Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 13382, column 7
Value stored to 'IsMemberSpecialization' is never read

Annotated Source Code

<
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "clang/Sema/Template.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/StringExtras.h"
43#include <map>
44#include <set>
45
46using namespace clang;
47
48//===----------------------------------------------------------------------===//
49// CheckDefaultArgumentVisitor
50//===----------------------------------------------------------------------===//
51
52namespace {
53 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
54 /// the default argument of a parameter to determine whether it
55 /// contains any ill-formed subexpressions. For example, this will
56 /// diagnose the use of local variables or parameters within the
57 /// default argument expression.
58 class CheckDefaultArgumentVisitor
59 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
60 Expr *DefaultArg;
61 Sema *S;
62
63 public:
64 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
65 : DefaultArg(defarg), S(s) {}
66
67 bool VisitExpr(Expr *Node);
68 bool VisitDeclRefExpr(DeclRefExpr *DRE);
69 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
70 bool VisitLambdaExpr(LambdaExpr *Lambda);
71 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
72 };
73
74 /// VisitExpr - Visit all of the children of this expression.
75 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
76 bool IsInvalid = false;
77 for (Stmt *SubStmt : Node->children())
78 IsInvalid |= Visit(SubStmt);
79 return IsInvalid;
80 }
81
82 /// VisitDeclRefExpr - Visit a reference to a declaration, to
83 /// determine whether this declaration can be used in the default
84 /// argument expression.
85 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
86 NamedDecl *Decl = DRE->getDecl();
87 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
88 // C++ [dcl.fct.default]p9
89 // Default arguments are evaluated each time the function is
90 // called. The order of evaluation of function arguments is
91 // unspecified. Consequently, parameters of a function shall not
92 // be used in default argument expressions, even if they are not
93 // evaluated. Parameters of a function declared before a default
94 // argument expression are in scope and can hide namespace and
95 // class member names.
96 return S->Diag(DRE->getLocStart(),
97 diag::err_param_default_argument_references_param)
98 << Param->getDeclName() << DefaultArg->getSourceRange();
99 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
100 // C++ [dcl.fct.default]p7
101 // Local variables shall not be used in default argument
102 // expressions.
103 if (VDecl->isLocalVarDecl())
104 return S->Diag(DRE->getLocStart(),
105 diag::err_param_default_argument_references_local)
106 << VDecl->getDeclName() << DefaultArg->getSourceRange();
107 }
108
109 return false;
110 }
111
112 /// VisitCXXThisExpr - Visit a C++ "this" expression.
113 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
114 // C++ [dcl.fct.default]p8:
115 // The keyword this shall not be used in a default argument of a
116 // member function.
117 return S->Diag(ThisE->getLocStart(),
118 diag::err_param_default_argument_references_this)
119 << ThisE->getSourceRange();
120 }
121
122 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
123 bool Invalid = false;
124 for (PseudoObjectExpr::semantics_iterator
125 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
126 Expr *E = *i;
127
128 // Look through bindings.
129 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
130 E = OVE->getSourceExpr();
131 assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?"
) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 131, __PRETTY_FUNCTION__))
;
132 }
133
134 Invalid |= Visit(E);
135 }
136 return Invalid;
137 }
138
139 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
140 // C++11 [expr.lambda.prim]p13:
141 // A lambda-expression appearing in a default argument shall not
142 // implicitly or explicitly capture any entity.
143 if (Lambda->capture_begin() == Lambda->capture_end())
144 return false;
145
146 return S->Diag(Lambda->getLocStart(),
147 diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 switch(EST) {
171 // If this function can throw any exceptions, make a note of that.
172 case EST_MSAny:
173 case EST_None:
174 ClearExceptions();
175 ComputedEST = EST;
176 return;
177 // FIXME: If the call to this decl is using any of its default arguments, we
178 // need to search them for potentially-throwing calls.
179 // If this function has a basic noexcept, it doesn't affect the outcome.
180 case EST_BasicNoexcept:
181 return;
182 // If we're still at noexcept(true) and there's a nothrow() callee,
183 // change to that specification.
184 case EST_DynamicNone:
185 if (ComputedEST == EST_BasicNoexcept)
186 ComputedEST = EST_DynamicNone;
187 return;
188 // Check out noexcept specs.
189 case EST_ComputedNoexcept:
190 {
191 FunctionProtoType::NoexceptResult NR =
192 Proto->getNoexceptSpec(Self->Context);
193 assert(NR != FunctionProtoType::NR_NoNoexcept &&((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 194, __PRETTY_FUNCTION__))
194 "Must have noexcept result for EST_ComputedNoexcept.")((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 194, __PRETTY_FUNCTION__))
;
195 assert(NR != FunctionProtoType::NR_Dependent &&((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
196 "Should not generate implicit declarations for dependent cases, "((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
197 "and don't know how to handle them anyway.")((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
;
198 // noexcept(false) -> no spec on the new function
199 if (NR == FunctionProtoType::NR_Throw) {
200 ClearExceptions();
201 ComputedEST = EST_None;
202 }
203 // noexcept(true) won't change anything either.
204 return;
205 }
206 default:
207 break;
208 }
209 assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier."
) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 209, __PRETTY_FUNCTION__))
;
210 assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 211, __PRETTY_FUNCTION__))
211 "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 211, __PRETTY_FUNCTION__))
;
212 ComputedEST = EST_Dynamic;
213 // Record the exceptions in this function's exception specification.
214 for (const auto &E : Proto->exceptions())
215 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
216 Exceptions.push_back(E);
217}
218
219void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
220 if (!E || ComputedEST == EST_MSAny)
221 return;
222
223 // FIXME:
224 //
225 // C++0x [except.spec]p14:
226 // [An] implicit exception-specification specifies the type-id T if and
227 // only if T is allowed by the exception-specification of a function directly
228 // invoked by f's implicit definition; f shall allow all exceptions if any
229 // function it directly invokes allows all exceptions, and f shall allow no
230 // exceptions if every function it directly invokes allows no exceptions.
231 //
232 // Note in particular that if an implicit exception-specification is generated
233 // for a function containing a throw-expression, that specification can still
234 // be noexcept(true).
235 //
236 // Note also that 'directly invoked' is not defined in the standard, and there
237 // is no indication that we should only consider potentially-evaluated calls.
238 //
239 // Ultimately we should implement the intent of the standard: the exception
240 // specification should be the set of exceptions which can be thrown by the
241 // implicit definition. For now, we assume that any non-nothrow expression can
242 // throw any exception.
243
244 if (Self->canThrow(E))
245 ComputedEST = EST_None;
246}
247
248bool
249Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
250 SourceLocation EqualLoc) {
251 if (RequireCompleteType(Param->getLocation(), Param->getType(),
252 diag::err_typecheck_decl_incomplete_type)) {
253 Param->setInvalidDecl();
254 return true;
255 }
256
257 // C++ [dcl.fct.default]p5
258 // A default argument expression is implicitly converted (clause
259 // 4) to the parameter type. The default argument expression has
260 // the same semantic constraints as the initializer expression in
261 // a declaration of a variable of the parameter type, using the
262 // copy-initialization semantics (8.5).
263 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
264 Param);
265 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
266 EqualLoc);
267 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
268 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
269 if (Result.isInvalid())
270 return true;
271 Arg = Result.getAs<Expr>();
272
273 CheckCompletedExpr(Arg, EqualLoc);
274 Arg = MaybeCreateExprWithCleanups(Arg);
275
276 // Okay: add the default argument to the parameter
277 Param->setDefaultArg(Arg);
278
279 // We have already instantiated this parameter; provide each of the
280 // instantiations with the uninstantiated default argument.
281 UnparsedDefaultArgInstantiationsMap::iterator InstPos
282 = UnparsedDefaultArgInstantiations.find(Param);
283 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
284 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
285 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
286
287 // We're done tracking this parameter's instantiations.
288 UnparsedDefaultArgInstantiations.erase(InstPos);
289 }
290
291 return false;
292}
293
294/// ActOnParamDefaultArgument - Check whether the default argument
295/// provided for a function parameter is well-formed. If so, attach it
296/// to the parameter declaration.
297void
298Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
299 Expr *DefaultArg) {
300 if (!param || !DefaultArg)
301 return;
302
303 ParmVarDecl *Param = cast<ParmVarDecl>(param);
304 UnparsedDefaultArgLocs.erase(Param);
305
306 // Default arguments are only permitted in C++
307 if (!getLangOpts().CPlusPlus) {
308 Diag(EqualLoc, diag::err_param_default_argument)
309 << DefaultArg->getSourceRange();
310 Param->setInvalidDecl();
311 return;
312 }
313
314 // Check for unexpanded parameter packs.
315 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
316 Param->setInvalidDecl();
317 return;
318 }
319
320 // C++11 [dcl.fct.default]p3
321 // A default argument expression [...] shall not be specified for a
322 // parameter pack.
323 if (Param->isParameterPack()) {
324 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
325 << DefaultArg->getSourceRange();
326 return;
327 }
328
329 // Check that the default argument is well-formed
330 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
331 if (DefaultArgChecker.Visit(DefaultArg)) {
332 Param->setInvalidDecl();
333 return;
334 }
335
336 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
337}
338
339/// ActOnParamUnparsedDefaultArgument - We've seen a default
340/// argument for a function parameter, but we can't parse it yet
341/// because we're inside a class definition. Note that this default
342/// argument will be parsed later.
343void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
344 SourceLocation EqualLoc,
345 SourceLocation ArgLoc) {
346 if (!param)
347 return;
348
349 ParmVarDecl *Param = cast<ParmVarDecl>(param);
350 Param->setUnparsedDefaultArg();
351 UnparsedDefaultArgLocs[Param] = ArgLoc;
352}
353
354/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
355/// the default argument for the parameter param failed.
356void Sema::ActOnParamDefaultArgumentError(Decl *param,
357 SourceLocation EqualLoc) {
358 if (!param)
359 return;
360
361 ParmVarDecl *Param = cast<ParmVarDecl>(param);
362 Param->setInvalidDecl();
363 UnparsedDefaultArgLocs.erase(Param);
364 Param->setDefaultArg(new(Context)
365 OpaqueValueExpr(EqualLoc,
366 Param->getType().getNonReferenceType(),
367 VK_RValue));
368}
369
370/// CheckExtraCXXDefaultArguments - Check for any extra default
371/// arguments in the declarator, which is not a function declaration
372/// or definition and therefore is not permitted to have default
373/// arguments. This routine should be invoked for every declarator
374/// that is not a function declaration or definition.
375void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
376 // C++ [dcl.fct.default]p3
377 // A default argument expression shall be specified only in the
378 // parameter-declaration-clause of a function declaration or in a
379 // template-parameter (14.1). It shall not be specified for a
380 // parameter pack. If it is specified in a
381 // parameter-declaration-clause, it shall not occur within a
382 // declarator or abstract-declarator of a parameter-declaration.
383 bool MightBeFunction = D.isFunctionDeclarationContext();
384 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
385 DeclaratorChunk &chunk = D.getTypeObject(i);
386 if (chunk.Kind == DeclaratorChunk::Function) {
387 if (MightBeFunction) {
388 // This is a function declaration. It can have default arguments, but
389 // keep looking in case its return type is a function type with default
390 // arguments.
391 MightBeFunction = false;
392 continue;
393 }
394 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
395 ++argIdx) {
396 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
397 if (Param->hasUnparsedDefaultArg()) {
398 std::unique_ptr<CachedTokens> Toks =
399 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
400 SourceRange SR;
401 if (Toks->size() > 1)
402 SR = SourceRange((*Toks)[1].getLocation(),
403 Toks->back().getLocation());
404 else
405 SR = UnparsedDefaultArgLocs[Param];
406 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
407 << SR;
408 } else if (Param->getDefaultArg()) {
409 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410 << Param->getDefaultArg()->getSourceRange();
411 Param->setDefaultArg(nullptr);
412 }
413 }
414 } else if (chunk.Kind != DeclaratorChunk::Paren) {
415 MightBeFunction = false;
416 }
417 }
418}
419
420static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
421 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
422 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
423 if (!PVD->hasDefaultArg())
424 return false;
425 if (!PVD->hasInheritedDefaultArg())
426 return true;
427 }
428 return false;
429}
430
431/// MergeCXXFunctionDecl - Merge two declarations of the same C++
432/// function, once we already know that they have the same
433/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
434/// error, false otherwise.
435bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
436 Scope *S) {
437 bool Invalid = false;
438
439 // The declaration context corresponding to the scope is the semantic
440 // parent, unless this is a local function declaration, in which case
441 // it is that surrounding function.
442 DeclContext *ScopeDC = New->isLocalExternDecl()
443 ? New->getLexicalDeclContext()
444 : New->getDeclContext();
445
446 // Find the previous declaration for the purpose of default arguments.
447 FunctionDecl *PrevForDefaultArgs = Old;
448 for (/**/; PrevForDefaultArgs;
449 // Don't bother looking back past the latest decl if this is a local
450 // extern declaration; nothing else could work.
451 PrevForDefaultArgs = New->isLocalExternDecl()
452 ? nullptr
453 : PrevForDefaultArgs->getPreviousDecl()) {
454 // Ignore hidden declarations.
455 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
456 continue;
457
458 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
459 !New->isCXXClassMember()) {
460 // Ignore default arguments of old decl if they are not in
461 // the same scope and this is not an out-of-line definition of
462 // a member function.
463 continue;
464 }
465
466 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
467 // If only one of these is a local function declaration, then they are
468 // declared in different scopes, even though isDeclInScope may think
469 // they're in the same scope. (If both are local, the scope check is
470 // sufficient, and if neither is local, then they are in the same scope.)
471 continue;
472 }
473
474 // We found the right previous declaration.
475 break;
476 }
477
478 // C++ [dcl.fct.default]p4:
479 // For non-template functions, default arguments can be added in
480 // later declarations of a function in the same
481 // scope. Declarations in different scopes have completely
482 // distinct sets of default arguments. That is, declarations in
483 // inner scopes do not acquire default arguments from
484 // declarations in outer scopes, and vice versa. In a given
485 // function declaration, all parameters subsequent to a
486 // parameter with a default argument shall have default
487 // arguments supplied in this or previous declarations. A
488 // default argument shall not be redefined by a later
489 // declaration (not even to the same value).
490 //
491 // C++ [dcl.fct.default]p6:
492 // Except for member functions of class templates, the default arguments
493 // in a member function definition that appears outside of the class
494 // definition are added to the set of default arguments provided by the
495 // member function declaration in the class definition.
496 for (unsigned p = 0, NumParams = PrevForDefaultArgs
497 ? PrevForDefaultArgs->getNumParams()
498 : 0;
499 p < NumParams; ++p) {
500 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
501 ParmVarDecl *NewParam = New->getParamDecl(p);
502
503 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
504 bool NewParamHasDfl = NewParam->hasDefaultArg();
505
506 if (OldParamHasDfl && NewParamHasDfl) {
507 unsigned DiagDefaultParamID =
508 diag::err_param_default_argument_redefinition;
509
510 // MSVC accepts that default parameters be redefined for member functions
511 // of template class. The new default parameter's value is ignored.
512 Invalid = true;
513 if (getLangOpts().MicrosoftExt) {
514 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
515 if (MD && MD->getParent()->getDescribedClassTemplate()) {
516 // Merge the old default argument into the new parameter.
517 NewParam->setHasInheritedDefaultArg();
518 if (OldParam->hasUninstantiatedDefaultArg())
519 NewParam->setUninstantiatedDefaultArg(
520 OldParam->getUninstantiatedDefaultArg());
521 else
522 NewParam->setDefaultArg(OldParam->getInit());
523 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
524 Invalid = false;
525 }
526 }
527
528 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
529 // hint here. Alternatively, we could walk the type-source information
530 // for NewParam to find the last source location in the type... but it
531 // isn't worth the effort right now. This is the kind of test case that
532 // is hard to get right:
533 // int f(int);
534 // void g(int (*fp)(int) = f);
535 // void g(int (*fp)(int) = &f);
536 Diag(NewParam->getLocation(), DiagDefaultParamID)
537 << NewParam->getDefaultArgRange();
538
539 // Look for the function declaration where the default argument was
540 // actually written, which may be a declaration prior to Old.
541 for (auto Older = PrevForDefaultArgs;
542 OldParam->hasInheritedDefaultArg(); /**/) {
543 Older = Older->getPreviousDecl();
544 OldParam = Older->getParamDecl(p);
545 }
546
547 Diag(OldParam->getLocation(), diag::note_previous_definition)
548 << OldParam->getDefaultArgRange();
549 } else if (OldParamHasDfl) {
550 // Merge the old default argument into the new parameter.
551 // It's important to use getInit() here; getDefaultArg()
552 // strips off any top-level ExprWithCleanups.
553 NewParam->setHasInheritedDefaultArg();
554 if (OldParam->hasUnparsedDefaultArg())
555 NewParam->setUnparsedDefaultArg();
556 else if (OldParam->hasUninstantiatedDefaultArg())
557 NewParam->setUninstantiatedDefaultArg(
558 OldParam->getUninstantiatedDefaultArg());
559 else
560 NewParam->setDefaultArg(OldParam->getInit());
561 } else if (NewParamHasDfl) {
562 if (New->getDescribedFunctionTemplate()) {
563 // Paragraph 4, quoted above, only applies to non-template functions.
564 Diag(NewParam->getLocation(),
565 diag::err_param_default_argument_template_redecl)
566 << NewParam->getDefaultArgRange();
567 Diag(PrevForDefaultArgs->getLocation(),
568 diag::note_template_prev_declaration)
569 << false;
570 } else if (New->getTemplateSpecializationKind()
571 != TSK_ImplicitInstantiation &&
572 New->getTemplateSpecializationKind() != TSK_Undeclared) {
573 // C++ [temp.expr.spec]p21:
574 // Default function arguments shall not be specified in a declaration
575 // or a definition for one of the following explicit specializations:
576 // - the explicit specialization of a function template;
577 // - the explicit specialization of a member function template;
578 // - the explicit specialization of a member function of a class
579 // template where the class template specialization to which the
580 // member function specialization belongs is implicitly
581 // instantiated.
582 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
583 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
584 << New->getDeclName()
585 << NewParam->getDefaultArgRange();
586 } else if (New->getDeclContext()->isDependentContext()) {
587 // C++ [dcl.fct.default]p6 (DR217):
588 // Default arguments for a member function of a class template shall
589 // be specified on the initial declaration of the member function
590 // within the class template.
591 //
592 // Reading the tea leaves a bit in DR217 and its reference to DR205
593 // leads me to the conclusion that one cannot add default function
594 // arguments for an out-of-line definition of a member function of a
595 // dependent type.
596 int WhichKind = 2;
597 if (CXXRecordDecl *Record
598 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
599 if (Record->getDescribedClassTemplate())
600 WhichKind = 0;
601 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
602 WhichKind = 1;
603 else
604 WhichKind = 2;
605 }
606
607 Diag(NewParam->getLocation(),
608 diag::err_param_default_argument_member_template_redecl)
609 << WhichKind
610 << NewParam->getDefaultArgRange();
611 }
612 }
613 }
614
615 // DR1344: If a default argument is added outside a class definition and that
616 // default argument makes the function a special member function, the program
617 // is ill-formed. This can only happen for constructors.
618 if (isa<CXXConstructorDecl>(New) &&
619 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
620 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
621 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
622 if (NewSM != OldSM) {
623 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
624 assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0)
: __assert_fail ("NewParam->hasDefaultArg()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 624, __PRETTY_FUNCTION__))
;
625 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
626 << NewParam->getDefaultArgRange() << NewSM;
627 Diag(Old->getLocation(), diag::note_previous_declaration);
628 }
629 }
630
631 const FunctionDecl *Def;
632 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
633 // template has a constexpr specifier then all its declarations shall
634 // contain the constexpr specifier.
635 if (New->isConstexpr() != Old->isConstexpr()) {
636 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
637 << New << New->isConstexpr();
638 Diag(Old->getLocation(), diag::note_previous_declaration);
639 Invalid = true;
640 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
641 Old->isDefined(Def)) {
642 // C++11 [dcl.fcn.spec]p4:
643 // If the definition of a function appears in a translation unit before its
644 // first declaration as inline, the program is ill-formed.
645 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
646 Diag(Def->getLocation(), diag::note_previous_definition);
647 Invalid = true;
648 }
649
650 // FIXME: It's not clear what should happen if multiple declarations of a
651 // deduction guide have different explicitness. For now at least we simply
652 // reject any case where the explicitness changes.
653 auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
654 if (NewGuide && NewGuide->isExplicitSpecified() !=
655 cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
656 Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
657 << NewGuide->isExplicitSpecified();
658 Diag(Old->getLocation(), diag::note_previous_declaration);
659 }
660
661 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
662 // argument expression, that declaration shall be a definition and shall be
663 // the only declaration of the function or function template in the
664 // translation unit.
665 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
666 functionDeclHasDefaultArgument(Old)) {
667 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
668 Diag(Old->getLocation(), diag::note_previous_declaration);
669 Invalid = true;
670 }
671
672 return Invalid;
673}
674
675NamedDecl *
676Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
677 MultiTemplateParamsArg TemplateParamLists) {
678 assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0
) : __assert_fail ("D.isDecompositionDeclarator()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 678, __PRETTY_FUNCTION__))
;
679 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
680
681 // The syntax only allows a decomposition declarator as a simple-declaration
682 // or a for-range-declaration, but we parse it in more cases than that.
683 if (!D.mayHaveDecompositionDeclarator()) {
684 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
685 << Decomp.getSourceRange();
686 return nullptr;
687 }
688
689 if (!TemplateParamLists.empty()) {
690 // FIXME: There's no rule against this, but there are also no rules that
691 // would actually make it usable, so we reject it for now.
692 Diag(TemplateParamLists.front()->getTemplateLoc(),
693 diag::err_decomp_decl_template);
694 return nullptr;
695 }
696
697 Diag(Decomp.getLSquareLoc(), getLangOpts().CPlusPlus1z
698 ? diag::warn_cxx14_compat_decomp_decl
699 : diag::ext_decomp_decl)
700 << Decomp.getSourceRange();
701
702 // The semantic context is always just the current context.
703 DeclContext *const DC = CurContext;
704
705 // C++1z [dcl.dcl]/8:
706 // The decl-specifier-seq shall contain only the type-specifier auto
707 // and cv-qualifiers.
708 auto &DS = D.getDeclSpec();
709 {
710 SmallVector<StringRef, 8> BadSpecifiers;
711 SmallVector<SourceLocation, 8> BadSpecifierLocs;
712 if (auto SCS = DS.getStorageClassSpec()) {
713 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
714 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
715 }
716 if (auto TSCS = DS.getThreadStorageClassSpec()) {
717 BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
718 BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
719 }
720 if (DS.isConstexprSpecified()) {
721 BadSpecifiers.push_back("constexpr");
722 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
723 }
724 if (DS.isInlineSpecified()) {
725 BadSpecifiers.push_back("inline");
726 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
727 }
728 if (!BadSpecifiers.empty()) {
729 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
730 Err << (int)BadSpecifiers.size()
731 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
732 // Don't add FixItHints to remove the specifiers; we do still respect
733 // them when building the underlying variable.
734 for (auto Loc : BadSpecifierLocs)
735 Err << SourceRange(Loc, Loc);
736 }
737 // We can't recover from it being declared as a typedef.
738 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
739 return nullptr;
740 }
741
742 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
743 QualType R = TInfo->getType();
744
745 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
746 UPPC_DeclarationType))
747 D.setInvalidType();
748
749 // The syntax only allows a single ref-qualifier prior to the decomposition
750 // declarator. No other declarator chunks are permitted. Also check the type
751 // specifier here.
752 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
753 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
754 (D.getNumTypeObjects() == 1 &&
755 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
756 Diag(Decomp.getLSquareLoc(),
757 (D.hasGroupingParens() ||
758 (D.getNumTypeObjects() &&
759 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
760 ? diag::err_decomp_decl_parens
761 : diag::err_decomp_decl_type)
762 << R;
763
764 // In most cases, there's no actual problem with an explicitly-specified
765 // type, but a function type won't work here, and ActOnVariableDeclarator
766 // shouldn't be called for such a type.
767 if (R->isFunctionType())
768 D.setInvalidType();
769 }
770
771 // Build the BindingDecls.
772 SmallVector<BindingDecl*, 8> Bindings;
773
774 // Build the BindingDecls.
775 for (auto &B : D.getDecompositionDeclarator().bindings()) {
776 // Check for name conflicts.
777 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
778 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
779 ForRedeclaration);
780 LookupName(Previous, S,
781 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
782
783 // It's not permitted to shadow a template parameter name.
784 if (Previous.isSingleResult() &&
785 Previous.getFoundDecl()->isTemplateParameter()) {
786 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
787 Previous.getFoundDecl());
788 Previous.clear();
789 }
790
791 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
792 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
793 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
794 /*AllowInlineNamespace*/false);
795 if (!Previous.empty()) {
796 auto *Old = Previous.getRepresentativeDecl();
797 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
798 Diag(Old->getLocation(), diag::note_previous_definition);
799 }
800
801 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
802 PushOnScopeChains(BD, S, true);
803 Bindings.push_back(BD);
804 ParsingInitForAutoVars.insert(BD);
805 }
806
807 // There are no prior lookup results for the variable itself, because it
808 // is unnamed.
809 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
810 Decomp.getLSquareLoc());
811 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
812
813 // Build the variable that holds the non-decomposed object.
814 bool AddToScope = true;
815 NamedDecl *New =
816 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
817 MultiTemplateParamsArg(), AddToScope, Bindings);
818 CurContext->addHiddenDecl(New);
819
820 if (isInOpenMPDeclareTargetContext())
821 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
822
823 return New;
824}
825
826static bool checkSimpleDecomposition(
827 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
828 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
829 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
830 if ((int64_t)Bindings.size() != NumElems) {
831 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
832 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
833 << (NumElems < Bindings.size());
834 return true;
835 }
836
837 unsigned I = 0;
838 for (auto *B : Bindings) {
839 SourceLocation Loc = B->getLocation();
840 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
841 if (E.isInvalid())
842 return true;
843 E = GetInit(Loc, E.get(), I++);
844 if (E.isInvalid())
845 return true;
846 B->setBinding(ElemType, E.get());
847 }
848
849 return false;
850}
851
852static bool checkArrayLikeDecomposition(Sema &S,
853 ArrayRef<BindingDecl *> Bindings,
854 ValueDecl *Src, QualType DecompType,
855 const llvm::APSInt &NumElems,
856 QualType ElemType) {
857 return checkSimpleDecomposition(
858 S, Bindings, Src, DecompType, NumElems, ElemType,
859 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
860 ExprResult E = S.ActOnIntegerConstant(Loc, I);
861 if (E.isInvalid())
862 return ExprError();
863 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
864 });
865}
866
867static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
868 ValueDecl *Src, QualType DecompType,
869 const ConstantArrayType *CAT) {
870 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
871 llvm::APSInt(CAT->getSize()),
872 CAT->getElementType());
873}
874
875static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
876 ValueDecl *Src, QualType DecompType,
877 const VectorType *VT) {
878 return checkArrayLikeDecomposition(
879 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
880 S.Context.getQualifiedType(VT->getElementType(),
881 DecompType.getQualifiers()));
882}
883
884static bool checkComplexDecomposition(Sema &S,
885 ArrayRef<BindingDecl *> Bindings,
886 ValueDecl *Src, QualType DecompType,
887 const ComplexType *CT) {
888 return checkSimpleDecomposition(
889 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
890 S.Context.getQualifiedType(CT->getElementType(),
891 DecompType.getQualifiers()),
892 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
893 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
894 });
895}
896
897static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
898 TemplateArgumentListInfo &Args) {
899 SmallString<128> SS;
900 llvm::raw_svector_ostream OS(SS);
901 bool First = true;
902 for (auto &Arg : Args.arguments()) {
903 if (!First)
904 OS << ", ";
905 Arg.getArgument().print(PrintingPolicy, OS);
906 First = false;
907 }
908 return OS.str();
909}
910
911static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
912 SourceLocation Loc, StringRef Trait,
913 TemplateArgumentListInfo &Args,
914 unsigned DiagID) {
915 auto DiagnoseMissing = [&] {
916 if (DiagID)
917 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
918 Args);
919 return true;
920 };
921
922 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
923 NamespaceDecl *Std = S.getStdNamespace();
924 if (!Std)
925 return DiagnoseMissing();
926
927 // Look up the trait itself, within namespace std. We can diagnose various
928 // problems with this lookup even if we've been asked to not diagnose a
929 // missing specialization, because this can only fail if the user has been
930 // declaring their own names in namespace std or we don't support the
931 // standard library implementation in use.
932 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
933 Loc, Sema::LookupOrdinaryName);
934 if (!S.LookupQualifiedName(Result, Std))
935 return DiagnoseMissing();
936 if (Result.isAmbiguous())
937 return true;
938
939 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
940 if (!TraitTD) {
941 Result.suppressDiagnostics();
942 NamedDecl *Found = *Result.begin();
943 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
944 S.Diag(Found->getLocation(), diag::note_declared_at);
945 return true;
946 }
947
948 // Build the template-id.
949 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
950 if (TraitTy.isNull())
951 return true;
952 if (!S.isCompleteType(Loc, TraitTy)) {
953 if (DiagID)
954 S.RequireCompleteType(
955 Loc, TraitTy, DiagID,
956 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
957 return true;
958 }
959
960 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
961 assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?"
) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 961, __PRETTY_FUNCTION__))
;
962
963 // Look up the member of the trait type.
964 S.LookupQualifiedName(TraitMemberLookup, RD);
965 return TraitMemberLookup.isAmbiguous();
966}
967
968static TemplateArgumentLoc
969getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
970 uint64_t I) {
971 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
972 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
973}
974
975static TemplateArgumentLoc
976getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
977 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
978}
979
980namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
981
982static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
983 llvm::APSInt &Size) {
984 EnterExpressionEvaluationContext ContextRAII(
985 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
986
987 DeclarationName Value = S.PP.getIdentifierInfo("value");
988 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
989
990 // Form template argument list for tuple_size<T>.
991 TemplateArgumentListInfo Args(Loc, Loc);
992 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
993
994 // If there's no tuple_size specialization, it's not tuple-like.
995 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
996 return IsTupleLike::NotTupleLike;
997
998 // If we get this far, we've committed to the tuple interpretation, but
999 // we can still fail if there actually isn't a usable ::value.
1000
1001 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1002 LookupResult &R;
1003 TemplateArgumentListInfo &Args;
1004 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1005 : R(R), Args(Args) {}
1006 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1007 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1008 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1009 }
1010 } Diagnoser(R, Args);
1011
1012 if (R.empty()) {
1013 Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
1014 return IsTupleLike::Error;
1015 }
1016
1017 ExprResult E =
1018 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1019 if (E.isInvalid())
1020 return IsTupleLike::Error;
1021
1022 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1023 if (E.isInvalid())
1024 return IsTupleLike::Error;
1025
1026 return IsTupleLike::TupleLike;
1027}
1028
1029/// \return std::tuple_element<I, T>::type.
1030static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1031 unsigned I, QualType T) {
1032 // Form template argument list for tuple_element<I, T>.
