Bug Summary

File:clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 14917, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/include -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../x86_64-linux-gnu/include -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-04-05-202135-9119-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/Template.h"
41#include "llvm/ADT/ScopeExit.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/STLExtras.h"
44#include "llvm/ADT/StringExtras.h"
45#include <map>
46#include <set>
47
48using namespace clang;
49
50//===----------------------------------------------------------------------===//
51// CheckDefaultArgumentVisitor
52//===----------------------------------------------------------------------===//
53
54namespace {
55/// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
56/// the default argument of a parameter to determine whether it
57/// contains any ill-formed subexpressions. For example, this will
58/// diagnose the use of local variables or parameters within the
59/// default argument expression.
60class CheckDefaultArgumentVisitor
61 : public ConstStmtVisitor<CheckDefaultArgumentVisitor, bool> {
62 Sema &S;
63 const Expr *DefaultArg;
64
65public:
66 CheckDefaultArgumentVisitor(Sema &S, const Expr *DefaultArg)
67 : S(S), DefaultArg(DefaultArg) {}
68
69 bool VisitExpr(const Expr *Node);
70 bool VisitDeclRefExpr(const DeclRefExpr *DRE);
71 bool VisitCXXThisExpr(const CXXThisExpr *ThisE);
72 bool VisitLambdaExpr(const LambdaExpr *Lambda);
73 bool VisitPseudoObjectExpr(const PseudoObjectExpr *POE);
74};
75
76/// VisitExpr - Visit all of the children of this expression.
77bool CheckDefaultArgumentVisitor::VisitExpr(const Expr *Node) {
78 bool IsInvalid = false;
79 for (const Stmt *SubStmt : Node->children())
80 IsInvalid |= Visit(SubStmt);
81 return IsInvalid;
82}
83
84/// VisitDeclRefExpr - Visit a reference to a declaration, to
85/// determine whether this declaration can be used in the default
86/// argument expression.
87bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(const DeclRefExpr *DRE) {
88 const NamedDecl *Decl = DRE->getDecl();
89 if (const auto *Param = dyn_cast<ParmVarDecl>(Decl)) {
90 // C++ [dcl.fct.default]p9:
91 // [...] parameters of a function shall not be used in default
92 // argument expressions, even if they are not evaluated. [...]
93 //
94 // C++17 [dcl.fct.default]p9 (by CWG 2082):
95 // [...] A parameter shall not appear as a potentially-evaluated
96 // expression in a default argument. [...]
97 //
98 if (DRE->isNonOdrUse() != NOUR_Unevaluated)
99 return S.Diag(DRE->getBeginLoc(),
100 diag::err_param_default_argument_references_param)
101 << Param->getDeclName() << DefaultArg->getSourceRange();
102 } else if (const auto *VDecl = dyn_cast<VarDecl>(Decl)) {
103 // C++ [dcl.fct.default]p7:
104 // Local variables shall not be used in default argument
105 // expressions.
106 //
107 // C++17 [dcl.fct.default]p7 (by CWG 2082):
108 // A local variable shall not appear as a potentially-evaluated
109 // expression in a default argument.
110 //
111 // C++20 [dcl.fct.default]p7 (DR as part of P0588R1, see also CWG 2346):
112 // Note: A local variable cannot be odr-used (6.3) in a default argument.
113 //
114 if (VDecl->isLocalVarDecl() && !DRE->isNonOdrUse())
115 return S.Diag(DRE->getBeginLoc(),
116 diag::err_param_default_argument_references_local)
117 << VDecl->getDeclName() << DefaultArg->getSourceRange();
118 }
119
120 return false;
121}
122
123/// VisitCXXThisExpr - Visit a C++ "this" expression.
124bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(const CXXThisExpr *ThisE) {
125 // C++ [dcl.fct.default]p8:
126 // The keyword this shall not be used in a default argument of a
127 // member function.
128 return S.Diag(ThisE->getBeginLoc(),
129 diag::err_param_default_argument_references_this)
130 << ThisE->getSourceRange();
131}
132
133bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(
134 const PseudoObjectExpr *POE) {
135 bool Invalid = false;
136 for (const Expr *E : POE->semantics()) {
137 // Look through bindings.
138 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) {
139 E = OVE->getSourceExpr();
140 assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?"
) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 140, __PRETTY_FUNCTION__))
;
141 }
142
143 Invalid |= Visit(E);
144 }
145 return Invalid;
146}
147
148bool CheckDefaultArgumentVisitor::VisitLambdaExpr(const LambdaExpr *Lambda) {
149 // C++11 [expr.lambda.prim]p13:
150 // A lambda-expression appearing in a default argument shall not
151 // implicitly or explicitly capture any entity.
152 if (Lambda->capture_begin() == Lambda->capture_end())
153 return false;
154
155 return S.Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
156}
157} // namespace
158
159void
160Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
161 const CXXMethodDecl *Method) {
162 // If we have an MSAny spec already, don't bother.
163 if (!Method || ComputedEST == EST_MSAny)
164 return;
165
166 const FunctionProtoType *Proto
167 = Method->getType()->getAs<FunctionProtoType>();
168 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
169 if (!Proto)
170 return;
171
172 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
173
174 // If we have a throw-all spec at this point, ignore the function.
175 if (ComputedEST == EST_None)
176 return;
177
178 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
179 EST = EST_BasicNoexcept;
180
181 switch (EST) {
182 case EST_Unparsed:
183 case EST_Uninstantiated:
184 case EST_Unevaluated:
185 llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 185)
;
186
187 // If this function can throw any exceptions, make a note of that.
188 case EST_MSAny:
189 case EST_None:
190 // FIXME: Whichever we see last of MSAny and None determines our result.
191 // We should make a consistent, order-independent choice here.
192 ClearExceptions();
193 ComputedEST = EST;
194 return;
195 case EST_NoexceptFalse:
196 ClearExceptions();
197 ComputedEST = EST_None;
198 return;
199 // FIXME: If the call to this decl is using any of its default arguments, we
200 // need to search them for potentially-throwing calls.
201 // If this function has a basic noexcept, it doesn't affect the outcome.
202 case EST_BasicNoexcept:
203 case EST_NoexceptTrue:
204 case EST_NoThrow:
205 return;
206 // If we're still at noexcept(true) and there's a throw() callee,
207 // change to that specification.
208 case EST_DynamicNone:
209 if (ComputedEST == EST_BasicNoexcept)
210 ComputedEST = EST_DynamicNone;
211 return;
212 case EST_DependentNoexcept:
213 llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 214)
214 "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 214)
;
215 case EST_Dynamic:
216 break;
217 }
218 assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier."
) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 218, __PRETTY_FUNCTION__))
;
219 assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 220, __PRETTY_FUNCTION__))
220 "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 220, __PRETTY_FUNCTION__))
;
221 ComputedEST = EST_Dynamic;
222 // Record the exceptions in this function's exception specification.
223 for (const auto &E : Proto->exceptions())
224 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
225 Exceptions.push_back(E);
226}
227
228void Sema::ImplicitExceptionSpecification::CalledStmt(Stmt *S) {
229 if (!S || ComputedEST == EST_MSAny)
230 return;
231
232 // FIXME:
233 //
234 // C++0x [except.spec]p14:
235 // [An] implicit exception-specification specifies the type-id T if and
236 // only if T is allowed by the exception-specification of a function directly
237 // invoked by f's implicit definition; f shall allow all exceptions if any
238 // function it directly invokes allows all exceptions, and f shall allow no
239 // exceptions if every function it directly invokes allows no exceptions.
240 //
241 // Note in particular that if an implicit exception-specification is generated
242 // for a function containing a throw-expression, that specification can still
243 // be noexcept(true).
244 //
245 // Note also that 'directly invoked' is not defined in the standard, and there
246 // is no indication that we should only consider potentially-evaluated calls.
247 //
248 // Ultimately we should implement the intent of the standard: the exception
249 // specification should be the set of exceptions which can be thrown by the
250 // implicit definition. For now, we assume that any non-nothrow expression can
251 // throw any exception.
252
253 if (Self->canThrow(S))
254 ComputedEST = EST_None;
255}
256
257ExprResult Sema::ConvertParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
258 SourceLocation EqualLoc) {
259 if (RequireCompleteType(Param->getLocation(), Param->getType(),
260 diag::err_typecheck_decl_incomplete_type))
261 return true;
262
263 // C++ [dcl.fct.default]p5
264 // A default argument expression is implicitly converted (clause
265 // 4) to the parameter type. The default argument expression has
266 // the same semantic constraints as the initializer expression in
267 // a declaration of a variable of the parameter type, using the
268 // copy-initialization semantics (8.5).
269 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
270 Param);
271 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
272 EqualLoc);
273 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
274 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
275 if (Result.isInvalid())
276 return true;
277 Arg = Result.getAs<Expr>();
278
279 CheckCompletedExpr(Arg, EqualLoc);
280 Arg = MaybeCreateExprWithCleanups(Arg);
281
282 return Arg;
283}
284
285void Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
286 SourceLocation EqualLoc) {
287 // Add the default argument to the parameter
288 Param->setDefaultArg(Arg);
289
290 // We have already instantiated this parameter; provide each of the
291 // instantiations with the uninstantiated default argument.
292 UnparsedDefaultArgInstantiationsMap::iterator InstPos
293 = UnparsedDefaultArgInstantiations.find(Param);
294 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
295 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
296 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
297
298 // We're done tracking this parameter's instantiations.
299 UnparsedDefaultArgInstantiations.erase(InstPos);
300 }
301}
302
303/// ActOnParamDefaultArgument - Check whether the default argument
304/// provided for a function parameter is well-formed. If so, attach it
305/// to the parameter declaration.
306void
307Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
308 Expr *DefaultArg) {
309 if (!param || !DefaultArg)
310 return;
311
312 ParmVarDecl *Param = cast<ParmVarDecl>(param);
313 UnparsedDefaultArgLocs.erase(Param);
314
315 auto Fail = [&] {
316 Param->setInvalidDecl();
317 Param->setDefaultArg(new (Context) OpaqueValueExpr(
318 EqualLoc, Param->getType().getNonReferenceType(), VK_RValue));
319 };
320
321 // Default arguments are only permitted in C++
322 if (!getLangOpts().CPlusPlus) {
323 Diag(EqualLoc, diag::err_param_default_argument)
324 << DefaultArg->getSourceRange();
325 return Fail();
326 }
327
328 // Check for unexpanded parameter packs.
329 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
330 return Fail();
331 }
332
333 // C++11 [dcl.fct.default]p3
334 // A default argument expression [...] shall not be specified for a
335 // parameter pack.
336 if (Param->isParameterPack()) {
337 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
338 << DefaultArg->getSourceRange();
339 // Recover by discarding the default argument.
340 Param->setDefaultArg(nullptr);
341 return;
342 }
343
344 ExprResult Result = ConvertParamDefaultArgument(Param, DefaultArg, EqualLoc);
345 if (Result.isInvalid())
346 return Fail();
347
348 DefaultArg = Result.getAs<Expr>();
349
350 // Check that the default argument is well-formed
351 CheckDefaultArgumentVisitor DefaultArgChecker(*this, DefaultArg);
352 if (DefaultArgChecker.Visit(DefaultArg))
353 return Fail();
354
355 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
356}
357
358/// ActOnParamUnparsedDefaultArgument - We've seen a default
359/// argument for a function parameter, but we can't parse it yet
360/// because we're inside a class definition. Note that this default
361/// argument will be parsed later.
362void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
363 SourceLocation EqualLoc,
364 SourceLocation ArgLoc) {
365 if (!param)
366 return;
367
368 ParmVarDecl *Param = cast<ParmVarDecl>(param);
369 Param->setUnparsedDefaultArg();
370 UnparsedDefaultArgLocs[Param] = ArgLoc;
371}
372
373/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
374/// the default argument for the parameter param failed.
375void Sema::ActOnParamDefaultArgumentError(Decl *param,
376 SourceLocation EqualLoc) {
377 if (!param)
378 return;
379
380 ParmVarDecl *Param = cast<ParmVarDecl>(param);
381 Param->setInvalidDecl();
382 UnparsedDefaultArgLocs.erase(Param);
383 Param->setDefaultArg(new(Context)
384 OpaqueValueExpr(EqualLoc,
385 Param->getType().getNonReferenceType(),
386 VK_RValue));
387}
388
389/// CheckExtraCXXDefaultArguments - Check for any extra default
390/// arguments in the declarator, which is not a function declaration
391/// or definition and therefore is not permitted to have default
392/// arguments. This routine should be invoked for every declarator
393/// that is not a function declaration or definition.
394void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
395 // C++ [dcl.fct.default]p3
396 // A default argument expression shall be specified only in the
397 // parameter-declaration-clause of a function declaration or in a
398 // template-parameter (14.1). It shall not be specified for a
399 // parameter pack. If it is specified in a
400 // parameter-declaration-clause, it shall not occur within a
401 // declarator or abstract-declarator of a parameter-declaration.
402 bool MightBeFunction = D.isFunctionDeclarationContext();
403 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
404 DeclaratorChunk &chunk = D.getTypeObject(i);
405 if (chunk.Kind == DeclaratorChunk::Function) {
406 if (MightBeFunction) {
407 // This is a function declaration. It can have default arguments, but
408 // keep looking in case its return type is a function type with default
409 // arguments.
410 MightBeFunction = false;
411 continue;
412 }
413 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
414 ++argIdx) {
415 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
416 if (Param->hasUnparsedDefaultArg()) {
417 std::unique_ptr<CachedTokens> Toks =
418 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
419 SourceRange SR;
420 if (Toks->size() > 1)
421 SR = SourceRange((*Toks)[1].getLocation(),
422 Toks->back().getLocation());
423 else
424 SR = UnparsedDefaultArgLocs[Param];
425 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
426 << SR;
427 } else if (Param->getDefaultArg()) {
428 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
429 << Param->getDefaultArg()->getSourceRange();
430 Param->setDefaultArg(nullptr);
431 }
432 }
433 } else if (chunk.Kind != DeclaratorChunk::Paren) {
434 MightBeFunction = false;
435 }
436 }
437}
438
439static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
440 return std::any_of(FD->param_begin(), FD->param_end(), [](ParmVarDecl *P) {
441 return P->hasDefaultArg() && !P->hasInheritedDefaultArg();
442 });
443}
444
445/// MergeCXXFunctionDecl - Merge two declarations of the same C++
446/// function, once we already know that they have the same
447/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
448/// error, false otherwise.
449bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
450 Scope *S) {
451 bool Invalid = false;
452
453 // The declaration context corresponding to the scope is the semantic
454 // parent, unless this is a local function declaration, in which case
455 // it is that surrounding function.
456 DeclContext *ScopeDC = New->isLocalExternDecl()
457 ? New->getLexicalDeclContext()
458 : New->getDeclContext();
459
460 // Find the previous declaration for the purpose of default arguments.
461 FunctionDecl *PrevForDefaultArgs = Old;
462 for (/**/; PrevForDefaultArgs;
463 // Don't bother looking back past the latest decl if this is a local
464 // extern declaration; nothing else could work.
465 PrevForDefaultArgs = New->isLocalExternDecl()
466 ? nullptr
467 : PrevForDefaultArgs->getPreviousDecl()) {
468 // Ignore hidden declarations.
469 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
470 continue;
471
472 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
473 !New->isCXXClassMember()) {
474 // Ignore default arguments of old decl if they are not in
475 // the same scope and this is not an out-of-line definition of
476 // a member function.
477 continue;
478 }
479
480 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
481 // If only one of these is a local function declaration, then they are
482 // declared in different scopes, even though isDeclInScope may think
483 // they're in the same scope. (If both are local, the scope check is
484 // sufficient, and if neither is local, then they are in the same scope.)
485 continue;
486 }
487
488 // We found the right previous declaration.
489 break;
490 }
491
492 // C++ [dcl.fct.default]p4:
493 // For non-template functions, default arguments can be added in
494 // later declarations of a function in the same
495 // scope. Declarations in different scopes have completely
496 // distinct sets of default arguments. That is, declarations in
497 // inner scopes do not acquire default arguments from
498 // declarations in outer scopes, and vice versa. In a given
499 // function declaration, all parameters subsequent to a
500 // parameter with a default argument shall have default
501 // arguments supplied in this or previous declarations. A
502 // default argument shall not be redefined by a later
503 // declaration (not even to the same value).
504 //
505 // C++ [dcl.fct.default]p6:
506 // Except for member functions of class templates, the default arguments
507 // in a member function definition that appears outside of the class
508 // definition are added to the set of default arguments provided by the
509 // member function declaration in the class definition.
510 for (unsigned p = 0, NumParams = PrevForDefaultArgs
511 ? PrevForDefaultArgs->getNumParams()
512 : 0;
513 p < NumParams; ++p) {
514 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
515 ParmVarDecl *NewParam = New->getParamDecl(p);
516
517 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
518 bool NewParamHasDfl = NewParam->hasDefaultArg();
519
520 if (OldParamHasDfl && NewParamHasDfl) {
521 unsigned DiagDefaultParamID =
522 diag::err_param_default_argument_redefinition;
523
524 // MSVC accepts that default parameters be redefined for member functions
525 // of template class. The new default parameter's value is ignored.
526 Invalid = true;
527 if (getLangOpts().MicrosoftExt) {
528 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
529 if (MD && MD->getParent()->getDescribedClassTemplate()) {
530 // Merge the old default argument into the new parameter.
531 NewParam->setHasInheritedDefaultArg();
532 if (OldParam->hasUninstantiatedDefaultArg())
533 NewParam->setUninstantiatedDefaultArg(
534 OldParam->getUninstantiatedDefaultArg());
535 else
536 NewParam->setDefaultArg(OldParam->getInit());
537 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
538 Invalid = false;
539 }
540 }
541
542 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
543 // hint here. Alternatively, we could walk the type-source information
544 // for NewParam to find the last source location in the type... but it
545 // isn't worth the effort right now. This is the kind of test case that
546 // is hard to get right:
547 // int f(int);
548 // void g(int (*fp)(int) = f);
549 // void g(int (*fp)(int) = &f);
550 Diag(NewParam->getLocation(), DiagDefaultParamID)
551 << NewParam->getDefaultArgRange();
552
553 // Look for the function declaration where the default argument was
554 // actually written, which may be a declaration prior to Old.
555 for (auto Older = PrevForDefaultArgs;
556 OldParam->hasInheritedDefaultArg(); /**/) {
557 Older = Older->getPreviousDecl();
558 OldParam = Older->getParamDecl(p);
559 }
560
561 Diag(OldParam->getLocation(), diag::note_previous_definition)
562 << OldParam->getDefaultArgRange();
563 } else if (OldParamHasDfl) {
564 // Merge the old default argument into the new parameter unless the new
565 // function is a friend declaration in a template class. In the latter
566 // case the default arguments will be inherited when the friend
567 // declaration will be instantiated.
568 if (New->getFriendObjectKind() == Decl::FOK_None ||
569 !New->getLexicalDeclContext()->isDependentContext()) {
570 // It's important to use getInit() here; getDefaultArg()
571 // strips off any top-level ExprWithCleanups.
572 NewParam->setHasInheritedDefaultArg();
573 if (OldParam->hasUnparsedDefaultArg())
574 NewParam->setUnparsedDefaultArg();
575 else if (OldParam->hasUninstantiatedDefaultArg())
576 NewParam->setUninstantiatedDefaultArg(
577 OldParam->getUninstantiatedDefaultArg());
578 else
579 NewParam->setDefaultArg(OldParam->getInit());
580 }
581 } else if (NewParamHasDfl) {
582 if (New->getDescribedFunctionTemplate()) {
583 // Paragraph 4, quoted above, only applies to non-template functions.
584 Diag(NewParam->getLocation(),
585 diag::err_param_default_argument_template_redecl)
586 << NewParam->getDefaultArgRange();
587 Diag(PrevForDefaultArgs->getLocation(),
588 diag::note_template_prev_declaration)
589 << false;
590 } else if (New->getTemplateSpecializationKind()
591 != TSK_ImplicitInstantiation &&
592 New->getTemplateSpecializationKind() != TSK_Undeclared) {
593 // C++ [temp.expr.spec]p21:
594 // Default function arguments shall not be specified in a declaration
595 // or a definition for one of the following explicit specializations:
596 // - the explicit specialization of a function template;
597 // - the explicit specialization of a member function template;
598 // - the explicit specialization of a member function of a class
599 // template where the class template specialization to which the
600 // member function specialization belongs is implicitly
601 // instantiated.
602 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
603 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
604 << New->getDeclName()
605 << NewParam->getDefaultArgRange();
606 } else if (New->getDeclContext()->isDependentContext()) {
607 // C++ [dcl.fct.default]p6 (DR217):
608 // Default arguments for a member function of a class template shall
609 // be specified on the initial declaration of the member function
610 // within the class template.
611 //
612 // Reading the tea leaves a bit in DR217 and its reference to DR205
613 // leads me to the conclusion that one cannot add default function
614 // arguments for an out-of-line definition of a member function of a
615 // dependent type.
616 int WhichKind = 2;
617 if (CXXRecordDecl *Record
618 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
619 if (Record->getDescribedClassTemplate())
620 WhichKind = 0;
621 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
622 WhichKind = 1;
623 else
624 WhichKind = 2;
625 }
626
627 Diag(NewParam->getLocation(),
628 diag::err_param_default_argument_member_template_redecl)
629 << WhichKind
630 << NewParam->getDefaultArgRange();
631 }
632 }
633 }
634
635 // DR1344: If a default argument is added outside a class definition and that
636 // default argument makes the function a special member function, the program
637 // is ill-formed. This can only happen for constructors.
638 if (isa<CXXConstructorDecl>(New) &&
639 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
640 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
641 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
642 if (NewSM != OldSM) {
643 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
644 assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0)
: __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 644, __PRETTY_FUNCTION__))
;
645 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
646 << NewParam->getDefaultArgRange() << NewSM;
647 Diag(Old->getLocation(), diag::note_previous_declaration);
648 }
649 }
650
651 const FunctionDecl *Def;
652 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
653 // template has a constexpr specifier then all its declarations shall
654 // contain the constexpr specifier.
655 if (New->getConstexprKind() != Old->getConstexprKind()) {
656 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
657 << New << static_cast<int>(New->getConstexprKind())
658 << static_cast<int>(Old->getConstexprKind());
659 Diag(Old->getLocation(), diag::note_previous_declaration);
660 Invalid = true;
661 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
662 Old->isDefined(Def) &&
663 // If a friend function is inlined but does not have 'inline'
664 // specifier, it is a definition. Do not report attribute conflict
665 // in this case, redefinition will be diagnosed later.
666 (New->isInlineSpecified() ||
667 New->getFriendObjectKind() == Decl::FOK_None)) {
668 // C++11 [dcl.fcn.spec]p4:
669 // If the definition of a function appears in a translation unit before its
670 // first declaration as inline, the program is ill-formed.
671 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
672 Diag(Def->getLocation(), diag::note_previous_definition);
673 Invalid = true;
674 }
675
676 // C++17 [temp.deduct.guide]p3:
677 // Two deduction guide declarations in the same translation unit
678 // for the same class template shall not have equivalent
679 // parameter-declaration-clauses.
680 if (isa<CXXDeductionGuideDecl>(New) &&
681 !New->isFunctionTemplateSpecialization() && isVisible(Old)) {
682 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
683 Diag(Old->getLocation(), diag::note_previous_declaration);
684 }
685
686 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
687 // argument expression, that declaration shall be a definition and shall be
688 // the only declaration of the function or function template in the
689 // translation unit.
690 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
691 functionDeclHasDefaultArgument(Old)) {
692 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
693 Diag(Old->getLocation(), diag::note_previous_declaration);
694 Invalid = true;
695 }
696
697 // C++11 [temp.friend]p4 (DR329):
698 // When a function is defined in a friend function declaration in a class
699 // template, the function is instantiated when the function is odr-used.
700 // The same restrictions on multiple declarations and definitions that
701 // apply to non-template function declarations and definitions also apply
702 // to these implicit definitions.
703 const FunctionDecl *OldDefinition = nullptr;
704 if (New->isThisDeclarationInstantiatedFromAFriendDefinition() &&
705 Old->isDefined(OldDefinition, true))
706 CheckForFunctionRedefinition(New, OldDefinition);
707
708 return Invalid;
709}
710
711NamedDecl *
712Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
713 MultiTemplateParamsArg TemplateParamLists) {
714 assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0
) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 714, __PRETTY_FUNCTION__))
;
715 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
716
717 // The syntax only allows a decomposition declarator as a simple-declaration,
718 // a for-range-declaration, or a condition in Clang, but we parse it in more
719 // cases than that.
720 if (!D.mayHaveDecompositionDeclarator()) {
721 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
722 << Decomp.getSourceRange();
723 return nullptr;
724 }
725
726 if (!TemplateParamLists.empty()) {
727 // FIXME: There's no rule against this, but there are also no rules that
728 // would actually make it usable, so we reject it for now.
729 Diag(TemplateParamLists.front()->getTemplateLoc(),
730 diag::err_decomp_decl_template);
731 return nullptr;
732 }
733
734 Diag(Decomp.getLSquareLoc(),
735 !getLangOpts().CPlusPlus17
736 ? diag::ext_decomp_decl
737 : D.getContext() == DeclaratorContext::Condition
738 ? diag::ext_decomp_decl_cond
739 : diag::warn_cxx14_compat_decomp_decl)
740 << Decomp.getSourceRange();
741
742 // The semantic context is always just the current context.
743 DeclContext *const DC = CurContext;
744
745 // C++17 [dcl.dcl]/8:
746 // The decl-specifier-seq shall contain only the type-specifier auto
747 // and cv-qualifiers.
748 // C++2a [dcl.dcl]/8:
749 // If decl-specifier-seq contains any decl-specifier other than static,
750 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
751 auto &DS = D.getDeclSpec();
752 {
753 SmallVector<StringRef, 8> BadSpecifiers;
754 SmallVector<SourceLocation, 8> BadSpecifierLocs;
755 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
756 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
757 if (auto SCS = DS.getStorageClassSpec()) {
758 if (SCS == DeclSpec::SCS_static) {
759 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
760 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
761 } else {
762 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
763 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
764 }
765 }
766 if (auto TSCS = DS.getThreadStorageClassSpec()) {
767 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
768 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
769 }
770 if (DS.hasConstexprSpecifier()) {
771 BadSpecifiers.push_back(
772 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
773 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
774 }
775 if (DS.isInlineSpecified()) {
776 BadSpecifiers.push_back("inline");
777 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
778 }
779 if (!BadSpecifiers.empty()) {
780 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
781 Err << (int)BadSpecifiers.size()
782 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
783 // Don't add FixItHints to remove the specifiers; we do still respect
784 // them when building the underlying variable.
785 for (auto Loc : BadSpecifierLocs)
786 Err << SourceRange(Loc, Loc);
787 } else if (!CPlusPlus20Specifiers.empty()) {
788 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
789 getLangOpts().CPlusPlus20
790 ? diag::warn_cxx17_compat_decomp_decl_spec
791 : diag::ext_decomp_decl_spec);
792 Warn << (int)CPlusPlus20Specifiers.size()
793 << llvm::join(CPlusPlus20Specifiers.begin(),
794 CPlusPlus20Specifiers.end(), " ");
795 for (auto Loc : CPlusPlus20SpecifierLocs)
796 Warn << SourceRange(Loc, Loc);
797 }
798 // We can't recover from it being declared as a typedef.
799 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
800 return nullptr;
801 }
802
803 // C++2a [dcl.struct.bind]p1:
804 // A cv that includes volatile is deprecated
805 if ((DS.getTypeQualifiers() & DeclSpec::TQ_volatile) &&
806 getLangOpts().CPlusPlus20)
807 Diag(DS.getVolatileSpecLoc(),
808 diag::warn_deprecated_volatile_structured_binding);
809
810 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
811 QualType R = TInfo->getType();
812
813 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
814 UPPC_DeclarationType))
815 D.setInvalidType();
816
817 // The syntax only allows a single ref-qualifier prior to the decomposition
818 // declarator. No other declarator chunks are permitted. Also check the type
819 // specifier here.
820 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
821 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
822 (D.getNumTypeObjects() == 1 &&
823 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
824 Diag(Decomp.getLSquareLoc(),
825 (D.hasGroupingParens() ||
826 (D.getNumTypeObjects() &&
827 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
828 ? diag::err_decomp_decl_parens
829 : diag::err_decomp_decl_type)
830 << R;
831
832 // In most cases, there's no actual problem with an explicitly-specified
833 // type, but a function type won't work here, and ActOnVariableDeclarator
834 // shouldn't be called for such a type.
835 if (R->isFunctionType())
836 D.setInvalidType();
837 }
838
839 // Build the BindingDecls.
840 SmallVector<BindingDecl*, 8> Bindings;
841
842 // Build the BindingDecls.
843 for (auto &B : D.getDecompositionDeclarator().bindings()) {
844 // Check for name conflicts.
845 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
846 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
847 ForVisibleRedeclaration);
848 LookupName(Previous, S,
849 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
850
851 // It's not permitted to shadow a template parameter name.
852 if (Previous.isSingleResult() &&
853 Previous.getFoundDecl()->isTemplateParameter()) {
854 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
855 Previous.getFoundDecl());
856 Previous.clear();
857 }
858
859 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
860
861 // Find the shadowed declaration before filtering for scope.
862 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
863 ? getShadowedDeclaration(BD, Previous)
864 : nullptr;
865
866 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
867 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
868 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
869 /*AllowInlineNamespace*/false);
870
871 if (!Previous.empty()) {
872 auto *Old = Previous.getRepresentativeDecl();
873 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
874 Diag(Old->getLocation(), diag::note_previous_definition);
875 } else if (ShadowedDecl && !D.isRedeclaration()) {
876 CheckShadow(BD, ShadowedDecl, Previous);
877 }
878 PushOnScopeChains(BD, S, true);
879 Bindings.push_back(BD);
880 ParsingInitForAutoVars.insert(BD);
881 }
882
883 // There are no prior lookup results for the variable itself, because it
884 // is unnamed.
885 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
886 Decomp.getLSquareLoc());
887 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
888 ForVisibleRedeclaration);
889
890 // Build the variable that holds the non-decomposed object.
891 bool AddToScope = true;
892 NamedDecl *New =
893 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
894 MultiTemplateParamsArg(), AddToScope, Bindings);
895 if (AddToScope) {
896 S->AddDecl(New);
897 CurContext->addHiddenDecl(New);
898 }
899
900 if (isInOpenMPDeclareTargetContext())
901 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
902
903 return New;
904}
905
906static bool checkSimpleDecomposition(
907 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
908 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
909 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
910 if ((int64_t)Bindings.size() != NumElems) {
911 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
912 << DecompType << (unsigned)Bindings.size()
913 << (unsigned)NumElems.getLimitedValue(UINT_MAX(2147483647 *2U +1U)) << NumElems.toString(10)
914 << (NumElems < Bindings.size());
915 return true;
916 }
917
918 unsigned I = 0;
919 for (auto *B : Bindings) {
920 SourceLocation Loc = B->getLocation();
921 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
922 if (E.isInvalid())
923 return true;
924 E = GetInit(Loc, E.get(), I++);
925 if (E.isInvalid())
926 return true;
927 B->setBinding(ElemType, E.get());
928 }
929
930 return false;
931}
932
933static bool checkArrayLikeDecomposition(Sema &S,
934 ArrayRef<BindingDecl *> Bindings,
935 ValueDecl *Src, QualType DecompType,
936 const llvm::APSInt &NumElems,
937 QualType ElemType) {
938 return checkSimpleDecomposition(
939 S, Bindings, Src, DecompType, NumElems, ElemType,
940 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
941 ExprResult E = S.ActOnIntegerConstant(Loc, I);
942 if (E.isInvalid())
943 return ExprError();
944 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
945 });
946}
947
948static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
949 ValueDecl *Src, QualType DecompType,
950 const ConstantArrayType *CAT) {
951 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
952 llvm::APSInt(CAT->getSize()),
953 CAT->getElementType());
954}
955
956static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
957 ValueDecl *Src, QualType DecompType,
958 const VectorType *VT) {
959 return checkArrayLikeDecomposition(
960 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
961 S.Context.getQualifiedType(VT->getElementType(),
962 DecompType.getQualifiers()));
963}
964
965static bool checkComplexDecomposition(Sema &S,
966 ArrayRef<BindingDecl *> Bindings,
967 ValueDecl *Src, QualType DecompType,
968 const ComplexType *CT) {
969 return checkSimpleDecomposition(
970 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
971 S.Context.getQualifiedType(CT->getElementType(),
972 DecompType.getQualifiers()),
973 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
974 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
975 });
976}
977
978static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
979 TemplateArgumentListInfo &Args) {
980 SmallString<128> SS;
981 llvm::raw_svector_ostream OS(SS);
982 bool First = true;
983 for (auto &Arg : Args.arguments()) {
984 if (!First)
985 OS << ", ";
986 Arg.getArgument().print(PrintingPolicy, OS);
987 First = false;
988 }
989 return std::string(OS.str());
990}
991
992static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
993 SourceLocation Loc, StringRef Trait,
994 TemplateArgumentListInfo &Args,
995 unsigned DiagID) {
996 auto DiagnoseMissing = [&] {
997 if (DiagID)
998 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
999 Args);
1000 return true;
1001 };
1002
1003 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
1004 NamespaceDecl *Std = S.getStdNamespace();
1005 if (!Std)
1006 return DiagnoseMissing();
1007
1008 // Look up the trait itself, within namespace std. We can diagnose various
1009 // problems with this lookup even if we've been asked to not diagnose a
1010 // missing specialization, because this can only fail if the user has been
1011 // declaring their own names in namespace std or we don't support the
1012 // standard library implementation in use.
1013 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
1014 Loc, Sema::LookupOrdinaryName);
1015 if (!S.LookupQualifiedName(Result, Std))
1016 return DiagnoseMissing();
1017 if (Result.isAmbiguous())
1018 return true;
1019
1020 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
1021 if (!TraitTD) {
1022 Result.suppressDiagnostics();
1023 NamedDecl *Found = *Result.begin();
1024 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
1025 S.Diag(Found->getLocation(), diag::note_declared_at);
1026 return true;
1027 }
1028
1029 // Build the template-id.
1030 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
1031 if (TraitTy.isNull())
1032 return true;
1033 if (!S.isCompleteType(Loc, TraitTy)) {
1034 if (DiagID)
1035 S.RequireCompleteType(
1036 Loc, TraitTy, DiagID,
1037 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
1038 return true;
1039 }
1040
1041 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1042 assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?"
) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 1042, __PRETTY_FUNCTION__))
;
1043
1044 // Look up the member of the trait type.
1045 S.LookupQualifiedName(TraitMemberLookup, RD);
1046 return TraitMemberLookup.isAmbiguous();
1047}
1048
1049static TemplateArgumentLoc
1050getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1051 uint64_t I) {
1052 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1053 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1054}
1055
1056static TemplateArgumentLoc
1057getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1058 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1059}
1060
1061namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1062
1063static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1064 llvm::APSInt &Size) {
1065 EnterExpressionEvaluationContext ContextRAII(
1066 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1067
1068 DeclarationName Value = S.PP.getIdentifierInfo("value");
1069 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1070
1071 // Form template argument list for tuple_size<T>.
1072 TemplateArgumentListInfo Args(Loc, Loc);
1073 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1074
1075 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1076 // it's not tuple-like.
1077 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1078 R.empty())
1079 return IsTupleLike::NotTupleLike;
1080
1081 // If we get this far, we've committed to the tuple interpretation, but
1082 // we can still fail if there actually isn't a usable ::value.
1083
1084 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1085 LookupResult &R;
1086 TemplateArgumentListInfo &Args;
1087 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1088 : R(R), Args(Args) {}
1089 Sema::SemaDiagnosticBuilder diagnoseNotICE(Sema &S,
1090 SourceLocation Loc) override {
1091 return S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1092 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1093 }
1094 } Diagnoser(R, Args);
1095
1096 ExprResult E =
1097 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1098 if (E.isInvalid())
1099 return IsTupleLike::Error;
1100
1101 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser);
1102 if (E.isInvalid())
1103 return IsTupleLike::Error;
1104
1105 return IsTupleLike::TupleLike;
1106}
1107
1108/// \return std::tuple_element<I, T>::type.
1109static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1110 unsigned I, QualType T) {
1111 // Form template argument list for tuple_element<I, T>.
1112 TemplateArgumentListInfo Args(Loc, Loc);
1113 Args.addArgument(
1114 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1115 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1116
1117 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1118 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1119 if (lookupStdTypeTraitMember(
1120 S, R, Loc, "tuple_element", Args,
1121 diag::err_decomp_decl_std_tuple_element_not_specialized))
1122 return QualType();
1123
1124 auto *TD = R.getAsSingle<TypeDecl>();
1125 if (!TD) {
1126 R.suppressDiagnostics();
1127 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1128 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1129 if (!R.empty())
1130 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1131 return QualType();
1132 }
1133
1134 return S.Context.getTypeDeclType(TD);
1135}
1136
1137namespace {
1138struct InitializingBinding {
1139 Sema &S;
1140 InitializingBinding(Sema &S, BindingDecl *BD) : S(S) {
1141 Sema::CodeSynthesisContext Ctx;
1142 Ctx.Kind = Sema::CodeSynthesisContext::InitializingStructuredBinding;
1143 Ctx.PointOfInstantiation = BD->getLocation();
1144 Ctx.Entity = BD;
1145 S.pushCodeSynthesisContext(Ctx);
1146 }
1147 ~InitializingBinding() {
1148 S.popCodeSynthesisContext();
1149 }
1150};
1151}
1152
1153static bool checkTupleLikeDecomposition(Sema &S,
1154 ArrayRef<BindingDecl *> Bindings,
1155 VarDecl *Src, QualType DecompType,
1156 const llvm::APSInt &TupleSize) {
1157 if ((int64_t)Bindings.size() != TupleSize) {
1158 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1159 << DecompType << (unsigned)Bindings.size()
1160 << (unsigned)TupleSize.getLimitedValue(UINT_MAX(2147483647 *2U +1U))
1161 << TupleSize.toString(10) << (TupleSize < Bindings.size());
1162 return true;
1163 }
1164
1165 if (Bindings.empty())
1166 return false;
1167
1168 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1169
1170 // [dcl.decomp]p3:
1171 // The unqualified-id get is looked up in the scope of E by class member
1172 // access lookup ...
1173 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1174 bool UseMemberGet = false;
1175 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1176 if (auto *RD = DecompType->getAsCXXRecordDecl())
1177 S.LookupQualifiedName(MemberGet, RD);
1178 if (MemberGet.isAmbiguous())
1179 return true;
1180 // ... and if that finds at least one declaration that is a function
1181 // template whose first template parameter is a non-type parameter ...
1182 for (NamedDecl *D : MemberGet) {
1183 if (FunctionTemplateDecl *FTD =
1184 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1185 TemplateParameterList *TPL = FTD->getTemplateParameters();
1186 if (TPL->size() != 0 &&
1187 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1188 // ... the initializer is e.get<i>().
1189 UseMemberGet = true;
1190 break;
1191 }
1192 }
1193 }
1194 }
1195
1196 unsigned I = 0;
1197 for (auto *B : Bindings) {
1198 InitializingBinding InitContext(S, B);
1199 SourceLocation Loc = B->getLocation();
1200
1201 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1202 if (E.isInvalid())
1203 return true;
1204
1205 // e is an lvalue if the type of the entity is an lvalue reference and
1206 // an xvalue otherwise
1207 if (!Src->getType()->isLValueReferenceType())
1208 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1209 E.get(), nullptr, VK_XValue,
1210 FPOptionsOverride());
1211
1212 TemplateArgumentListInfo Args(Loc, Loc);
1213 Args.addArgument(
1214 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1215
1216 if (UseMemberGet) {
1217 // if [lookup of member get] finds at least one declaration, the
1218 // initializer is e.get<i-1>().
1219 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1220 CXXScopeSpec(), SourceLocation(), nullptr,
1221 MemberGet, &Args, nullptr);
1222 if (E.isInvalid())
1223 return true;
1224
1225 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1226 } else {
1227 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1228 // in the associated namespaces.
1229 Expr *Get = UnresolvedLookupExpr::Create(
1230 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1231 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1232 UnresolvedSetIterator(), UnresolvedSetIterator());
1233
1234 Expr *Arg = E.get();
1235 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1236 }
1237 if (E.isInvalid())
1238 return true;
1239 Expr *Init = E.get();
1240
1241 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1242 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1243 if (T.isNull())
1244 return true;
1245
1246 // each vi is a variable of type "reference to T" initialized with the
1247 // initializer, where the reference is an lvalue reference if the
1248 // initializer is an lvalue and an rvalue reference otherwise
1249 QualType RefType =
1250 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1251 if (RefType.isNull())
1252 return true;
1253 auto *RefVD = VarDecl::Create(
1254 S.Context, Src->getDeclContext(), Loc, Loc,
1255 B->getDeclName().getAsIdentifierInfo(), RefType,
1256 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1257 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1258 RefVD->setTSCSpec(Src->getTSCSpec());
1259 RefVD->setImplicit();
1260 if (Src->isInlineSpecified())
1261 RefVD->setInlineSpecified();
1262 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1263
1264 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1265 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1266 InitializationSequence Seq(S, Entity, Kind, Init);
1267 E = Seq.Perform(S, Entity, Kind, Init);
1268 if (E.isInvalid())
1269 return true;
1270 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1271 if (E.isInvalid())
1272 return true;
1273 RefVD->setInit(E.get());
1274 S.CheckCompleteVariableDeclaration(RefVD);
1275
1276 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1277 DeclarationNameInfo(B->getDeclName(), Loc),
1278 RefVD);
1279 if (E.isInvalid())
1280 return true;
1281
1282 B->setBinding(T, E.get());
1283 I++;
1284 }
1285
1286 return false;
1287}
1288
1289/// Find the base class to decompose in a built-in decomposition of a class type.
