Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 13516, column 7
Value stored to 'IsMemberSpecialization' is never read

Annotated Source Code

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "clang/Sema/Template.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/StringExtras.h"
43#include <map>
44#include <set>
45
46using namespace clang;
47
48//===----------------------------------------------------------------------===//
49// CheckDefaultArgumentVisitor
50//===----------------------------------------------------------------------===//
51
52namespace {
53 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
54 /// the default argument of a parameter to determine whether it
55 /// contains any ill-formed subexpressions. For example, this will
56 /// diagnose the use of local variables or parameters within the
57 /// default argument expression.
58 class CheckDefaultArgumentVisitor
59 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
60 Expr *DefaultArg;
61 Sema *S;
62
63 public:
64 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
65 : DefaultArg(defarg), S(s) {}
66
67 bool VisitExpr(Expr *Node);
68 bool VisitDeclRefExpr(DeclRefExpr *DRE);
69 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
70 bool VisitLambdaExpr(LambdaExpr *Lambda);
71 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
72 };
73
74 /// VisitExpr - Visit all of the children of this expression.
75 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
76 bool IsInvalid = false;
77 for (Stmt *SubStmt : Node->children())
78 IsInvalid |= Visit(SubStmt);
79 return IsInvalid;
80 }
81
82 /// VisitDeclRefExpr - Visit a reference to a declaration, to
83 /// determine whether this declaration can be used in the default
84 /// argument expression.
85 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
86 NamedDecl *Decl = DRE->getDecl();
87 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
88 // C++ [dcl.fct.default]p9
89 // Default arguments are evaluated each time the function is
90 // called. The order of evaluation of function arguments is
91 // unspecified. Consequently, parameters of a function shall not
92 // be used in default argument expressions, even if they are not
93 // evaluated. Parameters of a function declared before a default
94 // argument expression are in scope and can hide namespace and
95 // class member names.
96 return S->Diag(DRE->getLocStart(),
97 diag::err_param_default_argument_references_param)
98 << Param->getDeclName() << DefaultArg->getSourceRange();
99 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
100 // C++ [dcl.fct.default]p7
101 // Local variables shall not be used in default argument
102 // expressions.
103 if (VDecl->isLocalVarDecl())
104 return S->Diag(DRE->getLocStart(),
105 diag::err_param_default_argument_references_local)
106 << VDecl->getDeclName() << DefaultArg->getSourceRange();
107 }
108
109 return false;
110 }
111
112 /// VisitCXXThisExpr - Visit a C++ "this" expression.
113 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
114 // C++ [dcl.fct.default]p8:
115 // The keyword this shall not be used in a default argument of a
116 // member function.
117 return S->Diag(ThisE->getLocStart(),
118 diag::err_param_default_argument_references_this)
119 << ThisE->getSourceRange();
120 }
121
122 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
123 bool Invalid = false;
124 for (PseudoObjectExpr::semantics_iterator
125 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
126 Expr *E = *i;
127
128 // Look through bindings.
129 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
130 E = OVE->getSourceExpr();
131 assert(E && "pseudo-object binding without source expression?")(static_cast <bool> (E && "pseudo-object binding without source expression?"
) ? void (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 131, __extension__ __PRETTY_FUNCTION__))
;
132 }
133
134 Invalid |= Visit(E);
135 }
136 return Invalid;
137 }
138
139 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
140 // C++11 [expr.lambda.prim]p13:
141 // A lambda-expression appearing in a default argument shall not
142 // implicitly or explicitly capture any entity.
143 if (Lambda->capture_begin() == Lambda->capture_end())
144 return false;
145
146 return S->Diag(Lambda->getLocStart(),
147 diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
171 EST = EST_BasicNoexcept;
172
173 switch(EST) {
174 // If this function can throw any exceptions, make a note of that.
175 case EST_MSAny:
176 case EST_None:
177 ClearExceptions();
178 ComputedEST = EST;
179 return;
180 // FIXME: If the call to this decl is using any of its default arguments, we
181 // need to search them for potentially-throwing calls.
182 // If this function has a basic noexcept, it doesn't affect the outcome.
183 case EST_BasicNoexcept:
184 return;
185 // If we're still at noexcept(true) and there's a nothrow() callee,
186 // change to that specification.
187 case EST_DynamicNone:
188 if (ComputedEST == EST_BasicNoexcept)
189 ComputedEST = EST_DynamicNone;
190 return;
191 // Check out noexcept specs.
192 case EST_ComputedNoexcept:
193 {
194 FunctionProtoType::NoexceptResult NR =
195 Proto->getNoexceptSpec(Self->Context);
196 assert(NR != FunctionProtoType::NR_NoNoexcept &&(static_cast <bool> (NR != FunctionProtoType::NR_NoNoexcept
&& "Must have noexcept result for EST_ComputedNoexcept."
) ? void (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __extension__ __PRETTY_FUNCTION__))
197 "Must have noexcept result for EST_ComputedNoexcept.")(static_cast <bool> (NR != FunctionProtoType::NR_NoNoexcept
&& "Must have noexcept result for EST_ComputedNoexcept."
) ? void (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __extension__ __PRETTY_FUNCTION__))
;
198 assert(NR != FunctionProtoType::NR_Dependent &&(static_cast <bool> (NR != FunctionProtoType::NR_Dependent
&& "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? void (0) : __assert_fail
("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __extension__ __PRETTY_FUNCTION__))
199 "Should not generate implicit declarations for dependent cases, "(static_cast <bool> (NR != FunctionProtoType::NR_Dependent
&& "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? void (0) : __assert_fail
("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __extension__ __PRETTY_FUNCTION__))
200 "and don't know how to handle them anyway.")(static_cast <bool> (NR != FunctionProtoType::NR_Dependent
&& "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? void (0) : __assert_fail
("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __extension__ __PRETTY_FUNCTION__))
;
201 // noexcept(false) -> no spec on the new function
202 if (NR == FunctionProtoType::NR_Throw) {
203 ClearExceptions();
204 ComputedEST = EST_None;
205 }
206 // noexcept(true) won't change anything either.
207 return;
208 }
209 default:
210 break;
211 }
212 assert(EST == EST_Dynamic && "EST case not considered earlier.")(static_cast <bool> (EST == EST_Dynamic && "EST case not considered earlier."
) ? void (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __extension__ __PRETTY_FUNCTION__))
;
213 assert(ComputedEST != EST_None &&(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 214, __extension__ __PRETTY_FUNCTION__))
214 "Shouldn't collect exceptions when throw-all is guaranteed.")(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 214, __extension__ __PRETTY_FUNCTION__))
;
215 ComputedEST = EST_Dynamic;
216 // Record the exceptions in this function's exception specification.
217 for (const auto &E : Proto->exceptions())
218 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
219 Exceptions.push_back(E);
220}
221
222void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
223 if (!E || ComputedEST == EST_MSAny)
224 return;
225
226 // FIXME:
227 //
228 // C++0x [except.spec]p14:
229 // [An] implicit exception-specification specifies the type-id T if and
230 // only if T is allowed by the exception-specification of a function directly
231 // invoked by f's implicit definition; f shall allow all exceptions if any
232 // function it directly invokes allows all exceptions, and f shall allow no
233 // exceptions if every function it directly invokes allows no exceptions.
234 //
235 // Note in particular that if an implicit exception-specification is generated
236 // for a function containing a throw-expression, that specification can still
237 // be noexcept(true).
238 //
239 // Note also that 'directly invoked' is not defined in the standard, and there
240 // is no indication that we should only consider potentially-evaluated calls.
241 //
242 // Ultimately we should implement the intent of the standard: the exception
243 // specification should be the set of exceptions which can be thrown by the
244 // implicit definition. For now, we assume that any non-nothrow expression can
245 // throw any exception.
246
247 if (Self->canThrow(E))
248 ComputedEST = EST_None;
249}
250
251bool
252Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
253 SourceLocation EqualLoc) {
254 if (RequireCompleteType(Param->getLocation(), Param->getType(),
255 diag::err_typecheck_decl_incomplete_type)) {
256 Param->setInvalidDecl();
257 return true;
258 }
259
260 // C++ [dcl.fct.default]p5
261 // A default argument expression is implicitly converted (clause
262 // 4) to the parameter type. The default argument expression has
263 // the same semantic constraints as the initializer expression in
264 // a declaration of a variable of the parameter type, using the
265 // copy-initialization semantics (8.5).
266 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
267 Param);
268 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
269 EqualLoc);
270 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
271 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
272 if (Result.isInvalid())
273 return true;
274 Arg = Result.getAs<Expr>();
275
276 CheckCompletedExpr(Arg, EqualLoc);
277 Arg = MaybeCreateExprWithCleanups(Arg);
278
279 // Okay: add the default argument to the parameter
280 Param->setDefaultArg(Arg);
281
282 // We have already instantiated this parameter; provide each of the
283 // instantiations with the uninstantiated default argument.
284 UnparsedDefaultArgInstantiationsMap::iterator InstPos
285 = UnparsedDefaultArgInstantiations.find(Param);
286 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
287 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
288 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
289
290 // We're done tracking this parameter's instantiations.
291 UnparsedDefaultArgInstantiations.erase(InstPos);
292 }
293
294 return false;
295}
296
297/// ActOnParamDefaultArgument - Check whether the default argument
298/// provided for a function parameter is well-formed. If so, attach it
299/// to the parameter declaration.
300void
301Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
302 Expr *DefaultArg) {
303 if (!param || !DefaultArg)
304 return;
305
306 ParmVarDecl *Param = cast<ParmVarDecl>(param);
307 UnparsedDefaultArgLocs.erase(Param);
308
309 // Default arguments are only permitted in C++
310 if (!getLangOpts().CPlusPlus) {
311 Diag(EqualLoc, diag::err_param_default_argument)
312 << DefaultArg->getSourceRange();
313 Param->setInvalidDecl();
314 return;
315 }
316
317 // Check for unexpanded parameter packs.
318 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
319 Param->setInvalidDecl();
320 return;
321 }
322
323 // C++11 [dcl.fct.default]p3
324 // A default argument expression [...] shall not be specified for a
325 // parameter pack.
326 if (Param->isParameterPack()) {
327 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
328 << DefaultArg->getSourceRange();
329 return;
330 }
331
332 // Check that the default argument is well-formed
333 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
334 if (DefaultArgChecker.Visit(DefaultArg)) {
335 Param->setInvalidDecl();
336 return;
337 }
338
339 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
340}
341
342/// ActOnParamUnparsedDefaultArgument - We've seen a default
343/// argument for a function parameter, but we can't parse it yet
344/// because we're inside a class definition. Note that this default
345/// argument will be parsed later.
346void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
347 SourceLocation EqualLoc,
348 SourceLocation ArgLoc) {
349 if (!param)
350 return;
351
352 ParmVarDecl *Param = cast<ParmVarDecl>(param);
353 Param->setUnparsedDefaultArg();
354 UnparsedDefaultArgLocs[Param] = ArgLoc;
355}
356
357/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
358/// the default argument for the parameter param failed.
359void Sema::ActOnParamDefaultArgumentError(Decl *param,
360 SourceLocation EqualLoc) {
361 if (!param)
362 return;
363
364 ParmVarDecl *Param = cast<ParmVarDecl>(param);
365 Param->setInvalidDecl();
366 UnparsedDefaultArgLocs.erase(Param);
367 Param->setDefaultArg(new(Context)
368 OpaqueValueExpr(EqualLoc,
369 Param->getType().getNonReferenceType(),
370 VK_RValue));
371}
372
373/// CheckExtraCXXDefaultArguments - Check for any extra default
374/// arguments in the declarator, which is not a function declaration
375/// or definition and therefore is not permitted to have default
376/// arguments. This routine should be invoked for every declarator
377/// that is not a function declaration or definition.
378void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
379 // C++ [dcl.fct.default]p3
380 // A default argument expression shall be specified only in the
381 // parameter-declaration-clause of a function declaration or in a
382 // template-parameter (14.1). It shall not be specified for a
383 // parameter pack. If it is specified in a
384 // parameter-declaration-clause, it shall not occur within a
385 // declarator or abstract-declarator of a parameter-declaration.
386 bool MightBeFunction = D.isFunctionDeclarationContext();
387 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
388 DeclaratorChunk &chunk = D.getTypeObject(i);
389 if (chunk.Kind == DeclaratorChunk::Function) {
390 if (MightBeFunction) {
391 // This is a function declaration. It can have default arguments, but
392 // keep looking in case its return type is a function type with default
393 // arguments.
394 MightBeFunction = false;
395 continue;
396 }
397 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
398 ++argIdx) {
399 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
400 if (Param->hasUnparsedDefaultArg()) {
401 std::unique_ptr<CachedTokens> Toks =
402 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
403 SourceRange SR;
404 if (Toks->size() > 1)
405 SR = SourceRange((*Toks)[1].getLocation(),
406 Toks->back().getLocation());
407 else
408 SR = UnparsedDefaultArgLocs[Param];
409 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410 << SR;
411 } else if (Param->getDefaultArg()) {
412 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
413 << Param->getDefaultArg()->getSourceRange();
414 Param->setDefaultArg(nullptr);
415 }
416 }
417 } else if (chunk.Kind != DeclaratorChunk::Paren) {
418 MightBeFunction = false;
419 }
420 }
421}
422
423static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
424 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
425 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
426 if (!PVD->hasDefaultArg())
427 return false;
428 if (!PVD->hasInheritedDefaultArg())
429 return true;
430 }
431 return false;
432}
433
434/// MergeCXXFunctionDecl - Merge two declarations of the same C++
435/// function, once we already know that they have the same
436/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
437/// error, false otherwise.
438bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
439 Scope *S) {
440 bool Invalid = false;
441
442 // The declaration context corresponding to the scope is the semantic
443 // parent, unless this is a local function declaration, in which case
444 // it is that surrounding function.
445 DeclContext *ScopeDC = New->isLocalExternDecl()
446 ? New->getLexicalDeclContext()
447 : New->getDeclContext();
448
449 // Find the previous declaration for the purpose of default arguments.
450 FunctionDecl *PrevForDefaultArgs = Old;
451 for (/**/; PrevForDefaultArgs;
452 // Don't bother looking back past the latest decl if this is a local
453 // extern declaration; nothing else could work.
454 PrevForDefaultArgs = New->isLocalExternDecl()
455 ? nullptr
456 : PrevForDefaultArgs->getPreviousDecl()) {
457 // Ignore hidden declarations.
458 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
459 continue;
460
461 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
462 !New->isCXXClassMember()) {
463 // Ignore default arguments of old decl if they are not in
464 // the same scope and this is not an out-of-line definition of
465 // a member function.
466 continue;
467 }
468
469 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
470 // If only one of these is a local function declaration, then they are
471 // declared in different scopes, even though isDeclInScope may think
472 // they're in the same scope. (If both are local, the scope check is
473 // sufficient, and if neither is local, then they are in the same scope.)
474 continue;
475 }
476
477 // We found the right previous declaration.
478 break;
479 }
480
481 // C++ [dcl.fct.default]p4:
482 // For non-template functions, default arguments can be added in
483 // later declarations of a function in the same
484 // scope. Declarations in different scopes have completely
485 // distinct sets of default arguments. That is, declarations in
486 // inner scopes do not acquire default arguments from
487 // declarations in outer scopes, and vice versa. In a given
488 // function declaration, all parameters subsequent to a
489 // parameter with a default argument shall have default
490 // arguments supplied in this or previous declarations. A
491 // default argument shall not be redefined by a later
492 // declaration (not even to the same value).
493 //
494 // C++ [dcl.fct.default]p6:
495 // Except for member functions of class templates, the default arguments
496 // in a member function definition that appears outside of the class
497 // definition are added to the set of default arguments provided by the
498 // member function declaration in the class definition.
499 for (unsigned p = 0, NumParams = PrevForDefaultArgs
500 ? PrevForDefaultArgs->getNumParams()
501 : 0;
502 p < NumParams; ++p) {
503 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
504 ParmVarDecl *NewParam = New->getParamDecl(p);
505
506 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
507 bool NewParamHasDfl = NewParam->hasDefaultArg();
508
509 if (OldParamHasDfl && NewParamHasDfl) {
510 unsigned DiagDefaultParamID =
511 diag::err_param_default_argument_redefinition;
512
513 // MSVC accepts that default parameters be redefined for member functions
514 // of template class. The new default parameter's value is ignored.
515 Invalid = true;
516 if (getLangOpts().MicrosoftExt) {
517 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
518 if (MD && MD->getParent()->getDescribedClassTemplate()) {
519 // Merge the old default argument into the new parameter.
520 NewParam->setHasInheritedDefaultArg();
521 if (OldParam->hasUninstantiatedDefaultArg())
522 NewParam->setUninstantiatedDefaultArg(
523 OldParam->getUninstantiatedDefaultArg());
524 else
525 NewParam->setDefaultArg(OldParam->getInit());
526 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
527 Invalid = false;
528 }
529 }
530
531 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
532 // hint here. Alternatively, we could walk the type-source information
533 // for NewParam to find the last source location in the type... but it
534 // isn't worth the effort right now. This is the kind of test case that
535 // is hard to get right:
536 // int f(int);
537 // void g(int (*fp)(int) = f);
538 // void g(int (*fp)(int) = &f);
539 Diag(NewParam->getLocation(), DiagDefaultParamID)
540 << NewParam->getDefaultArgRange();
541
542 // Look for the function declaration where the default argument was
543 // actually written, which may be a declaration prior to Old.
544 for (auto Older = PrevForDefaultArgs;
545 OldParam->hasInheritedDefaultArg(); /**/) {
546 Older = Older->getPreviousDecl();
547 OldParam = Older->getParamDecl(p);
548 }
549
550 Diag(OldParam->getLocation(), diag::note_previous_definition)
551 << OldParam->getDefaultArgRange();
552 } else if (OldParamHasDfl) {
553 // Merge the old default argument into the new parameter unless the new
554 // function is a friend declaration in a template class. In the latter
555 // case the default arguments will be inherited when the friend
556 // declaration will be instantiated.
557 if (New->getFriendObjectKind() == Decl::FOK_None ||
558 !New->getLexicalDeclContext()->isDependentContext()) {
559 // It's important to use getInit() here; getDefaultArg()
560 // strips off any top-level ExprWithCleanups.
561 NewParam->setHasInheritedDefaultArg();
562 if (OldParam->hasUnparsedDefaultArg())
563 NewParam->setUnparsedDefaultArg();
564 else if (OldParam->hasUninstantiatedDefaultArg())
565 NewParam->setUninstantiatedDefaultArg(
566 OldParam->getUninstantiatedDefaultArg());
567 else
568 NewParam->setDefaultArg(OldParam->getInit());
569 }
570 } else if (NewParamHasDfl) {
571 if (New->getDescribedFunctionTemplate()) {
572 // Paragraph 4, quoted above, only applies to non-template functions.
573 Diag(NewParam->getLocation(),
574 diag::err_param_default_argument_template_redecl)
575 << NewParam->getDefaultArgRange();
576 Diag(PrevForDefaultArgs->getLocation(),
577 diag::note_template_prev_declaration)
578 << false;
579 } else if (New->getTemplateSpecializationKind()
580 != TSK_ImplicitInstantiation &&
581 New->getTemplateSpecializationKind() != TSK_Undeclared) {
582 // C++ [temp.expr.spec]p21:
583 // Default function arguments shall not be specified in a declaration
584 // or a definition for one of the following explicit specializations:
585 // - the explicit specialization of a function template;
586 // - the explicit specialization of a member function template;
587 // - the explicit specialization of a member function of a class
588 // template where the class template specialization to which the
589 // member function specialization belongs is implicitly
590 // instantiated.
591 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
592 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
593 << New->getDeclName()
594 << NewParam->getDefaultArgRange();
595 } else if (New->getDeclContext()->isDependentContext()) {
596 // C++ [dcl.fct.default]p6 (DR217):
597 // Default arguments for a member function of a class template shall
598 // be specified on the initial declaration of the member function
599 // within the class template.
600 //
601 // Reading the tea leaves a bit in DR217 and its reference to DR205
602 // leads me to the conclusion that one cannot add default function
603 // arguments for an out-of-line definition of a member function of a
604 // dependent type.
605 int WhichKind = 2;
606 if (CXXRecordDecl *Record
607 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
608 if (Record->getDescribedClassTemplate())
609 WhichKind = 0;
610 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
611 WhichKind = 1;
612 else
613 WhichKind = 2;
614 }
615
616 Diag(NewParam->getLocation(),
617 diag::err_param_default_argument_member_template_redecl)
618 << WhichKind
619 << NewParam->getDefaultArgRange();
620 }
621 }
622 }
623
624 // DR1344: If a default argument is added outside a class definition and that
625 // default argument makes the function a special member function, the program
626 // is ill-formed. This can only happen for constructors.
627 if (isa<CXXConstructorDecl>(New) &&
628 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
629 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
630 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
631 if (NewSM != OldSM) {
632 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
633 assert(NewParam->hasDefaultArg())(static_cast <bool> (NewParam->hasDefaultArg()) ? void
(0) : __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 633, __extension__ __PRETTY_FUNCTION__))
;
634 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
635 << NewParam->getDefaultArgRange() << NewSM;
636 Diag(Old->getLocation(), diag::note_previous_declaration);
637 }
638 }
639
640 const FunctionDecl *Def;
641 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
642 // template has a constexpr specifier then all its declarations shall
643 // contain the constexpr specifier.
644 if (New->isConstexpr() != Old->isConstexpr()) {
645 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
646 << New << New->isConstexpr();
647 Diag(Old->getLocation(), diag::note_previous_declaration);
648 Invalid = true;
649 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
650 Old->isDefined(Def) &&
651 // If a friend function is inlined but does not have 'inline'
652 // specifier, it is a definition. Do not report attribute conflict
653 // in this case, redefinition will be diagnosed later.
654 (New->isInlineSpecified() ||
655 New->getFriendObjectKind() == Decl::FOK_None)) {
656 // C++11 [dcl.fcn.spec]p4:
657 // If the definition of a function appears in a translation unit before its
658 // first declaration as inline, the program is ill-formed.
659 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
660 Diag(Def->getLocation(), diag::note_previous_definition);
661 Invalid = true;
662 }
663
664 // FIXME: It's not clear what should happen if multiple declarations of a
665 // deduction guide have different explicitness. For now at least we simply
666 // reject any case where the explicitness changes.
667 auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
668 if (NewGuide && NewGuide->isExplicitSpecified() !=
669 cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
670 Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
671 << NewGuide->isExplicitSpecified();
672 Diag(Old->getLocation(), diag::note_previous_declaration);
673 }
674
675 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
676 // argument expression, that declaration shall be a definition and shall be
677 // the only declaration of the function or function template in the
678 // translation unit.
679 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
680 functionDeclHasDefaultArgument(Old)) {
681 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
682 Diag(Old->getLocation(), diag::note_previous_declaration);
683 Invalid = true;
684 }
685
686 return Invalid;
687}
688
689NamedDecl *
690Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
691 MultiTemplateParamsArg TemplateParamLists) {
692 assert(D.isDecompositionDeclarator())(static_cast <bool> (D.isDecompositionDeclarator()) ? void
(0) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 692, __extension__ __PRETTY_FUNCTION__))
;
693 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
694
695 // The syntax only allows a decomposition declarator as a simple-declaration
696 // or a for-range-declaration, but we parse it in more cases than that.
697 if (!D.mayHaveDecompositionDeclarator()) {
698 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
699 << Decomp.getSourceRange();
700 return nullptr;
701 }
702
703 if (!TemplateParamLists.empty()) {
704 // FIXME: There's no rule against this, but there are also no rules that
705 // would actually make it usable, so we reject it for now.
706 Diag(TemplateParamLists.front()->getTemplateLoc(),
707 diag::err_decomp_decl_template);
708 return nullptr;
709 }
710
711 Diag(Decomp.getLSquareLoc(), getLangOpts().CPlusPlus1z
712 ? diag::warn_cxx14_compat_decomp_decl
713 : diag::ext_decomp_decl)
714 << Decomp.getSourceRange();
715
716 // The semantic context is always just the current context.
717 DeclContext *const DC = CurContext;
718
719 // C++1z [dcl.dcl]/8:
720 // The decl-specifier-seq shall contain only the type-specifier auto
721 // and cv-qualifiers.
722 auto &DS = D.getDeclSpec();
723 {
724 SmallVector<StringRef, 8> BadSpecifiers;
725 SmallVector<SourceLocation, 8> BadSpecifierLocs;
726 if (auto SCS = DS.getStorageClassSpec()) {
727 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
728 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
729 }
730 if (auto TSCS = DS.getThreadStorageClassSpec()) {
731 BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
732 BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
733 }
734 if (DS.isConstexprSpecified()) {
735 BadSpecifiers.push_back("constexpr");
736 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
737 }
738 if (DS.isInlineSpecified()) {
739 BadSpecifiers.push_back("inline");
740 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
741 }
742 if (!BadSpecifiers.empty()) {
743 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
744 Err << (int)BadSpecifiers.size()
745 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
746 // Don't add FixItHints to remove the specifiers; we do still respect
747 // them when building the underlying variable.
748 for (auto Loc : BadSpecifierLocs)
749 Err << SourceRange(Loc, Loc);
750 }
751 // We can't recover from it being declared as a typedef.
752 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
753 return nullptr;
754 }
755
756 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
757 QualType R = TInfo->getType();
758
759 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
760 UPPC_DeclarationType))
761 D.setInvalidType();
762
763 // The syntax only allows a single ref-qualifier prior to the decomposition
764 // declarator. No other declarator chunks are permitted. Also check the type
765 // specifier here.
766 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
767 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
768 (D.getNumTypeObjects() == 1 &&
769 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
770 Diag(Decomp.getLSquareLoc(),
771 (D.hasGroupingParens() ||
772 (D.getNumTypeObjects() &&
773 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
774 ? diag::err_decomp_decl_parens
775 : diag::err_decomp_decl_type)
776 << R;
777
778 // In most cases, there's no actual problem with an explicitly-specified
779 // type, but a function type won't work here, and ActOnVariableDeclarator
780 // shouldn't be called for such a type.
781 if (R->isFunctionType())
782 D.setInvalidType();
783 }
784
785 // Build the BindingDecls.
786 SmallVector<BindingDecl*, 8> Bindings;
787
788 // Build the BindingDecls.
789 for (auto &B : D.getDecompositionDeclarator().bindings()) {
790 // Check for name conflicts.
791 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
792 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
793 ForVisibleRedeclaration);
794 LookupName(Previous, S,
795 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
796
797 // It's not permitted to shadow a template parameter name.
798 if (Previous.isSingleResult() &&
799 Previous.getFoundDecl()->isTemplateParameter()) {
800 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
801 Previous.getFoundDecl());
802 Previous.clear();
803 }
804
805 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
806 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
807 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
808 /*AllowInlineNamespace*/false);
809 if (!Previous.empty()) {
810 auto *Old = Previous.getRepresentativeDecl();
811 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
812 Diag(Old->getLocation(), diag::note_previous_definition);
813 }
814
815 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
816 PushOnScopeChains(BD, S, true);
817 Bindings.push_back(BD);
818 ParsingInitForAutoVars.insert(BD);
819 }
820
821 // There are no prior lookup results for the variable itself, because it
822 // is unnamed.
823 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
824 Decomp.getLSquareLoc());
825 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
826 ForVisibleRedeclaration);
827
828 // Build the variable that holds the non-decomposed object.
829 bool AddToScope = true;
830 NamedDecl *New =
831 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
832 MultiTemplateParamsArg(), AddToScope, Bindings);
833 if (AddToScope) {
834 S->AddDecl(New);
835 CurContext->addHiddenDecl(New);
836 }
837
838 if (isInOpenMPDeclareTargetContext())
839 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
840
841 return New;
842}
843
844static bool checkSimpleDecomposition(
845 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
846 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
847 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
848 if ((int64_t)Bindings.size() != NumElems) {
849 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
850 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
851 << (NumElems < Bindings.size());
852 return true;
853 }
854
855 unsigned I = 0;
856 for (auto *B : Bindings) {
857 SourceLocation Loc = B->getLocation();
858 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
859 if (E.isInvalid())
860 return true;
861 E = GetInit(Loc, E.get(), I++);
862 if (E.isInvalid())
863 return true;
864 B->setBinding(ElemType, E.get());
865 }
866
867 return false;
868}
869
870static bool checkArrayLikeDecomposition(Sema &S,
871 ArrayRef<BindingDecl *> Bindings,
872 ValueDecl *Src, QualType DecompType,
873 const llvm::APSInt &NumElems,
874 QualType ElemType) {
875 return checkSimpleDecomposition(
876 S, Bindings, Src, DecompType, NumElems, ElemType,
877 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
878 ExprResult E = S.ActOnIntegerConstant(Loc, I);
879 if (E.isInvalid())
880 return ExprError();
881 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
882 });
883}
884
885static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
886 ValueDecl *Src, QualType DecompType,
887 const ConstantArrayType *CAT) {
888 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
889 llvm::APSInt(CAT->getSize()),
890 CAT->getElementType());
891}
892
893static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
894 ValueDecl *Src, QualType DecompType,
895 const VectorType *VT) {
896 return checkArrayLikeDecomposition(
897 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
898 S.Context.getQualifiedType(VT->getElementType(),
899 DecompType.getQualifiers()));
900}
901
902static bool checkComplexDecomposition(Sema &S,
903 ArrayRef<BindingDecl *> Bindings,
904 ValueDecl *Src, QualType DecompType,
905 const ComplexType *CT) {
906 return checkSimpleDecomposition(
907 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
908 S.Context.getQualifiedType(CT->getElementType(),
909 DecompType.getQualifiers()),
910 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
911 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
912 });
913}
914
915static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
916 TemplateArgumentListInfo &Args) {
917 SmallString<128> SS;
918 llvm::raw_svector_ostream OS(SS);
919 bool First = true;
920 for (auto &Arg : Args.arguments()) {
921 if (!First)
922 OS << ", ";
923 Arg.getArgument().print(PrintingPolicy, OS);
924 First = false;
925 }
926 return OS.str();
927}
928
929static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
930 SourceLocation Loc, StringRef Trait,
931 TemplateArgumentListInfo &Args,
932 unsigned DiagID) {
933 auto DiagnoseMissing = [&] {
934 if (DiagID)
935 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
936 Args);
937 return true;
938 };
939
940 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
941 NamespaceDecl *Std = S.getStdNamespace();
942 if (!Std)
943 return DiagnoseMissing();
944
945 // Look up the trait itself, within namespace std. We can diagnose various
946 // problems with this lookup even if we've been asked to not diagnose a
947 // missing specialization, because this can only fail if the user has been
948 // declaring their own names in namespace std or we don't support the
949 // standard library implementation in use.
950 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
951 Loc, Sema::LookupOrdinaryName);
952 if (!S.LookupQualifiedName(Result, Std))
953 return DiagnoseMissing();
954 if (Result.isAmbiguous())
955 return true;
956
957 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
958 if (!TraitTD) {
959 Result.suppressDiagnostics();
960 NamedDecl *Found = *Result.begin();
961 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
962 S.Diag(Found->getLocation(), diag::note_declared_at);
963 return true;
964 }
965
966 // Build the template-id.
967 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
968 if (TraitTy.isNull())
969 return true;
970 if (!S.isCompleteType(Loc, TraitTy)) {
971 if (DiagID)
972 S.RequireCompleteType(
973 Loc, TraitTy, DiagID,
974 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
975 return true;
976 }
977
978 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
979 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 979, __extension__ __PRETTY_FUNCTION__))
;
980
981 // Look up the member of the trait type.
982 S.LookupQualifiedName(TraitMemberLookup, RD);
983 return TraitMemberLookup.isAmbiguous();
984}
985
986static TemplateArgumentLoc
987getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
988 uint64_t I) {
989 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
990 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
991}
992
993static TemplateArgumentLoc
994getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
995 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
996}
997
998namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
999
1000static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1001 llvm::APSInt &Size) {
1002 EnterExpressionEvaluationContext ContextRAII(
1003 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1004
1005 DeclarationName Value = S.PP.getIdentifierInfo("value");
1006 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1007
1008 // Form template argument list for tuple_size<T>.
1009 TemplateArgumentListInfo Args(Loc, Loc);
1010 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1011
1012 // If there's no tuple_size specialization, it's not tuple-like.
1013 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
1014 return IsTupleLike::NotTupleLike;
1015
1016 // If we get this far, we've committed to the tuple interpretation, but
1017 // we can still fail if there actually isn't a usable ::value.