1033 TemplateArgumentListInfo Args(Loc, Loc);
1034 Args.addArgument(
1035 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1036 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1037
1038 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1039 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1040 if (lookupStdTypeTraitMember(
1041 S, R, Loc, "tuple_element", Args,
1042 diag::err_decomp_decl_std_tuple_element_not_specialized))
1043 return QualType();
1044
1045 auto *TD = R.getAsSingle<TypeDecl>();
1046 if (!TD) {
1047 R.suppressDiagnostics();
1048 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1049 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1050 if (!R.empty())
1051 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1052 return QualType();
1053 }
1054
1055 return S.Context.getTypeDeclType(TD);
1056}
1057
1058namespace {
1059struct BindingDiagnosticTrap {
1060 Sema &S;
1061 DiagnosticErrorTrap Trap;
1062 BindingDecl *BD;
1063
1064 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1065 : S(S), Trap(S.Diags), BD(BD) {}
1066 ~BindingDiagnosticTrap() {
1067 if (Trap.hasErrorOccurred())
1068 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1069 }
1070};
1071}
1072
1073static bool checkTupleLikeDecomposition(Sema &S,
1074 ArrayRef<BindingDecl *> Bindings,
1075 VarDecl *Src, QualType DecompType,
1076 const llvm::APSInt &TupleSize) {
1077 if ((int64_t)Bindings.size() != TupleSize) {
1078 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1079 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1080 << (TupleSize < Bindings.size());
1081 return true;
1082 }
1083
1084 if (Bindings.empty())
1085 return false;
1086
1087 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1088
1089 // [dcl.decomp]p3:
1090 // The unqualified-id get is looked up in the scope of E by class member
1091 // access lookup
1092 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1093 bool UseMemberGet = false;
1094 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1095 if (auto *RD = DecompType->getAsCXXRecordDecl())
1096 S.LookupQualifiedName(MemberGet, RD);
1097 if (MemberGet.isAmbiguous())
1098 return true;
1099 UseMemberGet = !MemberGet.empty();
1100 S.FilterAcceptableTemplateNames(MemberGet);
1101 }
1102
1103 unsigned I = 0;
1104 for (auto *B : Bindings) {
1105 BindingDiagnosticTrap Trap(S, B);
1106 SourceLocation Loc = B->getLocation();
1107
1108 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1109 if (E.isInvalid())
1110 return true;
1111
1112 // e is an lvalue if the type of the entity is an lvalue reference and
1113 // an xvalue otherwise
1114 if (!Src->getType()->isLValueReferenceType())
1115 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1116 E.get(), nullptr, VK_XValue);
1117
1118 TemplateArgumentListInfo Args(Loc, Loc);
1119 Args.addArgument(
1120 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1121
1122 if (UseMemberGet) {
1123 // if [lookup of member get] finds at least one declaration, the
1124 // initializer is e.get<i-1>().
1125 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1126 CXXScopeSpec(), SourceLocation(), nullptr,
1127 MemberGet, &Args, nullptr);
1128 if (E.isInvalid())
1129 return true;
1130
1131 E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
1132 } else {
1133 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1134 // in the associated namespaces.
1135 Expr *Get = UnresolvedLookupExpr::Create(
1136 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1137 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1138 UnresolvedSetIterator(), UnresolvedSetIterator());
1139
1140 Expr *Arg = E.get();
1141 E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
1142 }
1143 if (E.isInvalid())
1144 return true;
1145 Expr *Init = E.get();
1146
1147 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1148 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1149 if (T.isNull())
1150 return true;
1151
1152 // each vi is a variable of type "reference to T" initialized with the
1153 // initializer, where the reference is an lvalue reference if the
1154 // initializer is an lvalue and an rvalue reference otherwise
1155 QualType RefType =
1156 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1157 if (RefType.isNull())
1158 return true;
1159 auto *RefVD = VarDecl::Create(
1160 S.Context, Src->getDeclContext(), Loc, Loc,
1161 B->getDeclName().getAsIdentifierInfo(), RefType,
1162 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1163 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1164 RefVD->setTSCSpec(Src->getTSCSpec());
1165 RefVD->setImplicit();
1166 if (Src->isInlineSpecified())
1167 RefVD->setInlineSpecified();
1168 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1169
1170 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1171 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1172 InitializationSequence Seq(S, Entity, Kind, Init);
1173 E = Seq.Perform(S, Entity, Kind, Init);
1174 if (E.isInvalid())
1175 return true;
1176 E = S.ActOnFinishFullExpr(E.get(), Loc);
1177 if (E.isInvalid())
1178 return true;
1179 RefVD->setInit(E.get());
1180 RefVD->checkInitIsICE();
1181
1182 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1183 DeclarationNameInfo(B->getDeclName(), Loc),
1184 RefVD);
1185 if (E.isInvalid())
1186 return true;
1187
1188 B->setBinding(T, E.get());
1189 I++;
1190 }
1191
1192 return false;
1193}
1194
1195/// Find the base class to decompose in a built-in decomposition of a class type.
1196/// This base class search is, unfortunately, not quite like any other that we
1197/// perform anywhere else in C++.
1198static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
1199 SourceLocation Loc,
1200 const CXXRecordDecl *RD,
1201 CXXCastPath &BasePath) {
1202 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1203 CXXBasePath &Path) {
1204 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1205 };
1206
1207 const CXXRecordDecl *ClassWithFields = nullptr;
1208 if (RD->hasDirectFields())
1209 // [dcl.decomp]p4:
1210 // Otherwise, all of E's non-static data members shall be public direct
1211 // members of E ...
1212 ClassWithFields = RD;
1213 else {
1214 // ... or of ...
1215 CXXBasePaths Paths;
1216 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1217 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1218 // If no classes have fields, just decompose RD itself. (This will work
1219 // if and only if zero bindings were provided.)
1220 return RD;
1221 }
1222
1223 CXXBasePath *BestPath = nullptr;
1224 for (auto &P : Paths) {
1225 if (!BestPath)
1226 BestPath = &P;
1227 else if (!S.Context.hasSameType(P.back().Base->getType(),
1228 BestPath->back().Base->getType())) {
1229 // ... the same ...
1230 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1231 << false << RD << BestPath->back().Base->getType()
1232 << P.back().Base->getType();
1233 return nullptr;
1234 } else if (P.Access < BestPath->Access) {
1235 BestPath = &P;
1236 }
1237 }
1238
1239 // ... unambiguous ...
1240 QualType BaseType = BestPath->back().Base->getType();
1241 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1242 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1243 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1244 return nullptr;
1245 }
1246
1247 // ... public base class of E.
1248 if (BestPath->Access != AS_public) {
1249 S.Diag(Loc, diag::err_decomp_decl_non_public_base)
1250 << RD << BaseType;
1251 for (auto &BS : *BestPath) {
1252 if (BS.Base->getAccessSpecifier() != AS_public) {
1253 S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
1254 << (BS.Base->getAccessSpecifier() == AS_protected)
1255 << (BS.Base->getAccessSpecifierAsWritten() == AS_none);
1256 break;
1257 }
1258 }
1259 return nullptr;
1260 }
1261
1262 ClassWithFields = BaseType->getAsCXXRecordDecl();
1263 S.BuildBasePathArray(Paths, BasePath);
1264 }
1265
1266 // The above search did not check whether the selected class itself has base
1267 // classes with fields, so check that now.
1268 CXXBasePaths Paths;
1269 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1270 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1271 << (ClassWithFields == RD) << RD << ClassWithFields
1272 << Paths.front().back().Base->getType();
1273 return nullptr;
1274 }
1275
1276 return ClassWithFields;
1277}
1278
1279static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1280 ValueDecl *Src, QualType DecompType,
1281 const CXXRecordDecl *RD) {
1282 CXXCastPath BasePath;
1283 RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
1284 if (!RD)
1285 return true;
1286 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1287 DecompType.getQualifiers());
1288
1289 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1290 unsigned NumFields =
1291 std::count_if(RD->field_begin(), RD->field_end(),
1292 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1293 assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0)
: __assert_fail ("Bindings.size() != NumFields", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1293, __PRETTY_FUNCTION__))
;
1294 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1295 << DecompType << (unsigned)Bindings.size() << NumFields
1296 << (NumFields < Bindings.size());
1297 return true;
1298 };
1299
1300 // all of E's non-static data members shall be public [...] members,
1301 // E shall not have an anonymous union member, ...
1302 unsigned I = 0;
1303 for (auto *FD : RD->fields()) {
1304 if (FD->isUnnamedBitfield())
1305 continue;
1306
1307 if (FD->isAnonymousStructOrUnion()) {
1308 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1309 << DecompType << FD->getType()->isUnionType();
1310 S.Diag(FD->getLocation(), diag::note_declared_at);
1311 return true;
1312 }
1313
1314 // We have a real field to bind.
1315 if (I >= Bindings.size())
1316 return DiagnoseBadNumberOfBindings();
1317 auto *B = Bindings[I++];
1318
1319 SourceLocation Loc = B->getLocation();
1320 if (FD->getAccess() != AS_public) {
1321 S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
1322
1323 // Determine whether the access specifier was explicit.
1324 bool Implicit = true;
1325 for (const auto *D : RD->decls()) {
1326 if (declaresSameEntity(D, FD))
1327 break;
1328 if (isa<AccessSpecDecl>(D)) {
1329 Implicit = false;
1330 break;
1331 }
1332 }
1333
1334 S.Diag(FD->getLocation(), diag::note_access_natural)
1335 << (FD->getAccess() == AS_protected) << Implicit;
1336 return true;
1337 }
1338
1339 // Initialize the binding to Src.FD.
1340 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1341 if (E.isInvalid())
1342 return true;
1343 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1344 VK_LValue, &BasePath);
1345 if (E.isInvalid())
1346 return true;
1347 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1348 CXXScopeSpec(), FD,
1349 DeclAccessPair::make(FD, FD->getAccess()),
1350 DeclarationNameInfo(FD->getDeclName(), Loc));
1351 if (E.isInvalid())
1352 return true;
1353
1354 // If the type of the member is T, the referenced type is cv T, where cv is
1355 // the cv-qualification of the decomposition expression.
1356 //
1357 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1358 // 'const' to the type of the field.
1359 Qualifiers Q = DecompType.getQualifiers();
1360 if (FD->isMutable())
1361 Q.removeConst();
1362 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1363 }
1364
1365 if (I != Bindings.size())
1366 return DiagnoseBadNumberOfBindings();
1367
1368 return false;
1369}
1370
1371void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1372 QualType DecompType = DD->getType();
1373
1374 // If the type of the decomposition is dependent, then so is the type of
1375 // each binding.
1376 if (DecompType->isDependentType()) {
1377 for (auto *B : DD->bindings())
1378 B->setType(Context.DependentTy);
1379 return;
1380 }
1381
1382 DecompType = DecompType.getNonReferenceType();
1383 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1384
1385 // C++1z [dcl.decomp]/2:
1386 // If E is an array type [...]
1387 // As an extension, we also support decomposition of built-in complex and
1388 // vector types.
1389 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1390 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1391 DD->setInvalidDecl();
1392 return;
1393 }
1394 if (auto *VT = DecompType->getAs<VectorType>()) {
1395 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1396 DD->setInvalidDecl();
1397 return;
1398 }
1399 if (auto *CT = DecompType->getAs<ComplexType>()) {
1400 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1401 DD->setInvalidDecl();
1402 return;
1403 }
1404
1405 // C++1z [dcl.decomp]/3:
1406 // if the expression std::tuple_size<E>::value is a well-formed integral
1407 // constant expression, [...]
1408 llvm::APSInt TupleSize(32);
1409 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1410 case IsTupleLike::Error:
1411 DD->setInvalidDecl();
1412 return;
1413
1414 case IsTupleLike::TupleLike:
1415 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1416 DD->setInvalidDecl();
1417 return;
1418
1419 case IsTupleLike::NotTupleLike:
1420 break;
1421 }
1422
1423 // C++1z [dcl.dcl]/8:
1424 // [E shall be of array or non-union class type]
1425 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1426 if (!RD || RD->isUnion()) {
1427 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1428 << DD << !RD << DecompType;
1429 DD->setInvalidDecl();
1430 return;
1431 }
1432
1433 // C++1z [dcl.decomp]/4:
1434 // all of E's non-static data members shall be [...] direct members of
1435 // E or of the same unambiguous public base class of E, ...
1436 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1437 DD->setInvalidDecl();
1438}
1439
1440/// \brief Merge the exception specifications of two variable declarations.
1441///
1442/// This is called when there's a redeclaration of a VarDecl. The function
1443/// checks if the redeclaration might have an exception specification and
1444/// validates compatibility and merges the specs if necessary.
1445void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1446 // Shortcut if exceptions are disabled.
1447 if (!getLangOpts().CXXExceptions)
1448 return;
1449
1450 assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1451, __PRETTY_FUNCTION__))
1451 "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1451, __PRETTY_FUNCTION__))
;
1452
1453 QualType NewType = New->getType();
1454 QualType OldType = Old->getType();
1455
1456 // We're only interested in pointers and references to functions, as well
1457 // as pointers to member functions.
1458 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1459 NewType = R->getPointeeType();
1460 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1461 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1462 NewType = P->getPointeeType();
1463 OldType = OldType->getAs<PointerType>()->getPointeeType();
1464 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1465 NewType = M->getPointeeType();
1466 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1467 }
1468
1469 if (!NewType->isFunctionProtoType())
1470 return;
1471
1472 // There's lots of special cases for functions. For function pointers, system
1473 // libraries are hopefully not as broken so that we don't need these
1474 // workarounds.
1475 if (CheckEquivalentExceptionSpec(
1476 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1477 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1478 New->setInvalidDecl();
1479 }
1480}
1481
1482/// CheckCXXDefaultArguments - Verify that the default arguments for a
1483/// function declaration are well-formed according to C++
1484/// [dcl.fct.default].
1485void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1486 unsigned NumParams = FD->getNumParams();
1487 unsigned p;
1488
1489 // Find first parameter with a default argument
1490 for (p = 0; p < NumParams; ++p) {
1491 ParmVarDecl *Param = FD->getParamDecl(p);
1492 if (Param->hasDefaultArg())
1493 break;
1494 }
1495
1496 // C++11 [dcl.fct.default]p4:
1497 // In a given function declaration, each parameter subsequent to a parameter
1498 // with a default argument shall have a default argument supplied in this or
1499 // a previous declaration or shall be a function parameter pack. A default
1500 // argument shall not be redefined by a later declaration (not even to the
1501 // same value).
1502 unsigned LastMissingDefaultArg = 0;
1503 for (; p < NumParams; ++p) {
1504 ParmVarDecl *Param = FD->getParamDecl(p);
1505 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1506 if (Param->isInvalidDecl())
1507 /* We already complained about this parameter. */;
1508 else if (Param->getIdentifier())
1509 Diag(Param->getLocation(),
1510 diag::err_param_default_argument_missing_name)
1511 << Param->getIdentifier();
1512 else
1513 Diag(Param->getLocation(),
1514 diag::err_param_default_argument_missing);
1515
1516 LastMissingDefaultArg = p;
1517 }
1518 }
1519
1520 if (LastMissingDefaultArg > 0) {
1521 // Some default arguments were missing. Clear out all of the
1522 // default arguments up to (and including) the last missing
1523 // default argument, so that we leave the function parameters
1524 // in a semantically valid state.
1525 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1526 ParmVarDecl *Param = FD->getParamDecl(p);
1527 if (Param->hasDefaultArg()) {
1528 Param->setDefaultArg(nullptr);
1529 }
1530 }
1531 }
1532}
1533
1534// CheckConstexprParameterTypes - Check whether a function's parameter types
1535// are all literal types. If so, return true. If not, produce a suitable
1536// diagnostic and return false.
1537static bool CheckConstexprParameterTypes(Sema &SemaRef,
1538 const FunctionDecl *FD) {
1539 unsigned ArgIndex = 0;
1540 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1541 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1542 e = FT->param_type_end();
1543 i != e; ++i, ++ArgIndex) {
1544 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1545 SourceLocation ParamLoc = PD->getLocation();
1546 if (!(*i)->isDependentType() &&
1547 SemaRef.RequireLiteralType(ParamLoc, *i,
1548 diag::err_constexpr_non_literal_param,
1549 ArgIndex+1, PD->getSourceRange(),
1550 isa<CXXConstructorDecl>(FD)))
1551 return false;
1552 }
1553 return true;
1554}
1555
1556/// \brief Get diagnostic %select index for tag kind for
1557/// record diagnostic message.
1558/// WARNING: Indexes apply to particular diagnostics only!
1559///
1560/// \returns diagnostic %select index.
1561static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1562 switch (Tag) {
1563 case TTK_Struct: return 0;
1564 case TTK_Interface: return 1;
1565 case TTK_Class: return 2;
1566 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1566)
;
1567 }
1568}
1569
1570// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
1571// the requirements of a constexpr function definition or a constexpr
1572// constructor definition. If so, return true. If not, produce appropriate
1573// diagnostics and return false.
1574//
1575// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1576bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
1577 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1578 if (MD && MD->isInstance()) {
1579 // C++11 [dcl.constexpr]p4:
1580 // The definition of a constexpr constructor shall satisfy the following
1581 // constraints:
1582 // - the class shall not have any virtual base classes;
1583 const CXXRecordDecl *RD = MD->getParent();
1584 if (RD->getNumVBases()) {
1585 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1586 << isa<CXXConstructorDecl>(NewFD)
1587 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1588 for (const auto &I : RD->vbases())
1589 Diag(I.getLocStart(),
1590 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
1591 return false;
1592 }
1593 }
1594
1595 if (!isa<CXXConstructorDecl>(NewFD)) {
1596 // C++11 [dcl.constexpr]p3:
1597 // The definition of a constexpr function shall satisfy the following
1598 // constraints:
1599 // - it shall not be virtual;
1600 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1601 if (Method && Method->isVirtual()) {
1602 Method = Method->getCanonicalDecl();
1603 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1604
1605 // If it's not obvious why this function is virtual, find an overridden
1606 // function which uses the 'virtual' keyword.
1607 const CXXMethodDecl *WrittenVirtual = Method;
1608 while (!WrittenVirtual->isVirtualAsWritten())
1609 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1610 if (WrittenVirtual != Method)
1611 Diag(WrittenVirtual->getLocation(),
1612 diag::note_overridden_virtual_function);
1613 return false;
1614 }
1615
1616 // - its return type shall be a literal type;
1617 QualType RT = NewFD->getReturnType();
1618 if (!RT->isDependentType() &&
1619 RequireLiteralType(NewFD->getLocation(), RT,
1620 diag::err_constexpr_non_literal_return))
1621 return false;
1622 }
1623
1624 // - each of its parameter types shall be a literal type;
1625 if (!CheckConstexprParameterTypes(*this, NewFD))
1626 return false;
1627
1628 return true;
1629}
1630
1631/// Check the given declaration statement is legal within a constexpr function
1632/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1633///
1634/// \return true if the body is OK (maybe only as an extension), false if we
1635/// have diagnosed a problem.
1636static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1637 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
1638 // C++11 [dcl.constexpr]p3 and p4:
1639 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1640 // contain only
1641 for (const auto *DclIt : DS->decls()) {
1642 switch (DclIt->getKind()) {
1643 case Decl::StaticAssert:
1644 case Decl::Using:
1645 case Decl::UsingShadow:
1646 case Decl::UsingDirective:
1647 case Decl::UnresolvedUsingTypename:
1648 case Decl::UnresolvedUsingValue:
1649 // - static_assert-declarations
1650 // - using-declarations,
1651 // - using-directives,
1652 continue;
1653
1654 case Decl::Typedef:
1655 case Decl::TypeAlias: {
1656 // - typedef declarations and alias-declarations that do not define
1657 // classes or enumerations,
1658 const auto *TN = cast<TypedefNameDecl>(DclIt);
1659 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1660 // Don't allow variably-modified types in constexpr functions.
1661 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1662 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1663 << TL.getSourceRange() << TL.getType()
1664 << isa<CXXConstructorDecl>(Dcl);
1665 return false;
1666 }
1667 continue;
1668 }
1669
1670 case Decl::Enum:
1671 case Decl::CXXRecord:
1672 // C++1y allows types to be defined, not just declared.
1673 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
1674 SemaRef.Diag(DS->getLocStart(),
1675 SemaRef.getLangOpts().CPlusPlus14
1676 ? diag::warn_cxx11_compat_constexpr_type_definition
1677 : diag::ext_constexpr_type_definition)
1678 << isa<CXXConstructorDecl>(Dcl);
1679 continue;
1680
1681 case Decl::EnumConstant:
1682 case Decl::IndirectField:
1683 case Decl::ParmVar:
1684 // These can only appear with other declarations which are banned in
1685 // C++11 and permitted in C++1y, so ignore them.
1686 continue;
1687
1688 case Decl::Var:
1689 case Decl::Decomposition: {
1690 // C++1y [dcl.constexpr]p3 allows anything except:
1691 // a definition of a variable of non-literal type or of static or
1692 // thread storage duration or for which no initialization is performed.
1693 const auto *VD = cast<VarDecl>(DclIt);
1694 if (VD->isThisDeclarationADefinition()) {
1695 if (VD->isStaticLocal()) {
1696 SemaRef.Diag(VD->getLocation(),
1697 diag::err_constexpr_local_var_static)
1698 << isa<CXXConstructorDecl>(Dcl)
1699 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1700 return false;
1701 }
1702 if (!VD->getType()->isDependentType() &&
1703 SemaRef.RequireLiteralType(
1704 VD->getLocation(), VD->getType(),
1705 diag::err_constexpr_local_var_non_literal_type,
1706 isa<CXXConstructorDecl>(Dcl)))
1707 return false;
1708 if (!VD->getType()->isDependentType() &&
1709 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1710 SemaRef.Diag(VD->getLocation(),
1711 diag::err_constexpr_local_var_no_init)
1712 << isa<CXXConstructorDecl>(Dcl);
1713 return false;
1714 }
1715 }
1716 SemaRef.Diag(VD->getLocation(),
1717 SemaRef.getLangOpts().CPlusPlus14
1718 ? diag::warn_cxx11_compat_constexpr_local_var
1719 : diag::ext_constexpr_local_var)
1720 << isa<CXXConstructorDecl>(Dcl);
1721 continue;
1722 }
1723
1724 case Decl::NamespaceAlias:
1725 case Decl::Function:
1726 // These are disallowed in C++11 and permitted in C++1y. Allow them
1727 // everywhere as an extension.
1728 if (!Cxx1yLoc.isValid())
1729 Cxx1yLoc = DS->getLocStart();
1730 continue;
1731
1732 default:
1733 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1734 << isa<CXXConstructorDecl>(Dcl);
1735 return false;
1736 }
1737 }
1738
1739 return true;
1740}
1741
1742/// Check that the given field is initialized within a constexpr constructor.
1743///
1744/// \param Dcl The constexpr constructor being checked.
1745/// \param Field The field being checked. This may be a member of an anonymous
1746/// struct or union nested within the class being checked.
1747/// \param Inits All declarations, including anonymous struct/union members and
1748/// indirect members, for which any initialization was provided.
1749/// \param Diagnosed Set to true if an error is produced.
1750static void CheckConstexprCtorInitializer(Sema &SemaRef,
1751 const FunctionDecl *Dcl,
1752 FieldDecl *Field,
1753 llvm::SmallSet<Decl*, 16> &Inits,
1754 bool &Diagnosed) {
1755 if (Field->isInvalidDecl())
1756 return;
1757
1758 if (Field->isUnnamedBitfield())
1759 return;
1760
1761 // Anonymous unions with no variant members and empty anonymous structs do not
1762 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1763 // indirect fields don't need initializing.
1764 if (Field->isAnonymousStructOrUnion() &&
1765 (Field->getType()->isUnionType()
1766 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1767 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1768 return;
1769
1770 if (!Inits.count(Field)) {
1771 if (!Diagnosed) {
1772 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
1773 Diagnosed = true;
1774 }
1775 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1776 } else if (Field->isAnonymousStructOrUnion()) {
1777 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1778 for (auto *I : RD->fields())
1779 // If an anonymous union contains an anonymous struct of which any member
1780 // is initialized, all members must be initialized.
1781 if (!RD->isUnion() || Inits.count(I))
1782 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1783 }
1784}
1785
1786/// Check the provided statement is allowed in a constexpr function
1787/// definition.
1788static bool
1789CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1790 SmallVectorImpl<SourceLocation> &ReturnStmts,
1791 SourceLocation &Cxx1yLoc) {
1792 // - its function-body shall be [...] a compound-statement that contains only
1793 switch (S->getStmtClass()) {
1794 case Stmt::NullStmtClass:
1795 // - null statements,
1796 return true;
1797
1798 case Stmt::DeclStmtClass:
1799 // - static_assert-declarations
1800 // - using-declarations,
1801 // - using-directives,
1802 // - typedef declarations and alias-declarations that do not define
1803 // classes or enumerations,
1804 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1805 return false;
1806 return true;
1807
1808 case Stmt::ReturnStmtClass:
1809 // - and exactly one return statement;
1810 if (isa<CXXConstructorDecl>(Dcl)) {
1811 // C++1y allows return statements in constexpr constructors.
1812 if (!Cxx1yLoc.isValid())
1813 Cxx1yLoc = S->getLocStart();
1814 return true;
1815 }
1816
1817 ReturnStmts.push_back(S->getLocStart());
1818 return true;
1819
1820 case Stmt::CompoundStmtClass: {
1821 // C++1y allows compound-statements.
1822 if (!Cxx1yLoc.isValid())
1823 Cxx1yLoc = S->getLocStart();
1824
1825 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1826 for (auto *BodyIt : CompStmt->body()) {
1827 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1828 Cxx1yLoc))
1829 return false;
1830 }
1831 return true;
1832 }
1833
1834 case Stmt::AttributedStmtClass:
1835 if (!Cxx1yLoc.isValid())
1836 Cxx1yLoc = S->getLocStart();
1837 return true;
1838
1839 case Stmt::IfStmtClass: {
1840 // C++1y allows if-statements.
1841 if (!Cxx1yLoc.isValid())
1842 Cxx1yLoc = S->getLocStart();
1843
1844 IfStmt *If = cast<IfStmt>(S);
1845 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1846 Cxx1yLoc))
1847 return false;
1848 if (If->getElse() &&
1849 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1850 Cxx1yLoc))
1851 return false;
1852 return true;
1853 }
1854
1855 case Stmt::WhileStmtClass:
1856 case Stmt::DoStmtClass:
1857 case Stmt::ForStmtClass:
1858 case Stmt::CXXForRangeStmtClass:
1859 case Stmt::ContinueStmtClass:
1860 // C++1y allows all of these. We don't allow them as extensions in C++11,
1861 // because they don't make sense without variable mutation.
1862 if (!SemaRef.getLangOpts().CPlusPlus14)
1863 break;
1864 if (!Cxx1yLoc.isValid())
1865 Cxx1yLoc = S->getLocStart();
1866 for (Stmt *SubStmt : S->children())
1867 if (SubStmt &&
1868 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1869 Cxx1yLoc))
1870 return false;
1871 return true;
1872
1873 case Stmt::SwitchStmtClass:
1874 case Stmt::CaseStmtClass:
1875 case Stmt::DefaultStmtClass:
1876 case Stmt::BreakStmtClass:
1877 // C++1y allows switch-statements, and since they don't need variable
1878 // mutation, we can reasonably allow them in C++11 as an extension.
1879 if (!Cxx1yLoc.isValid())
1880 Cxx1yLoc = S->getLocStart();
1881 for (Stmt *SubStmt : S->children())
1882 if (SubStmt &&
1883 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1884 Cxx1yLoc))
1885 return false;
1886 return true;
1887
1888 default:
1889 if (!isa<Expr>(S))
1890 break;
1891
1892 // C++1y allows expression-statements.
1893 if (!Cxx1yLoc.isValid())
1894 Cxx1yLoc = S->getLocStart();
1895 return true;
1896 }
1897
1898 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1899 << isa<CXXConstructorDecl>(Dcl);
1900 return false;
1901}
1902
1903/// Check the body for the given constexpr function declaration only contains
1904/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1905///
1906/// \return true if the body is OK, false if we have diagnosed a problem.
1907bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1908 if (isa<CXXTryStmt>(Body)) {
1909 // C++11 [dcl.constexpr]p3:
1910 // The definition of a constexpr function shall satisfy the following
1911 // constraints: [...]
1912 // - its function-body shall be = delete, = default, or a
1913 // compound-statement
1914 //
1915 // C++11 [dcl.constexpr]p4:
1916 // In the definition of a constexpr constructor, [...]
1917 // - its function-body shall not be a function-try-block;
1918 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1919 << isa<CXXConstructorDecl>(Dcl);
1920 return false;
1921 }
1922
1923 SmallVector<SourceLocation, 4> ReturnStmts;
1924
1925 // - its function-body shall be [...] a compound-statement that contains only
1926 // [... list of cases ...]
1927 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1928 SourceLocation Cxx1yLoc;
1929 for (auto *BodyIt : CompBody->body()) {
1930 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1931 return false;
1932 }
1933
1934 if (Cxx1yLoc.isValid())
1935 Diag(Cxx1yLoc,
1936 getLangOpts().CPlusPlus14
1937 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1938 : diag::ext_constexpr_body_invalid_stmt)
1939 << isa<CXXConstructorDecl>(Dcl);
1940
1941 if (const CXXConstructorDecl *Constructor
1942 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1943 const CXXRecordDecl *RD = Constructor->getParent();
1944 // DR1359:
1945 // - every non-variant non-static data member and base class sub-object
1946 // shall be initialized;
1947 // DR1460:
1948 // - if the class is a union having variant members, exactly one of them
1949 // shall be initialized;
1950 if (RD->isUnion()) {
1951 if (Constructor->getNumCtorInitializers() == 0 &&
1952 RD->hasVariantMembers()) {
1953 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1954 return false;
1955 }
1956 } else if (!Constructor->isDependentContext() &&
1957 !Constructor->isDelegatingConstructor()) {
1958 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"
) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1958, __PRETTY_FUNCTION__))
;
1959
1960 // Skip detailed checking if we have enough initializers, and we would
1961 // allow at most one initializer per member.
1962 bool AnyAnonStructUnionMembers = false;
1963 unsigned Fields = 0;
1964 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1965 E = RD->field_end(); I != E; ++I, ++Fields) {
1966 if (I->isAnonymousStructOrUnion()) {
1967 AnyAnonStructUnionMembers = true;
1968 break;
1969 }
1970 }
1971 // DR1460:
1972 // - if the class is a union-like class, but is not a union, for each of
1973 // its anonymous union members having variant members, exactly one of
1974 // them shall be initialized;
1975 if (AnyAnonStructUnionMembers ||
1976 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1977 // Check initialization of non-static data members. Base classes are
1978 // always initialized so do not need to be checked. Dependent bases
1979 // might not have initializers in the member initializer list.
1980 llvm::SmallSet<Decl*, 16> Inits;
1981 for (const auto *I: Constructor->inits()) {
1982 if (FieldDecl *FD = I->getMember())
1983 Inits.insert(FD);
1984 else if (IndirectFieldDecl *ID = I->getIndirectMember())
1985 Inits.insert(ID->chain_begin(), ID->chain_end());
1986 }
1987
1988 bool Diagnosed = false;
1989 for (auto *I : RD->fields())
1990 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1991 if (Diagnosed)
1992 return false;
1993 }
1994 }
1995 } else {
1996 if (ReturnStmts.empty()) {
1997 // C++1y doesn't require constexpr functions to contain a 'return'
1998 // statement. We still do, unless the return type might be void, because
1999 // otherwise if there's no return statement, the function cannot
2000 // be used in a core constant expression.
2001 bool OK = getLangOpts().CPlusPlus14 &&
2002 (Dcl->getReturnType()->isVoidType() ||
2003 Dcl->getReturnType()->isDependentType());
2004 Diag(Dcl->getLocation(),
2005 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2006 : diag::err_constexpr_body_no_return);
2007 if (!OK)
2008 return false;
2009 } else if (ReturnStmts.size() > 1) {
2010 Diag(ReturnStmts.back(),
2011 getLangOpts().CPlusPlus14
2012 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2013 : diag::ext_constexpr_body_multiple_return);
2014 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2015 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
2016 }
2017 }
2018
2019 // C++11 [dcl.constexpr]p5:
2020 // if no function argument values exist such that the function invocation
2021 // substitution would produce a constant expression, the program is
2022 // ill-formed; no diagnostic required.
2023 // C++11 [dcl.constexpr]p3:
2024 // - every constructor call and implicit conversion used in initializing the
2025 // return value shall be one of those allowed in a constant expression.