1290/// This base class search is, unfortunately, not quite like any other that we
1291/// perform anywhere else in C++.
1292static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1293 const CXXRecordDecl *RD,
1294 CXXCastPath &BasePath) {
1295 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1296 CXXBasePath &Path) {
1297 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1298 };
1299
1300 const CXXRecordDecl *ClassWithFields = nullptr;
1301 AccessSpecifier AS = AS_public;
1302 if (RD->hasDirectFields())
1303 // [dcl.decomp]p4:
1304 // Otherwise, all of E's non-static data members shall be public direct
1305 // members of E ...
1306 ClassWithFields = RD;
1307 else {
1308 // ... or of ...
1309 CXXBasePaths Paths;
1310 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1311 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1312 // If no classes have fields, just decompose RD itself. (This will work
1313 // if and only if zero bindings were provided.)
1314 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1315 }
1316
1317 CXXBasePath *BestPath = nullptr;
1318 for (auto &P : Paths) {
1319 if (!BestPath)
1320 BestPath = &P;
1321 else if (!S.Context.hasSameType(P.back().Base->getType(),
1322 BestPath->back().Base->getType())) {
1323 // ... the same ...
1324 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1325 << false << RD << BestPath->back().Base->getType()
1326 << P.back().Base->getType();
1327 return DeclAccessPair();
1328 } else if (P.Access < BestPath->Access) {
1329 BestPath = &P;
1330 }
1331 }
1332
1333 // ... unambiguous ...
1334 QualType BaseType = BestPath->back().Base->getType();
1335 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1336 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1337 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1338 return DeclAccessPair();
1339 }
1340
1341 // ... [accessible, implied by other rules] base class of E.
1342 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1343 *BestPath, diag::err_decomp_decl_inaccessible_base);
1344 AS = BestPath->Access;
1345
1346 ClassWithFields = BaseType->getAsCXXRecordDecl();
1347 S.BuildBasePathArray(Paths, BasePath);
1348 }
1349
1350 // The above search did not check whether the selected class itself has base
1351 // classes with fields, so check that now.
1352 CXXBasePaths Paths;
1353 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1354 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1355 << (ClassWithFields == RD) << RD << ClassWithFields
1356 << Paths.front().back().Base->getType();
1357 return DeclAccessPair();
1358 }
1359
1360 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1361}
1362
1363static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1364 ValueDecl *Src, QualType DecompType,
1365 const CXXRecordDecl *OrigRD) {
1366 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1367 diag::err_incomplete_type))
1368 return true;
1369
1370 CXXCastPath BasePath;
1371 DeclAccessPair BasePair =
1372 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1373 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1374 if (!RD)
1375 return true;
1376 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1377 DecompType.getQualifiers());
1378
1379 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1380 unsigned NumFields =
1381 std::count_if(RD->field_begin(), RD->field_end(),
1382 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1383 assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0)
: __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 1383, __PRETTY_FUNCTION__))
;
1384 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1385 << DecompType << (unsigned)Bindings.size() << NumFields << NumFields
1386 << (NumFields < Bindings.size());
1387 return true;
1388 };
1389
1390 // all of E's non-static data members shall be [...] well-formed
1391 // when named as e.name in the context of the structured binding,
1392 // E shall not have an anonymous union member, ...
1393 unsigned I = 0;
1394 for (auto *FD : RD->fields()) {
1395 if (FD->isUnnamedBitfield())
1396 continue;
1397
1398 // All the non-static data members are required to be nameable, so they
1399 // must all have names.
1400 if (!FD->getDeclName()) {
1401 if (RD->isLambda()) {
1402 S.Diag(Src->getLocation(), diag::err_decomp_decl_lambda);
1403 S.Diag(RD->getLocation(), diag::note_lambda_decl);
1404 return true;
1405 }
1406
1407 if (FD->isAnonymousStructOrUnion()) {
1408 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1409 << DecompType << FD->getType()->isUnionType();
1410 S.Diag(FD->getLocation(), diag::note_declared_at);
1411 return true;
1412 }
1413
1414 // FIXME: Are there any other ways we could have an anonymous member?
1415 }
1416
1417 // We have a real field to bind.
1418 if (I >= Bindings.size())
1419 return DiagnoseBadNumberOfBindings();
1420 auto *B = Bindings[I++];
1421 SourceLocation Loc = B->getLocation();
1422
1423 // The field must be accessible in the context of the structured binding.
1424 // We already checked that the base class is accessible.
1425 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1426 // const_cast here.
1427 S.CheckStructuredBindingMemberAccess(
1428 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1429 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1430 BasePair.getAccess(), FD->getAccess())));
1431
1432 // Initialize the binding to Src.FD.
1433 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1434 if (E.isInvalid())
1435 return true;
1436 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1437 VK_LValue, &BasePath);
1438 if (E.isInvalid())
1439 return true;
1440 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1441 CXXScopeSpec(), FD,
1442 DeclAccessPair::make(FD, FD->getAccess()),
1443 DeclarationNameInfo(FD->getDeclName(), Loc));
1444 if (E.isInvalid())
1445 return true;
1446
1447 // If the type of the member is T, the referenced type is cv T, where cv is
1448 // the cv-qualification of the decomposition expression.
1449 //
1450 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1451 // 'const' to the type of the field.
1452 Qualifiers Q = DecompType.getQualifiers();
1453 if (FD->isMutable())
1454 Q.removeConst();
1455 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1456 }
1457
1458 if (I != Bindings.size())
1459 return DiagnoseBadNumberOfBindings();
1460
1461 return false;
1462}
1463
1464void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1465 QualType DecompType = DD->getType();
1466
1467 // If the type of the decomposition is dependent, then so is the type of
1468 // each binding.
1469 if (DecompType->isDependentType()) {
1470 for (auto *B : DD->bindings())
1471 B->setType(Context.DependentTy);
1472 return;
1473 }
1474
1475 DecompType = DecompType.getNonReferenceType();
1476 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1477
1478 // C++1z [dcl.decomp]/2:
1479 // If E is an array type [...]
1480 // As an extension, we also support decomposition of built-in complex and
1481 // vector types.
1482 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1483 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1484 DD->setInvalidDecl();
1485 return;
1486 }
1487 if (auto *VT = DecompType->getAs<VectorType>()) {
1488 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1489 DD->setInvalidDecl();
1490 return;
1491 }
1492 if (auto *CT = DecompType->getAs<ComplexType>()) {
1493 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1494 DD->setInvalidDecl();
1495 return;
1496 }
1497
1498 // C++1z [dcl.decomp]/3:
1499 // if the expression std::tuple_size<E>::value is a well-formed integral
1500 // constant expression, [...]
1501 llvm::APSInt TupleSize(32);
1502 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1503 case IsTupleLike::Error:
1504 DD->setInvalidDecl();
1505 return;
1506
1507 case IsTupleLike::TupleLike:
1508 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1509 DD->setInvalidDecl();
1510 return;
1511
1512 case IsTupleLike::NotTupleLike:
1513 break;
1514 }
1515
1516 // C++1z [dcl.dcl]/8:
1517 // [E shall be of array or non-union class type]
1518 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1519 if (!RD || RD->isUnion()) {
1520 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1521 << DD << !RD << DecompType;
1522 DD->setInvalidDecl();
1523 return;
1524 }
1525
1526 // C++1z [dcl.decomp]/4:
1527 // all of E's non-static data members shall be [...] direct members of
1528 // E or of the same unambiguous public base class of E, ...
1529 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1530 DD->setInvalidDecl();
1531}
1532
1533/// Merge the exception specifications of two variable declarations.
1534///
1535/// This is called when there's a redeclaration of a VarDecl. The function
1536/// checks if the redeclaration might have an exception specification and
1537/// validates compatibility and merges the specs if necessary.
1538void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1539 // Shortcut if exceptions are disabled.
1540 if (!getLangOpts().CXXExceptions)
1541 return;
1542
1543 assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 1544, __PRETTY_FUNCTION__))
1544 "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 1544, __PRETTY_FUNCTION__))
;
1545
1546 QualType NewType = New->getType();
1547 QualType OldType = Old->getType();
1548
1549 // We're only interested in pointers and references to functions, as well
1550 // as pointers to member functions.
1551 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1552 NewType = R->getPointeeType();
1553 OldType = OldType->castAs<ReferenceType>()->getPointeeType();
1554 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1555 NewType = P->getPointeeType();
1556 OldType = OldType->castAs<PointerType>()->getPointeeType();
1557 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1558 NewType = M->getPointeeType();
1559 OldType = OldType->castAs<MemberPointerType>()->getPointeeType();
1560 }
1561
1562 if (!NewType->isFunctionProtoType())
1563 return;
1564
1565 // There's lots of special cases for functions. For function pointers, system
1566 // libraries are hopefully not as broken so that we don't need these
1567 // workarounds.
1568 if (CheckEquivalentExceptionSpec(
1569 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1570 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1571 New->setInvalidDecl();
1572 }
1573}
1574
1575/// CheckCXXDefaultArguments - Verify that the default arguments for a
1576/// function declaration are well-formed according to C++
1577/// [dcl.fct.default].
1578void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1579 unsigned NumParams = FD->getNumParams();
1580 unsigned ParamIdx = 0;
1581
1582 // This checking doesn't make sense for explicit specializations; their
1583 // default arguments are determined by the declaration we're specializing,
1584 // not by FD.
1585 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
1586 return;
1587 if (auto *FTD = FD->getDescribedFunctionTemplate())
1588 if (FTD->isMemberSpecialization())
1589 return;
1590
1591 // Find first parameter with a default argument
1592 for (; ParamIdx < NumParams; ++ParamIdx) {
1593 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1594 if (Param->hasDefaultArg())
1595 break;
1596 }
1597
1598 // C++20 [dcl.fct.default]p4:
1599 // In a given function declaration, each parameter subsequent to a parameter
1600 // with a default argument shall have a default argument supplied in this or
1601 // a previous declaration, unless the parameter was expanded from a
1602 // parameter pack, or shall be a function parameter pack.
1603 for (; ParamIdx < NumParams; ++ParamIdx) {
1604 ParmVarDecl *Param = FD->getParamDecl(ParamIdx);
1605 if (!Param->hasDefaultArg() && !Param->isParameterPack() &&
1606 !(CurrentInstantiationScope &&
1607 CurrentInstantiationScope->isLocalPackExpansion(Param))) {
1608 if (Param->isInvalidDecl())
1609 /* We already complained about this parameter. */;
1610 else if (Param->getIdentifier())
1611 Diag(Param->getLocation(),
1612 diag::err_param_default_argument_missing_name)
1613 << Param->getIdentifier();
1614 else
1615 Diag(Param->getLocation(),
1616 diag::err_param_default_argument_missing);
1617 }
1618 }
1619}
1620
1621/// Check that the given type is a literal type. Issue a diagnostic if not,
1622/// if Kind is Diagnose.
1623/// \return \c true if a problem has been found (and optionally diagnosed).
1624template <typename... Ts>
1625static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1626 SourceLocation Loc, QualType T, unsigned DiagID,
1627 Ts &&...DiagArgs) {
1628 if (T->isDependentType())
1629 return false;
1630
1631 switch (Kind) {
1632 case Sema::CheckConstexprKind::Diagnose:
1633 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1634 std::forward<Ts>(DiagArgs)...);
1635
1636 case Sema::CheckConstexprKind::CheckValid:
1637 return !T->isLiteralType(SemaRef.Context);
1638 }
1639
1640 llvm_unreachable("unknown CheckConstexprKind")::llvm::llvm_unreachable_internal("unknown CheckConstexprKind"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 1640)
;
1641}
1642
1643/// Determine whether a destructor cannot be constexpr due to
1644static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1645 const CXXDestructorDecl *DD,
1646 Sema::CheckConstexprKind Kind) {
1647 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1648 const CXXRecordDecl *RD =
1649 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1650 if (!RD || RD->hasConstexprDestructor())
1651 return true;
1652
1653 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1654 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1655 << static_cast<int>(DD->getConstexprKind()) << !FD
1656 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1657 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1658 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1659 }
1660 return false;
1661 };
1662
1663 const CXXRecordDecl *RD = DD->getParent();
1664 for (const CXXBaseSpecifier &B : RD->bases())
1665 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1666 return false;
1667 for (const FieldDecl *FD : RD->fields())
1668 if (!Check(FD->getLocation(), FD->getType(), FD))
1669 return false;
1670 return true;
1671}
1672
1673/// Check whether a function's parameter types are all literal types. If so,
1674/// return true. If not, produce a suitable diagnostic and return false.
1675static bool CheckConstexprParameterTypes(Sema &SemaRef,
1676 const FunctionDecl *FD,
1677 Sema::CheckConstexprKind Kind) {
1678 unsigned ArgIndex = 0;
1679 const auto *FT = FD->getType()->castAs<FunctionProtoType>();
1680 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1681 e = FT->param_type_end();
1682 i != e; ++i, ++ArgIndex) {
1683 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1684 SourceLocation ParamLoc = PD->getLocation();
1685 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1686 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1687 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1688 FD->isConsteval()))
1689 return false;
1690 }
1691 return true;
1692}
1693
1694/// Check whether a function's return type is a literal type. If so, return
1695/// true. If not, produce a suitable diagnostic and return false.
1696static bool CheckConstexprReturnType(Sema &SemaRef, const FunctionDecl *FD,
1697 Sema::CheckConstexprKind Kind) {
1698 if (CheckLiteralType(SemaRef, Kind, FD->getLocation(), FD->getReturnType(),
1699 diag::err_constexpr_non_literal_return,
1700 FD->isConsteval()))
1701 return false;
1702 return true;
1703}
1704
1705/// Get diagnostic %select index for tag kind for
1706/// record diagnostic message.
1707/// WARNING: Indexes apply to particular diagnostics only!
1708///
1709/// \returns diagnostic %select index.
1710static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1711 switch (Tag) {
1712 case TTK_Struct: return 0;
1713 case TTK_Interface: return 1;
1714 case TTK_Class: return 2;
1715 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 1715)
;
1716 }
1717}
1718
1719static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1720 Stmt *Body,
1721 Sema::CheckConstexprKind Kind);
1722
1723// Check whether a function declaration satisfies the requirements of a
1724// constexpr function definition or a constexpr constructor definition. If so,
1725// return true. If not, produce appropriate diagnostics (unless asked not to by
1726// Kind) and return false.
1727//
1728// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1729bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1730 CheckConstexprKind Kind) {
1731 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1732 if (MD && MD->isInstance()) {
1733 // C++11 [dcl.constexpr]p4:
1734 // The definition of a constexpr constructor shall satisfy the following
1735 // constraints:
1736 // - the class shall not have any virtual base classes;
1737 //
1738 // FIXME: This only applies to constructors and destructors, not arbitrary
1739 // member functions.
1740 const CXXRecordDecl *RD = MD->getParent();
1741 if (RD->getNumVBases()) {
1742 if (Kind == CheckConstexprKind::CheckValid)
1743 return false;
1744
1745 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1746 << isa<CXXConstructorDecl>(NewFD)
1747 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1748 for (const auto &I : RD->vbases())
1749 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1750 << I.getSourceRange();
1751 return false;
1752 }
1753 }
1754
1755 if (!isa<CXXConstructorDecl>(NewFD)) {
1756 // C++11 [dcl.constexpr]p3:
1757 // The definition of a constexpr function shall satisfy the following
1758 // constraints:
1759 // - it shall not be virtual; (removed in C++20)
1760 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1761 if (Method && Method->isVirtual()) {
1762 if (getLangOpts().CPlusPlus20) {
1763 if (Kind == CheckConstexprKind::Diagnose)
1764 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1765 } else {
1766 if (Kind == CheckConstexprKind::CheckValid)
1767 return false;
1768
1769 Method = Method->getCanonicalDecl();
1770 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1771
1772 // If it's not obvious why this function is virtual, find an overridden
1773 // function which uses the 'virtual' keyword.
1774 const CXXMethodDecl *WrittenVirtual = Method;
1775 while (!WrittenVirtual->isVirtualAsWritten())
1776 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1777 if (WrittenVirtual != Method)
1778 Diag(WrittenVirtual->getLocation(),
1779 diag::note_overridden_virtual_function);
1780 return false;
1781 }
1782 }
1783
1784 // - its return type shall be a literal type;
1785 if (!CheckConstexprReturnType(*this, NewFD, Kind))
1786 return false;
1787 }
1788
1789 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1790 // A destructor can be constexpr only if the defaulted destructor could be;
1791 // we don't need to check the members and bases if we already know they all
1792 // have constexpr destructors.
1793 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1794 if (Kind == CheckConstexprKind::CheckValid)
1795 return false;
1796 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1797 return false;
1798 }
1799 }
1800
1801 // - each of its parameter types shall be a literal type;
1802 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1803 return false;
1804
1805 Stmt *Body = NewFD->getBody();
1806 assert(Body &&((Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? static_cast<void> (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 1807, __PRETTY_FUNCTION__))
1807 "CheckConstexprFunctionDefinition called on function with no body")((Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? static_cast<void> (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 1807, __PRETTY_FUNCTION__))
;
1808 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1809}
1810
1811/// Check the given declaration statement is legal within a constexpr function
1812/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1813///
1814/// \return true if the body is OK (maybe only as an extension), false if we
1815/// have diagnosed a problem.
1816static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1817 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1818 Sema::CheckConstexprKind Kind) {
1819 // C++11 [dcl.constexpr]p3 and p4:
1820 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1821 // contain only
1822 for (const auto *DclIt : DS->decls()) {
1823 switch (DclIt->getKind()) {
1824 case Decl::StaticAssert:
1825 case Decl::Using:
1826 case Decl::UsingShadow:
1827 case Decl::UsingDirective:
1828 case Decl::UnresolvedUsingTypename:
1829 case Decl::UnresolvedUsingValue:
1830 // - static_assert-declarations
1831 // - using-declarations,
1832 // - using-directives,
1833 continue;
1834
1835 case Decl::Typedef:
1836 case Decl::TypeAlias: {
1837 // - typedef declarations and alias-declarations that do not define
1838 // classes or enumerations,
1839 const auto *TN = cast<TypedefNameDecl>(DclIt);
1840 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1841 // Don't allow variably-modified types in constexpr functions.
1842 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1843 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1844 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1845 << TL.getSourceRange() << TL.getType()
1846 << isa<CXXConstructorDecl>(Dcl);
1847 }
1848 return false;
1849 }
1850 continue;
1851 }
1852
1853 case Decl::Enum:
1854 case Decl::CXXRecord:
1855 // C++1y allows types to be defined, not just declared.
1856 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1857 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1858 SemaRef.Diag(DS->getBeginLoc(),
1859 SemaRef.getLangOpts().CPlusPlus14
1860 ? diag::warn_cxx11_compat_constexpr_type_definition
1861 : diag::ext_constexpr_type_definition)
1862 << isa<CXXConstructorDecl>(Dcl);
1863 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1864 return false;
1865 }
1866 }
1867 continue;
1868
1869 case Decl::EnumConstant:
1870 case Decl::IndirectField:
1871 case Decl::ParmVar:
1872 // These can only appear with other declarations which are banned in
1873 // C++11 and permitted in C++1y, so ignore them.
1874 continue;
1875
1876 case Decl::Var:
1877 case Decl::Decomposition: {
1878 // C++1y [dcl.constexpr]p3 allows anything except:
1879 // a definition of a variable of non-literal type or of static or
1880 // thread storage duration or [before C++2a] for which no
1881 // initialization is performed.
1882 const auto *VD = cast<VarDecl>(DclIt);
1883 if (VD->isThisDeclarationADefinition()) {
1884 if (VD->isStaticLocal()) {
1885 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1886 SemaRef.Diag(VD->getLocation(),
1887 diag::err_constexpr_local_var_static)
1888 << isa<CXXConstructorDecl>(Dcl)
1889 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1890 }
1891 return false;
1892 }
1893 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1894 diag::err_constexpr_local_var_non_literal_type,
1895 isa<CXXConstructorDecl>(Dcl)))
1896 return false;
1897 if (!VD->getType()->isDependentType() &&
1898 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1899 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1900 SemaRef.Diag(
1901 VD->getLocation(),
1902 SemaRef.getLangOpts().CPlusPlus20
1903 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1904 : diag::ext_constexpr_local_var_no_init)
1905 << isa<CXXConstructorDecl>(Dcl);
1906 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1907 return false;
1908 }
1909 continue;
1910 }
1911 }
1912 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1913 SemaRef.Diag(VD->getLocation(),
1914 SemaRef.getLangOpts().CPlusPlus14
1915 ? diag::warn_cxx11_compat_constexpr_local_var
1916 : diag::ext_constexpr_local_var)
1917 << isa<CXXConstructorDecl>(Dcl);
1918 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1919 return false;
1920 }
1921 continue;
1922 }
1923
1924 case Decl::NamespaceAlias:
1925 case Decl::Function:
1926 // These are disallowed in C++11 and permitted in C++1y. Allow them
1927 // everywhere as an extension.
1928 if (!Cxx1yLoc.isValid())
1929 Cxx1yLoc = DS->getBeginLoc();
1930 continue;
1931
1932 default:
1933 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1934 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1935 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1936 }
1937 return false;
1938 }
1939 }
1940
1941 return true;
1942}
1943
1944/// Check that the given field is initialized within a constexpr constructor.
1945///
1946/// \param Dcl The constexpr constructor being checked.
1947/// \param Field The field being checked. This may be a member of an anonymous
1948/// struct or union nested within the class being checked.
1949/// \param Inits All declarations, including anonymous struct/union members and
1950/// indirect members, for which any initialization was provided.
1951/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1952/// multiple notes for different members to the same error.
1953/// \param Kind Whether we're diagnosing a constructor as written or determining
1954/// whether the formal requirements are satisfied.
1955/// \return \c false if we're checking for validity and the constructor does
1956/// not satisfy the requirements on a constexpr constructor.
1957static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1958 const FunctionDecl *Dcl,
1959 FieldDecl *Field,
1960 llvm::SmallSet<Decl*, 16> &Inits,
1961 bool &Diagnosed,
1962 Sema::CheckConstexprKind Kind) {
1963 // In C++20 onwards, there's nothing to check for validity.
1964 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1965 SemaRef.getLangOpts().CPlusPlus20)
1966 return true;
1967
1968 if (Field->isInvalidDecl())
1969 return true;
1970
1971 if (Field->isUnnamedBitfield())
1972 return true;
1973
1974 // Anonymous unions with no variant members and empty anonymous structs do not
1975 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1976 // indirect fields don't need initializing.
1977 if (Field->isAnonymousStructOrUnion() &&
1978 (Field->getType()->isUnionType()
1979 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1980 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1981 return true;
1982
1983 if (!Inits.count(Field)) {
1984 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1985 if (!Diagnosed) {
1986 SemaRef.Diag(Dcl->getLocation(),
1987 SemaRef.getLangOpts().CPlusPlus20
1988 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1989 : diag::ext_constexpr_ctor_missing_init);
1990 Diagnosed = true;
1991 }
1992 SemaRef.Diag(Field->getLocation(),
1993 diag::note_constexpr_ctor_missing_init);
1994 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
1995 return false;
1996 }
1997 } else if (Field->isAnonymousStructOrUnion()) {
1998 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1999 for (auto *I : RD->fields())
2000 // If an anonymous union contains an anonymous struct of which any member
2001 // is initialized, all members must be initialized.
2002 if (!RD->isUnion() || Inits.count(I))
2003 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2004 Kind))
2005 return false;
2006 }
2007 return true;
2008}
2009
2010/// Check the provided statement is allowed in a constexpr function
2011/// definition.
2012static bool
2013CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
2014 SmallVectorImpl<SourceLocation> &ReturnStmts,
2015 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
2016 Sema::CheckConstexprKind Kind) {
2017 // - its function-body shall be [...] a compound-statement that contains only
2018 switch (S->getStmtClass()) {
2019 case Stmt::NullStmtClass:
2020 // - null statements,
2021 return true;
2022
2023 case Stmt::DeclStmtClass:
2024 // - static_assert-declarations
2025 // - using-declarations,
2026 // - using-directives,
2027 // - typedef declarations and alias-declarations that do not define
2028 // classes or enumerations,
2029 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
2030 return false;
2031 return true;
2032
2033 case Stmt::ReturnStmtClass:
2034 // - and exactly one return statement;
2035 if (isa<CXXConstructorDecl>(Dcl)) {
2036 // C++1y allows return statements in constexpr constructors.
2037 if (!Cxx1yLoc.isValid())
2038 Cxx1yLoc = S->getBeginLoc();
2039 return true;
2040 }
2041
2042 ReturnStmts.push_back(S->getBeginLoc());
2043 return true;
2044
2045 case Stmt::CompoundStmtClass: {
2046 // C++1y allows compound-statements.
2047 if (!Cxx1yLoc.isValid())
2048 Cxx1yLoc = S->getBeginLoc();
2049
2050 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
2051 for (auto *BodyIt : CompStmt->body()) {
2052 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
2053 Cxx1yLoc, Cxx2aLoc, Kind))
2054 return false;
2055 }
2056 return true;
2057 }
2058
2059 case Stmt::AttributedStmtClass:
2060 if (!Cxx1yLoc.isValid())
2061 Cxx1yLoc = S->getBeginLoc();
2062 return true;
2063
2064 case Stmt::IfStmtClass: {
2065 // C++1y allows if-statements.
2066 if (!Cxx1yLoc.isValid())
2067 Cxx1yLoc = S->getBeginLoc();
2068
2069 IfStmt *If = cast<IfStmt>(S);
2070 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2071 Cxx1yLoc, Cxx2aLoc, Kind))
2072 return false;
2073 if (If->getElse() &&
2074 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2075 Cxx1yLoc, Cxx2aLoc, Kind))
2076 return false;
2077 return true;
2078 }
2079
2080 case Stmt::WhileStmtClass:
2081 case Stmt::DoStmtClass:
2082 case Stmt::ForStmtClass:
2083 case Stmt::CXXForRangeStmtClass:
2084 case Stmt::ContinueStmtClass:
2085 // C++1y allows all of these. We don't allow them as extensions in C++11,
2086 // because they don't make sense without variable mutation.
2087 if (!SemaRef.getLangOpts().CPlusPlus14)
2088 break;
2089 if (!Cxx1yLoc.isValid())
2090 Cxx1yLoc = S->getBeginLoc();
2091 for (Stmt *SubStmt : S->children())
2092 if (SubStmt &&
2093 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2094 Cxx1yLoc, Cxx2aLoc, Kind))
2095 return false;
2096 return true;
2097
2098 case Stmt::SwitchStmtClass:
2099 case Stmt::CaseStmtClass:
2100 case Stmt::DefaultStmtClass:
2101 case Stmt::BreakStmtClass:
2102 // C++1y allows switch-statements, and since they don't need variable
2103 // mutation, we can reasonably allow them in C++11 as an extension.
2104 if (!Cxx1yLoc.isValid())
2105 Cxx1yLoc = S->getBeginLoc();
2106 for (Stmt *SubStmt : S->children())
2107 if (SubStmt &&
2108 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2109 Cxx1yLoc, Cxx2aLoc, Kind))
2110 return false;
2111 return true;
2112
2113 case Stmt::GCCAsmStmtClass:
2114 case Stmt::MSAsmStmtClass:
2115 // C++2a allows inline assembly statements.
2116 case Stmt::CXXTryStmtClass:
2117 if (Cxx2aLoc.isInvalid())
2118 Cxx2aLoc = S->getBeginLoc();
2119 for (Stmt *SubStmt : S->children()) {
2120 if (SubStmt &&
2121 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2122 Cxx1yLoc, Cxx2aLoc, Kind))
2123 return false;
2124 }
2125 return true;
2126
2127 case Stmt::CXXCatchStmtClass:
2128 // Do not bother checking the language mode (already covered by the
2129 // try block check).
2130 if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2131 cast<CXXCatchStmt>(S)->getHandlerBlock(),
2132 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2133 return false;
2134 return true;
2135
2136 default:
2137 if (!isa<Expr>(S))
2138 break;
2139
2140 // C++1y allows expression-statements.
2141 if (!Cxx1yLoc.isValid())
2142 Cxx1yLoc = S->getBeginLoc();
2143 return true;
2144 }
2145
2146 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2147 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2148 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2149 }
2150 return false;
2151}
2152
2153/// Check the body for the given constexpr function declaration only contains
2154/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2155///
2156/// \return true if the body is OK, false if we have found or diagnosed a
2157/// problem.
2158static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2159 Stmt *Body,
2160 Sema::CheckConstexprKind Kind) {
2161 SmallVector<SourceLocation, 4> ReturnStmts;
2162
2163 if (isa<CXXTryStmt>(Body)) {
2164 // C++11 [dcl.constexpr]p3:
2165 // The definition of a constexpr function shall satisfy the following
2166 // constraints: [...]
2167 // - its function-body shall be = delete, = default, or a
2168 // compound-statement
2169 //
2170 // C++11 [dcl.constexpr]p4:
2171 // In the definition of a constexpr constructor, [...]
2172 // - its function-body shall not be a function-try-block;
2173 //
2174 // This restriction is lifted in C++2a, as long as inner statements also
2175 // apply the general constexpr rules.
2176 switch (Kind) {
2177 case Sema::CheckConstexprKind::CheckValid:
2178 if (!SemaRef.getLangOpts().CPlusPlus20)
2179 return false;
2180 break;
2181
2182 case Sema::CheckConstexprKind::Diagnose:
2183 SemaRef.Diag(Body->getBeginLoc(),
2184 !SemaRef.getLangOpts().CPlusPlus20
2185 ? diag::ext_constexpr_function_try_block_cxx20
2186 : diag::warn_cxx17_compat_constexpr_function_try_block)
2187 << isa<CXXConstructorDecl>(Dcl);
2188 break;
2189 }
2190 }
2191
2192 // - its function-body shall be [...] a compound-statement that contains only
2193 // [... list of cases ...]
2194 //
2195 // Note that walking the children here is enough to properly check for
2196 // CompoundStmt and CXXTryStmt body.
2197 SourceLocation Cxx1yLoc, Cxx2aLoc;
2198 for (Stmt *SubStmt : Body->children()) {
2199 if (SubStmt &&
2200 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2201 Cxx1yLoc, Cxx2aLoc, Kind))
2202 return false;
2203 }
2204
2205 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2206 // If this is only valid as an extension, report that we don't satisfy the
2207 // constraints of the current language.
2208 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus20) ||
2209 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2210 return false;
2211 } else if (Cxx2aLoc.isValid()) {
2212 SemaRef.Diag(Cxx2aLoc,
2213 SemaRef.getLangOpts().CPlusPlus20
2214 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2215 : diag::ext_constexpr_body_invalid_stmt_cxx20)
2216 << isa<CXXConstructorDecl>(Dcl);
2217 } else if (Cxx1yLoc.isValid()) {
2218 SemaRef.Diag(Cxx1yLoc,
2219 SemaRef.getLangOpts().CPlusPlus14
2220 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2221 : diag::ext_constexpr_body_invalid_stmt)
2222 << isa<CXXConstructorDecl>(Dcl);
2223 }
2224
2225 if (const CXXConstructorDecl *Constructor
2226 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2227 const CXXRecordDecl *RD = Constructor->getParent();
2228 // DR1359:
2229 // - every non-variant non-static data member and base class sub-object
2230 // shall be initialized;
2231 // DR1460:
2232 // - if the class is a union having variant members, exactly one of them
2233 // shall be initialized;
2234 if (RD->isUnion()) {
2235 if (Constructor->getNumCtorInitializers() == 0 &&
2236 RD->hasVariantMembers()) {
2237 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2238 SemaRef.Diag(
2239 Dcl->getLocation(),
2240 SemaRef.getLangOpts().CPlusPlus20
2241 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2242 : diag::ext_constexpr_union_ctor_no_init);
2243 } else if (!SemaRef.getLangOpts().CPlusPlus20) {
2244 return false;
2245 }
2246 }
2247 } else if (!Constructor->isDependentContext() &&
2248 !Constructor->isDelegatingConstructor()) {
2249 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"
) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2249, __PRETTY_FUNCTION__))
;
2250
2251 // Skip detailed checking if we have enough initializers, and we would
2252 // allow at most one initializer per member.
2253 bool AnyAnonStructUnionMembers = false;
2254 unsigned Fields = 0;
2255 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2256 E = RD->field_end(); I != E; ++I, ++Fields) {
2257 if (I->isAnonymousStructOrUnion()) {
2258 AnyAnonStructUnionMembers = true;
2259 break;
2260 }
2261 }
2262 // DR1460:
2263 // - if the class is a union-like class, but is not a union, for each of
2264 // its anonymous union members having variant members, exactly one of
2265 // them shall be initialized;
2266 if (AnyAnonStructUnionMembers ||
2267 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2268 // Check initialization of non-static data members. Base classes are
2269 // always initialized so do not need to be checked. Dependent bases
2270 // might not have initializers in the member initializer list.
2271 llvm::SmallSet<Decl*, 16> Inits;
2272 for (const auto *I: Constructor->inits()) {
2273 if (FieldDecl *FD = I->getMember())
2274 Inits.insert(FD);
2275 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2276 Inits.insert(ID->chain_begin(), ID->chain_end());
2277 }
2278
2279 bool Diagnosed = false;
2280 for (auto *I : RD->fields())
2281 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2282 Kind))
2283 return false;
2284 }
2285 }
2286 } else {
2287 if (ReturnStmts.empty()) {
2288 // C++1y doesn't require constexpr functions to contain a 'return'
2289 // statement. We still do, unless the return type might be void, because
2290 // otherwise if there's no return statement, the function cannot
2291 // be used in a core constant expression.
2292 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2293 (Dcl->getReturnType()->isVoidType() ||
2294 Dcl->getReturnType()->isDependentType());
2295 switch (Kind) {
2296 case Sema::CheckConstexprKind::Diagnose:
2297 SemaRef.Diag(Dcl->getLocation(),
2298 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2299 : diag::err_constexpr_body_no_return)
2300 << Dcl->isConsteval();
2301 if (!OK)
2302 return false;
2303 break;
2304
2305 case Sema::CheckConstexprKind::CheckValid:
2306 // The formal requirements don't include this rule in C++14, even
2307 // though the "must be able to produce a constant expression" rules
2308 // still imply it in some cases.
2309 if (!SemaRef.getLangOpts().CPlusPlus14)
2310 return false;
2311 break;
2312 }
2313 } else if (ReturnStmts.size() > 1) {
2314 switch (Kind) {
2315 case Sema::CheckConstexprKind::Diagnose:
2316 SemaRef.Diag(
2317 ReturnStmts.back(),
2318 SemaRef.getLangOpts().CPlusPlus14
2319 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2320 : diag::ext_constexpr_body_multiple_return);
2321 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2322 SemaRef.Diag(ReturnStmts[I],
2323 diag::note_constexpr_body_previous_return);
2324 break;
2325
2326 case Sema::CheckConstexprKind::CheckValid:
2327 if (!SemaRef.getLangOpts().CPlusPlus14)
2328 return false;
2329 break;
2330 }
2331 }
2332 }
2333
2334 // C++11 [dcl.constexpr]p5:
2335 // if no function argument values exist such that the function invocation
2336 // substitution would produce a constant expression, the program is
2337 // ill-formed; no diagnostic required.
2338 // C++11 [dcl.constexpr]p3:
2339 // - every constructor call and implicit conversion used in initializing the
2340 // return value shall be one of those allowed in a constant expression.
2341 // C++11 [dcl.constexpr]p4:
2342 // - every constructor involved in initializing non-static data members and
2343 // base class sub-objects shall be a constexpr constructor.
2344 //
2345 // Note that this rule is distinct from the "requirements for a constexpr
2346 // function", so is not checked in CheckValid mode.
2347 SmallVector<PartialDiagnosticAt, 8> Diags;
2348 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2349 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2350 SemaRef.Diag(Dcl->getLocation(),
2351 diag::ext_constexpr_function_never_constant_expr)
2352 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2353 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2354 SemaRef.Diag(Diags[I].first, Diags[I].second);
2355 // Don't return false here: we allow this for compatibility in
2356 // system headers.
2357 }
2358
2359 return true;
2360}
2361
2362/// Get the class that is directly named by the current context. This is the
2363/// class for which an unqualified-id in this scope could name a constructor
2364/// or destructor.
2365///
2366/// If the scope specifier denotes a class, this will be that class.
2367/// If the scope specifier is empty, this will be the class whose
2368/// member-specification we are currently within. Otherwise, there
2369/// is no such class.
2370CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2371 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2371, __PRETTY_FUNCTION__))
;
2372
2373 if (SS && SS->isInvalid())
2374 return nullptr;
2375
2376 if (SS && SS->isNotEmpty()) {
2377 DeclContext *DC = computeDeclContext(*SS, true);
2378 return dyn_cast_or_null<CXXRecordDecl>(DC);
2379 }
2380
2381 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2382}
2383
2384/// isCurrentClassName - Determine whether the identifier II is the
2385/// name of the class type currently being defined. In the case of
2386/// nested classes, this will only return true if II is the name of
2387/// the innermost class.
2388bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2389 const CXXScopeSpec *SS) {
2390 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2391 return CurDecl && &II == CurDecl->getIdentifier();
2392}
2393
2394/// Determine whether the identifier II is a typo for the name of
2395/// the class type currently being defined. If so, update it to the identifier
2396/// that should have been used.
2397bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2398 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2398, __PRETTY_FUNCTION__))
;
2399
2400 if (!getLangOpts().SpellChecking)
2401 return false;
2402
2403 CXXRecordDecl *CurDecl;
2404 if (SS && SS->isSet() && !SS->isInvalid()) {
2405 DeclContext *DC = computeDeclContext(*SS, true);
2406 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2407 } else
2408 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2409
2410 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2411 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2412 < II->getLength()) {
2413 II = CurDecl->getIdentifier();
2414 return true;
2415 }
2416
2417 return false;
2418}
2419
2420/// Determine whether the given class is a base class of the given
2421/// class, including looking at dependent bases.
2422static bool findCircularInheritance(const CXXRecordDecl *Class,
2423 const CXXRecordDecl *Current) {
2424 SmallVector<const CXXRecordDecl*, 8> Queue;
2425
2426 Class = Class->getCanonicalDecl();
2427 while (true) {
2428 for (const auto &I : Current->bases()) {
2429 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2430 if (!Base)
2431 continue;
2432
2433 Base = Base->getDefinition();
2434 if (!Base)
2435 continue;
2436
2437 if (Base->getCanonicalDecl() == Class)
2438 return true;
2439
2440 Queue.push_back(Base);
2441 }
2442
2443 if (Queue.empty())
2444 return false;
2445
2446 Current = Queue.pop_back_val();
2447 }
2448
2449 return false;
2450}
2451
2452/// Check the validity of a C++ base class specifier.
2453///
2454/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2455/// and returns NULL otherwise.
2456CXXBaseSpecifier *
2457Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2458 SourceRange SpecifierRange,
2459 bool Virtual, AccessSpecifier Access,
2460 TypeSourceInfo *TInfo,
2461 SourceLocation EllipsisLoc) {
2462 QualType BaseType = TInfo->getType();
2463 if (BaseType->containsErrors()) {
2464 // Already emitted a diagnostic when parsing the error type.
2465 return nullptr;
2466 }
2467 // C++ [class.union]p1:
2468 // A union shall not have base classes.
2469 if (Class->isUnion()) {
2470 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2471 << SpecifierRange;
2472 return nullptr;
2473 }
2474
2475 if (EllipsisLoc.isValid() &&
2476 !TInfo->getType()->containsUnexpandedParameterPack()) {
2477 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2478 << TInfo->getTypeLoc().getSourceRange();
2479 EllipsisLoc = SourceLocation();
2480 }
2481
2482 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2483
2484 if (BaseType->isDependentType()) {
2485 // Make sure that we don't have circular inheritance among our dependent
2486 // bases. For non-dependent bases, the check for completeness below handles
2487 // this.
2488 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2489 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2490 ((BaseDecl = BaseDecl->getDefinition()) &&
2491 findCircularInheritance(Class, BaseDecl))) {
2492 Diag(BaseLoc, diag::err_circular_inheritance)
2493 << BaseType << Context.getTypeDeclType(Class);
2494
2495 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2496 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2497 << BaseType;
2498
2499 return nullptr;
2500 }
2501 }
2502
2503 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2504 Class->getTagKind() == TTK_Class,
2505 Access, TInfo, EllipsisLoc);
2506 }
2507
2508 // Base specifiers must be record types.
2509 if (!BaseType->isRecordType()) {
2510 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2511 return nullptr;
2512 }
2513
2514 // C++ [class.union]p1:
2515 // A union shall not be used as a base class.
2516 if (BaseType->isUnionType()) {
2517 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2518 return nullptr;
2519 }
2520
2521 // For the MS ABI, propagate DLL attributes to base class templates.
2522 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2523 if (Attr *ClassAttr = getDLLAttr(Class)) {
2524 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2525 BaseType->getAsCXXRecordDecl())) {
2526 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2527 BaseLoc);
2528 }
2529 }
2530 }
2531
2532 // C++ [class.derived]p2:
2533 // The class-name in a base-specifier shall not be an incompletely
2534 // defined class.
