Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 3930, column 29
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp -faddrsig
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/ComparisonCategories.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/Template.h"
41#include "llvm/ADT/STLExtras.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/StringExtras.h"
44#include <map>
45#include <set>
46
47using namespace clang;
48
49//===----------------------------------------------------------------------===//
50// CheckDefaultArgumentVisitor
51//===----------------------------------------------------------------------===//
52
53namespace {
54 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
55 /// the default argument of a parameter to determine whether it
56 /// contains any ill-formed subexpressions. For example, this will
57 /// diagnose the use of local variables or parameters within the
58 /// default argument expression.
59 class CheckDefaultArgumentVisitor
60 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
61 Expr *DefaultArg;
62 Sema *S;
63
64 public:
65 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
66 : DefaultArg(defarg), S(s) {}
67
68 bool VisitExpr(Expr *Node);
69 bool VisitDeclRefExpr(DeclRefExpr *DRE);
70 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
71 bool VisitLambdaExpr(LambdaExpr *Lambda);
72 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
73 };
74
75 /// VisitExpr - Visit all of the children of this expression.
76 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
77 bool IsInvalid = false;
78 for (Stmt *SubStmt : Node->children())
79 IsInvalid |= Visit(SubStmt);
80 return IsInvalid;
81 }
82
83 /// VisitDeclRefExpr - Visit a reference to a declaration, to
84 /// determine whether this declaration can be used in the default
85 /// argument expression.
86 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
87 NamedDecl *Decl = DRE->getDecl();
88 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
89 // C++ [dcl.fct.default]p9
90 // Default arguments are evaluated each time the function is
91 // called. The order of evaluation of function arguments is
92 // unspecified. Consequently, parameters of a function shall not
93 // be used in default argument expressions, even if they are not
94 // evaluated. Parameters of a function declared before a default
95 // argument expression are in scope and can hide namespace and
96 // class member names.
97 return S->Diag(DRE->getLocStart(),
98 diag::err_param_default_argument_references_param)
99 << Param->getDeclName() << DefaultArg->getSourceRange();
100 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
101 // C++ [dcl.fct.default]p7
102 // Local variables shall not be used in default argument
103 // expressions.
104 if (VDecl->isLocalVarDecl())
105 return S->Diag(DRE->getLocStart(),
106 diag::err_param_default_argument_references_local)
107 << VDecl->getDeclName() << DefaultArg->getSourceRange();
108 }
109
110 return false;
111 }
112
113 /// VisitCXXThisExpr - Visit a C++ "this" expression.
114 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
115 // C++ [dcl.fct.default]p8:
116 // The keyword this shall not be used in a default argument of a
117 // member function.
118 return S->Diag(ThisE->getLocStart(),
119 diag::err_param_default_argument_references_this)
120 << ThisE->getSourceRange();
121 }
122
123 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
124 bool Invalid = false;
125 for (PseudoObjectExpr::semantics_iterator
126 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
127 Expr *E = *i;
128
129 // Look through bindings.
130 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
131 E = OVE->getSourceExpr();
132 assert(E && "pseudo-object binding without source expression?")(static_cast <bool> (E && "pseudo-object binding without source expression?"
) ? void (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 132, __extension__ __PRETTY_FUNCTION__))
;
133 }
134
135 Invalid |= Visit(E);
136 }
137 return Invalid;
138 }
139
140 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
141 // C++11 [expr.lambda.prim]p13:
142 // A lambda-expression appearing in a default argument shall not
143 // implicitly or explicitly capture any entity.
144 if (Lambda->capture_begin() == Lambda->capture_end())
145 return false;
146
147 return S->Diag(Lambda->getLocStart(),
148 diag::err_lambda_capture_default_arg);
149 }
150}
151
152void
153Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
154 const CXXMethodDecl *Method) {
155 // If we have an MSAny spec already, don't bother.
156 if (!Method || ComputedEST == EST_MSAny)
157 return;
158
159 const FunctionProtoType *Proto
160 = Method->getType()->getAs<FunctionProtoType>();
161 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
162 if (!Proto)
163 return;
164
165 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
166
167 // If we have a throw-all spec at this point, ignore the function.
168 if (ComputedEST == EST_None)
169 return;
170
171 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
172 EST = EST_BasicNoexcept;
173
174 switch (EST) {
175 case EST_Unparsed:
176 case EST_Uninstantiated:
177 case EST_Unevaluated:
178 llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 178)
;
179
180 // If this function can throw any exceptions, make a note of that.
181 case EST_MSAny:
182 case EST_None:
183 // FIXME: Whichever we see last of MSAny and None determines our result.
184 // We should make a consistent, order-independent choice here.
185 ClearExceptions();
186 ComputedEST = EST;
187 return;
188 case EST_NoexceptFalse:
189 ClearExceptions();
190 ComputedEST = EST_None;
191 return;
192 // FIXME: If the call to this decl is using any of its default arguments, we
193 // need to search them for potentially-throwing calls.
194 // If this function has a basic noexcept, it doesn't affect the outcome.
195 case EST_BasicNoexcept:
196 case EST_NoexceptTrue:
197 return;
198 // If we're still at noexcept(true) and there's a throw() callee,
199 // change to that specification.
200 case EST_DynamicNone:
201 if (ComputedEST == EST_BasicNoexcept)
202 ComputedEST = EST_DynamicNone;
203 return;
204 case EST_DependentNoexcept:
205 llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 206)
206 "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 206)
;
207 case EST_Dynamic:
208 break;
209 }
210 assert(EST == EST_Dynamic && "EST case not considered earlier.")(static_cast <bool> (EST == EST_Dynamic && "EST case not considered earlier."
) ? void (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 210, __extension__ __PRETTY_FUNCTION__))
;
211 assert(ComputedEST != EST_None &&(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __extension__ __PRETTY_FUNCTION__))
212 "Shouldn't collect exceptions when throw-all is guaranteed.")(static_cast <bool> (ComputedEST != EST_None &&
"Shouldn't collect exceptions when throw-all is guaranteed."
) ? void (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __extension__ __PRETTY_FUNCTION__))
;
213 ComputedEST = EST_Dynamic;
214 // Record the exceptions in this function's exception specification.
215 for (const auto &E : Proto->exceptions())
216 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
217 Exceptions.push_back(E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221 if (!E || ComputedEST == EST_MSAny)
222 return;
223
224 // FIXME:
225 //
226 // C++0x [except.spec]p14:
227 // [An] implicit exception-specification specifies the type-id T if and
228 // only if T is allowed by the exception-specification of a function directly
229 // invoked by f's implicit definition; f shall allow all exceptions if any
230 // function it directly invokes allows all exceptions, and f shall allow no
231 // exceptions if every function it directly invokes allows no exceptions.
232 //
233 // Note in particular that if an implicit exception-specification is generated
234 // for a function containing a throw-expression, that specification can still
235 // be noexcept(true).
236 //
237 // Note also that 'directly invoked' is not defined in the standard, and there
238 // is no indication that we should only consider potentially-evaluated calls.
239 //
240 // Ultimately we should implement the intent of the standard: the exception
241 // specification should be the set of exceptions which can be thrown by the
242 // implicit definition. For now, we assume that any non-nothrow expression can
243 // throw any exception.
244
245 if (Self->canThrow(E))
246 ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251 SourceLocation EqualLoc) {
252 if (RequireCompleteType(Param->getLocation(), Param->getType(),
253 diag::err_typecheck_decl_incomplete_type)) {
254 Param->setInvalidDecl();
255 return true;
256 }
257
258 // C++ [dcl.fct.default]p5
259 // A default argument expression is implicitly converted (clause
260 // 4) to the parameter type. The default argument expression has
261 // the same semantic constraints as the initializer expression in
262 // a declaration of a variable of the parameter type, using the
263 // copy-initialization semantics (8.5).
264 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265 Param);
266 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267 EqualLoc);
268 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270 if (Result.isInvalid())
271 return true;
272 Arg = Result.getAs<Expr>();
273
274 CheckCompletedExpr(Arg, EqualLoc);
275 Arg = MaybeCreateExprWithCleanups(Arg);
276
277 // Okay: add the default argument to the parameter
278 Param->setDefaultArg(Arg);
279
280 // We have already instantiated this parameter; provide each of the
281 // instantiations with the uninstantiated default argument.
282 UnparsedDefaultArgInstantiationsMap::iterator InstPos
283 = UnparsedDefaultArgInstantiations.find(Param);
284 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288 // We're done tracking this parameter's instantiations.
289 UnparsedDefaultArgInstantiations.erase(InstPos);
290 }
291
292 return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300 Expr *DefaultArg) {
301 if (!param || !DefaultArg)
302 return;
303
304 ParmVarDecl *Param = cast<ParmVarDecl>(param);
305 UnparsedDefaultArgLocs.erase(Param);
306
307 // Default arguments are only permitted in C++
308 if (!getLangOpts().CPlusPlus) {
309 Diag(EqualLoc, diag::err_param_default_argument)
310 << DefaultArg->getSourceRange();
311 Param->setInvalidDecl();
312 return;
313 }
314
315 // Check for unexpanded parameter packs.
316 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317 Param->setInvalidDecl();
318 return;
319 }
320
321 // C++11 [dcl.fct.default]p3
322 // A default argument expression [...] shall not be specified for a
323 // parameter pack.
324 if (Param->isParameterPack()) {
325 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
326 << DefaultArg->getSourceRange();
327 return;
328 }
329
330 // Check that the default argument is well-formed
331 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
332 if (DefaultArgChecker.Visit(DefaultArg)) {
333 Param->setInvalidDecl();
334 return;
335 }
336
337 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
338}
339
340/// ActOnParamUnparsedDefaultArgument - We've seen a default
341/// argument for a function parameter, but we can't parse it yet
342/// because we're inside a class definition. Note that this default
343/// argument will be parsed later.
344void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
345 SourceLocation EqualLoc,
346 SourceLocation ArgLoc) {
347 if (!param)
348 return;
349
350 ParmVarDecl *Param = cast<ParmVarDecl>(param);
351 Param->setUnparsedDefaultArg();
352 UnparsedDefaultArgLocs[Param] = ArgLoc;
353}
354
355/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
356/// the default argument for the parameter param failed.
357void Sema::ActOnParamDefaultArgumentError(Decl *param,
358 SourceLocation EqualLoc) {
359 if (!param)
360 return;
361
362 ParmVarDecl *Param = cast<ParmVarDecl>(param);
363 Param->setInvalidDecl();
364 UnparsedDefaultArgLocs.erase(Param);
365 Param->setDefaultArg(new(Context)
366 OpaqueValueExpr(EqualLoc,
367 Param->getType().getNonReferenceType(),
368 VK_RValue));
369}
370
371/// CheckExtraCXXDefaultArguments - Check for any extra default
372/// arguments in the declarator, which is not a function declaration
373/// or definition and therefore is not permitted to have default
374/// arguments. This routine should be invoked for every declarator
375/// that is not a function declaration or definition.
376void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
377 // C++ [dcl.fct.default]p3
378 // A default argument expression shall be specified only in the
379 // parameter-declaration-clause of a function declaration or in a
380 // template-parameter (14.1). It shall not be specified for a
381 // parameter pack. If it is specified in a
382 // parameter-declaration-clause, it shall not occur within a
383 // declarator or abstract-declarator of a parameter-declaration.
384 bool MightBeFunction = D.isFunctionDeclarationContext();
385 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
386 DeclaratorChunk &chunk = D.getTypeObject(i);
387 if (chunk.Kind == DeclaratorChunk::Function) {
388 if (MightBeFunction) {
389 // This is a function declaration. It can have default arguments, but
390 // keep looking in case its return type is a function type with default
391 // arguments.
392 MightBeFunction = false;
393 continue;
394 }
395 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
396 ++argIdx) {
397 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
398 if (Param->hasUnparsedDefaultArg()) {
399 std::unique_ptr<CachedTokens> Toks =
400 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
401 SourceRange SR;
402 if (Toks->size() > 1)
403 SR = SourceRange((*Toks)[1].getLocation(),
404 Toks->back().getLocation());
405 else
406 SR = UnparsedDefaultArgLocs[Param];
407 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
408 << SR;
409 } else if (Param->getDefaultArg()) {
410 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
411 << Param->getDefaultArg()->getSourceRange();
412 Param->setDefaultArg(nullptr);
413 }
414 }
415 } else if (chunk.Kind != DeclaratorChunk::Paren) {
416 MightBeFunction = false;
417 }
418 }
419}
420
421static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
422 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
423 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
424 if (!PVD->hasDefaultArg())
425 return false;
426 if (!PVD->hasInheritedDefaultArg())
427 return true;
428 }
429 return false;
430}
431
432/// MergeCXXFunctionDecl - Merge two declarations of the same C++
433/// function, once we already know that they have the same
434/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
435/// error, false otherwise.
436bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
437 Scope *S) {
438 bool Invalid = false;
439
440 // The declaration context corresponding to the scope is the semantic
441 // parent, unless this is a local function declaration, in which case
442 // it is that surrounding function.
443 DeclContext *ScopeDC = New->isLocalExternDecl()
444 ? New->getLexicalDeclContext()
445 : New->getDeclContext();
446
447 // Find the previous declaration for the purpose of default arguments.
448 FunctionDecl *PrevForDefaultArgs = Old;
449 for (/**/; PrevForDefaultArgs;
450 // Don't bother looking back past the latest decl if this is a local
451 // extern declaration; nothing else could work.
452 PrevForDefaultArgs = New->isLocalExternDecl()
453 ? nullptr
454 : PrevForDefaultArgs->getPreviousDecl()) {
455 // Ignore hidden declarations.
456 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
457 continue;
458
459 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
460 !New->isCXXClassMember()) {
461 // Ignore default arguments of old decl if they are not in
462 // the same scope and this is not an out-of-line definition of
463 // a member function.
464 continue;
465 }
466
467 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
468 // If only one of these is a local function declaration, then they are
469 // declared in different scopes, even though isDeclInScope may think
470 // they're in the same scope. (If both are local, the scope check is
471 // sufficient, and if neither is local, then they are in the same scope.)
472 continue;
473 }
474
475 // We found the right previous declaration.
476 break;
477 }
478
479 // C++ [dcl.fct.default]p4:
480 // For non-template functions, default arguments can be added in
481 // later declarations of a function in the same
482 // scope. Declarations in different scopes have completely
483 // distinct sets of default arguments. That is, declarations in
484 // inner scopes do not acquire default arguments from
485 // declarations in outer scopes, and vice versa. In a given
486 // function declaration, all parameters subsequent to a
487 // parameter with a default argument shall have default
488 // arguments supplied in this or previous declarations. A
489 // default argument shall not be redefined by a later
490 // declaration (not even to the same value).
491 //
492 // C++ [dcl.fct.default]p6:
493 // Except for member functions of class templates, the default arguments
494 // in a member function definition that appears outside of the class
495 // definition are added to the set of default arguments provided by the
496 // member function declaration in the class definition.
497 for (unsigned p = 0, NumParams = PrevForDefaultArgs
498 ? PrevForDefaultArgs->getNumParams()
499 : 0;
500 p < NumParams; ++p) {
501 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
502 ParmVarDecl *NewParam = New->getParamDecl(p);
503
504 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
505 bool NewParamHasDfl = NewParam->hasDefaultArg();
506
507 if (OldParamHasDfl && NewParamHasDfl) {
508 unsigned DiagDefaultParamID =
509 diag::err_param_default_argument_redefinition;
510
511 // MSVC accepts that default parameters be redefined for member functions
512 // of template class. The new default parameter's value is ignored.
513 Invalid = true;
514 if (getLangOpts().MicrosoftExt) {
515 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
516 if (MD && MD->getParent()->getDescribedClassTemplate()) {
517 // Merge the old default argument into the new parameter.
518 NewParam->setHasInheritedDefaultArg();
519 if (OldParam->hasUninstantiatedDefaultArg())
520 NewParam->setUninstantiatedDefaultArg(
521 OldParam->getUninstantiatedDefaultArg());
522 else
523 NewParam->setDefaultArg(OldParam->getInit());
524 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
525 Invalid = false;
526 }
527 }
528
529 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
530 // hint here. Alternatively, we could walk the type-source information
531 // for NewParam to find the last source location in the type... but it
532 // isn't worth the effort right now. This is the kind of test case that
533 // is hard to get right:
534 // int f(int);
535 // void g(int (*fp)(int) = f);
536 // void g(int (*fp)(int) = &f);
537 Diag(NewParam->getLocation(), DiagDefaultParamID)
538 << NewParam->getDefaultArgRange();
539
540 // Look for the function declaration where the default argument was
541 // actually written, which may be a declaration prior to Old.
542 for (auto Older = PrevForDefaultArgs;
543 OldParam->hasInheritedDefaultArg(); /**/) {
544 Older = Older->getPreviousDecl();
545 OldParam = Older->getParamDecl(p);
546 }
547
548 Diag(OldParam->getLocation(), diag::note_previous_definition)
549 << OldParam->getDefaultArgRange();
550 } else if (OldParamHasDfl) {
551 // Merge the old default argument into the new parameter unless the new
552 // function is a friend declaration in a template class. In the latter
553 // case the default arguments will be inherited when the friend
554 // declaration will be instantiated.
555 if (New->getFriendObjectKind() == Decl::FOK_None ||
556 !New->getLexicalDeclContext()->isDependentContext()) {
557 // It's important to use getInit() here; getDefaultArg()
558 // strips off any top-level ExprWithCleanups.
559 NewParam->setHasInheritedDefaultArg();
560 if (OldParam->hasUnparsedDefaultArg())
561 NewParam->setUnparsedDefaultArg();
562 else if (OldParam->hasUninstantiatedDefaultArg())
563 NewParam->setUninstantiatedDefaultArg(
564 OldParam->getUninstantiatedDefaultArg());
565 else
566 NewParam->setDefaultArg(OldParam->getInit());
567 }
568 } else if (NewParamHasDfl) {
569 if (New->getDescribedFunctionTemplate()) {
570 // Paragraph 4, quoted above, only applies to non-template functions.
571 Diag(NewParam->getLocation(),
572 diag::err_param_default_argument_template_redecl)
573 << NewParam->getDefaultArgRange();
574 Diag(PrevForDefaultArgs->getLocation(),
575 diag::note_template_prev_declaration)
576 << false;
577 } else if (New->getTemplateSpecializationKind()
578 != TSK_ImplicitInstantiation &&
579 New->getTemplateSpecializationKind() != TSK_Undeclared) {
580 // C++ [temp.expr.spec]p21:
581 // Default function arguments shall not be specified in a declaration
582 // or a definition for one of the following explicit specializations:
583 // - the explicit specialization of a function template;
584 // - the explicit specialization of a member function template;
585 // - the explicit specialization of a member function of a class
586 // template where the class template specialization to which the
587 // member function specialization belongs is implicitly
588 // instantiated.
589 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
590 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
591 << New->getDeclName()
592 << NewParam->getDefaultArgRange();
593 } else if (New->getDeclContext()->isDependentContext()) {
594 // C++ [dcl.fct.default]p6 (DR217):
595 // Default arguments for a member function of a class template shall
596 // be specified on the initial declaration of the member function
597 // within the class template.
598 //
599 // Reading the tea leaves a bit in DR217 and its reference to DR205
600 // leads me to the conclusion that one cannot add default function
601 // arguments for an out-of-line definition of a member function of a
602 // dependent type.
603 int WhichKind = 2;
604 if (CXXRecordDecl *Record
605 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
606 if (Record->getDescribedClassTemplate())
607 WhichKind = 0;
608 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
609 WhichKind = 1;
610 else
611 WhichKind = 2;
612 }
613
614 Diag(NewParam->getLocation(),
615 diag::err_param_default_argument_member_template_redecl)
616 << WhichKind
617 << NewParam->getDefaultArgRange();
618 }
619 }
620 }
621
622 // DR1344: If a default argument is added outside a class definition and that
623 // default argument makes the function a special member function, the program
624 // is ill-formed. This can only happen for constructors.
625 if (isa<CXXConstructorDecl>(New) &&
626 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
627 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
628 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
629 if (NewSM != OldSM) {
630 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
631 assert(NewParam->hasDefaultArg())(static_cast <bool> (NewParam->hasDefaultArg()) ? void
(0) : __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 631, __extension__ __PRETTY_FUNCTION__))
;
632 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
633 << NewParam->getDefaultArgRange() << NewSM;
634 Diag(Old->getLocation(), diag::note_previous_declaration);
635 }
636 }
637
638 const FunctionDecl *Def;
639 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
640 // template has a constexpr specifier then all its declarations shall
641 // contain the constexpr specifier.
642 if (New->isConstexpr() != Old->isConstexpr()) {
643 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
644 << New << New->isConstexpr();
645 Diag(Old->getLocation(), diag::note_previous_declaration);
646 Invalid = true;
647 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
648 Old->isDefined(Def) &&
649 // If a friend function is inlined but does not have 'inline'
650 // specifier, it is a definition. Do not report attribute conflict
651 // in this case, redefinition will be diagnosed later.
652 (New->isInlineSpecified() ||
653 New->getFriendObjectKind() == Decl::FOK_None)) {
654 // C++11 [dcl.fcn.spec]p4:
655 // If the definition of a function appears in a translation unit before its
656 // first declaration as inline, the program is ill-formed.
657 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
658 Diag(Def->getLocation(), diag::note_previous_definition);
659 Invalid = true;
660 }
661
662 // FIXME: It's not clear what should happen if multiple declarations of a
663 // deduction guide have different explicitness. For now at least we simply
664 // reject any case where the explicitness changes.
665 auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
666 if (NewGuide && NewGuide->isExplicitSpecified() !=
667 cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
668 Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
669 << NewGuide->isExplicitSpecified();
670 Diag(Old->getLocation(), diag::note_previous_declaration);
671 }
672
673 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
674 // argument expression, that declaration shall be a definition and shall be
675 // the only declaration of the function or function template in the
676 // translation unit.
677 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
678 functionDeclHasDefaultArgument(Old)) {
679 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
680 Diag(Old->getLocation(), diag::note_previous_declaration);
681 Invalid = true;
682 }
683
684 return Invalid;
685}
686
687NamedDecl *
688Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
689 MultiTemplateParamsArg TemplateParamLists) {
690 assert(D.isDecompositionDeclarator())(static_cast <bool> (D.isDecompositionDeclarator()) ? void
(0) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 690, __extension__ __PRETTY_FUNCTION__))
;
691 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
692
693 // The syntax only allows a decomposition declarator as a simple-declaration,
694 // a for-range-declaration, or a condition in Clang, but we parse it in more
695 // cases than that.
696 if (!D.mayHaveDecompositionDeclarator()) {
697 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
698 << Decomp.getSourceRange();
699 return nullptr;
700 }
701
702 if (!TemplateParamLists.empty()) {
703 // FIXME: There's no rule against this, but there are also no rules that
704 // would actually make it usable, so we reject it for now.
705 Diag(TemplateParamLists.front()->getTemplateLoc(),
706 diag::err_decomp_decl_template);
707 return nullptr;
708 }
709
710 Diag(Decomp.getLSquareLoc(),
711 !getLangOpts().CPlusPlus17
712 ? diag::ext_decomp_decl
713 : D.getContext() == DeclaratorContext::ConditionContext
714 ? diag::ext_decomp_decl_cond
715 : diag::warn_cxx14_compat_decomp_decl)
716 << Decomp.getSourceRange();
717
718 // The semantic context is always just the current context.
719 DeclContext *const DC = CurContext;
720
721 // C++1z [dcl.dcl]/8:
722 // The decl-specifier-seq shall contain only the type-specifier auto
723 // and cv-qualifiers.
724 auto &DS = D.getDeclSpec();
725 {
726 SmallVector<StringRef, 8> BadSpecifiers;
727 SmallVector<SourceLocation, 8> BadSpecifierLocs;
728 if (auto SCS = DS.getStorageClassSpec()) {
729 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
730 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
731 }
732 if (auto TSCS = DS.getThreadStorageClassSpec()) {
733 BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
734 BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
735 }
736 if (DS.isConstexprSpecified()) {
737 BadSpecifiers.push_back("constexpr");
738 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
739 }
740 if (DS.isInlineSpecified()) {
741 BadSpecifiers.push_back("inline");
742 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
743 }
744 if (!BadSpecifiers.empty()) {
745 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
746 Err << (int)BadSpecifiers.size()
747 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
748 // Don't add FixItHints to remove the specifiers; we do still respect
749 // them when building the underlying variable.
750 for (auto Loc : BadSpecifierLocs)
751 Err << SourceRange(Loc, Loc);
752 }
753 // We can't recover from it being declared as a typedef.
754 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
755 return nullptr;
756 }
757
758 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
759 QualType R = TInfo->getType();
760
761 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
762 UPPC_DeclarationType))
763 D.setInvalidType();
764
765 // The syntax only allows a single ref-qualifier prior to the decomposition
766 // declarator. No other declarator chunks are permitted. Also check the type
767 // specifier here.
768 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
769 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
770 (D.getNumTypeObjects() == 1 &&
771 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
772 Diag(Decomp.getLSquareLoc(),
773 (D.hasGroupingParens() ||
774 (D.getNumTypeObjects() &&
775 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
776 ? diag::err_decomp_decl_parens
777 : diag::err_decomp_decl_type)
778 << R;
779
780 // In most cases, there's no actual problem with an explicitly-specified
781 // type, but a function type won't work here, and ActOnVariableDeclarator
782 // shouldn't be called for such a type.
783 if (R->isFunctionType())
784 D.setInvalidType();
785 }
786
787 // Build the BindingDecls.
788 SmallVector<BindingDecl*, 8> Bindings;
789
790 // Build the BindingDecls.
791 for (auto &B : D.getDecompositionDeclarator().bindings()) {
792 // Check for name conflicts.
793 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
794 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
795 ForVisibleRedeclaration);
796 LookupName(Previous, S,
797 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
798
799 // It's not permitted to shadow a template parameter name.
800 if (Previous.isSingleResult() &&
801 Previous.getFoundDecl()->isTemplateParameter()) {
802 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
803 Previous.getFoundDecl());
804 Previous.clear();
805 }
806
807 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
808 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
809 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
810 /*AllowInlineNamespace*/false);
811 if (!Previous.empty()) {
812 auto *Old = Previous.getRepresentativeDecl();
813 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
814 Diag(Old->getLocation(), diag::note_previous_definition);
815 }
816
817 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
818 PushOnScopeChains(BD, S, true);
819 Bindings.push_back(BD);
820 ParsingInitForAutoVars.insert(BD);
821 }
822
823 // There are no prior lookup results for the variable itself, because it
824 // is unnamed.
825 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
826 Decomp.getLSquareLoc());
827 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
828 ForVisibleRedeclaration);
829
830 // Build the variable that holds the non-decomposed object.
831 bool AddToScope = true;
832 NamedDecl *New =
833 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
834 MultiTemplateParamsArg(), AddToScope, Bindings);
835 if (AddToScope) {
836 S->AddDecl(New);
837 CurContext->addHiddenDecl(New);
838 }
839
840 if (isInOpenMPDeclareTargetContext())
841 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
842
843 return New;
844}
845
846static bool checkSimpleDecomposition(
847 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
848 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
849 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
850 if ((int64_t)Bindings.size() != NumElems) {
851 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
852 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
853 << (NumElems < Bindings.size());
854 return true;
855 }
856
857 unsigned I = 0;
858 for (auto *B : Bindings) {
859 SourceLocation Loc = B->getLocation();
860 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
861 if (E.isInvalid())
862 return true;
863 E = GetInit(Loc, E.get(), I++);
864 if (E.isInvalid())
865 return true;
866 B->setBinding(ElemType, E.get());
867 }
868
869 return false;
870}
871
872static bool checkArrayLikeDecomposition(Sema &S,
873 ArrayRef<BindingDecl *> Bindings,
874 ValueDecl *Src, QualType DecompType,
875 const llvm::APSInt &NumElems,
876 QualType ElemType) {
877 return checkSimpleDecomposition(
878 S, Bindings, Src, DecompType, NumElems, ElemType,
879 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
880 ExprResult E = S.ActOnIntegerConstant(Loc, I);
881 if (E.isInvalid())
882 return ExprError();
883 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
884 });
885}
886
887static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
888 ValueDecl *Src, QualType DecompType,
889 const ConstantArrayType *CAT) {
890 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
891 llvm::APSInt(CAT->getSize()),
892 CAT->getElementType());
893}
894
895static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
896 ValueDecl *Src, QualType DecompType,
897 const VectorType *VT) {
898 return checkArrayLikeDecomposition(
899 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
900 S.Context.getQualifiedType(VT->getElementType(),
901 DecompType.getQualifiers()));
902}
903
904static bool checkComplexDecomposition(Sema &S,
905 ArrayRef<BindingDecl *> Bindings,
906 ValueDecl *Src, QualType DecompType,
907 const ComplexType *CT) {
908 return checkSimpleDecomposition(
909 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
910 S.Context.getQualifiedType(CT->getElementType(),
911 DecompType.getQualifiers()),
912 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
913 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
914 });
915}
916
917static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
918 TemplateArgumentListInfo &Args) {
919 SmallString<128> SS;
920 llvm::raw_svector_ostream OS(SS);
921 bool First = true;
922 for (auto &Arg : Args.arguments()) {
923 if (!First)
924 OS << ", ";
925 Arg.getArgument().print(PrintingPolicy, OS);
926 First = false;
927 }
928 return OS.str();
929}
930
931static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
932 SourceLocation Loc, StringRef Trait,
933 TemplateArgumentListInfo &Args,
934 unsigned DiagID) {
935 auto DiagnoseMissing = [&] {
936 if (DiagID)
937 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
938 Args);
939 return true;
940 };
941
942 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
943 NamespaceDecl *Std = S.getStdNamespace();
944 if (!Std)
945 return DiagnoseMissing();
946
947 // Look up the trait itself, within namespace std. We can diagnose various
948 // problems with this lookup even if we've been asked to not diagnose a
949 // missing specialization, because this can only fail if the user has been
950 // declaring their own names in namespace std or we don't support the
951 // standard library implementation in use.
952 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
953 Loc, Sema::LookupOrdinaryName);
954 if (!S.LookupQualifiedName(Result, Std))
955 return DiagnoseMissing();
956 if (Result.isAmbiguous())
957 return true;
958
959 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
960 if (!TraitTD) {
961 Result.suppressDiagnostics();
962 NamedDecl *Found = *Result.begin();
963 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
964 S.Diag(Found->getLocation(), diag::note_declared_at);
965 return true;
966 }
967
968 // Build the template-id.
969 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
970 if (TraitTy.isNull())
971 return true;
972 if (!S.isCompleteType(Loc, TraitTy)) {
973 if (DiagID)
974 S.RequireCompleteType(
975 Loc, TraitTy, DiagID,
976 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
977 return true;
978 }
979
980 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
981 assert(RD && "specialization of class template is not a class?")(static_cast <bool> (RD && "specialization of class template is not a class?"
) ? void (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 981, __extension__ __PRETTY_FUNCTION__))
;
982
983 // Look up the member of the trait type.
984 S.LookupQualifiedName(TraitMemberLookup, RD);
985 return TraitMemberLookup.isAmbiguous();
986}
987
988static TemplateArgumentLoc
989getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
990 uint64_t I) {
991 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
992 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
993}
994
995static TemplateArgumentLoc
996getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
997 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
998}
999
1000namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1001
1002static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1003 llvm::APSInt &Size) {
1004 EnterExpressionEvaluationContext ContextRAII(
1005 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1006
1007 DeclarationName Value = S.PP.getIdentifierInfo("value");
1008 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1009
1010 // Form template argument list for tuple_size<T>.
1011 TemplateArgumentListInfo Args(Loc, Loc);
1012 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1013
1014 // If there's no tuple_size specialization, it's not tuple-like.
1015 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
1016 return IsTupleLike::NotTupleLike;
1017
1018 // If we get this far, we've committed to the tuple interpretation, but
1019 // we can still fail if there actually isn't a usable ::value.
1020
1021 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1022 LookupResult &R;
1023 TemplateArgumentListInfo &Args;
1024 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1025 : R(R), Args(Args) {}
1026 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1027 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1028 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1029 }
1030 } Diagnoser(R, Args);
1031
1032 if (R.empty()) {
1033 Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
1034 return IsTupleLike::Error;
1035 }
1036
1037 ExprResult E =
1038 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1039 if (E.isInvalid())
1040 return IsTupleLike::Error;
1041
1042 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1043 if (E.isInvalid())
1044 return IsTupleLike::Error;
1045
1046 return IsTupleLike::TupleLike;
1047}
1048
1049/// \return std::tuple_element<I, T>::type.
1050static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1051 unsigned I, QualType T) {
1052 // Form template argument list for tuple_element<I, T>.
1053 TemplateArgumentListInfo Args(Loc, Loc);
1054 Args.addArgument(
1055 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1056 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1057
1058 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1059 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1060 if (lookupStdTypeTraitMember(
1061 S, R, Loc, "tuple_element", Args,
1062 diag::err_decomp_decl_std_tuple_element_not_specialized))
1063 return QualType();
1064
1065 auto *TD = R.getAsSingle<TypeDecl>();
1066 if (!TD) {
1067 R.suppressDiagnostics();
1068 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1069 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1070 if (!R.empty())
1071 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1072 return QualType();
1073 }
1074
1075 return S.Context.getTypeDeclType(TD);
1076}
1077
1078namespace {
1079struct BindingDiagnosticTrap {
1080 Sema &S;
1081 DiagnosticErrorTrap Trap;
1082 BindingDecl *BD;
1083
1084 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1085 : S(S), Trap(S.Diags), BD(BD) {}
1086 ~BindingDiagnosticTrap() {
1087 if (Trap.hasErrorOccurred())
1088 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1089 }
1090};
1091}
1092
1093static bool checkTupleLikeDecomposition(Sema &S,
1094 ArrayRef<BindingDecl *> Bindings,
1095 VarDecl *Src, QualType DecompType,
1096 const llvm::APSInt &TupleSize) {
1097 if ((int64_t)Bindings.size() != TupleSize) {
1098 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1099 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1100 << (TupleSize < Bindings.size());
1101 return true;
1102 }
1103
1104 if (Bindings.empty())
1105 return false;
1106
1107 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1108
1109 // [dcl.decomp]p3:
1110 // The unqualified-id get is looked up in the scope of E by class member
1111 // access lookup
1112 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1113 bool UseMemberGet = false;
1114 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1115 if (auto *RD = DecompType->getAsCXXRecordDecl())
1116 S.LookupQualifiedName(MemberGet, RD);
1117 if (MemberGet.isAmbiguous())
1118 return true;
1119 UseMemberGet = !MemberGet.empty();
1120 S.FilterAcceptableTemplateNames(MemberGet);
1121 }
1122
1123 unsigned I = 0;
1124 for (auto *B : Bindings) {
1125 BindingDiagnosticTrap Trap(S, B);
1126 SourceLocation Loc = B->getLocation();
1127
1128 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1129 if (E.isInvalid())
1130 return true;
1131
1132 // e is an lvalue if the type of the entity is an lvalue reference and
1133 // an xvalue otherwise
1134 if (!Src->getType()->isLValueReferenceType())
1135 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1136 E.get(), nullptr, VK_XValue);
1137
1138 TemplateArgumentListInfo Args(Loc, Loc);
1139 Args.addArgument(
1140 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1141
1142 if (UseMemberGet) {
1143 // if [lookup of member get] finds at least one declaration, the
1144 // initializer is e.get<i-1>().
1145 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1146 CXXScopeSpec(), SourceLocation(), nullptr,
1147 MemberGet, &Args, nullptr);
1148 if (E.isInvalid())
1149 return true;
1150
1151 E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
1152 } else {
1153 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1154 // in the associated namespaces.
1155 Expr *Get = UnresolvedLookupExpr::Create(
1156 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1157 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1158 UnresolvedSetIterator(), UnresolvedSetIterator());
1159
1160 Expr *Arg = E.get();
1161 E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
1162 }
1163 if (E.isInvalid())
1164 return true;
1165 Expr *Init = E.get();
1166
1167 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1168 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1169 if (T.isNull())
1170 return true;
1171
1172 // each vi is a variable of type "reference to T" initialized with the
1173 // initializer, where the reference is an lvalue reference if the
1174 // initializer is an lvalue and an rvalue reference otherwise
1175 QualType RefType =
1176 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1177 if (RefType.isNull())
1178 return true;
1179 auto *RefVD = VarDecl::Create(
1180 S.Context, Src->getDeclContext(), Loc, Loc,
1181 B->getDeclName().getAsIdentifierInfo(), RefType,
1182 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1183 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1184 RefVD->setTSCSpec(Src->getTSCSpec());
1185 RefVD->setImplicit();
1186 if (Src->isInlineSpecified())
1187 RefVD->setInlineSpecified();
1188 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1189
1190 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1191 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1192 InitializationSequence Seq(S, Entity, Kind, Init);
1193 E = Seq.Perform(S, Entity, Kind, Init);
1194 if (E.isInvalid())
1195 return true;
1196 E = S.ActOnFinishFullExpr(E.get(), Loc);
1197 if (E.isInvalid())
1198 return true;
1199 RefVD->setInit(E.get());
1200 RefVD->checkInitIsICE();
1201
1202 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1203 DeclarationNameInfo(B->getDeclName(), Loc),
1204 RefVD);
1205 if (E.isInvalid())
1206 return true;
1207
1208 B->setBinding(T, E.get());
1209 I++;
1210 }
1211
1212 return false;
1213}
1214
1215/// Find the base class to decompose in a built-in decomposition of a class type.
1216/// This base class search is, unfortunately, not quite like any other that we
1217/// perform anywhere else in C++.
1218static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
1219 SourceLocation Loc,
1220 const CXXRecordDecl *RD,
1221 CXXCastPath &BasePath) {
1222 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1223 CXXBasePath &Path) {
1224 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1225 };
1226
1227 const CXXRecordDecl *ClassWithFields = nullptr;
1228 if (RD->hasDirectFields())
1229 // [dcl.decomp]p4:
1230 // Otherwise, all of E's non-static data members shall be public direct
1231 // members of E ...
1232 ClassWithFields = RD;
1233 else {
1234 // ... or of ...
1235 CXXBasePaths Paths;
1236 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1237 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1238 // If no classes have fields, just decompose RD itself. (This will work
1239 // if and only if zero bindings were provided.)
1240 return RD;
1241 }
1242
1243 CXXBasePath *BestPath = nullptr;
1244 for (auto &P : Paths) {
1245 if (!BestPath)
1246 BestPath = &P;
1247 else if (!S.Context.hasSameType(P.back().Base->getType(),
1248 BestPath->back().Base->getType())) {
1249 // ... the same ...
1250 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1251 << false << RD << BestPath->back().Base->getType()
1252 << P.back().Base->getType();
1253 return nullptr;
1254 } else if (P.Access < BestPath->Access) {
1255 BestPath = &P;
1256 }
1257 }
1258
1259 // ... unambiguous ...
1260 QualType BaseType = BestPath->back().Base->getType();
1261 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1262 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1263 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1264 return nullptr;
1265 }
1266
1267 // ... public base class of E.
1268 if (BestPath->Access != AS_public) {
1269 S.Diag(Loc, diag::err_decomp_decl_non_public_base)
1270 << RD << BaseType;
1271 for (auto &BS : *BestPath) {
1272 if (BS.Base->getAccessSpecifier() != AS_public) {
1273 S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
1274 << (BS.Base->getAccessSpecifier() == AS_protected)
1275 << (BS.Base->getAccessSpecifierAsWritten() == AS_none);
1276 break;
1277 }
1278 }
1279 return nullptr;
1280 }
1281
1282 ClassWithFields = BaseType->getAsCXXRecordDecl();
1283 S.BuildBasePathArray(Paths, BasePath);
1284 }
1285
1286 // The above search did not check whether the selected class itself has base
1287 // classes with fields, so check that now.
1288 CXXBasePaths Paths;
1289 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1290 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1291 << (ClassWithFields == RD) << RD << ClassWithFields
1292 << Paths.front().back().Base->getType();
1293 return nullptr;
1294 }
1295
1296 return ClassWithFields;
1297}
1298
1299static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1300 ValueDecl *Src, QualType DecompType,
1301 const CXXRecordDecl *RD) {
1302 CXXCastPath BasePath;
1303 RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
1304 if (!RD)
1305 return true;
1306 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1307 DecompType.getQualifiers());
1308
1309 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1310 unsigned NumFields =
1311 std::count_if(RD->field_begin(), RD->field_end(),
1312 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1313 assert(Bindings.size() != NumFields)(static_cast <bool> (Bindings.size() != NumFields) ? void
(0) : __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1313, __extension__ __PRETTY_FUNCTION__))
;
1314 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1315 << DecompType << (unsigned)Bindings.size() << NumFields
1316 << (NumFields < Bindings.size());
1317 return true;
1318 };
1319
1320 // all of E's non-static data members shall be public [...] members,
1321 // E shall not have an anonymous union member, ...
1322 unsigned I = 0;
1323 for (auto *FD : RD->fields()) {
1324 if (FD->isUnnamedBitfield())
1325 continue;
1326
1327 if (FD->isAnonymousStructOrUnion()) {
1328 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1329 << DecompType << FD->getType()->isUnionType();
1330 S.Diag(FD->getLocation(), diag::note_declared_at);
1331 return true;
1332 }
1333
1334 // We have a real field to bind.
1335 if (I >= Bindings.size())
1336 return DiagnoseBadNumberOfBindings();
1337 auto *B = Bindings[I++];
1338
1339 SourceLocation Loc = B->getLocation();
1340 if (FD->getAccess() != AS_public) {
1341 S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
1342
1343 // Determine whether the access specifier was explicit.
1344 bool Implicit = true;
1345 for (const auto *D : RD->decls()) {
1346 if (declaresSameEntity(D, FD))
1347 break;
1348 if (isa<AccessSpecDecl>(D)) {
1349 Implicit = false;
1350 break;
1351 }
1352 }
1353
1354 S.Diag(FD->getLocation(), diag::note_access_natural)
1355 << (FD->getAccess() == AS_protected) << Implicit;
1356 return true;
1357 }
1358
1359 // Initialize the binding to Src.FD.
1360 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1361 if (E.isInvalid())
1362 return true;
1363 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1364 VK_LValue, &BasePath);
1365 if (E.isInvalid())
1366 return true;
1367 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1368 CXXScopeSpec(), FD,
1369 DeclAccessPair::make(FD, FD->getAccess()),
1370 DeclarationNameInfo(FD->getDeclName(), Loc));
1371 if (E.isInvalid())
1372 return true;
1373
1374 // If the type of the member is T, the referenced type is cv T, where cv is
1375 // the cv-qualification of the decomposition expression.
1376 //
1377 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1378 // 'const' to the type of the field.
1379 Qualifiers Q = DecompType.getQualifiers();
1380 if (FD->isMutable())
1381 Q.removeConst();
1382 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1383 }
1384
1385 if (I != Bindings.size())
1386 return DiagnoseBadNumberOfBindings();
1387
1388 return false;
1389}
1390
1391void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1392 QualType DecompType = DD->getType();
1393
1394 // If the type of the decomposition is dependent, then so is the type of
1395 // each binding.
1396 if (DecompType->isDependentType()) {
1397 for (auto *B : DD->bindings())
1398 B->setType(Context.DependentTy);
1399 return;
1400 }
1401
1402 DecompType = DecompType.getNonReferenceType();
1403 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1404
1405 // C++1z [dcl.decomp]/2:
1406 // If E is an array type [...]
1407 // As an extension, we also support decomposition of built-in complex and
1408 // vector types.
1409 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1410 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1411 DD->setInvalidDecl();
1412 return;
1413 }
1414 if (auto *VT = DecompType->getAs<VectorType>()) {
1415 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1416 DD->setInvalidDecl();
1417 return;
1418 }
1419 if (auto *CT = DecompType->getAs<ComplexType>()) {
1420 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1421 DD->setInvalidDecl();
1422 return;
1423 }
1424
1425 // C++1z [dcl.decomp]/3:
1426 // if the expression std::tuple_size<E>::value is a well-formed integral
1427 // constant expression, [...]
1428 llvm::APSInt TupleSize(32);
1429 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1430 case IsTupleLike::Error:
1431 DD->setInvalidDecl();
1432 return;
1433
1434 case IsTupleLike::TupleLike:
1435 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1436 DD->setInvalidDecl();
1437 return;
1438
1439 case IsTupleLike::NotTupleLike:
1440 break;
1441 }
1442
1443 // C++1z [dcl.dcl]/8:
1444 // [E shall be of array or non-union class type]
1445 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1446 if (!RD || RD->isUnion()) {
1447 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1448 << DD << !RD << DecompType;
1449 DD->setInvalidDecl();
1450 return;
1451 }
1452
1453 // C++1z [dcl.decomp]/4:
1454 // all of E's non-static data members shall be [...] direct members of
1455 // E or of the same unambiguous public base class of E, ...
1456 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1457 DD->setInvalidDecl();
1458}
1459
1460/// Merge the exception specifications of two variable declarations.
1461///
1462/// This is called when there's a redeclaration of a VarDecl. The function
1463/// checks if the redeclaration might have an exception specification and
1464/// validates compatibility and merges the specs if necessary.
1465void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1466 // Shortcut if exceptions are disabled.
1467 if (!getLangOpts().CXXExceptions)
1468 return;
1469
1470 assert(Context.hasSameType(New->getType(), Old->getType()) &&(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1471, __extension__ __PRETTY_FUNCTION__))
1471 "Should only be called if types are otherwise the same.")(static_cast <bool> (Context.hasSameType(New->getType
(), Old->getType()) && "Should only be called if types are otherwise the same."
) ? void (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1471, __extension__ __PRETTY_FUNCTION__))
;
1472
1473 QualType NewType = New->getType();
1474 QualType OldType = Old->getType();
1475
1476 // We're only interested in pointers and references to functions, as well
1477 // as pointers to member functions.
1478 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1479 NewType = R->getPointeeType();
1480 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1481 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1482 NewType = P->getPointeeType();
1483 OldType = OldType->getAs<PointerType>()->getPointeeType();
1484 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1485 NewType = M->getPointeeType();
1486 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1487 }
1488
1489 if (!NewType->isFunctionProtoType())
1490 return;
1491
1492 // There's lots of special cases for functions. For function pointers, system
1493 // libraries are hopefully not as broken so that we don't need these
1494 // workarounds.
1495 if (CheckEquivalentExceptionSpec(
1496 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1497 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1498 New->setInvalidDecl();
1499 }
1500}
1501
1502/// CheckCXXDefaultArguments - Verify that the default arguments for a
1503/// function declaration are well-formed according to C++
1504/// [dcl.fct.default].
1505void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1506 unsigned NumParams = FD->getNumParams();
1507 unsigned p;
1508
1509 // Find first parameter with a default argument
1510 for (p = 0; p < NumParams; ++p) {
1511 ParmVarDecl *Param = FD->getParamDecl(p);
1512 if (Param->hasDefaultArg())
1513 break;
1514 }
1515
1516 // C++11 [dcl.fct.default]p4:
1517 // In a given function declaration, each parameter subsequent to a parameter
1518 // with a default argument shall have a default argument supplied in this or
1519 // a previous declaration or shall be a function parameter pack. A default
1520 // argument shall not be redefined by a later declaration (not even to the
1521 // same value).
1522 unsigned LastMissingDefaultArg = 0;
1523 for (; p < NumParams; ++p) {
1524 ParmVarDecl *Param = FD->getParamDecl(p);
1525 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1526 if (Param->isInvalidDecl())
1527 /* We already complained about this parameter. */;
1528 else if (Param->getIdentifier())
1529 Diag(Param->getLocation(),
1530 diag::err_param_default_argument_missing_name)
1531 << Param->getIdentifier();
1532 else
1533 Diag(Param->getLocation(),
1534 diag::err_param_default_argument_missing);
1535
1536 LastMissingDefaultArg = p;
1537 }
1538 }
1539
1540 if (LastMissingDefaultArg > 0) {
1541 // Some default arguments were missing. Clear out all of the
1542 // default arguments up to (and including) the last missing
1543 // default argument, so that we leave the function parameters
1544 // in a semantically valid state.
1545 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1546 ParmVarDecl *Param = FD->getParamDecl(p);
1547 if (Param->hasDefaultArg()) {
1548 Param->setDefaultArg(nullptr);
1549 }
1550 }
1551 }
1552}
1553
1554// CheckConstexprParameterTypes - Check whether a function's parameter types
1555// are all literal types. If so, return true. If not, produce a suitable
1556// diagnostic and return false.
1557static bool CheckConstexprParameterTypes(Sema &SemaRef,
1558 const FunctionDecl *FD) {
1559 unsigned ArgIndex = 0;
1560 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1561 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1562 e = FT->param_type_end();
1563 i != e; ++i, ++ArgIndex) {
1564 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1565 SourceLocation ParamLoc = PD->getLocation();
1566 if (!(*i)->isDependentType() &&
1567 SemaRef.RequireLiteralType(ParamLoc, *i,
1568 diag::err_constexpr_non_literal_param,
1569 ArgIndex+1, PD->getSourceRange(),
1570 isa<CXXConstructorDecl>(FD)))
1571 return false;
1572 }
1573 return true;
1574}
1575
1576/// Get diagnostic %select index for tag kind for
1577/// record diagnostic message.
1578/// WARNING: Indexes apply to particular diagnostics only!
1579///
1580/// \returns diagnostic %select index.
1581static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1582 switch (Tag) {
1583 case TTK_Struct: return 0;
1584 case TTK_Interface: return 1;
1585 case TTK_Class: return 2;
1586 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1586)
;
1587 }
1588}
1589
1590// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
1591// the requirements of a constexpr function definition or a constexpr
1592// constructor definition. If so, return true. If not, produce appropriate
1593// diagnostics and return false.
1594//
1595// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1596bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
1597 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1598 if (MD && MD->isInstance()) {
1599 // C++11 [dcl.constexpr]p4:
1600 // The definition of a constexpr constructor shall satisfy the following
1601 // constraints:
1602 // - the class shall not have any virtual base classes;
1603 const CXXRecordDecl *RD = MD->getParent();
1604 if (RD->getNumVBases()) {
1605 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1606 << isa<CXXConstructorDecl>(NewFD)
1607 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1608 for (const auto &I : RD->vbases())
1609 Diag(I.getLocStart(),
1610 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
1611 return false;
1612 }
1613 }
1614
1615 if (!isa<CXXConstructorDecl>(NewFD)) {
1616 // C++11 [dcl.constexpr]p3:
1617 // The definition of a constexpr function shall satisfy the following
1618 // constraints:
1619 // - it shall not be virtual;
1620 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1621 if (Method && Method->isVirtual()) {
1622 Method = Method->getCanonicalDecl();
1623 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1624
1625 // If it's not obvious why this function is virtual, find an overridden
1626 // function which uses the 'virtual' keyword.
1627 const CXXMethodDecl *WrittenVirtual = Method;
1628 while (!WrittenVirtual->isVirtualAsWritten())
1629 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1630 if (WrittenVirtual != Method)
1631 Diag(WrittenVirtual->getLocation(),
1632 diag::note_overridden_virtual_function);
1633 return false;
1634 }
1635
1636 // - its return type shall be a literal type;
1637 QualType RT = NewFD->getReturnType();
1638 if (!RT->isDependentType() &&
1639 RequireLiteralType(NewFD->getLocation(), RT,
1640 diag::err_constexpr_non_literal_return))
1641 return false;
1642 }
1643
1644 // - each of its parameter types shall be a literal type;
1645 if (!CheckConstexprParameterTypes(*this, NewFD))
1646 return false;
1647
1648 return true;
1649}
1650
1651/// Check the given declaration statement is legal within a constexpr function
1652/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1653///
1654/// \return true if the body is OK (maybe only as an extension), false if we
1655/// have diagnosed a problem.
1656static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1657 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
1658 // C++11 [dcl.constexpr]p3 and p4:
1659 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1660 // contain only
1661 for (const auto *DclIt : DS->decls()) {
1662 switch (DclIt->getKind()) {
1663 case Decl::StaticAssert:
1664 case Decl::Using:
1665 case Decl::UsingShadow:
1666 case Decl::UsingDirective:
1667 case Decl::UnresolvedUsingTypename:
1668 case Decl::UnresolvedUsingValue:
1669 // - static_assert-declarations
1670 // - using-declarations,
1671 // - using-directives,
1672 continue;
1673
1674 case Decl::Typedef:
1675 case Decl::TypeAlias: {
1676 // - typedef declarations and alias-declarations that do not define
1677 // classes or enumerations,
1678 const auto *TN = cast<TypedefNameDecl>(DclIt);
1679 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1680 // Don't allow variably-modified types in constexpr functions.
1681 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1682 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1683 << TL.getSourceRange() << TL.getType()
1684 << isa<CXXConstructorDecl>(Dcl);
1685 return false;
1686 }
1687 continue;
1688 }
1689
1690 case Decl::Enum:
1691 case Decl::CXXRecord:
1692 // C++1y allows types to be defined, not just declared.
1693 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
1694 SemaRef.Diag(DS->getLocStart(),
1695 SemaRef.getLangOpts().CPlusPlus14
1696 ? diag::warn_cxx11_compat_constexpr_type_definition
1697 : diag::ext_constexpr_type_definition)
1698 << isa<CXXConstructorDecl>(Dcl);
1699 continue;
1700
1701 case Decl::EnumConstant:
1702 case Decl::IndirectField:
1703 case Decl::ParmVar:
1704 // These can only appear with other declarations which are banned in
1705 // C++11 and permitted in C++1y, so ignore them.
1706 continue;
1707
1708 case Decl::Var:
1709 case Decl::Decomposition: {
1710 // C++1y [dcl.constexpr]p3 allows anything except:
1711 // a definition of a variable of non-literal type or of static or
1712 // thread storage duration or for which no initialization is performed.
1713 const auto *VD = cast<VarDecl>(DclIt);
1714 if (VD->isThisDeclarationADefinition()) {
1715 if (VD->isStaticLocal()) {
1716 SemaRef.Diag(VD->getLocation(),
1717 diag::err_constexpr_local_var_static)
1718 << isa<CXXConstructorDecl>(Dcl)
1719 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1720 return false;
1721 }
1722 if (!VD->getType()->isDependentType() &&
1723 SemaRef.RequireLiteralType(
1724 VD->getLocation(), VD->getType(),
1725 diag::err_constexpr_local_var_non_literal_type,
1726 isa<CXXConstructorDecl>(Dcl)))
1727 return false;
1728 if (!VD->getType()->isDependentType() &&
1729 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1730 SemaRef.Diag(VD->getLocation(),
1731 diag::err_constexpr_local_var_no_init)
1732 << isa<CXXConstructorDecl>(Dcl);
1733 return false;
1734 }
1735 }
1736 SemaRef.Diag(VD->getLocation(),
1737 SemaRef.getLangOpts().CPlusPlus14
1738 ? diag::warn_cxx11_compat_constexpr_local_var
1739 : diag::ext_constexpr_local_var)
1740 << isa<CXXConstructorDecl>(Dcl);
1741 continue;
1742 }
1743
1744 case Decl::NamespaceAlias:
1745 case Decl::Function:
1746 // These are disallowed in C++11 and permitted in C++1y. Allow them
1747 // everywhere as an extension.
1748 if (!Cxx1yLoc.isValid())
1749 Cxx1yLoc = DS->getLocStart();
1750 continue;
1751
1752 default:
1753 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1754 << isa<CXXConstructorDecl>(Dcl);
1755 return false;
1756 }
1757 }
1758
1759 return true;
1760}
1761
1762/// Check that the given field is initialized within a constexpr constructor.
1763///
1764/// \param Dcl The constexpr constructor being checked.
1765/// \param Field The field being checked. This may be a member of an anonymous
1766/// struct or union nested within the class being checked.
1767/// \param Inits All declarations, including anonymous struct/union members and
1768/// indirect members, for which any initialization was provided.
1769/// \param Diagnosed Set to true if an error is produced.
1770static void CheckConstexprCtorInitializer(Sema &SemaRef,
1771 const FunctionDecl *Dcl,
1772 FieldDecl *Field,
1773 llvm::SmallSet<Decl*, 16> &Inits,
1774 bool &Diagnosed) {
1775 if (Field->isInvalidDecl())
1776 return;
1777
1778 if (Field->isUnnamedBitfield())
1779 return;
1780
1781 // Anonymous unions with no variant members and empty anonymous structs do not
1782 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1783 // indirect fields don't need initializing.
1784 if (Field->isAnonymousStructOrUnion() &&
1785 (Field->getType()->isUnionType()
1786 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1787 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1788 return;
1789
1790 if (!Inits.count(Field)) {
1791 if (!Diagnosed) {
1792 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
1793 Diagnosed = true;
1794 }
1795 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1796 } else if (Field->isAnonymousStructOrUnion()) {
1797 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1798 for (auto *I : RD->fields())
1799 // If an anonymous union contains an anonymous struct of which any member
1800 // is initialized, all members must be initialized.
1801 if (!RD->isUnion() || Inits.count(I))
1802 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1803 }
1804}
1805
1806/// Check the provided statement is allowed in a constexpr function
1807/// definition.
1808static bool
1809CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1810 SmallVectorImpl<SourceLocation> &ReturnStmts,
1811 SourceLocation &Cxx1yLoc) {
1812 // - its function-body shall be [...] a compound-statement that contains only
1813 switch (S->getStmtClass()) {
1814 case Stmt::NullStmtClass:
1815 // - null statements,
1816 return true;
1817
1818 case Stmt::DeclStmtClass:
1819 // - static_assert-declarations
1820 // - using-declarations,
1821 // - using-directives,
1822 // - typedef declarations and alias-declarations that do not define
1823 // classes or enumerations,
1824 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1825 return false;
1826 return true;
1827
1828 case Stmt::ReturnStmtClass:
1829 // - and exactly one return statement;
1830 if (isa<CXXConstructorDecl>(Dcl)) {
1831 // C++1y allows return statements in constexpr constructors.
1832 if (!Cxx1yLoc.isValid())
1833 Cxx1yLoc = S->getLocStart();
1834 return true;
1835 }
1836
1837 ReturnStmts.push_back(S->getLocStart());
1838 return true;
1839
1840 case Stmt::CompoundStmtClass: {
1841 // C++1y allows compound-statements.
1842 if (!Cxx1yLoc.isValid())
1843 Cxx1yLoc = S->getLocStart();
1844
1845 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1846 for (auto *BodyIt : CompStmt->body()) {
1847 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1848 Cxx1yLoc))
1849 return false;
1850 }
1851 return true;
1852 }
1853
1854 case Stmt::AttributedStmtClass:
1855 if (!Cxx1yLoc.isValid())
1856 Cxx1yLoc = S->getLocStart();
1857 return true;
1858
1859 case Stmt::IfStmtClass: {
1860 // C++1y allows if-statements.
1861 if (!Cxx1yLoc.isValid())
1862 Cxx1yLoc = S->getLocStart();
1863
1864 IfStmt *If = cast<IfStmt>(S);
1865 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1866 Cxx1yLoc))
1867 return false;
1868 if (If->getElse() &&
1869 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1870 Cxx1yLoc))
1871 return false;
1872 return true;
1873 }
1874
1875 case Stmt::WhileStmtClass:
1876 case Stmt::DoStmtClass:
1877 case Stmt::ForStmtClass:
1878 case Stmt::CXXForRangeStmtClass:
1879 case Stmt::ContinueStmtClass:
1880 // C++1y allows all of these. We don't allow them as extensions in C++11,
1881 // because they don't make sense without variable mutation.
1882 if (!SemaRef.getLangOpts().CPlusPlus14)
1883 break;
1884 if (!Cxx1yLoc.isValid())
1885 Cxx1yLoc = S->getLocStart();
1886 for (Stmt *SubStmt : S->children())
1887 if (SubStmt &&
1888 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1889 Cxx1yLoc))
1890 return false;
1891 return true;
1892
1893 case Stmt::SwitchStmtClass:
1894 case Stmt::CaseStmtClass:
1895 case Stmt::DefaultStmtClass:
1896 case Stmt::BreakStmtClass:
1897 // C++1y allows switch-statements, and since they don't need variable
1898 // mutation, we can reasonably allow them in C++11 as an extension.
1899 if (!Cxx1yLoc.isValid())
1900 Cxx1yLoc = S->getLocStart();
1901 for (Stmt *SubStmt : S->children())
1902 if (SubStmt &&
1903 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1904 Cxx1yLoc))
1905 return false;
1906 return true;
1907
1908 default:
1909 if (!isa<Expr>(S))
1910 break;
1911
1912 // C++1y allows expression-statements.
1913 if (!Cxx1yLoc.isValid())
1914 Cxx1yLoc = S->getLocStart();
1915 return true;
1916 }
1917
1918 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1919 << isa<CXXConstructorDecl>(Dcl);
1920 return false;
1921}
1922
1923/// Check the body for the given constexpr function declaration only contains
1924/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1925///
1926/// \return true if the body is OK, false if we have diagnosed a problem.
1927bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1928 if (isa<CXXTryStmt>(Body)) {
1929 // C++11 [dcl.constexpr]p3:
1930 // The definition of a constexpr function shall satisfy the following
1931 // constraints: [...]
1932 // - its function-body shall be = delete, = default, or a
1933 // compound-statement
1934 //
1935 // C++11 [dcl.constexpr]p4:
1936 // In the definition of a constexpr constructor, [...]
1937 // - its function-body shall not be a function-try-block;
1938 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1939 << isa<CXXConstructorDecl>(Dcl);
1940 return false;
1941 }
1942
1943 SmallVector<SourceLocation, 4> ReturnStmts;
1944
1945 // - its function-body shall be [...] a compound-statement that contains only
1946 // [... list of cases ...]
1947 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1948 SourceLocation Cxx1yLoc;
1949 for (auto *BodyIt : CompBody->body()) {
1950 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1951 return false;
1952 }
1953
1954 if (Cxx1yLoc.isValid())
1955 Diag(Cxx1yLoc,
1956 getLangOpts().CPlusPlus14
1957 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1958 : diag::ext_constexpr_body_invalid_stmt)
1959 << isa<CXXConstructorDecl>(Dcl);
1960
1961 if (const CXXConstructorDecl *Constructor
1962 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1963 const CXXRecordDecl *RD = Constructor->getParent();
1964 // DR1359:
1965 // - every non-variant non-static data member and base class sub-object
1966 // shall be initialized;
1967 // DR1460:
1968 // - if the class is a union having variant members, exactly one of them
1969 // shall be initialized;
1970 if (RD->isUnion()) {
1971 if (Constructor->getNumCtorInitializers() == 0 &&
1972 RD->hasVariantMembers()) {
1973 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1974 return false;
1975 }
1976 } else if (!Constructor->isDependentContext() &&
1977 !Constructor->isDelegatingConstructor()) {
1978 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")(static_cast <bool> (RD->getNumVBases() == 0 &&
"constexpr ctor with virtual bases") ? void (0) : __assert_fail
("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1978, __extension__ __PRETTY_FUNCTION__))
;
1979
1980 // Skip detailed checking if we have enough initializers, and we would
1981 // allow at most one initializer per member.
1982 bool AnyAnonStructUnionMembers = false;
1983 unsigned Fields = 0;
1984 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1985 E = RD->field_end(); I != E; ++I, ++Fields) {
1986 if (I->isAnonymousStructOrUnion()) {
1987 AnyAnonStructUnionMembers = true;
1988 break;
1989 }
1990 }
1991 // DR1460:
1992 // - if the class is a union-like class, but is not a union, for each of
1993 // its anonymous union members having variant members, exactly one of
1994 // them shall be initialized;
1995 if (AnyAnonStructUnionMembers ||
1996 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1997 // Check initialization of non-static data members. Base classes are
1998 // always initialized so do not need to be checked. Dependent bases
1999 // might not have initializers in the member initializer list.
2000 llvm::SmallSet<Decl*, 16> Inits;
2001 for (const auto *I: Constructor->inits()) {
2002 if (FieldDecl *FD = I->getMember())
2003 Inits.insert(FD);
2004 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2005 Inits.insert(ID->chain_begin(), ID->chain_end());
2006 }
2007
2008 bool Diagnosed = false;
2009 for (auto *I : RD->fields())
2010 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
2011 if (Diagnosed)
2012 return false;
2013 }
2014 }
2015 } else {
2016 if (ReturnStmts.empty()) {
2017 // C++1y doesn't require constexpr functions to contain a 'return'
2018 // statement. We still do, unless the return type might be void, because
2019 // otherwise if there's no return statement, the function cannot
2020 // be used in a core constant expression.
2021 bool OK = getLangOpts().CPlusPlus14 &&
2022 (Dcl->getReturnType()->isVoidType() ||
2023 Dcl->getReturnType()->isDependentType());
2024 Diag(Dcl->getLocation(),
2025 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2026 : diag::err_constexpr_body_no_return);
2027 if (!OK)
2028 return false;
2029 } else if (ReturnStmts.size() > 1) {
2030 Diag(ReturnStmts.back(),
2031 getLangOpts().CPlusPlus14
2032 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2033 : diag::ext_constexpr_body_multiple_return);
2034 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2035 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
2036 }
2037 }
2038
2039 // C++11 [dcl.constexpr]p5:
2040 // if no function argument values exist such that the function invocation
2041 // substitution would produce a constant expression, the program is
2042 // ill-formed; no diagnostic required.
2043 // C++11 [dcl.constexpr]p3:
2044 // - every constructor call and implicit conversion used in initializing the
2045 // return value shall be one of those allowed in a constant expression.
2046 // C++11 [dcl.constexpr]p4:
2047 // - every constructor involved in initializing non-static data members and
2048 // base class sub-objects shall be a constexpr constructor.
2049 SmallVector<PartialDiagnosticAt, 8> Diags;
2050 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
2051 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
2052 << isa<CXXConstructorDecl>(Dcl);
2053 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2054 Diag(Diags[I].first, Diags[I].second);
2055 // Don't return false here: we allow this for compatibility in
2056 // system headers.
2057 }
2058
2059 return true;
2060}
2061
2062/// Get the class that is directly named by the current context. This is the
2063/// class for which an unqualified-id in this scope could name a constructor
2064/// or destructor.
2065///
2066/// If the scope specifier denotes a class, this will be that class.
2067/// If the scope specifier is empty, this will be the class whose
2068/// member-specification we are currently within. Otherwise, there
2069/// is no such class.
2070CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2071 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2071, __extension__ __PRETTY_FUNCTION__))
;
2072
2073 if (SS && SS->isInvalid())
2074 return nullptr;
2075
2076 if (SS && SS->isNotEmpty()) {
2077 DeclContext *DC = computeDeclContext(*SS, true);
2078 return dyn_cast_or_null<CXXRecordDecl>(DC);
2079 }
2080
2081 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2082}
2083
2084/// isCurrentClassName - Determine whether the identifier II is the
2085/// name of the class type currently being defined. In the case of
2086/// nested classes, this will only return true if II is the name of
2087/// the innermost class.