2026 // C++11 [dcl.constexpr]p4:
2027 // - every constructor involved in initializing non-static data members and
2028 // base class sub-objects shall be a constexpr constructor.
2029 SmallVector<PartialDiagnosticAt, 8> Diags;
2030 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
2031 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
2032 << isa<CXXConstructorDecl>(Dcl);
2033 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2034 Diag(Diags[I].first, Diags[I].second);
2035 // Don't return false here: we allow this for compatibility in
2036 // system headers.
2037 }
2038
2039 return true;
2040}
2041
2042/// isCurrentClassName - Determine whether the identifier II is the
2043/// name of the class type currently being defined. In the case of
2044/// nested classes, this will only return true if II is the name of
2045/// the innermost class.
2046bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
2047 const CXXScopeSpec *SS) {
2048 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2048, __PRETTY_FUNCTION__))
;
2049
2050 CXXRecordDecl *CurDecl;
2051 if (SS && SS->isSet() && !SS->isInvalid()) {
2052 DeclContext *DC = computeDeclContext(*SS, true);
2053 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2054 } else
2055 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2056
2057 if (CurDecl && CurDecl->getIdentifier())
2058 return &II == CurDecl->getIdentifier();
2059 return false;
2060}
2061
2062/// \brief Determine whether the identifier II is a typo for the name of
2063/// the class type currently being defined. If so, update it to the identifier
2064/// that should have been used.
2065bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2066 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2066, __PRETTY_FUNCTION__))
;
2067
2068 if (!getLangOpts().SpellChecking)
2069 return false;
2070
2071 CXXRecordDecl *CurDecl;
2072 if (SS && SS->isSet() && !SS->isInvalid()) {
2073 DeclContext *DC = computeDeclContext(*SS, true);
2074 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2075 } else
2076 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2077
2078 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2079 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2080 < II->getLength()) {
2081 II = CurDecl->getIdentifier();
2082 return true;
2083 }
2084
2085 return false;
2086}
2087
2088/// \brief Determine whether the given class is a base class of the given
2089/// class, including looking at dependent bases.
2090static bool findCircularInheritance(const CXXRecordDecl *Class,
2091 const CXXRecordDecl *Current) {
2092 SmallVector<const CXXRecordDecl*, 8> Queue;
2093
2094 Class = Class->getCanonicalDecl();
2095 while (true) {
2096 for (const auto &I : Current->bases()) {
2097 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2098 if (!Base)
2099 continue;
2100
2101 Base = Base->getDefinition();
2102 if (!Base)
2103 continue;
2104
2105 if (Base->getCanonicalDecl() == Class)
2106 return true;
2107
2108 Queue.push_back(Base);
2109 }
2110
2111 if (Queue.empty())
2112 return false;
2113
2114 Current = Queue.pop_back_val();
2115 }
2116
2117 return false;
2118}
2119
2120/// \brief Check the validity of a C++ base class specifier.
2121///
2122/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2123/// and returns NULL otherwise.
2124CXXBaseSpecifier *
2125Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2126 SourceRange SpecifierRange,
2127 bool Virtual, AccessSpecifier Access,
2128 TypeSourceInfo *TInfo,
2129 SourceLocation EllipsisLoc) {
2130 QualType BaseType = TInfo->getType();
2131
2132 // C++ [class.union]p1:
2133 // A union shall not have base classes.
2134 if (Class->isUnion()) {
2135 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2136 << SpecifierRange;
2137 return nullptr;
2138 }
2139
2140 if (EllipsisLoc.isValid() &&
2141 !TInfo->getType()->containsUnexpandedParameterPack()) {
2142 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2143 << TInfo->getTypeLoc().getSourceRange();
2144 EllipsisLoc = SourceLocation();
2145 }
2146
2147 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2148
2149 if (BaseType->isDependentType()) {
2150 // Make sure that we don't have circular inheritance among our dependent
2151 // bases. For non-dependent bases, the check for completeness below handles
2152 // this.
2153 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2154 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2155 ((BaseDecl = BaseDecl->getDefinition()) &&
2156 findCircularInheritance(Class, BaseDecl))) {
2157 Diag(BaseLoc, diag::err_circular_inheritance)
2158 << BaseType << Context.getTypeDeclType(Class);
2159
2160 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2161 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2162 << BaseType;
2163
2164 return nullptr;
2165 }
2166 }
2167
2168 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2169 Class->getTagKind() == TTK_Class,
2170 Access, TInfo, EllipsisLoc);
2171 }
2172
2173 // Base specifiers must be record types.
2174 if (!BaseType->isRecordType()) {
2175 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2176 return nullptr;
2177 }
2178
2179 // C++ [class.union]p1:
2180 // A union shall not be used as a base class.
2181 if (BaseType->isUnionType()) {
2182 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2183 return nullptr;
2184 }
2185
2186 // For the MS ABI, propagate DLL attributes to base class templates.
2187 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2188 if (Attr *ClassAttr = getDLLAttr(Class)) {
2189 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2190 BaseType->getAsCXXRecordDecl())) {
2191 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2192 BaseLoc);
2193 }
2194 }
2195 }
2196
2197 // C++ [class.derived]p2:
2198 // The class-name in a base-specifier shall not be an incompletely
2199 // defined class.
2200 if (RequireCompleteType(BaseLoc, BaseType,
2201 diag::err_incomplete_base_class, SpecifierRange)) {
2202 Class->setInvalidDecl();
2203 return nullptr;
2204 }
2205
2206 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2207 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2208 assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast
<void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2208, __PRETTY_FUNCTION__))
;
2209 BaseDecl = BaseDecl->getDefinition();
2210 assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition"
) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2210, __PRETTY_FUNCTION__))
;
2211 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2212 assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast
<void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2212, __PRETTY_FUNCTION__))
;
2213
2214 // A class which contains a flexible array member is not suitable for use as a
2215 // base class:
2216 // - If the layout determines that a base comes before another base,
2217 // the flexible array member would index into the subsequent base.
2218 // - If the layout determines that base comes before the derived class,
2219 // the flexible array member would index into the derived class.
2220 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2221 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2222 << CXXBaseDecl->getDeclName();
2223 return nullptr;
2224 }
2225
2226 // C++ [class]p3:
2227 // If a class is marked final and it appears as a base-type-specifier in
2228 // base-clause, the program is ill-formed.
2229 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2230 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2231 << CXXBaseDecl->getDeclName()
2232 << FA->isSpelledAsSealed();
2233 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2234 << CXXBaseDecl->getDeclName() << FA->getRange();
2235 return nullptr;
2236 }
2237
2238 if (BaseDecl->isInvalidDecl())
2239 Class->setInvalidDecl();
2240
2241 // Create the base specifier.
2242 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2243 Class->getTagKind() == TTK_Class,
2244 Access, TInfo, EllipsisLoc);
2245}
2246
2247/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2248/// one entry in the base class list of a class specifier, for
2249/// example:
2250/// class foo : public bar, virtual private baz {
2251/// 'public bar' and 'virtual private baz' are each base-specifiers.
2252BaseResult
2253Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2254 ParsedAttributes &Attributes,
2255 bool Virtual, AccessSpecifier Access,
2256 ParsedType basetype, SourceLocation BaseLoc,
2257 SourceLocation EllipsisLoc) {
2258 if (!classdecl)
2259 return true;
2260
2261 AdjustDeclIfTemplate(classdecl);
2262 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2263 if (!Class)
2264 return true;
2265
2266 // We haven't yet attached the base specifiers.
2267 Class->setIsParsingBaseSpecifiers();
2268
2269 // We do not support any C++11 attributes on base-specifiers yet.
2270 // Diagnose any attributes we see.
2271 if (!Attributes.empty()) {
2272 for (AttributeList *Attr = Attributes.getList(); Attr;
2273 Attr = Attr->getNext()) {
2274 if (Attr->isInvalid() ||
2275 Attr->getKind() == AttributeList::IgnoredAttribute)
2276 continue;
2277 Diag(Attr->getLoc(),
2278 Attr->getKind() == AttributeList::UnknownAttribute
2279 ? diag::warn_unknown_attribute_ignored
2280 : diag::err_base_specifier_attribute)
2281 << Attr->getName();
2282 }
2283 }
2284
2285 TypeSourceInfo *TInfo = nullptr;
2286 GetTypeFromParser(basetype, &TInfo);
2287
2288 if (EllipsisLoc.isInvalid() &&
2289 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2290 UPPC_BaseType))
2291 return true;
2292
2293 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2294 Virtual, Access, TInfo,
2295 EllipsisLoc))
2296 return BaseSpec;
2297 else
2298 Class->setInvalidDecl();
2299
2300 return true;
2301}
2302
2303/// Use small set to collect indirect bases. As this is only used
2304/// locally, there's no need to abstract the small size parameter.
2305typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2306
2307/// \brief Recursively add the bases of Type. Don't add Type itself.
2308static void
2309NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2310 const QualType &Type)
2311{
2312 // Even though the incoming type is a base, it might not be
2313 // a class -- it could be a template parm, for instance.
2314 if (auto Rec = Type->getAs<RecordType>()) {
2315 auto Decl = Rec->getAsCXXRecordDecl();
2316
2317 // Iterate over its bases.
2318 for (const auto &BaseSpec : Decl->bases()) {
2319 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2320 .getUnqualifiedType();
2321 if (Set.insert(Base).second)
2322 // If we've not already seen it, recurse.
2323 NoteIndirectBases(Context, Set, Base);
2324 }
2325 }
2326}
2327
2328/// \brief Performs the actual work of attaching the given base class
2329/// specifiers to a C++ class.
2330bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2331 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2332 if (Bases.empty())
2333 return false;
2334
2335 // Used to keep track of which base types we have already seen, so
2336 // that we can properly diagnose redundant direct base types. Note
2337 // that the key is always the unqualified canonical type of the base
2338 // class.
2339 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2340
2341 // Used to track indirect bases so we can see if a direct base is
2342 // ambiguous.
2343 IndirectBaseSet IndirectBaseTypes;
2344
2345 // Copy non-redundant base specifiers into permanent storage.
2346 unsigned NumGoodBases = 0;
2347 bool Invalid = false;
2348 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2349 QualType NewBaseType
2350 = Context.getCanonicalType(Bases[idx]->getType());
2351 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2352
2353 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2354 if (KnownBase) {
2355 // C++ [class.mi]p3:
2356 // A class shall not be specified as a direct base class of a
2357 // derived class more than once.
2358 Diag(Bases[idx]->getLocStart(),
2359 diag::err_duplicate_base_class)
2360 << KnownBase->getType()
2361 << Bases[idx]->getSourceRange();
2362
2363 // Delete the duplicate base class specifier; we're going to
2364 // overwrite its pointer later.
2365 Context.Deallocate(Bases[idx]);
2366
2367 Invalid = true;
2368 } else {
2369 // Okay, add this new base class.
2370 KnownBase = Bases[idx];
2371 Bases[NumGoodBases++] = Bases[idx];
2372
2373 // Note this base's direct & indirect bases, if there could be ambiguity.
2374 if (Bases.size() > 1)
2375 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2376
2377 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2378 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2379 if (Class->isInterface() &&
2380 (!RD->isInterface() ||
2381 KnownBase->getAccessSpecifier() != AS_public)) {
2382 // The Microsoft extension __interface does not permit bases that
2383 // are not themselves public interfaces.
2384 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
2385 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
2386 << RD->getSourceRange();
2387 Invalid = true;
2388 }
2389 if (RD->hasAttr<WeakAttr>())
2390 Class->addAttr(WeakAttr::CreateImplicit(Context));
2391 }
2392 }
2393 }
2394
2395 // Attach the remaining base class specifiers to the derived class.
2396 Class->setBases(Bases.data(), NumGoodBases);
2397
2398 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2399 // Check whether this direct base is inaccessible due to ambiguity.
2400 QualType BaseType = Bases[idx]->getType();
2401 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2402 .getUnqualifiedType();
2403
2404 if (IndirectBaseTypes.count(CanonicalBase)) {
2405 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2406 /*DetectVirtual=*/true);
2407 bool found
2408 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2409 assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2409, __PRETTY_FUNCTION__))
;
2410 (void)found;
2411
2412 if (Paths.isAmbiguous(CanonicalBase))
2413 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
2414 << BaseType << getAmbiguousPathsDisplayString(Paths)
2415 << Bases[idx]->getSourceRange();
2416 else
2417 assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) :
__assert_fail ("Bases[idx]->isVirtual()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2417, __PRETTY_FUNCTION__))
;
2418 }
2419
2420 // Delete the base class specifier, since its data has been copied
2421 // into the CXXRecordDecl.
2422 Context.Deallocate(Bases[idx]);
2423 }
2424
2425 return Invalid;
2426}
2427
2428/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2429/// class, after checking whether there are any duplicate base
2430/// classes.
2431void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2432 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2433 if (!ClassDecl || Bases.empty())
2434 return;
2435
2436 AdjustDeclIfTemplate(ClassDecl);
2437 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2438}
2439
2440/// \brief Determine whether the type \p Derived is a C++ class that is
2441/// derived from the type \p Base.
2442bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2443 if (!getLangOpts().CPlusPlus)
2444 return false;
2445
2446 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2447 if (!DerivedRD)
2448 return false;
2449
2450 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2451 if (!BaseRD)
2452 return false;
2453
2454 // If either the base or the derived type is invalid, don't try to
2455 // check whether one is derived from the other.
2456 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2457 return false;
2458
2459 // FIXME: In a modules build, do we need the entire path to be visible for us
2460 // to be able to use the inheritance relationship?
2461 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2462 return false;
2463
2464 return DerivedRD->isDerivedFrom(BaseRD);
2465}
2466
2467/// \brief Determine whether the type \p Derived is a C++ class that is
2468/// derived from the type \p Base.
2469bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2470 CXXBasePaths &Paths) {
2471 if (!getLangOpts().CPlusPlus)
2472 return false;
2473
2474 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2475 if (!DerivedRD)
2476 return false;
2477
2478 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2479 if (!BaseRD)
2480 return false;
2481
2482 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2483 return false;
2484
2485 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2486}
2487
2488void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2489 CXXCastPath &BasePathArray) {
2490 assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!"
) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2490, __PRETTY_FUNCTION__))
;
2491 assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ?
static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2491, __PRETTY_FUNCTION__))
;
2492
2493 const CXXBasePath &Path = Paths.front();
2494
2495 // We first go backward and check if we have a virtual base.
2496 // FIXME: It would be better if CXXBasePath had the base specifier for
2497 // the nearest virtual base.
2498 unsigned Start = 0;
2499 for (unsigned I = Path.size(); I != 0; --I) {
2500 if (Path[I - 1].Base->isVirtual()) {
2501 Start = I - 1;
2502 break;
2503 }
2504 }
2505
2506 // Now add all bases.
2507 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2508 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2509}
2510
2511/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2512/// conversion (where Derived and Base are class types) is
2513/// well-formed, meaning that the conversion is unambiguous (and
2514/// that all of the base classes are accessible). Returns true
2515/// and emits a diagnostic if the code is ill-formed, returns false
2516/// otherwise. Loc is the location where this routine should point to
2517/// if there is an error, and Range is the source range to highlight
2518/// if there is an error.
2519///
2520/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2521/// diagnostic for the respective type of error will be suppressed, but the
2522/// check for ill-formed code will still be performed.
2523bool
2524Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2525 unsigned InaccessibleBaseID,
2526 unsigned AmbigiousBaseConvID,
2527 SourceLocation Loc, SourceRange Range,
2528 DeclarationName Name,
2529 CXXCastPath *BasePath,
2530 bool IgnoreAccess) {
2531 // First, determine whether the path from Derived to Base is
2532 // ambiguous. This is slightly more expensive than checking whether
2533 // the Derived to Base conversion exists, because here we need to
2534 // explore multiple paths to determine if there is an ambiguity.
2535 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2536 /*DetectVirtual=*/false);
2537 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2538 assert(DerivationOkay &&((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2539, __PRETTY_FUNCTION__))
2539 "Can only be used with a derived-to-base conversion")((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2539, __PRETTY_FUNCTION__))
;
2540 (void)DerivationOkay;
2541
2542 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
2543 if (!IgnoreAccess) {
2544 // Check that the base class can be accessed.
2545 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
2546 InaccessibleBaseID)) {
2547 case AR_inaccessible:
2548 return true;
2549 case AR_accessible:
2550 case AR_dependent:
2551 case AR_delayed:
2552 break;
2553 }
2554 }
2555
2556 // Build a base path if necessary.
2557 if (BasePath)
2558 BuildBasePathArray(Paths, *BasePath);
2559 return false;
2560 }
2561
2562 if (AmbigiousBaseConvID) {
2563 // We know that the derived-to-base conversion is ambiguous, and
2564 // we're going to produce a diagnostic. Perform the derived-to-base
2565 // search just one more time to compute all of the possible paths so
2566 // that we can print them out. This is more expensive than any of
2567 // the previous derived-to-base checks we've done, but at this point
2568 // performance isn't as much of an issue.
2569 Paths.clear();
2570 Paths.setRecordingPaths(true);
2571 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2572 assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2572, __PRETTY_FUNCTION__))
;
2573 (void)StillOkay;
2574
2575 // Build up a textual representation of the ambiguous paths, e.g.,
2576 // D -> B -> A, that will be used to illustrate the ambiguous
2577 // conversions in the diagnostic. We only print one of the paths
2578 // to each base class subobject.
2579 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2580
2581 Diag(Loc, AmbigiousBaseConvID)
2582 << Derived << Base << PathDisplayStr << Range << Name;
2583 }
2584 return true;
2585}
2586
2587bool
2588Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2589 SourceLocation Loc, SourceRange Range,
2590 CXXCastPath *BasePath,
2591 bool IgnoreAccess) {
2592 return CheckDerivedToBaseConversion(
2593 Derived, Base, diag::err_upcast_to_inaccessible_base,
2594 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2595 BasePath, IgnoreAccess);
2596}
2597
2598
2599/// @brief Builds a string representing ambiguous paths from a
2600/// specific derived class to different subobjects of the same base
2601/// class.
2602///
2603/// This function builds a string that can be used in error messages
2604/// to show the different paths that one can take through the
2605/// inheritance hierarchy to go from the derived class to different
2606/// subobjects of a base class. The result looks something like this:
2607/// @code
2608/// struct D -> struct B -> struct A
2609/// struct D -> struct C -> struct A
2610/// @endcode
2611std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2612 std::string PathDisplayStr;
2613 std::set<unsigned> DisplayedPaths;
2614 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2615 Path != Paths.end(); ++Path) {
2616 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2617 // We haven't displayed a path to this particular base
2618 // class subobject yet.
2619 PathDisplayStr += "\n ";
2620 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2621 for (CXXBasePath::const_iterator Element = Path->begin();
2622 Element != Path->end(); ++Element)
2623 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2624 }
2625 }
2626
2627 return PathDisplayStr;
2628}
2629
2630//===----------------------------------------------------------------------===//
2631// C++ class member Handling
2632//===----------------------------------------------------------------------===//
2633
2634/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2635bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
2636 SourceLocation ASLoc,
2637 SourceLocation ColonLoc,
2638 AttributeList *Attrs) {
2639 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2639, __PRETTY_FUNCTION__))
;
2640 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2641 ASLoc, ColonLoc);
2642 CurContext->addHiddenDecl(ASDecl);
2643 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2644}
2645
2646/// CheckOverrideControl - Check C++11 override control semantics.
2647void Sema::CheckOverrideControl(NamedDecl *D) {
2648 if (D->isInvalidDecl())
2649 return;
2650
2651 // We only care about "override" and "final" declarations.
2652 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2653 return;
2654
2655 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2656
2657 // We can't check dependent instance methods.
2658 if (MD && MD->isInstance() &&
2659 (MD->getParent()->hasAnyDependentBases() ||
2660 MD->getType()->isDependentType()))
2661 return;
2662
2663 if (MD && !MD->isVirtual()) {
2664 // If we have a non-virtual method, check if if hides a virtual method.
2665 // (In that case, it's most likely the method has the wrong type.)
2666 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2667 FindHiddenVirtualMethods(MD, OverloadedMethods);
2668
2669 if (!OverloadedMethods.empty()) {
2670 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2671 Diag(OA->getLocation(),
2672 diag::override_keyword_hides_virtual_member_function)
2673 << "override" << (OverloadedMethods.size() > 1);
2674 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2675 Diag(FA->getLocation(),
2676 diag::override_keyword_hides_virtual_member_function)
2677 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2678 << (OverloadedMethods.size() > 1);
2679 }
2680 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2681 MD->setInvalidDecl();
2682 return;
2683 }
2684 // Fall through into the general case diagnostic.
2685 // FIXME: We might want to attempt typo correction here.
2686 }
2687
2688 if (!MD || !MD->isVirtual()) {
2689 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2690 Diag(OA->getLocation(),
2691 diag::override_keyword_only_allowed_on_virtual_member_functions)
2692 << "override" << FixItHint::CreateRemoval(OA->getLocation());
2693 D->dropAttr<OverrideAttr>();
2694 }
2695 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2696 Diag(FA->getLocation(),
2697 diag::override_keyword_only_allowed_on_virtual_member_functions)
2698 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2699 << FixItHint::CreateRemoval(FA->getLocation());
2700 D->dropAttr<FinalAttr>();
2701 }
2702 return;
2703 }
2704
2705 // C++11 [class.virtual]p5:
2706 // If a function is marked with the virt-specifier override and
2707 // does not override a member function of a base class, the program is
2708 // ill-formed.
2709 bool HasOverriddenMethods =
2710 MD->begin_overridden_methods() != MD->end_overridden_methods();
2711 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
2712 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
2713 << MD->getDeclName();
2714}
2715
2716void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
2717 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
2718 return;
2719 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2720 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
2721 return;
2722
2723 SourceLocation Loc = MD->getLocation();
2724 SourceLocation SpellingLoc = Loc;
2725 if (getSourceManager().isMacroArgExpansion(Loc))
2726 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
2727 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
2728 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
2729 return;
2730
2731 if (MD->size_overridden_methods() > 0) {
2732 unsigned DiagID = isa<CXXDestructorDecl>(MD)
2733 ? diag::warn_destructor_marked_not_override_overriding
2734 : diag::warn_function_marked_not_override_overriding;
2735 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
2736 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
2737 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
2738 }
2739}
2740
2741/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
2742/// function overrides a virtual member function marked 'final', according to
2743/// C++11 [class.virtual]p4.
2744bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
2745 const CXXMethodDecl *Old) {
2746 FinalAttr *FA = Old->getAttr<FinalAttr>();
2747 if (!FA)
2748 return false;
2749
2750 Diag(New->getLocation(), diag::err_final_function_overridden)
2751 << New->getDeclName()
2752 << FA->isSpelledAsSealed();
2753 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2754 return true;
2755}
2756
2757static bool InitializationHasSideEffects(const FieldDecl &FD) {
2758 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2759 // FIXME: Destruction of ObjC lifetime types has side-effects.
2760 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2761 return !RD->isCompleteDefinition() ||
2762 !RD->hasTrivialDefaultConstructor() ||
2763 !RD->hasTrivialDestructor();
2764 return false;
2765}
2766
2767static AttributeList *getMSPropertyAttr(AttributeList *list) {
2768 for (AttributeList *it = list; it != nullptr; it = it->getNext())
2769 if (it->isDeclspecPropertyAttribute())
2770 return it;
2771 return nullptr;
2772}
2773
2774// Check if there is a field shadowing.
2775void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
2776 DeclarationName FieldName,
2777 const CXXRecordDecl *RD) {
2778 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
2779 return;
2780
2781 // To record a shadowed field in a base
2782 std::map<CXXRecordDecl*, NamedDecl*> Bases;
2783 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
2784 CXXBasePath &Path) {
2785 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
2786 // Record an ambiguous path directly
2787 if (Bases.find(Base) != Bases.end())
2788 return true;
2789 for (const auto Field : Base->lookup(FieldName)) {
2790 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
2791 Field->getAccess() != AS_private) {
2792 assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void>
(0) : __assert_fail ("Field->getAccess() != AS_none", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2792, __PRETTY_FUNCTION__))
;
2793 assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> (
0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2793, __PRETTY_FUNCTION__))
;
2794 Bases[Base] = Field;
2795 return true;
2796 }
2797 }
2798 return false;
2799 };
2800
2801 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2802 /*DetectVirtual=*/true);
2803 if (!RD->lookupInBases(FieldShadowed, Paths))
2804 return;
2805
2806 for (const auto &P : Paths) {
2807 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
2808 auto It = Bases.find(Base);
2809 // Skip duplicated bases
2810 if (It == Bases.end())
2811 continue;
2812 auto BaseField = It->second;
2813 assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void
> (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2813, __PRETTY_FUNCTION__))
;
2814 if (AS_none !=
2815 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
2816 Diag(Loc, diag::warn_shadow_field)
2817 << FieldName.getAsString() << RD->getName() << Base->getName();
2818 Diag(BaseField->getLocation(), diag::note_shadow_field);
2819 Bases.erase(It);
2820 }
2821 }
2822}
2823
2824/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2825/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2826/// bitfield width if there is one, 'InitExpr' specifies the initializer if
2827/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2828/// present (but parsing it has been deferred).
2829NamedDecl *
2830Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2831 MultiTemplateParamsArg TemplateParameterLists,
2832 Expr *BW, const VirtSpecifiers &VS,
2833 InClassInitStyle InitStyle) {
2834 const DeclSpec &DS = D.getDeclSpec();
2835 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2836 DeclarationName Name = NameInfo.getName();
2837 SourceLocation Loc = NameInfo.getLoc();
2838
2839 // For anonymous bitfields, the location should point to the type.
2840 if (Loc.isInvalid())
2841 Loc = D.getLocStart();
2842
2843 Expr *BitWidth = static_cast<Expr*>(BW);
2844
2845 assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void
> (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2845, __PRETTY_FUNCTION__))
;
2846 assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("!DS.isFriendSpecified()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2846, __PRETTY_FUNCTION__))
;
2847
2848 bool isFunc = D.isDeclarationOfFunction();
2849
2850 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2851 // The Microsoft extension __interface only permits public member functions
2852 // and prohibits constructors, destructors, operators, non-public member
2853 // functions, static methods and data members.
2854 unsigned InvalidDecl;
2855 bool ShowDeclName = true;
2856 if (!isFunc)
2857 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
2858 else if (AS != AS_public)
2859 InvalidDecl = 2;
2860 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2861 InvalidDecl = 3;
2862 else switch (Name.getNameKind()) {
2863 case DeclarationName::CXXConstructorName:
2864 InvalidDecl = 4;
2865 ShowDeclName = false;
2866 break;
2867
2868 case DeclarationName::CXXDestructorName:
2869 InvalidDecl = 5;
2870 ShowDeclName = false;
2871 break;
2872
2873 case DeclarationName::CXXOperatorName:
2874 case DeclarationName::CXXConversionFunctionName:
2875 InvalidDecl = 6;
2876 break;
2877
2878 default:
2879 InvalidDecl = 0;
2880 break;
2881 }
2882
2883 if (InvalidDecl) {
2884 if (ShowDeclName)
2885 Diag(Loc, diag::err_invalid_member_in_interface)
2886 << (InvalidDecl-1) << Name;
2887 else
2888 Diag(Loc, diag::err_invalid_member_in_interface)
2889 << (InvalidDecl-1) << "";
2890 return nullptr;
2891 }
2892 }
2893
2894 // C++ 9.2p6: A member shall not be declared to have automatic storage
2895 // duration (auto, register) or with the extern storage-class-specifier.
2896 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2897 // data members and cannot be applied to names declared const or static,
2898 // and cannot be applied to reference members.
2899 switch (DS.getStorageClassSpec()) {
2900 case DeclSpec::SCS_unspecified:
2901 case DeclSpec::SCS_typedef:
2902 case DeclSpec::SCS_static:
2903 break;
2904 case DeclSpec::SCS_mutable:
2905 if (isFunc) {
2906 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2907
2908 // FIXME: It would be nicer if the keyword was ignored only for this
2909 // declarator. Otherwise we could get follow-up errors.
2910 D.getMutableDeclSpec().ClearStorageClassSpecs();
2911 }
2912 break;
2913 default:
2914 Diag(DS.getStorageClassSpecLoc(),
2915 diag::err_storageclass_invalid_for_member);
2916 D.getMutableDeclSpec().ClearStorageClassSpecs();
2917 break;
2918 }
2919
2920 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2921 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2922 !isFunc);
2923
2924 if (DS.isConstexprSpecified() && isInstField) {
2925 SemaDiagnosticBuilder B =
2926 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2927 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2928 if (InitStyle == ICIS_NoInit) {
2929 B << 0 << 0;
2930 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2931 B << FixItHint::CreateRemoval(ConstexprLoc);
2932 else {
2933 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2934 D.getMutableDeclSpec().ClearConstexprSpec();
2935 const char *PrevSpec;
2936 unsigned DiagID;
2937 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2938 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2939 (void)Failed;
2940 assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail"
) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2940, __PRETTY_FUNCTION__))
;
2941 }
2942 } else {
2943 B << 1;
2944 const char *PrevSpec;
2945 unsigned DiagID;
2946 if (D.getMutableDeclSpec().SetStorageClassSpec(
2947 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2948 Context.getPrintingPolicy())) {
2949 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2950, __PRETTY_FUNCTION__))
2950 "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2950, __PRETTY_FUNCTION__))
;
2951 B << 1;
2952 } else {
2953 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2954 isInstField = false;
2955 }
2956 }
2957 }
2958
2959 NamedDecl *Member;
2960 if (isInstField) {
2961 CXXScopeSpec &SS = D.getCXXScopeSpec();
2962
2963 // Data members must have identifiers for names.
2964 if (!Name.isIdentifier()) {
2965 Diag(Loc, diag::err_bad_variable_name)
2966 << Name;
2967 return nullptr;
2968 }
2969
2970 IdentifierInfo *II = Name.getAsIdentifierInfo();
2971
2972 // Member field could not be with "template" keyword.
2973 // So TemplateParameterLists should be empty in this case.
2974 if (TemplateParameterLists.size()) {
2975 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2976 if (TemplateParams->size()) {
2977 // There is no such thing as a member field template.
2978 Diag(D.getIdentifierLoc(), diag::err_template_member)
2979 << II
2980 << SourceRange(TemplateParams->getTemplateLoc(),
2981 TemplateParams->getRAngleLoc());
2982 } else {
2983 // There is an extraneous 'template<>' for this member.
2984 Diag(TemplateParams->getTemplateLoc(),
2985 diag::err_template_member_noparams)
2986 << II
2987 << SourceRange(TemplateParams->getTemplateLoc(),
2988 TemplateParams->getRAngleLoc());
2989 }
2990 return nullptr;
2991 }
2992
2993 if (SS.isSet() && !SS.isInvalid()) {
2994 // The user provided a superfluous scope specifier inside a class
2995 // definition:
2996 //
2997 // class X {
2998 // int X::member;
2999 // };
3000 if (DeclContext *DC = computeDeclContext(SS, false))
3001 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
3002 else
3003 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3004 << Name << SS.getRange();
3005
3006 SS.clear();
3007 }
3008
3009 AttributeList *MSPropertyAttr =
3010 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
3011 if (MSPropertyAttr) {
3012 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3013 BitWidth, InitStyle, AS, MSPropertyAttr);
3014 if (!Member)
3015 return nullptr;
3016 isInstField = false;
3017 } else {
3018 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3019 BitWidth, InitStyle, AS);
3020 if (!Member)
3021 return nullptr;
3022 }
3023
3024 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3025 } else {
3026 Member = HandleDeclarator(S, D, TemplateParameterLists);
3027 if (!Member)
3028 return nullptr;
3029
3030 // Non-instance-fields can't have a bitfield.
3031 if (BitWidth) {
3032 if (Member->isInvalidDecl()) {
3033 // don't emit another diagnostic.
