
3617 InitExpr = Init.get();
3618
3619 FD->setInClassInitializer(InitExpr);
3620}
3621
3622/// \brief Find the direct and/or virtual base specifiers that
3623/// correspond to the given base type, for use in base initialization
3624/// within a constructor.
3625static bool FindBaseInitializer(Sema &SemaRef,
3626 CXXRecordDecl *ClassDecl,
3627 QualType BaseType,
3628 const CXXBaseSpecifier *&DirectBaseSpec,
3629 const CXXBaseSpecifier *&VirtualBaseSpec) {
3630 // First, check for a direct base class.
3631 DirectBaseSpec = nullptr;
3632 for (const auto &Base : ClassDecl->bases()) {
3633 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3634 // We found a direct base of this type. That's what we're
3635 // initializing.
3636 DirectBaseSpec = &Base;
3637 break;
3638 }
3639 }
3640
3641 // Check for a virtual base class.
3642 // FIXME: We might be able to short-circuit this if we know in advance that
3643 // there are no virtual bases.
3644 VirtualBaseSpec = nullptr;
3645 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3646 // We haven't found a base yet; search the class hierarchy for a
3647 // virtual base class.
3648 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3649 /*DetectVirtual=*/false);
3650 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3651 SemaRef.Context.getTypeDeclType(ClassDecl),
3652 BaseType, Paths)) {
3653 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3654 Path != Paths.end(); ++Path) {
3655 if (Path->back().Base->isVirtual()) {
3656 VirtualBaseSpec = Path->back().Base;
3657 break;
3658 }
3659 }
3660 }
3661 }
3662
3663 return DirectBaseSpec || VirtualBaseSpec;
3664}
3665
3666/// \brief Handle a C++ member initializer using braced-init-list syntax.
3667MemInitResult
3668Sema::ActOnMemInitializer(Decl *ConstructorD,
3669 Scope *S,
3670 CXXScopeSpec &SS,
3671 IdentifierInfo *MemberOrBase,
3672 ParsedType TemplateTypeTy,
3673 const DeclSpec &DS,
3674 SourceLocation IdLoc,
3675 Expr *InitList,
3676 SourceLocation EllipsisLoc) {
3677 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3678 DS, IdLoc, InitList,
3679 EllipsisLoc);
3680}
3681
3682/// \brief Handle a C++ member initializer using parentheses syntax.
3683MemInitResult
3684Sema::ActOnMemInitializer(Decl *ConstructorD,
3685 Scope *S,
3686 CXXScopeSpec &SS,
3687 IdentifierInfo *MemberOrBase,
3688 ParsedType TemplateTypeTy,
3689 const DeclSpec &DS,
3690 SourceLocation IdLoc,
3691 SourceLocation LParenLoc,
3692 ArrayRef<Expr *> Args,
3693 SourceLocation RParenLoc,
3694 SourceLocation EllipsisLoc) {
3695 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
3696 Args, RParenLoc);
3697 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3698 DS, IdLoc, List, EllipsisLoc);
3699}
3700
3701namespace {
3702
3703// Callback to only accept typo corrections that can be a valid C++ member
3704// intializer: either a non-static field member or a base class.
3705class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
3706public:
3707 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
3708 : ClassDecl(ClassDecl) {}
3709
3710 bool ValidateCandidate(const TypoCorrection &candidate) override {
3711 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
3712 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
3713 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
3714 return isa<TypeDecl>(ND);
3715 }
3716 return false;
3717 }
3718
3719private:
3720 CXXRecordDecl *ClassDecl;
3721};
3722
3723}
3724
3725/// \brief Handle a C++ member initializer.
3726MemInitResult
3727Sema::BuildMemInitializer(Decl *ConstructorD,
3728 Scope *S,
3729 CXXScopeSpec &SS,
3730 IdentifierInfo *MemberOrBase,
3731 ParsedType TemplateTypeTy,
3732 const DeclSpec &DS,
3733 SourceLocation IdLoc,
3734 Expr *Init,
3735 SourceLocation EllipsisLoc) {
3736 ExprResult Res = CorrectDelayedTyposInExpr(Init);
3737 if (!Res.isUsable())
3738 return true;
3739 Init = Res.get();
3740
3741 if (!ConstructorD)
3742 return true;
3743
3744 AdjustDeclIfTemplate(ConstructorD);
3745
3746 CXXConstructorDecl *Constructor
3747 = dyn_cast<CXXConstructorDecl>(ConstructorD);
3748 if (!Constructor) {
3749 // The user wrote a constructor initializer on a function that is
3750 // not a C++ constructor. Ignore the error for now, because we may
3751 // have more member initializers coming; we'll diagnose it just
3752 // once in ActOnMemInitializers.
3753 return true;
3754 }
3755
3756 CXXRecordDecl *ClassDecl = Constructor->getParent();
3757
3758 // C++ [class.base.init]p2:
3759 // Names in a mem-initializer-id are looked up in the scope of the
3760 // constructor's class and, if not found in that scope, are looked
3761 // up in the scope containing the constructor's definition.
3762 // [Note: if the constructor's class contains a member with the
3763 // same name as a direct or virtual base class of the class, a
3764 // mem-initializer-id naming the member or base class and composed
3765 // of a single identifier refers to the class member. A
3766 // mem-initializer-id for the hidden base class may be specified
3767 // using a qualified name. ]
3768 if (!SS.getScopeRep() && !TemplateTypeTy) {
3769 // Look for a member, first.
3770 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
3771 if (!Result.empty()) {
3772 ValueDecl *Member;
3773 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
3774 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
3775 if (EllipsisLoc.isValid())
3776 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
3777 << MemberOrBase
3778 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
3779
3780 return BuildMemberInitializer(Member, Init, IdLoc);
3781 }
3782 }
3783 }
3784 // It didn't name a member, so see if it names a class.
3785 QualType BaseType;
3786 TypeSourceInfo *TInfo = nullptr;
3787
3788 if (TemplateTypeTy) {
3789 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
3790 } else if (DS.getTypeSpecType() == TST_decltype) {
3791 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
3792 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
3793 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
3794 return true;
3795 } else {
3796 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
3797 LookupParsedName(R, S, &SS);
3798
3799 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
3800 if (!TyD) {
3801 if (R.isAmbiguous()) return true;
3802
3803 // We don't want access-control diagnostics here.
3804 R.suppressDiagnostics();
3805
3806 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
3807 bool NotUnknownSpecialization = false;
3808 DeclContext *DC = computeDeclContext(SS, false);
3809 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
3810 NotUnknownSpecialization = !Record->hasAnyDependentBases();
3811
3812 if (!NotUnknownSpecialization) {
3813 // When the scope specifier can refer to a member of an unknown
3814 // specialization, we take it as a type name.
3815 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
3816 SS.getWithLocInContext(Context),
3817 *MemberOrBase, IdLoc);
3818 if (BaseType.isNull())
3819 return true;
3820
3821 TInfo = Context.CreateTypeSourceInfo(BaseType);
3822 DependentNameTypeLoc TL =
3823 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
3824 if (!TL.isNull()) {
3825 TL.setNameLoc(IdLoc);
3826 TL.setElaboratedKeywordLoc(SourceLocation());
3827 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3828 }
3829
3830 R.clear();
3831 R.setLookupName(MemberOrBase);
3832 }
3833 }
3834
3835 // If no results were found, try to correct typos.
3836 TypoCorrection Corr;
3837 if (R.empty() && BaseType.isNull() &&
3838 (Corr = CorrectTypo(
3839 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
3840 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
3841 CTK_ErrorRecovery, ClassDecl))) {
3842 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
3843 // We have found a non-static data member with a similar
3844 // name to what was typed; complain and initialize that
3845 // member.
3846 diagnoseTypo(Corr,
3847 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3848 << MemberOrBase << true);
3849 return BuildMemberInitializer(Member, Init, IdLoc);
3850 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
3851 const CXXBaseSpecifier *DirectBaseSpec;
3852 const CXXBaseSpecifier *VirtualBaseSpec;
3853 if (FindBaseInitializer(*this, ClassDecl,
3854 Context.getTypeDeclType(Type),
3855 DirectBaseSpec, VirtualBaseSpec)) {
3856 // We have found a direct or virtual base class with a
3857 // similar name to what was typed; complain and initialize
3858 // that base class.
3859 diagnoseTypo(Corr,
3860 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3861 << MemberOrBase << false,
3862 PDiag() /*Suppress note, we provide our own.*/);
3863
3864 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
3865 : VirtualBaseSpec;
3866 Diag(BaseSpec->getLocStart(),
3867 diag::note_base_class_specified_here)
3868 << BaseSpec->getType()
3869 << BaseSpec->getSourceRange();
3870
3871 TyD = Type;
3872 }
3873 }
3874 }
3875
3876 if (!TyD && BaseType.isNull()) {
3877 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3878 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3879 return true;
3880 }
3881 }
3882
3883 if (BaseType.isNull()) {
3884 BaseType = Context.getTypeDeclType(TyD);
3885 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3886 if (SS.isSet()) {
3887 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3888 BaseType);
3889 TInfo = Context.CreateTypeSourceInfo(BaseType);
3890 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
3891 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
3892 TL.setElaboratedKeywordLoc(SourceLocation());
3893 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3894 }
3895 }
3896 }
3897
3898 if (!TInfo)
3899 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3900
3901 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3902}
3903
3904/// Checks a member initializer expression for cases where reference (or
3905/// pointer) members are bound to by-value parameters (or their addresses).
3906static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3907 Expr *Init,
3908 SourceLocation IdLoc) {
3909 QualType MemberTy = Member->getType();
3910
3911 // We only handle pointers and references currently.
3912 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3913 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3914 return;
3915
3916 const bool IsPointer = MemberTy->isPointerType();
3917 if (IsPointer) {
3918 if (const UnaryOperator *Op
3919 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3920 // The only case we're worried about with pointers requires taking the
3921 // address.
3922 if (Op->getOpcode() != UO_AddrOf)
3923 return;
3924
3925 Init = Op->getSubExpr();
3926 } else {
3927 // We only handle address-of expression initializers for pointers.
3928 return;
3929 }
3930 }
3931
3932 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3933 // We only warn when referring to a non-reference parameter declaration.