2535 if (RequireCompleteType(BaseLoc, BaseType,
2536 diag::err_incomplete_base_class, SpecifierRange)) {
2537 Class->setInvalidDecl();
2538 return nullptr;
2539 }
2540
2541 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2542 RecordDecl *BaseDecl = BaseType->castAs<RecordType>()->getDecl();
2543 assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast
<void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2543, __PRETTY_FUNCTION__))
;
2544 BaseDecl = BaseDecl->getDefinition();
2545 assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition"
) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2545, __PRETTY_FUNCTION__))
;
2546 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2547 assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast
<void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2547, __PRETTY_FUNCTION__))
;
2548
2549 // Microsoft docs say:
2550 // "If a base-class has a code_seg attribute, derived classes must have the
2551 // same attribute."
2552 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2553 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2554 if ((DerivedCSA || BaseCSA) &&
2555 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2556 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2557 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2558 << CXXBaseDecl;
2559 return nullptr;
2560 }
2561
2562 // A class which contains a flexible array member is not suitable for use as a
2563 // base class:
2564 // - If the layout determines that a base comes before another base,
2565 // the flexible array member would index into the subsequent base.
2566 // - If the layout determines that base comes before the derived class,
2567 // the flexible array member would index into the derived class.
2568 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2569 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2570 << CXXBaseDecl->getDeclName();
2571 return nullptr;
2572 }
2573
2574 // C++ [class]p3:
2575 // If a class is marked final and it appears as a base-type-specifier in
2576 // base-clause, the program is ill-formed.
2577 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2578 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2579 << CXXBaseDecl->getDeclName()
2580 << FA->isSpelledAsSealed();
2581 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2582 << CXXBaseDecl->getDeclName() << FA->getRange();
2583 return nullptr;
2584 }
2585
2586 if (BaseDecl->isInvalidDecl())
2587 Class->setInvalidDecl();
2588
2589 // Create the base specifier.
2590 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2591 Class->getTagKind() == TTK_Class,
2592 Access, TInfo, EllipsisLoc);
2593}
2594
2595/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2596/// one entry in the base class list of a class specifier, for
2597/// example:
2598/// class foo : public bar, virtual private baz {
2599/// 'public bar' and 'virtual private baz' are each base-specifiers.
2600BaseResult
2601Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2602 ParsedAttributes &Attributes,
2603 bool Virtual, AccessSpecifier Access,
2604 ParsedType basetype, SourceLocation BaseLoc,
2605 SourceLocation EllipsisLoc) {
2606 if (!classdecl)
2607 return true;
2608
2609 AdjustDeclIfTemplate(classdecl);
2610 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2611 if (!Class)
2612 return true;
2613
2614 // We haven't yet attached the base specifiers.
2615 Class->setIsParsingBaseSpecifiers();
2616
2617 // We do not support any C++11 attributes on base-specifiers yet.
2618 // Diagnose any attributes we see.
2619 for (const ParsedAttr &AL : Attributes) {
2620 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2621 continue;
2622 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2623 ? (unsigned)diag::warn_unknown_attribute_ignored
2624 : (unsigned)diag::err_base_specifier_attribute)
2625 << AL << AL.getRange();
2626 }
2627
2628 TypeSourceInfo *TInfo = nullptr;
2629 GetTypeFromParser(basetype, &TInfo);
2630
2631 if (EllipsisLoc.isInvalid() &&
2632 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2633 UPPC_BaseType))
2634 return true;
2635
2636 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2637 Virtual, Access, TInfo,
2638 EllipsisLoc))
2639 return BaseSpec;
2640 else
2641 Class->setInvalidDecl();
2642
2643 return true;
2644}
2645
2646/// Use small set to collect indirect bases. As this is only used
2647/// locally, there's no need to abstract the small size parameter.
2648typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2649
2650/// Recursively add the bases of Type. Don't add Type itself.
2651static void
2652NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2653 const QualType &Type)
2654{
2655 // Even though the incoming type is a base, it might not be
2656 // a class -- it could be a template parm, for instance.
2657 if (auto Rec = Type->getAs<RecordType>()) {
2658 auto Decl = Rec->getAsCXXRecordDecl();
2659
2660 // Iterate over its bases.
2661 for (const auto &BaseSpec : Decl->bases()) {
2662 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2663 .getUnqualifiedType();
2664 if (Set.insert(Base).second)
2665 // If we've not already seen it, recurse.
2666 NoteIndirectBases(Context, Set, Base);
2667 }
2668 }
2669}
2670
2671/// Performs the actual work of attaching the given base class
2672/// specifiers to a C++ class.
2673bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2674 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2675 if (Bases.empty())
2676 return false;
2677
2678 // Used to keep track of which base types we have already seen, so
2679 // that we can properly diagnose redundant direct base types. Note
2680 // that the key is always the unqualified canonical type of the base
2681 // class.
2682 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2683
2684 // Used to track indirect bases so we can see if a direct base is
2685 // ambiguous.
2686 IndirectBaseSet IndirectBaseTypes;
2687
2688 // Copy non-redundant base specifiers into permanent storage.
2689 unsigned NumGoodBases = 0;
2690 bool Invalid = false;
2691 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2692 QualType NewBaseType
2693 = Context.getCanonicalType(Bases[idx]->getType());
2694 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2695
2696 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2697 if (KnownBase) {
2698 // C++ [class.mi]p3:
2699 // A class shall not be specified as a direct base class of a
2700 // derived class more than once.
2701 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2702 << KnownBase->getType() << Bases[idx]->getSourceRange();
2703
2704 // Delete the duplicate base class specifier; we're going to
2705 // overwrite its pointer later.
2706 Context.Deallocate(Bases[idx]);
2707
2708 Invalid = true;
2709 } else {
2710 // Okay, add this new base class.
2711 KnownBase = Bases[idx];
2712 Bases[NumGoodBases++] = Bases[idx];
2713
2714 // Note this base's direct & indirect bases, if there could be ambiguity.
2715 if (Bases.size() > 1)
2716 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2717
2718 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2719 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2720 if (Class->isInterface() &&
2721 (!RD->isInterfaceLike() ||
2722 KnownBase->getAccessSpecifier() != AS_public)) {
2723 // The Microsoft extension __interface does not permit bases that
2724 // are not themselves public interfaces.
2725 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2726 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2727 << RD->getSourceRange();
2728 Invalid = true;
2729 }
2730 if (RD->hasAttr<WeakAttr>())
2731 Class->addAttr(WeakAttr::CreateImplicit(Context));
2732 }
2733 }
2734 }
2735
2736 // Attach the remaining base class specifiers to the derived class.
2737 Class->setBases(Bases.data(), NumGoodBases);
2738
2739 // Check that the only base classes that are duplicate are virtual.
2740 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2741 // Check whether this direct base is inaccessible due to ambiguity.
2742 QualType BaseType = Bases[idx]->getType();
2743
2744 // Skip all dependent types in templates being used as base specifiers.
2745 // Checks below assume that the base specifier is a CXXRecord.
2746 if (BaseType->isDependentType())
2747 continue;
2748
2749 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2750 .getUnqualifiedType();
2751
2752 if (IndirectBaseTypes.count(CanonicalBase)) {
2753 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2754 /*DetectVirtual=*/true);
2755 bool found
2756 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2757 assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2757, __PRETTY_FUNCTION__))
;
2758 (void)found;
2759
2760 if (Paths.isAmbiguous(CanonicalBase))
2761 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2762 << BaseType << getAmbiguousPathsDisplayString(Paths)
2763 << Bases[idx]->getSourceRange();
2764 else
2765 assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) :
__assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2765, __PRETTY_FUNCTION__))
;
2766 }
2767
2768 // Delete the base class specifier, since its data has been copied
2769 // into the CXXRecordDecl.
2770 Context.Deallocate(Bases[idx]);
2771 }
2772
2773 return Invalid;
2774}
2775
2776/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2777/// class, after checking whether there are any duplicate base
2778/// classes.
2779void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2780 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2781 if (!ClassDecl || Bases.empty())
2782 return;
2783
2784 AdjustDeclIfTemplate(ClassDecl);
2785 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2786}
2787
2788/// Determine whether the type \p Derived is a C++ class that is
2789/// derived from the type \p Base.
2790bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2791 if (!getLangOpts().CPlusPlus)
2792 return false;
2793
2794 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2795 if (!DerivedRD)
2796 return false;
2797
2798 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2799 if (!BaseRD)
2800 return false;
2801
2802 // If either the base or the derived type is invalid, don't try to
2803 // check whether one is derived from the other.
2804 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2805 return false;
2806
2807 // FIXME: In a modules build, do we need the entire path to be visible for us
2808 // to be able to use the inheritance relationship?
2809 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2810 return false;
2811
2812 return DerivedRD->isDerivedFrom(BaseRD);
2813}
2814
2815/// Determine whether the type \p Derived is a C++ class that is
2816/// derived from the type \p Base.
2817bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2818 CXXBasePaths &Paths) {
2819 if (!getLangOpts().CPlusPlus)
2820 return false;
2821
2822 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2823 if (!DerivedRD)
2824 return false;
2825
2826 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2827 if (!BaseRD)
2828 return false;
2829
2830 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2831 return false;
2832
2833 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2834}
2835
2836static void BuildBasePathArray(const CXXBasePath &Path,
2837 CXXCastPath &BasePathArray) {
2838 // We first go backward and check if we have a virtual base.
2839 // FIXME: It would be better if CXXBasePath had the base specifier for
2840 // the nearest virtual base.
2841 unsigned Start = 0;
2842 for (unsigned I = Path.size(); I != 0; --I) {
2843 if (Path[I - 1].Base->isVirtual()) {
2844 Start = I - 1;
2845 break;
2846 }
2847 }
2848
2849 // Now add all bases.
2850 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2851 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2852}
2853
2854
2855void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2856 CXXCastPath &BasePathArray) {
2857 assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!"
) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2857, __PRETTY_FUNCTION__))
;
2858 assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ?
static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2858, __PRETTY_FUNCTION__))
;
2859 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2860}
2861/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2862/// conversion (where Derived and Base are class types) is
2863/// well-formed, meaning that the conversion is unambiguous (and
2864/// that all of the base classes are accessible). Returns true
2865/// and emits a diagnostic if the code is ill-formed, returns false
2866/// otherwise. Loc is the location where this routine should point to
2867/// if there is an error, and Range is the source range to highlight
2868/// if there is an error.
2869///
2870/// If either InaccessibleBaseID or AmbiguousBaseConvID are 0, then the
2871/// diagnostic for the respective type of error will be suppressed, but the
2872/// check for ill-formed code will still be performed.
2873bool
2874Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2875 unsigned InaccessibleBaseID,
2876 unsigned AmbiguousBaseConvID,
2877 SourceLocation Loc, SourceRange Range,
2878 DeclarationName Name,
2879 CXXCastPath *BasePath,
2880 bool IgnoreAccess) {
2881 // First, determine whether the path from Derived to Base is
2882 // ambiguous. This is slightly more expensive than checking whether
2883 // the Derived to Base conversion exists, because here we need to
2884 // explore multiple paths to determine if there is an ambiguity.
2885 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2886 /*DetectVirtual=*/false);
2887 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2888 if (!DerivationOkay)
2889 return true;
2890
2891 const CXXBasePath *Path = nullptr;
2892 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2893 Path = &Paths.front();
2894
2895 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2896 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2897 // user to access such bases.
2898 if (!Path && getLangOpts().MSVCCompat) {
2899 for (const CXXBasePath &PossiblePath : Paths) {
2900 if (PossiblePath.size() == 1) {
2901 Path = &PossiblePath;
2902 if (AmbiguousBaseConvID)
2903 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2904 << Base << Derived << Range;
2905 break;
2906 }
2907 }
2908 }
2909
2910 if (Path) {
2911 if (!IgnoreAccess) {
2912 // Check that the base class can be accessed.
2913 switch (
2914 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2915 case AR_inaccessible:
2916 return true;
2917 case AR_accessible:
2918 case AR_dependent:
2919 case AR_delayed:
2920 break;
2921 }
2922 }
2923
2924 // Build a base path if necessary.
2925 if (BasePath)
2926 ::BuildBasePathArray(*Path, *BasePath);
2927 return false;
2928 }
2929
2930 if (AmbiguousBaseConvID) {
2931 // We know that the derived-to-base conversion is ambiguous, and
2932 // we're going to produce a diagnostic. Perform the derived-to-base
2933 // search just one more time to compute all of the possible paths so
2934 // that we can print them out. This is more expensive than any of
2935 // the previous derived-to-base checks we've done, but at this point
2936 // performance isn't as much of an issue.
2937 Paths.clear();
2938 Paths.setRecordingPaths(true);
2939 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2940 assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 2940, __PRETTY_FUNCTION__))
;
2941 (void)StillOkay;
2942
2943 // Build up a textual representation of the ambiguous paths, e.g.,
2944 // D -> B -> A, that will be used to illustrate the ambiguous
2945 // conversions in the diagnostic. We only print one of the paths
2946 // to each base class subobject.
2947 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2948
2949 Diag(Loc, AmbiguousBaseConvID)
2950 << Derived << Base << PathDisplayStr << Range << Name;
2951 }
2952 return true;
2953}
2954
2955bool
2956Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2957 SourceLocation Loc, SourceRange Range,
2958 CXXCastPath *BasePath,
2959 bool IgnoreAccess) {
2960 return CheckDerivedToBaseConversion(
2961 Derived, Base, diag::err_upcast_to_inaccessible_base,
2962 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2963 BasePath, IgnoreAccess);
2964}
2965
2966
2967/// Builds a string representing ambiguous paths from a
2968/// specific derived class to different subobjects of the same base
2969/// class.
2970///
2971/// This function builds a string that can be used in error messages
2972/// to show the different paths that one can take through the
2973/// inheritance hierarchy to go from the derived class to different
2974/// subobjects of a base class. The result looks something like this:
2975/// @code
2976/// struct D -> struct B -> struct A
2977/// struct D -> struct C -> struct A
2978/// @endcode
2979std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2980 std::string PathDisplayStr;
2981 std::set<unsigned> DisplayedPaths;
2982 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2983 Path != Paths.end(); ++Path) {
2984 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2985 // We haven't displayed a path to this particular base
2986 // class subobject yet.
2987 PathDisplayStr += "\n ";
2988 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2989 for (CXXBasePath::const_iterator Element = Path->begin();
2990 Element != Path->end(); ++Element)
2991 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2992 }
2993 }
2994
2995 return PathDisplayStr;
2996}
2997
2998//===----------------------------------------------------------------------===//
2999// C++ class member Handling
3000//===----------------------------------------------------------------------===//
3001
3002/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
3003bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
3004 SourceLocation ColonLoc,
3005 const ParsedAttributesView &Attrs) {
3006 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3006, __PRETTY_FUNCTION__))
;
3007 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
3008 ASLoc, ColonLoc);
3009 CurContext->addHiddenDecl(ASDecl);
3010 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
3011}
3012
3013/// CheckOverrideControl - Check C++11 override control semantics.
3014void Sema::CheckOverrideControl(NamedDecl *D) {
3015 if (D->isInvalidDecl())
3016 return;
3017
3018 // We only care about "override" and "final" declarations.
3019 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
3020 return;
3021
3022 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3023
3024 // We can't check dependent instance methods.
3025 if (MD && MD->isInstance() &&
3026 (MD->getParent()->hasAnyDependentBases() ||
3027 MD->getType()->isDependentType()))
3028 return;
3029
3030 if (MD && !MD->isVirtual()) {
3031 // If we have a non-virtual method, check if if hides a virtual method.
3032 // (In that case, it's most likely the method has the wrong type.)
3033 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
3034 FindHiddenVirtualMethods(MD, OverloadedMethods);
3035
3036 if (!OverloadedMethods.empty()) {
3037 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3038 Diag(OA->getLocation(),
3039 diag::override_keyword_hides_virtual_member_function)
3040 << "override" << (OverloadedMethods.size() > 1);
3041 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3042 Diag(FA->getLocation(),
3043 diag::override_keyword_hides_virtual_member_function)
3044 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3045 << (OverloadedMethods.size() > 1);
3046 }
3047 NoteHiddenVirtualMethods(MD, OverloadedMethods);
3048 MD->setInvalidDecl();
3049 return;
3050 }
3051 // Fall through into the general case diagnostic.
3052 // FIXME: We might want to attempt typo correction here.
3053 }
3054
3055 if (!MD || !MD->isVirtual()) {
3056 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
3057 Diag(OA->getLocation(),
3058 diag::override_keyword_only_allowed_on_virtual_member_functions)
3059 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3060 D->dropAttr<OverrideAttr>();
3061 }
3062 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3063 Diag(FA->getLocation(),
3064 diag::override_keyword_only_allowed_on_virtual_member_functions)
3065 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3066 << FixItHint::CreateRemoval(FA->getLocation());
3067 D->dropAttr<FinalAttr>();
3068 }
3069 return;
3070 }
3071
3072 // C++11 [class.virtual]p5:
3073 // If a function is marked with the virt-specifier override and
3074 // does not override a member function of a base class, the program is
3075 // ill-formed.
3076 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3077 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3078 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3079 << MD->getDeclName();
3080}
3081
3082void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D, bool Inconsistent) {
3083 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3084 return;
3085 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3086 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3087 return;
3088
3089 SourceLocation Loc = MD->getLocation();
3090 SourceLocation SpellingLoc = Loc;
3091 if (getSourceManager().isMacroArgExpansion(Loc))
3092 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3093 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3094 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3095 return;
3096
3097 if (MD->size_overridden_methods() > 0) {
3098 auto EmitDiag = [&](unsigned DiagInconsistent, unsigned DiagSuggest) {
3099 unsigned DiagID =
3100 Inconsistent && !Diags.isIgnored(DiagInconsistent, MD->getLocation())
3101 ? DiagInconsistent
3102 : DiagSuggest;
3103 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3104 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3105 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3106 };
3107 if (isa<CXXDestructorDecl>(MD))
3108 EmitDiag(
3109 diag::warn_inconsistent_destructor_marked_not_override_overriding,
3110 diag::warn_suggest_destructor_marked_not_override_overriding);
3111 else
3112 EmitDiag(diag::warn_inconsistent_function_marked_not_override_overriding,
3113 diag::warn_suggest_function_marked_not_override_overriding);
3114 }
3115}
3116
3117/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3118/// function overrides a virtual member function marked 'final', according to
3119/// C++11 [class.virtual]p4.
3120bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3121 const CXXMethodDecl *Old) {
3122 FinalAttr *FA = Old->getAttr<FinalAttr>();
3123 if (!FA)
3124 return false;
3125
3126 Diag(New->getLocation(), diag::err_final_function_overridden)
3127 << New->getDeclName()
3128 << FA->isSpelledAsSealed();
3129 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3130 return true;
3131}
3132
3133static bool InitializationHasSideEffects(const FieldDecl &FD) {
3134 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3135 // FIXME: Destruction of ObjC lifetime types has side-effects.
3136 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3137 return !RD->isCompleteDefinition() ||
3138 !RD->hasTrivialDefaultConstructor() ||
3139 !RD->hasTrivialDestructor();
3140 return false;
3141}
3142
3143static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3144 ParsedAttributesView::const_iterator Itr =
3145 llvm::find_if(list, [](const ParsedAttr &AL) {
3146 return AL.isDeclspecPropertyAttribute();
3147 });
3148 if (Itr != list.end())
3149 return &*Itr;
3150 return nullptr;
3151}
3152
3153// Check if there is a field shadowing.
3154void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3155 DeclarationName FieldName,
3156 const CXXRecordDecl *RD,
3157 bool DeclIsField) {
3158 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3159 return;
3160
3161 // To record a shadowed field in a base
3162 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3163 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3164 CXXBasePath &Path) {
3165 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3166 // Record an ambiguous path directly
3167 if (Bases.find(Base) != Bases.end())
3168 return true;
3169 for (const auto Field : Base->lookup(FieldName)) {
3170 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3171 Field->getAccess() != AS_private) {
3172 assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void>
(0) : __assert_fail ("Field->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3172, __PRETTY_FUNCTION__))
;
3173 assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> (
0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3173, __PRETTY_FUNCTION__))
;
3174 Bases[Base] = Field;
3175 return true;
3176 }
3177 }
3178 return false;
3179 };
3180
3181 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3182 /*DetectVirtual=*/true);
3183 if (!RD->lookupInBases(FieldShadowed, Paths))
3184 return;
3185
3186 for (const auto &P : Paths) {
3187 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3188 auto It = Bases.find(Base);
3189 // Skip duplicated bases
3190 if (It == Bases.end())
3191 continue;
3192 auto BaseField = It->second;
3193 assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void
> (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3193, __PRETTY_FUNCTION__))
;
3194 if (AS_none !=
3195 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3196 Diag(Loc, diag::warn_shadow_field)
3197 << FieldName << RD << Base << DeclIsField;
3198 Diag(BaseField->getLocation(), diag::note_shadow_field);
3199 Bases.erase(It);
3200 }
3201 }
3202}
3203
3204/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3205/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3206/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3207/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3208/// present (but parsing it has been deferred).
3209NamedDecl *
3210Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3211 MultiTemplateParamsArg TemplateParameterLists,
3212 Expr *BW, const VirtSpecifiers &VS,
3213 InClassInitStyle InitStyle) {
3214 const DeclSpec &DS = D.getDeclSpec();
3215 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3216 DeclarationName Name = NameInfo.getName();
3217 SourceLocation Loc = NameInfo.getLoc();
3218
3219 // For anonymous bitfields, the location should point to the type.
3220 if (Loc.isInvalid())
3221 Loc = D.getBeginLoc();
3222
3223 Expr *BitWidth = static_cast<Expr*>(BW);
3224
3225 assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void
> (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3225, __PRETTY_FUNCTION__))
;
3226 assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3226, __PRETTY_FUNCTION__))
;
3227
3228 bool isFunc = D.isDeclarationOfFunction();
3229 const ParsedAttr *MSPropertyAttr =
3230 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3231
3232 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3233 // The Microsoft extension __interface only permits public member functions
3234 // and prohibits constructors, destructors, operators, non-public member
3235 // functions, static methods and data members.
3236 unsigned InvalidDecl;
3237 bool ShowDeclName = true;
3238 if (!isFunc &&
3239 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3240 InvalidDecl = 0;
3241 else if (!isFunc)
3242 InvalidDecl = 1;
3243 else if (AS != AS_public)
3244 InvalidDecl = 2;
3245 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3246 InvalidDecl = 3;
3247 else switch (Name.getNameKind()) {
3248 case DeclarationName::CXXConstructorName:
3249 InvalidDecl = 4;
3250 ShowDeclName = false;
3251 break;
3252
3253 case DeclarationName::CXXDestructorName:
3254 InvalidDecl = 5;
3255 ShowDeclName = false;
3256 break;
3257
3258 case DeclarationName::CXXOperatorName:
3259 case DeclarationName::CXXConversionFunctionName:
3260 InvalidDecl = 6;
3261 break;
3262
3263 default:
3264 InvalidDecl = 0;
3265 break;
3266 }
3267
3268 if (InvalidDecl) {
3269 if (ShowDeclName)
3270 Diag(Loc, diag::err_invalid_member_in_interface)
3271 << (InvalidDecl-1) << Name;
3272 else
3273 Diag(Loc, diag::err_invalid_member_in_interface)
3274 << (InvalidDecl-1) << "";
3275 return nullptr;
3276 }
3277 }
3278
3279 // C++ 9.2p6: A member shall not be declared to have automatic storage
3280 // duration (auto, register) or with the extern storage-class-specifier.
3281 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3282 // data members and cannot be applied to names declared const or static,
3283 // and cannot be applied to reference members.
3284 switch (DS.getStorageClassSpec()) {
3285 case DeclSpec::SCS_unspecified:
3286 case DeclSpec::SCS_typedef:
3287 case DeclSpec::SCS_static:
3288 break;
3289 case DeclSpec::SCS_mutable:
3290 if (isFunc) {
3291 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3292
3293 // FIXME: It would be nicer if the keyword was ignored only for this
3294 // declarator. Otherwise we could get follow-up errors.
3295 D.getMutableDeclSpec().ClearStorageClassSpecs();
3296 }
3297 break;
3298 default:
3299 Diag(DS.getStorageClassSpecLoc(),
3300 diag::err_storageclass_invalid_for_member);
3301 D.getMutableDeclSpec().ClearStorageClassSpecs();
3302 break;
3303 }
3304
3305 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3306 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3307 !isFunc);
3308
3309 if (DS.hasConstexprSpecifier() && isInstField) {
3310 SemaDiagnosticBuilder B =
3311 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3312 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3313 if (InitStyle == ICIS_NoInit) {
3314 B << 0 << 0;
3315 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3316 B << FixItHint::CreateRemoval(ConstexprLoc);
3317 else {
3318 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3319 D.getMutableDeclSpec().ClearConstexprSpec();
3320 const char *PrevSpec;
3321 unsigned DiagID;
3322 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3323 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3324 (void)Failed;
3325 assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail"
) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3325, __PRETTY_FUNCTION__))
;
3326 }
3327 } else {
3328 B << 1;
3329 const char *PrevSpec;
3330 unsigned DiagID;
3331 if (D.getMutableDeclSpec().SetStorageClassSpec(
3332 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3333 Context.getPrintingPolicy())) {
3334 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3335, __PRETTY_FUNCTION__))
3335 "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3335, __PRETTY_FUNCTION__))
;
3336 B << 1;
3337 } else {
3338 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3339 isInstField = false;
3340 }
3341 }
3342 }
3343
3344 NamedDecl *Member;
3345 if (isInstField) {
3346 CXXScopeSpec &SS = D.getCXXScopeSpec();
3347
3348 // Data members must have identifiers for names.
3349 if (!Name.isIdentifier()) {
3350 Diag(Loc, diag::err_bad_variable_name)
3351 << Name;
3352 return nullptr;
3353 }
3354
3355 IdentifierInfo *II = Name.getAsIdentifierInfo();
3356
3357 // Member field could not be with "template" keyword.
3358 // So TemplateParameterLists should be empty in this case.
3359 if (TemplateParameterLists.size()) {
3360 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3361 if (TemplateParams->size()) {
3362 // There is no such thing as a member field template.
3363 Diag(D.getIdentifierLoc(), diag::err_template_member)
3364 << II
3365 << SourceRange(TemplateParams->getTemplateLoc(),
3366 TemplateParams->getRAngleLoc());
3367 } else {
3368 // There is an extraneous 'template<>' for this member.
3369 Diag(TemplateParams->getTemplateLoc(),
3370 diag::err_template_member_noparams)
3371 << II
3372 << SourceRange(TemplateParams->getTemplateLoc(),
3373 TemplateParams->getRAngleLoc());
3374 }
3375 return nullptr;
3376 }
3377
3378 if (SS.isSet() && !SS.isInvalid()) {
3379 // The user provided a superfluous scope specifier inside a class
3380 // definition:
3381 //
3382 // class X {
3383 // int X::member;
3384 // };
3385 if (DeclContext *DC = computeDeclContext(SS, false))
3386 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3387 D.getName().getKind() ==
3388 UnqualifiedIdKind::IK_TemplateId);
3389 else
3390 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3391 << Name << SS.getRange();
3392
3393 SS.clear();
3394 }
3395
3396 if (MSPropertyAttr) {
3397 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3398 BitWidth, InitStyle, AS, *MSPropertyAttr);
3399 if (!Member)
3400 return nullptr;
3401 isInstField = false;
3402 } else {
3403 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3404 BitWidth, InitStyle, AS);
3405 if (!Member)
3406 return nullptr;
3407 }
3408
3409 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3410 } else {
3411 Member = HandleDeclarator(S, D, TemplateParameterLists);
3412 if (!Member)
3413 return nullptr;
3414
3415 // Non-instance-fields can't have a bitfield.
3416 if (BitWidth) {
3417 if (Member->isInvalidDecl()) {
3418 // don't emit another diagnostic.
3419 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3420 // C++ 9.6p3: A bit-field shall not be a static member.
3421 // "static member 'A' cannot be a bit-field"
3422 Diag(Loc, diag::err_static_not_bitfield)
3423 << Name << BitWidth->getSourceRange();
3424 } else if (isa<TypedefDecl>(Member)) {
3425 // "typedef member 'x' cannot be a bit-field"
3426 Diag(Loc, diag::err_typedef_not_bitfield)
3427 << Name << BitWidth->getSourceRange();
3428 } else {
3429 // A function typedef ("typedef int f(); f a;").
3430 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3431 Diag(Loc, diag::err_not_integral_type_bitfield)
3432 << Name << cast<ValueDecl>(Member)->getType()
3433 << BitWidth->getSourceRange();
3434 }
3435
3436 BitWidth = nullptr;
3437 Member->setInvalidDecl();
3438 }
3439
3440 NamedDecl *NonTemplateMember = Member;
3441 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3442 NonTemplateMember = FunTmpl->getTemplatedDecl();
3443 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3444 NonTemplateMember = VarTmpl->getTemplatedDecl();
3445
3446 Member->setAccess(AS);
3447
3448 // If we have declared a member function template or static data member
3449 // template, set the access of the templated declaration as well.
3450 if (NonTemplateMember != Member)
3451 NonTemplateMember->setAccess(AS);
3452
3453 // C++ [temp.deduct.guide]p3:
3454 // A deduction guide [...] for a member class template [shall be
3455 // declared] with the same access [as the template].
3456 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3457 auto *TD = DG->getDeducedTemplate();
3458 // Access specifiers are only meaningful if both the template and the
3459 // deduction guide are from the same scope.
3460 if (AS != TD->getAccess() &&
3461 TD->getDeclContext()->getRedeclContext()->Equals(
3462 DG->getDeclContext()->getRedeclContext())) {
3463 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3464 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3465 << TD->getAccess();
3466 const AccessSpecDecl *LastAccessSpec = nullptr;
3467 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3468 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3469 LastAccessSpec = AccessSpec;
3470 }
3471 assert(LastAccessSpec && "differing access with no access specifier")((LastAccessSpec && "differing access with no access specifier"
) ? static_cast<void> (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3471, __PRETTY_FUNCTION__))
;
3472 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3473 << AS;
3474 }
3475 }
3476 }
3477
3478 if (VS.isOverrideSpecified())
3479 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3480 AttributeCommonInfo::AS_Keyword));
3481 if (VS.isFinalSpecified())
3482 Member->addAttr(FinalAttr::Create(
3483 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3484 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3485
3486 if (VS.getLastLocation().isValid()) {
3487 // Update the end location of a method that has a virt-specifiers.
3488 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3489 MD->setRangeEnd(VS.getLastLocation());
3490 }
3491
3492 CheckOverrideControl(Member);
3493
3494 assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?"
) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3494, __PRETTY_FUNCTION__))
;
3495
3496 if (isInstField) {
3497 FieldDecl *FD = cast<FieldDecl>(Member);
3498 FieldCollector->Add(FD);
3499
3500 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3501 // Remember all explicit private FieldDecls that have a name, no side
3502 // effects and are not part of a dependent type declaration.
3503 if (!FD->isImplicit() && FD->getDeclName() &&
3504 FD->getAccess() == AS_private &&
3505 !FD->hasAttr<UnusedAttr>() &&
3506 !FD->getParent()->isDependentContext() &&
3507 !InitializationHasSideEffects(*FD))
3508 UnusedPrivateFields.insert(FD);
3509 }
3510 }
3511
3512 return Member;
3513}
3514
3515namespace {
3516 class UninitializedFieldVisitor
3517 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3518 Sema &S;
3519 // List of Decls to generate a warning on. Also remove Decls that become
3520 // initialized.
3521 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3522 // List of base classes of the record. Classes are removed after their
3523 // initializers.
3524 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3525 // Vector of decls to be removed from the Decl set prior to visiting the
3526 // nodes. These Decls may have been initialized in the prior initializer.
3527 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3528 // If non-null, add a note to the warning pointing back to the constructor.
3529 const CXXConstructorDecl *Constructor;
3530 // Variables to hold state when processing an initializer list. When
3531 // InitList is true, special case initialization of FieldDecls matching
3532 // InitListFieldDecl.
3533 bool InitList;
3534 FieldDecl *InitListFieldDecl;
3535 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3536
3537 public:
3538 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3539 UninitializedFieldVisitor(Sema &S,
3540 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3541 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3542 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3543 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3544
3545 // Returns true if the use of ME is not an uninitialized use.
3546 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3547 bool CheckReferenceOnly) {
3548 llvm::SmallVector<FieldDecl*, 4> Fields;
3549 bool ReferenceField = false;
3550 while (ME) {
3551 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3552 if (!FD)
3553 return false;
3554 Fields.push_back(FD);
3555 if (FD->getType()->isReferenceType())
3556 ReferenceField = true;
3557 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3558 }
3559
3560 // Binding a reference to an uninitialized field is not an
3561 // uninitialized use.
3562 if (CheckReferenceOnly && !ReferenceField)
3563 return true;
3564
3565 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3566 // Discard the first field since it is the field decl that is being
3567 // initialized.
3568 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3569 UsedFieldIndex.push_back((*I)->getFieldIndex());
3570 }
3571
3572 for (auto UsedIter = UsedFieldIndex.begin(),
3573 UsedEnd = UsedFieldIndex.end(),
3574 OrigIter = InitFieldIndex.begin(),
3575 OrigEnd = InitFieldIndex.end();
3576 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3577 if (*UsedIter < *OrigIter)
3578 return true;
3579 if (*UsedIter > *OrigIter)
3580 break;
3581 }
3582
3583 return false;
3584 }
3585
3586 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3587 bool AddressOf) {
3588 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3589 return;
3590
3591 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3592 // or union.
3593 MemberExpr *FieldME = ME;
3594
3595 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3596
3597 Expr *Base = ME;
3598 while (MemberExpr *SubME =
3599 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3600
3601 if (isa<VarDecl>(SubME->getMemberDecl()))
3602 return;
3603
3604 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3605 if (!FD->isAnonymousStructOrUnion())
3606 FieldME = SubME;
3607
3608 if (!FieldME->getType().isPODType(S.Context))
3609 AllPODFields = false;
3610
3611 Base = SubME->getBase();
3612 }
3613
3614 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts())) {
3615 Visit(Base);
3616 return;
3617 }
3618
3619 if (AddressOf && AllPODFields)
3620 return;
3621
3622 ValueDecl* FoundVD = FieldME->getMemberDecl();
3623
3624 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3625 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3626 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3627 }
3628
3629 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3630 QualType T = BaseCast->getType();
3631 if (T->isPointerType() &&
3632 BaseClasses.count(T->getPointeeType())) {
3633 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3634 << T->getPointeeType() << FoundVD;
3635 }
3636 }
3637 }
3638
3639 if (!Decls.count(FoundVD))
3640 return;
3641
3642 const bool IsReference = FoundVD->getType()->isReferenceType();
3643
3644 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3645 // Special checking for initializer lists.
3646 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3647 return;
3648 }
3649 } else {
3650 // Prevent double warnings on use of unbounded references.
3651 if (CheckReferenceOnly && !IsReference)
3652 return;
3653 }
3654
3655 unsigned diag = IsReference
3656 ? diag::warn_reference_field_is_uninit
3657 : diag::warn_field_is_uninit;
3658 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3659 if (Constructor)
3660 S.Diag(Constructor->getLocation(),
3661 diag::note_uninit_in_this_constructor)
3662 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3663
3664 }
3665
3666 void HandleValue(Expr *E, bool AddressOf) {
3667 E = E->IgnoreParens();
3668
3669 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3670 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3671 AddressOf /*AddressOf*/);
3672 return;
3673 }
3674
3675 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3676 Visit(CO->getCond());
3677 HandleValue(CO->getTrueExpr(), AddressOf);
3678 HandleValue(CO->getFalseExpr(), AddressOf);
3679 return;
3680 }
3681
3682 if (BinaryConditionalOperator *BCO =
3683 dyn_cast<BinaryConditionalOperator>(E)) {
3684 Visit(BCO->getCond());
3685 HandleValue(BCO->getFalseExpr(), AddressOf);
3686 return;
3687 }
3688
3689 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3690 HandleValue(OVE->getSourceExpr(), AddressOf);
3691 return;
3692 }
3693
3694 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3695 switch (BO->getOpcode()) {
3696 default:
3697 break;
3698 case(BO_PtrMemD):
3699 case(BO_PtrMemI):
3700 HandleValue(BO->getLHS(), AddressOf);
3701 Visit(BO->getRHS());
3702 return;
3703 case(BO_Comma):
3704 Visit(BO->getLHS());
3705 HandleValue(BO->getRHS(), AddressOf);
3706 return;
3707 }
3708 }
3709
3710 Visit(E);
3711 }
3712
3713 void CheckInitListExpr(InitListExpr *ILE) {
3714 InitFieldIndex.push_back(0);
3715 for (auto Child : ILE->children()) {
3716 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3717 CheckInitListExpr(SubList);
3718 } else {
3719 Visit(Child);
3720 }
3721 ++InitFieldIndex.back();
3722 }
3723 InitFieldIndex.pop_back();
3724 }
3725
3726 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3727 FieldDecl *Field, const Type *BaseClass) {
3728 // Remove Decls that may have been initialized in the previous
3729 // initializer.
3730 for (ValueDecl* VD : DeclsToRemove)
3731 Decls.erase(VD);
3732 DeclsToRemove.clear();
3733
3734 Constructor = FieldConstructor;
3735 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3736
3737 if (ILE && Field) {
3738 InitList = true;
3739 InitListFieldDecl = Field;
3740 InitFieldIndex.clear();
3741 CheckInitListExpr(ILE);
3742 } else {
3743 InitList = false;
3744 Visit(E);
3745 }
3746
3747 if (Field)
3748 Decls.erase(Field);
3749 if (BaseClass)
3750 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3751 }
3752
3753 void VisitMemberExpr(MemberExpr *ME) {
3754 // All uses of unbounded reference fields will warn.
3755 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3756 }
3757
3758 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3759 if (E->getCastKind() == CK_LValueToRValue) {
3760 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3761 return;
3762 }
3763
3764 Inherited::VisitImplicitCastExpr(E);
3765 }
3766
3767 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3768 if (E->getConstructor()->isCopyConstructor()) {
3769 Expr *ArgExpr = E->getArg(0);
3770 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3771 if (ILE->getNumInits() == 1)
3772 ArgExpr = ILE->getInit(0);
3773 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3774 if (ICE->getCastKind() == CK_NoOp)
3775 ArgExpr = ICE->getSubExpr();
3776 HandleValue(ArgExpr, false /*AddressOf*/);
3777 return;
3778 }
3779 Inherited::VisitCXXConstructExpr(E);
3780 }
3781
3782 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3783 Expr *Callee = E->getCallee();
3784 if (isa<MemberExpr>(Callee)) {
3785 HandleValue(Callee, false /*AddressOf*/);
3786 for (auto Arg : E->arguments())
3787 Visit(Arg);
3788 return;
3789 }
3790
3791 Inherited::VisitCXXMemberCallExpr(E);
3792 }
3793
3794 void VisitCallExpr(CallExpr *E) {
3795 // Treat std::move as a use.
3796 if (E->isCallToStdMove()) {
3797 HandleValue(E->getArg(0), /*AddressOf=*/false);
3798 return;
3799 }
3800
3801 Inherited::VisitCallExpr(E);
3802 }
3803
3804 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3805 Expr *Callee = E->getCallee();
3806
3807 if (isa<UnresolvedLookupExpr>(Callee))
3808 return Inherited::VisitCXXOperatorCallExpr(E);
3809
3810 Visit(Callee);
3811 for (auto Arg : E->arguments())
3812 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3813 }
3814
3815 void VisitBinaryOperator(BinaryOperator *E) {
3816 // If a field assignment is detected, remove the field from the
3817 // uninitiailized field set.
3818 if (E->getOpcode() == BO_Assign)
3819 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3820 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3821 if (!FD->getType()->isReferenceType())
3822 DeclsToRemove.push_back(FD);
3823
3824 if (E->isCompoundAssignmentOp()) {
3825 HandleValue(E->getLHS(), false /*AddressOf*/);
3826 Visit(E->getRHS());
3827 return;
3828 }
3829
3830 Inherited::VisitBinaryOperator(E);
3831 }
3832
3833 void VisitUnaryOperator(UnaryOperator *E) {
3834 if (E->isIncrementDecrementOp()) {
3835 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3836 return;
3837 }
3838 if (E->getOpcode() == UO_AddrOf) {
3839 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3840 HandleValue(ME->getBase(), true /*AddressOf*/);
3841 return;
3842 }
3843 }
3844
3845 Inherited::VisitUnaryOperator(E);
3846 }
3847 };
3848
3849 // Diagnose value-uses of fields to initialize themselves, e.g.
3850 // foo(foo)
3851 // where foo is not also a parameter to the constructor.
3852 // Also diagnose across field uninitialized use such as
3853 // x(y), y(x)
3854 // TODO: implement -Wuninitialized and fold this into that framework.
3855 static void DiagnoseUninitializedFields(
3856 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3857
3858 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3859 Constructor->getLocation())) {
3860 return;
3861 }
3862
3863 if (Constructor->isInvalidDecl())
3864 return;
3865
3866 const CXXRecordDecl *RD = Constructor->getParent();
3867
3868 if (RD->isDependentContext())
3869 return;
3870
3871 // Holds fields that are uninitialized.
3872 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3873
3874 // At the beginning, all fields are uninitialized.