1018
1019 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1020 LookupResult &R;
1021 TemplateArgumentListInfo &Args;
1022 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1023 : R(R), Args(Args) {}
1024 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1025 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1026 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1027 }
1028 } Diagnoser(R, Args);
1029
1030 if (R.empty()) {
1031 Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
1032 return IsTupleLike::Error;
1033 }
1034
1035 ExprResult E =
1036 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1037 if (E.isInvalid())
1038 return IsTupleLike::Error;
1039
1040 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1041 if (E.isInvalid())
1042 return IsTupleLike::Error;
1043
1044 return IsTupleLike::TupleLike;
1045}
1046
1047/// \return std::tuple_element<I, T>::type.
1048static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1049 unsigned I, QualType T) {
1050 // Form template argument list for tuple_element<I, T>.
1051 TemplateArgumentListInfo Args(Loc, Loc);
1052 Args.addArgument(
1053 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1054 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1055
1056 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1057 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1058 if (lookupStdTypeTraitMember(
1059 S, R, Loc, "tuple_element", Args,
1060 diag::err_decomp_decl_std_tuple_element_not_specialized))
1061 return QualType();
1062
1063 auto *TD = R.getAsSingle<TypeDecl>();
1064 if (!TD) {
1065 R.suppressDiagnostics();
1066 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1067 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1068 if (!R.empty())
1069 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1070 return QualType();
1071 }
1072
1073 return S.Context.getTypeDeclType(TD);
1074}
1075
1076namespace {
1077struct BindingDiagnosticTrap {
1078 Sema &S;
1079 DiagnosticErrorTrap Trap;
1080 BindingDecl *BD;
1081
1082 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1083 : S(S), Trap(S.Diags), BD(BD) {}
1084 ~BindingDiagnosticTrap() {
1085 if (Trap.hasErrorOccurred())
1086 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1087 }
1088};
1089}
1090
1091static bool checkTupleLikeDecomposition(Sema &S,
1092 ArrayRef<BindingDecl *> Bindings,
1093 VarDecl *Src, QualType DecompType,
1094 const llvm::APSInt &TupleSize) {
1095 if ((int64_t)Bindings.size() != TupleSize) {
1096 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1097 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1098 << (TupleSize < Bindings.size());
1099 return true;
1100 }
1101
1102 if (Bindings.empty())
1103 return false;
1104
1105 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1106
1107 // [dcl.decomp]p3:
1108 // The unqualified-id get is looked up in the scope of E by class member
1109 // access lookup
1110 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1111 bool UseMemberGet = false;
1112 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1113 if (auto *RD = DecompType->getAsCXXRecordDecl())
1114 S.LookupQualifiedName(MemberGet, RD);
1115 if (MemberGet.isAmbiguous())
1116 return true;
1117 UseMemberGet = !MemberGet.empty();
1118 S.FilterAcceptableTemplateNames(MemberGet);
1119 }
1120
1121 unsigned I = 0;
1122 for (auto *B : Bindings) {
1123 BindingDiagnosticTrap Trap(S, B);
1124 SourceLocation Loc = B->getLocation();
1125
1126 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1127 if (E.isInvalid())
1128 return true;
1129
1130 // e is an lvalue if the type of the entity is an lvalue reference and
1131 // an xvalue otherwise
1132 if (!Src->getType()->isLValueReferenceType())
1133 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1134 E.get(), nullptr, VK_XValue);
1135
1136 TemplateArgumentListInfo Args(Loc, Loc);
1137 Args.addArgument(
1138 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1139
1140 if (UseMemberGet) {
1141 // if [lookup of member get] finds at least one declaration, the
1142 // initializer is e.get<i-1>().
1143 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1144 CXXScopeSpec(), SourceLocation(), nullptr,
1145 MemberGet, &Args, nullptr);
1146 if (E.isInvalid())
1147 return true;
1148
1149 E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
1150 } else {
1151 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1152 // in the associated namespaces.
1153 Expr *Get = UnresolvedLookupExpr::Create(
1154 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1155 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1156 UnresolvedSetIterator(), UnresolvedSetIterator());
1157
1158 Expr *Arg = E.get();
1159 E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
1160 }
1161 if (E.isInvalid())
1162 return true;
1163 Expr *Init = E.get();
1164
1165 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1166 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1167 if (T.isNull())
1168 return true;
1169
1170 // each vi is a variable of type "reference to T" initialized with the
1171 // initializer, where the reference is an lvalue reference if the
1172 // initializer is an lvalue and an rvalue reference otherwise
1173 QualType RefType =
1174 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1175 if (RefType.isNull())
1176 return true;
1177 auto *RefVD = VarDecl::Create(
1178 S.Context, Src->getDeclContext(), Loc, Loc,
1179 B->getDeclName().getAsIdentifierInfo(), RefType,
1180 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1181 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1182 RefVD->setTSCSpec(Src->getTSCSpec());
1183 RefVD->setImplicit();
1184 if (Src->isInlineSpecified())
1185 RefVD->setInlineSpecified();
1186 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1187
1188 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1189 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1190 InitializationSequence Seq(S, Entity, Kind, Init);
1191 E = Seq.Perform(S, Entity, Kind, Init);
1192 if (E.isInvalid())
1193 return true;
1194 E = S.ActOnFinishFullExpr(E.get(), Loc);
1195 if (E.isInvalid())
1196 return true;
1197 RefVD->setInit(E.get());
1198 RefVD->checkInitIsICE();
1199
1200 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1201 DeclarationNameInfo(B->getDeclName(), Loc),
1202 RefVD);
1203 if (E.isInvalid())
1204 return true;
1205
1206 B->setBinding(T, E.get());
1207 I++;
1208 }
1209
1210 return false;
1211}
1212
1213/// Find the base class to decompose in a built-in decomposition of a class type.
1214/// This base class search is, unfortunately, not quite like any other that we
1215/// perform anywhere else in C++.
1216static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
1217 SourceLocation Loc,
1218 const CXXRecordDecl *RD,
1219 CXXCastPath &BasePath) {
1220 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1221 CXXBasePath &Path) {
1222 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1223 };
1224
1225 const CXXRecordDecl *ClassWithFields = nullptr;
1226 if (RD->hasDirectFields())
1227 // [dcl.decomp]p4:
1228 // Otherwise, all of E's non-static data members shall be public direct
1229 // members of E ...
1230 ClassWithFields = RD;
1231 else {
1232 // ... or of ...
1233 CXXBasePaths Paths;
1234 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1235 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1236 // If no classes have fields, just decompose RD itself. (This will work
1237 // if and only if zero bindings were provided.)
1238 return RD;
1239 }
1240
1241 CXXBasePath *BestPath = nullptr;
1242 for (auto &P : Paths) {
1243 if (!BestPath)
1244 BestPath = &P;
1245 else if (!S.Context.hasSameType(P.back().Base->getType(),
1246 BestPath->back().Base->getType())) {
1247 // ... the same ...
1248 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1249 << false << RD << BestPath->back().Base->getType()
1250 << P.back().Base->getType();
1251 return nullptr;
1252 } else if (P.Access < BestPath->Access) {
1253 BestPath = &P;
1254 }
1255 }
1256
1257 // ... unambiguous ...
1258 QualType BaseType = BestPath->back().Base->getType();
1259 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1260 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1261 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1262 return nullptr;
1263 }
1264
1265 // ... public base class of E.
1266 if (BestPath->Access != AS_public) {
1267 S.Diag(Loc, diag::err_decomp_decl_non_public_base)
1268 << RD << BaseType;
1269 for (auto &BS : *BestPath) {
1270 if (BS.Base->getAccessSpecifier() != AS_public) {
1271 S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
1272 << (BS.Base->getAccessSpecifier() == AS_protected)
1273 << (BS.Base->getAccessSpecifierAsWritten() == AS_none);
1274 break;
1275 }
1276 }
1277 return nullptr;
1278 }
1279
1280 ClassWithFields = BaseType->getAsCXXRecordDecl();
1281 S.BuildBasePathArray(Paths, BasePath);
1282 }
1283
1284 // The above search did not check whether the selected class itself has base
1285 // classes with fields, so check that now.
1286 CXXBasePaths Paths;
1287 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1288 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1289 << (ClassWithFields == RD) << RD << ClassWithFields
1290 << Paths.front().back().Base->getType();
1291 return nullptr;
1292 }
1293
1294 return ClassWithFields;
1295}
1296
1297static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1298 ValueDecl *Src, QualType DecompType,
1299 const CXXRecordDecl *RD) {
1300 CXXCastPath BasePath;
1301 RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
1302 if (!RD)
1303 return true;
1304 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1305 DecompType.getQualifiers());
1306
1307 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1308 unsigned NumFields =
1309 std::count_if(RD->field_begin(), RD->field_end(),
1310 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1311 assert(Bindings.size() != NumFields)(static_cast <bool> (Bindings.size() != NumFields) ? void
(0) : __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1311, __extension__ __PRETTY_FUNCTION__))
;
1312 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1313 << DecompType << (unsigned)Bindings.size() << NumFields
1314 << (NumFields < Bindings.size());
1315 return true;
1316 };
1317
1318 // all of E's non-static data members shall be public [...] members,
1319 // E shall not have an anonymous union member, ...
1320 unsigned I = 0;
1321 for (auto *FD : RD->fields()) {
1322 if (FD->isUnnamedBitfield())
1323 continue;
1324
1325 if (FD->isAnonymousStructOrUnion()) {
1326 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1327 << DecompType << FD->getType()->isUnionType();
1328 S.Diag(FD->getLocation(), diag::note_declared_at);
1329 return true;
1330 }
1331
1332 // We have a real field to bind.
1333 if (I >= Bindings.size())
1334 return DiagnoseBadNumberOfBindings();
1335 auto *B = Bindings[I++];
1336
1337 SourceLocation Loc = B->getLocation();
1338 if (FD->getAccess() != AS_public) {
1339 S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
1340
1341 // Determine whether the access specifier was explicit.
1342 bool Implicit = true;
1343 for (const auto *D : RD->decls()) {
1344 if (declaresSameEntity(D, FD))
1345 break;
1346 if (isa<AccessSpecDecl>(D)) {
1347 Implicit = false;
1348 break;
1349 }
1350 }
1351
1352 S.Diag(FD->getLocation(), diag::note_access_natural)
1353 << (FD->getAccess() == AS_protected) << Implicit;
1354 return true;
1355 }
1356
1357 // Initialize the binding to Src.FD.
1358 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1359 if (E.isInvalid())
1360 return true;
1361 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1362 VK_LValue, &BasePath);
1363 if (E.isInvalid())
1364 return true;
1365 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1366 CXXScopeSpec(), FD,
1367 DeclAccessPair::make(FD, FD->getAccess()),
1368 DeclarationNameInfo(FD->getDeclName(), Loc));
1369 if (E.isInvalid())
1370 return true;
1371
1372 // If the type of the member is T, the referenced type is cv T, where cv is
1373 // the cv-qualification of the decomposition expression.
1374 //
1375 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1376 // 'const' to the type of the field.
1377 Qualifiers Q = DecompType.getQualifiers();
1378 if (FD->isMutable())
1379 Q.removeConst();
1380 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1381 }
1382
1383 if (I != Bindings.size())
1384 return DiagnoseBadNumberOfBindings();
1385
1386 return false;
1387}
1388
1389void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1390 QualType DecompType = DD->getType();
1391
1392 // If the type of the decomposition is dependent, then so is the type of
1393 // each binding.
1394 if (DecompType->isDependentType()) {
1395 for (auto *B : DD->bindings())
1396 B->setType(Context.DependentTy);
1397 return;
1398 }
1399
1400 DecompType = DecompType.getNonReferenceType();
1401 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1402
1403 // C++1z [dcl.decomp]/2:
1404 // If E is an array type [...]
1405 // As an extension, we also support decomposition of built-in complex and
1406 // vector types.
1407 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1408 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1409 DD->setInvalidDecl();
1410 return;
1411 }
1412 if (auto *VT = DecompType->getAs<VectorType>()) {
1413 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1414 DD->setInvalidDecl();
1415 return;
1416 }
1417 if (auto *CT = DecompType->getAs<ComplexType>()) {
1418 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1419 DD->setInvalidDecl();
1420 return;
1421 }
1422
1423 // C++1z [dcl.decomp]/3:
1424 // if the expression std::tuple_size<E>::value is a well-formed integral
1425 // constant expression, [...]
1426 llvm::APSInt TupleSize(32);
1427 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1428 case IsTupleLike::Error:
1429 DD->setInvalidDecl();
1430 return;
1431
1432 case IsTupleLike::TupleLike:
1433 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1434 DD->setInvalidDecl();
1435 return;
1436
1437 case IsTupleLike::NotTupleLike:
1438 break;
1439 }
1440
1441 // C++1z [dcl.dcl]/8:
1442 // [E shall be of array or non-union class type]
1443 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1444 if (!RD || RD->isUnion()) {
1445 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1446 << DD << !RD << DecompType;
1447 DD->setInvalidDecl();
1448 return;
1449 }
1450
1451 // C++1z [dcl.decomp]/4:
1452 // all of E's non-static data members shall be [...] direct members of
1453 // E or of the same unambiguous public base class of E, ...
1454 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1455 DD->setInvalidDecl();
1456}
1457
1458/// \brief Merge the exception specifications of two variable declarations.
1459///
1460/// This is called when there's a redeclaration of a VarDecl. The function
1461/// checks if the redeclaration might have an exception specification and
1462/// validates compatibility and merges the specs if necessary.
1463void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1464 // Shortcut if exceptions are disabled.
1465 if (!getLangOpts().CXXExceptions)
1466 return;
1467
1468 assert(Context.hasSameType(New->getType(), Old->getType()) &&(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1469, __extension__ __PRETTY_FUNCTION__))
1469 "Should only be called if types are otherwise the same.")(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1469, __extension__ __PRETTY_FUNCTION__))
;
1470
1471 QualType NewType = New->getType();
1472 QualType OldType = Old->getType();
1473
1474 // We're only interested in pointers and references to functions, as well
1475 // as pointers to member functions.
1476 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1477 NewType = R->getPointeeType();
1478 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1479 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1480 NewType = P->getPointeeType();
1481 OldType = OldType->getAs<PointerType>()->getPointeeType();
1482 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1483 NewType = M->getPointeeType();
1484 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1485 }
1486
1487 if (!NewType->isFunctionProtoType())
1488 return;
1489
1490 // There's lots of special cases for functions. For function pointers, system
1491 // libraries are hopefully not as broken so that we don't need these
1492 // workarounds.
1493 if (CheckEquivalentExceptionSpec(
1494 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1495 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1496 New->setInvalidDecl();
1497 }
1498}
1499
1500/// CheckCXXDefaultArguments - Verify that the default arguments for a
1501/// function declaration are well-formed according to C++
1502/// [dcl.fct.default].
1503void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1504 unsigned NumParams = FD->getNumParams();
1505 unsigned p;
1506
1507 // Find first parameter with a default argument
1508 for (p = 0; p < NumParams; ++p) {
1509 ParmVarDecl *Param = FD->getParamDecl(p);
1510 if (Param->hasDefaultArg())
1511 break;
1512 }
1513
1514 // C++11 [dcl.fct.default]p4:
1515 // In a given function declaration, each parameter subsequent to a parameter
1516 // with a default argument shall have a default argument supplied in this or
1517 // a previous declaration or shall be a function parameter pack. A default
1518 // argument shall not be redefined by a later declaration (not even to the
1519 // same value).
1520 unsigned LastMissingDefaultArg = 0;
1521 for (; p < NumParams; ++p) {
1522 ParmVarDecl *Param = FD->getParamDecl(p);
1523 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1524 if (Param->isInvalidDecl())
1525 /* We already complained about this parameter. */;
1526 else if (Param->getIdentifier())
1527 Diag(Param->getLocation(),
1528 diag::err_param_default_argument_missing_name)
1529 << Param->getIdentifier();
1530 else
1531 Diag(Param->getLocation(),
1532 diag::err_param_default_argument_missing);
1533
1534 LastMissingDefaultArg = p;
1535 }
1536 }
1537
1538 if (LastMissingDefaultArg > 0) {
1539 // Some default arguments were missing. Clear out all of the
1540 // default arguments up to (and including) the last missing
1541 // default argument, so that we leave the function parameters
1542 // in a semantically valid state.
1543 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1544 ParmVarDecl *Param = FD->getParamDecl(p);
1545 if (Param->hasDefaultArg()) {
1546 Param->setDefaultArg(nullptr);
1547 }
1548 }
1549 }
1550}
1551
1552// CheckConstexprParameterTypes - Check whether a function's parameter types
1553// are all literal types. If so, return true. If not, produce a suitable
1554// diagnostic and return false.
1555static bool CheckConstexprParameterTypes(Sema &SemaRef,
1556 const FunctionDecl *FD) {
1557 unsigned ArgIndex = 0;
1558 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1559 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1560 e = FT->param_type_end();
1561 i != e; ++i, ++ArgIndex) {
1562 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1563 SourceLocation ParamLoc = PD->getLocation();
1564 if (!(*i)->isDependentType() &&
1565 SemaRef.RequireLiteralType(ParamLoc, *i,
1566 diag::err_constexpr_non_literal_param,
1567 ArgIndex+1, PD->getSourceRange(),
1568 isa<CXXConstructorDecl>(FD)))
1569 return false;
1570 }
1571 return true;
1572}
1573
1574/// \brief Get diagnostic %select index for tag kind for
1575/// record diagnostic message.
1576/// WARNING: Indexes apply to particular diagnostics only!
1577///
1578/// \returns diagnostic %select index.
1579static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1580 switch (Tag) {
1581 case TTK_Struct: return 0;
1582 case TTK_Interface: return 1;
1583 case TTK_Class: return 2;
1584 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1584)
;
1585 }
1586}
1587
1588// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
1589// the requirements of a constexpr function definition or a constexpr
1590// constructor definition. If so, return true. If not, produce appropriate
1591// diagnostics and return false.
1592//
1593// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1594bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
1595 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1596 if (MD && MD->isInstance()) {
1597 // C++11 [dcl.constexpr]p4:
1598 // The definition of a constexpr constructor shall satisfy the following
1599 // constraints:
1600 // - the class shall not have any virtual base classes;
1601 const CXXRecordDecl *RD = MD->getParent();
1602 if (RD->getNumVBases()) {
1603 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1604 << isa<CXXConstructorDecl>(NewFD)
1605 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1606 for (const auto &I : RD->vbases())
1607 Diag(I.getLocStart(),
1608 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
1609 return false;
1610 }
1611 }
1612
1613 if (!isa<CXXConstructorDecl>(NewFD)) {
1614 // C++11 [dcl.constexpr]p3:
1615 // The definition of a constexpr function shall satisfy the following
1616 // constraints:
1617 // - it shall not be virtual;
1618 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1619 if (Method && Method->isVirtual()) {
1620 Method = Method->getCanonicalDecl();
1621 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1622
1623 // If it's not obvious why this function is virtual, find an overridden
1624 // function which uses the 'virtual' keyword.
1625 const CXXMethodDecl *WrittenVirtual = Method;
1626 while (!WrittenVirtual->isVirtualAsWritten())
1627 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1628 if (WrittenVirtual != Method)
1629 Diag(WrittenVirtual->getLocation(),
1630 diag::note_overridden_virtual_function);
1631 return false;
1632 }
1633
1634 // - its return type shall be a literal type;
1635 QualType RT = NewFD->getReturnType();
1636 if (!RT->isDependentType() &&
1637 RequireLiteralType(NewFD->getLocation(), RT,
1638 diag::err_constexpr_non_literal_return))
1639 return false;
1640 }
1641
1642 // - each of its parameter types shall be a literal type;
1643 if (!CheckConstexprParameterTypes(*this, NewFD))
1644 return false;
1645
1646 return true;
1647}
1648
1649/// Check the given declaration statement is legal within a constexpr function
1650/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1651///
1652/// \return true if the body is OK (maybe only as an extension), false if we
1653/// have diagnosed a problem.
1654static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1655 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
1656 // C++11 [dcl.constexpr]p3 and p4:
1657 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1658 // contain only
1659 for (const auto *DclIt : DS->decls()) {
1660 switch (DclIt->getKind()) {
1661 case Decl::StaticAssert:
1662 case Decl::Using:
1663 case Decl::UsingShadow:
1664 case Decl::UsingDirective:
1665 case Decl::UnresolvedUsingTypename:
1666 case Decl::UnresolvedUsingValue:
1667 // - static_assert-declarations
1668 // - using-declarations,
1669 // - using-directives,
1670 continue;
1671
1672 case Decl::Typedef:
1673 case Decl::TypeAlias: {
1674 // - typedef declarations and alias-declarations that do not define
1675 // classes or enumerations,
1676 const auto *TN = cast<TypedefNameDecl>(DclIt);
1677 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1678 // Don't allow variably-modified types in constexpr functions.
1679 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1680 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1681 << TL.getSourceRange() << TL.getType()
1682 << isa<CXXConstructorDecl>(Dcl);
1683 return false;
1684 }
1685 continue;
1686 }
1687
1688 case Decl::Enum:
1689 case Decl::CXXRecord:
1690 // C++1y allows types to be defined, not just declared.
1691 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
1692 SemaRef.Diag(DS->getLocStart(),
1693 SemaRef.getLangOpts().CPlusPlus14
1694 ? diag::warn_cxx11_compat_constexpr_type_definition
1695 : diag::ext_constexpr_type_definition)
1696 << isa<CXXConstructorDecl>(Dcl);
1697 continue;
1698
1699 case Decl::EnumConstant:
1700 case Decl::IndirectField:
1701 case Decl::ParmVar:
1702 // These can only appear with other declarations which are banned in
1703 // C++11 and permitted in C++1y, so ignore them.
1704 continue;
1705
1706 case Decl::Var:
1707 case Decl::Decomposition: {
1708 // C++1y [dcl.constexpr]p3 allows anything except:
1709 // a definition of a variable of non-literal type or of static or
1710 // thread storage duration or for which no initialization is performed.
1711 const auto *VD = cast<VarDecl>(DclIt);
1712 if (VD->isThisDeclarationADefinition()) {
1713 if (VD->isStaticLocal()) {
1714 SemaRef.Diag(VD->getLocation(),
1715 diag::err_constexpr_local_var_static)
1716 << isa<CXXConstructorDecl>(Dcl)
1717 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1718 return false;
1719 }
1720 if (!VD->getType()->isDependentType() &&
1721 SemaRef.RequireLiteralType(
1722 VD->getLocation(), VD->getType(),
1723 diag::err_constexpr_local_var_non_literal_type,
1724 isa<CXXConstructorDecl>(Dcl)))
1725 return false;
1726 if (!VD->getType()->isDependentType() &&
1727 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1728 SemaRef.Diag(VD->getLocation(),
1729 diag::err_constexpr_local_var_no_init)
1730 << isa<CXXConstructorDecl>(Dcl);
1731 return false;
1732 }
1733 }
1734 SemaRef.Diag(VD->getLocation(),
1735 SemaRef.getLangOpts().CPlusPlus14
1736 ? diag::warn_cxx11_compat_constexpr_local_var
1737 : diag::ext_constexpr_local_var)
1738 << isa<CXXConstructorDecl>(Dcl);
1739 continue;
1740 }
1741
1742 case Decl::NamespaceAlias:
1743 case Decl::Function:
1744 // These are disallowed in C++11 and permitted in C++1y. Allow them
1745 // everywhere as an extension.
1746 if (!Cxx1yLoc.isValid())
1747 Cxx1yLoc = DS->getLocStart();
1748 continue;
1749
1750 default:
1751 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1752 << isa<CXXConstructorDecl>(Dcl);
1753 return false;
1754 }
1755 }
1756
1757 return true;
1758}
1759
1760/// Check that the given field is initialized within a constexpr constructor.
1761///
1762/// \param Dcl The constexpr constructor being checked.
1763/// \param Field The field being checked. This may be a member of an anonymous
1764/// struct or union nested within the class being checked.
1765/// \param Inits All declarations, including anonymous struct/union members and
1766/// indirect members, for which any initialization was provided.
1767/// \param Diagnosed Set to true if an error is produced.
1768static void CheckConstexprCtorInitializer(Sema &SemaRef,
1769 const FunctionDecl *Dcl,
1770 FieldDecl *Field,
1771 llvm::SmallSet<Decl*, 16> &Inits,
1772 bool &Diagnosed) {
1773 if (Field->isInvalidDecl())
1774 return;
1775
1776 if (Field->isUnnamedBitfield())
1777 return;
1778
1779 // Anonymous unions with no variant members and empty anonymous structs do not
1780 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1781 // indirect fields don't need initializing.
1782 if (Field->isAnonymousStructOrUnion() &&
1783 (Field->getType()->isUnionType()
1784 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1785 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1786 return;
1787
1788 if (!Inits.count(Field)) {
1789 if (!Diagnosed) {
1790 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
1791 Diagnosed = true;
1792 }
1793 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1794 } else if (Field->isAnonymousStructOrUnion()) {
1795 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1796 for (auto *I : RD->fields())
1797 // If an anonymous union contains an anonymous struct of which any member
1798 // is initialized, all members must be initialized.
1799 if (!RD->isUnion() || Inits.count(I))
1800 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1801 }
1802}
1803
1804/// Check the provided statement is allowed in a constexpr function
1805/// definition.
1806static bool
1807CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1808 SmallVectorImpl<SourceLocation> &ReturnStmts,
1809 SourceLocation &Cxx1yLoc) {
1810 // - its function-body shall be [...] a compound-statement that contains only
1811 switch (S->getStmtClass()) {
1812 case Stmt::NullStmtClass:
1813 // - null statements,
1814 return true;
1815
1816 case Stmt::DeclStmtClass:
1817 // - static_assert-declarations
1818 // - using-declarations,
1819 // - using-directives,
1820 // - typedef declarations and alias-declarations that do not define
1821 // classes or enumerations,
1822 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1823 return false;
1824 return true;
1825
1826 case Stmt::ReturnStmtClass:
1827 // - and exactly one return statement;
1828 if (isa<CXXConstructorDecl>(Dcl)) {
1829 // C++1y allows return statements in constexpr constructors.
1830 if (!Cxx1yLoc.isValid())
1831 Cxx1yLoc = S->getLocStart();
1832 return true;
1833 }
1834
1835 ReturnStmts.push_back(S->getLocStart());
1836 return true;
1837
1838 case Stmt::CompoundStmtClass: {
1839 // C++1y allows compound-statements.
1840 if (!Cxx1yLoc.isValid())
1841 Cxx1yLoc = S->getLocStart();
1842
1843 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1844 for (auto *BodyIt : CompStmt->body()) {
1845 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1846 Cxx1yLoc))
1847 return false;
1848 }
1849 return true;
1850 }
1851
1852 case Stmt::AttributedStmtClass:
1853 if (!Cxx1yLoc.isValid())
1854 Cxx1yLoc = S->getLocStart();
1855 return true;
1856
1857 case Stmt::IfStmtClass: {
1858 // C++1y allows if-statements.
1859 if (!Cxx1yLoc.isValid())
1860 Cxx1yLoc = S->getLocStart();
1861
1862 IfStmt *If = cast<IfStmt>(S);
1863 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1864 Cxx1yLoc))
1865 return false;
1866 if (If->getElse() &&
1867 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1868 Cxx1yLoc))
1869 return false;
1870 return true;
1871 }
1872
1873 case Stmt::WhileStmtClass:
1874 case Stmt::DoStmtClass:
1875 case Stmt::ForStmtClass:
1876 case Stmt::CXXForRangeStmtClass:
1877 case Stmt::ContinueStmtClass:
1878 // C++1y allows all of these. We don't allow them as extensions in C++11,
1879 // because they don't make sense without variable mutation.
1880 if (!SemaRef.getLangOpts().CPlusPlus14)
1881 break;
1882 if (!Cxx1yLoc.isValid())
1883 Cxx1yLoc = S->getLocStart();
1884 for (Stmt *SubStmt : S->children())
1885 if (SubStmt &&
1886 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1887 Cxx1yLoc))
1888 return false;
1889 return true;
1890
1891 case Stmt::SwitchStmtClass:
1892 case Stmt::CaseStmtClass:
1893 case Stmt::DefaultStmtClass:
1894 case Stmt::BreakStmtClass:
1895 // C++1y allows switch-statements, and since they don't need variable
1896 // mutation, we can reasonably allow them in C++11 as an extension.
1897 if (!Cxx1yLoc.isValid())
1898 Cxx1yLoc = S->getLocStart();
1899 for (Stmt *SubStmt : S->children())
1900 if (SubStmt &&
1901 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1902 Cxx1yLoc))
1903 return false;
1904 return true;
1905
1906 default:
1907 if (!isa<Expr>(S))
1908 break;
1909
1910 // C++1y allows expression-statements.
1911 if (!Cxx1yLoc.isValid())
1912 Cxx1yLoc = S->getLocStart();
1913 return true;
1914 }
1915
1916 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1917 << isa<CXXConstructorDecl>(Dcl);
1918 return false;
1919}
1920
1921/// Check the body for the given constexpr function declaration only contains
1922/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1923///
1924/// \return true if the body is OK, false if we have diagnosed a problem.
1925bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1926 if (isa<CXXTryStmt>(Body)) {
1927 // C++11 [dcl.constexpr]p3:
1928 // The definition of a constexpr function shall satisfy the following
1929 // constraints: [...]
1930 // - its function-body shall be = delete, = default, or a
1931 // compound-statement
1932 //
1933 // C++11 [dcl.constexpr]p4:
1934 // In the definition of a constexpr constructor, [...]
1935 // - its function-body shall not be a function-try-block;
1936 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1937 << isa<CXXConstructorDecl>(Dcl);
1938 return false;
1939 }
1940
1941 SmallVector<SourceLocation, 4> ReturnStmts;
1942
1943 // - its function-body shall be [...] a compound-statement that contains only
1944 // [... list of cases ...]
1945 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1946 SourceLocation Cxx1yLoc;
1947 for (auto *BodyIt : CompBody->body()) {
1948 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1949 return false;
1950 }
1951
1952 if (Cxx1yLoc.isValid())
1953 Diag(Cxx1yLoc,
1954 getLangOpts().CPlusPlus14
1955 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1956 : diag::ext_constexpr_body_invalid_stmt)
1957 << isa<CXXConstructorDecl>(Dcl);
1958
1959 if (const CXXConstructorDecl *Constructor
1960 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1961 const CXXRecordDecl *RD = Constructor->getParent();
1962 // DR1359:
1963 // - every non-variant non-static data member and base class sub-object
1964 // shall be initialized;
1965 // DR1460:
1966 // - if the class is a union having variant members, exactly one of them
1967 // shall be initialized;
1968 if (RD->isUnion()) {
1969 if (Constructor->getNumCtorInitializers() == 0 &&
1970 RD->hasVariantMembers()) {
1971 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1972 return false;
1973 }
1974 } else if (!Constructor->isDependentContext() &&
1975 !Constructor->isDelegatingConstructor()) {
1976 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")(static_cast <bool> (RD->getNumVBases() == 0 &&
"constexpr ctor with virtual bases") ? void (0) : __assert_fail
("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1976, __extension__ __PRETTY_FUNCTION__))
;
1977
1978 // Skip detailed checking if we have enough initializers, and we would
1979 // allow at most one initializer per member.
1980 bool AnyAnonStructUnionMembers = false;
1981 unsigned Fields = 0;
1982 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1983 E = RD->field_end(); I != E; ++I, ++Fields) {
1984 if (I->isAnonymousStructOrUnion()) {
1985 AnyAnonStructUnionMembers = true;
1986 break;
1987 }
1988 }
1989 // DR1460:
1990 // - if the class is a union-like class, but is not a union, for each of
1991 // its anonymous union members having variant members, exactly one of
1992 // them shall be initialized;
1993 if (AnyAnonStructUnionMembers ||
1994 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1995 // Check initialization of non-static data members. Base classes are
1996 // always initialized so do not need to be checked. Dependent bases
1997 // might not have initializers in the member initializer list.
1998 llvm::SmallSet<Decl*, 16> Inits;
1999 for (const auto *I: Constructor->inits()) {
2000 if (FieldDecl *FD = I->getMember())
2001 Inits.insert(FD);
2002 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2003 Inits.insert(ID->chain_begin(), ID->chain_end());
2004 }
2005
2006 bool Diagnosed = false;
2007 for (auto *I : RD->fields())
2008 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
2009 if (Diagnosed)
2010 return false;
2011 }
2012 }
2013 } else {
2014 if (ReturnStmts.empty()) {
2015 // C++1y doesn't require constexpr functions to contain a 'return'
2016 // statement. We still do, unless the return type might be void, because
2017 // otherwise if there's no return statement, the function cannot
2018 // be used in a core constant expression.