3934 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3935 if (!Parameter || Parameter->getType()->isReferenceType())
3936 return;
3937
3938 S.Diag(Init->getExprLoc(),
3939 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3940 : diag::warn_bind_ref_member_to_parameter)
3941 << Member << Parameter << Init->getSourceRange();
3942 } else {
3943 // Other initializers are fine.
3944 return;
3945 }
3946
3947 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3948 << (unsigned)IsPointer;
3949}
3950
3951MemInitResult
3952Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3953 SourceLocation IdLoc) {
3954 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3955 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3956 assert((DirectMember || IndirectMember) &&(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3957, __extension__ __PRETTY_FUNCTION__))
3957 "Member must be a FieldDecl or IndirectFieldDecl")(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3957, __extension__ __PRETTY_FUNCTION__))
;
3958
3959 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3960 return true;
3961
3962 if (Member->isInvalidDecl())
3963 return true;
3964
3965 MultiExprArg Args;
3966 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3967 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3968 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3969 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3970 } else {
3971 // Template instantiation doesn't reconstruct ParenListExprs for us.
3972 Args = Init;
3973 }
3974
3975 SourceRange InitRange = Init->getSourceRange();
3976
3977 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3978 // Can't check initialization for a member of dependent type or when
3979 // any of the arguments are type-dependent expressions.
3980 DiscardCleanupsInEvaluationContext();
3981 } else {
3982 bool InitList = false;
3983 if (isa<InitListExpr>(Init)) {
3984 InitList = true;
3985 Args = Init;
3986 }
3987
3988 // Initialize the member.
3989 InitializedEntity MemberEntity =
3990 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3991 : InitializedEntity::InitializeMember(IndirectMember,
3992 nullptr);
3993 InitializationKind Kind =
3994 InitList ? InitializationKind::CreateDirectList(
3995 IdLoc, Init->getLocStart(), Init->getLocEnd())
3996 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3997 InitRange.getEnd());
3998
3999 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4000 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4001 nullptr);
4002 if (MemberInit.isInvalid())
4003 return true;
4004
4005 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
4006
4007 // C++11 [class.base.init]p7:
4008 // The initialization of each base and member constitutes a
4009 // full-expression.
4010 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
4011 if (MemberInit.isInvalid())
4012 return true;
4013
4014 Init = MemberInit.get();
4015 }
4016
4017 if (DirectMember) {
4018 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4019 InitRange.getBegin(), Init,
4020 InitRange.getEnd());
4021 } else {
4022 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4023 InitRange.getBegin(), Init,
4024 InitRange.getEnd());
4025 }
4026}
4027
4028MemInitResult
4029Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4030 CXXRecordDecl *ClassDecl) {
4031 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4032 if (!LangOpts.CPlusPlus11)
4033 return Diag(NameLoc, diag::err_delegating_ctor)
4034 << TInfo->getTypeLoc().getLocalSourceRange();
4035 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4036
4037 bool InitList = true;
4038 MultiExprArg Args = Init;
4039 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4040 InitList = false;
4041 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4042 }
4043
4044 SourceRange InitRange = Init->getSourceRange();
4045 // Initialize the object.
4046 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4047 QualType(ClassDecl->getTypeForDecl(), 0));
4048 InitializationKind Kind =
4049 InitList ? InitializationKind::CreateDirectList(
4050 NameLoc, Init->getLocStart(), Init->getLocEnd())
4051 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4052 InitRange.getEnd());
4053 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4054 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4055 Args, nullptr);
4056 if (DelegationInit.isInvalid())
4057 return true;
4058
4059 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&(static_cast <bool> (cast<CXXConstructExpr>(DelegationInit
.get())->getConstructor() && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4060, __extension__ __PRETTY_FUNCTION__))
4060 "Delegating constructor with no target?")(static_cast <bool> (cast<CXXConstructExpr>(DelegationInit
.get())->getConstructor() && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4060, __extension__ __PRETTY_FUNCTION__))
;
4061
4062 // C++11 [class.base.init]p7:
4063 // The initialization of each base and member constitutes a
4064 // full-expression.
4065 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
4066 InitRange.getBegin());
4067 if (DelegationInit.isInvalid())
4068 return true;
4069
4070 // If we are in a dependent context, template instantiation will
4071 // perform this type-checking again. Just save the arguments that we
4072 // received in a ParenListExpr.
4073 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4074 // of the information that we have about the base
4075 // initializer. However, deconstructing the ASTs is a dicey process,
4076 // and this approach is far more likely to get the corner cases right.
4077 if (CurContext->isDependentContext())
4078 DelegationInit = Init;
4079
4080 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4081 DelegationInit.getAs<Expr>(),
4082 InitRange.getEnd());
4083}
4084
4085MemInitResult
4086Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4087 Expr *Init, CXXRecordDecl *ClassDecl,
4088 SourceLocation EllipsisLoc) {
4089 SourceLocation BaseLoc
4090 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4091
4092 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4093 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4094 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4095
4096 // C++ [class.base.init]p2:
4097 // [...] Unless the mem-initializer-id names a nonstatic data
4098 // member of the constructor's class or a direct or virtual base
4099 // of that class, the mem-initializer is ill-formed. A
4100 // mem-initializer-list can initialize a base class using any
4101 // name that denotes that base class type.
4102 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4103
4104 SourceRange InitRange = Init->getSourceRange();
4105 if (EllipsisLoc.isValid()) {
4106 // This is a pack expansion.
4107 if (!BaseType->containsUnexpandedParameterPack()) {
4108 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4109 << SourceRange(BaseLoc, InitRange.getEnd());
4110
4111 EllipsisLoc = SourceLocation();
4112 }
4113 } else {
4114 // Check for any unexpanded parameter packs.
4115 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4116 return true;
4117
4118 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4119 return true;
4120 }
4121
4122 // Check for direct and virtual base classes.
4123 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4124 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4125 if (!Dependent) {
4126 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4127 BaseType))
4128 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4129
4130 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4131 VirtualBaseSpec);
4132
4133 // C++ [base.class.init]p2:
4134 // Unless the mem-initializer-id names a nonstatic data member of the
4135 // constructor's class or a direct or virtual base of that class, the
4136 // mem-initializer is ill-formed.
4137 if (!DirectBaseSpec && !VirtualBaseSpec) {
4138 // If the class has any dependent bases, then it's possible that
4139 // one of those types will resolve to the same type as
4140 // BaseType. Therefore, just treat this as a dependent base
4141 // class initialization. FIXME: Should we try to check the
4142 // initialization anyway? It seems odd.
4143 if (ClassDecl->hasAnyDependentBases())
4144 Dependent = true;
4145 else
4146 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4147 << BaseType << Context.getTypeDeclType(ClassDecl)
4148 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4149 }
4150 }
4151
4152 if (Dependent) {
4153 DiscardCleanupsInEvaluationContext();
4154
4155 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4156 /*IsVirtual=*/false,
4157 InitRange.getBegin(), Init,
4158 InitRange.getEnd(), EllipsisLoc);
4159 }
4160
4161 // C++ [base.class.init]p2:
4162 // If a mem-initializer-id is ambiguous because it designates both
4163 // a direct non-virtual base class and an inherited virtual base
4164 // class, the mem-initializer is ill-formed.
4165 if (DirectBaseSpec && VirtualBaseSpec)
4166 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4167 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4168
4169 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4170 if (!BaseSpec)
4171 BaseSpec = VirtualBaseSpec;
4172
4173 // Initialize the base.
4174 bool InitList = true;
4175 MultiExprArg Args = Init;
4176 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4177 InitList = false;
4178 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4179 }
4180
4181 InitializedEntity BaseEntity =
4182 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4183 InitializationKind Kind =
4184 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4185 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4186 InitRange.getEnd());
4187 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4188 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4189 if (BaseInit.isInvalid())
4190 return true;
4191
4192 // C++11 [class.base.init]p7:
4193 // The initialization of each base and member constitutes a
4194 // full-expression.
4195 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
4196 if (BaseInit.isInvalid())
4197 return true;
4198
4199 // If we are in a dependent context, template instantiation will
4200 // perform this type-checking again. Just save the arguments that we
4201 // received in a ParenListExpr.
4202 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4203 // of the information that we have about the base
4204 // initializer. However, deconstructing the ASTs is a dicey process,
4205 // and this approach is far more likely to get the corner cases right.
4206 if (CurContext->isDependentContext())
4207 BaseInit = Init;
4208
4209 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4210 BaseSpec->isVirtual(),
4211 InitRange.getBegin(),
4212 BaseInit.getAs<Expr>(),
4213 InitRange.getEnd(), EllipsisLoc);
4214}
4215
4216// Create a static_cast\<T&&>(expr).
4217static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4218 if (T.isNull()) T = E->getType();
4219 QualType TargetType = SemaRef.BuildReferenceType(
4220 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4221 SourceLocation ExprLoc = E->getLocStart();
4222 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4223 TargetType, ExprLoc);
4224
4225 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4226 SourceRange(ExprLoc, ExprLoc),
4227 E->getSourceRange()).get();
4228}
4229
4230/// ImplicitInitializerKind - How an implicit base or member initializer should
4231/// initialize its base or member.
4232enum ImplicitInitializerKind {
4233 IIK_Default,
4234 IIK_Copy,
4235 IIK_Move,
4236 IIK_Inherit
4237};
4238
4239static bool
4240BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4241 ImplicitInitializerKind ImplicitInitKind,
4242 CXXBaseSpecifier *BaseSpec,
4243 bool IsInheritedVirtualBase,
4244 CXXCtorInitializer *&CXXBaseInit) {
4245 InitializedEntity InitEntity
4246 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4247 IsInheritedVirtualBase);
4248
4249 ExprResult BaseInit;
4250
4251 switch (ImplicitInitKind) {
4252 case IIK_Inherit:
4253 case IIK_Default: {
4254 InitializationKind InitKind
4255 = InitializationKind::CreateDefault(Constructor->getLocation());
4256 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4257 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4258 break;
4259 }
4260
4261 case IIK_Move:
4262 case IIK_Copy: {
4263 bool Moving = ImplicitInitKind == IIK_Move;
4264 ParmVarDecl *Param = Constructor->getParamDecl(0);
4265 QualType ParamType = Param->getType().getNonReferenceType();
4266
4267 Expr *CopyCtorArg =
4268 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4269 SourceLocation(), Param, false,
4270 Constructor->getLocation(), ParamType,
4271 VK_LValue, nullptr);
4272
4273 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4274
4275 // Cast to the base class to avoid ambiguities.