3875 for (auto *I : RD->decls()) {
3876 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3877 UninitializedFields.insert(FD);
3878 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3879 UninitializedFields.insert(IFD->getAnonField());
3880 }
3881 }
3882
3883 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3884 for (auto I : RD->bases())
3885 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3886
3887 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3888 return;
3889
3890 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3891 UninitializedFields,
3892 UninitializedBaseClasses);
3893
3894 for (const auto *FieldInit : Constructor->inits()) {
3895 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3896 break;
3897
3898 Expr *InitExpr = FieldInit->getInit();
3899 if (!InitExpr)
3900 continue;
3901
3902 if (CXXDefaultInitExpr *Default =
3903 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3904 InitExpr = Default->getExpr();
3905 if (!InitExpr)
3906 continue;
3907 // In class initializers will point to the constructor.
3908 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3909 FieldInit->getAnyMember(),
3910 FieldInit->getBaseClass());
3911 } else {
3912 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3913 FieldInit->getAnyMember(),
3914 FieldInit->getBaseClass());
3915 }
3916 }
3917 }
3918} // namespace
3919
3920/// Enter a new C++ default initializer scope. After calling this, the
3921/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3922/// parsing or instantiating the initializer failed.
3923void Sema::ActOnStartCXXInClassMemberInitializer() {
3924 // Create a synthetic function scope to represent the call to the constructor
3925 // that notionally surrounds a use of this initializer.
3926 PushFunctionScope();
3927}
3928
3929void Sema::ActOnStartTrailingRequiresClause(Scope *S, Declarator &D) {
3930 if (!D.isFunctionDeclarator())
3931 return;
3932 auto &FTI = D.getFunctionTypeInfo();
3933 if (!FTI.Params)
3934 return;
3935 for (auto &Param : ArrayRef<DeclaratorChunk::ParamInfo>(FTI.Params,
3936 FTI.NumParams)) {
3937 auto *ParamDecl = cast<NamedDecl>(Param.Param);
3938 if (ParamDecl->getDeclName())
3939 PushOnScopeChains(ParamDecl, S, /*AddToContext=*/false);
3940 }
3941}
3942
3943ExprResult Sema::ActOnFinishTrailingRequiresClause(ExprResult ConstraintExpr) {
3944 return ActOnRequiresClause(ConstraintExpr);
3945}
3946
3947ExprResult Sema::ActOnRequiresClause(ExprResult ConstraintExpr) {
3948 if (ConstraintExpr.isInvalid())
3949 return ExprError();
3950
3951 ConstraintExpr = CorrectDelayedTyposInExpr(ConstraintExpr);
3952 if (ConstraintExpr.isInvalid())
3953 return ExprError();
3954
3955 if (DiagnoseUnexpandedParameterPack(ConstraintExpr.get(),
3956 UPPC_RequiresClause))
3957 return ExprError();
3958
3959 return ConstraintExpr;
3960}
3961
3962/// This is invoked after parsing an in-class initializer for a
3963/// non-static C++ class member, and after instantiating an in-class initializer
3964/// in a class template. Such actions are deferred until the class is complete.
3965void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3966 SourceLocation InitLoc,
3967 Expr *InitExpr) {
3968 // Pop the notional constructor scope we created earlier.
3969 PopFunctionScopeInfo(nullptr, D);
3970
3971 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3972 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3973, __PRETTY_FUNCTION__))
3973 "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 3973, __PRETTY_FUNCTION__))
;
3974
3975 if (!InitExpr) {
3976 D->setInvalidDecl();
3977 if (FD)
3978 FD->removeInClassInitializer();
3979 return;
3980 }
3981
3982 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3983 FD->setInvalidDecl();
3984 FD->removeInClassInitializer();
3985 return;
3986 }
3987
3988 ExprResult Init = InitExpr;
3989 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3990 InitializedEntity Entity =
3991 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
3992 InitializationKind Kind =
3993 FD->getInClassInitStyle() == ICIS_ListInit
3994 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
3995 InitExpr->getBeginLoc(),
3996 InitExpr->getEndLoc())
3997 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
3998 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3999 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
4000 if (Init.isInvalid()) {
4001 FD->setInvalidDecl();
4002 return;
4003 }
4004 }
4005
4006 // C++11 [class.base.init]p7:
4007 // The initialization of each base and member constitutes a
4008 // full-expression.
4009 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
4010 if (Init.isInvalid()) {
4011 FD->setInvalidDecl();
4012 return;
4013 }
4014
4015 InitExpr = Init.get();
4016
4017 FD->setInClassInitializer(InitExpr);
4018}
4019
4020/// Find the direct and/or virtual base specifiers that
4021/// correspond to the given base type, for use in base initialization
4022/// within a constructor.
4023static bool FindBaseInitializer(Sema &SemaRef,
4024 CXXRecordDecl *ClassDecl,
4025 QualType BaseType,
4026 const CXXBaseSpecifier *&DirectBaseSpec,
4027 const CXXBaseSpecifier *&VirtualBaseSpec) {
4028 // First, check for a direct base class.
4029 DirectBaseSpec = nullptr;
4030 for (const auto &Base : ClassDecl->bases()) {
4031 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
4032 // We found a direct base of this type. That's what we're
4033 // initializing.
4034 DirectBaseSpec = &Base;
4035 break;
4036 }
4037 }
4038
4039 // Check for a virtual base class.
4040 // FIXME: We might be able to short-circuit this if we know in advance that
4041 // there are no virtual bases.
4042 VirtualBaseSpec = nullptr;
4043 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
4044 // We haven't found a base yet; search the class hierarchy for a
4045 // virtual base class.
4046 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
4047 /*DetectVirtual=*/false);
4048 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
4049 SemaRef.Context.getTypeDeclType(ClassDecl),
4050 BaseType, Paths)) {
4051 for (CXXBasePaths::paths_iterator Path = Paths.begin();
4052 Path != Paths.end(); ++Path) {
4053 if (Path->back().Base->isVirtual()) {
4054 VirtualBaseSpec = Path->back().Base;
4055 break;
4056 }
4057 }
4058 }
4059 }
4060
4061 return DirectBaseSpec || VirtualBaseSpec;
4062}
4063
4064/// Handle a C++ member initializer using braced-init-list syntax.
4065MemInitResult
4066Sema::ActOnMemInitializer(Decl *ConstructorD,
4067 Scope *S,
4068 CXXScopeSpec &SS,
4069 IdentifierInfo *MemberOrBase,
4070 ParsedType TemplateTypeTy,
4071 const DeclSpec &DS,
4072 SourceLocation IdLoc,
4073 Expr *InitList,
4074 SourceLocation EllipsisLoc) {
4075 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4076 DS, IdLoc, InitList,
4077 EllipsisLoc);
4078}
4079
4080/// Handle a C++ member initializer using parentheses syntax.
4081MemInitResult
4082Sema::ActOnMemInitializer(Decl *ConstructorD,
4083 Scope *S,
4084 CXXScopeSpec &SS,
4085 IdentifierInfo *MemberOrBase,
4086 ParsedType TemplateTypeTy,
4087 const DeclSpec &DS,
4088 SourceLocation IdLoc,
4089 SourceLocation LParenLoc,
4090 ArrayRef<Expr *> Args,
4091 SourceLocation RParenLoc,
4092 SourceLocation EllipsisLoc) {
4093 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
4094 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
4095 DS, IdLoc, List, EllipsisLoc);
4096}
4097
4098namespace {
4099
4100// Callback to only accept typo corrections that can be a valid C++ member
4101// intializer: either a non-static field member or a base class.
4102class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
4103public:
4104 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4105 : ClassDecl(ClassDecl) {}
4106
4107 bool ValidateCandidate(const TypoCorrection &candidate) override {
4108 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4109 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4110 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4111 return isa<TypeDecl>(ND);
4112 }
4113 return false;
4114 }
4115
4116 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4117 return std::make_unique<MemInitializerValidatorCCC>(*this);
4118 }
4119
4120private:
4121 CXXRecordDecl *ClassDecl;
4122};
4123
4124}
4125
4126ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4127 CXXScopeSpec &SS,
4128 ParsedType TemplateTypeTy,
4129 IdentifierInfo *MemberOrBase) {
4130 if (SS.getScopeRep() || TemplateTypeTy)
4131 return nullptr;
4132 for (auto *D : ClassDecl->lookup(MemberOrBase))
4133 if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D))
4134 return cast<ValueDecl>(D);
4135 return nullptr;
4136}
4137
4138/// Handle a C++ member initializer.
4139MemInitResult
4140Sema::BuildMemInitializer(Decl *ConstructorD,
4141 Scope *S,
4142 CXXScopeSpec &SS,
4143 IdentifierInfo *MemberOrBase,
4144 ParsedType TemplateTypeTy,
4145 const DeclSpec &DS,
4146 SourceLocation IdLoc,
4147 Expr *Init,
4148 SourceLocation EllipsisLoc) {
4149 ExprResult Res = CorrectDelayedTyposInExpr(Init);
4150 if (!Res.isUsable())
4151 return true;
4152 Init = Res.get();
4153
4154 if (!ConstructorD)
4155 return true;
4156
4157 AdjustDeclIfTemplate(ConstructorD);
4158
4159 CXXConstructorDecl *Constructor
4160 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4161 if (!Constructor) {
4162 // The user wrote a constructor initializer on a function that is
4163 // not a C++ constructor. Ignore the error for now, because we may
4164 // have more member initializers coming; we'll diagnose it just
4165 // once in ActOnMemInitializers.
4166 return true;
4167 }
4168
4169 CXXRecordDecl *ClassDecl = Constructor->getParent();
4170
4171 // C++ [class.base.init]p2:
4172 // Names in a mem-initializer-id are looked up in the scope of the
4173 // constructor's class and, if not found in that scope, are looked
4174 // up in the scope containing the constructor's definition.
4175 // [Note: if the constructor's class contains a member with the
4176 // same name as a direct or virtual base class of the class, a
4177 // mem-initializer-id naming the member or base class and composed
4178 // of a single identifier refers to the class member. A
4179 // mem-initializer-id for the hidden base class may be specified
4180 // using a qualified name. ]
4181
4182 // Look for a member, first.
4183 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4184 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4185 if (EllipsisLoc.isValid())
4186 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4187 << MemberOrBase
4188 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4189
4190 return BuildMemberInitializer(Member, Init, IdLoc);
4191 }
4192 // It didn't name a member, so see if it names a class.
4193 QualType BaseType;
4194 TypeSourceInfo *TInfo = nullptr;
4195
4196 if (TemplateTypeTy) {
4197 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4198 if (BaseType.isNull())
4199 return true;
4200 } else if (DS.getTypeSpecType() == TST_decltype) {
4201 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4202 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4203 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4204 return true;
4205 } else {
4206 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4207 LookupParsedName(R, S, &SS);
4208
4209 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4210 if (!TyD) {
4211 if (R.isAmbiguous()) return true;
4212
4213 // We don't want access-control diagnostics here.
4214 R.suppressDiagnostics();
4215
4216 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4217 bool NotUnknownSpecialization = false;
4218 DeclContext *DC = computeDeclContext(SS, false);
4219 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4220 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4221
4222 if (!NotUnknownSpecialization) {
4223 // When the scope specifier can refer to a member of an unknown
4224 // specialization, we take it as a type name.
4225 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4226 SS.getWithLocInContext(Context),
4227 *MemberOrBase, IdLoc);
4228 if (BaseType.isNull())
4229 return true;
4230
4231 TInfo = Context.CreateTypeSourceInfo(BaseType);
4232 DependentNameTypeLoc TL =
4233 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4234 if (!TL.isNull()) {
4235 TL.setNameLoc(IdLoc);
4236 TL.setElaboratedKeywordLoc(SourceLocation());
4237 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4238 }
4239
4240 R.clear();
4241 R.setLookupName(MemberOrBase);
4242 }
4243 }
4244
4245 // If no results were found, try to correct typos.
4246 TypoCorrection Corr;
4247 MemInitializerValidatorCCC CCC(ClassDecl);
4248 if (R.empty() && BaseType.isNull() &&
4249 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4250 CCC, CTK_ErrorRecovery, ClassDecl))) {
4251 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4252 // We have found a non-static data member with a similar
4253 // name to what was typed; complain and initialize that
4254 // member.
4255 diagnoseTypo(Corr,
4256 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4257 << MemberOrBase << true);
4258 return BuildMemberInitializer(Member, Init, IdLoc);
4259 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4260 const CXXBaseSpecifier *DirectBaseSpec;
4261 const CXXBaseSpecifier *VirtualBaseSpec;
4262 if (FindBaseInitializer(*this, ClassDecl,
4263 Context.getTypeDeclType(Type),
4264 DirectBaseSpec, VirtualBaseSpec)) {
4265 // We have found a direct or virtual base class with a
4266 // similar name to what was typed; complain and initialize
4267 // that base class.
4268 diagnoseTypo(Corr,
4269 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4270 << MemberOrBase << false,
4271 PDiag() /*Suppress note, we provide our own.*/);
4272
4273 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4274 : VirtualBaseSpec;
4275 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4276 << BaseSpec->getType() << BaseSpec->getSourceRange();
4277
4278 TyD = Type;
4279 }
4280 }
4281 }
4282
4283 if (!TyD && BaseType.isNull()) {
4284 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4285 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4286 return true;
4287 }
4288 }
4289
4290 if (BaseType.isNull()) {
4291 BaseType = Context.getTypeDeclType(TyD);
4292 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4293 if (SS.isSet()) {
4294 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4295 BaseType);
4296 TInfo = Context.CreateTypeSourceInfo(BaseType);
4297 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4298 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4299 TL.setElaboratedKeywordLoc(SourceLocation());
4300 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4301 }
4302 }
4303 }
4304
4305 if (!TInfo)
4306 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4307
4308 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4309}
4310
4311MemInitResult
4312Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4313 SourceLocation IdLoc) {
4314 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4315 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4316 assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 4317, __PRETTY_FUNCTION__))
4317 "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 4317, __PRETTY_FUNCTION__))
;
4318
4319 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4320 return true;
4321
4322 if (Member->isInvalidDecl())
4323 return true;
4324
4325 MultiExprArg Args;
4326 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4327 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4328 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4329 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4330 } else {
4331 // Template instantiation doesn't reconstruct ParenListExprs for us.
4332 Args = Init;
4333 }
4334
4335 SourceRange InitRange = Init->getSourceRange();
4336
4337 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4338 // Can't check initialization for a member of dependent type or when
4339 // any of the arguments are type-dependent expressions.
4340 DiscardCleanupsInEvaluationContext();
4341 } else {
4342 bool InitList = false;
4343 if (isa<InitListExpr>(Init)) {
4344 InitList = true;
4345 Args = Init;
4346 }
4347
4348 // Initialize the member.
4349 InitializedEntity MemberEntity =
4350 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4351 : InitializedEntity::InitializeMember(IndirectMember,
4352 nullptr);
4353 InitializationKind Kind =
4354 InitList ? InitializationKind::CreateDirectList(
4355 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4356 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4357 InitRange.getEnd());
4358
4359 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4360 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4361 nullptr);
4362 if (MemberInit.isInvalid())
4363 return true;
4364
4365 // C++11 [class.base.init]p7:
4366 // The initialization of each base and member constitutes a
4367 // full-expression.
4368 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4369 /*DiscardedValue*/ false);
4370 if (MemberInit.isInvalid())
4371 return true;
4372
4373 Init = MemberInit.get();
4374 }
4375
4376 if (DirectMember) {
4377 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4378 InitRange.getBegin(), Init,
4379 InitRange.getEnd());
4380 } else {
4381 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4382 InitRange.getBegin(), Init,
4383 InitRange.getEnd());
4384 }
4385}
4386
4387MemInitResult
4388Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4389 CXXRecordDecl *ClassDecl) {
4390 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4391 if (!LangOpts.CPlusPlus11)
4392 return Diag(NameLoc, diag::err_delegating_ctor)
4393 << TInfo->getTypeLoc().getLocalSourceRange();
4394 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4395
4396 bool InitList = true;
4397 MultiExprArg Args = Init;
4398 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4399 InitList = false;
4400 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4401 }
4402
4403 SourceRange InitRange = Init->getSourceRange();
4404 // Initialize the object.
4405 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4406 QualType(ClassDecl->getTypeForDecl(), 0));
4407 InitializationKind Kind =
4408 InitList ? InitializationKind::CreateDirectList(
4409 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4410 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4411 InitRange.getEnd());
4412 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4413 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4414 Args, nullptr);
4415 if (DelegationInit.isInvalid())
4416 return true;
4417
4418 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 4419, __PRETTY_FUNCTION__))
4419 "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 4419, __PRETTY_FUNCTION__))
;
4420
4421 // C++11 [class.base.init]p7:
4422 // The initialization of each base and member constitutes a
4423 // full-expression.
4424 DelegationInit = ActOnFinishFullExpr(
4425 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4426 if (DelegationInit.isInvalid())
4427 return true;
4428
4429 // If we are in a dependent context, template instantiation will
4430 // perform this type-checking again. Just save the arguments that we
4431 // received in a ParenListExpr.
4432 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4433 // of the information that we have about the base
4434 // initializer. However, deconstructing the ASTs is a dicey process,
4435 // and this approach is far more likely to get the corner cases right.
4436 if (CurContext->isDependentContext())
4437 DelegationInit = Init;
4438
4439 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4440 DelegationInit.getAs<Expr>(),
4441 InitRange.getEnd());
4442}
4443
4444MemInitResult
4445Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4446 Expr *Init, CXXRecordDecl *ClassDecl,
4447 SourceLocation EllipsisLoc) {
4448 SourceLocation BaseLoc
4449 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4450
4451 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4452 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4453 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4454
4455 // C++ [class.base.init]p2:
4456 // [...] Unless the mem-initializer-id names a nonstatic data
4457 // member of the constructor's class or a direct or virtual base
4458 // of that class, the mem-initializer is ill-formed. A
4459 // mem-initializer-list can initialize a base class using any
4460 // name that denotes that base class type.
4461 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4462
4463 SourceRange InitRange = Init->getSourceRange();
4464 if (EllipsisLoc.isValid()) {
4465 // This is a pack expansion.
4466 if (!BaseType->containsUnexpandedParameterPack()) {
4467 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4468 << SourceRange(BaseLoc, InitRange.getEnd());
4469
4470 EllipsisLoc = SourceLocation();
4471 }
4472 } else {
4473 // Check for any unexpanded parameter packs.
4474 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4475 return true;
4476
4477 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4478 return true;
4479 }
4480
4481 // Check for direct and virtual base classes.
4482 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4483 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4484 if (!Dependent) {
4485 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4486 BaseType))
4487 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4488
4489 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4490 VirtualBaseSpec);
4491
4492 // C++ [base.class.init]p2:
4493 // Unless the mem-initializer-id names a nonstatic data member of the
4494 // constructor's class or a direct or virtual base of that class, the
4495 // mem-initializer is ill-formed.
4496 if (!DirectBaseSpec && !VirtualBaseSpec) {
4497 // If the class has any dependent bases, then it's possible that
4498 // one of those types will resolve to the same type as
4499 // BaseType. Therefore, just treat this as a dependent base
4500 // class initialization. FIXME: Should we try to check the
4501 // initialization anyway? It seems odd.
4502 if (ClassDecl->hasAnyDependentBases())
4503 Dependent = true;
4504 else
4505 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4506 << BaseType << Context.getTypeDeclType(ClassDecl)
4507 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4508 }
4509 }
4510
4511 if (Dependent) {
4512 DiscardCleanupsInEvaluationContext();
4513
4514 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4515 /*IsVirtual=*/false,
4516 InitRange.getBegin(), Init,
4517 InitRange.getEnd(), EllipsisLoc);
4518 }
4519
4520 // C++ [base.class.init]p2:
4521 // If a mem-initializer-id is ambiguous because it designates both
4522 // a direct non-virtual base class and an inherited virtual base
4523 // class, the mem-initializer is ill-formed.
4524 if (DirectBaseSpec && VirtualBaseSpec)
4525 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4526 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4527
4528 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4529 if (!BaseSpec)
4530 BaseSpec = VirtualBaseSpec;
4531
4532 // Initialize the base.
4533 bool InitList = true;
4534 MultiExprArg Args = Init;
4535 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4536 InitList = false;
4537 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4538 }
4539
4540 InitializedEntity BaseEntity =
4541 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4542 InitializationKind Kind =
4543 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4544 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4545 InitRange.getEnd());
4546 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4547 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4548 if (BaseInit.isInvalid())
4549 return true;
4550
4551 // C++11 [class.base.init]p7:
4552 // The initialization of each base and member constitutes a
4553 // full-expression.
4554 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4555 /*DiscardedValue*/ false);
4556 if (BaseInit.isInvalid())
4557 return true;
4558
4559 // If we are in a dependent context, template instantiation will
4560 // perform this type-checking again. Just save the arguments that we
4561 // received in a ParenListExpr.
4562 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4563 // of the information that we have about the base
4564 // initializer. However, deconstructing the ASTs is a dicey process,
4565 // and this approach is far more likely to get the corner cases right.
4566 if (CurContext->isDependentContext())
4567 BaseInit = Init;
4568
4569 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4570 BaseSpec->isVirtual(),
4571 InitRange.getBegin(),
4572 BaseInit.getAs<Expr>(),
4573 InitRange.getEnd(), EllipsisLoc);
4574}
4575
4576// Create a static_cast\<T&&>(expr).
4577static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4578 if (T.isNull()) T = E->getType();
4579 QualType TargetType = SemaRef.BuildReferenceType(
4580 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4581 SourceLocation ExprLoc = E->getBeginLoc();
4582 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4583 TargetType, ExprLoc);
4584
4585 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4586 SourceRange(ExprLoc, ExprLoc),
4587 E->getSourceRange()).get();
4588}
4589
4590/// ImplicitInitializerKind - How an implicit base or member initializer should
4591/// initialize its base or member.
4592enum ImplicitInitializerKind {
4593 IIK_Default,
4594 IIK_Copy,
4595 IIK_Move,
4596 IIK_Inherit
4597};
4598
4599static bool
4600BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4601 ImplicitInitializerKind ImplicitInitKind,
4602 CXXBaseSpecifier *BaseSpec,
4603 bool IsInheritedVirtualBase,
4604 CXXCtorInitializer *&CXXBaseInit) {
4605 InitializedEntity InitEntity
4606 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4607 IsInheritedVirtualBase);
4608
4609 ExprResult BaseInit;
4610
4611 switch (ImplicitInitKind) {
4612 case IIK_Inherit:
4613 case IIK_Default: {
4614 InitializationKind InitKind
4615 = InitializationKind::CreateDefault(Constructor->getLocation());
4616 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4617 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4618 break;
4619 }
4620
4621 case IIK_Move:
4622 case IIK_Copy: {
4623 bool Moving = ImplicitInitKind == IIK_Move;
4624 ParmVarDecl *Param = Constructor->getParamDecl(0);
4625 QualType ParamType = Param->getType().getNonReferenceType();
4626
4627 Expr *CopyCtorArg =
4628 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4629 SourceLocation(), Param, false,
4630 Constructor->getLocation(), ParamType,
4631 VK_LValue, nullptr);
4632
4633 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4634
4635 // Cast to the base class to avoid ambiguities.
4636 QualType ArgTy =
4637 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4638 ParamType.getQualifiers());
4639
4640 if (Moving) {
4641 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4642 }
4643
4644 CXXCastPath BasePath;
4645 BasePath.push_back(BaseSpec);
4646 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4647 CK_UncheckedDerivedToBase,
4648 Moving ? VK_XValue : VK_LValue,
4649 &BasePath).get();
4650
4651 InitializationKind InitKind
4652 = InitializationKind::CreateDirect(Constructor->getLocation(),
4653 SourceLocation(), SourceLocation());
4654 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4655 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4656 break;
4657 }
4658 }
4659
4660 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4661 if (BaseInit.isInvalid())
4662 return true;
4663
4664 CXXBaseInit =
4665 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4666 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4667 SourceLocation()),
4668 BaseSpec->isVirtual(),
4669 SourceLocation(),
4670 BaseInit.getAs<Expr>(),
4671 SourceLocation(),
4672 SourceLocation());
4673
4674 return false;
4675}
4676
4677static bool RefersToRValueRef(Expr *MemRef) {
4678 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4679 return Referenced->getType()->isRValueReferenceType();
4680}
4681
4682static bool
4683BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4684 ImplicitInitializerKind ImplicitInitKind,
4685 FieldDecl *Field, IndirectFieldDecl *Indirect,
4686 CXXCtorInitializer *&CXXMemberInit) {
4687 if (Field->isInvalidDecl())
4688 return true;
4689
4690 SourceLocation Loc = Constructor->getLocation();
4691
4692 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4693 bool Moving = ImplicitInitKind == IIK_Move;
4694 ParmVarDecl *Param = Constructor->getParamDecl(0);
4695 QualType ParamType = Param->getType().getNonReferenceType();
4696
4697 // Suppress copying zero-width bitfields.
4698 if (Field->isZeroLengthBitField(SemaRef.Context))
4699 return false;
4700
4701 Expr *MemberExprBase =
4702 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4703 SourceLocation(), Param, false,
4704 Loc, ParamType, VK_LValue, nullptr);
4705
4706 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4707
4708 if (Moving) {
4709 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4710 }
4711
4712 // Build a reference to this field within the parameter.
4713 CXXScopeSpec SS;
4714 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4715 Sema::LookupMemberName);
4716 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4717 : cast<ValueDecl>(Field), AS_public);
4718 MemberLookup.resolveKind();
4719 ExprResult CtorArg
4720 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4721 ParamType, Loc,
4722 /*IsArrow=*/false,
4723 SS,
4724 /*TemplateKWLoc=*/SourceLocation(),
4725 /*FirstQualifierInScope=*/nullptr,
4726 MemberLookup,
4727 /*TemplateArgs=*/nullptr,
4728 /*S*/nullptr);
4729 if (CtorArg.isInvalid())
4730 return true;
4731
4732 // C++11 [class.copy]p15:
4733 // - if a member m has rvalue reference type T&&, it is direct-initialized
4734 // with static_cast<T&&>(x.m);
4735 if (RefersToRValueRef(CtorArg.get())) {
4736 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4737 }
4738
4739 InitializedEntity Entity =
4740 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4741 /*Implicit*/ true)
4742 : InitializedEntity::InitializeMember(Field, nullptr,
4743 /*Implicit*/ true);
4744
4745 // Direct-initialize to use the copy constructor.
4746 InitializationKind InitKind =
4747 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4748
4749 Expr *CtorArgE = CtorArg.getAs<Expr>();
4750 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4751 ExprResult MemberInit =
4752 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4753 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4754 if (MemberInit.isInvalid())
4755 return true;
4756
4757 if (Indirect)
4758 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4759 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4760 else
4761 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4762 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4763 return false;
4764 }
4765
4766 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 4767, __PRETTY_FUNCTION__))
4767 "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 4767, __PRETTY_FUNCTION__))
;
4768
4769 QualType FieldBaseElementType =
4770 SemaRef.Context.getBaseElementType(Field->getType());
4771
4772 if (FieldBaseElementType->isRecordType()) {
4773 InitializedEntity InitEntity =
4774 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4775 /*Implicit*/ true)
4776 : InitializedEntity::InitializeMember(Field, nullptr,
4777 /*Implicit*/ true);
4778 InitializationKind InitKind =
4779 InitializationKind::CreateDefault(Loc);
4780
4781 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4782 ExprResult MemberInit =
4783 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4784
4785 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4786 if (MemberInit.isInvalid())
4787 return true;
4788
4789 if (Indirect)
4790 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4791 Indirect, Loc,
4792 Loc,
4793 MemberInit.get(),
4794 Loc);
4795 else
4796 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4797 Field, Loc, Loc,
4798 MemberInit.get(),
4799 Loc);
4800 return false;
4801 }
4802
4803 if (!Field->getParent()->isUnion()) {
4804 if (FieldBaseElementType->isReferenceType()) {
4805 SemaRef.Diag(Constructor->getLocation(),
4806 diag::err_uninitialized_member_in_ctor)
4807 << (int)Constructor->isImplicit()
4808 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4809 << 0 << Field->getDeclName();
4810 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4811 return true;
4812 }
4813
4814 if (FieldBaseElementType.isConstQualified()) {
4815 SemaRef.Diag(Constructor->getLocation(),
4816 diag::err_uninitialized_member_in_ctor)
4817 << (int)Constructor->isImplicit()
4818 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4819 << 1 << Field->getDeclName();
4820 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4821 return true;
4822 }
4823 }
4824
4825 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4826 // ARC and Weak:
4827 // Default-initialize Objective-C pointers to NULL.
4828 CXXMemberInit
4829 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4830 Loc, Loc,
4831 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4832 Loc);
4833 return false;
4834 }
4835
4836 // Nothing to initialize.
4837 CXXMemberInit = nullptr;
4838 return false;
4839}
4840
4841namespace {
4842struct BaseAndFieldInfo {
4843 Sema &S;
4844 CXXConstructorDecl *Ctor;
4845 bool AnyErrorsInInits;
4846 ImplicitInitializerKind IIK;
4847 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4848 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4849 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4850
4851 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4852 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4853 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4854 if (Ctor->getInheritedConstructor())
4855 IIK = IIK_Inherit;
4856 else if (Generated && Ctor->isCopyConstructor())
4857 IIK = IIK_Copy;
4858 else if (Generated && Ctor->isMoveConstructor())
4859 IIK = IIK_Move;
4860 else
4861 IIK = IIK_Default;
4862 }
4863
4864 bool isImplicitCopyOrMove() const {
4865 switch (IIK) {
4866 case IIK_Copy:
4867 case IIK_Move:
4868 return true;
4869
4870 case IIK_Default:
4871 case IIK_Inherit:
4872 return false;
4873 }
4874
4875 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 4875)
;
4876 }
4877
4878 bool addFieldInitializer(CXXCtorInitializer *Init) {
4879 AllToInit.push_back(Init);
4880
4881 // Check whether this initializer makes the field "used".
4882 if (Init->getInit()->HasSideEffects(S.Context))
4883 S.UnusedPrivateFields.remove(Init->getAnyMember());
4884
4885 return false;
4886 }
4887
4888 bool isInactiveUnionMember(FieldDecl *Field) {
4889 RecordDecl *Record = Field->getParent();
4890 if (!Record->isUnion())
4891 return false;
4892
4893 if (FieldDecl *Active =
4894 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4895 return Active != Field->getCanonicalDecl();
4896
4897 // In an implicit copy or move constructor, ignore any in-class initializer.
4898 if (isImplicitCopyOrMove())
4899 return true;
4900
4901 // If there's no explicit initialization, the field is active only if it
4902 // has an in-class initializer...
4903 if (Field->hasInClassInitializer())
4904 return false;
4905 // ... or it's an anonymous struct or union whose class has an in-class
4906 // initializer.
4907 if (!Field->isAnonymousStructOrUnion())
4908 return true;
4909 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4910 return !FieldRD->hasInClassInitializer();
4911 }
4912
4913 /// Determine whether the given field is, or is within, a union member
4914 /// that is inactive (because there was an initializer given for a different
4915 /// member of the union, or because the union was not initialized at all).
4916 bool isWithinInactiveUnionMember(FieldDecl *Field,
4917 IndirectFieldDecl *Indirect) {
4918 if (!Indirect)
4919 return isInactiveUnionMember(Field);
4920
4921 for (auto *C : Indirect->chain()) {
4922 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4923 if (Field && isInactiveUnionMember(Field))
4924 return true;
4925 }
4926 return false;
4927 }
4928};
4929}
4930
4931/// Determine whether the given type is an incomplete or zero-lenfgth
4932/// array type.
4933static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4934 if (T->isIncompleteArrayType())
4935 return true;
4936
4937 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4938 if (!ArrayT->getSize())
4939 return true;
4940
4941 T = ArrayT->getElementType();
4942 }
4943
4944 return false;
4945}
4946
4947static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4948 FieldDecl *Field,
4949 IndirectFieldDecl *Indirect = nullptr) {
4950 if (Field->isInvalidDecl())
4951 return false;
4952
4953 // Overwhelmingly common case: we have a direct initializer for this field.
4954 if (CXXCtorInitializer *Init =
4955 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4956 return Info.addFieldInitializer(Init);
4957
4958 // C++11 [class.base.init]p8:
4959 // if the entity is a non-static data member that has a
4960 // brace-or-equal-initializer and either
4961 // -- the constructor's class is a union and no other variant member of that
4962 // union is designated by a mem-initializer-id or
4963 // -- the constructor's class is not a union, and, if the entity is a member
4964 // of an anonymous union, no other member of that union is designated by
4965 // a mem-initializer-id,
4966 // the entity is initialized as specified in [dcl.init].
4967 //
4968 // We also apply the same rules to handle anonymous structs within anonymous
4969 // unions.
4970 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4971 return false;
4972
4973 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4974 ExprResult DIE =
4975 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4976 if (DIE.isInvalid())
4977 return true;
4978
4979 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4980 SemaRef.checkInitializerLifetime(Entity, DIE.get());
4981
4982 CXXCtorInitializer *Init;
4983 if (Indirect)
4984 Init = new (SemaRef.Context)
4985 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4986 SourceLocation(), DIE.get(), SourceLocation());
4987 else
4988 Init = new (SemaRef.Context)
4989 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4990 SourceLocation(), DIE.get(), SourceLocation());
4991 return Info.addFieldInitializer(Init);
4992 }
4993
4994 // Don't initialize incomplete or zero-length arrays.
4995 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4996 return false;
4997
4998 // Don't try to build an implicit initializer if there were semantic
4999 // errors in any of the initializers (and therefore we might be
5000 // missing some that the user actually wrote).
5001 if (Info.AnyErrorsInInits)
5002 return false;
5003
5004 CXXCtorInitializer *Init = nullptr;
5005 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
5006 Indirect, Init))
5007 return true;
5008
5009 if (!Init)
5010 return false;
5011
5012 return Info.addFieldInitializer(Init);
5013}
5014
5015bool
5016Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
5017 CXXCtorInitializer *Initializer) {
5018 assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast<
void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5018, __PRETTY_FUNCTION__))
;
5019 Constructor->setNumCtorInitializers(1);
5020 CXXCtorInitializer **initializer =
5021 new (Context) CXXCtorInitializer*[1];
5022 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
5023 Constructor->setCtorInitializers(initializer);
5024
5025 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
5026 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
5027 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
5028 }
5029
5030 DelegatingCtorDecls.push_back(Constructor);
5031
5032 DiagnoseUninitializedFields(*this, Constructor);
5033
5034 return false;
5035}
5036
5037bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
5038 ArrayRef<CXXCtorInitializer *> Initializers) {
5039 if (Constructor->isDependentContext()) {
5040 // Just store the initializers as written, they will be checked during
5041 // instantiation.
5042 if (!Initializers.empty()) {
5043 Constructor->setNumCtorInitializers(Initializers.size());
5044 CXXCtorInitializer **baseOrMemberInitializers =
5045 new (Context) CXXCtorInitializer*[Initializers.size()];
5046 memcpy(baseOrMemberInitializers, Initializers.data(),
5047 Initializers.size() * sizeof(CXXCtorInitializer*));
5048 Constructor->setCtorInitializers(baseOrMemberInitializers);
5049 }
5050
5051 // Let template instantiation know whether we had errors.
5052 if (AnyErrors)
5053 Constructor->setInvalidDecl();
5054
5055 return false;
5056 }
5057
5058 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
5059
5060 // We need to build the initializer AST according to order of construction
5061 // and not what user specified in the Initializers list.
5062 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
5063 if (!ClassDecl)
5064 return true;
5065
5066 bool HadError = false;
5067
5068 for (unsigned i = 0; i < Initializers.size(); i++) {
5069 CXXCtorInitializer *Member = Initializers[i];
5070
5071 if (Member->isBaseInitializer())
5072 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
5073 else {
5074 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
5075
5076 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
5077 for (auto *C : F->chain()) {
5078 FieldDecl *FD = dyn_cast<FieldDecl>(C);
5079 if (FD && FD->getParent()->isUnion())
5080 Info.ActiveUnionMember.insert(std::make_pair(
5081 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5082 }
5083 } else if (FieldDecl *FD = Member->getMember()) {
5084 if (FD->getParent()->isUnion())
5085 Info.ActiveUnionMember.insert(std::make_pair(
5086 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
5087 }
5088 }
5089 }
5090
5091 // Keep track of the direct virtual bases.
5092 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
5093 for (auto &I : ClassDecl->bases()) {
5094 if (I.isVirtual())
5095 DirectVBases.insert(&I);
5096 }
5097
5098 // Push virtual bases before others.
5099 for (auto &VBase : ClassDecl->vbases()) {
5100 if (CXXCtorInitializer *Value
5101 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5102 // [class.base.init]p7, per DR257:
5103 // A mem-initializer where the mem-initializer-id names a virtual base
5104 // class is ignored during execution of a constructor of any class that
5105 // is not the most derived class.
5106 if (ClassDecl->isAbstract()) {
5107 // FIXME: Provide a fixit to remove the base specifier. This requires
5108 // tracking the location of the associated comma for a base specifier.
5109 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5110 << VBase.getType() << ClassDecl;
5111 DiagnoseAbstractType(ClassDecl);
5112 }
5113
5114 Info.AllToInit.push_back(Value);
5115 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5116 // [class.base.init]p8, per DR257:
5117 // If a given [...] base class is not named by a mem-initializer-id
5118 // [...] and the entity is not a virtual base class of an abstract
5119 // class, then [...] the entity is default-initialized.
5120 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5121 CXXCtorInitializer *CXXBaseInit;
5122 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5123 &VBase, IsInheritedVirtualBase,
5124 CXXBaseInit)) {
5125 HadError = true;
5126 continue;
5127 }
5128
5129 Info.AllToInit.push_back(CXXBaseInit);
5130 }
5131 }
5132
5133 // Non-virtual bases.
5134 for (auto &Base : ClassDecl->bases()) {
5135 // Virtuals are in the virtual base list and already constructed.
5136 if (Base.isVirtual())
5137 continue;
5138
5139 if (CXXCtorInitializer *Value
5140 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5141 Info.AllToInit.push_back(Value);
5142 } else if (!AnyErrors) {
5143 CXXCtorInitializer *CXXBaseInit;
5144 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5145 &Base, /*IsInheritedVirtualBase=*/false,
5146 CXXBaseInit)) {
5147 HadError = true;
5148 continue;
5149 }
5150
5151 Info.AllToInit.push_back(CXXBaseInit);
5152 }
5153 }
5154
5155 // Fields.
5156 for (auto *Mem : ClassDecl->decls()) {
5157 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5158 // C++ [class.bit]p2:
5159 // A declaration for a bit-field that omits the identifier declares an
5160 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5161 // initialized.
5162 if (F->isUnnamedBitfield())
5163 continue;
5164
5165 // If we're not generating the implicit copy/move constructor, then we'll
5166 // handle anonymous struct/union fields based on their individual
5167 // indirect fields.
5168 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5169 continue;
5170
5171 if (CollectFieldInitializer(*this, Info, F))
5172 HadError = true;
5173 continue;
5174 }
5175
5176 // Beyond this point, we only consider default initialization.
5177 if (Info.isImplicitCopyOrMove())
5178 continue;
5179
5180 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5181 if (F->getType()->isIncompleteArrayType()) {
5182 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5183, __PRETTY_FUNCTION__))
5183 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5183, __PRETTY_FUNCTION__))
;
5184 continue;
5185 }
5186
5187 // Initialize each field of an anonymous struct individually.
5188 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5189 HadError = true;
5190
5191 continue;
5192 }
5193 }
5194
5195 unsigned NumInitializers = Info.AllToInit.size();
5196 if (NumInitializers > 0) {
5197 Constructor->setNumCtorInitializers(NumInitializers);
5198 CXXCtorInitializer **baseOrMemberInitializers =
5199 new (Context) CXXCtorInitializer*[NumInitializers];
5200 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5201 NumInitializers * sizeof(CXXCtorInitializer*));
5202 Constructor->setCtorInitializers(baseOrMemberInitializers);
5203
5204 // Constructors implicitly reference the base and member
5205 // destructors.
5206 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5207 Constructor->getParent());
5208 }
5209
5210 return HadError;
5211}
5212
5213static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5214 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5215 const RecordDecl *RD = RT->getDecl();
5216 if (RD->isAnonymousStructOrUnion()) {
5217 for (auto *Field : RD->fields())
5218 PopulateKeysForFields(Field, IdealInits);
5219 return;
5220 }
5221 }
5222 IdealInits.push_back(Field->getCanonicalDecl());
5223}
5224
5225static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5226 return Context.getCanonicalType(BaseType).getTypePtr();
5227}
5228
5229static const void *GetKeyForMember(ASTContext &Context,
5230 CXXCtorInitializer *Member) {
5231 if (!Member->isAnyMemberInitializer())
5232 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5233
5234 return Member->getAnyMember()->getCanonicalDecl();
5235}
5236
5237static void AddInitializerToDiag(const Sema::SemaDiagnosticBuilder &Diag,
5238 const CXXCtorInitializer *Previous,
5239 const CXXCtorInitializer *Current) {
5240 if (Previous->isAnyMemberInitializer())
5241 Diag << 0 << Previous->getAnyMember();
5242 else
5243 Diag << 1 << Previous->getTypeSourceInfo()->getType();
5244
5245 if (Current->isAnyMemberInitializer())
5246 Diag << 0 << Current->getAnyMember();
5247 else
5248 Diag << 1 << Current->getTypeSourceInfo()->getType();
5249}
5250
5251static void DiagnoseBaseOrMemInitializerOrder(
5252 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5253 ArrayRef<CXXCtorInitializer *> Inits) {
5254 if (Constructor->getDeclContext()->isDependentContext())
5255 return;
5256
5257 // Don't check initializers order unless the warning is enabled at the
5258 // location of at least one initializer.