2019 bool OK = getLangOpts().CPlusPlus14 &&
2020 (Dcl->getReturnType()->isVoidType() ||
2021 Dcl->getReturnType()->isDependentType());
2022 Diag(Dcl->getLocation(),
2023 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2024 : diag::err_constexpr_body_no_return);
2025 if (!OK)
2026 return false;
2027 } else if (ReturnStmts.size() > 1) {
2028 Diag(ReturnStmts.back(),
2029 getLangOpts().CPlusPlus14
2030 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2031 : diag::ext_constexpr_body_multiple_return);
2032 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2033 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
2034 }
2035 }
2036
2037 // C++11 [dcl.constexpr]p5:
2038 // if no function argument values exist such that the function invocation
2039 // substitution would produce a constant expression, the program is
2040 // ill-formed; no diagnostic required.
2041 // C++11 [dcl.constexpr]p3:
2042 // - every constructor call and implicit conversion used in initializing the
2043 // return value shall be one of those allowed in a constant expression.
2044 // C++11 [dcl.constexpr]p4:
2045 // - every constructor involved in initializing non-static data members and
2046 // base class sub-objects shall be a constexpr constructor.
2047 SmallVector<PartialDiagnosticAt, 8> Diags;
2048 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
2049 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
2050 << isa<CXXConstructorDecl>(Dcl);
2051 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2052 Diag(Diags[I].first, Diags[I].second);
2053 // Don't return false here: we allow this for compatibility in
2054 // system headers.
2055 }
2056
2057 return true;
2058}
2059
2060/// isCurrentClassName - Determine whether the identifier II is the
2061/// name of the class type currently being defined. In the case of
2062/// nested classes, this will only return true if II is the name of
2063/// the innermost class.
2064bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
2065 const CXXScopeSpec *SS) {
2066 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2066, __extension__ __PRETTY_FUNCTION__))
;
2067
2068 CXXRecordDecl *CurDecl;
2069 if (SS && SS->isSet() && !SS->isInvalid()) {
2070 DeclContext *DC = computeDeclContext(*SS, true);
2071 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2072 } else
2073 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2074
2075 if (CurDecl && CurDecl->getIdentifier())
2076 return &II == CurDecl->getIdentifier();
2077 return false;
2078}
2079
2080/// \brief Determine whether the identifier II is a typo for the name of
2081/// the class type currently being defined. If so, update it to the identifier
2082/// that should have been used.
2083bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2084 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2084, __extension__ __PRETTY_FUNCTION__))
;
2085
2086 if (!getLangOpts().SpellChecking)
2087 return false;
2088
2089 CXXRecordDecl *CurDecl;
2090 if (SS && SS->isSet() && !SS->isInvalid()) {
2091 DeclContext *DC = computeDeclContext(*SS, true);
2092 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2093 } else
2094 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2095
2096 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2097 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2098 < II->getLength()) {
2099 II = CurDecl->getIdentifier();
2100 return true;
2101 }
2102
2103 return false;
2104}
2105
2106/// \brief Determine whether the given class is a base class of the given
2107/// class, including looking at dependent bases.
2108static bool findCircularInheritance(const CXXRecordDecl *Class,
2109 const CXXRecordDecl *Current) {
2110 SmallVector<const CXXRecordDecl*, 8> Queue;
2111
2112 Class = Class->getCanonicalDecl();
2113 while (true) {
2114 for (const auto &I : Current->bases()) {
2115 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2116 if (!Base)
2117 continue;
2118
2119 Base = Base->getDefinition();
2120 if (!Base)
2121 continue;
2122
2123 if (Base->getCanonicalDecl() == Class)
2124 return true;
2125
2126 Queue.push_back(Base);
2127 }
2128
2129 if (Queue.empty())
2130 return false;
2131
2132 Current = Queue.pop_back_val();
2133 }
2134
2135 return false;
2136}
2137
2138/// \brief Check the validity of a C++ base class specifier.
2139///
2140/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2141/// and returns NULL otherwise.
2142CXXBaseSpecifier *
2143Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2144 SourceRange SpecifierRange,
2145 bool Virtual, AccessSpecifier Access,
2146 TypeSourceInfo *TInfo,
2147 SourceLocation EllipsisLoc) {
2148 QualType BaseType = TInfo->getType();
2149
2150 // C++ [class.union]p1:
2151 // A union shall not have base classes.
2152 if (Class->isUnion()) {
2153 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2154 << SpecifierRange;
2155 return nullptr;
2156 }
2157
2158 if (EllipsisLoc.isValid() &&
2159 !TInfo->getType()->containsUnexpandedParameterPack()) {
2160 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2161 << TInfo->getTypeLoc().getSourceRange();
2162 EllipsisLoc = SourceLocation();
2163 }
2164
2165 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2166
2167 if (BaseType->isDependentType()) {
2168 // Make sure that we don't have circular inheritance among our dependent
2169 // bases. For non-dependent bases, the check for completeness below handles
2170 // this.
2171 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2172 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2173 ((BaseDecl = BaseDecl->getDefinition()) &&
2174 findCircularInheritance(Class, BaseDecl))) {
2175 Diag(BaseLoc, diag::err_circular_inheritance)
2176 << BaseType << Context.getTypeDeclType(Class);
2177
2178 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2179 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2180 << BaseType;
2181
2182 return nullptr;
2183 }
2184 }
2185
2186 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2187 Class->getTagKind() == TTK_Class,
2188 Access, TInfo, EllipsisLoc);
2189 }
2190
2191 // Base specifiers must be record types.
2192 if (!BaseType->isRecordType()) {
2193 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2194 return nullptr;
2195 }
2196
2197 // C++ [class.union]p1:
2198 // A union shall not be used as a base class.
2199 if (BaseType->isUnionType()) {
2200 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2201 return nullptr;
2202 }
2203
2204 // For the MS ABI, propagate DLL attributes to base class templates.
2205 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2206 if (Attr *ClassAttr = getDLLAttr(Class)) {
2207 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2208 BaseType->getAsCXXRecordDecl())) {
2209 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2210 BaseLoc);
2211 }
2212 }
2213 }
2214
2215 // C++ [class.derived]p2:
2216 // The class-name in a base-specifier shall not be an incompletely
2217 // defined class.
2218 if (RequireCompleteType(BaseLoc, BaseType,
2219 diag::err_incomplete_base_class, SpecifierRange)) {
2220 Class->setInvalidDecl();
2221 return nullptr;
2222 }
2223
2224 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2225 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2226 assert(BaseDecl && "Record type has no declaration")(static_cast <bool> (BaseDecl && "Record type has no declaration"
) ? void (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2226, __extension__ __PRETTY_FUNCTION__))
;
2227 BaseDecl = BaseDecl->getDefinition();
2228 assert(BaseDecl && "Base type is not incomplete, but has no definition")(static_cast <bool> (BaseDecl && "Base type is not incomplete, but has no definition"
) ? void (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2228, __extension__ __PRETTY_FUNCTION__))
;
2229 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2230 assert(CXXBaseDecl && "Base type is not a C++ type")(static_cast <bool> (CXXBaseDecl && "Base type is not a C++ type"
) ? void (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2230, __extension__ __PRETTY_FUNCTION__))
;
2231
2232 // A class which contains a flexible array member is not suitable for use as a
2233 // base class:
2234 // - If the layout determines that a base comes before another base,
2235 // the flexible array member would index into the subsequent base.
2236 // - If the layout determines that base comes before the derived class,
2237 // the flexible array member would index into the derived class.
2238 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2239 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2240 << CXXBaseDecl->getDeclName();
2241 return nullptr;
2242 }
2243
2244 // C++ [class]p3:
2245 // If a class is marked final and it appears as a base-type-specifier in
2246 // base-clause, the program is ill-formed.
2247 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2248 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2249 << CXXBaseDecl->getDeclName()
2250 << FA->isSpelledAsSealed();
2251 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2252 << CXXBaseDecl->getDeclName() << FA->getRange();
2253 return nullptr;
2254 }
2255
2256 if (BaseDecl->isInvalidDecl())
2257 Class->setInvalidDecl();
2258
2259 // Create the base specifier.
2260 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2261 Class->getTagKind() == TTK_Class,
2262 Access, TInfo, EllipsisLoc);
2263}
2264
2265/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2266/// one entry in the base class list of a class specifier, for
2267/// example:
2268/// class foo : public bar, virtual private baz {
2269/// 'public bar' and 'virtual private baz' are each base-specifiers.
2270BaseResult
2271Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2272 ParsedAttributes &Attributes,
2273 bool Virtual, AccessSpecifier Access,
2274 ParsedType basetype, SourceLocation BaseLoc,
2275 SourceLocation EllipsisLoc) {
2276 if (!classdecl)
2277 return true;
2278
2279 AdjustDeclIfTemplate(classdecl);
2280 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2281 if (!Class)
2282 return true;
2283
2284 // We haven't yet attached the base specifiers.
2285 Class->setIsParsingBaseSpecifiers();
2286
2287 // We do not support any C++11 attributes on base-specifiers yet.
2288 // Diagnose any attributes we see.
2289 if (!Attributes.empty()) {
2290 for (AttributeList *Attr = Attributes.getList(); Attr;
2291 Attr = Attr->getNext()) {
2292 if (Attr->isInvalid() ||
2293 Attr->getKind() == AttributeList::IgnoredAttribute)
2294 continue;
2295 Diag(Attr->getLoc(),
2296 Attr->getKind() == AttributeList::UnknownAttribute
2297 ? diag::warn_unknown_attribute_ignored
2298 : diag::err_base_specifier_attribute)
2299 << Attr->getName();
2300 }
2301 }
2302
2303 TypeSourceInfo *TInfo = nullptr;
2304 GetTypeFromParser(basetype, &TInfo);
2305
2306 if (EllipsisLoc.isInvalid() &&
2307 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2308 UPPC_BaseType))
2309 return true;
2310
2311 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2312 Virtual, Access, TInfo,
2313 EllipsisLoc))
2314 return BaseSpec;
2315 else
2316 Class->setInvalidDecl();
2317
2318 return true;
2319}
2320
2321/// Use small set to collect indirect bases. As this is only used
2322/// locally, there's no need to abstract the small size parameter.
2323typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2324
2325/// \brief Recursively add the bases of Type. Don't add Type itself.
2326static void
2327NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2328 const QualType &Type)
2329{
2330 // Even though the incoming type is a base, it might not be
2331 // a class -- it could be a template parm, for instance.
2332 if (auto Rec = Type->getAs<RecordType>()) {
2333 auto Decl = Rec->getAsCXXRecordDecl();
2334
2335 // Iterate over its bases.
2336 for (const auto &BaseSpec : Decl->bases()) {
2337 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2338 .getUnqualifiedType();
2339 if (Set.insert(Base).second)
2340 // If we've not already seen it, recurse.
2341 NoteIndirectBases(Context, Set, Base);
2342 }
2343 }
2344}
2345
2346/// \brief Performs the actual work of attaching the given base class
2347/// specifiers to a C++ class.
2348bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2349 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2350 if (Bases.empty())
2351 return false;
2352
2353 // Used to keep track of which base types we have already seen, so
2354 // that we can properly diagnose redundant direct base types. Note
2355 // that the key is always the unqualified canonical type of the base
2356 // class.
2357 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2358
2359 // Used to track indirect bases so we can see if a direct base is
2360 // ambiguous.
2361 IndirectBaseSet IndirectBaseTypes;
2362
2363 // Copy non-redundant base specifiers into permanent storage.
2364 unsigned NumGoodBases = 0;
2365 bool Invalid = false;
2366 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2367 QualType NewBaseType
2368 = Context.getCanonicalType(Bases[idx]->getType());
2369 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2370
2371 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2372 if (KnownBase) {
2373 // C++ [class.mi]p3:
2374 // A class shall not be specified as a direct base class of a
2375 // derived class more than once.
2376 Diag(Bases[idx]->getLocStart(),
2377 diag::err_duplicate_base_class)
2378 << KnownBase->getType()
2379 << Bases[idx]->getSourceRange();
2380
2381 // Delete the duplicate base class specifier; we're going to
2382 // overwrite its pointer later.
2383 Context.Deallocate(Bases[idx]);
2384
2385 Invalid = true;
2386 } else {
2387 // Okay, add this new base class.
2388 KnownBase = Bases[idx];
2389 Bases[NumGoodBases++] = Bases[idx];
2390
2391 // Note this base's direct & indirect bases, if there could be ambiguity.
2392 if (Bases.size() > 1)
2393 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2394
2395 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2396 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2397 if (Class->isInterface() &&
2398 (!RD->isInterfaceLike() ||
2399 KnownBase->getAccessSpecifier() != AS_public)) {
2400 // The Microsoft extension __interface does not permit bases that
2401 // are not themselves public interfaces.
2402 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
2403 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
2404 << RD->getSourceRange();
2405 Invalid = true;
2406 }
2407 if (RD->hasAttr<WeakAttr>())
2408 Class->addAttr(WeakAttr::CreateImplicit(Context));
2409 }
2410 }
2411 }
2412
2413 // Attach the remaining base class specifiers to the derived class.
2414 Class->setBases(Bases.data(), NumGoodBases);
2415
2416 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2417 // Check whether this direct base is inaccessible due to ambiguity.
2418 QualType BaseType = Bases[idx]->getType();
2419 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2420 .getUnqualifiedType();
2421
2422 if (IndirectBaseTypes.count(CanonicalBase)) {
2423 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2424 /*DetectVirtual=*/true);
2425 bool found
2426 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2427 assert(found)(static_cast <bool> (found) ? void (0) : __assert_fail (
"found", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2427, __extension__ __PRETTY_FUNCTION__))
;
2428 (void)found;
2429
2430 if (Paths.isAmbiguous(CanonicalBase))
2431 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
2432 << BaseType << getAmbiguousPathsDisplayString(Paths)
2433 << Bases[idx]->getSourceRange();
2434 else
2435 assert(Bases[idx]->isVirtual())(static_cast <bool> (Bases[idx]->isVirtual()) ? void
(0) : __assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2435, __extension__ __PRETTY_FUNCTION__))
;
2436 }
2437
2438 // Delete the base class specifier, since its data has been copied
2439 // into the CXXRecordDecl.
2440 Context.Deallocate(Bases[idx]);
2441 }
2442
2443 return Invalid;
2444}
2445
2446/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2447/// class, after checking whether there are any duplicate base
2448/// classes.
2449void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2450 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2451 if (!ClassDecl || Bases.empty())
2452 return;
2453
2454 AdjustDeclIfTemplate(ClassDecl);
2455 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2456}
2457
2458/// \brief Determine whether the type \p Derived is a C++ class that is
2459/// derived from the type \p Base.
2460bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2461 if (!getLangOpts().CPlusPlus)
2462 return false;
2463
2464 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2465 if (!DerivedRD)
2466 return false;
2467
2468 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2469 if (!BaseRD)
2470 return false;
2471
2472 // If either the base or the derived type is invalid, don't try to
2473 // check whether one is derived from the other.
2474 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2475 return false;
2476
2477 // FIXME: In a modules build, do we need the entire path to be visible for us
2478 // to be able to use the inheritance relationship?
2479 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2480 return false;
2481
2482 return DerivedRD->isDerivedFrom(BaseRD);
2483}
2484
2485/// \brief Determine whether the type \p Derived is a C++ class that is
2486/// derived from the type \p Base.
2487bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2488 CXXBasePaths &Paths) {
2489 if (!getLangOpts().CPlusPlus)
2490 return false;
2491
2492 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2493 if (!DerivedRD)
2494 return false;
2495
2496 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2497 if (!BaseRD)
2498 return false;
2499
2500 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2501 return false;
2502
2503 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2504}
2505
2506static void BuildBasePathArray(const CXXBasePath &Path,
2507 CXXCastPath &BasePathArray) {
2508 // We first go backward and check if we have a virtual base.
2509 // FIXME: It would be better if CXXBasePath had the base specifier for
2510 // the nearest virtual base.
2511 unsigned Start = 0;
2512 for (unsigned I = Path.size(); I != 0; --I) {
2513 if (Path[I - 1].Base->isVirtual()) {
2514 Start = I - 1;
2515 break;
2516 }
2517 }
2518
2519 // Now add all bases.
2520 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2521 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2522}
2523
2524
2525void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2526 CXXCastPath &BasePathArray) {
2527 assert(BasePathArray.empty() && "Base path array must be empty!")(static_cast <bool> (BasePathArray.empty() && "Base path array must be empty!"
) ? void (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2527, __extension__ __PRETTY_FUNCTION__))
;
2528 assert(Paths.isRecordingPaths() && "Must record paths!")(static_cast <bool> (Paths.isRecordingPaths() &&
"Must record paths!") ? void (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2528, __extension__ __PRETTY_FUNCTION__))
;
2529 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2530}
2531/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2532/// conversion (where Derived and Base are class types) is
2533/// well-formed, meaning that the conversion is unambiguous (and
2534/// that all of the base classes are accessible). Returns true
2535/// and emits a diagnostic if the code is ill-formed, returns false
2536/// otherwise. Loc is the location where this routine should point to
2537/// if there is an error, and Range is the source range to highlight
2538/// if there is an error.
2539///
2540/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2541/// diagnostic for the respective type of error will be suppressed, but the
2542/// check for ill-formed code will still be performed.
2543bool
2544Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2545 unsigned InaccessibleBaseID,
2546 unsigned AmbigiousBaseConvID,
2547 SourceLocation Loc, SourceRange Range,
2548 DeclarationName Name,
2549 CXXCastPath *BasePath,
2550 bool IgnoreAccess) {
2551 // First, determine whether the path from Derived to Base is
2552 // ambiguous. This is slightly more expensive than checking whether
2553 // the Derived to Base conversion exists, because here we need to
2554 // explore multiple paths to determine if there is an ambiguity.
2555 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2556 /*DetectVirtual=*/false);
2557 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2558 if (!DerivationOkay)
2559 return true;
2560
2561 const CXXBasePath *Path = nullptr;
2562 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2563 Path = &Paths.front();
2564
2565 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2566 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2567 // user to access such bases.
2568 if (!Path && getLangOpts().MSVCCompat) {
2569 for (const CXXBasePath &PossiblePath : Paths) {
2570 if (PossiblePath.size() == 1) {
2571 Path = &PossiblePath;
2572 if (AmbigiousBaseConvID)
2573 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2574 << Base << Derived << Range;
2575 break;
2576 }
2577 }
2578 }
2579
2580 if (Path) {
2581 if (!IgnoreAccess) {
2582 // Check that the base class can be accessed.
2583 switch (
2584 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2585 case AR_inaccessible:
2586 return true;
2587 case AR_accessible:
2588 case AR_dependent:
2589 case AR_delayed:
2590 break;
2591 }
2592 }
2593
2594 // Build a base path if necessary.
2595 if (BasePath)
2596 ::BuildBasePathArray(*Path, *BasePath);
2597 return false;
2598 }
2599
2600 if (AmbigiousBaseConvID) {
2601 // We know that the derived-to-base conversion is ambiguous, and
2602 // we're going to produce a diagnostic. Perform the derived-to-base
2603 // search just one more time to compute all of the possible paths so
2604 // that we can print them out. This is more expensive than any of
2605 // the previous derived-to-base checks we've done, but at this point
2606 // performance isn't as much of an issue.
2607 Paths.clear();
2608 Paths.setRecordingPaths(true);
2609 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2610 assert(StillOkay && "Can only be used with a derived-to-base conversion")(static_cast <bool> (StillOkay && "Can only be used with a derived-to-base conversion"
) ? void (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2610, __extension__ __PRETTY_FUNCTION__))
;
2611 (void)StillOkay;
2612
2613 // Build up a textual representation of the ambiguous paths, e.g.,
2614 // D -> B -> A, that will be used to illustrate the ambiguous
2615 // conversions in the diagnostic. We only print one of the paths
2616 // to each base class subobject.
2617 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2618
2619 Diag(Loc, AmbigiousBaseConvID)
2620 << Derived << Base << PathDisplayStr << Range << Name;
2621 }
2622 return true;
2623}
2624
2625bool
2626Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2627 SourceLocation Loc, SourceRange Range,
2628 CXXCastPath *BasePath,
2629 bool IgnoreAccess) {
2630 return CheckDerivedToBaseConversion(
2631 Derived, Base, diag::err_upcast_to_inaccessible_base,
2632 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2633 BasePath, IgnoreAccess);
2634}
2635
2636
2637/// @brief Builds a string representing ambiguous paths from a
2638/// specific derived class to different subobjects of the same base
2639/// class.
2640///
2641/// This function builds a string that can be used in error messages
2642/// to show the different paths that one can take through the
2643/// inheritance hierarchy to go from the derived class to different
2644/// subobjects of a base class. The result looks something like this:
2645/// @code
2646/// struct D -> struct B -> struct A
2647/// struct D -> struct C -> struct A
2648/// @endcode
2649std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2650 std::string PathDisplayStr;
2651 std::set<unsigned> DisplayedPaths;
2652 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2653 Path != Paths.end(); ++Path) {
2654 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2655 // We haven't displayed a path to this particular base
2656 // class subobject yet.
2657 PathDisplayStr += "\n ";
2658 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2659 for (CXXBasePath::const_iterator Element = Path->begin();
2660 Element != Path->end(); ++Element)
2661 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2662 }
2663 }
2664
2665 return PathDisplayStr;
2666}
2667
2668//===----------------------------------------------------------------------===//
2669// C++ class member Handling
2670//===----------------------------------------------------------------------===//
2671
2672/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2673bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
2674 SourceLocation ASLoc,
2675 SourceLocation ColonLoc,
2676 AttributeList *Attrs) {
2677 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")(static_cast <bool> (Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? void (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2677, __extension__ __PRETTY_FUNCTION__))
;
2678 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2679 ASLoc, ColonLoc);
2680 CurContext->addHiddenDecl(ASDecl);
2681 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2682}
2683
2684/// CheckOverrideControl - Check C++11 override control semantics.
2685void Sema::CheckOverrideControl(NamedDecl *D) {
2686 if (D->isInvalidDecl())
2687 return;
2688
2689 // We only care about "override" and "final" declarations.
2690 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2691 return;
2692
2693 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2694
2695 // We can't check dependent instance methods.
2696 if (MD && MD->isInstance() &&
2697 (MD->getParent()->hasAnyDependentBases() ||
2698 MD->getType()->isDependentType()))
2699 return;
2700
2701 if (MD && !MD->isVirtual()) {
2702 // If we have a non-virtual method, check if if hides a virtual method.
2703 // (In that case, it's most likely the method has the wrong type.)
2704 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2705 FindHiddenVirtualMethods(MD, OverloadedMethods);
2706
2707 if (!OverloadedMethods.empty()) {
2708 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2709 Diag(OA->getLocation(),
2710 diag::override_keyword_hides_virtual_member_function)
2711 << "override" << (OverloadedMethods.size() > 1);
2712 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2713 Diag(FA->getLocation(),
2714 diag::override_keyword_hides_virtual_member_function)
2715 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2716 << (OverloadedMethods.size() > 1);
2717 }
2718 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2719 MD->setInvalidDecl();
2720 return;
2721 }
2722 // Fall through into the general case diagnostic.
2723 // FIXME: We might want to attempt typo correction here.
2724 }
2725
2726 if (!MD || !MD->isVirtual()) {
2727 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2728 Diag(OA->getLocation(),
2729 diag::override_keyword_only_allowed_on_virtual_member_functions)
2730 << "override" << FixItHint::CreateRemoval(OA->getLocation());
2731 D->dropAttr<OverrideAttr>();
2732 }
2733 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2734 Diag(FA->getLocation(),
2735 diag::override_keyword_only_allowed_on_virtual_member_functions)
2736 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2737 << FixItHint::CreateRemoval(FA->getLocation());
2738 D->dropAttr<FinalAttr>();
2739 }
2740 return;
2741 }
2742
2743 // C++11 [class.virtual]p5:
2744 // If a function is marked with the virt-specifier override and
2745 // does not override a member function of a base class, the program is
2746 // ill-formed.
2747 bool HasOverriddenMethods =
2748 MD->begin_overridden_methods() != MD->end_overridden_methods();
2749 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
2750 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
2751 << MD->getDeclName();
2752}
2753
2754void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
2755 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
2756 return;
2757 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2758 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
2759 return;
2760
2761 SourceLocation Loc = MD->getLocation();
2762 SourceLocation SpellingLoc = Loc;
2763 if (getSourceManager().isMacroArgExpansion(Loc))
2764 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
2765 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
2766 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
2767 return;
2768
2769 if (MD->size_overridden_methods() > 0) {
2770 unsigned DiagID = isa<CXXDestructorDecl>(MD)
2771 ? diag::warn_destructor_marked_not_override_overriding
2772 : diag::warn_function_marked_not_override_overriding;
2773 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
2774 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
2775 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
2776 }
2777}
2778
2779/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
2780/// function overrides a virtual member function marked 'final', according to
2781/// C++11 [class.virtual]p4.
2782bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
2783 const CXXMethodDecl *Old) {
2784 FinalAttr *FA = Old->getAttr<FinalAttr>();
2785 if (!FA)
2786 return false;
2787
2788 Diag(New->getLocation(), diag::err_final_function_overridden)
2789 << New->getDeclName()
2790 << FA->isSpelledAsSealed();
2791 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2792 return true;
2793}
2794
2795static bool InitializationHasSideEffects(const FieldDecl &FD) {
2796 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2797 // FIXME: Destruction of ObjC lifetime types has side-effects.
2798 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2799 return !RD->isCompleteDefinition() ||
2800 !RD->hasTrivialDefaultConstructor() ||
2801 !RD->hasTrivialDestructor();
2802 return false;
2803}
2804
2805static AttributeList *getMSPropertyAttr(AttributeList *list) {
2806 for (AttributeList *it = list; it != nullptr; it = it->getNext())
2807 if (it->isDeclspecPropertyAttribute())
2808 return it;
2809 return nullptr;
2810}
2811
2812// Check if there is a field shadowing.
2813void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
2814 DeclarationName FieldName,
2815 const CXXRecordDecl *RD) {
2816 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
2817 return;
2818
2819 // To record a shadowed field in a base
2820 std::map<CXXRecordDecl*, NamedDecl*> Bases;
2821 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
2822 CXXBasePath &Path) {
2823 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
2824 // Record an ambiguous path directly
2825 if (Bases.find(Base) != Bases.end())
2826 return true;
2827 for (const auto Field : Base->lookup(FieldName)) {
2828 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
2829 Field->getAccess() != AS_private) {
2830 assert(Field->getAccess() != AS_none)(static_cast <bool> (Field->getAccess() != AS_none) ?
void (0) : __assert_fail ("Field->getAccess() != AS_none"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2830, __extension__ __PRETTY_FUNCTION__))
;
2831 assert(Bases.find(Base) == Bases.end())(static_cast <bool> (Bases.find(Base) == Bases.end()) ?
void (0) : __assert_fail ("Bases.find(Base) == Bases.end()",
"/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2831, __extension__ __PRETTY_FUNCTION__))
;
2832 Bases[Base] = Field;
2833 return true;
2834 }
2835 }
2836 return false;
2837 };
2838
2839 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2840 /*DetectVirtual=*/true);
2841 if (!RD->lookupInBases(FieldShadowed, Paths))
2842 return;
2843
2844 for (const auto &P : Paths) {
2845 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
2846 auto It = Bases.find(Base);
2847 // Skip duplicated bases
2848 if (It == Bases.end())
2849 continue;
2850 auto BaseField = It->second;
2851 assert(BaseField->getAccess() != AS_private)(static_cast <bool> (BaseField->getAccess() != AS_private
) ? void (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2851, __extension__ __PRETTY_FUNCTION__))
;
2852 if (AS_none !=
2853 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
2854 Diag(Loc, diag::warn_shadow_field)
2855 << FieldName.getAsString() << RD->getName() << Base->getName();
2856 Diag(BaseField->getLocation(), diag::note_shadow_field);
2857 Bases.erase(It);
2858 }
2859 }
2860}
2861
2862/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2863/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2864/// bitfield width if there is one, 'InitExpr' specifies the initializer if
2865/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2866/// present (but parsing it has been deferred).
2867NamedDecl *
2868Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2869 MultiTemplateParamsArg TemplateParameterLists,
2870 Expr *BW, const VirtSpecifiers &VS,
2871 InClassInitStyle InitStyle) {
2872 const DeclSpec &DS = D.getDeclSpec();
2873 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2874 DeclarationName Name = NameInfo.getName();
2875 SourceLocation Loc = NameInfo.getLoc();
2876
2877 // For anonymous bitfields, the location should point to the type.
2878 if (Loc.isInvalid())
2879 Loc = D.getLocStart();
2880
2881 Expr *BitWidth = static_cast<Expr*>(BW);
2882
2883 assert(isa<CXXRecordDecl>(CurContext))(static_cast <bool> (isa<CXXRecordDecl>(CurContext
)) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2883, __extension__ __PRETTY_FUNCTION__))
;
2884 assert(!DS.isFriendSpecified())(static_cast <bool> (!DS.isFriendSpecified()) ? void (0
) : __assert_fail ("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2884, __extension__ __PRETTY_FUNCTION__))
;
2885
2886 bool isFunc = D.isDeclarationOfFunction();
2887 AttributeList *MSPropertyAttr =
2888 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2889
2890 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2891 // The Microsoft extension __interface only permits public member functions
2892 // and prohibits constructors, destructors, operators, non-public member
2893 // functions, static methods and data members.
2894 unsigned InvalidDecl;
2895 bool ShowDeclName = true;
2896 if (!isFunc &&
2897 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
2898 InvalidDecl = 0;
2899 else if (!isFunc)
2900 InvalidDecl = 1;
2901 else if (AS != AS_public)
2902 InvalidDecl = 2;
2903 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2904 InvalidDecl = 3;
2905 else switch (Name.getNameKind()) {
2906 case DeclarationName::CXXConstructorName:
2907 InvalidDecl = 4;
2908 ShowDeclName = false;
2909 break;
2910
2911 case DeclarationName::CXXDestructorName:
2912 InvalidDecl = 5;
2913 ShowDeclName = false;
2914 break;
2915
2916 case DeclarationName::CXXOperatorName:
2917 case DeclarationName::CXXConversionFunctionName:
2918 InvalidDecl = 6;
2919 break;
2920
2921 default:
2922 InvalidDecl = 0;
2923 break;
2924 }
2925
2926 if (InvalidDecl) {
2927 if (ShowDeclName)
2928 Diag(Loc, diag::err_invalid_member_in_interface)
2929 << (InvalidDecl-1) << Name;
2930 else
2931 Diag(Loc, diag::err_invalid_member_in_interface)
2932 << (InvalidDecl-1) << "";
2933 return nullptr;
2934 }
2935 }
2936
2937 // C++ 9.2p6: A member shall not be declared to have automatic storage
2938 // duration (auto, register) or with the extern storage-class-specifier.
2939 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2940 // data members and cannot be applied to names declared const or static,
2941 // and cannot be applied to reference members.
2942 switch (DS.getStorageClassSpec()) {
2943 case DeclSpec::SCS_unspecified:
2944 case DeclSpec::SCS_typedef:
2945 case DeclSpec::SCS_static:
2946 break;
2947 case DeclSpec::SCS_mutable:
2948 if (isFunc) {
2949 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2950
2951 // FIXME: It would be nicer if the keyword was ignored only for this
2952 // declarator. Otherwise we could get follow-up errors.
2953 D.getMutableDeclSpec().ClearStorageClassSpecs();
2954 }
2955 break;
2956 default:
2957 Diag(DS.getStorageClassSpecLoc(),
2958 diag::err_storageclass_invalid_for_member);
2959 D.getMutableDeclSpec().ClearStorageClassSpecs();
2960 break;
2961 }
2962
2963 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2964 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2965 !isFunc);
2966
2967 if (DS.isConstexprSpecified() && isInstField) {
2968 SemaDiagnosticBuilder B =
2969 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2970 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2971 if (InitStyle == ICIS_NoInit) {
2972 B << 0 << 0;
2973 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2974 B << FixItHint::CreateRemoval(ConstexprLoc);
2975 else {
2976 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2977 D.getMutableDeclSpec().ClearConstexprSpec();
2978 const char *PrevSpec;
2979 unsigned DiagID;
2980 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2981 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2982 (void)Failed;
2983 assert(!Failed && "Making a constexpr member const shouldn't fail")(static_cast <bool> (!Failed && "Making a constexpr member const shouldn't fail"
) ? void (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2983, __extension__ __PRETTY_FUNCTION__))
;
2984 }
2985 } else {
2986 B << 1;
2987 const char *PrevSpec;
2988 unsigned DiagID;
2989 if (D.getMutableDeclSpec().SetStorageClassSpec(
2990 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2991 Context.getPrintingPolicy())) {
2992 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2993, __extension__ __PRETTY_FUNCTION__))
2993 "This is the only DeclSpec that should fail to be applied")(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2993, __extension__ __PRETTY_FUNCTION__))
;
2994 B << 1;
2995 } else {
2996 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2997 isInstField = false;
2998 }
2999 }
3000 }
3001
3002 NamedDecl *Member;
3003 if (isInstField) {
3004 CXXScopeSpec &SS = D.getCXXScopeSpec();
3005
3006 // Data members must have identifiers for names.