4276 QualType ArgTy =
4277 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4278 ParamType.getQualifiers());
4279
4280 if (Moving) {
4281 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4282 }
4283
4284 CXXCastPath BasePath;
4285 BasePath.push_back(BaseSpec);
4286 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4287 CK_UncheckedDerivedToBase,
4288 Moving ? VK_XValue : VK_LValue,
4289 &BasePath).get();
4290
4291 InitializationKind InitKind
4292 = InitializationKind::CreateDirect(Constructor->getLocation(),
4293 SourceLocation(), SourceLocation());
4294 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4295 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4296 break;
4297 }
4298 }
4299
4300 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4301 if (BaseInit.isInvalid())
4302 return true;
4303
4304 CXXBaseInit =
4305 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4306 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4307 SourceLocation()),
4308 BaseSpec->isVirtual(),
4309 SourceLocation(),
4310 BaseInit.getAs<Expr>(),
4311 SourceLocation(),
4312 SourceLocation());
4313
4314 return false;
4315}
4316
4317static bool RefersToRValueRef(Expr *MemRef) {
4318 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4319 return Referenced->getType()->isRValueReferenceType();
4320}
4321
4322static bool
4323BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4324 ImplicitInitializerKind ImplicitInitKind,
4325 FieldDecl *Field, IndirectFieldDecl *Indirect,
4326 CXXCtorInitializer *&CXXMemberInit) {
4327 if (Field->isInvalidDecl())
4328 return true;
4329
4330 SourceLocation Loc = Constructor->getLocation();
4331
4332 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4333 bool Moving = ImplicitInitKind == IIK_Move;
4334 ParmVarDecl *Param = Constructor->getParamDecl(0);
4335 QualType ParamType = Param->getType().getNonReferenceType();
4336
4337 // Suppress copying zero-width bitfields.
4338 if (Field->isZeroLengthBitField(SemaRef.Context))
4339 return false;
4340
4341 Expr *MemberExprBase =
4342 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4343 SourceLocation(), Param, false,
4344 Loc, ParamType, VK_LValue, nullptr);
4345
4346 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4347
4348 if (Moving) {
4349 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4350 }
4351
4352 // Build a reference to this field within the parameter.
4353 CXXScopeSpec SS;
4354 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4355 Sema::LookupMemberName);
4356 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4357 : cast<ValueDecl>(Field), AS_public);
4358 MemberLookup.resolveKind();
4359 ExprResult CtorArg
4360 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4361 ParamType, Loc,
4362 /*IsArrow=*/false,
4363 SS,
4364 /*TemplateKWLoc=*/SourceLocation(),
4365 /*FirstQualifierInScope=*/nullptr,
4366 MemberLookup,
4367 /*TemplateArgs=*/nullptr,
4368 /*S*/nullptr);
4369 if (CtorArg.isInvalid())
4370 return true;
4371
4372 // C++11 [class.copy]p15:
4373 // - if a member m has rvalue reference type T&&, it is direct-initialized
4374 // with static_cast<T&&>(x.m);
4375 if (RefersToRValueRef(CtorArg.get())) {
4376 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4377 }
4378
4379 InitializedEntity Entity =
4380 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4381 /*Implicit*/ true)
4382 : InitializedEntity::InitializeMember(Field, nullptr,
4383 /*Implicit*/ true);
4384
4385 // Direct-initialize to use the copy constructor.
4386 InitializationKind InitKind =
4387 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4388
4389 Expr *CtorArgE = CtorArg.getAs<Expr>();
4390 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4391 ExprResult MemberInit =
4392 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4393 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4394 if (MemberInit.isInvalid())
4395 return true;
4396
4397 if (Indirect)
4398 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4399 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4400 else
4401 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4402 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4403 return false;
4404 }
4405
4406 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4407, __extension__ __PRETTY_FUNCTION__))
4407 "Unhandled implicit init kind!")(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4407, __extension__ __PRETTY_FUNCTION__))
;
4408
4409 QualType FieldBaseElementType =
4410 SemaRef.Context.getBaseElementType(Field->getType());
4411
4412 if (FieldBaseElementType->isRecordType()) {
4413 InitializedEntity InitEntity =
4414 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4415 /*Implicit*/ true)
4416 : InitializedEntity::InitializeMember(Field, nullptr,
4417 /*Implicit*/ true);
4418 InitializationKind InitKind =
4419 InitializationKind::CreateDefault(Loc);
4420
4421 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4422 ExprResult MemberInit =
4423 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4424
4425 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4426 if (MemberInit.isInvalid())
4427 return true;
4428
4429 if (Indirect)
4430 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4431 Indirect, Loc,
4432 Loc,
4433 MemberInit.get(),
4434 Loc);
4435 else
4436 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4437 Field, Loc, Loc,
4438 MemberInit.get(),
4439 Loc);
4440 return false;
4441 }
4442
4443 if (!Field->getParent()->isUnion()) {
4444 if (FieldBaseElementType->isReferenceType()) {
4445 SemaRef.Diag(Constructor->getLocation(),
4446 diag::err_uninitialized_member_in_ctor)
4447 << (int)Constructor->isImplicit()
4448 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4449 << 0 << Field->getDeclName();
4450 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4451 return true;
4452 }
4453
4454 if (FieldBaseElementType.isConstQualified()) {
4455 SemaRef.Diag(Constructor->getLocation(),
4456 diag::err_uninitialized_member_in_ctor)
4457 << (int)Constructor->isImplicit()
4458 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4459 << 1 << Field->getDeclName();
4460 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4461 return true;
4462 }
4463 }
4464
4465 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4466 // ARC and Weak:
4467 // Default-initialize Objective-C pointers to NULL.
4468 CXXMemberInit
4469 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4470 Loc, Loc,
4471 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4472 Loc);
4473 return false;
4474 }
4475
4476 // Nothing to initialize.
4477 CXXMemberInit = nullptr;
4478 return false;
4479}
4480
4481namespace {
4482struct BaseAndFieldInfo {
4483 Sema &S;
4484 CXXConstructorDecl *Ctor;
4485 bool AnyErrorsInInits;
4486 ImplicitInitializerKind IIK;
4487 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4488 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4489 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4490
4491 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4492 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4493 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4494 if (Ctor->getInheritedConstructor())
4495 IIK = IIK_Inherit;
4496 else if (Generated && Ctor->isCopyConstructor())
4497 IIK = IIK_Copy;
4498 else if (Generated && Ctor->isMoveConstructor())
4499 IIK = IIK_Move;
4500 else
4501 IIK = IIK_Default;
4502 }
4503
4504 bool isImplicitCopyOrMove() const {
4505 switch (IIK) {
4506 case IIK_Copy:
4507 case IIK_Move:
4508 return true;
4509
4510 case IIK_Default:
4511 case IIK_Inherit:
4512 return false;
4513 }
4514
4515 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4515)
;
4516 }
4517
4518 bool addFieldInitializer(CXXCtorInitializer *Init) {
4519 AllToInit.push_back(Init);
4520
4521 // Check whether this initializer makes the field "used".
4522 if (Init->getInit()->HasSideEffects(S.Context))
4523 S.UnusedPrivateFields.remove(Init->getAnyMember());
4524
4525 return false;
4526 }
4527
4528 bool isInactiveUnionMember(FieldDecl *Field) {
4529 RecordDecl *Record = Field->getParent();
4530 if (!Record->isUnion())
4531 return false;
4532
4533 if (FieldDecl *Active =
4534 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4535 return Active != Field->getCanonicalDecl();
4536
4537 // In an implicit copy or move constructor, ignore any in-class initializer.
4538 if (isImplicitCopyOrMove())
4539 return true;
4540
4541 // If there's no explicit initialization, the field is active only if it
4542 // has an in-class initializer...
4543 if (Field->hasInClassInitializer())
4544 return false;
4545 // ... or it's an anonymous struct or union whose class has an in-class
4546 // initializer.
4547 if (!Field->isAnonymousStructOrUnion())
4548 return true;
4549 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4550 return !FieldRD->hasInClassInitializer();
4551 }
4552
4553 /// \brief Determine whether the given field is, or is within, a union member
4554 /// that is inactive (because there was an initializer given for a different
4555 /// member of the union, or because the union was not initialized at all).
4556 bool isWithinInactiveUnionMember(FieldDecl *Field,
4557 IndirectFieldDecl *Indirect) {
4558 if (!Indirect)
4559 return isInactiveUnionMember(Field);
4560
4561 for (auto *C : Indirect->chain()) {
4562 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4563 if (Field && isInactiveUnionMember(Field))
4564 return true;
4565 }
4566 return false;
4567 }
4568};
4569}
4570
4571/// \brief Determine whether the given type is an incomplete or zero-lenfgth
4572/// array type.
4573static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4574 if (T->isIncompleteArrayType())
4575 return true;
4576
4577 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4578 if (!ArrayT->getSize())
4579 return true;
4580
4581 T = ArrayT->getElementType();
4582 }
4583
4584 return false;
4585}
4586
4587static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4588 FieldDecl *Field,
4589 IndirectFieldDecl *Indirect = nullptr) {
4590 if (Field->isInvalidDecl())
4591 return false;
4592
4593 // Overwhelmingly common case: we have a direct initializer for this field.
4594 if (CXXCtorInitializer *Init =
4595 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4596 return Info.addFieldInitializer(Init);
4597
4598 // C++11 [class.base.init]p8:
4599 // if the entity is a non-static data member that has a
4600 // brace-or-equal-initializer and either
4601 // -- the constructor's class is a union and no other variant member of that
4602 // union is designated by a mem-initializer-id or
4603 // -- the constructor's class is not a union, and, if the entity is a member
4604 // of an anonymous union, no other member of that union is designated by
4605 // a mem-initializer-id,
4606 // the entity is initialized as specified in [dcl.init].
4607 //
4608 // We also apply the same rules to handle anonymous structs within anonymous
4609 // unions.