5259 bool ShouldCheckOrder = false;
5260 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5261 CXXCtorInitializer *Init = Inits[InitIndex];
5262 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5263 Init->getSourceLocation())) {
5264 ShouldCheckOrder = true;
5265 break;
5266 }
5267 }
5268 if (!ShouldCheckOrder)
5269 return;
5270
5271 // Build the list of bases and members in the order that they'll
5272 // actually be initialized. The explicit initializers should be in
5273 // this same order but may be missing things.
5274 SmallVector<const void*, 32> IdealInitKeys;
5275
5276 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5277
5278 // 1. Virtual bases.
5279 for (const auto &VBase : ClassDecl->vbases())
5280 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5281
5282 // 2. Non-virtual bases.
5283 for (const auto &Base : ClassDecl->bases()) {
5284 if (Base.isVirtual())
5285 continue;
5286 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5287 }
5288
5289 // 3. Direct fields.
5290 for (auto *Field : ClassDecl->fields()) {
5291 if (Field->isUnnamedBitfield())
5292 continue;
5293
5294 PopulateKeysForFields(Field, IdealInitKeys);
5295 }
5296
5297 unsigned NumIdealInits = IdealInitKeys.size();
5298 unsigned IdealIndex = 0;
5299
5300 // Track initializers that are in an incorrect order for either a warning or
5301 // note if multiple ones occur.
5302 SmallVector<unsigned> WarnIndexes;
5303 // Correlates the index of an initializer in the init-list to the index of
5304 // the field/base in the class.
5305 SmallVector<std::pair<unsigned, unsigned>, 32> CorrelatedInitOrder;
5306
5307 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5308 const void *InitKey = GetKeyForMember(SemaRef.Context, Inits[InitIndex]);
5309
5310 // Scan forward to try to find this initializer in the idealized
5311 // initializers list.
5312 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5313 if (InitKey == IdealInitKeys[IdealIndex])
5314 break;
5315
5316 // If we didn't find this initializer, it must be because we
5317 // scanned past it on a previous iteration. That can only
5318 // happen if we're out of order; emit a warning.
5319 if (IdealIndex == NumIdealInits && InitIndex) {
5320 WarnIndexes.push_back(InitIndex);
5321
5322 // Move back to the initializer's location in the ideal list.
5323 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5324 if (InitKey == IdealInitKeys[IdealIndex])
5325 break;
5326
5327 assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5328, __PRETTY_FUNCTION__))
5328 "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5328, __PRETTY_FUNCTION__))
;
5329 }
5330 CorrelatedInitOrder.emplace_back(IdealIndex, InitIndex);
5331 }
5332
5333 if (WarnIndexes.empty())
5334 return;
5335
5336 // Sort based on the ideal order, first in the pair.
5337 llvm::sort(CorrelatedInitOrder,
5338 [](auto &LHS, auto &RHS) { return LHS.first < RHS.first; });
5339
5340 // Introduce a new scope as SemaDiagnosticBuilder needs to be destroyed to
5341 // emit the diagnostic before we can try adding notes.
5342 {
5343 Sema::SemaDiagnosticBuilder D = SemaRef.Diag(
5344 Inits[WarnIndexes.front() - 1]->getSourceLocation(),
5345 WarnIndexes.size() == 1 ? diag::warn_initializer_out_of_order
5346 : diag::warn_some_initializers_out_of_order);
5347
5348 for (unsigned I = 0; I < CorrelatedInitOrder.size(); ++I) {
5349 if (CorrelatedInitOrder[I].second == I)
5350 continue;
5351 // Ideally we would be using InsertFromRange here, but clang doesn't
5352 // appear to handle InsertFromRange correctly when the source range is
5353 // modified by another fix-it.
5354 D << FixItHint::CreateReplacement(
5355 Inits[I]->getSourceRange(),
5356 Lexer::getSourceText(
5357 CharSourceRange::getTokenRange(
5358 Inits[CorrelatedInitOrder[I].second]->getSourceRange()),
5359 SemaRef.getSourceManager(), SemaRef.getLangOpts()));
5360 }
5361
5362 // If there is only 1 item out of order, the warning expects the name and
5363 // type of each being added to it.
5364 if (WarnIndexes.size() == 1) {
5365 AddInitializerToDiag(D, Inits[WarnIndexes.front() - 1],
5366 Inits[WarnIndexes.front()]);
5367 return;
5368 }
5369 }
5370 // More than 1 item to warn, create notes letting the user know which ones
5371 // are bad.
5372 for (unsigned WarnIndex : WarnIndexes) {
5373 const clang::CXXCtorInitializer *PrevInit = Inits[WarnIndex - 1];
5374 auto D = SemaRef.Diag(PrevInit->getSourceLocation(),
5375 diag::note_initializer_out_of_order);
5376 AddInitializerToDiag(D, PrevInit, Inits[WarnIndex]);
5377 D << PrevInit->getSourceRange();
5378 }
5379}
5380
5381namespace {
5382bool CheckRedundantInit(Sema &S,
5383 CXXCtorInitializer *Init,
5384 CXXCtorInitializer *&PrevInit) {
5385 if (!PrevInit) {
5386 PrevInit = Init;
5387 return false;
5388 }
5389
5390 if (FieldDecl *Field = Init->getAnyMember())
5391 S.Diag(Init->getSourceLocation(),
5392 diag::err_multiple_mem_initialization)
5393 << Field->getDeclName()
5394 << Init->getSourceRange();
5395 else {
5396 const Type *BaseClass = Init->getBaseClass();
5397 assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast
<void> (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5397, __PRETTY_FUNCTION__))
;
5398 S.Diag(Init->getSourceLocation(),
5399 diag::err_multiple_base_initialization)
5400 << QualType(BaseClass, 0)
5401 << Init->getSourceRange();
5402 }
5403 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5404 << 0 << PrevInit->getSourceRange();
5405
5406 return true;
5407}
5408
5409typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5410typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5411
5412bool CheckRedundantUnionInit(Sema &S,
5413 CXXCtorInitializer *Init,
5414 RedundantUnionMap &Unions) {
5415 FieldDecl *Field = Init->getAnyMember();
5416 RecordDecl *Parent = Field->getParent();
5417 NamedDecl *Child = Field;
5418
5419 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5420 if (Parent->isUnion()) {
5421 UnionEntry &En = Unions[Parent];
5422 if (En.first && En.first != Child) {
5423 S.Diag(Init->getSourceLocation(),
5424 diag::err_multiple_mem_union_initialization)
5425 << Field->getDeclName()
5426 << Init->getSourceRange();
5427 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5428 << 0 << En.second->getSourceRange();
5429 return true;
5430 }
5431 if (!En.first) {
5432 En.first = Child;
5433 En.second = Init;
5434 }
5435 if (!Parent->isAnonymousStructOrUnion())
5436 return false;
5437 }
5438
5439 Child = Parent;
5440 Parent = cast<RecordDecl>(Parent->getDeclContext());
5441 }
5442
5443 return false;
5444}
5445} // namespace
5446
5447/// ActOnMemInitializers - Handle the member initializers for a constructor.
5448void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5449 SourceLocation ColonLoc,
5450 ArrayRef<CXXCtorInitializer*> MemInits,
5451 bool AnyErrors) {
5452 if (!ConstructorDecl)
5453 return;
5454
5455 AdjustDeclIfTemplate(ConstructorDecl);
5456
5457 CXXConstructorDecl *Constructor
5458 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5459
5460 if (!Constructor) {
5461 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5462 return;
5463 }
5464
5465 // Mapping for the duplicate initializers check.
5466 // For member initializers, this is keyed with a FieldDecl*.
5467 // For base initializers, this is keyed with a Type*.
5468 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5469
5470 // Mapping for the inconsistent anonymous-union initializers check.
5471 RedundantUnionMap MemberUnions;
5472
5473 bool HadError = false;
5474 for (unsigned i = 0; i < MemInits.size(); i++) {
5475 CXXCtorInitializer *Init = MemInits[i];
5476
5477 // Set the source order index.
5478 Init->setSourceOrder(i);
5479
5480 if (Init->isAnyMemberInitializer()) {
5481 const void *Key = GetKeyForMember(Context, Init);
5482 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5483 CheckRedundantUnionInit(*this, Init, MemberUnions))
5484 HadError = true;
5485 } else if (Init->isBaseInitializer()) {
5486 const void *Key = GetKeyForMember(Context, Init);
5487 if (CheckRedundantInit(*this, Init, Members[Key]))
5488 HadError = true;
5489 } else {
5490 assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void>
(0) : __assert_fail ("Init->isDelegatingInitializer()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5490, __PRETTY_FUNCTION__))
;
5491 // This must be the only initializer
5492 if (MemInits.size() != 1) {
5493 Diag(Init->getSourceLocation(),
5494 diag::err_delegating_initializer_alone)
5495 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5496 // We will treat this as being the only initializer.
5497 }
5498 SetDelegatingInitializer(Constructor, MemInits[i]);
5499 // Return immediately as the initializer is set.
5500 return;
5501 }
5502 }
5503
5504 if (HadError)
5505 return;
5506
5507 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5508
5509 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5510
5511 DiagnoseUninitializedFields(*this, Constructor);
5512}
5513
5514void
5515Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5516 CXXRecordDecl *ClassDecl) {
5517 // Ignore dependent contexts. Also ignore unions, since their members never
5518 // have destructors implicitly called.
5519 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5520 return;
5521
5522 // FIXME: all the access-control diagnostics are positioned on the
5523 // field/base declaration. That's probably good; that said, the
5524 // user might reasonably want to know why the destructor is being
5525 // emitted, and we currently don't say.
5526
5527 // Non-static data members.
5528 for (auto *Field : ClassDecl->fields()) {
5529 if (Field->isInvalidDecl())
5530 continue;
5531
5532 // Don't destroy incomplete or zero-length arrays.
5533 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5534 continue;
5535
5536 QualType FieldType = Context.getBaseElementType(Field->getType());
5537
5538 const RecordType* RT = FieldType->getAs<RecordType>();
5539 if (!RT)
5540 continue;
5541
5542 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5543 if (FieldClassDecl->isInvalidDecl())
5544 continue;
5545 if (FieldClassDecl->hasIrrelevantDestructor())
5546 continue;
5547 // The destructor for an implicit anonymous union member is never invoked.
5548 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5549 continue;
5550
5551 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5552 assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5552, __PRETTY_FUNCTION__))
;
5553 CheckDestructorAccess(Field->getLocation(), Dtor,
5554 PDiag(diag::err_access_dtor_field)
5555 << Field->getDeclName()
5556 << FieldType);
5557
5558 MarkFunctionReferenced(Location, Dtor);
5559 DiagnoseUseOfDecl(Dtor, Location);
5560 }
5561
5562 // We only potentially invoke the destructors of potentially constructed
5563 // subobjects.
5564 bool VisitVirtualBases = !ClassDecl->isAbstract();
5565
5566 // If the destructor exists and has already been marked used in the MS ABI,
5567 // then virtual base destructors have already been checked and marked used.
5568 // Skip checking them again to avoid duplicate diagnostics.
5569 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5570 CXXDestructorDecl *Dtor = ClassDecl->getDestructor();
5571 if (Dtor && Dtor->isUsed())
5572 VisitVirtualBases = false;
5573 }
5574
5575 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5576
5577 // Bases.
5578 for (const auto &Base : ClassDecl->bases()) {
5579 const RecordType *RT = Base.getType()->getAs<RecordType>();
5580 if (!RT)
5581 continue;
5582
5583 // Remember direct virtual bases.
5584 if (Base.isVirtual()) {
5585 if (!VisitVirtualBases)
5586 continue;
5587 DirectVirtualBases.insert(RT);
5588 }
5589
5590 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5591 // If our base class is invalid, we probably can't get its dtor anyway.
5592 if (BaseClassDecl->isInvalidDecl())
5593 continue;
5594 if (BaseClassDecl->hasIrrelevantDestructor())
5595 continue;
5596
5597 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5598 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5598, __PRETTY_FUNCTION__))
;
5599
5600 // FIXME: caret should be on the start of the class name
5601 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5602 PDiag(diag::err_access_dtor_base)
5603 << Base.getType() << Base.getSourceRange(),
5604 Context.getTypeDeclType(ClassDecl));
5605
5606 MarkFunctionReferenced(Location, Dtor);
5607 DiagnoseUseOfDecl(Dtor, Location);
5608 }
5609
5610 if (VisitVirtualBases)
5611 MarkVirtualBaseDestructorsReferenced(Location, ClassDecl,
5612 &DirectVirtualBases);
5613}
5614
5615void Sema::MarkVirtualBaseDestructorsReferenced(
5616 SourceLocation Location, CXXRecordDecl *ClassDecl,
5617 llvm::SmallPtrSetImpl<const RecordType *> *DirectVirtualBases) {
5618 // Virtual bases.
5619 for (const auto &VBase : ClassDecl->vbases()) {
5620 // Bases are always records in a well-formed non-dependent class.
5621 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5622
5623 // Ignore already visited direct virtual bases.
5624 if (DirectVirtualBases && DirectVirtualBases->count(RT))
5625 continue;
5626
5627 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5628 // If our base class is invalid, we probably can't get its dtor anyway.
5629 if (BaseClassDecl->isInvalidDecl())
5630 continue;
5631 if (BaseClassDecl->hasIrrelevantDestructor())
5632 continue;
5633
5634 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5635 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5635, __PRETTY_FUNCTION__))
;
5636 if (CheckDestructorAccess(
5637 ClassDecl->getLocation(), Dtor,
5638 PDiag(diag::err_access_dtor_vbase)
5639 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5640 Context.getTypeDeclType(ClassDecl)) ==
5641 AR_accessible) {
5642 CheckDerivedToBaseConversion(
5643 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5644 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5645 SourceRange(), DeclarationName(), nullptr);
5646 }
5647
5648 MarkFunctionReferenced(Location, Dtor);
5649 DiagnoseUseOfDecl(Dtor, Location);
5650 }
5651}
5652
5653void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5654 if (!CDtorDecl)
5655 return;
5656
5657 if (CXXConstructorDecl *Constructor
5658 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5659 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5660 DiagnoseUninitializedFields(*this, Constructor);
5661 }
5662}
5663
5664bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5665 if (!getLangOpts().CPlusPlus)
5666 return false;
5667
5668 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5669 if (!RD)
5670 return false;
5671
5672 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5673 // class template specialization here, but doing so breaks a lot of code.
5674
5675 // We can't answer whether something is abstract until it has a
5676 // definition. If it's currently being defined, we'll walk back
5677 // over all the declarations when we have a full definition.
5678 const CXXRecordDecl *Def = RD->getDefinition();
5679 if (!Def || Def->isBeingDefined())
5680 return false;
5681
5682 return RD->isAbstract();
5683}
5684
5685bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5686 TypeDiagnoser &Diagnoser) {
5687 if (!isAbstractType(Loc, T))
5688 return false;
5689
5690 T = Context.getBaseElementType(T);
5691 Diagnoser.diagnose(*this, Loc, T);
5692 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5693 return true;
5694}
5695
5696void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5697 // Check if we've already emitted the list of pure virtual functions
5698 // for this class.
5699 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5700 return;
5701
5702 // If the diagnostic is suppressed, don't emit the notes. We're only
5703 // going to emit them once, so try to attach them to a diagnostic we're
5704 // actually going to show.
5705 if (Diags.isLastDiagnosticIgnored())
5706 return;
5707
5708 CXXFinalOverriderMap FinalOverriders;
5709 RD->getFinalOverriders(FinalOverriders);
5710
5711 // Keep a set of seen pure methods so we won't diagnose the same method
5712 // more than once.
5713 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5714
5715 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5716 MEnd = FinalOverriders.end();
5717 M != MEnd;
5718 ++M) {
5719 for (OverridingMethods::iterator SO = M->second.begin(),
5720 SOEnd = M->second.end();
5721 SO != SOEnd; ++SO) {
5722 // C++ [class.abstract]p4:
5723 // A class is abstract if it contains or inherits at least one
5724 // pure virtual function for which the final overrider is pure
5725 // virtual.
5726
5727 //
5728 if (SO->second.size() != 1)
5729 continue;
5730
5731 if (!SO->second.front().Method->isPure())
5732 continue;
5733
5734 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5735 continue;
5736
5737 Diag(SO->second.front().Method->getLocation(),
5738 diag::note_pure_virtual_function)
5739 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5740 }
5741 }
5742
5743 if (!PureVirtualClassDiagSet)
5744 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5745 PureVirtualClassDiagSet->insert(RD);
5746}
5747
5748namespace {
5749struct AbstractUsageInfo {
5750 Sema &S;
5751 CXXRecordDecl *Record;
5752 CanQualType AbstractType;
5753 bool Invalid;
5754
5755 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5756 : S(S), Record(Record),
5757 AbstractType(S.Context.getCanonicalType(
5758 S.Context.getTypeDeclType(Record))),
5759 Invalid(false) {}
5760
5761 void DiagnoseAbstractType() {
5762 if (Invalid) return;
5763 S.DiagnoseAbstractType(Record);
5764 Invalid = true;
5765 }
5766
5767 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5768};
5769
5770struct CheckAbstractUsage {
5771 AbstractUsageInfo &Info;
5772 const NamedDecl *Ctx;
5773
5774 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5775 : Info(Info), Ctx(Ctx) {}
5776
5777 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5778 switch (TL.getTypeLocClass()) {
5779#define ABSTRACT_TYPELOC(CLASS, PARENT)
5780#define TYPELOC(CLASS, PARENT) \
5781 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5782#include "clang/AST/TypeLocNodes.def"
5783 }
5784 }
5785
5786 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5787 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5788 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5789 if (!TL.getParam(I))
5790 continue;
5791
5792 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5793 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5794 }
5795 }
5796
5797 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5798 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5799 }
5800
5801 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5802 // Visit the type parameters from a permissive context.
5803 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5804 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5805 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5806 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5807 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5808 // TODO: other template argument types?
5809 }
5810 }
5811
5812 // Visit pointee types from a permissive context.
5813#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5814 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5815 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5816 }
5817 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5818 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5819 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5820 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5821 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5822
5823 /// Handle all the types we haven't given a more specific
5824 /// implementation for above.
5825 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5826 // Every other kind of type that we haven't called out already
5827 // that has an inner type is either (1) sugar or (2) contains that
5828 // inner type in some way as a subobject.
5829 if (TypeLoc Next = TL.getNextTypeLoc())
5830 return Visit(Next, Sel);
5831
5832 // If there's no inner type and we're in a permissive context,
5833 // don't diagnose.
5834 if (Sel == Sema::AbstractNone) return;
5835
5836 // Check whether the type matches the abstract type.
5837 QualType T = TL.getType();
5838 if (T->isArrayType()) {
5839 Sel = Sema::AbstractArrayType;
5840 T = Info.S.Context.getBaseElementType(T);
5841 }
5842 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5843 if (CT != Info.AbstractType) return;
5844
5845 // It matched; do some magic.
5846 if (Sel == Sema::AbstractArrayType) {
5847 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5848 << T << TL.getSourceRange();
5849 } else {
5850 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5851 << Sel << T << TL.getSourceRange();
5852 }
5853 Info.DiagnoseAbstractType();
5854 }
5855};
5856
5857void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5858 Sema::AbstractDiagSelID Sel) {
5859 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5860}
5861
5862}
5863
5864/// Check for invalid uses of an abstract type in a method declaration.
5865static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5866 CXXMethodDecl *MD) {
5867 // No need to do the check on definitions, which require that
5868 // the return/param types be complete.
5869 if (MD->doesThisDeclarationHaveABody())
5870 return;
5871
5872 // For safety's sake, just ignore it if we don't have type source
5873 // information. This should never happen for non-implicit methods,
5874 // but...
5875 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5876 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5877}
5878
5879/// Check for invalid uses of an abstract type within a class definition.
5880static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5881 CXXRecordDecl *RD) {
5882 for (auto *D : RD->decls()) {
5883 if (D->isImplicit()) continue;
5884
5885 // Methods and method templates.
5886 if (isa<CXXMethodDecl>(D)) {
5887 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5888 } else if (isa<FunctionTemplateDecl>(D)) {
5889 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5890 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5891
5892 // Fields and static variables.
5893 } else if (isa<FieldDecl>(D)) {
5894 FieldDecl *FD = cast<FieldDecl>(D);
5895 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5896 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5897 } else if (isa<VarDecl>(D)) {
5898 VarDecl *VD = cast<VarDecl>(D);
5899 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5900 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5901
5902 // Nested classes and class templates.
5903 } else if (isa<CXXRecordDecl>(D)) {
5904 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5905 } else if (isa<ClassTemplateDecl>(D)) {
5906 CheckAbstractClassUsage(Info,
5907 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5908 }
5909 }
5910}
5911
5912static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5913 Attr *ClassAttr = getDLLAttr(Class);
5914 if (!ClassAttr)
5915 return;
5916
5917 assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast<
void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 5917, __PRETTY_FUNCTION__))
;
5918
5919 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5920
5921 if (TSK == TSK_ExplicitInstantiationDeclaration)
5922 // Don't go any further if this is just an explicit instantiation
5923 // declaration.
5924 return;
5925
5926 // Add a context note to explain how we got to any diagnostics produced below.
5927 struct MarkingClassDllexported {
5928 Sema &S;
5929 MarkingClassDllexported(Sema &S, CXXRecordDecl *Class,
5930 SourceLocation AttrLoc)
5931 : S(S) {
5932 Sema::CodeSynthesisContext Ctx;
5933 Ctx.Kind = Sema::CodeSynthesisContext::MarkingClassDllexported;
5934 Ctx.PointOfInstantiation = AttrLoc;
5935 Ctx.Entity = Class;
5936 S.pushCodeSynthesisContext(Ctx);
5937 }
5938 ~MarkingClassDllexported() {
5939 S.popCodeSynthesisContext();
5940 }
5941 } MarkingDllexportedContext(S, Class, ClassAttr->getLocation());
5942
5943 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
5944 S.MarkVTableUsed(Class->getLocation(), Class, true);
5945
5946 for (Decl *Member : Class->decls()) {
5947 // Defined static variables that are members of an exported base
5948 // class must be marked export too.
5949 auto *VD = dyn_cast<VarDecl>(Member);
5950 if (VD && Member->getAttr<DLLExportAttr>() &&
5951 VD->getStorageClass() == SC_Static &&
5952 TSK == TSK_ImplicitInstantiation)
5953 S.MarkVariableReferenced(VD->getLocation(), VD);
5954
5955 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5956 if (!MD)
5957 continue;
5958
5959 if (Member->getAttr<DLLExportAttr>()) {
5960 if (MD->isUserProvided()) {
5961 // Instantiate non-default class member functions ...
5962
5963 // .. except for certain kinds of template specializations.
5964 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5965 continue;
5966
5967 S.MarkFunctionReferenced(Class->getLocation(), MD);
5968
5969 // The function will be passed to the consumer when its definition is
5970 // encountered.
5971 } else if (MD->isExplicitlyDefaulted()) {
5972 // Synthesize and instantiate explicitly defaulted methods.
5973 S.MarkFunctionReferenced(Class->getLocation(), MD);
5974
5975 if (TSK != TSK_ExplicitInstantiationDefinition) {
5976 // Except for explicit instantiation defs, we will not see the
5977 // definition again later, so pass it to the consumer now.
5978 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5979 }
5980 } else if (!MD->isTrivial() ||
5981 MD->isCopyAssignmentOperator() ||
5982 MD->isMoveAssignmentOperator()) {
5983 // Synthesize and instantiate non-trivial implicit methods, and the copy
5984 // and move assignment operators. The latter are exported even if they
5985 // are trivial, because the address of an operator can be taken and
5986 // should compare equal across libraries.
5987 S.MarkFunctionReferenced(Class->getLocation(), MD);
5988
5989 // There is no later point when we will see the definition of this
5990 // function, so pass it to the consumer now.
5991 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5992 }
5993 }
5994 }
5995}
5996
5997static void checkForMultipleExportedDefaultConstructors(Sema &S,
5998 CXXRecordDecl *Class) {
5999 // Only the MS ABI has default constructor closures, so we don't need to do
6000 // this semantic checking anywhere else.
6001 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
6002 return;
6003
6004 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
6005 for (Decl *Member : Class->decls()) {
6006 // Look for exported default constructors.
6007 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
6008 if (!CD || !CD->isDefaultConstructor())
6009 continue;
6010 auto *Attr = CD->getAttr<DLLExportAttr>();
6011 if (!Attr)
6012 continue;
6013
6014 // If the class is non-dependent, mark the default arguments as ODR-used so
6015 // that we can properly codegen the constructor closure.
6016 if (!Class->isDependentContext()) {
6017 for (ParmVarDecl *PD : CD->parameters()) {
6018 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
6019 S.DiscardCleanupsInEvaluationContext();
6020 }
6021 }
6022
6023 if (LastExportedDefaultCtor) {
6024 S.Diag(LastExportedDefaultCtor->getLocation(),
6025 diag::err_attribute_dll_ambiguous_default_ctor)
6026 << Class;
6027 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
6028 << CD->getDeclName();
6029 return;
6030 }
6031 LastExportedDefaultCtor = CD;
6032 }
6033}
6034
6035static void checkCUDADeviceBuiltinSurfaceClassTemplate(Sema &S,
6036 CXXRecordDecl *Class) {
6037 bool ErrorReported = false;
6038 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6039 ClassTemplateDecl *TD) {
6040 if (ErrorReported)
6041 return;
6042 S.Diag(TD->getLocation(),
6043 diag::err_cuda_device_builtin_surftex_cls_template)
6044 << /*surface*/ 0 << TD;
6045 ErrorReported = true;
6046 };
6047
6048 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6049 if (!TD) {
6050 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6051 if (!SD) {
6052 S.Diag(Class->getLocation(),
6053 diag::err_cuda_device_builtin_surftex_ref_decl)
6054 << /*surface*/ 0 << Class;
6055 S.Diag(Class->getLocation(),
6056 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6057 << Class;
6058 return;
6059 }
6060 TD = SD->getSpecializedTemplate();
6061 }
6062
6063 TemplateParameterList *Params = TD->getTemplateParameters();
6064 unsigned N = Params->size();
6065
6066 if (N != 2) {
6067 reportIllegalClassTemplate(S, TD);
6068 S.Diag(TD->getLocation(),
6069 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6070 << TD << 2;
6071 }
6072 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6073 reportIllegalClassTemplate(S, TD);
6074 S.Diag(TD->getLocation(),
6075 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6076 << TD << /*1st*/ 0 << /*type*/ 0;
6077 }
6078 if (N > 1) {
6079 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6080 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6081 reportIllegalClassTemplate(S, TD);
6082 S.Diag(TD->getLocation(),
6083 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6084 << TD << /*2nd*/ 1 << /*integer*/ 1;
6085 }
6086 }
6087}
6088
6089static void checkCUDADeviceBuiltinTextureClassTemplate(Sema &S,
6090 CXXRecordDecl *Class) {
6091 bool ErrorReported = false;
6092 auto reportIllegalClassTemplate = [&ErrorReported](Sema &S,
6093 ClassTemplateDecl *TD) {
6094 if (ErrorReported)
6095 return;
6096 S.Diag(TD->getLocation(),
6097 diag::err_cuda_device_builtin_surftex_cls_template)
6098 << /*texture*/ 1 << TD;
6099 ErrorReported = true;
6100 };
6101
6102 ClassTemplateDecl *TD = Class->getDescribedClassTemplate();
6103 if (!TD) {
6104 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(Class);
6105 if (!SD) {
6106 S.Diag(Class->getLocation(),
6107 diag::err_cuda_device_builtin_surftex_ref_decl)
6108 << /*texture*/ 1 << Class;
6109 S.Diag(Class->getLocation(),
6110 diag::note_cuda_device_builtin_surftex_should_be_template_class)
6111 << Class;
6112 return;
6113 }
6114 TD = SD->getSpecializedTemplate();
6115 }
6116
6117 TemplateParameterList *Params = TD->getTemplateParameters();
6118 unsigned N = Params->size();
6119
6120 if (N != 3) {
6121 reportIllegalClassTemplate(S, TD);
6122 S.Diag(TD->getLocation(),
6123 diag::note_cuda_device_builtin_surftex_cls_should_have_n_args)
6124 << TD << 3;
6125 }
6126 if (N > 0 && !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6127 reportIllegalClassTemplate(S, TD);
6128 S.Diag(TD->getLocation(),
6129 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6130 << TD << /*1st*/ 0 << /*type*/ 0;
6131 }
6132 if (N > 1) {
6133 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
6134 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6135 reportIllegalClassTemplate(S, TD);
6136 S.Diag(TD->getLocation(),
6137 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6138 << TD << /*2nd*/ 1 << /*integer*/ 1;
6139 }
6140 }
6141 if (N > 2) {
6142 auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(2));
6143 if (!NTTP || !NTTP->getType()->isIntegralOrEnumerationType()) {
6144 reportIllegalClassTemplate(S, TD);
6145 S.Diag(TD->getLocation(),
6146 diag::note_cuda_device_builtin_surftex_cls_should_have_match_arg)
6147 << TD << /*3rd*/ 2 << /*integer*/ 1;
6148 }
6149 }
6150}
6151
6152void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
6153 // Mark any compiler-generated routines with the implicit code_seg attribute.
6154 for (auto *Method : Class->methods()) {
6155 if (Method->isUserProvided())
6156 continue;
6157 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
6158 Method->addAttr(A);
6159 }
6160}
6161
6162/// Check class-level dllimport/dllexport attribute.
6163void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
6164 Attr *ClassAttr = getDLLAttr(Class);
6165
6166 // MSVC inherits DLL attributes to partial class template specializations.
6167 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() && !ClassAttr) {
6168 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
6169 if (Attr *TemplateAttr =
6170 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
6171 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
6172 A->setInherited(true);
6173 ClassAttr = A;
6174 }
6175 }
6176 }
6177
6178 if (!ClassAttr)
6179 return;
6180
6181 if (!Class->isExternallyVisible()) {
6182 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
6183 << Class << ClassAttr;
6184 return;
6185 }
6186
6187 if (Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6188 !ClassAttr->isInherited()) {
6189 // Diagnose dll attributes on members of class with dll attribute.
6190 for (Decl *Member : Class->decls()) {
6191 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
6192 continue;
6193 InheritableAttr *MemberAttr = getDLLAttr(Member);
6194 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
6195 continue;
6196
6197 Diag(MemberAttr->getLocation(),
6198 diag::err_attribute_dll_member_of_dll_class)
6199 << MemberAttr << ClassAttr;
6200 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
6201 Member->setInvalidDecl();
6202 }
6203 }
6204
6205 if (Class->getDescribedClassTemplate())
6206 // Don't inherit dll attribute until the template is instantiated.
6207 return;
6208
6209 // The class is either imported or exported.
6210 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
6211
6212 // Check if this was a dllimport attribute propagated from a derived class to
6213 // a base class template specialization. We don't apply these attributes to
6214 // static data members.
6215 const bool PropagatedImport =
6216 !ClassExported &&
6217 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
6218
6219 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
6220
6221 // Ignore explicit dllexport on explicit class template instantiation
6222 // declarations, except in MinGW mode.
6223 if (ClassExported && !ClassAttr->isInherited() &&
6224 TSK == TSK_ExplicitInstantiationDeclaration &&
6225 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
6226 Class->dropAttr<DLLExportAttr>();
6227 return;
6228 }
6229
6230 // Force declaration of implicit members so they can inherit the attribute.
6231 ForceDeclarationOfImplicitMembers(Class);
6232
6233 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
6234 // seem to be true in practice?
6235
6236 for (Decl *Member : Class->decls()) {
6237 VarDecl *VD = dyn_cast<VarDecl>(Member);
6238 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
6239
6240 // Only methods and static fields inherit the attributes.
6241 if (!VD && !MD)
6242 continue;
6243
6244 if (MD) {
6245 // Don't process deleted methods.
6246 if (MD->isDeleted())
6247 continue;
6248
6249 if (MD->isInlined()) {
6250 // MinGW does not import or export inline methods. But do it for
6251 // template instantiations.
6252 if (!Context.getTargetInfo().shouldDLLImportComdatSymbols() &&
6253 TSK != TSK_ExplicitInstantiationDeclaration &&
6254 TSK != TSK_ExplicitInstantiationDefinition)
6255 continue;
6256
6257 // MSVC versions before 2015 don't export the move assignment operators
6258 // and move constructor, so don't attempt to import/export them if
6259 // we have a definition.
6260 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
6261 if ((MD->isMoveAssignmentOperator() ||
6262 (Ctor && Ctor->isMoveConstructor())) &&
6263 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
6264 continue;
6265
6266 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
6267 // operator is exported anyway.
6268 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6269 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
6270 continue;
6271 }
6272 }
6273
6274 // Don't apply dllimport attributes to static data members of class template
6275 // instantiations when the attribute is propagated from a derived class.
6276 if (VD && PropagatedImport)
6277 continue;
6278
6279 if (!cast<NamedDecl>(Member)->isExternallyVisible())
6280 continue;
6281
6282 if (!getDLLAttr(Member)) {
6283 InheritableAttr *NewAttr = nullptr;
6284
6285 // Do not export/import inline function when -fno-dllexport-inlines is
6286 // passed. But add attribute for later local static var check.
6287 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
6288 TSK != TSK_ExplicitInstantiationDeclaration &&
6289 TSK != TSK_ExplicitInstantiationDefinition) {
6290 if (ClassExported) {
6291 NewAttr = ::new (getASTContext())
6292 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
6293 } else {
6294 NewAttr = ::new (getASTContext())
6295 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
6296 }
6297 } else {
6298 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6299 }
6300
6301 NewAttr->setInherited(true);
6302 Member->addAttr(NewAttr);
6303
6304 if (MD) {
6305 // Propagate DLLAttr to friend re-declarations of MD that have already
6306 // been constructed.
6307 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6308 FD = FD->getPreviousDecl()) {
6309 if (FD->getFriendObjectKind() == Decl::FOK_None)
6310 continue;
6311 assert(!getDLLAttr(FD) &&((!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? static_cast<void> (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 6312, __PRETTY_FUNCTION__))
6312 "friend re-decl should not already have a DLLAttr")((!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? static_cast<void> (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 6312, __PRETTY_FUNCTION__))
;
6313 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6314 NewAttr->setInherited(true);
6315 FD->addAttr(NewAttr);
6316 }
6317 }
6318 }
6319 }
6320
6321 if (ClassExported)
6322 DelayedDllExportClasses.push_back(Class);
6323}
6324
6325/// Perform propagation of DLL attributes from a derived class to a
6326/// templated base class for MS compatibility.
6327void Sema::propagateDLLAttrToBaseClassTemplate(
6328 CXXRecordDecl *Class, Attr *ClassAttr,
6329 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6330 if (getDLLAttr(
6331 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6332 // If the base class template has a DLL attribute, don't try to change it.
6333 return;
6334 }
6335
6336 auto TSK = BaseTemplateSpec->getSpecializationKind();
6337 if (!getDLLAttr(BaseTemplateSpec) &&
6338 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6339 TSK == TSK_ImplicitInstantiation)) {
6340 // The template hasn't been instantiated yet (or it has, but only as an
6341 // explicit instantiation declaration or implicit instantiation, which means
6342 // we haven't codegenned any members yet), so propagate the attribute.
6343 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6344 NewAttr->setInherited(true);
6345 BaseTemplateSpec->addAttr(NewAttr);
6346
6347 // If this was an import, mark that we propagated it from a derived class to
6348 // a base class template specialization.
6349 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6350 ImportAttr->setPropagatedToBaseTemplate();
6351
6352 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6353 // needs to be run again to work see the new attribute. Otherwise this will
6354 // get run whenever the template is instantiated.
6355 if (TSK != TSK_Undeclared)
6356 checkClassLevelDLLAttribute(BaseTemplateSpec);
6357
6358 return;
6359 }
6360
6361 if (getDLLAttr(BaseTemplateSpec)) {
6362 // The template has already been specialized or instantiated with an
6363 // attribute, explicitly or through propagation. We should not try to change
6364 // it.
6365 return;
6366 }
6367
6368 // The template was previously instantiated or explicitly specialized without
6369 // a dll attribute, It's too late for us to add an attribute, so warn that
6370 // this is unsupported.
6371 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6372 << BaseTemplateSpec->isExplicitSpecialization();
6373 Diag(ClassAttr->getLocation(), diag::note_attribute);
6374 if (BaseTemplateSpec->isExplicitSpecialization()) {
6375 Diag(BaseTemplateSpec->getLocation(),
6376 diag::note_template_class_explicit_specialization_was_here)
6377 << BaseTemplateSpec;
6378 } else {
6379 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6380 diag::note_template_class_instantiation_was_here)
6381 << BaseTemplateSpec;
6382 }
6383}
6384
6385/// Determine the kind of defaulting that would be done for a given function.
6386///
6387/// If the function is both a default constructor and a copy / move constructor
6388/// (due to having a default argument for the first parameter), this picks
6389/// CXXDefaultConstructor.
6390///
6391/// FIXME: Check that case is properly handled by all callers.
6392Sema::DefaultedFunctionKind
6393Sema::getDefaultedFunctionKind(const FunctionDecl *FD) {
6394 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
6395 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
6396 if (Ctor->isDefaultConstructor())
6397 return Sema::CXXDefaultConstructor;
6398
6399 if (Ctor->isCopyConstructor())
6400 return Sema::CXXCopyConstructor;
6401
6402 if (Ctor->isMoveConstructor())
6403 return Sema::CXXMoveConstructor;
6404 }
6405
6406 if (MD->isCopyAssignmentOperator())
6407 return Sema::CXXCopyAssignment;
6408
6409 if (MD->isMoveAssignmentOperator())
6410 return Sema::CXXMoveAssignment;
6411
6412 if (isa<CXXDestructorDecl>(FD))
6413 return Sema::CXXDestructor;
6414 }
6415
6416 switch (FD->getDeclName().getCXXOverloadedOperator()) {
6417 case OO_EqualEqual:
6418 return DefaultedComparisonKind::Equal;
6419
6420 case OO_ExclaimEqual:
6421 return DefaultedComparisonKind::NotEqual;
6422
6423 case OO_Spaceship:
6424 // No point allowing this if <=> doesn't exist in the current language mode.
6425 if (!getLangOpts().CPlusPlus20)
6426 break;
6427 return DefaultedComparisonKind::ThreeWay;
6428
6429 case OO_Less:
6430 case OO_LessEqual:
6431 case OO_Greater:
6432 case OO_GreaterEqual:
6433 // No point allowing this if <=> doesn't exist in the current language mode.
6434 if (!getLangOpts().CPlusPlus20)
6435 break;
6436 return DefaultedComparisonKind::Relational;
6437
6438 default:
6439 break;
6440 }
6441
6442 // Not defaultable.
6443 return DefaultedFunctionKind();
6444}
6445
6446static void DefineDefaultedFunction(Sema &S, FunctionDecl *FD,
6447 SourceLocation DefaultLoc) {
6448 Sema::DefaultedFunctionKind DFK = S.getDefaultedFunctionKind(FD);
6449 if (DFK.isComparison())
6450 return S.DefineDefaultedComparison(DefaultLoc, FD, DFK.asComparison());
6451
6452 switch (DFK.asSpecialMember()) {
6453 case Sema::CXXDefaultConstructor:
6454 S.DefineImplicitDefaultConstructor(DefaultLoc,
6455 cast<CXXConstructorDecl>(FD));
6456 break;
6457 case Sema::CXXCopyConstructor:
6458 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6459 break;
6460 case Sema::CXXCopyAssignment:
6461 S.DefineImplicitCopyAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6462 break;
6463 case Sema::CXXDestructor:
6464 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(FD));
6465 break;
6466 case Sema::CXXMoveConstructor:
6467 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(FD));
6468 break;
6469 case Sema::CXXMoveAssignment:
6470 S.DefineImplicitMoveAssignment(DefaultLoc, cast<CXXMethodDecl>(FD));
6471 break;
6472 case Sema::CXXInvalid:
6473 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 6473)
;
6474 }
6475}
6476
6477/// Determine whether a type is permitted to be passed or returned in
6478/// registers, per C++ [class.temporary]p3.
6479static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6480 TargetInfo::CallingConvKind CCK) {
6481 if (D->isDependentType() || D->isInvalidDecl())
6482 return false;
6483
6484 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6485 // The PS4 platform ABI follows the behavior of Clang 3.2.
6486 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6487 return !D->hasNonTrivialDestructorForCall() &&
6488 !D->hasNonTrivialCopyConstructorForCall();
6489
6490 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6491 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6492 bool DtorIsTrivialForCall = false;
6493
6494 // If a class has at least one non-deleted, trivial copy constructor, it
6495 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6496 //
6497 // Note: This permits classes with non-trivial copy or move ctors to be
6498 // passed in registers, so long as they *also* have a trivial copy ctor,
6499 // which is non-conforming.
6500 if (D->needsImplicitCopyConstructor()) {
6501 if (!D->defaultedCopyConstructorIsDeleted()) {
6502 if (D->hasTrivialCopyConstructor())
6503 CopyCtorIsTrivial = true;
6504 if (D->hasTrivialCopyConstructorForCall())
6505 CopyCtorIsTrivialForCall = true;
6506 }
6507 } else {
6508 for (const CXXConstructorDecl *CD : D->ctors()) {
6509 if (CD->isCopyConstructor() && !CD->isDeleted()) {
6510 if (CD->isTrivial())
6511 CopyCtorIsTrivial = true;
6512 if (CD->isTrivialForCall())
6513 CopyCtorIsTrivialForCall = true;
6514 }
6515 }
6516 }
6517
6518 if (D->needsImplicitDestructor()) {
6519 if (!D->defaultedDestructorIsDeleted() &&
6520 D->hasTrivialDestructorForCall())
6521 DtorIsTrivialForCall = true;
6522 } else if (const auto *DD = D->getDestructor()) {
6523 if (!DD->isDeleted() && DD->isTrivialForCall())
6524 DtorIsTrivialForCall = true;
6525 }
6526
6527 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6528 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6529 return true;
6530
6531 // If a class has a destructor, we'd really like to pass it indirectly
6532 // because it allows us to elide copies. Unfortunately, MSVC makes that
6533 // impossible for small types, which it will pass in a single register or
6534 // stack slot. Most objects with dtors are large-ish, so handle that early.