3007 if (!Name.isIdentifier()) {
3008 Diag(Loc, diag::err_bad_variable_name)
3009 << Name;
3010 return nullptr;
3011 }
3012
3013 IdentifierInfo *II = Name.getAsIdentifierInfo();
3014
3015 // Member field could not be with "template" keyword.
3016 // So TemplateParameterLists should be empty in this case.
3017 if (TemplateParameterLists.size()) {
3018 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3019 if (TemplateParams->size()) {
3020 // There is no such thing as a member field template.
3021 Diag(D.getIdentifierLoc(), diag::err_template_member)
3022 << II
3023 << SourceRange(TemplateParams->getTemplateLoc(),
3024 TemplateParams->getRAngleLoc());
3025 } else {
3026 // There is an extraneous 'template<>' for this member.
3027 Diag(TemplateParams->getTemplateLoc(),
3028 diag::err_template_member_noparams)
3029 << II
3030 << SourceRange(TemplateParams->getTemplateLoc(),
3031 TemplateParams->getRAngleLoc());
3032 }
3033 return nullptr;
3034 }
3035
3036 if (SS.isSet() && !SS.isInvalid()) {
3037 // The user provided a superfluous scope specifier inside a class
3038 // definition:
3039 //
3040 // class X {
3041 // int X::member;
3042 // };
3043 if (DeclContext *DC = computeDeclContext(SS, false))
3044 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
3045 else
3046 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3047 << Name << SS.getRange();
3048
3049 SS.clear();
3050 }
3051
3052 if (MSPropertyAttr) {
3053 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3054 BitWidth, InitStyle, AS, MSPropertyAttr);
3055 if (!Member)
3056 return nullptr;
3057 isInstField = false;
3058 } else {
3059 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3060 BitWidth, InitStyle, AS);
3061 if (!Member)
3062 return nullptr;
3063 }
3064
3065 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3066 } else {
3067 Member = HandleDeclarator(S, D, TemplateParameterLists);
3068 if (!Member)
3069 return nullptr;
3070
3071 // Non-instance-fields can't have a bitfield.
3072 if (BitWidth) {
3073 if (Member->isInvalidDecl()) {
3074 // don't emit another diagnostic.
3075 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3076 // C++ 9.6p3: A bit-field shall not be a static member.
3077 // "static member 'A' cannot be a bit-field"
3078 Diag(Loc, diag::err_static_not_bitfield)
3079 << Name << BitWidth->getSourceRange();
3080 } else if (isa<TypedefDecl>(Member)) {
3081 // "typedef member 'x' cannot be a bit-field"
3082 Diag(Loc, diag::err_typedef_not_bitfield)
3083 << Name << BitWidth->getSourceRange();
3084 } else {
3085 // A function typedef ("typedef int f(); f a;").
3086 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3087 Diag(Loc, diag::err_not_integral_type_bitfield)
3088 << Name << cast<ValueDecl>(Member)->getType()
3089 << BitWidth->getSourceRange();
3090 }
3091
3092 BitWidth = nullptr;
3093 Member->setInvalidDecl();
3094 }
3095
3096 Member->setAccess(AS);
3097
3098 // If we have declared a member function template or static data member
3099 // template, set the access of the templated declaration as well.
3100 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3101 FunTmpl->getTemplatedDecl()->setAccess(AS);
3102 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3103 VarTmpl->getTemplatedDecl()->setAccess(AS);
3104 }
3105
3106 if (VS.isOverrideSpecified())
3107 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
3108 if (VS.isFinalSpecified())
3109 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
3110 VS.isFinalSpelledSealed()));
3111
3112 if (VS.getLastLocation().isValid()) {
3113 // Update the end location of a method that has a virt-specifiers.
3114 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3115 MD->setRangeEnd(VS.getLastLocation());
3116 }
3117
3118 CheckOverrideControl(Member);
3119
3120 assert((Name || isInstField) && "No identifier for non-field ?")(static_cast <bool> ((Name || isInstField) && "No identifier for non-field ?"
) ? void (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3120, __extension__ __PRETTY_FUNCTION__))
;
3121
3122 if (isInstField) {
3123 FieldDecl *FD = cast<FieldDecl>(Member);
3124 FieldCollector->Add(FD);
3125
3126 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3127 // Remember all explicit private FieldDecls that have a name, no side
3128 // effects and are not part of a dependent type declaration.
3129 if (!FD->isImplicit() && FD->getDeclName() &&
3130 FD->getAccess() == AS_private &&
3131 !FD->hasAttr<UnusedAttr>() &&
3132 !FD->getParent()->isDependentContext() &&
3133 !InitializationHasSideEffects(*FD))
3134 UnusedPrivateFields.insert(FD);
3135 }
3136 }
3137
3138 return Member;
3139}
3140
3141namespace {
3142 class UninitializedFieldVisitor
3143 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3144 Sema &S;
3145 // List of Decls to generate a warning on. Also remove Decls that become
3146 // initialized.
3147 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3148 // List of base classes of the record. Classes are removed after their
3149 // initializers.
3150 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3151 // Vector of decls to be removed from the Decl set prior to visiting the
3152 // nodes. These Decls may have been initialized in the prior initializer.
3153 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3154 // If non-null, add a note to the warning pointing back to the constructor.
3155 const CXXConstructorDecl *Constructor;
3156 // Variables to hold state when processing an initializer list. When
3157 // InitList is true, special case initialization of FieldDecls matching
3158 // InitListFieldDecl.
3159 bool InitList;
3160 FieldDecl *InitListFieldDecl;
3161 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3162
3163 public:
3164 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3165 UninitializedFieldVisitor(Sema &S,
3166 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3167 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3168 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3169 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3170
3171 // Returns true if the use of ME is not an uninitialized use.
3172 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3173 bool CheckReferenceOnly) {
3174 llvm::SmallVector<FieldDecl*, 4> Fields;
3175 bool ReferenceField = false;
3176 while (ME) {
3177 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3178 if (!FD)
3179 return false;
3180 Fields.push_back(FD);
3181 if (FD->getType()->isReferenceType())
3182 ReferenceField = true;
3183 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3184 }
3185
3186 // Binding a reference to an unintialized field is not an
3187 // uninitialized use.
3188 if (CheckReferenceOnly && !ReferenceField)
3189 return true;
3190
3191 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3192 // Discard the first field since it is the field decl that is being
3193 // initialized.
3194 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3195 UsedFieldIndex.push_back((*I)->getFieldIndex());
3196 }
3197
3198 for (auto UsedIter = UsedFieldIndex.begin(),
3199 UsedEnd = UsedFieldIndex.end(),
3200 OrigIter = InitFieldIndex.begin(),
3201 OrigEnd = InitFieldIndex.end();
3202 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3203 if (*UsedIter < *OrigIter)
3204 return true;
3205 if (*UsedIter > *OrigIter)
3206 break;
3207 }
3208
3209 return false;
3210 }
3211
3212 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3213 bool AddressOf) {
3214 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3215 return;
3216
3217 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3218 // or union.
3219 MemberExpr *FieldME = ME;
3220
3221 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3222
3223 Expr *Base = ME;
3224 while (MemberExpr *SubME =
3225 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3226
3227 if (isa<VarDecl>(SubME->getMemberDecl()))
3228 return;
3229
3230 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3231 if (!FD->isAnonymousStructOrUnion())
3232 FieldME = SubME;
3233
3234 if (!FieldME->getType().isPODType(S.Context))
3235 AllPODFields = false;
3236
3237 Base = SubME->getBase();
3238 }
3239
3240 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3241 return;
3242
3243 if (AddressOf && AllPODFields)
3244 return;
3245
3246 ValueDecl* FoundVD = FieldME->getMemberDecl();
3247
3248 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3249 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3250 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3251 }
3252
3253 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3254 QualType T = BaseCast->getType();
3255 if (T->isPointerType() &&
3256 BaseClasses.count(T->getPointeeType())) {
3257 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3258 << T->getPointeeType() << FoundVD;
3259 }
3260 }
3261 }
3262
3263 if (!Decls.count(FoundVD))
3264 return;
3265
3266 const bool IsReference = FoundVD->getType()->isReferenceType();
3267
3268 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3269 // Special checking for initializer lists.
3270 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3271 return;
3272 }
3273 } else {
3274 // Prevent double warnings on use of unbounded references.
3275 if (CheckReferenceOnly && !IsReference)
3276 return;
3277 }
3278
3279 unsigned diag = IsReference
3280 ? diag::warn_reference_field_is_uninit
3281 : diag::warn_field_is_uninit;
3282 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3283 if (Constructor)
3284 S.Diag(Constructor->getLocation(),
3285 diag::note_uninit_in_this_constructor)
3286 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3287
3288 }
3289
3290 void HandleValue(Expr *E, bool AddressOf) {
3291 E = E->IgnoreParens();
3292
3293 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3294 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3295 AddressOf /*AddressOf*/);
3296 return;
3297 }
3298
3299 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3300 Visit(CO->getCond());
3301 HandleValue(CO->getTrueExpr(), AddressOf);
3302 HandleValue(CO->getFalseExpr(), AddressOf);
3303 return;
3304 }
3305
3306 if (BinaryConditionalOperator *BCO =
3307 dyn_cast<BinaryConditionalOperator>(E)) {
3308 Visit(BCO->getCond());
3309 HandleValue(BCO->getFalseExpr(), AddressOf);
3310 return;
3311 }
3312
3313 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3314 HandleValue(OVE->getSourceExpr(), AddressOf);
3315 return;
3316 }
3317
3318 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3319 switch (BO->getOpcode()) {
3320 default:
3321 break;
3322 case(BO_PtrMemD):
3323 case(BO_PtrMemI):
3324 HandleValue(BO->getLHS(), AddressOf);
3325 Visit(BO->getRHS());
3326 return;
3327 case(BO_Comma):
3328 Visit(BO->getLHS());
3329 HandleValue(BO->getRHS(), AddressOf);
3330 return;
3331 }
3332 }
3333
3334 Visit(E);
3335 }
3336
3337 void CheckInitListExpr(InitListExpr *ILE) {
3338 InitFieldIndex.push_back(0);
3339 for (auto Child : ILE->children()) {
3340 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3341 CheckInitListExpr(SubList);
3342 } else {
3343 Visit(Child);
3344 }
3345 ++InitFieldIndex.back();
3346 }
3347 InitFieldIndex.pop_back();
3348 }
3349
3350 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3351 FieldDecl *Field, const Type *BaseClass) {
3352 // Remove Decls that may have been initialized in the previous
3353 // initializer.
3354 for (ValueDecl* VD : DeclsToRemove)
3355 Decls.erase(VD);
3356 DeclsToRemove.clear();
3357
3358 Constructor = FieldConstructor;
3359 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3360
3361 if (ILE && Field) {
3362 InitList = true;
3363 InitListFieldDecl = Field;
3364 InitFieldIndex.clear();
3365 CheckInitListExpr(ILE);
3366 } else {
3367 InitList = false;
3368 Visit(E);
3369 }
3370
3371 if (Field)
3372 Decls.erase(Field);
3373 if (BaseClass)
3374 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3375 }
3376
3377 void VisitMemberExpr(MemberExpr *ME) {
3378 // All uses of unbounded reference fields will warn.
3379 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3380 }
3381
3382 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3383 if (E->getCastKind() == CK_LValueToRValue) {
3384 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3385 return;
3386 }
3387
3388 Inherited::VisitImplicitCastExpr(E);
3389 }
3390
3391 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3392 if (E->getConstructor()->isCopyConstructor()) {
3393 Expr *ArgExpr = E->getArg(0);
3394 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3395 if (ILE->getNumInits() == 1)
3396 ArgExpr = ILE->getInit(0);
3397 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3398 if (ICE->getCastKind() == CK_NoOp)
3399 ArgExpr = ICE->getSubExpr();
3400 HandleValue(ArgExpr, false /*AddressOf*/);
3401 return;
3402 }
3403 Inherited::VisitCXXConstructExpr(E);
3404 }
3405
3406 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3407 Expr *Callee = E->getCallee();
3408 if (isa<MemberExpr>(Callee)) {
3409 HandleValue(Callee, false /*AddressOf*/);
3410 for (auto Arg : E->arguments())
3411 Visit(Arg);
3412 return;
3413 }
3414
3415 Inherited::VisitCXXMemberCallExpr(E);
3416 }
3417
3418 void VisitCallExpr(CallExpr *E) {
3419 // Treat std::move as a use.
3420 if (E->isCallToStdMove()) {
3421 HandleValue(E->getArg(0), /*AddressOf=*/false);
3422 return;
3423 }
3424
3425 Inherited::VisitCallExpr(E);
3426 }
3427
3428 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3429 Expr *Callee = E->getCallee();
3430
3431 if (isa<UnresolvedLookupExpr>(Callee))
3432 return Inherited::VisitCXXOperatorCallExpr(E);
3433
3434 Visit(Callee);
3435 for (auto Arg : E->arguments())
3436 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3437 }
3438
3439 void VisitBinaryOperator(BinaryOperator *E) {
3440 // If a field assignment is detected, remove the field from the
3441 // uninitiailized field set.
3442 if (E->getOpcode() == BO_Assign)
3443 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3444 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3445 if (!FD->getType()->isReferenceType())
3446 DeclsToRemove.push_back(FD);
3447
3448 if (E->isCompoundAssignmentOp()) {
3449 HandleValue(E->getLHS(), false /*AddressOf*/);
3450 Visit(E->getRHS());
3451 return;
3452 }
3453
3454 Inherited::VisitBinaryOperator(E);
3455 }
3456
3457 void VisitUnaryOperator(UnaryOperator *E) {
3458 if (E->isIncrementDecrementOp()) {
3459 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3460 return;
3461 }
3462 if (E->getOpcode() == UO_AddrOf) {
3463 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3464 HandleValue(ME->getBase(), true /*AddressOf*/);
3465 return;
3466 }
3467 }
3468
3469 Inherited::VisitUnaryOperator(E);
3470 }
3471 };
3472
3473 // Diagnose value-uses of fields to initialize themselves, e.g.
3474 // foo(foo)
3475 // where foo is not also a parameter to the constructor.
3476 // Also diagnose across field uninitialized use such as
3477 // x(y), y(x)
3478 // TODO: implement -Wuninitialized and fold this into that framework.
3479 static void DiagnoseUninitializedFields(
3480 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3481
3482 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3483 Constructor->getLocation())) {
3484 return;
3485 }
3486
3487 if (Constructor->isInvalidDecl())
3488 return;
3489
3490 const CXXRecordDecl *RD = Constructor->getParent();
3491
3492 if (RD->getDescribedClassTemplate())
3493 return;
3494
3495 // Holds fields that are uninitialized.
3496 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3497
3498 // At the beginning, all fields are uninitialized.
3499 for (auto *I : RD->decls()) {
3500 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3501 UninitializedFields.insert(FD);
3502 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3503 UninitializedFields.insert(IFD->getAnonField());
3504 }
3505 }
3506
3507 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3508 for (auto I : RD->bases())
3509 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3510
3511 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3512 return;
3513
3514 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3515 UninitializedFields,
3516 UninitializedBaseClasses);
3517
3518 for (const auto *FieldInit : Constructor->inits()) {
3519 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3520 break;
3521
3522 Expr *InitExpr = FieldInit->getInit();
3523 if (!InitExpr)
3524 continue;
3525
3526 if (CXXDefaultInitExpr *Default =
3527 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3528 InitExpr = Default->getExpr();
3529 if (!InitExpr)
3530 continue;
3531 // In class initializers will point to the constructor.
3532 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3533 FieldInit->getAnyMember(),
3534 FieldInit->getBaseClass());
3535 } else {
3536 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3537 FieldInit->getAnyMember(),
3538 FieldInit->getBaseClass());
3539 }
3540 }
3541 }
3542} // namespace
3543
3544/// \brief Enter a new C++ default initializer scope. After calling this, the
3545/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3546/// parsing or instantiating the initializer failed.
3547void Sema::ActOnStartCXXInClassMemberInitializer() {
3548 // Create a synthetic function scope to represent the call to the constructor
3549 // that notionally surrounds a use of this initializer.
3550 PushFunctionScope();
3551}
3552
3553/// \brief This is invoked after parsing an in-class initializer for a
3554/// non-static C++ class member, and after instantiating an in-class initializer
3555/// in a class template. Such actions are deferred until the class is complete.
3556void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3557 SourceLocation InitLoc,
3558 Expr *InitExpr) {
3559 // Pop the notional constructor scope we created earlier.
3560 PopFunctionScopeInfo(nullptr, D);
3561
3562 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3563 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3564, __extension__ __PRETTY_FUNCTION__))
3564 "must set init style when field is created")(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3564, __extension__ __PRETTY_FUNCTION__))
;
3565
3566 if (!InitExpr) {
3567 D->setInvalidDecl();
3568 if (FD)
3569 FD->removeInClassInitializer();
3570 return;
3571 }
3572
3573 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3574 FD->setInvalidDecl();
3575 FD->removeInClassInitializer();
3576 return;
3577 }
3578
3579 ExprResult Init = InitExpr;
3580 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3581 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
3582 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
3583 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
3584 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
3585 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3586 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3587 if (Init.isInvalid()) {
3588 FD->setInvalidDecl();
3589 return;
3590 }
3591 }
3592
3593 // C++11 [class.base.init]p7:
3594 // The initialization of each base and member constitutes a
3595 // full-expression.
3596 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
3597 if (Init.isInvalid()) {
3598 FD->setInvalidDecl();
3599 return;
3600 }
3601
3602 InitExpr = Init.get();
3603
3604 FD->setInClassInitializer(InitExpr);
3605}
3606
3607/// \brief Find the direct and/or virtual base specifiers that
3608/// correspond to the given base type, for use in base initialization
3609/// within a constructor.
3610static bool FindBaseInitializer(Sema &SemaRef,
3611 CXXRecordDecl *ClassDecl,
3612 QualType BaseType,
3613 const CXXBaseSpecifier *&DirectBaseSpec,
3614 const CXXBaseSpecifier *&VirtualBaseSpec) {
3615 // First, check for a direct base class.
3616 DirectBaseSpec = nullptr;
3617 for (const auto &Base : ClassDecl->bases()) {
3618 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3619 // We found a direct base of this type. That's what we're
3620 // initializing.
3621 DirectBaseSpec = &Base;
3622 break;
3623 }
3624 }
3625
3626 // Check for a virtual base class.
3627 // FIXME: We might be able to short-circuit this if we know in advance that
3628 // there are no virtual bases.
3629 VirtualBaseSpec = nullptr;
3630 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3631 // We haven't found a base yet; search the class hierarchy for a
3632 // virtual base class.
3633 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3634 /*DetectVirtual=*/false);
3635 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3636 SemaRef.Context.getTypeDeclType(ClassDecl),
3637 BaseType, Paths)) {
3638 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3639 Path != Paths.end(); ++Path) {
3640 if (Path->back().Base->isVirtual()) {
3641 VirtualBaseSpec = Path->back().Base;
3642 break;
3643 }
3644 }
3645 }
3646 }
3647
3648 return DirectBaseSpec || VirtualBaseSpec;
3649}
3650
3651/// \brief Handle a C++ member initializer using braced-init-list syntax.
3652MemInitResult
3653Sema::ActOnMemInitializer(Decl *ConstructorD,
3654 Scope *S,
3655 CXXScopeSpec &SS,
3656 IdentifierInfo *MemberOrBase,
3657 ParsedType TemplateTypeTy,
3658 const DeclSpec &DS,
3659 SourceLocation IdLoc,
3660 Expr *InitList,
3661 SourceLocation EllipsisLoc) {
3662 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3663 DS, IdLoc, InitList,
3664 EllipsisLoc);
3665}
3666
3667/// \brief Handle a C++ member initializer using parentheses syntax.
3668MemInitResult
3669Sema::ActOnMemInitializer(Decl *ConstructorD,
3670 Scope *S,
3671 CXXScopeSpec &SS,
3672 IdentifierInfo *MemberOrBase,
3673 ParsedType TemplateTypeTy,
3674 const DeclSpec &DS,
3675 SourceLocation IdLoc,
3676 SourceLocation LParenLoc,
3677 ArrayRef<Expr *> Args,
3678 SourceLocation RParenLoc,
3679 SourceLocation EllipsisLoc) {
3680 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
3681 Args, RParenLoc);
3682 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3683 DS, IdLoc, List, EllipsisLoc);
3684}
3685
3686namespace {
3687
3688// Callback to only accept typo corrections that can be a valid C++ member
3689// intializer: either a non-static field member or a base class.
3690class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
3691public:
3692 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
3693 : ClassDecl(ClassDecl) {}
3694
3695 bool ValidateCandidate(const TypoCorrection &candidate) override {
3696 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
3697 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
3698 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
3699 return isa<TypeDecl>(ND);
3700 }
3701 return false;
3702 }
3703
3704private:
3705 CXXRecordDecl *ClassDecl;
3706};
3707
3708}
3709
3710/// \brief Handle a C++ member initializer.
3711MemInitResult
3712Sema::BuildMemInitializer(Decl *ConstructorD,
3713 Scope *S,
3714 CXXScopeSpec &SS,
3715 IdentifierInfo *MemberOrBase,
3716 ParsedType TemplateTypeTy,
3717 const DeclSpec &DS,
3718 SourceLocation IdLoc,
3719 Expr *Init,
3720 SourceLocation EllipsisLoc) {
3721 ExprResult Res = CorrectDelayedTyposInExpr(Init);
3722 if (!Res.isUsable())
3723 return true;
3724 Init = Res.get();
3725
3726 if (!ConstructorD)
3727 return true;
3728
3729 AdjustDeclIfTemplate(ConstructorD);
3730
3731 CXXConstructorDecl *Constructor
3732 = dyn_cast<CXXConstructorDecl>(ConstructorD);
3733 if (!Constructor) {
3734 // The user wrote a constructor initializer on a function that is
3735 // not a C++ constructor. Ignore the error for now, because we may
3736 // have more member initializers coming; we'll diagnose it just
3737 // once in ActOnMemInitializers.
3738 return true;
3739 }
3740
3741 CXXRecordDecl *ClassDecl = Constructor->getParent();
3742
3743 // C++ [class.base.init]p2:
3744 // Names in a mem-initializer-id are looked up in the scope of the
3745 // constructor's class and, if not found in that scope, are looked
3746 // up in the scope containing the constructor's definition.
3747 // [Note: if the constructor's class contains a member with the
3748 // same name as a direct or virtual base class of the class, a
3749 // mem-initializer-id naming the member or base class and composed
3750 // of a single identifier refers to the class member. A
3751 // mem-initializer-id for the hidden base class may be specified
3752 // using a qualified name. ]
3753 if (!SS.getScopeRep() && !TemplateTypeTy) {
3754 // Look for a member, first.
3755 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
3756 if (!Result.empty()) {
3757 ValueDecl *Member;
3758 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
3759 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
3760 if (EllipsisLoc.isValid())
3761 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
3762 << MemberOrBase
3763 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
3764
3765 return BuildMemberInitializer(Member, Init, IdLoc);
3766 }
3767 }
3768 }
3769 // It didn't name a member, so see if it names a class.
3770 QualType BaseType;
3771 TypeSourceInfo *TInfo = nullptr;
3772
3773 if (TemplateTypeTy) {
3774 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
3775 } else if (DS.getTypeSpecType() == TST_decltype) {
3776 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
3777 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
3778 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
3779 return true;
3780 } else {
3781 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
3782 LookupParsedName(R, S, &SS);
3783
3784 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
3785 if (!TyD) {
3786 if (R.isAmbiguous()) return true;
3787
3788 // We don't want access-control diagnostics here.
3789 R.suppressDiagnostics();
3790
3791 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
3792 bool NotUnknownSpecialization = false;
3793 DeclContext *DC = computeDeclContext(SS, false);
3794 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
3795 NotUnknownSpecialization = !Record->hasAnyDependentBases();
3796
3797 if (!NotUnknownSpecialization) {
3798 // When the scope specifier can refer to a member of an unknown
3799 // specialization, we take it as a type name.
3800 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
3801 SS.getWithLocInContext(Context),
3802 *MemberOrBase, IdLoc);
3803 if (BaseType.isNull())
3804 return true;
3805
3806 TInfo = Context.CreateTypeSourceInfo(BaseType);
3807 DependentNameTypeLoc TL =
3808 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
3809 if (!TL.isNull()) {
3810 TL.setNameLoc(IdLoc);
3811 TL.setElaboratedKeywordLoc(SourceLocation());
3812 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3813 }
3814
3815 R.clear();
3816 R.setLookupName(MemberOrBase);
3817 }
3818 }
3819
3820 // If no results were found, try to correct typos.
3821 TypoCorrection Corr;
3822 if (R.empty() && BaseType.isNull() &&
3823 (Corr = CorrectTypo(
3824 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
3825 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
3826 CTK_ErrorRecovery, ClassDecl))) {
3827 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
3828 // We have found a non-static data member with a similar
3829 // name to what was typed; complain and initialize that
3830 // member.
3831 diagnoseTypo(Corr,
3832 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3833 << MemberOrBase << true);
3834 return BuildMemberInitializer(Member, Init, IdLoc);
3835 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
3836 const CXXBaseSpecifier *DirectBaseSpec;
3837 const CXXBaseSpecifier *VirtualBaseSpec;
3838 if (FindBaseInitializer(*this, ClassDecl,
3839 Context.getTypeDeclType(Type),
3840 DirectBaseSpec, VirtualBaseSpec)) {
3841 // We have found a direct or virtual base class with a
3842 // similar name to what was typed; complain and initialize
3843 // that base class.
3844 diagnoseTypo(Corr,
3845 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3846 << MemberOrBase << false,
3847 PDiag() /*Suppress note, we provide our own.*/);
3848
3849 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
3850 : VirtualBaseSpec;
3851 Diag(BaseSpec->getLocStart(),
3852 diag::note_base_class_specified_here)
3853 << BaseSpec->getType()
3854 << BaseSpec->getSourceRange();
3855
3856 TyD = Type;
3857 }
3858 }
3859 }
3860
3861 if (!TyD && BaseType.isNull()) {
3862 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3863 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3864 return true;
3865 }
3866 }
3867
3868 if (BaseType.isNull()) {
3869 BaseType = Context.getTypeDeclType(TyD);
3870 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3871 if (SS.isSet()) {
3872 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3873 BaseType);
3874 TInfo = Context.CreateTypeSourceInfo(BaseType);
3875 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
3876 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
3877 TL.setElaboratedKeywordLoc(SourceLocation());
3878 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3879 }
3880 }
3881 }
3882
3883 if (!TInfo)
3884 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3885
3886 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3887}
3888
3889/// Checks a member initializer expression for cases where reference (or
3890/// pointer) members are bound to by-value parameters (or their addresses).
3891static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3892 Expr *Init,
3893 SourceLocation IdLoc) {
3894 QualType MemberTy = Member->getType();
3895
3896 // We only handle pointers and references currently.
3897 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3898 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3899 return;
3900
3901 const bool IsPointer = MemberTy->isPointerType();
3902 if (IsPointer) {
3903 if (const UnaryOperator *Op
3904 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3905 // The only case we're worried about with pointers requires taking the
3906 // address.
3907 if (Op->getOpcode() != UO_AddrOf)
3908 return;
3909
3910 Init = Op->getSubExpr();
3911 } else {
3912 // We only handle address-of expression initializers for pointers.
3913 return;
3914 }
3915 }
3916
3917 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3918 // We only warn when referring to a non-reference parameter declaration.
3919 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3920 if (!Parameter || Parameter->getType()->isReferenceType())
3921 return;
3922
3923 S.Diag(Init->getExprLoc(),
3924 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3925 : diag::warn_bind_ref_member_to_parameter)
3926 << Member << Parameter << Init->getSourceRange();
3927 } else {
3928 // Other initializers are fine.
3929 return;
3930 }
3931
3932 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3933 << (unsigned)IsPointer;
3934}
3935
3936MemInitResult
3937Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3938 SourceLocation IdLoc) {
3939 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3940 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3941 assert((DirectMember || IndirectMember) &&(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3942, __extension__ __PRETTY_FUNCTION__))
3942 "Member must be a FieldDecl or IndirectFieldDecl")(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3942, __extension__ __PRETTY_FUNCTION__))
;
3943
3944 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3945 return true;
3946
3947 if (Member->isInvalidDecl())
3948 return true;
3949
3950 MultiExprArg Args;
3951 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3952 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3953 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3954 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3955 } else {
3956 // Template instantiation doesn't reconstruct ParenListExprs for us.
3957 Args = Init;
3958 }
3959
3960 SourceRange InitRange = Init->getSourceRange();
3961
3962 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3963 // Can't check initialization for a member of dependent type or when
3964 // any of the arguments are type-dependent expressions.
3965 DiscardCleanupsInEvaluationContext();
3966 } else {
3967 bool InitList = false;
3968 if (isa<InitListExpr>(Init)) {
3969 InitList = true;
3970 Args = Init;
3971 }
3972
3973 // Initialize the member.
3974 InitializedEntity MemberEntity =
3975 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3976 : InitializedEntity::InitializeMember(IndirectMember,
3977 nullptr);
3978 InitializationKind Kind =
3979 InitList ? InitializationKind::CreateDirectList(IdLoc)
3980 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3981 InitRange.getEnd());
3982
3983 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3984 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3985 nullptr);
3986 if (MemberInit.isInvalid())
3987 return true;
3988
3989 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3990
3991 // C++11 [class.base.init]p7:
3992 // The initialization of each base and member constitutes a
3993 // full-expression.
3994 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3995 if (MemberInit.isInvalid())
3996 return true;
3997
3998 Init = MemberInit.get();
3999 }
4000
4001 if (DirectMember) {
4002 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4003 InitRange.getBegin(), Init,
4004 InitRange.getEnd());
4005 } else {
4006 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4007 InitRange.getBegin(), Init,
4008 InitRange.getEnd());
4009 }
4010}
4011
4012MemInitResult
4013Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4014 CXXRecordDecl *ClassDecl) {
4015 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4016 if (!LangOpts.CPlusPlus11)
4017 return Diag(NameLoc, diag::err_delegating_ctor)
4018 << TInfo->getTypeLoc().getLocalSourceRange();
4019 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4020
4021 bool InitList = true;
4022 MultiExprArg Args = Init;
4023 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4024 InitList = false;
4025 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4026 }
4027
4028 SourceRange InitRange = Init->getSourceRange();
4029 // Initialize the object.
4030 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4031 QualType(ClassDecl->getTypeForDecl(), 0));
4032 InitializationKind Kind =
4033 InitList ? InitializationKind::CreateDirectList(NameLoc)
4034 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4035 InitRange.getEnd());
4036 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4037 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4038 Args, nullptr);
4039 if (DelegationInit.isInvalid())
4040 return true;
4041
4042 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&(static_cast <bool> (cast<CXXConstructExpr>(DelegationInit
.get())->getConstructor() && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4043, __extension__ __PRETTY_FUNCTION__))
4043 "Delegating constructor with no target?")(static_cast <bool> (cast<CXXConstructExpr>(DelegationInit
.get())->getConstructor() && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4043, __extension__ __PRETTY_FUNCTION__))
;
4044
4045 // C++11 [class.base.init]p7:
4046 // The initialization of each base and member constitutes a
4047 // full-expression.
4048 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
4049 InitRange.getBegin());
4050 if (DelegationInit.isInvalid())
4051 return true;
4052
4053 // If we are in a dependent context, template instantiation will
4054 // perform this type-checking again. Just save the arguments that we
4055 // received in a ParenListExpr.
4056 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4057 // of the information that we have about the base
4058 // initializer. However, deconstructing the ASTs is a dicey process,
4059 // and this approach is far more likely to get the corner cases right.
4060 if (CurContext->isDependentContext())
4061 DelegationInit = Init;
4062
4063 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4064 DelegationInit.getAs<Expr>(),
4065 InitRange.getEnd());
4066}
4067
4068MemInitResult
4069Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4070 Expr *Init, CXXRecordDecl *ClassDecl,
4071 SourceLocation EllipsisLoc) {
4072 SourceLocation BaseLoc
4073 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4074
4075 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4076 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4077 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4078
4079 // C++ [class.base.init]p2:
4080 // [...] Unless the mem-initializer-id names a nonstatic data
4081 // member of the constructor's class or a direct or virtual base
4082 // of that class, the mem-initializer is ill-formed. A
4083 // mem-initializer-list can initialize a base class using any
4084 // name that denotes that base class type.