4610 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4611 return false;
4612
4613 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4614 ExprResult DIE =
4615 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4616 if (DIE.isInvalid())
4617 return true;
4618 CXXCtorInitializer *Init;
4619 if (Indirect)
4620 Init = new (SemaRef.Context)
4621 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4622 SourceLocation(), DIE.get(), SourceLocation());
4623 else
4624 Init = new (SemaRef.Context)
4625 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4626 SourceLocation(), DIE.get(), SourceLocation());
4627 return Info.addFieldInitializer(Init);
4628 }
4629
4630 // Don't initialize incomplete or zero-length arrays.
4631 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4632 return false;
4633
4634 // Don't try to build an implicit initializer if there were semantic
4635 // errors in any of the initializers (and therefore we might be
4636 // missing some that the user actually wrote).
4637 if (Info.AnyErrorsInInits)
4638 return false;
4639
4640 CXXCtorInitializer *Init = nullptr;
4641 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4642 Indirect, Init))
4643 return true;
4644
4645 if (!Init)
4646 return false;
4647
4648 return Info.addFieldInitializer(Init);
4649}
4650
4651bool
4652Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4653 CXXCtorInitializer *Initializer) {
4654 assert(Initializer->isDelegatingInitializer())(static_cast <bool> (Initializer->isDelegatingInitializer
()) ? void (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4654, __extension__ __PRETTY_FUNCTION__))
;
4655 Constructor->setNumCtorInitializers(1);
4656 CXXCtorInitializer **initializer =
4657 new (Context) CXXCtorInitializer*[1];
4658 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4659 Constructor->setCtorInitializers(initializer);
4660
4661 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4662 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4663 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4664 }
4665
4666 DelegatingCtorDecls.push_back(Constructor);
4667
4668 DiagnoseUninitializedFields(*this, Constructor);
4669
4670 return false;
4671}
4672
4673bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4674 ArrayRef<CXXCtorInitializer *> Initializers) {
4675 if (Constructor->isDependentContext()) {
4676 // Just store the initializers as written, they will be checked during
4677 // instantiation.
4678 if (!Initializers.empty()) {
4679 Constructor->setNumCtorInitializers(Initializers.size());
4680 CXXCtorInitializer **baseOrMemberInitializers =
4681 new (Context) CXXCtorInitializer*[Initializers.size()];
4682 memcpy(baseOrMemberInitializers, Initializers.data(),
4683 Initializers.size() * sizeof(CXXCtorInitializer*));
4684 Constructor->setCtorInitializers(baseOrMemberInitializers);
4685 }
4686
4687 // Let template instantiation know whether we had errors.
4688 if (AnyErrors)
4689 Constructor->setInvalidDecl();
4690
4691 return false;
4692 }
4693
4694 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4695
4696 // We need to build the initializer AST according to order of construction
4697 // and not what user specified in the Initializers list.
4698 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4699 if (!ClassDecl)
4700 return true;
4701
4702 bool HadError = false;
4703
4704 for (unsigned i = 0; i < Initializers.size(); i++) {
4705 CXXCtorInitializer *Member = Initializers[i];
4706
4707 if (Member->isBaseInitializer())
4708 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4709 else {
4710 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4711
4712 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4713 for (auto *C : F->chain()) {
4714 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4715 if (FD && FD->getParent()->isUnion())
4716 Info.ActiveUnionMember.insert(std::make_pair(
4717 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4718 }
4719 } else if (FieldDecl *FD = Member->getMember()) {
4720 if (FD->getParent()->isUnion())
4721 Info.ActiveUnionMember.insert(std::make_pair(
4722 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4723 }
4724 }
4725 }
4726
4727 // Keep track of the direct virtual bases.
4728 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4729 for (auto &I : ClassDecl->bases()) {
4730 if (I.isVirtual())
4731 DirectVBases.insert(&I);
4732 }
4733
4734 // Push virtual bases before others.
4735 for (auto &VBase : ClassDecl->vbases()) {
4736 if (CXXCtorInitializer *Value
4737 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
4738 // [class.base.init]p7, per DR257:
4739 // A mem-initializer where the mem-initializer-id names a virtual base
4740 // class is ignored during execution of a constructor of any class that
4741 // is not the most derived class.
4742 if (ClassDecl->isAbstract()) {
4743 // FIXME: Provide a fixit to remove the base specifier. This requires
4744 // tracking the location of the associated comma for a base specifier.
4745 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
4746 << VBase.getType() << ClassDecl;
4747 DiagnoseAbstractType(ClassDecl);
4748 }
4749
4750 Info.AllToInit.push_back(Value);
4751 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
4752 // [class.base.init]p8, per DR257:
4753 // If a given [...] base class is not named by a mem-initializer-id
4754 // [...] and the entity is not a virtual base class of an abstract
4755 // class, then [...] the entity is default-initialized.
4756 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
4757 CXXCtorInitializer *CXXBaseInit;
4758 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4759 &VBase, IsInheritedVirtualBase,
4760 CXXBaseInit)) {
4761 HadError = true;
4762 continue;
4763 }
4764
4765 Info.AllToInit.push_back(CXXBaseInit);
4766 }
4767 }
4768
4769 // Non-virtual bases.
4770 for (auto &Base : ClassDecl->bases()) {
4771 // Virtuals are in the virtual base list and already constructed.
4772 if (Base.isVirtual())
4773 continue;
4774
4775 if (CXXCtorInitializer *Value
4776 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
4777 Info.AllToInit.push_back(Value);
4778 } else if (!AnyErrors) {
4779 CXXCtorInitializer *CXXBaseInit;
4780 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4781 &Base, /*IsInheritedVirtualBase=*/false,
4782 CXXBaseInit)) {
4783 HadError = true;
4784 continue;
4785 }
4786
4787 Info.AllToInit.push_back(CXXBaseInit);
4788 }
4789 }
4790
4791 // Fields.
4792 for (auto *Mem : ClassDecl->decls()) {
4793 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4794 // C++ [class.bit]p2:
4795 // A declaration for a bit-field that omits the identifier declares an
4796 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4797 // initialized.
4798 if (F->isUnnamedBitfield())
4799 continue;
4800
4801 // If we're not generating the implicit copy/move constructor, then we'll
4802 // handle anonymous struct/union fields based on their individual
4803 // indirect fields.
4804 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4805 continue;
4806
4807 if (CollectFieldInitializer(*this, Info, F))
4808 HadError = true;
4809 continue;
4810 }
4811
4812 // Beyond this point, we only consider default initialization.
4813 if (Info.isImplicitCopyOrMove())
4814 continue;
4815
4816 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4817 if (F->getType()->isIncompleteArrayType()) {
4818 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4819, __extension__ __PRETTY_FUNCTION__))
4819 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4819, __extension__ __PRETTY_FUNCTION__))
;
4820 continue;
4821 }
4822
4823 // Initialize each field of an anonymous struct individually.
4824 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4825 HadError = true;
4826
4827 continue;
4828 }
4829 }
4830
4831 unsigned NumInitializers = Info.AllToInit.size();
4832 if (NumInitializers > 0) {
4833 Constructor->setNumCtorInitializers(NumInitializers);
4834 CXXCtorInitializer **baseOrMemberInitializers =
4835 new (Context) CXXCtorInitializer*[NumInitializers];
4836 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4837 NumInitializers * sizeof(CXXCtorInitializer*));
4838 Constructor->setCtorInitializers(baseOrMemberInitializers);
4839
4840 // Constructors implicitly reference the base and member
4841 // destructors.
4842 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4843 Constructor->getParent());
4844 }
4845
4846 return HadError;
4847}
4848
4849static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4850 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4851 const RecordDecl *RD = RT->getDecl();
4852 if (RD->isAnonymousStructOrUnion()) {
4853 for (auto *Field : RD->fields())
4854 PopulateKeysForFields(Field, IdealInits);
4855 return;
4856 }
4857 }
4858 IdealInits.push_back(Field->getCanonicalDecl());
4859}
4860
4861static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4862 return Context.getCanonicalType(BaseType).getTypePtr();
4863}
4864
4865static const void *GetKeyForMember(ASTContext &Context,
4866 CXXCtorInitializer *Member) {
4867 if (!Member->isAnyMemberInitializer())
4868 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4869
4870 return Member->getAnyMember()->getCanonicalDecl();
4871}
4872
4873static void DiagnoseBaseOrMemInitializerOrder(
4874 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4875 ArrayRef<CXXCtorInitializer *> Inits) {
4876 if (Constructor->getDeclContext()->isDependentContext())
4877 return;
4878
4879 // Don't check initializers order unless the warning is enabled at the
4880 // location of at least one initializer.
4881 bool ShouldCheckOrder = false;
4882 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4883 CXXCtorInitializer *Init = Inits[InitIndex];
4884 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4885 Init->getSourceLocation())) {
4886 ShouldCheckOrder = true;
4887 break;
4888 }
4889 }
4890 if (!ShouldCheckOrder)
4891 return;
4892
4893 // Build the list of bases and members in the order that they'll
4894 // actually be initialized. The explicit initializers should be in
4895 // this same order but may be missing things.
4896 SmallVector<const void*, 32> IdealInitKeys;
4897
4898 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4899
4900 // 1. Virtual bases.
4901 for (const auto &VBase : ClassDecl->vbases())
4902 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4903
4904 // 2. Non-virtual bases.
4905 for (const auto &Base : ClassDecl->bases()) {
4906 if (Base.isVirtual())
4907 continue;
4908 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4909 }
4910
4911 // 3. Direct fields.
4912 for (auto *Field : ClassDecl->fields()) {
4913 if (Field->isUnnamedBitfield())
4914 continue;
4915
4916 PopulateKeysForFields(Field, IdealInitKeys);
4917 }
4918
4919 unsigned NumIdealInits = IdealInitKeys.size();
4920 unsigned IdealIndex = 0;
4921
4922 CXXCtorInitializer *PrevInit = nullptr;
4923 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4924 CXXCtorInitializer *Init = Inits[InitIndex];
4925 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4926
4927 // Scan forward to try to find this initializer in the idealized
4928 // initializers list.
4929 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4930 if (InitKey == IdealInitKeys[IdealIndex])
4931 break;
4932
4933 // If we didn't find this initializer, it must be because we
4934 // scanned past it on a previous iteration. That can only
4935 // happen if we're out of order; emit a warning.