6535 // We can't call out all large objects as being indirect because there are
6536 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6537 // how we pass large POD types.
6538
6539 // Note: This permits small classes with nontrivial destructors to be
6540 // passed in registers, which is non-conforming.
6541 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6542 uint64_t TypeSize = isAArch64 ? 128 : 64;
6543
6544 if (CopyCtorIsTrivial &&
6545 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6546 return true;
6547 return false;
6548 }
6549
6550 // Per C++ [class.temporary]p3, the relevant condition is:
6551 // each copy constructor, move constructor, and destructor of X is
6552 // either trivial or deleted, and X has at least one non-deleted copy
6553 // or move constructor
6554 bool HasNonDeletedCopyOrMove = false;
6555
6556 if (D->needsImplicitCopyConstructor() &&
6557 !D->defaultedCopyConstructorIsDeleted()) {
6558 if (!D->hasTrivialCopyConstructorForCall())
6559 return false;
6560 HasNonDeletedCopyOrMove = true;
6561 }
6562
6563 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6564 !D->defaultedMoveConstructorIsDeleted()) {
6565 if (!D->hasTrivialMoveConstructorForCall())
6566 return false;
6567 HasNonDeletedCopyOrMove = true;
6568 }
6569
6570 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6571 !D->hasTrivialDestructorForCall())
6572 return false;
6573
6574 for (const CXXMethodDecl *MD : D->methods()) {
6575 if (MD->isDeleted())
6576 continue;
6577
6578 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6579 if (CD && CD->isCopyOrMoveConstructor())
6580 HasNonDeletedCopyOrMove = true;
6581 else if (!isa<CXXDestructorDecl>(MD))
6582 continue;
6583
6584 if (!MD->isTrivialForCall())
6585 return false;
6586 }
6587
6588 return HasNonDeletedCopyOrMove;
6589}
6590
6591/// Report an error regarding overriding, along with any relevant
6592/// overridden methods.
6593///
6594/// \param DiagID the primary error to report.
6595/// \param MD the overriding method.
6596static bool
6597ReportOverrides(Sema &S, unsigned DiagID, const CXXMethodDecl *MD,
6598 llvm::function_ref<bool(const CXXMethodDecl *)> Report) {
6599 bool IssuedDiagnostic = false;
6600 for (const CXXMethodDecl *O : MD->overridden_methods()) {
6601 if (Report(O)) {
6602 if (!IssuedDiagnostic) {
6603 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6604 IssuedDiagnostic = true;
6605 }
6606 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
6607 }
6608 }
6609 return IssuedDiagnostic;
6610}
6611
6612/// Perform semantic checks on a class definition that has been
6613/// completing, introducing implicitly-declared members, checking for
6614/// abstract types, etc.
6615///
6616/// \param S The scope in which the class was parsed. Null if we didn't just
6617/// parse a class definition.
6618/// \param Record The completed class.
6619void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
6620 if (!Record)
6621 return;
6622
6623 if (Record->isAbstract() && !Record->isInvalidDecl()) {
6624 AbstractUsageInfo Info(*this, Record);
6625 CheckAbstractClassUsage(Info, Record);
6626 }
6627
6628 // If this is not an aggregate type and has no user-declared constructor,
6629 // complain about any non-static data members of reference or const scalar
6630 // type, since they will never get initializers.
6631 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6632 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6633 !Record->isLambda()) {
6634 bool Complained = false;
6635 for (const auto *F : Record->fields()) {
6636 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6637 continue;
6638
6639 if (F->getType()->isReferenceType() ||
6640 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6641 if (!Complained) {
6642 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6643 << Record->getTagKind() << Record;
6644 Complained = true;
6645 }
6646
6647 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6648 << F->getType()->isReferenceType()
6649 << F->getDeclName();
6650 }
6651 }
6652 }
6653
6654 if (Record->getIdentifier()) {
6655 // C++ [class.mem]p13:
6656 // If T is the name of a class, then each of the following shall have a
6657 // name different from T:
6658 // - every member of every anonymous union that is a member of class T.
6659 //
6660 // C++ [class.mem]p14:
6661 // In addition, if class T has a user-declared constructor (12.1), every
6662 // non-static data member of class T shall have a name different from T.
6663 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6664 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6665 ++I) {
6666 NamedDecl *D = (*I)->getUnderlyingDecl();
6667 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6668 Record->hasUserDeclaredConstructor()) ||
6669 isa<IndirectFieldDecl>(D)) {
6670 Diag((*I)->getLocation(), diag::err_member_name_of_class)
6671 << D->getDeclName();
6672 break;
6673 }
6674 }
6675 }
6676
6677 // Warn if the class has virtual methods but non-virtual public destructor.
6678 if (Record->isPolymorphic() && !Record->isDependentType()) {
6679 CXXDestructorDecl *dtor = Record->getDestructor();
6680 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6681 !Record->hasAttr<FinalAttr>())
6682 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6683 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6684 }
6685
6686 if (Record->isAbstract()) {
6687 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6688 Diag(Record->getLocation(), diag::warn_abstract_final_class)
6689 << FA->isSpelledAsSealed();
6690 DiagnoseAbstractType(Record);
6691 }
6692 }
6693
6694 // Warn if the class has a final destructor but is not itself marked final.
6695 if (!Record->hasAttr<FinalAttr>()) {
6696 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6697 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6698 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6699 << FA->isSpelledAsSealed()
6700 << FixItHint::CreateInsertion(
6701 getLocForEndOfToken(Record->getLocation()),
6702 (FA->isSpelledAsSealed() ? " sealed" : " final"));
6703 Diag(Record->getLocation(),
6704 diag::note_final_dtor_non_final_class_silence)
6705 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6706 }
6707 }
6708 }
6709
6710 // See if trivial_abi has to be dropped.
6711 if (Record->hasAttr<TrivialABIAttr>())
6712 checkIllFormedTrivialABIStruct(*Record);
6713
6714 // Set HasTrivialSpecialMemberForCall if the record has attribute
6715 // "trivial_abi".
6716 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6717
6718 if (HasTrivialABI)
6719 Record->setHasTrivialSpecialMemberForCall();
6720
6721 // Explicitly-defaulted secondary comparison functions (!=, <, <=, >, >=).
6722 // We check these last because they can depend on the properties of the
6723 // primary comparison functions (==, <=>).
6724 llvm::SmallVector<FunctionDecl*, 5> DefaultedSecondaryComparisons;
6725
6726 // Perform checks that can't be done until we know all the properties of a
6727 // member function (whether it's defaulted, deleted, virtual, overriding,
6728 // ...).
6729 auto CheckCompletedMemberFunction = [&](CXXMethodDecl *MD) {
6730 // A static function cannot override anything.
6731 if (MD->getStorageClass() == SC_Static) {
6732 if (ReportOverrides(*this, diag::err_static_overrides_virtual, MD,
6733 [](const CXXMethodDecl *) { return true; }))
6734 return;
6735 }
6736
6737 // A deleted function cannot override a non-deleted function and vice
6738 // versa.
6739 if (ReportOverrides(*this,
6740 MD->isDeleted() ? diag::err_deleted_override
6741 : diag::err_non_deleted_override,
6742 MD, [&](const CXXMethodDecl *V) {
6743 return MD->isDeleted() != V->isDeleted();
6744 })) {
6745 if (MD->isDefaulted() && MD->isDeleted())
6746 // Explain why this defaulted function was deleted.
6747 DiagnoseDeletedDefaultedFunction(MD);
6748 return;
6749 }
6750
6751 // A consteval function cannot override a non-consteval function and vice
6752 // versa.
6753 if (ReportOverrides(*this,
6754 MD->isConsteval() ? diag::err_consteval_override
6755 : diag::err_non_consteval_override,
6756 MD, [&](const CXXMethodDecl *V) {
6757 return MD->isConsteval() != V->isConsteval();
6758 })) {
6759 if (MD->isDefaulted() && MD->isDeleted())
6760 // Explain why this defaulted function was deleted.
6761 DiagnoseDeletedDefaultedFunction(MD);
6762 return;
6763 }
6764 };
6765
6766 auto CheckForDefaultedFunction = [&](FunctionDecl *FD) -> bool {
6767 if (!FD || FD->isInvalidDecl() || !FD->isExplicitlyDefaulted())
6768 return false;
6769
6770 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
6771 if (DFK.asComparison() == DefaultedComparisonKind::NotEqual ||
6772 DFK.asComparison() == DefaultedComparisonKind::Relational) {
6773 DefaultedSecondaryComparisons.push_back(FD);
6774 return true;
6775 }
6776
6777 CheckExplicitlyDefaultedFunction(S, FD);
6778 return false;
6779 };
6780
6781 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6782 // Check whether the explicitly-defaulted members are valid.
6783 bool Incomplete = CheckForDefaultedFunction(M);
6784
6785 // Skip the rest of the checks for a member of a dependent class.
6786 if (Record->isDependentType())
6787 return;
6788
6789 // For an explicitly defaulted or deleted special member, we defer
6790 // determining triviality until the class is complete. That time is now!
6791 CXXSpecialMember CSM = getSpecialMember(M);
6792 if (!M->isImplicit() && !M->isUserProvided()) {
6793 if (CSM != CXXInvalid) {
6794 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6795 // Inform the class that we've finished declaring this member.
6796 Record->finishedDefaultedOrDeletedMember(M);
6797 M->setTrivialForCall(
6798 HasTrivialABI ||
6799 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6800 Record->setTrivialForCallFlags(M);
6801 }
6802 }
6803
6804 // Set triviality for the purpose of calls if this is a user-provided
6805 // copy/move constructor or destructor.
6806 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6807 CSM == CXXDestructor) && M->isUserProvided()) {
6808 M->setTrivialForCall(HasTrivialABI);
6809 Record->setTrivialForCallFlags(M);
6810 }
6811
6812 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6813 M->hasAttr<DLLExportAttr>()) {
6814 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6815 M->isTrivial() &&
6816 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6817 CSM == CXXDestructor))
6818 M->dropAttr<DLLExportAttr>();
6819
6820 if (M->hasAttr<DLLExportAttr>()) {
6821 // Define after any fields with in-class initializers have been parsed.
6822 DelayedDllExportMemberFunctions.push_back(M);
6823 }
6824 }
6825
6826 // Define defaulted constexpr virtual functions that override a base class
6827 // function right away.
6828 // FIXME: We can defer doing this until the vtable is marked as used.
6829 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6830 DefineDefaultedFunction(*this, M, M->getLocation());
6831
6832 if (!Incomplete)
6833 CheckCompletedMemberFunction(M);
6834 };
6835
6836 // Check the destructor before any other member function. We need to
6837 // determine whether it's trivial in order to determine whether the claas
6838 // type is a literal type, which is a prerequisite for determining whether
6839 // other special member functions are valid and whether they're implicitly
6840 // 'constexpr'.
6841 if (CXXDestructorDecl *Dtor = Record->getDestructor())
6842 CompleteMemberFunction(Dtor);
6843
6844 bool HasMethodWithOverrideControl = false,
6845 HasOverridingMethodWithoutOverrideControl = false;
6846 for (auto *D : Record->decls()) {
6847 if (auto *M = dyn_cast<CXXMethodDecl>(D)) {
6848 // FIXME: We could do this check for dependent types with non-dependent
6849 // bases.
6850 if (!Record->isDependentType()) {
6851 // See if a method overloads virtual methods in a base
6852 // class without overriding any.
6853 if (!M->isStatic())
6854 DiagnoseHiddenVirtualMethods(M);
6855 if (M->hasAttr<OverrideAttr>())
6856 HasMethodWithOverrideControl = true;
6857 else if (M->size_overridden_methods() > 0)
6858 HasOverridingMethodWithoutOverrideControl = true;
6859 }
6860
6861 if (!isa<CXXDestructorDecl>(M))
6862 CompleteMemberFunction(M);
6863 } else if (auto *F = dyn_cast<FriendDecl>(D)) {
6864 CheckForDefaultedFunction(
6865 dyn_cast_or_null<FunctionDecl>(F->getFriendDecl()));
6866 }
6867 }
6868
6869 if (HasOverridingMethodWithoutOverrideControl) {
6870 bool HasInconsistentOverrideControl = HasMethodWithOverrideControl;
6871 for (auto *M : Record->methods())
6872 DiagnoseAbsenceOfOverrideControl(M, HasInconsistentOverrideControl);
6873 }
6874
6875 // Check the defaulted secondary comparisons after any other member functions.
6876 for (FunctionDecl *FD : DefaultedSecondaryComparisons) {
6877 CheckExplicitlyDefaultedFunction(S, FD);
6878
6879 // If this is a member function, we deferred checking it until now.
6880 if (auto *MD = dyn_cast<CXXMethodDecl>(FD))
6881 CheckCompletedMemberFunction(MD);
6882 }
6883
6884 // ms_struct is a request to use the same ABI rules as MSVC. Check
6885 // whether this class uses any C++ features that are implemented
6886 // completely differently in MSVC, and if so, emit a diagnostic.
6887 // That diagnostic defaults to an error, but we allow projects to
6888 // map it down to a warning (or ignore it). It's a fairly common
6889 // practice among users of the ms_struct pragma to mass-annotate
6890 // headers, sweeping up a bunch of types that the project doesn't
6891 // really rely on MSVC-compatible layout for. We must therefore
6892 // support "ms_struct except for C++ stuff" as a secondary ABI.
6893 // Don't emit this diagnostic if the feature was enabled as a
6894 // language option (as opposed to via a pragma or attribute), as
6895 // the option -mms-bitfields otherwise essentially makes it impossible
6896 // to build C++ code, unless this diagnostic is turned off.
6897 if (Record->isMsStruct(Context) && !Context.getLangOpts().MSBitfields &&
6898 (Record->isPolymorphic() || Record->getNumBases())) {
6899 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6900 }
6901
6902 checkClassLevelDLLAttribute(Record);
6903 checkClassLevelCodeSegAttribute(Record);
6904
6905 bool ClangABICompat4 =
6906 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6907 TargetInfo::CallingConvKind CCK =
6908 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6909 bool CanPass = canPassInRegisters(*this, Record, CCK);
6910
6911 // Do not change ArgPassingRestrictions if it has already been set to
6912 // APK_CanNeverPassInRegs.
6913 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
6914 Record->setArgPassingRestrictions(CanPass
6915 ? RecordDecl::APK_CanPassInRegs
6916 : RecordDecl::APK_CannotPassInRegs);
6917
6918 // If canPassInRegisters returns true despite the record having a non-trivial
6919 // destructor, the record is destructed in the callee. This happens only when
6920 // the record or one of its subobjects has a field annotated with trivial_abi
6921 // or a field qualified with ObjC __strong/__weak.
6922 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
6923 Record->setParamDestroyedInCallee(true);
6924 else if (Record->hasNonTrivialDestructor())
6925 Record->setParamDestroyedInCallee(CanPass);
6926
6927 if (getLangOpts().ForceEmitVTables) {
6928 // If we want to emit all the vtables, we need to mark it as used. This
6929 // is especially required for cases like vtable assumption loads.
6930 MarkVTableUsed(Record->getInnerLocStart(), Record);
6931 }
6932
6933 if (getLangOpts().CUDA) {
6934 if (Record->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>())
6935 checkCUDADeviceBuiltinSurfaceClassTemplate(*this, Record);
6936 else if (Record->hasAttr<CUDADeviceBuiltinTextureTypeAttr>())
6937 checkCUDADeviceBuiltinTextureClassTemplate(*this, Record);
6938 }
6939}
6940
6941/// Look up the special member function that would be called by a special
6942/// member function for a subobject of class type.
6943///
6944/// \param Class The class type of the subobject.
6945/// \param CSM The kind of special member function.
6946/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6947/// \param ConstRHS True if this is a copy operation with a const object
6948/// on its RHS, that is, if the argument to the outer special member
6949/// function is 'const' and this is not a field marked 'mutable'.
6950static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6951 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6952 unsigned FieldQuals, bool ConstRHS) {
6953 unsigned LHSQuals = 0;
6954 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6955 LHSQuals = FieldQuals;
6956
6957 unsigned RHSQuals = FieldQuals;
6958 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6959 RHSQuals = 0;
6960 else if (ConstRHS)
6961 RHSQuals |= Qualifiers::Const;
6962
6963 return S.LookupSpecialMember(Class, CSM,
6964 RHSQuals & Qualifiers::Const,
6965 RHSQuals & Qualifiers::Volatile,
6966 false,
6967 LHSQuals & Qualifiers::Const,
6968 LHSQuals & Qualifiers::Volatile);
6969}
6970
6971class Sema::InheritedConstructorInfo {
6972 Sema &S;
6973 SourceLocation UseLoc;
6974
6975 /// A mapping from the base classes through which the constructor was
6976 /// inherited to the using shadow declaration in that base class (or a null
6977 /// pointer if the constructor was declared in that base class).
6978 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6979 InheritedFromBases;
6980
6981public:
6982 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6983 ConstructorUsingShadowDecl *Shadow)
6984 : S(S), UseLoc(UseLoc) {
6985 bool DiagnosedMultipleConstructedBases = false;
6986 CXXRecordDecl *ConstructedBase = nullptr;
6987 UsingDecl *ConstructedBaseUsing = nullptr;
6988
6989 // Find the set of such base class subobjects and check that there's a
6990 // unique constructed subobject.
6991 for (auto *D : Shadow->redecls()) {
6992 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6993 auto *DNominatedBase = DShadow->getNominatedBaseClass();
6994 auto *DConstructedBase = DShadow->getConstructedBaseClass();
6995
6996 InheritedFromBases.insert(
6997 std::make_pair(DNominatedBase->getCanonicalDecl(),
6998 DShadow->getNominatedBaseClassShadowDecl()));
6999 if (DShadow->constructsVirtualBase())
7000 InheritedFromBases.insert(
7001 std::make_pair(DConstructedBase->getCanonicalDecl(),
7002 DShadow->getConstructedBaseClassShadowDecl()));
7003 else
7004 assert(DNominatedBase == DConstructedBase)((DNominatedBase == DConstructedBase) ? static_cast<void>
(0) : __assert_fail ("DNominatedBase == DConstructedBase", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7004, __PRETTY_FUNCTION__))
;
7005
7006 // [class.inhctor.init]p2:
7007 // If the constructor was inherited from multiple base class subobjects
7008 // of type B, the program is ill-formed.
7009 if (!ConstructedBase) {
7010 ConstructedBase = DConstructedBase;
7011 ConstructedBaseUsing = D->getUsingDecl();
7012 } else if (ConstructedBase != DConstructedBase &&
7013 !Shadow->isInvalidDecl()) {
7014 if (!DiagnosedMultipleConstructedBases) {
7015 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
7016 << Shadow->getTargetDecl();
7017 S.Diag(ConstructedBaseUsing->getLocation(),
7018 diag::note_ambiguous_inherited_constructor_using)
7019 << ConstructedBase;
7020 DiagnosedMultipleConstructedBases = true;
7021 }
7022 S.Diag(D->getUsingDecl()->getLocation(),
7023 diag::note_ambiguous_inherited_constructor_using)
7024 << DConstructedBase;
7025 }
7026 }
7027
7028 if (DiagnosedMultipleConstructedBases)
7029 Shadow->setInvalidDecl();
7030 }
7031
7032 /// Find the constructor to use for inherited construction of a base class,
7033 /// and whether that base class constructor inherits the constructor from a
7034 /// virtual base class (in which case it won't actually invoke it).
7035 std::pair<CXXConstructorDecl *, bool>
7036 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
7037 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
7038 if (It == InheritedFromBases.end())
7039 return std::make_pair(nullptr, false);
7040
7041 // This is an intermediary class.
7042 if (It->second)
7043 return std::make_pair(
7044 S.findInheritingConstructor(UseLoc, Ctor, It->second),
7045 It->second->constructsVirtualBase());
7046
7047 // This is the base class from which the constructor was inherited.
7048 return std::make_pair(Ctor, false);
7049 }
7050};
7051
7052/// Is the special member function which would be selected to perform the
7053/// specified operation on the specified class type a constexpr constructor?
7054static bool
7055specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
7056 Sema::CXXSpecialMember CSM, unsigned Quals,
7057 bool ConstRHS,
7058 CXXConstructorDecl *InheritedCtor = nullptr,
7059 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7060 // If we're inheriting a constructor, see if we need to call it for this base
7061 // class.
7062 if (InheritedCtor) {
7063 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7063, __PRETTY_FUNCTION__))
;
7064 auto BaseCtor =
7065 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
7066 if (BaseCtor)
7067 return BaseCtor->isConstexpr();
7068 }
7069
7070 if (CSM == Sema::CXXDefaultConstructor)
7071 return ClassDecl->hasConstexprDefaultConstructor();
7072 if (CSM == Sema::CXXDestructor)
7073 return ClassDecl->hasConstexprDestructor();
7074
7075 Sema::SpecialMemberOverloadResult SMOR =
7076 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
7077 if (!SMOR.getMethod())
7078 // A constructor we wouldn't select can't be "involved in initializing"
7079 // anything.
7080 return true;
7081 return SMOR.getMethod()->isConstexpr();
7082}
7083
7084/// Determine whether the specified special member function would be constexpr
7085/// if it were implicitly defined.
7086static bool defaultedSpecialMemberIsConstexpr(
7087 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
7088 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
7089 Sema::InheritedConstructorInfo *Inherited = nullptr) {
7090 if (!S.getLangOpts().CPlusPlus11)
7091 return false;
7092
7093 // C++11 [dcl.constexpr]p4:
7094 // In the definition of a constexpr constructor [...]
7095 bool Ctor = true;
7096 switch (CSM) {
7097 case Sema::CXXDefaultConstructor:
7098 if (Inherited)
7099 break;
7100 // Since default constructor lookup is essentially trivial (and cannot
7101 // involve, for instance, template instantiation), we compute whether a
7102 // defaulted default constructor is constexpr directly within CXXRecordDecl.
7103 //
7104 // This is important for performance; we need to know whether the default
7105 // constructor is constexpr to determine whether the type is a literal type.
7106 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
7107
7108 case Sema::CXXCopyConstructor:
7109 case Sema::CXXMoveConstructor:
7110 // For copy or move constructors, we need to perform overload resolution.
7111 break;
7112
7113 case Sema::CXXCopyAssignment:
7114 case Sema::CXXMoveAssignment:
7115 if (!S.getLangOpts().CPlusPlus14)
7116 return false;
7117 // In C++1y, we need to perform overload resolution.
7118 Ctor = false;
7119 break;
7120
7121 case Sema::CXXDestructor:
7122 return ClassDecl->defaultedDestructorIsConstexpr();
7123
7124 case Sema::CXXInvalid:
7125 return false;
7126 }
7127
7128 // -- if the class is a non-empty union, or for each non-empty anonymous
7129 // union member of a non-union class, exactly one non-static data member
7130 // shall be initialized; [DR1359]
7131 //
7132 // If we squint, this is guaranteed, since exactly one non-static data member
7133 // will be initialized (if the constructor isn't deleted), we just don't know
7134 // which one.
7135 if (Ctor && ClassDecl->isUnion())
7136 return CSM == Sema::CXXDefaultConstructor
7137 ? ClassDecl->hasInClassInitializer() ||
7138 !ClassDecl->hasVariantMembers()
7139 : true;
7140
7141 // -- the class shall not have any virtual base classes;
7142 if (Ctor && ClassDecl->getNumVBases())
7143 return false;
7144
7145 // C++1y [class.copy]p26:
7146 // -- [the class] is a literal type, and
7147 if (!Ctor && !ClassDecl->isLiteral())
7148 return false;
7149
7150 // -- every constructor involved in initializing [...] base class
7151 // sub-objects shall be a constexpr constructor;
7152 // -- the assignment operator selected to copy/move each direct base
7153 // class is a constexpr function, and
7154 for (const auto &B : ClassDecl->bases()) {
7155 const RecordType *BaseType = B.getType()->getAs<RecordType>();
7156 if (!BaseType) continue;
7157
7158 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7159 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
7160 InheritedCtor, Inherited))
7161 return false;
7162 }
7163
7164 // -- every constructor involved in initializing non-static data members
7165 // [...] shall be a constexpr constructor;
7166 // -- every non-static data member and base class sub-object shall be
7167 // initialized
7168 // -- for each non-static data member of X that is of class type (or array
7169 // thereof), the assignment operator selected to copy/move that member is
7170 // a constexpr function
7171 for (const auto *F : ClassDecl->fields()) {
7172 if (F->isInvalidDecl())
7173 continue;
7174 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
7175 continue;
7176 QualType BaseType = S.Context.getBaseElementType(F->getType());
7177 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
7178 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7179 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
7180 BaseType.getCVRQualifiers(),
7181 ConstArg && !F->isMutable()))
7182 return false;
7183 } else if (CSM == Sema::CXXDefaultConstructor) {
7184 return false;
7185 }
7186 }
7187
7188 // All OK, it's constexpr!
7189 return true;
7190}
7191
7192namespace {
7193/// RAII object to register a defaulted function as having its exception
7194/// specification computed.
7195struct ComputingExceptionSpec {
7196 Sema &S;
7197
7198 ComputingExceptionSpec(Sema &S, FunctionDecl *FD, SourceLocation Loc)
7199 : S(S) {
7200 Sema::CodeSynthesisContext Ctx;
7201 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
7202 Ctx.PointOfInstantiation = Loc;
7203 Ctx.Entity = FD;
7204 S.pushCodeSynthesisContext(Ctx);
7205 }
7206 ~ComputingExceptionSpec() {
7207 S.popCodeSynthesisContext();
7208 }
7209};
7210}
7211
7212static Sema::ImplicitExceptionSpecification
7213ComputeDefaultedSpecialMemberExceptionSpec(
7214 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
7215 Sema::InheritedConstructorInfo *ICI);
7216
7217static Sema::ImplicitExceptionSpecification
7218ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
7219 FunctionDecl *FD,
7220 Sema::DefaultedComparisonKind DCK);
7221
7222static Sema::ImplicitExceptionSpecification
7223computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, FunctionDecl *FD) {
7224 auto DFK = S.getDefaultedFunctionKind(FD);
7225 if (DFK.isSpecialMember())
7226 return ComputeDefaultedSpecialMemberExceptionSpec(
7227 S, Loc, cast<CXXMethodDecl>(FD), DFK.asSpecialMember(), nullptr);
7228 if (DFK.isComparison())
7229 return ComputeDefaultedComparisonExceptionSpec(S, Loc, FD,
7230 DFK.asComparison());
7231
7232 auto *CD = cast<CXXConstructorDecl>(FD);
7233 assert(CD->getInheritedConstructor() &&((CD->getInheritedConstructor() && "only defaulted functions and inherited constructors have implicit "
"exception specs") ? static_cast<void> (0) : __assert_fail
("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7235, __PRETTY_FUNCTION__))
7234 "only defaulted functions and inherited constructors have implicit "((CD->getInheritedConstructor() && "only defaulted functions and inherited constructors have implicit "
"exception specs") ? static_cast<void> (0) : __assert_fail
("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7235, __PRETTY_FUNCTION__))
7235 "exception specs")((CD->getInheritedConstructor() && "only defaulted functions and inherited constructors have implicit "
"exception specs") ? static_cast<void> (0) : __assert_fail
("CD->getInheritedConstructor() && \"only defaulted functions and inherited constructors have implicit \" \"exception specs\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7235, __PRETTY_FUNCTION__))
;
7236 Sema::InheritedConstructorInfo ICI(
7237 S, Loc, CD->getInheritedConstructor().getShadowDecl());
7238 return ComputeDefaultedSpecialMemberExceptionSpec(
7239 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
7240}
7241
7242static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
7243 CXXMethodDecl *MD) {
7244 FunctionProtoType::ExtProtoInfo EPI;
7245
7246 // Build an exception specification pointing back at this member.
7247 EPI.ExceptionSpec.Type = EST_Unevaluated;
7248 EPI.ExceptionSpec.SourceDecl = MD;
7249
7250 // Set the calling convention to the default for C++ instance methods.
7251 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
7252 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
7253 /*IsCXXMethod=*/true));
7254 return EPI;
7255}
7256
7257void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, FunctionDecl *FD) {
7258 const FunctionProtoType *FPT = FD->getType()->castAs<FunctionProtoType>();
7259 if (FPT->getExceptionSpecType() != EST_Unevaluated)
7260 return;
7261
7262 // Evaluate the exception specification.
7263 auto IES = computeImplicitExceptionSpec(*this, Loc, FD);
7264 auto ESI = IES.getExceptionSpec();
7265
7266 // Update the type of the special member to use it.
7267 UpdateExceptionSpec(FD, ESI);
7268}
7269
7270void Sema::CheckExplicitlyDefaultedFunction(Scope *S, FunctionDecl *FD) {
7271 assert(FD->isExplicitlyDefaulted() && "not explicitly-defaulted")((FD->isExplicitlyDefaulted() && "not explicitly-defaulted"
) ? static_cast<void> (0) : __assert_fail ("FD->isExplicitlyDefaulted() && \"not explicitly-defaulted\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7271, __PRETTY_FUNCTION__))
;
7272
7273 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
7274 if (!DefKind) {
7275 assert(FD->getDeclContext()->isDependentContext())((FD->getDeclContext()->isDependentContext()) ? static_cast
<void> (0) : __assert_fail ("FD->getDeclContext()->isDependentContext()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7275, __PRETTY_FUNCTION__))
;
7276 return;
7277 }
7278
7279 if (DefKind.isSpecialMember()
7280 ? CheckExplicitlyDefaultedSpecialMember(cast<CXXMethodDecl>(FD),
7281 DefKind.asSpecialMember())
7282 : CheckExplicitlyDefaultedComparison(S, FD, DefKind.asComparison()))
7283 FD->setInvalidDecl();
7284}
7285
7286bool Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD,
7287 CXXSpecialMember CSM) {
7288 CXXRecordDecl *RD = MD->getParent();
7289
7290 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7291, __PRETTY_FUNCTION__))
7291 "not an explicitly-defaulted special member")((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7291, __PRETTY_FUNCTION__))
;
7292
7293 // Defer all checking for special members of a dependent type.
7294 if (RD->isDependentType())
7295 return false;
7296
7297 // Whether this was the first-declared instance of the constructor.
7298 // This affects whether we implicitly add an exception spec and constexpr.
7299 bool First = MD == MD->getCanonicalDecl();
7300
7301 bool HadError = false;
7302
7303 // C++11 [dcl.fct.def.default]p1:
7304 // A function that is explicitly defaulted shall
7305 // -- be a special member function [...] (checked elsewhere),
7306 // -- have the same type (except for ref-qualifiers, and except that a
7307 // copy operation can take a non-const reference) as an implicit
7308 // declaration, and
7309 // -- not have default arguments.
7310 // C++2a changes the second bullet to instead delete the function if it's
7311 // defaulted on its first declaration, unless it's "an assignment operator,
7312 // and its return type differs or its parameter type is not a reference".
7313 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus20 && First;
7314 bool ShouldDeleteForTypeMismatch = false;
7315 unsigned ExpectedParams = 1;
7316 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
7317 ExpectedParams = 0;
7318 if (MD->getNumParams() != ExpectedParams) {
7319 // This checks for default arguments: a copy or move constructor with a
7320 // default argument is classified as a default constructor, and assignment
7321 // operations and destructors can't have default arguments.
7322 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
7323 << CSM << MD->getSourceRange();
7324 HadError = true;
7325 } else if (MD->isVariadic()) {
7326 if (DeleteOnTypeMismatch)
7327 ShouldDeleteForTypeMismatch = true;
7328 else {
7329 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
7330 << CSM << MD->getSourceRange();
7331 HadError = true;
7332 }
7333 }
7334
7335 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
7336
7337 bool CanHaveConstParam = false;
7338 if (CSM == CXXCopyConstructor)
7339 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
7340 else if (CSM == CXXCopyAssignment)
7341 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
7342
7343 QualType ReturnType = Context.VoidTy;
7344 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
7345 // Check for return type matching.
7346 ReturnType = Type->getReturnType();
7347
7348 QualType DeclType = Context.getTypeDeclType(RD);
7349 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
7350 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
7351
7352 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
7353 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
7354 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
7355 HadError = true;
7356 }
7357
7358 // A defaulted special member cannot have cv-qualifiers.
7359 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
7360 if (DeleteOnTypeMismatch)
7361 ShouldDeleteForTypeMismatch = true;
7362 else {
7363 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
7364 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
7365 HadError = true;
7366 }
7367 }
7368 }
7369
7370 // Check for parameter type matching.
7371 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
7372 bool HasConstParam = false;
7373 if (ExpectedParams && ArgType->isReferenceType()) {
7374 // Argument must be reference to possibly-const T.
7375 QualType ReferentType = ArgType->getPointeeType();
7376 HasConstParam = ReferentType.isConstQualified();
7377
7378 if (ReferentType.isVolatileQualified()) {
7379 if (DeleteOnTypeMismatch)
7380 ShouldDeleteForTypeMismatch = true;
7381 else {
7382 Diag(MD->getLocation(),
7383 diag::err_defaulted_special_member_volatile_param) << CSM;
7384 HadError = true;
7385 }
7386 }
7387
7388 if (HasConstParam && !CanHaveConstParam) {
7389 if (DeleteOnTypeMismatch)
7390 ShouldDeleteForTypeMismatch = true;
7391 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
7392 Diag(MD->getLocation(),
7393 diag::err_defaulted_special_member_copy_const_param)
7394 << (CSM == CXXCopyAssignment);
7395 // FIXME: Explain why this special member can't be const.
7396 HadError = true;
7397 } else {
7398 Diag(MD->getLocation(),
7399 diag::err_defaulted_special_member_move_const_param)
7400 << (CSM == CXXMoveAssignment);
7401 HadError = true;
7402 }
7403 }
7404 } else if (ExpectedParams) {
7405 // A copy assignment operator can take its argument by value, but a
7406 // defaulted one cannot.
7407 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((CSM == CXXCopyAssignment && "unexpected non-ref argument"
) ? static_cast<void> (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7407, __PRETTY_FUNCTION__))
;
7408 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
7409 HadError = true;
7410 }
7411
7412 // C++11 [dcl.fct.def.default]p2:
7413 // An explicitly-defaulted function may be declared constexpr only if it
7414 // would have been implicitly declared as constexpr,
7415 // Do not apply this rule to members of class templates, since core issue 1358
7416 // makes such functions always instantiate to constexpr functions. For
7417 // functions which cannot be constexpr (for non-constructors in C++11 and for
7418 // destructors in C++14 and C++17), this is checked elsewhere.
7419 //
7420 // FIXME: This should not apply if the member is deleted.
7421 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
7422 HasConstParam);
7423 if ((getLangOpts().CPlusPlus20 ||
7424 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
7425 : isa<CXXConstructorDecl>(MD))) &&
7426 MD->isConstexpr() && !Constexpr &&
7427 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
7428 Diag(MD->getBeginLoc(), MD->isConsteval()
7429 ? diag::err_incorrect_defaulted_consteval
7430 : diag::err_incorrect_defaulted_constexpr)
7431 << CSM;
7432 // FIXME: Explain why the special member can't be constexpr.
7433 HadError = true;
7434 }
7435
7436 if (First) {
7437 // C++2a [dcl.fct.def.default]p3:
7438 // If a function is explicitly defaulted on its first declaration, it is
7439 // implicitly considered to be constexpr if the implicit declaration
7440 // would be.
7441 MD->setConstexprKind(Constexpr ? (MD->isConsteval()
7442 ? ConstexprSpecKind::Consteval
7443 : ConstexprSpecKind::Constexpr)
7444 : ConstexprSpecKind::Unspecified);
7445
7446 if (!Type->hasExceptionSpec()) {
7447 // C++2a [except.spec]p3:
7448 // If a declaration of a function does not have a noexcept-specifier
7449 // [and] is defaulted on its first declaration, [...] the exception
7450 // specification is as specified below
7451 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
7452 EPI.ExceptionSpec.Type = EST_Unevaluated;
7453 EPI.ExceptionSpec.SourceDecl = MD;
7454 MD->setType(Context.getFunctionType(ReturnType,
7455 llvm::makeArrayRef(&ArgType,
7456 ExpectedParams),
7457 EPI));
7458 }
7459 }
7460
7461 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
7462 if (First) {
7463 SetDeclDeleted(MD, MD->getLocation());
7464 if (!inTemplateInstantiation() && !HadError) {
7465 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
7466 if (ShouldDeleteForTypeMismatch) {
7467 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
7468 } else {
7469 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7470 }
7471 }
7472 if (ShouldDeleteForTypeMismatch && !HadError) {
7473 Diag(MD->getLocation(),
7474 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
7475 }
7476 } else {
7477 // C++11 [dcl.fct.def.default]p4:
7478 // [For a] user-provided explicitly-defaulted function [...] if such a
7479 // function is implicitly defined as deleted, the program is ill-formed.
7480 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
7481 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl")((!ShouldDeleteForTypeMismatch && "deleted non-first decl"
) ? static_cast<void> (0) : __assert_fail ("!ShouldDeleteForTypeMismatch && \"deleted non-first decl\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7481, __PRETTY_FUNCTION__))
;
7482 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
7483 HadError = true;
7484 }
7485 }
7486
7487 return HadError;
7488}
7489
7490namespace {
7491/// Helper class for building and checking a defaulted comparison.
7492///
7493/// Defaulted functions are built in two phases:
7494///
7495/// * First, the set of operations that the function will perform are
7496/// identified, and some of them are checked. If any of the checked
7497/// operations is invalid in certain ways, the comparison function is
7498/// defined as deleted and no body is built.
7499/// * Then, if the function is not defined as deleted, the body is built.
7500///
7501/// This is accomplished by performing two visitation steps over the eventual
7502/// body of the function.
7503template<typename Derived, typename ResultList, typename Result,
7504 typename Subobject>
7505class DefaultedComparisonVisitor {
7506public:
7507 using DefaultedComparisonKind = Sema::DefaultedComparisonKind;
7508
7509 DefaultedComparisonVisitor(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7510 DefaultedComparisonKind DCK)
7511 : S(S), RD(RD), FD(FD), DCK(DCK) {
7512 if (auto *Info = FD->getDefaultedFunctionInfo()) {
7513 // FIXME: Change CreateOverloadedBinOp to take an ArrayRef instead of an
7514 // UnresolvedSet to avoid this copy.
7515 Fns.assign(Info->getUnqualifiedLookups().begin(),
7516 Info->getUnqualifiedLookups().end());
7517 }
7518 }
7519
7520 ResultList visit() {
7521 // The type of an lvalue naming a parameter of this function.
7522 QualType ParamLvalType =
7523 FD->getParamDecl(0)->getType().getNonReferenceType();
7524
7525 ResultList Results;
7526
7527 switch (DCK) {
7528 case DefaultedComparisonKind::None:
7529 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7529)
;
7530
7531 case DefaultedComparisonKind::Equal:
7532 case DefaultedComparisonKind::ThreeWay:
7533 getDerived().visitSubobjects(Results, RD, ParamLvalType.getQualifiers());
7534 return Results;
7535
7536 case DefaultedComparisonKind::NotEqual:
7537 case DefaultedComparisonKind::Relational:
7538 Results.add(getDerived().visitExpandedSubobject(
7539 ParamLvalType, getDerived().getCompleteObject()));
7540 return Results;
7541 }
7542 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7542)
;
7543 }
7544
7545protected:
7546 Derived &getDerived() { return static_cast<Derived&>(*this); }
7547
7548 /// Visit the expanded list of subobjects of the given type, as specified in
7549 /// C++2a [class.compare.default].
7550 ///
7551 /// \return \c true if the ResultList object said we're done, \c false if not.
7552 bool visitSubobjects(ResultList &Results, CXXRecordDecl *Record,
7553 Qualifiers Quals) {
7554 // C++2a [class.compare.default]p4:
7555 // The direct base class subobjects of C
7556 for (CXXBaseSpecifier &Base : Record->bases())
7557 if (Results.add(getDerived().visitSubobject(
7558 S.Context.getQualifiedType(Base.getType(), Quals),
7559 getDerived().getBase(&Base))))
7560 return true;
7561
7562 // followed by the non-static data members of C
7563 for (FieldDecl *Field : Record->fields()) {
7564 // Recursively expand anonymous structs.
7565 if (Field->isAnonymousStructOrUnion()) {
7566 if (visitSubobjects(Results, Field->getType()->getAsCXXRecordDecl(),
7567 Quals))
7568 return true;
7569 continue;
7570 }
7571
7572 // Figure out the type of an lvalue denoting this field.
7573 Qualifiers FieldQuals = Quals;
7574 if (Field->isMutable())
7575 FieldQuals.removeConst();
7576 QualType FieldType =
7577 S.Context.getQualifiedType(Field->getType(), FieldQuals);
7578
7579 if (Results.add(getDerived().visitSubobject(
7580 FieldType, getDerived().getField(Field))))
7581 return true;
7582 }
7583
7584 // form a list of subobjects.