3034 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3035 // C++ 9.6p3: A bit-field shall not be a static member.
3036 // "static member 'A' cannot be a bit-field"
3037 Diag(Loc, diag::err_static_not_bitfield)
3038 << Name << BitWidth->getSourceRange();
3039 } else if (isa<TypedefDecl>(Member)) {
3040 // "typedef member 'x' cannot be a bit-field"
3041 Diag(Loc, diag::err_typedef_not_bitfield)
3042 << Name << BitWidth->getSourceRange();
3043 } else {
3044 // A function typedef ("typedef int f(); f a;").
3045 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3046 Diag(Loc, diag::err_not_integral_type_bitfield)
3047 << Name << cast<ValueDecl>(Member)->getType()
3048 << BitWidth->getSourceRange();
3049 }
3050
3051 BitWidth = nullptr;
3052 Member->setInvalidDecl();
3053 }
3054
3055 Member->setAccess(AS);
3056
3057 // If we have declared a member function template or static data member
3058 // template, set the access of the templated declaration as well.
3059 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3060 FunTmpl->getTemplatedDecl()->setAccess(AS);
3061 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3062 VarTmpl->getTemplatedDecl()->setAccess(AS);
3063 }
3064
3065 if (VS.isOverrideSpecified())
3066 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
3067 if (VS.isFinalSpecified())
3068 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
3069 VS.isFinalSpelledSealed()));
3070
3071 if (VS.getLastLocation().isValid()) {
3072 // Update the end location of a method that has a virt-specifiers.
3073 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3074 MD->setRangeEnd(VS.getLastLocation());
3075 }
3076
3077 CheckOverrideControl(Member);
3078
3079 assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?"
) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3079, __PRETTY_FUNCTION__))
;
3080
3081 if (isInstField) {
3082 FieldDecl *FD = cast<FieldDecl>(Member);
3083 FieldCollector->Add(FD);
3084
3085 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3086 // Remember all explicit private FieldDecls that have a name, no side
3087 // effects and are not part of a dependent type declaration.
3088 if (!FD->isImplicit() && FD->getDeclName() &&
3089 FD->getAccess() == AS_private &&
3090 !FD->hasAttr<UnusedAttr>() &&
3091 !FD->getParent()->isDependentContext() &&
3092 !InitializationHasSideEffects(*FD))
3093 UnusedPrivateFields.insert(FD);
3094 }
3095 }
3096
3097 return Member;
3098}
3099
3100namespace {
3101 class UninitializedFieldVisitor
3102 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3103 Sema &S;
3104 // List of Decls to generate a warning on. Also remove Decls that become
3105 // initialized.
3106 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3107 // List of base classes of the record. Classes are removed after their
3108 // initializers.
3109 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3110 // Vector of decls to be removed from the Decl set prior to visiting the
3111 // nodes. These Decls may have been initialized in the prior initializer.
3112 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3113 // If non-null, add a note to the warning pointing back to the constructor.
3114 const CXXConstructorDecl *Constructor;
3115 // Variables to hold state when processing an initializer list. When
3116 // InitList is true, special case initialization of FieldDecls matching
3117 // InitListFieldDecl.
3118 bool InitList;
3119 FieldDecl *InitListFieldDecl;
3120 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3121
3122 public:
3123 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3124 UninitializedFieldVisitor(Sema &S,
3125 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3126 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3127 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3128 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3129
3130 // Returns true if the use of ME is not an uninitialized use.
3131 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3132 bool CheckReferenceOnly) {
3133 llvm::SmallVector<FieldDecl*, 4> Fields;
3134 bool ReferenceField = false;
3135 while (ME) {
3136 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3137 if (!FD)
3138 return false;
3139 Fields.push_back(FD);
3140 if (FD->getType()->isReferenceType())
3141 ReferenceField = true;
3142 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3143 }
3144
3145 // Binding a reference to an unintialized field is not an
3146 // uninitialized use.
3147 if (CheckReferenceOnly && !ReferenceField)
3148 return true;
3149
3150 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3151 // Discard the first field since it is the field decl that is being
3152 // initialized.
3153 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3154 UsedFieldIndex.push_back((*I)->getFieldIndex());
3155 }
3156
3157 for (auto UsedIter = UsedFieldIndex.begin(),
3158 UsedEnd = UsedFieldIndex.end(),
3159 OrigIter = InitFieldIndex.begin(),
3160 OrigEnd = InitFieldIndex.end();
3161 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3162 if (*UsedIter < *OrigIter)
3163 return true;
3164 if (*UsedIter > *OrigIter)
3165 break;
3166 }
3167
3168 return false;
3169 }
3170
3171 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3172 bool AddressOf) {
3173 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3174 return;
3175
3176 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3177 // or union.
3178 MemberExpr *FieldME = ME;
3179
3180 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3181
3182 Expr *Base = ME;
3183 while (MemberExpr *SubME =
3184 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3185
3186 if (isa<VarDecl>(SubME->getMemberDecl()))
3187 return;
3188
3189 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3190 if (!FD->isAnonymousStructOrUnion())
3191 FieldME = SubME;
3192
3193 if (!FieldME->getType().isPODType(S.Context))
3194 AllPODFields = false;
3195
3196 Base = SubME->getBase();
3197 }
3198
3199 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3200 return;
3201
3202 if (AddressOf && AllPODFields)
3203 return;
3204
3205 ValueDecl* FoundVD = FieldME->getMemberDecl();
3206
3207 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3208 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3209 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3210 }
3211
3212 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3213 QualType T = BaseCast->getType();
3214 if (T->isPointerType() &&
3215 BaseClasses.count(T->getPointeeType())) {
3216 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3217 << T->getPointeeType() << FoundVD;
3218 }
3219 }
3220 }
3221
3222 if (!Decls.count(FoundVD))
3223 return;
3224
3225 const bool IsReference = FoundVD->getType()->isReferenceType();
3226
3227 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3228 // Special checking for initializer lists.
3229 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3230 return;
3231 }
3232 } else {
3233 // Prevent double warnings on use of unbounded references.
3234 if (CheckReferenceOnly && !IsReference)
3235 return;
3236 }
3237
3238 unsigned diag = IsReference
3239 ? diag::warn_reference_field_is_uninit
3240 : diag::warn_field_is_uninit;
3241 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3242 if (Constructor)
3243 S.Diag(Constructor->getLocation(),
3244 diag::note_uninit_in_this_constructor)
3245 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3246
3247 }
3248
3249 void HandleValue(Expr *E, bool AddressOf) {
3250 E = E->IgnoreParens();
3251
3252 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3253 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3254 AddressOf /*AddressOf*/);
3255 return;
3256 }
3257
3258 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3259 Visit(CO->getCond());
3260 HandleValue(CO->getTrueExpr(), AddressOf);
3261 HandleValue(CO->getFalseExpr(), AddressOf);
3262 return;
3263 }
3264
3265 if (BinaryConditionalOperator *BCO =
3266 dyn_cast<BinaryConditionalOperator>(E)) {
3267 Visit(BCO->getCond());
3268 HandleValue(BCO->getFalseExpr(), AddressOf);
3269 return;
3270 }
3271
3272 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3273 HandleValue(OVE->getSourceExpr(), AddressOf);
3274 return;
3275 }
3276
3277 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3278 switch (BO->getOpcode()) {
3279 default:
3280 break;
3281 case(BO_PtrMemD):
3282 case(BO_PtrMemI):
3283 HandleValue(BO->getLHS(), AddressOf);
3284 Visit(BO->getRHS());
3285 return;
3286 case(BO_Comma):
3287 Visit(BO->getLHS());
3288 HandleValue(BO->getRHS(), AddressOf);
3289 return;
3290 }
3291 }
3292
3293 Visit(E);
3294 }
3295
3296 void CheckInitListExpr(InitListExpr *ILE) {
3297 InitFieldIndex.push_back(0);
3298 for (auto Child : ILE->children()) {
3299 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3300 CheckInitListExpr(SubList);
3301 } else {
3302 Visit(Child);
3303 }
3304 ++InitFieldIndex.back();
3305 }
3306 InitFieldIndex.pop_back();
3307 }
3308
3309 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3310 FieldDecl *Field, const Type *BaseClass) {
3311 // Remove Decls that may have been initialized in the previous
3312 // initializer.
3313 for (ValueDecl* VD : DeclsToRemove)
3314 Decls.erase(VD);
3315 DeclsToRemove.clear();
3316
3317 Constructor = FieldConstructor;
3318 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3319
3320 if (ILE && Field) {
3321 InitList = true;
3322 InitListFieldDecl = Field;
3323 InitFieldIndex.clear();
3324 CheckInitListExpr(ILE);
3325 } else {
3326 InitList = false;
3327 Visit(E);
3328 }
3329
3330 if (Field)
3331 Decls.erase(Field);
3332 if (BaseClass)
3333 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3334 }
3335
3336 void VisitMemberExpr(MemberExpr *ME) {
3337 // All uses of unbounded reference fields will warn.
3338 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3339 }
3340
3341 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3342 if (E->getCastKind() == CK_LValueToRValue) {
3343 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3344 return;
3345 }
3346
3347 Inherited::VisitImplicitCastExpr(E);
3348 }
3349
3350 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3351 if (E->getConstructor()->isCopyConstructor()) {
3352 Expr *ArgExpr = E->getArg(0);
3353 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3354 if (ILE->getNumInits() == 1)
3355 ArgExpr = ILE->getInit(0);
3356 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3357 if (ICE->getCastKind() == CK_NoOp)
3358 ArgExpr = ICE->getSubExpr();
3359 HandleValue(ArgExpr, false /*AddressOf*/);
3360 return;
3361 }
3362 Inherited::VisitCXXConstructExpr(E);
3363 }
3364
3365 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3366 Expr *Callee = E->getCallee();
3367 if (isa<MemberExpr>(Callee)) {
3368 HandleValue(Callee, false /*AddressOf*/);
3369 for (auto Arg : E->arguments())
3370 Visit(Arg);
3371 return;
3372 }
3373
3374 Inherited::VisitCXXMemberCallExpr(E);
3375 }
3376
3377 void VisitCallExpr(CallExpr *E) {
3378 // Treat std::move as a use.
3379 if (E->getNumArgs() == 1) {
3380 if (FunctionDecl *FD = E->getDirectCallee()) {
3381 if (FD->isInStdNamespace() && FD->getIdentifier() &&
3382 FD->getIdentifier()->isStr("move")) {
3383 HandleValue(E->getArg(0), false /*AddressOf*/);
3384 return;
3385 }
3386 }
3387 }
3388
3389 Inherited::VisitCallExpr(E);
3390 }
3391
3392 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3393 Expr *Callee = E->getCallee();
3394
3395 if (isa<UnresolvedLookupExpr>(Callee))
3396 return Inherited::VisitCXXOperatorCallExpr(E);
3397
3398 Visit(Callee);
3399 for (auto Arg : E->arguments())
3400 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3401 }
3402
3403 void VisitBinaryOperator(BinaryOperator *E) {
3404 // If a field assignment is detected, remove the field from the
3405 // uninitiailized field set.
3406 if (E->getOpcode() == BO_Assign)
3407 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3408 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3409 if (!FD->getType()->isReferenceType())
3410 DeclsToRemove.push_back(FD);
3411
3412 if (E->isCompoundAssignmentOp()) {
3413 HandleValue(E->getLHS(), false /*AddressOf*/);
3414 Visit(E->getRHS());
3415 return;
3416 }
3417
3418 Inherited::VisitBinaryOperator(E);
3419 }
3420
3421 void VisitUnaryOperator(UnaryOperator *E) {
3422 if (E->isIncrementDecrementOp()) {
3423 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3424 return;
3425 }
3426 if (E->getOpcode() == UO_AddrOf) {
3427 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3428 HandleValue(ME->getBase(), true /*AddressOf*/);
3429 return;
3430 }
3431 }
3432
3433 Inherited::VisitUnaryOperator(E);
3434 }
3435 };
3436
3437 // Diagnose value-uses of fields to initialize themselves, e.g.
3438 // foo(foo)
3439 // where foo is not also a parameter to the constructor.
3440 // Also diagnose across field uninitialized use such as
3441 // x(y), y(x)
3442 // TODO: implement -Wuninitialized and fold this into that framework.
3443 static void DiagnoseUninitializedFields(
3444 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3445
3446 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3447 Constructor->getLocation())) {
3448 return;
3449 }
3450
3451 if (Constructor->isInvalidDecl())
3452 return;
3453
3454 const CXXRecordDecl *RD = Constructor->getParent();
3455
3456 if (RD->getDescribedClassTemplate())
3457 return;
3458
3459 // Holds fields that are uninitialized.
3460 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3461
3462 // At the beginning, all fields are uninitialized.
3463 for (auto *I : RD->decls()) {
3464 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3465 UninitializedFields.insert(FD);
3466 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3467 UninitializedFields.insert(IFD->getAnonField());
3468 }
3469 }
3470
3471 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3472 for (auto I : RD->bases())
3473 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3474
3475 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3476 return;
3477
3478 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3479 UninitializedFields,
3480 UninitializedBaseClasses);
3481
3482 for (const auto *FieldInit : Constructor->inits()) {
3483 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3484 break;
3485
3486 Expr *InitExpr = FieldInit->getInit();
3487 if (!InitExpr)
3488 continue;
3489
3490 if (CXXDefaultInitExpr *Default =
3491 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3492 InitExpr = Default->getExpr();
3493 if (!InitExpr)
3494 continue;
3495 // In class initializers will point to the constructor.
3496 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3497 FieldInit->getAnyMember(),
3498 FieldInit->getBaseClass());
3499 } else {
3500 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3501 FieldInit->getAnyMember(),
3502 FieldInit->getBaseClass());
3503 }
3504 }
3505 }
3506} // namespace
3507
3508/// \brief Enter a new C++ default initializer scope. After calling this, the
3509/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3510/// parsing or instantiating the initializer failed.
3511void Sema::ActOnStartCXXInClassMemberInitializer() {
3512 // Create a synthetic function scope to represent the call to the constructor
3513 // that notionally surrounds a use of this initializer.
3514 PushFunctionScope();
3515}
3516
3517/// \brief This is invoked after parsing an in-class initializer for a
3518/// non-static C++ class member, and after instantiating an in-class initializer
3519/// in a class template. Such actions are deferred until the class is complete.
3520void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3521 SourceLocation InitLoc,
3522 Expr *InitExpr) {
3523 // Pop the notional constructor scope we created earlier.
3524 PopFunctionScopeInfo(nullptr, D);
3525
3526 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3527 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3528, __PRETTY_FUNCTION__))
3528 "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3528, __PRETTY_FUNCTION__))
;
3529
3530 if (!InitExpr) {
3531 D->setInvalidDecl();
3532 if (FD)
3533 FD->removeInClassInitializer();
3534 return;
3535 }
3536
3537 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3538 FD->setInvalidDecl();
3539 FD->removeInClassInitializer();
3540 return;
3541 }
3542
3543 ExprResult Init = InitExpr;
3544 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3545 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
3546 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
3547 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
3548 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
3549 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3550 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3551 if (Init.isInvalid()) {
3552 FD->setInvalidDecl();
3553 return;
3554 }
3555 }
3556
3557 // C++11 [class.base.init]p7:
3558 // The initialization of each base and member constitutes a
3559 // full-expression.
3560 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
3561 if (Init.isInvalid()) {
3562 FD->setInvalidDecl();
3563 return;
3564 }
3565
3566 InitExpr = Init.get();
3567
3568 FD->setInClassInitializer(InitExpr);
3569}
3570
3571/// \brief Find the direct and/or virtual base specifiers that
3572/// correspond to the given base type, for use in base initialization
3573/// within a constructor.
3574static bool FindBaseInitializer(Sema &SemaRef,
3575 CXXRecordDecl *ClassDecl,
3576 QualType BaseType,
3577 const CXXBaseSpecifier *&DirectBaseSpec,
3578 const CXXBaseSpecifier *&VirtualBaseSpec) {
3579 // First, check for a direct base class.
3580 DirectBaseSpec = nullptr;
3581 for (const auto &Base : ClassDecl->bases()) {
3582 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3583 // We found a direct base of this type. That's what we're
3584 // initializing.
3585 DirectBaseSpec = &Base;
3586 break;
3587 }
3588 }
3589
3590 // Check for a virtual base class.
3591 // FIXME: We might be able to short-circuit this if we know in advance that
3592 // there are no virtual bases.
3593 VirtualBaseSpec = nullptr;
3594 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3595 // We haven't found a base yet; search the class hierarchy for a
3596 // virtual base class.
3597 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3598 /*DetectVirtual=*/false);
3599 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3600 SemaRef.Context.getTypeDeclType(ClassDecl),
3601 BaseType, Paths)) {
3602 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3603 Path != Paths.end(); ++Path) {
3604 if (Path->back().Base->isVirtual()) {
3605 VirtualBaseSpec = Path->back().Base;
3606 break;
3607 }
3608 }
3609 }
3610 }
3611
3612 return DirectBaseSpec || VirtualBaseSpec;
3613}
3614
3615/// \brief Handle a C++ member initializer using braced-init-list syntax.
3616MemInitResult
3617Sema::ActOnMemInitializer(Decl *ConstructorD,
3618 Scope *S,
3619 CXXScopeSpec &SS,
3620 IdentifierInfo *MemberOrBase,
3621 ParsedType TemplateTypeTy,
3622 const DeclSpec &DS,
3623 SourceLocation IdLoc,
3624 Expr *InitList,
3625 SourceLocation EllipsisLoc) {
3626 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3627 DS, IdLoc, InitList,
3628 EllipsisLoc);
3629}
3630
3631/// \brief Handle a C++ member initializer using parentheses syntax.
3632MemInitResult
3633Sema::ActOnMemInitializer(Decl *ConstructorD,
3634 Scope *S,
3635 CXXScopeSpec &SS,
3636 IdentifierInfo *MemberOrBase,
3637 ParsedType TemplateTypeTy,
3638 const DeclSpec &DS,
3639 SourceLocation IdLoc,
3640 SourceLocation LParenLoc,
3641 ArrayRef<Expr *> Args,
3642 SourceLocation RParenLoc,
3643 SourceLocation EllipsisLoc) {
3644 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
3645 Args, RParenLoc);
3646 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3647 DS, IdLoc, List, EllipsisLoc);
3648}
3649
3650namespace {
3651
3652// Callback to only accept typo corrections that can be a valid C++ member
3653// intializer: either a non-static field member or a base class.
3654class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
3655public:
3656 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
3657 : ClassDecl(ClassDecl) {}
3658
3659 bool ValidateCandidate(const TypoCorrection &candidate) override {
3660 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
3661 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
3662 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
3663 return isa<TypeDecl>(ND);
3664 }
3665 return false;
3666 }
3667
3668private:
3669 CXXRecordDecl *ClassDecl;
3670};
3671
3672}
3673
3674/// \brief Handle a C++ member initializer.
3675MemInitResult
3676Sema::BuildMemInitializer(Decl *ConstructorD,
3677 Scope *S,
3678 CXXScopeSpec &SS,
3679 IdentifierInfo *MemberOrBase,
3680 ParsedType TemplateTypeTy,
3681 const DeclSpec &DS,
3682 SourceLocation IdLoc,
3683 Expr *Init,
3684 SourceLocation EllipsisLoc) {
3685 ExprResult Res = CorrectDelayedTyposInExpr(Init);
3686 if (!Res.isUsable())
3687 return true;
3688 Init = Res.get();
3689
3690 if (!ConstructorD)
3691 return true;
3692
3693 AdjustDeclIfTemplate(ConstructorD);
3694
3695 CXXConstructorDecl *Constructor
3696 = dyn_cast<CXXConstructorDecl>(ConstructorD);
3697 if (!Constructor) {
3698 // The user wrote a constructor initializer on a function that is
3699 // not a C++ constructor. Ignore the error for now, because we may
3700 // have more member initializers coming; we'll diagnose it just
3701 // once in ActOnMemInitializers.
3702 return true;
3703 }
3704
3705 CXXRecordDecl *ClassDecl = Constructor->getParent();
3706
3707 // C++ [class.base.init]p2:
3708 // Names in a mem-initializer-id are looked up in the scope of the
3709 // constructor's class and, if not found in that scope, are looked
3710 // up in the scope containing the constructor's definition.
3711 // [Note: if the constructor's class contains a member with the
3712 // same name as a direct or virtual base class of the class, a
3713 // mem-initializer-id naming the member or base class and composed
3714 // of a single identifier refers to the class member. A
3715 // mem-initializer-id for the hidden base class may be specified
3716 // using a qualified name. ]
3717 if (!SS.getScopeRep() && !TemplateTypeTy) {
3718 // Look for a member, first.
3719 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
3720 if (!Result.empty()) {
3721 ValueDecl *Member;
3722 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
3723 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
3724 if (EllipsisLoc.isValid())
3725 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
3726 << MemberOrBase
3727 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
3728
3729 return BuildMemberInitializer(Member, Init, IdLoc);
3730 }
3731 }
3732 }
3733 // It didn't name a member, so see if it names a class.
3734 QualType BaseType;
3735 TypeSourceInfo *TInfo = nullptr;
3736
3737 if (TemplateTypeTy) {
3738 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
3739 } else if (DS.getTypeSpecType() == TST_decltype) {
3740 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
3741 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
3742 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
3743 return true;
3744 } else {
3745 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
3746 LookupParsedName(R, S, &SS);
3747
3748 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
3749 if (!TyD) {
3750 if (R.isAmbiguous()) return true;
3751
3752 // We don't want access-control diagnostics here.
3753 R.suppressDiagnostics();
3754
3755 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
3756 bool NotUnknownSpecialization = false;
3757 DeclContext *DC = computeDeclContext(SS, false);
3758 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
3759 NotUnknownSpecialization = !Record->hasAnyDependentBases();
3760
3761 if (!NotUnknownSpecialization) {
3762 // When the scope specifier can refer to a member of an unknown
3763 // specialization, we take it as a type name.
3764 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
3765 SS.getWithLocInContext(Context),
3766 *MemberOrBase, IdLoc);
3767 if (BaseType.isNull())
3768 return true;
3769
3770 R.clear();
3771 R.setLookupName(MemberOrBase);
3772 }
3773 }
3774
3775 // If no results were found, try to correct typos.
3776 TypoCorrection Corr;
3777 if (R.empty() && BaseType.isNull() &&
3778 (Corr = CorrectTypo(
3779 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
3780 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
3781 CTK_ErrorRecovery, ClassDecl))) {
3782 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
3783 // We have found a non-static data member with a similar
3784 // name to what was typed; complain and initialize that
3785 // member.
3786 diagnoseTypo(Corr,
3787 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3788 << MemberOrBase << true);
3789 return BuildMemberInitializer(Member, Init, IdLoc);
3790 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
3791 const CXXBaseSpecifier *DirectBaseSpec;
3792 const CXXBaseSpecifier *VirtualBaseSpec;
3793 if (FindBaseInitializer(*this, ClassDecl,
3794 Context.getTypeDeclType(Type),
3795 DirectBaseSpec, VirtualBaseSpec)) {
3796 // We have found a direct or virtual base class with a
3797 // similar name to what was typed; complain and initialize
3798 // that base class.
3799 diagnoseTypo(Corr,
3800 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3801 << MemberOrBase << false,
3802 PDiag() /*Suppress note, we provide our own.*/);
3803
3804 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
3805 : VirtualBaseSpec;
3806 Diag(BaseSpec->getLocStart(),
3807 diag::note_base_class_specified_here)
3808 << BaseSpec->getType()
3809 << BaseSpec->getSourceRange();
3810
3811 TyD = Type;
3812 }
3813 }
3814 }
3815
3816 if (!TyD && BaseType.isNull()) {
3817 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3818 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3819 return true;
3820 }
3821 }
3822
3823 if (BaseType.isNull()) {
3824 BaseType = Context.getTypeDeclType(TyD);
3825 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3826 if (SS.isSet()) {
3827 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3828 BaseType);
3829 TInfo = Context.CreateTypeSourceInfo(BaseType);
3830 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
3831 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
3832 TL.setElaboratedKeywordLoc(SourceLocation());
3833 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3834 }
3835 }
3836 }
3837
3838 if (!TInfo)
3839 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3840
3841 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3842}
3843
3844/// Checks a member initializer expression for cases where reference (or
3845/// pointer) members are bound to by-value parameters (or their addresses).
3846static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3847 Expr *Init,
3848 SourceLocation IdLoc) {
3849 QualType MemberTy = Member->getType();
3850
3851 // We only handle pointers and references currently.
3852 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3853 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3854 return;
3855
3856 const bool IsPointer = MemberTy->isPointerType();
3857 if (IsPointer) {
3858 if (const UnaryOperator *Op
3859 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3860 // The only case we're worried about with pointers requires taking the
3861 // address.
3862 if (Op->getOpcode() != UO_AddrOf)
3863 return;
3864
3865 Init = Op->getSubExpr();
3866 } else {
3867 // We only handle address-of expression initializers for pointers.
3868 return;
3869 }
3870 }
3871
3872 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3873 // We only warn when referring to a non-reference parameter declaration.
3874 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3875 if (!Parameter || Parameter->getType()->isReferenceType())
3876 return;
3877
3878 S.Diag(Init->getExprLoc(),
3879 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3880 : diag::warn_bind_ref_member_to_parameter)
3881 << Member << Parameter << Init->getSourceRange();
3882 } else {
3883 // Other initializers are fine.
3884 return;
3885 }
3886
3887 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3888 << (unsigned)IsPointer;
3889}
3890
3891MemInitResult
3892Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3893 SourceLocation IdLoc) {
3894 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3895 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3896 assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3897, __PRETTY_FUNCTION__))
3897 "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3897, __PRETTY_FUNCTION__))
;
3898
3899 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3900 return true;
3901
3902 if (Member->isInvalidDecl())
3903 return true;
3904
3905 MultiExprArg Args;
3906 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3907 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3908 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3909 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3910 } else {
3911 // Template instantiation doesn't reconstruct ParenListExprs for us.
3912 Args = Init;
3913 }
3914
3915 SourceRange InitRange = Init->getSourceRange();
3916
3917 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3918 // Can't check initialization for a member of dependent type or when
3919 // any of the arguments are type-dependent expressions.
3920 DiscardCleanupsInEvaluationContext();
3921 } else {
3922 bool InitList = false;
3923 if (isa<InitListExpr>(Init)) {
3924 InitList = true;
3925 Args = Init;
3926 }
3927
3928 // Initialize the member.
3929 InitializedEntity MemberEntity =
3930 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3931 : InitializedEntity::InitializeMember(IndirectMember,
3932 nullptr);
3933 InitializationKind Kind =
3934 InitList ? InitializationKind::CreateDirectList(IdLoc)
3935 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3936 InitRange.getEnd());
3937
3938 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3939 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3940 nullptr);
3941 if (MemberInit.isInvalid())
3942 return true;
3943
3944 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3945
3946 // C++11 [class.base.init]p7:
3947 // The initialization of each base and member constitutes a
3948 // full-expression.
3949 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3950 if (MemberInit.isInvalid())
3951 return true;
3952
3953 Init = MemberInit.get();
3954 }
3955
3956 if (DirectMember) {
3957 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3958 InitRange.getBegin(), Init,
3959 InitRange.getEnd());
3960 } else {
3961 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3962 InitRange.getBegin(), Init,
3963 InitRange.getEnd());
3964 }
3965}
3966
3967MemInitResult
3968Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3969 CXXRecordDecl *ClassDecl) {
3970 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3971 if (!LangOpts.CPlusPlus11)
3972 return Diag(NameLoc, diag::err_delegating_ctor)
3973 << TInfo->getTypeLoc().getLocalSourceRange();
3974 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
3975
3976 bool InitList = true;
3977 MultiExprArg Args = Init;
3978 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3979 InitList = false;
3980 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3981 }
3982
3983 SourceRange InitRange = Init->getSourceRange();
3984 // Initialize the object.
3985 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
3986 QualType(ClassDecl->getTypeForDecl(), 0));
3987 InitializationKind Kind =
3988 InitList ? InitializationKind::CreateDirectList(NameLoc)
3989 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
3990 InitRange.getEnd());
3991 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
3992 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
3993 Args, nullptr);
3994 if (DelegationInit.isInvalid())
3995 return true;
3996
3997 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3998, __PRETTY_FUNCTION__))
3998 "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3998, __PRETTY_FUNCTION__))
;
3999
4000 // C++11 [class.base.init]p7:
4001 // The initialization of each base and member constitutes a
4002 // full-expression.
4003 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
4004 InitRange.getBegin());
4005 if (DelegationInit.isInvalid())
4006 return true;
4007
4008 // If we are in a dependent context, template instantiation will
4009 // perform this type-checking again. Just save the arguments that we
4010 // received in a ParenListExpr.
4011 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4012 // of the information that we have about the base
4013 // initializer. However, deconstructing the ASTs is a dicey process,
4014 // and this approach is far more likely to get the corner cases right.
4015 if (CurContext->isDependentContext())
4016 DelegationInit = Init;
4017
4018 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4019 DelegationInit.getAs<Expr>(),
4020 InitRange.getEnd());
4021}
4022
4023MemInitResult
4024Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4025 Expr *Init, CXXRecordDecl *ClassDecl,
4026 SourceLocation EllipsisLoc) {
4027 SourceLocation BaseLoc
4028 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4029
4030 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4031 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4032 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4033
4034 // C++ [class.base.init]p2:
4035 // [...] Unless the mem-initializer-id names a nonstatic data
4036 // member of the constructor's class or a direct or virtual base
4037 // of that class, the mem-initializer is ill-formed. A
4038 // mem-initializer-list can initialize a base class using any
4039 // name that denotes that base class type.
4040 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4041
4042 SourceRange InitRange = Init->getSourceRange();
4043 if (EllipsisLoc.isValid()) {
4044 // This is a pack expansion.
4045 if (!BaseType->containsUnexpandedParameterPack()) {
4046 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4047 << SourceRange(BaseLoc, InitRange.getEnd());
4048
4049 EllipsisLoc = SourceLocation();
4050 }
4051 } else {
4052 // Check for any unexpanded parameter packs.
4053 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4054 return true;
4055
4056 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4057 return true;
4058 }
4059
4060 // Check for direct and virtual base classes.
4061 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4062 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4063 if (!Dependent) {
4064 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4065 BaseType))
4066 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4067
4068 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4069 VirtualBaseSpec);
4070
4071 // C++ [base.class.init]p2:
4072 // Unless the mem-initializer-id names a nonstatic data member of the
4073 // constructor's class or a direct or virtual base of that class, the
4074 // mem-initializer is ill-formed.
4075 if (!DirectBaseSpec && !VirtualBaseSpec) {
4076 // If the class has any dependent bases, then it's possible that
4077 // one of those types will resolve to the same type as
4078 // BaseType. Therefore, just treat this as a dependent base
4079 // class initialization. FIXME: Should we try to check the
4080 // initialization anyway? It seems odd.
4081 if (ClassDecl->hasAnyDependentBases())
4082 Dependent = true;
4083 else
4084 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4085 << BaseType << Context.getTypeDeclType(ClassDecl)
4086 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4087 }
4088 }
4089
4090 if (Dependent) {
4091 DiscardCleanupsInEvaluationContext();
4092
4093 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4094 /*IsVirtual=*/false,
4095 InitRange.getBegin(), Init,
4096 InitRange.getEnd(), EllipsisLoc);
4097 }
4098
4099 // C++ [base.class.init]p2:
4100 // If a mem-initializer-id is ambiguous because it designates both
4101 // a direct non-virtual base class and an inherited virtual base
4102 // class, the mem-initializer is ill-formed.
4103 if (DirectBaseSpec && VirtualBaseSpec)
4104 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4105 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4106
4107 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4108 if (!BaseSpec)
4109 BaseSpec = VirtualBaseSpec;
4110
4111 // Initialize the base.