4936 if (IdealIndex == NumIdealInits && PrevInit) {
4937 Sema::SemaDiagnosticBuilder D =
4938 SemaRef.Diag(PrevInit->getSourceLocation(),
4939 diag::warn_initializer_out_of_order);
4940
4941 if (PrevInit->isAnyMemberInitializer())
4942 D << 0 << PrevInit->getAnyMember()->getDeclName();
4943 else
4944 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4945
4946 if (Init->isAnyMemberInitializer())
4947 D << 0 << Init->getAnyMember()->getDeclName();
4948 else
4949 D << 1 << Init->getTypeSourceInfo()->getType();
4950
4951 // Move back to the initializer's location in the ideal list.
4952 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4953 if (InitKey == IdealInitKeys[IdealIndex])
4954 break;
4955
4956 assert(IdealIndex < NumIdealInits &&(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4957, __extension__ __PRETTY_FUNCTION__))
4957 "initializer not found in initializer list")(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4957, __extension__ __PRETTY_FUNCTION__))
;
4958 }
4959
4960 PrevInit = Init;
4961 }
4962}
4963
4964namespace {
4965bool CheckRedundantInit(Sema &S,
4966 CXXCtorInitializer *Init,
4967 CXXCtorInitializer *&PrevInit) {
4968 if (!PrevInit) {
4969 PrevInit = Init;
4970 return false;
4971 }
4972
4973 if (FieldDecl *Field = Init->getAnyMember())
4974 S.Diag(Init->getSourceLocation(),
4975 diag::err_multiple_mem_initialization)
4976 << Field->getDeclName()
4977 << Init->getSourceRange();
4978 else {
4979 const Type *BaseClass = Init->getBaseClass();
4980 assert(BaseClass && "neither field nor base")(static_cast <bool> (BaseClass && "neither field nor base"
) ? void (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4980, __extension__ __PRETTY_FUNCTION__))
;
4981 S.Diag(Init->getSourceLocation(),
4982 diag::err_multiple_base_initialization)
4983 << QualType(BaseClass, 0)
4984 << Init->getSourceRange();
4985 }
4986 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4987 << 0 << PrevInit->getSourceRange();
4988
4989 return true;
4990}
4991
4992typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4993typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4994
4995bool CheckRedundantUnionInit(Sema &S,
4996 CXXCtorInitializer *Init,
4997 RedundantUnionMap &Unions) {
4998 FieldDecl *Field = Init->getAnyMember();
4999 RecordDecl *Parent = Field->getParent();
5000 NamedDecl *Child = Field;
5001
5002 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5003 if (Parent->isUnion()) {
5004 UnionEntry &En = Unions[Parent];
5005 if (En.first && En.first != Child) {
5006 S.Diag(Init->getSourceLocation(),
5007 diag::err_multiple_mem_union_initialization)
5008 << Field->getDeclName()
5009 << Init->getSourceRange();
5010 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5011 << 0 << En.second->getSourceRange();
5012 return true;
5013 }
5014 if (!En.first) {
5015 En.first = Child;
5016 En.second = Init;
5017 }
5018 if (!Parent->isAnonymousStructOrUnion())
5019 return false;
5020 }
5021
5022 Child = Parent;
5023 Parent = cast<RecordDecl>(Parent->getDeclContext());
5024 }
5025
5026 return false;
5027}
5028}
5029
5030/// ActOnMemInitializers - Handle the member initializers for a constructor.
5031void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5032 SourceLocation ColonLoc,
5033 ArrayRef<CXXCtorInitializer*> MemInits,
5034 bool AnyErrors) {
5035 if (!ConstructorDecl)
5036 return;
5037
5038 AdjustDeclIfTemplate(ConstructorDecl);
5039
5040 CXXConstructorDecl *Constructor
5041 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5042
5043 if (!Constructor) {
5044 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5045 return;
5046 }
5047
5048 // Mapping for the duplicate initializers check.
5049 // For member initializers, this is keyed with a FieldDecl*.
5050 // For base initializers, this is keyed with a Type*.
5051 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5052
5053 // Mapping for the inconsistent anonymous-union initializers check.
5054 RedundantUnionMap MemberUnions;
5055
5056 bool HadError = false;
5057 for (unsigned i = 0; i < MemInits.size(); i++) {
5058 CXXCtorInitializer *Init = MemInits[i];
5059
5060 // Set the source order index.
5061 Init->setSourceOrder(i);
5062
5063 if (Init->isAnyMemberInitializer()) {
5064 const void *Key = GetKeyForMember(Context, Init);
5065 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5066 CheckRedundantUnionInit(*this, Init, MemberUnions))
5067 HadError = true;
5068 } else if (Init->isBaseInitializer()) {
5069 const void *Key = GetKeyForMember(Context, Init);
5070 if (CheckRedundantInit(*this, Init, Members[Key]))
5071 HadError = true;
5072 } else {
5073 assert(Init->isDelegatingInitializer())(static_cast <bool> (Init->isDelegatingInitializer()
) ? void (0) : __assert_fail ("Init->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5073, __extension__ __PRETTY_FUNCTION__))
;
5074 // This must be the only initializer
5075 if (MemInits.size() != 1) {
5076 Diag(Init->getSourceLocation(),
5077 diag::err_delegating_initializer_alone)
5078 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5079 // We will treat this as being the only initializer.
5080 }
5081 SetDelegatingInitializer(Constructor, MemInits[i]);
5082 // Return immediately as the initializer is set.
5083 return;
5084 }
5085 }
5086
5087 if (HadError)
5088 return;
5089
5090 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5091
5092 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5093
5094 DiagnoseUninitializedFields(*this, Constructor);
5095}
5096
5097void
5098Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5099 CXXRecordDecl *ClassDecl) {
5100 // Ignore dependent contexts. Also ignore unions, since their members never
5101 // have destructors implicitly called.
5102 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5103 return;
5104
5105 // FIXME: all the access-control diagnostics are positioned on the
5106 // field/base declaration. That's probably good; that said, the
5107 // user might reasonably want to know why the destructor is being
5108 // emitted, and we currently don't say.
5109
5110 // Non-static data members.
5111 for (auto *Field : ClassDecl->fields()) {
5112 if (Field->isInvalidDecl())
5113 continue;
5114
5115 // Don't destroy incomplete or zero-length arrays.
5116 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5117 continue;
5118
5119 QualType FieldType = Context.getBaseElementType(Field->getType());
5120
5121 const RecordType* RT = FieldType->getAs<RecordType>();
5122 if (!RT)
5123 continue;
5124
5125 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5126 if (FieldClassDecl->isInvalidDecl())
5127 continue;
5128 if (FieldClassDecl->hasIrrelevantDestructor())
5129 continue;
5130 // The destructor for an implicit anonymous union member is never invoked.
5131 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5132 continue;
5133
5134 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5135 assert(Dtor && "No dtor found for FieldClassDecl!")(static_cast <bool> (Dtor && "No dtor found for FieldClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5135, __extension__ __PRETTY_FUNCTION__))
;
5136 CheckDestructorAccess(Field->getLocation(), Dtor,
5137 PDiag(diag::err_access_dtor_field)
5138 << Field->getDeclName()
5139 << FieldType);
5140
5141 MarkFunctionReferenced(Location, Dtor);
5142 DiagnoseUseOfDecl(Dtor, Location);
5143 }
5144
5145 // We only potentially invoke the destructors of potentially constructed
5146 // subobjects.
5147 bool VisitVirtualBases = !ClassDecl->isAbstract();
5148
5149 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5150
5151 // Bases.
5152 for (const auto &Base : ClassDecl->bases()) {
5153 // Bases are always records in a well-formed non-dependent class.
5154 const RecordType *RT = Base.getType()->getAs<RecordType>();
5155
5156 // Remember direct virtual bases.
5157 if (Base.isVirtual()) {
5158 if (!VisitVirtualBases)
5159 continue;
5160 DirectVirtualBases.insert(RT);
5161 }
5162
5163 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5164 // If our base class is invalid, we probably can't get its dtor anyway.
5165 if (BaseClassDecl->isInvalidDecl())
5166 continue;
5167 if (BaseClassDecl->hasIrrelevantDestructor())
5168 continue;
5169
5170 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5171 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5171, __extension__ __PRETTY_FUNCTION__))
;
5172
5173 // FIXME: caret should be on the start of the class name
5174 CheckDestructorAccess(Base.getLocStart(), Dtor,
5175 PDiag(diag::err_access_dtor_base)
5176 << Base.getType()
5177 << Base.getSourceRange(),
5178 Context.getTypeDeclType(ClassDecl));
5179
5180 MarkFunctionReferenced(Location, Dtor);
5181 DiagnoseUseOfDecl(Dtor, Location);
5182 }
5183
5184 if (!VisitVirtualBases)
5185 return;
5186
5187 // Virtual bases.
5188 for (const auto &VBase : ClassDecl->vbases()) {
5189 // Bases are always records in a well-formed non-dependent class.
5190 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5191
5192 // Ignore direct virtual bases.
5193 if (DirectVirtualBases.count(RT))
5194 continue;
5195
5196 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5197 // If our base class is invalid, we probably can't get its dtor anyway.
5198 if (BaseClassDecl->isInvalidDecl())
5199 continue;
5200 if (BaseClassDecl->hasIrrelevantDestructor())
5201 continue;
5202
5203 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5204 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5204, __extension__ __PRETTY_FUNCTION__))
;
5205 if (CheckDestructorAccess(
5206 ClassDecl->getLocation(), Dtor,
5207 PDiag(diag::err_access_dtor_vbase)
5208 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5209 Context.getTypeDeclType(ClassDecl)) ==
5210 AR_accessible) {
5211 CheckDerivedToBaseConversion(
5212 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5213 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5214 SourceRange(), DeclarationName(), nullptr);
5215 }
5216
5217 MarkFunctionReferenced(Location, Dtor);
5218 DiagnoseUseOfDecl(Dtor, Location);
5219 }
5220}
5221
5222void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5223 if (!CDtorDecl)
5224 return;
5225
5226 if (CXXConstructorDecl *Constructor
5227 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5228 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5229 DiagnoseUninitializedFields(*this, Constructor);
5230 }
5231}
5232
5233bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5234 if (!getLangOpts().CPlusPlus)
5235 return false;
5236
5237 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5238 if (!RD)
5239 return false;
5240
5241 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5242 // class template specialization here, but doing so breaks a lot of code.