7585 return false;
7586 }
7587
7588 Result visitSubobject(QualType Type, Subobject Subobj) {
7589 // In that list, any subobject of array type is recursively expanded
7590 const ArrayType *AT = S.Context.getAsArrayType(Type);
7591 if (auto *CAT = dyn_cast_or_null<ConstantArrayType>(AT))
7592 return getDerived().visitSubobjectArray(CAT->getElementType(),
7593 CAT->getSize(), Subobj);
7594 return getDerived().visitExpandedSubobject(Type, Subobj);
7595 }
7596
7597 Result visitSubobjectArray(QualType Type, const llvm::APInt &Size,
7598 Subobject Subobj) {
7599 return getDerived().visitSubobject(Type, Subobj);
7600 }
7601
7602protected:
7603 Sema &S;
7604 CXXRecordDecl *RD;
7605 FunctionDecl *FD;
7606 DefaultedComparisonKind DCK;
7607 UnresolvedSet<16> Fns;
7608};
7609
7610/// Information about a defaulted comparison, as determined by
7611/// DefaultedComparisonAnalyzer.
7612struct DefaultedComparisonInfo {
7613 bool Deleted = false;
7614 bool Constexpr = true;
7615 ComparisonCategoryType Category = ComparisonCategoryType::StrongOrdering;
7616
7617 static DefaultedComparisonInfo deleted() {
7618 DefaultedComparisonInfo Deleted;
7619 Deleted.Deleted = true;
7620 return Deleted;
7621 }
7622
7623 bool add(const DefaultedComparisonInfo &R) {
7624 Deleted |= R.Deleted;
7625 Constexpr &= R.Constexpr;
7626 Category = commonComparisonType(Category, R.Category);
7627 return Deleted;
7628 }
7629};
7630
7631/// An element in the expanded list of subobjects of a defaulted comparison, as
7632/// specified in C++2a [class.compare.default]p4.
7633struct DefaultedComparisonSubobject {
7634 enum { CompleteObject, Member, Base } Kind;
7635 NamedDecl *Decl;
7636 SourceLocation Loc;
7637};
7638
7639/// A visitor over the notional body of a defaulted comparison that determines
7640/// whether that body would be deleted or constexpr.
7641class DefaultedComparisonAnalyzer
7642 : public DefaultedComparisonVisitor<DefaultedComparisonAnalyzer,
7643 DefaultedComparisonInfo,
7644 DefaultedComparisonInfo,
7645 DefaultedComparisonSubobject> {
7646public:
7647 enum DiagnosticKind { NoDiagnostics, ExplainDeleted, ExplainConstexpr };
7648
7649private:
7650 DiagnosticKind Diagnose;
7651
7652public:
7653 using Base = DefaultedComparisonVisitor;
7654 using Result = DefaultedComparisonInfo;
7655 using Subobject = DefaultedComparisonSubobject;
7656
7657 friend Base;
7658
7659 DefaultedComparisonAnalyzer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7660 DefaultedComparisonKind DCK,
7661 DiagnosticKind Diagnose = NoDiagnostics)
7662 : Base(S, RD, FD, DCK), Diagnose(Diagnose) {}
7663
7664 Result visit() {
7665 if ((DCK == DefaultedComparisonKind::Equal ||
7666 DCK == DefaultedComparisonKind::ThreeWay) &&
7667 RD->hasVariantMembers()) {
7668 // C++2a [class.compare.default]p2 [P2002R0]:
7669 // A defaulted comparison operator function for class C is defined as
7670 // deleted if [...] C has variant members.
7671 if (Diagnose == ExplainDeleted) {
7672 S.Diag(FD->getLocation(), diag::note_defaulted_comparison_union)
7673 << FD << RD->isUnion() << RD;
7674 }
7675 return Result::deleted();
7676 }
7677
7678 return Base::visit();
7679 }
7680
7681private:
7682 Subobject getCompleteObject() {
7683 return Subobject{Subobject::CompleteObject, RD, FD->getLocation()};
7684 }
7685
7686 Subobject getBase(CXXBaseSpecifier *Base) {
7687 return Subobject{Subobject::Base, Base->getType()->getAsCXXRecordDecl(),
7688 Base->getBaseTypeLoc()};
7689 }
7690
7691 Subobject getField(FieldDecl *Field) {
7692 return Subobject{Subobject::Member, Field, Field->getLocation()};
7693 }
7694
7695 Result visitExpandedSubobject(QualType Type, Subobject Subobj) {
7696 // C++2a [class.compare.default]p2 [P2002R0]:
7697 // A defaulted <=> or == operator function for class C is defined as
7698 // deleted if any non-static data member of C is of reference type
7699 if (Type->isReferenceType()) {
7700 if (Diagnose == ExplainDeleted) {
7701 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_reference_member)
7702 << FD << RD;
7703 }
7704 return Result::deleted();
7705 }
7706
7707 // [...] Let xi be an lvalue denoting the ith element [...]
7708 OpaqueValueExpr Xi(FD->getLocation(), Type, VK_LValue);
7709 Expr *Args[] = {&Xi, &Xi};
7710
7711 // All operators start by trying to apply that same operator recursively.
7712 OverloadedOperatorKind OO = FD->getOverloadedOperator();
7713 assert(OO != OO_None && "not an overloaded operator!")((OO != OO_None && "not an overloaded operator!") ? static_cast
<void> (0) : __assert_fail ("OO != OO_None && \"not an overloaded operator!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7713, __PRETTY_FUNCTION__))
;
7714 return visitBinaryOperator(OO, Args, Subobj);
7715 }
7716
7717 Result
7718 visitBinaryOperator(OverloadedOperatorKind OO, ArrayRef<Expr *> Args,
7719 Subobject Subobj,
7720 OverloadCandidateSet *SpaceshipCandidates = nullptr) {
7721 // Note that there is no need to consider rewritten candidates here if
7722 // we've already found there is no viable 'operator<=>' candidate (and are
7723 // considering synthesizing a '<=>' from '==' and '<').
7724 OverloadCandidateSet CandidateSet(
7725 FD->getLocation(), OverloadCandidateSet::CSK_Operator,
7726 OverloadCandidateSet::OperatorRewriteInfo(
7727 OO, /*AllowRewrittenCandidates=*/!SpaceshipCandidates));
7728
7729 /// C++2a [class.compare.default]p1 [P2002R0]:
7730 /// [...] the defaulted function itself is never a candidate for overload
7731 /// resolution [...]
7732 CandidateSet.exclude(FD);
7733
7734 if (Args[0]->getType()->isOverloadableType())
7735 S.LookupOverloadedBinOp(CandidateSet, OO, Fns, Args);
7736 else if (OO == OO_EqualEqual ||
7737 !Args[0]->getType()->isFunctionPointerType()) {
7738 // FIXME: We determine whether this is a valid expression by checking to
7739 // see if there's a viable builtin operator candidate for it. That isn't
7740 // really what the rules ask us to do, but should give the right results.
7741 //
7742 // Note that the builtin operator for relational comparisons on function
7743 // pointers is the only known case which cannot be used.
7744 S.AddBuiltinOperatorCandidates(OO, FD->getLocation(), Args, CandidateSet);
7745 }
7746
7747 Result R;
7748
7749 OverloadCandidateSet::iterator Best;
7750 switch (CandidateSet.BestViableFunction(S, FD->getLocation(), Best)) {
7751 case OR_Success: {
7752 // C++2a [class.compare.secondary]p2 [P2002R0]:
7753 // The operator function [...] is defined as deleted if [...] the
7754 // candidate selected by overload resolution is not a rewritten
7755 // candidate.
7756 if ((DCK == DefaultedComparisonKind::NotEqual ||
7757 DCK == DefaultedComparisonKind::Relational) &&
7758 !Best->RewriteKind) {
7759 if (Diagnose == ExplainDeleted) {
7760 S.Diag(Best->Function->getLocation(),
7761 diag::note_defaulted_comparison_not_rewritten_callee)
7762 << FD;
7763 }
7764 return Result::deleted();
7765 }
7766
7767 // Throughout C++2a [class.compare]: if overload resolution does not
7768 // result in a usable function, the candidate function is defined as
7769 // deleted. This requires that we selected an accessible function.
7770 //
7771 // Note that this only considers the access of the function when named
7772 // within the type of the subobject, and not the access path for any
7773 // derived-to-base conversion.
7774 CXXRecordDecl *ArgClass = Args[0]->getType()->getAsCXXRecordDecl();
7775 if (ArgClass && Best->FoundDecl.getDecl() &&
7776 Best->FoundDecl.getDecl()->isCXXClassMember()) {
7777 QualType ObjectType = Subobj.Kind == Subobject::Member
7778 ? Args[0]->getType()
7779 : S.Context.getRecordType(RD);
7780 if (!S.isMemberAccessibleForDeletion(
7781 ArgClass, Best->FoundDecl, ObjectType, Subobj.Loc,
7782 Diagnose == ExplainDeleted
7783 ? S.PDiag(diag::note_defaulted_comparison_inaccessible)
7784 << FD << Subobj.Kind << Subobj.Decl
7785 : S.PDiag()))
7786 return Result::deleted();
7787 }
7788
7789 // C++2a [class.compare.default]p3 [P2002R0]:
7790 // A defaulted comparison function is constexpr-compatible if [...]
7791 // no overlod resolution performed [...] results in a non-constexpr
7792 // function.
7793 if (FunctionDecl *BestFD = Best->Function) {
7794 assert(!BestFD->isDeleted() && "wrong overload resolution result")((!BestFD->isDeleted() && "wrong overload resolution result"
) ? static_cast<void> (0) : __assert_fail ("!BestFD->isDeleted() && \"wrong overload resolution result\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7794, __PRETTY_FUNCTION__))
;
7795 // If it's not constexpr, explain why not.
7796 if (Diagnose == ExplainConstexpr && !BestFD->isConstexpr()) {
7797 if (Subobj.Kind != Subobject::CompleteObject)
7798 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_not_constexpr)
7799 << Subobj.Kind << Subobj.Decl;
7800 S.Diag(BestFD->getLocation(),
7801 diag::note_defaulted_comparison_not_constexpr_here);
7802 // Bail out after explaining; we don't want any more notes.
7803 return Result::deleted();
7804 }
7805 R.Constexpr &= BestFD->isConstexpr();
7806 }
7807
7808 if (OO == OO_Spaceship && FD->getReturnType()->isUndeducedAutoType()) {
7809 if (auto *BestFD = Best->Function) {
7810 // If any callee has an undeduced return type, deduce it now.
7811 // FIXME: It's not clear how a failure here should be handled. For
7812 // now, we produce an eager diagnostic, because that is forward
7813 // compatible with most (all?) other reasonable options.
7814 if (BestFD->getReturnType()->isUndeducedType() &&
7815 S.DeduceReturnType(BestFD, FD->getLocation(),
7816 /*Diagnose=*/false)) {
7817 // Don't produce a duplicate error when asked to explain why the
7818 // comparison is deleted: we diagnosed that when initially checking
7819 // the defaulted operator.
7820 if (Diagnose == NoDiagnostics) {
7821 S.Diag(
7822 FD->getLocation(),
7823 diag::err_defaulted_comparison_cannot_deduce_undeduced_auto)
7824 << Subobj.Kind << Subobj.Decl;
7825 S.Diag(
7826 Subobj.Loc,
7827 diag::note_defaulted_comparison_cannot_deduce_undeduced_auto)
7828 << Subobj.Kind << Subobj.Decl;
7829 S.Diag(BestFD->getLocation(),
7830 diag::note_defaulted_comparison_cannot_deduce_callee)
7831 << Subobj.Kind << Subobj.Decl;
7832 }
7833 return Result::deleted();
7834 }
7835 if (auto *Info = S.Context.CompCategories.lookupInfoForType(
7836 BestFD->getCallResultType())) {
7837 R.Category = Info->Kind;
7838 } else {
7839 if (Diagnose == ExplainDeleted) {
7840 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_cannot_deduce)
7841 << Subobj.Kind << Subobj.Decl
7842 << BestFD->getCallResultType().withoutLocalFastQualifiers();
7843 S.Diag(BestFD->getLocation(),
7844 diag::note_defaulted_comparison_cannot_deduce_callee)
7845 << Subobj.Kind << Subobj.Decl;
7846 }
7847 return Result::deleted();
7848 }
7849 } else {
7850 Optional<ComparisonCategoryType> Cat =
7851 getComparisonCategoryForBuiltinCmp(Args[0]->getType());
7852 assert(Cat && "no category for builtin comparison?")((Cat && "no category for builtin comparison?") ? static_cast
<void> (0) : __assert_fail ("Cat && \"no category for builtin comparison?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7852, __PRETTY_FUNCTION__))
;
7853 R.Category = *Cat;
7854 }
7855 }
7856
7857 // Note that we might be rewriting to a different operator. That call is
7858 // not considered until we come to actually build the comparison function.
7859 break;
7860 }
7861
7862 case OR_Ambiguous:
7863 if (Diagnose == ExplainDeleted) {
7864 unsigned Kind = 0;
7865 if (FD->getOverloadedOperator() == OO_Spaceship && OO != OO_Spaceship)
7866 Kind = OO == OO_EqualEqual ? 1 : 2;
7867 CandidateSet.NoteCandidates(
7868 PartialDiagnosticAt(
7869 Subobj.Loc, S.PDiag(diag::note_defaulted_comparison_ambiguous)
7870 << FD << Kind << Subobj.Kind << Subobj.Decl),
7871 S, OCD_AmbiguousCandidates, Args);
7872 }
7873 R = Result::deleted();
7874 break;
7875
7876 case OR_Deleted:
7877 if (Diagnose == ExplainDeleted) {
7878 if ((DCK == DefaultedComparisonKind::NotEqual ||
7879 DCK == DefaultedComparisonKind::Relational) &&
7880 !Best->RewriteKind) {
7881 S.Diag(Best->Function->getLocation(),
7882 diag::note_defaulted_comparison_not_rewritten_callee)
7883 << FD;
7884 } else {
7885 S.Diag(Subobj.Loc,
7886 diag::note_defaulted_comparison_calls_deleted)
7887 << FD << Subobj.Kind << Subobj.Decl;
7888 S.NoteDeletedFunction(Best->Function);
7889 }
7890 }
7891 R = Result::deleted();
7892 break;
7893
7894 case OR_No_Viable_Function:
7895 // If there's no usable candidate, we're done unless we can rewrite a
7896 // '<=>' in terms of '==' and '<'.
7897 if (OO == OO_Spaceship &&
7898 S.Context.CompCategories.lookupInfoForType(FD->getReturnType())) {
7899 // For any kind of comparison category return type, we need a usable
7900 // '==' and a usable '<'.
7901 if (!R.add(visitBinaryOperator(OO_EqualEqual, Args, Subobj,
7902 &CandidateSet)))
7903 R.add(visitBinaryOperator(OO_Less, Args, Subobj, &CandidateSet));
7904 break;
7905 }
7906
7907 if (Diagnose == ExplainDeleted) {
7908 S.Diag(Subobj.Loc, diag::note_defaulted_comparison_no_viable_function)
7909 << FD << Subobj.Kind << Subobj.Decl;
7910
7911 // For a three-way comparison, list both the candidates for the
7912 // original operator and the candidates for the synthesized operator.
7913 if (SpaceshipCandidates) {
7914 SpaceshipCandidates->NoteCandidates(
7915 S, Args,
7916 SpaceshipCandidates->CompleteCandidates(S, OCD_AllCandidates,
7917 Args, FD->getLocation()));
7918 S.Diag(Subobj.Loc,
7919 diag::note_defaulted_comparison_no_viable_function_synthesized)
7920 << (OO == OO_EqualEqual ? 0 : 1);
7921 }
7922
7923 CandidateSet.NoteCandidates(
7924 S, Args,
7925 CandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args,
7926 FD->getLocation()));
7927 }
7928 R = Result::deleted();
7929 break;
7930 }
7931
7932 return R;
7933 }
7934};
7935
7936/// A list of statements.
7937struct StmtListResult {
7938 bool IsInvalid = false;
7939 llvm::SmallVector<Stmt*, 16> Stmts;
7940
7941 bool add(const StmtResult &S) {
7942 IsInvalid |= S.isInvalid();
7943 if (IsInvalid)
7944 return true;
7945 Stmts.push_back(S.get());
7946 return false;
7947 }
7948};
7949
7950/// A visitor over the notional body of a defaulted comparison that synthesizes
7951/// the actual body.
7952class DefaultedComparisonSynthesizer
7953 : public DefaultedComparisonVisitor<DefaultedComparisonSynthesizer,
7954 StmtListResult, StmtResult,
7955 std::pair<ExprResult, ExprResult>> {
7956 SourceLocation Loc;
7957 unsigned ArrayDepth = 0;
7958
7959public:
7960 using Base = DefaultedComparisonVisitor;
7961 using ExprPair = std::pair<ExprResult, ExprResult>;
7962
7963 friend Base;
7964
7965 DefaultedComparisonSynthesizer(Sema &S, CXXRecordDecl *RD, FunctionDecl *FD,
7966 DefaultedComparisonKind DCK,
7967 SourceLocation BodyLoc)
7968 : Base(S, RD, FD, DCK), Loc(BodyLoc) {}
7969
7970 /// Build a suitable function body for this defaulted comparison operator.
7971 StmtResult build() {
7972 Sema::CompoundScopeRAII CompoundScope(S);
7973
7974 StmtListResult Stmts = visit();
7975 if (Stmts.IsInvalid)
7976 return StmtError();
7977
7978 ExprResult RetVal;
7979 switch (DCK) {
7980 case DefaultedComparisonKind::None:
7981 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 7981)
;
7982
7983 case DefaultedComparisonKind::Equal: {
7984 // C++2a [class.eq]p3:
7985 // [...] compar[e] the corresponding elements [...] until the first
7986 // index i where xi == yi yields [...] false. If no such index exists,
7987 // V is true. Otherwise, V is false.
7988 //
7989 // Join the comparisons with '&&'s and return the result. Use a right
7990 // fold (traversing the conditions right-to-left), because that
7991 // short-circuits more naturally.
7992 auto OldStmts = std::move(Stmts.Stmts);
7993 Stmts.Stmts.clear();
7994 ExprResult CmpSoFar;
7995 // Finish a particular comparison chain.
7996 auto FinishCmp = [&] {
7997 if (Expr *Prior = CmpSoFar.get()) {
7998 // Convert the last expression to 'return ...;'
7999 if (RetVal.isUnset() && Stmts.Stmts.empty())
8000 RetVal = CmpSoFar;
8001 // Convert any prior comparison to 'if (!(...)) return false;'
8002 else if (Stmts.add(buildIfNotCondReturnFalse(Prior)))
8003 return true;
8004 CmpSoFar = ExprResult();
8005 }
8006 return false;
8007 };
8008 for (Stmt *EAsStmt : llvm::reverse(OldStmts)) {
8009 Expr *E = dyn_cast<Expr>(EAsStmt);
8010 if (!E) {
8011 // Found an array comparison.
8012 if (FinishCmp() || Stmts.add(EAsStmt))
8013 return StmtError();
8014 continue;
8015 }
8016
8017 if (CmpSoFar.isUnset()) {
8018 CmpSoFar = E;
8019 continue;
8020 }
8021 CmpSoFar = S.CreateBuiltinBinOp(Loc, BO_LAnd, E, CmpSoFar.get());
8022 if (CmpSoFar.isInvalid())
8023 return StmtError();
8024 }
8025 if (FinishCmp())
8026 return StmtError();
8027 std::reverse(Stmts.Stmts.begin(), Stmts.Stmts.end());
8028 // If no such index exists, V is true.
8029 if (RetVal.isUnset())
8030 RetVal = S.ActOnCXXBoolLiteral(Loc, tok::kw_true);
8031 break;
8032 }
8033
8034 case DefaultedComparisonKind::ThreeWay: {
8035 // Per C++2a [class.spaceship]p3, as a fallback add:
8036 // return static_cast<R>(std::strong_ordering::equal);
8037 QualType StrongOrdering = S.CheckComparisonCategoryType(
8038 ComparisonCategoryType::StrongOrdering, Loc,
8039 Sema::ComparisonCategoryUsage::DefaultedOperator);
8040 if (StrongOrdering.isNull())
8041 return StmtError();
8042 VarDecl *EqualVD = S.Context.CompCategories.getInfoForType(StrongOrdering)
8043 .getValueInfo(ComparisonCategoryResult::Equal)
8044 ->VD;
8045 RetVal = getDecl(EqualVD);
8046 if (RetVal.isInvalid())
8047 return StmtError();
8048 RetVal = buildStaticCastToR(RetVal.get());
8049 break;
8050 }
8051
8052 case DefaultedComparisonKind::NotEqual:
8053 case DefaultedComparisonKind::Relational:
8054 RetVal = cast<Expr>(Stmts.Stmts.pop_back_val());
8055 break;
8056 }
8057
8058 // Build the final return statement.
8059 if (RetVal.isInvalid())
8060 return StmtError();
8061 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, RetVal.get());
8062 if (ReturnStmt.isInvalid())
8063 return StmtError();
8064 Stmts.Stmts.push_back(ReturnStmt.get());
8065
8066 return S.ActOnCompoundStmt(Loc, Loc, Stmts.Stmts, /*IsStmtExpr=*/false);
8067 }
8068
8069private:
8070 ExprResult getDecl(ValueDecl *VD) {
8071 return S.BuildDeclarationNameExpr(
8072 CXXScopeSpec(), DeclarationNameInfo(VD->getDeclName(), Loc), VD);
8073 }
8074
8075 ExprResult getParam(unsigned I) {
8076 ParmVarDecl *PD = FD->getParamDecl(I);
8077 return getDecl(PD);
8078 }
8079
8080 ExprPair getCompleteObject() {
8081 unsigned Param = 0;
8082 ExprResult LHS;
8083 if (isa<CXXMethodDecl>(FD)) {
8084 // LHS is '*this'.
8085 LHS = S.ActOnCXXThis(Loc);
8086 if (!LHS.isInvalid())
8087 LHS = S.CreateBuiltinUnaryOp(Loc, UO_Deref, LHS.get());
8088 } else {
8089 LHS = getParam(Param++);
8090 }
8091 ExprResult RHS = getParam(Param++);
8092 assert(Param == FD->getNumParams())((Param == FD->getNumParams()) ? static_cast<void> (
0) : __assert_fail ("Param == FD->getNumParams()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8092, __PRETTY_FUNCTION__))
;
8093 return {LHS, RHS};
8094 }
8095
8096 ExprPair getBase(CXXBaseSpecifier *Base) {
8097 ExprPair Obj = getCompleteObject();
8098 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8099 return {ExprError(), ExprError()};
8100 CXXCastPath Path = {Base};
8101 return {S.ImpCastExprToType(Obj.first.get(), Base->getType(),
8102 CK_DerivedToBase, VK_LValue, &Path),
8103 S.ImpCastExprToType(Obj.second.get(), Base->getType(),
8104 CK_DerivedToBase, VK_LValue, &Path)};
8105 }
8106
8107 ExprPair getField(FieldDecl *Field) {
8108 ExprPair Obj = getCompleteObject();
8109 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8110 return {ExprError(), ExprError()};
8111
8112 DeclAccessPair Found = DeclAccessPair::make(Field, Field->getAccess());
8113 DeclarationNameInfo NameInfo(Field->getDeclName(), Loc);
8114 return {S.BuildFieldReferenceExpr(Obj.first.get(), /*IsArrow=*/false, Loc,
8115 CXXScopeSpec(), Field, Found, NameInfo),
8116 S.BuildFieldReferenceExpr(Obj.second.get(), /*IsArrow=*/false, Loc,
8117 CXXScopeSpec(), Field, Found, NameInfo)};
8118 }
8119
8120 // FIXME: When expanding a subobject, register a note in the code synthesis
8121 // stack to say which subobject we're comparing.
8122
8123 StmtResult buildIfNotCondReturnFalse(ExprResult Cond) {
8124 if (Cond.isInvalid())
8125 return StmtError();
8126
8127 ExprResult NotCond = S.CreateBuiltinUnaryOp(Loc, UO_LNot, Cond.get());
8128 if (NotCond.isInvalid())
8129 return StmtError();
8130
8131 ExprResult False = S.ActOnCXXBoolLiteral(Loc, tok::kw_false);
8132 assert(!False.isInvalid() && "should never fail")((!False.isInvalid() && "should never fail") ? static_cast
<void> (0) : __assert_fail ("!False.isInvalid() && \"should never fail\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8132, __PRETTY_FUNCTION__))
;
8133 StmtResult ReturnFalse = S.BuildReturnStmt(Loc, False.get());
8134 if (ReturnFalse.isInvalid())
8135 return StmtError();
8136
8137 return S.ActOnIfStmt(Loc, false, Loc, nullptr,
8138 S.ActOnCondition(nullptr, Loc, NotCond.get(),
8139 Sema::ConditionKind::Boolean),
8140 Loc, ReturnFalse.get(), SourceLocation(), nullptr);
8141 }
8142
8143 StmtResult visitSubobjectArray(QualType Type, llvm::APInt Size,
8144 ExprPair Subobj) {
8145 QualType SizeType = S.Context.getSizeType();
8146 Size = Size.zextOrTrunc(S.Context.getTypeSize(SizeType));
8147
8148 // Build 'size_t i$n = 0'.
8149 IdentifierInfo *IterationVarName = nullptr;
8150 {
8151 SmallString<8> Str;
8152 llvm::raw_svector_ostream OS(Str);
8153 OS << "i" << ArrayDepth;
8154 IterationVarName = &S.Context.Idents.get(OS.str());
8155 }
8156 VarDecl *IterationVar = VarDecl::Create(
8157 S.Context, S.CurContext, Loc, Loc, IterationVarName, SizeType,
8158 S.Context.getTrivialTypeSourceInfo(SizeType, Loc), SC_None);
8159 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8160 IterationVar->setInit(
8161 IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8162 Stmt *Init = new (S.Context) DeclStmt(DeclGroupRef(IterationVar), Loc, Loc);
8163
8164 auto IterRef = [&] {
8165 ExprResult Ref = S.BuildDeclarationNameExpr(
8166 CXXScopeSpec(), DeclarationNameInfo(IterationVarName, Loc),
8167 IterationVar);
8168 assert(!Ref.isInvalid() && "can't reference our own variable?")((!Ref.isInvalid() && "can't reference our own variable?"
) ? static_cast<void> (0) : __assert_fail ("!Ref.isInvalid() && \"can't reference our own variable?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8168, __PRETTY_FUNCTION__))
;
8169 return Ref.get();
8170 };
8171
8172 // Build 'i$n != Size'.
8173 ExprResult Cond = S.CreateBuiltinBinOp(
8174 Loc, BO_NE, IterRef(),
8175 IntegerLiteral::Create(S.Context, Size, SizeType, Loc));
8176 assert(!Cond.isInvalid() && "should never fail")((!Cond.isInvalid() && "should never fail") ? static_cast
<void> (0) : __assert_fail ("!Cond.isInvalid() && \"should never fail\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8176, __PRETTY_FUNCTION__))
;
8177
8178 // Build '++i$n'.
8179 ExprResult Inc = S.CreateBuiltinUnaryOp(Loc, UO_PreInc, IterRef());
8180 assert(!Inc.isInvalid() && "should never fail")((!Inc.isInvalid() && "should never fail") ? static_cast
<void> (0) : __assert_fail ("!Inc.isInvalid() && \"should never fail\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8180, __PRETTY_FUNCTION__))
;
8181
8182 // Build 'a[i$n]' and 'b[i$n]'.
8183 auto Index = [&](ExprResult E) {
8184 if (E.isInvalid())
8185 return ExprError();
8186 return S.CreateBuiltinArraySubscriptExpr(E.get(), Loc, IterRef(), Loc);
8187 };
8188 Subobj.first = Index(Subobj.first);
8189 Subobj.second = Index(Subobj.second);
8190
8191 // Compare the array elements.
8192 ++ArrayDepth;
8193 StmtResult Substmt = visitSubobject(Type, Subobj);
8194 --ArrayDepth;
8195
8196 if (Substmt.isInvalid())
8197 return StmtError();
8198
8199 // For the inner level of an 'operator==', build 'if (!cmp) return false;'.
8200 // For outer levels or for an 'operator<=>' we already have a suitable
8201 // statement that returns as necessary.
8202 if (Expr *ElemCmp = dyn_cast<Expr>(Substmt.get())) {
8203 assert(DCK == DefaultedComparisonKind::Equal &&((DCK == DefaultedComparisonKind::Equal && "should have non-expression statement"
) ? static_cast<void> (0) : __assert_fail ("DCK == DefaultedComparisonKind::Equal && \"should have non-expression statement\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8204, __PRETTY_FUNCTION__))
8204 "should have non-expression statement")((DCK == DefaultedComparisonKind::Equal && "should have non-expression statement"
) ? static_cast<void> (0) : __assert_fail ("DCK == DefaultedComparisonKind::Equal && \"should have non-expression statement\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8204, __PRETTY_FUNCTION__))
;
8205 Substmt = buildIfNotCondReturnFalse(ElemCmp);
8206 if (Substmt.isInvalid())
8207 return StmtError();
8208 }
8209
8210 // Build 'for (...) ...'
8211 return S.ActOnForStmt(Loc, Loc, Init,
8212 S.ActOnCondition(nullptr, Loc, Cond.get(),
8213 Sema::ConditionKind::Boolean),
8214 S.MakeFullDiscardedValueExpr(Inc.get()), Loc,
8215 Substmt.get());
8216 }
8217
8218 StmtResult visitExpandedSubobject(QualType Type, ExprPair Obj) {
8219 if (Obj.first.isInvalid() || Obj.second.isInvalid())
8220 return StmtError();
8221
8222 OverloadedOperatorKind OO = FD->getOverloadedOperator();
8223 BinaryOperatorKind Opc = BinaryOperator::getOverloadedOpcode(OO);
8224 ExprResult Op;
8225 if (Type->isOverloadableType())
8226 Op = S.CreateOverloadedBinOp(Loc, Opc, Fns, Obj.first.get(),
8227 Obj.second.get(), /*PerformADL=*/true,
8228 /*AllowRewrittenCandidates=*/true, FD);
8229 else
8230 Op = S.CreateBuiltinBinOp(Loc, Opc, Obj.first.get(), Obj.second.get());
8231 if (Op.isInvalid())
8232 return StmtError();
8233
8234 switch (DCK) {
8235 case DefaultedComparisonKind::None:
8236 llvm_unreachable("not a defaulted comparison")::llvm::llvm_unreachable_internal("not a defaulted comparison"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8236)
;
8237
8238 case DefaultedComparisonKind::Equal:
8239 // Per C++2a [class.eq]p2, each comparison is individually contextually
8240 // converted to bool.
8241 Op = S.PerformContextuallyConvertToBool(Op.get());
8242 if (Op.isInvalid())
8243 return StmtError();
8244 return Op.get();
8245
8246 case DefaultedComparisonKind::ThreeWay: {
8247 // Per C++2a [class.spaceship]p3, form:
8248 // if (R cmp = static_cast<R>(op); cmp != 0)
8249 // return cmp;
8250 QualType R = FD->getReturnType();
8251 Op = buildStaticCastToR(Op.get());
8252 if (Op.isInvalid())
8253 return StmtError();
8254
8255 // R cmp = ...;
8256 IdentifierInfo *Name = &S.Context.Idents.get("cmp");
8257 VarDecl *VD =
8258 VarDecl::Create(S.Context, S.CurContext, Loc, Loc, Name, R,
8259 S.Context.getTrivialTypeSourceInfo(R, Loc), SC_None);
8260 S.AddInitializerToDecl(VD, Op.get(), /*DirectInit=*/false);
8261 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(VD), Loc, Loc);
8262
8263 // cmp != 0
8264 ExprResult VDRef = getDecl(VD);
8265 if (VDRef.isInvalid())
8266 return StmtError();
8267 llvm::APInt ZeroVal(S.Context.getIntWidth(S.Context.IntTy), 0);
8268 Expr *Zero =
8269 IntegerLiteral::Create(S.Context, ZeroVal, S.Context.IntTy, Loc);
8270 ExprResult Comp;
8271 if (VDRef.get()->getType()->isOverloadableType())
8272 Comp = S.CreateOverloadedBinOp(Loc, BO_NE, Fns, VDRef.get(), Zero, true,
8273 true, FD);
8274 else
8275 Comp = S.CreateBuiltinBinOp(Loc, BO_NE, VDRef.get(), Zero);
8276 if (Comp.isInvalid())
8277 return StmtError();
8278 Sema::ConditionResult Cond = S.ActOnCondition(
8279 nullptr, Loc, Comp.get(), Sema::ConditionKind::Boolean);
8280 if (Cond.isInvalid())
8281 return StmtError();
8282
8283 // return cmp;
8284 VDRef = getDecl(VD);
8285 if (VDRef.isInvalid())
8286 return StmtError();
8287 StmtResult ReturnStmt = S.BuildReturnStmt(Loc, VDRef.get());
8288 if (ReturnStmt.isInvalid())
8289 return StmtError();
8290
8291 // if (...)
8292 return S.ActOnIfStmt(Loc, /*IsConstexpr=*/false, Loc, InitStmt, Cond, Loc,
8293 ReturnStmt.get(),
8294 /*ElseLoc=*/SourceLocation(), /*Else=*/nullptr);
8295 }
8296
8297 case DefaultedComparisonKind::NotEqual:
8298 case DefaultedComparisonKind::Relational:
8299 // C++2a [class.compare.secondary]p2:
8300 // Otherwise, the operator function yields x @ y.
8301 return Op.get();
8302 }
8303 llvm_unreachable("")::llvm::llvm_unreachable_internal("", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8303)
;
8304 }
8305
8306 /// Build "static_cast<R>(E)".
8307 ExprResult buildStaticCastToR(Expr *E) {
8308 QualType R = FD->getReturnType();
8309 assert(!R->isUndeducedType() && "type should have been deduced already")((!R->isUndeducedType() && "type should have been deduced already"
) ? static_cast<void> (0) : __assert_fail ("!R->isUndeducedType() && \"type should have been deduced already\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8309, __PRETTY_FUNCTION__))
;
8310
8311 // Don't bother forming a no-op cast in the common case.
8312 if (E->isRValue() && S.Context.hasSameType(E->getType(), R))
8313 return E;
8314 return S.BuildCXXNamedCast(Loc, tok::kw_static_cast,
8315 S.Context.getTrivialTypeSourceInfo(R, Loc), E,
8316 SourceRange(Loc, Loc), SourceRange(Loc, Loc));
8317 }
8318};
8319}
8320
8321/// Perform the unqualified lookups that might be needed to form a defaulted
8322/// comparison function for the given operator.
8323static void lookupOperatorsForDefaultedComparison(Sema &Self, Scope *S,
8324 UnresolvedSetImpl &Operators,
8325 OverloadedOperatorKind Op) {
8326 auto Lookup = [&](OverloadedOperatorKind OO) {
8327 Self.LookupOverloadedOperatorName(OO, S, Operators);
8328 };
8329
8330 // Every defaulted operator looks up itself.
8331 Lookup(Op);
8332 // ... and the rewritten form of itself, if any.
8333 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(Op))
8334 Lookup(ExtraOp);
8335
8336 // For 'operator<=>', we also form a 'cmp != 0' expression, and might
8337 // synthesize a three-way comparison from '<' and '=='. In a dependent
8338 // context, we also need to look up '==' in case we implicitly declare a
8339 // defaulted 'operator=='.
8340 if (Op == OO_Spaceship) {
8341 Lookup(OO_ExclaimEqual);
8342 Lookup(OO_Less);
8343 Lookup(OO_EqualEqual);
8344 }
8345}
8346
8347bool Sema::CheckExplicitlyDefaultedComparison(Scope *S, FunctionDecl *FD,
8348 DefaultedComparisonKind DCK) {
8349 assert(DCK != DefaultedComparisonKind::None && "not a defaulted comparison")((DCK != DefaultedComparisonKind::None && "not a defaulted comparison"
) ? static_cast<void> (0) : __assert_fail ("DCK != DefaultedComparisonKind::None && \"not a defaulted comparison\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8349, __PRETTY_FUNCTION__))
;
8350
8351 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(FD->getLexicalDeclContext());
8352 assert(RD && "defaulted comparison is not defaulted in a class")((RD && "defaulted comparison is not defaulted in a class"
) ? static_cast<void> (0) : __assert_fail ("RD && \"defaulted comparison is not defaulted in a class\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8352, __PRETTY_FUNCTION__))
;
8353
8354 // Perform any unqualified lookups we're going to need to default this
8355 // function.
8356 if (S) {
8357 UnresolvedSet<32> Operators;
8358 lookupOperatorsForDefaultedComparison(*this, S, Operators,
8359 FD->getOverloadedOperator());
8360 FD->setDefaultedFunctionInfo(FunctionDecl::DefaultedFunctionInfo::Create(
8361 Context, Operators.pairs()));
8362 }
8363
8364 // C++2a [class.compare.default]p1:
8365 // A defaulted comparison operator function for some class C shall be a
8366 // non-template function declared in the member-specification of C that is
8367 // -- a non-static const member of C having one parameter of type
8368 // const C&, or
8369 // -- a friend of C having two parameters of type const C& or two
8370 // parameters of type C.
8371 QualType ExpectedParmType1 = Context.getRecordType(RD);
8372 QualType ExpectedParmType2 =
8373 Context.getLValueReferenceType(ExpectedParmType1.withConst());
8374 if (isa<CXXMethodDecl>(FD))
8375 ExpectedParmType1 = ExpectedParmType2;
8376 for (const ParmVarDecl *Param : FD->parameters()) {
8377 if (!Param->getType()->isDependentType() &&
8378 !Context.hasSameType(Param->getType(), ExpectedParmType1) &&
8379 !Context.hasSameType(Param->getType(), ExpectedParmType2)) {
8380 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8381 // corresponding defaulted 'operator<=>' already.
8382 if (!FD->isImplicit()) {
8383 Diag(FD->getLocation(), diag::err_defaulted_comparison_param)
8384 << (int)DCK << Param->getType() << ExpectedParmType1
8385 << !isa<CXXMethodDecl>(FD)
8386 << ExpectedParmType2 << Param->getSourceRange();
8387 }
8388 return true;
8389 }
8390 }
8391 if (FD->getNumParams() == 2 &&
8392 !Context.hasSameType(FD->getParamDecl(0)->getType(),
8393 FD->getParamDecl(1)->getType())) {
8394 if (!FD->isImplicit()) {
8395 Diag(FD->getLocation(), diag::err_defaulted_comparison_param_mismatch)
8396 << (int)DCK
8397 << FD->getParamDecl(0)->getType()
8398 << FD->getParamDecl(0)->getSourceRange()
8399 << FD->getParamDecl(1)->getType()
8400 << FD->getParamDecl(1)->getSourceRange();
8401 }
8402 return true;
8403 }
8404
8405 // ... non-static const member ...
8406 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
8407 assert(!MD->isStatic() && "comparison function cannot be a static member")((!MD->isStatic() && "comparison function cannot be a static member"
) ? static_cast<void> (0) : __assert_fail ("!MD->isStatic() && \"comparison function cannot be a static member\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8407, __PRETTY_FUNCTION__))
;
8408 if (!MD->isConst()) {
8409 SourceLocation InsertLoc;
8410 if (FunctionTypeLoc Loc = MD->getFunctionTypeLoc())
8411 InsertLoc = getLocForEndOfToken(Loc.getRParenLoc());
8412 // Don't diagnose an implicit 'operator=='; we will have diagnosed the
8413 // corresponding defaulted 'operator<=>' already.
8414 if (!MD->isImplicit()) {
8415 Diag(MD->getLocation(), diag::err_defaulted_comparison_non_const)
8416 << (int)DCK << FixItHint::CreateInsertion(InsertLoc, " const");
8417 }
8418
8419 // Add the 'const' to the type to recover.
8420 const auto *FPT = MD->getType()->castAs<FunctionProtoType>();
8421 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8422 EPI.TypeQuals.addConst();
8423 MD->setType(Context.getFunctionType(FPT->getReturnType(),
8424 FPT->getParamTypes(), EPI));
8425 }
8426 } else {
8427 // A non-member function declared in a class must be a friend.
8428 assert(FD->getFriendObjectKind() && "expected a friend declaration")((FD->getFriendObjectKind() && "expected a friend declaration"
) ? static_cast<void> (0) : __assert_fail ("FD->getFriendObjectKind() && \"expected a friend declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8428, __PRETTY_FUNCTION__))
;
8429 }
8430
8431 // C++2a [class.eq]p1, [class.rel]p1:
8432 // A [defaulted comparison other than <=>] shall have a declared return
8433 // type bool.
8434 if (DCK != DefaultedComparisonKind::ThreeWay &&
8435 !FD->getDeclaredReturnType()->isDependentType() &&
8436 !Context.hasSameType(FD->getDeclaredReturnType(), Context.BoolTy)) {
8437 Diag(FD->getLocation(), diag::err_defaulted_comparison_return_type_not_bool)
8438 << (int)DCK << FD->getDeclaredReturnType() << Context.BoolTy
8439 << FD->getReturnTypeSourceRange();
8440 return true;
8441 }
8442 // C++2a [class.spaceship]p2 [P2002R0]:
8443 // Let R be the declared return type [...]. If R is auto, [...]. Otherwise,
8444 // R shall not contain a placeholder type.
8445 if (DCK == DefaultedComparisonKind::ThreeWay &&
8446 FD->getDeclaredReturnType()->getContainedDeducedType() &&
8447 !Context.hasSameType(FD->getDeclaredReturnType(),
8448 Context.getAutoDeductType())) {
8449 Diag(FD->getLocation(),
8450 diag::err_defaulted_comparison_deduced_return_type_not_auto)
8451 << (int)DCK << FD->getDeclaredReturnType() << Context.AutoDeductTy
8452 << FD->getReturnTypeSourceRange();
8453 return true;
8454 }
8455
8456 // For a defaulted function in a dependent class, defer all remaining checks
8457 // until instantiation.