4112 bool InitList = true;
4113 MultiExprArg Args = Init;
4114 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4115 InitList = false;
4116 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4117 }
4118
4119 InitializedEntity BaseEntity =
4120 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4121 InitializationKind Kind =
4122 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4123 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4124 InitRange.getEnd());
4125 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4126 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4127 if (BaseInit.isInvalid())
4128 return true;
4129
4130 // C++11 [class.base.init]p7:
4131 // The initialization of each base and member constitutes a
4132 // full-expression.
4133 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
4134 if (BaseInit.isInvalid())
4135 return true;
4136
4137 // If we are in a dependent context, template instantiation will
4138 // perform this type-checking again. Just save the arguments that we
4139 // received in a ParenListExpr.
4140 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4141 // of the information that we have about the base
4142 // initializer. However, deconstructing the ASTs is a dicey process,
4143 // and this approach is far more likely to get the corner cases right.
4144 if (CurContext->isDependentContext())
4145 BaseInit = Init;
4146
4147 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4148 BaseSpec->isVirtual(),
4149 InitRange.getBegin(),
4150 BaseInit.getAs<Expr>(),
4151 InitRange.getEnd(), EllipsisLoc);
4152}
4153
4154// Create a static_cast\<T&&>(expr).
4155static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4156 if (T.isNull()) T = E->getType();
4157 QualType TargetType = SemaRef.BuildReferenceType(
4158 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4159 SourceLocation ExprLoc = E->getLocStart();
4160 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4161 TargetType, ExprLoc);
4162
4163 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4164 SourceRange(ExprLoc, ExprLoc),
4165 E->getSourceRange()).get();
4166}
4167
4168/// ImplicitInitializerKind - How an implicit base or member initializer should
4169/// initialize its base or member.
4170enum ImplicitInitializerKind {
4171 IIK_Default,
4172 IIK_Copy,
4173 IIK_Move,
4174 IIK_Inherit
4175};
4176
4177static bool
4178BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4179 ImplicitInitializerKind ImplicitInitKind,
4180 CXXBaseSpecifier *BaseSpec,
4181 bool IsInheritedVirtualBase,
4182 CXXCtorInitializer *&CXXBaseInit) {
4183 InitializedEntity InitEntity
4184 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4185 IsInheritedVirtualBase);
4186
4187 ExprResult BaseInit;
4188
4189 switch (ImplicitInitKind) {
4190 case IIK_Inherit:
4191 case IIK_Default: {
4192 InitializationKind InitKind
4193 = InitializationKind::CreateDefault(Constructor->getLocation());
4194 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4195 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4196 break;
4197 }
4198
4199 case IIK_Move:
4200 case IIK_Copy: {
4201 bool Moving = ImplicitInitKind == IIK_Move;
4202 ParmVarDecl *Param = Constructor->getParamDecl(0);
4203 QualType ParamType = Param->getType().getNonReferenceType();
4204
4205 Expr *CopyCtorArg =
4206 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4207 SourceLocation(), Param, false,
4208 Constructor->getLocation(), ParamType,
4209 VK_LValue, nullptr);
4210
4211 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4212
4213 // Cast to the base class to avoid ambiguities.
4214 QualType ArgTy =
4215 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4216 ParamType.getQualifiers());
4217
4218 if (Moving) {
4219 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4220 }
4221
4222 CXXCastPath BasePath;
4223 BasePath.push_back(BaseSpec);
4224 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4225 CK_UncheckedDerivedToBase,
4226 Moving ? VK_XValue : VK_LValue,
4227 &BasePath).get();
4228
4229 InitializationKind InitKind
4230 = InitializationKind::CreateDirect(Constructor->getLocation(),
4231 SourceLocation(), SourceLocation());
4232 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4233 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4234 break;
4235 }
4236 }
4237
4238 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4239 if (BaseInit.isInvalid())
4240 return true;
4241
4242 CXXBaseInit =
4243 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4244 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4245 SourceLocation()),
4246 BaseSpec->isVirtual(),
4247 SourceLocation(),
4248 BaseInit.getAs<Expr>(),
4249 SourceLocation(),
4250 SourceLocation());
4251
4252 return false;
4253}
4254
4255static bool RefersToRValueRef(Expr *MemRef) {
4256 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4257 return Referenced->getType()->isRValueReferenceType();
4258}
4259
4260static bool
4261BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4262 ImplicitInitializerKind ImplicitInitKind,
4263 FieldDecl *Field, IndirectFieldDecl *Indirect,
4264 CXXCtorInitializer *&CXXMemberInit) {
4265 if (Field->isInvalidDecl())
4266 return true;
4267
4268 SourceLocation Loc = Constructor->getLocation();
4269
4270 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4271 bool Moving = ImplicitInitKind == IIK_Move;
4272 ParmVarDecl *Param = Constructor->getParamDecl(0);
4273 QualType ParamType = Param->getType().getNonReferenceType();
4274
4275 // Suppress copying zero-width bitfields.
4276 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
4277 return false;
4278
4279 Expr *MemberExprBase =
4280 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4281 SourceLocation(), Param, false,
4282 Loc, ParamType, VK_LValue, nullptr);
4283
4284 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4285
4286 if (Moving) {
4287 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4288 }
4289
4290 // Build a reference to this field within the parameter.
4291 CXXScopeSpec SS;
4292 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4293 Sema::LookupMemberName);
4294 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4295 : cast<ValueDecl>(Field), AS_public);
4296 MemberLookup.resolveKind();
4297 ExprResult CtorArg
4298 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4299 ParamType, Loc,
4300 /*IsArrow=*/false,
4301 SS,
4302 /*TemplateKWLoc=*/SourceLocation(),
4303 /*FirstQualifierInScope=*/nullptr,
4304 MemberLookup,
4305 /*TemplateArgs=*/nullptr,
4306 /*S*/nullptr);
4307 if (CtorArg.isInvalid())
4308 return true;
4309
4310 // C++11 [class.copy]p15:
4311 // - if a member m has rvalue reference type T&&, it is direct-initialized
4312 // with static_cast<T&&>(x.m);
4313 if (RefersToRValueRef(CtorArg.get())) {
4314 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4315 }
4316
4317 InitializedEntity Entity =
4318 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4319 /*Implicit*/ true)
4320 : InitializedEntity::InitializeMember(Field, nullptr,
4321 /*Implicit*/ true);
4322
4323 // Direct-initialize to use the copy constructor.
4324 InitializationKind InitKind =
4325 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4326
4327 Expr *CtorArgE = CtorArg.getAs<Expr>();
4328 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4329 ExprResult MemberInit =
4330 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4331 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4332 if (MemberInit.isInvalid())
4333 return true;
4334
4335 if (Indirect)
4336 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4337 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4338 else
4339 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4340 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4341 return false;
4342 }
4343
4344 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4345, __PRETTY_FUNCTION__))
4345 "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4345, __PRETTY_FUNCTION__))
;
4346
4347 QualType FieldBaseElementType =
4348 SemaRef.Context.getBaseElementType(Field->getType());
4349
4350 if (FieldBaseElementType->isRecordType()) {
4351 InitializedEntity InitEntity =
4352 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4353 /*Implicit*/ true)
4354 : InitializedEntity::InitializeMember(Field, nullptr,
4355 /*Implicit*/ true);
4356 InitializationKind InitKind =
4357 InitializationKind::CreateDefault(Loc);
4358
4359 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4360 ExprResult MemberInit =
4361 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4362
4363 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4364 if (MemberInit.isInvalid())
4365 return true;
4366
4367 if (Indirect)
4368 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4369 Indirect, Loc,
4370 Loc,
4371 MemberInit.get(),
4372 Loc);
4373 else
4374 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4375 Field, Loc, Loc,
4376 MemberInit.get(),
4377 Loc);
4378 return false;
4379 }
4380
4381 if (!Field->getParent()->isUnion()) {
4382 if (FieldBaseElementType->isReferenceType()) {
4383 SemaRef.Diag(Constructor->getLocation(),
4384 diag::err_uninitialized_member_in_ctor)
4385 << (int)Constructor->isImplicit()
4386 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4387 << 0 << Field->getDeclName();
4388 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4389 return true;
4390 }
4391
4392 if (FieldBaseElementType.isConstQualified()) {
4393 SemaRef.Diag(Constructor->getLocation(),
4394 diag::err_uninitialized_member_in_ctor)
4395 << (int)Constructor->isImplicit()
4396 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4397 << 1 << Field->getDeclName();
4398 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4399 return true;
4400 }
4401 }
4402
4403 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4404 // ARC and Weak:
4405 // Default-initialize Objective-C pointers to NULL.
4406 CXXMemberInit
4407 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4408 Loc, Loc,
4409 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4410 Loc);
4411 return false;
4412 }
4413
4414 // Nothing to initialize.
4415 CXXMemberInit = nullptr;
4416 return false;
4417}
4418
4419namespace {
4420struct BaseAndFieldInfo {
4421 Sema &S;
4422 CXXConstructorDecl *Ctor;
4423 bool AnyErrorsInInits;
4424 ImplicitInitializerKind IIK;
4425 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4426 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4427 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4428
4429 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4430 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4431 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4432 if (Ctor->getInheritedConstructor())
4433 IIK = IIK_Inherit;
4434 else if (Generated && Ctor->isCopyConstructor())
4435 IIK = IIK_Copy;
4436 else if (Generated && Ctor->isMoveConstructor())
4437 IIK = IIK_Move;
4438 else
4439 IIK = IIK_Default;
4440 }
4441
4442 bool isImplicitCopyOrMove() const {
4443 switch (IIK) {
4444 case IIK_Copy:
4445 case IIK_Move:
4446 return true;
4447
4448 case IIK_Default:
4449 case IIK_Inherit:
4450 return false;
4451 }
4452
4453 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4453)
;
4454 }
4455
4456 bool addFieldInitializer(CXXCtorInitializer *Init) {
4457 AllToInit.push_back(Init);
4458
4459 // Check whether this initializer makes the field "used".
4460 if (Init->getInit()->HasSideEffects(S.Context))
4461 S.UnusedPrivateFields.remove(Init->getAnyMember());
4462
4463 return false;
4464 }
4465
4466 bool isInactiveUnionMember(FieldDecl *Field) {
4467 RecordDecl *Record = Field->getParent();
4468 if (!Record->isUnion())
4469 return false;
4470
4471 if (FieldDecl *Active =
4472 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4473 return Active != Field->getCanonicalDecl();
4474
4475 // In an implicit copy or move constructor, ignore any in-class initializer.
4476 if (isImplicitCopyOrMove())
4477 return true;
4478
4479 // If there's no explicit initialization, the field is active only if it
4480 // has an in-class initializer...
4481 if (Field->hasInClassInitializer())
4482 return false;
4483 // ... or it's an anonymous struct or union whose class has an in-class
4484 // initializer.
4485 if (!Field->isAnonymousStructOrUnion())
4486 return true;
4487 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4488 return !FieldRD->hasInClassInitializer();
4489 }
4490
4491 /// \brief Determine whether the given field is, or is within, a union member
4492 /// that is inactive (because there was an initializer given for a different
4493 /// member of the union, or because the union was not initialized at all).
4494 bool isWithinInactiveUnionMember(FieldDecl *Field,
4495 IndirectFieldDecl *Indirect) {
4496 if (!Indirect)
4497 return isInactiveUnionMember(Field);
4498
4499 for (auto *C : Indirect->chain()) {
4500 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4501 if (Field && isInactiveUnionMember(Field))
4502 return true;
4503 }
4504 return false;
4505 }
4506};
4507}
4508
4509/// \brief Determine whether the given type is an incomplete or zero-lenfgth
4510/// array type.
4511static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4512 if (T->isIncompleteArrayType())
4513 return true;
4514
4515 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4516 if (!ArrayT->getSize())
4517 return true;
4518
4519 T = ArrayT->getElementType();
4520 }
4521
4522 return false;
4523}
4524
4525static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4526 FieldDecl *Field,
4527 IndirectFieldDecl *Indirect = nullptr) {
4528 if (Field->isInvalidDecl())
4529 return false;
4530
4531 // Overwhelmingly common case: we have a direct initializer for this field.
4532 if (CXXCtorInitializer *Init =
4533 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4534 return Info.addFieldInitializer(Init);
4535
4536 // C++11 [class.base.init]p8:
4537 // if the entity is a non-static data member that has a
4538 // brace-or-equal-initializer and either
4539 // -- the constructor's class is a union and no other variant member of that
4540 // union is designated by a mem-initializer-id or
4541 // -- the constructor's class is not a union, and, if the entity is a member
4542 // of an anonymous union, no other member of that union is designated by
4543 // a mem-initializer-id,
4544 // the entity is initialized as specified in [dcl.init].
4545 //
4546 // We also apply the same rules to handle anonymous structs within anonymous
4547 // unions.
4548 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4549 return false;
4550
4551 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4552 ExprResult DIE =
4553 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4554 if (DIE.isInvalid())
4555 return true;
4556 CXXCtorInitializer *Init;
4557 if (Indirect)
4558 Init = new (SemaRef.Context)
4559 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4560 SourceLocation(), DIE.get(), SourceLocation());
4561 else
4562 Init = new (SemaRef.Context)
4563 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4564 SourceLocation(), DIE.get(), SourceLocation());
4565 return Info.addFieldInitializer(Init);
4566 }
4567
4568 // Don't initialize incomplete or zero-length arrays.
4569 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4570 return false;
4571
4572 // Don't try to build an implicit initializer if there were semantic
4573 // errors in any of the initializers (and therefore we might be
4574 // missing some that the user actually wrote).
4575 if (Info.AnyErrorsInInits)
4576 return false;
4577
4578 CXXCtorInitializer *Init = nullptr;
4579 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4580 Indirect, Init))
4581 return true;
4582
4583 if (!Init)
4584 return false;
4585
4586 return Info.addFieldInitializer(Init);
4587}
4588
4589bool
4590Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4591 CXXCtorInitializer *Initializer) {
4592 assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast<
void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4592, __PRETTY_FUNCTION__))
;
4593 Constructor->setNumCtorInitializers(1);
4594 CXXCtorInitializer **initializer =
4595 new (Context) CXXCtorInitializer*[1];
4596 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4597 Constructor->setCtorInitializers(initializer);
4598
4599 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4600 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4601 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4602 }
4603
4604 DelegatingCtorDecls.push_back(Constructor);
4605
4606 DiagnoseUninitializedFields(*this, Constructor);
4607
4608 return false;
4609}
4610
4611bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4612 ArrayRef<CXXCtorInitializer *> Initializers) {
4613 if (Constructor->isDependentContext()) {
4614 // Just store the initializers as written, they will be checked during
4615 // instantiation.
4616 if (!Initializers.empty()) {
4617 Constructor->setNumCtorInitializers(Initializers.size());
4618 CXXCtorInitializer **baseOrMemberInitializers =
4619 new (Context) CXXCtorInitializer*[Initializers.size()];
4620 memcpy(baseOrMemberInitializers, Initializers.data(),
4621 Initializers.size() * sizeof(CXXCtorInitializer*));
4622 Constructor->setCtorInitializers(baseOrMemberInitializers);
4623 }
4624
4625 // Let template instantiation know whether we had errors.
4626 if (AnyErrors)
4627 Constructor->setInvalidDecl();
4628
4629 return false;
4630 }
4631
4632 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4633
4634 // We need to build the initializer AST according to order of construction
4635 // and not what user specified in the Initializers list.
4636 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4637 if (!ClassDecl)
4638 return true;
4639
4640 bool HadError = false;
4641
4642 for (unsigned i = 0; i < Initializers.size(); i++) {
4643 CXXCtorInitializer *Member = Initializers[i];
4644
4645 if (Member->isBaseInitializer())
4646 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4647 else {
4648 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4649
4650 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4651 for (auto *C : F->chain()) {
4652 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4653 if (FD && FD->getParent()->isUnion())
4654 Info.ActiveUnionMember.insert(std::make_pair(
4655 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4656 }
4657 } else if (FieldDecl *FD = Member->getMember()) {
4658 if (FD->getParent()->isUnion())
4659 Info.ActiveUnionMember.insert(std::make_pair(
4660 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4661 }
4662 }
4663 }
4664
4665 // Keep track of the direct virtual bases.
4666 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4667 for (auto &I : ClassDecl->bases()) {
4668 if (I.isVirtual())
4669 DirectVBases.insert(&I);
4670 }
4671
4672 // Push virtual bases before others.
4673 for (auto &VBase : ClassDecl->vbases()) {
4674 if (CXXCtorInitializer *Value
4675 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
4676 // [class.base.init]p7, per DR257:
4677 // A mem-initializer where the mem-initializer-id names a virtual base
4678 // class is ignored during execution of a constructor of any class that
4679 // is not the most derived class.
4680 if (ClassDecl->isAbstract()) {
4681 // FIXME: Provide a fixit to remove the base specifier. This requires
4682 // tracking the location of the associated comma for a base specifier.
4683 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
4684 << VBase.getType() << ClassDecl;
4685 DiagnoseAbstractType(ClassDecl);
4686 }
4687
4688 Info.AllToInit.push_back(Value);
4689 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
4690 // [class.base.init]p8, per DR257:
4691 // If a given [...] base class is not named by a mem-initializer-id
4692 // [...] and the entity is not a virtual base class of an abstract
4693 // class, then [...] the entity is default-initialized.
4694 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
4695 CXXCtorInitializer *CXXBaseInit;
4696 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4697 &VBase, IsInheritedVirtualBase,
4698 CXXBaseInit)) {
4699 HadError = true;
4700 continue;
4701 }
4702
4703 Info.AllToInit.push_back(CXXBaseInit);
4704 }
4705 }
4706
4707 // Non-virtual bases.
4708 for (auto &Base : ClassDecl->bases()) {
4709 // Virtuals are in the virtual base list and already constructed.
4710 if (Base.isVirtual())
4711 continue;
4712
4713 if (CXXCtorInitializer *Value
4714 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
4715 Info.AllToInit.push_back(Value);
4716 } else if (!AnyErrors) {
4717 CXXCtorInitializer *CXXBaseInit;
4718 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4719 &Base, /*IsInheritedVirtualBase=*/false,
4720 CXXBaseInit)) {
4721 HadError = true;
4722 continue;
4723 }
4724
4725 Info.AllToInit.push_back(CXXBaseInit);
4726 }
4727 }
4728
4729 // Fields.
4730 for (auto *Mem : ClassDecl->decls()) {
4731 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4732 // C++ [class.bit]p2:
4733 // A declaration for a bit-field that omits the identifier declares an
4734 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4735 // initialized.
4736 if (F->isUnnamedBitfield())
4737 continue;
4738
4739 // If we're not generating the implicit copy/move constructor, then we'll
4740 // handle anonymous struct/union fields based on their individual
4741 // indirect fields.
4742 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4743 continue;
4744
4745 if (CollectFieldInitializer(*this, Info, F))
4746 HadError = true;
4747 continue;
4748 }
4749
4750 // Beyond this point, we only consider default initialization.
4751 if (Info.isImplicitCopyOrMove())
4752 continue;
4753
4754 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4755 if (F->getType()->isIncompleteArrayType()) {
4756 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4757, __PRETTY_FUNCTION__))
4757 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4757, __PRETTY_FUNCTION__))
;
4758 continue;
4759 }
4760
4761 // Initialize each field of an anonymous struct individually.
4762 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4763 HadError = true;
4764
4765 continue;
4766 }
4767 }
4768
4769 unsigned NumInitializers = Info.AllToInit.size();
4770 if (NumInitializers > 0) {
4771 Constructor->setNumCtorInitializers(NumInitializers);
4772 CXXCtorInitializer **baseOrMemberInitializers =
4773 new (Context) CXXCtorInitializer*[NumInitializers];
4774 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4775 NumInitializers * sizeof(CXXCtorInitializer*));
4776 Constructor->setCtorInitializers(baseOrMemberInitializers);
4777
4778 // Constructors implicitly reference the base and member
4779 // destructors.
4780 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4781 Constructor->getParent());
4782 }
4783
4784 return HadError;
4785}
4786
4787static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4788 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4789 const RecordDecl *RD = RT->getDecl();
4790 if (RD->isAnonymousStructOrUnion()) {
4791 for (auto *Field : RD->fields())
4792 PopulateKeysForFields(Field, IdealInits);
4793 return;
4794 }
4795 }
4796 IdealInits.push_back(Field->getCanonicalDecl());
4797}
4798
4799static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4800 return Context.getCanonicalType(BaseType).getTypePtr();
4801}
4802
4803static const void *GetKeyForMember(ASTContext &Context,
4804 CXXCtorInitializer *Member) {
4805 if (!Member->isAnyMemberInitializer())
4806 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4807
4808 return Member->getAnyMember()->getCanonicalDecl();
4809}
4810
4811static void DiagnoseBaseOrMemInitializerOrder(
4812 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4813 ArrayRef<CXXCtorInitializer *> Inits) {
4814 if (Constructor->getDeclContext()->isDependentContext())
4815 return;
4816
4817 // Don't check initializers order unless the warning is enabled at the
4818 // location of at least one initializer.
4819 bool ShouldCheckOrder = false;
4820 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4821 CXXCtorInitializer *Init = Inits[InitIndex];
4822 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4823 Init->getSourceLocation())) {
4824 ShouldCheckOrder = true;
4825 break;
4826 }
4827 }
4828 if (!ShouldCheckOrder)
4829 return;
4830
4831 // Build the list of bases and members in the order that they'll
4832 // actually be initialized. The explicit initializers should be in
4833 // this same order but may be missing things.
4834 SmallVector<const void*, 32> IdealInitKeys;
4835
4836 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4837
4838 // 1. Virtual bases.
4839 for (const auto &VBase : ClassDecl->vbases())
4840 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4841
4842 // 2. Non-virtual bases.
4843 for (const auto &Base : ClassDecl->bases()) {
4844 if (Base.isVirtual())
4845 continue;
4846 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4847 }
4848
4849 // 3. Direct fields.
4850 for (auto *Field : ClassDecl->fields()) {
4851 if (Field->isUnnamedBitfield())
4852 continue;
4853
4854 PopulateKeysForFields(Field, IdealInitKeys);
4855 }
4856
4857 unsigned NumIdealInits = IdealInitKeys.size();
4858 unsigned IdealIndex = 0;
4859
4860 CXXCtorInitializer *PrevInit = nullptr;
4861 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4862 CXXCtorInitializer *Init = Inits[InitIndex];
4863 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4864
4865 // Scan forward to try to find this initializer in the idealized
4866 // initializers list.
4867 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4868 if (InitKey == IdealInitKeys[IdealIndex])
4869 break;
4870
4871 // If we didn't find this initializer, it must be because we
4872 // scanned past it on a previous iteration. That can only
4873 // happen if we're out of order; emit a warning.
4874 if (IdealIndex == NumIdealInits && PrevInit) {
4875 Sema::SemaDiagnosticBuilder D =
4876 SemaRef.Diag(PrevInit->getSourceLocation(),
4877 diag::warn_initializer_out_of_order);
4878
4879 if (PrevInit->isAnyMemberInitializer())
4880 D << 0 << PrevInit->getAnyMember()->getDeclName();
4881 else
4882 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4883
4884 if (Init->isAnyMemberInitializer())
4885 D << 0 << Init->getAnyMember()->getDeclName();
4886 else
4887 D << 1 << Init->getTypeSourceInfo()->getType();
4888
4889 // Move back to the initializer's location in the ideal list.
4890 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4891 if (InitKey == IdealInitKeys[IdealIndex])
4892 break;
4893
4894 assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4895, __PRETTY_FUNCTION__))
4895 "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4895, __PRETTY_FUNCTION__))
;
4896 }
4897
4898 PrevInit = Init;
4899 }
4900}
4901
4902namespace {
4903bool CheckRedundantInit(Sema &S,
4904 CXXCtorInitializer *Init,
4905 CXXCtorInitializer *&PrevInit) {
4906 if (!PrevInit) {
4907 PrevInit = Init;
4908 return false;
4909 }
4910
4911 if (FieldDecl *Field = Init->getAnyMember())
4912 S.Diag(Init->getSourceLocation(),
4913 diag::err_multiple_mem_initialization)
4914 << Field->getDeclName()
4915 << Init->getSourceRange();
4916 else {
4917 const Type *BaseClass = Init->getBaseClass();
4918 assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast
<void> (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4918, __PRETTY_FUNCTION__))
;
4919 S.Diag(Init->getSourceLocation(),
4920 diag::err_multiple_base_initialization)
4921 << QualType(BaseClass, 0)
4922 << Init->getSourceRange();
4923 }
4924 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4925 << 0 << PrevInit->getSourceRange();
4926
4927 return true;
4928}
4929
4930typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4931typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4932
4933bool CheckRedundantUnionInit(Sema &S,
4934 CXXCtorInitializer *Init,
4935 RedundantUnionMap &Unions) {
4936 FieldDecl *Field = Init->getAnyMember();
4937 RecordDecl *Parent = Field->getParent();
4938 NamedDecl *Child = Field;
4939
4940 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4941 if (Parent->isUnion()) {
4942 UnionEntry &En = Unions[Parent];
4943 if (En.first && En.first != Child) {
4944 S.Diag(Init->getSourceLocation(),
4945 diag::err_multiple_mem_union_initialization)
4946 << Field->getDeclName()
4947 << Init->getSourceRange();
4948 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4949 << 0 << En.second->getSourceRange();
4950 return true;
4951 }
4952 if (!En.first) {
4953 En.first = Child;
4954 En.second = Init;
4955 }
4956 if (!Parent->isAnonymousStructOrUnion())
4957 return false;
4958 }
4959
4960 Child = Parent;
4961 Parent = cast<RecordDecl>(Parent->getDeclContext());
4962 }
4963
4964 return false;
4965}
4966}
4967
4968/// ActOnMemInitializers - Handle the member initializers for a constructor.
4969void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4970 SourceLocation ColonLoc,
4971 ArrayRef<CXXCtorInitializer*> MemInits,
4972 bool AnyErrors) {
4973 if (!ConstructorDecl)
4974 return;
4975
4976 AdjustDeclIfTemplate(ConstructorDecl);
4977
4978 CXXConstructorDecl *Constructor
4979 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
4980
4981 if (!Constructor) {
4982 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
4983 return;
4984 }
4985
4986 // Mapping for the duplicate initializers check.
4987 // For member initializers, this is keyed with a FieldDecl*.
4988 // For base initializers, this is keyed with a Type*.
4989 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
4990
4991 // Mapping for the inconsistent anonymous-union initializers check.
4992 RedundantUnionMap MemberUnions;
4993
4994 bool HadError = false;
4995 for (unsigned i = 0; i < MemInits.size(); i++) {
4996 CXXCtorInitializer *Init = MemInits[i];
4997
4998 // Set the source order index.
4999 Init->setSourceOrder(i);
5000
5001 if (Init->isAnyMemberInitializer()) {
5002 const void *Key = GetKeyForMember(Context, Init);
5003 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5004 CheckRedundantUnionInit(*this, Init, MemberUnions))
5005 HadError = true;
5006 } else if (Init->isBaseInitializer()) {
5007 const void *Key = GetKeyForMember(Context, Init);
5008 if (CheckRedundantInit(*this, Init, Members[Key]))
5009 HadError = true;
5010 } else {
5011 assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void>
(0) : __assert_fail ("Init->isDelegatingInitializer()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5011, __PRETTY_FUNCTION__))
;
5012 // This must be the only initializer
5013 if (MemInits.size() != 1) {
5014 Diag(Init->getSourceLocation(),
5015 diag::err_delegating_initializer_alone)
5016 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5017 // We will treat this as being the only initializer.
5018 }
5019 SetDelegatingInitializer(Constructor, MemInits[i]);
5020 // Return immediately as the initializer is set.
5021 return;
5022 }
5023 }
5024
5025 if (HadError)
5026 return;
5027
5028 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5029
5030 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5031
5032 DiagnoseUninitializedFields(*this, Constructor);
5033}
5034
5035void
5036Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5037 CXXRecordDecl *ClassDecl) {
5038 // Ignore dependent contexts. Also ignore unions, since their members never
5039 // have destructors implicitly called.
5040 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5041 return;
5042
5043 // FIXME: all the access-control diagnostics are positioned on the
5044 // field/base declaration. That's probably good; that said, the
5045 // user might reasonably want to know why the destructor is being
5046 // emitted, and we currently don't say.
5047
5048 // Non-static data members.
5049 for (auto *Field : ClassDecl->fields()) {
5050 if (Field->isInvalidDecl())
5051 continue;
5052
5053 // Don't destroy incomplete or zero-length arrays.
5054 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5055 continue;
5056
5057 QualType FieldType = Context.getBaseElementType(Field->getType());
5058
5059 const RecordType* RT = FieldType->getAs<RecordType>();
5060 if (!RT)
5061 continue;
5062
5063 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5064 if (FieldClassDecl->isInvalidDecl())
5065 continue;
5066 if (FieldClassDecl->hasIrrelevantDestructor())
5067 continue;
5068 // The destructor for an implicit anonymous union member is never invoked.
5069 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5070 continue;
5071
5072 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5073 assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5073, __PRETTY_FUNCTION__))
;
5074 CheckDestructorAccess(Field->getLocation(), Dtor,
5075 PDiag(diag::err_access_dtor_field)
5076 << Field->getDeclName()
5077 << FieldType);
5078
5079 MarkFunctionReferenced(Location, Dtor);
5080 DiagnoseUseOfDecl(Dtor, Location);
5081 }
5082
5083 // We only potentially invoke the destructors of potentially constructed
5084 // subobjects.
5085 bool VisitVirtualBases = !ClassDecl->isAbstract();
5086
5087 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5088
5089 // Bases.
5090 for (const auto &Base : ClassDecl->bases()) {
5091 // Bases are always records in a well-formed non-dependent class.
5092 const RecordType *RT = Base.getType()->getAs<RecordType>();
5093
5094 // Remember direct virtual bases.
5095 if (Base.isVirtual()) {
5096 if (!VisitVirtualBases)
5097 continue;
5098 DirectVirtualBases.insert(RT);
5099 }
5100
5101 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5102 // If our base class is invalid, we probably can't get its dtor anyway.
5103 if (BaseClassDecl->isInvalidDecl())
5104 continue;
5105 if (BaseClassDecl->hasIrrelevantDestructor())
5106 continue;
5107
5108 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5109 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5109, __PRETTY_FUNCTION__))
;
5110
5111 // FIXME: caret should be on the start of the class name
5112 CheckDestructorAccess(Base.getLocStart(), Dtor,
5113 PDiag(diag::err_access_dtor_base)
5114 << Base.getType()
5115 << Base.getSourceRange(),
5116 Context.getTypeDeclType(ClassDecl));
5117
5118 MarkFunctionReferenced(Location, Dtor);
5119 DiagnoseUseOfDecl(Dtor, Location);
5120 }
5121
5122 if (!VisitVirtualBases)
5123 return;
5124
5125 // Virtual bases.
5126 for (const auto &VBase : ClassDecl->vbases()) {
5127 // Bases are always records in a well-formed non-dependent class.
5128 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5129
5130 // Ignore direct virtual bases.
5131 if (DirectVirtualBases.count(RT))
5132 continue;
5133
5134 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5135 // If our base class is invalid, we probably can't get its dtor anyway.
5136 if (BaseClassDecl->isInvalidDecl())
5137 continue;
5138 if (BaseClassDecl->hasIrrelevantDestructor())
5139 continue;
5140
5141 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5142 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5142, __PRETTY_FUNCTION__))
;
5143 if (CheckDestructorAccess(
5144 ClassDecl->getLocation(), Dtor,
5145 PDiag(diag::err_access_dtor_vbase)
5146 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5147 Context.getTypeDeclType(ClassDecl)) ==
5148 AR_accessible) {
5149 CheckDerivedToBaseConversion(
5150 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5151 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5152 SourceRange(), DeclarationName(), nullptr);
5153 }
5154
5155 MarkFunctionReferenced(Location, Dtor);
5156 DiagnoseUseOfDecl(Dtor, Location);
5157 }
5158}
5159
5160void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5161 if (!CDtorDecl)
5162 return;
5163
5164 if (CXXConstructorDecl *Constructor
5165 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5166 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5167 DiagnoseUninitializedFields(*this, Constructor);
5168 }
5169}
5170
5171bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5172 if (!getLangOpts().CPlusPlus)
5173 return false;
5174
5175 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5176 if (!RD)
5177 return false;
5178
5179 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5180 // class template specialization here, but doing so breaks a lot of code.