2088bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2089 const CXXScopeSpec *SS) {
2090 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2091 return CurDecl && &II == CurDecl->getIdentifier();
2092}
2093
2094/// Determine whether the identifier II is a typo for the name of
2095/// the class type currently being defined. If so, update it to the identifier
2096/// that should have been used.
2097bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2098 assert(getLangOpts().CPlusPlus && "No class names in C!")(static_cast <bool> (getLangOpts().CPlusPlus &&
"No class names in C!") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2098, __extension__ __PRETTY_FUNCTION__))
;
2099
2100 if (!getLangOpts().SpellChecking)
2101 return false;
2102
2103 CXXRecordDecl *CurDecl;
2104 if (SS && SS->isSet() && !SS->isInvalid()) {
2105 DeclContext *DC = computeDeclContext(*SS, true);
2106 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2107 } else
2108 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2109
2110 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2111 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2112 < II->getLength()) {
2113 II = CurDecl->getIdentifier();
2114 return true;
2115 }
2116
2117 return false;
2118}
2119
2120/// Determine whether the given class is a base class of the given
2121/// class, including looking at dependent bases.
2122static bool findCircularInheritance(const CXXRecordDecl *Class,
2123 const CXXRecordDecl *Current) {
2124 SmallVector<const CXXRecordDecl*, 8> Queue;
2125
2126 Class = Class->getCanonicalDecl();
2127 while (true) {
2128 for (const auto &I : Current->bases()) {
2129 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2130 if (!Base)
2131 continue;
2132
2133 Base = Base->getDefinition();
2134 if (!Base)
2135 continue;
2136
2137 if (Base->getCanonicalDecl() == Class)
2138 return true;
2139
2140 Queue.push_back(Base);
2141 }
2142
2143 if (Queue.empty())
2144 return false;
2145
2146 Current = Queue.pop_back_val();
2147 }
2148
2149 return false;
2150}
2151
2152/// Check the validity of a C++ base class specifier.
2153///
2154/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2155/// and returns NULL otherwise.
2156CXXBaseSpecifier *
2157Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2158 SourceRange SpecifierRange,
2159 bool Virtual, AccessSpecifier Access,
2160 TypeSourceInfo *TInfo,
2161 SourceLocation EllipsisLoc) {
2162 QualType BaseType = TInfo->getType();
2163
2164 // C++ [class.union]p1:
2165 // A union shall not have base classes.
2166 if (Class->isUnion()) {
2167 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2168 << SpecifierRange;
2169 return nullptr;
2170 }
2171
2172 if (EllipsisLoc.isValid() &&
2173 !TInfo->getType()->containsUnexpandedParameterPack()) {
2174 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2175 << TInfo->getTypeLoc().getSourceRange();
2176 EllipsisLoc = SourceLocation();
2177 }
2178
2179 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2180
2181 if (BaseType->isDependentType()) {
2182 // Make sure that we don't have circular inheritance among our dependent
2183 // bases. For non-dependent bases, the check for completeness below handles
2184 // this.
2185 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2186 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2187 ((BaseDecl = BaseDecl->getDefinition()) &&
2188 findCircularInheritance(Class, BaseDecl))) {
2189 Diag(BaseLoc, diag::err_circular_inheritance)
2190 << BaseType << Context.getTypeDeclType(Class);
2191
2192 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2193 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2194 << BaseType;
2195
2196 return nullptr;
2197 }
2198 }
2199
2200 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2201 Class->getTagKind() == TTK_Class,
2202 Access, TInfo, EllipsisLoc);
2203 }
2204
2205 // Base specifiers must be record types.
2206 if (!BaseType->isRecordType()) {
2207 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2208 return nullptr;
2209 }
2210
2211 // C++ [class.union]p1:
2212 // A union shall not be used as a base class.
2213 if (BaseType->isUnionType()) {
2214 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2215 return nullptr;
2216 }
2217
2218 // For the MS ABI, propagate DLL attributes to base class templates.
2219 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2220 if (Attr *ClassAttr = getDLLAttr(Class)) {
2221 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2222 BaseType->getAsCXXRecordDecl())) {
2223 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2224 BaseLoc);
2225 }
2226 }
2227 }
2228
2229 // C++ [class.derived]p2:
2230 // The class-name in a base-specifier shall not be an incompletely
2231 // defined class.
2232 if (RequireCompleteType(BaseLoc, BaseType,
2233 diag::err_incomplete_base_class, SpecifierRange)) {
2234 Class->setInvalidDecl();
2235 return nullptr;
2236 }
2237
2238 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2239 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2240 assert(BaseDecl && "Record type has no declaration")(static_cast <bool> (BaseDecl && "Record type has no declaration"
) ? void (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2240, __extension__ __PRETTY_FUNCTION__))
;
2241 BaseDecl = BaseDecl->getDefinition();
2242 assert(BaseDecl && "Base type is not incomplete, but has no definition")(static_cast <bool> (BaseDecl && "Base type is not incomplete, but has no definition"
) ? void (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2242, __extension__ __PRETTY_FUNCTION__))
;
2243 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2244 assert(CXXBaseDecl && "Base type is not a C++ type")(static_cast <bool> (CXXBaseDecl && "Base type is not a C++ type"
) ? void (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2244, __extension__ __PRETTY_FUNCTION__))
;
2245
2246 // Microsoft docs say:
2247 // "If a base-class has a code_seg attribute, derived classes must have the
2248 // same attribute."
2249 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2250 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2251 if ((DerivedCSA || BaseCSA) &&
2252 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2253 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2254 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2255 << CXXBaseDecl;
2256 return nullptr;
2257 }
2258
2259 // A class which contains a flexible array member is not suitable for use as a
2260 // base class:
2261 // - If the layout determines that a base comes before another base,
2262 // the flexible array member would index into the subsequent base.
2263 // - If the layout determines that base comes before the derived class,
2264 // the flexible array member would index into the derived class.
2265 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2266 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2267 << CXXBaseDecl->getDeclName();
2268 return nullptr;
2269 }
2270
2271 // C++ [class]p3:
2272 // If a class is marked final and it appears as a base-type-specifier in
2273 // base-clause, the program is ill-formed.
2274 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2275 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2276 << CXXBaseDecl->getDeclName()
2277 << FA->isSpelledAsSealed();
2278 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2279 << CXXBaseDecl->getDeclName() << FA->getRange();
2280 return nullptr;
2281 }
2282
2283 if (BaseDecl->isInvalidDecl())
2284 Class->setInvalidDecl();
2285
2286 // Create the base specifier.
2287 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2288 Class->getTagKind() == TTK_Class,
2289 Access, TInfo, EllipsisLoc);
2290}
2291
2292/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2293/// one entry in the base class list of a class specifier, for
2294/// example:
2295/// class foo : public bar, virtual private baz {
2296/// 'public bar' and 'virtual private baz' are each base-specifiers.
2297BaseResult
2298Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2299 ParsedAttributes &Attributes,
2300 bool Virtual, AccessSpecifier Access,
2301 ParsedType basetype, SourceLocation BaseLoc,
2302 SourceLocation EllipsisLoc) {
2303 if (!classdecl)
2304 return true;
2305
2306 AdjustDeclIfTemplate(classdecl);
2307 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2308 if (!Class)
2309 return true;
2310
2311 // We haven't yet attached the base specifiers.
2312 Class->setIsParsingBaseSpecifiers();
2313
2314 // We do not support any C++11 attributes on base-specifiers yet.
2315 // Diagnose any attributes we see.
2316 for (const ParsedAttr &AL : Attributes) {
2317 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2318 continue;
2319 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2320 ? diag::warn_unknown_attribute_ignored
2321 : diag::err_base_specifier_attribute)
2322 << AL.getName();
2323 }
2324
2325 TypeSourceInfo *TInfo = nullptr;
2326 GetTypeFromParser(basetype, &TInfo);
2327
2328 if (EllipsisLoc.isInvalid() &&
2329 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2330 UPPC_BaseType))
2331 return true;
2332
2333 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2334 Virtual, Access, TInfo,
2335 EllipsisLoc))
2336 return BaseSpec;
2337 else
2338 Class->setInvalidDecl();
2339
2340 return true;
2341}
2342
2343/// Use small set to collect indirect bases. As this is only used
2344/// locally, there's no need to abstract the small size parameter.
2345typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2346
2347/// Recursively add the bases of Type. Don't add Type itself.
2348static void
2349NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2350 const QualType &Type)
2351{
2352 // Even though the incoming type is a base, it might not be
2353 // a class -- it could be a template parm, for instance.
2354 if (auto Rec = Type->getAs<RecordType>()) {
2355 auto Decl = Rec->getAsCXXRecordDecl();
2356
2357 // Iterate over its bases.
2358 for (const auto &BaseSpec : Decl->bases()) {
2359 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2360 .getUnqualifiedType();
2361 if (Set.insert(Base).second)
2362 // If we've not already seen it, recurse.
2363 NoteIndirectBases(Context, Set, Base);
2364 }
2365 }
2366}
2367
2368/// Performs the actual work of attaching the given base class
2369/// specifiers to a C++ class.
2370bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2371 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2372 if (Bases.empty())
2373 return false;
2374
2375 // Used to keep track of which base types we have already seen, so
2376 // that we can properly diagnose redundant direct base types. Note
2377 // that the key is always the unqualified canonical type of the base
2378 // class.
2379 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2380
2381 // Used to track indirect bases so we can see if a direct base is
2382 // ambiguous.
2383 IndirectBaseSet IndirectBaseTypes;
2384
2385 // Copy non-redundant base specifiers into permanent storage.
2386 unsigned NumGoodBases = 0;
2387 bool Invalid = false;
2388 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2389 QualType NewBaseType
2390 = Context.getCanonicalType(Bases[idx]->getType());
2391 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2392
2393 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2394 if (KnownBase) {
2395 // C++ [class.mi]p3:
2396 // A class shall not be specified as a direct base class of a
2397 // derived class more than once.
2398 Diag(Bases[idx]->getLocStart(),
2399 diag::err_duplicate_base_class)
2400 << KnownBase->getType()
2401 << Bases[idx]->getSourceRange();
2402
2403 // Delete the duplicate base class specifier; we're going to
2404 // overwrite its pointer later.
2405 Context.Deallocate(Bases[idx]);
2406
2407 Invalid = true;
2408 } else {
2409 // Okay, add this new base class.
2410 KnownBase = Bases[idx];
2411 Bases[NumGoodBases++] = Bases[idx];
2412
2413 // Note this base's direct & indirect bases, if there could be ambiguity.
2414 if (Bases.size() > 1)
2415 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2416
2417 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2418 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2419 if (Class->isInterface() &&
2420 (!RD->isInterfaceLike() ||
2421 KnownBase->getAccessSpecifier() != AS_public)) {
2422 // The Microsoft extension __interface does not permit bases that
2423 // are not themselves public interfaces.
2424 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
2425 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2426 << RD->getSourceRange();
2427 Invalid = true;
2428 }
2429 if (RD->hasAttr<WeakAttr>())
2430 Class->addAttr(WeakAttr::CreateImplicit(Context));
2431 }
2432 }
2433 }
2434
2435 // Attach the remaining base class specifiers to the derived class.
2436 Class->setBases(Bases.data(), NumGoodBases);
2437
2438 // Check that the only base classes that are duplicate are virtual.
2439 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2440 // Check whether this direct base is inaccessible due to ambiguity.
2441 QualType BaseType = Bases[idx]->getType();
2442
2443 // Skip all dependent types in templates being used as base specifiers.
2444 // Checks below assume that the base specifier is a CXXRecord.
2445 if (BaseType->isDependentType())
2446 continue;
2447
2448 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2449 .getUnqualifiedType();
2450
2451 if (IndirectBaseTypes.count(CanonicalBase)) {
2452 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2453 /*DetectVirtual=*/true);
2454 bool found
2455 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2456 assert(found)(static_cast <bool> (found) ? void (0) : __assert_fail (
"found", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2456, __extension__ __PRETTY_FUNCTION__))
;
2457 (void)found;
2458
2459 if (Paths.isAmbiguous(CanonicalBase))
2460 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
2461 << BaseType << getAmbiguousPathsDisplayString(Paths)
2462 << Bases[idx]->getSourceRange();
2463 else
2464 assert(Bases[idx]->isVirtual())(static_cast <bool> (Bases[idx]->isVirtual()) ? void
(0) : __assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2464, __extension__ __PRETTY_FUNCTION__))
;
2465 }
2466
2467 // Delete the base class specifier, since its data has been copied
2468 // into the CXXRecordDecl.
2469 Context.Deallocate(Bases[idx]);
2470 }
2471
2472 return Invalid;
2473}
2474
2475/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2476/// class, after checking whether there are any duplicate base
2477/// classes.
2478void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2479 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2480 if (!ClassDecl || Bases.empty())
2481 return;
2482
2483 AdjustDeclIfTemplate(ClassDecl);
2484 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2485}
2486
2487/// Determine whether the type \p Derived is a C++ class that is
2488/// derived from the type \p Base.
2489bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2490 if (!getLangOpts().CPlusPlus)
2491 return false;
2492
2493 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2494 if (!DerivedRD)
2495 return false;
2496
2497 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2498 if (!BaseRD)
2499 return false;
2500
2501 // If either the base or the derived type is invalid, don't try to
2502 // check whether one is derived from the other.
2503 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2504 return false;
2505
2506 // FIXME: In a modules build, do we need the entire path to be visible for us
2507 // to be able to use the inheritance relationship?
2508 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2509 return false;
2510
2511 return DerivedRD->isDerivedFrom(BaseRD);
2512}
2513
2514/// Determine whether the type \p Derived is a C++ class that is
2515/// derived from the type \p Base.
2516bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2517 CXXBasePaths &Paths) {
2518 if (!getLangOpts().CPlusPlus)
2519 return false;
2520
2521 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2522 if (!DerivedRD)
2523 return false;
2524
2525 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2526 if (!BaseRD)
2527 return false;
2528
2529 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2530 return false;
2531
2532 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2533}
2534
2535static void BuildBasePathArray(const CXXBasePath &Path,
2536 CXXCastPath &BasePathArray) {
2537 // We first go backward and check if we have a virtual base.
2538 // FIXME: It would be better if CXXBasePath had the base specifier for
2539 // the nearest virtual base.
2540 unsigned Start = 0;
2541 for (unsigned I = Path.size(); I != 0; --I) {
2542 if (Path[I - 1].Base->isVirtual()) {
2543 Start = I - 1;
2544 break;
2545 }
2546 }
2547
2548 // Now add all bases.
2549 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2550 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2551}
2552
2553
2554void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2555 CXXCastPath &BasePathArray) {
2556 assert(BasePathArray.empty() && "Base path array must be empty!")(static_cast <bool> (BasePathArray.empty() && "Base path array must be empty!"
) ? void (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2556, __extension__ __PRETTY_FUNCTION__))
;
2557 assert(Paths.isRecordingPaths() && "Must record paths!")(static_cast <bool> (Paths.isRecordingPaths() &&
"Must record paths!") ? void (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2557, __extension__ __PRETTY_FUNCTION__))
;
2558 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2559}
2560/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2561/// conversion (where Derived and Base are class types) is
2562/// well-formed, meaning that the conversion is unambiguous (and
2563/// that all of the base classes are accessible). Returns true
2564/// and emits a diagnostic if the code is ill-formed, returns false
2565/// otherwise. Loc is the location where this routine should point to
2566/// if there is an error, and Range is the source range to highlight
2567/// if there is an error.
2568///
2569/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2570/// diagnostic for the respective type of error will be suppressed, but the
2571/// check for ill-formed code will still be performed.
2572bool
2573Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2574 unsigned InaccessibleBaseID,
2575 unsigned AmbigiousBaseConvID,
2576 SourceLocation Loc, SourceRange Range,
2577 DeclarationName Name,
2578 CXXCastPath *BasePath,
2579 bool IgnoreAccess) {
2580 // First, determine whether the path from Derived to Base is
2581 // ambiguous. This is slightly more expensive than checking whether
2582 // the Derived to Base conversion exists, because here we need to
2583 // explore multiple paths to determine if there is an ambiguity.
2584 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2585 /*DetectVirtual=*/false);
2586 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2587 if (!DerivationOkay)
2588 return true;
2589
2590 const CXXBasePath *Path = nullptr;
2591 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2592 Path = &Paths.front();
2593
2594 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2595 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2596 // user to access such bases.
2597 if (!Path && getLangOpts().MSVCCompat) {
2598 for (const CXXBasePath &PossiblePath : Paths) {
2599 if (PossiblePath.size() == 1) {
2600 Path = &PossiblePath;
2601 if (AmbigiousBaseConvID)
2602 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2603 << Base << Derived << Range;
2604 break;
2605 }
2606 }
2607 }
2608
2609 if (Path) {
2610 if (!IgnoreAccess) {
2611 // Check that the base class can be accessed.
2612 switch (
2613 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2614 case AR_inaccessible:
2615 return true;
2616 case AR_accessible:
2617 case AR_dependent:
2618 case AR_delayed:
2619 break;
2620 }
2621 }
2622
2623 // Build a base path if necessary.
2624 if (BasePath)
2625 ::BuildBasePathArray(*Path, *BasePath);
2626 return false;
2627 }
2628
2629 if (AmbigiousBaseConvID) {
2630 // We know that the derived-to-base conversion is ambiguous, and
2631 // we're going to produce a diagnostic. Perform the derived-to-base
2632 // search just one more time to compute all of the possible paths so
2633 // that we can print them out. This is more expensive than any of
2634 // the previous derived-to-base checks we've done, but at this point
2635 // performance isn't as much of an issue.
2636 Paths.clear();
2637 Paths.setRecordingPaths(true);
2638 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2639 assert(StillOkay && "Can only be used with a derived-to-base conversion")(static_cast <bool> (StillOkay && "Can only be used with a derived-to-base conversion"
) ? void (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2639, __extension__ __PRETTY_FUNCTION__))
;
2640 (void)StillOkay;
2641
2642 // Build up a textual representation of the ambiguous paths, e.g.,
2643 // D -> B -> A, that will be used to illustrate the ambiguous
2644 // conversions in the diagnostic. We only print one of the paths
2645 // to each base class subobject.
2646 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2647
2648 Diag(Loc, AmbigiousBaseConvID)
2649 << Derived << Base << PathDisplayStr << Range << Name;
2650 }
2651 return true;
2652}
2653
2654bool
2655Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2656 SourceLocation Loc, SourceRange Range,
2657 CXXCastPath *BasePath,
2658 bool IgnoreAccess) {
2659 return CheckDerivedToBaseConversion(
2660 Derived, Base, diag::err_upcast_to_inaccessible_base,
2661 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2662 BasePath, IgnoreAccess);
2663}
2664
2665
2666/// Builds a string representing ambiguous paths from a
2667/// specific derived class to different subobjects of the same base
2668/// class.
2669///
2670/// This function builds a string that can be used in error messages
2671/// to show the different paths that one can take through the
2672/// inheritance hierarchy to go from the derived class to different
2673/// subobjects of a base class. The result looks something like this:
2674/// @code
2675/// struct D -> struct B -> struct A
2676/// struct D -> struct C -> struct A
2677/// @endcode
2678std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2679 std::string PathDisplayStr;
2680 std::set<unsigned> DisplayedPaths;
2681 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2682 Path != Paths.end(); ++Path) {
2683 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2684 // We haven't displayed a path to this particular base
2685 // class subobject yet.
2686 PathDisplayStr += "\n ";
2687 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2688 for (CXXBasePath::const_iterator Element = Path->begin();
2689 Element != Path->end(); ++Element)
2690 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2691 }
2692 }
2693
2694 return PathDisplayStr;
2695}
2696
2697//===----------------------------------------------------------------------===//
2698// C++ class member Handling
2699//===----------------------------------------------------------------------===//
2700
2701/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2702bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
2703 SourceLocation ColonLoc,
2704 const ParsedAttributesView &Attrs) {
2705 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")(static_cast <bool> (Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? void (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2705, __extension__ __PRETTY_FUNCTION__))
;
2706 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2707 ASLoc, ColonLoc);
2708 CurContext->addHiddenDecl(ASDecl);
2709 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2710}
2711
2712/// CheckOverrideControl - Check C++11 override control semantics.
2713void Sema::CheckOverrideControl(NamedDecl *D) {
2714 if (D->isInvalidDecl())
2715 return;
2716
2717 // We only care about "override" and "final" declarations.
2718 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2719 return;
2720
2721 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2722
2723 // We can't check dependent instance methods.
2724 if (MD && MD->isInstance() &&
2725 (MD->getParent()->hasAnyDependentBases() ||
2726 MD->getType()->isDependentType()))
2727 return;
2728
2729 if (MD && !MD->isVirtual()) {
2730 // If we have a non-virtual method, check if if hides a virtual method.
2731 // (In that case, it's most likely the method has the wrong type.)
2732 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2733 FindHiddenVirtualMethods(MD, OverloadedMethods);
2734
2735 if (!OverloadedMethods.empty()) {
2736 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2737 Diag(OA->getLocation(),
2738 diag::override_keyword_hides_virtual_member_function)
2739 << "override" << (OverloadedMethods.size() > 1);
2740 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2741 Diag(FA->getLocation(),
2742 diag::override_keyword_hides_virtual_member_function)
2743 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2744 << (OverloadedMethods.size() > 1);
2745 }
2746 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2747 MD->setInvalidDecl();
2748 return;
2749 }
2750 // Fall through into the general case diagnostic.
2751 // FIXME: We might want to attempt typo correction here.
2752 }
2753
2754 if (!MD || !MD->isVirtual()) {
2755 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2756 Diag(OA->getLocation(),
2757 diag::override_keyword_only_allowed_on_virtual_member_functions)
2758 << "override" << FixItHint::CreateRemoval(OA->getLocation());
2759 D->dropAttr<OverrideAttr>();
2760 }
2761 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2762 Diag(FA->getLocation(),
2763 diag::override_keyword_only_allowed_on_virtual_member_functions)
2764 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2765 << FixItHint::CreateRemoval(FA->getLocation());
2766 D->dropAttr<FinalAttr>();
2767 }
2768 return;
2769 }
2770
2771 // C++11 [class.virtual]p5:
2772 // If a function is marked with the virt-specifier override and
2773 // does not override a member function of a base class, the program is
2774 // ill-formed.
2775 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
2776 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
2777 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
2778 << MD->getDeclName();
2779}
2780
2781void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
2782 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
2783 return;
2784 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2785 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
2786 return;
2787
2788 SourceLocation Loc = MD->getLocation();
2789 SourceLocation SpellingLoc = Loc;
2790 if (getSourceManager().isMacroArgExpansion(Loc))
2791 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
2792 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
2793 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
2794 return;
2795
2796 if (MD->size_overridden_methods() > 0) {
2797 unsigned DiagID = isa<CXXDestructorDecl>(MD)
2798 ? diag::warn_destructor_marked_not_override_overriding
2799 : diag::warn_function_marked_not_override_overriding;
2800 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
2801 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
2802 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
2803 }
2804}
2805
2806/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
2807/// function overrides a virtual member function marked 'final', according to
2808/// C++11 [class.virtual]p4.
2809bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
2810 const CXXMethodDecl *Old) {
2811 FinalAttr *FA = Old->getAttr<FinalAttr>();
2812 if (!FA)
2813 return false;
2814
2815 Diag(New->getLocation(), diag::err_final_function_overridden)
2816 << New->getDeclName()
2817 << FA->isSpelledAsSealed();
2818 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2819 return true;
2820}
2821
2822static bool InitializationHasSideEffects(const FieldDecl &FD) {
2823 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2824 // FIXME: Destruction of ObjC lifetime types has side-effects.
2825 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2826 return !RD->isCompleteDefinition() ||
2827 !RD->hasTrivialDefaultConstructor() ||
2828 !RD->hasTrivialDestructor();
2829 return false;
2830}
2831
2832static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
2833 ParsedAttributesView::const_iterator Itr =
2834 llvm::find_if(list, [](const ParsedAttr &AL) {
2835 return AL.isDeclspecPropertyAttribute();
2836 });
2837 if (Itr != list.end())
2838 return &*Itr;
2839 return nullptr;
2840}
2841
2842// Check if there is a field shadowing.
2843void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
2844 DeclarationName FieldName,
2845 const CXXRecordDecl *RD) {
2846 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
2847 return;
2848
2849 // To record a shadowed field in a base
2850 std::map<CXXRecordDecl*, NamedDecl*> Bases;
2851 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
2852 CXXBasePath &Path) {
2853 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
2854 // Record an ambiguous path directly
2855 if (Bases.find(Base) != Bases.end())
2856 return true;
2857 for (const auto Field : Base->lookup(FieldName)) {
2858 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
2859 Field->getAccess() != AS_private) {
2860 assert(Field->getAccess() != AS_none)(static_cast <bool> (Field->getAccess() != AS_none) ?
void (0) : __assert_fail ("Field->getAccess() != AS_none"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2860, __extension__ __PRETTY_FUNCTION__))
;
2861 assert(Bases.find(Base) == Bases.end())(static_cast <bool> (Bases.find(Base) == Bases.end()) ?
void (0) : __assert_fail ("Bases.find(Base) == Bases.end()",
"/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2861, __extension__ __PRETTY_FUNCTION__))
;
2862 Bases[Base] = Field;
2863 return true;
2864 }
2865 }
2866 return false;
2867 };
2868
2869 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2870 /*DetectVirtual=*/true);
2871 if (!RD->lookupInBases(FieldShadowed, Paths))
2872 return;
2873
2874 for (const auto &P : Paths) {
2875 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
2876 auto It = Bases.find(Base);
2877 // Skip duplicated bases
2878 if (It == Bases.end())
2879 continue;
2880 auto BaseField = It->second;
2881 assert(BaseField->getAccess() != AS_private)(static_cast <bool> (BaseField->getAccess() != AS_private
) ? void (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2881, __extension__ __PRETTY_FUNCTION__))
;
2882 if (AS_none !=
2883 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
2884 Diag(Loc, diag::warn_shadow_field)
2885 << FieldName << RD << Base;
2886 Diag(BaseField->getLocation(), diag::note_shadow_field);
2887 Bases.erase(It);
2888 }
2889 }
2890}
2891
2892/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2893/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2894/// bitfield width if there is one, 'InitExpr' specifies the initializer if
2895/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2896/// present (but parsing it has been deferred).
2897NamedDecl *
2898Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2899 MultiTemplateParamsArg TemplateParameterLists,
2900 Expr *BW, const VirtSpecifiers &VS,
2901 InClassInitStyle InitStyle) {
2902 const DeclSpec &DS = D.getDeclSpec();
2903 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2904 DeclarationName Name = NameInfo.getName();
2905 SourceLocation Loc = NameInfo.getLoc();
2906
2907 // For anonymous bitfields, the location should point to the type.
2908 if (Loc.isInvalid())
2909 Loc = D.getLocStart();
2910
2911 Expr *BitWidth = static_cast<Expr*>(BW);
2912
2913 assert(isa<CXXRecordDecl>(CurContext))(static_cast <bool> (isa<CXXRecordDecl>(CurContext
)) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2913, __extension__ __PRETTY_FUNCTION__))
;
2914 assert(!DS.isFriendSpecified())(static_cast <bool> (!DS.isFriendSpecified()) ? void (0
) : __assert_fail ("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2914, __extension__ __PRETTY_FUNCTION__))
;
2915
2916 bool isFunc = D.isDeclarationOfFunction();
2917 const ParsedAttr *MSPropertyAttr =
2918 getMSPropertyAttr(D.getDeclSpec().getAttributes());
2919
2920 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2921 // The Microsoft extension __interface only permits public member functions
2922 // and prohibits constructors, destructors, operators, non-public member
2923 // functions, static methods and data members.
2924 unsigned InvalidDecl;
2925 bool ShowDeclName = true;
2926 if (!isFunc &&
2927 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
2928 InvalidDecl = 0;
2929 else if (!isFunc)
2930 InvalidDecl = 1;
2931 else if (AS != AS_public)
2932 InvalidDecl = 2;
2933 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2934 InvalidDecl = 3;
2935 else switch (Name.getNameKind()) {
2936 case DeclarationName::CXXConstructorName:
2937 InvalidDecl = 4;
2938 ShowDeclName = false;
2939 break;
2940
2941 case DeclarationName::CXXDestructorName:
2942 InvalidDecl = 5;
2943 ShowDeclName = false;
2944 break;
2945
2946 case DeclarationName::CXXOperatorName:
2947 case DeclarationName::CXXConversionFunctionName:
2948 InvalidDecl = 6;
2949 break;
2950
2951 default:
2952 InvalidDecl = 0;
2953 break;
2954 }
2955
2956 if (InvalidDecl) {
2957 if (ShowDeclName)
2958 Diag(Loc, diag::err_invalid_member_in_interface)
2959 << (InvalidDecl-1) << Name;
2960 else
2961 Diag(Loc, diag::err_invalid_member_in_interface)
2962 << (InvalidDecl-1) << "";
2963 return nullptr;
2964 }
2965 }
2966
2967 // C++ 9.2p6: A member shall not be declared to have automatic storage
2968 // duration (auto, register) or with the extern storage-class-specifier.
2969 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2970 // data members and cannot be applied to names declared const or static,
2971 // and cannot be applied to reference members.
2972 switch (DS.getStorageClassSpec()) {
2973 case DeclSpec::SCS_unspecified:
2974 case DeclSpec::SCS_typedef:
2975 case DeclSpec::SCS_static:
2976 break;
2977 case DeclSpec::SCS_mutable:
2978 if (isFunc) {
2979 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2980
2981 // FIXME: It would be nicer if the keyword was ignored only for this
2982 // declarator. Otherwise we could get follow-up errors.
2983 D.getMutableDeclSpec().ClearStorageClassSpecs();
2984 }
2985 break;
2986 default:
2987 Diag(DS.getStorageClassSpecLoc(),
2988 diag::err_storageclass_invalid_for_member);
2989 D.getMutableDeclSpec().ClearStorageClassSpecs();
2990 break;
2991 }
2992
2993 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2994 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2995 !isFunc);
2996
2997 if (DS.isConstexprSpecified() && isInstField) {
2998 SemaDiagnosticBuilder B =
2999 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3000 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3001 if (InitStyle == ICIS_NoInit) {
3002 B << 0 << 0;
3003 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3004 B << FixItHint::CreateRemoval(ConstexprLoc);
3005 else {
3006 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3007 D.getMutableDeclSpec().ClearConstexprSpec();
3008 const char *PrevSpec;
3009 unsigned DiagID;
3010 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3011 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3012 (void)Failed;
3013 assert(!Failed && "Making a constexpr member const shouldn't fail")(static_cast <bool> (!Failed && "Making a constexpr member const shouldn't fail"
) ? void (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3013, __extension__ __PRETTY_FUNCTION__))
;
3014 }
3015 } else {
3016 B << 1;
3017 const char *PrevSpec;
3018 unsigned DiagID;
3019 if (D.getMutableDeclSpec().SetStorageClassSpec(
3020 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3021 Context.getPrintingPolicy())) {
3022 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3023, __extension__ __PRETTY_FUNCTION__))
3023 "This is the only DeclSpec that should fail to be applied")(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_mutable && "This is the only DeclSpec that should fail to be applied"
) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3023, __extension__ __PRETTY_FUNCTION__))
;
3024 B << 1;
3025 } else {
3026 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3027 isInstField = false;
3028 }
3029 }
3030 }
3031
3032 NamedDecl *Member;
3033 if (isInstField) {
3034 CXXScopeSpec &SS = D.getCXXScopeSpec();
3035
3036 // Data members must have identifiers for names.
3037 if (!Name.isIdentifier()) {
3038 Diag(Loc, diag::err_bad_variable_name)
3039 << Name;
3040 return nullptr;
3041 }
3042
3043 IdentifierInfo *II = Name.getAsIdentifierInfo();
3044
3045 // Member field could not be with "template" keyword.
3046 // So TemplateParameterLists should be empty in this case.
3047 if (TemplateParameterLists.size()) {
3048 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3049 if (TemplateParams->size()) {
3050 // There is no such thing as a member field template.
3051 Diag(D.getIdentifierLoc(), diag::err_template_member)
3052 << II
3053 << SourceRange(TemplateParams->getTemplateLoc(),
3054 TemplateParams->getRAngleLoc());
3055 } else {
3056 // There is an extraneous 'template<>' for this member.
3057 Diag(TemplateParams->getTemplateLoc(),
3058 diag::err_template_member_noparams)
3059 << II
3060 << SourceRange(TemplateParams->getTemplateLoc(),
3061 TemplateParams->getRAngleLoc());
3062 }
3063 return nullptr;
3064 }
3065
3066 if (SS.isSet() && !SS.isInvalid()) {
3067 // The user provided a superfluous scope specifier inside a class
3068 // definition:
3069 //
3070 // class X {
3071 // int X::member;
3072 // };
3073 if (DeclContext *DC = computeDeclContext(SS, false))
3074 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3075 D.getName().getKind() ==
3076 UnqualifiedIdKind::IK_TemplateId);
3077 else
3078 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3079 << Name << SS.getRange();
3080
3081 SS.clear();
3082 }
3083
3084 if (MSPropertyAttr) {
3085 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3086 BitWidth, InitStyle, AS, *MSPropertyAttr);
3087 if (!Member)
3088 return nullptr;
3089 isInstField = false;
3090 } else {
3091 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3092 BitWidth, InitStyle, AS);
3093 if (!Member)
3094 return nullptr;
3095 }
3096
3097 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3098 } else {
3099 Member = HandleDeclarator(S, D, TemplateParameterLists);
3100 if (!Member)
3101 return nullptr;
3102
3103 // Non-instance-fields can't have a bitfield.
3104 if (BitWidth) {
3105 if (Member->isInvalidDecl()) {
3106 // don't emit another diagnostic.
3107 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3108 // C++ 9.6p3: A bit-field shall not be a static member.
3109 // "static member 'A' cannot be a bit-field"
3110 Diag(Loc, diag::err_static_not_bitfield)
3111 << Name << BitWidth->getSourceRange();
3112 } else if (isa<TypedefDecl>(Member)) {
3113 // "typedef member 'x' cannot be a bit-field"
3114 Diag(Loc, diag::err_typedef_not_bitfield)
3115 << Name << BitWidth->getSourceRange();
3116 } else {
3117 // A function typedef ("typedef int f(); f a;").
3118 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3119 Diag(Loc, diag::err_not_integral_type_bitfield)
3120 << Name << cast<ValueDecl>(Member)->getType()
3121 << BitWidth->getSourceRange();
3122 }
3123
3124 BitWidth = nullptr;
3125 Member->setInvalidDecl();
3126 }
3127
3128 NamedDecl *NonTemplateMember = Member;
3129 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3130 NonTemplateMember = FunTmpl->getTemplatedDecl();
3131 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3132 NonTemplateMember = VarTmpl->getTemplatedDecl();
3133
3134 Member->setAccess(AS);
3135
3136 // If we have declared a member function template or static data member
3137 // template, set the access of the templated declaration as well.
3138 if (NonTemplateMember != Member)
3139 NonTemplateMember->setAccess(AS);
3140
3141 // C++ [temp.deduct.guide]p3:
3142 // A deduction guide [...] for a member class template [shall be
3143 // declared] with the same access [as the template].
3144 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3145 auto *TD = DG->getDeducedTemplate();
3146 if (AS != TD->getAccess()) {
3147 Diag(DG->getLocStart(), diag::err_deduction_guide_wrong_access);
3148 Diag(TD->getLocStart(), diag::note_deduction_guide_template_access)
3149 << TD->getAccess();
3150 const AccessSpecDecl *LastAccessSpec = nullptr;
3151 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3152 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3153 LastAccessSpec = AccessSpec;
3154 }
3155 assert(LastAccessSpec && "differing access with no access specifier")(static_cast <bool> (LastAccessSpec && "differing access with no access specifier"
) ? void (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3155, __extension__ __PRETTY_FUNCTION__))
;
3156 Diag(LastAccessSpec->getLocStart(), diag::note_deduction_guide_access)
3157 << AS;
3158 }
3159 }
3160 }
3161
3162 if (VS.isOverrideSpecified())
3163 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
3164 if (VS.isFinalSpecified())
3165 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
3166 VS.isFinalSpelledSealed()));
3167
3168 if (VS.getLastLocation().isValid()) {
3169 // Update the end location of a method that has a virt-specifiers.
3170 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3171 MD->setRangeEnd(VS.getLastLocation());
3172 }
3173
3174 CheckOverrideControl(Member);
3175
3176 assert((Name || isInstField) && "No identifier for non-field ?")(static_cast <bool> ((Name || isInstField) && "No identifier for non-field ?"
) ? void (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3176, __extension__ __PRETTY_FUNCTION__))
;
3177
3178 if (isInstField) {
3179 FieldDecl *FD = cast<FieldDecl>(Member);
3180 FieldCollector->Add(FD);
3181
3182 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3183 // Remember all explicit private FieldDecls that have a name, no side
3184 // effects and are not part of a dependent type declaration.
3185 if (!FD->isImplicit() && FD->getDeclName() &&
3186 FD->getAccess() == AS_private &&
3187 !FD->hasAttr<UnusedAttr>() &&
3188 !FD->getParent()->isDependentContext() &&
3189 !InitializationHasSideEffects(*FD))
3190 UnusedPrivateFields.insert(FD);
3191 }
3192 }
3193
3194 return Member;
3195}
3196
3197namespace {
3198 class UninitializedFieldVisitor
3199 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3200 Sema &S;
3201 // List of Decls to generate a warning on. Also remove Decls that become
3202 // initialized.
3203 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3204 // List of base classes of the record. Classes are removed after their
3205 // initializers.
3206 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3207 // Vector of decls to be removed from the Decl set prior to visiting the
3208 // nodes. These Decls may have been initialized in the prior initializer.
3209 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3210 // If non-null, add a note to the warning pointing back to the constructor.
3211 const CXXConstructorDecl *Constructor;
3212 // Variables to hold state when processing an initializer list. When
3213 // InitList is true, special case initialization of FieldDecls matching
3214 // InitListFieldDecl.
3215 bool InitList;
3216 FieldDecl *InitListFieldDecl;
3217 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3218
3219 public:
3220 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3221 UninitializedFieldVisitor(Sema &S,
3222 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3223 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3224 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3225 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3226
3227 // Returns true if the use of ME is not an uninitialized use.
3228 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3229 bool CheckReferenceOnly) {
3230 llvm::SmallVector<FieldDecl*, 4> Fields;
3231 bool ReferenceField = false;
3232 while (ME) {
3233 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3234 if (!FD)
3235 return false;
3236 Fields.push_back(FD);
3237 if (FD->getType()->isReferenceType())
3238 ReferenceField = true;
3239 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3240 }
3241
3242 // Binding a reference to an unintialized field is not an
3243 // uninitialized use.
3244 if (CheckReferenceOnly && !ReferenceField)
3245 return true;
3246
3247 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3248 // Discard the first field since it is the field decl that is being
3249 // initialized.
3250 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3251 UsedFieldIndex.push_back((*I)->getFieldIndex());
3252 }
3253
3254 for (auto UsedIter = UsedFieldIndex.begin(),
3255 UsedEnd = UsedFieldIndex.end(),
3256 OrigIter = InitFieldIndex.begin(),
3257 OrigEnd = InitFieldIndex.end();
3258 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3259 if (*UsedIter < *OrigIter)
3260 return true;
3261 if (*UsedIter > *OrigIter)
3262 break;
3263 }
3264
3265 return false;
3266 }
3267
3268 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3269 bool AddressOf) {
3270 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3271 return;
3272
3273 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3274 // or union.
3275 MemberExpr *FieldME = ME;
3276
3277 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3278
3279 Expr *Base = ME;
3280 while (MemberExpr *SubME =
3281 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3282
3283 if (isa<VarDecl>(SubME->getMemberDecl()))
3284 return;
3285
3286 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3287 if (!FD->isAnonymousStructOrUnion())
3288 FieldME = SubME;
3289
3290 if (!FieldME->getType().isPODType(S.Context))
3291 AllPODFields = false;
3292
3293 Base = SubME->getBase();
3294 }
3295
3296 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3297 return;
3298
3299 if (AddressOf && AllPODFields)
3300 return;
3301
3302 ValueDecl* FoundVD = FieldME->getMemberDecl();
3303
3304 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3305 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3306 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3307 }
3308
3309 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3310 QualType T = BaseCast->getType();
3311 if (T->isPointerType() &&
3312 BaseClasses.count(T->getPointeeType())) {
3313 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3314 << T->getPointeeType() << FoundVD;
3315 }
3316 }
3317 }
3318
3319 if (!Decls.count(FoundVD))
3320 return;
3321
3322 const bool IsReference = FoundVD->getType()->isReferenceType();
3323
3324 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3325 // Special checking for initializer lists.
3326 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3327 return;
3328 }
3329 } else {
3330 // Prevent double warnings on use of unbounded references.
3331 if (CheckReferenceOnly && !IsReference)
3332 return;
3333 }
3334
3335 unsigned diag = IsReference
3336 ? diag::warn_reference_field_is_uninit
3337 : diag::warn_field_is_uninit;
3338 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3339 if (Constructor)
3340 S.Diag(Constructor->getLocation(),
3341 diag::note_uninit_in_this_constructor)
3342 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3343
3344 }
3345
3346 void HandleValue(Expr *E, bool AddressOf) {
3347 E = E->IgnoreParens();
3348
3349 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3350 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3351 AddressOf /*AddressOf*/);
3352 return;
3353 }
3354
3355 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3356 Visit(CO->getCond());
3357 HandleValue(CO->getTrueExpr(), AddressOf);
3358 HandleValue(CO->getFalseExpr(), AddressOf);
3359 return;
3360 }
3361
3362 if (BinaryConditionalOperator *BCO =
3363 dyn_cast<BinaryConditionalOperator>(E)) {
3364 Visit(BCO->getCond());
3365 HandleValue(BCO->getFalseExpr(), AddressOf);
3366 return;
3367 }
3368
3369 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3370 HandleValue(OVE->getSourceExpr(), AddressOf);
3371 return;
3372 }
3373
3374 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3375 switch (BO->getOpcode()) {
3376 default:
3377 break;
3378 case(BO_PtrMemD):
3379 case(BO_PtrMemI):
3380 HandleValue(BO->getLHS(), AddressOf);
3381 Visit(BO->getRHS());
3382 return;
3383 case(BO_Comma):
3384 Visit(BO->getLHS());
3385 HandleValue(BO->getRHS(), AddressOf);
3386 return;
3387 }
3388 }
3389
3390 Visit(E);
3391 }
3392
3393 void CheckInitListExpr(InitListExpr *ILE) {
3394 InitFieldIndex.push_back(0);
3395 for (auto Child : ILE->children()) {
3396 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3397 CheckInitListExpr(SubList);
3398 } else {
3399 Visit(Child);
3400 }
3401 ++InitFieldIndex.back();
3402 }
3403 InitFieldIndex.pop_back();
3404 }
3405
3406 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3407 FieldDecl *Field, const Type *BaseClass) {
3408 // Remove Decls that may have been initialized in the previous
3409 // initializer.
3410 for (ValueDecl* VD : DeclsToRemove)
3411 Decls.erase(VD);
3412 DeclsToRemove.clear();
3413
3414 Constructor = FieldConstructor;
3415 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3416
3417 if (ILE && Field) {
3418 InitList = true;
3419 InitListFieldDecl = Field;
3420 InitFieldIndex.clear();
3421 CheckInitListExpr(ILE);
3422 } else {
3423 InitList = false;
3424 Visit(E);
3425 }
3426
3427 if (Field)
3428 Decls.erase(Field);
3429 if (BaseClass)
3430 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3431 }
3432
3433 void VisitMemberExpr(MemberExpr *ME) {
3434 // All uses of unbounded reference fields will warn.
3435 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3436 }
3437
3438 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3439 if (E->getCastKind() == CK_LValueToRValue) {
3440 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3441 return;
3442 }
3443
3444 Inherited::VisitImplicitCastExpr(E);
3445 }
3446
3447 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3448 if (E->getConstructor()->isCopyConstructor()) {
3449 Expr *ArgExpr = E->getArg(0);
3450 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3451 if (ILE->getNumInits() == 1)
3452 ArgExpr = ILE->getInit(0);
3453 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3454 if (ICE->getCastKind() == CK_NoOp)
3455 ArgExpr = ICE->getSubExpr();
3456 HandleValue(ArgExpr, false /*AddressOf*/);
3457 return;
3458 }
3459 Inherited::VisitCXXConstructExpr(E);
3460 }
3461
3462 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3463 Expr *Callee = E->getCallee();
3464 if (isa<MemberExpr>(Callee)) {
3465 HandleValue(Callee, false /*AddressOf*/);
3466 for (auto Arg : E->arguments())
3467 Visit(Arg);
3468 return;
3469 }
3470
3471 Inherited::VisitCXXMemberCallExpr(E);
3472 }
3473
3474 void VisitCallExpr(CallExpr *E) {
3475 // Treat std::move as a use.
3476 if (E->isCallToStdMove()) {
3477 HandleValue(E->getArg(0), /*AddressOf=*/false);
3478 return;
3479 }
3480
3481 Inherited::VisitCallExpr(E);
3482 }
3483
3484 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3485 Expr *Callee = E->getCallee();
3486
3487 if (isa<UnresolvedLookupExpr>(Callee))
3488 return Inherited::VisitCXXOperatorCallExpr(E);
3489
3490 Visit(Callee);
3491 for (auto Arg : E->arguments())
3492 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3493 }
3494
3495 void VisitBinaryOperator(BinaryOperator *E) {
3496 // If a field assignment is detected, remove the field from the
3497 // uninitiailized field set.
3498 if (E->getOpcode() == BO_Assign)
3499 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3500 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3501 if (!FD->getType()->isReferenceType())
3502 DeclsToRemove.push_back(FD);
3503
3504 if (E->isCompoundAssignmentOp()) {
3505 HandleValue(E->getLHS(), false /*AddressOf*/);
3506 Visit(E->getRHS());
3507 return;
3508 }
3509
3510 Inherited::VisitBinaryOperator(E);
3511 }
3512
3513 void VisitUnaryOperator(UnaryOperator *E) {
3514 if (E->isIncrementDecrementOp()) {
3515 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3516 return;
3517 }
3518 if (E->getOpcode() == UO_AddrOf) {
3519 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3520 HandleValue(ME->getBase(), true /*AddressOf*/);
3521 return;
3522 }
3523 }
3524
3525 Inherited::VisitUnaryOperator(E);
3526 }
3527 };
3528
3529 // Diagnose value-uses of fields to initialize themselves, e.g.
3530 // foo(foo)
3531 // where foo is not also a parameter to the constructor.
3532 // Also diagnose across field uninitialized use such as
3533 // x(y), y(x)
3534 // TODO: implement -Wuninitialized and fold this into that framework.
3535 static void DiagnoseUninitializedFields(
3536 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3537
3538 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3539 Constructor->getLocation())) {
3540 return;
3541 }
3542
3543 if (Constructor->isInvalidDecl())
3544 return;
3545
3546 const CXXRecordDecl *RD = Constructor->getParent();
3547
3548 if (RD->getDescribedClassTemplate())
3549 return;
3550
3551 // Holds fields that are uninitialized.
3552 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3553
3554 // At the beginning, all fields are uninitialized.
3555 for (auto *I : RD->decls()) {
3556 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3557 UninitializedFields.insert(FD);
3558 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3559 UninitializedFields.insert(IFD->getAnonField());
3560 }
3561 }
3562
3563 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3564 for (auto I : RD->bases())
3565 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3566
3567 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3568 return;
3569
3570 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3571 UninitializedFields,
3572 UninitializedBaseClasses);
3573
3574 for (const auto *FieldInit : Constructor->inits()) {
3575 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3576 break;
3577
3578 Expr *InitExpr = FieldInit->getInit();
3579 if (!InitExpr)
3580 continue;
3581
3582 if (CXXDefaultInitExpr *Default =
3583 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3584 InitExpr = Default->getExpr();
3585 if (!InitExpr)
3586 continue;
3587 // In class initializers will point to the constructor.
3588 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3589 FieldInit->getAnyMember(),
3590 FieldInit->getBaseClass());
3591 } else {
3592 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3593 FieldInit->getAnyMember(),
3594 FieldInit->getBaseClass());
3595 }
3596 }
3597 }
3598} // namespace
3599
3600/// Enter a new C++ default initializer scope. After calling this, the
3601/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3602/// parsing or instantiating the initializer failed.
3603void Sema::ActOnStartCXXInClassMemberInitializer() {
3604 // Create a synthetic function scope to represent the call to the constructor
3605 // that notionally surrounds a use of this initializer.
3606 PushFunctionScope();
3607}
3608
3609/// This is invoked after parsing an in-class initializer for a
3610/// non-static C++ class member, and after instantiating an in-class initializer
3611/// in a class template. Such actions are deferred until the class is complete.
3612void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3613 SourceLocation InitLoc,
3614 Expr *InitExpr) {
3615 // Pop the notional constructor scope we created earlier.
3616 PopFunctionScopeInfo(nullptr, D);
3617
3618 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3619 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3620, __extension__ __PRETTY_FUNCTION__))
3620 "must set init style when field is created")(static_cast <bool> ((isa<MSPropertyDecl>(D) || FD
->getInClassInitStyle() != ICIS_NoInit) && "must set init style when field is created"
) ? void (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3620, __extension__ __PRETTY_FUNCTION__))
;
3621
3622 if (!InitExpr) {
3623 D->setInvalidDecl();
3624 if (FD)
3625 FD->removeInClassInitializer();
3626 return;
3627 }
3628
3629 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3630 FD->setInvalidDecl();
3631 FD->removeInClassInitializer();
3632 return;
3633 }
3634
3635 ExprResult Init = InitExpr;
3636 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3637 InitializedEntity Entity =
3638 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
3639 InitializationKind Kind =
3640 FD->getInClassInitStyle() == ICIS_ListInit
3641 ? InitializationKind::CreateDirectList(InitExpr->getLocStart(),
3642 InitExpr->getLocStart(),
3643 InitExpr->getLocEnd())
3644 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
3645 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3646 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3647 if (Init.isInvalid()) {
3648 FD->setInvalidDecl();
3649 return;
3650 }
3651 }
3652
3653 // C++11 [class.base.init]p7:
3654 // The initialization of each base and member constitutes a
3655 // full-expression.
3656 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
3657 if (Init.isInvalid()) {
3658 FD->setInvalidDecl();
3659 return;
3660 }
3661
3662 InitExpr = Init.get();
3663
3664 FD->setInClassInitializer(InitExpr);
3665}
3666
3667/// Find the direct and/or virtual base specifiers that
3668/// correspond to the given base type, for use in base initialization
3669/// within a constructor.
3670static bool FindBaseInitializer(Sema &SemaRef,
3671 CXXRecordDecl *ClassDecl,
3672 QualType BaseType,
3673 const CXXBaseSpecifier *&DirectBaseSpec,
3674 const CXXBaseSpecifier *&VirtualBaseSpec) {
3675 // First, check for a direct base class.
3676 DirectBaseSpec = nullptr;
3677 for (const auto &Base : ClassDecl->bases()) {
3678 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3679 // We found a direct base of this type. That's what we're
3680 // initializing.
3681 DirectBaseSpec = &Base;
3682 break;
3683 }
3684 }
3685
3686 // Check for a virtual base class.
3687 // FIXME: We might be able to short-circuit this if we know in advance that
3688 // there are no virtual bases.
3689 VirtualBaseSpec = nullptr;
3690 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3691 // We haven't found a base yet; search the class hierarchy for a
3692 // virtual base class.
3693 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3694 /*DetectVirtual=*/false);
3695 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3696 SemaRef.Context.getTypeDeclType(ClassDecl),
3697 BaseType, Paths)) {
3698 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3699 Path != Paths.end(); ++Path) {
3700 if (Path->back().Base->isVirtual()) {
3701 VirtualBaseSpec = Path->back().Base;
3702 break;
3703 }
3704 }
3705 }
3706 }
3707
3708 return DirectBaseSpec || VirtualBaseSpec;
3709}
3710
3711/// Handle a C++ member initializer using braced-init-list syntax.
3712MemInitResult
3713Sema::ActOnMemInitializer(Decl *ConstructorD,
3714 Scope *S,
3715 CXXScopeSpec &SS,
3716 IdentifierInfo *MemberOrBase,
3717 ParsedType TemplateTypeTy,
3718 const DeclSpec &DS,
3719 SourceLocation IdLoc,
3720 Expr *InitList,
3721 SourceLocation EllipsisLoc) {
3722 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1
Calling 'Sema::BuildMemInitializer'
3723 DS, IdLoc, InitList,
3724 EllipsisLoc);
3725}
3726
3727/// Handle a C++ member initializer using parentheses syntax.
3728MemInitResult
3729Sema::ActOnMemInitializer(Decl *ConstructorD,
3730 Scope *S,
3731 CXXScopeSpec &SS,
3732 IdentifierInfo *MemberOrBase,
3733 ParsedType TemplateTypeTy,
3734 const DeclSpec &DS,
3735 SourceLocation IdLoc,
3736 SourceLocation LParenLoc,
3737 ArrayRef<Expr *> Args,
3738 SourceLocation RParenLoc,
3739 SourceLocation EllipsisLoc) {
3740 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
3741 Args, RParenLoc);
3742 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3743 DS, IdLoc, List, EllipsisLoc);
3744}
3745
3746namespace {
3747
3748// Callback to only accept typo corrections that can be a valid C++ member
3749// intializer: either a non-static field member or a base class.
3750class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
3751public:
3752 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
3753 : ClassDecl(ClassDecl) {}
3754
3755 bool ValidateCandidate(const TypoCorrection &candidate) override {
3756 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
3757 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
3758 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
3759 return isa<TypeDecl>(ND);
3760 }
3761 return false;
3762 }
3763
3764private:
3765 CXXRecordDecl *ClassDecl;
3766};
3767
3768}
3769
3770/// Handle a C++ member initializer.
3771MemInitResult
3772Sema::BuildMemInitializer(Decl *ConstructorD,
3773 Scope *S,
3774 CXXScopeSpec &SS,
3775 IdentifierInfo *MemberOrBase,
3776 ParsedType TemplateTypeTy,
3777 const DeclSpec &DS,
3778 SourceLocation IdLoc,
3779 Expr *Init,
3780 SourceLocation EllipsisLoc) {
3781 ExprResult Res = CorrectDelayedTyposInExpr(Init);
3782 if (!Res.isUsable())
2
Taking false branch
3783 return true;
3784 Init = Res.get();
3785
3786 if (!ConstructorD)
3
Assuming 'ConstructorD' is non-null
4
Taking false branch
3787 return true;
3788
3789 AdjustDeclIfTemplate(ConstructorD);
3790
3791 CXXConstructorDecl *Constructor
3792 = dyn_cast<CXXConstructorDecl>(ConstructorD);
3793 if (!Constructor) {
5
Assuming 'Constructor' is non-null
6
Taking false branch
3794 // The user wrote a constructor initializer on a function that is
3795 // not a C++ constructor. Ignore the error for now, because we may
3796 // have more member initializers coming; we'll diagnose it just
3797 // once in ActOnMemInitializers.
3798 return true;
3799 }
3800
3801 CXXRecordDecl *ClassDecl = Constructor->getParent();
3802
3803 // C++ [class.base.init]p2:
3804 // Names in a mem-initializer-id are looked up in the scope of the
3805 // constructor's class and, if not found in that scope, are looked
3806 // up in the scope containing the constructor's definition.
3807 // [Note: if the constructor's class contains a member with the
3808 // same name as a direct or virtual base class of the class, a
3809 // mem-initializer-id naming the member or base class and composed
3810 // of a single identifier refers to the class member. A
3811 // mem-initializer-id for the hidden base class may be specified
3812 // using a qualified name. ]
3813 if (!SS.getScopeRep() && !TemplateTypeTy) {
7
Assuming the condition is false
3814 // Look for a member, first.
3815 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
3816 if (!Result.empty()) {
3817 ValueDecl *Member;
3818 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
3819 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
3820 if (EllipsisLoc.isValid())
3821 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
3822 << MemberOrBase
3823 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
3824
3825 return BuildMemberInitializer(Member, Init, IdLoc);
3826 }
3827 }
3828 }
3829 // It didn't name a member, so see if it names a class.
3830 QualType BaseType;
3831 TypeSourceInfo *TInfo = nullptr;
3832
3833 if (TemplateTypeTy) {
8
Taking false branch
3834 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
3835 } else if (DS.getTypeSpecType() == TST_decltype) {
9
Assuming the condition is false
10
Taking false branch
3836 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
3837 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
11
Assuming the condition is false
12
Taking false branch
3838 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
3839 return true;
3840 } else {
3841 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
3842 LookupParsedName(R, S, &SS);
3843
3844 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
13
'TyD' initialized here
3845 if (!TyD) {
14
Assuming 'TyD' is null
15
Assuming pointer value is null
16
Taking true branch
3846 if (R.isAmbiguous()) return true;
17
Assuming the condition is false
18
Taking false branch
3847
3848 // We don't want access-control diagnostics here.
3849 R.suppressDiagnostics();
3850
3851 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
19
Assuming the condition is true
20
Taking true branch
3852 bool NotUnknownSpecialization = false;
3853 DeclContext *DC = computeDeclContext(SS, false);
3854 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
21
Taking false branch
3855 NotUnknownSpecialization = !Record->hasAnyDependentBases();
3856
3857 if (!NotUnknownSpecialization) {
22
Taking true branch
3858 // When the scope specifier can refer to a member of an unknown
3859 // specialization, we take it as a type name.
3860 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
3861 SS.getWithLocInContext(Context),
3862 *MemberOrBase, IdLoc);
3863 if (BaseType.isNull())
23
Taking false branch
3864 return true;
3865
3866 TInfo = Context.CreateTypeSourceInfo(BaseType);
3867 DependentNameTypeLoc TL =
3868 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
3869 if (!TL.isNull()) {
24
Taking false branch
3870 TL.setNameLoc(IdLoc);
3871 TL.setElaboratedKeywordLoc(SourceLocation());
3872 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3873 }
3874
3875 R.clear();
3876 R.setLookupName(MemberOrBase);
3877 }
3878 }
3879
3880 // If no results were found, try to correct typos.
3881 TypoCorrection Corr;
3882 if (R.empty() && BaseType.isNull() &&
25
Assuming the condition is false
26
Taking false branch
3883 (Corr = CorrectTypo(
3884 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
3885 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
3886 CTK_ErrorRecovery, ClassDecl))) {
3887 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
3888 // We have found a non-static data member with a similar
3889 // name to what was typed; complain and initialize that
3890 // member.
3891 diagnoseTypo(Corr,
3892 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3893 << MemberOrBase << true);
3894 return BuildMemberInitializer(Member, Init, IdLoc);
3895 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
3896 const CXXBaseSpecifier *DirectBaseSpec;
3897 const CXXBaseSpecifier *VirtualBaseSpec;
3898 if (FindBaseInitializer(*this, ClassDecl,
3899 Context.getTypeDeclType(Type),
3900 DirectBaseSpec, VirtualBaseSpec)) {
3901 // We have found a direct or virtual base class with a
3902 // similar name to what was typed; complain and initialize
3903 // that base class.
3904 diagnoseTypo(Corr,
3905 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3906 << MemberOrBase << false,
3907 PDiag() /*Suppress note, we provide our own.*/);
3908
3909 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
3910 : VirtualBaseSpec;
3911 Diag(BaseSpec->getLocStart(),
3912 diag::note_base_class_specified_here)
3913 << BaseSpec->getType()
3914 << BaseSpec->getSourceRange();
3915
3916 TyD = Type;
3917 }
3918 }
3919 }
3920
3921 if (!TyD && BaseType.isNull()) {
27
Taking false branch
3922 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3923 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3924 return true;
3925 }
3926 }
3927
3928 if (BaseType.isNull()) {
28
Taking true branch
3929 BaseType = Context.getTypeDeclType(TyD);
3930 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
29
Called C++ object pointer is null
3931 if (SS.isSet()) {
3932 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3933 BaseType);
3934 TInfo = Context.CreateTypeSourceInfo(BaseType);
3935 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
3936 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
3937 TL.setElaboratedKeywordLoc(SourceLocation());
3938 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3939 }
3940 }
3941 }
3942
3943 if (!TInfo)
3944 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3945
3946 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3947}
3948
3949MemInitResult
3950Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3951 SourceLocation IdLoc) {
3952 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3953 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3954 assert((DirectMember || IndirectMember) &&(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3955, __extension__ __PRETTY_FUNCTION__))
3955 "Member must be a FieldDecl or IndirectFieldDecl")(static_cast <bool> ((DirectMember || IndirectMember) &&
"Member must be a FieldDecl or IndirectFieldDecl") ? void (0
) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3955, __extension__ __PRETTY_FUNCTION__))
;
3956
3957 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3958 return true;
3959
3960 if (Member->isInvalidDecl())
3961 return true;
3962
3963 MultiExprArg Args;
3964 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3965 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3966 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3967 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3968 } else {
3969 // Template instantiation doesn't reconstruct ParenListExprs for us.
3970 Args = Init;
3971 }
3972
3973 SourceRange InitRange = Init->getSourceRange();
3974
3975 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3976 // Can't check initialization for a member of dependent type or when
3977 // any of the arguments are type-dependent expressions.
3978 DiscardCleanupsInEvaluationContext();
3979 } else {
3980 bool InitList = false;
3981 if (isa<InitListExpr>(Init)) {
3982 InitList = true;
3983 Args = Init;
3984 }
3985
3986 // Initialize the member.
3987 InitializedEntity MemberEntity =
3988 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3989 : InitializedEntity::InitializeMember(IndirectMember,
3990 nullptr);
3991 InitializationKind Kind =
3992 InitList ? InitializationKind::CreateDirectList(
3993 IdLoc, Init->getLocStart(), Init->getLocEnd())
3994 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3995 InitRange.getEnd());
3996
3997 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3998 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3999 nullptr);
4000 if (MemberInit.isInvalid())
4001 return true;
4002
4003 // C++11 [class.base.init]p7:
4004 // The initialization of each base and member constitutes a
4005 // full-expression.
4006 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
4007 if (MemberInit.isInvalid())
4008 return true;
4009
4010 Init = MemberInit.get();
4011 }
4012
4013 if (DirectMember) {
4014 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4015 InitRange.getBegin(), Init,
4016 InitRange.getEnd());
4017 } else {
4018 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4019 InitRange.getBegin(), Init,
4020 InitRange.getEnd());
4021 }
4022}
4023
4024MemInitResult
4025Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4026 CXXRecordDecl *ClassDecl) {
4027 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4028 if (!LangOpts.CPlusPlus11)
4029 return Diag(NameLoc, diag::err_delegating_ctor)
4030 << TInfo->getTypeLoc().getLocalSourceRange();
4031 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4032
4033 bool InitList = true;
4034 MultiExprArg Args = Init;
4035 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4036 InitList = false;
4037 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4038 }
4039
4040 SourceRange InitRange = Init->getSourceRange();
4041 // Initialize the object.
4042 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4043 QualType(ClassDecl->getTypeForDecl(), 0));
4044 InitializationKind Kind =
4045 InitList ? InitializationKind::CreateDirectList(
4046 NameLoc, Init->getLocStart(), Init->getLocEnd())
4047 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4048 InitRange.getEnd());
4049 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4050 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4051 Args, nullptr);
4052 if (DelegationInit.isInvalid())
4053 return true;
4054
4055 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&(static_cast <bool> (cast<CXXConstructExpr>(DelegationInit
.get())->getConstructor() && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4056, __extension__ __PRETTY_FUNCTION__))
4056 "Delegating constructor with no target?")(static_cast <bool> (cast<CXXConstructExpr>(DelegationInit
.get())->getConstructor() && "Delegating constructor with no target?"
) ? void (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4056, __extension__ __PRETTY_FUNCTION__))
;
4057
4058 // C++11 [class.base.init]p7:
4059 // The initialization of each base and member constitutes a
4060 // full-expression.
4061 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
4062 InitRange.getBegin());
4063 if (DelegationInit.isInvalid())
4064 return true;
4065
4066 // If we are in a dependent context, template instantiation will
4067 // perform this type-checking again. Just save the arguments that we
4068 // received in a ParenListExpr.
4069 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4070 // of the information that we have about the base
4071 // initializer. However, deconstructing the ASTs is a dicey process,
4072 // and this approach is far more likely to get the corner cases right.
4073 if (CurContext->isDependentContext())
4074 DelegationInit = Init;
4075
4076 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4077 DelegationInit.getAs<Expr>(),
4078 InitRange.getEnd());
4079}
4080
4081MemInitResult
4082Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4083 Expr *Init, CXXRecordDecl *ClassDecl,
4084 SourceLocation EllipsisLoc) {
4085 SourceLocation BaseLoc
4086 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4087
4088 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4089 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4090 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4091
4092 // C++ [class.base.init]p2:
4093 // [...] Unless the mem-initializer-id names a nonstatic data
4094 // member of the constructor's class or a direct or virtual base
4095 // of that class, the mem-initializer is ill-formed. A
4096 // mem-initializer-list can initialize a base class using any
4097 // name that denotes that base class type.
4098 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4099
4100 SourceRange InitRange = Init->getSourceRange();
4101 if (EllipsisLoc.isValid()) {
4102 // This is a pack expansion.
4103 if (!BaseType->containsUnexpandedParameterPack()) {
4104 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4105 << SourceRange(BaseLoc, InitRange.getEnd());
4106
4107 EllipsisLoc = SourceLocation();
4108 }
4109 } else {
4110 // Check for any unexpanded parameter packs.
4111 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4112 return true;
4113
4114 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4115 return true;
4116 }
4117
4118 // Check for direct and virtual base classes.
4119 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4120 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4121 if (!Dependent) {
4122 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4123 BaseType))
4124 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4125
4126 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4127 VirtualBaseSpec);
4128
4129 // C++ [base.class.init]p2:
4130 // Unless the mem-initializer-id names a nonstatic data member of the
4131 // constructor's class or a direct or virtual base of that class, the
4132 // mem-initializer is ill-formed.
4133 if (!DirectBaseSpec && !VirtualBaseSpec) {
4134 // If the class has any dependent bases, then it's possible that
4135 // one of those types will resolve to the same type as
4136 // BaseType. Therefore, just treat this as a dependent base
4137 // class initialization. FIXME: Should we try to check the
4138 // initialization anyway? It seems odd.