5243
5244 // We can't answer whether something is abstract until it has a
5245 // definition. If it's currently being defined, we'll walk back
5246 // over all the declarations when we have a full definition.
5247 const CXXRecordDecl *Def = RD->getDefinition();
5248 if (!Def || Def->isBeingDefined())
5249 return false;
5250
5251 return RD->isAbstract();
5252}
5253
5254bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5255 TypeDiagnoser &Diagnoser) {
5256 if (!isAbstractType(Loc, T))
5257 return false;
5258
5259 T = Context.getBaseElementType(T);
5260 Diagnoser.diagnose(*this, Loc, T);
5261 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5262 return true;
5263}
5264
5265void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5266 // Check if we've already emitted the list of pure virtual functions
5267 // for this class.
5268 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5269 return;
5270
5271 // If the diagnostic is suppressed, don't emit the notes. We're only
5272 // going to emit them once, so try to attach them to a diagnostic we're
5273 // actually going to show.
5274 if (Diags.isLastDiagnosticIgnored())
5275 return;
5276
5277 CXXFinalOverriderMap FinalOverriders;
5278 RD->getFinalOverriders(FinalOverriders);
5279
5280 // Keep a set of seen pure methods so we won't diagnose the same method
5281 // more than once.
5282 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5283
5284 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5285 MEnd = FinalOverriders.end();
5286 M != MEnd;
5287 ++M) {
5288 for (OverridingMethods::iterator SO = M->second.begin(),
5289 SOEnd = M->second.end();
5290 SO != SOEnd; ++SO) {
5291 // C++ [class.abstract]p4:
5292 // A class is abstract if it contains or inherits at least one
5293 // pure virtual function for which the final overrider is pure
5294 // virtual.
5295
5296 //
5297 if (SO->second.size() != 1)
5298 continue;
5299
5300 if (!SO->second.front().Method->isPure())
5301 continue;
5302
5303 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5304 continue;
5305
5306 Diag(SO->second.front().Method->getLocation(),
5307 diag::note_pure_virtual_function)
5308 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5309 }
5310 }
5311
5312 if (!PureVirtualClassDiagSet)
5313 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5314 PureVirtualClassDiagSet->insert(RD);
5315}
5316
5317namespace {
5318struct AbstractUsageInfo {
5319 Sema &S;
5320 CXXRecordDecl *Record;
5321 CanQualType AbstractType;
5322 bool Invalid;
5323
5324 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5325 : S(S), Record(Record),
5326 AbstractType(S.Context.getCanonicalType(
5327 S.Context.getTypeDeclType(Record))),
5328 Invalid(false) {}
5329
5330 void DiagnoseAbstractType() {
5331 if (Invalid) return;
5332 S.DiagnoseAbstractType(Record);
5333 Invalid = true;
5334 }
5335
5336 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5337};
5338
5339struct CheckAbstractUsage {
5340 AbstractUsageInfo &Info;
5341 const NamedDecl *Ctx;
5342
5343 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5344 : Info(Info), Ctx(Ctx) {}
5345
5346 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5347 switch (TL.getTypeLocClass()) {
5348#define ABSTRACT_TYPELOC(CLASS, PARENT)
5349#define TYPELOC(CLASS, PARENT) \
5350 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5351#include "clang/AST/TypeLocNodes.def"
5352 }
5353 }
5354
5355 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5356 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5357 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5358 if (!TL.getParam(I))
5359 continue;
5360
5361 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5362 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5363 }
5364 }
5365
5366 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5367 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5368 }
5369
5370 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5371 // Visit the type parameters from a permissive context.
5372 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5373 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5374 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5375 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5376 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5377 // TODO: other template argument types?
5378 }
5379 }
5380
5381 // Visit pointee types from a permissive context.
5382#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5383 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5384 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5385 }
5386 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5387 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5388 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5389 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5390 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5391
5392 /// Handle all the types we haven't given a more specific
5393 /// implementation for above.
5394 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5395 // Every other kind of type that we haven't called out already
5396 // that has an inner type is either (1) sugar or (2) contains that
5397 // inner type in some way as a subobject.
5398 if (TypeLoc Next = TL.getNextTypeLoc())
5399 return Visit(Next, Sel);
5400
5401 // If there's no inner type and we're in a permissive context,
5402 // don't diagnose.
5403 if (Sel == Sema::AbstractNone) return;
5404
5405 // Check whether the type matches the abstract type.
5406 QualType T = TL.getType();
5407 if (T->isArrayType()) {
5408 Sel = Sema::AbstractArrayType;
5409 T = Info.S.Context.getBaseElementType(T);
5410 }
5411 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5412 if (CT != Info.AbstractType) return;
5413
5414 // It matched; do some magic.
5415 if (Sel == Sema::AbstractArrayType) {
5416 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5417 << T << TL.getSourceRange();
5418 } else {
5419 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5420 << Sel << T << TL.getSourceRange();
5421 }
5422 Info.DiagnoseAbstractType();
5423 }
5424};
5425
5426void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5427 Sema::AbstractDiagSelID Sel) {
5428 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5429}
5430
5431}
5432
5433/// Check for invalid uses of an abstract type in a method declaration.
5434static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5435 CXXMethodDecl *MD) {
5436 // No need to do the check on definitions, which require that
5437 // the return/param types be complete.
5438 if (MD->doesThisDeclarationHaveABody())
5439 return;
5440
5441 // For safety's sake, just ignore it if we don't have type source
5442 // information. This should never happen for non-implicit methods,
5443 // but...
5444 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5445 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5446}
5447
5448/// Check for invalid uses of an abstract type within a class definition.
5449static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5450 CXXRecordDecl *RD) {
5451 for (auto *D : RD->decls()) {
5452 if (D->isImplicit()) continue;
5453
5454 // Methods and method templates.
5455 if (isa<CXXMethodDecl>(D)) {
5456 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5457 } else if (isa<FunctionTemplateDecl>(D)) {
5458 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5459 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5460
5461 // Fields and static variables.
5462 } else if (isa<FieldDecl>(D)) {
5463 FieldDecl *FD = cast<FieldDecl>(D);
5464 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5465 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5466 } else if (isa<VarDecl>(D)) {
5467 VarDecl *VD = cast<VarDecl>(D);
5468 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5469 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5470
5471 // Nested classes and class templates.
5472 } else if (isa<CXXRecordDecl>(D)) {
5473 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5474 } else if (isa<ClassTemplateDecl>(D)) {
5475 CheckAbstractClassUsage(Info,
5476 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5477 }
5478 }
5479}
5480
5481static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5482 Attr *ClassAttr = getDLLAttr(Class);
5483 if (!ClassAttr)
5484 return;
5485
5486 assert(ClassAttr->getKind() == attr::DLLExport)(static_cast <bool> (ClassAttr->getKind() == attr::DLLExport
) ? void (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5486, __extension__ __PRETTY_FUNCTION__))
;
5487
5488 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5489
5490 if (TSK == TSK_ExplicitInstantiationDeclaration)
5491 // Don't go any further if this is just an explicit instantiation
5492 // declaration.
5493 return;
5494
5495 for (Decl *Member : Class->decls()) {
5496 // Defined static variables that are members of an exported base
5497 // class must be marked export too.
5498 auto *VD = dyn_cast<VarDecl>(Member);
5499 if (VD && Member->getAttr<DLLExportAttr>() &&
5500 VD->getStorageClass() == SC_Static &&
5501 TSK == TSK_ImplicitInstantiation)
5502 S.MarkVariableReferenced(VD->getLocation(), VD);
5503
5504 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5505 if (!MD)
5506 continue;
5507
5508 if (Member->getAttr<DLLExportAttr>()) {
5509 if (MD->isUserProvided()) {
5510 // Instantiate non-default class member functions ...
5511
5512 // .. except for certain kinds of template specializations.
5513 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5514 continue;
5515
5516 S.MarkFunctionReferenced(Class->getLocation(), MD);
5517
5518 // The function will be passed to the consumer when its definition is
5519 // encountered.
5520 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5521 MD->isCopyAssignmentOperator() ||
5522 MD->isMoveAssignmentOperator()) {
5523 // Synthesize and instantiate non-trivial implicit methods, explicitly
5524 // defaulted methods, and the copy and move assignment operators. The
5525 // latter are exported even if they are trivial, because the address of
5526 // an operator can be taken and should compare equal across libraries.
5527 DiagnosticErrorTrap Trap(S.Diags);
5528 S.MarkFunctionReferenced(Class->getLocation(), MD);
5529 if (Trap.hasErrorOccurred()) {
5530 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5531 << Class << !S.getLangOpts().CPlusPlus11;
5532 break;
5533 }
5534
5535 // There is no later point when we will see the definition of this
5536 // function, so pass it to the consumer now.
5537 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5538 }
5539 }
5540 }
5541}
5542
5543static void checkForMultipleExportedDefaultConstructors(Sema &S,
5544 CXXRecordDecl *Class) {
5545 // Only the MS ABI has default constructor closures, so we don't need to do
5546 // this semantic checking anywhere else.
5547 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5548 return;
5549
5550 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5551 for (Decl *Member : Class->decls()) {
5552 // Look for exported default constructors.
5553 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5554 if (!CD || !CD->isDefaultConstructor())
5555 continue;
5556 auto *Attr = CD->getAttr<DLLExportAttr>();
5557 if (!Attr)
5558 continue;
5559
5560 // If the class is non-dependent, mark the default arguments as ODR-used so
5561 // that we can properly codegen the constructor closure.
5562 if (!Class->isDependentContext()) {
5563 for (ParmVarDecl *PD : CD->parameters()) {
5564 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5565 S.DiscardCleanupsInEvaluationContext();
5566 }
5567 }
5568
5569 if (LastExportedDefaultCtor) {
5570 S.Diag(LastExportedDefaultCtor->getLocation(),
5571 diag::err_attribute_dll_ambiguous_default_ctor)
5572 << Class;
5573 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5574 << CD->getDeclName();
5575 return;
5576 }
5577 LastExportedDefaultCtor = CD;
5578 }
5579}
5580
5581/// \brief Check class-level dllimport/dllexport attribute.
5582void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5583 Attr *ClassAttr = getDLLAttr(Class);
5584
5585 // MSVC inherits DLL attributes to partial class template specializations.