4085 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4086
4087 SourceRange InitRange = Init->getSourceRange();
4088 if (EllipsisLoc.isValid()) {
4089 // This is a pack expansion.
4090 if (!BaseType->containsUnexpandedParameterPack()) {
4091 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4092 << SourceRange(BaseLoc, InitRange.getEnd());
4093
4094 EllipsisLoc = SourceLocation();
4095 }
4096 } else {
4097 // Check for any unexpanded parameter packs.
4098 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4099 return true;
4100
4101 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4102 return true;
4103 }
4104
4105 // Check for direct and virtual base classes.
4106 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4107 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4108 if (!Dependent) {
4109 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4110 BaseType))
4111 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4112
4113 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4114 VirtualBaseSpec);
4115
4116 // C++ [base.class.init]p2:
4117 // Unless the mem-initializer-id names a nonstatic data member of the
4118 // constructor's class or a direct or virtual base of that class, the
4119 // mem-initializer is ill-formed.
4120 if (!DirectBaseSpec && !VirtualBaseSpec) {
4121 // If the class has any dependent bases, then it's possible that
4122 // one of those types will resolve to the same type as
4123 // BaseType. Therefore, just treat this as a dependent base
4124 // class initialization. FIXME: Should we try to check the
4125 // initialization anyway? It seems odd.
4126 if (ClassDecl->hasAnyDependentBases())
4127 Dependent = true;
4128 else
4129 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4130 << BaseType << Context.getTypeDeclType(ClassDecl)
4131 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4132 }
4133 }
4134
4135 if (Dependent) {
4136 DiscardCleanupsInEvaluationContext();
4137
4138 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4139 /*IsVirtual=*/false,
4140 InitRange.getBegin(), Init,
4141 InitRange.getEnd(), EllipsisLoc);
4142 }
4143
4144 // C++ [base.class.init]p2:
4145 // If a mem-initializer-id is ambiguous because it designates both
4146 // a direct non-virtual base class and an inherited virtual base
4147 // class, the mem-initializer is ill-formed.
4148 if (DirectBaseSpec && VirtualBaseSpec)
4149 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4150 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4151
4152 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4153 if (!BaseSpec)
4154 BaseSpec = VirtualBaseSpec;
4155
4156 // Initialize the base.
4157 bool InitList = true;
4158 MultiExprArg Args = Init;
4159 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4160 InitList = false;
4161 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4162 }
4163
4164 InitializedEntity BaseEntity =
4165 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4166 InitializationKind Kind =
4167 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4168 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4169 InitRange.getEnd());
4170 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4171 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4172 if (BaseInit.isInvalid())
4173 return true;
4174
4175 // C++11 [class.base.init]p7:
4176 // The initialization of each base and member constitutes a
4177 // full-expression.
4178 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
4179 if (BaseInit.isInvalid())
4180 return true;
4181
4182 // If we are in a dependent context, template instantiation will
4183 // perform this type-checking again. Just save the arguments that we
4184 // received in a ParenListExpr.
4185 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4186 // of the information that we have about the base
4187 // initializer. However, deconstructing the ASTs is a dicey process,
4188 // and this approach is far more likely to get the corner cases right.
4189 if (CurContext->isDependentContext())
4190 BaseInit = Init;
4191
4192 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4193 BaseSpec->isVirtual(),
4194 InitRange.getBegin(),
4195 BaseInit.getAs<Expr>(),
4196 InitRange.getEnd(), EllipsisLoc);
4197}
4198
4199// Create a static_cast\<T&&>(expr).
4200static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4201 if (T.isNull()) T = E->getType();
4202 QualType TargetType = SemaRef.BuildReferenceType(
4203 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4204 SourceLocation ExprLoc = E->getLocStart();
4205 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4206 TargetType, ExprLoc);
4207
4208 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4209 SourceRange(ExprLoc, ExprLoc),
4210 E->getSourceRange()).get();
4211}
4212
4213/// ImplicitInitializerKind - How an implicit base or member initializer should
4214/// initialize its base or member.
4215enum ImplicitInitializerKind {
4216 IIK_Default,
4217 IIK_Copy,
4218 IIK_Move,
4219 IIK_Inherit
4220};
4221
4222static bool
4223BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4224 ImplicitInitializerKind ImplicitInitKind,
4225 CXXBaseSpecifier *BaseSpec,
4226 bool IsInheritedVirtualBase,
4227 CXXCtorInitializer *&CXXBaseInit) {
4228 InitializedEntity InitEntity
4229 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4230 IsInheritedVirtualBase);
4231
4232 ExprResult BaseInit;
4233
4234 switch (ImplicitInitKind) {
4235 case IIK_Inherit:
4236 case IIK_Default: {
4237 InitializationKind InitKind
4238 = InitializationKind::CreateDefault(Constructor->getLocation());
4239 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4240 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4241 break;
4242 }
4243
4244 case IIK_Move:
4245 case IIK_Copy: {
4246 bool Moving = ImplicitInitKind == IIK_Move;
4247 ParmVarDecl *Param = Constructor->getParamDecl(0);
4248 QualType ParamType = Param->getType().getNonReferenceType();
4249
4250 Expr *CopyCtorArg =
4251 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4252 SourceLocation(), Param, false,
4253 Constructor->getLocation(), ParamType,
4254 VK_LValue, nullptr);
4255
4256 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4257
4258 // Cast to the base class to avoid ambiguities.
4259 QualType ArgTy =
4260 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4261 ParamType.getQualifiers());
4262
4263 if (Moving) {
4264 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4265 }
4266
4267 CXXCastPath BasePath;
4268 BasePath.push_back(BaseSpec);
4269 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4270 CK_UncheckedDerivedToBase,
4271 Moving ? VK_XValue : VK_LValue,
4272 &BasePath).get();
4273
4274 InitializationKind InitKind
4275 = InitializationKind::CreateDirect(Constructor->getLocation(),
4276 SourceLocation(), SourceLocation());
4277 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4278 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4279 break;
4280 }
4281 }
4282
4283 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4284 if (BaseInit.isInvalid())
4285 return true;
4286
4287 CXXBaseInit =
4288 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4289 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4290 SourceLocation()),
4291 BaseSpec->isVirtual(),
4292 SourceLocation(),
4293 BaseInit.getAs<Expr>(),
4294 SourceLocation(),
4295 SourceLocation());
4296
4297 return false;
4298}
4299
4300static bool RefersToRValueRef(Expr *MemRef) {
4301 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4302 return Referenced->getType()->isRValueReferenceType();
4303}
4304
4305static bool
4306BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4307 ImplicitInitializerKind ImplicitInitKind,
4308 FieldDecl *Field, IndirectFieldDecl *Indirect,
4309 CXXCtorInitializer *&CXXMemberInit) {
4310 if (Field->isInvalidDecl())
4311 return true;
4312
4313 SourceLocation Loc = Constructor->getLocation();
4314
4315 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4316 bool Moving = ImplicitInitKind == IIK_Move;
4317 ParmVarDecl *Param = Constructor->getParamDecl(0);
4318 QualType ParamType = Param->getType().getNonReferenceType();
4319
4320 // Suppress copying zero-width bitfields.
4321 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
4322 return false;
4323
4324 Expr *MemberExprBase =
4325 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4326 SourceLocation(), Param, false,
4327 Loc, ParamType, VK_LValue, nullptr);
4328
4329 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4330
4331 if (Moving) {
4332 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4333 }
4334
4335 // Build a reference to this field within the parameter.
4336 CXXScopeSpec SS;
4337 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4338 Sema::LookupMemberName);
4339 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4340 : cast<ValueDecl>(Field), AS_public);
4341 MemberLookup.resolveKind();
4342 ExprResult CtorArg
4343 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4344 ParamType, Loc,
4345 /*IsArrow=*/false,
4346 SS,
4347 /*TemplateKWLoc=*/SourceLocation(),
4348 /*FirstQualifierInScope=*/nullptr,
4349 MemberLookup,
4350 /*TemplateArgs=*/nullptr,
4351 /*S*/nullptr);
4352 if (CtorArg.isInvalid())
4353 return true;
4354
4355 // C++11 [class.copy]p15:
4356 // - if a member m has rvalue reference type T&&, it is direct-initialized
4357 // with static_cast<T&&>(x.m);
4358 if (RefersToRValueRef(CtorArg.get())) {
4359 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4360 }
4361
4362 InitializedEntity Entity =
4363 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4364 /*Implicit*/ true)
4365 : InitializedEntity::InitializeMember(Field, nullptr,
4366 /*Implicit*/ true);
4367
4368 // Direct-initialize to use the copy constructor.
4369 InitializationKind InitKind =
4370 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4371
4372 Expr *CtorArgE = CtorArg.getAs<Expr>();
4373 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4374 ExprResult MemberInit =
4375 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4376 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4377 if (MemberInit.isInvalid())
4378 return true;
4379
4380 if (Indirect)
4381 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4382 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4383 else
4384 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4385 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4386 return false;
4387 }
4388
4389 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4390, __extension__ __PRETTY_FUNCTION__))
4390 "Unhandled implicit init kind!")(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4390, __extension__ __PRETTY_FUNCTION__))
;
4391
4392 QualType FieldBaseElementType =
4393 SemaRef.Context.getBaseElementType(Field->getType());
4394
4395 if (FieldBaseElementType->isRecordType()) {
4396 InitializedEntity InitEntity =
4397 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4398 /*Implicit*/ true)
4399 : InitializedEntity::InitializeMember(Field, nullptr,
4400 /*Implicit*/ true);
4401 InitializationKind InitKind =
4402 InitializationKind::CreateDefault(Loc);
4403
4404 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4405 ExprResult MemberInit =
4406 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4407
4408 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4409 if (MemberInit.isInvalid())
4410 return true;
4411
4412 if (Indirect)
4413 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4414 Indirect, Loc,
4415 Loc,
4416 MemberInit.get(),
4417 Loc);
4418 else
4419 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4420 Field, Loc, Loc,
4421 MemberInit.get(),
4422 Loc);
4423 return false;
4424 }
4425
4426 if (!Field->getParent()->isUnion()) {
4427 if (FieldBaseElementType->isReferenceType()) {
4428 SemaRef.Diag(Constructor->getLocation(),
4429 diag::err_uninitialized_member_in_ctor)
4430 << (int)Constructor->isImplicit()
4431 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4432 << 0 << Field->getDeclName();
4433 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4434 return true;
4435 }
4436
4437 if (FieldBaseElementType.isConstQualified()) {
4438 SemaRef.Diag(Constructor->getLocation(),
4439 diag::err_uninitialized_member_in_ctor)
4440 << (int)Constructor->isImplicit()
4441 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4442 << 1 << Field->getDeclName();
4443 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4444 return true;
4445 }
4446 }
4447
4448 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4449 // ARC and Weak:
4450 // Default-initialize Objective-C pointers to NULL.
4451 CXXMemberInit
4452 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4453 Loc, Loc,
4454 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4455 Loc);
4456 return false;
4457 }
4458
4459 // Nothing to initialize.
4460 CXXMemberInit = nullptr;
4461 return false;
4462}
4463
4464namespace {
4465struct BaseAndFieldInfo {
4466 Sema &S;
4467 CXXConstructorDecl *Ctor;
4468 bool AnyErrorsInInits;
4469 ImplicitInitializerKind IIK;
4470 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4471 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4472 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4473
4474 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4475 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4476 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4477 if (Ctor->getInheritedConstructor())
4478 IIK = IIK_Inherit;
4479 else if (Generated && Ctor->isCopyConstructor())
4480 IIK = IIK_Copy;
4481 else if (Generated && Ctor->isMoveConstructor())
4482 IIK = IIK_Move;
4483 else
4484 IIK = IIK_Default;
4485 }
4486
4487 bool isImplicitCopyOrMove() const {
4488 switch (IIK) {
4489 case IIK_Copy:
4490 case IIK_Move:
4491 return true;
4492
4493 case IIK_Default:
4494 case IIK_Inherit:
4495 return false;
4496 }
4497
4498 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4498)
;
4499 }
4500
4501 bool addFieldInitializer(CXXCtorInitializer *Init) {
4502 AllToInit.push_back(Init);
4503
4504 // Check whether this initializer makes the field "used".
4505 if (Init->getInit()->HasSideEffects(S.Context))
4506 S.UnusedPrivateFields.remove(Init->getAnyMember());
4507
4508 return false;
4509 }
4510
4511 bool isInactiveUnionMember(FieldDecl *Field) {
4512 RecordDecl *Record = Field->getParent();
4513 if (!Record->isUnion())
4514 return false;
4515
4516 if (FieldDecl *Active =
4517 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4518 return Active != Field->getCanonicalDecl();
4519
4520 // In an implicit copy or move constructor, ignore any in-class initializer.
4521 if (isImplicitCopyOrMove())
4522 return true;
4523
4524 // If there's no explicit initialization, the field is active only if it
4525 // has an in-class initializer...
4526 if (Field->hasInClassInitializer())
4527 return false;
4528 // ... or it's an anonymous struct or union whose class has an in-class
4529 // initializer.
4530 if (!Field->isAnonymousStructOrUnion())
4531 return true;
4532 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4533 return !FieldRD->hasInClassInitializer();
4534 }
4535
4536 /// \brief Determine whether the given field is, or is within, a union member
4537 /// that is inactive (because there was an initializer given for a different
4538 /// member of the union, or because the union was not initialized at all).
4539 bool isWithinInactiveUnionMember(FieldDecl *Field,
4540 IndirectFieldDecl *Indirect) {
4541 if (!Indirect)
4542 return isInactiveUnionMember(Field);
4543
4544 for (auto *C : Indirect->chain()) {
4545 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4546 if (Field && isInactiveUnionMember(Field))
4547 return true;
4548 }
4549 return false;
4550 }
4551};
4552}
4553
4554/// \brief Determine whether the given type is an incomplete or zero-lenfgth
4555/// array type.
4556static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4557 if (T->isIncompleteArrayType())
4558 return true;
4559
4560 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4561 if (!ArrayT->getSize())
4562 return true;
4563
4564 T = ArrayT->getElementType();
4565 }
4566
4567 return false;
4568}
4569
4570static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4571 FieldDecl *Field,
4572 IndirectFieldDecl *Indirect = nullptr) {
4573 if (Field->isInvalidDecl())
4574 return false;
4575
4576 // Overwhelmingly common case: we have a direct initializer for this field.
4577 if (CXXCtorInitializer *Init =
4578 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4579 return Info.addFieldInitializer(Init);
4580
4581 // C++11 [class.base.init]p8:
4582 // if the entity is a non-static data member that has a
4583 // brace-or-equal-initializer and either
4584 // -- the constructor's class is a union and no other variant member of that
4585 // union is designated by a mem-initializer-id or
4586 // -- the constructor's class is not a union, and, if the entity is a member
4587 // of an anonymous union, no other member of that union is designated by
4588 // a mem-initializer-id,
4589 // the entity is initialized as specified in [dcl.init].
4590 //
4591 // We also apply the same rules to handle anonymous structs within anonymous
4592 // unions.
4593 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4594 return false;
4595
4596 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4597 ExprResult DIE =
4598 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4599 if (DIE.isInvalid())
4600 return true;
4601 CXXCtorInitializer *Init;
4602 if (Indirect)
4603 Init = new (SemaRef.Context)
4604 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4605 SourceLocation(), DIE.get(), SourceLocation());
4606 else
4607 Init = new (SemaRef.Context)
4608 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4609 SourceLocation(), DIE.get(), SourceLocation());
4610 return Info.addFieldInitializer(Init);
4611 }
4612
4613 // Don't initialize incomplete or zero-length arrays.
4614 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4615 return false;
4616
4617 // Don't try to build an implicit initializer if there were semantic
4618 // errors in any of the initializers (and therefore we might be
4619 // missing some that the user actually wrote).
4620 if (Info.AnyErrorsInInits)
4621 return false;
4622
4623 CXXCtorInitializer *Init = nullptr;
4624 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4625 Indirect, Init))
4626 return true;
4627
4628 if (!Init)
4629 return false;
4630
4631 return Info.addFieldInitializer(Init);
4632}
4633
4634bool
4635Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4636 CXXCtorInitializer *Initializer) {
4637 assert(Initializer->isDelegatingInitializer())(static_cast <bool> (Initializer->isDelegatingInitializer
()) ? void (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4637, __extension__ __PRETTY_FUNCTION__))
;
4638 Constructor->setNumCtorInitializers(1);
4639 CXXCtorInitializer **initializer =
4640 new (Context) CXXCtorInitializer*[1];
4641 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4642 Constructor->setCtorInitializers(initializer);
4643
4644 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4645 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4646 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4647 }
4648
4649 DelegatingCtorDecls.push_back(Constructor);
4650
4651 DiagnoseUninitializedFields(*this, Constructor);
4652
4653 return false;
4654}
4655
4656bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4657 ArrayRef<CXXCtorInitializer *> Initializers) {
4658 if (Constructor->isDependentContext()) {
4659 // Just store the initializers as written, they will be checked during
4660 // instantiation.
4661 if (!Initializers.empty()) {
4662 Constructor->setNumCtorInitializers(Initializers.size());
4663 CXXCtorInitializer **baseOrMemberInitializers =
4664 new (Context) CXXCtorInitializer*[Initializers.size()];
4665 memcpy(baseOrMemberInitializers, Initializers.data(),
4666 Initializers.size() * sizeof(CXXCtorInitializer*));
4667 Constructor->setCtorInitializers(baseOrMemberInitializers);
4668 }
4669
4670 // Let template instantiation know whether we had errors.
4671 if (AnyErrors)
4672 Constructor->setInvalidDecl();
4673
4674 return false;
4675 }
4676
4677 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4678
4679 // We need to build the initializer AST according to order of construction
4680 // and not what user specified in the Initializers list.
4681 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4682 if (!ClassDecl)
4683 return true;
4684
4685 bool HadError = false;
4686
4687 for (unsigned i = 0; i < Initializers.size(); i++) {
4688 CXXCtorInitializer *Member = Initializers[i];
4689
4690 if (Member->isBaseInitializer())
4691 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4692 else {
4693 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4694
4695 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4696 for (auto *C : F->chain()) {
4697 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4698 if (FD && FD->getParent()->isUnion())
4699 Info.ActiveUnionMember.insert(std::make_pair(
4700 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4701 }
4702 } else if (FieldDecl *FD = Member->getMember()) {
4703 if (FD->getParent()->isUnion())
4704 Info.ActiveUnionMember.insert(std::make_pair(
4705 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4706 }
4707 }
4708 }
4709
4710 // Keep track of the direct virtual bases.
4711 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4712 for (auto &I : ClassDecl->bases()) {
4713 if (I.isVirtual())
4714 DirectVBases.insert(&I);
4715 }
4716
4717 // Push virtual bases before others.
4718 for (auto &VBase : ClassDecl->vbases()) {
4719 if (CXXCtorInitializer *Value
4720 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
4721 // [class.base.init]p7, per DR257:
4722 // A mem-initializer where the mem-initializer-id names a virtual base
4723 // class is ignored during execution of a constructor of any class that
4724 // is not the most derived class.
4725 if (ClassDecl->isAbstract()) {
4726 // FIXME: Provide a fixit to remove the base specifier. This requires
4727 // tracking the location of the associated comma for a base specifier.
4728 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
4729 << VBase.getType() << ClassDecl;
4730 DiagnoseAbstractType(ClassDecl);
4731 }
4732
4733 Info.AllToInit.push_back(Value);
4734 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
4735 // [class.base.init]p8, per DR257:
4736 // If a given [...] base class is not named by a mem-initializer-id
4737 // [...] and the entity is not a virtual base class of an abstract
4738 // class, then [...] the entity is default-initialized.
4739 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
4740 CXXCtorInitializer *CXXBaseInit;
4741 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4742 &VBase, IsInheritedVirtualBase,
4743 CXXBaseInit)) {
4744 HadError = true;
4745 continue;
4746 }
4747
4748 Info.AllToInit.push_back(CXXBaseInit);
4749 }
4750 }
4751
4752 // Non-virtual bases.
4753 for (auto &Base : ClassDecl->bases()) {
4754 // Virtuals are in the virtual base list and already constructed.
4755 if (Base.isVirtual())
4756 continue;
4757
4758 if (CXXCtorInitializer *Value
4759 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
4760 Info.AllToInit.push_back(Value);
4761 } else if (!AnyErrors) {
4762 CXXCtorInitializer *CXXBaseInit;
4763 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4764 &Base, /*IsInheritedVirtualBase=*/false,
4765 CXXBaseInit)) {
4766 HadError = true;
4767 continue;
4768 }
4769
4770 Info.AllToInit.push_back(CXXBaseInit);
4771 }
4772 }
4773
4774 // Fields.
4775 for (auto *Mem : ClassDecl->decls()) {
4776 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4777 // C++ [class.bit]p2:
4778 // A declaration for a bit-field that omits the identifier declares an
4779 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4780 // initialized.
4781 if (F->isUnnamedBitfield())
4782 continue;
4783
4784 // If we're not generating the implicit copy/move constructor, then we'll
4785 // handle anonymous struct/union fields based on their individual
4786 // indirect fields.
4787 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4788 continue;
4789
4790 if (CollectFieldInitializer(*this, Info, F))
4791 HadError = true;
4792 continue;
4793 }
4794
4795 // Beyond this point, we only consider default initialization.
4796 if (Info.isImplicitCopyOrMove())
4797 continue;
4798
4799 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4800 if (F->getType()->isIncompleteArrayType()) {
4801 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4802, __extension__ __PRETTY_FUNCTION__))
4802 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4802, __extension__ __PRETTY_FUNCTION__))
;
4803 continue;
4804 }
4805
4806 // Initialize each field of an anonymous struct individually.
4807 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4808 HadError = true;
4809
4810 continue;
4811 }
4812 }
4813
4814 unsigned NumInitializers = Info.AllToInit.size();
4815 if (NumInitializers > 0) {
4816 Constructor->setNumCtorInitializers(NumInitializers);
4817 CXXCtorInitializer **baseOrMemberInitializers =
4818 new (Context) CXXCtorInitializer*[NumInitializers];
4819 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4820 NumInitializers * sizeof(CXXCtorInitializer*));
4821 Constructor->setCtorInitializers(baseOrMemberInitializers);
4822
4823 // Constructors implicitly reference the base and member
4824 // destructors.
4825 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4826 Constructor->getParent());
4827 }
4828
4829 return HadError;
4830}
4831
4832static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4833 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4834 const RecordDecl *RD = RT->getDecl();
4835 if (RD->isAnonymousStructOrUnion()) {
4836 for (auto *Field : RD->fields())
4837 PopulateKeysForFields(Field, IdealInits);
4838 return;
4839 }
4840 }
4841 IdealInits.push_back(Field->getCanonicalDecl());
4842}
4843
4844static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4845 return Context.getCanonicalType(BaseType).getTypePtr();
4846}
4847
4848static const void *GetKeyForMember(ASTContext &Context,
4849 CXXCtorInitializer *Member) {
4850 if (!Member->isAnyMemberInitializer())
4851 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4852
4853 return Member->getAnyMember()->getCanonicalDecl();
4854}
4855
4856static void DiagnoseBaseOrMemInitializerOrder(
4857 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4858 ArrayRef<CXXCtorInitializer *> Inits) {
4859 if (Constructor->getDeclContext()->isDependentContext())
4860 return;
4861
4862 // Don't check initializers order unless the warning is enabled at the
4863 // location of at least one initializer.
4864 bool ShouldCheckOrder = false;
4865 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4866 CXXCtorInitializer *Init = Inits[InitIndex];
4867 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4868 Init->getSourceLocation())) {
4869 ShouldCheckOrder = true;
4870 break;
4871 }
4872 }
4873 if (!ShouldCheckOrder)
4874 return;
4875
4876 // Build the list of bases and members in the order that they'll
4877 // actually be initialized. The explicit initializers should be in
4878 // this same order but may be missing things.
4879 SmallVector<const void*, 32> IdealInitKeys;
4880
4881 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4882
4883 // 1. Virtual bases.
4884 for (const auto &VBase : ClassDecl->vbases())
4885 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4886
4887 // 2. Non-virtual bases.
4888 for (const auto &Base : ClassDecl->bases()) {
4889 if (Base.isVirtual())
4890 continue;
4891 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4892 }
4893
4894 // 3. Direct fields.
4895 for (auto *Field : ClassDecl->fields()) {
4896 if (Field->isUnnamedBitfield())
4897 continue;
4898
4899 PopulateKeysForFields(Field, IdealInitKeys);
4900 }
4901
4902 unsigned NumIdealInits = IdealInitKeys.size();
4903 unsigned IdealIndex = 0;
4904
4905 CXXCtorInitializer *PrevInit = nullptr;
4906 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4907 CXXCtorInitializer *Init = Inits[InitIndex];
4908 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4909
4910 // Scan forward to try to find this initializer in the idealized
4911 // initializers list.
4912 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4913 if (InitKey == IdealInitKeys[IdealIndex])
4914 break;
4915
4916 // If we didn't find this initializer, it must be because we
4917 // scanned past it on a previous iteration. That can only
4918 // happen if we're out of order; emit a warning.
4919 if (IdealIndex == NumIdealInits && PrevInit) {
4920 Sema::SemaDiagnosticBuilder D =
4921 SemaRef.Diag(PrevInit->getSourceLocation(),
4922 diag::warn_initializer_out_of_order);
4923
4924 if (PrevInit->isAnyMemberInitializer())
4925 D << 0 << PrevInit->getAnyMember()->getDeclName();
4926 else
4927 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4928
4929 if (Init->isAnyMemberInitializer())
4930 D << 0 << Init->getAnyMember()->getDeclName();
4931 else
4932 D << 1 << Init->getTypeSourceInfo()->getType();
4933
4934 // Move back to the initializer's location in the ideal list.
4935 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4936 if (InitKey == IdealInitKeys[IdealIndex])
4937 break;
4938
4939 assert(IdealIndex < NumIdealInits &&(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4940, __extension__ __PRETTY_FUNCTION__))
4940 "initializer not found in initializer list")(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4940, __extension__ __PRETTY_FUNCTION__))
;
4941 }
4942
4943 PrevInit = Init;
4944 }
4945}
4946
4947namespace {
4948bool CheckRedundantInit(Sema &S,
4949 CXXCtorInitializer *Init,
4950 CXXCtorInitializer *&PrevInit) {
4951 if (!PrevInit) {
4952 PrevInit = Init;
4953 return false;
4954 }
4955
4956 if (FieldDecl *Field = Init->getAnyMember())
4957 S.Diag(Init->getSourceLocation(),
4958 diag::err_multiple_mem_initialization)
4959 << Field->getDeclName()
4960 << Init->getSourceRange();
4961 else {
4962 const Type *BaseClass = Init->getBaseClass();
4963 assert(BaseClass && "neither field nor base")(static_cast <bool> (BaseClass && "neither field nor base"
) ? void (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4963, __extension__ __PRETTY_FUNCTION__))
;
4964 S.Diag(Init->getSourceLocation(),
4965 diag::err_multiple_base_initialization)
4966 << QualType(BaseClass, 0)
4967 << Init->getSourceRange();
4968 }
4969 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4970 << 0 << PrevInit->getSourceRange();
4971
4972 return true;
4973}
4974
4975typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4976typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4977
4978bool CheckRedundantUnionInit(Sema &S,
4979 CXXCtorInitializer *Init,
4980 RedundantUnionMap &Unions) {
4981 FieldDecl *Field = Init->getAnyMember();
4982 RecordDecl *Parent = Field->getParent();
4983 NamedDecl *Child = Field;
4984
4985 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4986 if (Parent->isUnion()) {
4987 UnionEntry &En = Unions[Parent];
4988 if (En.first && En.first != Child) {
4989 S.Diag(Init->getSourceLocation(),
4990 diag::err_multiple_mem_union_initialization)
4991 << Field->getDeclName()
4992 << Init->getSourceRange();
4993 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4994 << 0 << En.second->getSourceRange();
4995 return true;
4996 }
4997 if (!En.first) {
4998 En.first = Child;
4999 En.second = Init;
5000 }
5001 if (!Parent->isAnonymousStructOrUnion())
5002 return false;
5003 }
5004
5005 Child = Parent;
5006 Parent = cast<RecordDecl>(Parent->getDeclContext());
5007 }
5008
5009 return false;
5010}
5011}
5012
5013/// ActOnMemInitializers - Handle the member initializers for a constructor.
5014void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5015 SourceLocation ColonLoc,
5016 ArrayRef<CXXCtorInitializer*> MemInits,
5017 bool AnyErrors) {
5018 if (!ConstructorDecl)
5019 return;
5020
5021 AdjustDeclIfTemplate(ConstructorDecl);
5022
5023 CXXConstructorDecl *Constructor
5024 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5025
5026 if (!Constructor) {
5027 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5028 return;
5029 }
5030
5031 // Mapping for the duplicate initializers check.
5032 // For member initializers, this is keyed with a FieldDecl*.
5033 // For base initializers, this is keyed with a Type*.
5034 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5035
5036 // Mapping for the inconsistent anonymous-union initializers check.
5037 RedundantUnionMap MemberUnions;
5038
5039 bool HadError = false;
5040 for (unsigned i = 0; i < MemInits.size(); i++) {
5041 CXXCtorInitializer *Init = MemInits[i];
5042
5043 // Set the source order index.
5044 Init->setSourceOrder(i);
5045
5046 if (Init->isAnyMemberInitializer()) {
5047 const void *Key = GetKeyForMember(Context, Init);
5048 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5049 CheckRedundantUnionInit(*this, Init, MemberUnions))
5050 HadError = true;
5051 } else if (Init->isBaseInitializer()) {
5052 const void *Key = GetKeyForMember(Context, Init);
5053 if (CheckRedundantInit(*this, Init, Members[Key]))
5054 HadError = true;
5055 } else {
5056 assert(Init->isDelegatingInitializer())(static_cast <bool> (Init->isDelegatingInitializer()
) ? void (0) : __assert_fail ("Init->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5056, __extension__ __PRETTY_FUNCTION__))
;
5057 // This must be the only initializer
5058 if (MemInits.size() != 1) {
5059 Diag(Init->getSourceLocation(),
5060 diag::err_delegating_initializer_alone)
5061 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5062 // We will treat this as being the only initializer.
5063 }
5064 SetDelegatingInitializer(Constructor, MemInits[i]);
5065 // Return immediately as the initializer is set.
5066 return;
5067 }
5068 }
5069
5070 if (HadError)
5071 return;
5072
5073 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5074
5075 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5076
5077 DiagnoseUninitializedFields(*this, Constructor);
5078}
5079
5080void
5081Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5082 CXXRecordDecl *ClassDecl) {
5083 // Ignore dependent contexts. Also ignore unions, since their members never
5084 // have destructors implicitly called.
5085 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5086 return;
5087
5088 // FIXME: all the access-control diagnostics are positioned on the
5089 // field/base declaration. That's probably good; that said, the
5090 // user might reasonably want to know why the destructor is being
5091 // emitted, and we currently don't say.
5092
5093 // Non-static data members.
5094 for (auto *Field : ClassDecl->fields()) {
5095 if (Field->isInvalidDecl())
5096 continue;
5097
5098 // Don't destroy incomplete or zero-length arrays.
5099 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5100 continue;
5101
5102 QualType FieldType = Context.getBaseElementType(Field->getType());
5103
5104 const RecordType* RT = FieldType->getAs<RecordType>();
5105 if (!RT)
5106 continue;
5107
5108 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5109 if (FieldClassDecl->isInvalidDecl())
5110 continue;
5111 if (FieldClassDecl->hasIrrelevantDestructor())
5112 continue;
5113 // The destructor for an implicit anonymous union member is never invoked.
5114 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5115 continue;
5116
5117 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5118 assert(Dtor && "No dtor found for FieldClassDecl!")(static_cast <bool> (Dtor && "No dtor found for FieldClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5118, __extension__ __PRETTY_FUNCTION__))
;
5119 CheckDestructorAccess(Field->getLocation(), Dtor,
5120 PDiag(diag::err_access_dtor_field)
5121 << Field->getDeclName()
5122 << FieldType);
5123
5124 MarkFunctionReferenced(Location, Dtor);
5125 DiagnoseUseOfDecl(Dtor, Location);
5126 }
5127
5128 // We only potentially invoke the destructors of potentially constructed
5129 // subobjects.
5130 bool VisitVirtualBases = !ClassDecl->isAbstract();
5131
5132 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5133
5134 // Bases.
5135 for (const auto &Base : ClassDecl->bases()) {
5136 // Bases are always records in a well-formed non-dependent class.