5181
5182 // We can't answer whether something is abstract until it has a
5183 // definition. If it's currently being defined, we'll walk back
5184 // over all the declarations when we have a full definition.
5185 const CXXRecordDecl *Def = RD->getDefinition();
5186 if (!Def || Def->isBeingDefined())
5187 return false;
5188
5189 return RD->isAbstract();
5190}
5191
5192bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5193 TypeDiagnoser &Diagnoser) {
5194 if (!isAbstractType(Loc, T))
5195 return false;
5196
5197 T = Context.getBaseElementType(T);
5198 Diagnoser.diagnose(*this, Loc, T);
5199 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5200 return true;
5201}
5202
5203void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5204 // Check if we've already emitted the list of pure virtual functions
5205 // for this class.
5206 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5207 return;
5208
5209 // If the diagnostic is suppressed, don't emit the notes. We're only
5210 // going to emit them once, so try to attach them to a diagnostic we're
5211 // actually going to show.
5212 if (Diags.isLastDiagnosticIgnored())
5213 return;
5214
5215 CXXFinalOverriderMap FinalOverriders;
5216 RD->getFinalOverriders(FinalOverriders);
5217
5218 // Keep a set of seen pure methods so we won't diagnose the same method
5219 // more than once.
5220 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5221
5222 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5223 MEnd = FinalOverriders.end();
5224 M != MEnd;
5225 ++M) {
5226 for (OverridingMethods::iterator SO = M->second.begin(),
5227 SOEnd = M->second.end();
5228 SO != SOEnd; ++SO) {
5229 // C++ [class.abstract]p4:
5230 // A class is abstract if it contains or inherits at least one
5231 // pure virtual function for which the final overrider is pure
5232 // virtual.
5233
5234 //
5235 if (SO->second.size() != 1)
5236 continue;
5237
5238 if (!SO->second.front().Method->isPure())
5239 continue;
5240
5241 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5242 continue;
5243
5244 Diag(SO->second.front().Method->getLocation(),
5245 diag::note_pure_virtual_function)
5246 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5247 }
5248 }
5249
5250 if (!PureVirtualClassDiagSet)
5251 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5252 PureVirtualClassDiagSet->insert(RD);
5253}
5254
5255namespace {
5256struct AbstractUsageInfo {
5257 Sema &S;
5258 CXXRecordDecl *Record;
5259 CanQualType AbstractType;
5260 bool Invalid;
5261
5262 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5263 : S(S), Record(Record),
5264 AbstractType(S.Context.getCanonicalType(
5265 S.Context.getTypeDeclType(Record))),
5266 Invalid(false) {}
5267
5268 void DiagnoseAbstractType() {
5269 if (Invalid) return;
5270 S.DiagnoseAbstractType(Record);
5271 Invalid = true;
5272 }
5273
5274 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5275};
5276
5277struct CheckAbstractUsage {
5278 AbstractUsageInfo &Info;
5279 const NamedDecl *Ctx;
5280
5281 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5282 : Info(Info), Ctx(Ctx) {}
5283
5284 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5285 switch (TL.getTypeLocClass()) {
5286#define ABSTRACT_TYPELOC(CLASS, PARENT)
5287#define TYPELOC(CLASS, PARENT) \
5288 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5289#include "clang/AST/TypeLocNodes.def"
5290 }
5291 }
5292
5293 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5294 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5295 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5296 if (!TL.getParam(I))
5297 continue;
5298
5299 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5300 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5301 }
5302 }
5303
5304 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5305 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5306 }
5307
5308 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5309 // Visit the type parameters from a permissive context.
5310 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5311 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5312 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5313 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5314 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5315 // TODO: other template argument types?
5316 }
5317 }
5318
5319 // Visit pointee types from a permissive context.
5320#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5321 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5322 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5323 }
5324 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5325 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5326 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5327 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5328 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5329
5330 /// Handle all the types we haven't given a more specific
5331 /// implementation for above.
5332 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5333 // Every other kind of type that we haven't called out already
5334 // that has an inner type is either (1) sugar or (2) contains that
5335 // inner type in some way as a subobject.
5336 if (TypeLoc Next = TL.getNextTypeLoc())
5337 return Visit(Next, Sel);
5338
5339 // If there's no inner type and we're in a permissive context,
5340 // don't diagnose.
5341 if (Sel == Sema::AbstractNone) return;
5342
5343 // Check whether the type matches the abstract type.
5344 QualType T = TL.getType();
5345 if (T->isArrayType()) {
5346 Sel = Sema::AbstractArrayType;
5347 T = Info.S.Context.getBaseElementType(T);
5348 }
5349 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5350 if (CT != Info.AbstractType) return;
5351
5352 // It matched; do some magic.
5353 if (Sel == Sema::AbstractArrayType) {
5354 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5355 << T << TL.getSourceRange();
5356 } else {
5357 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5358 << Sel << T << TL.getSourceRange();
5359 }
5360 Info.DiagnoseAbstractType();
5361 }
5362};
5363
5364void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5365 Sema::AbstractDiagSelID Sel) {
5366 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5367}
5368
5369}
5370
5371/// Check for invalid uses of an abstract type in a method declaration.
5372static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5373 CXXMethodDecl *MD) {
5374 // No need to do the check on definitions, which require that
5375 // the return/param types be complete.
5376 if (MD->doesThisDeclarationHaveABody())
5377 return;
5378
5379 // For safety's sake, just ignore it if we don't have type source
5380 // information. This should never happen for non-implicit methods,
5381 // but...
5382 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5383 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5384}
5385
5386/// Check for invalid uses of an abstract type within a class definition.
5387static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5388 CXXRecordDecl *RD) {
5389 for (auto *D : RD->decls()) {
5390 if (D->isImplicit()) continue;
5391
5392 // Methods and method templates.
5393 if (isa<CXXMethodDecl>(D)) {
5394 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5395 } else if (isa<FunctionTemplateDecl>(D)) {
5396 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5397 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5398
5399 // Fields and static variables.
5400 } else if (isa<FieldDecl>(D)) {
5401 FieldDecl *FD = cast<FieldDecl>(D);
5402 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5403 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5404 } else if (isa<VarDecl>(D)) {
5405 VarDecl *VD = cast<VarDecl>(D);
5406 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5407 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5408
5409 // Nested classes and class templates.
5410 } else if (isa<CXXRecordDecl>(D)) {
5411 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5412 } else if (isa<ClassTemplateDecl>(D)) {
5413 CheckAbstractClassUsage(Info,
5414 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5415 }
5416 }
5417}
5418
5419static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
5420 Attr *ClassAttr = getDLLAttr(Class);
5421 if (!ClassAttr)
5422 return;
5423
5424 assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast<
void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5424, __PRETTY_FUNCTION__))
;
5425
5426 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5427
5428 if (TSK == TSK_ExplicitInstantiationDeclaration)
5429 // Don't go any further if this is just an explicit instantiation
5430 // declaration.
5431 return;
5432
5433 for (Decl *Member : Class->decls()) {
5434 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5435 if (!MD)
5436 continue;
5437
5438 if (Member->getAttr<DLLExportAttr>()) {
5439 if (MD->isUserProvided()) {
5440 // Instantiate non-default class member functions ...
5441
5442 // .. except for certain kinds of template specializations.
5443 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5444 continue;
5445
5446 S.MarkFunctionReferenced(Class->getLocation(), MD);
5447
5448 // The function will be passed to the consumer when its definition is
5449 // encountered.
5450 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5451 MD->isCopyAssignmentOperator() ||
5452 MD->isMoveAssignmentOperator()) {
5453 // Synthesize and instantiate non-trivial implicit methods, explicitly
5454 // defaulted methods, and the copy and move assignment operators. The
5455 // latter are exported even if they are trivial, because the address of
5456 // an operator can be taken and should compare equal across libraries.
5457 DiagnosticErrorTrap Trap(S.Diags);
5458 S.MarkFunctionReferenced(Class->getLocation(), MD);
5459 if (Trap.hasErrorOccurred()) {
5460 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5461 << Class->getName() << !S.getLangOpts().CPlusPlus11;
5462 break;
5463 }
5464
5465 // There is no later point when we will see the definition of this
5466 // function, so pass it to the consumer now.
5467 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5468 }
5469 }
5470 }
5471}
5472
5473static void checkForMultipleExportedDefaultConstructors(Sema &S,
5474 CXXRecordDecl *Class) {
5475 // Only the MS ABI has default constructor closures, so we don't need to do
5476 // this semantic checking anywhere else.
5477 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5478 return;
5479
5480 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5481 for (Decl *Member : Class->decls()) {
5482 // Look for exported default constructors.
5483 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5484 if (!CD || !CD->isDefaultConstructor())
5485 continue;
5486 auto *Attr = CD->getAttr<DLLExportAttr>();
5487 if (!Attr)
5488 continue;
5489
5490 // If the class is non-dependent, mark the default arguments as ODR-used so
5491 // that we can properly codegen the constructor closure.
5492 if (!Class->isDependentContext()) {
5493 for (ParmVarDecl *PD : CD->parameters()) {
5494 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5495 S.DiscardCleanupsInEvaluationContext();
5496 }
5497 }
5498
5499 if (LastExportedDefaultCtor) {
5500 S.Diag(LastExportedDefaultCtor->getLocation(),
5501 diag::err_attribute_dll_ambiguous_default_ctor)
5502 << Class;
5503 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5504 << CD->getDeclName();
5505 return;
5506 }
5507 LastExportedDefaultCtor = CD;
5508 }
5509}
5510
5511/// \brief Check class-level dllimport/dllexport attribute.
5512void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5513 Attr *ClassAttr = getDLLAttr(Class);
5514
5515 // MSVC inherits DLL attributes to partial class template specializations.
5516 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5517 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5518 if (Attr *TemplateAttr =
5519 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5520 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5521 A->setInherited(true);
5522 ClassAttr = A;
5523 }
5524 }
5525 }
5526
5527 if (!ClassAttr)
5528 return;
5529
5530 if (!Class->isExternallyVisible()) {
5531 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5532 << Class << ClassAttr;
5533 return;
5534 }
5535
5536 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5537 !ClassAttr->isInherited()) {
5538 // Diagnose dll attributes on members of class with dll attribute.
5539 for (Decl *Member : Class->decls()) {
5540 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5541 continue;
5542 InheritableAttr *MemberAttr = getDLLAttr(Member);
5543 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5544 continue;
5545
5546 Diag(MemberAttr->getLocation(),
5547 diag::err_attribute_dll_member_of_dll_class)
5548 << MemberAttr << ClassAttr;
5549 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5550 Member->setInvalidDecl();
5551 }
5552 }
5553
5554 if (Class->getDescribedClassTemplate())
5555 // Don't inherit dll attribute until the template is instantiated.
5556 return;
5557
5558 // The class is either imported or exported.
5559 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5560
5561 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5562
5563 // Ignore explicit dllexport on explicit class template instantiation declarations.
5564 if (ClassExported && !ClassAttr->isInherited() &&
5565 TSK == TSK_ExplicitInstantiationDeclaration) {
5566 Class->dropAttr<DLLExportAttr>();
5567 return;
5568 }
5569
5570 // Force declaration of implicit members so they can inherit the attribute.
5571 ForceDeclarationOfImplicitMembers(Class);
5572
5573 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5574 // seem to be true in practice?
5575
5576 for (Decl *Member : Class->decls()) {
5577 VarDecl *VD = dyn_cast<VarDecl>(Member);
5578 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5579
5580 // Only methods and static fields inherit the attributes.
5581 if (!VD && !MD)
5582 continue;
5583
5584 if (MD) {
5585 // Don't process deleted methods.
5586 if (MD->isDeleted())
5587 continue;
5588
5589 if (MD->isInlined()) {
5590 // MinGW does not import or export inline methods.
5591 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5592 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
5593 continue;
5594
5595 // MSVC versions before 2015 don't export the move assignment operators
5596 // and move constructor, so don't attempt to import/export them if
5597 // we have a definition.
5598 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5599 if ((MD->isMoveAssignmentOperator() ||
5600 (Ctor && Ctor->isMoveConstructor())) &&
5601 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5602 continue;
5603
5604 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5605 // operator is exported anyway.
5606 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5607 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5608 continue;
5609 }
5610 }
5611
5612 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5613 continue;
5614
5615 if (!getDLLAttr(Member)) {
5616 auto *NewAttr =
5617 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5618 NewAttr->setInherited(true);
5619 Member->addAttr(NewAttr);
5620 }
5621 }
5622
5623 if (ClassExported)
5624 DelayedDllExportClasses.push_back(Class);
5625}
5626
5627/// \brief Perform propagation of DLL attributes from a derived class to a
5628/// templated base class for MS compatibility.
5629void Sema::propagateDLLAttrToBaseClassTemplate(
5630 CXXRecordDecl *Class, Attr *ClassAttr,
5631 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
5632 if (getDLLAttr(
5633 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
5634 // If the base class template has a DLL attribute, don't try to change it.
5635 return;
5636 }
5637
5638 auto TSK = BaseTemplateSpec->getSpecializationKind();
5639 if (!getDLLAttr(BaseTemplateSpec) &&
5640 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
5641 TSK == TSK_ImplicitInstantiation)) {
5642 // The template hasn't been instantiated yet (or it has, but only as an
5643 // explicit instantiation declaration or implicit instantiation, which means
5644 // we haven't codegenned any members yet), so propagate the attribute.
5645 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5646 NewAttr->setInherited(true);
5647 BaseTemplateSpec->addAttr(NewAttr);
5648
5649 // If the template is already instantiated, checkDLLAttributeRedeclaration()
5650 // needs to be run again to work see the new attribute. Otherwise this will
5651 // get run whenever the template is instantiated.
5652 if (TSK != TSK_Undeclared)
5653 checkClassLevelDLLAttribute(BaseTemplateSpec);
5654
5655 return;
5656 }
5657
5658 if (getDLLAttr(BaseTemplateSpec)) {
5659 // The template has already been specialized or instantiated with an
5660 // attribute, explicitly or through propagation. We should not try to change
5661 // it.
5662 return;
5663 }
5664
5665 // The template was previously instantiated or explicitly specialized without
5666 // a dll attribute, It's too late for us to add an attribute, so warn that
5667 // this is unsupported.
5668 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
5669 << BaseTemplateSpec->isExplicitSpecialization();
5670 Diag(ClassAttr->getLocation(), diag::note_attribute);
5671 if (BaseTemplateSpec->isExplicitSpecialization()) {
5672 Diag(BaseTemplateSpec->getLocation(),
5673 diag::note_template_class_explicit_specialization_was_here)
5674 << BaseTemplateSpec;
5675 } else {
5676 Diag(BaseTemplateSpec->getPointOfInstantiation(),
5677 diag::note_template_class_instantiation_was_here)
5678 << BaseTemplateSpec;
5679 }
5680}
5681
5682static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
5683 SourceLocation DefaultLoc) {
5684 switch (S.getSpecialMember(MD)) {
5685 case Sema::CXXDefaultConstructor:
5686 S.DefineImplicitDefaultConstructor(DefaultLoc,
5687 cast<CXXConstructorDecl>(MD));
5688 break;
5689 case Sema::CXXCopyConstructor:
5690 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5691 break;
5692 case Sema::CXXCopyAssignment:
5693 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
5694 break;
5695 case Sema::CXXDestructor:
5696 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5697 break;
5698 case Sema::CXXMoveConstructor:
5699 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5700 break;
5701 case Sema::CXXMoveAssignment:
5702 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
5703 break;
5704 case Sema::CXXInvalid:
5705 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5705)
;
5706 }
5707}
5708
5709/// \brief Perform semantic checks on a class definition that has been
5710/// completing, introducing implicitly-declared members, checking for
5711/// abstract types, etc.
5712void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
5713 if (!Record)
5714 return;
5715
5716 if (Record->isAbstract() && !Record->isInvalidDecl()) {
5717 AbstractUsageInfo Info(*this, Record);
5718 CheckAbstractClassUsage(Info, Record);
5719 }
5720
5721 // If this is not an aggregate type and has no user-declared constructor,
5722 // complain about any non-static data members of reference or const scalar
5723 // type, since they will never get initializers.
5724 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
5725 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
5726 !Record->isLambda()) {
5727 bool Complained = false;
5728 for (const auto *F : Record->fields()) {
5729 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
5730 continue;
5731
5732 if (F->getType()->isReferenceType() ||
5733 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
5734 if (!Complained) {
5735 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
5736 << Record->getTagKind() << Record;
5737 Complained = true;
5738 }
5739
5740 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
5741 << F->getType()->isReferenceType()
5742 << F->getDeclName();
5743 }
5744 }
5745 }
5746
5747 if (Record->getIdentifier()) {
5748 // C++ [class.mem]p13:
5749 // If T is the name of a class, then each of the following shall have a
5750 // name different from T:
5751 // - every member of every anonymous union that is a member of class T.
5752 //
5753 // C++ [class.mem]p14:
5754 // In addition, if class T has a user-declared constructor (12.1), every
5755 // non-static data member of class T shall have a name different from T.
5756 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
5757 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
5758 ++I) {
5759 NamedDecl *D = *I;
5760 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
5761 isa<IndirectFieldDecl>(D)) {
5762 Diag(D->getLocation(), diag::err_member_name_of_class)
5763 << D->getDeclName();
5764 break;
5765 }
5766 }
5767 }
5768
5769 // Warn if the class has virtual methods but non-virtual public destructor.
5770 if (Record->isPolymorphic() && !Record->isDependentType()) {
5771 CXXDestructorDecl *dtor = Record->getDestructor();
5772 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
5773 !Record->hasAttr<FinalAttr>())
5774 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
5775 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
5776 }
5777
5778 if (Record->isAbstract()) {
5779 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
5780 Diag(Record->getLocation(), diag::warn_abstract_final_class)
5781 << FA->isSpelledAsSealed();
5782 DiagnoseAbstractType(Record);
5783 }
5784 }
5785
5786 bool HasMethodWithOverrideControl = false,
5787 HasOverridingMethodWithoutOverrideControl = false;
5788 if (!Record->isDependentType()) {
5789 for (auto *M : Record->methods()) {
5790 // See if a method overloads virtual methods in a base
5791 // class without overriding any.
5792 if (!M->isStatic())
5793 DiagnoseHiddenVirtualMethods(M);
5794 if (M->hasAttr<OverrideAttr>())
5795 HasMethodWithOverrideControl = true;
5796 else if (M->size_overridden_methods() > 0)
5797 HasOverridingMethodWithoutOverrideControl = true;
5798 // Check whether the explicitly-defaulted special members are valid.
5799 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
5800 CheckExplicitlyDefaultedSpecialMember(M);
5801
5802 // For an explicitly defaulted or deleted special member, we defer
5803 // determining triviality until the class is complete. That time is now!
5804 CXXSpecialMember CSM = getSpecialMember(M);
5805 if (!M->isImplicit() && !M->isUserProvided()) {
5806 if (CSM != CXXInvalid) {
5807 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
5808
5809 // Inform the class that we've finished declaring this member.
5810 Record->finishedDefaultedOrDeletedMember(M);
5811 }
5812 }
5813
5814 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
5815 M->hasAttr<DLLExportAttr>()) {
5816 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5817 M->isTrivial() &&
5818 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
5819 CSM == CXXDestructor))
5820 M->dropAttr<DLLExportAttr>();
5821
5822 if (M->hasAttr<DLLExportAttr>()) {
5823 DefineImplicitSpecialMember(*this, M, M->getLocation());
5824 ActOnFinishInlineFunctionDef(M);
5825 }
5826 }
5827 }
5828 }
5829
5830 if (HasMethodWithOverrideControl &&
5831 HasOverridingMethodWithoutOverrideControl) {
5832 // At least one method has the 'override' control declared.
5833 // Diagnose all other overridden methods which do not have 'override' specified on them.
5834 for (auto *M : Record->methods())
5835 DiagnoseAbsenceOfOverrideControl(M);
5836 }
5837
5838 // ms_struct is a request to use the same ABI rules as MSVC. Check
5839 // whether this class uses any C++ features that are implemented
5840 // completely differently in MSVC, and if so, emit a diagnostic.
5841 // That diagnostic defaults to an error, but we allow projects to
5842 // map it down to a warning (or ignore it). It's a fairly common
5843 // practice among users of the ms_struct pragma to mass-annotate
5844 // headers, sweeping up a bunch of types that the project doesn't
5845 // really rely on MSVC-compatible layout for. We must therefore
5846 // support "ms_struct except for C++ stuff" as a secondary ABI.
5847 if (Record->isMsStruct(Context) &&
5848 (Record->isPolymorphic() || Record->getNumBases())) {
5849 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
5850 }
5851
5852 checkClassLevelDLLAttribute(Record);
5853}
5854
5855/// Look up the special member function that would be called by a special
5856/// member function for a subobject of class type.
5857///
5858/// \param Class The class type of the subobject.
5859/// \param CSM The kind of special member function.
5860/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
5861/// \param ConstRHS True if this is a copy operation with a const object
5862/// on its RHS, that is, if the argument to the outer special member
5863/// function is 'const' and this is not a field marked 'mutable'.
5864static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
5865 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5866 unsigned FieldQuals, bool ConstRHS) {
5867 unsigned LHSQuals = 0;
5868 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5869 LHSQuals = FieldQuals;
5870
5871 unsigned RHSQuals = FieldQuals;
5872 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5873 RHSQuals = 0;
5874 else if (ConstRHS)
5875 RHSQuals |= Qualifiers::Const;
5876
5877 return S.LookupSpecialMember(Class, CSM,
5878 RHSQuals & Qualifiers::Const,
5879 RHSQuals & Qualifiers::Volatile,
5880 false,
5881 LHSQuals & Qualifiers::Const,
5882 LHSQuals & Qualifiers::Volatile);
5883}
5884
5885class Sema::InheritedConstructorInfo {
5886 Sema &S;
5887 SourceLocation UseLoc;
5888
5889 /// A mapping from the base classes through which the constructor was
5890 /// inherited to the using shadow declaration in that base class (or a null
5891 /// pointer if the constructor was declared in that base class).
5892 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
5893 InheritedFromBases;
5894
5895public:
5896 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
5897 ConstructorUsingShadowDecl *Shadow)
5898 : S(S), UseLoc(UseLoc) {
5899 bool DiagnosedMultipleConstructedBases = false;
5900 CXXRecordDecl *ConstructedBase = nullptr;
5901 UsingDecl *ConstructedBaseUsing = nullptr;
5902
5903 // Find the set of such base class subobjects and check that there's a
5904 // unique constructed subobject.
5905 for (auto *D : Shadow->redecls()) {
5906 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
5907 auto *DNominatedBase = DShadow->getNominatedBaseClass();
5908 auto *DConstructedBase = DShadow->getConstructedBaseClass();
5909
5910 InheritedFromBases.insert(
5911 std::make_pair(DNominatedBase->getCanonicalDecl(),
5912 DShadow->getNominatedBaseClassShadowDecl()));
5913 if (DShadow->constructsVirtualBase())
5914 InheritedFromBases.insert(
5915 std::make_pair(DConstructedBase->getCanonicalDecl(),
5916 DShadow->getConstructedBaseClassShadowDecl()));
5917 else
5918 assert(DNominatedBase == DConstructedBase)((DNominatedBase == DConstructedBase) ? static_cast<void>
(0) : __assert_fail ("DNominatedBase == DConstructedBase", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5918, __PRETTY_FUNCTION__))
;
5919
5920 // [class.inhctor.init]p2:
5921 // If the constructor was inherited from multiple base class subobjects
5922 // of type B, the program is ill-formed.
5923 if (!ConstructedBase) {
5924 ConstructedBase = DConstructedBase;
5925 ConstructedBaseUsing = D->getUsingDecl();
5926 } else if (ConstructedBase != DConstructedBase &&
5927 !Shadow->isInvalidDecl()) {
5928 if (!DiagnosedMultipleConstructedBases) {
5929 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
5930 << Shadow->getTargetDecl();
5931 S.Diag(ConstructedBaseUsing->getLocation(),
5932 diag::note_ambiguous_inherited_constructor_using)
5933 << ConstructedBase;
5934 DiagnosedMultipleConstructedBases = true;
5935 }
5936 S.Diag(D->getUsingDecl()->getLocation(),
5937 diag::note_ambiguous_inherited_constructor_using)
5938 << DConstructedBase;
5939 }
5940 }
5941
5942 if (DiagnosedMultipleConstructedBases)
5943 Shadow->setInvalidDecl();
5944 }
5945
5946 /// Find the constructor to use for inherited construction of a base class,
5947 /// and whether that base class constructor inherits the constructor from a
5948 /// virtual base class (in which case it won't actually invoke it).
5949 std::pair<CXXConstructorDecl *, bool>
5950 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
5951 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
5952 if (It == InheritedFromBases.end())
5953 return std::make_pair(nullptr, false);
5954
5955 // This is an intermediary class.
5956 if (It->second)
5957 return std::make_pair(
5958 S.findInheritingConstructor(UseLoc, Ctor, It->second),
5959 It->second->constructsVirtualBase());
5960
5961 // This is the base class from which the constructor was inherited.
5962 return std::make_pair(Ctor, false);
5963 }
5964};
5965
5966/// Is the special member function which would be selected to perform the
5967/// specified operation on the specified class type a constexpr constructor?
5968static bool
5969specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5970 Sema::CXXSpecialMember CSM, unsigned Quals,
5971 bool ConstRHS,
5972 CXXConstructorDecl *InheritedCtor = nullptr,
5973 Sema::InheritedConstructorInfo *Inherited = nullptr) {
5974 // If we're inheriting a constructor, see if we need to call it for this base
5975 // class.
5976 if (InheritedCtor) {
5977 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5977, __PRETTY_FUNCTION__))
;
5978 auto BaseCtor =
5979 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
5980 if (BaseCtor)
5981 return BaseCtor->isConstexpr();
5982 }
5983
5984 if (CSM == Sema::CXXDefaultConstructor)
5985 return ClassDecl->hasConstexprDefaultConstructor();
5986
5987 Sema::SpecialMemberOverloadResult SMOR =
5988 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
5989 if (!SMOR.getMethod())
5990 // A constructor we wouldn't select can't be "involved in initializing"
5991 // anything.
5992 return true;
5993 return SMOR.getMethod()->isConstexpr();
5994}
5995
5996/// Determine whether the specified special member function would be constexpr
5997/// if it were implicitly defined.
5998static bool defaultedSpecialMemberIsConstexpr(
5999 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6000 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6001 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6002 if (!S.getLangOpts().CPlusPlus11)
6003 return false;
6004
6005 // C++11 [dcl.constexpr]p4:
6006 // In the definition of a constexpr constructor [...]
6007 bool Ctor = true;
6008 switch (CSM) {
6009 case Sema::CXXDefaultConstructor:
6010 if (Inherited)
6011 break;
6012 // Since default constructor lookup is essentially trivial (and cannot
6013 // involve, for instance, template instantiation), we compute whether a
6014 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6015 //
6016 // This is important for performance; we need to know whether the default
6017 // constructor is constexpr to determine whether the type is a literal type.
6018 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6019
6020 case Sema::CXXCopyConstructor:
6021 case Sema::CXXMoveConstructor:
6022 // For copy or move constructors, we need to perform overload resolution.
6023 break;
6024
6025 case Sema::CXXCopyAssignment:
6026 case Sema::CXXMoveAssignment:
6027 if (!S.getLangOpts().CPlusPlus14)
6028 return false;
6029 // In C++1y, we need to perform overload resolution.
6030 Ctor = false;
6031 break;
6032
6033 case Sema::CXXDestructor:
6034 case Sema::CXXInvalid:
6035 return false;
6036 }
6037
6038 // -- if the class is a non-empty union, or for each non-empty anonymous
6039 // union member of a non-union class, exactly one non-static data member
6040 // shall be initialized; [DR1359]
6041 //
6042 // If we squint, this is guaranteed, since exactly one non-static data member
6043 // will be initialized (if the constructor isn't deleted), we just don't know
6044 // which one.
6045 if (Ctor && ClassDecl->isUnion())
6046 return CSM == Sema::CXXDefaultConstructor
6047 ? ClassDecl->hasInClassInitializer() ||
6048 !ClassDecl->hasVariantMembers()
6049 : true;
6050
6051 // -- the class shall not have any virtual base classes;
6052 if (Ctor && ClassDecl->getNumVBases())
6053 return false;
6054
6055 // C++1y [class.copy]p26:
6056 // -- [the class] is a literal type, and
6057 if (!Ctor && !ClassDecl->isLiteral())
6058 return false;
6059
6060 // -- every constructor involved in initializing [...] base class
6061 // sub-objects shall be a constexpr constructor;
6062 // -- the assignment operator selected to copy/move each direct base
6063 // class is a constexpr function, and
6064 for (const auto &B : ClassDecl->bases()) {
6065 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6066 if (!BaseType) continue;
6067
6068 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6069 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6070 InheritedCtor, Inherited))
6071 return false;
6072 }
6073
6074 // -- every constructor involved in initializing non-static data members
6075 // [...] shall be a constexpr constructor;
6076 // -- every non-static data member and base class sub-object shall be
6077 // initialized
6078 // -- for each non-static data member of X that is of class type (or array
6079 // thereof), the assignment operator selected to copy/move that member is
6080 // a constexpr function
6081 for (const auto *F : ClassDecl->fields()) {
6082 if (F->isInvalidDecl())
6083 continue;
6084 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6085 continue;
6086 QualType BaseType = S.Context.getBaseElementType(F->getType());
6087 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6088 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6089 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6090 BaseType.getCVRQualifiers(),
6091 ConstArg && !F->isMutable()))
6092 return false;
6093 } else if (CSM == Sema::CXXDefaultConstructor) {
6094 return false;
6095 }
6096 }
6097
6098 // All OK, it's constexpr!
6099 return true;
6100}
6101
6102static Sema::ImplicitExceptionSpecification
6103ComputeDefaultedSpecialMemberExceptionSpec(
6104 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6105 Sema::InheritedConstructorInfo *ICI);
6106
6107static Sema::ImplicitExceptionSpecification
6108computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
6109 auto CSM = S.getSpecialMember(MD);
6110 if (CSM != Sema::CXXInvalid)
6111 return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr);
6112
6113 auto *CD = cast<CXXConstructorDecl>(MD);
6114 assert(CD->getInheritedConstructor() &&((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6115, __PRETTY_FUNCTION__))
6115 "only special members have implicit exception specs")((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6115, __PRETTY_FUNCTION__))
;
6116 Sema::InheritedConstructorInfo ICI(
6117 S, Loc, CD->getInheritedConstructor().getShadowDecl());
6118 return ComputeDefaultedSpecialMemberExceptionSpec(
6119 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6120}
6121
6122static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6123 CXXMethodDecl *MD) {
6124 FunctionProtoType::ExtProtoInfo EPI;
6125
6126 // Build an exception specification pointing back at this member.
6127 EPI.ExceptionSpec.Type = EST_Unevaluated;
6128 EPI.ExceptionSpec.SourceDecl = MD;
6129
6130 // Set the calling convention to the default for C++ instance methods.
6131 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6132 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6133 /*IsCXXMethod=*/true));
6134 return EPI;
6135}
6136
6137void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
6138 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
6139 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6140 return;
6141
6142 // Evaluate the exception specification.
6143 auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
6144 auto ESI = IES.getExceptionSpec();
6145
6146 // Update the type of the special member to use it.