5586 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5587 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5588 if (Attr *TemplateAttr =
5589 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5590 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5591 A->setInherited(true);
5592 ClassAttr = A;
5593 }
5594 }
5595 }
5596
5597 if (!ClassAttr)
5598 return;
5599
5600 if (!Class->isExternallyVisible()) {
5601 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5602 << Class << ClassAttr;
5603 return;
5604 }
5605
5606 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5607 !ClassAttr->isInherited()) {
5608 // Diagnose dll attributes on members of class with dll attribute.
5609 for (Decl *Member : Class->decls()) {
5610 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5611 continue;
5612 InheritableAttr *MemberAttr = getDLLAttr(Member);
5613 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5614 continue;
5615
5616 Diag(MemberAttr->getLocation(),
5617 diag::err_attribute_dll_member_of_dll_class)
5618 << MemberAttr << ClassAttr;
5619 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5620 Member->setInvalidDecl();
5621 }
5622 }
5623
5624 if (Class->getDescribedClassTemplate())
5625 // Don't inherit dll attribute until the template is instantiated.
5626 return;
5627
5628 // The class is either imported or exported.
5629 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5630
5631 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5632
5633 // Ignore explicit dllexport on explicit class template instantiation declarations.
5634 if (ClassExported && !ClassAttr->isInherited() &&
5635 TSK == TSK_ExplicitInstantiationDeclaration) {
5636 Class->dropAttr<DLLExportAttr>();
5637 return;
5638 }
5639
5640 // Force declaration of implicit members so they can inherit the attribute.
5641 ForceDeclarationOfImplicitMembers(Class);
5642
5643 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5644 // seem to be true in practice?
5645
5646 for (Decl *Member : Class->decls()) {
5647 VarDecl *VD = dyn_cast<VarDecl>(Member);
5648 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5649
5650 // Only methods and static fields inherit the attributes.
5651 if (!VD && !MD)
5652 continue;
5653
5654 if (MD) {
5655 // Don't process deleted methods.
5656 if (MD->isDeleted())
5657 continue;
5658
5659 if (MD->isInlined()) {
5660 // MinGW does not import or export inline methods.
5661 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5662 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
5663 continue;
5664
5665 // MSVC versions before 2015 don't export the move assignment operators
5666 // and move constructor, so don't attempt to import/export them if
5667 // we have a definition.
5668 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5669 if ((MD->isMoveAssignmentOperator() ||
5670 (Ctor && Ctor->isMoveConstructor())) &&
5671 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5672 continue;
5673
5674 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5675 // operator is exported anyway.
5676 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5677 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5678 continue;
5679 }
5680 }
5681
5682 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5683 continue;
5684
5685 if (!getDLLAttr(Member)) {
5686 auto *NewAttr =
5687 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5688 NewAttr->setInherited(true);
5689 Member->addAttr(NewAttr);
5690
5691 if (MD) {
5692 // Propagate DLLAttr to friend re-declarations of MD that have already
5693 // been constructed.
5694 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
5695 FD = FD->getPreviousDecl()) {
5696 if (FD->getFriendObjectKind() == Decl::FOK_None)
5697 continue;
5698 assert(!getDLLAttr(FD) &&(static_cast <bool> (!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? void (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5699, __extension__ __PRETTY_FUNCTION__))
5699 "friend re-decl should not already have a DLLAttr")(static_cast <bool> (!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? void (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5699, __extension__ __PRETTY_FUNCTION__))
;
5700 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5701 NewAttr->setInherited(true);
5702 FD->addAttr(NewAttr);
5703 }
5704 }
5705 }
5706 }
5707
5708 if (ClassExported)
5709 DelayedDllExportClasses.push_back(Class);
5710}
5711
5712/// \brief Perform propagation of DLL attributes from a derived class to a
5713/// templated base class for MS compatibility.
5714void Sema::propagateDLLAttrToBaseClassTemplate(
5715 CXXRecordDecl *Class, Attr *ClassAttr,
5716 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
5717 if (getDLLAttr(
5718 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
5719 // If the base class template has a DLL attribute, don't try to change it.
5720 return;
5721 }
5722
5723 auto TSK = BaseTemplateSpec->getSpecializationKind();
5724 if (!getDLLAttr(BaseTemplateSpec) &&
5725 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
5726 TSK == TSK_ImplicitInstantiation)) {
5727 // The template hasn't been instantiated yet (or it has, but only as an
5728 // explicit instantiation declaration or implicit instantiation, which means
5729 // we haven't codegenned any members yet), so propagate the attribute.
5730 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5731 NewAttr->setInherited(true);
5732 BaseTemplateSpec->addAttr(NewAttr);
5733
5734 // If the template is already instantiated, checkDLLAttributeRedeclaration()
5735 // needs to be run again to work see the new attribute. Otherwise this will
5736 // get run whenever the template is instantiated.
5737 if (TSK != TSK_Undeclared)
5738 checkClassLevelDLLAttribute(BaseTemplateSpec);
5739
5740 return;
5741 }
5742
5743 if (getDLLAttr(BaseTemplateSpec)) {
5744 // The template has already been specialized or instantiated with an
5745 // attribute, explicitly or through propagation. We should not try to change
5746 // it.
5747 return;
5748 }
5749
5750 // The template was previously instantiated or explicitly specialized without
5751 // a dll attribute, It's too late for us to add an attribute, so warn that
5752 // this is unsupported.
5753 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
5754 << BaseTemplateSpec->isExplicitSpecialization();
5755 Diag(ClassAttr->getLocation(), diag::note_attribute);
5756 if (BaseTemplateSpec->isExplicitSpecialization()) {
5757 Diag(BaseTemplateSpec->getLocation(),
5758 diag::note_template_class_explicit_specialization_was_here)
5759 << BaseTemplateSpec;
5760 } else {
5761 Diag(BaseTemplateSpec->getPointOfInstantiation(),
5762 diag::note_template_class_instantiation_was_here)
5763 << BaseTemplateSpec;
5764 }
5765}
5766
5767static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
5768 SourceLocation DefaultLoc) {
5769 switch (S.getSpecialMember(MD)) {
5770 case Sema::CXXDefaultConstructor:
5771 S.DefineImplicitDefaultConstructor(DefaultLoc,
5772 cast<CXXConstructorDecl>(MD));
5773 break;
5774 case Sema::CXXCopyConstructor:
5775 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5776 break;
5777 case Sema::CXXCopyAssignment:
5778 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
5779 break;
5780 case Sema::CXXDestructor:
5781 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5782 break;
5783 case Sema::CXXMoveConstructor:
5784 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5785 break;
5786 case Sema::CXXMoveAssignment:
5787 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
5788 break;
5789 case Sema::CXXInvalid:
5790 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5790)
;
5791 }
5792}
5793
5794/// Determine whether a type would be destructed in the callee if it had a
5795/// non-trivial destructor. The rules here are based on C++ [class.temporary]p3,
5796/// which determines whether a struct can be passed to or returned from
5797/// functions in registers.
5798static bool paramCanBeDestroyedInCallee(Sema &S, CXXRecordDecl *D,
5799 TargetInfo::CallingConvKind CCK) {
5800 if (D->isDependentType() || D->isInvalidDecl())
5801 return false;
5802
5803 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
5804 // The PS4 platform ABI follows the behavior of Clang 3.2.
5805 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
5806 return !D->hasNonTrivialDestructorForCall() &&
5807 !D->hasNonTrivialCopyConstructorForCall();
5808
5809 // Per C++ [class.temporary]p3, the relevant condition is:
5810 // each copy constructor, move constructor, and destructor of X is
5811 // either trivial or deleted, and X has at least one non-deleted copy
5812 // or move constructor
5813 bool HasNonDeletedCopyOrMove = false;
5814
5815 if (D->needsImplicitCopyConstructor() &&
5816 !D->defaultedCopyConstructorIsDeleted()) {
5817 if (!D->hasTrivialCopyConstructorForCall())
5818 return false;
5819 HasNonDeletedCopyOrMove = true;
5820 }
5821
5822 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
5823 !D->defaultedMoveConstructorIsDeleted()) {
5824 if (!D->hasTrivialMoveConstructorForCall())
5825 return false;
5826 HasNonDeletedCopyOrMove = true;
5827 }
5828
5829 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
5830 !D->hasTrivialDestructorForCall())
5831 return false;
5832
5833 for (const CXXMethodDecl *MD : D->methods()) {
5834 if (MD->isDeleted())
5835 continue;
5836
5837 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
5838 if (CD && CD->isCopyOrMoveConstructor())
5839 HasNonDeletedCopyOrMove = true;
5840 else if (!isa<CXXDestructorDecl>(MD))
5841 continue;
5842
5843 if (!MD->isTrivialForCall())
5844 return false;
5845 }
5846
5847 return HasNonDeletedCopyOrMove;
5848}
5849
5850static RecordDecl::ArgPassingKind
5851computeArgPassingRestrictions(bool DestroyedInCallee, const CXXRecordDecl *RD,
5852 TargetInfo::CallingConvKind CCK, Sema &S) {
5853 if (RD->isDependentType() || RD->isInvalidDecl())
5854 return RecordDecl::APK_CanPassInRegs;
5855
5856 // The param cannot be passed in registers if ArgPassingRestrictions is set to
5857 // APK_CanNeverPassInRegs.
5858 if (RD->getArgPassingRestrictions() == RecordDecl::APK_CanNeverPassInRegs)
5859 return RecordDecl::APK_CanNeverPassInRegs;
5860
5861 if (CCK != TargetInfo::CCK_MicrosoftX86_64)
5862 return DestroyedInCallee ? RecordDecl::APK_CanPassInRegs
5863 : RecordDecl::APK_CannotPassInRegs;
5864
5865 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
5866 bool DtorIsTrivialForCall = false;
5867
5868 // If a class has at least one non-deleted, trivial copy constructor, it
5869 // is passed according to the C ABI. Otherwise, it is passed indirectly.
5870 //
5871 // Note: This permits classes with non-trivial copy or move ctors to be
5872 // passed in registers, so long as they *also* have a trivial copy ctor,
5873 // which is non-conforming.