5137 const RecordType *RT = Base.getType()->getAs<RecordType>();
5138
5139 // Remember direct virtual bases.
5140 if (Base.isVirtual()) {
5141 if (!VisitVirtualBases)
5142 continue;
5143 DirectVirtualBases.insert(RT);
5144 }
5145
5146 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5147 // If our base class is invalid, we probably can't get its dtor anyway.
5148 if (BaseClassDecl->isInvalidDecl())
5149 continue;
5150 if (BaseClassDecl->hasIrrelevantDestructor())
5151 continue;
5152
5153 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5154 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5154, __extension__ __PRETTY_FUNCTION__))
;
5155
5156 // FIXME: caret should be on the start of the class name
5157 CheckDestructorAccess(Base.getLocStart(), Dtor,
5158 PDiag(diag::err_access_dtor_base)
5159 << Base.getType()
5160 << Base.getSourceRange(),
5161 Context.getTypeDeclType(ClassDecl));
5162
5163 MarkFunctionReferenced(Location, Dtor);
5164 DiagnoseUseOfDecl(Dtor, Location);
5165 }
5166
5167 if (!VisitVirtualBases)
5168 return;
5169
5170 // Virtual bases.
5171 for (const auto &VBase : ClassDecl->vbases()) {
5172 // Bases are always records in a well-formed non-dependent class.
5173 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5174
5175 // Ignore direct virtual bases.
5176 if (DirectVirtualBases.count(RT))
5177 continue;
5178
5179 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5180 // If our base class is invalid, we probably can't get its dtor anyway.
5181 if (BaseClassDecl->isInvalidDecl())
5182 continue;
5183 if (BaseClassDecl->hasIrrelevantDestructor())
5184 continue;
5185
5186 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5187 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5187, __extension__ __PRETTY_FUNCTION__))
;
5188 if (CheckDestructorAccess(
5189 ClassDecl->getLocation(), Dtor,
5190 PDiag(diag::err_access_dtor_vbase)
5191 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5192 Context.getTypeDeclType(ClassDecl)) ==
5193 AR_accessible) {
5194 CheckDerivedToBaseConversion(
5195 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5196 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5197 SourceRange(), DeclarationName(), nullptr);
5198 }
5199
5200 MarkFunctionReferenced(Location, Dtor);
5201 DiagnoseUseOfDecl(Dtor, Location);
5202 }
5203}
5204
5205void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5206 if (!CDtorDecl)
5207 return;
5208
5209 if (CXXConstructorDecl *Constructor
5210 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5211 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5212 DiagnoseUninitializedFields(*this, Constructor);
5213 }
5214}
5215
5216bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5217 if (!getLangOpts().CPlusPlus)
5218 return false;
5219
5220 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5221 if (!RD)
5222 return false;
5223
5224 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5225 // class template specialization here, but doing so breaks a lot of code.
5226
5227 // We can't answer whether something is abstract until it has a
5228 // definition. If it's currently being defined, we'll walk back
5229 // over all the declarations when we have a full definition.
5230 const CXXRecordDecl *Def = RD->getDefinition();
5231 if (!Def || Def->isBeingDefined())
5232 return false;
5233
5234 return RD->isAbstract();
5235}
5236
5237bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5238 TypeDiagnoser &Diagnoser) {
5239 if (!isAbstractType(Loc, T))
5240 return false;
5241
5242 T = Context.getBaseElementType(T);
5243 Diagnoser.diagnose(*this, Loc, T);
5244 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5245 return true;
5246}
5247
5248void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5249 // Check if we've already emitted the list of pure virtual functions
5250 // for this class.
5251 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5252 return;
5253
5254 // If the diagnostic is suppressed, don't emit the notes. We're only
5255 // going to emit them once, so try to attach them to a diagnostic we're
5256 // actually going to show.
5257 if (Diags.isLastDiagnosticIgnored())
5258 return;
5259
5260 CXXFinalOverriderMap FinalOverriders;
5261 RD->getFinalOverriders(FinalOverriders);
5262
5263 // Keep a set of seen pure methods so we won't diagnose the same method
5264 // more than once.
5265 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5266
5267 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5268 MEnd = FinalOverriders.end();
5269 M != MEnd;
5270 ++M) {
5271 for (OverridingMethods::iterator SO = M->second.begin(),
5272 SOEnd = M->second.end();
5273 SO != SOEnd; ++SO) {
5274 // C++ [class.abstract]p4:
5275 // A class is abstract if it contains or inherits at least one
5276 // pure virtual function for which the final overrider is pure
5277 // virtual.
5278
5279 //
5280 if (SO->second.size() != 1)
5281 continue;
5282
5283 if (!SO->second.front().Method->isPure())
5284 continue;
5285
5286 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5287 continue;
5288
5289 Diag(SO->second.front().Method->getLocation(),
5290 diag::note_pure_virtual_function)
5291 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5292 }
5293 }
5294
5295 if (!PureVirtualClassDiagSet)
5296 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5297 PureVirtualClassDiagSet->insert(RD);
5298}
5299
5300namespace {
5301struct AbstractUsageInfo {
5302 Sema &S;
5303 CXXRecordDecl *Record;
5304 CanQualType AbstractType;
5305 bool Invalid;
5306
5307 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5308 : S(S), Record(Record),
5309 AbstractType(S.Context.getCanonicalType(
5310 S.Context.getTypeDeclType(Record))),
5311 Invalid(false) {}
5312
5313 void DiagnoseAbstractType() {
5314 if (Invalid) return;
5315 S.DiagnoseAbstractType(Record);
5316 Invalid = true;
5317 }
5318
5319 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5320};
5321
5322struct CheckAbstractUsage {
5323 AbstractUsageInfo &Info;
5324 const NamedDecl *Ctx;
5325
5326 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5327 : Info(Info), Ctx(Ctx) {}
5328
5329 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5330 switch (TL.getTypeLocClass()) {
5331#define ABSTRACT_TYPELOC(CLASS, PARENT)
5332#define TYPELOC(CLASS, PARENT) \
5333 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5334#include "clang/AST/TypeLocNodes.def"
5335 }
5336 }
5337
5338 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5339 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5340 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5341 if (!TL.getParam(I))
5342 continue;
5343
5344 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5345 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5346 }
5347 }
5348
5349 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5350 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5351 }
5352
5353 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5354 // Visit the type parameters from a permissive context.
5355 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5356 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5357 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5358 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5359 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5360 // TODO: other template argument types?
5361 }
5362 }
5363
5364 // Visit pointee types from a permissive context.
5365#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5366 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5367 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5368 }
5369 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5370 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5371 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5372 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5373 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5374
5375 /// Handle all the types we haven't given a more specific
5376 /// implementation for above.
5377 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5378 // Every other kind of type that we haven't called out already
5379 // that has an inner type is either (1) sugar or (2) contains that
5380 // inner type in some way as a subobject.
5381 if (TypeLoc Next = TL.getNextTypeLoc())
5382 return Visit(Next, Sel);
5383
5384 // If there's no inner type and we're in a permissive context,
5385 // don't diagnose.
5386 if (Sel == Sema::AbstractNone) return;
5387
5388 // Check whether the type matches the abstract type.
5389 QualType T = TL.getType();
5390 if (T->isArrayType()) {
5391 Sel = Sema::AbstractArrayType;
5392 T = Info.S.Context.getBaseElementType(T);
5393 }
5394 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5395 if (CT != Info.AbstractType) return;
5396
5397 // It matched; do some magic.
5398 if (Sel == Sema::AbstractArrayType) {
5399 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5400 << T << TL.getSourceRange();
5401 } else {
5402 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5403 << Sel << T << TL.getSourceRange();
5404 }
5405 Info.DiagnoseAbstractType();
5406 }
5407};
5408
5409void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5410 Sema::AbstractDiagSelID Sel) {
5411 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5412}
5413
5414}
5415
5416/// Check for invalid uses of an abstract type in a method declaration.
5417static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5418 CXXMethodDecl *MD) {
5419 // No need to do the check on definitions, which require that
5420 // the return/param types be complete.
5421 if (MD->doesThisDeclarationHaveABody())
5422 return;
5423
5424 // For safety's sake, just ignore it if we don't have type source
5425 // information. This should never happen for non-implicit methods,
5426 // but...
5427 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5428 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5429}
5430
5431/// Check for invalid uses of an abstract type within a class definition.
5432static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5433 CXXRecordDecl *RD) {
5434 for (auto *D : RD->decls()) {
5435 if (D->isImplicit()) continue;
5436
5437 // Methods and method templates.
5438 if (isa<CXXMethodDecl>(D)) {
5439 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5440 } else if (isa<FunctionTemplateDecl>(D)) {
5441 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5442 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5443
5444 // Fields and static variables.
5445 } else if (isa<FieldDecl>(D)) {
5446 FieldDecl *FD = cast<FieldDecl>(D);
5447 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5448 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5449 } else if (isa<VarDecl>(D)) {
5450 VarDecl *VD = cast<VarDecl>(D);
5451 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5452 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5453
5454 // Nested classes and class templates.
5455 } else if (isa<CXXRecordDecl>(D)) {
5456 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5457 } else if (isa<ClassTemplateDecl>(D)) {
5458 CheckAbstractClassUsage(Info,
5459 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5460 }
5461 }
5462}
5463
5464static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
5465 Attr *ClassAttr = getDLLAttr(Class);
5466 if (!ClassAttr)
5467 return;
5468
5469 assert(ClassAttr->getKind() == attr::DLLExport)(static_cast <bool> (ClassAttr->getKind() == attr::DLLExport
) ? void (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5469, __extension__ __PRETTY_FUNCTION__))
;
5470
5471 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5472
5473 if (TSK == TSK_ExplicitInstantiationDeclaration)
5474 // Don't go any further if this is just an explicit instantiation
5475 // declaration.
5476 return;
5477
5478 for (Decl *Member : Class->decls()) {
5479 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5480 if (!MD)
5481 continue;
5482
5483 if (Member->getAttr<DLLExportAttr>()) {
5484 if (MD->isUserProvided()) {
5485 // Instantiate non-default class member functions ...
5486
5487 // .. except for certain kinds of template specializations.
5488 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5489 continue;
5490
5491 S.MarkFunctionReferenced(Class->getLocation(), MD);
5492
5493 // The function will be passed to the consumer when its definition is
5494 // encountered.
5495 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5496 MD->isCopyAssignmentOperator() ||
5497 MD->isMoveAssignmentOperator()) {
5498 // Synthesize and instantiate non-trivial implicit methods, explicitly
5499 // defaulted methods, and the copy and move assignment operators. The
5500 // latter are exported even if they are trivial, because the address of
5501 // an operator can be taken and should compare equal across libraries.
5502 DiagnosticErrorTrap Trap(S.Diags);
5503 S.MarkFunctionReferenced(Class->getLocation(), MD);
5504 if (Trap.hasErrorOccurred()) {
5505 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5506 << Class->getName() << !S.getLangOpts().CPlusPlus11;
5507 break;
5508 }
5509
5510 // There is no later point when we will see the definition of this
5511 // function, so pass it to the consumer now.
5512 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5513 }
5514 }
5515 }
5516}
5517
5518static void checkForMultipleExportedDefaultConstructors(Sema &S,
5519 CXXRecordDecl *Class) {
5520 // Only the MS ABI has default constructor closures, so we don't need to do
5521 // this semantic checking anywhere else.
5522 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5523 return;
5524
5525 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5526 for (Decl *Member : Class->decls()) {
5527 // Look for exported default constructors.
5528 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5529 if (!CD || !CD->isDefaultConstructor())
5530 continue;
5531 auto *Attr = CD->getAttr<DLLExportAttr>();
5532 if (!Attr)
5533 continue;
5534
5535 // If the class is non-dependent, mark the default arguments as ODR-used so
5536 // that we can properly codegen the constructor closure.
5537 if (!Class->isDependentContext()) {
5538 for (ParmVarDecl *PD : CD->parameters()) {
5539 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5540 S.DiscardCleanupsInEvaluationContext();
5541 }
5542 }
5543
5544 if (LastExportedDefaultCtor) {
5545 S.Diag(LastExportedDefaultCtor->getLocation(),
5546 diag::err_attribute_dll_ambiguous_default_ctor)
5547 << Class;
5548 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5549 << CD->getDeclName();
5550 return;
5551 }
5552 LastExportedDefaultCtor = CD;
5553 }
5554}
5555
5556/// \brief Check class-level dllimport/dllexport attribute.
5557void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5558 Attr *ClassAttr = getDLLAttr(Class);
5559
5560 // MSVC inherits DLL attributes to partial class template specializations.
5561 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5562 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5563 if (Attr *TemplateAttr =
5564 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5565 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5566 A->setInherited(true);
5567 ClassAttr = A;
5568 }
5569 }
5570 }
5571
5572 if (!ClassAttr)
5573 return;
5574
5575 if (!Class->isExternallyVisible()) {
5576 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5577 << Class << ClassAttr;
5578 return;
5579 }
5580
5581 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5582 !ClassAttr->isInherited()) {
5583 // Diagnose dll attributes on members of class with dll attribute.
5584 for (Decl *Member : Class->decls()) {
5585 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5586 continue;
5587 InheritableAttr *MemberAttr = getDLLAttr(Member);
5588 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5589 continue;
5590
5591 Diag(MemberAttr->getLocation(),
5592 diag::err_attribute_dll_member_of_dll_class)
5593 << MemberAttr << ClassAttr;
5594 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5595 Member->setInvalidDecl();
5596 }
5597 }
5598
5599 if (Class->getDescribedClassTemplate())
5600 // Don't inherit dll attribute until the template is instantiated.
5601 return;
5602
5603 // The class is either imported or exported.
5604 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5605
5606 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5607
5608 // Ignore explicit dllexport on explicit class template instantiation declarations.
5609 if (ClassExported && !ClassAttr->isInherited() &&
5610 TSK == TSK_ExplicitInstantiationDeclaration) {
5611 Class->dropAttr<DLLExportAttr>();
5612 return;
5613 }
5614
5615 // Force declaration of implicit members so they can inherit the attribute.
5616 ForceDeclarationOfImplicitMembers(Class);
5617
5618 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5619 // seem to be true in practice?
5620
5621 for (Decl *Member : Class->decls()) {
5622 VarDecl *VD = dyn_cast<VarDecl>(Member);
5623 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5624
5625 // Only methods and static fields inherit the attributes.
5626 if (!VD && !MD)
5627 continue;
5628
5629 if (MD) {
5630 // Don't process deleted methods.
5631 if (MD->isDeleted())
5632 continue;
5633
5634 if (MD->isInlined()) {
5635 // MinGW does not import or export inline methods.
5636 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5637 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
5638 continue;
5639
5640 // MSVC versions before 2015 don't export the move assignment operators
5641 // and move constructor, so don't attempt to import/export them if
5642 // we have a definition.
5643 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5644 if ((MD->isMoveAssignmentOperator() ||
5645 (Ctor && Ctor->isMoveConstructor())) &&
5646 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5647 continue;
5648
5649 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5650 // operator is exported anyway.
5651 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5652 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5653 continue;
5654 }
5655 }
5656
5657 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5658 continue;
5659
5660 if (!getDLLAttr(Member)) {
5661 auto *NewAttr =
5662 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5663 NewAttr->setInherited(true);
5664 Member->addAttr(NewAttr);
5665 }
5666 }
5667
5668 if (ClassExported)
5669 DelayedDllExportClasses.push_back(Class);
5670}
5671
5672/// \brief Perform propagation of DLL attributes from a derived class to a
5673/// templated base class for MS compatibility.
5674void Sema::propagateDLLAttrToBaseClassTemplate(
5675 CXXRecordDecl *Class, Attr *ClassAttr,
5676 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
5677 if (getDLLAttr(
5678 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
5679 // If the base class template has a DLL attribute, don't try to change it.
5680 return;
5681 }
5682
5683 auto TSK = BaseTemplateSpec->getSpecializationKind();
5684 if (!getDLLAttr(BaseTemplateSpec) &&
5685 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
5686 TSK == TSK_ImplicitInstantiation)) {
5687 // The template hasn't been instantiated yet (or it has, but only as an
5688 // explicit instantiation declaration or implicit instantiation, which means
5689 // we haven't codegenned any members yet), so propagate the attribute.
5690 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5691 NewAttr->setInherited(true);
5692 BaseTemplateSpec->addAttr(NewAttr);
5693
5694 // If the template is already instantiated, checkDLLAttributeRedeclaration()
5695 // needs to be run again to work see the new attribute. Otherwise this will
5696 // get run whenever the template is instantiated.
5697 if (TSK != TSK_Undeclared)
5698 checkClassLevelDLLAttribute(BaseTemplateSpec);
5699
5700 return;
5701 }
5702
5703 if (getDLLAttr(BaseTemplateSpec)) {
5704 // The template has already been specialized or instantiated with an
5705 // attribute, explicitly or through propagation. We should not try to change
5706 // it.
5707 return;
5708 }
5709
5710 // The template was previously instantiated or explicitly specialized without
5711 // a dll attribute, It's too late for us to add an attribute, so warn that
5712 // this is unsupported.
5713 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
5714 << BaseTemplateSpec->isExplicitSpecialization();
5715 Diag(ClassAttr->getLocation(), diag::note_attribute);
5716 if (BaseTemplateSpec->isExplicitSpecialization()) {
5717 Diag(BaseTemplateSpec->getLocation(),
5718 diag::note_template_class_explicit_specialization_was_here)
5719 << BaseTemplateSpec;
5720 } else {
5721 Diag(BaseTemplateSpec->getPointOfInstantiation(),
5722 diag::note_template_class_instantiation_was_here)
5723 << BaseTemplateSpec;
5724 }
5725}
5726
5727static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
5728 SourceLocation DefaultLoc) {
5729 switch (S.getSpecialMember(MD)) {
5730 case Sema::CXXDefaultConstructor:
5731 S.DefineImplicitDefaultConstructor(DefaultLoc,
5732 cast<CXXConstructorDecl>(MD));
5733 break;
5734 case Sema::CXXCopyConstructor:
5735 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5736 break;
5737 case Sema::CXXCopyAssignment:
5738 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
5739 break;
5740 case Sema::CXXDestructor:
5741 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5742 break;
5743 case Sema::CXXMoveConstructor:
5744 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5745 break;
5746 case Sema::CXXMoveAssignment:
5747 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
5748 break;
5749 case Sema::CXXInvalid:
5750 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5750)
;
5751 }
5752}
5753
5754/// Determine whether a type is permitted to be passed or returned in
5755/// registers, per C++ [class.temporary]p3.
5756static bool computeCanPassInRegisters(Sema &S, CXXRecordDecl *D) {
5757 if (D->isDependentType() || D->isInvalidDecl())
5758 return false;
5759
5760 // Per C++ [class.temporary]p3, the relevant condition is:
5761 // each copy constructor, move constructor, and destructor of X is
5762 // either trivial or deleted, and X has at least one non-deleted copy
5763 // or move constructor
5764 bool HasNonDeletedCopyOrMove = false;
5765
5766 if (D->needsImplicitCopyConstructor() &&
5767 !D->defaultedCopyConstructorIsDeleted()) {
5768 if (!D->hasTrivialCopyConstructor())
5769 return false;
5770 HasNonDeletedCopyOrMove = true;
5771 }
5772
5773 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
5774 !D->defaultedMoveConstructorIsDeleted()) {
5775 if (!D->hasTrivialMoveConstructor())
5776 return false;
5777 HasNonDeletedCopyOrMove = true;
5778 }
5779
5780 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
5781 !D->hasTrivialDestructor())
5782 return false;
5783
5784 for (const CXXMethodDecl *MD : D->methods()) {
5785 if (MD->isDeleted())
5786 continue;
5787
5788 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
5789 if (CD && CD->isCopyOrMoveConstructor())
5790 HasNonDeletedCopyOrMove = true;
5791 else if (!isa<CXXDestructorDecl>(MD))
5792 continue;
5793
5794 if (!MD->isTrivial())
5795 return false;
5796 }
5797
5798 return HasNonDeletedCopyOrMove;
5799}
5800
5801/// \brief Perform semantic checks on a class definition that has been
5802/// completing, introducing implicitly-declared members, checking for
5803/// abstract types, etc.
5804void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
5805 if (!Record)
5806 return;
5807
5808 if (Record->isAbstract() && !Record->isInvalidDecl()) {
5809 AbstractUsageInfo Info(*this, Record);
5810 CheckAbstractClassUsage(Info, Record);
5811 }
5812
5813 // If this is not an aggregate type and has no user-declared constructor,
5814 // complain about any non-static data members of reference or const scalar
5815 // type, since they will never get initializers.
5816 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
5817 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
5818 !Record->isLambda()) {
5819 bool Complained = false;
5820 for (const auto *F : Record->fields()) {
5821 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
5822 continue;
5823
5824 if (F->getType()->isReferenceType() ||
5825 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
5826 if (!Complained) {
5827 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
5828 << Record->getTagKind() << Record;
5829 Complained = true;
5830 }
5831
5832 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
5833 << F->getType()->isReferenceType()
5834 << F->getDeclName();
5835 }
5836 }
5837 }
5838
5839 if (Record->getIdentifier()) {
5840 // C++ [class.mem]p13:
5841 // If T is the name of a class, then each of the following shall have a
5842 // name different from T:
5843 // - every member of every anonymous union that is a member of class T.
5844 //
5845 // C++ [class.mem]p14:
5846 // In addition, if class T has a user-declared constructor (12.1), every
5847 // non-static data member of class T shall have a name different from T.
5848 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
5849 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
5850 ++I) {
5851 NamedDecl *D = *I;
5852 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
5853 isa<IndirectFieldDecl>(D)) {
5854 Diag(D->getLocation(), diag::err_member_name_of_class)
5855 << D->getDeclName();
5856 break;
5857 }
5858 }
5859 }
5860
5861 // Warn if the class has virtual methods but non-virtual public destructor.
5862 if (Record->isPolymorphic() && !Record->isDependentType()) {
5863 CXXDestructorDecl *dtor = Record->getDestructor();
5864 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
5865 !Record->hasAttr<FinalAttr>())
5866 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
5867 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
5868 }
5869
5870 if (Record->isAbstract()) {
5871 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
5872 Diag(Record->getLocation(), diag::warn_abstract_final_class)
5873 << FA->isSpelledAsSealed();
5874 DiagnoseAbstractType(Record);
5875 }
5876 }
5877
5878 bool HasMethodWithOverrideControl = false,
5879 HasOverridingMethodWithoutOverrideControl = false;
5880 if (!Record->isDependentType()) {
5881 for (auto *M : Record->methods()) {
5882 // See if a method overloads virtual methods in a base
5883 // class without overriding any.
5884 if (!M->isStatic())
5885 DiagnoseHiddenVirtualMethods(M);
5886 if (M->hasAttr<OverrideAttr>())
5887 HasMethodWithOverrideControl = true;
5888 else if (M->size_overridden_methods() > 0)
5889 HasOverridingMethodWithoutOverrideControl = true;
5890 // Check whether the explicitly-defaulted special members are valid.
5891 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
5892 CheckExplicitlyDefaultedSpecialMember(M);
5893
5894 // For an explicitly defaulted or deleted special member, we defer
5895 // determining triviality until the class is complete. That time is now!
5896 CXXSpecialMember CSM = getSpecialMember(M);
5897 if (!M->isImplicit() && !M->isUserProvided()) {
5898 if (CSM != CXXInvalid) {
5899 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
5900
5901 // Inform the class that we've finished declaring this member.
5902 Record->finishedDefaultedOrDeletedMember(M);
5903 }
5904 }
5905
5906 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
5907 M->hasAttr<DLLExportAttr>()) {
5908 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5909 M->isTrivial() &&
5910 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
5911 CSM == CXXDestructor))
5912 M->dropAttr<DLLExportAttr>();
5913
5914 if (M->hasAttr<DLLExportAttr>()) {
5915 DefineImplicitSpecialMember(*this, M, M->getLocation());
5916 ActOnFinishInlineFunctionDef(M);
5917 }
5918 }
5919 }
5920 }
5921
5922 if (HasMethodWithOverrideControl &&
5923 HasOverridingMethodWithoutOverrideControl) {
5924 // At least one method has the 'override' control declared.
5925 // Diagnose all other overridden methods which do not have 'override' specified on them.
5926 for (auto *M : Record->methods())
5927 DiagnoseAbsenceOfOverrideControl(M);
5928 }
5929
5930 // ms_struct is a request to use the same ABI rules as MSVC. Check
5931 // whether this class uses any C++ features that are implemented
5932 // completely differently in MSVC, and if so, emit a diagnostic.
5933 // That diagnostic defaults to an error, but we allow projects to
5934 // map it down to a warning (or ignore it). It's a fairly common
5935 // practice among users of the ms_struct pragma to mass-annotate
5936 // headers, sweeping up a bunch of types that the project doesn't
5937 // really rely on MSVC-compatible layout for. We must therefore
5938 // support "ms_struct except for C++ stuff" as a secondary ABI.
5939 if (Record->isMsStruct(Context) &&
5940 (Record->isPolymorphic() || Record->getNumBases())) {
5941 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
5942 }
5943
5944 checkClassLevelDLLAttribute(Record);
5945
5946 Record->setCanPassInRegisters(computeCanPassInRegisters(*this, Record));
5947}
5948
5949/// Look up the special member function that would be called by a special
5950/// member function for a subobject of class type.
5951///
5952/// \param Class The class type of the subobject.
5953/// \param CSM The kind of special member function.
5954/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
5955/// \param ConstRHS True if this is a copy operation with a const object
5956/// on its RHS, that is, if the argument to the outer special member
5957/// function is 'const' and this is not a field marked 'mutable'.
5958static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
5959 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5960 unsigned FieldQuals, bool ConstRHS) {
5961 unsigned LHSQuals = 0;
5962 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5963 LHSQuals = FieldQuals;
5964
5965 unsigned RHSQuals = FieldQuals;
5966 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5967 RHSQuals = 0;
5968 else if (ConstRHS)
5969 RHSQuals |= Qualifiers::Const;
5970
5971 return S.LookupSpecialMember(Class, CSM,
5972 RHSQuals & Qualifiers::Const,
5973 RHSQuals & Qualifiers::Volatile,
5974 false,
5975 LHSQuals & Qualifiers::Const,
5976 LHSQuals & Qualifiers::Volatile);
5977}
5978
5979class Sema::InheritedConstructorInfo {
5980 Sema &S;
5981 SourceLocation UseLoc;
5982
5983 /// A mapping from the base classes through which the constructor was
5984 /// inherited to the using shadow declaration in that base class (or a null
5985 /// pointer if the constructor was declared in that base class).
5986 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
5987 InheritedFromBases;
5988
5989public:
5990 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
5991 ConstructorUsingShadowDecl *Shadow)
5992 : S(S), UseLoc(UseLoc) {
5993 bool DiagnosedMultipleConstructedBases = false;
5994 CXXRecordDecl *ConstructedBase = nullptr;
5995 UsingDecl *ConstructedBaseUsing = nullptr;
5996
5997 // Find the set of such base class subobjects and check that there's a
5998 // unique constructed subobject.
5999 for (auto *D : Shadow->redecls()) {
6000 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6001 auto *DNominatedBase = DShadow->getNominatedBaseClass();
6002 auto *DConstructedBase = DShadow->getConstructedBaseClass();
6003
6004 InheritedFromBases.insert(
6005 std::make_pair(DNominatedBase->getCanonicalDecl(),
6006 DShadow->getNominatedBaseClassShadowDecl()));
6007 if (DShadow->constructsVirtualBase())
6008 InheritedFromBases.insert(
6009 std::make_pair(DConstructedBase->getCanonicalDecl(),
6010 DShadow->getConstructedBaseClassShadowDecl()));
6011 else
6012 assert(DNominatedBase == DConstructedBase)(static_cast <bool> (DNominatedBase == DConstructedBase
) ? void (0) : __assert_fail ("DNominatedBase == DConstructedBase"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6012, __extension__ __PRETTY_FUNCTION__))
;
6013
6014 // [class.inhctor.init]p2:
6015 // If the constructor was inherited from multiple base class subobjects
6016 // of type B, the program is ill-formed.
6017 if (!ConstructedBase) {
6018 ConstructedBase = DConstructedBase;
6019 ConstructedBaseUsing = D->getUsingDecl();
6020 } else if (ConstructedBase != DConstructedBase &&
6021 !Shadow->isInvalidDecl()) {
6022 if (!DiagnosedMultipleConstructedBases) {
6023 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
6024 << Shadow->getTargetDecl();
6025 S.Diag(ConstructedBaseUsing->getLocation(),
6026 diag::note_ambiguous_inherited_constructor_using)
6027 << ConstructedBase;
6028 DiagnosedMultipleConstructedBases = true;
6029 }
6030 S.Diag(D->getUsingDecl()->getLocation(),
6031 diag::note_ambiguous_inherited_constructor_using)
6032 << DConstructedBase;
6033 }
6034 }
6035
6036 if (DiagnosedMultipleConstructedBases)
6037 Shadow->setInvalidDecl();
6038 }
6039
6040 /// Find the constructor to use for inherited construction of a base class,
6041 /// and whether that base class constructor inherits the constructor from a
6042 /// virtual base class (in which case it won't actually invoke it).
6043 std::pair<CXXConstructorDecl *, bool>
6044 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
6045 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
6046 if (It == InheritedFromBases.end())
6047 return std::make_pair(nullptr, false);
6048
6049 // This is an intermediary class.
6050 if (It->second)
6051 return std::make_pair(
6052 S.findInheritingConstructor(UseLoc, Ctor, It->second),
6053 It->second->constructsVirtualBase());
6054
6055 // This is the base class from which the constructor was inherited.
6056 return std::make_pair(Ctor, false);
6057 }
6058};
6059
6060/// Is the special member function which would be selected to perform the
6061/// specified operation on the specified class type a constexpr constructor?
6062static bool
6063specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
6064 Sema::CXXSpecialMember CSM, unsigned Quals,
6065 bool ConstRHS,
6066 CXXConstructorDecl *InheritedCtor = nullptr,
6067 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6068 // If we're inheriting a constructor, see if we need to call it for this base
6069 // class.
6070 if (InheritedCtor) {
6071 assert(CSM == Sema::CXXDefaultConstructor)(static_cast <bool> (CSM == Sema::CXXDefaultConstructor
) ? void (0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6071, __extension__ __PRETTY_FUNCTION__))
;
6072 auto BaseCtor =
6073 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
6074 if (BaseCtor)
6075 return BaseCtor->isConstexpr();
6076 }
6077
6078 if (CSM == Sema::CXXDefaultConstructor)
6079 return ClassDecl->hasConstexprDefaultConstructor();
6080
6081 Sema::SpecialMemberOverloadResult SMOR =
6082 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
6083 if (!SMOR.getMethod())
6084 // A constructor we wouldn't select can't be "involved in initializing"
6085 // anything.
6086 return true;
6087 return SMOR.getMethod()->isConstexpr();
6088}
6089
6090/// Determine whether the specified special member function would be constexpr
6091/// if it were implicitly defined.
6092static bool defaultedSpecialMemberIsConstexpr(
6093 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6094 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6095 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6096 if (!S.getLangOpts().CPlusPlus11)
6097 return false;
6098
6099 // C++11 [dcl.constexpr]p4:
6100 // In the definition of a constexpr constructor [...]
6101 bool Ctor = true;
6102 switch (CSM) {
6103 case Sema::CXXDefaultConstructor:
6104 if (Inherited)
6105 break;
6106 // Since default constructor lookup is essentially trivial (and cannot
6107 // involve, for instance, template instantiation), we compute whether a
6108 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6109 //
6110 // This is important for performance; we need to know whether the default
6111 // constructor is constexpr to determine whether the type is a literal type.
6112 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6113
6114 case Sema::CXXCopyConstructor:
6115 case Sema::CXXMoveConstructor:
6116 // For copy or move constructors, we need to perform overload resolution.
6117 break;
6118
6119 case Sema::CXXCopyAssignment:
6120 case Sema::CXXMoveAssignment:
6121 if (!S.getLangOpts().CPlusPlus14)
6122 return false;
6123 // In C++1y, we need to perform overload resolution.
6124 Ctor = false;
6125 break;
6126
6127 case Sema::CXXDestructor:
6128 case Sema::CXXInvalid:
6129 return false;
6130 }
6131
6132 // -- if the class is a non-empty union, or for each non-empty anonymous
6133 // union member of a non-union class, exactly one non-static data member
6134 // shall be initialized; [DR1359]
6135 //
6136 // If we squint, this is guaranteed, since exactly one non-static data member
6137 // will be initialized (if the constructor isn't deleted), we just don't know
6138 // which one.