4139 if (ClassDecl->hasAnyDependentBases())
4140 Dependent = true;
4141 else
4142 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4143 << BaseType << Context.getTypeDeclType(ClassDecl)
4144 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4145 }
4146 }
4147
4148 if (Dependent) {
4149 DiscardCleanupsInEvaluationContext();
4150
4151 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4152 /*IsVirtual=*/false,
4153 InitRange.getBegin(), Init,
4154 InitRange.getEnd(), EllipsisLoc);
4155 }
4156
4157 // C++ [base.class.init]p2:
4158 // If a mem-initializer-id is ambiguous because it designates both
4159 // a direct non-virtual base class and an inherited virtual base
4160 // class, the mem-initializer is ill-formed.
4161 if (DirectBaseSpec && VirtualBaseSpec)
4162 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4163 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4164
4165 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4166 if (!BaseSpec)
4167 BaseSpec = VirtualBaseSpec;
4168
4169 // Initialize the base.
4170 bool InitList = true;
4171 MultiExprArg Args = Init;
4172 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4173 InitList = false;
4174 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4175 }
4176
4177 InitializedEntity BaseEntity =
4178 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4179 InitializationKind Kind =
4180 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4181 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4182 InitRange.getEnd());
4183 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4184 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4185 if (BaseInit.isInvalid())
4186 return true;
4187
4188 // C++11 [class.base.init]p7:
4189 // The initialization of each base and member constitutes a
4190 // full-expression.
4191 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
4192 if (BaseInit.isInvalid())
4193 return true;
4194
4195 // If we are in a dependent context, template instantiation will
4196 // perform this type-checking again. Just save the arguments that we
4197 // received in a ParenListExpr.
4198 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4199 // of the information that we have about the base
4200 // initializer. However, deconstructing the ASTs is a dicey process,
4201 // and this approach is far more likely to get the corner cases right.
4202 if (CurContext->isDependentContext())
4203 BaseInit = Init;
4204
4205 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4206 BaseSpec->isVirtual(),
4207 InitRange.getBegin(),
4208 BaseInit.getAs<Expr>(),
4209 InitRange.getEnd(), EllipsisLoc);
4210}
4211
4212// Create a static_cast\<T&&>(expr).
4213static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4214 if (T.isNull()) T = E->getType();
4215 QualType TargetType = SemaRef.BuildReferenceType(
4216 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4217 SourceLocation ExprLoc = E->getLocStart();
4218 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4219 TargetType, ExprLoc);
4220
4221 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4222 SourceRange(ExprLoc, ExprLoc),
4223 E->getSourceRange()).get();
4224}
4225
4226/// ImplicitInitializerKind - How an implicit base or member initializer should
4227/// initialize its base or member.
4228enum ImplicitInitializerKind {
4229 IIK_Default,
4230 IIK_Copy,
4231 IIK_Move,
4232 IIK_Inherit
4233};
4234
4235static bool
4236BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4237 ImplicitInitializerKind ImplicitInitKind,
4238 CXXBaseSpecifier *BaseSpec,
4239 bool IsInheritedVirtualBase,
4240 CXXCtorInitializer *&CXXBaseInit) {
4241 InitializedEntity InitEntity
4242 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4243 IsInheritedVirtualBase);
4244
4245 ExprResult BaseInit;
4246
4247 switch (ImplicitInitKind) {
4248 case IIK_Inherit:
4249 case IIK_Default: {
4250 InitializationKind InitKind
4251 = InitializationKind::CreateDefault(Constructor->getLocation());
4252 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4253 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4254 break;
4255 }
4256
4257 case IIK_Move:
4258 case IIK_Copy: {
4259 bool Moving = ImplicitInitKind == IIK_Move;
4260 ParmVarDecl *Param = Constructor->getParamDecl(0);
4261 QualType ParamType = Param->getType().getNonReferenceType();
4262
4263 Expr *CopyCtorArg =
4264 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4265 SourceLocation(), Param, false,
4266 Constructor->getLocation(), ParamType,
4267 VK_LValue, nullptr);
4268
4269 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4270
4271 // Cast to the base class to avoid ambiguities.
4272 QualType ArgTy =
4273 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4274 ParamType.getQualifiers());
4275
4276 if (Moving) {
4277 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4278 }
4279
4280 CXXCastPath BasePath;
4281 BasePath.push_back(BaseSpec);
4282 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4283 CK_UncheckedDerivedToBase,
4284 Moving ? VK_XValue : VK_LValue,
4285 &BasePath).get();
4286
4287 InitializationKind InitKind
4288 = InitializationKind::CreateDirect(Constructor->getLocation(),
4289 SourceLocation(), SourceLocation());
4290 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4291 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4292 break;
4293 }
4294 }
4295
4296 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4297 if (BaseInit.isInvalid())
4298 return true;
4299
4300 CXXBaseInit =
4301 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4302 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4303 SourceLocation()),
4304 BaseSpec->isVirtual(),
4305 SourceLocation(),
4306 BaseInit.getAs<Expr>(),
4307 SourceLocation(),
4308 SourceLocation());
4309
4310 return false;
4311}
4312
4313static bool RefersToRValueRef(Expr *MemRef) {
4314 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4315 return Referenced->getType()->isRValueReferenceType();
4316}
4317
4318static bool
4319BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4320 ImplicitInitializerKind ImplicitInitKind,
4321 FieldDecl *Field, IndirectFieldDecl *Indirect,
4322 CXXCtorInitializer *&CXXMemberInit) {
4323 if (Field->isInvalidDecl())
4324 return true;
4325
4326 SourceLocation Loc = Constructor->getLocation();
4327
4328 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4329 bool Moving = ImplicitInitKind == IIK_Move;
4330 ParmVarDecl *Param = Constructor->getParamDecl(0);
4331 QualType ParamType = Param->getType().getNonReferenceType();
4332
4333 // Suppress copying zero-width bitfields.
4334 if (Field->isZeroLengthBitField(SemaRef.Context))
4335 return false;
4336
4337 Expr *MemberExprBase =
4338 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4339 SourceLocation(), Param, false,
4340 Loc, ParamType, VK_LValue, nullptr);
4341
4342 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4343
4344 if (Moving) {
4345 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4346 }
4347
4348 // Build a reference to this field within the parameter.
4349 CXXScopeSpec SS;
4350 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4351 Sema::LookupMemberName);
4352 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4353 : cast<ValueDecl>(Field), AS_public);
4354 MemberLookup.resolveKind();
4355 ExprResult CtorArg
4356 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4357 ParamType, Loc,
4358 /*IsArrow=*/false,
4359 SS,
4360 /*TemplateKWLoc=*/SourceLocation(),
4361 /*FirstQualifierInScope=*/nullptr,
4362 MemberLookup,
4363 /*TemplateArgs=*/nullptr,
4364 /*S*/nullptr);
4365 if (CtorArg.isInvalid())
4366 return true;
4367
4368 // C++11 [class.copy]p15:
4369 // - if a member m has rvalue reference type T&&, it is direct-initialized
4370 // with static_cast<T&&>(x.m);
4371 if (RefersToRValueRef(CtorArg.get())) {
4372 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4373 }
4374
4375 InitializedEntity Entity =
4376 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4377 /*Implicit*/ true)
4378 : InitializedEntity::InitializeMember(Field, nullptr,
4379 /*Implicit*/ true);
4380
4381 // Direct-initialize to use the copy constructor.
4382 InitializationKind InitKind =
4383 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4384
4385 Expr *CtorArgE = CtorArg.getAs<Expr>();
4386 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4387 ExprResult MemberInit =
4388 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4389 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4390 if (MemberInit.isInvalid())
4391 return true;
4392
4393 if (Indirect)
4394 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4395 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4396 else
4397 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4398 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4399 return false;
4400 }
4401
4402 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4403, __extension__ __PRETTY_FUNCTION__))
4403 "Unhandled implicit init kind!")(static_cast <bool> ((ImplicitInitKind == IIK_Default ||
ImplicitInitKind == IIK_Inherit) && "Unhandled implicit init kind!"
) ? void (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4403, __extension__ __PRETTY_FUNCTION__))
;
4404
4405 QualType FieldBaseElementType =
4406 SemaRef.Context.getBaseElementType(Field->getType());
4407
4408 if (FieldBaseElementType->isRecordType()) {
4409 InitializedEntity InitEntity =
4410 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4411 /*Implicit*/ true)
4412 : InitializedEntity::InitializeMember(Field, nullptr,
4413 /*Implicit*/ true);
4414 InitializationKind InitKind =
4415 InitializationKind::CreateDefault(Loc);
4416
4417 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4418 ExprResult MemberInit =
4419 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4420
4421 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4422 if (MemberInit.isInvalid())
4423 return true;
4424
4425 if (Indirect)
4426 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4427 Indirect, Loc,
4428 Loc,
4429 MemberInit.get(),
4430 Loc);
4431 else
4432 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4433 Field, Loc, Loc,
4434 MemberInit.get(),
4435 Loc);
4436 return false;
4437 }
4438
4439 if (!Field->getParent()->isUnion()) {
4440 if (FieldBaseElementType->isReferenceType()) {
4441 SemaRef.Diag(Constructor->getLocation(),
4442 diag::err_uninitialized_member_in_ctor)
4443 << (int)Constructor->isImplicit()
4444 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4445 << 0 << Field->getDeclName();
4446 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4447 return true;
4448 }
4449
4450 if (FieldBaseElementType.isConstQualified()) {
4451 SemaRef.Diag(Constructor->getLocation(),
4452 diag::err_uninitialized_member_in_ctor)
4453 << (int)Constructor->isImplicit()
4454 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4455 << 1 << Field->getDeclName();
4456 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4457 return true;
4458 }
4459 }
4460
4461 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4462 // ARC and Weak:
4463 // Default-initialize Objective-C pointers to NULL.
4464 CXXMemberInit
4465 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4466 Loc, Loc,
4467 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4468 Loc);
4469 return false;
4470 }
4471
4472 // Nothing to initialize.
4473 CXXMemberInit = nullptr;
4474 return false;
4475}
4476
4477namespace {
4478struct BaseAndFieldInfo {
4479 Sema &S;
4480 CXXConstructorDecl *Ctor;
4481 bool AnyErrorsInInits;
4482 ImplicitInitializerKind IIK;
4483 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4484 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4485 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4486
4487 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4488 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4489 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4490 if (Ctor->getInheritedConstructor())
4491 IIK = IIK_Inherit;
4492 else if (Generated && Ctor->isCopyConstructor())
4493 IIK = IIK_Copy;
4494 else if (Generated && Ctor->isMoveConstructor())
4495 IIK = IIK_Move;
4496 else
4497 IIK = IIK_Default;
4498 }
4499
4500 bool isImplicitCopyOrMove() const {
4501 switch (IIK) {
4502 case IIK_Copy:
4503 case IIK_Move:
4504 return true;
4505
4506 case IIK_Default:
4507 case IIK_Inherit:
4508 return false;
4509 }
4510
4511 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4511)
;
4512 }
4513
4514 bool addFieldInitializer(CXXCtorInitializer *Init) {
4515 AllToInit.push_back(Init);
4516
4517 // Check whether this initializer makes the field "used".
4518 if (Init->getInit()->HasSideEffects(S.Context))
4519 S.UnusedPrivateFields.remove(Init->getAnyMember());
4520
4521 return false;
4522 }
4523
4524 bool isInactiveUnionMember(FieldDecl *Field) {
4525 RecordDecl *Record = Field->getParent();
4526 if (!Record->isUnion())
4527 return false;
4528
4529 if (FieldDecl *Active =
4530 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4531 return Active != Field->getCanonicalDecl();
4532
4533 // In an implicit copy or move constructor, ignore any in-class initializer.
4534 if (isImplicitCopyOrMove())
4535 return true;
4536
4537 // If there's no explicit initialization, the field is active only if it
4538 // has an in-class initializer...
4539 if (Field->hasInClassInitializer())
4540 return false;
4541 // ... or it's an anonymous struct or union whose class has an in-class
4542 // initializer.
4543 if (!Field->isAnonymousStructOrUnion())
4544 return true;
4545 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4546 return !FieldRD->hasInClassInitializer();
4547 }
4548
4549 /// Determine whether the given field is, or is within, a union member
4550 /// that is inactive (because there was an initializer given for a different
4551 /// member of the union, or because the union was not initialized at all).
4552 bool isWithinInactiveUnionMember(FieldDecl *Field,
4553 IndirectFieldDecl *Indirect) {
4554 if (!Indirect)
4555 return isInactiveUnionMember(Field);
4556
4557 for (auto *C : Indirect->chain()) {
4558 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4559 if (Field && isInactiveUnionMember(Field))
4560 return true;
4561 }
4562 return false;
4563 }
4564};
4565}
4566
4567/// Determine whether the given type is an incomplete or zero-lenfgth
4568/// array type.
4569static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4570 if (T->isIncompleteArrayType())
4571 return true;
4572
4573 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4574 if (!ArrayT->getSize())
4575 return true;
4576
4577 T = ArrayT->getElementType();
4578 }
4579
4580 return false;
4581}
4582
4583static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4584 FieldDecl *Field,
4585 IndirectFieldDecl *Indirect = nullptr) {
4586 if (Field->isInvalidDecl())
4587 return false;
4588
4589 // Overwhelmingly common case: we have a direct initializer for this field.
4590 if (CXXCtorInitializer *Init =
4591 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4592 return Info.addFieldInitializer(Init);
4593
4594 // C++11 [class.base.init]p8:
4595 // if the entity is a non-static data member that has a
4596 // brace-or-equal-initializer and either
4597 // -- the constructor's class is a union and no other variant member of that
4598 // union is designated by a mem-initializer-id or
4599 // -- the constructor's class is not a union, and, if the entity is a member
4600 // of an anonymous union, no other member of that union is designated by
4601 // a mem-initializer-id,
4602 // the entity is initialized as specified in [dcl.init].
4603 //
4604 // We also apply the same rules to handle anonymous structs within anonymous
4605 // unions.
4606 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4607 return false;
4608
4609 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4610 ExprResult DIE =
4611 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4612 if (DIE.isInvalid())
4613 return true;
4614
4615 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4616 SemaRef.checkInitializerLifetime(Entity, DIE.get());
4617
4618 CXXCtorInitializer *Init;
4619 if (Indirect)
4620 Init = new (SemaRef.Context)
4621 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4622 SourceLocation(), DIE.get(), SourceLocation());
4623 else
4624 Init = new (SemaRef.Context)
4625 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4626 SourceLocation(), DIE.get(), SourceLocation());
4627 return Info.addFieldInitializer(Init);
4628 }
4629
4630 // Don't initialize incomplete or zero-length arrays.
4631 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4632 return false;
4633
4634 // Don't try to build an implicit initializer if there were semantic
4635 // errors in any of the initializers (and therefore we might be
4636 // missing some that the user actually wrote).
4637 if (Info.AnyErrorsInInits)
4638 return false;
4639
4640 CXXCtorInitializer *Init = nullptr;
4641 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4642 Indirect, Init))
4643 return true;
4644
4645 if (!Init)
4646 return false;
4647
4648 return Info.addFieldInitializer(Init);
4649}
4650
4651bool
4652Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4653 CXXCtorInitializer *Initializer) {
4654 assert(Initializer->isDelegatingInitializer())(static_cast <bool> (Initializer->isDelegatingInitializer
()) ? void (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4654, __extension__ __PRETTY_FUNCTION__))
;
4655 Constructor->setNumCtorInitializers(1);
4656 CXXCtorInitializer **initializer =
4657 new (Context) CXXCtorInitializer*[1];
4658 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4659 Constructor->setCtorInitializers(initializer);
4660
4661 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4662 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4663 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4664 }
4665
4666 DelegatingCtorDecls.push_back(Constructor);
4667
4668 DiagnoseUninitializedFields(*this, Constructor);
4669
4670 return false;
4671}
4672
4673bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4674 ArrayRef<CXXCtorInitializer *> Initializers) {
4675 if (Constructor->isDependentContext()) {
4676 // Just store the initializers as written, they will be checked during
4677 // instantiation.
4678 if (!Initializers.empty()) {
4679 Constructor->setNumCtorInitializers(Initializers.size());
4680 CXXCtorInitializer **baseOrMemberInitializers =
4681 new (Context) CXXCtorInitializer*[Initializers.size()];
4682 memcpy(baseOrMemberInitializers, Initializers.data(),
4683 Initializers.size() * sizeof(CXXCtorInitializer*));
4684 Constructor->setCtorInitializers(baseOrMemberInitializers);
4685 }
4686
4687 // Let template instantiation know whether we had errors.
4688 if (AnyErrors)
4689 Constructor->setInvalidDecl();
4690
4691 return false;
4692 }
4693
4694 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4695
4696 // We need to build the initializer AST according to order of construction
4697 // and not what user specified in the Initializers list.
4698 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4699 if (!ClassDecl)
4700 return true;
4701
4702 bool HadError = false;
4703
4704 for (unsigned i = 0; i < Initializers.size(); i++) {
4705 CXXCtorInitializer *Member = Initializers[i];
4706
4707 if (Member->isBaseInitializer())
4708 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4709 else {
4710 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4711
4712 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4713 for (auto *C : F->chain()) {
4714 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4715 if (FD && FD->getParent()->isUnion())
4716 Info.ActiveUnionMember.insert(std::make_pair(
4717 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4718 }
4719 } else if (FieldDecl *FD = Member->getMember()) {
4720 if (FD->getParent()->isUnion())
4721 Info.ActiveUnionMember.insert(std::make_pair(
4722 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4723 }
4724 }
4725 }
4726
4727 // Keep track of the direct virtual bases.
4728 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4729 for (auto &I : ClassDecl->bases()) {
4730 if (I.isVirtual())
4731 DirectVBases.insert(&I);
4732 }
4733
4734 // Push virtual bases before others.
4735 for (auto &VBase : ClassDecl->vbases()) {
4736 if (CXXCtorInitializer *Value
4737 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
4738 // [class.base.init]p7, per DR257:
4739 // A mem-initializer where the mem-initializer-id names a virtual base
4740 // class is ignored during execution of a constructor of any class that
4741 // is not the most derived class.
4742 if (ClassDecl->isAbstract()) {
4743 // FIXME: Provide a fixit to remove the base specifier. This requires
4744 // tracking the location of the associated comma for a base specifier.
4745 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
4746 << VBase.getType() << ClassDecl;
4747 DiagnoseAbstractType(ClassDecl);
4748 }
4749
4750 Info.AllToInit.push_back(Value);
4751 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
4752 // [class.base.init]p8, per DR257:
4753 // If a given [...] base class is not named by a mem-initializer-id
4754 // [...] and the entity is not a virtual base class of an abstract
4755 // class, then [...] the entity is default-initialized.
4756 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
4757 CXXCtorInitializer *CXXBaseInit;
4758 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4759 &VBase, IsInheritedVirtualBase,
4760 CXXBaseInit)) {
4761 HadError = true;
4762 continue;
4763 }
4764
4765 Info.AllToInit.push_back(CXXBaseInit);
4766 }
4767 }
4768
4769 // Non-virtual bases.
4770 for (auto &Base : ClassDecl->bases()) {
4771 // Virtuals are in the virtual base list and already constructed.
4772 if (Base.isVirtual())
4773 continue;
4774
4775 if (CXXCtorInitializer *Value
4776 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
4777 Info.AllToInit.push_back(Value);
4778 } else if (!AnyErrors) {
4779 CXXCtorInitializer *CXXBaseInit;
4780 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4781 &Base, /*IsInheritedVirtualBase=*/false,
4782 CXXBaseInit)) {
4783 HadError = true;
4784 continue;
4785 }
4786
4787 Info.AllToInit.push_back(CXXBaseInit);
4788 }
4789 }
4790
4791 // Fields.
4792 for (auto *Mem : ClassDecl->decls()) {
4793 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4794 // C++ [class.bit]p2:
4795 // A declaration for a bit-field that omits the identifier declares an
4796 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4797 // initialized.
4798 if (F->isUnnamedBitfield())
4799 continue;
4800
4801 // If we're not generating the implicit copy/move constructor, then we'll
4802 // handle anonymous struct/union fields based on their individual
4803 // indirect fields.
4804 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4805 continue;
4806
4807 if (CollectFieldInitializer(*this, Info, F))
4808 HadError = true;
4809 continue;
4810 }
4811
4812 // Beyond this point, we only consider default initialization.
4813 if (Info.isImplicitCopyOrMove())
4814 continue;
4815
4816 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4817 if (F->getType()->isIncompleteArrayType()) {
4818 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4819, __extension__ __PRETTY_FUNCTION__))
4819 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4819, __extension__ __PRETTY_FUNCTION__))
;
4820 continue;
4821 }
4822
4823 // Initialize each field of an anonymous struct individually.
4824 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4825 HadError = true;
4826
4827 continue;
4828 }
4829 }
4830
4831 unsigned NumInitializers = Info.AllToInit.size();
4832 if (NumInitializers > 0) {
4833 Constructor->setNumCtorInitializers(NumInitializers);
4834 CXXCtorInitializer **baseOrMemberInitializers =
4835 new (Context) CXXCtorInitializer*[NumInitializers];
4836 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4837 NumInitializers * sizeof(CXXCtorInitializer*));
4838 Constructor->setCtorInitializers(baseOrMemberInitializers);
4839
4840 // Constructors implicitly reference the base and member
4841 // destructors.
4842 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4843 Constructor->getParent());
4844 }
4845
4846 return HadError;
4847}
4848
4849static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4850 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4851 const RecordDecl *RD = RT->getDecl();
4852 if (RD->isAnonymousStructOrUnion()) {
4853 for (auto *Field : RD->fields())
4854 PopulateKeysForFields(Field, IdealInits);
4855 return;
4856 }
4857 }
4858 IdealInits.push_back(Field->getCanonicalDecl());
4859}
4860
4861static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4862 return Context.getCanonicalType(BaseType).getTypePtr();
4863}
4864
4865static const void *GetKeyForMember(ASTContext &Context,
4866 CXXCtorInitializer *Member) {
4867 if (!Member->isAnyMemberInitializer())
4868 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4869
4870 return Member->getAnyMember()->getCanonicalDecl();
4871}
4872
4873static void DiagnoseBaseOrMemInitializerOrder(
4874 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4875 ArrayRef<CXXCtorInitializer *> Inits) {
4876 if (Constructor->getDeclContext()->isDependentContext())
4877 return;
4878
4879 // Don't check initializers order unless the warning is enabled at the
4880 // location of at least one initializer.
4881 bool ShouldCheckOrder = false;
4882 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4883 CXXCtorInitializer *Init = Inits[InitIndex];
4884 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4885 Init->getSourceLocation())) {
4886 ShouldCheckOrder = true;
4887 break;
4888 }
4889 }
4890 if (!ShouldCheckOrder)
4891 return;
4892
4893 // Build the list of bases and members in the order that they'll
4894 // actually be initialized. The explicit initializers should be in
4895 // this same order but may be missing things.
4896 SmallVector<const void*, 32> IdealInitKeys;
4897
4898 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4899
4900 // 1. Virtual bases.
4901 for (const auto &VBase : ClassDecl->vbases())
4902 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4903
4904 // 2. Non-virtual bases.
4905 for (const auto &Base : ClassDecl->bases()) {
4906 if (Base.isVirtual())
4907 continue;
4908 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4909 }
4910
4911 // 3. Direct fields.
4912 for (auto *Field : ClassDecl->fields()) {
4913 if (Field->isUnnamedBitfield())
4914 continue;
4915
4916 PopulateKeysForFields(Field, IdealInitKeys);
4917 }
4918
4919 unsigned NumIdealInits = IdealInitKeys.size();
4920 unsigned IdealIndex = 0;
4921
4922 CXXCtorInitializer *PrevInit = nullptr;
4923 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4924 CXXCtorInitializer *Init = Inits[InitIndex];
4925 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4926
4927 // Scan forward to try to find this initializer in the idealized
4928 // initializers list.
4929 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4930 if (InitKey == IdealInitKeys[IdealIndex])
4931 break;
4932
4933 // If we didn't find this initializer, it must be because we
4934 // scanned past it on a previous iteration. That can only
4935 // happen if we're out of order; emit a warning.
4936 if (IdealIndex == NumIdealInits && PrevInit) {
4937 Sema::SemaDiagnosticBuilder D =
4938 SemaRef.Diag(PrevInit->getSourceLocation(),
4939 diag::warn_initializer_out_of_order);
4940
4941 if (PrevInit->isAnyMemberInitializer())
4942 D << 0 << PrevInit->getAnyMember()->getDeclName();
4943 else
4944 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4945
4946 if (Init->isAnyMemberInitializer())
4947 D << 0 << Init->getAnyMember()->getDeclName();
4948 else
4949 D << 1 << Init->getTypeSourceInfo()->getType();
4950
4951 // Move back to the initializer's location in the ideal list.
4952 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4953 if (InitKey == IdealInitKeys[IdealIndex])
4954 break;
4955
4956 assert(IdealIndex < NumIdealInits &&(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4957, __extension__ __PRETTY_FUNCTION__))
4957 "initializer not found in initializer list")(static_cast <bool> (IdealIndex < NumIdealInits &&
"initializer not found in initializer list") ? void (0) : __assert_fail
("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4957, __extension__ __PRETTY_FUNCTION__))
;
4958 }
4959
4960 PrevInit = Init;
4961 }
4962}
4963
4964namespace {
4965bool CheckRedundantInit(Sema &S,
4966 CXXCtorInitializer *Init,
4967 CXXCtorInitializer *&PrevInit) {
4968 if (!PrevInit) {
4969 PrevInit = Init;
4970 return false;
4971 }
4972
4973 if (FieldDecl *Field = Init->getAnyMember())
4974 S.Diag(Init->getSourceLocation(),
4975 diag::err_multiple_mem_initialization)
4976 << Field->getDeclName()
4977 << Init->getSourceRange();
4978 else {
4979 const Type *BaseClass = Init->getBaseClass();
4980 assert(BaseClass && "neither field nor base")(static_cast <bool> (BaseClass && "neither field nor base"
) ? void (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4980, __extension__ __PRETTY_FUNCTION__))
;
4981 S.Diag(Init->getSourceLocation(),
4982 diag::err_multiple_base_initialization)
4983 << QualType(BaseClass, 0)
4984 << Init->getSourceRange();
4985 }
4986 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4987 << 0 << PrevInit->getSourceRange();
4988
4989 return true;
4990}
4991
4992typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4993typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4994
4995bool CheckRedundantUnionInit(Sema &S,
4996 CXXCtorInitializer *Init,
4997 RedundantUnionMap &Unions) {
4998 FieldDecl *Field = Init->getAnyMember();
4999 RecordDecl *Parent = Field->getParent();
5000 NamedDecl *Child = Field;
5001
5002 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5003 if (Parent->isUnion()) {
5004 UnionEntry &En = Unions[Parent];
5005 if (En.first && En.first != Child) {
5006 S.Diag(Init->getSourceLocation(),
5007 diag::err_multiple_mem_union_initialization)
5008 << Field->getDeclName()
5009 << Init->getSourceRange();
5010 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5011 << 0 << En.second->getSourceRange();
5012 return true;
5013 }
5014 if (!En.first) {
5015 En.first = Child;
5016 En.second = Init;
5017 }
5018 if (!Parent->isAnonymousStructOrUnion())
5019 return false;
5020 }
5021
5022 Child = Parent;
5023 Parent = cast<RecordDecl>(Parent->getDeclContext());
5024 }
5025
5026 return false;
5027}
5028}
5029
5030/// ActOnMemInitializers - Handle the member initializers for a constructor.
5031void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5032 SourceLocation ColonLoc,
5033 ArrayRef<CXXCtorInitializer*> MemInits,
5034 bool AnyErrors) {
5035 if (!ConstructorDecl)
5036 return;
5037
5038 AdjustDeclIfTemplate(ConstructorDecl);
5039
5040 CXXConstructorDecl *Constructor
5041 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5042
5043 if (!Constructor) {
5044 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5045 return;
5046 }
5047
5048 // Mapping for the duplicate initializers check.
5049 // For member initializers, this is keyed with a FieldDecl*.
5050 // For base initializers, this is keyed with a Type*.
5051 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5052
5053 // Mapping for the inconsistent anonymous-union initializers check.
5054 RedundantUnionMap MemberUnions;
5055
5056 bool HadError = false;
5057 for (unsigned i = 0; i < MemInits.size(); i++) {
5058 CXXCtorInitializer *Init = MemInits[i];
5059
5060 // Set the source order index.
5061 Init->setSourceOrder(i);
5062
5063 if (Init->isAnyMemberInitializer()) {
5064 const void *Key = GetKeyForMember(Context, Init);
5065 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5066 CheckRedundantUnionInit(*this, Init, MemberUnions))
5067 HadError = true;
5068 } else if (Init->isBaseInitializer()) {
5069 const void *Key = GetKeyForMember(Context, Init);
5070 if (CheckRedundantInit(*this, Init, Members[Key]))
5071 HadError = true;
5072 } else {
5073 assert(Init->isDelegatingInitializer())(static_cast <bool> (Init->isDelegatingInitializer()
) ? void (0) : __assert_fail ("Init->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5073, __extension__ __PRETTY_FUNCTION__))
;
5074 // This must be the only initializer
5075 if (MemInits.size() != 1) {
5076 Diag(Init->getSourceLocation(),
5077 diag::err_delegating_initializer_alone)
5078 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5079 // We will treat this as being the only initializer.
5080 }
5081 SetDelegatingInitializer(Constructor, MemInits[i]);
5082 // Return immediately as the initializer is set.
5083 return;
5084 }
5085 }
5086
5087 if (HadError)
5088 return;
5089
5090 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5091
5092 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5093
5094 DiagnoseUninitializedFields(*this, Constructor);
5095}
5096
5097void
5098Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5099 CXXRecordDecl *ClassDecl) {
5100 // Ignore dependent contexts. Also ignore unions, since their members never
5101 // have destructors implicitly called.
5102 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5103 return;
5104
5105 // FIXME: all the access-control diagnostics are positioned on the
5106 // field/base declaration. That's probably good; that said, the
5107 // user might reasonably want to know why the destructor is being
5108 // emitted, and we currently don't say.
5109
5110 // Non-static data members.
5111 for (auto *Field : ClassDecl->fields()) {
5112 if (Field->isInvalidDecl())
5113 continue;
5114
5115 // Don't destroy incomplete or zero-length arrays.
5116 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5117 continue;
5118
5119 QualType FieldType = Context.getBaseElementType(Field->getType());
5120
5121 const RecordType* RT = FieldType->getAs<RecordType>();
5122 if (!RT)
5123 continue;
5124
5125 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5126 if (FieldClassDecl->isInvalidDecl())
5127 continue;
5128 if (FieldClassDecl->hasIrrelevantDestructor())
5129 continue;
5130 // The destructor for an implicit anonymous union member is never invoked.
5131 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5132 continue;
5133
5134 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5135 assert(Dtor && "No dtor found for FieldClassDecl!")(static_cast <bool> (Dtor && "No dtor found for FieldClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5135, __extension__ __PRETTY_FUNCTION__))
;
5136 CheckDestructorAccess(Field->getLocation(), Dtor,
5137 PDiag(diag::err_access_dtor_field)
5138 << Field->getDeclName()
5139 << FieldType);
5140
5141 MarkFunctionReferenced(Location, Dtor);
5142 DiagnoseUseOfDecl(Dtor, Location);
5143 }
5144
5145 // We only potentially invoke the destructors of potentially constructed
5146 // subobjects.
5147 bool VisitVirtualBases = !ClassDecl->isAbstract();
5148
5149 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5150
5151 // Bases.
5152 for (const auto &Base : ClassDecl->bases()) {
5153 // Bases are always records in a well-formed non-dependent class.
5154 const RecordType *RT = Base.getType()->getAs<RecordType>();
5155
5156 // Remember direct virtual bases.
5157 if (Base.isVirtual()) {
5158 if (!VisitVirtualBases)
5159 continue;
5160 DirectVirtualBases.insert(RT);
5161 }
5162
5163 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5164 // If our base class is invalid, we probably can't get its dtor anyway.
5165 if (BaseClassDecl->isInvalidDecl())
5166 continue;
5167 if (BaseClassDecl->hasIrrelevantDestructor())
5168 continue;
5169
5170 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5171 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5171, __extension__ __PRETTY_FUNCTION__))
;
5172
5173 // FIXME: caret should be on the start of the class name
5174 CheckDestructorAccess(Base.getLocStart(), Dtor,
5175 PDiag(diag::err_access_dtor_base)
5176 << Base.getType()
5177 << Base.getSourceRange(),
5178 Context.getTypeDeclType(ClassDecl));
5179
5180 MarkFunctionReferenced(Location, Dtor);
5181 DiagnoseUseOfDecl(Dtor, Location);
5182 }
5183
5184 if (!VisitVirtualBases)
5185 return;
5186
5187 // Virtual bases.
5188 for (const auto &VBase : ClassDecl->vbases()) {
5189 // Bases are always records in a well-formed non-dependent class.
5190 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5191
5192 // Ignore direct virtual bases.
5193 if (DirectVirtualBases.count(RT))
5194 continue;
5195
5196 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5197 // If our base class is invalid, we probably can't get its dtor anyway.
5198 if (BaseClassDecl->isInvalidDecl())
5199 continue;
5200 if (BaseClassDecl->hasIrrelevantDestructor())
5201 continue;
5202
5203 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5204 assert(Dtor && "No dtor found for BaseClassDecl!")(static_cast <bool> (Dtor && "No dtor found for BaseClassDecl!"
) ? void (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5204, __extension__ __PRETTY_FUNCTION__))
;
5205 if (CheckDestructorAccess(
5206 ClassDecl->getLocation(), Dtor,
5207 PDiag(diag::err_access_dtor_vbase)
5208 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5209 Context.getTypeDeclType(ClassDecl)) ==
5210 AR_accessible) {
5211 CheckDerivedToBaseConversion(
5212 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5213 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5214 SourceRange(), DeclarationName(), nullptr);
5215 }
5216
5217 MarkFunctionReferenced(Location, Dtor);
5218 DiagnoseUseOfDecl(Dtor, Location);
5219 }
5220}
5221
5222void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5223 if (!CDtorDecl)
5224 return;
5225
5226 if (CXXConstructorDecl *Constructor
5227 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5228 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5229 DiagnoseUninitializedFields(*this, Constructor);
5230 }
5231}
5232
5233bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5234 if (!getLangOpts().CPlusPlus)
5235 return false;
5236
5237 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5238 if (!RD)
5239 return false;
5240
5241 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5242 // class template specialization here, but doing so breaks a lot of code.
5243
5244 // We can't answer whether something is abstract until it has a
5245 // definition. If it's currently being defined, we'll walk back
5246 // over all the declarations when we have a full definition.
5247 const CXXRecordDecl *Def = RD->getDefinition();
5248 if (!Def || Def->isBeingDefined())
5249 return false;
5250
5251 return RD->isAbstract();
5252}
5253
5254bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5255 TypeDiagnoser &Diagnoser) {
5256 if (!isAbstractType(Loc, T))
5257 return false;
5258
5259 T = Context.getBaseElementType(T);
5260 Diagnoser.diagnose(*this, Loc, T);
5261 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5262 return true;
5263}
5264
5265void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5266 // Check if we've already emitted the list of pure virtual functions
5267 // for this class.
5268 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5269 return;
5270
5271 // If the diagnostic is suppressed, don't emit the notes. We're only
5272 // going to emit them once, so try to attach them to a diagnostic we're
5273 // actually going to show.
5274 if (Diags.isLastDiagnosticIgnored())
5275 return;
5276
5277 CXXFinalOverriderMap FinalOverriders;
5278 RD->getFinalOverriders(FinalOverriders);
5279
5280 // Keep a set of seen pure methods so we won't diagnose the same method
5281 // more than once.
5282 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5283
5284 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5285 MEnd = FinalOverriders.end();
5286 M != MEnd;
5287 ++M) {
5288 for (OverridingMethods::iterator SO = M->second.begin(),
5289 SOEnd = M->second.end();
5290 SO != SOEnd; ++SO) {
5291 // C++ [class.abstract]p4:
5292 // A class is abstract if it contains or inherits at least one
5293 // pure virtual function for which the final overrider is pure
5294 // virtual.
5295
5296 //
5297 if (SO->second.size() != 1)
5298 continue;
5299
5300 if (!SO->second.front().Method->isPure())
5301 continue;
5302
5303 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5304 continue;
5305
5306 Diag(SO->second.front().Method->getLocation(),
5307 diag::note_pure_virtual_function)
5308 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5309 }
5310 }
5311
5312 if (!PureVirtualClassDiagSet)
5313 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5314 PureVirtualClassDiagSet->insert(RD);
5315}
5316
5317namespace {
5318struct AbstractUsageInfo {
5319 Sema &S;
5320 CXXRecordDecl *Record;
5321 CanQualType AbstractType;
5322 bool Invalid;
5323
5324 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5325 : S(S), Record(Record),
5326 AbstractType(S.Context.getCanonicalType(
5327 S.Context.getTypeDeclType(Record))),
5328 Invalid(false) {}
5329
5330 void DiagnoseAbstractType() {
5331 if (Invalid) return;
5332 S.DiagnoseAbstractType(Record);
5333 Invalid = true;
5334 }
5335
5336 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5337};
5338
5339struct CheckAbstractUsage {
5340 AbstractUsageInfo &Info;
5341 const NamedDecl *Ctx;
5342
5343 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5344 : Info(Info), Ctx(Ctx) {}
5345
5346 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5347 switch (TL.getTypeLocClass()) {
5348#define ABSTRACT_TYPELOC(CLASS, PARENT)
5349#define TYPELOC(CLASS, PARENT) \
5350 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5351#include "clang/AST/TypeLocNodes.def"
5352 }
5353 }
5354
5355 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5356 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5357 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5358 if (!TL.getParam(I))
5359 continue;
5360
5361 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5362 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5363 }
5364 }
5365
5366 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5367 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5368 }
5369
5370 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5371 // Visit the type parameters from a permissive context.
5372 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5373 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5374 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5375 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5376 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5377 // TODO: other template argument types?
5378 }
5379 }
5380
5381 // Visit pointee types from a permissive context.
5382#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5383 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5384 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5385 }
5386 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5387 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5388 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5389 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5390 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5391
5392 /// Handle all the types we haven't given a more specific
5393 /// implementation for above.
5394 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5395 // Every other kind of type that we haven't called out already
5396 // that has an inner type is either (1) sugar or (2) contains that
5397 // inner type in some way as a subobject.
5398 if (TypeLoc Next = TL.getNextTypeLoc())
5399 return Visit(Next, Sel);
5400
5401 // If there's no inner type and we're in a permissive context,
5402 // don't diagnose.
5403 if (Sel == Sema::AbstractNone) return;
5404
5405 // Check whether the type matches the abstract type.
5406 QualType T = TL.getType();
5407 if (T->isArrayType()) {
5408 Sel = Sema::AbstractArrayType;
5409 T = Info.S.Context.getBaseElementType(T);
5410 }
5411 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5412 if (CT != Info.AbstractType) return;
5413
5414 // It matched; do some magic.
5415 if (Sel == Sema::AbstractArrayType) {
5416 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5417 << T << TL.getSourceRange();
5418 } else {
5419 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5420 << Sel << T << TL.getSourceRange();
5421 }
5422 Info.DiagnoseAbstractType();
5423 }
5424};
5425
5426void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5427 Sema::AbstractDiagSelID Sel) {
5428 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5429}
5430
5431}
5432
5433/// Check for invalid uses of an abstract type in a method declaration.
5434static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5435 CXXMethodDecl *MD) {
5436 // No need to do the check on definitions, which require that
5437 // the return/param types be complete.
5438 if (MD->doesThisDeclarationHaveABody())
5439 return;
5440
5441 // For safety's sake, just ignore it if we don't have type source
5442 // information. This should never happen for non-implicit methods,
5443 // but...
5444 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5445 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5446}
5447
5448/// Check for invalid uses of an abstract type within a class definition.
5449static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5450 CXXRecordDecl *RD) {
5451 for (auto *D : RD->decls()) {
5452 if (D->isImplicit()) continue;
5453
5454 // Methods and method templates.
5455 if (isa<CXXMethodDecl>(D)) {
5456 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5457 } else if (isa<FunctionTemplateDecl>(D)) {
5458 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5459 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5460
5461 // Fields and static variables.
5462 } else if (isa<FieldDecl>(D)) {
5463 FieldDecl *FD = cast<FieldDecl>(D);
5464 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5465 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5466 } else if (isa<VarDecl>(D)) {
5467 VarDecl *VD = cast<VarDecl>(D);
5468 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5469 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5470
5471 // Nested classes and class templates.
5472 } else if (isa<CXXRecordDecl>(D)) {
5473 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5474 } else if (isa<ClassTemplateDecl>(D)) {
5475 CheckAbstractClassUsage(Info,
5476 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5477 }
5478 }
5479}
5480
5481static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5482 Attr *ClassAttr = getDLLAttr(Class);
5483 if (!ClassAttr)
5484 return;
5485
5486 assert(ClassAttr->getKind() == attr::DLLExport)(static_cast <bool> (ClassAttr->getKind() == attr::DLLExport
) ? void (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5486, __extension__ __PRETTY_FUNCTION__))
;
5487
5488 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5489
5490 if (TSK == TSK_ExplicitInstantiationDeclaration)
5491 // Don't go any further if this is just an explicit instantiation
5492 // declaration.
5493 return;
5494
5495 for (Decl *Member : Class->decls()) {
5496 // Defined static variables that are members of an exported base
5497 // class must be marked export too.
5498 auto *VD = dyn_cast<VarDecl>(Member);
5499 if (VD && Member->getAttr<DLLExportAttr>() &&
5500 VD->getStorageClass() == SC_Static &&
5501 TSK == TSK_ImplicitInstantiation)
5502 S.MarkVariableReferenced(VD->getLocation(), VD);
5503
5504 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5505 if (!MD)
5506 continue;
5507
5508 if (Member->getAttr<DLLExportAttr>()) {
5509 if (MD->isUserProvided()) {
5510 // Instantiate non-default class member functions ...
5511
5512 // .. except for certain kinds of template specializations.
5513 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5514 continue;
5515
5516 S.MarkFunctionReferenced(Class->getLocation(), MD);
5517
5518 // The function will be passed to the consumer when its definition is
5519 // encountered.
5520 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5521 MD->isCopyAssignmentOperator() ||
5522 MD->isMoveAssignmentOperator()) {
5523 // Synthesize and instantiate non-trivial implicit methods, explicitly
5524 // defaulted methods, and the copy and move assignment operators. The
5525 // latter are exported even if they are trivial, because the address of
5526 // an operator can be taken and should compare equal across libraries.
5527 DiagnosticErrorTrap Trap(S.Diags);
5528 S.MarkFunctionReferenced(Class->getLocation(), MD);
5529 if (Trap.hasErrorOccurred()) {
5530 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5531 << Class << !S.getLangOpts().CPlusPlus11;
5532 break;
5533 }
5534
5535 // There is no later point when we will see the definition of this
5536 // function, so pass it to the consumer now.
5537 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5538 }
5539 }
5540 }
5541}
5542
5543static void checkForMultipleExportedDefaultConstructors(Sema &S,
5544 CXXRecordDecl *Class) {
5545 // Only the MS ABI has default constructor closures, so we don't need to do
5546 // this semantic checking anywhere else.
5547 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5548 return;
5549
5550 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5551 for (Decl *Member : Class->decls()) {
5552 // Look for exported default constructors.
5553 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5554 if (!CD || !CD->isDefaultConstructor())
5555 continue;
5556 auto *Attr = CD->getAttr<DLLExportAttr>();
5557 if (!Attr)
5558 continue;
5559
5560 // If the class is non-dependent, mark the default arguments as ODR-used so
5561 // that we can properly codegen the constructor closure.
5562 if (!Class->isDependentContext()) {
5563 for (ParmVarDecl *PD : CD->parameters()) {
5564 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5565 S.DiscardCleanupsInEvaluationContext();
5566 }
5567 }
5568
5569 if (LastExportedDefaultCtor) {
5570 S.Diag(LastExportedDefaultCtor->getLocation(),
5571 diag::err_attribute_dll_ambiguous_default_ctor)
5572 << Class;
5573 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5574 << CD->getDeclName();
5575 return;
5576 }
5577 LastExportedDefaultCtor = CD;
5578 }
5579}
5580
5581void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
5582 // Mark any compiler-generated routines with the implicit code_seg attribute.
5583 for (auto *Method : Class->methods()) {
5584 if (Method->isUserProvided())
5585 continue;
5586 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
5587 Method->addAttr(A);
5588 }
5589}
5590
5591/// Check class-level dllimport/dllexport attribute.
5592void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5593 Attr *ClassAttr = getDLLAttr(Class);
5594
5595 // MSVC inherits DLL attributes to partial class template specializations.
5596 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5597 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5598 if (Attr *TemplateAttr =
5599 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5600 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5601 A->setInherited(true);
5602 ClassAttr = A;
5603 }
5604 }
5605 }
5606
5607 if (!ClassAttr)
5608 return;
5609
5610 if (!Class->isExternallyVisible()) {
5611 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5612 << Class << ClassAttr;
5613 return;
5614 }
5615
5616 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5617 !ClassAttr->isInherited()) {
5618 // Diagnose dll attributes on members of class with dll attribute.
5619 for (Decl *Member : Class->decls()) {
5620 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5621 continue;
5622 InheritableAttr *MemberAttr = getDLLAttr(Member);
5623 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5624 continue;
5625
5626 Diag(MemberAttr->getLocation(),
5627 diag::err_attribute_dll_member_of_dll_class)
5628 << MemberAttr << ClassAttr;
5629 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5630 Member->setInvalidDecl();
5631 }
5632 }
5633
5634 if (Class->getDescribedClassTemplate())
5635 // Don't inherit dll attribute until the template is instantiated.
5636 return;
5637
5638 // The class is either imported or exported.
5639 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5640
5641 // Check if this was a dllimport attribute propagated from a derived class to
5642 // a base class template specialization. We don't apply these attributes to
5643 // static data members.
5644 const bool PropagatedImport =
5645 !ClassExported &&
5646 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
5647
5648 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5649
5650 // Ignore explicit dllexport on explicit class template instantiation declarations.
5651 if (ClassExported && !ClassAttr->isInherited() &&
5652 TSK == TSK_ExplicitInstantiationDeclaration) {
5653 Class->dropAttr<DLLExportAttr>();
5654 return;
5655 }
5656
5657 // Force declaration of implicit members so they can inherit the attribute.
5658 ForceDeclarationOfImplicitMembers(Class);
5659
5660 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5661 // seem to be true in practice?
5662
5663 for (Decl *Member : Class->decls()) {
5664 VarDecl *VD = dyn_cast<VarDecl>(Member);
5665 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5666
5667 // Only methods and static fields inherit the attributes.
5668 if (!VD && !MD)
5669 continue;
5670
5671 if (MD) {
5672 // Don't process deleted methods.
5673 if (MD->isDeleted())
5674 continue;
5675
5676 if (MD->isInlined()) {
5677 // MinGW does not import or export inline methods.
5678 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5679 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
5680 continue;
5681
5682 // MSVC versions before 2015 don't export the move assignment operators
5683 // and move constructor, so don't attempt to import/export them if
5684 // we have a definition.
5685 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5686 if ((MD->isMoveAssignmentOperator() ||
5687 (Ctor && Ctor->isMoveConstructor())) &&
5688 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5689 continue;
5690
5691 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5692 // operator is exported anyway.
5693 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5694 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5695 continue;
5696 }
5697 }
5698
5699 // Don't apply dllimport attributes to static data members of class template
5700 // instantiations when the attribute is propagated from a derived class.
5701 if (VD && PropagatedImport)
5702 continue;
5703
5704 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5705 continue;
5706
5707 if (!getDLLAttr(Member)) {
5708 auto *NewAttr =
5709 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5710 NewAttr->setInherited(true);
5711 Member->addAttr(NewAttr);
5712
5713 if (MD) {
5714 // Propagate DLLAttr to friend re-declarations of MD that have already
5715 // been constructed.
5716 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
5717 FD = FD->getPreviousDecl()) {
5718 if (FD->getFriendObjectKind() == Decl::FOK_None)
5719 continue;
5720 assert(!getDLLAttr(FD) &&(static_cast <bool> (!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? void (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5721, __extension__ __PRETTY_FUNCTION__))
5721 "friend re-decl should not already have a DLLAttr")(static_cast <bool> (!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? void (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5721, __extension__ __PRETTY_FUNCTION__))
;
5722 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5723 NewAttr->setInherited(true);
5724 FD->addAttr(NewAttr);
5725 }
5726 }
5727 }
5728 }
5729
5730 if (ClassExported)
5731 DelayedDllExportClasses.push_back(Class);
5732}
5733
5734/// Perform propagation of DLL attributes from a derived class to a
5735/// templated base class for MS compatibility.
5736void Sema::propagateDLLAttrToBaseClassTemplate(
5737 CXXRecordDecl *Class, Attr *ClassAttr,
5738 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
5739 if (getDLLAttr(
5740 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
5741 // If the base class template has a DLL attribute, don't try to change it.
5742 return;
5743 }
5744
5745 auto TSK = BaseTemplateSpec->getSpecializationKind();
5746 if (!getDLLAttr(BaseTemplateSpec) &&
5747 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
5748 TSK == TSK_ImplicitInstantiation)) {
5749 // The template hasn't been instantiated yet (or it has, but only as an
5750 // explicit instantiation declaration or implicit instantiation, which means
5751 // we haven't codegenned any members yet), so propagate the attribute.
5752 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5753 NewAttr->setInherited(true);
5754 BaseTemplateSpec->addAttr(NewAttr);
5755
5756 // If this was an import, mark that we propagated it from a derived class to
5757 // a base class template specialization.
5758 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
5759 ImportAttr->setPropagatedToBaseTemplate();
5760
5761 // If the template is already instantiated, checkDLLAttributeRedeclaration()
5762 // needs to be run again to work see the new attribute. Otherwise this will
5763 // get run whenever the template is instantiated.
5764 if (TSK != TSK_Undeclared)
5765 checkClassLevelDLLAttribute(BaseTemplateSpec);
5766
5767 return;
5768 }
5769
5770 if (getDLLAttr(BaseTemplateSpec)) {
5771 // The template has already been specialized or instantiated with an
5772 // attribute, explicitly or through propagation. We should not try to change
5773 // it.
5774 return;
5775 }
5776
5777 // The template was previously instantiated or explicitly specialized without
5778 // a dll attribute, It's too late for us to add an attribute, so warn that
5779 // this is unsupported.
5780 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
5781 << BaseTemplateSpec->isExplicitSpecialization();
5782 Diag(ClassAttr->getLocation(), diag::note_attribute);
5783 if (BaseTemplateSpec->isExplicitSpecialization()) {
5784 Diag(BaseTemplateSpec->getLocation(),
5785 diag::note_template_class_explicit_specialization_was_here)
5786 << BaseTemplateSpec;
5787 } else {
5788 Diag(BaseTemplateSpec->getPointOfInstantiation(),
5789 diag::note_template_class_instantiation_was_here)
5790 << BaseTemplateSpec;
5791 }
5792}
5793
5794static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
5795 SourceLocation DefaultLoc) {
5796 switch (S.getSpecialMember(MD)) {
5797 case Sema::CXXDefaultConstructor:
5798 S.DefineImplicitDefaultConstructor(DefaultLoc,
5799 cast<CXXConstructorDecl>(MD));
5800 break;
5801 case Sema::CXXCopyConstructor:
5802 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5803 break;
5804 case Sema::CXXCopyAssignment:
5805 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
5806 break;
5807 case Sema::CXXDestructor:
5808 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5809 break;
5810 case Sema::CXXMoveConstructor:
5811 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5812 break;
5813 case Sema::CXXMoveAssignment:
5814 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
5815 break;
5816 case Sema::CXXInvalid:
5817 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5817)
;
5818 }
5819}
5820
5821/// Determine whether a type is permitted to be passed or returned in
5822/// registers, per C++ [class.temporary]p3.
5823static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
5824 TargetInfo::CallingConvKind CCK) {
5825 if (D->isDependentType() || D->isInvalidDecl())
5826 return false;
5827
5828 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
5829 // The PS4 platform ABI follows the behavior of Clang 3.2.
5830 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
5831 return !D->hasNonTrivialDestructorForCall() &&
5832 !D->hasNonTrivialCopyConstructorForCall();
5833
5834 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
5835 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
5836 bool DtorIsTrivialForCall = false;
5837
5838 // If a class has at least one non-deleted, trivial copy constructor, it
5839 // is passed according to the C ABI. Otherwise, it is passed indirectly.
5840 //
5841 // Note: This permits classes with non-trivial copy or move ctors to be
5842 // passed in registers, so long as they *also* have a trivial copy ctor,
5843 // which is non-conforming.
5844 if (D->needsImplicitCopyConstructor()) {
5845 if (!D->defaultedCopyConstructorIsDeleted()) {
5846 if (D->hasTrivialCopyConstructor())
5847 CopyCtorIsTrivial = true;
5848 if (D->hasTrivialCopyConstructorForCall())
5849 CopyCtorIsTrivialForCall = true;
5850 }
5851 } else {
5852 for (const CXXConstructorDecl *CD : D->ctors()) {
5853 if (CD->isCopyConstructor() && !CD->isDeleted()) {
5854 if (CD->isTrivial())
5855 CopyCtorIsTrivial = true;
5856 if (CD->isTrivialForCall())
5857 CopyCtorIsTrivialForCall = true;
5858 }
5859 }
5860 }
5861
5862 if (D->needsImplicitDestructor()) {
5863 if (!D->defaultedDestructorIsDeleted() &&
5864 D->hasTrivialDestructorForCall())
5865 DtorIsTrivialForCall = true;
5866 } else if (const auto *DD = D->getDestructor()) {
5867 if (!DD->isDeleted() && DD->isTrivialForCall())
5868 DtorIsTrivialForCall = true;
5869 }
5870
5871 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
5872 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
5873 return true;
5874
5875 // If a class has a destructor, we'd really like to pass it indirectly
5876 // because it allows us to elide copies. Unfortunately, MSVC makes that
5877 // impossible for small types, which it will pass in a single register or
5878 // stack slot. Most objects with dtors are large-ish, so handle that early.
5879 // We can't call out all large objects as being indirect because there are
5880 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
5881 // how we pass large POD types.
5882
5883 // Note: This permits small classes with nontrivial destructors to be
5884 // passed in registers, which is non-conforming.
5885 if (CopyCtorIsTrivial &&
5886 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= 64)
5887 return true;
5888 return false;
5889 }
5890
5891 // Per C++ [class.temporary]p3, the relevant condition is:
5892 // each copy constructor, move constructor, and destructor of X is
5893 // either trivial or deleted, and X has at least one non-deleted copy
5894 // or move constructor
5895 bool HasNonDeletedCopyOrMove = false;
5896
5897 if (D->needsImplicitCopyConstructor() &&
5898 !D->defaultedCopyConstructorIsDeleted()) {
5899 if (!D->hasTrivialCopyConstructorForCall())
5900 return false;
5901 HasNonDeletedCopyOrMove = true;
5902 }
5903
5904 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
5905 !D->defaultedMoveConstructorIsDeleted()) {
5906 if (!D->hasTrivialMoveConstructorForCall())
5907 return false;
5908 HasNonDeletedCopyOrMove = true;
5909 }
5910
5911 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
5912 !D->hasTrivialDestructorForCall())
5913 return false;
5914
5915 for (const CXXMethodDecl *MD : D->methods()) {
5916 if (MD->isDeleted())
5917 continue;
5918
5919 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
5920 if (CD && CD->isCopyOrMoveConstructor())
5921 HasNonDeletedCopyOrMove = true;
5922 else if (!isa<CXXDestructorDecl>(MD))
5923 continue;
5924
5925 if (!MD->isTrivialForCall())
5926 return false;
5927 }
5928
5929 return HasNonDeletedCopyOrMove;
5930}
5931
5932/// Perform semantic checks on a class definition that has been
5933/// completing, introducing implicitly-declared members, checking for
5934/// abstract types, etc.
5935void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
5936 if (!Record)
5937 return;
5938
5939 if (Record->isAbstract() && !Record->isInvalidDecl()) {
5940 AbstractUsageInfo Info(*this, Record);
5941 CheckAbstractClassUsage(Info, Record);
5942 }
5943
5944 // If this is not an aggregate type and has no user-declared constructor,
5945 // complain about any non-static data members of reference or const scalar
5946 // type, since they will never get initializers.
5947 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
5948 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
5949 !Record->isLambda()) {
5950 bool Complained = false;
5951 for (const auto *F : Record->fields()) {
5952 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
5953 continue;
5954
5955 if (F->getType()->isReferenceType() ||
5956 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
5957 if (!Complained) {
5958 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
5959 << Record->getTagKind() << Record;
5960 Complained = true;
5961 }
5962
5963 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
5964 << F->getType()->isReferenceType()
5965 << F->getDeclName();
5966 }
5967 }
5968 }
5969
5970 if (Record->getIdentifier()) {
5971 // C++ [class.mem]p13:
5972 // If T is the name of a class, then each of the following shall have a
5973 // name different from T:
5974 // - every member of every anonymous union that is a member of class T.
5975 //
5976 // C++ [class.mem]p14:
5977 // In addition, if class T has a user-declared constructor (12.1), every
5978 // non-static data member of class T shall have a name different from T.
5979 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
5980 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
5981 ++I) {
5982 NamedDecl *D = (*I)->getUnderlyingDecl();
5983 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
5984 Record->hasUserDeclaredConstructor()) ||
5985 isa<IndirectFieldDecl>(D)) {
5986 Diag((*I)->getLocation(), diag::err_member_name_of_class)
5987 << D->getDeclName();
5988 break;
5989 }
5990 }
5991 }
5992
5993 // Warn if the class has virtual methods but non-virtual public destructor.
5994 if (Record->isPolymorphic() && !Record->isDependentType()) {
5995 CXXDestructorDecl *dtor = Record->getDestructor();
5996 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
5997 !Record->hasAttr<FinalAttr>())
5998 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
5999 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6000 }
6001
6002 if (Record->isAbstract()) {
6003 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6004 Diag(Record->getLocation(), diag::warn_abstract_final_class)
6005 << FA->isSpelledAsSealed();
6006 DiagnoseAbstractType(Record);
6007 }
6008 }
6009
6010 // See if trivial_abi has to be dropped.
6011 if (Record->hasAttr<TrivialABIAttr>())
6012 checkIllFormedTrivialABIStruct(*Record);
6013
6014 // Set HasTrivialSpecialMemberForCall if the record has attribute
6015 // "trivial_abi".
6016 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6017
6018 if (HasTrivialABI)
6019 Record->setHasTrivialSpecialMemberForCall();
6020
6021 bool HasMethodWithOverrideControl = false,
6022 HasOverridingMethodWithoutOverrideControl = false;
6023 if (!Record->isDependentType()) {
6024 for (auto *M : Record->methods()) {
6025 // See if a method overloads virtual methods in a base
6026 // class without overriding any.
6027 if (!M->isStatic())
6028 DiagnoseHiddenVirtualMethods(M);
6029 if (M->hasAttr<OverrideAttr>())
6030 HasMethodWithOverrideControl = true;
6031 else if (M->size_overridden_methods() > 0)
6032 HasOverridingMethodWithoutOverrideControl = true;
6033 // Check whether the explicitly-defaulted special members are valid.
6034 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
6035 CheckExplicitlyDefaultedSpecialMember(M);
6036
6037 // For an explicitly defaulted or deleted special member, we defer
6038 // determining triviality until the class is complete. That time is now!
6039 CXXSpecialMember CSM = getSpecialMember(M);
6040 if (!M->isImplicit() && !M->isUserProvided()) {
6041 if (CSM != CXXInvalid) {
6042 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6043 // Inform the class that we've finished declaring this member.
6044 Record->finishedDefaultedOrDeletedMember(M);
6045 M->setTrivialForCall(
6046 HasTrivialABI ||
6047 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6048 Record->setTrivialForCallFlags(M);
6049 }
6050 }
6051
6052 // Set triviality for the purpose of calls if this is a user-provided
6053 // copy/move constructor or destructor.
6054 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6055 CSM == CXXDestructor) && M->isUserProvided()) {
6056 M->setTrivialForCall(HasTrivialABI);
6057 Record->setTrivialForCallFlags(M);
6058 }
6059
6060 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6061 M->hasAttr<DLLExportAttr>()) {
6062 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6063 M->isTrivial() &&
6064 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6065 CSM == CXXDestructor))
6066 M->dropAttr<DLLExportAttr>();
6067
6068 if (M->hasAttr<DLLExportAttr>()) {
6069 DefineImplicitSpecialMember(*this, M, M->getLocation());
6070 ActOnFinishInlineFunctionDef(M);
6071 }
6072 }
6073 }
6074 }
6075
6076 if (HasMethodWithOverrideControl &&
6077 HasOverridingMethodWithoutOverrideControl) {
6078 // At least one method has the 'override' control declared.
6079 // Diagnose all other overridden methods which do not have 'override' specified on them.
6080 for (auto *M : Record->methods())
6081 DiagnoseAbsenceOfOverrideControl(M);
6082 }
6083
6084 // ms_struct is a request to use the same ABI rules as MSVC. Check
6085 // whether this class uses any C++ features that are implemented
6086 // completely differently in MSVC, and if so, emit a diagnostic.
6087 // That diagnostic defaults to an error, but we allow projects to
6088 // map it down to a warning (or ignore it). It's a fairly common
6089 // practice among users of the ms_struct pragma to mass-annotate
6090 // headers, sweeping up a bunch of types that the project doesn't
6091 // really rely on MSVC-compatible layout for. We must therefore
6092 // support "ms_struct except for C++ stuff" as a secondary ABI.
6093 if (Record->isMsStruct(Context) &&
6094 (Record->isPolymorphic() || Record->getNumBases())) {
6095 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6096 }
6097
6098 checkClassLevelDLLAttribute(Record);
6099 checkClassLevelCodeSegAttribute(Record);
6100
6101 bool ClangABICompat4 =
6102 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6103 TargetInfo::CallingConvKind CCK =
6104 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6105 bool CanPass = canPassInRegisters(*this, Record, CCK);
6106
6107 // Do not change ArgPassingRestrictions if it has already been set to
6108 // APK_CanNeverPassInRegs.
6109 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
6110 Record->setArgPassingRestrictions(CanPass
6111 ? RecordDecl::APK_CanPassInRegs
6112 : RecordDecl::APK_CannotPassInRegs);
6113
6114 // If canPassInRegisters returns true despite the record having a non-trivial
6115 // destructor, the record is destructed in the callee. This happens only when
6116 // the record or one of its subobjects has a field annotated with trivial_abi
6117 // or a field qualified with ObjC __strong/__weak.
6118 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
6119 Record->setParamDestroyedInCallee(true);
6120 else if (Record->hasNonTrivialDestructor())
6121 Record->setParamDestroyedInCallee(CanPass);
6122
6123 if (getLangOpts().ForceEmitVTables) {
6124 // If we want to emit all the vtables, we need to mark it as used. This
6125 // is especially required for cases like vtable assumption loads.
6126 MarkVTableUsed(Record->getInnerLocStart(), Record);
6127 }
6128}
6129
6130/// Look up the special member function that would be called by a special
6131/// member function for a subobject of class type.
6132///
6133/// \param Class The class type of the subobject.
6134/// \param CSM The kind of special member function.
6135/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6136/// \param ConstRHS True if this is a copy operation with a const object
6137/// on its RHS, that is, if the argument to the outer special member
6138/// function is 'const' and this is not a field marked 'mutable'.
6139static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6140 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6141 unsigned FieldQuals, bool ConstRHS) {
6142 unsigned LHSQuals = 0;
6143 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6144 LHSQuals = FieldQuals;
6145
6146 unsigned RHSQuals = FieldQuals;
6147 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6148 RHSQuals = 0;
6149 else if (ConstRHS)
6150 RHSQuals |= Qualifiers::Const;
6151
6152 return S.LookupSpecialMember(Class, CSM,
6153 RHSQuals & Qualifiers::Const,
6154 RHSQuals & Qualifiers::Volatile,
6155 false,
6156 LHSQuals & Qualifiers::Const,
6157 LHSQuals & Qualifiers::Volatile);
6158}
6159
6160class Sema::InheritedConstructorInfo {
6161 Sema &S;
6162 SourceLocation UseLoc;
6163
6164 /// A mapping from the base classes through which the constructor was
6165 /// inherited to the using shadow declaration in that base class (or a null
6166 /// pointer if the constructor was declared in that base class).
6167 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6168 InheritedFromBases;
6169
6170public:
6171 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6172 ConstructorUsingShadowDecl *Shadow)
6173 : S(S), UseLoc(UseLoc) {
6174 bool DiagnosedMultipleConstructedBases = false;
6175 CXXRecordDecl *ConstructedBase = nullptr;
6176 UsingDecl *ConstructedBaseUsing = nullptr;
6177
6178 // Find the set of such base class subobjects and check that there's a
6179 // unique constructed subobject.
6180 for (auto *D : Shadow->redecls()) {
6181 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6182 auto *DNominatedBase = DShadow->getNominatedBaseClass();
6183 auto *DConstructedBase = DShadow->getConstructedBaseClass();
6184
6185 InheritedFromBases.insert(
6186 std::make_pair(DNominatedBase->getCanonicalDecl(),
6187 DShadow->getNominatedBaseClassShadowDecl()));
6188 if (DShadow->constructsVirtualBase())
6189 InheritedFromBases.insert(
6190 std::make_pair(DConstructedBase->getCanonicalDecl(),
6191 DShadow->getConstructedBaseClassShadowDecl()));
6192 else
6193 assert(DNominatedBase == DConstructedBase)(static_cast <bool> (DNominatedBase == DConstructedBase
) ? void (0) : __assert_fail ("DNominatedBase == DConstructedBase"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6193, __extension__ __PRETTY_FUNCTION__))
;
6194
6195 // [class.inhctor.init]p2:
6196 // If the constructor was inherited from multiple base class subobjects
6197 // of type B, the program is ill-formed.
6198 if (!ConstructedBase) {
6199 ConstructedBase = DConstructedBase;
6200 ConstructedBaseUsing = D->getUsingDecl();
6201 } else if (ConstructedBase != DConstructedBase &&
6202 !Shadow->isInvalidDecl()) {
6203 if (!DiagnosedMultipleConstructedBases) {
6204 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
6205 << Shadow->getTargetDecl();
6206 S.Diag(ConstructedBaseUsing->getLocation(),
6207 diag::note_ambiguous_inherited_constructor_using)
6208 << ConstructedBase;
6209 DiagnosedMultipleConstructedBases = true;
6210 }
6211 S.Diag(D->getUsingDecl()->getLocation(),
6212 diag::note_ambiguous_inherited_constructor_using)
6213 << DConstructedBase;
6214 }
6215 }
6216
6217 if (DiagnosedMultipleConstructedBases)
6218 Shadow->setInvalidDecl();
6219 }
6220
6221 /// Find the constructor to use for inherited construction of a base class,
6222 /// and whether that base class constructor inherits the constructor from a
6223 /// virtual base class (in which case it won't actually invoke it).