5874 if (RD->needsImplicitCopyConstructor()) {
5875 if (!RD->defaultedCopyConstructorIsDeleted()) {
5876 if (RD->hasTrivialCopyConstructor())
5877 CopyCtorIsTrivial = true;
5878 if (RD->hasTrivialCopyConstructorForCall())
5879 CopyCtorIsTrivialForCall = true;
5880 }
5881 } else {
5882 for (const CXXConstructorDecl *CD : RD->ctors()) {
5883 if (CD->isCopyConstructor() && !CD->isDeleted()) {
5884 if (CD->isTrivial())
5885 CopyCtorIsTrivial = true;
5886 if (CD->isTrivialForCall())
5887 CopyCtorIsTrivialForCall = true;
5888 }
5889 }
5890 }
5891
5892 if (RD->needsImplicitDestructor()) {
5893 if (!RD->defaultedDestructorIsDeleted() &&
5894 RD->hasTrivialDestructorForCall())
5895 DtorIsTrivialForCall = true;
5896 } else if (const auto *D = RD->getDestructor()) {
5897 if (!D->isDeleted() && D->isTrivialForCall())
5898 DtorIsTrivialForCall = true;
5899 }
5900
5901 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
5902 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
5903 return RecordDecl::APK_CanPassInRegs;
5904
5905 // If a class has a destructor, we'd really like to pass it indirectly
5906 // because it allows us to elide copies. Unfortunately, MSVC makes that
5907 // impossible for small types, which it will pass in a single register or
5908 // stack slot. Most objects with dtors are large-ish, so handle that early.
5909 // We can't call out all large objects as being indirect because there are
5910 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
5911 // how we pass large POD types.
5912
5913 // Note: This permits small classes with nontrivial destructors to be
5914 // passed in registers, which is non-conforming.
5915 if (CopyCtorIsTrivial &&
5916 S.getASTContext().getTypeSize(RD->getTypeForDecl()) <= 64)
5917 return RecordDecl::APK_CanPassInRegs;
5918 return RecordDecl::APK_CannotPassInRegs;
5919}
5920
5921/// \brief Perform semantic checks on a class definition that has been
5922/// completing, introducing implicitly-declared members, checking for
5923/// abstract types, etc.
5924void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
5925 if (!Record)
5926 return;
5927
5928 if (Record->isAbstract() && !Record->isInvalidDecl()) {
5929 AbstractUsageInfo Info(*this, Record);
5930 CheckAbstractClassUsage(Info, Record);
5931 }
5932
5933 // If this is not an aggregate type and has no user-declared constructor,
5934 // complain about any non-static data members of reference or const scalar
5935 // type, since they will never get initializers.
5936 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
5937 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
5938 !Record->isLambda()) {
5939 bool Complained = false;
5940 for (const auto *F : Record->fields()) {
5941 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
5942 continue;
5943
5944 if (F->getType()->isReferenceType() ||
5945 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
5946 if (!Complained) {
5947 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
5948 << Record->getTagKind() << Record;
5949 Complained = true;
5950 }
5951
5952 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
5953 << F->getType()->isReferenceType()
5954 << F->getDeclName();
5955 }
5956 }
5957 }
5958
5959 if (Record->getIdentifier()) {
5960 // C++ [class.mem]p13:
5961 // If T is the name of a class, then each of the following shall have a
5962 // name different from T:
5963 // - every member of every anonymous union that is a member of class T.
5964 //
5965 // C++ [class.mem]p14:
5966 // In addition, if class T has a user-declared constructor (12.1), every
5967 // non-static data member of class T shall have a name different from T.
5968 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
5969 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
5970 ++I) {
5971 NamedDecl *D = *I;
5972 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
5973 isa<IndirectFieldDecl>(D)) {
5974 Diag(D->getLocation(), diag::err_member_name_of_class)
5975 << D->getDeclName();
5976 break;
5977 }
5978 }
5979 }
5980
5981 // Warn if the class has virtual methods but non-virtual public destructor.
5982 if (Record->isPolymorphic() && !Record->isDependentType()) {
5983 CXXDestructorDecl *dtor = Record->getDestructor();
5984 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
5985 !Record->hasAttr<FinalAttr>())
5986 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
5987 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
5988 }
5989
5990 if (Record->isAbstract()) {
5991 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
5992 Diag(Record->getLocation(), diag::warn_abstract_final_class)
5993 << FA->isSpelledAsSealed();
5994 DiagnoseAbstractType(Record);
5995 }
5996 }
5997
5998 // Set HasTrivialSpecialMemberForCall if the record has attribute
5999 // "trivial_abi".
6000 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6001
6002 if (HasTrivialABI)
6003 Record->setHasTrivialSpecialMemberForCall();
6004
6005 bool HasMethodWithOverrideControl = false,
6006 HasOverridingMethodWithoutOverrideControl = false;
6007 if (!Record->isDependentType()) {
6008 for (auto *M : Record->methods()) {
6009 // See if a method overloads virtual methods in a base
6010 // class without overriding any.
6011 if (!M->isStatic())
6012 DiagnoseHiddenVirtualMethods(M);
6013 if (M->hasAttr<OverrideAttr>())
6014 HasMethodWithOverrideControl = true;
6015 else if (M->size_overridden_methods() > 0)
6016 HasOverridingMethodWithoutOverrideControl = true;
6017 // Check whether the explicitly-defaulted special members are valid.
6018 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
6019 CheckExplicitlyDefaultedSpecialMember(M);
6020
6021 // For an explicitly defaulted or deleted special member, we defer
6022 // determining triviality until the class is complete. That time is now!
6023 CXXSpecialMember CSM = getSpecialMember(M);
6024 if (!M->isImplicit() && !M->isUserProvided()) {
6025 if (CSM != CXXInvalid) {
6026 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6027 // Inform the class that we've finished declaring this member.
6028 Record->finishedDefaultedOrDeletedMember(M);
6029 M->setTrivialForCall(
6030 HasTrivialABI ||
6031 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6032 Record->setTrivialForCallFlags(M);
6033 }
6034 }
6035
6036 // Set triviality for the purpose of calls if this is a user-provided
6037 // copy/move constructor or destructor.
6038 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6039 CSM == CXXDestructor) && M->isUserProvided()) {
6040 M->setTrivialForCall(HasTrivialABI);
6041 Record->setTrivialForCallFlags(M);
6042 }
6043
6044 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6045 M->hasAttr<DLLExportAttr>()) {
6046 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6047 M->isTrivial() &&
6048 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6049 CSM == CXXDestructor))
6050 M->dropAttr<DLLExportAttr>();
6051
6052 if (M->hasAttr<DLLExportAttr>()) {
6053 DefineImplicitSpecialMember(*this, M, M->getLocation());
6054 ActOnFinishInlineFunctionDef(M);
6055 }
6056 }
6057 }
6058 }
6059
6060 if (HasMethodWithOverrideControl &&
6061 HasOverridingMethodWithoutOverrideControl) {
6062 // At least one method has the 'override' control declared.
6063 // Diagnose all other overridden methods which do not have 'override' specified on them.
6064 for (auto *M : Record->methods())
6065 DiagnoseAbsenceOfOverrideControl(M);
6066 }
6067
6068 // ms_struct is a request to use the same ABI rules as MSVC. Check
6069 // whether this class uses any C++ features that are implemented
6070 // completely differently in MSVC, and if so, emit a diagnostic.
6071 // That diagnostic defaults to an error, but we allow projects to
6072 // map it down to a warning (or ignore it). It's a fairly common
6073 // practice among users of the ms_struct pragma to mass-annotate
6074 // headers, sweeping up a bunch of types that the project doesn't
6075 // really rely on MSVC-compatible layout for. We must therefore
6076 // support "ms_struct except for C++ stuff" as a secondary ABI.
6077 if (Record->isMsStruct(Context) &&
6078 (Record->isPolymorphic() || Record->getNumBases())) {
6079 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6080 }
6081
6082 checkClassLevelDLLAttribute(Record);
6083
6084 bool ClangABICompat4 =
6085 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6086 TargetInfo::CallingConvKind CCK =
6087 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6088 bool DestroyedInCallee = paramCanBeDestroyedInCallee(*this, Record, CCK);
6089
6090 if (Record->hasNonTrivialDestructor())
6091 Record->setParamDestroyedInCallee(DestroyedInCallee);
6092
6093 Record->setArgPassingRestrictions(
6094 computeArgPassingRestrictions(DestroyedInCallee, Record, CCK, *this));
6095}
6096
6097/// Look up the special member function that would be called by a special
6098/// member function for a subobject of class type.
6099///
6100/// \param Class The class type of the subobject.
6101/// \param CSM The kind of special member function.
6102/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6103/// \param ConstRHS True if this is a copy operation with a const object
6104/// on its RHS, that is, if the argument to the outer special member
6105/// function is 'const' and this is not a field marked 'mutable'.
6106static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6107 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6108 unsigned FieldQuals, bool ConstRHS) {
6109 unsigned LHSQuals = 0;
6110 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6111 LHSQuals = FieldQuals;
6112
6113 unsigned RHSQuals = FieldQuals;
6114 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6115 RHSQuals = 0;
6116 else if (ConstRHS)
6117 RHSQuals |= Qualifiers::Const;
6118
6119 return S.LookupSpecialMember(Class, CSM,
6120 RHSQuals & Qualifiers::Const,
6121 RHSQuals & Qualifiers::Volatile,
6122 false,
6123 LHSQuals & Qualifiers::Const,
6124 LHSQuals & Qualifiers::Volatile);
6125}
6126
6127class Sema::InheritedConstructorInfo {
6128 Sema &S;
6129 SourceLocation UseLoc;
6130
6131 /// A mapping from the base classes through which the constructor was
6132 /// inherited to the using shadow declaration in that base class (or a null
6133 /// pointer if the constructor was declared in that base class).
6134 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6135 InheritedFromBases;
6136
6137public:
6138 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6139 ConstructorUsingShadowDecl *Shadow)
6140 : S(S), UseLoc(UseLoc) {
6141 bool DiagnosedMultipleConstructedBases = false;
6142 CXXRecordDecl *ConstructedBase = nullptr;
6143 UsingDecl *ConstructedBaseUsing = nullptr;
6144
6145 // Find the set of such base class subobjects and check that there's a
6146 // unique constructed subobject.
6147 for (auto *D : Shadow->redecls()) {
6148 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6149 auto *DNominatedBase = DShadow->getNominatedBaseClass();
6150 auto *DConstructedBase = DShadow->getConstructedBaseClass();
6151
6152 InheritedFr