6139 if (Ctor && ClassDecl->isUnion())
6140 return CSM == Sema::CXXDefaultConstructor
6141 ? ClassDecl->hasInClassInitializer() ||
6142 !ClassDecl->hasVariantMembers()
6143 : true;
6144
6145 // -- the class shall not have any virtual base classes;
6146 if (Ctor && ClassDecl->getNumVBases())
6147 return false;
6148
6149 // C++1y [class.copy]p26:
6150 // -- [the class] is a literal type, and
6151 if (!Ctor && !ClassDecl->isLiteral())
6152 return false;
6153
6154 // -- every constructor involved in initializing [...] base class
6155 // sub-objects shall be a constexpr constructor;
6156 // -- the assignment operator selected to copy/move each direct base
6157 // class is a constexpr function, and
6158 for (const auto &B : ClassDecl->bases()) {
6159 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6160 if (!BaseType) continue;
6161
6162 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6163 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6164 InheritedCtor, Inherited))
6165 return false;
6166 }
6167
6168 // -- every constructor involved in initializing non-static data members
6169 // [...] shall be a constexpr constructor;
6170 // -- every non-static data member and base class sub-object shall be
6171 // initialized
6172 // -- for each non-static data member of X that is of class type (or array
6173 // thereof), the assignment operator selected to copy/move that member is
6174 // a constexpr function
6175 for (const auto *F : ClassDecl->fields()) {
6176 if (F->isInvalidDecl())
6177 continue;
6178 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6179 continue;
6180 QualType BaseType = S.Context.getBaseElementType(F->getType());
6181 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6182 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6183 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6184 BaseType.getCVRQualifiers(),
6185 ConstArg && !F->isMutable()))
6186 return false;
6187 } else if (CSM == Sema::CXXDefaultConstructor) {
6188 return false;
6189 }
6190 }
6191
6192 // All OK, it's constexpr!
6193 return true;
6194}
6195
6196static Sema::ImplicitExceptionSpecification
6197ComputeDefaultedSpecialMemberExceptionSpec(
6198 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6199 Sema::InheritedConstructorInfo *ICI);
6200
6201static Sema::ImplicitExceptionSpecification
6202computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
6203 auto CSM = S.getSpecialMember(MD);
6204 if (CSM != Sema::CXXInvalid)
6205 return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr);
6206
6207 auto *CD = cast<CXXConstructorDecl>(MD);
6208 assert(CD->getInheritedConstructor() &&(static_cast <bool> (CD->getInheritedConstructor() &&
"only special members have implicit exception specs") ? void
(0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6209, __extension__ __PRETTY_FUNCTION__))
6209 "only special members have implicit exception specs")(static_cast <bool> (CD->getInheritedConstructor() &&
"only special members have implicit exception specs") ? void
(0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6209, __extension__ __PRETTY_FUNCTION__))
;
6210 Sema::InheritedConstructorInfo ICI(
6211 S, Loc, CD->getInheritedConstructor().getShadowDecl());
6212 return ComputeDefaultedSpecialMemberExceptionSpec(
6213 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6214}
6215
6216static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6217 CXXMethodDecl *MD) {
6218 FunctionProtoType::ExtProtoInfo EPI;
6219
6220 // Build an exception specification pointing back at this member.
6221 EPI.ExceptionSpec.Type = EST_Unevaluated;
6222 EPI.ExceptionSpec.SourceDecl = MD;
6223
6224 // Set the calling convention to the default for C++ instance methods.
6225 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6226 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6227 /*IsCXXMethod=*/true));
6228 return EPI;
6229}
6230
6231void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
6232 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
6233 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6234 return;
6235
6236 // Evaluate the exception specification.
6237 auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
6238 auto ESI = IES.getExceptionSpec();
6239
6240 // Update the type of the special member to use it.
6241 UpdateExceptionSpec(MD, ESI);
6242
6243 // A user-provided destructor can be defined outside the class. When that
6244 // happens, be sure to update the exception specification on both
6245 // declarations.
6246 const FunctionProtoType *CanonicalFPT =
6247 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
6248 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
6249 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
6250}
6251
6252void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
6253 CXXRecordDecl *RD = MD->getParent();
6254 CXXSpecialMember CSM = getSpecialMember(MD);
6255
6256 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&(static_cast <bool> (MD->isExplicitlyDefaulted() &&
CSM != CXXInvalid && "not an explicitly-defaulted special member"
) ? void (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6257, __extension__ __PRETTY_FUNCTION__))
6257 "not an explicitly-defaulted special member")(static_cast <bool> (MD->isExplicitlyDefaulted() &&
CSM != CXXInvalid && "not an explicitly-defaulted special member"
) ? void (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6257, __extension__ __PRETTY_FUNCTION__))
;
6258
6259 // Whether this was the first-declared instance of the constructor.
6260 // This affects whether we implicitly add an exception spec and constexpr.
6261 bool First = MD == MD->getCanonicalDecl();
6262
6263 bool HadError = false;
6264
6265 // C++11 [dcl.fct.def.default]p1:
6266 // A function that is explicitly defaulted shall
6267 // -- be a special member function (checked elsewhere),
6268 // -- have the same type (except for ref-qualifiers, and except that a
6269 // copy operation can take a non-const reference) as an implicit
6270 // declaration, and
6271 // -- not have default arguments.
6272 unsigned ExpectedParams = 1;
6273 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6274 ExpectedParams = 0;
6275 if (MD->getNumParams() != ExpectedParams) {
6276 // This also checks for default arguments: a copy or move constructor with a
6277 // default argument is classified as a default constructor, and assignment
6278 // operations and destructors can't have default arguments.
6279 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6280 << CSM << MD->getSourceRange();
6281 HadError = true;
6282 } else if (MD->isVariadic()) {
6283 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6284 << CSM << MD->getSourceRange();
6285 HadError = true;
6286 }
6287
6288 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6289
6290 bool CanHaveConstParam = false;
6291 if (CSM == CXXCopyConstructor)
6292 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6293 else if (CSM == CXXCopyAssignment)
6294 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6295
6296 QualType ReturnType = Context.VoidTy;
6297 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6298 // Check for return type matching.
6299 ReturnType = Type->getReturnType();
6300 QualType ExpectedReturnType =
6301 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
6302 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6303 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6304 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
6305 HadError = true;
6306 }
6307
6308 // A defaulted special member cannot have cv-qualifiers.
6309 if (Type->getTypeQuals()) {
6310 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
6311 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
6312 HadError = true;
6313 }
6314 }
6315
6316 // Check for parameter type matching.
6317 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
6318 bool HasConstParam = false;
6319 if (ExpectedParams && ArgType->isReferenceType()) {
6320 // Argument must be reference to possibly-const T.
6321 QualType ReferentType = ArgType->getPointeeType();
6322 HasConstParam = ReferentType.isConstQualified();
6323
6324 if (ReferentType.isVolatileQualified()) {
6325 Diag(MD->getLocation(),
6326 diag::err_defaulted_special_member_volatile_param) << CSM;
6327 HadError = true;
6328 }
6329
6330 if (HasConstParam && !CanHaveConstParam) {
6331 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
6332 Diag(MD->getLocation(),
6333 diag::err_defaulted_special_member_copy_const_param)
6334 << (CSM == CXXCopyAssignment);
6335 // FIXME: Explain why this special member can't be const.
6336 } else {
6337 Diag(MD->getLocation(),
6338 diag::err_defaulted_special_member_move_const_param)
6339 << (CSM == CXXMoveAssignment);
6340 }
6341 HadError = true;
6342 }
6343 } else if (ExpectedParams) {
6344 // A copy assignment operator can take its argument by value, but a
6345 // defaulted one cannot.
6346 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")(static_cast <bool> (CSM == CXXCopyAssignment &&
"unexpected non-ref argument") ? void (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6346, __extension__ __PRETTY_FUNCTION__))
;
6347 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
6348 HadError = true;
6349 }
6350
6351 // C++11 [dcl.fct.def.default]p2:
6352 // An explicitly-defaulted function may be declared constexpr only if it
6353 // would have been implicitly declared as constexpr,
6354 // Do not apply this rule to members of class templates, since core issue 1358
6355 // makes such functions always instantiate to constexpr functions. For
6356 // functions which cannot be constexpr (for non-constructors in C++11 and for
6357 // destructors in C++1y), this is checked elsewhere.
6358 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
6359 HasConstParam);
6360 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
6361 : isa<CXXConstructorDecl>(MD)) &&
6362 MD->isConstexpr() && !Constexpr &&
6363 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
6364 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
6365 // FIXME: Explain why the special member can't be constexpr.
6366 HadError = true;
6367 }
6368
6369 // and may have an explicit exception-specification only if it is compatible
6370 // with the exception-specification on the implicit declaration.
6371 if (Type->hasExceptionSpec()) {
6372 // Delay the check if this is the first declaration of the special member,
6373 // since we may not have parsed some necessary in-class initializers yet.
6374 if (First) {
6375 // If the exception specification needs to be instantiated, do so now,
6376 // before we clobber it with an EST_Unevaluated specification below.
6377 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
6378 InstantiateExceptionSpec(MD->getLocStart(), MD);
6379 Type = MD->getType()->getAs<FunctionProtoType>();
6380 }
6381 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
6382 } else
6383 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
6384 }
6385
6386 // If a function is explicitly defaulted on its first declaration,
6387 if (First) {
6388 // -- it is implicitly considered to be constexpr if the implicit
6389 // definition would be,
6390 MD->setConstexpr(Constexpr);
6391
6392 // -- it is implicitly considered to have the same exception-specification
6393 // as if it had been implicitly declared,
6394 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
6395 EPI.ExceptionSpec.Type = EST_Unevaluated;
6396 EPI.ExceptionSpec.SourceDecl = MD;
6397 MD->setType(Context.getFunctionType(ReturnType,
6398 llvm::makeArrayRef(&ArgType,
6399 ExpectedParams),
6400 EPI));
6401 }
6402
6403 if (ShouldDeleteSpecialMember(MD, CSM)) {
6404 if (First) {
6405 SetDeclDeleted(MD, MD->getLocation());
6406 } else {
6407 // C++11 [dcl.fct.def.default]p4:
6408 // [For a] user-provided explicitly-defaulted function [...] if such a
6409 // function is implicitly defined as deleted, the program is ill-formed.
6410 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
6411 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6412 HadError = true;
6413 }
6414 }
6415
6416 if (HadError)
6417 MD->setInvalidDecl();
6418}
6419
6420/// Check whether the exception specification provided for an
6421/// explicitly-defaulted special member matches the exception specification
6422/// that would have been generated for an implicit special member, per
6423/// C++11 [dcl.fct.def.default]p2.
6424void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
6425 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
6426 // If the exception specification was explicitly specified but hadn't been
6427 // parsed when the method was defaulted, grab it now.
6428 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
6429 SpecifiedType =
6430 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
6431
6432 // Compute the implicit exception specification.
6433 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6434 /*IsCXXMethod=*/true);
6435 FunctionProtoType::ExtProtoInfo EPI(CC);
6436 auto IES = computeImplicitExceptionSpec(*this, MD->getLocation(), MD);
6437 EPI.ExceptionSpec = IES.getExceptionSpec();
6438 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
6439 Context.getFunctionType(Context.VoidTy, None, EPI));
6440
6441 // Ensure that it matches.
6442 CheckEquivalentExceptionSpec(
6443 PDiag(diag::err_incorrect_defaulted_exception_spec)
6444 << getSpecialMember(MD), PDiag(),
6445 ImplicitType, SourceLocation(),
6446 SpecifiedType, MD->getLocation());
6447}
6448
6449void Sema::CheckDelayedMemberExceptionSpecs() {
6450 decltype(DelayedExceptionSpecChecks) Checks;
6451 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
6452
6453 std::swap(Checks, DelayedExceptionSpecChecks);
6454 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
6455
6456 // Perform any deferred checking of exception specifications for virtual
6457 // destructors.
6458 for (auto &Check : Checks)
6459 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
6460
6461 // Check that any explicitly-defaulted methods have exception specifications
6462 // compatible with their implicit exception specifications.
6463 for (auto &Spec : Specs)
6464 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
6465}
6466
6467namespace {
6468/// CRTP base class for visiting operations performed by a special member
6469/// function (or inherited constructor).
6470template<typename Derived>
6471struct SpecialMemberVisitor {
6472 Sema &S;
6473 CXXMethodDecl *MD;
6474 Sema::CXXSpecialMember CSM;
6475 Sema::InheritedConstructorInfo *ICI;
6476
6477 // Properties of the special member, computed for convenience.
6478 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
6479
6480 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6481 Sema::InheritedConstructorInfo *ICI)
6482 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
6483 switch (CSM) {
6484 case Sema::CXXDefaultConstructor:
6485 case Sema::CXXCopyConstructor:
6486 case Sema::CXXMoveConstructor:
6487 IsConstructor = true;
6488 break;
6489 case Sema::CXXCopyAssignment:
6490 case Sema::CXXMoveAssignment:
6491 IsAssignment = true;
6492 break;
6493 case Sema::CXXDestructor:
6494 break;
6495 case Sema::CXXInvalid:
6496 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6496)
;
6497 }
6498
6499 if (MD->getNumParams()) {
6500 if (const ReferenceType *RT =
6501 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
6502 ConstArg = RT->getPointeeType().isConstQualified();
6503 }
6504 }
6505
6506 Derived &getDerived() { return static_cast<Derived&>(*this); }
6507
6508 /// Is this a "move" special member?
6509 bool isMove() const {
6510 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
6511 }
6512
6513 /// Look up the corresponding special member in the given class.
6514 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
6515 unsigned Quals, bool IsMutable) {
6516 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
6517 ConstArg && !IsMutable);
6518 }
6519
6520 /// Look up the constructor for the specified base class to see if it's
6521 /// overridden due to this being an inherited constructor.
6522 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
6523 if (!ICI)
6524 return {};
6525 assert(CSM == Sema::CXXDefaultConstructor)(static_cast <bool> (CSM == Sema::CXXDefaultConstructor
) ? void (0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6525, __extension__ __PRETTY_FUNCTION__))
;
6526 auto *BaseCtor =
6527 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
6528 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
6529 return MD;
6530 return {};
6531 }
6532
6533 /// A base or member subobject.
6534 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
6535
6536 /// Get the location to use for a subobject in diagnostics.
6537 static SourceLocation getSubobjectLoc(Subobject Subobj) {
6538 // FIXME: For an indirect virtual base, the direct base leading to
6539 // the indirect virtual base would be a more useful choice.
6540 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
6541 return B->getBaseTypeLoc();
6542 else
6543 return Subobj.get<FieldDecl*>()->getLocation();
6544 }
6545
6546 enum BasesToVisit {
6547 /// Visit all non-virtual (direct) bases.
6548 VisitNonVirtualBases,
6549 /// Visit all direct bases, virtual or not.
6550 VisitDirectBases,
6551 /// Visit all non-virtual bases, and all virtual bases if the class
6552 /// is not abstract.
6553 VisitPotentiallyConstructedBases,
6554 /// Visit all direct or virtual bases.
6555 VisitAllBases
6556 };
6557
6558 // Visit the bases and members of the class.
6559 bool visit(BasesToVisit Bases) {
6560 CXXRecordDecl *RD = MD->getParent();
6561
6562 if (Bases == VisitPotentiallyConstructedBases)
6563 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
6564
6565 for (auto &B : RD->bases())
6566 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
6567 getDerived().visitBase(&B))
6568 return true;
6569
6570 if (Bases == VisitAllBases)
6571 for (auto &B : RD->vbases())
6572 if (getDerived().visitBase(&B))
6573 return true;
6574
6575 for (auto *F : RD->fields())
6576 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
6577 getDerived().visitField(F))
6578 return true;
6579
6580 return false;
6581 }
6582};
6583}
6584
6585namespace {
6586struct SpecialMemberDeletionInfo
6587 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
6588 bool Diagnose;
6589
6590 SourceLocation Loc;
6591
6592 bool AllFieldsAreConst;
6593
6594 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
6595 Sema::CXXSpecialMember CSM,
6596 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
6597 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
6598 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
6599
6600 bool inUnion() const { return MD->getParent()->isUnion(); }
6601
6602 Sema::CXXSpecialMember getEffectiveCSM() {
6603 return ICI ? Sema::CXXInvalid : CSM;
6604 }
6605
6606 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
6607 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
6608
6609 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
6610 bool shouldDeleteForField(FieldDecl *FD);
6611 bool shouldDeleteForAllConstMembers();
6612
6613 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
6614 unsigned Quals);
6615 bool shouldDeleteForSubobjectCall(Subobject Subobj,
6616 Sema::SpecialMemberOverloadResult SMOR,
6617 bool IsDtorCallInCtor);
6618
6619 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
6620};
6621}
6622
6623/// Is the given special member inaccessible when used on the given
6624/// sub-object.
6625bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
6626 CXXMethodDecl *target) {
6627 /// If we're operating on a base class, the object type is the
6628 /// type of this special member.
6629 QualType objectTy;
6630 AccessSpecifier access = target->getAccess();
6631 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
6632 objectTy = S.Context.getTypeDeclType(MD->getParent());
6633 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
6634
6635 // If we're operating on a field, the object type is the type of the field.
6636 } else {
6637 objectTy = S.Context.getTypeDeclType(target->getParent());
6638 }
6639
6640 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
6641}
6642
6643/// Check whether we should delete a special member due to the implicit
6644/// definition containing a call to a special member of a subobject.
6645bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
6646 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
6647 bool IsDtorCallInCtor) {
6648 CXXMethodDecl *Decl = SMOR.getMethod();
6649 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6650
6651 int DiagKind = -1;
6652
6653 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
6654 DiagKind = !Decl ? 0 : 1;
6655 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
6656 DiagKind = 2;
6657 else if (!isAccessible(Subobj, Decl))
6658 DiagKind = 3;
6659 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
6660 !Decl->isTrivial()) {
6661 // A member of a union must have a trivial corresponding special member.
6662 // As a weird special case, a destructor call from a union's constructor
6663 // must be accessible and non-deleted, but need not be trivial. Such a
6664 // destructor is never actually called, but is semantically checked as
6665 // if it were.
6666 DiagKind = 4;
6667 }
6668
6669 if (DiagKind == -1)
6670 return false;
6671
6672 if (Diagnose) {
6673 if (Field) {
6674 S.Diag(Field->getLocation(),
6675 diag::note_deleted_special_member_class_subobject)
6676 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
6677 << Field << DiagKind << IsDtorCallInCtor;
6678 } else {
6679 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
6680 S.Diag(Base->getLocStart(),
6681 diag::note_deleted_special_member_class_subobject)
6682 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6683 << Base->getType() << DiagKind << IsDtorCallInCtor;
6684 }
6685
6686 if (DiagKind == 1)
6687 S.NoteDeletedFunction(Decl);
6688 // FIXME: Explain inaccessibility if DiagKind == 3.
6689 }
6690
6691 return true;
6692}
6693
6694/// Check whether we should delete a special member function due to having a
6695/// direct or virtual base class or non-static data member of class type M.
6696bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
6697 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
6698 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6699 bool IsMutable = Field && Field->isMutable();
6700
6701 // C++11 [class.ctor]p5:
6702 // -- any direct or virtual base class, or non-static data member with no
6703 // brace-or-equal-initializer, has class type M (or array thereof) and
6704 // either M has no default constructor or overload resolution as applied
6705 // to M's default constructor results in an ambiguity or in a function
6706 // that is deleted or inaccessible
6707 // C++11 [class.copy]p11, C++11 [class.copy]p23:
6708 // -- a direct or virtual base class B that cannot be copied/moved because
6709 // overload resolution, as applied to B's corresponding special member,
6710 // results in an ambiguity or a function that is deleted or inaccessible
6711 // from the defaulted special member
6712 // C++11 [class.dtor]p5:
6713 // -- any direct or virtual base class [...] has a type with a destructor
6714 // that is deleted or inaccessible
6715 if (!(CSM == Sema::CXXDefaultConstructor &&
6716 Field && Field->hasInClassInitializer()) &&
6717 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
6718 false))
6719 return true;
6720
6721 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
6722 // -- any direct or virtual base class or non-static data member has a
6723 // type with a destructor that is deleted or inaccessible
6724 if (IsConstructor) {
6725 Sema::SpecialMemberOverloadResult SMOR =
6726 S.LookupSpecialMember(Class, Sema::CXXDestructor,
6727 false, false, false, false, false);
6728 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
6729 return true;
6730 }
6731
6732 return false;
6733}
6734
6735/// Check whether we should delete a special member function due to the class
6736/// having a particular direct or virtual base class.
6737bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
6738 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
6739 // If program is correct, BaseClass cannot be null, but if it is, the error
6740 // must be reported elsewhere.
6741 if (!BaseClass)
6742 return false;
6743 // If we have an inheriting constructor, check whether we're calling an
6744 // inherited constructor instead of a default constructor.
6745 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
6746 if (auto *BaseCtor = SMOR.getMethod()) {
6747 // Note that we do not check access along this path; other than that,
6748 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
6749 // FIXME: Check that the base has a usable destructor! Sink this into
6750 // shouldDeleteForClassSubobject.
6751 if (BaseCtor->isDeleted() && Diagnose) {
6752 S.Diag(Base->getLocStart(),
6753 diag::note_deleted_special_member_class_subobject)
6754 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6755 << Base->getType() << /*Deleted*/1 << /*IsDtorCallInCtor*/false;
6756 S.NoteDeletedFunction(BaseCtor);
6757 }
6758 return BaseCtor->isDeleted();
6759 }
6760 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
6761}
6762
6763/// Check whether we should delete a special member function due to the class
6764/// having a particular non-static data member.
6765bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
6766 QualType FieldType = S.Context.getBaseElementType(FD->getType());
6767 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
6768
6769 if (CSM == Sema::CXXDefaultConstructor) {
6770 // For a default constructor, all references must be initialized in-class
6771 // and, if a union, it must have a non-const member.
6772 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
6773 if (Diagnose)
6774 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6775 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
6776 return true;
6777 }
6778 // C++11 [class.ctor]p5: any non-variant non-static data member of
6779 // const-qualified type (or array thereof) with no
6780 // brace-or-equal-initializer does not have a user-provided default
6781 // constructor.
6782 if (!inUnion() && FieldType.isConstQualified() &&
6783 !FD->hasInClassInitializer() &&
6784 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
6785 if (Diagnose)
6786 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6787 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
6788 return true;
6789 }
6790
6791 if (inUnion() && !FieldType.isConstQualified())
6792 AllFieldsAreConst = false;
6793 } else if (CSM == Sema::CXXCopyConstructor) {
6794 // For a copy constructor, data members must not be of rvalue reference
6795 // type.
6796 if (FieldType->isRValueReferenceType()) {
6797 if (Diagnose)
6798 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
6799 << MD->getParent() << FD << FieldType;
6800 return true;
6801 }
6802 } else if (IsAssignment) {
6803 // For an assignment operator, data members must not be of reference type.
6804 if (FieldType->isReferenceType()) {
6805 if (Diagnose)
6806 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6807 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
6808 return true;
6809 }
6810 if (!FieldRecord && FieldType.isConstQualified()) {
6811 // C++11 [class.copy]p23:
6812 // -- a non-static data member of const non-class type (or array thereof)
6813 if (Diagnose)
6814 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6815 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
6816 return true;
6817 }
6818 }
6819
6820 if (FieldRecord) {
6821 // Some additional restrictions exist on the variant members.
6822 if (!inUnion() && FieldRecord->isUnion() &&
6823 FieldRecord->isAnonymousStructOrUnion()) {
6824 bool AllVariantFieldsAreConst = true;
6825
6826 // FIXME: Handle anonymous unions declared within anonymous unions.
6827 for (auto *UI : FieldRecord->fields()) {
6828 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
6829
6830 if (!UnionFieldType.isConstQualified())
6831 AllVariantFieldsAreConst = false;
6832
6833 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
6834 if (UnionFieldRecord &&
6835 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
6836 UnionFieldType.getCVRQualifiers()))
6837 return true;
6838 }
6839
6840 // At least one member in each anonymous union must be non-const
6841 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
6842 !FieldRecord->field_empty()) {
6843 if (Diagnose)
6844 S.Diag(FieldRecord->getLocation(),
6845 diag::note_deleted_default_ctor_all_const)
6846 << !!ICI << MD->getParent() << /*anonymous union*/1;
6847 return true;
6848 }
6849
6850 // Don't check the implicit member of the anonymous union type.
6851 // This is technically non-conformant, but sanity demands it.
6852 return false;
6853 }
6854
6855 if (shouldDeleteForClassSubobject(FieldRecord, FD,
6856 FieldType.getCVRQualifiers()))
6857 return true;
6858 }
6859
6860 return false;
6861}
6862
6863/// C++11 [class.ctor] p5:
6864/// A defaulted default constructor for a class X is defined as deleted if
6865/// X is a union and all of its variant members are of const-qualified type.
6866bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
6867 // This is a silly definition, because it gives an empty union a deleted
6868 // default constructor. Don't do that.
6869 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
6870 bool AnyFields = false;
6871 for (auto *F : MD->getParent()->fields())
6872 if ((AnyFields = !F->isUnnamedBitfield()))
6873 break;
6874 if (!AnyFields)
6875 return false;
6876 if (Diagnose)
6877 S.Diag(MD->getParent()->getLocation(),
6878 diag::note_deleted_default_ctor_all_const)
6879 << !!ICI << MD->getParent() << /*not anonymous union*/0;
6880 return true;
6881 }
6882 return false;
6883}
6884
6885/// Determine whether a defaulted special member function should be defined as
6886/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
6887/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
6888bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
6889 InheritedConstructorInfo *ICI,
6890 bool Diagnose) {
6891 if (MD->isInvalidDecl())
6892 return false;
6893 CXXRecordDecl *RD = MD->getParent();
6894 assert(!RD->isDependentType() && "do deletion after instantiation")(static_cast <bool> (!RD->isDependentType() &&
"do deletion after instantiation") ? void (0) : __assert_fail
("!RD->isDependentType() && \"do deletion after instantiation\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6894, __extension__ __PRETTY_FUNCTION__))
;
6895 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
6896 return false;
6897
6898 // C++11 [expr.lambda.prim]p19:
6899 // The closure type associated with a lambda-expression has a
6900 // deleted (8.4.3) default constructor and a deleted copy
6901 // assignment operator.
6902 if (RD->isLambda() &&
6903 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
6904 if (Diagnose)
6905 Diag(RD->getLocation(), diag::note_lambda_decl);
6906 return true;
6907 }
6908
6909 // For an anonymous struct or union, the copy and assignment special members
6910 // will never be used, so skip the check. For an anonymous union declared at
6911 // namespace scope, the constructor and destructor are used.
6912 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
6913 RD->isAnonymousStructOrUnion())
6914 return false;
6915
6916 // C++11 [class.copy]p7, p18:
6917 // If the class definition declares a move constructor or move assignment
6918 // operator, an implicitly declared copy constructor or copy assignment
6919 // operator is defined as deleted.
6920 if (MD->isImplicit() &&
6921 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
6922 CXXMethodDecl *UserDeclaredMove = nullptr;
6923
6924 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
6925 // deletion of the corresponding copy operation, not both copy operations.
6926 // MSVC 2015 has adopted the standards conforming behavior.
6927 bool DeletesOnlyMatchingCopy =
6928 getLangOpts().MSVCCompat &&
6929 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
6930
6931 if (RD->hasUserDeclaredMoveConstructor() &&
6932 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
6933 if (!Diagnose) return true;
6934
6935 // Find any user-declared move constructor.
6936 for (auto *I : RD->ctors()) {
6937 if (I->isMoveConstructor()) {
6938 UserDeclaredMove = I;
6939 break;
6940 }
6941 }
6942 assert(UserDeclaredMove)(static_cast <bool> (UserDeclaredMove) ? void (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6942, __extension__ __PRETTY_FUNCTION__))
;
6943 } else if (RD->hasUserDeclaredMoveAssignment() &&
6944 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
6945 if (!Diagnose) return true;
6946
6947 // Find any user-declared move assignment operator.
6948 for (auto *I : RD->methods()) {
6949 if (I->isMoveAssignmentOperator()) {
6950 UserDeclaredMove = I;
6951 break;
6952 }
6953 }
6954 assert(UserDeclaredMove)(static_cast <bool> (UserDeclaredMove) ? void (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6954, __extension__ __PRETTY_FUNCTION__))
;
6955 }
6956
6957 if (UserDeclaredMove) {
6958 Diag(UserDeclaredMove->getLocation(),
6959 diag::note_deleted_copy_user_declared_move)
6960 << (CSM == CXXCopyAssignment) << RD
6961 << UserDeclaredMove->isMoveAssignmentOperator();
6962 return true;
6963 }
6964 }
6965
6966 // Do access control from the special member function
6967 ContextRAII MethodContext(*this, MD);
6968
6969 // C++11 [class.dtor]p5:
6970 // -- for a virtual destructor, lookup of the non-array deallocation function
6971 // results in an ambiguity or in a function that is deleted or inaccessible
6972 if (CSM == CXXDestructor && MD->isVirtual()) {
6973 FunctionDecl *OperatorDelete = nullptr;
6974 DeclarationName Name =
6975 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6976 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
6977 OperatorDelete, /*Diagnose*/false)) {
6978 if (Diagnose)
6979 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
6980 return true;
6981 }
6982 }
6983
6984 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
6985
6986 // Per DR1611, do not consider virtual bases of constructors of abstract
6987 // classes, since we are not going to construct them.
6988 // Per DR1658, do not consider virtual bases of destructors of abstract
6989 // classes either.
6990 // Per DR2180, for assignment operators we only assign (and thus only
6991 // consider) direct bases.
6992 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
6993 : SMI.VisitPotentiallyConstructedBases))
6994 return true;
6995
6996 if (SMI.shouldDeleteForAllConstMembers())
6997 return true;
6998
6999 if (getLangOpts().CUDA) {
7000 // We should delete the special member in CUDA mode if target inference
7001 // failed.
7002 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
7003 Diagnose);
7004 }
7005
7006 return false;
7007}
7008
7009/// Perform lookup for a special member of the specified kind, and determine
7010/// whether it is trivial. If the triviality can be determined without the
7011/// lookup, skip it. This is intended for use when determining whether a
7012/// special member of a containing object is trivial, and thus does not ever
7013/// perform overload resolution for default constructors.
7014///
7015/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
7016/// member that was most likely to be intended to be trivial, if any.
7017static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
7018 Sema::CXXSpecialMember CSM, unsigned Quals,
7019 bool ConstRHS, CXXMethodDecl **Selected) {
7020 if (Selected)
7021 *Selected = nullptr;
7022
7023 switch (CSM) {
7024 case Sema::CXXInvalid:
7025 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7025)
;
7026
7027 case Sema::CXXDefaultConstructor:
7028 // C++11 [class.ctor]p5:
7029 // A default constructor is trivial if:
7030 // - all the [direct subobjects] have trivial default constructors
7031 //
7032 // Note, no overload resolution is performed in this case.
7033 if (RD->hasTrivialDefaultConstructor())
7034 return true;
7035
7036 if (Selected) {
7037 // If there's a default constructor which could have been trivial, dig it
7038 // out. Otherwise, if there's any user-provided default constructor, point
7039 // to that as an example of why there's not a trivial one.
7040 CXXConstructorDecl *DefCtor = nullptr;
7041 if (RD->needsImplicitDefaultConstructor())
7042 S.DeclareImplicitDefaultConstructor(RD);
7043 for (auto *CI : RD->ctors()) {
7044 if (!CI->isDefaultConstructor())
7045 continue;
7046 DefCtor = CI;
7047 if (!DefCtor->isUserProvided())
7048 break;
7049 }
7050
7051 *Selected = DefCtor;
7052 }
7053
7054 return false;
7055
7056 case Sema::CXXDestructor:
7057 // C++11 [class.dtor]p5:
7058 // A destructor is trivial if:
7059 // - all the direct [subobjects] have trivial destructors
7060 if (RD->hasTrivialDestructor())
7061 return true;
7062
7063 if (Selected) {
7064 if (RD->needsImplicitDestructor())
7065 S.DeclareImplicitDestructor(RD);
7066 *Selected = RD->getDestructor();
7067 }
7068
7069 return false;
7070
7071 case Sema::CXXCopyConstructor:
7072 // C++11 [class.copy]p12:
7073 // A copy constructor is trivial if:
7074 // - the constructor selected to copy each direct [subobject] is trivial
7075 if (RD->hasTrivialCopyConstructor()) {
7076 if (Quals == Qualifiers::Const)
7077 // We must either select the trivial copy constructor or reach an
7078 // ambiguity; no need to actually perform overload resolution.