6224 std::pair<CXXConstructorDecl *, bool>
6225 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
6226 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
6227 if (It == InheritedFromBases.end())
6228 return std::make_pair(nullptr, false);
6229
6230 // This is an intermediary class.
6231 if (It->second)
6232 return std::make_pair(
6233 S.findInheritingConstructor(UseLoc, Ctor, It->second),
6234 It->second->constructsVirtualBase());
6235
6236 // This is the base class from which the constructor was inherited.
6237 return std::make_pair(Ctor, false);
6238 }
6239};
6240
6241/// Is the special member function which would be selected to perform the
6242/// specified operation on the specified class type a constexpr constructor?
6243static bool
6244specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
6245 Sema::CXXSpecialMember CSM, unsigned Quals,
6246 bool ConstRHS,
6247 CXXConstructorDecl *InheritedCtor = nullptr,
6248 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6249 // If we're inheriting a constructor, see if we need to call it for this base
6250 // class.
6251 if (InheritedCtor) {
6252 assert(CSM == Sema::CXXDefaultConstructor)(static_cast <bool> (CSM == Sema::CXXDefaultConstructor
) ? void (0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6252, __extension__ __PRETTY_FUNCTION__))
;
6253 auto BaseCtor =
6254 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
6255 if (BaseCtor)
6256 return BaseCtor->isConstexpr();
6257 }
6258
6259 if (CSM == Sema::CXXDefaultConstructor)
6260 return ClassDecl->hasConstexprDefaultConstructor();
6261
6262 Sema::SpecialMemberOverloadResult SMOR =
6263 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
6264 if (!SMOR.getMethod())
6265 // A constructor we wouldn't select can't be "involved in initializing"
6266 // anything.
6267 return true;
6268 return SMOR.getMethod()->isConstexpr();
6269}
6270
6271/// Determine whether the specified special member function would be constexpr
6272/// if it were implicitly defined.
6273static bool defaultedSpecialMemberIsConstexpr(
6274 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6275 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6276 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6277 if (!S.getLangOpts().CPlusPlus11)
6278 return false;
6279
6280 // C++11 [dcl.constexpr]p4:
6281 // In the definition of a constexpr constructor [...]
6282 bool Ctor = true;
6283 switch (CSM) {
6284 case Sema::CXXDefaultConstructor:
6285 if (Inherited)
6286 break;
6287 // Since default constructor lookup is essentially trivial (and cannot
6288 // involve, for instance, template instantiation), we compute whether a
6289 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6290 //
6291 // This is important for performance; we need to know whether the default
6292 // constructor is constexpr to determine whether the type is a literal type.
6293 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6294
6295 case Sema::CXXCopyConstructor:
6296 case Sema::CXXMoveConstructor:
6297 // For copy or move constructors, we need to perform overload resolution.
6298 break;
6299
6300 case Sema::CXXCopyAssignment:
6301 case Sema::CXXMoveAssignment:
6302 if (!S.getLangOpts().CPlusPlus14)
6303 return false;
6304 // In C++1y, we need to perform overload resolution.
6305 Ctor = false;
6306 break;
6307
6308 case Sema::CXXDestructor:
6309 case Sema::CXXInvalid:
6310 return false;
6311 }
6312
6313 // -- if the class is a non-empty union, or for each non-empty anonymous
6314 // union member of a non-union class, exactly one non-static data member
6315 // shall be initialized; [DR1359]
6316 //
6317 // If we squint, this is guaranteed, since exactly one non-static data member
6318 // will be initialized (if the constructor isn't deleted), we just don't know
6319 // which one.
6320 if (Ctor && ClassDecl->isUnion())
6321 return CSM == Sema::CXXDefaultConstructor
6322 ? ClassDecl->hasInClassInitializer() ||
6323 !ClassDecl->hasVariantMembers()
6324 : true;
6325
6326 // -- the class shall not have any virtual base classes;
6327 if (Ctor && ClassDecl->getNumVBases())
6328 return false;
6329
6330 // C++1y [class.copy]p26:
6331 // -- [the class] is a literal type, and
6332 if (!Ctor && !ClassDecl->isLiteral())
6333 return false;
6334
6335 // -- every constructor involved in initializing [...] base class
6336 // sub-objects shall be a constexpr constructor;
6337 // -- the assignment operator selected to copy/move each direct base
6338 // class is a constexpr function, and
6339 for (const auto &B : ClassDecl->bases()) {
6340 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6341 if (!BaseType) continue;
6342
6343 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6344 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6345 InheritedCtor, Inherited))
6346 return false;
6347 }
6348
6349 // -- every constructor involved in initializing non-static data members
6350 // [...] shall be a constexpr constructor;
6351 // -- every non-static data member and base class sub-object shall be
6352 // initialized
6353 // -- for each non-static data member of X that is of class type (or array
6354 // thereof), the assignment operator selected to copy/move that member is
6355 // a constexpr function
6356 for (const auto *F : ClassDecl->fields()) {
6357 if (F->isInvalidDecl())
6358 continue;
6359 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6360 continue;
6361 QualType BaseType = S.Context.getBaseElementType(F->getType());
6362 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6363 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6364 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6365 BaseType.getCVRQualifiers(),
6366 ConstArg && !F->isMutable()))
6367 return false;
6368 } else if (CSM == Sema::CXXDefaultConstructor) {
6369 return false;
6370 }
6371 }
6372
6373 // All OK, it's constexpr!
6374 return true;
6375}
6376
6377static Sema::ImplicitExceptionSpecification
6378ComputeDefaultedSpecialMemberExceptionSpec(
6379 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6380 Sema::InheritedConstructorInfo *ICI);
6381
6382static Sema::ImplicitExceptionSpecification
6383computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
6384 auto CSM = S.getSpecialMember(MD);
6385 if (CSM != Sema::CXXInvalid)
6386 return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr);
6387
6388 auto *CD = cast<CXXConstructorDecl>(MD);
6389 assert(CD->getInheritedConstructor() &&(static_cast <bool> (CD->getInheritedConstructor() &&
"only special members have implicit exception specs") ? void
(0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6390, __extension__ __PRETTY_FUNCTION__))
6390 "only special members have implicit exception specs")(static_cast <bool> (CD->getInheritedConstructor() &&
"only special members have implicit exception specs") ? void
(0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6390, __extension__ __PRETTY_FUNCTION__))
;
6391 Sema::InheritedConstructorInfo ICI(
6392 S, Loc, CD->getInheritedConstructor().getShadowDecl());
6393 return ComputeDefaultedSpecialMemberExceptionSpec(
6394 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6395}
6396
6397static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6398 CXXMethodDecl *MD) {
6399 FunctionProtoType::ExtProtoInfo EPI;
6400
6401 // Build an exception specification pointing back at this member.
6402 EPI.ExceptionSpec.Type = EST_Unevaluated;
6403 EPI.ExceptionSpec.SourceDecl = MD;
6404
6405 // Set the calling convention to the default for C++ instance methods.
6406 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6407 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6408 /*IsCXXMethod=*/true));
6409 return EPI;
6410}
6411
6412void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
6413 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
6414 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6415 return;
6416
6417 // Evaluate the exception specification.
6418 auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
6419 auto ESI = IES.getExceptionSpec();
6420
6421 // Update the type of the special member to use it.
6422 UpdateExceptionSpec(MD, ESI);
6423
6424 // A user-provided destructor can be defined outside the class. When that
6425 // happens, be sure to update the exception specification on both
6426 // declarations.
6427 const FunctionProtoType *CanonicalFPT =
6428 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
6429 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
6430 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
6431}
6432
6433void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
6434 CXXRecordDecl *RD = MD->getParent();
6435 CXXSpecialMember CSM = getSpecialMember(MD);
6436
6437 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&(static_cast <bool> (MD->isExplicitlyDefaulted() &&
CSM != CXXInvalid && "not an explicitly-defaulted special member"
) ? void (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6438, __extension__ __PRETTY_FUNCTION__))
6438 "not an explicitly-defaulted special member")(static_cast <bool> (MD->isExplicitlyDefaulted() &&
CSM != CXXInvalid && "not an explicitly-defaulted special member"
) ? void (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6438, __extension__ __PRETTY_FUNCTION__))
;
6439
6440 // Whether this was the first-declared instance of the constructor.
6441 // This affects whether we implicitly add an exception spec and constexpr.
6442 bool First = MD == MD->getCanonicalDecl();
6443
6444 bool HadError = false;
6445
6446 // C++11 [dcl.fct.def.default]p1:
6447 // A function that is explicitly defaulted shall
6448 // -- be a special member function (checked elsewhere),
6449 // -- have the same type (except for ref-qualifiers, and except that a
6450 // copy operation can take a non-const reference) as an implicit
6451 // declaration, and
6452 // -- not have default arguments.
6453 unsigned ExpectedParams = 1;
6454 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6455 ExpectedParams = 0;
6456 if (MD->getNumParams() != ExpectedParams) {
6457 // This also checks for default arguments: a copy or move constructor with a
6458 // default argument is classified as a default constructor, and assignment
6459 // operations and destructors can't have default arguments.
6460 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6461 << CSM << MD->getSourceRange();
6462 HadError = true;
6463 } else if (MD->isVariadic()) {
6464 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6465 << CSM << MD->getSourceRange();
6466 HadError = true;
6467 }
6468
6469 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6470
6471 bool CanHaveConstParam = false;
6472 if (CSM == CXXCopyConstructor)
6473 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6474 else if (CSM == CXXCopyAssignment)
6475 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6476
6477 QualType ReturnType = Context.VoidTy;
6478 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6479 // Check for return type matching.
6480 ReturnType = Type->getReturnType();
6481 QualType ExpectedReturnType =
6482 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
6483 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6484 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6485 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
6486 HadError = true;
6487 }
6488
6489 // A defaulted special member cannot have cv-qualifiers.
6490 if (Type->getTypeQuals()) {
6491 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
6492 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
6493 HadError = true;
6494 }
6495 }
6496
6497 // Check for parameter type matching.
6498 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
6499 bool HasConstParam = false;
6500 if (ExpectedParams && ArgType->isReferenceType()) {
6501 // Argument must be reference to possibly-const T.
6502 QualType ReferentType = ArgType->getPointeeType();
6503 HasConstParam = ReferentType.isConstQualified();
6504
6505 if (ReferentType.isVolatileQualified()) {
6506 Diag(MD->getLocation(),
6507 diag::err_defaulted_special_member_volatile_param) << CSM;
6508 HadError = true;
6509 }
6510
6511 if (HasConstParam && !CanHaveConstParam) {
6512 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
6513 Diag(MD->getLocation(),
6514 diag::err_defaulted_special_member_copy_const_param)
6515 << (CSM == CXXCopyAssignment);
6516 // FIXME: Explain why this special member can't be const.
6517 } else {
6518 Diag(MD->getLocation(),
6519 diag::err_defaulted_special_member_move_const_param)
6520 << (CSM == CXXMoveAssignment);
6521 }
6522 HadError = true;
6523 }
6524 } else if (ExpectedParams) {
6525 // A copy assignment operator can take its argument by value, but a
6526 // defaulted one cannot.
6527 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")(static_cast <bool> (CSM == CXXCopyAssignment &&
"unexpected non-ref argument") ? void (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6527, __extension__ __PRETTY_FUNCTION__))
;
6528 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
6529 HadError = true;
6530 }
6531
6532 // C++11 [dcl.fct.def.default]p2:
6533 // An explicitly-defaulted function may be declared constexpr only if it
6534 // would have been implicitly declared as constexpr,
6535 // Do not apply this rule to members of class templates, since core issue 1358
6536 // makes such functions always instantiate to constexpr functions. For
6537 // functions which cannot be constexpr (for non-constructors in C++11 and for
6538 // destructors in C++1y), this is checked elsewhere.
6539 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
6540 HasConstParam);
6541 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
6542 : isa<CXXConstructorDecl>(MD)) &&
6543 MD->isConstexpr() && !Constexpr &&
6544 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
6545 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
6546 // FIXME: Explain why the special member can't be constexpr.
6547 HadError = true;
6548 }
6549
6550 // and may have an explicit exception-specification only if it is compatible
6551 // with the exception-specification on the implicit declaration.
6552 if (Type->hasExceptionSpec()) {
6553 // Delay the check if this is the first declaration of the special member,
6554 // since we may not have parsed some necessary in-class initializers yet.
6555 if (First) {
6556 // If the exception specification needs to be instantiated, do so now,
6557 // before we clobber it with an EST_Unevaluated specification below.
6558 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
6559 InstantiateExceptionSpec(MD->getLocStart(), MD);
6560 Type = MD->getType()->getAs<FunctionProtoType>();
6561 }
6562 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
6563 } else
6564 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
6565 }
6566
6567 // If a function is explicitly defaulted on its first declaration,
6568 if (First) {
6569 // -- it is implicitly considered to be constexpr if the implicit
6570 // definition would be,
6571 MD->setConstexpr(Constexpr);
6572
6573 // -- it is implicitly considered to have the same exception-specification
6574 // as if it had been implicitly declared,
6575 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
6576 EPI.ExceptionSpec.Type = EST_Unevaluated;
6577 EPI.ExceptionSpec.SourceDecl = MD;
6578 MD->setType(Context.getFunctionType(ReturnType,
6579 llvm::makeArrayRef(&ArgType,
6580 ExpectedParams),
6581 EPI));
6582 }
6583
6584 if (ShouldDeleteSpecialMember(MD, CSM)) {
6585 if (First) {
6586 SetDeclDeleted(MD, MD->getLocation());
6587 } else {
6588 // C++11 [dcl.fct.def.default]p4:
6589 // [For a] user-provided explicitly-defaulted function [...] if such a
6590 // function is implicitly defined as deleted, the program is ill-formed.
6591 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
6592 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6593 HadError = true;
6594 }
6595 }
6596
6597 if (HadError)
6598 MD->setInvalidDecl();
6599}
6600
6601/// Check whether the exception specification provided for an
6602/// explicitly-defaulted special member matches the exception specification
6603/// that would have been generated for an implicit special member, per
6604/// C++11 [dcl.fct.def.default]p2.
6605void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
6606 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
6607 // If the exception specification was explicitly specified but hadn't been
6608 // parsed when the method was defaulted, grab it now.
6609 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
6610 SpecifiedType =
6611 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
6612
6613 // Compute the implicit exception specification.
6614 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6615 /*IsCXXMethod=*/true);
6616 FunctionProtoType::ExtProtoInfo EPI(CC);
6617 auto IES = computeImplicitExceptionSpec(*this, MD->getLocation(), MD);
6618 EPI.ExceptionSpec = IES.getExceptionSpec();
6619 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
6620 Context.getFunctionType(Context.VoidTy, None, EPI));
6621
6622 // Ensure that it matches.
6623 CheckEquivalentExceptionSpec(
6624 PDiag(diag::err_incorrect_defaulted_exception_spec)
6625 << getSpecialMember(MD), PDiag(),
6626 ImplicitType, SourceLocation(),
6627 SpecifiedType, MD->getLocation());
6628}
6629
6630void Sema::CheckDelayedMemberExceptionSpecs() {
6631 decltype(DelayedExceptionSpecChecks) Checks;
6632 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
6633
6634 std::swap(Checks, DelayedExceptionSpecChecks);
6635 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
6636
6637 // Perform any deferred checking of exception specifications for virtual
6638 // destructors.
6639 for (auto &Check : Checks)
6640 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
6641
6642 // Check that any explicitly-defaulted methods have exception specifications
6643 // compatible with their implicit exception specifications.
6644 for (auto &Spec : Specs)
6645 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
6646}
6647
6648namespace {
6649/// CRTP base class for visiting operations performed by a special member
6650/// function (or inherited constructor).
6651template<typename Derived>
6652struct SpecialMemberVisitor {
6653 Sema &S;
6654 CXXMethodDecl *MD;
6655 Sema::CXXSpecialMember CSM;
6656 Sema::InheritedConstructorInfo *ICI;
6657
6658 // Properties of the special member, computed for convenience.
6659 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
6660
6661 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6662 Sema::InheritedConstructorInfo *ICI)
6663 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
6664 switch (CSM) {
6665 case Sema::CXXDefaultConstructor:
6666 case Sema::CXXCopyConstructor:
6667 case Sema::CXXMoveConstructor:
6668 IsConstructor = true;
6669 break;
6670 case Sema::CXXCopyAssignment:
6671 case Sema::CXXMoveAssignment:
6672 IsAssignment = true;
6673 break;
6674 case Sema::CXXDestructor:
6675 break;
6676 case Sema::CXXInvalid:
6677 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6677)
;
6678 }
6679
6680 if (MD->getNumParams()) {
6681 if (const ReferenceType *RT =
6682 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
6683 ConstArg = RT->getPointeeType().isConstQualified();
6684 }
6685 }
6686
6687 Derived &getDerived() { return static_cast<Derived&>(*this); }
6688
6689 /// Is this a "move" special member?
6690 bool isMove() const {
6691 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
6692 }
6693
6694 /// Look up the corresponding special member in the given class.
6695 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
6696 unsigned Quals, bool IsMutable) {
6697 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
6698 ConstArg && !IsMutable);
6699 }
6700
6701 /// Look up the constructor for the specified base class to see if it's
6702 /// overridden due to this being an inherited constructor.
6703 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
6704 if (!ICI)
6705 return {};
6706 assert(CSM == Sema::CXXDefaultConstructor)(static_cast <bool> (CSM == Sema::CXXDefaultConstructor
) ? void (0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6706, __extension__ __PRETTY_FUNCTION__))
;
6707 auto *BaseCtor =
6708 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
6709 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
6710 return MD;
6711 return {};
6712 }
6713
6714 /// A base or member subobject.
6715 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
6716
6717 /// Get the location to use for a subobject in diagnostics.
6718 static SourceLocation getSubobjectLoc(Subobject Subobj) {
6719 // FIXME: For an indirect virtual base, the direct base leading to
6720 // the indirect virtual base would be a more useful choice.
6721 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
6722 return B->getBaseTypeLoc();
6723 else
6724 return Subobj.get<FieldDecl*>()->getLocation();
6725 }
6726
6727 enum BasesToVisit {
6728 /// Visit all non-virtual (direct) bases.
6729 VisitNonVirtualBases,
6730 /// Visit all direct bases, virtual or not.
6731 VisitDirectBases,
6732 /// Visit all non-virtual bases, and all virtual bases if the class
6733 /// is not abstract.
6734 VisitPotentiallyConstructedBases,
6735 /// Visit all direct or virtual bases.
6736 VisitAllBases
6737 };
6738
6739 // Visit the bases and members of the class.
6740 bool visit(BasesToVisit Bases) {
6741 CXXRecordDecl *RD = MD->getParent();
6742
6743 if (Bases == VisitPotentiallyConstructedBases)
6744 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
6745
6746 for (auto &B : RD->bases())
6747 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
6748 getDerived().visitBase(&B))
6749 return true;
6750
6751 if (Bases == VisitAllBases)
6752 for (auto &B : RD->vbases())
6753 if (getDerived().visitBase(&B))
6754 return true;
6755
6756 for (auto *F : RD->fields())
6757 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
6758 getDerived().visitField(F))
6759 return true;
6760
6761 return false;
6762 }
6763};
6764}
6765
6766namespace {
6767struct SpecialMemberDeletionInfo
6768 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
6769 bool Diagnose;
6770
6771 SourceLocation Loc;
6772
6773 bool AllFieldsAreConst;
6774
6775 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
6776 Sema::CXXSpecialMember CSM,
6777 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
6778 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
6779 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
6780
6781 bool inUnion() const { return MD->getParent()->isUnion(); }
6782
6783 Sema::CXXSpecialMember getEffectiveCSM() {
6784 return ICI ? Sema::CXXInvalid : CSM;
6785 }
6786
6787 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
6788 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
6789
6790 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
6791 bool shouldDeleteForField(FieldDecl *FD);
6792 bool shouldDeleteForAllConstMembers();
6793
6794 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
6795 unsigned Quals);
6796 bool shouldDeleteForSubobjectCall(Subobject Subobj,
6797 Sema::SpecialMemberOverloadResult SMOR,
6798 bool IsDtorCallInCtor);
6799
6800 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
6801};
6802}
6803
6804/// Is the given special member inaccessible when used on the given
6805/// sub-object.
6806bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
6807 CXXMethodDecl *target) {
6808 /// If we're operating on a base class, the object type is the
6809 /// type of this special member.
6810 QualType objectTy;
6811 AccessSpecifier access = target->getAccess();
6812 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
6813 objectTy = S.Context.getTypeDeclType(MD->getParent());
6814 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
6815
6816 // If we're operating on a field, the object type is the type of the field.
6817 } else {
6818 objectTy = S.Context.getTypeDeclType(target->getParent());
6819 }
6820
6821 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
6822}
6823
6824/// Check whether we should delete a special member due to the implicit
6825/// definition containing a call to a special member of a subobject.
6826bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
6827 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
6828 bool IsDtorCallInCtor) {
6829 CXXMethodDecl *Decl = SMOR.getMethod();
6830 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6831
6832 int DiagKind = -1;
6833
6834 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
6835 DiagKind = !Decl ? 0 : 1;
6836 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
6837 DiagKind = 2;
6838 else if (!isAccessible(Subobj, Decl))
6839 DiagKind = 3;
6840 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
6841 !Decl->isTrivial()) {
6842 // A member of a union must have a trivial corresponding special member.
6843 // As a weird special case, a destructor call from a union's constructor
6844 // must be accessible and non-deleted, but need not be trivial. Such a
6845 // destructor is never actually called, but is semantically checked as
6846 // if it were.
6847 DiagKind = 4;
6848 }
6849
6850 if (DiagKind == -1)
6851 return false;
6852
6853 if (Diagnose) {
6854 if (Field) {
6855 S.Diag(Field->getLocation(),
6856 diag::note_deleted_special_member_class_subobject)
6857 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
6858 << Field << DiagKind << IsDtorCallInCtor;
6859 } else {
6860 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
6861 S.Diag(Base->getLocStart(),
6862 diag::note_deleted_special_member_class_subobject)
6863 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6864 << Base->getType() << DiagKind << IsDtorCallInCtor;
6865 }
6866
6867 if (DiagKind == 1)
6868 S.NoteDeletedFunction(Decl);
6869 // FIXME: Explain inaccessibility if DiagKind == 3.
6870 }
6871
6872 return true;
6873}
6874
6875/// Check whether we should delete a special member function due to having a
6876/// direct or virtual base class or non-static data member of class type M.
6877bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
6878 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
6879 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6880 bool IsMutable = Field && Field->isMutable();
6881
6882 // C++11 [class.ctor]p5:
6883 // -- any direct or virtual base class, or non-static data member with no
6884 // brace-or-equal-initializer, has class type M (or array thereof) and
6885 // either M has no default constructor or overload resolution as applied
6886 // to M's default constructor results in an ambiguity or in a function
6887 // that is deleted or inaccessible
6888 // C++11 [class.copy]p11, C++11 [class.copy]p23:
6889 // -- a direct or virtual base class B that cannot be copied/moved because
6890 // overload resolution, as applied to B's corresponding special member,
6891 // results in an ambiguity or a function that is deleted or inaccessible
6892 // from the defaulted special member
6893 // C++11 [class.dtor]p5:
6894 // -- any direct or virtual base class [...] has a type with a destructor
6895 // that is deleted or inaccessible
6896 if (!(CSM == Sema::CXXDefaultConstructor &&
6897 Field && Field->hasInClassInitializer()) &&
6898 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
6899 false))
6900 return true;
6901
6902 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
6903 // -- any direct or virtual base class or non-static data member has a
6904 // type with a destructor that is deleted or inaccessible
6905 if (IsConstructor) {
6906 Sema::SpecialMemberOverloadResult SMOR =
6907 S.LookupSpecialMember(Class, Sema::CXXDestructor,
6908 false, false, false, false, false);
6909 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
6910 return true;
6911 }
6912
6913 return false;
6914}
6915
6916/// Check whether we should delete a special member function due to the class
6917/// having a particular direct or virtual base class.
6918bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
6919 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
6920 // If program is correct, BaseClass cannot be null, but if it is, the error
6921 // must be reported elsewhere.
6922 if (!BaseClass)
6923 return false;
6924 // If we have an inheriting constructor, check whether we're calling an
6925 // inherited constructor instead of a default constructor.
6926 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
6927 if (auto *BaseCtor = SMOR.getMethod()) {
6928 // Note that we do not check access along this path; other than that,
6929 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
6930 // FIXME: Check that the base has a usable destructor! Sink this into
6931 // shouldDeleteForClassSubobject.
6932 if (BaseCtor->isDeleted() && Diagnose) {
6933 S.Diag(Base->getLocStart(),
6934 diag::note_deleted_special_member_class_subobject)
6935 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6936 << Base->getType() << /*Deleted*/1 << /*IsDtorCallInCtor*/false;
6937 S.NoteDeletedFunction(BaseCtor);
6938 }
6939 return BaseCtor->isDeleted();
6940 }
6941 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
6942}
6943
6944/// Check whether we should delete a special member function due to the class
6945/// having a particular non-static data member.
6946bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
6947 QualType FieldType = S.Context.getBaseElementType(FD->getType());
6948 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
6949
6950 if (CSM == Sema::CXXDefaultConstructor) {
6951 // For a default constructor, all references must be initialized in-class
6952 // and, if a union, it must have a non-const member.
6953 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
6954 if (Diagnose)
6955 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6956 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
6957 return true;
6958 }
6959 // C++11 [class.ctor]p5: any non-variant non-static data member of
6960 // const-qualified type (or array thereof) with no
6961 // brace-or-equal-initializer does not have a user-provided default
6962 // constructor.
6963 if (!inUnion() && FieldType.isConstQualified() &&
6964 !FD->hasInClassInitializer() &&
6965 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
6966 if (Diagnose)
6967 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6968 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
6969 return true;
6970 }
6971
6972 if (inUnion() && !FieldType.isConstQualified())
6973 AllFieldsAreConst = false;
6974 } else if (CSM == Sema::CXXCopyConstructor) {
6975 // For a copy constructor, data members must not be of rvalue reference
6976 // type.
6977 if (FieldType->isRValueReferenceType()) {
6978 if (Diagnose)
6979 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
6980 << MD->getParent() << FD << FieldType;
6981 return true;
6982 }
6983 } else if (IsAssignment) {
6984 // For an assignment operator, data members must not be of reference type.
6985 if (FieldType->isReferenceType()) {
6986 if (Diagnose)
6987 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6988 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
6989 return true;
6990 }
6991 if (!FieldRecord && FieldType.isConstQualified()) {
6992 // C++11 [class.copy]p23:
6993 // -- a non-static data member of const non-class type (or array thereof)
6994 if (Diagnose)
6995 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6996 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
6997 return true;
6998 }
6999 }
7000
7001 if (FieldRecord) {
7002 // Some additional restrictions exist on the variant members.
7003 if (!inUnion() && FieldRecord->isUnion() &&
7004 FieldRecord->isAnonymousStructOrUnion()) {
7005 bool AllVariantFieldsAreConst = true;
7006
7007 // FIXME: Handle anonymous unions declared within anonymous unions.
7008 for (auto *UI : FieldRecord->fields()) {
7009 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
7010
7011 if (!UnionFieldType.isConstQualified())
7012 AllVariantFieldsAreConst = false;
7013
7014 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
7015 if (UnionFieldRecord &&
7016 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
7017 UnionFieldType.getCVRQualifiers()))
7018 return true;
7019 }
7020
7021 // At least one member in each anonymous union must be non-const
7022 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
7023 !FieldRecord->field_empty()) {
7024 if (Diagnose)
7025 S.Diag(FieldRecord->getLocation(),
7026 diag::note_deleted_default_ctor_all_const)
7027 << !!ICI << MD->getParent() << /*anonymous union*/1;
7028 return true;
7029 }
7030
7031 // Don't check the implicit member of the anonymous union type.
7032 // This is technically non-conformant, but sanity demands it.
7033 return false;
7034 }
7035
7036 if (shouldDeleteForClassSubobject(FieldRecord, FD,
7037 FieldType.getCVRQualifiers()))
7038 return true;
7039 }
7040
7041 return false;
7042}
7043
7044/// C++11 [class.ctor] p5:
7045/// A defaulted default constructor for a class X is defined as deleted if
7046/// X is a union and all of its variant members are of const-qualified type.
7047bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
7048 // This is a silly definition, because it gives an empty union a deleted
7049 // default constructor. Don't do that.
7050 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
7051 bool AnyFields = false;
7052 for (auto *F : MD->getParent()->fields())
7053 if ((AnyFields = !F->isUnnamedBitfield()))
7054 break;
7055 if (!AnyFields)
7056 return false;
7057 if (Diagnose)
7058 S.Diag(MD->getParent()->getLocation(),
7059 diag::note_deleted_default_ctor_all_const)
7060 << !!ICI << MD->getParent() << /*not anonymous union*/0;
7061 return true;
7062 }
7063 return false;
7064}
7065
7066/// Determine whether a defaulted special member function should be defined as
7067/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
7068/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
7069bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
7070 InheritedConstructorInfo *ICI,
7071 bool Diagnose) {
7072 if (MD->isInvalidDecl())
7073 return false;
7074 CXXRecordDecl *RD = MD->getParent();
7075 assert(!RD->isDependentType() && "do deletion after instantiation")(static_cast <bool> (!RD->isDependentType() &&
"do deletion after instantiation") ? void (0) : __assert_fail
("!RD->isDependentType() && \"do deletion after instantiation\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7075, __extension__ __PRETTY_FUNCTION__))
;
7076 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
7077 return false;
7078
7079 // C++11 [expr.lambda.prim]p19:
7080 // The closure type associated with a lambda-expression has a
7081 // deleted (8.4.3) default constructor and a deleted copy
7082 // assignment operator.
7083 if (RD->isLambda() &&
7084 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
7085 if (Diagnose)
7086 Diag(RD->getLocation(), diag::note_lambda_decl);
7087 return true;
7088 }
7089
7090 // For an anonymous struct or union, the copy and assignment special members
7091 // will never be used, so skip the check. For an anonymous union declared at
7092 // namespace scope, the constructor and destructor are used.
7093 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
7094 RD->isAnonymousStructOrUnion())
7095 return false;
7096
7097 // C++11 [class.copy]p7, p18:
7098 // If the class definition declares a move constructor or move assignment
7099 // operator, an implicitly declared copy constructor or copy assignment
7100 // operator is defined as deleted.
7101 if (MD->isImplicit() &&
7102 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
7103 CXXMethodDecl *UserDeclaredMove = nullptr;
7104
7105 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
7106 // deletion of the corresponding copy operation, not both copy operations.
7107 // MSVC 2015 has adopted the standards conforming behavior.
7108 bool DeletesOnlyMatchingCopy =
7109 getLangOpts().MSVCCompat &&
7110 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
7111
7112 if (RD->hasUserDeclaredMoveConstructor() &&
7113 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
7114 if (!Diagnose) return true;
7115
7116 // Find any user-declared move constructor.
7117 for (auto *I : RD->ctors()) {
7118 if (I->isMoveConstructor()) {
7119 UserDeclaredMove = I;
7120 break;
7121 }
7122 }
7123 assert(UserDeclaredMove)(static_cast <bool> (UserDeclaredMove) ? void (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7123, __extension__ __PRETTY_FUNCTION__))
;
7124 } else if (RD->hasUserDeclaredMoveAssignment() &&
7125 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
7126 if (!Diagnose) return true;
7127
7128 // Find any user-declared move assignment operator.
7129 for (auto *I : RD->methods()) {
7130 if (I->isMoveAssignmentOperator()) {
7131 UserDeclaredMove = I;
7132 break;
7133 }
7134 }
7135 assert(UserDeclaredMove)(static_cast <bool> (UserDeclaredMove) ? void (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7135, __extension__ __PRETTY_FUNCTION__))
;
7136 }
7137
7138 if (UserDeclaredMove) {
7139 Diag(UserDeclaredMove->getLocation(),
7140 diag::note_deleted_copy_user_declared_move)
7141 << (CSM == CXXCopyAssignment) << RD
7142 << UserDeclaredMove->isMoveAssignmentOperator();
7143 return true;
7144 }
7145 }
7146
7147 // Do access control from the special member function
7148 ContextRAII MethodContext(*this, MD);
7149
7150 // C++11 [class.dtor]p5:
7151 // -- for a virtual destructor, lookup of the non-array deallocation function
7152 // results in an ambiguity or in a function that is deleted or inaccessible
7153 if (CSM == CXXDestructor && MD->isVirtual()) {
7154 FunctionDecl *OperatorDelete = nullptr;
7155 DeclarationName Name =
7156 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
7157 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
7158 OperatorDelete, /*Diagnose*/false)) {
7159 if (Diagnose)
7160 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
7161 return true;
7162 }
7163 }
7164
7165 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
7166
7167 // Per DR1611, do not consider virtual bases of constructors of abstract
7168 // classes, since we are not going to construct them.
7169 // Per DR1658, do not consider virtual bases of destructors of abstract
7170 // classes either.
7171 // Per DR2180, for assignment operators we only assign (and thus only
7172 // consider) direct bases.
7173 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
7174 : SMI.VisitPotentiallyConstructedBases))
7175 return true;
7176
7177 if (SMI.shouldDeleteForAllConstMembers())
7178 return true;
7179
7180 if (getLangOpts().CUDA) {
7181 // We should delete the special member in CUDA mode if target inference
7182 // failed.
7183 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
7184 Diagnose);
7185 }
7186
7187 return false;
7188}
7189
7190/// Perform lookup for a special member of the specified kind, and determine
7191/// whether it is trivial. If the triviality can be determined without the
7192/// lookup, skip it. This is intended for use when determining whether a
7193/// special member of a containing object is trivial, and thus does not ever
7194/// perform overload resolution for default constructors.
7195///
7196/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
7197/// member that was most likely to be intended to be trivial, if any.
7198///
7199/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
7200/// determine whether the special member is trivial.
7201static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
7202 Sema::CXXSpecialMember CSM, unsigned Quals,
7203 bool ConstRHS,
7204 Sema::TrivialABIHandling TAH,
7205 CXXMethodDecl **Selected) {
7206 if (Selected)
7207 *Selected = nullptr;
7208
7209 switch (CSM) {
7210 case Sema::CXXInvalid:
7211 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7211)
;
7212
7213 case Sema::CXXDefaultConstructor:
7214 // C++11 [class.ctor]p5:
7215 // A default constructor is trivial if:
7216 // - all the [direct subobjects] have trivial default constructors
7217 //
7218 // Note, no overload resolution is performed in this case.
7219 if (RD->hasTrivialDefaultConstructor())
7220 return true;
7221
7222 if (Selected) {
7223 // If there's a default constructor which could have been trivial, dig it
7224 // out. Otherwise, if there's any user-provided default constructor, point
7225 // to that as an example of why there's not a trivial one.
7226 CXXConstructorDecl *DefCtor = nullptr;
7227 if (RD->needsImplicitDefaultConstructor())
7228 S.DeclareImplicitDefaultConstructor(RD);
7229 for (auto *CI : RD->ctors()) {
7230 if (!CI->isDefaultConstructor())
7231 continue;
7232 DefCtor = CI;
7233 if (!DefCtor->isUserProvided())
7234 break;
7235 }
7236
7237 *Selected = DefCtor;
7238 }
7239
7240 return false;
7241
7242 case Sema::CXXDestructor:
7243 // C++11 [class.dtor]p5:
7244 // A destructor is trivial if:
7245 // - all the direct [subobjects] have trivial destructors
7246 if (RD->hasTrivialDestructor() ||
7247 (TAH == Sema::TAH_ConsiderTrivialABI &&
7248 RD->hasTrivialDestructorForCall()))
7249 return true;
7250
7251 if (Selected) {
7252 if (RD->needsImplicitDestructor())
7253 S.DeclareImplicitDestructor(RD);
7254 *Selected = RD->getDestructor();
7255 }
7256
7257 return false;
7258
7259 case Sema::CXXCopyConstructor:
7260 // C++11 [class.copy]p12:
7261 // A copy constructor is trivial if:
7262 // - the constructor selected to copy each direct [subobject] is trivial
7263 if (RD->hasTrivialCopyConstructor() ||
7264 (TAH == Sema::TAH_ConsiderTrivialABI &&
7265 RD->hasTrivialCopyConstructorForCall())) {
7266 if (Quals == Qualifiers::Const)
7267 // We must either select the trivial copy constructor or reach an
7268 // ambiguity; no need to actually perform overload resolution.
7269 return true;
7270 } else if (!Selected) {
7271 return false;
7272 }
7273 // In C++98, we are not supposed to perform overload resolution here, but we
7274 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
7275 // cases like B as having a non-trivial copy constructor:
7276 // struct A { template<typename T> A(T&); };
7277 // struct B { mutable A a; };
7278 goto NeedOverloadResolution;
7279
7280 case Sema::CXXCopyAssignment:
7281 // C++11 [class.copy]p25:
7282 // A copy assignment operator is trivial if:
7283 // - the assignment operator selected to copy each direct [subobject] is
7284 // trivial
7285 if (RD->hasTrivialCopyAssignment()) {
7286 if (Quals == Qualifiers::Const)
7287 return true;
7288 } else if (!Selected) {
7289 return false;
7290 }
7291 // In C++98, we are not supposed to perform overload resolution here, but we
7292 // treat that as a language defect.
7293 goto NeedOverloadResolution;
7294
7295 case Sema::CXXMoveConstructor:
7296 case Sema::CXXMoveAssignment:
7297 NeedOverloadResolution:
7298 Sema::SpecialMemberOverloadResult SMOR =
7299 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
7300
7301 // The standard doesn't describe how to behave if the lookup is ambiguous.
7302 // We treat it as not making the member non-trivial, just like the standard
7303 // mandates for the default constructor. This should rarely matter, because
7304 // the member will also be deleted.
7305 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
7306 return true;
7307
7308 if (!SMOR.getMethod()) {
7309 assert(SMOR.getKind() ==(static_cast <bool> (SMOR.getKind() == Sema::SpecialMemberOverloadResult
::NoMemberOrDeleted) ? void (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7310, __extension__ __PRETTY_FUNCTION__))
7310 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)(static_cast <bool> (SMOR.getKind() == Sema::SpecialMemberOverloadResult
::NoMemberOrDeleted) ? void (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7310, __extension__ __PRETTY_FUNCTION__))
;
7311 return false;
7312 }
7313
7314 // We deliberately don't check if we found a deleted special member. We're
7315 // not supposed to!
7316 if (Selected)
7317 *Selected = SMOR.getMethod();
7318
7319 if (TAH == Sema::TAH_ConsiderTrivialABI &&
7320 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
7321 return SMOR.getMethod()->isTrivialForCall();
7322 return SMOR.getMethod()->isTrivial();
7323 }
7324
7325 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7325)
;
7326}
7327
7328static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
7329 for (auto *CI : RD->ctors())
7330 if (!CI->isImplicit())
7331 return CI;
7332
7333 // Look for constructor templates.
7334 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
7335 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
7336 if (CXXConstructorDecl *CD =
7337 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
7338 return CD;
7339 }
7340
7341 return nullptr;
7342}
7343
7344/// The kind of subobject we are checking for triviality. The values of this
7345/// enumeration are used in diagnostics.
7346enum TrivialSubobjectKind {
7347 /// The subobject is a base class.
7348 TSK_BaseClass,
7349 /// The subobject is a non-static data member.
7350 TSK_Field,
7351 /// The object is actually the complete object.
7352 TSK_CompleteObject
7353};
7354
7355/// Check whether the special member selected for a given type would be trivial.
7356static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
7357 QualType SubType, bool ConstRHS,
7358 Sema::CXXSpecialMember CSM,
7359 TrivialSubobjectKind Kind,
7360 Sema::TrivialABIHandling TAH, bool Diagnose) {
7361 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
7362 if (!SubRD)
7363 return true;
7364
7365 CXXMethodDecl *Selected;
7366 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
7367 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
7368 return true;
7369
7370 if (Diagnose) {
7371 if (ConstRHS)
7372 SubType.addConst();
7373
7374 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
7375 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
7376 << Kind << SubType.getUnqualifiedType();
7377 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
7378 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
7379 } else if (!Selected)
7380 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
7381 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
7382 else if (Selected->isUserProvided()) {
7383 if (Kind == TSK_CompleteObject)
7384 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
7385 << Kind << SubType.getUnqualifiedType() << CSM;
7386 else {
7387 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
7388 << Kind << SubType.getUnqualifiedType() << CSM;
7389 S.Diag(Selected->getLocation(), diag::note_declared_at);
7390 }
7391 } else {
7392 if (Kind != TSK_CompleteObject)
7393 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
7394 << Kind << SubType.getUnqualifiedType() << CSM;
7395
7396 // Explain why the defaulted or deleted special member isn't trivial.
7397 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
7398 Diagnose);
7399 }
7400 }
7401
7402 return false;
7403}
7404
7405/// Check whether the members of a class type allow a special member to be
7406/// trivial.
7407static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
7408 Sema::CXXSpecialMember CSM,
7409 bool ConstArg,
7410 Sema::TrivialABIHandling TAH,
7411 bool Diagnose) {
7412 for (const auto *FI : RD->fields()) {
7413 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
7414 continue;
7415
7416 QualType FieldType = S.Context.getBaseElementType(FI->getType());
7417
7418 // Pretend anonymous struct or union members are members of this class.
7419 if (FI->isAnonymousStructOrUnion()) {
7420 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
7421 CSM, ConstArg, TAH, Diagnose))
7422 return false;
7423 continue;
7424 }
7425
7426 // C++11 [class.ctor]p5:
7427 // A default constructor is trivial if [...]
7428 // -- no non-static data member of its class has a
7429 // brace-or-equal-initializer
7430 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
7431 if (Diagnose)
7432 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
7433 return false;
7434 }
7435
7436 // Objective C ARC 4.3.5:
7437 // [...] nontrivally ownership-qualified types are [...] not trivially
7438 // default constructible, copy constructible, move constructible, copy
7439 // assignable, move assignable, or destructible [...]
7440 if (FieldType.hasNonTrivialObjCLifetime()) {
7441 if (Diagnose)
7442 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
7443 << RD << FieldType.getObjCLifetime();
7444 return false;
7445 }
7446
7447 bool ConstRHS = ConstArg && !FI->isMutable();
7448 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
7449 CSM, TSK_Field, TAH, Diagnose))
7450 return false;
7451 }
7452
7453 return true;
7454}
7455
7456/// Diagnose why the specified class does not have a trivial special member of
7457/// the given kind.
7458void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
7459 QualType Ty = Context.getRecordType(RD);
7460
7461 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
7462 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
7463 TSK_CompleteObject, TAH_IgnoreTrivialABI,
7464 /*Diagnose*/true);
7465}
7466
7467/// Determine whether a defaulted or deleted special member function is trivial,
7468/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
7469/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
7470bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
7471 TrivialABIHandling TAH, bool Diagnose) {
7472 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")(static_cast <bool> (!MD->isUserProvided() &&
CSM != CXXInvalid && "not special enough") ? void (0
) : __assert_fail ("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7472, __extension__ __PRETTY_FUNCTION__))
;
7473
7474 CXXRecordDecl *RD = MD->getParent();
7475
7476 bool ConstArg = false;
7477
7478 // C++11 [class.copy]p12, p25: [DR1593]
7479 // A [special member] is trivial if [...] its parameter-type-list is
7480 // equivalent to the parameter-type-list of an implicit declaration [...]
7481 switch (CSM) {
7482 case CXXDefaultConstructor:
7483 case CXXDestructor:
7484 // Trivial default constructors and destructors cannot have parameters.
7485 break;
7486
7487 case CXXCopyConstructor:
7488 case CXXCopyAssignment: {
7489 // Trivial copy operations always have const, non-volatile parameter types.
7490 ConstArg = true;
7491 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7492 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
7493 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
7494 if (Diagnose)
7495 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7496 << Param0->getSourceRange() << Param0->getType()
7497 << Context.getLValueReferenceType(
7498 Context.getRecordType(RD).withConst());
7499 return false;
7500 }
7501 break;
7502 }
7503
7504 case CXXMoveConstructor:
7505 case CXXMoveAssignment: {
7506 // Trivial move operations always have non-cv-qualified parameters.
7507 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7508 const RValueReferenceType *RT =
7509 Param0->getType()->getAs<RValueReferenceType>();
7510 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
7511 if (Diagnose)
7512 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7513 << Param0->getSourceRange() << Param0->getType()
7514 << Context.getRValueReferenceType(Context.getRecordType(RD));
7515 return false;
7516 }
7517 break;
7518 }
7519
7520 case CXXInvalid:
7521 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7521)
;
7522 }
7523
7524 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
7525 if (Diagnose)
7526 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
7527 diag::note_nontrivial_default_arg)
7528 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
7529 return false;
7530 }
7531 if (MD->isVariadic()) {
7532 if (Diagnose)
7533 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
7534 return false;
7535 }
7536
7537 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7538 // A copy/move [constructor or assignment operator] is trivial if
7539 // -- the [member] selected to copy/move each direct base class subobject
7540 // is trivial
7541 //
7542 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7543 // A [default constructor or destructor] is trivial if
7544 // -- all the direct base classes have trivial [default constructors or
7545 // destructors]
7546 for (const auto &BI : RD->bases())
7547 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
7548 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
7549 return false;
7550
7551 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7552 // A copy/move [constructor or assignment operator] for a class X is
7553 // trivial if
7554 // -- for each non-static data member of X that is of class type (or array
7555 // thereof), the constructor selected to copy/move that member is
7556 // trivial
7557 //
7558 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7559 // A [default constructor or destructor] is trivial if
7560 // -- for all of the non-static data members of its class that are of class
7561 // type (or array thereof), each such class has a trivial [default
7562 // constructor or destructor]
7563 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
7564 return false;
7565
7566 // C++11 [class.dtor]p5:
7567 // A destructor is trivial if [...]
7568 // -- the destructor is not virtual
7569 if (CSM == CXXDestructor && MD->isVirtual()) {
7570 if (Diagnose)
7571 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
7572 return false;
7573 }
7574
7575 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
7576 // A [special member] for class X is trivial if [...]
7577 // -- class X has no virtual functions and no virtual base classes
7578 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
7579 if (!Diagnose)
7580 return false;
7581
7582 if (RD->getNumVBases()) {
7583 // Check for virtual bases. We already know that the corresponding
7584 // member in all bases is trivial, so vbases must all be direct.
7585 CXXBaseSpecifier &BS = *RD->vbases_begin();
7586 assert(BS.isVirtual())(static_cast <bool> (BS.isVirtual()) ? void (0) : __assert_fail
("BS.isVirtual()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7586, __extension__ __PRETTY_FUNCTION__))
;
7587 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
7588 return false;
7589 }
7590
7591 // Must have a virtual method.
7592 for (const auto *MI : RD->methods()) {
7593 if (MI->isVirtual()) {
7594 SourceLocation MLoc = MI->getLocStart();
7595 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
7596 return false;
7597 }
7598 }
7599
7600 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7600)
;
7601 }
7602
7603 // Looks like it's trivial!
7604 return true;
7605}
7606
7607namespace {
7608struct FindHiddenVirtualMethod {
7609 Sema *S;
7610 CXXMethodDecl *Method;
7611 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
7612 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7613
7614private:
7615 /// Check whether any most overriden method from MD in Methods
7616 static bool CheckMostOverridenMethods(
7617 const CXXMethodDecl *MD,
7618 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
7619 if (MD->size_overridden_methods() == 0)
7620 return Methods.count(MD->getCanonicalDecl());
7621 for (const CXXMethodDecl *O : MD->overridden_methods())
7622 if (CheckMostOverridenMethods(O, Methods))
7623 return true;
7624 return false;
7625 }
7626
7627public:
7628 /// Member lookup function that determines whether a given C++
7629 /// method overloads virtual methods in a base class without overriding any,
7630 /// to be used with CXXRecordDecl::lookupInBases().
7631 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7632 RecordDecl *BaseRecord =
7633 Specifier->getType()->getAs<RecordType>()->getDecl();
7634
7635 DeclarationName Name = Method->getDeclName();
7636 assert(Name.getNameKind() == DeclarationName::Identifier)(static_cast <bool> (Name.getNameKind() == DeclarationName
::Identifier) ? void (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7636, __extension__ __PRETTY_FUNCTION__))
;
7637
7638 bool foundSameNameMethod = false;
7639 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
7640 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7641 Path.Decls = Path.Decls.slice(1)) {
7642 NamedDecl *D = Path.Decls.front();
7643 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7644 MD = MD->getCanonicalDecl();
7645 foundSameNameMethod = true;
7646 // Interested only in hidden virtual methods.
7647 if (!MD->isVirtual())
7648 continue;
7649 // If the method we are checking overrides a method from its base
7650 // don't warn about the other overloaded methods. Clang deviates from
7651 // GCC by only diagnosing overloads of inherited virtual functions that
7652 // do not override any other virtual functions in the base. GCC's
7653 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
7654 // function from a base class. These cases may be better served by a
7655 // warning (not specific to virtual functions) on call sites when the
7656 // call would select a different function from the base class, were it
7657 // visible.
7658 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
7659 if (!S->IsOverload(Method, MD, false))
7660 return true;
7661 // Collect the overload only if its hidden.
7662 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
7663 overloadedMethods.push_back(MD);
7664 }
7665 }
7666
7667 if (foundSameNameMethod)
7668 OverloadedMethods.append(overloadedMethods.begin(),
7669 overloadedMethods.end());
7670 return foundSameNameMethod;
7671 }
7672};
7673} // end anonymous namespace
7674
7675/// Add the most overriden methods from MD to Methods
7676static void AddMostOverridenMethods(const CXXMethodDecl *MD,
7677 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
7678 if (MD->size_overridden_methods() == 0)
7679 Methods.insert(MD->getCanonicalDecl());
7680 else
7681 for (const CXXMethodDecl *O : MD->overridden_methods())
7682 AddMostOverridenMethods(O, Methods);
7683}
7684
7685/// Check if a method overloads virtual methods in a base class without
7686/// overriding any.
7687void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
7688 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7689 if (!MD->getDeclName().isIdentifier())
7690 return;
7691
7692 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
7693 /*bool RecordPaths=*/false,
7694 /*bool DetectVirtual=*/false);
7695 FindHiddenVirtualMethod FHVM;
7696 FHVM.Method = MD;
7697 FHVM.S = this;
7698
7699 // Keep the base methods that were overriden or introduced in the subclass
7700 // by 'using' in a set. A base method not in this set is hidden.
7701 CXXRecordDecl *DC = MD->getParent();
7702 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
7703 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
7704 NamedDecl *ND = *I;
7705 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
7706 ND = shad->getTargetDecl();
7707 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7708 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
7709 }
7710
7711 if (DC->lookupInBases(FHVM, Paths))
7712 OverloadedMethods = FHVM.OverloadedMethods;
7713}
7714
7715void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
7716 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7717 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
7718 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
7719 PartialDiagnostic PD = PDiag(
7720 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
7721 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
7722 Diag(overloadedMD->getLocation(), PD);
7723 }
7724}
7725
7726/// Diagnose methods which overload virtual methods in a base class
7727/// without overriding any.
7728void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
7729 if (MD->isInvalidDecl())
7730 return;
7731
7732 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
7733 return;
7734
7735 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7736 FindHiddenVirtualMethods(MD, OverloadedMethods);
7737 if (!OverloadedMethods.empty()) {
7738 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
7739 << MD << (OverloadedMethods.size() > 1);
7740
7741 NoteHiddenVirtualMethods(MD, OverloadedMethods);
7742 }
7743}
7744
7745void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
7746 auto PrintDiagAndRemoveAttr = [&]() {
7747 // No diagnostics if this is a template instantiation.
7748 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind()))
7749 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
7750 diag::ext_cannot_use_trivial_abi) << &RD;
7751 RD.dropAttr<TrivialABIAttr>();
7752 };
7753
7754 // Ill-formed if the struct has virtual functions.
7755 if (RD.isPolymorphic()) {
7756 PrintDiagAndRemoveAttr();
7757 return;
7758 }
7759
7760 for (const auto &B : RD.bases()) {
7761 // Ill-formed if the base class is non-trivial for the purpose of calls or a
7762 // virtual base.
7763 if ((!B.getType()->isDependentType() &&
7764 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) ||
7765 B.isVirtual()) {
7766 PrintDiagAndRemoveAttr();
7767 return;
7768 }
7769 }
7770
7771 for (const auto *FD : RD.fields()) {
7772 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
7773 // non-trivial for the purpose of calls.
7774 QualType FT = FD->getType();
7775 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
7776 PrintDiagAndRemoveAttr();
7777 return;
7778 }
7779
7780 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
7781 if (!RT->isDependentType() &&
7782 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
7783 PrintDiagAndRemoveAttr();
7784 return;
7785 }
7786 }
7787}
7788
7789void Sema::ActOnFinishCXXMemberSpecification(
7790 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
7791 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
7792 if (!TagDecl)
7793 return;
7794
7795 AdjustDeclIfTemplate(TagDecl);
7796
7797 for (const ParsedAttr &AL : AttrList) {
7798 if (AL.getKind() != ParsedAttr::AT_Visibility)
7799 continue;
7800 AL.setInvalid();
7801 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored)
7802 << AL.getName();
7803 }
7804
7805 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
7806 // strict aliasing violation!
7807 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
7808 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
7809
7810 CheckCompletedCXXClass(cast<CXXRecordDecl>(TagDecl));
7811}
7812
7813/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
7814/// special functions, such as the default constructor, copy
7815/// constructor, or destructor, to the given C++ class (C++
7816/// [special]p1). This routine can only be executed just before the
7817/// definition of the class is complete.
7818void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
7819 if (ClassDecl->needsImplicitDefaultConstructor()) {
7820 ++ASTContext::NumImplicitDefaultConstructors;
7821
7822 if (ClassDecl->hasInheritedConstructor())
7823 DeclareImplicitDefaultConstructor(ClassDecl);
7824 }
7825
7826 if (ClassDecl->needsImplicitCopyConstructor()) {
7827 ++ASTContext::NumImplicitCopyConstructors;
7828
7829 // If the properties or semantics of the copy constructor couldn't be
7830 // determined while the class was being declared, force a declaration
7831 // of it now.
7832 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
7833 ClassDecl->hasInheritedConstructor())
7834 DeclareImplicitCopyConstructor(ClassDecl);
7835 // For the MS ABI we need to know whether the copy ctor is deleted. A
7836 // prerequisite for deleting the implicit copy ctor is that the class has a
7837 // move ctor or move assignment that is either user-declared or whose
7838 // semantics are inherited from a subobject. FIXME: We should provide a more
7839 // direct way for CodeGen to ask whether the constructor was deleted.
7840 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
7841 (ClassDecl->hasUserDeclaredMoveConstructor() ||
7842 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7843 ClassDecl->hasUserDeclaredMoveAssignment() ||
7844 ClassDecl->needsOverloadResolutionForMoveAssignment()))
7845 DeclareImplicitCopyConstructor(ClassDecl);
7846 }
7847
7848 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
7849 ++ASTContext::NumImplicitMoveConstructors;
7850
7851 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7852 ClassDecl->hasInheritedConstructor())
7853 DeclareImplicitMoveConstructor(ClassDecl);
7854 }
7855
7856 if (ClassDecl->needsImplicitCopyAssignment()) {
7857 ++ASTContext::NumImplicitCopyAssignmentOperators;
7858
7859 // If we have a dynamic class, then the copy assignment operator may be
7860 // virtual, so we have to declare it immediately. This ensures that, e.g.,
7861 // it shows up in the right place in the vtable and that we diagnose
7862 // problems with the implicit exception specification.
7863 if (ClassDecl->isDynamicClass() ||
7864 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
7865 ClassDecl->hasInheritedAssignment())
7866 DeclareImplicitCopyAssignment(ClassDecl);
7867 }
7868
7869 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
7870 ++ASTContext::NumImplicitMoveAssignmentOperators;
7871
7872 // Likewise for the move assignment operator.
7873 if (ClassDecl->isDynamicClass() ||
7874 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
7875 ClassDecl->hasInheritedAssignment())
7876 DeclareImplicitMoveAssignment(ClassDecl);
7877 }
7878
7879 if (ClassDecl->needsImplicitDestructor()) {
7880 ++ASTContext::NumImplicitDestructors;
7881
7882 // If we have a dynamic class, then the destructor may be virtual, so we
7883 // have to declare the destructor immediately. This ensures that, e.g., it
7884 // shows up in the right place in the vtable and that we diagnose problems
7885 // with the implicit exception specification.
7886 if (ClassDecl->isDynamicClass() ||
7887 ClassDecl->needsOverloadResolutionForDestructor())
7888 DeclareImplicitDestructor(ClassDecl);
7889 }
7890}
7891
7892unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
7893 if (!D)
7894 return 0;
7895
7896 // The order of template parameters is not important here. All names
7897 // get added to the same scope.
7898 SmallVector<TemplateParameterList *, 4> ParameterLists;
7899
7900 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7901 D = TD->getTemplatedDecl();
7902
7903 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
7904 ParameterLists.push_back(PSD->getTemplateParameters());
7905
7906 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
7907 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
7908 ParameterLists.push_back(DD->getTemplateParameterList(i));
7909
7910 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7911 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
7912 ParameterLists.push_back(FTD->getTemplateParameters());
7913 }
7914 }
7915
7916 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
7917 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
7918 ParameterLists.push_back(TD->getTemplateParameterList(i));
7919
7920 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
7921 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
7922 ParameterLists.push_back(CTD->getTemplateParameters());
7923 }
7924 }
7925
7926 unsigned Count = 0;
7927 for (TemplateParameterList *Params : ParameterLists) {
7928 if (Params->size() > 0)
7929 // Ignore explicit specializations; they don't contribute to the template
7930 // depth.
7931 ++Count;
7932 for (NamedDecl *Param : *Params) {
7933 if (Param->getDeclName()) {
7934 S->AddDecl(Param);
7935 IdResolver.AddDecl(Param);
7936 }
7937 }
7938 }
7939
7940 return Count;
7941}
7942
7943void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7944 if (!RecordD) return;
7945 AdjustDeclIfTemplate(RecordD);
7946 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
7947 PushDeclContext(S, Record);
7948}
7949
7950void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7951 if (!RecordD) return;
7952 PopDeclContext();
7953}
7954
7955/// This is used to implement the constant expression evaluation part of the
7956/// attribute enable_if extension. There is nothing in standard C++ which would
7957/// require reentering parameters.
7958void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
7959 if (!Param)
7960 return;
7961
7962 S->AddDecl(Param);
7963 if (Param->getDeclName())
7964 IdResolver.AddDecl(Param);
7965}
7966
7967/// ActOnStartDelayedCXXMethodDeclaration - We have completed
7968/// parsing a top-level (non-nested) C++ class, and we are now
7969/// parsing those parts of the given Method declaration that could
7970/// not be parsed earlier (C++ [class.mem]p2), such as default
7971/// arguments. This action should enter the scope of the given
7972/// Method declaration as if we had just parsed the qualified method
7973/// name. However, it should not bring the parameters into scope;
7974/// that will be performed by ActOnDelayedCXXMethodParameter.
7975void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7976}
7977
7978/// ActOnDelayedCXXMethodParameter - We've already started a delayed
7979/// C++ method declaration. We're (re-)introducing the given
7980/// function parameter into scope for use in parsing later parts of
7981/// the method declaration. For example, we could see an
7982/// ActOnParamDefaultArgument event for this parameter.
7983void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
7984 if (!ParamD)
7985 return;
7986
7987 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
7988
7989 // If this parameter has an unparsed default argument, clear it out
7990 // to make way for the parsed default argument.
7991 if (Param->hasUnparsedDefaultArg())
7992 Param->setDefaultArg(nullptr);
7993
7994 S->AddDecl(Param);
7995 if (Param->getDeclName())
7996 IdResolver.AddDecl(Param);
7997}
7998
7999/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
8000/// processing the delayed method declaration for Method. The method
8001/// declaration is now considered finished. There may be a separate
8002/// ActOnStartOfFunctionDef action later (not necessarily
8003/// immediately!) for this method, if it was also defined inside the
8004/// class body.
8005void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
8006 if (!MethodD)
8007 return;
8008
8009 AdjustDeclIfTemplate(MethodD);
8010
8011 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
8012
8013 // Now that we have our default arguments, check the constructor
8014 // again. It could produce additional diagnostics or affect whether
8015 // the class has implicitly-declared destructors, among other
8016 // things.
8017 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
8018 CheckConstructor(Constructor);
8019
8020 // Check the default arguments, which we may have added.
8021 if (!Method->isInvalidDecl())
8022 CheckCXXDefaultArguments(Method);
8023}
8024
8025/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
8026/// the well-formedness of the constructor declarator @p D with type @p
8027/// R. If there are any errors in the declarator, this routine will
8028/// emit diagnostics and set the invalid bit to true. In any case, the type
8029/// will be updated to reflect a well-formed type for the constructor and
8030/// returned.
8031QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
8032 StorageClass &SC) {
8033 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8034
8035 // C++ [class.ctor]p3:
8036 // A constructor shall not be virtual (10.3) or static (9.4). A
8037 // constructor can be invoked for a const, volatile or const
8038 // volatile object. A constructor shall not be declared const,
8039 // volatile, or const volatile (9.3.2).
8040 if (isVirtual) {
8041 if (!D.isInvalidType())
8042 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
8043 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
8044 << SourceRange(D.getIdentifierLoc());
8045 D.setInvalidType();
8046 }
8047 if (SC == SC_Static) {
8048 if (!D.isInvalidType())
8049 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
8050 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
8051 << SourceRange(D.getIdentifierLoc());
8052 D.setInvalidType();
8053 SC = SC_None;
8054 }
8055
8056 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
8057 diagnoseIgnoredQualifiers(
8058 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
8059 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
8060 D.getDeclSpec().getRestrictSpecLoc(),
8061 D.getDeclSpec().getAtomicSpecLoc());
8062 D.setInvalidType();
8063 }
8064
8065 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8066 if (FTI.TypeQuals != 0) {
8067 if (FTI.TypeQuals & Qualifiers::Const)
8068 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
8069 << "const" << SourceRange(D.getIdentifierLoc());
8070 if (FTI.TypeQuals & Qualifiers::Volatile)
8071 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
8072 << "volatile" << SourceRange(D.getIdentifierLoc());
8073 if (FTI.TypeQuals & Qualifiers::Restrict)
8074 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
8075 << "restrict" << SourceRange(D.getIdentifierLoc());
8076 D.setInvalidType();
8077 }
8078
8079 // C++0x [class.ctor]p4:
8080 // A constructor shall not be declared with a ref-qualifier.
8081 if (FTI.hasRefQualifier()) {
8082 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
8083 << FTI.RefQualifierIsLValueRef
8084 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
8085 D.setInvalidType();
8086 }
8087
8088 // Rebuild the function type "R" without any type qualifiers (in
8089 // case any of the errors above fired) and with "void" as the
8090 // return type, since constructors don't have return types.
8091 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8092 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
8093 return R;
8094
8095 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
8096 EPI.TypeQuals = 0;
8097 EPI.RefQualifier = RQ_None;
8098
8099 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
8100}
8101
8102/// CheckConstructor - Checks a fully-formed constructor for
8103/// well-formedness, issuing any diagnostics required. Returns true if
8104/// the constructor declarator is invalid.
8105void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
8106 CXXRecordDecl *ClassDecl
8107 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
8108 if (!ClassDecl)
8109 return Constructor->setInvalidDecl();
8110
8111 // C++ [class.copy]p3:
8112 // A declaration of a constructor for a class X is ill-formed if
8113 // its first parameter is of type (optionally cv-qualified) X and
8114 // either there are no other parameters or else all other
8115 // parameters have default arguments.
8116 if (!Constructor->isInvalidDecl() &&
8117 ((Constructor->getNumParams() == 1) ||
8118 (Constructor->getNumParams() > 1 &&
8119 Constructor->getParamDecl(1)->hasDefaultArg())) &&
8120 Constructor->getTemplateSpecializationKind()
8121 != TSK_ImplicitInstantiation) {
8122 QualType ParamType = Constructor->getParamDecl(0)->getType();
8123 QualType ClassTy = Context.getTagDeclType(ClassDecl);
8124 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
8125 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
8126 const char *ConstRef
8127 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
8128 : " const &";
8129 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
8130 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
8131
8132 // FIXME: Rather that making the constructor invalid, we should endeavor
8133 // to fix the type.
8134 Constructor->setInvalidDecl();
8135 }
8136 }
8137}
8138
8139/// CheckDestructor - Checks a fully-formed destructor definition for
8140/// well-formedness, issuing any diagnostics required. Returns true
8141/// on error.
8142bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
8143 CXXRecordDecl *RD = Destructor->getParent();
8144
8145 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
8146 SourceLocation Loc;
8147
8148 if (!Destructor->isImplicit())
8149 Loc = Destructor->getLocation();
8150 else
8151 Loc = RD->getLocation();
8152
8153 // If we have a virtual destructor, look up the deallocation function
8154 if (FunctionDecl *OperatorDelete =
8155 FindDeallocationFunctionForDestructor(Loc, RD)) {
8156 Expr *ThisArg = nullptr;
8157
8158 // If the notional 'delete this' expression requires a non-trivial
8159 // conversion from 'this' to the type of a destroying operator delete's
8160 // first parameter, perform that conversion now.
8161 if (OperatorDelete->isDestroyingOperatorDelete()) {
8162 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
8163 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
8164 // C++ [class.dtor]p13:
8165 // ... as if for the expression 'delete this' appearing in a
8166 // non-virtual destructor of the destructor's class.
8167 ContextRAII SwitchContext(*this, Destructor);
8168 ExprResult This =
8169 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
8170 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")(static_cast <bool> (!This.isInvalid() && "couldn't form 'this' expr in dtor?"
) ? void (0) : __assert_fail ("!This.isInvalid() && \"couldn't form 'this' expr in dtor?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8170, __extension__ __PRETTY_FUNCTION__))
;
8171 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
8172 if (This.isInvalid()) {
8173 // FIXME: Register this as a context note so that it comes out
8174 // in the right order.
8175 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
8176 return true;
8177 }
8178 ThisArg = This.get();
8179 }
8180 }
8181
8182 MarkFunctionReferenced(Loc, OperatorDelete);
8183 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
8184 }
8185 }
8186
8187 return false;
8188}
8189
8190/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
8191/// the well-formednes of the destructor declarator @p D with type @p
8192/// R. If there are any errors in the declarator, this routine will
8193/// emit diagnostics and set the declarator to invalid. Even if this happens,
8194/// will be updated to reflect a well-formed type for the destructor and
8195/// returned.