6147 UpdateExceptionSpec(MD, ESI);
6148
6149 // A user-provided destructor can be defined outside the class. When that
6150 // happens, be sure to update the exception specification on both
6151 // declarations.
6152 const FunctionProtoType *CanonicalFPT =
6153 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
6154 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
6155 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
6156}
6157
6158void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
6159 CXXRecordDecl *RD = MD->getParent();
6160 CXXSpecialMember CSM = getSpecialMember(MD);
6161
6162 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6163, __PRETTY_FUNCTION__))
6163 "not an explicitly-defaulted special member")((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6163, __PRETTY_FUNCTION__))
;
6164
6165 // Whether this was the first-declared instance of the constructor.
6166 // This affects whether we implicitly add an exception spec and constexpr.
6167 bool First = MD == MD->getCanonicalDecl();
6168
6169 bool HadError = false;
6170
6171 // C++11 [dcl.fct.def.default]p1:
6172 // A function that is explicitly defaulted shall
6173 // -- be a special member function (checked elsewhere),
6174 // -- have the same type (except for ref-qualifiers, and except that a
6175 // copy operation can take a non-const reference) as an implicit
6176 // declaration, and
6177 // -- not have default arguments.
6178 unsigned ExpectedParams = 1;
6179 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6180 ExpectedParams = 0;
6181 if (MD->getNumParams() != ExpectedParams) {
6182 // This also checks for default arguments: a copy or move constructor with a
6183 // default argument is classified as a default constructor, and assignment
6184 // operations and destructors can't have default arguments.
6185 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6186 << CSM << MD->getSourceRange();
6187 HadError = true;
6188 } else if (MD->isVariadic()) {
6189 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6190 << CSM << MD->getSourceRange();
6191 HadError = true;
6192 }
6193
6194 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6195
6196 bool CanHaveConstParam = false;
6197 if (CSM == CXXCopyConstructor)
6198 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6199 else if (CSM == CXXCopyAssignment)
6200 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6201
6202 QualType ReturnType = Context.VoidTy;
6203 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6204 // Check for return type matching.
6205 ReturnType = Type->getReturnType();
6206 QualType ExpectedReturnType =
6207 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
6208 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6209 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6210 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
6211 HadError = true;
6212 }
6213
6214 // A defaulted special member cannot have cv-qualifiers.
6215 if (Type->getTypeQuals()) {
6216 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
6217 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
6218 HadError = true;
6219 }
6220 }
6221
6222 // Check for parameter type matching.
6223 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
6224 bool HasConstParam = false;
6225 if (ExpectedParams && ArgType->isReferenceType()) {
6226 // Argument must be reference to possibly-const T.
6227 QualType ReferentType = ArgType->getPointeeType();
6228 HasConstParam = ReferentType.isConstQualified();
6229
6230 if (ReferentType.isVolatileQualified()) {
6231 Diag(MD->getLocation(),
6232 diag::err_defaulted_special_member_volatile_param) << CSM;
6233 HadError = true;
6234 }
6235
6236 if (HasConstParam && !CanHaveConstParam) {
6237 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
6238 Diag(MD->getLocation(),
6239 diag::err_defaulted_special_member_copy_const_param)
6240 << (CSM == CXXCopyAssignment);
6241 // FIXME: Explain why this special member can't be const.
6242 } else {
6243 Diag(MD->getLocation(),
6244 diag::err_defaulted_special_member_move_const_param)
6245 << (CSM == CXXMoveAssignment);
6246 }
6247 HadError = true;
6248 }
6249 } else if (ExpectedParams) {
6250 // A copy assignment operator can take its argument by value, but a
6251 // defaulted one cannot.
6252 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((CSM == CXXCopyAssignment && "unexpected non-ref argument"
) ? static_cast<void> (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6252, __PRETTY_FUNCTION__))
;
6253 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
6254 HadError = true;
6255 }
6256
6257 // C++11 [dcl.fct.def.default]p2:
6258 // An explicitly-defaulted function may be declared constexpr only if it
6259 // would have been implicitly declared as constexpr,
6260 // Do not apply this rule to members of class templates, since core issue 1358
6261 // makes such functions always instantiate to constexpr functions. For
6262 // functions which cannot be constexpr (for non-constructors in C++11 and for
6263 // destructors in C++1y), this is checked elsewhere.
6264 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
6265 HasConstParam);
6266 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
6267 : isa<CXXConstructorDecl>(MD)) &&
6268 MD->isConstexpr() && !Constexpr &&
6269 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
6270 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
6271 // FIXME: Explain why the special member can't be constexpr.
6272 HadError = true;
6273 }
6274
6275 // and may have an explicit exception-specification only if it is compatible
6276 // with the exception-specification on the implicit declaration.
6277 if (Type->hasExceptionSpec()) {
6278 // Delay the check if this is the first declaration of the special member,
6279 // since we may not have parsed some necessary in-class initializers yet.
6280 if (First) {
6281 // If the exception specification needs to be instantiated, do so now,
6282 // before we clobber it with an EST_Unevaluated specification below.
6283 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
6284 InstantiateExceptionSpec(MD->getLocStart(), MD);
6285 Type = MD->getType()->getAs<FunctionProtoType>();
6286 }
6287 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
6288 } else
6289 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
6290 }
6291
6292 // If a function is explicitly defaulted on its first declaration,
6293 if (First) {
6294 // -- it is implicitly considered to be constexpr if the implicit
6295 // definition would be,
6296 MD->setConstexpr(Constexpr);
6297
6298 // -- it is implicitly considered to have the same exception-specification
6299 // as if it had been implicitly declared,
6300 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
6301 EPI.ExceptionSpec.Type = EST_Unevaluated;
6302 EPI.ExceptionSpec.SourceDecl = MD;
6303 MD->setType(Context.getFunctionType(ReturnType,
6304 llvm::makeArrayRef(&ArgType,
6305 ExpectedParams),
6306 EPI));
6307 }
6308
6309 if (ShouldDeleteSpecialMember(MD, CSM)) {
6310 if (First) {
6311 SetDeclDeleted(MD, MD->getLocation());
6312 } else {
6313 // C++11 [dcl.fct.def.default]p4:
6314 // [For a] user-provided explicitly-defaulted function [...] if such a
6315 // function is implicitly defined as deleted, the program is ill-formed.
6316 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
6317 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6318 HadError = true;
6319 }
6320 }
6321
6322 if (HadError)
6323 MD->setInvalidDecl();
6324}
6325
6326/// Check whether the exception specification provided for an
6327/// explicitly-defaulted special member matches the exception specification
6328/// that would have been generated for an implicit special member, per
6329/// C++11 [dcl.fct.def.default]p2.
6330void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
6331 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
6332 // If the exception specification was explicitly specified but hadn't been
6333 // parsed when the method was defaulted, grab it now.
6334 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
6335 SpecifiedType =
6336 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
6337
6338 // Compute the implicit exception specification.
6339 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6340 /*IsCXXMethod=*/true);
6341 FunctionProtoType::ExtProtoInfo EPI(CC);
6342 auto IES = computeImplicitExceptionSpec(*this, MD->getLocation(), MD);
6343 EPI.ExceptionSpec = IES.getExceptionSpec();
6344 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
6345 Context.getFunctionType(Context.VoidTy, None, EPI));
6346
6347 // Ensure that it matches.
6348 CheckEquivalentExceptionSpec(
6349 PDiag(diag::err_incorrect_defaulted_exception_spec)
6350 << getSpecialMember(MD), PDiag(),
6351 ImplicitType, SourceLocation(),
6352 SpecifiedType, MD->getLocation());
6353}
6354
6355void Sema::CheckDelayedMemberExceptionSpecs() {
6356 decltype(DelayedExceptionSpecChecks) Checks;
6357 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
6358
6359 std::swap(Checks, DelayedExceptionSpecChecks);
6360 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
6361
6362 // Perform any deferred checking of exception specifications for virtual
6363 // destructors.
6364 for (auto &Check : Checks)
6365 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
6366
6367 // Check that any explicitly-defaulted methods have exception specifications
6368 // compatible with their implicit exception specifications.
6369 for (auto &Spec : Specs)
6370 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
6371}
6372
6373namespace {
6374/// CRTP base class for visiting operations performed by a special member
6375/// function (or inherited constructor).
6376template<typename Derived>
6377struct SpecialMemberVisitor {
6378 Sema &S;
6379 CXXMethodDecl *MD;
6380 Sema::CXXSpecialMember CSM;
6381 Sema::InheritedConstructorInfo *ICI;
6382
6383 // Properties of the special member, computed for convenience.
6384 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
6385
6386 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6387 Sema::InheritedConstructorInfo *ICI)
6388 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
6389 switch (CSM) {
6390 case Sema::CXXDefaultConstructor:
6391 case Sema::CXXCopyConstructor:
6392 case Sema::CXXMoveConstructor:
6393 IsConstructor = true;
6394 break;
6395 case Sema::CXXCopyAssignment:
6396 case Sema::CXXMoveAssignment:
6397 IsAssignment = true;
6398 break;
6399 case Sema::CXXDestructor:
6400 break;
6401 case Sema::CXXInvalid:
6402 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6402)
;
6403 }
6404
6405 if (MD->getNumParams()) {
6406 if (const ReferenceType *RT =
6407 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
6408 ConstArg = RT->getPointeeType().isConstQualified();
6409 }
6410 }
6411
6412 Derived &getDerived() { return static_cast<Derived&>(*this); }
6413
6414 /// Is this a "move" special member?
6415 bool isMove() const {
6416 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
6417 }
6418
6419 /// Look up the corresponding special member in the given class.
6420 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
6421 unsigned Quals, bool IsMutable) {
6422 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
6423 ConstArg && !IsMutable);
6424 }
6425
6426 /// Look up the constructor for the specified base class to see if it's
6427 /// overridden due to this being an inherited constructor.
6428 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
6429 if (!ICI)
6430 return {};
6431 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6431, __PRETTY_FUNCTION__))
;
6432 auto *BaseCtor =
6433 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
6434 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
6435 return MD;
6436 return {};
6437 }
6438
6439 /// A base or member subobject.
6440 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
6441
6442 /// Get the location to use for a subobject in diagnostics.
6443 static SourceLocation getSubobjectLoc(Subobject Subobj) {
6444 // FIXME: For an indirect virtual base, the direct base leading to
6445 // the indirect virtual base would be a more useful choice.
6446 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
6447 return B->getBaseTypeLoc();
6448 else
6449 return Subobj.get<FieldDecl*>()->getLocation();
6450 }
6451
6452 enum BasesToVisit {
6453 /// Visit all non-virtual (direct) bases.
6454 VisitNonVirtualBases,
6455 /// Visit all direct bases, virtual or not.
6456 VisitDirectBases,
6457 /// Visit all non-virtual bases, and all virtual bases if the class
6458 /// is not abstract.
6459 VisitPotentiallyConstructedBases,
6460 /// Visit all direct or virtual bases.
6461 VisitAllBases
6462 };
6463
6464 // Visit the bases and members of the class.
6465 bool visit(BasesToVisit Bases) {
6466 CXXRecordDecl *RD = MD->getParent();
6467
6468 if (Bases == VisitPotentiallyConstructedBases)
6469 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
6470
6471 for (auto &B : RD->bases())
6472 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
6473 getDerived().visitBase(&B))
6474 return true;
6475
6476 if (Bases == VisitAllBases)
6477 for (auto &B : RD->vbases())
6478 if (getDerived().visitBase(&B))
6479 return true;
6480
6481 for (auto *F : RD->fields())
6482 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
6483 getDerived().visitField(F))
6484 return true;
6485
6486 return false;
6487 }
6488};
6489}
6490
6491namespace {
6492struct SpecialMemberDeletionInfo
6493 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
6494 bool Diagnose;
6495
6496 SourceLocation Loc;
6497
6498 bool AllFieldsAreConst;
6499
6500 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
6501 Sema::CXXSpecialMember CSM,
6502 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
6503 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
6504 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
6505
6506 bool inUnion() const { return MD->getParent()->isUnion(); }
6507
6508 Sema::CXXSpecialMember getEffectiveCSM() {
6509 return ICI ? Sema::CXXInvalid : CSM;
6510 }
6511
6512 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
6513 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
6514
6515 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
6516 bool shouldDeleteForField(FieldDecl *FD);
6517 bool shouldDeleteForAllConstMembers();
6518
6519 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
6520 unsigned Quals);
6521 bool shouldDeleteForSubobjectCall(Subobject Subobj,
6522 Sema::SpecialMemberOverloadResult SMOR,
6523 bool IsDtorCallInCtor);
6524
6525 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
6526};
6527}
6528
6529/// Is the given special member inaccessible when used on the given
6530/// sub-object.
6531bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
6532 CXXMethodDecl *target) {
6533 /// If we're operating on a base class, the object type is the
6534 /// type of this special member.
6535 QualType objectTy;
6536 AccessSpecifier access = target->getAccess();
6537 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
6538 objectTy = S.Context.getTypeDeclType(MD->getParent());
6539 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
6540
6541 // If we're operating on a field, the object type is the type of the field.
6542 } else {
6543 objectTy = S.Context.getTypeDeclType(target->getParent());
6544 }
6545
6546 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
6547}
6548
6549/// Check whether we should delete a special member due to the implicit
6550/// definition containing a call to a special member of a subobject.
6551bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
6552 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
6553 bool IsDtorCallInCtor) {
6554 CXXMethodDecl *Decl = SMOR.getMethod();
6555 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6556
6557 int DiagKind = -1;
6558
6559 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
6560 DiagKind = !Decl ? 0 : 1;
6561 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
6562 DiagKind = 2;
6563 else if (!isAccessible(Subobj, Decl))
6564 DiagKind = 3;
6565 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
6566 !Decl->isTrivial()) {
6567 // A member of a union must have a trivial corresponding special member.
6568 // As a weird special case, a destructor call from a union's constructor
6569 // must be accessible and non-deleted, but need not be trivial. Such a
6570 // destructor is never actually called, but is semantically checked as
6571 // if it were.
6572 DiagKind = 4;
6573 }
6574
6575 if (DiagKind == -1)
6576 return false;
6577
6578 if (Diagnose) {
6579 if (Field) {
6580 S.Diag(Field->getLocation(),
6581 diag::note_deleted_special_member_class_subobject)
6582 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
6583 << Field << DiagKind << IsDtorCallInCtor;
6584 } else {
6585 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
6586 S.Diag(Base->getLocStart(),
6587 diag::note_deleted_special_member_class_subobject)
6588 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6589 << Base->getType() << DiagKind << IsDtorCallInCtor;
6590 }
6591
6592 if (DiagKind == 1)
6593 S.NoteDeletedFunction(Decl);
6594 // FIXME: Explain inaccessibility if DiagKind == 3.
6595 }
6596
6597 return true;
6598}
6599
6600/// Check whether we should delete a special member function due to having a
6601/// direct or virtual base class or non-static data member of class type M.
6602bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
6603 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
6604 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6605 bool IsMutable = Field && Field->isMutable();
6606
6607 // C++11 [class.ctor]p5:
6608 // -- any direct or virtual base class, or non-static data member with no
6609 // brace-or-equal-initializer, has class type M (or array thereof) and
6610 // either M has no default constructor or overload resolution as applied
6611 // to M's default constructor results in an ambiguity or in a function
6612 // that is deleted or inaccessible
6613 // C++11 [class.copy]p11, C++11 [class.copy]p23:
6614 // -- a direct or virtual base class B that cannot be copied/moved because
6615 // overload resolution, as applied to B's corresponding special member,
6616 // results in an ambiguity or a function that is deleted or inaccessible
6617 // from the defaulted special member
6618 // C++11 [class.dtor]p5:
6619 // -- any direct or virtual base class [...] has a type with a destructor
6620 // that is deleted or inaccessible
6621 if (!(CSM == Sema::CXXDefaultConstructor &&
6622 Field && Field->hasInClassInitializer()) &&
6623 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
6624 false))
6625 return true;
6626
6627 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
6628 // -- any direct or virtual base class or non-static data member has a
6629 // type with a destructor that is deleted or inaccessible
6630 if (IsConstructor) {
6631 Sema::SpecialMemberOverloadResult SMOR =
6632 S.LookupSpecialMember(Class, Sema::CXXDestructor,
6633 false, false, false, false, false);
6634 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
6635 return true;
6636 }
6637
6638 return false;
6639}
6640
6641/// Check whether we should delete a special member function due to the class
6642/// having a particular direct or virtual base class.
6643bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
6644 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
6645 // If program is correct, BaseClass cannot be null, but if it is, the error
6646 // must be reported elsewhere.
6647 if (!BaseClass)
6648 return false;
6649 // If we have an inheriting constructor, check whether we're calling an
6650 // inherited constructor instead of a default constructor.
6651 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
6652 if (auto *BaseCtor = SMOR.getMethod()) {
6653 // Note that we do not check access along this path; other than that,
6654 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
6655 // FIXME: Check that the base has a usable destructor! Sink this into
6656 // shouldDeleteForClassSubobject.
6657 if (BaseCtor->isDeleted() && Diagnose) {
6658 S.Diag(Base->getLocStart(),
6659 diag::note_deleted_special_member_class_subobject)
6660 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6661 << Base->getType() << /*Deleted*/1 << /*IsDtorCallInCtor*/false;
6662 S.NoteDeletedFunction(BaseCtor);
6663 }
6664 return BaseCtor->isDeleted();
6665 }
6666 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
6667}
6668
6669/// Check whether we should delete a special member function due to the class
6670/// having a particular non-static data member.
6671bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
6672 QualType FieldType = S.Context.getBaseElementType(FD->getType());
6673 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
6674
6675 if (CSM == Sema::CXXDefaultConstructor) {
6676 // For a default constructor, all references must be initialized in-class
6677 // and, if a union, it must have a non-const member.
6678 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
6679 if (Diagnose)
6680 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6681 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
6682 return true;
6683 }
6684 // C++11 [class.ctor]p5: any non-variant non-static data member of
6685 // const-qualified type (or array thereof) with no
6686 // brace-or-equal-initializer does not have a user-provided default
6687 // constructor.
6688 if (!inUnion() && FieldType.isConstQualified() &&
6689 !FD->hasInClassInitializer() &&
6690 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
6691 if (Diagnose)
6692 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6693 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
6694 return true;
6695 }
6696
6697 if (inUnion() && !FieldType.isConstQualified())
6698 AllFieldsAreConst = false;
6699 } else if (CSM == Sema::CXXCopyConstructor) {
6700 // For a copy constructor, data members must not be of rvalue reference
6701 // type.
6702 if (FieldType->isRValueReferenceType()) {
6703 if (Diagnose)
6704 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
6705 << MD->getParent() << FD << FieldType;
6706 return true;
6707 }
6708 } else if (IsAssignment) {
6709 // For an assignment operator, data members must not be of reference type.
6710 if (FieldType->isReferenceType()) {
6711 if (Diagnose)
6712 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6713 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
6714 return true;
6715 }
6716 if (!FieldRecord && FieldType.isConstQualified()) {
6717 // C++11 [class.copy]p23:
6718 // -- a non-static data member of const non-class type (or array thereof)
6719 if (Diagnose)
6720 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6721 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
6722 return true;
6723 }
6724 }
6725
6726 if (FieldRecord) {
6727 // Some additional restrictions exist on the variant members.
6728 if (!inUnion() && FieldRecord->isUnion() &&
6729 FieldRecord->isAnonymousStructOrUnion()) {
6730 bool AllVariantFieldsAreConst = true;
6731
6732 // FIXME: Handle anonymous unions declared within anonymous unions.
6733 for (auto *UI : FieldRecord->fields()) {
6734 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
6735
6736 if (!UnionFieldType.isConstQualified())
6737 AllVariantFieldsAreConst = false;
6738
6739 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
6740 if (UnionFieldRecord &&
6741 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
6742 UnionFieldType.getCVRQualifiers()))
6743 return true;
6744 }
6745
6746 // At least one member in each anonymous union must be non-const
6747 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
6748 !FieldRecord->field_empty()) {
6749 if (Diagnose)
6750 S.Diag(FieldRecord->getLocation(),
6751 diag::note_deleted_default_ctor_all_const)
6752 << !!ICI << MD->getParent() << /*anonymous union*/1;
6753 return true;
6754 }
6755
6756 // Don't check the implicit member of the anonymous union type.
6757 // This is technically non-conformant, but sanity demands it.
6758 return false;
6759 }
6760
6761 if (shouldDeleteForClassSubobject(FieldRecord, FD,
6762 FieldType.getCVRQualifiers()))
6763 return true;
6764 }
6765
6766 return false;
6767}
6768
6769/// C++11 [class.ctor] p5:
6770/// A defaulted default constructor for a class X is defined as deleted if
6771/// X is a union and all of its variant members are of const-qualified type.
6772bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
6773 // This is a silly definition, because it gives an empty union a deleted
6774 // default constructor. Don't do that.
6775 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
6776 bool AnyFields = false;
6777 for (auto *F : MD->getParent()->fields())
6778 if ((AnyFields = !F->isUnnamedBitfield()))
6779 break;
6780 if (!AnyFields)
6781 return false;
6782 if (Diagnose)
6783 S.Diag(MD->getParent()->getLocation(),
6784 diag::note_deleted_default_ctor_all_const)
6785 << !!ICI << MD->getParent() << /*not anonymous union*/0;
6786 return true;
6787 }
6788 return false;
6789}
6790
6791/// Determine whether a defaulted special member function should be defined as
6792/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
6793/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
6794bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
6795 InheritedConstructorInfo *ICI,
6796 bool Diagnose) {
6797 if (MD->isInvalidDecl())
6798 return false;
6799 CXXRecordDecl *RD = MD->getParent();
6800 assert(!RD->isDependentType() && "do deletion after instantiation")((!RD->isDependentType() && "do deletion after instantiation"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDependentType() && \"do deletion after instantiation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6800, __PRETTY_FUNCTION__))
;
6801 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
6802 return false;
6803
6804 // C++11 [expr.lambda.prim]p19:
6805 // The closure type associated with a lambda-expression has a
6806 // deleted (8.4.3) default constructor and a deleted copy
6807 // assignment operator.
6808 if (RD->isLambda() &&
6809 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
6810 if (Diagnose)
6811 Diag(RD->getLocation(), diag::note_lambda_decl);
6812 return true;
6813 }
6814
6815 // For an anonymous struct or union, the copy and assignment special members
6816 // will never be used, so skip the check. For an anonymous union declared at
6817 // namespace scope, the constructor and destructor are used.
6818 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
6819 RD->isAnonymousStructOrUnion())
6820 return false;
6821
6822 // C++11 [class.copy]p7, p18:
6823 // If the class definition declares a move constructor or move assignment
6824 // operator, an implicitly declared copy constructor or copy assignment
6825 // operator is defined as deleted.
6826 if (MD->isImplicit() &&
6827 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
6828 CXXMethodDecl *UserDeclaredMove = nullptr;
6829
6830 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
6831 // deletion of the corresponding copy operation, not both copy operations.
6832 // MSVC 2015 has adopted the standards conforming behavior.
6833 bool DeletesOnlyMatchingCopy =
6834 getLangOpts().MSVCCompat &&
6835 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
6836
6837 if (RD->hasUserDeclaredMoveConstructor() &&
6838 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
6839 if (!Diagnose) return true;
6840
6841 // Find any user-declared move constructor.
6842 for (auto *I : RD->ctors()) {
6843 if (I->isMoveConstructor()) {
6844 UserDeclaredMove = I;
6845 break;
6846 }
6847 }
6848 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6848, __PRETTY_FUNCTION__))
;
6849 } else if (RD->hasUserDeclaredMoveAssignment() &&
6850 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
6851 if (!Diagnose) return true;
6852
6853 // Find any user-declared move assignment operator.
6854 for (auto *I : RD->methods()) {
6855 if (I->isMoveAssignmentOperator()) {
6856 UserDeclaredMove = I;
6857 break;
6858 }
6859 }
6860 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6860, __PRETTY_FUNCTION__))
;
6861 }
6862
6863 if (UserDeclaredMove) {
6864 Diag(UserDeclaredMove->getLocation(),
6865 diag::note_deleted_copy_user_declared_move)
6866 << (CSM == CXXCopyAssignment) << RD
6867 << UserDeclaredMove->isMoveAssignmentOperator();
6868 return true;
6869 }
6870 }
6871
6872 // Do access control from the special member function
6873 ContextRAII MethodContext(*this, MD);
6874
6875 // C++11 [class.dtor]p5:
6876 // -- for a virtual destructor, lookup of the non-array deallocation function
6877 // results in an ambiguity or in a function that is deleted or inaccessible
6878 if (CSM == CXXDestructor && MD->isVirtual()) {
6879 FunctionDecl *OperatorDelete = nullptr;
6880 DeclarationName Name =
6881 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6882 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
6883 OperatorDelete, /*Diagnose*/false)) {
6884 if (Diagnose)
6885 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
6886 return true;
6887 }
6888 }
6889
6890 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
6891
6892 // Per DR1611, do not consider virtual bases of constructors of abstract
6893 // classes, since we are not going to construct them.
6894 // Per DR1658, do not consider virtual bases of destructors of abstract
6895 // classes either.
6896 // Per DR2180, for assignment operators we only assign (and thus only
6897 // consider) direct bases.
6898 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
6899 : SMI.VisitPotentiallyConstructedBases))
6900 return true;
6901
6902 if (SMI.shouldDeleteForAllConstMembers())
6903 return true;
6904
6905 if (getLangOpts().CUDA) {
6906 // We should delete the special member in CUDA mode if target inference
6907 // failed.
6908 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
6909 Diagnose);
6910 }
6911
6912 return false;
6913}
6914
6915/// Perform lookup for a special member of the specified kind, and determine
6916/// whether it is trivial. If the triviality can be determined without the
6917/// lookup, skip it. This is intended for use when determining whether a
6918/// special member of a containing object is trivial, and thus does not ever
6919/// perform overload resolution for default constructors.
6920///
6921/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
6922/// member that was most likely to be intended to be trivial, if any.
6923static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
6924 Sema::CXXSpecialMember CSM, unsigned Quals,
6925 bool ConstRHS, CXXMethodDecl **Selected) {
6926 if (Selected)
6927 *Selected = nullptr;
6928
6929 switch (CSM) {
6930 case Sema::CXXInvalid:
6931 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6931)
;
6932
6933 case Sema::CXXDefaultConstructor:
6934 // C++11 [class.ctor]p5:
6935 // A default constructor is trivial if:
6936 // - all the [direct subobjects] have trivial default constructors
6937 //
6938 // Note, no overload resolution is performed in this case.
6939 if (RD->hasTrivialDefaultConstructor())
6940 return true;
6941
6942 if (Selected) {
6943 // If there's a default constructor which could have been trivial, dig it
6944 // out. Otherwise, if there's any user-provided default constructor, point
6945 // to that as an example of why there's not a trivial one.
6946 CXXConstructorDecl *DefCtor = nullptr;
6947 if (RD->needsImplicitDefaultConstructor())
6948 S.DeclareImplicitDefaultConstructor(RD);
6949 for (auto *CI : RD->ctors()) {
6950 if (!CI->isDefaultConstructor())
6951 continue;
6952 DefCtor = CI;
6953 if (!DefCtor->isUserProvided())
6954 break;
6955 }
6956
6957 *Selected = DefCtor;
6958 }
6959
6960 return false;
6961
6962 case Sema::CXXDestructor:
6963 // C++11 [class.dtor]p5:
6964 // A destructor is trivial if:
6965 // - all the direct [subobjects] have trivial destructors
6966 if (RD->hasTrivialDestructor())
6967 return true;
6968
6969 if (Selected) {
6970 if (RD->needsImplicitDestructor())
6971 S.DeclareImplicitDestructor(RD);
6972 *Selected = RD->getDestructor();
6973 }
6974
6975 return false;
6976
6977 case Sema::CXXCopyConstructor:
6978 // C++11 [class.copy]p12:
6979 // A copy constructor is trivial if:
6980 // - the constructor selected to copy each direct [subobject] is trivial
6981 if (RD->hasTrivialCopyConstructor()) {
6982 if (Quals == Qualifiers::Const)
6983 // We must either select the trivial copy constructor or reach an
6984 // ambiguity; no need to actually perform overload resolution.
6985 return true;
6986 } else if (!Selected) {
6987 return false;
6988 }
6989 // In C++98, we are not supposed to perform overload resolution here, but we
6990 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
6991 // cases like B as having a non-trivial copy constructor:
6992 // struct A { template<typename T> A(T&); };
6993 // struct B { mutable A a; };
6994 goto NeedOverloadResolution;
6995
6996 case Sema::CXXCopyAssignment:
6997 // C++11 [class.copy]p25:
6998 // A copy assignment operator is trivial if:
6999 // - the assignment operator selected to copy each direct [subobject] is
7000 // trivial
7001 if (RD->hasTrivialCopyAssignment()) {
7002 if (Quals == Qualifiers::Const)
7003 return true;
7004 } else if (!Selected) {
7005 return false;
7006 }
7007 // In C++98, we are not supposed to perform overload resolution here, but we
7008 // treat that as a language defect.
7009 goto NeedOverloadResolution;
7010
7011 case Sema::CXXMoveConstructor:
7012 case Sema::CXXMoveAssignment:
7013 NeedOverloadResolution:
7014 Sema::SpecialMemberOverloadResult SMOR =
7015 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
7016
7017 // The standard doesn't describe how to behave if the lookup is ambiguous.
7018 // We treat it as not making the member non-trivial, just like the standard
7019 // mandates for the default constructor. This should rarely matter, because
7020 // the member will also be deleted.
7021 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
7022 return true;
7023
7024 if (!SMOR.getMethod()) {
7025 assert(SMOR.getKind() ==((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7026, __PRETTY_FUNCTION__))
7026 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7026, __PRETTY_FUNCTION__))
;
7027 return false;
7028 }
7029
7030 // We deliberately don't check if we found a deleted special member. We're
7031 // not supposed to!
7032 if (Selected)
7033 *Selected = SMOR.getMethod();
7034 return SMOR.getMethod()->isTrivial();
7035 }
7036
7037 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7037)
;
7038}
7039
7040static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
7041 for (auto *CI : RD->ctors())
7042 if (!CI->isImplicit())
7043 return CI;
7044
7045 // Look for constructor templates.
7046 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
7047 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
7048 if (CXXConstructorDecl *CD =
7049 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
7050 return CD;
7051 }
7052
7053 return nullptr;
7054}
7055
7056/// The kind of subobject we are checking for triviality. The values of this
7057/// enumeration are used in diagnostics.
7058enum TrivialSubobjectKind {
7059 /// The subobject is a base class.
7060 TSK_BaseClass,
7061 /// The subobject is a non-static data member.
7062 TSK_Field,
7063 /// The object is actually the complete object.
7064 TSK_CompleteObject
7065};
7066
7067/// Check whether the special member selected for a given type would be trivial.
7068static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
7069 QualType SubType, bool ConstRHS,
7070 Sema::CXXSpecialMember CSM,
7071 TrivialSubobjectKind Kind,
7072 bool Diagnose) {
7073 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
7074 if (!SubRD)
7075 return true;
7076
7077 CXXMethodDecl *Selected;
7078 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
7079 ConstRHS, Diagnose ? &Selected : nullptr))
7080 return true;
7081
7082 if (Diagnose) {
7083 if (ConstRHS)
7084 SubType.addConst();
7085
7086 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
7087 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
7088 << Kind << SubType.getUnqualifiedType();
7089 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
7090 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
7091 } else if (!Selected)
7092 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
7093 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
7094 else if (Selected->isUserProvided()) {
7095 if (Kind == TSK_CompleteObject)
7096 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
7097 << Kind << SubType.getUnqualifiedType() << CSM;
7098 else {
7099 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
7100 << Kind << SubType.getUnqualifiedType() << CSM;
7101 S.Diag(Selected->getLocation(), diag::note_declared_at);
7102 }
7103 } else {
7104 if (Kind != TSK_CompleteObject)
7105 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
7106 << Kind << SubType.getUnqualifiedType() << CSM;
7107
7108 // Explain why the defaulted or deleted special member isn't trivial.