7079 return true;
7080 } else if (!Selected) {
7081 return false;
7082 }
7083 // In C++98, we are not supposed to perform overload resolution here, but we
7084 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
7085 // cases like B as having a non-trivial copy constructor:
7086 // struct A { template<typename T> A(T&); };
7087 // struct B { mutable A a; };
7088 goto NeedOverloadResolution;
7089
7090 case Sema::CXXCopyAssignment:
7091 // C++11 [class.copy]p25:
7092 // A copy assignment operator is trivial if:
7093 // - the assignment operator selected to copy each direct [subobject] is
7094 // trivial
7095 if (RD->hasTrivialCopyAssignment()) {
7096 if (Quals == Qualifiers::Const)
7097 return true;
7098 } else if (!Selected) {
7099 return false;
7100 }
7101 // In C++98, we are not supposed to perform overload resolution here, but we
7102 // treat that as a language defect.
7103 goto NeedOverloadResolution;
7104
7105 case Sema::CXXMoveConstructor:
7106 case Sema::CXXMoveAssignment:
7107 NeedOverloadResolution:
7108 Sema::SpecialMemberOverloadResult SMOR =
7109 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
7110
7111 // The standard doesn't describe how to behave if the lookup is ambiguous.
7112 // We treat it as not making the member non-trivial, just like the standard
7113 // mandates for the default constructor. This should rarely matter, because
7114 // the member will also be deleted.
7115 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
7116 return true;
7117
7118 if (!SMOR.getMethod()) {
7119 assert(SMOR.getKind() ==(static_cast <bool> (SMOR.getKind() == Sema::SpecialMemberOverloadResult
::NoMemberOrDeleted) ? void (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7120, __extension__ __PRETTY_FUNCTION__))
7120 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)(static_cast <bool> (SMOR.getKind() == Sema::SpecialMemberOverloadResult
::NoMemberOrDeleted) ? void (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7120, __extension__ __PRETTY_FUNCTION__))
;
7121 return false;
7122 }
7123
7124 // We deliberately don't check if we found a deleted special member. We're
7125 // not supposed to!
7126 if (Selected)
7127 *Selected = SMOR.getMethod();
7128 return SMOR.getMethod()->isTrivial();
7129 }
7130
7131 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7131)
;
7132}
7133
7134static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
7135 for (auto *CI : RD->ctors())
7136 if (!CI->isImplicit())
7137 return CI;
7138
7139 // Look for constructor templates.
7140 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
7141 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
7142 if (CXXConstructorDecl *CD =
7143 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
7144 return CD;
7145 }
7146
7147 return nullptr;
7148}
7149
7150/// The kind of subobject we are checking for triviality. The values of this
7151/// enumeration are used in diagnostics.
7152enum TrivialSubobjectKind {
7153 /// The subobject is a base class.
7154 TSK_BaseClass,
7155 /// The subobject is a non-static data member.
7156 TSK_Field,
7157 /// The object is actually the complete object.
7158 TSK_CompleteObject
7159};
7160
7161/// Check whether the special member selected for a given type would be trivial.
7162static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
7163 QualType SubType, bool ConstRHS,
7164 Sema::CXXSpecialMember CSM,
7165 TrivialSubobjectKind Kind,
7166 bool Diagnose) {
7167 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
7168 if (!SubRD)
7169 return true;
7170
7171 CXXMethodDecl *Selected;
7172 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
7173 ConstRHS, Diagnose ? &Selected : nullptr))
7174 return true;
7175
7176 if (Diagnose) {
7177 if (ConstRHS)
7178 SubType.addConst();
7179
7180 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
7181 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
7182 << Kind << SubType.getUnqualifiedType();
7183 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
7184 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
7185 } else if (!Selected)
7186 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
7187 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
7188 else if (Selected->isUserProvided()) {
7189 if (Kind == TSK_CompleteObject)
7190 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
7191 << Kind << SubType.getUnqualifiedType() << CSM;
7192 else {
7193 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
7194 << Kind << SubType.getUnqualifiedType() << CSM;
7195 S.Diag(Selected->getLocation(), diag::note_declared_at);
7196 }
7197 } else {
7198 if (Kind != TSK_CompleteObject)
7199 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
7200 << Kind << SubType.getUnqualifiedType() << CSM;
7201
7202 // Explain why the defaulted or deleted special member isn't trivial.
7203 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
7204 }
7205 }
7206
7207 return false;
7208}
7209
7210/// Check whether the members of a class type allow a special member to be
7211/// trivial.
7212static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
7213 Sema::CXXSpecialMember CSM,
7214 bool ConstArg, bool Diagnose) {
7215 for (const auto *FI : RD->fields()) {
7216 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
7217 continue;
7218
7219 QualType FieldType = S.Context.getBaseElementType(FI->getType());
7220
7221 // Pretend anonymous struct or union members are members of this class.
7222 if (FI->isAnonymousStructOrUnion()) {
7223 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
7224 CSM, ConstArg, Diagnose))
7225 return false;
7226 continue;
7227 }
7228
7229 // C++11 [class.ctor]p5:
7230 // A default constructor is trivial if [...]
7231 // -- no non-static data member of its class has a
7232 // brace-or-equal-initializer
7233 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
7234 if (Diagnose)
7235 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
7236 return false;
7237 }
7238
7239 // Objective C ARC 4.3.5:
7240 // [...] nontrivally ownership-qualified types are [...] not trivially
7241 // default constructible, copy constructible, move constructible, copy
7242 // assignable, move assignable, or destructible [...]
7243 if (FieldType.hasNonTrivialObjCLifetime()) {
7244 if (Diagnose)
7245 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
7246 << RD << FieldType.getObjCLifetime();
7247 return false;
7248 }
7249
7250 bool ConstRHS = ConstArg && !FI->isMutable();
7251 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
7252 CSM, TSK_Field, Diagnose))
7253 return false;
7254 }
7255
7256 return true;
7257}
7258
7259/// Diagnose why the specified class does not have a trivial special member of
7260/// the given kind.
7261void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
7262 QualType Ty = Context.getRecordType(RD);
7263
7264 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
7265 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
7266 TSK_CompleteObject, /*Diagnose*/true);
7267}
7268
7269/// Determine whether a defaulted or deleted special member function is trivial,
7270/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
7271/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
7272bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
7273 bool Diagnose) {
7274 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")(static_cast <bool> (!MD->isUserProvided() &&
CSM != CXXInvalid && "not special enough") ? void (0
) : __assert_fail ("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7274, __extension__ __PRETTY_FUNCTION__))
;
7275
7276 CXXRecordDecl *RD = MD->getParent();
7277
7278 bool ConstArg = false;
7279
7280 // C++11 [class.copy]p12, p25: [DR1593]
7281 // A [special member] is trivial if [...] its parameter-type-list is
7282 // equivalent to the parameter-type-list of an implicit declaration [...]
7283 switch (CSM) {
7284 case CXXDefaultConstructor:
7285 case CXXDestructor:
7286 // Trivial default constructors and destructors cannot have parameters.
7287 break;
7288
7289 case CXXCopyConstructor:
7290 case CXXCopyAssignment: {
7291 // Trivial copy operations always have const, non-volatile parameter types.
7292 ConstArg = true;
7293 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7294 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
7295 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
7296 if (Diagnose)
7297 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7298 << Param0->getSourceRange() << Param0->getType()
7299 << Context.getLValueReferenceType(
7300 Context.getRecordType(RD).withConst());
7301 return false;
7302 }
7303 break;
7304 }
7305
7306 case CXXMoveConstructor:
7307 case CXXMoveAssignment: {
7308 // Trivial move operations always have non-cv-qualified parameters.
7309 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7310 const RValueReferenceType *RT =
7311 Param0->getType()->getAs<RValueReferenceType>();
7312 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
7313 if (Diagnose)
7314 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7315 << Param0->getSourceRange() << Param0->getType()
7316 << Context.getRValueReferenceType(Context.getRecordType(RD));
7317 return false;
7318 }
7319 break;
7320 }
7321
7322 case CXXInvalid:
7323 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7323)
;
7324 }
7325
7326 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
7327 if (Diagnose)
7328 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
7329 diag::note_nontrivial_default_arg)
7330 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
7331 return false;
7332 }
7333 if (MD->isVariadic()) {
7334 if (Diagnose)
7335 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
7336 return false;
7337 }
7338
7339 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7340 // A copy/move [constructor or assignment operator] is trivial if
7341 // -- the [member] selected to copy/move each direct base class subobject
7342 // is trivial
7343 //
7344 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7345 // A [default constructor or destructor] is trivial if
7346 // -- all the direct base classes have trivial [default constructors or
7347 // destructors]
7348 for (const auto &BI : RD->bases())
7349 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
7350 ConstArg, CSM, TSK_BaseClass, Diagnose))
7351 return false;
7352
7353 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7354 // A copy/move [constructor or assignment operator] for a class X is
7355 // trivial if
7356 // -- for each non-static data member of X that is of class type (or array
7357 // thereof), the constructor selected to copy/move that member is
7358 // trivial
7359 //
7360 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7361 // A [default constructor or destructor] is trivial if
7362 // -- for all of the non-static data members of its class that are of class
7363 // type (or array thereof), each such class has a trivial [default
7364 // constructor or destructor]
7365 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
7366 return false;
7367
7368 // C++11 [class.dtor]p5:
7369 // A destructor is trivial if [...]
7370 // -- the destructor is not virtual
7371 if (CSM == CXXDestructor && MD->isVirtual()) {
7372 if (Diagnose)
7373 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
7374 return false;
7375 }
7376
7377 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
7378 // A [special member] for class X is trivial if [...]
7379 // -- class X has no virtual functions and no virtual base classes
7380 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
7381 if (!Diagnose)
7382 return false;
7383
7384 if (RD->getNumVBases()) {
7385 // Check for virtual bases. We already know that the corresponding
7386 // member in all bases is trivial, so vbases must all be direct.
7387 CXXBaseSpecifier &BS = *RD->vbases_begin();
7388 assert(BS.isVirtual())(static_cast <bool> (BS.isVirtual()) ? void (0) : __assert_fail
("BS.isVirtual()", "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7388, __extension__ __PRETTY_FUNCTION__))
;
7389 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
7390 return false;
7391 }
7392
7393 // Must have a virtual method.
7394 for (const auto *MI : RD->methods()) {
7395 if (MI->isVirtual()) {
7396 SourceLocation MLoc = MI->getLocStart();
7397 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
7398 return false;
7399 }
7400 }
7401
7402 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7402)
;
7403 }
7404
7405 // Looks like it's trivial!
7406 return true;
7407}
7408
7409namespace {
7410struct FindHiddenVirtualMethod {
7411 Sema *S;
7412 CXXMethodDecl *Method;
7413 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
7414 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7415
7416private:
7417 /// Check whether any most overriden method from MD in Methods
7418 static bool CheckMostOverridenMethods(
7419 const CXXMethodDecl *MD,
7420 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
7421 if (MD->size_overridden_methods() == 0)
7422 return Methods.count(MD->getCanonicalDecl());
7423 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7424 E = MD->end_overridden_methods();
7425 I != E; ++I)
7426 if (CheckMostOverridenMethods(*I, Methods))
7427 return true;
7428 return false;
7429 }
7430
7431public:
7432 /// Member lookup function that determines whether a given C++
7433 /// method overloads virtual methods in a base class without overriding any,
7434 /// to be used with CXXRecordDecl::lookupInBases().
7435 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7436 RecordDecl *BaseRecord =
7437 Specifier->getType()->getAs<RecordType>()->getDecl();
7438
7439 DeclarationName Name = Method->getDeclName();
7440 assert(Name.getNameKind() == DeclarationName::Identifier)(static_cast <bool> (Name.getNameKind() == DeclarationName
::Identifier) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7440, __extension__ __PRETTY_FUNCTION__))
;
7441
7442 bool foundSameNameMethod = false;
7443 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
7444 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7445 Path.Decls = Path.Decls.slice(1)) {
7446 NamedDecl *D = Path.Decls.front();
7447 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7448 MD = MD->getCanonicalDecl();
7449 foundSameNameMethod = true;
7450 // Interested only in hidden virtual methods.
7451 if (!MD->isVirtual())
7452 continue;
7453 // If the method we are checking overrides a method from its base
7454 // don't warn about the other overloaded methods. Clang deviates from
7455 // GCC by only diagnosing overloads of inherited virtual functions that
7456 // do not override any other virtual functions in the base. GCC's
7457 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
7458 // function from a base class. These cases may be better served by a
7459 // warning (not specific to virtual functions) on call sites when the
7460 // call would select a different function from the base class, were it
7461 // visible.
7462 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
7463 if (!S->IsOverload(Method, MD, false))
7464 return true;
7465 // Collect the overload only if its hidden.
7466 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
7467 overloadedMethods.push_back(MD);
7468 }
7469 }
7470
7471 if (foundSameNameMethod)
7472 OverloadedMethods.append(overloadedMethods.begin(),
7473 overloadedMethods.end());
7474 return foundSameNameMethod;
7475 }
7476};
7477} // end anonymous namespace
7478
7479/// \brief Add the most overriden methods from MD to Methods
7480static void AddMostOverridenMethods(const CXXMethodDecl *MD,
7481 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
7482 if (MD->size_overridden_methods() == 0)
7483 Methods.insert(MD->getCanonicalDecl());
7484 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7485 E = MD->end_overridden_methods();
7486 I != E; ++I)
7487 AddMostOverridenMethods(*I, Methods);
7488}
7489
7490/// \brief Check if a method overloads virtual methods in a base class without
7491/// overriding any.
7492void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
7493 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7494 if (!MD->getDeclName().isIdentifier())
7495 return;
7496
7497 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
7498 /*bool RecordPaths=*/false,
7499 /*bool DetectVirtual=*/false);
7500 FindHiddenVirtualMethod FHVM;
7501 FHVM.Method = MD;
7502 FHVM.S = this;
7503
7504 // Keep the base methods that were overriden or introduced in the subclass
7505 // by 'using' in a set. A base method not in this set is hidden.
7506 CXXRecordDecl *DC = MD->getParent();
7507 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
7508 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
7509 NamedDecl *ND = *I;
7510 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
7511 ND = shad->getTargetDecl();
7512 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7513 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
7514 }
7515
7516 if (DC->lookupInBases(FHVM, Paths))
7517 OverloadedMethods = FHVM.OverloadedMethods;
7518}
7519
7520void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
7521 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7522 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
7523 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
7524 PartialDiagnostic PD = PDiag(
7525 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
7526 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
7527 Diag(overloadedMD->getLocation(), PD);
7528 }
7529}
7530
7531/// \brief Diagnose methods which overload virtual methods in a base class
7532/// without overriding any.
7533void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
7534 if (MD->isInvalidDecl())
7535 return;
7536
7537 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
7538 return;
7539
7540 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7541 FindHiddenVirtualMethods(MD, OverloadedMethods);
7542 if (!OverloadedMethods.empty()) {
7543 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
7544 << MD << (OverloadedMethods.size() > 1);
7545
7546 NoteHiddenVirtualMethods(MD, OverloadedMethods);
7547 }
7548}
7549
7550void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
7551 Decl *TagDecl,
7552 SourceLocation LBrac,
7553 SourceLocation RBrac,
7554 AttributeList *AttrList) {
7555 if (!TagDecl)
7556 return;
7557
7558 AdjustDeclIfTemplate(TagDecl);
7559
7560 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
7561 if (l->getKind() != AttributeList::AT_Visibility)
7562 continue;
7563 l->setInvalid();
7564 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
7565 l->getName();
7566 }
7567
7568 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
7569 // strict aliasing violation!
7570 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
7571 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
7572
7573 CheckCompletedCXXClass(dyn_cast_or_null<CXXRecordDecl>(TagDecl));
7574}
7575
7576/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
7577/// special functions, such as the default constructor, copy
7578/// constructor, or destructor, to the given C++ class (C++
7579/// [special]p1). This routine can only be executed just before the
7580/// definition of the class is complete.
7581void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
7582 if (ClassDecl->needsImplicitDefaultConstructor()) {
7583 ++ASTContext::NumImplicitDefaultConstructors;
7584
7585 if (ClassDecl->hasInheritedConstructor())
7586 DeclareImplicitDefaultConstructor(ClassDecl);
7587 }
7588
7589 if (ClassDecl->needsImplicitCopyConstructor()) {
7590 ++ASTContext::NumImplicitCopyConstructors;
7591
7592 // If the properties or semantics of the copy constructor couldn't be
7593 // determined while the class was being declared, force a declaration
7594 // of it now.
7595 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
7596 ClassDecl->hasInheritedConstructor())
7597 DeclareImplicitCopyConstructor(ClassDecl);
7598 // For the MS ABI we need to know whether the copy ctor is deleted. A
7599 // prerequisite for deleting the implicit copy ctor is that the class has a
7600 // move ctor or move assignment that is either user-declared or whose
7601 // semantics are inherited from a subobject. FIXME: We should provide a more
7602 // direct way for CodeGen to ask whether the constructor was deleted.
7603 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
7604 (ClassDecl->hasUserDeclaredMoveConstructor() ||
7605 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7606 ClassDecl->hasUserDeclaredMoveAssignment() ||
7607 ClassDecl->needsOverloadResolutionForMoveAssignment()))
7608 DeclareImplicitCopyConstructor(ClassDecl);
7609 }
7610
7611 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
7612 ++ASTContext::NumImplicitMoveConstructors;
7613
7614 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7615 ClassDecl->hasInheritedConstructor())
7616 DeclareImplicitMoveConstructor(ClassDecl);
7617 }
7618
7619 if (ClassDecl->needsImplicitCopyAssignment()) {
7620 ++ASTContext::NumImplicitCopyAssignmentOperators;
7621
7622 // If we have a dynamic class, then the copy assignment operator may be
7623 // virtual, so we have to declare it immediately. This ensures that, e.g.,
7624 // it shows up in the right place in the vtable and that we diagnose
7625 // problems with the implicit exception specification.
7626 if (ClassDecl->isDynamicClass() ||
7627 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
7628 ClassDecl->hasInheritedAssignment())
7629 DeclareImplicitCopyAssignment(ClassDecl);
7630 }
7631
7632 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
7633 ++ASTContext::NumImplicitMoveAssignmentOperators;
7634
7635 // Likewise for the move assignment operator.
7636 if (ClassDecl->isDynamicClass() ||
7637 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
7638 ClassDecl->hasInheritedAssignment())
7639 DeclareImplicitMoveAssignment(ClassDecl);
7640 }
7641
7642 if (ClassDecl->needsImplicitDestructor()) {
7643 ++ASTContext::NumImplicitDestructors;
7644
7645 // If we have a dynamic class, then the destructor may be virtual, so we
7646 // have to declare the destructor immediately. This ensures that, e.g., it
7647 // shows up in the right place in the vtable and that we diagnose problems
7648 // with the implicit exception specification.
7649 if (ClassDecl->isDynamicClass() ||
7650 ClassDecl->needsOverloadResolutionForDestructor())
7651 DeclareImplicitDestructor(ClassDecl);
7652 }
7653}
7654
7655unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
7656 if (!D)
7657 return 0;
7658
7659 // The order of template parameters is not important here. All names
7660 // get added to the same scope.
7661 SmallVector<TemplateParameterList *, 4> ParameterLists;
7662
7663 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7664 D = TD->getTemplatedDecl();
7665
7666 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
7667 ParameterLists.push_back(PSD->getTemplateParameters());
7668
7669 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
7670 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
7671 ParameterLists.push_back(DD->getTemplateParameterList(i));
7672
7673 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7674 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
7675 ParameterLists.push_back(FTD->getTemplateParameters());
7676 }
7677 }
7678
7679 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
7680 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
7681 ParameterLists.push_back(TD->getTemplateParameterList(i));
7682
7683 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
7684 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
7685 ParameterLists.push_back(CTD->getTemplateParameters());
7686 }
7687 }
7688
7689 unsigned Count = 0;
7690 for (TemplateParameterList *Params : ParameterLists) {
7691 if (Params->size() > 0)
7692 // Ignore explicit specializations; they don't contribute to the template
7693 // depth.
7694 ++Count;
7695 for (NamedDecl *Param : *Params) {
7696 if (Param->getDeclName()) {
7697 S->AddDecl(Param);
7698 IdResolver.AddDecl(Param);
7699 }
7700 }
7701 }
7702
7703 return Count;
7704}
7705
7706void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7707 if (!RecordD) return;
7708 AdjustDeclIfTemplate(RecordD);
7709 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
7710 PushDeclContext(S, Record);
7711}
7712
7713void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7714 if (!RecordD) return;
7715 PopDeclContext();
7716}
7717
7718/// This is used to implement the constant expression evaluation part of the
7719/// attribute enable_if extension. There is nothing in standard C++ which would
7720/// require reentering parameters.
7721void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
7722 if (!Param)
7723 return;
7724
7725 S->AddDecl(Param);
7726 if (Param->getDeclName())
7727 IdResolver.AddDecl(Param);
7728}
7729
7730/// ActOnStartDelayedCXXMethodDeclaration - We have completed
7731/// parsing a top-level (non-nested) C++ class, and we are now
7732/// parsing those parts of the given Method declaration that could
7733/// not be parsed earlier (C++ [class.mem]p2), such as default
7734/// arguments. This action should enter the scope of the given
7735/// Method declaration as if we had just parsed the qualified method
7736/// name. However, it should not bring the parameters into scope;
7737/// that will be performed by ActOnDelayedCXXMethodParameter.
7738void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7739}
7740
7741/// ActOnDelayedCXXMethodParameter - We've already started a delayed
7742/// C++ method declaration. We're (re-)introducing the given
7743/// function parameter into scope for use in parsing later parts of
7744/// the method declaration. For example, we could see an
7745/// ActOnParamDefaultArgument event for this parameter.
7746void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
7747 if (!ParamD)
7748 return;
7749
7750 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
7751
7752 // If this parameter has an unparsed default argument, clear it out
7753 // to make way for the parsed default argument.
7754 if (Param->hasUnparsedDefaultArg())
7755 Param->setDefaultArg(nullptr);
7756
7757 S->AddDecl(Param);
7758 if (Param->getDeclName())
7759 IdResolver.AddDecl(Param);
7760}
7761
7762/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
7763/// processing the delayed method declaration for Method. The method
7764/// declaration is now considered finished. There may be a separate
7765/// ActOnStartOfFunctionDef action later (not necessarily
7766/// immediately!) for this method, if it was also defined inside the
7767/// class body.
7768void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7769 if (!MethodD)
7770 return;
7771
7772 AdjustDeclIfTemplate(MethodD);
7773
7774 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
7775
7776 // Now that we have our default arguments, check the constructor
7777 // again. It could produce additional diagnostics or affect whether
7778 // the class has implicitly-declared destructors, among other
7779 // things.
7780 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
7781 CheckConstructor(Constructor);
7782
7783 // Check the default arguments, which we may have added.
7784 if (!Method->isInvalidDecl())
7785 CheckCXXDefaultArguments(Method);
7786}
7787
7788/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
7789/// the well-formedness of the constructor declarator @p D with type @p
7790/// R. If there are any errors in the declarator, this routine will
7791/// emit diagnostics and set the invalid bit to true. In any case, the type
7792/// will be updated to reflect a well-formed type for the constructor and
7793/// returned.
7794QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
7795 StorageClass &SC) {
7796 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7797
7798 // C++ [class.ctor]p3:
7799 // A constructor shall not be virtual (10.3) or static (9.4). A
7800 // constructor can be invoked for a const, volatile or const
7801 // volatile object. A constructor shall not be declared const,
7802 // volatile, or const volatile (9.3.2).
7803 if (isVirtual) {
7804 if (!D.isInvalidType())
7805 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7806 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
7807 << SourceRange(D.getIdentifierLoc());
7808 D.setInvalidType();
7809 }
7810 if (SC == SC_Static) {
7811 if (!D.isInvalidType())
7812 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7813 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7814 << SourceRange(D.getIdentifierLoc());
7815 D.setInvalidType();
7816 SC = SC_None;
7817 }
7818
7819 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7820 diagnoseIgnoredQualifiers(
7821 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
7822 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
7823 D.getDeclSpec().getRestrictSpecLoc(),
7824 D.getDeclSpec().getAtomicSpecLoc());
7825 D.setInvalidType();
7826 }
7827
7828 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7829 if (FTI.TypeQuals != 0) {
7830 if (FTI.TypeQuals & Qualifiers::Const)
7831 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7832 << "const" << SourceRange(D.getIdentifierLoc());
7833 if (FTI.TypeQuals & Qualifiers::Volatile)
7834 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7835 << "volatile" << SourceRange(D.getIdentifierLoc());
7836 if (FTI.TypeQuals & Qualifiers::Restrict)
7837 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7838 << "restrict" << SourceRange(D.getIdentifierLoc());
7839 D.setInvalidType();
7840 }
7841
7842 // C++0x [class.ctor]p4:
7843 // A constructor shall not be declared with a ref-qualifier.
7844 if (FTI.hasRefQualifier()) {
7845 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
7846 << FTI.RefQualifierIsLValueRef
7847 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7848 D.setInvalidType();
7849 }
7850
7851 // Rebuild the function type "R" without any type qualifiers (in
7852 // case any of the errors above fired) and with "void" as the
7853 // return type, since constructors don't have return types.
7854 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7855 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
7856 return R;
7857
7858 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7859 EPI.TypeQuals = 0;
7860 EPI.RefQualifier = RQ_None;
7861
7862 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
7863}
7864
7865/// CheckConstructor - Checks a fully-formed constructor for
7866/// well-formedness, issuing any diagnostics required. Returns true if
7867/// the constructor declarator is invalid.
7868void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
7869 CXXRecordDecl *ClassDecl
7870 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
7871 if (!ClassDecl)
7872 return Constructor->setInvalidDecl();
7873
7874 // C++ [class.copy]p3:
7875 // A declaration of a constructor for a class X is ill-formed if
7876 // its first parameter is of type (optionally cv-qualified) X and
7877 // either there are no other parameters or else all other
7878 // parameters have default arguments.
7879 if (!Constructor->isInvalidDecl() &&
7880 ((Constructor->getNumParams() == 1) ||
7881 (Constructor->getNumParams() > 1 &&
7882 Constructor->getParamDecl(1)->hasDefaultArg())) &&
7883 Constructor->getTemplateSpecializationKind()
7884 != TSK_ImplicitInstantiation) {
7885 QualType ParamType = Constructor->getParamDecl(0)->getType();
7886 QualType ClassTy = Context.getTagDeclType(ClassDecl);
7887 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
7888 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
7889 const char *ConstRef
7890 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
7891 : " const &";
7892 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
7893 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
7894
7895 // FIXME: Rather that making the constructor invalid, we should endeavor
7896 // to fix the type.
7897 Constructor->setInvalidDecl();
7898 }
7899 }
7900}
7901
7902/// CheckDestructor - Checks a fully-formed destructor definition for
7903/// well-formedness, issuing any diagnostics required. Returns true
7904/// on error.
7905bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
7906 CXXRecordDecl *RD = Destructor->getParent();
7907
7908 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
7909 SourceLocation Loc;
7910
7911 if (!Destructor->isImplicit())
7912 Loc = Destructor->getLocation();
7913 else
7914 Loc = RD->getLocation();
7915
7916 // If we have a virtual destructor, look up the deallocation function
7917 if (FunctionDecl *OperatorDelete =
7918 FindDeallocationFunctionForDestructor(Loc, RD)) {
7919 Expr *ThisArg = nullptr;
7920
7921 // If the notional 'delete this' expression requires a non-trivial
7922 // conversion from 'this' to the type of a destroying operator delete's
7923 // first parameter, perform that conversion now.
7924 if (OperatorDelete->isDestroyingOperatorDelete()) {
7925 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
7926 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
7927 // C++ [class.dtor]p13:
7928 // ... as if for the expression 'delete this' appearing in a
7929 // non-virtual destructor of the destructor's class.
7930 ContextRAII SwitchContext(*this, Destructor);
7931 ExprResult This =
7932 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
7933 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")(static_cast <bool> (!This.isInvalid() && "couldn't form 'this' expr in dtor?"
) ? void (0) : __assert_fail ("!This.isInvalid() && \"couldn't form 'this' expr in dtor?\""
, "/build/llvm-toolchain-snapshot-6.0~svn318601/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7933, __extension__ __PRETTY_FUNCTION__))
;
7934 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
7935 if (This.isInvalid()) {
7936 // FIXME: Register this as a context note so that it comes out
7937 // in the right order.
7938 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
7939 return true;
7940 }
7941 ThisArg = This.get();
7942 }
7943 }
7944
7945 MarkFunctionReferenced(Loc, OperatorDelete);
7946 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
7947 }
7948 }
7949
7950 return false;
7951}
7952
7953/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
7954/// the well-formednes of the destructor declarator @p D with type @p
7955/// R. If there are any errors in the declarator, this routine will
7956/// emit diagnostics and set the declarator to invalid. Even if this happens,
7957/// will be updated to reflect a well-formed type for the destructor and
7958/// returned.
7959QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
7960 StorageClass& SC) {
7961 // C++ [class.dtor]p1:
7962 // [...] A typedef-name that names a class is a class-name
7963 // (7.1.3); however, a typedef-name that names a class shall not
7964 // be used as the identifier in the declarator for a destructor
7965 // declaration.
7966 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
7967 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
7968 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7969 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
7970 else if (const TemplateSpecializationType *TST =
7971 DeclaratorType->getAs<TemplateSpecializationType>())
7972 if (TST->isTypeAlias())
7973 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7974 << DeclaratorType << 1;
7975
7976 // C++ [class.dtor]p2:
7977 // A destructor is used to destroy objects of its class type. A
7978 // destructor takes no parameters, and no return type can be
7979 // specified for it (not even void). The address of a destructor
7980 // shall not be taken. A destructor shall not be static. A
7981 // destructor can be invoked for a const, volatile or const
7982 // volatile object. A destructor shall not be declared const,
7983 // volatile or const volatile (9.3.2).
7984 if (SC == SC_Static) {
7985 if (!D.isInvalidType())
7986 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
7987 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7988 << SourceRange(D.getIdentifierLoc())
7989 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7990
7991 SC = SC_None;
7992 }
7993 if (!D.isInvalidType()) {
7994 // Destructors don't have return types, but the parser will
7995 // happily parse something like:
7996 //
7997 // class X {
7998 // float ~X();
7999 // };
8000 //
8001 // The return type will be eliminated later.
8002 if (D.getDeclSpec().hasTypeSpecifier())
8003 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
8004 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8005 << SourceRange(D.getIdentifierLoc());
8006 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
8007 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
8008 SourceLocation(),
8009 D.getDeclSpec().getConstSpecLoc(),
8010 D.getDeclSpec().getVolatileSpecLoc(),
8011 D.getDeclSpec().getRestrictSpecLoc(),
8012 D.getDeclSpec().getAtomicSpecLoc());
8013 D.setInvalidType();
8014 }
8015 }
8016
8017 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8018 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
8019 if (FTI.TypeQuals & Qualifiers::Const)
8020 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8021 << "const" << SourceRange(D.getIdentifierLoc());
8022 if (FTI.TypeQuals & Qualifiers::Volatile)
8023 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8024 << "volatile" << SourceRange(D.getIdentifierLoc());
8025 if (FTI.TypeQuals & Qualifiers::Restrict)
8026 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8027 << "restrict" << SourceRange(D.getIdentifierLoc());
8028 D.setInvalidType();
8029 }
8030
8031 // C++0x [class.dtor]p2:
8032 // A destructor shall not be declared with a ref-qualifier.
8033 if (FTI.hasRefQualifier()) {
8034 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
8035 << FTI.RefQualifierIsLValueRef
8036 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
8037 D.setInvalidType();
8038 }
8039
8040 // Make sure we don't have any parameters.
8041 if (FTIHasNonVoidParameters(FTI)) {
8042 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
8043
8044 // Delete the parameters.
8045 FTI.freeParams();
8046 D.setInvalidType();
8047 }
8048
8049 // Make sure the destructor isn't variadic.
8050 if (FTI.isVariadic) {
8051 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
8052 D.setInvalidType();
8053 }
8054
8055 // Rebuild the function type "R" without any type qualifiers or
8056 // parameters (in case any of the errors above fired) and with
8057 // "void" as the return type, since destructors don't have return
8058 // types.
8059 if (!D.isInvalidType())
8060 return R;
8061
8062 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8063 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
8064 EPI.Variadic = false;
8065 EPI.TypeQuals = 0;
8066 EPI.RefQualifier = RQ_None;
8067 return Context.getFunctionType(Context.VoidTy, None, EPI);
8068}
8069
8070static void extendLeft(SourceRange &R, SourceRange Before) {
8071 if (Before.isInvalid())
8072 return;
8073 R.setBegin(Before.getBegin());
8074