8196QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
8197 StorageClass& SC) {
8198 // C++ [class.dtor]p1:
8199 // [...] A typedef-name that names a class is a class-name
8200 // (7.1.3); however, a typedef-name that names a class shall not
8201 // be used as the identifier in the declarator for a destructor
8202 // declaration.
8203 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
8204 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
8205 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
8206 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
8207 else if (const TemplateSpecializationType *TST =
8208 DeclaratorType->getAs<TemplateSpecializationType>())
8209 if (TST->isTypeAlias())
8210 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
8211 << DeclaratorType << 1;
8212
8213 // C++ [class.dtor]p2:
8214 // A destructor is used to destroy objects of its class type. A
8215 // destructor takes no parameters, and no return type can be
8216 // specified for it (not even void). The address of a destructor
8217 // shall not be taken. A destructor shall not be static. A
8218 // destructor can be invoked for a const, volatile or const
8219 // volatile object. A destructor shall not be declared const,
8220 // volatile or const volatile (9.3.2).
8221 if (SC == SC_Static) {
8222 if (!D.isInvalidType())
8223 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
8224 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
8225 << SourceRange(D.getIdentifierLoc())
8226 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8227
8228 SC = SC_None;
8229 }
8230 if (!D.isInvalidType()) {
8231 // Destructors don't have return types, but the parser will
8232 // happily parse something like:
8233 //
8234 // class X {
8235 // float ~X();
8236 // };
8237 //
8238 // The return type will be eliminated later.
8239 if (D.getDeclSpec().hasTypeSpecifier())
8240 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
8241 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8242 << SourceRange(D.getIdentifierLoc());
8243 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
8244 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
8245 SourceLocation(),
8246 D.getDeclSpec().getConstSpecLoc(),
8247 D.getDeclSpec().getVolatileSpecLoc(),
8248 D.getDeclSpec().getRestrictSpecLoc(),
8249 D.getDeclSpec().getAtomicSpecLoc());
8250 D.setInvalidType();
8251 }
8252 }
8253
8254 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8255 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
8256 if (FTI.TypeQuals & Qualifiers::Const)
8257 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8258 << "const" << SourceRange(D.getIdentifierLoc());
8259 if (FTI.TypeQuals & Qualifiers::Volatile)
8260 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8261 << "volatile" << SourceRange(D.getIdentifierLoc());
8262 if (FTI.TypeQuals & Qualifiers::Restrict)
8263 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8264 << "restrict" << SourceRange(D.getIdentifierLoc());
8265 D.setInvalidType();
8266 }
8267
8268 // C++0x [class.dtor]p2:
8269 // A destructor shall not be declared with a ref-qualifier.
8270 if (FTI.hasRefQualifier()) {
8271 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
8272 << FTI.RefQualifierIsLValueRef
8273 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
8274 D.setInvalidType();
8275 }
8276
8277 // Make sure we don't have any parameters.
8278 if (FTIHasNonVoidParameters(FTI)) {
8279 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
8280
8281 // Delete the parameters.
8282 FTI.freeParams();
8283 D.setInvalidType();
8284 }
8285
8286 // Make sure the destructor isn't variadic.
8287 if (FTI.isVariadic) {
8288 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
8289 D.setInvalidType();
8290 }
8291
8292 // Rebuild the function type "R" without any type qualifiers or
8293 // parameters (in case any of the errors above fired) and with
8294 // "void" as the return type, since destructors don't have return
8295 // types.
8296 if (!D.isInvalidType())
8297 return R;
8298
8299 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8300 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
8301 EPI.Variadic = false;
8302 EPI.TypeQuals = 0;
8303 EPI.RefQualifier = RQ_None;
8304 return Context.getFunctionType(Context.VoidTy, None, EPI);
8305}
8306
8307static void extendLeft(SourceRange &R, SourceRange Before) {
8308 if (Before.isInvalid())
8309 return;
8310 R.setBegin(Before.getBegin());
8311 if (R.getEnd().isInvalid())
8312 R.setEnd(Before.getEnd());
8313}
8314
8315static void extendRight(SourceRange &R, SourceRange After) {
8316 if (After.isInvalid())
8317 return;
8318 if (R.getBegin().isInvalid())
8319 R.setBegin(After.getBegin());
8320 R.setEnd(After.getEnd());
8321}
8322
8323/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
8324/// well-formednes of the conversion function declarator @p D with
8325/// type @p R. If there are any errors in the declarator, this routine
8326/// will emit diagnostics and return true. Otherwise, it will return
8327/// false. Either way, the type @p R will be updated to reflect a
8328/// well-formed type for the conversion operator.
8329void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
8330 StorageClass& SC) {
8331 // C++ [class.conv.fct]p1:
8332 // Neither parameter types nor return type can be specified. The
8333 // type of a conversion function (8.3.5) is "function taking no
8334 // parameter returning conversion-type-id."
8335 if (SC == SC_Static) {
8336 if (!D.isInvalidType())
8337 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
8338 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
8339 << D.getName().getSourceRange();
8340 D.setInvalidType();
8341 SC = SC_None;
8342 }
8343
8344 TypeSourceInfo *ConvTSI = nullptr;
8345 QualType ConvType =
8346 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
8347
8348 const DeclSpec &DS = D.getDeclSpec();
8349 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
8350 // Conversion functions don't have return types, but the parser will
8351 // happily parse something like:
8352 //
8353 // class X {
8354 // float operator bool();
8355 // };
8356 //
8357 // The return type will be changed later anyway.
8358 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
8359 << SourceRange(DS.getTypeSpecTypeLoc())
8360 << SourceRange(D.getIdentifierLoc());
8361 D.setInvalidType();
8362 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
8363 // It's also plausible that the user writes type qualifiers in the wrong
8364 // place, such as:
8365 // struct S { const operator int(); };
8366 // FIXME: we could provide a fixit to move the qualifiers onto the
8367 // conversion type.
8368 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
8369 << SourceRange(D.getIdentifierLoc()) << 0;
8370 D.setInvalidType();
8371 }
8372
8373 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8374
8375 // Make sure we don't have any parameters.
8376 if (Proto->getNumParams() > 0) {
8377 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
8378
8379 // Delete the parameters.
8380 D.getFunctionTypeInfo().freeParams();
8381 D.setInvalidType();
8382 } else if (Proto->isVariadic()) {
8383 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
8384 D.setInvalidType();
8385 }
8386
8387 // Diagnose "&operator bool()" and other such nonsense. This
8388 // is actually a gcc extension which we don't support.
8389 if (Proto->getReturnType() != ConvType) {
8390 bool NeedsTypedef = false;
8391 SourceRange Before, After;
8392
8393 // Walk the chunks and extract information on them for our diagnostic.
8394 bool PastFunctionChunk = false;
8395 for (auto &Chunk : D.type_objects()) {
8396 switch (Chunk.Kind) {
8397 case DeclaratorChunk::Function:
8398 if (!PastFunctionChunk) {
8399 if (Chunk.Fun.HasTrailingReturnType) {
8400 TypeSourceInfo *TRT = nullptr;
8401 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
8402 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
8403 }
8404 PastFunctionChunk = true;
8405 break;
8406 }
8407 LLVM_FALLTHROUGH[[clang::fallthrough]];
8408 case DeclaratorChunk::Array:
8409 NeedsTypedef = true;
8410 extendRight(After, Chunk.getSourceRange());
8411 break;
8412
8413 case DeclaratorChunk::Pointer:
8414 case DeclaratorChunk::BlockPointer:
8415 case DeclaratorChunk::Reference:
8416 case DeclaratorChunk::MemberPointer:
8417 case DeclaratorChunk::Pipe:
8418 extendLeft(Before, Chunk.getSourceRange());
8419 break;
8420
8421 case DeclaratorChunk::Paren:
8422 extendLeft(Before, Chunk.Loc);
8423 extendRight(After, Chunk.EndLoc);
8424 break;
8425 }
8426 }
8427
8428 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
8429 After.isValid() ? After.getBegin() :
8430 D.getIdentifierLoc();
8431 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
8432 DB << Before << After;
8433
8434 if (!NeedsTypedef) {
8435 DB << /*don't need a typedef*/0;
8436
8437 // If we can provide a correct fix-it hint, do so.
8438 if (After.isInvalid() && ConvTSI) {
8439 SourceLocation InsertLoc =
8440 getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
8441 DB << FixItHint::CreateInsertion(InsertLoc, " ")
8442 << FixItHint::CreateInsertionFromRange(
8443 InsertLoc, CharSourceRange::getTokenRange(Before))
8444 << FixItHint::CreateRemoval(Before);
8445 }
8446 } else if (!Proto->getReturnType()->isDependentType()) {
8447 DB << /*typedef*/1 << Proto->getReturnType();
8448 } else if (getLangOpts().CPlusPlus11) {
8449 DB << /*alias template*/2 << Proto->getReturnType();
8450 } else {
8451 DB << /*might not be fixable*/3;
8452 }
8453
8454 // Recover by incorporating the other type chunks into the result type.
8455 // Note, this does *not* change the name of the function. This is compatible
8456 // with the GCC extension:
8457 // struct S { &operator int(); } s;
8458 // int &r = s.operator int(); // ok in GCC
8459 // S::operator int&() {} // error in GCC, function name is 'operator int'.
8460 ConvType = Proto->getReturnType();
8461 }
8462
8463 // C++ [class.conv.fct]p4:
8464 // The conversion-type-id shall not represent a function type nor
8465 // an array type.
8466 if (ConvType->isArrayType()) {
8467 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
8468 ConvType = Context.getPointerType(ConvType);
8469 D.setInvalidType();
8470 } else if (ConvType->isFunctionType()) {
8471 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
8472 ConvType = Context.getPointerType(ConvType);
8473 D.setInvalidType();
8474 }
8475
8476 // Rebuild the function type "R" without any parameters (in case any
8477 // of the errors above fired) and with the conversion type as the
8478 // return type.
8479 if (D.isInvalidType())
8480 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
8481
8482 // C++0x explicit conversion operators.
8483 if (DS.isExplicitSpecified())
8484 Diag(DS.getExplicitSpecLoc(),
8485 getLangOpts().CPlusPlus11
8486 ? diag::warn_cxx98_compat_explicit_conversion_functions
8487 : diag::ext_explicit_conversion_functions)
8488 << SourceRange(DS.getExplicitSpecLoc());
8489}
8490
8491/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
8492/// the declaration of the given C++ conversion function. This routine
8493/// is responsible for recording the conversion function in the C++
8494/// class, if possible.
8495Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
8496 assert(Conversion && "Expected to receive a conversion function declaration")(static_cast <bool> (Conversion && "Expected to receive a conversion function declaration"
) ? void (0) : __assert_fail ("Conversion && \"Expected to receive a conversion function declaration\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8496, __extension__ __PRETTY_FUNCTION__))
;
8497
8498 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
8499
8500 // Make sure we aren't redeclaring the conversion function.
8501 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
8502
8503 // C++ [class.conv.fct]p1:
8504 // [...] A conversion function is never used to convert a
8505 // (possibly cv-qualified) object to the (possibly cv-qualified)
8506 // same object type (or a reference to it), to a (possibly
8507 // cv-qualified) base class of that type (or a reference to it),
8508 // or to (possibly cv-qualified) void.
8509 // FIXME: Suppress this warning if the conversion function ends up being a
8510 // virtual function that overrides a virtual function in a base class.
8511 QualType ClassType
8512 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8513 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
8514 ConvType = ConvTypeRef->getPointeeType();
8515 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
8516 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
8517 /* Suppress diagnostics for instantiations. */;
8518 else if (ConvType->isRecordType()) {
8519 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
8520 if (ConvType == ClassType)
8521 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
8522 << ClassType;
8523 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
8524 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
8525 << ClassType << ConvType;
8526 } else if (ConvType->isVoidType()) {
8527 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
8528 << ClassType << ConvType;
8529 }
8530
8531 if (FunctionTemplateDecl *ConversionTemplate
8532 = Conversion->getDescribedFunctionTemplate())
8533 return ConversionTemplate;
8534
8535 return Conversion;
8536}
8537
8538namespace {
8539/// Utility class to accumulate and print a diagnostic listing the invalid
8540/// specifier(s) on a declaration.
8541struct BadSpecifierDiagnoser {
8542 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
8543 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
8544 ~BadSpecifierDiagnoser() {
8545 Diagnostic << Specifiers;
8546 }
8547
8548 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
8549 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
8550 }
8551 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
8552 return check(SpecLoc,
8553 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
8554 }
8555 void check(SourceLocation SpecLoc, const char *Spec) {
8556 if (SpecLoc.isInvalid()) return;
8557 Diagnostic << SourceRange(SpecLoc, SpecLoc);
8558 if (!Specifiers.empty()) Specifiers += " ";
8559 Specifiers += Spec;
8560 }
8561
8562 Sema &S;
8563 Sema::SemaDiagnosticBuilder Diagnostic;
8564 std::string Specifiers;
8565};
8566}
8567
8568/// Check the validity of a declarator that we parsed for a deduction-guide.
8569/// These aren't actually declarators in the grammar, so we need to check that
8570/// the user didn't specify any pieces that are not part of the deduction-guide
8571/// grammar.
8572void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
8573 StorageClass &SC) {
8574 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
8575 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
8576 assert(GuidedTemplateDecl && "missing template decl for deduction guide")(static_cast <bool> (GuidedTemplateDecl && "missing template decl for deduction guide"
) ? void (0) : __assert_fail ("GuidedTemplateDecl && \"missing template decl for deduction guide\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8576, __extension__ __PRETTY_FUNCTION__))
;
8577
8578 // C++ [temp.deduct.guide]p3:
8579 // A deduction-gide shall be declared in the same scope as the
8580 // corresponding class template.
8581 if (!CurContext->getRedeclContext()->Equals(
8582 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
8583 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
8584 << GuidedTemplateDecl;
8585 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
8586 }
8587
8588 auto &DS = D.getMutableDeclSpec();
8589 // We leave 'friend' and 'virtual' to be rejected in the normal way.
8590 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
8591 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
8592 DS.isNoreturnSpecified() || DS.isConstexprSpecified()) {
8593 BadSpecifierDiagnoser Diagnoser(
8594 *this, D.getIdentifierLoc(),
8595 diag::err_deduction_guide_invalid_specifier);
8596
8597 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
8598 DS.ClearStorageClassSpecs();
8599 SC = SC_None;
8600
8601 // 'explicit' is permitted.
8602 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
8603 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
8604 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
8605 DS.ClearConstexprSpec();
8606
8607 Diagnoser.check(DS.getConstSpecLoc(), "const");
8608 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
8609 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
8610 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
8611 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
8612 DS.ClearTypeQualifiers();
8613
8614 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
8615 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
8616 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
8617 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
8618 DS.ClearTypeSpecType();
8619 }
8620
8621 if (D.isInvalidType())
8622 return;
8623
8624 // Check the declarator is simple enough.
8625 bool FoundFunction = false;
8626 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
8627 if (Chunk.Kind == DeclaratorChunk::Paren)
8628 continue;
8629 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
8630 Diag(D.getDeclSpec().getLocStart(),
8631 diag::err_deduction_guide_with_complex_decl)
8632 << D.getSourceRange();
8633 break;
8634 }
8635 if (!Chunk.Fun.hasTrailingReturnType()) {
8636 Diag(D.getName().getLocStart(),
8637 diag::err_deduction_guide_no_trailing_return_type);
8638 break;
8639 }
8640
8641 // Check that the return type is written as a specialization of
8642 // the template specified as the deduction-guide's name.
8643 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
8644 TypeSourceInfo *TSI = nullptr;
8645 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
8646 assert(TSI && "deduction guide has valid type but invalid return type?")(static_cast <bool> (TSI && "deduction guide has valid type but invalid return type?"
) ? void (0) : __assert_fail ("TSI && \"deduction guide has valid type but invalid return type?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8646, __extension__ __PRETTY_FUNCTION__))
;
8647 bool AcceptableReturnType = false;
8648 bool MightInstantiateToSpecialization = false;
8649 if (auto RetTST =
8650 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
8651 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
8652 bool TemplateMatches =
8653 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
8654 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
8655 AcceptableReturnType = true;
8656 else {
8657 // This could still instantiate to the right type, unless we know it
8658 // names the wrong class template.
8659 auto *TD = SpecifiedName.getAsTemplateDecl();
8660 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
8661 !TemplateMatches);
8662 }
8663 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
8664 MightInstantiateToSpecialization = true;
8665 }
8666
8667 if (!AcceptableReturnType) {
8668 Diag(TSI->getTypeLoc().getLocStart(),
8669 diag::err_deduction_guide_bad_trailing_return_type)
8670 << GuidedTemplate << TSI->getType() << MightInstantiateToSpecialization
8671 << TSI->getTypeLoc().getSourceRange();
8672 }
8673
8674 // Keep going to check that we don't have any inner declarator pieces (we
8675 // could still have a function returning a pointer to a function).
8676 FoundFunction = true;
8677 }
8678
8679 if (D.isFunctionDefinition())
8680 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
8681}
8682
8683//===----------------------------------------------------------------------===//
8684// Namespace Handling
8685//===----------------------------------------------------------------------===//
8686
8687/// Diagnose a mismatch in 'inline' qualifiers when a namespace is
8688/// reopened.
8689static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
8690 SourceLocation Loc,
8691 IdentifierInfo *II, bool *IsInline,
8692 NamespaceDecl *PrevNS) {
8693 assert(*IsInline != PrevNS->isInline())(static_cast <bool> (*IsInline != PrevNS->isInline()
) ? void (0) : __assert_fail ("*IsInline != PrevNS->isInline()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8693, __extension__ __PRETTY_FUNCTION__))
;
8694
8695 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
8696 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
8697 // inline namespaces, with the intention of bringing names into namespace std.
8698 //
8699 // We support this just well enough to get that case working; this is not
8700 // sufficient to support reopening namespaces as inline in general.
8701 if (*IsInline && II && II->getName().startswith("__atomic") &&
8702 S.getSourceManager().isInSystemHeader(Loc)) {
8703 // Mark all prior declarations of the namespace as inline.
8704 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
8705 NS = NS->getPreviousDecl())
8706 NS->setInline(*IsInline);
8707 // Patch up the lookup table for the containing namespace. This isn't really
8708 // correct, but it's good enough for this particular case.
8709 for (auto *I : PrevNS->decls())
8710 if (auto *ND = dyn_cast<NamedDecl>(I))
8711 PrevNS->getParent()->makeDeclVisibleInContext(ND);
8712 return;
8713 }
8714
8715 if (PrevNS->isInline())
8716 // The user probably just forgot the 'inline', so suggest that it
8717 // be added back.
8718 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
8719 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
8720 else
8721 S.Diag(Loc, diag::err_inline_namespace_mismatch);
8722
8723 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
8724 *IsInline = PrevNS->isInline();
8725}
8726
8727/// ActOnStartNamespaceDef - This is called at the start of a namespace
8728/// definition.
8729Decl *Sema::ActOnStartNamespaceDef(
8730 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
8731 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
8732 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
8733 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
8734 // For anonymous namespace, take the location of the left brace.
8735 SourceLocation Loc = II ? IdentLoc : LBrace;
8736 bool IsInline = InlineLoc.isValid();
8737 bool IsInvalid = false;
8738 bool IsStd = false;
8739 bool AddToKnown = false;
8740 Scope *DeclRegionScope = NamespcScope->getParent();
8741
8742 NamespaceDecl *PrevNS = nullptr;
8743 if (II) {
8744 // C++ [namespace.def]p2:
8745 // The identifier in an original-namespace-definition shall not
8746 // have been previously defined in the declarative region in
8747 // which the original-namespace-definition appears. The
8748 // identifier in an original-namespace-definition is the name of
8749 // the namespace. Subsequently in that declarative region, it is
8750 // treated as an original-namespace-name.
8751 //
8752 // Since namespace names are unique in their scope, and we don't
8753 // look through using directives, just look for any ordinary names
8754 // as if by qualified name lookup.
8755 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
8756 ForExternalRedeclaration);
8757 LookupQualifiedName(R, CurContext->getRedeclContext());
8758 NamedDecl *PrevDecl =
8759 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
8760 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
8761
8762 if (PrevNS) {
8763 // This is an extended namespace definition.
8764 if (IsInline != PrevNS->isInline())
8765 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
8766 &IsInline, PrevNS);
8767 } else if (PrevDecl) {
8768 // This is an invalid name redefinition.
8769 Diag(Loc, diag::err_redefinition_different_kind)
8770 << II;
8771 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8772 IsInvalid = true;
8773 // Continue on to push Namespc as current DeclContext and return it.
8774 } else if (II->isStr("std") &&
8775 CurContext->getRedeclContext()->isTranslationUnit()) {
8776 // This is the first "real" definition of the namespace "std", so update
8777 // our cache of the "std" namespace to point at this definition.
8778 PrevNS = getStdNamespace();
8779 IsStd = true;
8780 AddToKnown = !IsInline;
8781 } else {
8782 // We've seen this namespace for the first time.
8783 AddToKnown = !IsInline;
8784 }
8785 } else {
8786 // Anonymous namespaces.
8787
8788 // Determine whether the parent already has an anonymous namespace.
8789 DeclContext *Parent = CurContext->getRedeclContext();
8790 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
8791 PrevNS = TU->getAnonymousNamespace();
8792 } else {
8793 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
8794 PrevNS = ND->getAnonymousNamespace();
8795 }
8796
8797 if (PrevNS && IsInline != PrevNS->isInline())
8798 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
8799 &IsInline, PrevNS);
8800 }
8801
8802 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
8803 StartLoc, Loc, II, PrevNS);
8804 if (IsInvalid)
8805 Namespc->setInvalidDecl();
8806
8807 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
8808 AddPragmaAttributes(DeclRegionScope, Namespc);
8809
8810 // FIXME: Should we be merging attributes?
8811 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
8812 PushNamespaceVisibilityAttr(Attr, Loc);
8813
8814 if (IsStd)
8815 StdNamespace = Namespc;
8816 if (AddToKnown)
8817 KnownNamespaces[Namespc] = false;
8818
8819 if (II) {
8820 PushOnScopeChains(Namespc, DeclRegionScope);
8821 } else {
8822 // Link the anonymous namespace into its parent.
8823 DeclContext *Parent = CurContext->getRedeclContext();
8824 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
8825 TU->setAnonymousNamespace(Namespc);
8826 } else {
8827 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
8828 }
8829
8830 CurContext->addDecl(Namespc);
8831
8832 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
8833 // behaves as if it were replaced by
8834 // namespace unique { /* empty body */ }
8835 // using namespace unique;
8836 // namespace unique { namespace-body }
8837 // where all occurrences of 'unique' in a translation unit are
8838 // replaced by the same identifier and this identifier differs
8839 // from all other identifiers in the entire program.
8840
8841 // We just create the namespace with an empty name and then add an
8842 // implicit using declaration, just like the standard suggests.
8843 //
8844 // CodeGen enforces the "universally unique" aspect by giving all
8845 // declarations semantically contained within an anonymous
8846 // namespace internal linkage.
8847
8848 if (!PrevNS) {
8849 UD = UsingDirectiveDecl::Create(Context, Parent,
8850 /* 'using' */ LBrace,
8851 /* 'namespace' */ SourceLocation(),
8852 /* qualifier */ NestedNameSpecifierLoc(),
8853 /* identifier */ SourceLocation(),
8854 Namespc,
8855 /* Ancestor */ Parent);
8856 UD->setImplicit();
8857 Parent->addDecl(UD);
8858 }
8859 }
8860
8861 ActOnDocumentableDecl(Namespc);
8862
8863 // Although we could have an invalid decl (i.e. the namespace name is a
8864 // redefinition), push it as current DeclContext and try to continue parsing.
8865 // FIXME: We should be able to push Namespc here, so that the each DeclContext
8866 // for the namespace has the declarations that showed up in that particular
8867 // namespace definition.
8868 PushDeclContext(NamespcScope, Namespc);
8869 return Namespc;
8870}
8871
8872/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
8873/// is a namespace alias, returns the namespace it points to.
8874static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
8875 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
8876 return AD->getNamespace();
8877 return dyn_cast_or_null<NamespaceDecl>(D);
8878}
8879
8880/// ActOnFinishNamespaceDef - This callback is called after a namespace is
8881/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
8882void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
8883 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
8884 assert(Namespc && "Invalid parameter, expected NamespaceDecl")(static_cast <bool> (Namespc && "Invalid parameter, expected NamespaceDecl"
) ? void (0) : __assert_fail ("Namespc && \"Invalid parameter, expected NamespaceDecl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8884, __extension__ __PRETTY_FUNCTION__))
;
8885 Namespc->setRBraceLoc(RBrace);
8886 PopDeclContext();
8887 if (Namespc->hasAttr<VisibilityAttr>())
8888 PopPragmaVisibility(true, RBrace);
8889}
8890
8891CXXRecordDecl *Sema::getStdBadAlloc() const {
8892 return cast_or_null<CXXRecordDecl>(
8893 StdBadAlloc.get(Context.getExternalSource()));
8894}
8895
8896EnumDecl *Sema::getStdAlignValT() const {
8897 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
8898}
8899
8900NamespaceDecl *Sema::getStdNamespace() const {
8901 return cast_or_null<NamespaceDecl>(
8902 StdNamespace.get(Context.getExternalSource()));
8903}
8904
8905NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
8906 if (!StdExperimentalNamespaceCache) {
8907 if (auto Std = getStdNamespace()) {
8908 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
8909 SourceLocation(), LookupNamespaceName);
8910 if (!LookupQualifiedName(Result, Std) ||
8911 !(StdExperimentalNamespaceCache =
8912 Result.getAsSingle<NamespaceDecl>()))
8913 Result.suppressDiagnostics();
8914 }
8915 }
8916 return StdExperimentalNamespaceCache;
8917}
8918
8919namespace {
8920
8921enum UnsupportedSTLSelect {
8922 USS_InvalidMember,
8923 USS_MissingMember,
8924 USS_NonTrivial,
8925 USS_Other
8926};
8927
8928struct InvalidSTLDiagnoser {
8929 Sema &S;
8930 SourceLocation Loc;
8931 QualType TyForDiags;
8932
8933 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
8934 const VarDecl *VD = nullptr) {
8935 {
8936 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
8937 << TyForDiags << ((int)Sel);
8938 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
8939 assert(!Name.empty())(static_cast <bool> (!Name.empty()) ? void (0) : __assert_fail
("!Name.empty()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8939, __extension__ __PRETTY_FUNCTION__))
;
8940 D << Name;
8941 }
8942 }
8943 if (Sel == USS_InvalidMember) {
8944 S.Diag(VD->getLocation(), diag::note_var_declared_here)
8945 << VD << VD->getSourceRange();
8946 }
8947 return QualType();
8948 }
8949};
8950} // namespace
8951
8952QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
8953 SourceLocation Loc) {
8954 assert(getLangOpts().CPlusPlus &&(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for comparison category type outside of C++.") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8955, __extension__ __PRETTY_FUNCTION__))
8955 "Looking for comparison category type outside of C++.")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for comparison category type outside of C++.") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8955, __extension__ __PRETTY_FUNCTION__))
;
8956
8957 // Check if we've already successfully checked the comparison category type
8958 // before. If so, skip checking it again.
8959 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
8960 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)])
8961 return Info->getType();
8962
8963 // If lookup failed
8964 if (!Info) {
8965 std::string NameForDiags = "std::";
8966 NameForDiags += ComparisonCategories::getCategoryString(Kind);
8967 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
8968 << NameForDiags;
8969 return QualType();
8970 }
8971
8972 assert(Info->Kind == Kind)(static_cast <bool> (Info->Kind == Kind) ? void (0) :
__assert_fail ("Info->Kind == Kind", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8972, __extension__ __PRETTY_FUNCTION__))
;
8973 assert(Info->Record)(static_cast <bool> (Info->Record) ? void (0) : __assert_fail
("Info->Record", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8973, __extension__ __PRETTY_FUNCTION__))
;
8974
8975 // Update the Record decl in case we encountered a forward declaration on our
8976 // first pass. FIXME: This is a bit of a hack.
8977 if (Info->Record->hasDefinition())
8978 Info->Record = Info->Record->getDefinition();
8979
8980 // Use an elaborated type for diagnostics which has a name containing the
8981 // prepended 'std' namespace but not any inline namespace names.
8982 QualType TyForDiags = [&]() {
8983 auto *NNS =
8984 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
8985 return Context.getElaboratedType(ETK_None, NNS, Info->getType());
8986 }();
8987
8988 if (RequireCompleteType(Loc, TyForDiags, diag::err_incomplete_type))
8989 return QualType();
8990
8991 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags};
8992
8993 if (!Info->Record->isTriviallyCopyable())
8994 return UnsupportedSTLError(USS_NonTrivial);
8995
8996 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
8997 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
8998 // Tolerate empty base classes.
8999 if (Base->isEmpty())
9000 continue;
9001 // Reject STL implementations which have at least one non-empty base.
9002 return UnsupportedSTLError();
9003 }
9004
9005 // Check that the STL has implemented the types using a single integer field.
9006 // This expectation allows better codegen for builtin operators. We require:
9007 // (1) The class has exactly one field.
9008 // (2) The field is an integral or enumeration type.
9009 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
9010 if (std::distance(FIt, FEnd) != 1 ||
9011 !FIt->getType()->isIntegralOrEnumerationType()) {
9012 return UnsupportedSTLError();
9013 }
9014
9015 // Build each of the require values and store them in Info.
9016 for (ComparisonCategoryResult CCR :
9017 ComparisonCategories::getPossibleResultsForType(Kind)) {
9018 StringRef MemName = ComparisonCategories::getResultString(CCR);
9019 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
9020
9021 if (!ValInfo)
9022 return UnsupportedSTLError(USS_MissingMember, MemName);
9023
9024 VarDecl *VD = ValInfo->VD;
9025 assert(VD && "should not be null!")(static_cast <bool> (VD && "should not be null!"
) ? void (0) : __assert_fail ("VD && \"should not be null!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9025, __extension__ __PRETTY_FUNCTION__))
;
9026
9027 // Attempt to diagnose reasons why the STL definition of this type
9028 // might be foobar, including it failing to be a constant expression.
9029 // TODO Handle more ways the lookup or result can be invalid.
9030 if (!VD->isStaticDataMember() || !VD->isConstexpr() || !VD->hasInit() ||
9031 !VD->checkInitIsICE())
9032 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
9033
9034 // Attempt to evaluate the var decl as a constant expression and extract
9035 // the value of its first field as a ICE. If this fails, the STL
9036 // implementation is not supported.
9037 if (!ValInfo->hasValidIntValue())
9038 return UnsupportedSTLError();
9039
9040 MarkVariableReferenced(Loc, VD);
9041 }
9042
9043 // We've successfully built the required types and expressions. Update
9044 // the cache and return the newly cached value.
9045 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
9046 return Info->getType();
9047}
9048
9049/// Retrieve the special "std" namespace, which may require us to
9050/// implicitly define the namespace.
9051NamespaceDecl *Sema::getOrCreateStdNamespace() {
9052 if (!StdNamespace) {
9053 // The "std" namespace has not yet been defined, so build one implicitly.
9054 StdNamespace = NamespaceDecl::Create(Context,
9055 Context.getTranslationUnitDecl(),
9056 /*Inline=*/false,
9057 SourceLocation(), SourceLocation(),
9058 &PP.getIdentifierTable().get("std"),
9059 /*PrevDecl=*/nullptr);
9060 getStdNamespace()->setImplicit(true);
9061 }
9062
9063 return getStdNamespace();
9064}
9065
9066bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
9067 assert(getLangOpts().CPlusPlus &&(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for std::initializer_list outside of C++.") ? void (
0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9068, __extension__ __PRETTY_FUNCTION__))
9068 "Looking for std::initializer_list outside of C++.")(static_cast <bool> (getLangOpts().CPlusPlus &&
"Looking for std::initializer_list outside of C++.") ? void (
0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9068, __extension__ __PRETTY_FUNCTION__))
;
9069
9070 // We're looking for implicit instantiations of
9071 // template <typename E> class std::initializer_list.
9072
9073 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
9074 return false;
9075
9076 ClassTemplateDecl *Template = nullptr;
9077 const TemplateArgument *Arguments = nullptr;
9078
9079 if (const RecordType *RT = Ty->getAs<RecordType>()) {
9080
9081 ClassTemplateSpecializationDecl *Specialization =
9082 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
9083 if (!Specialization)
9084 return false;
9085
9086 Template = Specialization->getSpecializedTemplate();
9087 Arguments = Specialization->getTemplateArgs().data();
9088 } else if (const TemplateSpecializationType *TST =
9089 Ty->getAs<TemplateSpecializationType>()) {
9090 Template = dyn_cast_or_null<ClassTemplateDecl>(
9091 TST->getTemplateName().getAsTemplateDecl());
9092 Arguments = TST->getArgs();
9093 }
9094 if (!Template)
9095 return false;
9096
9097 if (!StdInitializerList) {
9098 // Haven't recognized std::initializer_list yet, maybe this is it.
9099 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
9100 if (TemplateClass->getIdentifier() !=
9101 &PP.getIdentifierTable().get("initializer_list") ||
9102 !getStdNamespace()->InEnclosingNamespaceSetOf(
9103 TemplateClass->getDeclContext()))
9104 return false;
9105 // This is a template called std::initializer_list, but is it the right
9106 // template?
9107 TemplateParameterList *Params = Template->getTemplateParameters();
9108 if (Params->getMinRequiredArguments() != 1)
9109 return false;
9110 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
9111 return false;
9112
9113 // It's the right template.
9114 StdInitializerList = Template;
9115 }
9116
9117 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
9118 return false;
9119
9120 // This is an instance of std::initializer_list. Find the argument type.
9121 if (Element)
9122 *Element = Arguments[0].getAsType();
9123 return true;
9124}
9125
9126static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
9127 NamespaceDecl *Std = S.getStdNamespace();
9128 if (!Std) {
9129 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
9130 return nullptr;
9131 }
9132
9133 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
9134 Loc, Sema::LookupOrdinaryName);
9135 if (!S.LookupQualifiedName(Result, Std)) {
9136 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
9137 return nullptr;
9138 }
9139 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
9140 if (!Template) {
9141 Result.suppressDiagnostics();
9142 // We found something weird. Complain about the first thing we found.
9143 NamedDecl *Found = *Result.begin();
9144 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
9145 return nullptr;
9146 }
9147
9148 // We found some template called std::initializer_list. Now verify that it's
9149 // correct.
9150 TemplateParameterList *Params = Template->getTemplateParameters();
9151 if (Params->getMinRequiredArguments() != 1 ||
9152 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
9153 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
9154 return nullptr;
9155 }
9156
9157 return Template;
9158}
9159
9160QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
9161 if (!StdInitializerList) {
9162 StdInitializerList = LookupStdInitializerList(*this, Loc);
9163 if (!StdInitializerList)
9164 return QualType();
9165 }
9166
9167 TemplateArgumentListInfo Args(Loc, Loc);
9168 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
9169 Context.getTrivialTypeSourceInfo(Element,
9170 Loc)));
9171 return Context.getCanonicalType(
9172 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
9173}
9174
9175bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
9176 // C++ [dcl.init.list]p2:
9177 // A constructor is an initializer-list constructor if its first parameter
9178 // is of type std::initializer_list<E> or reference to possibly cv-qualified
9179 // std::initializer_list<E> for some type E, and either there are no other
9180 // parameters or else all other parameters have default arguments.
9181 if (Ctor->getNumParams() < 1 ||
9182 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
9183 return false;
9184
9185 QualType ArgType = Ctor->getParamDecl(0)->getType();
9186 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
9187 ArgType = RT->getPointeeType().getUnqualifiedType();
9188
9189 return isStdInitializerList(ArgType, nullptr);
9190}
9191
9192/// Determine whether a using statement is in a context where it will be
9193/// apply in all contexts.
9194static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
9195 switch (CurContext->getDeclKind()) {
9196 case Decl::TranslationUnit:
9197 return true;
9198 case Decl::LinkageSpec:
9199 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
9200 default:
9201 return false;
9202 }
9203}
9204
9205namespace {
9206
9207// Callback to only accept typo corrections that are namespaces.
9208class NamespaceValidatorCCC : public CorrectionCandidateCallback {
9209public:
9210 bool ValidateCandidate(const TypoCorrection &candidate) override {
9211 if (NamedDecl *ND = candidate.getCorrectionDecl())
9212 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
9213 return false;
9214 }
9215};
9216
9217}
9218
9219static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
9220 CXXScopeSpec &SS,
9221 SourceLocation IdentLoc,
9222 IdentifierInfo *Ident) {
9223 R.clear();
9224 if (TypoCorrection Corrected =
9225 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS,
9226 llvm::make_unique<NamespaceValidatorCCC>(),
9227 Sema::CTK_ErrorRecovery)) {
9228 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
9229 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
9230 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
9231 Ident->getName().equals(CorrectedStr);
9232 S.diagnoseTypo(Corrected,
9233 S.PDiag(diag::err_using_directive_member_suggest)
9234 << Ident << DC << DroppedSpecifier << SS.getRange(),
9235 S.PDiag(diag::note_namespace_defined_here));
9236 } else {
9237 S.diagnoseTypo(Corrected,
9238 S.PDiag(diag::err_using_directive_suggest) << Ident,
9239 S.PDiag(diag::note_namespace_defined_here));
9240 }
9241 R.addDecl(Corrected.getFoundDecl());
9242 return true;
9243 }
9244 return false;
9245}
9246
9247Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
9248 SourceLocation NamespcLoc, CXXScopeSpec &SS,
9249 SourceLocation IdentLoc,
9250 IdentifierInfo *NamespcName,
9251 const ParsedAttributesView &AttrList) {
9252 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")(static_cast <bool> (!SS.isInvalid() && "Invalid CXXScopeSpec."
) ? void (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9252, __extension__ __PRETTY_FUNCTION__))
;
9253 assert(NamespcName && "Invalid NamespcName.")(static_cast <bool> (NamespcName && "Invalid NamespcName."
) ? void (0) : __assert_fail ("NamespcName && \"Invalid NamespcName.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9253, __extension__ __PRETTY_FUNCTION__))
;
9254 assert(IdentLoc.isValid() && "Invalid NamespceName location.")(static_cast <bool> (IdentLoc.isValid() && "Invalid NamespceName location."
) ? void (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid NamespceName location.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9254, __extension__ __PRETTY_FUNCTION__))
;
9255
9256 // This can only happen along a recovery path.
9257 while (S->isTemplateParamScope())
9258 S = S->getParent();
9259 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")(static_cast <bool> (S->getFlags() & Scope::DeclScope
&& "Invalid Scope.") ? void (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9259, __extension__ __PRETTY_FUNCTION__))
;
9260
9261 UsingDirectiveDecl *UDir = nullptr;
9262 NestedNameSpecifier *Qualifier = nullptr;
9263 if (SS.isSet())
9264 Qualifier = SS.getScopeRep();
9265
9266 // Lookup namespace name.
9267 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
9268 LookupParsedName(R, S, &SS);
9269 if (R.isAmbiguous())
9270 return nullptr;
9271
9272 if (R.empty()) {
9273 R.clear();
9274 // Allow "using namespace std;" or "using namespace ::std;" even if
9275 // "std" hasn't been defined yet, for GCC compatibility.
9276 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
9277 NamespcName->isStr("std")) {
9278 Diag(IdentLoc, diag::ext_using_undefined_std);
9279 R.addDecl(getOrCreateStdNamespace());
9280 R.resolveKind();
9281 }
9282 // Otherwise, attempt typo correction.
9283 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
9284 }
9285
9286 if (!R.empty()) {
9287 NamedDecl *Named = R.getRepresentativeDecl();
9288 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
9289 assert(NS && "expected namespace decl")(static_cast <bool> (NS && "expected namespace decl"
) ? void (0) : __assert_fail ("NS && \"expected namespace decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9289, __extension__ __PRETTY_FUNCTION__))
;
9290
9291 // The use of a nested name specifier may trigger deprecation warnings.
9292 DiagnoseUseOfDecl(Named, IdentLoc);
9293
9294 // C++ [namespace.udir]p1:
9295 // A using-directive specifies that the names in the nominated
9296 // namespace can be used in the scope in which the
9297 // using-directive appears after the using-directive. During
9298 // unqualified name lookup (3.4.1), the names appear as if they
9299 // were declared in the nearest enclosing namespace which
9300 // contains both the using-directive and the nominated
9301 // namespace. [Note: in this context, "contains" means "contains
9302 // directly or indirectly". ]
9303
9304 // Find enclosing context containing both using-directive and
9305 // nominated namespace.
9306 DeclContext *CommonAncestor = NS;
9307 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
9308 CommonAncestor = CommonAncestor->getParent();
9309
9310 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
9311 SS.getWithLocInContext(Context),
9312 IdentLoc, Named, CommonAncestor);
9313
9314 if (IsUsingDirectiveInToplevelContext(CurContext) &&
9315 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
9316 Diag(IdentLoc, diag::warn_using_directive_in_header);
9317 }
9318
9319 PushUsingDirective(S, UDir);
9320 } else {
9321 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
9322 }
9323
9324 if (UDir)
9325 ProcessDeclAttributeList(S, UDir, AttrList);
9326
9327 return UDir;
9328}
9329
9330void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
9331 // If the scope has an associated entity and the using directive is at
9332 // namespace or translation unit scope, add the UsingDirectiveDecl into
9333 // its lookup structure so qualified name lookup can find it.
9334 DeclContext *Ctx = S->getEntity();
9335 if (Ctx && !Ctx->isFunctionOrMethod())
9336 Ctx->addDecl(UDir);
9337 else
9338 // Otherwise, it is at block scope. The using-directives will affect lookup
9339 // only to the end of the scope.
9340 S->PushUsingDirective(UDir);
9341}
9342
9343Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
9344 SourceLocation UsingLoc,
9345 SourceLocation TypenameLoc, CXXScopeSpec &SS,
9346 UnqualifiedId &Name,
9347 SourceLocation EllipsisLoc,
9348 const ParsedAttributesView &AttrList) {
9349 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")(static_cast <bool> (S->getFlags() & Scope::DeclScope
&& "Invalid Scope.") ? void (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9349, __extension__ __PRETTY_FUNCTION__))
;
9350
9351 if (SS.isEmpty()) {
9352 Diag(Name.getLocStart(), diag::err_using_requires_qualname);
9353 return nullptr;
9354 }
9355
9356 switch (Name.getKind()) {
9357 case UnqualifiedIdKind::IK_ImplicitSelfParam:
9358 case UnqualifiedIdKind::IK_Identifier:
9359 case UnqualifiedIdKind::IK_OperatorFunctionId:
9360 case UnqualifiedIdKind::IK_LiteralOperatorId:
9361 case UnqualifiedIdKind::IK_ConversionFunctionId:
9362 break;
9363
9364 case UnqualifiedIdKind::IK_ConstructorName:
9365 case UnqualifiedIdKind::IK_ConstructorTemplateId:
9366 // C++11 inheriting constructors.
9367 Diag(Name.getLocStart(),
9368 getLangOpts().CPlusPlus11 ?
9369 diag::warn_cxx98_compat_using_decl_constructor :
9370 diag::err_using_decl_constructor)
9371 << SS.getRange();
9372
9373 if (getLangOpts().CPlusPlus11) break;
9374
9375 return nullptr;
9376
9377 case UnqualifiedIdKind::IK_DestructorName:
9378 Diag(Name.getLocStart(), diag::err_using_decl_destructor)
9379 << SS.getRange();
9380 return nullptr;
9381
9382 case UnqualifiedIdKind::IK_TemplateId:
9383 Diag(Name.getLocStart(), diag::err_using_decl_template_id)
9384 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
9385 return nullptr;
9386
9387 case UnqualifiedIdKind::IK_DeductionGuideName:
9388 llvm_unreachable("cannot parse qualified deduction guide name")::llvm::llvm_unreachable_internal("cannot parse qualified deduction guide name"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9388)
;
9389 }
9390
9391 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
9392 DeclarationName TargetName = TargetNameInfo.getName();
9393 if (!TargetName)
9394 return nullptr;
9395
9396 // Warn about access declarations.
9397 if (UsingLoc.isInvalid()) {
9398 Diag(Name.getLocStart(),
9399 getLangOpts().CPlusPlus11 ? diag::err_access_decl
9400 : diag::warn_access_decl_deprecated)
9401 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
9402 }
9403
9404 if (EllipsisLoc.isInvalid()) {
9405 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
9406 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
9407 return nullptr;
9408 } else {
9409 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
9410 !TargetNameInfo.containsUnexpandedParameterPack()) {
9411 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
9412 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
9413 EllipsisLoc = SourceLocation();
9414 }
9415 }
9416
9417 NamedDecl *UD =
9418 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
9419 SS, TargetNameInfo, EllipsisLoc, AttrList,
9420 /*IsInstantiation*/false);
9421 if (UD)
9422 PushOnScopeChains(UD, S, /*AddToContext*/ false);
9423
9424 return UD;
9425}
9426
9427/// Determine whether a using declaration considers the given
9428/// declarations as "equivalent", e.g., if they are redeclarations of
9429/// the same entity or are both typedefs of the same type.
9430static bool
9431IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
9432 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
9433 return true;
9434
9435 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
9436 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
9437 return Context.hasSameType(TD1->getUnderlyingType(),
9438 TD2->getUnderlyingType());
9439
9440 return false;
9441}
9442
9443
9444/// Determines whether to create a using shadow decl for a particular
9445/// decl, given the set of decls existing prior to this using lookup.
9446bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
9447 const LookupResult &Previous,
9448 UsingShadowDecl *&PrevShadow) {
9449 // Diagnose finding a decl which is not from a base class of the
9450 // current class. We do this now because there are cases where this
9451 // function will silently decide not to build a shadow decl, which
9452 // will pre-empt further diagnostics.
9453 //
9454 // We don't need to do this in C++11 because we do the check once on
9455 // the qualifier.
9456 //
9457 // FIXME: diagnose the following if we care enough:
9458 // struct A { int foo; };
9459 // struct B : A { using A::foo; };
9460 // template <class T> struct C : A {};
9461 // template <class T> struct D : C<T> { using B::foo; } // <---
9462 // This is invalid (during instantiation) in C++03 because B::foo
9463 // resolves to the using decl in B, which is not a base class of D<T>.
9464 // We can't diagnose it immediately because C<T> is an unknown
9465 // specialization. The UsingShadowDecl in D<T> then points directly
9466 // to A::foo, which will look well-formed when we instantiate.
9467 // The right solution is to not collapse the shadow-decl chain.
9468 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
9469 DeclContext *OrigDC = Orig->getDeclContext();
9470
9471 // Handle enums and anonymous structs.
9472 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
9473 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
9474 while (OrigRec->isAnonymousStructOrUnion())
9475 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
9476
9477 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
9478 if (OrigDC == CurContext) {
9479 Diag(Using->getLocation(),
9480 diag::err_using_decl_nested_name_specifier_is_current_class)
9481 << Using->getQualifierLoc().getSourceRange();
9482 Diag(Orig->getLocation(), diag::note_using_decl_target);
9483 Using->setInvalidDecl();
9484 return true;
9485 }
9486
9487 Diag(Using->getQualifierLoc().getBeginLoc(),
9488 diag::err_using_decl_nested_name_specifier_is_not_base_class)
9489 << Using->getQualifier()
9490 << cast<CXXRecordDecl>(CurContext)
9491 << Using->getQualifierLoc().getSourceRange();
9492 Diag(Orig->getLocation(), diag::note_using_decl_target);
9493 Using->setInvalidDecl();
9494 return true;
9495 }
9496 }
9497
9498 if (Previous.empty()) return false;
9499
9500 NamedDecl *Target = Orig;
9501 if (isa<UsingShadowDecl>(Target))
9502 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
9503
9504 // If the target happens to be one of the previous declarations, we
9505 // don't have a conflict.
9506 //
9507 // FIXME: but we might be increasing its access, in which case we
9508 // should redeclare it.
9509 NamedDecl *NonTag = nullptr, *Tag = nullptr;
9510 bool FoundEquivalentDecl = false;
9511 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9512 I != E; ++I) {
9513 NamedDecl *D = (*I)->getUnderlyingDecl();
9514 // We can have UsingDecls in our Previous results because we use the same
9515 // LookupResult for checking whether the UsingDecl itself is a valid
9516 // redeclaration.
9517 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
9518 continue;
9519
9520 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
9521 // C++ [class.mem]p19:
9522 // If T is the name of a class, then [every named member other than
9523 // a non-static data member] shall have a name different from T
9524 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
9525 !isa<IndirectFieldDecl>(Target) &&
9526 !isa<UnresolvedUsingValueDecl>(Target) &&
9527 DiagnoseClassNameShadow(
9528 CurContext,
9529 DeclarationNameInfo(Using->getDeclName(), Using->getLocation())))
9530 return true;
9531 }
9532
9533 if (IsEquivalentForUsingDecl(Context, D, Target)) {
9534 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
9535 PrevShadow = Shadow;
9536 FoundEquivalentDecl = true;
9537 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
9538 // We don't conflict with an existing using shadow decl of an equivalent
9539 // declaration, but we're not a redeclaration of it.
9540 FoundEquivalentDecl = true;
9541 }
9542
9543 if (isVisible(D))
9544 (isa<TagDecl>(D) ? Tag : NonTag) = D;
9545 }
9546
9547 if (FoundEquivalentDecl)
9548 return false;
9549
9550 if (FunctionDecl *FD = Target->getAsFunction()) {
9551 NamedDecl *OldDecl = nullptr;
9552 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
9553 /*IsForUsingDecl*/ true)) {
9554 case Ovl_Overload:
9555 return false;
9556
9557 case Ovl_NonFunction:
9558 Diag(Using->getLocation(), diag::err_using_decl_conflict);
9559 break;
9560
9561 // We found a decl with the exact signature.
9562 case Ovl_Match:
9563 // If we're in a record, we want to hide the target, so we
9564 // return true (without a diagnostic) to tell the caller not to
9565 // build a shadow decl.
9566 if (CurContext->isRecord())
9567 return true;
9568
9569 // If we're not in a record, this is an error.
9570 Diag(Using->getLocation(), diag::err_using_decl_conflict);
9571 break;
9572 }
9573
9574 Diag(Target->getLocation(), diag::note_using_decl_target);
9575 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
9576 Using->setInvalidDecl();
9577 return true;
9578 }
9579
9580 // Target is not a function.
9581
9582 if (isa<TagDecl>(Target)) {
9583 // No conflict between a tag and a non-tag.
9584 if (!Tag) return false;
9585
9586 Diag(Using->getLocation(), diag::err_using_decl_conflict);
9587 Diag(Target->getLocation(), diag::note_using_decl_target);
9588 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
9589 Using->setInvalidDecl();
9590 return true;
9591 }
9592
9593 // No conflict between a tag and a non-tag.
9594 if (!NonTag) return false;
9595
9596 Diag(Using->getLocation(), diag::err_using_decl_conflict);
9597 Diag(Target->getLocation(), diag::note_using_decl_target);
9598 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
9599 Using->setInvalidDecl();
9600 return true;
9601}
9602
9603/// Determine whether a direct base class is a virtual base class.
9604static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
9605 if (!Derived->getNumVBases())
9606 return false;
9607 for (auto &B : Derived->bases())
9608 if (B.getType()->getAsCXXRecordDecl() == Base)
9609 return B.isVirtual();
9610 llvm_unreachable("not a direct base class")::llvm::llvm_unreachable_internal("not a direct base class", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9610)
;
9611}
9612
9613/// Builds a shadow declaration corresponding to a 'using' declaration.
9614UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
9615 UsingDecl *UD,
9616 NamedDecl *Orig,
9617 UsingShadowDecl *PrevDecl) {
9618 // If we resolved to another shadow declaration, just coalesce them.
9619 NamedDecl *Target = Orig;
9620 if (isa<UsingShadowDecl>(Target)) {
9621 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
9622 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")(static_cast <bool> (!isa<UsingShadowDecl>(Target
) && "nested shadow declaration") ? void (0) : __assert_fail
("!isa<UsingShadowDecl>(Target) && \"nested shadow declaration\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9622, __extension__ __PRETTY_FUNCTION__))
;
9623 }
9624
9625 NamedDecl *NonTemplateTarget = Target;
9626 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
9627 NonTemplateTarget = TargetTD->getTemplatedDecl();
9628
9629 UsingShadowDecl *Shadow;
9630 if (isa<CXXConstructorDecl>(NonTemplateTarget)) {
9631 bool IsVirtualBase =
9632 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
9633 UD->getQualifier()->getAsRecordDecl());
9634 Shadow = ConstructorUsingShadowDecl::Create(
9635 Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
9636 } else {
9637 Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
9638 Target);
9639 }
9640 UD->addShadowDecl(Shadow);
9641
9642 Shadow->setAccess(UD->getAccess());
9643 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
9644 Shadow->setInvalidDecl();
9645
9646 Shadow->setPreviousDecl(PrevDecl);
9647
9648 if (S)
9649 PushOnScopeChains(Shadow, S);
9650 else
9651 CurContext->addDecl(Shadow);
9652
9653
9654 return Shadow;
9655}
9656
9657/// Hides a using shadow declaration. This is required by the current
9658/// using-decl implementation when a resolvable using declaration in a
9659/// class is followed by a declaration which would hide or override
9660/// one or more of the using decl's targets; for example:
9661///
9662/// struct Base { void foo(int); };
9663/// struct Derived : Base {
9664/// using Base::foo;
9665/// void foo(int);
9666/// };
9667///
9668/// The governing language is C++03 [namespace.udecl]p12:
9669///
9670/// When a using-declaration brings names from a base class into a
9671/// derived class scope, member functions in the derived class
9672/// override and/or hide member functions with the same name and
9673/// parameter types in a base class (rather than conflicting).
9674///
9675/// There are two ways to implement this:
9676/// (1) optimistically create shadow decls when they're not hidden
9677/// by existing declarations, or
9678/// (2) don't create any shadow decls (or at least don't make them
9679/// visible) until we've fully parsed/instantiated the class.
9680/// The problem with (1) is that we might have to retroactively remove
9681/// a shadow decl, which requires several O(n) operations because the
9682/// decl structures are (very reasonably) not designed for removal.
9683/// (2) avoids this but is very fiddly and phase-dependent.
9684void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
9685 if (Shadow->getDeclName().getNameKind() ==
9686 DeclarationName::CXXConversionFunctionName)
9687 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
9688
9689 // Remove it from the DeclContext...
9690 Shadow->getDeclContext()->removeDecl(Shadow);
9691
9692 // ...and the scope, if applicable...
9693 if (S) {
9694 S->RemoveDecl(Shadow);
9695 IdResolver.RemoveDecl(Shadow);
9696 }
9697
9698 // ...and the using decl.
9699 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
9700
9701 // TODO: complain somehow if Shadow was used. It shouldn't
9702 // be possible for this to happen, because...?
9703}
9704
9705/// Find the base specifier for a base class with the given type.
9706static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
9707 QualType DesiredBase,
9708 bool &AnyDependentBases) {
9709 // Check whether the named type is a direct base class.
9710 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
9711 for (auto &Base : Derived->bases()) {
9712 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
9713 if (CanonicalDesiredBase == BaseType)
9714 return &Base;
9715 if (BaseType->isDependentType())
9716 AnyDependentBases = true;
9717 }
9718 return nullptr;
9719}
9720
9721namespace {
9722class UsingValidatorCCC : public CorrectionCandidateCallback {
9723public:
9724 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
9725 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
9726 : HasTypenameKeyword(HasTypenameKeyword),
9727 IsInstantiation(IsInstantiation), OldNNS(NNS),
9728 RequireMemberOf(RequireMemberOf) {}
9729
9730 bool ValidateCandidate(const TypoCorrection &Candidate) override {
9731 NamedDecl *ND = Candidate.getCorrectionDecl();
9732
9733 // Keywords are not valid here.
9734 if (!ND || isa<NamespaceDecl>(ND))
9735 return false;
9736
9737 // Completely unqualified names are invalid for a 'using' declaration.
9738 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
9739 return false;
9740
9741 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
9742 // reject.
9743
9744 if (RequireMemberOf) {
9745 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
9746 if (FoundRecord && FoundRecord->isInjectedClassName()) {
9747 // No-one ever wants a using-declaration to name an injected-class-name
9748 // of a base class, unless they're declaring an inheriting constructor.
9749 ASTContext &Ctx = ND->getASTContext();
9750 if (!Ctx.getLangOpts().CPlusPlus11)
9751 return false;
9752 QualType FoundType = Ctx.getRecordType(FoundRecord);
9753
9754 // Check that the injected-class-name is named as a member of its own
9755 // type; we don't want to suggest 'using Derived::Base;', since that
9756 // means something else.
9757 NestedNameSpecifier *Specifier =
9758 Candidate.WillReplaceSpecifier()
9759 ? Candidate.getCorrectionSpecifier()
9760 : OldNNS;
9761 if (!Specifier->getAsType() ||
9762 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
9763 return false;
9764
9765 // Check that this inheriting constructor declaration actually names a
9766 // direct base class of the current class.
9767 bool AnyDependentBases = false;
9768 if (!findDirectBaseWithType(RequireMemberOf,
9769 Ctx.getRecordType(FoundRecord),
9770 AnyDependentBases) &&
9771 !AnyDependentBases)
9772 return false;
9773 } else {
9774 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
9775 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
9776 return false;
9777
9778 // FIXME: Check that the base class member is accessible?
9779 }
9780 } else {
9781 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
9782 if (FoundRecord && FoundRecord->isInjectedClassName())
9783 return false;
9784 }
9785
9786 if (isa<TypeDecl>(ND))
9787 return HasTypenameKeyword || !IsInstantiation;
9788
9789 return !HasTypenameKeyword;
9790 }
9791
9792private:
9793 bool HasTypenameKeyword;
9794 bool IsInstantiation;
9795 NestedNameSpecifier *OldNNS;
9796 CXXRecordDecl *RequireMemberOf;
9797};
9798} // end anonymous namespace
9799
9800/// Builds a using declaration.
9801///
9802/// \param IsInstantiation - Whether this call arises from an
9803/// instantiation of an unresolved using declaration. We treat
9804/// the lookup differently for these declarations.
9805NamedDecl *Sema::BuildUsingDeclaration(
9806 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
9807 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
9808 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
9809 const ParsedAttributesView &AttrList, bool IsInstantiation) {
9810 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")(static_cast <bool> (!SS.isInvalid() && "Invalid CXXScopeSpec."
) ? void (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9810, __extension__ __PRETTY_FUNCTION__))
;
9811 SourceLocation IdentLoc = NameInfo.getLoc();
9812 assert(IdentLoc.isValid() && "Invalid TargetName location.")(static_cast <bool> (IdentLoc.isValid() && "Invalid TargetName location."
) ? void (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid TargetName location.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9812, __extension__ __PRETTY_FUNCTION__))
;
9813
9814 // FIXME: We ignore attributes for now.
9815
9816 // For an inheriting constructor declaration, the name of the using
9817 // declaration is the name of a constructor in this class, not in the
9818 // base class.
9819 DeclarationNameInfo UsingName = NameInfo;
9820 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
9821 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
9822 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
9823 Context.getCanonicalType(Context.getRecordType(RD))));
9824
9825 // Do the redeclaration lookup in the current scope.
9826 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
9827 ForVisibleRedeclaration);
9828 Previous.setHideTags(false);
9829 if (S) {
9830 LookupName(Previous, S);
9831
9832 // It is really dumb that we have to do this.
9833 LookupResult::Filter F = Previous.makeFilter();
9834 while (F.hasNext()) {
9835 NamedDecl *D = F.next();
9836 if (!isDeclInScope(D, CurContext, S))
9837 F.erase();
9838 // If we found a local extern declaration that's not ordinarily visible,
9839 // and this declaration is being added to a non-block scope, ignore it.
9840 // We're only checking for scope conflicts here, not also for violations
9841 // of the linkage rules.
9842 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
9843 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
9844 F.erase();
9845 }
9846 F.done();
9847 } else {
9848 assert(IsInstantiation && "no scope in non-instantiation")(static_cast <bool> (IsInstantiation && "no scope in non-instantiation"
) ? void (0) : __assert_fail ("IsInstantiation && \"no scope in non-instantiation\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9848, __extension__ __PRETTY_FUNCTION__))
;
9849 if (CurContext->isRecord())
9850 LookupQualifiedName(Previous, CurContext);
9851 else {
9852 // No redeclaration check is needed here; in non-member contexts we
9853 // diagnosed all possible conflicts with other using-declarations when
9854 // building the template:
9855 //
9856 // For a dependent non-type using declaration, the only valid case is
9857 // if we instantiate to a single enumerator. We check for conflicts
9858 // between shadow declarations we introduce, and we check in the template
9859 // definition for conflicts between a non-type using declaration and any
9860 // other declaration, which together covers all cases.
9861 //
9862 // A dependent typename using declaration will never successfully
9863 // instantiate, since it will always name a class member, so we reject
9864 // that in the template definition.
9865 }
9866 }
9867
9868 // Check for invalid redeclarations.
9869 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
9870 SS, IdentLoc, Previous))
9871 return nullptr;
9872
9873 // Check for bad qualifiers.
9874 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
9875 IdentLoc))
9876 return nullptr;
9877
9878 DeclContext *LookupContext = computeDeclContext(SS);
9879 NamedDecl *D;
9880 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9881 if (!LookupContext || EllipsisLoc.isValid()) {
9882 if (HasTypenameKeyword) {
9883 // FIXME: not all declaration name kinds are legal here
9884 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
9885 UsingLoc, TypenameLoc,
9886 QualifierLoc,
9887 IdentLoc, NameInfo.getName(),
9888 EllipsisLoc);
9889 } else {
9890 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
9891 QualifierLoc, NameInfo, EllipsisLoc);
9892 }
9893 D->setAccess(AS);
9894 CurContext->addDecl(D);
9895 return D;
9896 }
9897
9898 auto Build = [&](bool Invalid) {
9899 UsingDecl *UD =
9900 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
9901 UsingName, HasTypenameKeyword);
9902 UD->setAccess(AS);
9903 CurContext->addDecl(UD);
9904 UD->setInvalidDecl(Invalid);
9905 return UD;
9906 };
9907 auto BuildInvalid = [&]{ return Build(true); };
9908 auto BuildValid = [&]{ return Build(false); };
9909
9910 if (RequireCompleteDeclContext(SS, LookupContext))
9911 return BuildInvalid();
9912
9913 // Look up the target name.
9914 LookupResult R(*this, NameInfo, LookupOrdinaryName);
9915
9916 // Unlike most lookups, we don't always want to hide tag
9917 // declarations: tag names are visible through the using declaration
9918 // even if hidden by ordinary names, *except* in a dependent context
9919 // where it's important for the sanity of two-phase lookup.
9920 if (!IsInstantiation)
9921 R.setHideTags(false);
9922
9923 // For the purposes of this lookup, we have a base object type
9924 // equal to that of the current context.
9925 if (CurContext->isRecord()) {
9926 R.setBaseObjectType(
9927 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
9928 }
9929
9930 LookupQualifiedName(R, LookupContext);
9931
9932 // Try to correct typos if possible. If constructor name lookup finds no
9933 // results, that means the named class has no explicit constructors, and we
9934 // suppressed declaring implicit ones (probably because it's dependent or
9935 // invalid).
9936 if (R.empty() &&
9937 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
9938 // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes
9939 // it will believe that glibc provides a ::gets in cases where it does not,
9940 // and will try to pull it into namespace std with a using-declaration.
9941 // Just ignore the using-declaration in that case.
9942 auto *II = NameInfo.getName().getAsIdentifierInfo();
9943 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
9944 CurContext->isStdNamespace() &&
9945 isa<TranslationUnitDecl>(LookupContext) &&
9946 getSourceManager().isInSystemHeader(UsingLoc))
9947 return nullptr;
9948 if (TypoCorrection Corrected = CorrectTypo(
9949 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
9950 llvm::make_unique<UsingValidatorCCC>(
9951 HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
9952 dyn_cast<CXXRecordDecl>(CurContext)),
9953 CTK_ErrorRecovery)) {
9954 // We reject candidates where DroppedSpecifier == true, hence the
9955 // literal '0' below.
9956 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
9957 << NameInfo.getName() << LookupContext << 0
9958 << SS.getRange());
9959
9960 // If we picked a correction with no attached Decl we can't do anything
9961 // useful with it, bail out.
9962 NamedDecl *ND = Corrected.getCorrectionDecl();
9963 if (!ND)
9964 return BuildInvalid();
9965
9966 // If we corrected to an inheriting constructor, handle it as one.
9967 auto *RD = dyn_cast<CXXRecordDecl>(ND);
9968 if (RD && RD->isInjectedClassName()) {
9969 // The parent of the injected class name is the class itself.
9970 RD = cast<CXXRecordDecl>(RD->getParent());
9971
9972 // Fix up the information we'll use to build the using declaration.
9973 if (Corrected.WillReplaceSpecifier()) {
9974 NestedNameSpecifierLocBuilder Builder;
9975 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
9976 QualifierLoc.getSourceRange());
9977 QualifierLoc = Builder.getWithLocInContext(Context);
9978 }
9979
9980 // In this case, the name we introduce is the name of a derived class
9981 // constructor.
9982 auto *CurClass = cast<CXXRecordDecl>(CurContext);
9983 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
9984 Context.getCanonicalType(Context.getRecordType(CurClass))));
9985 UsingName.setNamedTypeInfo(nullptr);
9986 for (auto *Ctor : LookupConstructors(RD))
9987 R.addDecl(Ctor);
9988 R.resolveKind();
9989 } else {
9990 // FIXME: Pick up all the declarations if we found an overloaded
9991 // function.
9992 UsingName.setName(ND->getDeclName());
9993 R.addDecl(ND);
9994 }
9995 } else {
9996 Diag(IdentLoc, diag::err_no_member)
9997 << NameInfo.getName() << LookupContext << SS.getRange();
9998 return BuildInvalid();
9999 }
10000 }
10001
10002 if (R.isAmbiguous())
10003 return BuildInvalid();
10004
10005 if (HasTypenameKeyword) {
10006 // If we asked for a typename and got a non-type decl, error out.
10007 if (!R.getAsSingle<TypeDecl>()) {
10008 Diag(IdentLoc, diag::err_using_typename_non_type);
10009 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
10010 Diag((*I)->getUnderlyingDecl()->getLocation(),
10011 diag::note_using_decl_target);
10012 return BuildInvalid();
10013 }
10014 } else {
10015 // If we asked for a non-typename and we got a type, error out,
10016 // but only if this is an instantiation of an unresolved using
10017 // decl. Otherwise just silently find the type name.