7109 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
7110 }
7111 }
7112
7113 return false;
7114}
7115
7116/// Check whether the members of a class type allow a special member to be
7117/// trivial.
7118static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
7119 Sema::CXXSpecialMember CSM,
7120 bool ConstArg, bool Diagnose) {
7121 for (const auto *FI : RD->fields()) {
7122 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
7123 continue;
7124
7125 QualType FieldType = S.Context.getBaseElementType(FI->getType());
7126
7127 // Pretend anonymous struct or union members are members of this class.
7128 if (FI->isAnonymousStructOrUnion()) {
7129 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
7130 CSM, ConstArg, Diagnose))
7131 return false;
7132 continue;
7133 }
7134
7135 // C++11 [class.ctor]p5:
7136 // A default constructor is trivial if [...]
7137 // -- no non-static data member of its class has a
7138 // brace-or-equal-initializer
7139 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
7140 if (Diagnose)
7141 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
7142 return false;
7143 }
7144
7145 // Objective C ARC 4.3.5:
7146 // [...] nontrivally ownership-qualified types are [...] not trivially
7147 // default constructible, copy constructible, move constructible, copy
7148 // assignable, move assignable, or destructible [...]
7149 if (FieldType.hasNonTrivialObjCLifetime()) {
7150 if (Diagnose)
7151 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
7152 << RD << FieldType.getObjCLifetime();
7153 return false;
7154 }
7155
7156 bool ConstRHS = ConstArg && !FI->isMutable();
7157 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
7158 CSM, TSK_Field, Diagnose))
7159 return false;
7160 }
7161
7162 return true;
7163}
7164
7165/// Diagnose why the specified class does not have a trivial special member of
7166/// the given kind.
7167void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
7168 QualType Ty = Context.getRecordType(RD);
7169
7170 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
7171 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
7172 TSK_CompleteObject, /*Diagnose*/true);
7173}
7174
7175/// Determine whether a defaulted or deleted special member function is trivial,
7176/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
7177/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
7178bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
7179 bool Diagnose) {
7180 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((!MD->isUserProvided() && CSM != CXXInvalid &&
"not special enough") ? static_cast<void> (0) : __assert_fail
("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7180, __PRETTY_FUNCTION__))
;
7181
7182 CXXRecordDecl *RD = MD->getParent();
7183
7184 bool ConstArg = false;
7185
7186 // C++11 [class.copy]p12, p25: [DR1593]
7187 // A [special member] is trivial if [...] its parameter-type-list is
7188 // equivalent to the parameter-type-list of an implicit declaration [...]
7189 switch (CSM) {
7190 case CXXDefaultConstructor:
7191 case CXXDestructor:
7192 // Trivial default constructors and destructors cannot have parameters.
7193 break;
7194
7195 case CXXCopyConstructor:
7196 case CXXCopyAssignment: {
7197 // Trivial copy operations always have const, non-volatile parameter types.
7198 ConstArg = true;
7199 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7200 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
7201 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
7202 if (Diagnose)
7203 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7204 << Param0->getSourceRange() << Param0->getType()
7205 << Context.getLValueReferenceType(
7206 Context.getRecordType(RD).withConst());
7207 return false;
7208 }
7209 break;
7210 }
7211
7212 case CXXMoveConstructor:
7213 case CXXMoveAssignment: {
7214 // Trivial move operations always have non-cv-qualified parameters.
7215 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7216 const RValueReferenceType *RT =
7217 Param0->getType()->getAs<RValueReferenceType>();
7218 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
7219 if (Diagnose)
7220 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7221 << Param0->getSourceRange() << Param0->getType()
7222 << Context.getRValueReferenceType(Context.getRecordType(RD));
7223 return false;
7224 }
7225 break;
7226 }
7227
7228 case CXXInvalid:
7229 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7229)
;
7230 }
7231
7232 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
7233 if (Diagnose)
7234 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
7235 diag::note_nontrivial_default_arg)
7236 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
7237 return false;
7238 }
7239 if (MD->isVariadic()) {
7240 if (Diagnose)
7241 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
7242 return false;
7243 }
7244
7245 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7246 // A copy/move [constructor or assignment operator] is trivial if
7247 // -- the [member] selected to copy/move each direct base class subobject
7248 // is trivial
7249 //
7250 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7251 // A [default constructor or destructor] is trivial if
7252 // -- all the direct base classes have trivial [default constructors or
7253 // destructors]
7254 for (const auto &BI : RD->bases())
7255 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
7256 ConstArg, CSM, TSK_BaseClass, Diagnose))
7257 return false;
7258
7259 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7260 // A copy/move [constructor or assignment operator] for a class X is
7261 // trivial if
7262 // -- for each non-static data member of X that is of class type (or array
7263 // thereof), the constructor selected to copy/move that member is
7264 // trivial
7265 //
7266 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7267 // A [default constructor or destructor] is trivial if
7268 // -- for all of the non-static data members of its class that are of class
7269 // type (or array thereof), each such class has a trivial [default
7270 // constructor or destructor]
7271 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
7272 return false;
7273
7274 // C++11 [class.dtor]p5:
7275 // A destructor is trivial if [...]
7276 // -- the destructor is not virtual
7277 if (CSM == CXXDestructor && MD->isVirtual()) {
7278 if (Diagnose)
7279 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
7280 return false;
7281 }
7282
7283 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
7284 // A [special member] for class X is trivial if [...]
7285 // -- class X has no virtual functions and no virtual base classes
7286 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
7287 if (!Diagnose)
7288 return false;
7289
7290 if (RD->getNumVBases()) {
7291 // Check for virtual bases. We already know that the corresponding
7292 // member in all bases is trivial, so vbases must all be direct.
7293 CXXBaseSpecifier &BS = *RD->vbases_begin();
7294 assert(BS.isVirtual())((BS.isVirtual()) ? static_cast<void> (0) : __assert_fail
("BS.isVirtual()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7294, __PRETTY_FUNCTION__))
;
7295 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
7296 return false;
7297 }
7298
7299 // Must have a virtual method.
7300 for (const auto *MI : RD->methods()) {
7301 if (MI->isVirtual()) {
7302 SourceLocation MLoc = MI->getLocStart();
7303 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
7304 return false;
7305 }
7306 }
7307
7308 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7308)
;
7309 }
7310
7311 // Looks like it's trivial!
7312 return true;
7313}
7314
7315namespace {
7316struct FindHiddenVirtualMethod {
7317 Sema *S;
7318 CXXMethodDecl *Method;
7319 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
7320 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7321
7322private:
7323 /// Check whether any most overriden method from MD in Methods
7324 static bool CheckMostOverridenMethods(
7325 const CXXMethodDecl *MD,
7326 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
7327 if (MD->size_overridden_methods() == 0)
7328 return Methods.count(MD->getCanonicalDecl());
7329 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7330 E = MD->end_overridden_methods();
7331 I != E; ++I)
7332 if (CheckMostOverridenMethods(*I, Methods))
7333 return true;
7334 return false;
7335 }
7336
7337public:
7338 /// Member lookup function that determines whether a given C++
7339 /// method overloads virtual methods in a base class without overriding any,
7340 /// to be used with CXXRecordDecl::lookupInBases().
7341 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7342 RecordDecl *BaseRecord =
7343 Specifier->getType()->getAs<RecordType>()->getDecl();
7344
7345 DeclarationName Name = Method->getDeclName();
7346 assert(Name.getNameKind() == DeclarationName::Identifier)((Name.getNameKind() == DeclarationName::Identifier) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7346, __PRETTY_FUNCTION__))
;
7347
7348 bool foundSameNameMethod = false;
7349 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
7350 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7351 Path.Decls = Path.Decls.slice(1)) {
7352 NamedDecl *D = Path.Decls.front();
7353 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7354 MD = MD->getCanonicalDecl();
7355 foundSameNameMethod = true;
7356 // Interested only in hidden virtual methods.
7357 if (!MD->isVirtual())
7358 continue;
7359 // If the method we are checking overrides a method from its base
7360 // don't warn about the other overloaded methods. Clang deviates from
7361 // GCC by only diagnosing overloads of inherited virtual functions that
7362 // do not override any other virtual functions in the base. GCC's
7363 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
7364 // function from a base class. These cases may be better served by a
7365 // warning (not specific to virtual functions) on call sites when the
7366 // call would select a different function from the base class, were it
7367 // visible.
7368 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
7369 if (!S->IsOverload(Method, MD, false))
7370 return true;
7371 // Collect the overload only if its hidden.
7372 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
7373 overloadedMethods.push_back(MD);
7374 }
7375 }
7376
7377 if (foundSameNameMethod)
7378 OverloadedMethods.append(overloadedMethods.begin(),
7379 overloadedMethods.end());
7380 return foundSameNameMethod;
7381 }
7382};
7383} // end anonymous namespace
7384
7385/// \brief Add the most overriden methods from MD to Methods
7386static void AddMostOverridenMethods(const CXXMethodDecl *MD,
7387 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
7388 if (MD->size_overridden_methods() == 0)
7389 Methods.insert(MD->getCanonicalDecl());
7390 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7391 E = MD->end_overridden_methods();
7392 I != E; ++I)
7393 AddMostOverridenMethods(*I, Methods);
7394}
7395
7396/// \brief Check if a method overloads virtual methods in a base class without
7397/// overriding any.
7398void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
7399 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7400 if (!MD->getDeclName().isIdentifier())
7401 return;
7402
7403 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
7404 /*bool RecordPaths=*/false,
7405 /*bool DetectVirtual=*/false);
7406 FindHiddenVirtualMethod FHVM;
7407 FHVM.Method = MD;
7408 FHVM.S = this;
7409
7410 // Keep the base methods that were overriden or introduced in the subclass
7411 // by 'using' in a set. A base method not in this set is hidden.
7412 CXXRecordDecl *DC = MD->getParent();
7413 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
7414 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
7415 NamedDecl *ND = *I;
7416 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
7417 ND = shad->getTargetDecl();
7418 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7419 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
7420 }
7421
7422 if (DC->lookupInBases(FHVM, Paths))
7423 OverloadedMethods = FHVM.OverloadedMethods;
7424}
7425
7426void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
7427 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7428 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
7429 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
7430 PartialDiagnostic PD = PDiag(
7431 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
7432 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
7433 Diag(overloadedMD->getLocation(), PD);
7434 }
7435}
7436
7437/// \brief Diagnose methods which overload virtual methods in a base class
7438/// without overriding any.
7439void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
7440 if (MD->isInvalidDecl())
7441 return;
7442
7443 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
7444 return;
7445
7446 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7447 FindHiddenVirtualMethods(MD, OverloadedMethods);
7448 if (!OverloadedMethods.empty()) {
7449 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
7450 << MD << (OverloadedMethods.size() > 1);
7451
7452 NoteHiddenVirtualMethods(MD, OverloadedMethods);
7453 }
7454}
7455
7456void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
7457 Decl *TagDecl,
7458 SourceLocation LBrac,
7459 SourceLocation RBrac,
7460 AttributeList *AttrList) {
7461 if (!TagDecl)
7462 return;
7463
7464 AdjustDeclIfTemplate(TagDecl);
7465
7466 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
7467 if (l->getKind() != AttributeList::AT_Visibility)
7468 continue;
7469 l->setInvalid();
7470 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
7471 l->getName();
7472 }
7473
7474 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
7475 // strict aliasing violation!
7476 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
7477 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
7478
7479 CheckCompletedCXXClass(
7480 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
7481}
7482
7483/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
7484/// special functions, such as the default constructor, copy
7485/// constructor, or destructor, to the given C++ class (C++
7486/// [special]p1). This routine can only be executed just before the
7487/// definition of the class is complete.
7488void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
7489 if (ClassDecl->needsImplicitDefaultConstructor()) {
7490 ++ASTContext::NumImplicitDefaultConstructors;
7491
7492 if (ClassDecl->hasInheritedConstructor())
7493 DeclareImplicitDefaultConstructor(ClassDecl);
7494 }
7495
7496 if (ClassDecl->needsImplicitCopyConstructor()) {
7497 ++ASTContext::NumImplicitCopyConstructors;
7498
7499 // If the properties or semantics of the copy constructor couldn't be
7500 // determined while the class was being declared, force a declaration
7501 // of it now.
7502 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
7503 ClassDecl->hasInheritedConstructor())
7504 DeclareImplicitCopyConstructor(ClassDecl);
7505 // For the MS ABI we need to know whether the copy ctor is deleted. A
7506 // prerequisite for deleting the implicit copy ctor is that the class has a
7507 // move ctor or move assignment that is either user-declared or whose
7508 // semantics are inherited from a subobject. FIXME: We should provide a more
7509 // direct way for CodeGen to ask whether the constructor was deleted.
7510 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
7511 (ClassDecl->hasUserDeclaredMoveConstructor() ||
7512 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7513 ClassDecl->hasUserDeclaredMoveAssignment() ||
7514 ClassDecl->needsOverloadResolutionForMoveAssignment()))
7515 DeclareImplicitCopyConstructor(ClassDecl);
7516 }
7517
7518 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
7519 ++ASTContext::NumImplicitMoveConstructors;
7520
7521 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7522 ClassDecl->hasInheritedConstructor())
7523 DeclareImplicitMoveConstructor(ClassDecl);
7524 }
7525
7526 if (ClassDecl->needsImplicitCopyAssignment()) {
7527 ++ASTContext::NumImplicitCopyAssignmentOperators;
7528
7529 // If we have a dynamic class, then the copy assignment operator may be
7530 // virtual, so we have to declare it immediately. This ensures that, e.g.,
7531 // it shows up in the right place in the vtable and that we diagnose
7532 // problems with the implicit exception specification.
7533 if (ClassDecl->isDynamicClass() ||
7534 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
7535 ClassDecl->hasInheritedAssignment())
7536 DeclareImplicitCopyAssignment(ClassDecl);
7537 }
7538
7539 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
7540 ++ASTContext::NumImplicitMoveAssignmentOperators;
7541
7542 // Likewise for the move assignment operator.
7543 if (ClassDecl->isDynamicClass() ||
7544 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
7545 ClassDecl->hasInheritedAssignment())
7546 DeclareImplicitMoveAssignment(ClassDecl);
7547 }
7548
7549 if (ClassDecl->needsImplicitDestructor()) {
7550 ++ASTContext::NumImplicitDestructors;
7551
7552 // If we have a dynamic class, then the destructor may be virtual, so we
7553 // have to declare the destructor immediately. This ensures that, e.g., it
7554 // shows up in the right place in the vtable and that we diagnose problems
7555 // with the implicit exception specification.
7556 if (ClassDecl->isDynamicClass() ||
7557 ClassDecl->needsOverloadResolutionForDestructor())
7558 DeclareImplicitDestructor(ClassDecl);
7559 }
7560}
7561
7562unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
7563 if (!D)
7564 return 0;
7565
7566 // The order of template parameters is not important here. All names
7567 // get added to the same scope.
7568 SmallVector<TemplateParameterList *, 4> ParameterLists;
7569
7570 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7571 D = TD->getTemplatedDecl();
7572
7573 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
7574 ParameterLists.push_back(PSD->getTemplateParameters());
7575
7576 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
7577 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
7578 ParameterLists.push_back(DD->getTemplateParameterList(i));
7579
7580 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7581 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
7582 ParameterLists.push_back(FTD->getTemplateParameters());
7583 }
7584 }
7585
7586 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
7587 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
7588 ParameterLists.push_back(TD->getTemplateParameterList(i));
7589
7590 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
7591 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
7592 ParameterLists.push_back(CTD->getTemplateParameters());
7593 }
7594 }
7595
7596 unsigned Count = 0;
7597 for (TemplateParameterList *Params : ParameterLists) {
7598 if (Params->size() > 0)
7599 // Ignore explicit specializations; they don't contribute to the template
7600 // depth.
7601 ++Count;
7602 for (NamedDecl *Param : *Params) {
7603 if (Param->getDeclName()) {
7604 S->AddDecl(Param);
7605 IdResolver.AddDecl(Param);
7606 }
7607 }
7608 }
7609
7610 return Count;
7611}
7612
7613void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7614 if (!RecordD) return;
7615 AdjustDeclIfTemplate(RecordD);
7616 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
7617 PushDeclContext(S, Record);
7618}
7619
7620void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7621 if (!RecordD) return;
7622 PopDeclContext();
7623}
7624
7625/// This is used to implement the constant expression evaluation part of the
7626/// attribute enable_if extension. There is nothing in standard C++ which would
7627/// require reentering parameters.
7628void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
7629 if (!Param)
7630 return;
7631
7632 S->AddDecl(Param);
7633 if (Param->getDeclName())
7634 IdResolver.AddDecl(Param);
7635}
7636
7637/// ActOnStartDelayedCXXMethodDeclaration - We have completed
7638/// parsing a top-level (non-nested) C++ class, and we are now
7639/// parsing those parts of the given Method declaration that could
7640/// not be parsed earlier (C++ [class.mem]p2), such as default
7641/// arguments. This action should enter the scope of the given
7642/// Method declaration as if we had just parsed the qualified method
7643/// name. However, it should not bring the parameters into scope;
7644/// that will be performed by ActOnDelayedCXXMethodParameter.
7645void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7646}
7647
7648/// ActOnDelayedCXXMethodParameter - We've already started a delayed
7649/// C++ method declaration. We're (re-)introducing the given
7650/// function parameter into scope for use in parsing later parts of
7651/// the method declaration. For example, we could see an
7652/// ActOnParamDefaultArgument event for this parameter.
7653void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
7654 if (!ParamD)
7655 return;
7656
7657 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
7658
7659 // If this parameter has an unparsed default argument, clear it out
7660 // to make way for the parsed default argument.
7661 if (Param->hasUnparsedDefaultArg())
7662 Param->setDefaultArg(nullptr);
7663
7664 S->AddDecl(Param);
7665 if (Param->getDeclName())
7666 IdResolver.AddDecl(Param);
7667}
7668
7669/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
7670/// processing the delayed method declaration for Method. The method
7671/// declaration is now considered finished. There may be a separate
7672/// ActOnStartOfFunctionDef action later (not necessarily
7673/// immediately!) for this method, if it was also defined inside the
7674/// class body.
7675void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7676 if (!MethodD)
7677 return;
7678
7679 AdjustDeclIfTemplate(MethodD);
7680
7681 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
7682
7683 // Now that we have our default arguments, check the constructor
7684 // again. It could produce additional diagnostics or affect whether
7685 // the class has implicitly-declared destructors, among other
7686 // things.
7687 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
7688 CheckConstructor(Constructor);
7689
7690 // Check the default arguments, which we may have added.
7691 if (!Method->isInvalidDecl())
7692 CheckCXXDefaultArguments(Method);
7693}
7694
7695/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
7696/// the well-formedness of the constructor declarator @p D with type @p
7697/// R. If there are any errors in the declarator, this routine will
7698/// emit diagnostics and set the invalid bit to true. In any case, the type
7699/// will be updated to reflect a well-formed type for the constructor and
7700/// returned.
7701QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
7702 StorageClass &SC) {
7703 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7704
7705 // C++ [class.ctor]p3:
7706 // A constructor shall not be virtual (10.3) or static (9.4). A
7707 // constructor can be invoked for a const, volatile or const
7708 // volatile object. A constructor shall not be declared const,
7709 // volatile, or const volatile (9.3.2).
7710 if (isVirtual) {
7711 if (!D.isInvalidType())
7712 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7713 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
7714 << SourceRange(D.getIdentifierLoc());
7715 D.setInvalidType();
7716 }
7717 if (SC == SC_Static) {
7718 if (!D.isInvalidType())
7719 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7720 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7721 << SourceRange(D.getIdentifierLoc());
7722 D.setInvalidType();
7723 SC = SC_None;
7724 }
7725
7726 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7727 diagnoseIgnoredQualifiers(
7728 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
7729 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
7730 D.getDeclSpec().getRestrictSpecLoc(),
7731 D.getDeclSpec().getAtomicSpecLoc());
7732 D.setInvalidType();
7733 }
7734
7735 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7736 if (FTI.TypeQuals != 0) {
7737 if (FTI.TypeQuals & Qualifiers::Const)
7738 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7739 << "const" << SourceRange(D.getIdentifierLoc());
7740 if (FTI.TypeQuals & Qualifiers::Volatile)
7741 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7742 << "volatile" << SourceRange(D.getIdentifierLoc());
7743 if (FTI.TypeQuals & Qualifiers::Restrict)
7744 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7745 << "restrict" << SourceRange(D.getIdentifierLoc());
7746 D.setInvalidType();
7747 }
7748
7749 // C++0x [class.ctor]p4:
7750 // A constructor shall not be declared with a ref-qualifier.
7751 if (FTI.hasRefQualifier()) {
7752 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
7753 << FTI.RefQualifierIsLValueRef
7754 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7755 D.setInvalidType();
7756 }
7757
7758 // Rebuild the function type "R" without any type qualifiers (in
7759 // case any of the errors above fired) and with "void" as the
7760 // return type, since constructors don't have return types.
7761 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7762 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
7763 return R;
7764
7765 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7766 EPI.TypeQuals = 0;
7767 EPI.RefQualifier = RQ_None;
7768
7769 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
7770}
7771
7772/// CheckConstructor - Checks a fully-formed constructor for
7773/// well-formedness, issuing any diagnostics required. Returns true if
7774/// the constructor declarator is invalid.
7775void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
7776 CXXRecordDecl *ClassDecl
7777 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
7778 if (!ClassDecl)
7779 return Constructor->setInvalidDecl();
7780
7781 // C++ [class.copy]p3:
7782 // A declaration of a constructor for a class X is ill-formed if
7783 // its first parameter is of type (optionally cv-qualified) X and
7784 // either there are no other parameters or else all other
7785 // parameters have default arguments.
7786 if (!Constructor->isInvalidDecl() &&
7787 ((Constructor->getNumParams() == 1) ||
7788 (Constructor->getNumParams() > 1 &&
7789 Constructor->getParamDecl(1)->hasDefaultArg())) &&
7790 Constructor->getTemplateSpecializationKind()
7791 != TSK_ImplicitInstantiation) {
7792 QualType ParamType = Constructor->getParamDecl(0)->getType();
7793 QualType ClassTy = Context.getTagDeclType(ClassDecl);
7794 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
7795 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
7796 const char *ConstRef
7797 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
7798 : " const &";
7799 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
7800 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
7801
7802 // FIXME: Rather that making the constructor invalid, we should endeavor
7803 // to fix the type.
7804 Constructor->setInvalidDecl();
7805 }
7806 }
7807}
7808
7809/// CheckDestructor - Checks a fully-formed destructor definition for
7810/// well-formedness, issuing any diagnostics required. Returns true
7811/// on error.
7812bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
7813 CXXRecordDecl *RD = Destructor->getParent();
7814
7815 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
7816 SourceLocation Loc;
7817
7818 if (!Destructor->isImplicit())
7819 Loc = Destructor->getLocation();
7820 else
7821 Loc = RD->getLocation();
7822
7823 // If we have a virtual destructor, look up the deallocation function
7824 if (FunctionDecl *OperatorDelete =
7825 FindDeallocationFunctionForDestructor(Loc, RD)) {
7826 MarkFunctionReferenced(Loc, OperatorDelete);
7827 Destructor->setOperatorDelete(OperatorDelete);
7828 }
7829 }
7830
7831 return false;
7832}
7833
7834/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
7835/// the well-formednes of the destructor declarator @p D with type @p
7836/// R. If there are any errors in the declarator, this routine will
7837/// emit diagnostics and set the declarator to invalid. Even if this happens,
7838/// will be updated to reflect a well-formed type for the destructor and
7839/// returned.
7840QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
7841 StorageClass& SC) {
7842 // C++ [class.dtor]p1:
7843 // [...] A typedef-name that names a class is a class-name
7844 // (7.1.3); however, a typedef-name that names a class shall not
7845 // be used as the identifier in the declarator for a destructor
7846 // declaration.
7847 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
7848 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
7849 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7850 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
7851 else if (const TemplateSpecializationType *TST =
7852 DeclaratorType->getAs<TemplateSpecializationType>())
7853 if (TST->isTypeAlias())
7854 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7855 << DeclaratorType << 1;
7856
7857 // C++ [class.dtor]p2:
7858 // A destructor is used to destroy objects of its class type. A
7859 // destructor takes no parameters, and no return type can be
7860 // specified for it (not even void). The address of a destructor
7861 // shall not be taken. A destructor shall not be static. A
7862 // destructor can be invoked for a const, volatile or const
7863 // volatile object. A destructor shall not be declared const,
7864 // volatile or const volatile (9.3.2).
7865 if (SC == SC_Static) {
7866 if (!D.isInvalidType())
7867 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
7868 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7869 << SourceRange(D.getIdentifierLoc())
7870 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7871
7872 SC = SC_None;
7873 }
7874 if (!D.isInvalidType()) {
7875 // Destructors don't have return types, but the parser will
7876 // happily parse something like:
7877 //
7878 // class X {
7879 // float ~X();
7880 // };
7881 //
7882 // The return type will be eliminated later.
7883 if (D.getDeclSpec().hasTypeSpecifier())
7884 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
7885 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7886 << SourceRange(D.getIdentifierLoc());
7887 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7888 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
7889 SourceLocation(),
7890 D.getDeclSpec().getConstSpecLoc(),
7891 D.getDeclSpec().getVolatileSpecLoc(),
7892 D.getDeclSpec().getRestrictSpecLoc(),
7893 D.getDeclSpec().getAtomicSpecLoc());
7894 D.setInvalidType();
7895 }
7896 }
7897
7898 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7899 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
7900 if (FTI.TypeQuals & Qualifiers::Const)
7901 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7902 << "const" << SourceRange(D.getIdentifierLoc());
7903 if (FTI.TypeQuals & Qualifiers::Volatile)
7904 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7905 << "volatile" << SourceRange(D.getIdentifierLoc());
7906 if (FTI.TypeQuals & Qualifiers::Restrict)
7907 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7908 << "restrict" << SourceRange(D.getIdentifierLoc());
7909 D.setInvalidType();
7910 }
7911
7912 // C++0x [class.dtor]p2:
7913 // A destructor shall not be declared with a ref-qualifier.
7914 if (FTI.hasRefQualifier()) {
7915 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
7916 << FTI.RefQualifierIsLValueRef
7917 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7918 D.setInvalidType();
7919 }
7920
7921 // Make sure we don't have any parameters.
7922 if (FTIHasNonVoidParameters(FTI)) {
7923 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
7924
7925 // Delete the parameters.
7926 FTI.freeParams();
7927 D.setInvalidType();
7928 }
7929
7930 // Make sure the destructor isn't variadic.
7931 if (FTI.isVariadic) {
7932 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
7933 D.setInvalidType();
7934 }
7935
7936 // Rebuild the function type "R" without any type qualifiers or
7937 // parameters (in case any of the errors above fired) and with
7938 // "void" as the return type, since destructors don't have return
7939 // types.
7940 if (!D.isInvalidType())
7941 return R;
7942
7943 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7944 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7945 EPI.Variadic = false;
7946 EPI.TypeQuals = 0;
7947 EPI.RefQualifier = RQ_None;
7948 return Context.getFunctionType(Context.VoidTy, None, EPI);
7949}
7950
7951static void extendLeft(SourceRange &R, SourceRange Before) {
7952 if (Before.isInvalid())
7953 return;
7954 R.setBegin(Before.getBegin());
7955 if (R.getEnd().isInvalid())
7956 R.setEnd(Before.getEnd());
7957}
7958
7959static void extendRight(SourceRange &R, SourceRange After) {
7960 if (After.isInvalid())
7961 return;
7962 if (R.getBegin().isInvalid())
7963 R.setBegin(After.getBegin());
7964 R.setEnd(After.getEnd());
7965}
7966
7967/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
7968/// well-formednes of the conversion function declarator @p D with
7969/// type @p R. If there are any errors in the declarator, this routine
7970/// will emit diagnostics and return true. Otherwise, it will return
7971/// false. Either way, the type @p R will be updated to reflect a
7972/// well-formed type for the conversion operator.
7973void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
7974 StorageClass& SC) {
7975 // C++ [class.conv.fct]p1:
7976 // Neither parameter types nor return type can be specified. The
7977 // type of a conversion function (8.3.5) is "function taking no
7978 // parameter returning conversion-type-id."
7979 if (SC == SC_Static) {
7980 if (!D.isInvalidType())
7981 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
7982 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7983 << D.getName().getSourceRange();
7984 D.setInvalidType();
7985 SC = SC_None;
7986 }
7987
7988 TypeSourceInfo *ConvTSI = nullptr;
7989 QualType ConvType =
7990 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
7991
7992 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
7993 // Conversion functions don't have return types, but the parser will
7994 // happily parse something like:
7995 //
7996 // class X {
7997 // float operator bool();
7998 // };
7999 //
8000 // The return type will be changed later anyway.
8001 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
8002 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8003 << SourceRange(D.getIdentifierLoc());
8004 D.setInvalidType();
8005 }
8006
8007 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8008
8009 // Make sure we don't have any parameters.
8010 if (Proto->getNumParams() > 0) {
8011 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
8012
8013 // Delete the parameters.
8014 D.getFunctionTypeInfo().freeParams();
8015 D.setInvalidType();
8016 } else if (Proto->isVariadic()) {
8017 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
8018 D.setInvalidType();
8019 }
8020
8021 // Diagnose "&operator bool()" and other such nonsense. This
8022 // is actually a gcc extension which we don't support.
8023 if (Proto->getReturnType() != ConvType) {
8024 bool NeedsTypedef = false;
8025 SourceRange Before, After;
8026
8027 // Walk the chunks and extract information on them for our diagnostic.
8028 bool PastFunctionChunk = false;
8029 for (auto &Chunk : D.type_objects()) {
8030 switch (Chunk.Kind) {
8031 case DeclaratorChunk::Function:
8032 if (!PastFunctionChunk) {
8033 if (Chunk.Fun.HasTrailingReturnType) {
8034 TypeSourceInfo *TRT = nullptr;
8035 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
8036 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
8037 }
8038 PastFunctionChunk = true;
8039 break;
8040 }
8041 // Fall through.
8042 case DeclaratorChunk::Array:
8043 NeedsTypedef = true;
8044 extendRight(After, Chunk.getSourceRange());
8045 break;
8046
8047 case DeclaratorChunk::Pointer:
8048 case DeclaratorChunk::BlockPointer:
8049 case DeclaratorChunk::Reference:
8050 case DeclaratorChunk::MemberPointer:
8051 case DeclaratorChunk::Pipe:
8052 extendLeft(Before, Chunk.getSourceRange());
8053 break;
8054
8055 case DeclaratorChunk::Paren:
8056 extendLeft(Before, Chunk.Loc);
8057 extendRight(After, Chunk.EndLoc);
8058 break;
8059 }
8060 }
8061
8062 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
8063 After.isValid() ? After.getBegin() :
8064 D.getIdentifierLoc();
8065 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
8066 DB << Before << After;
8067
8068 if (!NeedsTypedef) {
8069 DB << /*don't need a typedef*/0;
8070
8071 // If we can provide a correct fix-it hint, do so.
8072 if (After.isInvalid() && ConvTSI) {
8073 SourceLocation InsertLoc =
8074 getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
8075 DB << FixItHint::CreateInsertion(InsertLoc, " ")
8076 << FixItHint::CreateInsertionFromRange(
8077 InsertLoc, CharSourceRange::getTokenRange(Before))
8078 << FixItHint::CreateRemoval(Before);
8079 }
8080 } else if (!Proto->getReturnType()->isDependentType()) {
8081 DB << /*typedef*/1 << Proto->getReturnType();
8082 } else if (getLangOpts().CPlusPlus11) {
8083 DB << /*alias template*/2 << Proto->getReturnType();