10018 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
10019 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
10020 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
10021 return BuildInvalid();
10022 }
10023 }
10024
10025 // C++14 [namespace.udecl]p6:
10026 // A using-declaration shall not name a namespace.
10027 if (R.getAsSingle<NamespaceDecl>()) {
10028 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
10029 << SS.getRange();
10030 return BuildInvalid();
10031 }
10032
10033 // C++14 [namespace.udecl]p7:
10034 // A using-declaration shall not name a scoped enumerator.
10035 if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
10036 if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
10037 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
10038 << SS.getRange();
10039 return BuildInvalid();
10040 }
10041 }
10042
10043 UsingDecl *UD = BuildValid();
10044
10045 // Some additional rules apply to inheriting constructors.
10046 if (UsingName.getName().getNameKind() ==
10047 DeclarationName::CXXConstructorName) {
10048 // Suppress access diagnostics; the access check is instead performed at the
10049 // point of use for an inheriting constructor.
10050 R.suppressDiagnostics();
10051 if (CheckInheritingConstructorUsingDecl(UD))
10052 return UD;
10053 }
10054
10055 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
10056 UsingShadowDecl *PrevDecl = nullptr;
10057 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
10058 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
10059 }
10060
10061 return UD;
10062}
10063
10064NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
10065 ArrayRef<NamedDecl *> Expansions) {
10066 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10068, __extension__ __PRETTY_FUNCTION__))
10067 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10068, __extension__ __PRETTY_FUNCTION__))
10068 isa<UsingPackDecl>(InstantiatedFrom))(static_cast <bool> (isa<UnresolvedUsingValueDecl>
(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(
InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom
)) ? void (0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10068, __extension__ __PRETTY_FUNCTION__))
;
10069
10070 auto *UPD =
10071 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
10072 UPD->setAccess(InstantiatedFrom->getAccess());
10073 CurContext->addDecl(UPD);
10074 return UPD;
10075}
10076
10077/// Additional checks for a using declaration referring to a constructor name.
10078bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
10079 assert(!UD->hasTypename() && "expecting a constructor name")(static_cast <bool> (!UD->hasTypename() && "expecting a constructor name"
) ? void (0) : __assert_fail ("!UD->hasTypename() && \"expecting a constructor name\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10079, __extension__ __PRETTY_FUNCTION__))
;
10080
10081 const Type *SourceType = UD->getQualifier()->getAsType();
10082 assert(SourceType &&(static_cast <bool> (SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? void (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10083, __extension__ __PRETTY_FUNCTION__))
10083 "Using decl naming constructor doesn't have type in scope spec.")(static_cast <bool> (SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? void (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10083, __extension__ __PRETTY_FUNCTION__))
;
10084 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
10085
10086 // Check whether the named type is a direct base class.
10087 bool AnyDependentBases = false;
10088 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
10089 AnyDependentBases);
10090 if (!Base && !AnyDependentBases) {
10091 Diag(UD->getUsingLoc(),
10092 diag::err_using_decl_constructor_not_in_direct_base)
10093 << UD->getNameInfo().getSourceRange()
10094 << QualType(SourceType, 0) << TargetClass;
10095 UD->setInvalidDecl();
10096 return true;
10097 }
10098
10099 if (Base)
10100 Base->setInheritConstructors();
10101
10102 return false;
10103}
10104
10105/// Checks that the given using declaration is not an invalid
10106/// redeclaration. Note that this is checking only for the using decl
10107/// itself, not for any ill-formedness among the UsingShadowDecls.
10108bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
10109 bool HasTypenameKeyword,
10110 const CXXScopeSpec &SS,
10111 SourceLocation NameLoc,
10112 const LookupResult &Prev) {
10113 NestedNameSpecifier *Qual = SS.getScopeRep();
10114
10115 // C++03 [namespace.udecl]p8:
10116 // C++0x [namespace.udecl]p10:
10117 // A using-declaration is a declaration and can therefore be used
10118 // repeatedly where (and only where) multiple declarations are
10119 // allowed.
10120 //
10121 // That's in non-member contexts.
10122 if (!CurContext->getRedeclContext()->isRecord()) {
10123 // A dependent qualifier outside a class can only ever resolve to an
10124 // enumeration type. Therefore it conflicts with any other non-type
10125 // declaration in the same scope.
10126 // FIXME: How should we check for dependent type-type conflicts at block
10127 // scope?
10128 if (Qual->isDependent() && !HasTypenameKeyword) {
10129 for (auto *D : Prev) {
10130 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
10131 bool OldCouldBeEnumerator =
10132 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
10133 Diag(NameLoc,
10134 OldCouldBeEnumerator ? diag::err_redefinition
10135 : diag::err_redefinition_different_kind)
10136 << Prev.getLookupName();
10137 Diag(D->getLocation(), diag::note_previous_definition);
10138 return true;
10139 }
10140 }
10141 }
10142 return false;
10143 }
10144
10145 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
10146 NamedDecl *D = *I;
10147
10148 bool DTypename;
10149 NestedNameSpecifier *DQual;
10150 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
10151 DTypename = UD->hasTypename();
10152 DQual = UD->getQualifier();
10153 } else if (UnresolvedUsingValueDecl *UD
10154 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
10155 DTypename = false;
10156 DQual = UD->getQualifier();
10157 } else if (UnresolvedUsingTypenameDecl *UD
10158 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
10159 DTypename = true;
10160 DQual = UD->getQualifier();
10161 } else continue;
10162
10163 // using decls differ if one says 'typename' and the other doesn't.
10164 // FIXME: non-dependent using decls?
10165 if (HasTypenameKeyword != DTypename) continue;
10166
10167 // using decls differ if they name different scopes (but note that
10168 // template instantiation can cause this check to trigger when it
10169 // didn't before instantiation).
10170 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
10171 Context.getCanonicalNestedNameSpecifier(DQual))
10172 continue;
10173
10174 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
10175 Diag(D->getLocation(), diag::note_using_decl) << 1;
10176 return true;
10177 }
10178
10179 return false;
10180}
10181
10182
10183/// Checks that the given nested-name qualifier used in a using decl
10184/// in the current context is appropriately related to the current
10185/// scope. If an error is found, diagnoses it and returns true.
10186bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
10187 bool HasTypename,
10188 const CXXScopeSpec &SS,
10189 const DeclarationNameInfo &NameInfo,
10190 SourceLocation NameLoc) {
10191 DeclContext *NamedContext = computeDeclContext(SS);
10192
10193 if (!CurContext->isRecord()) {
10194 // C++03 [namespace.udecl]p3:
10195 // C++0x [namespace.udecl]p8:
10196 // A using-declaration for a class member shall be a member-declaration.
10197
10198 // If we weren't able to compute a valid scope, it might validly be a
10199 // dependent class scope or a dependent enumeration unscoped scope. If
10200 // we have a 'typename' keyword, the scope must resolve to a class type.
10201 if ((HasTypename && !NamedContext) ||
10202 (NamedContext && NamedContext->getRedeclContext()->isRecord())) {
10203 auto *RD = NamedContext
10204 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
10205 : nullptr;
10206 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
10207 RD = nullptr;
10208
10209 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
10210 << SS.getRange();
10211
10212 // If we have a complete, non-dependent source type, try to suggest a
10213 // way to get the same effect.
10214 if (!RD)
10215 return true;
10216
10217 // Find what this using-declaration was referring to.
10218 LookupResult R(*this, NameInfo, LookupOrdinaryName);
10219 R.setHideTags(false);
10220 R.suppressDiagnostics();
10221 LookupQualifiedName(R, RD);
10222
10223 if (R.getAsSingle<TypeDecl>()) {
10224 if (getLangOpts().CPlusPlus11) {
10225 // Convert 'using X::Y;' to 'using Y = X::Y;'.
10226 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
10227 << 0 // alias declaration
10228 << FixItHint::CreateInsertion(SS.getBeginLoc(),
10229 NameInfo.getName().getAsString() +
10230 " = ");
10231 } else {
10232 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
10233 SourceLocation InsertLoc =
10234 getLocForEndOfToken(NameInfo.getLocEnd());
10235 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
10236 << 1 // typedef declaration
10237 << FixItHint::CreateReplacement(UsingLoc, "typedef")
10238 << FixItHint::CreateInsertion(
10239 InsertLoc, " " + NameInfo.getName().getAsString());
10240 }
10241 } else if (R.getAsSingle<VarDecl>()) {
10242 // Don't provide a fixit outside C++11 mode; we don't want to suggest
10243 // repeating the type of the static data member here.
10244 FixItHint FixIt;
10245 if (getLangOpts().CPlusPlus11) {
10246 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
10247 FixIt = FixItHint::CreateReplacement(
10248 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
10249 }
10250
10251 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
10252 << 2 // reference declaration
10253 << FixIt;
10254 } else if (R.getAsSingle<EnumConstantDecl>()) {
10255 // Don't provide a fixit outside C++11 mode; we don't want to suggest
10256 // repeating the type of the enumeration here, and we can't do so if
10257 // the type is anonymous.
10258 FixItHint FixIt;
10259 if (getLangOpts().CPlusPlus11) {
10260 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
10261 FixIt = FixItHint::CreateReplacement(
10262 UsingLoc,
10263 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
10264 }
10265
10266 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
10267 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
10268 << FixIt;
10269 }
10270 return true;
10271 }
10272
10273 // Otherwise, this might be valid.
10274 return false;
10275 }
10276
10277 // The current scope is a record.
10278
10279 // If the named context is dependent, we can't decide much.
10280 if (!NamedContext) {
10281 // FIXME: in C++0x, we can diagnose if we can prove that the
10282 // nested-name-specifier does not refer to a base class, which is
10283 // still possible in some cases.
10284
10285 // Otherwise we have to conservatively report that things might be
10286 // okay.
10287 return false;
10288 }
10289
10290 if (!NamedContext->isRecord()) {
10291 // Ideally this would point at the last name in the specifier,
10292 // but we don't have that level of source info.
10293 Diag(SS.getRange().getBegin(),
10294 diag::err_using_decl_nested_name_specifier_is_not_class)
10295 << SS.getScopeRep() << SS.getRange();
10296 return true;
10297 }
10298
10299 if (!NamedContext->isDependentContext() &&
10300 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
10301 return true;
10302
10303 if (getLangOpts().CPlusPlus11) {
10304 // C++11 [namespace.udecl]p3:
10305 // In a using-declaration used as a member-declaration, the
10306 // nested-name-specifier shall name a base class of the class
10307 // being defined.
10308
10309 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
10310 cast<CXXRecordDecl>(NamedContext))) {
10311 if (CurContext == NamedContext) {
10312 Diag(NameLoc,
10313 diag::err_using_decl_nested_name_specifier_is_current_class)
10314 << SS.getRange();
10315 return true;
10316 }
10317
10318 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
10319 Diag(SS.getRange().getBegin(),
10320 diag::err_using_decl_nested_name_specifier_is_not_base_class)
10321 << SS.getScopeRep()
10322 << cast<CXXRecordDecl>(CurContext)
10323 << SS.getRange();
10324 }
10325 return true;
10326 }
10327
10328 return false;
10329 }
10330
10331 // C++03 [namespace.udecl]p4:
10332 // A using-declaration used as a member-declaration shall refer
10333 // to a member of a base class of the class being defined [etc.].
10334
10335 // Salient point: SS doesn't have to name a base class as long as
10336 // lookup only finds members from base classes. Therefore we can
10337 // diagnose here only if we can prove that that can't happen,
10338 // i.e. if the class hierarchies provably don't intersect.
10339
10340 // TODO: it would be nice if "definitely valid" results were cached
10341 // in the UsingDecl and UsingShadowDecl so that these checks didn't
10342 // need to be repeated.
10343
10344 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
10345 auto Collect = [&Bases](const CXXRecordDecl *Base) {
10346 Bases.insert(Base);
10347 return true;
10348 };
10349
10350 // Collect all bases. Return false if we find a dependent base.
10351 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
10352 return false;
10353
10354 // Returns true if the base is dependent or is one of the accumulated base
10355 // classes.
10356 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
10357 return !Bases.count(Base);
10358 };
10359
10360 // Return false if the class has a dependent base or if it or one
10361 // of its bases is present in the base set of the current context.
10362 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
10363 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
10364 return false;
10365
10366 Diag(SS.getRange().getBegin(),
10367 diag::err_using_decl_nested_name_specifier_is_not_base_class)
10368 << SS.getScopeRep()
10369 << cast<CXXRecordDecl>(CurContext)
10370 << SS.getRange();
10371
10372 return true;
10373}
10374
10375Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
10376 MultiTemplateParamsArg TemplateParamLists,
10377 SourceLocation UsingLoc, UnqualifiedId &Name,
10378 const ParsedAttributesView &AttrList,
10379 TypeResult Type, Decl *DeclFromDeclSpec) {
10380 // Skip up to the relevant declaration scope.
10381 while (S->isTemplateParamScope())
10382 S = S->getParent();
10383 assert((S->getFlags() & Scope::DeclScope) &&(static_cast <bool> ((S->getFlags() & Scope::DeclScope
) && "got alias-declaration outside of declaration scope"
) ? void (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10384, __extension__ __PRETTY_FUNCTION__))
10384 "got alias-declaration outside of declaration scope")(static_cast <bool> ((S->getFlags() & Scope::DeclScope
) && "got alias-declaration outside of declaration scope"
) ? void (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10384, __extension__ __PRETTY_FUNCTION__))
;
10385
10386 if (Type.isInvalid())
10387 return nullptr;
10388
10389 bool Invalid = false;
10390 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
10391 TypeSourceInfo *TInfo = nullptr;
10392 GetTypeFromParser(Type.get(), &TInfo);
10393
10394 if (DiagnoseClassNameShadow(CurContext, NameInfo))
10395 return nullptr;
10396
10397 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
10398 UPPC_DeclarationType)) {
10399 Invalid = true;
10400 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10401 TInfo->getTypeLoc().getBeginLoc());
10402 }
10403
10404 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10405 TemplateParamLists.size()
10406 ? forRedeclarationInCurContext()
10407 : ForVisibleRedeclaration);
10408 LookupName(Previous, S);
10409
10410 // Warn about shadowing the name of a template parameter.
10411 if (Previous.isSingleResult() &&
10412 Previous.getFoundDecl()->isTemplateParameter()) {
10413 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
10414 Previous.clear();
10415 }
10416
10417 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&(static_cast <bool> (Name.Kind == UnqualifiedIdKind::IK_Identifier
&& "name in alias declaration must be an identifier"
) ? void (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10418, __extension__ __PRETTY_FUNCTION__))
10418 "name in alias declaration must be an identifier")(static_cast <bool> (Name.Kind == UnqualifiedIdKind::IK_Identifier
&& "name in alias declaration must be an identifier"
) ? void (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10418, __extension__ __PRETTY_FUNCTION__))
;
10419 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
10420 Name.StartLocation,
10421 Name.Identifier, TInfo);
10422
10423 NewTD->setAccess(AS);
10424
10425 if (Invalid)
10426 NewTD->setInvalidDecl();
10427
10428 ProcessDeclAttributeList(S, NewTD, AttrList);
10429 AddPragmaAttributes(S, NewTD);
10430
10431 CheckTypedefForVariablyModifiedType(S, NewTD);
10432 Invalid |= NewTD->isInvalidDecl();
10433
10434 bool Redeclaration = false;
10435
10436 NamedDecl *NewND;
10437 if (TemplateParamLists.size()) {
10438 TypeAliasTemplateDecl *OldDecl = nullptr;
10439 TemplateParameterList *OldTemplateParams = nullptr;
10440
10441 if (TemplateParamLists.size() != 1) {
10442 Diag(UsingLoc, diag::err_alias_template_extra_headers)
10443 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
10444 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
10445 }
10446 TemplateParameterList *TemplateParams = TemplateParamLists[0];
10447
10448 // Check that we can declare a template here.
10449 if (CheckTemplateDeclScope(S, TemplateParams))
10450 return nullptr;
10451
10452 // Only consider previous declarations in the same scope.
10453 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
10454 /*ExplicitInstantiationOrSpecialization*/false);
10455 if (!Previous.empty()) {
10456 Redeclaration = true;
10457
10458 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
10459 if (!OldDecl && !Invalid) {
10460 Diag(UsingLoc, diag::err_redefinition_different_kind)
10461 << Name.Identifier;
10462
10463 NamedDecl *OldD = Previous.getRepresentativeDecl();
10464 if (OldD->getLocation().isValid())
10465 Diag(OldD->getLocation(), diag::note_previous_definition);
10466
10467 Invalid = true;
10468 }
10469
10470 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
10471 if (TemplateParameterListsAreEqual(TemplateParams,
10472 OldDecl->getTemplateParameters(),
10473 /*Complain=*/true,
10474 TPL_TemplateMatch))
10475 OldTemplateParams = OldDecl->getTemplateParameters();
10476 else
10477 Invalid = true;
10478
10479 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
10480 if (!Invalid &&
10481 !Context.hasSameType(OldTD->getUnderlyingType(),
10482 NewTD->getUnderlyingType())) {
10483 // FIXME: The C++0x standard does not clearly say this is ill-formed,
10484 // but we can't reasonably accept it.
10485 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
10486 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
10487 if (OldTD->getLocation().isValid())
10488 Diag(OldTD->getLocation(), diag::note_previous_definition);
10489 Invalid = true;
10490 }
10491 }
10492 }
10493
10494 // Merge any previous default template arguments into our parameters,
10495 // and check the parameter list.
10496 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
10497 TPC_TypeAliasTemplate))
10498 return nullptr;
10499
10500 TypeAliasTemplateDecl *NewDecl =
10501 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
10502 Name.Identifier, TemplateParams,
10503 NewTD);
10504 NewTD->setDescribedAliasTemplate(NewDecl);
10505
10506 NewDecl->setAccess(AS);
10507
10508 if (Invalid)
10509 NewDecl->setInvalidDecl();
10510 else if (OldDecl) {
10511 NewDecl->setPreviousDecl(OldDecl);
10512 CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
10513 }
10514
10515 NewND = NewDecl;
10516 } else {
10517 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
10518 setTagNameForLinkagePurposes(TD, NewTD);
10519 handleTagNumbering(TD, S);
10520 }
10521 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
10522 NewND = NewTD;
10523 }
10524
10525 PushOnScopeChains(NewND, S);
10526 ActOnDocumentableDecl(NewND);
10527 return NewND;
10528}
10529
10530Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
10531 SourceLocation AliasLoc,
10532 IdentifierInfo *Alias, CXXScopeSpec &SS,
10533 SourceLocation IdentLoc,
10534 IdentifierInfo *Ident) {
10535
10536 // Lookup the namespace name.
10537 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
10538 LookupParsedName(R, S, &SS);
10539
10540 if (R.isAmbiguous())
10541 return nullptr;
10542
10543 if (R.empty()) {
10544 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
10545 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
10546 return nullptr;
10547 }
10548 }
10549 assert(!R.isAmbiguous() && !R.empty())(static_cast <bool> (!R.isAmbiguous() && !R.empty
()) ? void (0) : __assert_fail ("!R.isAmbiguous() && !R.empty()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10549, __extension__ __PRETTY_FUNCTION__))
;
10550 NamedDecl *ND = R.getRepresentativeDecl();
10551
10552 // Check if we have a previous declaration with the same name.
10553 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
10554 ForVisibleRedeclaration);
10555 LookupName(PrevR, S);
10556
10557 // Check we're not shadowing a template parameter.
10558 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
10559 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
10560 PrevR.clear();
10561 }
10562
10563 // Filter out any other lookup result from an enclosing scope.
10564 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
10565 /*AllowInlineNamespace*/false);
10566
10567 // Find the previous declaration and check that we can redeclare it.
10568 NamespaceAliasDecl *Prev = nullptr;
10569 if (PrevR.isSingleResult()) {
10570 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
10571 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
10572 // We already have an alias with the same name that points to the same
10573 // namespace; check that it matches.
10574 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
10575 Prev = AD;
10576 } else if (isVisible(PrevDecl)) {
10577 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
10578 << Alias;
10579 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
10580 << AD->getNamespace();
10581 return nullptr;
10582 }
10583 } else if (isVisible(PrevDecl)) {
10584 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
10585 ? diag::err_redefinition
10586 : diag::err_redefinition_different_kind;
10587 Diag(AliasLoc, DiagID) << Alias;
10588 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10589 return nullptr;
10590 }
10591 }
10592
10593 // The use of a nested name specifier may trigger deprecation warnings.
10594 DiagnoseUseOfDecl(ND, IdentLoc);
10595
10596 NamespaceAliasDecl *AliasDecl =
10597 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
10598 Alias, SS.getWithLocInContext(Context),
10599 IdentLoc, ND);
10600 if (Prev)
10601 AliasDecl->setPreviousDecl(Prev);
10602
10603 PushOnScopeChains(AliasDecl, S);
10604 return AliasDecl;
10605}
10606
10607namespace {
10608struct SpecialMemberExceptionSpecInfo
10609 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
10610 SourceLocation Loc;
10611 Sema::ImplicitExceptionSpecification ExceptSpec;
10612
10613 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
10614 Sema::CXXSpecialMember CSM,
10615 Sema::InheritedConstructorInfo *ICI,
10616 SourceLocation Loc)
10617 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
10618
10619 bool visitBase(CXXBaseSpecifier *Base);
10620 bool visitField(FieldDecl *FD);
10621
10622 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
10623 unsigned Quals);
10624
10625 void visitSubobjectCall(Subobject Subobj,
10626 Sema::SpecialMemberOverloadResult SMOR);
10627};
10628}
10629
10630bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
10631 auto *RT = Base->getType()->getAs<RecordType>();
10632 if (!RT)
10633 return false;
10634
10635 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
10636 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
10637 if (auto *BaseCtor = SMOR.getMethod()) {
10638 visitSubobjectCall(Base, BaseCtor);
10639 return false;
10640 }
10641
10642 visitClassSubobject(BaseClass, Base, 0);
10643 return false;
10644}
10645
10646bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
10647 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
10648 Expr *E = FD->getInClassInitializer();
10649 if (!E)
10650 // FIXME: It's a little wasteful to build and throw away a
10651 // CXXDefaultInitExpr here.
10652 // FIXME: We should have a single context note pointing at Loc, and
10653 // this location should be MD->getLocation() instead, since that's
10654 // the location where we actually use the default init expression.
10655 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
10656 if (E)
10657 ExceptSpec.CalledExpr(E);
10658 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
10659 ->getAs<RecordType>()) {
10660 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
10661 FD->getType().getCVRQualifiers());
10662 }
10663 return false;
10664}
10665
10666void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
10667 Subobject Subobj,
10668 unsigned Quals) {
10669 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
10670 bool IsMutable = Field && Field->isMutable();
10671 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
10672}
10673
10674void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
10675 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
10676 // Note, if lookup fails, it doesn't matter what exception specification we
10677 // choose because the special member will be deleted.
10678 if (CXXMethodDecl *MD = SMOR.getMethod())
10679 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
10680}
10681
10682static Sema::ImplicitExceptionSpecification
10683ComputeDefaultedSpecialMemberExceptionSpec(
10684 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
10685 Sema::InheritedConstructorInfo *ICI) {
10686 CXXRecordDecl *ClassDecl = MD->getParent();
10687
10688 // C++ [except.spec]p14:
10689 // An implicitly declared special member function (Clause 12) shall have an
10690 // exception-specification. [...]
10691 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, Loc);
10692 if (ClassDecl->isInvalidDecl())
10693 return Info.ExceptSpec;
10694
10695 // C++1z [except.spec]p7:
10696 // [Look for exceptions thrown by] a constructor selected [...] to
10697 // initialize a potentially constructed subobject,
10698 // C++1z [except.spec]p8:
10699 // The exception specification for an implicitly-declared destructor, or a
10700 // destructor without a noexcept-specifier, is potentially-throwing if and
10701 // only if any of the destructors for any of its potentially constructed
10702 // subojects is potentially throwing.
10703 // FIXME: We respect the first rule but ignore the "potentially constructed"
10704 // in the second rule to resolve a core issue (no number yet) that would have
10705 // us reject:
10706 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
10707 // struct B : A {};
10708 // struct C : B { void f(); };
10709 // ... due to giving B::~B() a non-throwing exception specification.
10710 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
10711 : Info.VisitAllBases);
10712
10713 return Info.ExceptSpec;
10714}
10715
10716namespace {
10717/// RAII object to register a special member as being currently declared.
10718struct DeclaringSpecialMember {
10719 Sema &S;
10720 Sema::SpecialMemberDecl D;
10721 Sema::ContextRAII SavedContext;
10722 bool WasAlreadyBeingDeclared;
10723
10724 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
10725 : S(S), D(RD, CSM), SavedContext(S, RD) {
10726 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
10727 if (WasAlreadyBeingDeclared)
10728 // This almost never happens, but if it does, ensure that our cache
10729 // doesn't contain a stale result.
10730 S.SpecialMemberCache.clear();
10731 else {
10732 // Register a note to be produced if we encounter an error while
10733 // declaring the special member.
10734 Sema::CodeSynthesisContext Ctx;
10735 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
10736 // FIXME: We don't have a location to use here. Using the class's
10737 // location maintains the fiction that we declare all special members
10738 // with the class, but (1) it's not clear that lying about that helps our
10739 // users understand what's going on, and (2) there may be outer contexts
10740 // on the stack (some of which are relevant) and printing them exposes
10741 // our lies.
10742 Ctx.PointOfInstantiation = RD->getLocation();
10743 Ctx.Entity = RD;
10744 Ctx.SpecialMember = CSM;
10745 S.pushCodeSynthesisContext(Ctx);
10746 }
10747 }
10748 ~DeclaringSpecialMember() {
10749 if (!WasAlreadyBeingDeclared) {
10750 S.SpecialMembersBeingDeclared.erase(D);
10751 S.popCodeSynthesisContext();
10752 }
10753 }
10754
10755 /// Are we already trying to declare this special member?
10756 bool isAlreadyBeingDeclared() const {
10757 return WasAlreadyBeingDeclared;
10758 }
10759};
10760}
10761
10762void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
10763 // Look up any existing declarations, but don't trigger declaration of all
10764 // implicit special members with this name.
10765 DeclarationName Name = FD->getDeclName();
10766 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
10767 ForExternalRedeclaration);
10768 for (auto *D : FD->getParent()->lookup(Name))
10769 if (auto *Acceptable = R.getAcceptableDecl(D))
10770 R.addDecl(Acceptable);
10771 R.resolveKind();
10772 R.suppressDiagnostics();
10773
10774 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
10775}
10776
10777CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
10778 CXXRecordDecl *ClassDecl) {
10779 // C++ [class.ctor]p5:
10780 // A default constructor for a class X is a constructor of class X
10781 // that can be called without an argument. If there is no
10782 // user-declared constructor for class X, a default constructor is
10783 // implicitly declared. An implicitly-declared default constructor
10784 // is an inline public member of its class.
10785 assert(ClassDecl->needsImplicitDefaultConstructor() &&(static_cast <bool> (ClassDecl->needsImplicitDefaultConstructor
() && "Should not build implicit default constructor!"
) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10786, __extension__ __PRETTY_FUNCTION__))
10786 "Should not build implicit default constructor!")(static_cast <bool> (ClassDecl->needsImplicitDefaultConstructor
() && "Should not build implicit default constructor!"
) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10786, __extension__ __PRETTY_FUNCTION__))
;
10787
10788 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
10789 if (DSM.isAlreadyBeingDeclared())
10790 return nullptr;
10791
10792 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10793 CXXDefaultConstructor,
10794 false);
10795
10796 // Create the actual constructor declaration.
10797 CanQualType ClassType
10798 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10799 SourceLocation ClassLoc = ClassDecl->getLocation();
10800 DeclarationName Name
10801 = Context.DeclarationNames.getCXXConstructorName(ClassType);
10802 DeclarationNameInfo NameInfo(Name, ClassLoc);
10803 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
10804 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
10805 /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
10806 /*isImplicitlyDeclared=*/true, Constexpr);
10807 DefaultCon->setAccess(AS_public);
10808 DefaultCon->setDefaulted();
10809
10810 if (getLangOpts().CUDA) {
10811 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
10812 DefaultCon,
10813 /* ConstRHS */ false,
10814 /* Diagnose */ false);
10815 }
10816
10817 // Build an exception specification pointing back at this constructor.
10818 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
10819 DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
10820
10821 // We don't need to use SpecialMemberIsTrivial here; triviality for default
10822 // constructors is easy to compute.
10823 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
10824
10825 // Note that we have declared this constructor.
10826 ++ASTContext::NumImplicitDefaultConstructorsDeclared;
10827
10828 Scope *S = getScopeForContext(ClassDecl);
10829 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
10830
10831 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
10832 SetDeclDeleted(DefaultCon, ClassLoc);
10833
10834 if (S)
10835 PushOnScopeChains(DefaultCon, S, false);
10836 ClassDecl->addDecl(DefaultCon);
10837
10838 return DefaultCon;
10839}
10840
10841void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
10842 CXXConstructorDecl *Constructor) {
10843 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10846, __extension__ __PRETTY_FUNCTION__))
10844 !Constructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10846, __extension__ __PRETTY_FUNCTION__))
10845 !Constructor->isDeleted()) &&(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10846, __extension__ __PRETTY_FUNCTION__))
10846 "DefineImplicitDefaultConstructor - call it for implicit default ctor")(static_cast <bool> ((Constructor->isDefaulted() &&
Constructor->isDefaultConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? void (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10846, __extension__ __PRETTY_FUNCTION__))
;
10847 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
10848 return;
10849
10850 CXXRecordDecl *ClassDecl = Constructor->getParent();
10851 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitDefaultConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10851, __extension__ __PRETTY_FUNCTION__))
;
10852
10853 SynthesizedFunctionScope Scope(*this, Constructor);
10854
10855 // The exception specification is needed because we are defining the
10856 // function.
10857 ResolveExceptionSpec(CurrentLocation,
10858 Constructor->getType()->castAs<FunctionProtoType>());
10859 MarkVTableUsed(CurrentLocation, ClassDecl);
10860
10861 // Add a context note for diagnostics produced after this point.
10862 Scope.addContextNote(CurrentLocation);
10863
10864 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
10865 Constructor->setInvalidDecl();
10866 return;
10867 }
10868
10869 SourceLocation Loc = Constructor->getLocEnd().isValid()
10870 ? Constructor->getLocEnd()
10871 : Constructor->getLocation();
10872 Constructor->setBody(new (Context) CompoundStmt(Loc));
10873 Constructor->markUsed(Context);
10874
10875 if (ASTMutationListener *L = getASTMutationListener()) {
10876 L->CompletedImplicitDefinition(Constructor);
10877 }
10878
10879 DiagnoseUninitializedFields(*this, Constructor);
10880}
10881
10882void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
10883 // Perform any delayed checks on exception specifications.
10884 CheckDelayedMemberExceptionSpecs();
10885}
10886
10887/// Find or create the fake constructor we synthesize to model constructing an
10888/// object of a derived class via a constructor of a base class.
10889CXXConstructorDecl *
10890Sema::findInheritingConstructor(SourceLocation Loc,
10891 CXXConstructorDecl *BaseCtor,
10892 ConstructorUsingShadowDecl *Shadow) {
10893 CXXRecordDecl *Derived = Shadow->getParent();
10894 SourceLocation UsingLoc = Shadow->getLocation();
10895
10896 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
10897 // For now we use the name of the base class constructor as a member of the
10898 // derived class to indicate a (fake) inherited constructor name.
10899 DeclarationName Name = BaseCtor->getDeclName();
10900
10901 // Check to see if we already have a fake constructor for this inherited
10902 // constructor call.
10903 for (NamedDecl *Ctor : Derived->lookup(Name))
10904 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
10905 ->getInheritedConstructor()
10906 .getConstructor(),
10907 BaseCtor))
10908 return cast<CXXConstructorDecl>(Ctor);
10909
10910 DeclarationNameInfo NameInfo(Name, UsingLoc);
10911 TypeSourceInfo *TInfo =
10912 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
10913 FunctionProtoTypeLoc ProtoLoc =
10914 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
10915
10916 // Check the inherited constructor is valid and find the list of base classes
10917 // from which it was inherited.
10918 InheritedConstructorInfo ICI(*this, Loc, Shadow);
10919
10920 bool Constexpr =
10921 BaseCtor->isConstexpr() &&
10922 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
10923 false, BaseCtor, &ICI);
10924
10925 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
10926 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
10927 BaseCtor->isExplicit(), /*Inline=*/true,
10928 /*ImplicitlyDeclared=*/true, Constexpr,
10929 InheritedConstructor(Shadow, BaseCtor));
10930 if (Shadow->isInvalidDecl())
10931 DerivedCtor->setInvalidDecl();
10932
10933 // Build an unevaluated exception specification for this fake constructor.
10934 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
10935 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10936 EPI.ExceptionSpec.Type = EST_Unevaluated;
10937 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
10938 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
10939 FPT->getParamTypes(), EPI));
10940
10941 // Build the parameter declarations.
10942 SmallVector<ParmVarDecl *, 16> ParamDecls;
10943 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
10944 TypeSourceInfo *TInfo =
10945 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
10946 ParmVarDecl *PD = ParmVarDecl::Create(
10947 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
10948 FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
10949 PD->setScopeInfo(0, I);
10950 PD->setImplicit();
10951 // Ensure attributes are propagated onto parameters (this matters for
10952 // format, pass_object_size, ...).
10953 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
10954 ParamDecls.push_back(PD);
10955 ProtoLoc.setParam(I, PD);
10956 }
10957
10958 // Set up the new constructor.
10959 assert(!BaseCtor->isDeleted() && "should not use deleted constructor")(static_cast <bool> (!BaseCtor->isDeleted() &&
"should not use deleted constructor") ? void (0) : __assert_fail
("!BaseCtor->isDeleted() && \"should not use deleted constructor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10959, __extension__ __PRETTY_FUNCTION__))
;
10960 DerivedCtor->setAccess(BaseCtor->getAccess());
10961 DerivedCtor->setParams(ParamDecls);
10962 Derived->addDecl(DerivedCtor);
10963
10964 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
10965 SetDeclDeleted(DerivedCtor, UsingLoc);
10966
10967 return DerivedCtor;
10968}
10969
10970void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
10971 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
10972 Ctor->getInheritedConstructor().getShadowDecl());
10973 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
10974 /*Diagnose*/true);
10975}
10976
10977void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
10978 CXXConstructorDecl *Constructor) {
10979 CXXRecordDecl *ClassDecl = Constructor->getParent();
10980 assert(Constructor->getInheritedConstructor() &&(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10982, __extension__ __PRETTY_FUNCTION__))
10981 !Constructor->doesThisDeclarationHaveABody() &&(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10982, __extension__ __PRETTY_FUNCTION__))
10982 !Constructor->isDeleted())(static_cast <bool> (Constructor->getInheritedConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) ? void (0) : __assert_fail
("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10982, __extension__ __PRETTY_FUNCTION__))
;
10983 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
10984 return;
10985
10986 // Initializations are performed "as if by a defaulted default constructor",
10987 // so enter the appropriate scope.
10988 SynthesizedFunctionScope Scope(*this, Constructor);
10989
10990 // The exception specification is needed because we are defining the
10991 // function.
10992 ResolveExceptionSpec(CurrentLocation,
10993 Constructor->getType()->castAs<FunctionProtoType>());
10994 MarkVTableUsed(CurrentLocation, ClassDecl);
10995
10996 // Add a context note for diagnostics produced after this point.
10997 Scope.addContextNote(CurrentLocation);
10998
10999 ConstructorUsingShadowDecl *Shadow =
11000 Constructor->getInheritedConstructor().getShadowDecl();
11001 CXXConstructorDecl *InheritedCtor =
11002 Constructor->getInheritedConstructor().getConstructor();
11003
11004 // [class.inhctor.init]p1:
11005 // initialization proceeds as if a defaulted default constructor is used to
11006 // initialize the D object and each base class subobject from which the
11007 // constructor was inherited
11008
11009 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
11010 CXXRecordDecl *RD = Shadow->getParent();
11011 SourceLocation InitLoc = Shadow->getLocation();
11012
11013 // Build explicit initializers for all base classes from which the
11014 // constructor was inherited.
11015 SmallVector<CXXCtorInitializer*, 8> Inits;
11016 for (bool VBase : {false, true}) {
11017 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
11018 if (B.isVirtual() != VBase)
11019 continue;
11020
11021 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
11022 if (!BaseRD)
11023 continue;
11024
11025 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
11026 if (!BaseCtor.first)
11027 continue;
11028
11029 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
11030 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
11031 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
11032
11033 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
11034 Inits.push_back(new (Context) CXXCtorInitializer(
11035 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
11036 SourceLocation()));
11037 }
11038 }
11039
11040 // We now proceed as if for a defaulted default constructor, with the relevant
11041 // initializers replaced.
11042
11043 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
11044 Constructor->setInvalidDecl();
11045 return;
11046 }
11047
11048 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
11049 Constructor->markUsed(Context);
11050
11051 if (ASTMutationListener *L = getASTMutationListener()) {
11052 L->CompletedImplicitDefinition(Constructor);
11053 }
11054
11055 DiagnoseUninitializedFields(*this, Constructor);
11056}
11057
11058CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
11059 // C++ [class.dtor]p2:
11060 // If a class has no user-declared destructor, a destructor is
11061 // declared implicitly. An implicitly-declared destructor is an
11062 // inline public member of its class.
11063 assert(ClassDecl->needsImplicitDestructor())(static_cast <bool> (ClassDecl->needsImplicitDestructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitDestructor()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11063, __extension__ __PRETTY_FUNCTION__))
;
11064
11065 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
11066 if (DSM.isAlreadyBeingDeclared())
11067 return nullptr;
11068
11069 // Create the actual destructor declaration.
11070 CanQualType ClassType
11071 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
11072 SourceLocation ClassLoc = ClassDecl->getLocation();
11073 DeclarationName Name
11074 = Context.DeclarationNames.getCXXDestructorName(ClassType);
11075 DeclarationNameInfo NameInfo(Name, ClassLoc);
11076 CXXDestructorDecl *Destructor
11077 = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
11078 QualType(), nullptr, /*isInline=*/true,
11079 /*isImplicitlyDeclared=*/true);
11080 Destructor->setAccess(AS_public);
11081 Destructor->setDefaulted();
11082
11083 if (getLangOpts().CUDA) {
11084 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
11085 Destructor,
11086 /* ConstRHS */ false,
11087 /* Diagnose */ false);
11088 }
11089
11090 // Build an exception specification pointing back at this destructor.
11091 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
11092 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
11093
11094 // We don't need to use SpecialMemberIsTrivial here; triviality for
11095 // destructors is easy to compute.
11096 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
11097 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
11098 ClassDecl->hasTrivialDestructorForCall());
11099
11100 // Note that we have declared this destructor.
11101 ++ASTContext::NumImplicitDestructorsDeclared;
11102
11103 Scope *S = getScopeForContext(ClassDecl);
11104 CheckImplicitSpecialMemberDeclaration(S, Destructor);
11105
11106 // We can't check whether an implicit destructor is deleted before we complete
11107 // the definition of the class, because its validity depends on the alignment
11108 // of the class. We'll check this from ActOnFields once the class is complete.
11109 if (ClassDecl->isCompleteDefinition() &&
11110 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
11111 SetDeclDeleted(Destructor, ClassLoc);
11112
11113 // Introduce this destructor into its scope.
11114 if (S)
11115 PushOnScopeChains(Destructor, S, false);
11116 ClassDecl->addDecl(Destructor);
11117
11118 return Destructor;
11119}
11120
11121void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
11122 CXXDestructorDecl *Destructor) {
11123 assert((Destructor->isDefaulted() &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11126, __extension__ __PRETTY_FUNCTION__))
11124 !Destructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11126, __extension__ __PRETTY_FUNCTION__))
11125 !Destructor->isDeleted()) &&(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11126, __extension__ __PRETTY_FUNCTION__))
11126 "DefineImplicitDestructor - call it for implicit default dtor")(static_cast <bool> ((Destructor->isDefaulted() &&
!Destructor->doesThisDeclarationHaveABody() && !Destructor
->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? void (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11126, __extension__ __PRETTY_FUNCTION__))
;
11127 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
11128 return;
11129
11130 CXXRecordDecl *ClassDecl = Destructor->getParent();
11131 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor")(static_cast <bool> (ClassDecl && "DefineImplicitDestructor - invalid destructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitDestructor - invalid destructor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11131, __extension__ __PRETTY_FUNCTION__))
;
11132
11133 SynthesizedFunctionScope Scope(*this, Destructor);
11134
11135 // The exception specification is needed because we are defining the
11136 // function.
11137 ResolveExceptionSpec(CurrentLocation,
11138 Destructor->getType()->castAs<FunctionProtoType>());
11139 MarkVTableUsed(CurrentLocation, ClassDecl);
11140
11141 // Add a context note for diagnostics produced after this point.
11142 Scope.addContextNote(CurrentLocation);
11143
11144 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
11145 Destructor->getParent());
11146
11147 if (CheckDestructor(Destructor)) {
11148 Destructor->setInvalidDecl();
11149 return;
11150 }
11151
11152 SourceLocation Loc = Destructor->getLocEnd().isValid()
11153 ? Destructor->getLocEnd()
11154 : Destructor->getLocation();
11155 Destructor->setBody(new (Context) CompoundStmt(Loc));
11156 Destructor->markUsed(Context);
11157
11158 if (ASTMutationListener *L = getASTMutationListener()) {
11159 L->CompletedImplicitDefinition(Destructor);
11160 }
11161}
11162
11163/// Perform any semantic analysis which needs to be delayed until all
11164/// pending class member declarations have been parsed.
11165void Sema::ActOnFinishCXXMemberDecls() {
11166 // If the context is an invalid C++ class, just suppress these checks.
11167 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
11168 if (Record->isInvalidDecl()) {
11169 DelayedDefaultedMemberExceptionSpecs.clear();
11170 DelayedExceptionSpecChecks.clear();
11171 return;
11172 }
11173 checkForMultipleExportedDefaultConstructors(*this, Record);
11174 }
11175}
11176
11177void Sema::ActOnFinishCXXNonNestedClass(Decl *D) {
11178 referenceDLLExportedClassMethods();
11179}
11180
11181void Sema::referenceDLLExportedClassMethods() {
11182 if (!DelayedDllExportClasses.empty()) {
11183 // Calling ReferenceDllExportedMembers might cause the current function to
11184 // be called again, so use a local copy of DelayedDllExportClasses.
11185 SmallVector<CXXRecordDecl *, 4> WorkList;
11186 std::swap(DelayedDllExportClasses, WorkList);
11187 for (CXXRecordDecl *Class : WorkList)
11188 ReferenceDllExportedMembers(*this, Class);
11189 }
11190}
11191
11192void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
11193 CXXDestructorDecl *Destructor) {
11194 assert(getLangOpts().CPlusPlus11 &&(static_cast <bool> (getLangOpts().CPlusPlus11 &&
"adjusting dtor exception specs was introduced in c++11") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11195, __extension__ __PRETTY_FUNCTION__))
11195 "adjusting dtor exception specs was introduced in c++11")(static_cast <bool> (getLangOpts().CPlusPlus11 &&
"adjusting dtor exception specs was introduced in c++11") ? void
(0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11195, __extension__ __PRETTY_FUNCTION__))
;
11196
11197 // C++11 [class.dtor]p3:
11198 // A declaration of a destructor that does not have an exception-
11199 // specification is implicitly considered to have the same exception-
11200 // specification as an implicit declaration.
11201 const FunctionProtoType *DtorType = Destructor->getType()->
11202 getAs<FunctionProtoType>();
11203 if (DtorType->hasExceptionSpec())
11204 return;
11205
11206 // Replace the destructor's type, building off the existing one. Fortunately,
11207 // the only thing of interest in the destructor type is its extended info.
11208 // The return and arguments are fixed.
11209 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
11210 EPI.ExceptionSpec.Type = EST_Unevaluated;
11211 EPI.ExceptionSpec.SourceDecl = Destructor;
11212 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
11213
11214 // FIXME: If the destructor has a body that could throw, and the newly created
11215 // spec doesn't allow exceptions, we should emit a warning, because this
11216 // change in behavior can break conforming C++03 programs at runtime.
11217 // However, we don't have a body or an exception specification yet, so it
11218 // needs to be done somewhere else.
11219}
11220
11221namespace {
11222/// An abstract base class for all helper classes used in building the
11223// copy/move operators. These classes serve as factory functions and help us
11224// avoid using the same Expr* in the AST twice.
11225class ExprBuilder {
11226 ExprBuilder(const ExprBuilder&) = delete;
11227 ExprBuilder &operator=(const ExprBuilder&) = delete;
11228
11229protected:
11230 static Expr *assertNotNull(Expr *E) {
11231 assert(E && "Expression construction must not fail.")(static_cast <bool> (E && "Expression construction must not fail."
) ? void (0) : __assert_fail ("E && \"Expression construction must not fail.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11231, __extension__ __PRETTY_FUNCTION__))
;
11232 return E;
11233 }
11234
11235public:
11236 ExprBuilder() {}
11237 virtual ~ExprBuilder() {}
11238
11239 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
11240};
11241
11242class RefBuilder: public ExprBuilder {
11243 VarDecl *Var;
11244 QualType VarType;
11245
11246public:
11247 Expr *build(Sema &S, SourceLocation Loc) const override {
11248 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
11249 }
11250
11251 RefBuilder(VarDecl *Var, QualType VarType)
11252 : Var(Var), VarType(VarType) {}
11253};
11254
11255class ThisBuilder: public ExprBuilder {
11256public:
11257 Expr *build(Sema &S, SourceLocation Loc) const override {
11258 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
11259 }
11260};
11261
11262class CastBuilder: public ExprBuilder {
11263 const ExprBuilder &Builder;
11264 QualType Type;
11265 ExprValueKind Kind;
11266 const CXXCastPath &Path;
11267
11268public:
11269 Expr *build(Sema &S, SourceLocation Loc) const override {
11270 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
11271 CK_UncheckedDerivedToBase, Kind,
11272 &Path).get());
11273 }
11274
11275 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
11276 const CXXCastPath &Path)
11277 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
11278};
11279
11280class DerefBuilder: public ExprBuilder {
11281 const ExprBuilder &Builder;
11282
11283public:
11284 Expr *build(Sema &S, SourceLocation Loc) const override {
11285 return assertNotNull(
11286 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
11287 }
11288
11289 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
11290};
11291
11292class MemberBuilder: public ExprBuilder {
11293 const ExprBuilder &Builder;
11294 QualType Type;
11295 CXXScopeSpec SS;
11296 bool IsArrow;
11297 LookupResult &MemberLookup;
11298
11299public:
11300 Expr *build(Sema &S, SourceLocation Loc) const override {
11301 return assertNotNull(S.BuildMemberReferenceExpr(
11302 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
11303 nullptr, MemberLookup, nullptr, nullptr).get());
11304 }
11305
11306 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
11307 LookupResult &MemberLookup)
11308 : Builder(Builder), Type(Type), IsArrow(IsArrow),
11309 MemberLookup(MemberLookup) {}
11310};
11311
11312class MoveCastBuilder: public ExprBuilder {
11313 const ExprBuilder &Builder;
11314
11315public:
11316 Expr *build(Sema &S, SourceLocation Loc) const override {
11317 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
11318 }
11319
11320 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
11321};
11322
11323class LvalueConvBuilder: public ExprBuilder {
11324 const ExprBuilder &Builder;
11325
11326public:
11327 Expr *build(Sema &S, SourceLocation Loc) const override {
11328 return assertNotNull(
11329 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
11330 }
11331
11332 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
11333};
11334
11335class SubscriptBuilder: public ExprBuilder {
11336 const ExprBuilder &Base;
11337 const ExprBuilder &Index;
11338
11339public:
11340 Expr *build(Sema &S, SourceLocation Loc) const override {
11341 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
11342 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
11343 }
11344
11345 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
11346 : Base(Base), Index(Index) {}
11347};
11348
11349} // end anonymous namespace
11350
11351/// When generating a defaulted copy or move assignment operator, if a field
11352/// should be copied with __builtin_memcpy rather than via explicit assignments,
11353/// do so. This optimization only applies for arrays of scalars, and for arrays
11354/// of class type where the selected copy/move-assignment operator is trivial.
11355static StmtResult
11356buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
11357 const ExprBuilder &ToB, const ExprBuilder &FromB) {
11358 // Compute the size of the memory buffer to be copied.
11359 QualType SizeType = S.Context.getSizeType();
11360 llvm::APInt Size(S.Context.getTypeSize(SizeType),
11361 S.Context.getTypeSizeInChars(T).getQuantity());
11362
11363 // Take the address of the field references for "from" and "to". We
11364 // directly construct UnaryOperators here because semantic analysis
11365 // does not permit us to take the address of an xvalue.
11366 Expr *From = FromB.build(S, Loc);
11367 From = new (S.Context) UnaryOperator(From, UO_AddrOf,
11368 S.Context.getPointerType(From->getType()),
11369 VK_RValue, OK_Ordinary, Loc, false);
11370 Expr *To = ToB.build(S, Loc);
11371 To = new (S.Context) UnaryOperator(To, UO_AddrOf,
11372 S.Context.getPointerType(To->getType()),
11373 VK_RValue, OK_Ordinary, Loc, false);
11374
11375 const Type *E = T->getBaseElementTypeUnsafe();
11376 bool NeedsCollectableMemCpy =
11377 E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
11378
11379 // Create a reference to the __builtin_objc_memmove_collectable function
11380 StringRef MemCpyName = NeedsCollectableMemCpy ?
11381 "__builtin_objc_memmove_collectable" :
11382 "__builtin_memcpy";
11383 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
11384 Sema::LookupOrdinaryName);
11385 S.LookupName(R, S.TUScope, true);
11386
11387 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
11388 if (!MemCpy)
11389 // Something went horribly wrong earlier, and we will have complained
11390 // about it.
11391 return StmtError();
11392
11393 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
11394 VK_RValue, Loc, nullptr);
11395 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")(static_cast <bool> (MemCpyRef.isUsable() && "Builtin reference cannot fail"
) ? void (0) : __assert_fail ("MemCpyRef.isUsable() && \"Builtin reference cannot fail\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11395, __extension__ __PRETTY_FUNCTION__))
;
11396
11397 Expr *CallArgs[] = {
11398 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
11399 };
11400 ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
11401 Loc, CallArgs, Loc);
11402
11403 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")(static_cast <bool> (!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"
) ? void (0) : __assert_fail ("!Call.isInvalid() && \"Call to __builtin_memcpy cannot fail!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11403, __extension__ __PRETTY_FUNCTION__))
;
11404 return Call.getAs<Stmt>();
11405}
11406
11407/// Builds a statement that copies/moves the given entity from \p From to
11408/// \c To.
11409///
11410/// This routine is used to copy/move the members of a class with an
11411/// implicitly-declared copy/move assignment operator. When the entities being
11412/// copied are arrays, this routine builds for loops to copy them.
11413///
11414/// \param S The Sema object used for type-checking.
11415///
11416/// \param Loc The location where the implicit copy/move is being generated.
11417///
11418/// \param T The type of the expressions being copied/moved. Both expressions
11419/// must have this type.
11420///
11421/// \param To The expression we are copying/moving to.
11422///
11423/// \param From The expression we are copying/moving from.
11424///
11425/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
11426/// Otherwise, it's a non-static member subobject.
11427///
11428/// \param Copying Whether we're copying or moving.
11429///
11430/// \param Depth Internal parameter recording the depth of the recursion.
11431///
11432/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
11433/// if a memcpy should be used instead.
11434static StmtResult
11435buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
11436 const ExprBuilder &To, const ExprBuilder &From,
11437 bool CopyingBaseSubobject, bool Copying,
11438 unsigned Depth = 0) {
11439 // C++11 [class.copy]p28:
11440 // Each subobject is assigned in the manner appropriate to its type:
11441 //
11442 // - if the subobject is of class type, as if by a call to operator= with
11443 // the subobject as the object expression and the corresponding
11444 // subobject of x as a single function argument (as if by explicit
11445 // qualification; that is, ignoring any possible virtual overriding
11446 // functions in more derived classes);
11447 //
11448 // C++03 [class.copy]p13:
11449 // - if the subobject is of class type, the copy assignment operator for
11450 // the class is used (as if by explicit qualification; that is,
11451 // ignoring any possible virtual overriding functions in more derived
11452 // classes);
11453 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
11454 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
11455
11456 // Look for operator=.
11457 DeclarationName Name
11458 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
11459 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
11460 S.LookupQualifiedName(OpLookup, ClassDecl, false);
11461
11462 // Prior to C++11, filter out any result that isn't a copy/move-assignment
11463 // operator.
11464 if (!S.getLangOpts().CPlusPlus11) {
11465 LookupResult::Filter F = OpLookup.makeFilter();
11466 while (F.hasNext()) {
11467 NamedDecl *D = F.next();
11468 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
11469 if (Method->isCopyAssignmentOperator() ||
11470 (!Copying && Method->isMoveAssignmentOperator()))
11471 continue;
11472
11473 F.erase();
11474 }
11475 F.done();
11476 }
11477
11478 // Suppress the protected check (C++ [class.protected]) for each of the
11479 // assignment operators we found. This strange dance is required when
11480 // we're assigning via a base classes's copy-assignment operator. To
11481 // ensure that we're getting the right base class subobject (without
11482 // ambiguities), we need to cast "this" to that subobject type; to
11483 // ensure that we don't go through the virtual call mechanism, we need
11484 // to qualify the operator= name with the base class (see below). However,
11485 // this means that if the base class has a protected copy assignment
11486 // operator, the protected member access check will fail. So, we
11487 // rewrite "protected" access to "public" access in this case, since we
11488 // know by construction that we're calling from a derived class.
11489 if (CopyingBaseSubobject) {
11490 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
11491 L != LEnd; ++L) {
11492 if (L.getAccess() == AS_protected)
11493 L.setAccess(AS_public);
11494 }
11495 }
11496
11497 // Create the nested-name-specifier that will be used to qualify the
11498 // reference to operator=; this is required to suppress the virtual
11499 // call mechanism.
11500 CXXScopeSpec SS;
11501 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
11502 SS.MakeTrivial(S.Context,
11503 NestedNameSpecifier::Create(S.Context, nullptr, false,
11504 CanonicalT),
11505 Loc);
11506
11507 // Create the reference to operator=.
11508 ExprResult OpEqualRef
11509 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
11510 SS, /*TemplateKWLoc=*/SourceLocation(),
11511 /*FirstQualifierInScope=*/nullptr,
11512 OpLookup,
11513 /*TemplateArgs=*/nullptr, /*S*/nullptr,
11514 /*SuppressQualifierCheck=*/true);
11515 if (OpEqualRef.isInvalid())
11516 return StmtError();
11517
11518 // Build the call to the assignment operator.
11519
11520 Expr *FromInst = From.build(S, Loc);
11521 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
11522 OpEqualRef.getAs<Expr>(),
11523 Loc, FromInst, Loc);
11524 if (Call.isInvalid())
11525 return StmtError();
11526
11527 // If we built a call to a trivial 'operator=' while copying an array,
11528 // bail out. We'll replace the whole shebang with a memcpy.
11529 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
11530 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
11531 return StmtResult((Stmt*)nullptr);
11532
11533 // Convert to an expression-statement, and clean up any produced
11534 // temporaries.
11535 return S.ActOnExprStmt(Call);
11536 }
11537
11538 // - if the subobject is of scalar type, the built-in assignment
11539 // operator is used.
11540 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
11541 if (!ArrayTy) {
11542 ExprResult Assignment = S.CreateBuiltinBinOp(
11543 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
11544 if (Assignment.isInvalid())
11545 return StmtError();
11546 return S.ActOnExprStmt(Assignment);
11547 }
11548
11549 // - if the subobject is an array, each element is assigned, in the
11550 // manner appropriate to the element type;
11551
11552 // Construct a loop over the array bounds, e.g.,
11553 //
11554 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
11555 //
11556 // that will copy each of the array elements.
11557 QualType SizeType = S.Context.getSizeType();
11558
11559 // Create the iteration variable.
11560 IdentifierInfo *IterationVarName = nullptr;
11561 {
11562 SmallString<8> Str;
11563 llvm::raw_svector_ostream OS(Str);
11564 OS << "__i" << Depth;
11565 IterationVarName = &S.Context.Idents.get(OS.str());
11566 }
11567 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
11568 IterationVarName, SizeType,
11569 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
11570 SC_None);
11571
11572 // Initialize the iteration variable to zero.
11573 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
11574 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
11575
11576 // Creates a reference to the iteration variable.
11577 RefBuilder IterationVarRef(IterationVar, SizeType);
11578 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
11579
11580 // Create the DeclStmt that holds the iteration variable.
11581 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
11582
11583 // Subscript the "from" and "to" expressions with the iteration variable.
11584 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
11585 MoveCastBuilder FromIndexMove(FromIndexCopy);
11586 const ExprBuilder *FromIndex;
11587 if (Copying)
11588 FromIndex = &FromIndexCopy;
11589 else
11590 FromIndex = &FromIndexMove;
11591
11592 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
11593
11594 // Build the copy/move for an individual element of the array.
11595 StmtResult Copy =
11596 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
11597 ToIndex, *FromIndex, CopyingBaseSubobject,
11598 Copying, Depth + 1);
11599 // Bail out if copying fails or if we determined that we should use memcpy.
11600 if (Copy.isInvalid() || !Copy.get())
11601 return Copy;
11602
11603 // Create the comparison against the array bound.
11604 llvm::APInt Upper
11605 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
11606 Expr *Comparison
11607 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
11608 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
11609 BO_NE, S.Context.BoolTy,
11610 VK_RValue, OK_Ordinary, Loc, FPOptions());
11611
11612 // Create the pre-increment of the iteration variable. We can determine
11613 // whether the increment will overflow based on the value of the array
11614 // bound.
11615 Expr *Increment = new (S.Context)
11616 UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc, SizeType,
11617 VK_LValue, OK_Ordinary, Loc, Upper.isMaxValue());
11618
11619 // Construct the loop that copies all elements of this array.
11620 return S.ActOnForStmt(
11621 Loc, Loc, InitStmt,
11622 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
11623 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
11624}
11625
11626static StmtResult
11627buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
11628 const ExprBuilder &To, const ExprBuilder &From,
11629 bool CopyingBaseSubobject, bool Copying) {
11630 // Maybe we should use a memcpy?
11631 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
11632 T.isTriviallyCopyableType(S.Context))
11633 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
11634
11635 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
11636 CopyingBaseSubobject,
11637 Copying, 0));
11638
11639 // If we ended up picking a trivial assignment operator for an array of a
11640 // non-trivially-copyable class type, just emit a memcpy.
11641 if (!Result.isInvalid() && !Result.get())
11642 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
11643
11644 return Result;
11645}
11646
11647CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
11648 // Note: The following rules are largely analoguous to the copy
11649 // constructor rules. Note that virtual bases are not taken into account
11650 // for determining the argument type of the operator. Note also that
11651 // operators taking an object instead of a reference are allowed.
11652 assert(ClassDecl->needsImplicitCopyAssignment())(static_cast <bool> (ClassDecl->needsImplicitCopyAssignment
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitCopyAssignment()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11652, __extension__ __PRETTY_FUNCTION__))
;
11653
11654 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
11655 if (DSM.isAlreadyBeingDeclared())
11656 return nullptr;
11657
11658 QualType ArgType = Context.getTypeDeclType(ClassDecl);
11659 QualType RetType = Context.getLValueReferenceType(ArgType);
11660 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
11661 if (Const)
11662 ArgType = ArgType.withConst();
11663 ArgType = Context.getLValueReferenceType(ArgType);
11664
11665 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
11666 CXXCopyAssignment,
11667 Const);
11668
11669 // An implicitly-declared copy assignment operator is an inline public
11670 // member of its class.
11671 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
11672 SourceLocation ClassLoc = ClassDecl->getLocation();
11673 DeclarationNameInfo NameInfo(Name, ClassLoc);
11674 CXXMethodDecl *CopyAssignment =
11675 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
11676 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
11677 /*isInline=*/true, Constexpr, SourceLocation());
11678 CopyAssignment->setAccess(AS_public);
11679 CopyAssignment->setDefaulted();
11680 CopyAssignment->setImplicit();
11681
11682 if (getLangOpts().CUDA) {
11683 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
11684 CopyAssignment,
11685 /* ConstRHS */ Const,
11686 /* Diagnose */ false);
11687 }
11688
11689 // Build an exception specification pointing back at this member.
11690 FunctionProtoType::ExtProtoInfo EPI =
11691 getImplicitMethodEPI(*this, CopyAssignment);
11692 CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
11693
11694 // Add the parameter to the operator.
11695 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
11696 ClassLoc, ClassLoc,
11697 /*Id=*/nullptr, ArgType,
11698 /*TInfo=*/nullptr, SC_None,
11699 nullptr);
11700 CopyAssignment->setParams(FromParam);
11701
11702 CopyAssignment->setTrivial(
11703 ClassDecl->needsOverloadResolutionForCopyAssignment()
11704 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
11705 : ClassDecl->hasTrivialCopyAssignment());
11706
11707 // Note that we have added this copy-assignment operator.
11708 ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
11709
11710 Scope *S = getScopeForContext(ClassDecl);
11711 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
11712
11713 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
11714 SetDeclDeleted(CopyAssignment, ClassLoc);
11715
11716 if (S)
11717 PushOnScopeChains(CopyAssignment, S, false);
11718 ClassDecl->addDecl(CopyAssignment);
11719
11720 return CopyAssignment;
11721}
11722
11723/// Diagnose an implicit copy operation for a class which is odr-used, but
11724/// which is deprecated because the class has a user-declared copy constructor,
11725/// copy assignment operator, or destructor.
11726static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
11727 assert(CopyOp->isImplicit())(static_cast <bool> (CopyOp->isImplicit()) ? void (0
) : __assert_fail ("CopyOp->isImplicit()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11727, __extension__ __PRETTY_FUNCTION__))
;
11728
11729 CXXRecordDecl *RD = CopyOp->getParent();
11730 CXXMethodDecl *UserDeclaredOperation = nullptr;
11731
11732 // In Microsoft mode, assignment operations don't affect constructors and
11733 // vice versa.
11734 if (RD->hasUserDeclaredDestructor()) {
11735 UserDeclaredOperation = RD->getDestructor();
11736 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
11737 RD->hasUserDeclaredCopyConstructor() &&
11738 !S.getLangOpts().MSVCCompat) {
11739 // Find any user-declared copy constructor.
11740 for (auto *I : RD->ctors()) {
11741 if (I->isCopyConstructor()) {
11742 UserDeclaredOperation = I;
11743 break;
11744 }
11745 }
11746 assert(UserDeclaredOperation)(static_cast <bool> (UserDeclaredOperation) ? void (0) :
__assert_fail ("UserDeclaredOperation", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11746, __extension__ __PRETTY_FUNCTION__))
;
11747 } else if (isa<CXXConstructorDecl>(CopyOp) &&
11748 RD->hasUserDeclaredCopyAssignment() &&
11749 !S.getLangOpts().MSVCCompat) {
11750 // Find any user-declared move assignment operator.
11751 for (auto *I : RD->methods()) {
11752 if (I->isCopyAssignmentOperator()) {
11753 UserDeclaredOperation = I;
11754 break;
11755 }
11756 }
11757 assert(UserDeclaredOperation)(static_cast <bool> (UserDeclaredOperation) ? void (0) :
__assert_fail ("UserDeclaredOperation", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11757, __extension__ __PRETTY_FUNCTION__))
;
11758 }
11759
11760 if (UserDeclaredOperation) {
11761 S.Diag(UserDeclaredOperation->getLocation(),
11762 diag::warn_deprecated_copy_operation)
11763 << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
11764 << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
11765 }
11766}
11767
11768void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
11769 CXXMethodDecl *CopyAssignOperator) {
11770 assert((CopyAssignOperator->isDefaulted() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11775, __extension__ __PRETTY_FUNCTION__))
11771 CopyAssignOperator->isOverloadedOperator() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11775, __extension__ __PRETTY_FUNCTION__))
11772 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11775, __extension__ __PRETTY_FUNCTION__))
11773 !CopyAssignOperator->doesThisDeclarationHaveABody() &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11775, __extension__ __PRETTY_FUNCTION__))
11774 !CopyAssignOperator->isDeleted()) &&(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11775, __extension__ __PRETTY_FUNCTION__))
11775 "DefineImplicitCopyAssignment called for wrong function")(static_cast <bool> ((CopyAssignOperator->isDefaulted
() && CopyAssignOperator->isOverloadedOperator() &&
CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
!CopyAssignOperator->doesThisDeclarationHaveABody() &&
!CopyAssignOperator->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? void (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11775, __extension__ __PRETTY_FUNCTION__))
;
11776 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
11777 return;
11778
11779 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
11780 if (ClassDecl->isInvalidDecl()) {
11781 CopyAssignOperator->setInvalidDecl();
11782 return;
11783 }
11784
11785 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
11786
11787 // The exception specification is needed because we are defining the
11788 // function.
11789 ResolveExceptionSpec(CurrentLocation,
11790 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
11791
11792 // Add a context note for diagnostics produced after this point.
11793 Scope.addContextNote(CurrentLocation);
11794
11795 // C++11 [class.copy]p18:
11796 // The [definition of an implicitly declared copy assignment operator] is
11797 // deprecated if the class has a user-declared copy constructor or a
11798 // user-declared destructor.
11799 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
11800 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
11801
11802 // C++0x [class.copy]p30:
11803 // The implicitly-defined or explicitly-defaulted copy assignment operator
11804 // for a non-union class X performs memberwise copy assignment of its
11805 // subobjects. The direct base classes of X are assigned first, in the
11806 // order of their declaration in the base-specifier-list, and then the
11807 // immediate non-static data members of X are assigned, in the order in
11808 // which they were declared in the class definition.
11809
11810 // The statements that form the synthesized function body.
11811 SmallVector<Stmt*, 8> Statements;
11812
11813 // The parameter for the "other" object, which we are copying from.
11814 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
11815 Qualifiers OtherQuals = Other->getType().getQualifiers();
11816 QualType OtherRefType = Other->getType();
11817 if (const LValueReferenceType *OtherRef
11818 = OtherRefType->getAs<LValueReferenceType>()) {
11819 OtherRefType = OtherRef->getPointeeType();
11820 OtherQuals = OtherRefType.getQualifiers();
11821 }
11822
11823 // Our location for everything implicitly-generated.
11824 SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
11825 ? CopyAssignOperator->getLocEnd()
11826 : CopyAssignOperator->getLocation();
11827
11828 // Builds a DeclRefExpr for the "other" object.
11829 RefBuilder OtherRef(Other, OtherRefType);
11830
11831 // Builds the "this" pointer.
11832 ThisBuilder This;
11833
11834 // Assign base classes.
11835 bool Invalid = false;
11836 for (auto &Base : ClassDecl->bases()) {
11837 // Form the assignment:
11838 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
11839 QualType BaseType = Base.getType().getUnqualifiedType();
11840 if (!BaseType->isRecordType()) {
11841 Invalid = true;
11842 continue;
11843 }
11844
11845 CXXCastPath BasePath;
11846 BasePath.push_back(&Base);
11847
11848 // Construct the "from" expression, which is an implicit cast to the
11849 // appropriately-qualified base type.
11850 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
11851 VK_LValue, BasePath);
11852
11853 // Dereference "this".
11854 DerefBuilder DerefThis(This);
11855 CastBuilder To(DerefThis,
11856 Context.getCVRQualifiedType(
11857 BaseType, CopyAssignOperator->getTypeQualifiers()),
11858 VK_LValue, BasePath);
11859
11860 // Build the copy.
11861 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
11862 To, From,
11863 /*CopyingBaseSubobject=*/true,
11864 /*Copying=*/true);
11865 if (Copy.isInvalid()) {
11866 CopyAssignOperator->setInvalidDecl();
11867 return;
11868 }
11869
11870 // Success! Record the copy.
11871 Statements.push_back(Copy.getAs<Expr>());
11872 }
11873
11874 // Assign non-static members.
11875 for (auto *Field : ClassDecl->fields()) {
11876 // FIXME: We should form some kind of AST representation for the implied
11877 // memcpy in a union copy operation.
11878 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
11879 continue;
11880
11881 if (Field->isInvalidDecl()) {
11882 Invalid = true;
11883 continue;
11884 }
11885
11886 // Check for members of reference type; we can't copy those.
11887 if (Field->getType()->isReferenceType()) {
11888 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
11889 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
11890 Diag(Field->getLocation(), diag::note_declared_at);
11891 Invalid = true;
11892 continue;
11893 }
11894
11895 // Check for members of const-qualified, non-class type.
11896 QualType BaseType = Context.getBaseElementType(Field->getType());
11897 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
11898 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
11899 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
11900 Diag(Field->getLocation(), diag::note_declared_at);
11901 Invalid = true;
11902 continue;
11903 }
11904
11905 // Suppress assigning zero-width bitfields.
11906 if (Field->isZeroLengthBitField(Context))
11907 continue;
11908
11909 QualType FieldType = Field->getType().getNonReferenceType();
11910 if (FieldType->isIncompleteArrayType()) {
11911 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11912, __extension__ __PRETTY_FUNCTION__))
11912 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11912, __extension__ __PRETTY_FUNCTION__))
;
11913 continue;
11914 }
11915
11916 // Build references to the field in the object we're copying from and to.
11917 CXXScopeSpec SS; // Intentionally empty
11918 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
11919 LookupMemberName);
11920 MemberLookup.addDecl(Field);
11921 MemberLookup.resolveKind();
11922
11923 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
11924
11925 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
11926
11927 // Build the copy of this field.
11928 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
11929 To, From,
11930 /*CopyingBaseSubobject=*/false,
11931 /*Copying=*/true);
11932 if (Copy.isInvalid()) {
11933 CopyAssignOperator->setInvalidDecl();
11934 return;
11935 }
11936
11937 // Success! Record the copy.
11938 Statements.push_back(Copy.getAs<Stmt>());
11939 }
11940
11941 if (!Invalid) {
11942 // Add a "return *this;"
11943 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
11944
11945 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
11946 if (Return.isInvalid())
11947 Invalid = true;
11948 else
11949 Statements.push_back(Return.getAs<Stmt>());
11950 }
11951
11952 if (Invalid) {
11953 CopyAssignOperator->setInvalidDecl();
11954 return;
11955 }
11956
11957 StmtResult Body;
11958 {
11959 CompoundScopeRAII CompoundScope(*this);
11960 Body = ActOnCompoundStmt(Loc, Loc, Statements,
11961 /*isStmtExpr=*/false);
11962 assert(!Body.isInvalid() && "Compound statement creation cannot fail")(static_cast <bool> (!Body.isInvalid() && "Compound statement creation cannot fail"
) ? void (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11962, __extension__ __PRETTY_FUNCTION__))
;
11963 }
11964 CopyAssignOperator->setBody(Body.getAs<Stmt>());
11965 CopyAssignOperator->markUsed(Context);
11966
11967 if (ASTMutationListener *L = getASTMutationListener()) {
11968 L->CompletedImplicitDefinition(CopyAssignOperator);
11969 }
11970}
11971
11972CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
11973 assert(ClassDecl->needsImplicitMoveAssignment())(static_cast <bool> (ClassDecl->needsImplicitMoveAssignment
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitMoveAssignment()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11973, __extension__ __PRETTY_FUNCTION__))
;
11974
11975 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
11976 if (DSM.isAlreadyBeingDeclared())
11977 return nullptr;
11978
11979 // Note: The following rules are largely analoguous to the move
11980 // constructor rules.
11981
11982 QualType ArgType = Context.getTypeDeclType(ClassDecl);
11983 QualType RetType = Context.getLValueReferenceType(ArgType);
11984 ArgType = Context.getRValueReferenceType(ArgType);
11985
11986 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
11987 CXXMoveAssignment,
11988 false);
11989
11990 // An implicitly-declared move assignment operator is an inline public
11991 // member of its class.
11992 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
11993 SourceLocation ClassLoc = ClassDecl->getLocation();
11994 DeclarationNameInfo NameInfo(Name, ClassLoc);
11995 CXXMethodDecl *MoveAssignment =
11996 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
11997 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
11998 /*isInline=*/true, Constexpr, SourceLocation());
11999 MoveAssignment->setAccess(AS_public);
12000 MoveAssignment->setDefaulted();
12001 MoveAssignment->setImplicit();
12002
12003 if (getLangOpts().CUDA) {
12004 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
12005 MoveAssignment,
12006 /* ConstRHS */ false,
12007 /* Diagnose */ false);
12008 }
12009
12010 // Build an exception specification pointing back at this member.
12011 FunctionProtoType::ExtProtoInfo EPI =
12012 getImplicitMethodEPI(*this, MoveAssignment);
12013 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
12014
12015 // Add the parameter to the operator.
12016 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
12017 ClassLoc, ClassLoc,
12018 /*Id=*/nullptr, ArgType,
12019 /*TInfo=*/nullptr, SC_None,
12020 nullptr);
12021 MoveAssignment->setParams(FromParam);
12022
12023 MoveAssignment->setTrivial(
12024 ClassDecl->needsOverloadResolutionForMoveAssignment()
12025 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
12026 : ClassDecl->hasTrivialMoveAssignment());
12027
12028 // Note that we have added this copy-assignment operator.
12029 ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
12030
12031 Scope *S = getScopeForContext(ClassDecl);
12032 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
12033
12034 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
12035 ClassDecl->setImplicitMoveAssignmentIsDeleted();
12036 SetDeclDeleted(MoveAssignment, ClassLoc);
12037 }
12038
12039 if (S)
12040 PushOnScopeChains(MoveAssignment, S, false);
12041 ClassDecl->addDecl(MoveAssignment);
12042
12043 return MoveAssignment;
12044}
12045
12046/// Check if we're implicitly defining a move assignment operator for a class
12047/// with virtual bases. Such a move assignment might move-assign the virtual
12048/// base multiple times.
12049static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
12050 SourceLocation CurrentLocation) {
12051 assert(!Class->isDependentContext() && "should not define dependent move")(static_cast <bool> (!Class->isDependentContext() &&
"should not define dependent move") ? void (0) : __assert_fail
("!Class->isDependentContext() && \"should not define dependent move\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12051, __extension__ __PRETTY_FUNCTION__))
;
12052
12053 // Only a virtual base could get implicitly move-assigned multiple times.
12054 // Only a non-trivial move assignment can observe this. We only want to
12055 // diagnose if we implicitly define an assignment operator that assigns
12056 // two base classes, both of which move-assign the same virtual base.
12057 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
12058 Class->getNumBases() < 2)
12059 return;
12060
12061 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
12062 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
12063 VBaseMap VBases;
12064
12065 for (auto &BI : Class->bases()) {
12066 Worklist.push_back(&BI);
12067 while (!Worklist.empty()) {
12068 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
12069 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
12070
12071 // If the base has no non-trivial move assignment operators,
12072 // we don't care about moves from it.
12073 if (!Base->hasNonTrivialMoveAssignment())
12074 continue;
12075
12076 // If there's nothing virtual here, skip it.
12077 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
12078 continue;
12079
12080 // If we're not actually going to call a move assignment for this base,
12081 // or the selected move assignment is trivial, skip it.
12082 Sema::SpecialMemberOverloadResult SMOR =
12083 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
12084 /*ConstArg*/false, /*VolatileArg*/false,
12085 /*RValueThis*/true, /*ConstThis*/false,
12086 /*VolatileThis*/false);
12087 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
12088 !SMOR.getMethod()->isMoveAssignmentOperator())
12089 continue;
12090
12091 if (BaseSpec->isVirtual()) {
12092 // We're going to move-assign this virtual base, and its move
12093 // assignment operator is not trivial. If this can happen for
12094 // multiple distinct direct bases of Class, diagnose it. (If it
12095 // only happens in one base, we'll diagnose it when synthesizing
12096 // that base class's move assignment operator.)
12097 CXXBaseSpecifier *&Existing =
12098 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
12099 .first->second;
12100 if (Existing && Existing != &BI) {
12101 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
12102 << Class << Base;
12103 S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
12104 << (Base->getCanonicalDecl() ==
12105 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
12106 << Base << Existing->getType() << Existing->getSourceRange();
12107 S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
12108 << (Base->getCanonicalDecl() ==
12109 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
12110 << Base << BI.getType() << BaseSpec->getSourceRange();
12111
12112 // Only diagnose each vbase once.
12113 Existing = nullptr;
12114 }
12115 } else {
12116 // Only walk over bases that have defaulted move assignment operators.
12117 // We assume that any user-provided move assignment operator handles
12118 // the multiple-moves-of-vbase case itself somehow.
12119 if (!SMOR.getMethod()->isDefaulted())
12120 continue;
12121
12122 // We're going to move the base classes of Base. Add them to the list.
12123 for (auto &BI : Base->bases())
12124 Worklist.push_back(&BI);
12125 }
12126 }
12127 }
12128}
12129
12130void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
12131 CXXMethodDecl *MoveAssignOperator) {
12132 assert((MoveAssignOperator->isDefaulted() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12137, __extension__ __PRETTY_FUNCTION__))
12133 MoveAssignOperator->isOverloadedOperator() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12137, __extension__ __PRETTY_FUNCTION__))
12134 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12137, __extension__ __PRETTY_FUNCTION__))
12135 !MoveAssignOperator->doesThisDeclarationHaveABody() &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12137, __extension__ __PRETTY_FUNCTION__))
12136 !MoveAssignOperator->isDeleted()) &&(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12137, __extension__ __PRETTY_FUNCTION__))
12137 "DefineImplicitMoveAssignment called for wrong function")(static_cast <bool> ((MoveAssignOperator->isDefaulted
() && MoveAssignOperator->isOverloadedOperator() &&
MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
!MoveAssignOperator->doesThisDeclarationHaveABody() &&
!MoveAssignOperator->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? void (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12137, __extension__ __PRETTY_FUNCTION__))
;
12138 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
12139 return;
12140
12141 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
12142 if (ClassDecl->isInvalidDecl()) {
12143 MoveAssignOperator->setInvalidDecl();
12144 return;
12145 }
12146
12147 // C++0x [class.copy]p28:
12148 // The implicitly-defined or move assignment operator for a non-union class
12149 // X performs memberwise move assignment of its subobjects. The direct base
12150 // classes of X are assigned first, in the order of their declaration in the
12151 // base-specifier-list, and then the immediate non-static data members of X
12152 // are assigned, in the order in which they were declared in the class
12153 // definition.
12154
12155 // Issue a warning if our implicit move assignment operator will move
12156 // from a virtual base more than once.
12157 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
12158
12159 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
12160
12161 // The exception specification is needed because we are defining the
12162 // function.
12163 ResolveExceptionSpec(CurrentLocation,
12164 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
12165
12166 // Add a context note for diagnostics produced after this point.
12167 Scope.addContextNote(CurrentLocation);
12168
12169 // The statements that form the synthesized function body.
12170 SmallVector<Stmt*, 8> Statements;
12171
12172 // The parameter for the "other" object, which we are move from.
12173 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
12174 QualType OtherRefType = Other->getType()->
12175 getAs<RValueReferenceType>()->getPointeeType();
12176 assert(!OtherRefType.getQualifiers() &&(static_cast <bool> (!OtherRefType.getQualifiers() &&
"Bad argument type of defaulted move assignment") ? void (0)
: __assert_fail ("!OtherRefType.getQualifiers() && \"Bad argument type of defaulted move assignment\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12177, __extension__ __PRETTY_FUNCTION__))
12177 "Bad argument type of defaulted move assignment")(static_cast <bool> (!OtherRefType.getQualifiers() &&
"Bad argument type of defaulted move assignment") ? void (0)
: __assert_fail ("!OtherRefType.getQualifiers() && \"Bad argument type of defaulted move assignment\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12177, __extension__ __PRETTY_FUNCTION__))
;
12178
12179 // Our location for everything implicitly-generated.
12180 SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
12181 ? MoveAssignOperator->getLocEnd()
12182 : MoveAssignOperator->getLocation();
12183
12184 // Builds a reference to the "other" object.
12185 RefBuilder OtherRef(Other, OtherRefType);
12186 // Cast to rvalue.
12187 MoveCastBuilder MoveOther(OtherRef);
12188
12189 // Builds the "this" pointer.
12190 ThisBuilder This;
12191
12192 // Assign base classes.
12193 bool Invalid = false;
12194 for (auto &Base : ClassDecl->bases()) {
12195 // C++11 [class.copy]p28:
12196 // It is unspecified whether subobjects representing virtual base classes
12197 // are assigned more than once by the implicitly-defined copy assignment
12198 // operator.
12199 // FIXME: Do not assign to a vbase that will be assigned by some other base
12200 // class. For a move-assignment, this can result in the vbase being moved
12201 // multiple times.
12202
12203 // Form the assignment:
12204 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
12205 QualType BaseType = Base.getType().getUnqualifiedType();
12206 if (!BaseType->isRecordType()) {
12207 Invalid = true;
12208 continue;
12209 }
12210
12211 CXXCastPath BasePath;
12212 BasePath.push_back(&Base);
12213
12214 // Construct the "from" expression, which is an implicit cast to the
12215 // appropriately-qualified base type.
12216 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
12217
12218 // Dereference "this".
12219 DerefBuilder DerefThis(This);
12220
12221 // Implicitly cast "this" to the appropriately-qualified base type.
12222 CastBuilder To(DerefThis,
12223 Context.getCVRQualifiedType(
12224 BaseType, MoveAssignOperator->getTypeQualifiers()),
12225 VK_LValue, BasePath);
12226
12227 // Build the move.
12228 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
12229 To, From,
12230 /*CopyingBaseSubobject=*/true,
12231 /*Copying=*/false);
12232 if (Move.isInvalid()) {
12233 MoveAssignOperator->setInvalidDecl();
12234 return;
12235 }
12236
12237 // Success! Record the move.
12238 Statements.push_back(Move.getAs<Expr>());
12239 }
12240
12241 // Assign non-static members.
12242 for (auto *Field : ClassDecl->fields()) {
12243 // FIXME: We should form some kind of AST representation for the implied
12244 // memcpy in a union copy operation.
12245 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
12246 continue;
12247
12248 if (Field->isInvalidDecl()) {
12249 Invalid = true;
12250 continue;
12251 }
12252
12253 // Check for members of reference type; we can't move those.
12254 if (Field->getType()->isReferenceType()) {
12255 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
12256 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
12257 Diag(Field->getLocation(), diag::note_declared_at);
12258 Invalid = true;
12259 continue;
12260 }
12261
12262 // Check for members of const-qualified, non-class type.
12263 QualType BaseType = Context.getBaseElementType(Field->getType());
12264 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
12265 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
12266 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
12267 Diag(Field->getLocation(), diag::note_declared_at);
12268 Invalid = true;
12269 continue;
12270 }
12271
12272 // Suppress assigning zero-width bitfields.
12273 if (Field->isZeroLengthBitField(Context))
12274 continue;
12275
12276 QualType FieldType = Field->getType().getNonReferenceType();
12277 if (FieldType->isIncompleteArrayType()) {
12278 assert(ClassDecl->hasFlexibleArrayMember() &&(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12279, __extension__ __PRETTY_FUNCTION__))
12279 "Incomplete array type is not valid")(static_cast <bool> (ClassDecl->hasFlexibleArrayMember
() && "Incomplete array type is not valid") ? void (0
) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12279, __extension__ __PRETTY_FUNCTION__))
;
12280 continue;
12281 }
12282
12283 // Build references to the field in the object we're copying from and to.
12284 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
12285 LookupMemberName);
12286 MemberLookup.addDecl(Field);
12287 MemberLookup.resolveKind();
12288 MemberBuilder From(MoveOther, OtherRefType,
12289 /*IsArrow=*/false, MemberLookup);
12290 MemberBuilder To(This, getCurrentThisType(),
12291 /*IsArrow=*/true, MemberLookup);
12292
12293 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12295, __extension__ __PRETTY_FUNCTION__))
12294 "Member reference with rvalue base must be rvalue except for reference "(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12295, __extension__ __PRETTY_FUNCTION__))
12295 "members, which aren't allowed for move assignment.")(static_cast <bool> (!From.build(*this, Loc)->isLValue
() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? void
(0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12295, __extension__ __PRETTY_FUNCTION__))
;
12296
12297 // Build the move of this field.
12298 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
12299 To, From,
12300 /*CopyingBaseSubobject=*/false,
12301 /*Copying=*/false);
12302 if (Move.isInvalid()) {
12303 MoveAssignOperator->setInvalidDecl();
12304 return;
12305 }
12306
12307 // Success! Record the copy.
12308 Statements.push_back(Move.getAs<Stmt>());
12309 }
12310
12311 if (!Invalid) {
12312 // Add a "return *this;"
12313 ExprResult ThisObj =
12314 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
12315
12316 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
12317 if (Return.isInvalid())
12318 Invalid = true;
12319 else
12320 Statements.push_back(Return.getAs<Stmt>());
12321 }
12322
12323 if (Invalid) {
12324 MoveAssignOperator->setInvalidDecl();
12325 return;
12326 }
12327
12328 StmtResult Body;
12329 {
12330 CompoundScopeRAII CompoundScope(*this);
12331 Body = ActOnCompoundStmt(Loc, Loc, Statements,
12332 /*isStmtExpr=*/false);
12333 assert(!Body.isInvalid() && "Compound statement creation cannot fail")(static_cast <bool> (!Body.isInvalid() && "Compound statement creation cannot fail"
) ? void (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12333, __extension__ __PRETTY_FUNCTION__))
;
12334 }
12335 MoveAssignOperator->setBody(Body.getAs<Stmt>());
12336 MoveAssignOperator->markUsed(Context);
12337
12338 if (ASTMutationListener *L = getASTMutationListener()) {
12339 L->CompletedImplicitDefinition(MoveAssignOperator);
12340 }
12341}
12342
12343CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
12344 CXXRecordDecl *ClassDecl) {
12345 // C++ [class.copy]p4:
12346 // If the class definition does not explicitly declare a copy
12347 // constructor, one is declared implicitly.
12348 assert(ClassDecl->needsImplicitCopyConstructor())(static_cast <bool> (ClassDecl->needsImplicitCopyConstructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitCopyConstructor()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12348, __extension__ __PRETTY_FUNCTION__))
;
12349
12350 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
12351 if (DSM.isAlreadyBeingDeclared())
12352 return nullptr;
12353
12354 QualType ClassType = Context.getTypeDeclType(ClassDecl);
12355 QualType ArgType = ClassType;
12356 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
12357 if (Const)
12358 ArgType = ArgType.withConst();
12359 ArgType = Context.getLValueReferenceType(ArgType);
12360
12361 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12362 CXXCopyConstructor,
12363 Const);
12364
12365 DeclarationName Name
12366 = Context.DeclarationNames.getCXXConstructorName(
12367 Context.getCanonicalType(ClassType));
12368 SourceLocation ClassLoc = ClassDecl->getLocation();
12369 DeclarationNameInfo NameInfo(Name, ClassLoc);
12370
12371 // An implicitly-declared copy constructor is an inline public
12372 // member of its class.
12373 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
12374 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
12375 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
12376 Constexpr);
12377 CopyConstructor->setAccess(AS_public);
12378 CopyConstructor->setDefaulted();
12379
12380 if (getLangOpts().CUDA) {
12381 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
12382 CopyConstructor,
12383 /* ConstRHS */ Const,
12384 /* Diagnose */ false);
12385 }
12386
12387 // Build an exception specification pointing back at this member.
12388 FunctionProtoType::ExtProtoInfo EPI =
12389 getImplicitMethodEPI(*this, CopyConstructor);
12390 CopyConstructor->setType(
12391 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
12392
12393 // Add the parameter to the constructor.
12394 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
12395 ClassLoc, ClassLoc,
12396 /*IdentifierInfo=*/nullptr,
12397 ArgType, /*TInfo=*/nullptr,
12398 SC_None, nullptr);
12399 CopyConstructor->setParams(FromParam);
12400
12401 CopyConstructor->setTrivial(
12402 ClassDecl->needsOverloadResolutionForCopyConstructor()
12403 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
12404 : ClassDecl->hasTrivialCopyConstructor());
12405
12406 CopyConstructor->setTrivialForCall(
12407 ClassDecl->hasAttr<TrivialABIAttr>() ||
12408 (ClassDecl->needsOverloadResolutionForCopyConstructor()
12409 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
12410 TAH_ConsiderTrivialABI)
12411 : ClassDecl->hasTrivialCopyConstructorForCall()));
12412
12413 // Note that we have declared this constructor.
12414 ++ASTContext::NumImplicitCopyConstructorsDeclared;
12415
12416 Scope *S = getScopeForContext(ClassDecl);
12417 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
12418
12419 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
12420 ClassDecl->setImplicitCopyConstructorIsDeleted();
12421 SetDeclDeleted(CopyConstructor, ClassLoc);
12422 }
12423
12424 if (S)
12425 PushOnScopeChains(CopyConstructor, S, false);
12426 ClassDecl->addDecl(CopyConstructor);
12427
12428 return CopyConstructor;
12429}
12430
12431void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
12432 CXXConstructorDecl *CopyConstructor) {
12433 assert((CopyConstructor->isDefaulted() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12437, __extension__ __PRETTY_FUNCTION__))
12434 CopyConstructor->isCopyConstructor() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12437, __extension__ __PRETTY_FUNCTION__))
12435 !CopyConstructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12437, __extension__ __PRETTY_FUNCTION__))
12436 !CopyConstructor->isDeleted()) &&(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12437, __extension__ __PRETTY_FUNCTION__))
12437 "DefineImplicitCopyConstructor - call it for implicit copy ctor")(static_cast <bool> ((CopyConstructor->isDefaulted()
&& CopyConstructor->isCopyConstructor() &&
!CopyConstructor->doesThisDeclarationHaveABody() &&
!CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? void (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12437, __extension__ __PRETTY_FUNCTION__))
;
12438 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
12439 return;
12440
12441 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
12442 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitCopyConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12442, __extension__ __PRETTY_FUNCTION__))
;
12443
12444 SynthesizedFunctionScope Scope(*this, CopyConstructor);
12445
12446 // The exception specification is needed because we are defining the
12447 // function.
12448 ResolveExceptionSpec(CurrentLocation,
12449 CopyConstructor->getType()->castAs<FunctionProtoType>());
12450 MarkVTableUsed(CurrentLocation, ClassDecl);
12451
12452 // Add a context note for diagnostics produced after this point.
12453 Scope.addContextNote(CurrentLocation);
12454
12455 // C++11 [class.copy]p7:
12456 // The [definition of an implicitly declared copy constructor] is
12457 // deprecated if the class has a user-declared copy assignment operator
12458 // or a user-declared destructor.
12459 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
12460 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
12461
12462 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
12463 CopyConstructor->setInvalidDecl();
12464 } else {
12465 SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
12466 ? CopyConstructor->getLocEnd()
12467 : CopyConstructor->getLocation();
12468 Sema::CompoundScopeRAII CompoundScope(*this);
12469 CopyConstructor->setBody(
12470 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
12471 CopyConstructor->markUsed(Context);
12472 }
12473
12474 if (ASTMutationListener *L = getASTMutationListener()) {
12475 L->CompletedImplicitDefinition(CopyConstructor);
12476 }
12477}
12478
12479CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
12480 CXXRecordDecl *ClassDecl) {
12481 assert(ClassDecl->needsImplicitMoveConstructor())(static_cast <bool> (ClassDecl->needsImplicitMoveConstructor
()) ? void (0) : __assert_fail ("ClassDecl->needsImplicitMoveConstructor()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12481, __extension__ __PRETTY_FUNCTION__))
;
12482
12483 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
12484 if (DSM.isAlreadyBeingDeclared())
12485 return nullptr;
12486
12487 QualType ClassType = Context.getTypeDeclType(ClassDecl);
12488 QualType ArgType = Context.getRValueReferenceType(ClassType);
12489
12490 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12491 CXXMoveConstructor,
12492 false);
12493
12494 DeclarationName Name
12495 = Context.DeclarationNames.getCXXConstructorName(
12496 Context.getCanonicalType(ClassType));
12497 SourceLocation ClassLoc = ClassDecl->getLocation();
12498 DeclarationNameInfo NameInfo(Name, ClassLoc);
12499
12500 // C++11 [class.copy]p11:
12501 // An implicitly-declared copy/move constructor is an inline public
12502 // member of its class.
12503 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
12504 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
12505 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
12506 Constexpr);
12507 MoveConstructor->setAccess(AS_public);
12508 MoveConstructor->setDefaulted();
12509
12510 if (getLangOpts().CUDA) {
12511 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
12512 MoveConstructor,
12513 /* ConstRHS */ false,
12514 /* Diagnose */ false);
12515 }
12516
12517 // Build an exception specification pointing back at this member.
12518 FunctionProtoType::ExtProtoInfo EPI =
12519 getImplicitMethodEPI(*this, MoveConstructor);
12520 MoveConstructor->setType(
12521 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
12522
12523 // Add the parameter to the constructor.
12524 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
12525 ClassLoc, ClassLoc,
12526 /*IdentifierInfo=*/nullptr,
12527 ArgType, /*TInfo=*/nullptr,
12528 SC_None, nullptr);
12529 MoveConstructor->setParams(FromParam);
12530
12531 MoveConstructor->setTrivial(
12532 ClassDecl->needsOverloadResolutionForMoveConstructor()
12533 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
12534 : ClassDecl->hasTrivialMoveConstructor());
12535
12536 MoveConstructor->setTrivialForCall(
12537 ClassDecl->hasAttr<TrivialABIAttr>() ||
12538 (ClassDecl->needsOverloadResolutionForMoveConstructor()
12539 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
12540 TAH_ConsiderTrivialABI)
12541 : ClassDecl->hasTrivialMoveConstructorForCall()));
12542
12543 // Note that we have declared this constructor.
12544 ++ASTContext::NumImplicitMoveConstructorsDeclared;
12545
12546 Scope *S = getScopeForContext(ClassDecl);
12547 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
12548
12549 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
12550 ClassDecl->setImplicitMoveConstructorIsDeleted();
12551 SetDeclDeleted(MoveConstructor, ClassLoc);
12552 }
12553
12554 if (S)
12555 PushOnScopeChains(MoveConstructor, S, false);
12556 ClassDecl->addDecl(MoveConstructor);
12557
12558 return MoveConstructor;
12559}
12560
12561void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
12562 CXXConstructorDecl *MoveConstructor) {
12563 assert((MoveConstructor->isDefaulted() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12567, __extension__ __PRETTY_FUNCTION__))
12564 MoveConstructor->isMoveConstructor() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12567, __extension__ __PRETTY_FUNCTION__))
12565 !MoveConstructor->doesThisDeclarationHaveABody() &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12567, __extension__ __PRETTY_FUNCTION__))
12566 !MoveConstructor->isDeleted()) &&(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12567, __extension__ __PRETTY_FUNCTION__))
12567 "DefineImplicitMoveConstructor - call it for implicit move ctor")(static_cast <bool> ((MoveConstructor->isDefaulted()
&& MoveConstructor->isMoveConstructor() &&
!MoveConstructor->doesThisDeclarationHaveABody() &&
!MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? void (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12567, __extension__ __PRETTY_FUNCTION__))
;
12568 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
12569 return;
12570
12571 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
12572 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")(static_cast <bool> (ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"
) ? void (0) : __assert_fail ("ClassDecl && \"DefineImplicitMoveConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12572, __extension__ __PRETTY_FUNCTION__))
;
12573
12574 SynthesizedFunctionScope Scope(*this, MoveConstructor);
12575
12576 // The exception specification is needed because we are defining the
12577 // function.
12578 ResolveExceptionSpec(CurrentLocation,
12579 MoveConstructor->getType()->castAs<FunctionProtoType>());
12580 MarkVTableUsed(CurrentLocation, ClassDecl);
12581
12582 // Add a context note for diagnostics produced after this point.
12583 Scope.addContextNote(CurrentLocation);
12584
12585 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
12586 MoveConstructor->setInvalidDecl();
12587 } else {
12588 SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
12589 ? MoveConstructor->getLocEnd()
12590 : MoveConstructor->getLocation();
12591 Sema::CompoundScopeRAII CompoundScope(*this);
12592 MoveConstructor->setBody(ActOnCompoundStmt(
12593 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
12594 MoveConstructor->markUsed(Context);
12595 }
12596
12597 if (ASTMutationListener *L = getASTMutationListener()) {
12598 L->CompletedImplicitDefinition(MoveConstructor);
12599 }
12600}
12601
12602bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
12603 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
12604}
12605
12606void Sema::DefineImplicitLambdaToFunctionPointerConversion(
12607 SourceLocation CurrentLocation,
12608 CXXConversionDecl *Conv) {
12609 SynthesizedFunctionScope Scope(*this, Conv);
12610 assert(!Conv->getReturnType()->isUndeducedType())(static_cast <bool> (!Conv->getReturnType()->isUndeducedType
()) ? void (0) : __assert_fail ("!Conv->getReturnType()->isUndeducedType()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12610, __extension__ __PRETTY_FUNCTION__))
;
12611
12612 CXXRecordDecl *Lambda = Conv->getParent();
12613 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
12614 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker();
12615
12616 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
12617 CallOp = InstantiateFunctionDeclaration(
12618 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
12619 if (!CallOp)
12620 return;
12621
12622 Invoker = InstantiateFunctionDeclaration(
12623 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
12624 if (!Invoker)
12625 return;
12626 }
12627
12628 if (CallOp->isInvalidDecl())
12629 return;
12630
12631 // Mark the call operator referenced (and add to pending instantiations
12632 // if necessary).
12633 // For both the conversion and static-invoker template specializations
12634 // we construct their body's in this function, so no need to add them
12635 // to the PendingInstantiations.
12636 MarkFunctionReferenced(CurrentLocation, CallOp);
12637
12638 // Fill in the __invoke function with a dummy implementation. IR generation
12639 // will fill in the actual details. Update its type in case it contained
12640 // an 'auto'.
12641 Invoker->markUsed(Context);
12642 Invoker->setReferenced();
12643 Invoker->setType(Conv->getReturnType()->getPointeeType());
12644 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
12645
12646 // Construct the body of the conversion function { return __invoke; }.
12647 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
12648 VK_LValue, Conv->getLocation()).get();
12649 assert(FunctionRef && "Can't refer to __invoke function?")(static_cast <bool> (FunctionRef && "Can't refer to __invoke function?"
) ? void (0) : __assert_fail ("FunctionRef && \"Can't refer to __invoke function?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12649, __extension__ __PRETTY_FUNCTION__))
;
12650 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
12651 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
12652 Conv->getLocation()));
12653 Conv->markUsed(Context);
12654 Conv->setReferenced();
12655
12656 if (ASTMutationListener *L = getASTMutationListener()) {
12657 L->CompletedImplicitDefinition(Conv);
12658 L->CompletedImplicitDefinition(Invoker);
12659 }
12660}
12661
12662
12663
12664void Sema::DefineImplicitLambdaToBlockPointerConversion(
12665 SourceLocation CurrentLocation,
12666 CXXConversionDecl *Conv)
12667{
12668 assert(!Conv->getParent()->isGenericLambda())(static_cast <bool> (!Conv->getParent()->isGenericLambda
()) ? void (0) : __assert_fail ("!Conv->getParent()->isGenericLambda()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12668, __extension__ __PRETTY_FUNCTION__))
;
12669
12670 SynthesizedFunctionScope Scope(*this, Conv);
12671
12672 // Copy-initialize the lambda object as needed to capture it.
12673 Expr *This = ActOnCXXThis(CurrentLocation).get();
12674 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
12675
12676 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
12677 Conv->getLocation(),
12678 Conv, DerefThis);
12679
12680 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
12681 // behavior. Note that only the general conversion function does this
12682 // (since it's unusable otherwise); in the case where we inline the
12683 // block literal, it has block literal lifetime semantics.
12684 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
12685 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
12686 CK_CopyAndAutoreleaseBlockObject,
12687 BuildBlock.get(), nullptr, VK_RValue);
12688
12689 if (BuildBlock.isInvalid()) {
12690 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
12691 Conv->setInvalidDecl();
12692 return;
12693 }
12694
12695 // Create the return statement that returns the block from the conversion
12696 // function.
12697 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
12698 if (Return.isInvalid()) {
12699 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
12700 Conv->setInvalidDecl();
12701 return;
12702 }
12703
12704 // Set the body of the conversion function.
12705 Stmt *ReturnS = Return.get();
12706 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
12707 Conv->getLocation()));
12708 Conv->markUsed(Context);
12709
12710 // We're done; notify the mutation listener, if any.
12711 if (ASTMutationListener *L = getASTMutationListener()) {
12712 L->CompletedImplicitDefinition(Conv);
12713 }
12714}
12715
12716/// Determine whether the given list arguments contains exactly one
12717/// "real" (non-default) argument.
12718static bool hasOneRealArgument(MultiExprArg Args) {
12719 switch (Args.size()) {
12720 case 0:
12721 return false;
12722
12723 default:
12724 if (!Args[1]->isDefaultArgument())
12725 return false;
12726
12727 LLVM_FALLTHROUGH[[clang::fallthrough]];
12728 case 1:
12729 return !Args[0]->isDefaultArgument();
12730 }
12731
12732 return false;
12733}
12734
12735ExprResult
12736Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
12737 NamedDecl *FoundDecl,
12738 CXXConstructorDecl *Constructor,
12739 MultiExprArg ExprArgs,
12740 bool HadMultipleCandidates,
12741 bool IsListInitialization,
12742 bool IsStdInitListInitialization,
12743 bool RequiresZeroInit,
12744 unsigned ConstructKind,
12745 SourceRange ParenRange) {
12746 bool Elidable = false;
12747
12748 // C++0x [class.copy]p34:
12749 // When certain criteria are met, an implementation is allowed to
12750 // omit the copy/move construction of a class object, even if the
12751 // copy/move constructor and/or destructor for the object have
12752 // side effects. [...]
12753 // - when a temporary class object that has not been bound to a
12754 // reference (12.2) would be copied/moved to a class object
12755 // with the same cv-unqualified type, the copy/move operation
12756 // can be omitted by constructing the temporary object
12757 // directly into the target of the omitted copy/move
12758 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
12759 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
12760 Expr *SubExpr = ExprArgs[0];
12761 Elidable = SubExpr->isTemporaryObject(
12762 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
12763 }
12764
12765 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
12766 FoundDecl, Constructor,
12767 Elidable, ExprArgs, HadMultipleCandidates,
12768 IsListInitialization,
12769 IsStdInitListInitialization, RequiresZeroInit,
12770 ConstructKind, ParenRange);
12771}
12772
12773ExprResult
12774Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
12775 NamedDecl *FoundDecl,
12776 CXXConstructorDecl *Constructor,
12777 bool Elidable,
12778 MultiExprArg ExprArgs,
12779 bool HadMultipleCandidates,
12780 bool IsListInitialization,
12781 bool IsStdInitListInitialization,
12782 bool RequiresZeroInit,
12783 unsigned ConstructKind,
12784 SourceRange ParenRange) {
12785 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
12786 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
12787 if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
12788 return ExprError();
12789 }
12790
12791 return BuildCXXConstructExpr(
12792 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
12793 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
12794 RequiresZeroInit, ConstructKind, ParenRange);
12795}
12796
12797/// BuildCXXConstructExpr - Creates a complete call to a constructor,
12798/// including handling of its default argument expressions.
12799ExprResult
12800Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
12801 CXXConstructorDecl *Constructor,
12802 bool Elidable,
12803 MultiExprArg ExprArgs,
12804 bool HadMultipleCandidates,
12805 bool IsListInitialization,
12806 bool IsStdInitListInitialization,
12807 bool RequiresZeroInit,
12808 unsigned ConstructKind,
12809 SourceRange ParenRange) {
12810 assert(declaresSameEntity((static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12813, __extension__ __PRETTY_FUNCTION__))
12811 Constructor->getParent(),(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12813, __extension__ __PRETTY_FUNCTION__))
12812 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12813, __extension__ __PRETTY_FUNCTION__))
12813 "given constructor for wrong type")(static_cast <bool> (declaresSameEntity( Constructor->
getParent(), DeclInitType->getBaseElementTypeUnsafe()->
getAsCXXRecordDecl()) && "given constructor for wrong type"
) ? void (0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12813, __extension__ __PRETTY_FUNCTION__))
;
12814 MarkFunctionReferenced(ConstructLoc, Constructor);
12815 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
12816 return ExprError();
12817
12818 return CXXConstructExpr::Create(
12819 Context, DeclInitType, ConstructLoc, Constructor, Elidable,
12820 ExprArgs, HadMultipleCandidates, IsListInitialization,
12821 IsStdInitListInitialization, RequiresZeroInit,
12822 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
12823 ParenRange);
12824}
12825
12826ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
12827 assert(Field->hasInClassInitializer())(static_cast <bool> (Field->hasInClassInitializer())
? void (0) : __assert_fail ("Field->hasInClassInitializer()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12827, __extension__ __PRETTY_FUNCTION__))
;
12828
12829 // If we already have the in-class initializer nothing needs to be done.
12830 if (Field->getInClassInitializer())
12831 return CXXDefaultInitExpr::Create(Context, Loc, Field);
12832
12833 // If we might have already tried and failed to instantiate, don't try again.
12834 if (Field->isInvalidDecl())
12835 return ExprError();
12836
12837 // Maybe we haven't instantiated the in-class initializer. Go check the
12838 // pattern FieldDecl to see if it has one.
12839 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
12840
12841 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
12842 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
12843 DeclContext::lookup_result Lookup =
12844 ClassPattern->lookup(Field->getDeclName());
12845
12846 // Lookup can return at most two results: the pattern for the field, or the
12847 // injected class name of the parent record. No other member can have the
12848 // same name as the field.
12849 // In modules mode, lookup can return multiple results (coming from
12850 // different modules).
12851 assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) &&(static_cast <bool> ((getLangOpts().Modules || (!Lookup
.empty() && Lookup.size() <= 2)) && "more than two lookup results for field name"
) ? void (0) : __assert_fail ("(getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && \"more than two lookup results for field name\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12852, __extension__ __PRETTY_FUNCTION__))
12852 "more than two lookup results for field name")(static_cast <bool> ((getLangOpts().Modules || (!Lookup
.empty() && Lookup.size() <= 2)) && "more than two lookup results for field name"
) ? void (0) : __assert_fail ("(getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && \"more than two lookup results for field name\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12852, __extension__ __PRETTY_FUNCTION__))
;
12853 FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]);
12854 if (!Pattern) {
12855 assert(isa<CXXRecordDecl>(Lookup[0]) &&(static_cast <bool> (isa<CXXRecordDecl>(Lookup[0]
) && "cannot have other non-field member with same name"
) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(Lookup[0]) && \"cannot have other non-field member with same name\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12856, __extension__ __PRETTY_FUNCTION__))
12856 "cannot have other non-field member with same name")(static_cast <bool> (isa<CXXRecordDecl>(Lookup[0]
) && "cannot have other non-field member with same name"
) ? void (0) : __assert_fail ("isa<CXXRecordDecl>(Lookup[0]) && \"cannot have other non-field member with same name\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12856, __extension__ __PRETTY_FUNCTION__))
;
12857 for (auto L : Lookup)
12858 if (isa<FieldDecl>(L)) {
12859 Pattern = cast<FieldDecl>(L);
12860 break;
12861 }
12862 assert(Pattern && "We must have set the Pattern!")(static_cast <bool> (Pattern && "We must have set the Pattern!"
) ? void (0) : __assert_fail ("Pattern && \"We must have set the Pattern!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12862, __extension__ __PRETTY_FUNCTION__))
;
12863 }
12864
12865 if (!Pattern->hasInClassInitializer() ||
12866 InstantiateInClassInitializer(Loc, Field, Pattern,
12867 getTemplateInstantiationArgs(Field))) {
12868 // Don't diagnose this again.
12869 Field->setInvalidDecl();
12870 return ExprError();
12871 }
12872 return CXXDefaultInitExpr::Create(Context, Loc, Field);
12873 }
12874
12875 // DR1351:
12876 // If the brace-or-equal-initializer of a non-static data member
12877 // invokes a defaulted default constructor of its class or of an
12878 // enclosing class in a potentially evaluated subexpression, the
12879 // program is ill-formed.
12880 //
12881 // This resolution is unworkable: the exception specification of the
12882 // default constructor can be needed in an unevaluated context, in
12883 // particular, in the operand of a noexcept-expression, and we can be
12884 // unable to compute an exception specification for an enclosed class.
12885 //
12886 // Any attempt to resolve the exception specification of a defaulted default
12887 // constructor before the initializer is lexically complete will ultimately
12888 // come here at which point we can diagnose it.
12889 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
12890 Diag(Loc, diag::err_in_class_initializer_not_yet_parsed)
12891 << OutermostClass << Field;
12892 Diag(Field->getLocEnd(), diag::note_in_class_initializer_not_yet_parsed);
12893 // Recover by marking the field invalid, unless we're in a SFINAE context.
12894 if (!isSFINAEContext())
12895 Field->setInvalidDecl();
12896 return ExprError();
12897}
12898
12899void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
12900 if (VD->isInvalidDecl()) return;
12901
12902 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
12903 if (ClassDecl->isInvalidDecl()) return;
12904 if (ClassDecl->hasIrrelevantDestructor()) return;
12905 if (ClassDecl->isDependentContext()) return;
12906
12907 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
12908 MarkFunctionReferenced(VD->getLocation(), Destructor);
12909 CheckDestructorAccess(VD->getLocation(), Destructor,
12910 PDiag(diag::err_access_dtor_var)
12911 << VD->getDeclName()
12912 << VD->getType());
12913 DiagnoseUseOfDecl(Destructor, VD->getLocation());
12914
12915 if (Destructor->isTrivial()) return;
12916 if (!VD->hasGlobalStorage()) return;
12917
12918 // Emit warning for non-trivial dtor in global scope (a real global,
12919 // class-static, function-static).
12920 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
12921
12922 // TODO: this should be re-enabled for static locals by !CXAAtExit
12923 if (!VD->isStaticLocal())
12924 Diag(VD->getLocation(), diag::warn_global_destructor);
12925}
12926
12927/// Given a constructor and the set of arguments provided for the
12928/// constructor, convert the arguments and add any required default arguments
12929/// to form a proper call to this constructor.
12930///
12931/// \returns true if an error occurred, false otherwise.
12932bool
12933Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
12934 MultiExprArg ArgsPtr,
12935 SourceLocation Loc,
12936 SmallVectorImpl<Expr*> &ConvertedArgs,
12937 bool AllowExplicit,
12938 bool IsListInitialization) {
12939 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
12940 unsigned NumArgs = ArgsPtr.size();
12941 Expr **Args = ArgsPtr.data();
12942
12943 const FunctionProtoType *Proto
12944 = Constructor->getType()->getAs<FunctionProtoType>();
12945 assert(Proto && "Constructor without a prototype?")(static_cast <bool> (Proto && "Constructor without a prototype?"
) ? void (0) : __assert_fail ("Proto && \"Constructor without a prototype?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12945, __extension__ __PRETTY_FUNCTION__))
;
12946 unsigned NumParams = Proto->getNumParams();
12947
12948 // If too few arguments are available, we'll fill in the rest with defaults.
12949 if (NumArgs < NumParams)
12950 ConvertedArgs.reserve(NumParams);
12951 else
12952 ConvertedArgs.reserve(NumArgs);
12953
12954 VariadicCallType CallType =
12955 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
12956 SmallVector<Expr *, 8> AllArgs;
12957 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
12958 Proto, 0,
12959 llvm::makeArrayRef(Args, NumArgs),
12960 AllArgs,
12961 CallType, AllowExplicit,
12962 IsListInitialization);
12963 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
12964
12965 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
12966
12967 CheckConstructorCall(Constructor,
12968 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
12969 Proto, Loc);
12970
12971 return Invalid;
12972}
12973
12974static inline bool
12975CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
12976 const FunctionDecl *FnDecl) {
12977 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
12978 if (isa<NamespaceDecl>(DC)) {
12979 return SemaRef.Diag(FnDecl->getLocation(),
12980 diag::err_operator_new_delete_declared_in_namespace)
12981 << FnDecl->getDeclName();
12982 }
12983
12984 if (isa<TranslationUnitDecl>(DC) &&
12985 FnDecl->getStorageClass() == SC_Static) {
12986 return SemaRef.Diag(FnDecl->getLocation(),
12987 diag::err_operator_new_delete_declared_static)
12988 << FnDecl->getDeclName();
12989 }
12990
12991 return false;
12992}
12993
12994static QualType
12995RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) {
12996 QualType QTy = PtrTy->getPointeeType();
12997 QTy = SemaRef.Context.removeAddrSpaceQualType(QTy);
12998 return SemaRef.Context.getPointerType(QTy);
12999}
13000
13001static inline bool
13002CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
13003 CanQualType ExpectedResultType,
13004 CanQualType ExpectedFirstParamType,
13005 unsigned DependentParamTypeDiag,
13006 unsigned InvalidParamTypeDiag) {
13007 QualType ResultType =
13008 FnDecl->getType()->getAs<FunctionType>()->getReturnType();
13009
13010 // Check that the result type is not dependent.
13011 if (ResultType->isDependentType())
13012 return SemaRef.Diag(FnDecl->getLocation(),
13013 diag::err_operator_new_delete_dependent_result_type)
13014 << FnDecl->getDeclName() << ExpectedResultType;
13015
13016 // OpenCL C++: the operator is valid on any address space.
13017 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
13018 if (auto *PtrTy = ResultType->getAs<PointerType>()) {
13019 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
13020 }
13021 }
13022
13023 // Check that the result type is what we expect.
13024 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
13025 return SemaRef.Diag(FnDecl->getLocation(),
13026 diag::err_operator_new_delete_invalid_result_type)
13027 << FnDecl->getDeclName() << ExpectedResultType;
13028
13029 // A function template must have at least 2 parameters.
13030 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
13031 return SemaRef.Diag(FnDecl->getLocation(),
13032 diag::err_operator_new_delete_template_too_few_parameters)
13033 << FnDecl->getDeclName();
13034
13035 // The function decl must have at least 1 parameter.
13036 if (FnDecl->getNumParams() == 0)
13037 return SemaRef.Diag(FnDecl->getLocation(),
13038 diag::err_operator_new_delete_too_few_parameters)
13039 << FnDecl->getDeclName();
13040
13041 // Check the first parameter type is not dependent.
13042 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
13043 if (FirstParamType->isDependentType())
13044 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
13045 << FnDecl->getDeclName() << ExpectedFirstParamType;
13046
13047 // Check that the first parameter type is what we expect.
13048 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
13049 // OpenCL C++: the operator is valid on any address space.
13050 if (auto *PtrTy =
13051 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) {
13052 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
13053 }
13054 }
13055 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
13056 ExpectedFirstParamType)
13057 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
13058 << FnDecl->getDeclName() << ExpectedFirstParamType;
13059
13060 return false;
13061}
13062
13063static bool
13064CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
13065 // C++ [basic.stc.dynamic.allocation]p1:
13066 // A program is ill-formed if an allocation function is declared in a
13067 // namespace scope other than global scope or declared static in global
13068 // scope.
13069 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
13070 return true;
13071
13072 CanQualType SizeTy =
13073 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
13074
13075 // C++ [basic.stc.dynamic.allocation]p1:
13076 // The return type shall be void*. The first parameter shall have type
13077 // std::size_t.
13078 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
13079 SizeTy,
13080 diag::err_operator_new_dependent_param_type,
13081 diag::err_operator_new_param_type))
13082 return true;
13083
13084 // C++ [basic.stc.dynamic.allocation]p1:
13085 // The first parameter shall not have an associated default argument.
13086 if (FnDecl->getParamDecl(0)->hasDefaultArg())
13087 return SemaRef.Diag(FnDecl->getLocation(),
13088 diag::err_operator_new_default_arg)
13089 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
13090
13091 return false;
13092}
13093
13094static bool
13095CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
13096 // C++ [basic.stc.dynamic.deallocation]p1:
13097 // A program is ill-formed if deallocation functions are declared in a
13098 // namespace scope other than global scope or declared static in global
13099 // scope.
13100 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
13101 return true;
13102
13103 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
13104
13105 // C++ P0722:
13106 // Within a class C, the first parameter of a destroying operator delete
13107 // shall be of type C *. The first parameter of any other deallocation
13108 // function shall be of type void *.
13109 CanQualType ExpectedFirstParamType =
13110 MD && MD->isDestroyingOperatorDelete()
13111 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
13112 SemaRef.Context.getRecordType(MD->getParent())))
13113 : SemaRef.Context.VoidPtrTy;
13114
13115 // C++ [basic.stc.dynamic.deallocation]p2:
13116 // Each deallocation function shall return void
13117 if (CheckOperatorNewDeleteTypes(
13118 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
13119 diag::err_operator_delete_dependent_param_type,
13120 diag::err_operator_delete_param_type))
13121 return true;
13122
13123 // C++ P0722:
13124 // A destroying operator delete shall be a usual deallocation function.
13125 if (MD && !MD->getParent()->isDependentContext() &&
13126 MD->isDestroyingOperatorDelete() && !MD->isUsualDeallocationFunction()) {
13127 SemaRef.Diag(MD->getLocation(),
13128 diag::err_destroying_operator_delete_not_usual);
13129 return true;
13130 }
13131
13132 return false;
13133}
13134
13135/// CheckOverloadedOperatorDeclaration - Check whether the declaration
13136/// of this overloaded operator is well-formed. If so, returns false;
13137/// otherwise, emits appropriate diagnostics and returns true.
13138bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
13139 assert(FnDecl && FnDecl->isOverloadedOperator() &&(static_cast <bool> (FnDecl && FnDecl->isOverloadedOperator
() && "Expected an overloaded operator declaration") ?
void (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13140, __extension__ __PRETTY_FUNCTION__))
13140 "Expected an overloaded operator declaration")(static_cast <bool> (FnDecl && FnDecl->isOverloadedOperator
() && "Expected an overloaded operator declaration") ?
void (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13140, __extension__ __PRETTY_FUNCTION__))
;
13141
13142 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
13143
13144 // C++ [over.oper]p5:
13145 // The allocation and deallocation functions, operator new,
13146 // operator new[], operator delete and operator delete[], are
13147 // described completely in 3.7.3. The attributes and restrictions
13148 // found in the rest of this subclause do not apply to them unless
13149 // explicitly stated in 3.7.3.
13150 if (Op == OO_Delete || Op == OO_Array_Delete)
13151 return CheckOperatorDeleteDeclaration(*this, FnDecl);
13152
13153 if (Op == OO_New || Op == OO_Array_New)
13154 return CheckOperatorNewDeclaration(*this, FnDecl);
13155
13156 // C++ [over.oper]p6:
13157 // An operator function shall either be a non-static member
13158 // function or be a non-member function and have at least one
13159 // parameter whose type is a class, a reference to a class, an
13160 // enumeration, or a reference to an enumeration.
13161 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
13162 if (MethodDecl->isStatic())
13163 return Diag(FnDecl->getLocation(),
13164 diag::err_operator_overload_static) << FnDecl->getDeclName();
13165 } else {
13166 bool ClassOrEnumParam = false;
13167 for (auto Param : FnDecl->parameters()) {
13168 QualType ParamType = Param->getType().getNonReferenceType();
13169 if (ParamType->isDependentType() || ParamType->isRecordType() ||
13170 ParamType->isEnumeralType()) {
13171 ClassOrEnumParam = true;
13172 break;
13173 }
13174 }
13175
13176 if (!ClassOrEnumParam)
13177 return Diag(FnDecl->getLocation(),
13178 diag::err_operator_overload_needs_class_or_enum)
13179 << FnDecl->getDeclName();
13180 }
13181
13182 // C++ [over.oper]p8:
13183 // An operator function cannot have default arguments (8.3.6),
13184 // except where explicitly stated below.
13185 //
13186 // Only the function-call operator allows default arguments
13187 // (C++ [over.call]p1).
13188 if (Op != OO_Call) {
13189 for (auto Param : FnDecl->parameters()) {
13190 if (Param->hasDefaultArg())
13191 return Diag(Param->getLocation(),
13192 diag::err_operator_overload_default_arg)
13193 << FnDecl->getDeclName() << Param->getDefaultArgRange();
13194 }
13195 }
13196
13197 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
13198 { false, false, false }
13199#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
13200 , { Unary, Binary, MemberOnly }
13201#include "clang/Basic/OperatorKinds.def"
13202 };
13203
13204 bool CanBeUnaryOperator = OperatorUses[Op][0];
13205 bool CanBeBinaryOperator = OperatorUses[Op][1];
13206 bool MustBeMemberOperator = OperatorUses[Op][2];
13207
13208 // C++ [over.oper]p8:
13209 // [...] Operator functions cannot have more or fewer parameters
13210 // than the number required for the corresponding operator, as
13211 // described in the rest of this subclause.
13212 unsigned NumParams = FnDecl->getNumParams()
13213 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
13214 if (Op != OO_Call &&
13215 ((NumParams == 1 && !CanBeUnaryOperator) ||
13216 (NumParams == 2 && !CanBeBinaryOperator) ||
13217 (NumParams < 1) || (NumParams > 2))) {
13218 // We have the wrong number of parameters.
13219 unsigned ErrorKind;
13220 if (CanBeUnaryOperator && CanBeBinaryOperator) {
13221 ErrorKind = 2; // 2 -> unary or binary.
13222 } else if (CanBeUnaryOperator) {
13223 ErrorKind = 0; // 0 -> unary
13224 } else {
13225 assert(CanBeBinaryOperator &&(static_cast <bool> (CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? void (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13226, __extension__ __PRETTY_FUNCTION__))
13226 "All non-call overloaded operators are unary or binary!")(static_cast <bool> (CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? void (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13226, __extension__ __PRETTY_FUNCTION__))
;
13227 ErrorKind = 1; // 1 -> binary
13228 }
13229
13230 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
13231 << FnDecl->getDeclName() << NumParams << ErrorKind;
13232 }
13233
13234 // Overloaded operators other than operator() cannot be variadic.
13235 if (Op != OO_Call &&
13236 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
13237 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
13238 << FnDecl->getDeclName();
13239 }
13240
13241 // Some operators must be non-static member functions.
13242 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
13243 return Diag(FnDecl->getLocation(),
13244 diag::err_operator_overload_must_be_member)
13245 << FnDecl->getDeclName();
13246 }
13247
13248 // C++ [over.inc]p1:
13249 // The user-defined function called operator++ implements the
13250 // prefix and postfix ++ operator. If this function is a member
13251 // function with no parameters, or a non-member function with one
13252 // parameter of class or enumeration type, it defines the prefix
13253 // increment operator ++ for objects of that type. If the function
13254 // is a member function with one parameter (which shall be of type
13255 // int) or a non-member function with two parameters (the second
13256 // of which shall be of type int), it defines the postfix
13257 // increment operator ++ for objects of that type.
13258 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
13259 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
13260 QualType ParamType = LastParam->getType();
13261
13262 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
13263 !ParamType->isDependentType())
13264 return Diag(LastParam->getLocation(),
13265 diag::err_operator_overload_post_incdec_must_be_int)
13266 << LastParam->getType() << (Op == OO_MinusMinus);
13267 }
13268
13269 return false;
13270}
13271
13272static bool
13273checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
13274 FunctionTemplateDecl *TpDecl) {
13275 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
13276
13277 // Must have one or two template parameters.
13278 if (TemplateParams->size() == 1) {
13279 NonTypeTemplateParmDecl *PmDecl =
13280 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
13281
13282 // The template parameter must be a char parameter pack.
13283 if (PmDecl && PmDecl->isTemplateParameterPack() &&
13284 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
13285 return false;
13286
13287 } else if (TemplateParams->size() == 2) {
13288 TemplateTypeParmDecl *PmType =
13289 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
13290 NonTypeTemplateParmDecl *PmArgs =
13291 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
13292
13293 // The second template parameter must be a parameter pack with the
13294 // first template parameter as its type.
13295 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
13296 PmArgs->isTemplateParameterPack()) {
13297 const TemplateTypeParmType *TArgs =
13298 PmArgs->getType()->getAs<TemplateTypeParmType>();
13299 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
13300 TArgs->getIndex() == PmType->getIndex()) {
13301 if (!SemaRef.inTemplateInstantiation())
13302 SemaRef.Diag(TpDecl->getLocation(),
13303 diag::ext_string_literal_operator_template);
13304 return false;
13305 }
13306 }
13307 }
13308
13309 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
13310 diag::err_literal_operator_template)
13311 << TpDecl->getTemplateParameters()->getSourceRange();
13312 return true;
13313}
13314
13315/// CheckLiteralOperatorDeclaration - Check whether the declaration
13316/// of this literal operator function is well-formed. If so, returns
13317/// false; otherwise, emits appropriate diagnostics and returns true.
13318bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
13319 if (isa<CXXMethodDecl>(FnDecl)) {
13320 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
13321 << FnDecl->getDeclName();
13322 return true;
13323 }
13324
13325 if (FnDecl->isExternC()) {
13326 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
13327 if (const LinkageSpecDecl *LSD =
13328 FnDecl->getDeclContext()->getExternCContext())
13329 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
13330 return true;
13331 }
13332
13333 // This might be the definition of a literal operator template.
13334 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
13335
13336 // This might be a specialization of a literal operator template.
13337 if (!TpDecl)
13338 TpDecl = FnDecl->getPrimaryTemplate();
13339
13340 // template <char...> type operator "" name() and
13341 // template <class T, T...> type operator "" name() are the only valid
13342 // template signatures, and the only valid signatures with no parameters.
13343 if (TpDecl) {
13344 if (FnDecl->param_size() != 0) {
13345 Diag(FnDecl->getLocation(),
13346 diag::err_literal_operator_template_with_params);
13347 return true;
13348 }
13349
13350 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
13351 return true;
13352
13353 } else if (FnDecl->param_size() == 1) {
13354 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
13355
13356 QualType ParamType = Param->getType().getUnqualifiedType();
13357
13358 // Only unsigned long long int, long double, any character type, and const
13359 // char * are allowed as the only parameters.
13360 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
13361 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
13362 Context.hasSameType(ParamType, Context.CharTy) ||
13363 Context.hasSameType(ParamType, Context.WideCharTy) ||
13364 Context.hasSameType(ParamType, Context.Char8Ty) ||
13365 Context.hasSameType(ParamType, Context.Char16Ty) ||
13366 Context.hasSameType(ParamType, Context.Char32Ty)) {
13367 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
13368 QualType InnerType = Ptr->getPointeeType();
13369
13370 // Pointer parameter must be a const char *.
13371 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
13372 Context.CharTy) &&
13373 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
13374 Diag(Param->getSourceRange().getBegin(),
13375 diag::err_literal_operator_param)
13376 << ParamType << "'const char *'" << Param->getSourceRange();
13377 return true;
13378 }
13379
13380 } else if (ParamType->isRealFloatingType()) {
13381 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
13382 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
13383 return true;
13384
13385 } else if (ParamType->isIntegerType()) {
13386 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
13387 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
13388 return true;
13389
13390 } else {
13391 Diag(Param->getSourceRange().getBegin(),
13392 diag::err_literal_operator_invalid_param)
13393 << ParamType << Param->getSourceRange();
13394 return true;
13395 }
13396
13397 } else if (FnDecl->param_size() == 2) {
13398 FunctionDecl::param_iterator Param = FnDecl->param_begin();
13399
13400 // First, verify that the first parameter is correct.
13401
13402 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
13403
13404 // Two parameter function must have a pointer to const as a
13405 // first parameter; let's strip those qualifiers.
13406 const PointerType *PT = FirstParamType->getAs<PointerType>();
13407
13408 if (!PT) {
13409 Diag((*Param)->getSourceRange().getBegin(),
13410 diag::err_literal_operator_param)
13411 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
13412 return true;
13413 }
13414
13415 QualType PointeeType = PT->getPointeeType();
13416 // First parameter must be const
13417 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
13418 Diag((*Param)->getSourceRange().getBegin(),
13419 diag::err_literal_operator_param)
13420 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
13421 return true;
13422 }
13423
13424 QualType InnerType = PointeeType.getUnqualifiedType();
13425 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
13426 // const char32_t* are allowed as the first parameter to a two-parameter
13427 // function
13428 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
13429 Context.hasSameType(InnerType, Context.WideCharTy) ||
13430 Context.hasSameType(InnerType, Context.Char8Ty) ||
13431 Context.hasSameType(InnerType, Context.Char16Ty) ||
13432 Context.hasSameType(InnerType, Context.Char32Ty))) {
13433 Diag((*Param)->getSourceRange().getBegin(),
13434 diag::err_literal_operator_param)
13435 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
13436 return true;
13437 }
13438
13439 // Move on to the second and final parameter.
13440 ++Param;
13441
13442 // The second parameter must be a std::size_t.
13443 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
13444 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
13445 Diag((*Param)->getSourceRange().getBegin(),
13446 diag::err_literal_operator_param)
13447 << SecondParamType << Context.getSizeType()
13448 << (*Param)->getSourceRange();
13449 return true;
13450 }
13451 } else {
13452 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
13453 return true;
13454 }
13455
13456 // Parameters are good.
13457
13458 // A parameter-declaration-clause containing a default argument is not
13459 // equivalent to any of the permitted forms.
13460 for (auto Param : FnDecl->parameters()) {
13461 if (Param->hasDefaultArg()) {
13462 Diag(Param->getDefaultArgRange().getBegin(),
13463 diag::err_literal_operator_default_argument)
13464 << Param->getDefaultArgRange();
13465 break;
13466 }
13467 }
13468
13469 StringRef LiteralName
13470 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
13471 if (LiteralName[0] != '_' &&
13472 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
13473 // C++11 [usrlit.suffix]p1:
13474 // Literal suffix identifiers that do not start with an underscore
13475 // are reserved for future standardization.
13476 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
13477 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
13478 }
13479
13480 return false;
13481}
13482
13483/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
13484/// linkage specification, including the language and (if present)
13485/// the '{'. ExternLoc is the location of the 'extern', Lang is the
13486/// language string literal. LBraceLoc, if valid, provides the location of
13487/// the '{' brace. Otherwise, this linkage specification does not
13488/// have any braces.
13489Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
13490 Expr *LangStr,
13491 SourceLocation LBraceLoc) {
13492 StringLiteral *Lit = cast<StringLiteral>(LangStr);
13493 if (!Lit->isAscii()) {
13494 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
13495 << LangStr->getSourceRange();
13496 return nullptr;
13497 }
13498
13499 StringRef Lang = Lit->getString();
13500 LinkageSpecDecl::LanguageIDs Language;
13501 if (Lang == "C")
13502 Language = LinkageSpecDecl::lang_c;
13503 else if (Lang == "C++")
13504 Language = LinkageSpecDecl::lang_cxx;
13505 else {
13506 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
13507 << LangStr->getSourceRange();
13508 return nullptr;
13509 }
13510
13511 // FIXME: Add all the various semantics of linkage specifications
13512
13513 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
13514 LangStr->getExprLoc(), Language,
13515 LBraceLoc.isValid());
13516 CurContext->addDecl(D);
13517 PushDeclContext(S, D);
13518 return D;
13519}
13520
13521/// ActOnFinishLinkageSpecification - Complete the definition of
13522/// the C++ linkage specification LinkageSpec. If RBraceLoc is
13523/// valid, it's the position of the closing '}' brace in a linkage
13524/// specification that uses braces.
13525Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
13526 Decl *LinkageSpec,
13527 SourceLocation RBraceLoc) {
13528 if (RBraceLoc.isValid()) {
13529 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
13530 LSDecl->setRBraceLoc(RBraceLoc);
13531 }
13532 PopDeclContext();
13533 return LinkageSpec;
13534}
13535
13536Decl *Sema::ActOnEmptyDeclaration(Scope *S,
13537 const ParsedAttributesView &AttrList,
13538 SourceLocation SemiLoc) {
13539 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
13540 // Attribute declarations appertain to empty declaration so we handle
13541 // them here.
13542 ProcessDeclAttributeList(S, ED, AttrList);
13543
13544 CurContext->addDecl(ED);
13545 return ED;
13546}
13547
13548/// Perform semantic analysis for the variable declaration that
13549/// occurs within a C++ catch clause, returning the newly-created
13550/// variable.
13551VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
13552 TypeSourceInfo *TInfo,
13553 SourceLocation StartLoc,
13554 SourceLocation Loc,
13555 IdentifierInfo *Name) {
13556 bool Invalid = false;
13557 QualType ExDeclType = TInfo->getType();
13558
13559 // Arrays and functions decay.
13560 if (ExDeclType->isArrayType())
13561 ExDeclType = Context.getArrayDecayedType(ExDeclType);
13562 else if (ExDeclType->isFunctionType())
13563 ExDeclType = Context.getPointerType(ExDeclType);
13564
13565 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
13566 // The exception-declaration shall not denote a pointer or reference to an
13567 // incomplete type, other than [cv] void*.
13568 // N2844 forbids rvalue references.
13569 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
13570 Diag(Loc, diag::err_catch_rvalue_ref);
13571 Invalid = true;
13572 }
13573
13574 if (ExDeclType->isVariablyModifiedType()) {
13575 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
13576 Invalid = true;
13577 }
13578
13579 QualType BaseType = ExDeclType;
13580 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
13581 unsigned DK = diag::err_catch_incomplete;
13582 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
13583 BaseType = Ptr->getPointeeType();
13584 Mode = 1;
13585 DK = diag::err_catch_incomplete_ptr;
13586 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
13587 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
13588 BaseType = Ref->getPointeeType();
13589 Mode = 2;
13590 DK = diag::err_catch_incomplete_ref;
13591 }
13592 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
13593 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
13594 Invalid = true;
13595
13596 if (!Invalid && !ExDeclType->isDependentType() &&
13597 RequireNonAbstractType(Loc, ExDeclType,
13598 diag::err_abstract_type_in_decl,
13599 AbstractVariableType))
13600 Invalid = true;
13601
13602 // Only the non-fragile NeXT runtime currently supports C++ catches
13603 // of ObjC types, and no runtime supports catching ObjC types by value.
13604 if (!Invalid && getLangOpts().ObjC1) {
13605 QualType T = ExDeclType;
13606 if (const ReferenceType *RT = T->getAs<ReferenceType>())
13607 T = RT->getPointeeType();
13608
13609 if (T->isObjCObjectType()) {
13610 Diag(Loc, diag::err_objc_object_catch);
13611 Invalid = true;
13612 } else if (T->isObjCObjectPointerType()) {
13613 // FIXME: should this be a test for macosx-fragile specifically?
13614 if (getLangOpts().ObjCRuntime.isFragile())
13615 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
13616 }
13617 }
13618
13619 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
13620 ExDeclType, TInfo, SC_None);
13621 ExDecl->setExceptionVariable(true);
13622
13623 // In ARC, infer 'retaining' for variables of retainable type.
13624 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
13625 Invalid = true;
13626
13627 if (!Invalid && !ExDeclType->isDependentType()) {
13628 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
13629 // Insulate this from anything else we might currently be parsing.
13630 EnterExpressionEvaluationContext scope(
13631 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
13632
13633 // C++ [except.handle]p16:
13634 // The object declared in an exception-declaration or, if the
13635 // exception-declaration does not specify a name, a temporary (12.2) is
13636 // copy-initialized (8.5) from the exception object. [...]
13637 // The object is destroyed when the handler exits, after the destruction
13638 // of any automatic objects initialized within the handler.
13639 //
13640 // We just pretend to initialize the object with itself, then make sure
13641 // it can be destroyed later.
13642 QualType initType = Context.getExceptionObjectType(ExDeclType);
13643
13644 InitializedEntity entity =
13645 InitializedEntity::InitializeVariable(ExDecl);
13646 InitializationKind initKind =
13647 InitializationKind::CreateCopy(Loc, SourceLocation());
13648
13649 Expr *opaqueValue =
13650 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
13651 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
13652 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
13653 if (result.isInvalid())
13654 Invalid = true;
13655 else {
13656 // If the constructor used was non-trivial, set this as the
13657 // "initializer".
13658 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
13659 if (!construct->getConstructor()->isTrivial()) {
13660 Expr *init = MaybeCreateExprWithCleanups(construct);
13661 ExDecl->setInit(init);
13662 }
13663
13664 // And make sure it's destructable.
13665 FinalizeVarWithDestructor(ExDecl, recordType);
13666 }
13667 }
13668 }
13669
13670 if (Invalid)
13671 ExDecl->setInvalidDecl();
13672
13673 return ExDecl;
13674}
13675
13676/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
13677/// handler.
13678Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
13679 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13680 bool Invalid = D.isInvalidType();
13681
13682 // Check for unexpanded parameter packs.
13683 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
13684 UPPC_ExceptionType)) {
13685 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
13686 D.getIdentifierLoc());
13687 Invalid = true;
13688 }
13689
13690 IdentifierInfo *II = D.getIdentifier();
13691 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
13692 LookupOrdinaryName,
13693 ForVisibleRedeclaration)) {
13694 // The scope should be freshly made just for us. There is just no way
13695 // it contains any previous declaration, except for function parameters in
13696 // a function-try-block's catch statement.
13697 assert(!S->isDeclScope(PrevDecl))(static_cast <bool> (!S->isDeclScope(PrevDecl)) ? void
(0) : __assert_fail ("!S->isDeclScope(PrevDecl)", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13697, __extension__ __PRETTY_FUNCTION__))
;
13698 if (isDeclInScope(PrevDecl, CurContext, S)) {
13699 Diag(D.getIdentifierLoc(), diag::err_redefinition)
13700 << D.getIdentifier();
13701 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
13702 Invalid = true;
13703 } else if (PrevDecl->isTemplateParameter())
13704 // Maybe we will complain about the shadowed template parameter.
13705 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13706 }
13707
13708 if (D.getCXXScopeSpec().isSet() && !Invalid) {
13709 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
13710 << D.getCXXScopeSpec().getRange();
13711 Invalid = true;
13712 }
13713
13714 VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
13715 D.getLocStart(),
13716 D.getIdentifierLoc(),
13717 D.getIdentifier());
13718 if (Invalid)
13719 ExDecl->setInvalidDecl();
13720
13721 // Add the exception declaration into this scope.
13722 if (II)
13723 PushOnScopeChains(ExDecl, S);
13724 else
13725 CurContext->addDecl(ExDecl);
13726
13727 ProcessDeclAttributes(S, ExDecl, D);
13728 return ExDecl;
13729}
13730
13731Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
13732 Expr *AssertExpr,
13733 Expr *AssertMessageExpr,
13734 SourceLocation RParenLoc) {
13735 StringLiteral *AssertMessage =
13736 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
13737
13738 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
13739 return nullptr;
13740
13741 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
13742 AssertMessage, RParenLoc, false);
13743}
13744
13745Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
13746 Expr *AssertExpr,
13747 StringLiteral *AssertMessage,
13748 SourceLocation RParenLoc,
13749 bool Failed) {
13750 assert(AssertExpr != nullptr && "Expected non-null condition")(static_cast <bool> (AssertExpr != nullptr && "Expected non-null condition"
) ? void (0) : __assert_fail ("AssertExpr != nullptr && \"Expected non-null condition\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13750, __extension__ __PRETTY_FUNCTION__))
;
13751 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
13752 !Failed) {
13753 // In a static_assert-declaration, the constant-expression shall be a
13754 // constant expression that can be contextually converted to bool.
13755 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
13756 if (Converted.isInvalid())
13757 Failed = true;
13758
13759 llvm::APSInt Cond;
13760 if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
13761 diag::err_static_assert_expression_is_not_constant,
13762 /*AllowFold=*/false).isInvalid())
13763 Failed = true;
13764
13765 if (!Failed && !Cond) {
13766 SmallString<256> MsgBuffer;
13767 llvm::raw_svector_ostream Msg(MsgBuffer);
13768 if (AssertMessage)
13769 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
13770
13771 Expr *InnerCond = nullptr;
13772 std::string InnerCondDescription;
13773 std::tie(InnerCond, InnerCondDescription) =
13774 findFailedBooleanCondition(Converted.get(),
13775 /*AllowTopLevelCond=*/false);
13776 if (InnerCond) {
13777 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
13778 << InnerCondDescription << !AssertMessage
13779 << Msg.str() << InnerCond->getSourceRange();
13780 } else {
13781 Diag(StaticAssertLoc, diag::err_static_assert_failed)
13782 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
13783 }
13784 Failed = true;
13785 }
13786 }
13787
13788 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
13789 /*DiscardedValue*/false,
13790 /*IsConstexpr*/true);
13791 if (FullAssertExpr.isInvalid())
13792 Failed = true;
13793 else
13794 AssertExpr = FullAssertExpr.get();
13795
13796 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
13797 AssertExpr, AssertMessage, RParenLoc,
13798 Failed);
13799
13800 CurContext->addDecl(Decl);
13801 return Decl;
13802}
13803
13804/// Perform semantic analysis of the given friend type declaration.
13805///
13806/// \returns A friend declaration that.
13807FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
13808 SourceLocation FriendLoc,
13809 TypeSourceInfo *TSInfo) {
13810 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")(static_cast <bool> (TSInfo && "NULL TypeSourceInfo for friend type declaration"
) ? void (0) : __assert_fail ("TSInfo && \"NULL TypeSourceInfo for friend type declaration\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13810, __extension__ __PRETTY_FUNCTION__))
;
13811
13812 QualType T = TSInfo->getType();
13813 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
13814
13815 // C++03 [class.friend]p2:
13816 // An elaborated-type-specifier shall be used in a friend declaration
13817 // for a class.*
13818 //
13819 // * The class-key of the elaborated-type-specifier is required.
13820 if (!CodeSynthesisContexts.empty()) {
13821 // Do not complain about the form of friend template types during any kind
13822 // of code synthesis. For template instantiation, we will have complained
13823 // when the template was defined.
13824 } else {
13825 if (!T->isElaboratedTypeSpecifier()) {
13826 // If we evaluated the type to a record type, suggest putting
13827 // a tag in front.
13828 if (const RecordType *RT = T->getAs<RecordType>()) {
13829 RecordDecl *RD = RT->getDecl();
13830
13831 SmallString<16> InsertionText(" ");
13832 InsertionText += RD->getKindName();
13833
13834 Diag(TypeRange.getBegin(),
13835 getLangOpts().CPlusPlus11 ?
13836 diag::warn_cxx98_compat_unelaborated_friend_type :
13837 diag::ext_unelaborated_friend_type)
13838 << (unsigned) RD->getTagKind()
13839 << T
13840 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
13841 InsertionText);
13842 } else {
13843 Diag(FriendLoc,
13844 getLangOpts().CPlusPlus11 ?
13845 diag::warn_cxx98_compat_nonclass_type_friend :
13846 diag::ext_nonclass_type_friend)
13847 << T
13848 << TypeRange;
13849 }
13850 } else if (T->getAs<EnumType>()) {
13851 Diag(FriendLoc,
13852 getLangOpts().CPlusPlus11 ?
13853 diag::warn_cxx98_compat_enum_friend :
13854 diag::ext_enum_friend)
13855 << T
13856 << TypeRange;
13857 }
13858
13859 // C++11 [class.friend]p3:
13860 // A friend declaration that does not declare a function shall have one
13861 // of the following forms:
13862 // friend elaborated-type-specifier ;
13863 // friend simple-type-specifier ;
13864 // friend typename-specifier ;
13865 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
13866 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
13867 }
13868
13869 // If the type specifier in a friend declaration designates a (possibly
13870 // cv-qualified) class type, that class is declared as a friend; otherwise,
13871 // the friend declaration is ignored.
13872 return FriendDecl::Create(Context, CurContext,
13873 TSInfo->getTypeLoc().getLocStart(), TSInfo,
13874 FriendLoc);
13875}
13876
13877/// Handle a friend tag declaration where the scope specifier was
13878/// templated.
13879Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
13880 unsigned TagSpec, SourceLocation TagLoc,
13881 CXXScopeSpec &SS, IdentifierInfo *Name,
13882 SourceLocation NameLoc,
13883 const ParsedAttributesView &Attr,
13884 MultiTemplateParamsArg TempParamLists) {
13885 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
13886
13887 bool IsMemberSpecialization = false;
13888 bool Invalid = false;
13889
13890 if (TemplateParameterList *TemplateParams =
13891 MatchTemplateParametersToScopeSpecifier(
13892 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
13893 IsMemberSpecialization, Invalid)) {
13894 if (TemplateParams->size() > 0) {
13895 // This is a declaration of a class template.
13896 if (Invalid)
13897 return nullptr;
13898
13899 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
13900 NameLoc, Attr, TemplateParams, AS_public,
13901 /*ModulePrivateLoc=*/SourceLocation(),
13902 FriendLoc, TempParamLists.size() - 1,
13903 TempParamLists.data()).get();
13904 } else {
13905 // The "template<>" header is extraneous.
13906 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
13907 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
13908 IsMemberSpecialization = true;
13909 }
13910 }
13911
13912 if (Invalid) return nullptr;
13913
13914 bool isAllExplicitSpecializations = true;
13915 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
13916 if (TempParamLists[I]->size()) {
13917 isAllExplicitSpecializations = false;
13918 break;
13919 }
13920 }
13921
13922 // FIXME: don't ignore attributes.
13923
13924 // If it's explicit specializations all the way down, just forget
13925 // about the template header and build an appropriate non-templated
13926 // friend. TODO: for source fidelity, remember the headers.
13927 if (isAllExplicitSpecializations) {
13928 if (SS.isEmpty()) {
13929 bool Owned = false;
13930 bool IsDependent = false;
13931 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
13932 Attr, AS_public,
13933 /*ModulePrivateLoc=*/SourceLocation(),
13934 MultiTemplateParamsArg(), Owned, IsDependent,
13935 /*ScopedEnumKWLoc=*/SourceLocation(),
13936 /*ScopedEnumUsesClassTag=*/false,
13937 /*UnderlyingType=*/TypeResult(),
13938 /*IsTypeSpecifier=*/false,
13939 /*IsTemplateParamOrArg=*/false);
13940 }
13941
13942 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
13943 ElaboratedTypeKeyword Keyword
13944 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
13945 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
13946 *Name, NameLoc);
13947 if (T.isNull())
13948 return nullptr;
13949
13950 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
13951 if (isa<DependentNameType>(T)) {
13952 DependentNameTypeLoc TL =
13953 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
13954 TL.setElaboratedKeywordLoc(TagLoc);
13955 TL.setQualifierLoc(QualifierLoc);
13956 TL.setNameLoc(NameLoc);
13957 } else {
13958 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
13959 TL.setElaboratedKeywordLoc(TagLoc);
13960 TL.setQualifierLoc(QualifierLoc);
13961 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
13962 }
13963
13964 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
13965 TSI, FriendLoc, TempParamLists);
13966 Friend->setAccess(AS_public);
13967 CurContext->addDecl(Friend);
13968 return Friend;
13969 }
13970
13971 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")(static_cast <bool> (SS.isNotEmpty() && "valid templated tag with no SS and no direct?"
) ? void (0) : __assert_fail ("SS.isNotEmpty() && \"valid templated tag with no SS and no direct?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13971, __extension__ __PRETTY_FUNCTION__))
;
13972
13973
13974
13975 // Handle the case of a templated-scope friend class. e.g.
13976 // template <class T> class A<T>::B;
13977 // FIXME: we don't support these right now.
13978 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
13979 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
13980 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
13981 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
13982 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
13983 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
13984 TL.setElaboratedKeywordLoc(TagLoc);
13985 TL.setQualifierLoc(SS.getWithLocInContext(Context));
13986 TL.setNameLoc(NameLoc);
13987
13988 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
13989 TSI, FriendLoc, TempParamLists);
13990 Friend->setAccess(AS_public);
13991 Friend->setUnsupportedFriend(true);
13992 CurContext->addDecl(Friend);
13993 return Friend;
13994}
13995
13996/// Handle a friend type declaration. This works in tandem with
13997/// ActOnTag.
13998///
13999/// Notes on friend class templates:
14000///
14001/// We generally treat friend class declarations as if they were
14002/// declaring a class. So, for example, the elaborated type specifier
14003/// in a friend declaration is required to obey the restrictions of a
14004/// class-head (i.e. no typedefs in the scope chain), template
14005/// parameters are required to match up with simple template-ids, &c.
14006/// However, unlike when declaring a template specialization, it's
14007/// okay to refer to a template specialization without an empty
14008/// template parameter declaration, e.g.
14009/// friend class A<T>::B<unsigned>;
14010/// We permit this as a special case; if there are any template
14011/// parameters present at all, require proper matching, i.e.
14012/// template <> template \<class T> friend class A<int>::B;
14013Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
14014 MultiTemplateParamsArg TempParams) {
14015 SourceLocation Loc = DS.getLocStart();
14016
14017 assert(DS.isFriendSpecified())(static_cast <bool> (DS.isFriendSpecified()) ? void (0)
: __assert_fail ("DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14017, __extension__ __PRETTY_FUNCTION__))
;
14018 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_unspecified) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14018, __extension__ __PRETTY_FUNCTION__))
;
14019
14020 // Try to convert the decl specifier to a type. This works for
14021 // friend templates because ActOnTag never produces a ClassTemplateDecl
14022 // for a TUK_Friend.
14023 Declarator TheDeclarator(DS, DeclaratorContext::MemberContext);
14024 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
14025 QualType T = TSI->getType();
14026 if (TheDeclarator.isInvalidType())
14027 return nullptr;
14028
14029 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
14030 return nullptr;
14031
14032 // This is definitely an error in C++98. It's probably meant to
14033 // be forbidden in C++0x, too, but the specification is just
14034 // poorly written.
14035 //
14036 // The problem is with declarations like the following:
14037 // template <T> friend A<T>::foo;
14038 // where deciding whether a class C is a friend or not now hinges
14039 // on whether there exists an instantiation of A that causes
14040 // 'foo' to equal C. There are restrictions on class-heads
14041 // (which we declare (by fiat) elaborated friend declarations to
14042 // be) that makes this tractable.
14043 //
14044 // FIXME: handle "template <> friend class A<T>;", which
14045 // is possibly well-formed? Who even knows?
14046 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
14047 Diag(Loc, diag::err_tagless_friend_type_template)
14048 << DS.getSourceRange();
14049 return nullptr;
14050 }
14051
14052 // C++98 [class.friend]p1: A friend of a class is a function
14053 // or class that is not a member of the class . . .
14054 // This is fixed in DR77, which just barely didn't make the C++03
14055 // deadline. It's also a very silly restriction that seriously
14056 // affects inner classes and which nobody else seems to implement;
14057 // thus we never diagnose it, not even in -pedantic.
14058 //
14059 // But note that we could warn about it: it's always useless to
14060 // friend one of your own members (it's not, however, worthless to
14061 // friend a member of an arbitrary specialization of your template).
14062
14063 Decl *D;
14064 if (!TempParams.empty())
14065 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
14066 TempParams,
14067 TSI,
14068 DS.getFriendSpecLoc());
14069 else
14070 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
14071
14072 if (!D)
14073 return nullptr;
14074
14075 D->setAccess(AS_public);
14076 CurContext->addDecl(D);
14077
14078 return D;
14079}
14080
14081NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
14082 MultiTemplateParamsArg TemplateParams) {
14083 const DeclSpec &DS = D.getDeclSpec();
14084
14085 assert(DS.isFriendSpecified())(static_cast <bool> (DS.isFriendSpecified()) ? void (0)
: __assert_fail ("DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14085, __extension__ __PRETTY_FUNCTION__))
;
14086 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)(static_cast <bool> (DS.getStorageClassSpec() == DeclSpec
::SCS_unspecified) ? void (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14086, __extension__ __PRETTY_FUNCTION__))
;
14087
14088 SourceLocation Loc = D.getIdentifierLoc();
14089 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
14090
14091 // C++ [class.friend]p1
14092 // A friend of a class is a function or class....
14093 // Note that this sees through typedefs, which is intended.
14094 // It *doesn't* see through dependent types, which is correct
14095 // according to [temp.arg.type]p3:
14096 // If a declaration acquires a function type through a
14097 // type dependent on a template-parameter and this causes
14098 // a declaration that does not use the syntactic form of a
14099 // function declarator to have a function type, the program
14100 // is ill-formed.
14101 if (!TInfo->getType()->isFunctionType()) {
14102 Diag(Loc, diag::err_unexpected_friend);
14103
14104 // It might be worthwhile to try to recover by creating an
14105 // appropriate declaration.
14106 return nullptr;
14107 }
14108
14109 // C++ [namespace.memdef]p3
14110 // - If a friend declaration in a non-local class first declares a
14111 // class or function, the friend class or function is a member
14112 // of the innermost enclosing namespace.
14113 // - The name of the friend is not found by simple name lookup
14114 // until a matching declaration is provided in that namespace
14115 // scope (either before or after the class declaration granting
14116 // friendship).
14117 // - If a friend function is called, its name may be found by the
14118 // name lookup that considers functions from namespaces and
14119 // classes associated with the types of the function arguments.
14120 // - When looking for a prior declaration of a class or a function
14121 // declared as a friend, scopes outside the innermost enclosing
14122 // namespace scope are not considered.
14123
14124 CXXScopeSpec &SS = D.getCXXScopeSpec();
14125 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
14126 DeclarationName Name = NameInfo.getName();
14127 assert(Name)(static_cast <bool> (Name) ? void (0) : __assert_fail (
"Name", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14127, __extension__ __PRETTY_FUNCTION__))
;
14128
14129 // Check for unexpanded parameter packs.
14130 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
14131 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
14132 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
14133 return nullptr;
14134
14135 // The context we found the declaration in, or in which we should
14136 // create the declaration.
14137 DeclContext *DC;
14138 Scope *DCScope = S;
14139 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
14140 ForExternalRedeclaration);
14141
14142 // There are five cases here.
14143 // - There's no scope specifier and we're in a local class. Only look
14144 // for functions declared in the immediately-enclosing block scope.
14145 // We recover from invalid scope qualifiers as if they just weren't there.
14146 FunctionDecl *FunctionContainingLocalClass = nullptr;
14147 if ((SS.isInvalid() || !SS.isSet()) &&
14148 (FunctionContainingLocalClass =
14149 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
14150 // C++11 [class.friend]p11:
14151 // If a friend declaration appears in a local class and the name
14152 // specified is an unqualified name, a prior declaration is
14153 // looked up without considering scopes that are outside the
14154 // innermost enclosing non-class scope. For a friend function
14155 // declaration, if there is no prior declaration, the program is
14156 // ill-formed.
14157
14158 // Find the innermost enclosing non-class scope. This is the block
14159 // scope containing the local class definition (or for a nested class,
14160 // the outer local class).
14161 DCScope = S->getFnParent();
14162
14163 // Look up the function name in the scope.
14164 Previous.clear(LookupLocalFriendName);
14165 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
14166
14167 if (!Previous.empty()) {
14168 // All possible previous declarations must have the same context:
14169 // either they were declared at block scope or they are members of
14170 // one of the enclosing local classes.
14171 DC = Previous.getRepresentativeDecl()->getDeclContext();
14172 } else {
14173 // This is ill-formed, but provide the context that we would have
14174 // declared the function in, if we were permitted to, for error recovery.
14175 DC = FunctionContainingLocalClass;
14176 }
14177 adjustContextForLocalExternDecl(DC);
14178
14179 // C++ [class.friend]p6:
14180 // A function can be defined in a friend declaration of a class if and
14181 // only if the class is a non-local class (9.8), the function name is
14182 // unqualified, and the function has namespace scope.
14183 if (D.isFunctionDefinition()) {
14184 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
14185 }
14186
14187 // - There's no scope specifier, in which case we just go to the
14188 // appropriate scope and look for a function or function template
14189 // there as appropriate.
14190 } else if (SS.isInvalid() || !SS.isSet()) {
14191 // C++11 [namespace.memdef]p3:
14192 // If the name in a friend declaration is neither qualified nor
14193 // a template-id and the declaration is a function or an
14194 // elaborated-type-specifier, the lookup to determine whether
14195 // the entity has been previously declared shall not consider
14196 // any scopes outside the innermost enclosing namespace.
14197 bool isTemplateId =
14198 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
14199
14200 // Find the appropriate context according to the above.
14201 DC = CurContext;
14202
14203 // Skip class contexts. If someone can cite chapter and verse
14204 // for this behavior, that would be nice --- it's what GCC and
14205 // EDG do, and it seems like a reasonable intent, but the spec
14206 // really only says that checks for unqualified existing
14207 // declarations should stop at the nearest enclosing namespace,
14208 // not that they should only consider the nearest enclosing
14209 // namespace.
14210 while (DC->isRecord())
14211 DC = DC->getParent();
14212
14213 DeclContext *LookupDC = DC;
14214 while (LookupDC->isTransparentContext())
14215 LookupDC = LookupDC->getParent();
14216
14217 while (true) {
14218 LookupQualifiedName(Previous, LookupDC);
14219
14220 if (!Previous.empty()) {
14221 DC = LookupDC;
14222 break;
14223 }
14224
14225 if (isTemplateId) {
14226 if (isa<TranslationUnitDecl>(LookupDC)) break;
14227 } else {
14228 if (LookupDC->isFileContext()) break;
14229 }
14230 LookupDC = LookupDC->getParent();
14231 }
14232
14233 DCScope = getScopeForDeclContext(S, DC);
14234
14235 // - There's a non-dependent scope specifier, in which case we
14236 // compute it and do a previous lookup there for a function
14237 // or function template.
14238 } else if (!SS.getScopeRep()->isDependent()) {
14239 DC = computeDeclContext(SS);
14240 if (!DC) return nullptr;
14241
14242 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
14243
14244 LookupQualifiedName(Previous, DC);
14245
14246 // Ignore things found implicitly in the wrong scope.
14247 // TODO: better diagnostics for this case. Suggesting the right
14248 // qualified scope would be nice...
14249 LookupResult::Filter F = Previous.makeFilter();
14250 while (F.hasNext()) {
14251 NamedDecl *D = F.next();
14252 if (!DC->InEnclosingNamespaceSetOf(
14253 D->getDeclContext()->getRedeclContext()))
14254 F.erase();
14255 }
14256 F.done();
14257
14258 if (Previous.empty()) {
14259 D.setInvalidType();
14260 Diag(Loc, diag::err_qualified_friend_not_found)
14261 << Name << TInfo->getType();
14262 return nullptr;
14263 }
14264
14265 // C++ [class.friend]p1: A friend of a class is a function or
14266 // class that is not a member of the class . . .
14267 if (DC->Equals(CurContext))
14268 Diag(DS.getFriendSpecLoc(),
14269 getLangOpts().CPlusPlus11 ?
14270 diag::warn_cxx98_compat_friend_is_member :
14271 diag::err_friend_is_member);
14272
14273 if (D.isFunctionDefinition()) {
14274 // C++ [class.friend]p6:
14275 // A function can be defined in a friend declaration of a class if and
14276 // only if the class is a non-local class (9.8), the function name is
14277 // unqualified, and the function has namespace scope.
14278 SemaDiagnosticBuilder DB
14279 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
14280
14281 DB << SS.getScopeRep();
14282 if (DC->isFileContext())
14283 DB << FixItHint::CreateRemoval(SS.getRange());
14284 SS.clear();
14285 }
14286
14287 // - There's a scope specifier that does not match any template
14288 // parameter lists, in which case we use some arbitrary context,
14289 // create a method or method template, and wait for instantiation.
14290 // - There's a scope specifier that does match some template
14291 // parameter lists, which we don't handle right now.
14292 } else {
14293 if (D.isFunctionDefinition()) {
14294 // C++ [class.friend]p6:
14295 // A function can be defined in a friend declaration of a class if and
14296 // only if the class is a non-local class (9.8), the function name is
14297 // unqualified, and the function has namespace scope.
14298 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
14299 << SS.getScopeRep();
14300 }
14301
14302 DC = CurContext;
14303 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")(static_cast <bool> (isa<CXXRecordDecl>(DC) &&
"friend declaration not in class?") ? void (0) : __assert_fail
("isa<CXXRecordDecl>(DC) && \"friend declaration not in class?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14303, __extension__ __PRETTY_FUNCTION__))
;
14304 }
14305
14306 if (!DC->isRecord()) {
14307 int DiagArg = -1;
14308 switch (D.getName().getKind()) {
14309 case UnqualifiedIdKind::IK_ConstructorTemplateId:
14310 case UnqualifiedIdKind::IK_ConstructorName:
14311 DiagArg = 0;
14312 break;
14313 case UnqualifiedIdKind::IK_DestructorName:
14314 DiagArg = 1;
14315 break;
14316 case UnqualifiedIdKind::IK_ConversionFunctionId:
14317 DiagArg = 2;
14318 break;
14319 case UnqualifiedIdKind::IK_DeductionGuideName:
14320 DiagArg = 3;
14321 break;
14322 case UnqualifiedIdKind::IK_Identifier:
14323 case UnqualifiedIdKind::IK_ImplicitSelfParam:
14324 case UnqualifiedIdKind::IK_LiteralOperatorId:
14325 case UnqualifiedIdKind::IK_OperatorFunctionId:
14326 case UnqualifiedIdKind::IK_TemplateId:
14327 break;
14328 }
14329 // This implies that it has to be an operator or function.
14330 if (DiagArg >= 0) {
14331 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
14332 return nullptr;
14333 }
14334 }
14335
14336 // FIXME: This is an egregious hack to cope with cases where the scope stack
14337 // does not contain the declaration context, i.e., in an out-of-line
14338 // definition of a class.
14339 Scope FakeDCScope(S, Scope::DeclScope, Diags);
14340 if (!DCScope) {
14341 FakeDCScope.setEntity(DC);
14342 DCScope = &FakeDCScope;
14343 }
14344
14345 bool AddToScope = true;
14346 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
14347 TemplateParams, AddToScope);
14348 if (!ND) return nullptr;
14349
14350 assert(ND->getLexicalDeclContext() == CurContext)(static_cast <bool> (ND->getLexicalDeclContext() == CurContext
) ? void (0) : __assert_fail ("ND->getLexicalDeclContext() == CurContext"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14350, __extension__ __PRETTY_FUNCTION__))
;
14351
14352 // If we performed typo correction, we might have added a scope specifier
14353 // and changed the decl context.
14354 DC = ND->getDeclContext();
14355
14356 // Add the function declaration to the appropriate lookup tables,
14357 // adjusting the redeclarations list as necessary. We don't
14358 // want to do this yet if the friending class is dependent.
14359 //
14360 // Also update the scope-based lookup if the target context's
14361 // lookup context is in lexical scope.
14362 if (!CurContext->isDependentContext()) {
14363 DC = DC->getRedeclContext();
14364 DC->makeDeclVisibleInContext(ND);
14365 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
14366 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
14367 }
14368
14369 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
14370 D.getIdentifierLoc(), ND,
14371 DS.getFriendSpecLoc());
14372 FrD->setAccess(AS_public);
14373 CurContext->addDecl(FrD);
14374
14375 if (ND->isInvalidDecl()) {
14376 FrD->setInvalidDecl();
14377 } else {
14378 if (DC->isRecord()) CheckFriendAccess(ND);
14379
14380 FunctionDecl *FD;
14381 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
14382 FD = FTD->getTemplatedDecl();
14383 else
14384 FD = cast<FunctionDecl>(ND);
14385
14386 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
14387 // default argument expression, that declaration shall be a definition
14388 // and shall be the only declaration of the function or function
14389 // template in the translation unit.
14390 if (functionDeclHasDefaultArgument(FD)) {
14391 // We can't look at FD->getPreviousDecl() because it may not have been set
14392 // if we're in a dependent context. If the function is known to be a
14393 // redeclaration, we will have narrowed Previous down to the right decl.
14394 if (D.isRedeclaration()) {
14395 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
14396 Diag(Previous.getRepresentativeDecl()->getLocation(),
14397 diag::note_previous_declaration);
14398 } else if (!D.isFunctionDefinition())
14399 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
14400 }
14401
14402 // Mark templated-scope function declarations as unsupported.
14403 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
14404 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
14405 << SS.getScopeRep() << SS.getRange()
14406 << cast<CXXRecordDecl>(CurContext);
14407 FrD->setUnsupportedFriend(true);
14408 }
14409 }
14410
14411 return ND;
14412}
14413
14414void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
14415 AdjustDeclIfTemplate(Dcl);
14416
14417 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
14418 if (!Fn) {
14419 Diag(DelLoc, diag::err_deleted_non_function);
14420 return;
14421 }
14422
14423 // Deleted function does not have a body.
14424 Fn->setWillHaveBody(false);
14425
14426 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
14427 // Don't consider the implicit declaration we generate for explicit
14428 // specializations. FIXME: Do not generate these implicit declarations.
14429 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
14430 Prev->getPreviousDecl()) &&
14431 !Prev->isDefined()) {
14432 Diag(DelLoc, diag::err_deleted_decl_not_first);
14433 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
14434 Prev->isImplicit() ? diag::note_previous_implicit_declaration
14435 : diag::note_previous_declaration);
14436 }
14437 // If the declaration wasn't the first, we delete the function anyway for
14438 // recovery.
14439 Fn = Fn->getCanonicalDecl();
14440 }
14441
14442 // dllimport/dllexport cannot be deleted.
14443 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
14444 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
14445 Fn->setInvalidDecl();
14446 }
14447
14448 if (Fn->isDeleted())
14449 return;
14450
14451 // See if we're deleting a function which is already known to override a
14452 // non-deleted virtual function.
14453 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
14454 bool IssuedDiagnostic = false;
14455 for (const CXXMethodDecl *O : MD->overridden_methods()) {
14456 if (!(*MD->begin_overridden_methods())->isDeleted()) {
14457 if (!IssuedDiagnostic) {
14458 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
14459 IssuedDiagnostic = true;
14460 }
14461 Diag(O->getLocation(), diag::note_overridden_virtual_function);
14462 }
14463 }
14464 // If this function was implicitly deleted because it was defaulted,
14465 // explain why it was deleted.
14466 if (IssuedDiagnostic && MD->isDefaulted())
14467 ShouldDeleteSpecialMember(MD, getSpecialMember(MD), nullptr,
14468 /*Diagnose*/true);
14469 }
14470
14471 // C++11 [basic.start.main]p3:
14472 // A program that defines main as deleted [...] is ill-formed.
14473 if (Fn->isMain())
14474 Diag(DelLoc, diag::err_deleted_main);
14475
14476 // C++11 [dcl.fct.def.delete]p4:
14477 // A deleted function is implicitly inline.
14478 Fn->setImplicitlyInline();
14479 Fn->setDeletedAsWritten();
14480}
14481
14482void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
14483 CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
14484
14485 if (MD) {
14486 if (MD->getParent()->isDependentType()) {
14487 MD->setDefaulted();
14488 MD->setExplicitlyDefaulted();
14489 return;
14490 }
14491
14492 CXXSpecialMember Member = getSpecialMember(MD);
14493 if (Member == CXXInvalid) {
14494 if (!MD->isInvalidDecl())
14495 Diag(DefaultLoc, diag::err_default_special_members);
14496 return;
14497 }
14498
14499 MD->setDefaulted();
14500 MD->setExplicitlyDefaulted();
14501
14502 // Unset that we will have a body for this function. We might not,
14503 // if it turns out to be trivial, and we don't need this marking now
14504 // that we've marked it as defaulted.
14505 MD->setWillHaveBody(false);
14506
14507 // If this definition appears within the record, do the checking when
14508 // the record is complete.
14509 const FunctionDecl *Primary = MD;
14510 if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
14511 // Ask the template instantiation pattern that actually had the
14512 // '= default' on it.
14513 Primary = Pattern;
14514
14515 // If the method was defaulted on its first declaration, we will have
14516 // already performed the checking in CheckCompletedCXXClass. Such a
14517 // declaration doesn't trigger an implicit definition.
14518 if (Primary->getCanonicalDecl()->isDefaulted())
14519 return;
14520
14521 CheckExplicitlyDefaultedSpecialMember(MD);
14522
14523 if (!MD->isInvalidDecl())
14524 DefineImplicitSpecialMember(*this, MD, DefaultLoc);
14525 } else {
14526 Diag(DefaultLoc, diag::err_default_special_members);
14527 }
14528}
14529
14530static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
14531 for (Stmt *SubStmt : S->children()) {
14532 if (!SubStmt)
14533 continue;
14534 if (isa<ReturnStmt>(SubStmt))
14535 Self.Diag(SubStmt->getLocStart(),
14536 diag::err_return_in_constructor_handler);
14537 if (!isa<Expr>(SubStmt))
14538 SearchForReturnInStmt(Self, SubStmt);
14539 }
14540}
14541
14542void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
14543 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
14544 CXXCatchStmt *Handler = TryBlock->getHandler(I);
14545 SearchForReturnInStmt(*this, Handler);
14546 }
14547}
14548
14549bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
14550 const CXXMethodDecl *Old) {
14551 const auto *NewFT = New->getType()->getAs<FunctionProtoType>();
14552 const auto *OldFT = Old->getType()->getAs<FunctionProtoType>();
14553
14554 if (OldFT->hasExtParameterInfos()) {
14555 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
14556 // A parameter of the overriding method should be annotated with noescape
14557 // if the corresponding parameter of the overridden method is annotated.
14558 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
14559 !NewFT->getExtParameterInfo(I).isNoEscape()) {
14560 Diag(New->getParamDecl(I)->getLocation(),
14561 diag::warn_overriding_method_missing_noescape);
14562 Diag(Old->getParamDecl(I)->getLocation(),
14563 diag::note_overridden_marked_noescape);
14564 }
14565 }
14566
14567 // Virtual overrides must have the same code_seg.
14568 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
14569 const auto *NewCSA = New->getAttr<CodeSegAttr>();
14570 if ((NewCSA || OldCSA) &&
14571 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
14572 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
14573 Diag(Old->getLocation(), diag::note_previous_declaration);
14574 return true;
14575 }
14576
14577 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
14578
14579 // If the calling conventions match, everything is fine
14580 if (NewCC == OldCC)
14581 return false;
14582
14583 // If the calling conventions mismatch because the new function is static,
14584 // suppress the calling convention mismatch error; the error about static
14585 // function override (err_static_overrides_virtual from
14586 // Sema::CheckFunctionDeclaration) is more clear.
14587 if (New->getStorageClass() == SC_Static)
14588 return false;
14589
14590 Diag(New->getLocation(),
14591 diag::err_conflicting_overriding_cc_attributes)
14592 << New->getDeclName() << New->getType() << Old->getType();
14593 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
14594 return true;
14595}
14596
14597bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
14598 const CXXMethodDecl *Old) {
14599 QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
14600 QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
14601
14602 if (Context.hasSameType(NewTy, OldTy) ||
14603 NewTy->isDependentType() || OldTy->isDependentType())
14604 return false;
14605
14606 // Check if the return types are covariant
14607 QualType NewClassTy, OldClassTy;
14608
14609 /// Both types must be pointers or references to classes.
14610 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
14611 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
14612 NewClassTy = NewPT->getPointeeType();
14613 OldClassTy = OldPT->getPointeeType();
14614 }
14615 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
14616 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
14617 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
14618 NewClassTy = NewRT->getPointeeType();
14619 OldClassTy = OldRT->getPointeeType();
14620 }
14621 }
14622 }
14623
14624 // The return types aren't either both pointers or references to a class type.
14625 if (NewClassTy.isNull()) {
14626 Diag(New->getLocation(),
14627 diag::err_different_return_type_for_overriding_virtual_function)
14628 << New->getDeclName() << NewTy << OldTy
14629 << New->getReturnTypeSourceRange();
14630 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
14631 << Old->getReturnTypeSourceRange();
14632
14633 return true;
14634 }
14635
14636 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
14637 // C++14 [class.virtual]p8:
14638 // If the class type in the covariant return type of D::f differs from
14639 // that of B::f, the class type in the return type of D::f shall be
14640 // complete at the point of declaration of D::f or shall be the class
14641 // type D.
14642 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
14643 if (!RT->isBeingDefined() &&
14644 RequireCompleteType(New->getLocation(), NewClassTy,
14645 diag::err_covariant_return_incomplete,
14646 New->getDeclName()))
14647 return true;
14648 }
14649
14650 // Check if the new class derives from the old class.
14651 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
14652 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
14653 << New->getDeclName() << NewTy << OldTy
14654 << New->getReturnTypeSourceRange();
14655 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
14656 << Old->getReturnTypeSourceRange();
14657 return true;
14658 }
14659
14660 // Check if we the conversion from derived to base is valid.
14661 if (CheckDerivedToBaseConversion(
14662 NewClassTy, OldClassTy,
14663 diag::err_covariant_return_inaccessible_base,
14664 diag::err_covariant_return_ambiguous_derived_to_base_conv,
14665 New->getLocation(), New->getReturnTypeSourceRange(),
14666 New->getDeclName(), nullptr)) {
14667 // FIXME: this note won't trigger for delayed access control
14668 // diagnostics, and it's impossible to get an undelayed error
14669 // here from access control during the original parse because
14670 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
14671 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
14672 << Old->getReturnTypeSourceRange();
14673 return true;
14674 }
14675 }
14676
14677 // The qualifiers of the return types must be the same.
14678 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
14679 Diag(New->getLocation(),
14680 diag::err_covariant_return_type_different_qualifications)
14681 << New->getDeclName() << NewTy << OldTy
14682 << New->getReturnTypeSourceRange();
14683 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
14684 << Old->getReturnTypeSourceRange();
14685 return true;
14686 }
14687
14688
14689 // The new class type must have the same or less qualifiers as the old type.
14690 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
14691 Diag(New->getLocation(),
14692 diag::err_covariant_return_type_class_type_more_qualified)
14693 << New->getDeclName() << NewTy << OldTy
14694 << New->getReturnTypeSourceRange();
14695 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
14696 << Old->getReturnTypeSourceRange();
14697 return true;
14698 }
14699
14700 return false;
14701}
14702
14703/// Mark the given method pure.
14704///
14705/// \param Method the method to be marked pure.
14706///
14707/// \param InitRange the source range that covers the "0" initializer.
14708bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
14709 SourceLocation EndLoc = InitRange.getEnd();
14710 if (EndLoc.isValid())
14711 Method->setRangeEnd(EndLoc);
14712
14713 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
14714 Method->setPure();
14715 return false;
14716 }
14717
14718 if (!Method->isInvalidDecl())
14719 Diag(Method->getLocation(), diag::err_non_virtual_pure)
14720 << Method->getDeclName() << InitRange;
14721 return true;
14722}
14723
14724void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
14725 if (D->getFriendObjectKind())
14726 Diag(D->getLocation(), diag::err_pure_friend);
14727 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
14728 CheckPureMethod(M, ZeroLoc);
14729 else
14730 Diag(D->getLocation(), diag::err_illegal_initializer);
14731}
14732
14733/// Determine whether the given declaration is a global variable or
14734/// static data member.
14735static bool isNonlocalVariable(const Decl *D) {
14736 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
14737 return Var->hasGlobalStorage();
14738
14739 return false;
14740}
14741
14742/// Invoked when we are about to parse an initializer for the declaration
14743/// 'Dcl'.
14744///
14745/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
14746/// static data member of class X, names should be looked up in the scope of
14747/// class X. If the declaration had a scope specifier, a scope will have
14748/// been created and passed in for this purpose. Otherwise, S will be null.
14749void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
14750 // If there is no declaration, there was an error parsing it.
14751 if (!D || D->isInvalidDecl())
14752 return;
14753
14754 // We will always have a nested name specifier here, but this declaration
14755 // might not be out of line if the specifier names the current namespace:
14756 // extern int n;
14757 // int ::n = 0;
14758 if (S && D->isOutOfLine())
14759 EnterDeclaratorContext(S, D->getDeclContext());
14760
14761 // If we are parsing the initializer for a static data member, push a
14762 // new expression evaluation context that is associated with this static
14763 // data member.
14764 if (isNonlocalVariable(D))
14765 PushExpressionEvaluationContext(
14766 ExpressionEvaluationContext::PotentiallyEvaluated, D);
14767}
14768
14769/// Invoked after we are finished parsing an initializer for the declaration D.
14770void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
14771 // If there is no declaration, there was an error parsing it.
14772 if (!D || D->isInvalidDecl())
14773 return;
14774
14775 if (isNonlocalVariable(D))
14776 PopExpressionEvaluationContext();
14777
14778 if (S && D->isOutOfLine())
14779 ExitDeclaratorContext(S);
14780}
14781
14782/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
14783/// C++ if/switch/while/for statement.
14784/// e.g: "if (int x = f()) {...}"
14785DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
14786 // C++ 6.4p2:
14787 // The declarator shall not specify a function or an array.
14788 // The type-specifier-seq shall not contain typedef and shall not declare a
14789 // new class or enumeration.
14790 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&(static_cast <bool> (D.getDeclSpec().getStorageClassSpec
() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."
) ? void (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14791, __extension__ __PRETTY_FUNCTION__))
14791 "Parser allowed 'typedef' as storage class of condition decl.")(static_cast <bool> (D.getDeclSpec().getStorageClassSpec
() != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class of condition decl."
) ? void (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14791, __extension__ __PRETTY_FUNCTION__))
;
14792
14793 Decl *Dcl = ActOnDeclarator(S, D);
14794 if (!Dcl)
14795 return true;
14796
14797 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
14798 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
14799 << D.getSourceRange();
14800 return true;
14801 }
14802
14803 return Dcl;
14804}
14805
14806void Sema::LoadExternalVTableUses() {
14807 if (!ExternalSource)
14808 return;
14809
14810 SmallVector<ExternalVTableUse, 4> VTables;
14811 ExternalSource->ReadUsedVTables(VTables);
14812 SmallVector<VTableUse, 4> NewUses;
14813 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
14814 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
14815 = VTablesUsed.find(VTables[I].Record);
14816 // Even if a definition wasn't required before, it may be required now.
14817 if (Pos != VTablesUsed.end()) {
14818 if (!Pos->second && VTables[I].DefinitionRequired)
14819 Pos->second = true;
14820 continue;
14821 }
14822
14823 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
14824 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
14825 }
14826
14827 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
14828}
14829
14830void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
14831 bool DefinitionRequired) {
14832 // Ignore any vtable uses in unevaluated operands or for classes that do
14833 // not have a vtable.
14834 if (!Class->isDynamicClass() || Class->isDependentContext() ||
14835 CurContext->isDependentContext() || isUnevaluatedContext())
14836 return;
14837
14838 // Try to insert this class into the map.
14839 LoadExternalVTableUses();
14840 Class = Class->getCanonicalDecl();
14841 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
14842 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
14843 if (!Pos.second) {
14844 // If we already had an entry, check to see if we are promoting this vtable
14845 // to require a definition. If so, we need to reappend to the VTableUses
14846 // list, since we may have already processed the first entry.
14847 if (DefinitionRequired && !Pos.first->second) {
14848 Pos.first->second = true;
14849 } else {
14850 // Otherwise, we can early exit.
14851 return;
14852 }
14853 } else {
14854 // The Microsoft ABI requires that we perform the destructor body
14855 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
14856 // the deleting destructor is emitted with the vtable, not with the
14857 // destructor definition as in the Itanium ABI.
14858 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14859 CXXDestructorDecl *DD = Class->getDestructor();
14860 if (DD && DD->isVirtual() && !DD->isDeleted()) {
14861 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
14862 // If this is an out-of-line declaration, marking it referenced will
14863 // not do anything. Manually call CheckDestructor to look up operator
14864 // delete().
14865 ContextRAII SavedContext(*this, DD);
14866 CheckDestructor(DD);
14867 } else {
14868 MarkFunctionReferenced(Loc, Class->getDestructor());
14869 }
14870 }
14871 }
14872 }
14873
14874 // Local classes need to have their virtual members marked
14875 // immediately. For all other classes, we mark their virtual members
14876 // at the end of the translation unit.
14877 if (Class->isLocalClass())
14878 MarkVirtualMembersReferenced(Loc, Class);
14879 else
14880 VTableUses.push_back(std::make_pair(Class, Loc));
14881}
14882
14883bool Sema::DefineUsedVTables() {
14884 LoadExternalVTableUses();
14885 if (VTableUses.empty())
14886 return false;
14887
14888 // Note: The VTableUses vector could grow as a result of marking
14889 // the members of a class as "used", so we check the size each
14890 // time through the loop and prefer indices (which are stable) to
14891 // iterators (which are not).
14892 bool DefinedAnything = false;
14893 for (unsigned I = 0; I != VTableUses.size(); ++I) {
14894 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
14895 if (!Class)
14896 continue;
14897 TemplateSpecializationKind ClassTSK =
14898 Class->getTemplateSpecializationKind();
14899
14900 SourceLocation Loc = VTableUses[I].second;
14901
14902 bool DefineVTable = true;
14903
14904 // If this class has a key function, but that key function is
14905 // defined in another translation unit, we don't need to emit the
14906 // vtable even though we're using it.
14907 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
14908 if (KeyFunction && !KeyFunction->hasBody()) {
14909 // The key function is in another translation unit.
14910 DefineVTable = false;
14911 TemplateSpecializationKind TSK =
14912 KeyFunction->getTemplateSpecializationKind();
14913 assert(TSK != TSK_ExplicitInstantiationDefinition &&(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14915, __extension__ __PRETTY_FUNCTION__))
14914 TSK != TSK_ImplicitInstantiation &&(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14915, __extension__ __PRETTY_FUNCTION__))
14915 "Instantiations don't have key functions")(static_cast <bool> (TSK != TSK_ExplicitInstantiationDefinition
&& TSK != TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? void (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14915, __extension__ __PRETTY_FUNCTION__))
;
14916 (void)TSK;
14917 } else if (!KeyFunction) {
14918 // If we have a class with no key function that is the subject
14919 // of an explicit instantiation declaration, suppress the
14920 // vtable; it will live with the explicit instantiation
14921 // definition.
14922 bool IsExplicitInstantiationDeclaration =
14923 ClassTSK == TSK_ExplicitInstantiationDeclaration;
14924 for (auto R : Class->redecls()) {
14925 TemplateSpecializationKind TSK
14926 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
14927 if (TSK == TSK_ExplicitInstantiationDeclaration)
14928 IsExplicitInstantiationDeclaration = true;
14929 else if (TSK == TSK_ExplicitInstantiationDefinition) {
14930 IsExplicitInstantiationDeclaration = false;
14931 break;
14932 }
14933 }
14934
14935 if (IsExplicitInstantiationDeclaration)
14936 DefineVTable = false;
14937 }
14938
14939 // The exception specifications for all virtual members may be needed even
14940 // if we are not providing an authoritative form of the vtable in this TU.
14941 // We may choose to emit it available_externally anyway.
14942 if (!DefineVTable) {
14943 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
14944 continue;
14945 }
14946
14947 // Mark all of the virtual members of this class as referenced, so
14948 // that we can build a vtable. Then, tell the AST consumer that a
14949 // vtable for this class is required.
14950 DefinedAnything = true;
14951 MarkVirtualMembersReferenced(Loc, Class);
14952 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
14953 if (VTablesUsed[Canonical])
14954 Consumer.HandleVTable(Class);
14955
14956 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
14957 // no key function or the key function is inlined. Don't warn in C++ ABIs
14958 // that lack key functions, since the user won't be able to make one.
14959 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
14960 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
14961 const FunctionDecl *KeyFunctionDef = nullptr;
14962 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
14963 KeyFunctionDef->isInlined())) {
14964 Diag(Class->getLocation(),
14965 ClassTSK == TSK_ExplicitInstantiationDefinition
14966 ? diag::warn_weak_template_vtable
14967 : diag::warn_weak_vtable)
14968 << Class;
14969 }
14970 }
14971 }
14972 VTableUses.clear();
14973
14974 return DefinedAnything;
14975}
14976
14977void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
14978 const CXXRecordDecl *RD) {
14979 for (const auto *I : RD->methods())
14980 if (I->isVirtual() && !I->isPure())
14981 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
14982}
14983
14984void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
14985 const CXXRecordDecl *RD) {
14986 // Mark all functions which will appear in RD's vtable as used.
14987 CXXFinalOverriderMap FinalOverriders;
14988 RD->getFinalOverriders(FinalOverriders);
14989 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
14990 E = FinalOverriders.end();
14991 I != E; ++I) {
14992 for (OverridingMethods::const_iterator OI = I->second.begin(),
14993 OE = I->second.end();
14994 OI != OE; ++OI) {
14995 assert(OI->second.size() > 0 && "no final overrider")(static_cast <bool> (OI->second.size() > 0 &&
"no final overrider") ? void (0) : __assert_fail ("OI->second.size() > 0 && \"no final overrider\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14995, __extension__ __PRETTY_FUNCTION__))
;
14996 CXXMethodDecl *Overrider = OI->second.front().Method;
14997
14998 // C++ [basic.def.odr]p2:
14999 // [...] A virtual member function is used if it is not pure. [...]
15000 if (!Overrider->isPure())
15001 MarkFunctionReferenced(Loc, Overrider);
15002 }
15003 }
15004
15005 // Only classes that have virtual bases need a VTT.
15006 if (RD->getNumVBases() == 0)
15007 return;
15008
15009 for (const auto &I : RD->bases()) {
15010 const CXXRecordDecl *Base =
15011 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
15012 if (Base->getNumVBases() == 0)
15013 continue;
15014 MarkVirtualMembersReferenced(Loc, Base);
15015 }
15016}
15017
15018/// SetIvarInitializers - This routine builds initialization ASTs for the
15019/// Objective-C implementation whose ivars need be initialized.
15020void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
15021 if (!getLangOpts().CPlusPlus)
15022 return;
15023 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
15024 SmallVector<ObjCIvarDecl*, 8> ivars;
15025 CollectIvarsToConstructOrDestruct(OID, ivars);
15026 if (ivars.empty())
15027 return;
15028 SmallVector<CXXCtorInitializer*, 32> AllToInit;
15029 for (unsigned i = 0; i < ivars.size(); i++) {
15030 FieldDecl *Field = ivars[i];
15031 if (Field->isInvalidDecl())
15032 continue;
15033
15034 CXXCtorInitializer *Member;
15035 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
15036 InitializationKind InitKind =
15037 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
15038
15039 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
15040 ExprResult MemberInit =
15041 InitSeq.Perform(*this, InitEntity, InitKind, None);
15042 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
15043 // Note, MemberInit could actually come back empty if no initialization
15044 // is required (e.g., because it would call a trivial default constructor)
15045 if (!MemberInit.get() || MemberInit.isInvalid())
15046 continue;
15047
15048 Member =
15049 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
15050 SourceLocation(),
15051 MemberInit.getAs<Expr>(),
15052 SourceLocation());
15053 AllToInit.push_back(Member);
15054
15055 // Be sure that the destructor is accessible and is marked as referenced.
15056 if (const RecordType *RecordTy =
15057 Context.getBaseElementType(Field->getType())
15058 ->getAs<RecordType>()) {
15059 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
15060 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
15061 MarkFunctionReferenced(Field->getLocation(), Destructor);
15062 CheckDestructorAccess(Field->getLocation(), Destructor,
15063 PDiag(diag::err_access_dtor_ivar)
15064 << Context.getBaseElementType(Field->getType()));
15065 }
15066 }
15067 }
15068 ObjCImplementation->setIvarInitializers(Context,
15069 AllToInit.data(), AllToInit.size());
15070 }
15071}
15072
15073static
15074void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
15075 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
15076 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
15077 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
15078 Sema &S) {
15079 if (Ctor->isInvalidDecl())
15080 return;
15081
15082 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
15083
15084 // Target may not be determinable yet, for instance if this is a dependent
15085 // call in an uninstantiated template.
15086 if (Target) {
15087 const FunctionDecl *FNTarget = nullptr;
15088 (void)Target->hasBody(FNTarget);
15089 Target = const_cast<CXXConstructorDecl*>(
15090 cast_or_null<CXXConstructorDecl>(FNTarget));
15091 }
15092
15093 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
15094 // Avoid dereferencing a null pointer here.
15095 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
15096
15097 if (!Current.insert(Canonical).second)
15098 return;
15099
15100 // We know that beyond here, we aren't chaining into a cycle.
15101 if (!Target || !Target->isDelegatingConstructor() ||
15102 Target->isInvalidDecl() || Valid.count(TCanonical)) {
15103 Valid.insert(Current.begin(), Current.end());
15104 Current.clear();
15105 // We've hit a cycle.
15106 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
15107 Current.count(TCanonical)) {
15108 // If we haven't diagnosed this cycle yet, do so now.
15109 if (!Invalid.count(TCanonical)) {
15110 S.Diag((*Ctor->init_begin())->getSourceLocation(),
15111 diag::warn_delegating_ctor_cycle)
15112 << Ctor;
15113
15114 // Don't add a note for a function delegating directly to itself.
15115 if (TCanonical != Canonical)
15116 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
15117
15118 CXXConstructorDecl *C = Target;
15119 while (C->getCanonicalDecl() != Canonical) {
15120 const FunctionDecl *FNTarget = nullptr;
15121 (void)C->getTargetConstructor()->hasBody(FNTarget);
15122 assert(FNTarget && "Ctor cycle through bodiless function")(static_cast <bool> (FNTarget && "Ctor cycle through bodiless function"
) ? void (0) : __assert_fail ("FNTarget && \"Ctor cycle through bodiless function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15122, __extension__ __PRETTY_FUNCTION__))
;
15123
15124 C = const_cast<CXXConstructorDecl*>(
15125 cast<CXXConstructorDecl>(FNTarget));
15126 S.Diag(C->getLocation(), diag::note_which_delegates_to);
15127 }
15128 }
15129
15130 Invalid.insert(Current.begin(), Current.end());
15131 Current.clear();
15132 } else {
15133 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
15134 }
15135}
15136
15137
15138void Sema::CheckDelegatingCtorCycles() {
15139 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
15140
15141 for (DelegatingCtorDeclsType::iterator
15142 I = DelegatingCtorDecls.begin(ExternalSource),
15143 E = DelegatingCtorDecls.end();
15144 I != E; ++I)
15145 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
15146
15147 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
15148 (*CI)->setInvalidDecl();
15149}
15150
15151namespace {
15152 /// AST visitor that finds references to the 'this' expression.
15153 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
15154 Sema &S;
15155
15156 public:
15157 explicit FindCXXThisExpr(Sema &S) : S(S) { }
15158
15159 bool VisitCXXThisExpr(CXXThisExpr *E) {
15160 S.Diag(E->getLocation(), diag::err_this_static_member_func)
15161 << E->isImplicit();
15162 return false;
15163 }
15164 };
15165}
15166
15167bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
15168 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
15169 if (!TSInfo)
15170 return false;
15171
15172 TypeLoc TL = TSInfo->getTypeLoc();
15173 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
15174 if (!ProtoTL)
15175 return false;
15176
15177 // C++11 [expr.prim.general]p3:
15178 // [The expression this] shall not appear before the optional
15179 // cv-qualifier-seq and it shall not appear within the declaration of a
15180 // static member function (although its type and value category are defined
15181 // within a static member function as they are within a non-static member
15182 // function). [ Note: this is because declaration matching does not occur
15183 // until the complete declarator is known. - end note ]
15184 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
15185 FindCXXThisExpr Finder(*this);
15186
15187 // If the return type came after the cv-qualifier-seq, check it now.
15188 if (Proto->hasTrailingReturn() &&
15189 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
15190 return true;
15191
15192 // Check the exception specification.
15193 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
15194 return true;
15195
15196 return checkThisInStaticMemberFunctionAttributes(Method);
15197}
15198
15199bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
15200 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
15201 if (!TSInfo)
15202 return false;
15203
15204 TypeLoc TL = TSInfo->getTypeLoc();
15205 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
15206 if (!ProtoTL)
15207 return false;
15208
15209 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
15210 FindCXXThisExpr Finder(*this);
15211
15212 switch (Proto->getExceptionSpecType()) {
15213 case EST_Unparsed:
15214 case EST_Uninstantiated:
15215 case EST_Unevaluated:
15216 case EST_BasicNoexcept:
15217 case EST_DynamicNone:
15218 case EST_MSAny:
15219 case EST_None:
15220 break;
15221
15222 case EST_DependentNoexcept:
15223 case EST_NoexceptFalse:
15224 case EST_NoexceptTrue:
15225 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
15226 return true;
15227 LLVM_FALLTHROUGH[[clang::fallthrough]];
15228
15229 case EST_Dynamic:
15230 for (const auto &E : Proto->exceptions()) {
15231 if (!Finder.TraverseType(E))
15232 return true;
15233 }
15234 break;
15235 }
15236
15237 return false;
15238}
15239
15240bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
15241 FindCXXThisExpr Finder(*this);
15242
15243 // Check attributes.
15244 for (const auto *A : Method->attrs()) {
15245 // FIXME: This should be emitted by tblgen.
15246 Expr *Arg = nullptr;
15247 ArrayRef<Expr *> Args;
15248 if (const auto *G = dyn_cast<GuardedByAttr>(A))
15249 Arg = G->getArg();
15250 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
15251 Arg = G->getArg();
15252 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
15253 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
15254 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
15255 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
15256 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
15257 Arg = ETLF->getSuccessValue();
15258 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
15259 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
15260 Arg = STLF->getSuccessValue();
15261 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
15262 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
15263 Arg = LR->getArg();
15264 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
15265 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
15266 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
15267 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
15268 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
15269 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
15270 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
15271 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
15272 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
15273 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
15274
15275 if (Arg && !Finder.TraverseStmt(Arg))
15276 return true;
15277
15278 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
15279 if (!Finder.TraverseStmt(Args[I]))
15280 return true;
15281 }
15282 }
15283
15284 return false;
15285}
15286
15287void Sema::checkExceptionSpecification(
15288 bool IsTopLevel, ExceptionSpecificationType EST,
15289 ArrayRef<ParsedType> DynamicExceptions,
15290 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
15291 SmallVectorImpl<QualType> &Exceptions,
15292 FunctionProtoType::ExceptionSpecInfo &ESI) {
15293 Exceptions.clear();
15294 ESI.Type = EST;
15295 if (EST == EST_Dynamic) {
15296 Exceptions.reserve(DynamicExceptions.size());
15297 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
15298 // FIXME: Preserve type source info.
15299 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
15300
15301 if (IsTopLevel) {
15302 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
15303 collectUnexpandedParameterPacks(ET, Unexpanded);
15304 if (!Unexpanded.empty()) {
15305 DiagnoseUnexpandedParameterPacks(
15306 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
15307 Unexpanded);
15308 continue;
15309 }
15310 }
15311
15312 // Check that the type is valid for an exception spec, and
15313 // drop it if not.
15314 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
15315 Exceptions.push_back(ET);
15316 }
15317 ESI.Exceptions = Exceptions;
15318 return;
15319 }
15320
15321 if (isComputedNoexcept(EST)) {
15322 assert((NoexceptExpr->isTypeDependent() ||(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15325, __extension__ __PRETTY_FUNCTION__))
15323 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15325, __extension__ __PRETTY_FUNCTION__))
15324 Context.BoolTy) &&(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15325, __extension__ __PRETTY_FUNCTION__))
15325 "Parser should have made sure that the expression is boolean")(static_cast <bool> ((NoexceptExpr->isTypeDependent(
) || NoexceptExpr->getType()->getCanonicalTypeUnqualified
() == Context.BoolTy) && "Parser should have made sure that the expression is boolean"
) ? void (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15325, __extension__ __PRETTY_FUNCTION__))
;
15326 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
15327 ESI.Type = EST_BasicNoexcept;
15328 return;
15329 }
15330
15331 ESI.NoexceptExpr = NoexceptExpr;
15332 return;
15333 }
15334}
15335
15336void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
15337 ExceptionSpecificationType EST,
15338 SourceRange SpecificationRange,
15339 ArrayRef<ParsedType> DynamicExceptions,
15340 ArrayRef<SourceRange> DynamicExceptionRanges,
15341 Expr *NoexceptExpr) {
15342 if (!MethodD)
15343 return;
15344
15345 // Dig out the method we're referring to.
15346 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
15347 MethodD = FunTmpl->getTemplatedDecl();
15348
15349 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
15350 if (!Method)
15351 return;
15352
15353 // Check the exception specification.
15354 llvm::SmallVector<QualType, 4> Exceptions;
15355 FunctionProtoType::ExceptionSpecInfo ESI;
15356 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
15357 DynamicExceptionRanges, NoexceptExpr, Exceptions,
15358 ESI);
15359
15360 // Update the exception specification on the function type.
15361 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
15362
15363 if (Method->isStatic())
15364 checkThisInStaticMemberFunctionExceptionSpec(Method);
15365
15366 if (Method->isVirtual()) {
15367 // Check overrides, which we previously had to delay.
15368 for (const CXXMethodDecl *O : Method->overridden_methods())
15369 CheckOverridingFunctionExceptionSpec(Method, O);
15370 }
15371}
15372
15373/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
15374///
15375MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
15376 SourceLocation DeclStart, Declarator &D,
15377 Expr *BitWidth,
15378 InClassInitStyle InitStyle,
15379 AccessSpecifier AS,
15380 const ParsedAttr &MSPropertyAttr) {
15381 IdentifierInfo *II = D.getIdentifier();
15382 if (!II) {
15383 Diag(DeclStart, diag::err_anonymous_property);
15384 return nullptr;
15385 }
15386 SourceLocation Loc = D.getIdentifierLoc();
15387
15388 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15389 QualType T = TInfo->getType();
15390 if (getLangOpts().CPlusPlus) {
15391 CheckExtraCXXDefaultArguments(D);
15392
15393 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15394 UPPC_DataMemberType)) {
15395 D.setInvalidType();
15396 T = Context.IntTy;
15397 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15398 }
15399 }
15400
15401 DiagnoseFunctionSpecifiers(D.getDeclSpec());
15402
15403 if (D.getDeclSpec().isInlineSpecified())
15404 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15405 << getLangOpts().CPlusPlus17;
15406 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15407 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15408 diag::err_invalid_thread)
15409 << DeclSpec::getSpecifierName(TSCS);
15410
15411 // Check to see if this name was declared as a member previously
15412 NamedDecl *PrevDecl = nullptr;
15413 LookupResult Previous(*this, II, Loc, LookupMemberName,
15414 ForVisibleRedeclaration);
15415 LookupName(Previous, S);
15416 switch (Previous.getResultKind()) {
15417 case LookupResult::Found:
15418 case LookupResult::FoundUnresolvedValue:
15419 PrevDecl = Previous.getAsSingle<NamedDecl>();
15420 break;
15421
15422 case LookupResult::FoundOverloaded:
15423 PrevDecl = Previous.getRepresentativeDecl();
15424 break;
15425
15426 case LookupResult::NotFound:
15427 case LookupResult::NotFoundInCurrentInstantiation:
15428 case LookupResult::Ambiguous:
15429 break;
15430 }
15431
15432 if (PrevDecl && PrevDecl->isTemplateParameter()) {
15433 // Maybe we will complain about the shadowed template parameter.
15434 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15435 // Just pretend that we didn't see the previous declaration.
15436 PrevDecl = nullptr;
15437 }
15438
15439 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15440 PrevDecl = nullptr;
15441
15442 SourceLocation TSSL = D.getLocStart();
15443 const ParsedAttr::PropertyData &Data = MSPropertyAttr.getPropertyData();
15444 MSPropertyDecl *NewPD = MSPropertyDecl::Create(
15445 Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
15446 ProcessDeclAttributes(TUScope, NewPD, D);
15447 NewPD->setAccess(AS);
15448
15449 if (NewPD->isInvalidDecl())
15450 Record->setInvalidDecl();
15451
15452 if (D.getDeclSpec().isModulePrivateSpecified())
15453 NewPD->setModulePrivate();
15454
15455 if (NewPD->isInvalidDecl() && PrevDecl) {
15456 // Don't introduce NewFD into scope; there's already something
15457 // with the same name in the same scope.
15458 } else if (II) {
15459 PushOnScopeChains(NewPD, S);
15460 } else
15461 Record->addDecl(NewPD);
15462
15463 return NewPD;
15464}