8458 if (RD->isDependentType())
8459 return false;
8460
8461 // Determine whether the function should be defined as deleted.
8462 DefaultedComparisonInfo Info =
8463 DefaultedComparisonAnalyzer(*this, RD, FD, DCK).visit();
8464
8465 bool First = FD == FD->getCanonicalDecl();
8466
8467 // If we want to delete the function, then do so; there's nothing else to
8468 // check in that case.
8469 if (Info.Deleted) {
8470 if (!First) {
8471 // C++11 [dcl.fct.def.default]p4:
8472 // [For a] user-provided explicitly-defaulted function [...] if such a
8473 // function is implicitly defined as deleted, the program is ill-formed.
8474 //
8475 // This is really just a consequence of the general rule that you can
8476 // only delete a function on its first declaration.
8477 Diag(FD->getLocation(), diag::err_non_first_default_compare_deletes)
8478 << FD->isImplicit() << (int)DCK;
8479 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8480 DefaultedComparisonAnalyzer::ExplainDeleted)
8481 .visit();
8482 return true;
8483 }
8484
8485 SetDeclDeleted(FD, FD->getLocation());
8486 if (!inTemplateInstantiation() && !FD->isImplicit()) {
8487 Diag(FD->getLocation(), diag::warn_defaulted_comparison_deleted)
8488 << (int)DCK;
8489 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8490 DefaultedComparisonAnalyzer::ExplainDeleted)
8491 .visit();
8492 }
8493 return false;
8494 }
8495
8496 // C++2a [class.spaceship]p2:
8497 // The return type is deduced as the common comparison type of R0, R1, ...
8498 if (DCK == DefaultedComparisonKind::ThreeWay &&
8499 FD->getDeclaredReturnType()->isUndeducedAutoType()) {
8500 SourceLocation RetLoc = FD->getReturnTypeSourceRange().getBegin();
8501 if (RetLoc.isInvalid())
8502 RetLoc = FD->getBeginLoc();
8503 // FIXME: Should we really care whether we have the complete type and the
8504 // 'enumerator' constants here? A forward declaration seems sufficient.
8505 QualType Cat = CheckComparisonCategoryType(
8506 Info.Category, RetLoc, ComparisonCategoryUsage::DefaultedOperator);
8507 if (Cat.isNull())
8508 return true;
8509 Context.adjustDeducedFunctionResultType(
8510 FD, SubstAutoType(FD->getDeclaredReturnType(), Cat));
8511 }
8512
8513 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8514 // An explicitly-defaulted function that is not defined as deleted may be
8515 // declared constexpr or consteval only if it is constexpr-compatible.
8516 // C++2a [class.compare.default]p3 [P2002R0]:
8517 // A defaulted comparison function is constexpr-compatible if it satisfies
8518 // the requirements for a constexpr function [...]
8519 // The only relevant requirements are that the parameter and return types are
8520 // literal types. The remaining conditions are checked by the analyzer.
8521 if (FD->isConstexpr()) {
8522 if (CheckConstexprReturnType(*this, FD, CheckConstexprKind::Diagnose) &&
8523 CheckConstexprParameterTypes(*this, FD, CheckConstexprKind::Diagnose) &&
8524 !Info.Constexpr) {
8525 Diag(FD->getBeginLoc(),
8526 diag::err_incorrect_defaulted_comparison_constexpr)
8527 << FD->isImplicit() << (int)DCK << FD->isConsteval();
8528 DefaultedComparisonAnalyzer(*this, RD, FD, DCK,
8529 DefaultedComparisonAnalyzer::ExplainConstexpr)
8530 .visit();
8531 }
8532 }
8533
8534 // C++2a [dcl.fct.def.default]p3 [P2002R0]:
8535 // If a constexpr-compatible function is explicitly defaulted on its first
8536 // declaration, it is implicitly considered to be constexpr.
8537 // FIXME: Only applying this to the first declaration seems problematic, as
8538 // simple reorderings can affect the meaning of the program.
8539 if (First && !FD->isConstexpr() && Info.Constexpr)
8540 FD->setConstexprKind(ConstexprSpecKind::Constexpr);
8541
8542 // C++2a [except.spec]p3:
8543 // If a declaration of a function does not have a noexcept-specifier
8544 // [and] is defaulted on its first declaration, [...] the exception
8545 // specification is as specified below
8546 if (FD->getExceptionSpecType() == EST_None) {
8547 auto *FPT = FD->getType()->castAs<FunctionProtoType>();
8548 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8549 EPI.ExceptionSpec.Type = EST_Unevaluated;
8550 EPI.ExceptionSpec.SourceDecl = FD;
8551 FD->setType(Context.getFunctionType(FPT->getReturnType(),
8552 FPT->getParamTypes(), EPI));
8553 }
8554
8555 return false;
8556}
8557
8558void Sema::DeclareImplicitEqualityComparison(CXXRecordDecl *RD,
8559 FunctionDecl *Spaceship) {
8560 Sema::CodeSynthesisContext Ctx;
8561 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringImplicitEqualityComparison;
8562 Ctx.PointOfInstantiation = Spaceship->getEndLoc();
8563 Ctx.Entity = Spaceship;
8564 pushCodeSynthesisContext(Ctx);
8565
8566 if (FunctionDecl *EqualEqual = SubstSpaceshipAsEqualEqual(RD, Spaceship))
8567 EqualEqual->setImplicit();
8568
8569 popCodeSynthesisContext();
8570}
8571
8572void Sema::DefineDefaultedComparison(SourceLocation UseLoc, FunctionDecl *FD,
8573 DefaultedComparisonKind DCK) {
8574 assert(FD->isDefaulted() && !FD->isDeleted() &&((FD->isDefaulted() && !FD->isDeleted() &&
!FD->doesThisDeclarationHaveABody()) ? static_cast<void
> (0) : __assert_fail ("FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8575, __PRETTY_FUNCTION__))
8575 !FD->doesThisDeclarationHaveABody())((FD->isDefaulted() && !FD->isDeleted() &&
!FD->doesThisDeclarationHaveABody()) ? static_cast<void
> (0) : __assert_fail ("FD->isDefaulted() && !FD->isDeleted() && !FD->doesThisDeclarationHaveABody()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8575, __PRETTY_FUNCTION__))
;
8576 if (FD->willHaveBody() || FD->isInvalidDecl())
8577 return;
8578
8579 SynthesizedFunctionScope Scope(*this, FD);
8580
8581 // Add a context note for diagnostics produced after this point.
8582 Scope.addContextNote(UseLoc);
8583
8584 {
8585 // Build and set up the function body.
8586 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8587 SourceLocation BodyLoc =
8588 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8589 StmtResult Body =
8590 DefaultedComparisonSynthesizer(*this, RD, FD, DCK, BodyLoc).build();
8591 if (Body.isInvalid()) {
8592 FD->setInvalidDecl();
8593 return;
8594 }
8595 FD->setBody(Body.get());
8596 FD->markUsed(Context);
8597 }
8598
8599 // The exception specification is needed because we are defining the
8600 // function. Note that this will reuse the body we just built.
8601 ResolveExceptionSpec(UseLoc, FD->getType()->castAs<FunctionProtoType>());
8602
8603 if (ASTMutationListener *L = getASTMutationListener())
8604 L->CompletedImplicitDefinition(FD);
8605}
8606
8607static Sema::ImplicitExceptionSpecification
8608ComputeDefaultedComparisonExceptionSpec(Sema &S, SourceLocation Loc,
8609 FunctionDecl *FD,
8610 Sema::DefaultedComparisonKind DCK) {
8611 ComputingExceptionSpec CES(S, FD, Loc);
8612 Sema::ImplicitExceptionSpecification ExceptSpec(S);
8613
8614 if (FD->isInvalidDecl())
8615 return ExceptSpec;
8616
8617 // The common case is that we just defined the comparison function. In that
8618 // case, just look at whether the body can throw.
8619 if (FD->hasBody()) {
8620 ExceptSpec.CalledStmt(FD->getBody());
8621 } else {
8622 // Otherwise, build a body so we can check it. This should ideally only
8623 // happen when we're not actually marking the function referenced. (This is
8624 // only really important for efficiency: we don't want to build and throw
8625 // away bodies for comparison functions more than we strictly need to.)
8626
8627 // Pretend to synthesize the function body in an unevaluated context.
8628 // Note that we can't actually just go ahead and define the function here:
8629 // we are not permitted to mark its callees as referenced.
8630 Sema::SynthesizedFunctionScope Scope(S, FD);
8631 EnterExpressionEvaluationContext Context(
8632 S, Sema::ExpressionEvaluationContext::Unevaluated);
8633
8634 CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getLexicalParent());
8635 SourceLocation BodyLoc =
8636 FD->getEndLoc().isValid() ? FD->getEndLoc() : FD->getLocation();
8637 StmtResult Body =
8638 DefaultedComparisonSynthesizer(S, RD, FD, DCK, BodyLoc).build();
8639 if (!Body.isInvalid())
8640 ExceptSpec.CalledStmt(Body.get());
8641
8642 // FIXME: Can we hold onto this body and just transform it to potentially
8643 // evaluated when we're asked to define the function rather than rebuilding
8644 // it? Either that, or we should only build the bits of the body that we
8645 // need (the expressions, not the statements).
8646 }
8647
8648 return ExceptSpec;
8649}
8650
8651void Sema::CheckDelayedMemberExceptionSpecs() {
8652 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
8653 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
8654
8655 std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
8656 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
8657
8658 // Perform any deferred checking of exception specifications for virtual
8659 // destructors.
8660 for (auto &Check : Overriding)
8661 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
8662
8663 // Perform any deferred checking of exception specifications for befriended
8664 // special members.
8665 for (auto &Check : Equivalent)
8666 CheckEquivalentExceptionSpec(Check.second, Check.first);
8667}
8668
8669namespace {
8670/// CRTP base class for visiting operations performed by a special member
8671/// function (or inherited constructor).
8672template<typename Derived>
8673struct SpecialMemberVisitor {
8674 Sema &S;
8675 CXXMethodDecl *MD;
8676 Sema::CXXSpecialMember CSM;
8677 Sema::InheritedConstructorInfo *ICI;
8678
8679 // Properties of the special member, computed for convenience.
8680 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
8681
8682 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
8683 Sema::InheritedConstructorInfo *ICI)
8684 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
8685 switch (CSM) {
8686 case Sema::CXXDefaultConstructor:
8687 case Sema::CXXCopyConstructor:
8688 case Sema::CXXMoveConstructor:
8689 IsConstructor = true;
8690 break;
8691 case Sema::CXXCopyAssignment:
8692 case Sema::CXXMoveAssignment:
8693 IsAssignment = true;
8694 break;
8695 case Sema::CXXDestructor:
8696 break;
8697 case Sema::CXXInvalid:
8698 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8698)
;
8699 }
8700
8701 if (MD->getNumParams()) {
8702 if (const ReferenceType *RT =
8703 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
8704 ConstArg = RT->getPointeeType().isConstQualified();
8705 }
8706 }
8707
8708 Derived &getDerived() { return static_cast<Derived&>(*this); }
8709
8710 /// Is this a "move" special member?
8711 bool isMove() const {
8712 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
8713 }
8714
8715 /// Look up the corresponding special member in the given class.
8716 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
8717 unsigned Quals, bool IsMutable) {
8718 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
8719 ConstArg && !IsMutable);
8720 }
8721
8722 /// Look up the constructor for the specified base class to see if it's
8723 /// overridden due to this being an inherited constructor.
8724 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
8725 if (!ICI)
8726 return {};
8727 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 8727, __PRETTY_FUNCTION__))
;
8728 auto *BaseCtor =
8729 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
8730 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
8731 return MD;
8732 return {};
8733 }
8734
8735 /// A base or member subobject.
8736 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
8737
8738 /// Get the location to use for a subobject in diagnostics.
8739 static SourceLocation getSubobjectLoc(Subobject Subobj) {
8740 // FIXME: For an indirect virtual base, the direct base leading to
8741 // the indirect virtual base would be a more useful choice.
8742 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
8743 return B->getBaseTypeLoc();
8744 else
8745 return Subobj.get<FieldDecl*>()->getLocation();
8746 }
8747
8748 enum BasesToVisit {
8749 /// Visit all non-virtual (direct) bases.
8750 VisitNonVirtualBases,
8751 /// Visit all direct bases, virtual or not.
8752 VisitDirectBases,
8753 /// Visit all non-virtual bases, and all virtual bases if the class
8754 /// is not abstract.
8755 VisitPotentiallyConstructedBases,
8756 /// Visit all direct or virtual bases.
8757 VisitAllBases
8758 };
8759
8760 // Visit the bases and members of the class.
8761 bool visit(BasesToVisit Bases) {
8762 CXXRecordDecl *RD = MD->getParent();
8763
8764 if (Bases == VisitPotentiallyConstructedBases)
8765 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
8766
8767 for (auto &B : RD->bases())
8768 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
8769 getDerived().visitBase(&B))
8770 return true;
8771
8772 if (Bases == VisitAllBases)
8773 for (auto &B : RD->vbases())
8774 if (getDerived().visitBase(&B))
8775 return true;
8776
8777 for (auto *F : RD->fields())
8778 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
8779 getDerived().visitField(F))
8780 return true;
8781
8782 return false;
8783 }
8784};
8785}
8786
8787namespace {
8788struct SpecialMemberDeletionInfo
8789 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
8790 bool Diagnose;
8791
8792 SourceLocation Loc;
8793
8794 bool AllFieldsAreConst;
8795
8796 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
8797 Sema::CXXSpecialMember CSM,
8798 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
8799 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
8800 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
8801
8802 bool inUnion() const { return MD->getParent()->isUnion(); }
8803
8804 Sema::CXXSpecialMember getEffectiveCSM() {
8805 return ICI ? Sema::CXXInvalid : CSM;
8806 }
8807
8808 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
8809
8810 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
8811 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
8812
8813 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
8814 bool shouldDeleteForField(FieldDecl *FD);
8815 bool shouldDeleteForAllConstMembers();
8816
8817 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
8818 unsigned Quals);
8819 bool shouldDeleteForSubobjectCall(Subobject Subobj,
8820 Sema::SpecialMemberOverloadResult SMOR,
8821 bool IsDtorCallInCtor);
8822
8823 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
8824};
8825}
8826
8827/// Is the given special member inaccessible when used on the given
8828/// sub-object.
8829bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
8830 CXXMethodDecl *target) {
8831 /// If we're operating on a base class, the object type is the
8832 /// type of this special member.
8833 QualType objectTy;
8834 AccessSpecifier access = target->getAccess();
8835 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
8836 objectTy = S.Context.getTypeDeclType(MD->getParent());
8837 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
8838
8839 // If we're operating on a field, the object type is the type of the field.
8840 } else {
8841 objectTy = S.Context.getTypeDeclType(target->getParent());
8842 }
8843
8844 return S.isMemberAccessibleForDeletion(
8845 target->getParent(), DeclAccessPair::make(target, access), objectTy);
8846}
8847
8848/// Check whether we should delete a special member due to the implicit
8849/// definition containing a call to a special member of a subobject.
8850bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
8851 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
8852 bool IsDtorCallInCtor) {
8853 CXXMethodDecl *Decl = SMOR.getMethod();
8854 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8855
8856 int DiagKind = -1;
8857
8858 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
8859 DiagKind = !Decl ? 0 : 1;
8860 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
8861 DiagKind = 2;
8862 else if (!isAccessible(Subobj, Decl))
8863 DiagKind = 3;
8864 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
8865 !Decl->isTrivial()) {
8866 // A member of a union must have a trivial corresponding special member.
8867 // As a weird special case, a destructor call from a union's constructor
8868 // must be accessible and non-deleted, but need not be trivial. Such a
8869 // destructor is never actually called, but is semantically checked as
8870 // if it were.
8871 DiagKind = 4;
8872 }
8873
8874 if (DiagKind == -1)
8875 return false;
8876
8877 if (Diagnose) {
8878 if (Field) {
8879 S.Diag(Field->getLocation(),
8880 diag::note_deleted_special_member_class_subobject)
8881 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
8882 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
8883 } else {
8884 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
8885 S.Diag(Base->getBeginLoc(),
8886 diag::note_deleted_special_member_class_subobject)
8887 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8888 << Base->getType() << DiagKind << IsDtorCallInCtor
8889 << /*IsObjCPtr*/false;
8890 }
8891
8892 if (DiagKind == 1)
8893 S.NoteDeletedFunction(Decl);
8894 // FIXME: Explain inaccessibility if DiagKind == 3.
8895 }
8896
8897 return true;
8898}
8899
8900/// Check whether we should delete a special member function due to having a
8901/// direct or virtual base class or non-static data member of class type M.
8902bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
8903 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
8904 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
8905 bool IsMutable = Field && Field->isMutable();
8906
8907 // C++11 [class.ctor]p5:
8908 // -- any direct or virtual base class, or non-static data member with no
8909 // brace-or-equal-initializer, has class type M (or array thereof) and
8910 // either M has no default constructor or overload resolution as applied
8911 // to M's default constructor results in an ambiguity or in a function
8912 // that is deleted or inaccessible
8913 // C++11 [class.copy]p11, C++11 [class.copy]p23:
8914 // -- a direct or virtual base class B that cannot be copied/moved because
8915 // overload resolution, as applied to B's corresponding special member,
8916 // results in an ambiguity or a function that is deleted or inaccessible
8917 // from the defaulted special member
8918 // C++11 [class.dtor]p5:
8919 // -- any direct or virtual base class [...] has a type with a destructor
8920 // that is deleted or inaccessible
8921 if (!(CSM == Sema::CXXDefaultConstructor &&
8922 Field && Field->hasInClassInitializer()) &&
8923 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
8924 false))
8925 return true;
8926
8927 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
8928 // -- any direct or virtual base class or non-static data member has a
8929 // type with a destructor that is deleted or inaccessible
8930 if (IsConstructor) {
8931 Sema::SpecialMemberOverloadResult SMOR =
8932 S.LookupSpecialMember(Class, Sema::CXXDestructor,
8933 false, false, false, false, false);
8934 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
8935 return true;
8936 }
8937
8938 return false;
8939}
8940
8941bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
8942 FieldDecl *FD, QualType FieldType) {
8943 // The defaulted special functions are defined as deleted if this is a variant
8944 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
8945 // type under ARC.
8946 if (!FieldType.hasNonTrivialObjCLifetime())
8947 return false;
8948
8949 // Don't make the defaulted default constructor defined as deleted if the
8950 // member has an in-class initializer.
8951 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
8952 return false;
8953
8954 if (Diagnose) {
8955 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
8956 S.Diag(FD->getLocation(),
8957 diag::note_deleted_special_member_class_subobject)
8958 << getEffectiveCSM() << ParentClass << /*IsField*/true
8959 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
8960 }
8961
8962 return true;
8963}
8964
8965/// Check whether we should delete a special member function due to the class
8966/// having a particular direct or virtual base class.
8967bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
8968 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
8969 // If program is correct, BaseClass cannot be null, but if it is, the error
8970 // must be reported elsewhere.
8971 if (!BaseClass)
8972 return false;
8973 // If we have an inheriting constructor, check whether we're calling an
8974 // inherited constructor instead of a default constructor.
8975 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
8976 if (auto *BaseCtor = SMOR.getMethod()) {
8977 // Note that we do not check access along this path; other than that,
8978 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
8979 // FIXME: Check that the base has a usable destructor! Sink this into
8980 // shouldDeleteForClassSubobject.
8981 if (BaseCtor->isDeleted() && Diagnose) {
8982 S.Diag(Base->getBeginLoc(),
8983 diag::note_deleted_special_member_class_subobject)
8984 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
8985 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
8986 << /*IsObjCPtr*/false;
8987 S.NoteDeletedFunction(BaseCtor);
8988 }
8989 return BaseCtor->isDeleted();
8990 }
8991 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
8992}
8993
8994/// Check whether we should delete a special member function due to the class
8995/// having a particular non-static data member.
8996bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
8997 QualType FieldType = S.Context.getBaseElementType(FD->getType());
8998 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
8999
9000 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
9001 return true;
9002
9003 if (CSM == Sema::CXXDefaultConstructor) {
9004 // For a default constructor, all references must be initialized in-class
9005 // and, if a union, it must have a non-const member.
9006 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
9007 if (Diagnose)
9008 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9009 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
9010 return true;
9011 }
9012 // C++11 [class.ctor]p5: any non-variant non-static data member of
9013 // const-qualified type (or array thereof) with no
9014 // brace-or-equal-initializer does not have a user-provided default
9015 // constructor.
9016 if (!inUnion() && FieldType.isConstQualified() &&
9017 !FD->hasInClassInitializer() &&
9018 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
9019 if (Diagnose)
9020 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
9021 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
9022 return true;
9023 }
9024
9025 if (inUnion() && !FieldType.isConstQualified())
9026 AllFieldsAreConst = false;
9027 } else if (CSM == Sema::CXXCopyConstructor) {
9028 // For a copy constructor, data members must not be of rvalue reference
9029 // type.
9030 if (FieldType->isRValueReferenceType()) {
9031 if (Diagnose)
9032 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
9033 << MD->getParent() << FD << FieldType;
9034 return true;
9035 }
9036 } else if (IsAssignment) {
9037 // For an assignment operator, data members must not be of reference type.
9038 if (FieldType->isReferenceType()) {
9039 if (Diagnose)
9040 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9041 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
9042 return true;
9043 }
9044 if (!FieldRecord && FieldType.isConstQualified()) {
9045 // C++11 [class.copy]p23:
9046 // -- a non-static data member of const non-class type (or array thereof)
9047 if (Diagnose)
9048 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
9049 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
9050 return true;
9051 }
9052 }
9053
9054 if (FieldRecord) {
9055 // Some additional restrictions exist on the variant members.
9056 if (!inUnion() && FieldRecord->isUnion() &&
9057 FieldRecord->isAnonymousStructOrUnion()) {
9058 bool AllVariantFieldsAreConst = true;
9059
9060 // FIXME: Handle anonymous unions declared within anonymous unions.
9061 for (auto *UI : FieldRecord->fields()) {
9062 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
9063
9064 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
9065 return true;
9066
9067 if (!UnionFieldType.isConstQualified())
9068 AllVariantFieldsAreConst = false;
9069
9070 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
9071 if (UnionFieldRecord &&
9072 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
9073 UnionFieldType.getCVRQualifiers()))
9074 return true;
9075 }
9076
9077 // At least one member in each anonymous union must be non-const
9078 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
9079 !FieldRecord->field_empty()) {
9080 if (Diagnose)
9081 S.Diag(FieldRecord->getLocation(),
9082 diag::note_deleted_default_ctor_all_const)
9083 << !!ICI << MD->getParent() << /*anonymous union*/1;
9084 return true;
9085 }
9086
9087 // Don't check the implicit member of the anonymous union type.
9088 // This is technically non-conformant, but sanity demands it.
9089 return false;
9090 }
9091
9092 if (shouldDeleteForClassSubobject(FieldRecord, FD,
9093 FieldType.getCVRQualifiers()))
9094 return true;
9095 }
9096
9097 return false;
9098}
9099
9100/// C++11 [class.ctor] p5:
9101/// A defaulted default constructor for a class X is defined as deleted if
9102/// X is a union and all of its variant members are of const-qualified type.
9103bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
9104 // This is a silly definition, because it gives an empty union a deleted
9105 // default constructor. Don't do that.
9106 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
9107 bool AnyFields = false;
9108 for (auto *F : MD->getParent()->fields())
9109 if ((AnyFields = !F->isUnnamedBitfield()))
9110 break;
9111 if (!AnyFields)
9112 return false;
9113 if (Diagnose)
9114 S.Diag(MD->getParent()->getLocation(),
9115 diag::note_deleted_default_ctor_all_const)
9116 << !!ICI << MD->getParent() << /*not anonymous union*/0;
9117 return true;
9118 }
9119 return false;
9120}
9121
9122/// Determine whether a defaulted special member function should be defined as
9123/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
9124/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
9125bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
9126 InheritedConstructorInfo *ICI,
9127 bool Diagnose) {
9128 if (MD->isInvalidDecl())
9129 return false;
9130 CXXRecordDecl *RD = MD->getParent();
9131 assert(!RD->isDependentType() && "do deletion after instantiation")((!RD->isDependentType() && "do deletion after instantiation"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDependentType() && \"do deletion after instantiation\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9131, __PRETTY_FUNCTION__))
;
9132 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
9133 return false;
9134
9135 // C++11 [expr.lambda.prim]p19:
9136 // The closure type associated with a lambda-expression has a
9137 // deleted (8.4.3) default constructor and a deleted copy
9138 // assignment operator.
9139 // C++2a adds back these operators if the lambda has no lambda-capture.
9140 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
9141 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
9142 if (Diagnose)
9143 Diag(RD->getLocation(), diag::note_lambda_decl);
9144 return true;
9145 }
9146
9147 // For an anonymous struct or union, the copy and assignment special members
9148 // will never be used, so skip the check. For an anonymous union declared at
9149 // namespace scope, the constructor and destructor are used.
9150 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
9151 RD->isAnonymousStructOrUnion())
9152 return false;
9153
9154 // C++11 [class.copy]p7, p18:
9155 // If the class definition declares a move constructor or move assignment
9156 // operator, an implicitly declared copy constructor or copy assignment
9157 // operator is defined as deleted.
9158 if (MD->isImplicit() &&
9159 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
9160 CXXMethodDecl *UserDeclaredMove = nullptr;
9161
9162 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
9163 // deletion of the corresponding copy operation, not both copy operations.
9164 // MSVC 2015 has adopted the standards conforming behavior.
9165 bool DeletesOnlyMatchingCopy =
9166 getLangOpts().MSVCCompat &&
9167 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
9168
9169 if (RD->hasUserDeclaredMoveConstructor() &&
9170 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
9171 if (!Diagnose) return true;
9172
9173 // Find any user-declared move constructor.
9174 for (auto *I : RD->ctors()) {
9175 if (I->isMoveConstructor()) {
9176 UserDeclaredMove = I;
9177 break;
9178 }
9179 }
9180 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9180, __PRETTY_FUNCTION__))
;
9181 } else if (RD->hasUserDeclaredMoveAssignment() &&
9182 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
9183 if (!Diagnose) return true;
9184
9185 // Find any user-declared move assignment operator.
9186 for (auto *I : RD->methods()) {
9187 if (I->isMoveAssignmentOperator()) {
9188 UserDeclaredMove = I;
9189 break;
9190 }
9191 }
9192 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9192, __PRETTY_FUNCTION__))
;
9193 }
9194
9195 if (UserDeclaredMove) {
9196 Diag(UserDeclaredMove->getLocation(),
9197 diag::note_deleted_copy_user_declared_move)
9198 << (CSM == CXXCopyAssignment) << RD
9199 << UserDeclaredMove->isMoveAssignmentOperator();
9200 return true;
9201 }
9202 }
9203
9204 // Do access control from the special member function
9205 ContextRAII MethodContext(*this, MD);
9206
9207 // C++11 [class.dtor]p5:
9208 // -- for a virtual destructor, lookup of the non-array deallocation function
9209 // results in an ambiguity or in a function that is deleted or inaccessible
9210 if (CSM == CXXDestructor && MD->isVirtual()) {
9211 FunctionDecl *OperatorDelete = nullptr;
9212 DeclarationName Name =
9213 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
9214 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
9215 OperatorDelete, /*Diagnose*/false)) {
9216 if (Diagnose)
9217 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
9218 return true;
9219 }
9220 }
9221
9222 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
9223
9224 // Per DR1611, do not consider virtual bases of constructors of abstract
9225 // classes, since we are not going to construct them.
9226 // Per DR1658, do not consider virtual bases of destructors of abstract
9227 // classes either.
9228 // Per DR2180, for assignment operators we only assign (and thus only
9229 // consider) direct bases.
9230 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
9231 : SMI.VisitPotentiallyConstructedBases))
9232 return true;
9233
9234 if (SMI.shouldDeleteForAllConstMembers())
9235 return true;
9236
9237 if (getLangOpts().CUDA) {
9238 // We should delete the special member in CUDA mode if target inference
9239 // failed.
9240 // For inherited constructors (non-null ICI), CSM may be passed so that MD
9241 // is treated as certain special member, which may not reflect what special
9242 // member MD really is. However inferCUDATargetForImplicitSpecialMember
9243 // expects CSM to match MD, therefore recalculate CSM.
9244 assert(ICI || CSM == getSpecialMember(MD))((ICI || CSM == getSpecialMember(MD)) ? static_cast<void>
(0) : __assert_fail ("ICI || CSM == getSpecialMember(MD)", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9244, __PRETTY_FUNCTION__))
;
9245 auto RealCSM = CSM;
9246 if (ICI)
9247 RealCSM = getSpecialMember(MD);
9248
9249 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
9250 SMI.ConstArg, Diagnose);
9251 }
9252
9253 return false;
9254}
9255
9256void Sema::DiagnoseDeletedDefaultedFunction(FunctionDecl *FD) {
9257 DefaultedFunctionKind DFK = getDefaultedFunctionKind(FD);
9258 assert(DFK && "not a defaultable function")((DFK && "not a defaultable function") ? static_cast<
void> (0) : __assert_fail ("DFK && \"not a defaultable function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9258, __PRETTY_FUNCTION__))
;
9259 assert(FD->isDefaulted() && FD->isDeleted() && "not defaulted and deleted")((FD->isDefaulted() && FD->isDeleted() &&
"not defaulted and deleted") ? static_cast<void> (0) :
__assert_fail ("FD->isDefaulted() && FD->isDeleted() && \"not defaulted and deleted\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9259, __PRETTY_FUNCTION__))
;
9260
9261 if (DFK.isSpecialMember()) {
9262 ShouldDeleteSpecialMember(cast<CXXMethodDecl>(FD), DFK.asSpecialMember(),
9263 nullptr, /*Diagnose=*/true);
9264 } else {
9265 DefaultedComparisonAnalyzer(
9266 *this, cast<CXXRecordDecl>(FD->getLexicalDeclContext()), FD,
9267 DFK.asComparison(), DefaultedComparisonAnalyzer::ExplainDeleted)
9268 .visit();
9269 }
9270}
9271
9272/// Perform lookup for a special member of the specified kind, and determine
9273/// whether it is trivial. If the triviality can be determined without the
9274/// lookup, skip it. This is intended for use when determining whether a
9275/// special member of a containing object is trivial, and thus does not ever
9276/// perform overload resolution for default constructors.
9277///
9278/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
9279/// member that was most likely to be intended to be trivial, if any.
9280///
9281/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
9282/// determine whether the special member is trivial.
9283static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
9284 Sema::CXXSpecialMember CSM, unsigned Quals,
9285 bool ConstRHS,
9286 Sema::TrivialABIHandling TAH,
9287 CXXMethodDecl **Selected) {
9288 if (Selected)
9289 *Selected = nullptr;
9290
9291 switch (CSM) {
9292 case Sema::CXXInvalid:
9293 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9293)
;
9294
9295 case Sema::CXXDefaultConstructor:
9296 // C++11 [class.ctor]p5:
9297 // A default constructor is trivial if:
9298 // - all the [direct subobjects] have trivial default constructors
9299 //
9300 // Note, no overload resolution is performed in this case.
9301 if (RD->hasTrivialDefaultConstructor())
9302 return true;
9303
9304 if (Selected) {
9305 // If there's a default constructor which could have been trivial, dig it
9306 // out. Otherwise, if there's any user-provided default constructor, point
9307 // to that as an example of why there's not a trivial one.
9308 CXXConstructorDecl *DefCtor = nullptr;
9309 if (RD->needsImplicitDefaultConstructor())
9310 S.DeclareImplicitDefaultConstructor(RD);
9311 for (auto *CI : RD->ctors()) {
9312 if (!CI->isDefaultConstructor())
9313 continue;
9314 DefCtor = CI;
9315 if (!DefCtor->isUserProvided())
9316 break;
9317 }
9318
9319 *Selected = DefCtor;
9320 }
9321
9322 return false;
9323
9324 case Sema::CXXDestructor:
9325 // C++11 [class.dtor]p5:
9326 // A destructor is trivial if:
9327 // - all the direct [subobjects] have trivial destructors
9328 if (RD->hasTrivialDestructor() ||
9329 (TAH == Sema::TAH_ConsiderTrivialABI &&
9330 RD->hasTrivialDestructorForCall()))
9331 return true;
9332
9333 if (Selected) {
9334 if (RD->needsImplicitDestructor())
9335 S.DeclareImplicitDestructor(RD);
9336 *Selected = RD->getDestructor();
9337 }
9338
9339 return false;
9340
9341 case Sema::CXXCopyConstructor:
9342 // C++11 [class.copy]p12:
9343 // A copy constructor is trivial if:
9344 // - the constructor selected to copy each direct [subobject] is trivial
9345 if (RD->hasTrivialCopyConstructor() ||
9346 (TAH == Sema::TAH_ConsiderTrivialABI &&
9347 RD->hasTrivialCopyConstructorForCall())) {
9348 if (Quals == Qualifiers::Const)
9349 // We must either select the trivial copy constructor or reach an
9350 // ambiguity; no need to actually perform overload resolution.
9351 return true;
9352 } else if (!Selected) {
9353 return false;
9354 }
9355 // In C++98, we are not supposed to perform overload resolution here, but we
9356 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
9357 // cases like B as having a non-trivial copy constructor:
9358 // struct A { template<typename T> A(T&); };
9359 // struct B { mutable A a; };
9360 goto NeedOverloadResolution;
9361
9362 case Sema::CXXCopyAssignment:
9363 // C++11 [class.copy]p25:
9364 // A copy assignment operator is trivial if:
9365 // - the assignment operator selected to copy each direct [subobject] is
9366 // trivial
9367 if (RD->hasTrivialCopyAssignment()) {
9368 if (Quals == Qualifiers::Const)
9369 return true;
9370 } else if (!Selected) {
9371 return false;
9372 }
9373 // In C++98, we are not supposed to perform overload resolution here, but we
9374 // treat that as a language defect.
9375 goto NeedOverloadResolution;
9376
9377 case Sema::CXXMoveConstructor:
9378 case Sema::CXXMoveAssignment:
9379 NeedOverloadResolution:
9380 Sema::SpecialMemberOverloadResult SMOR =
9381 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
9382
9383 // The standard doesn't describe how to behave if the lookup is ambiguous.
9384 // We treat it as not making the member non-trivial, just like the standard
9385 // mandates for the default constructor. This should rarely matter, because
9386 // the member will also be deleted.
9387 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
9388 return true;
9389
9390 if (!SMOR.getMethod()) {
9391 assert(SMOR.getKind() ==((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9392, __PRETTY_FUNCTION__))
9392 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9392, __PRETTY_FUNCTION__))
;
9393 return false;
9394 }
9395
9396 // We deliberately don't check if we found a deleted special member. We're
9397 // not supposed to!
9398 if (Selected)
9399 *Selected = SMOR.getMethod();
9400
9401 if (TAH == Sema::TAH_ConsiderTrivialABI &&
9402 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
9403 return SMOR.getMethod()->isTrivialForCall();
9404 return SMOR.getMethod()->isTrivial();
9405 }
9406
9407 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9407)
;
9408}
9409
9410static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
9411 for (auto *CI : RD->ctors())
9412 if (!CI->isImplicit())
9413 return CI;
9414
9415 // Look for constructor templates.
9416 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
9417 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
9418 if (CXXConstructorDecl *CD =
9419 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
9420 return CD;
9421 }
9422
9423 return nullptr;
9424}
9425
9426/// The kind of subobject we are checking for triviality. The values of this
9427/// enumeration are used in diagnostics.
9428enum TrivialSubobjectKind {
9429 /// The subobject is a base class.
9430 TSK_BaseClass,
9431 /// The subobject is a non-static data member.
9432 TSK_Field,
9433 /// The object is actually the complete object.
9434 TSK_CompleteObject
9435};
9436
9437/// Check whether the special member selected for a given type would be trivial.
9438static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
9439 QualType SubType, bool ConstRHS,
9440 Sema::CXXSpecialMember CSM,
9441 TrivialSubobjectKind Kind,
9442 Sema::TrivialABIHandling TAH, bool Diagnose) {
9443 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
9444 if (!SubRD)
9445 return true;
9446
9447 CXXMethodDecl *Selected;
9448 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
9449 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
9450 return true;
9451
9452 if (Diagnose) {
9453 if (ConstRHS)
9454 SubType.addConst();
9455
9456 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
9457 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
9458 << Kind << SubType.getUnqualifiedType();
9459 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
9460 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
9461 } else if (!Selected)
9462 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
9463 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
9464 else if (Selected->isUserProvided()) {
9465 if (Kind == TSK_CompleteObject)
9466 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
9467 << Kind << SubType.getUnqualifiedType() << CSM;
9468 else {
9469 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
9470 << Kind << SubType.getUnqualifiedType() << CSM;
9471 S.Diag(Selected->getLocation(), diag::note_declared_at);
9472 }
9473 } else {
9474 if (Kind != TSK_CompleteObject)
9475 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
9476 << Kind << SubType.getUnqualifiedType() << CSM;
9477
9478 // Explain why the defaulted or deleted special member isn't trivial.
9479 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
9480 Diagnose);
9481 }
9482 }
9483
9484 return false;
9485}
9486
9487/// Check whether the members of a class type allow a special member to be
9488/// trivial.
9489static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
9490 Sema::CXXSpecialMember CSM,
9491 bool ConstArg,
9492 Sema::TrivialABIHandling TAH,
9493 bool Diagnose) {
9494 for (const auto *FI : RD->fields()) {
9495 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
9496 continue;
9497
9498 QualType FieldType = S.Context.getBaseElementType(FI->getType());
9499
9500 // Pretend anonymous struct or union members are members of this class.
9501 if (FI->isAnonymousStructOrUnion()) {
9502 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
9503 CSM, ConstArg, TAH, Diagnose))
9504 return false;
9505 continue;
9506 }
9507
9508 // C++11 [class.ctor]p5:
9509 // A default constructor is trivial if [...]
9510 // -- no non-static data member of its class has a
9511 // brace-or-equal-initializer
9512 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
9513 if (Diagnose)
9514 S.Diag(FI->getLocation(), diag::note_nontrivial_default_member_init)
9515 << FI;
9516 return false;
9517 }
9518
9519 // Objective C ARC 4.3.5:
9520 // [...] nontrivally ownership-qualified types are [...] not trivially
9521 // default constructible, copy constructible, move constructible, copy
9522 // assignable, move assignable, or destructible [...]
9523 if (FieldType.hasNonTrivialObjCLifetime()) {
9524 if (Diagnose)
9525 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
9526 << RD << FieldType.getObjCLifetime();
9527 return false;
9528 }
9529
9530 bool ConstRHS = ConstArg && !FI->isMutable();
9531 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
9532 CSM, TSK_Field, TAH, Diagnose))
9533 return false;
9534 }
9535
9536 return true;
9537}
9538
9539/// Diagnose why the specified class does not have a trivial special member of
9540/// the given kind.
9541void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
9542 QualType Ty = Context.getRecordType(RD);
9543
9544 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
9545 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
9546 TSK_CompleteObject, TAH_IgnoreTrivialABI,
9547 /*Diagnose*/true);
9548}
9549
9550/// Determine whether a defaulted or deleted special member function is trivial,
9551/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
9552/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
9553bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
9554 TrivialABIHandling TAH, bool Diagnose) {
9555 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((!MD->isUserProvided() && CSM != CXXInvalid &&
"not special enough") ? static_cast<void> (0) : __assert_fail
("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9555, __PRETTY_FUNCTION__))
;
9556
9557 CXXRecordDecl *RD = MD->getParent();
9558
9559 bool ConstArg = false;
9560
9561 // C++11 [class.copy]p12, p25: [DR1593]
9562 // A [special member] is trivial if [...] its parameter-type-list is
9563 // equivalent to the parameter-type-list of an implicit declaration [...]
9564 switch (CSM) {
9565 case CXXDefaultConstructor:
9566 case CXXDestructor:
9567 // Trivial default constructors and destructors cannot have parameters.
9568 break;
9569
9570 case CXXCopyConstructor:
9571 case CXXCopyAssignment: {
9572 // Trivial copy operations always have const, non-volatile parameter types.
9573 ConstArg = true;
9574 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9575 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
9576 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
9577 if (Diagnose)
9578 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9579 << Param0->getSourceRange() << Param0->getType()
9580 << Context.getLValueReferenceType(
9581 Context.getRecordType(RD).withConst());
9582 return false;
9583 }
9584 break;
9585 }
9586
9587 case CXXMoveConstructor:
9588 case CXXMoveAssignment: {
9589 // Trivial move operations always have non-cv-qualified parameters.
9590 const ParmVarDecl *Param0 = MD->getParamDecl(0);
9591 const RValueReferenceType *RT =
9592 Param0->getType()->getAs<RValueReferenceType>();
9593 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
9594 if (Diagnose)
9595 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
9596 << Param0->getSourceRange() << Param0->getType()
9597 << Context.getRValueReferenceType(Context.getRecordType(RD));
9598 return false;
9599 }
9600 break;
9601 }
9602
9603 case CXXInvalid:
9604 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9604)
;
9605 }
9606
9607 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
9608 if (Diagnose)
9609 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
9610 diag::note_nontrivial_default_arg)
9611 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
9612 return false;
9613 }
9614 if (MD->isVariadic()) {
9615 if (Diagnose)
9616 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
9617 return false;
9618 }
9619
9620 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9621 // A copy/move [constructor or assignment operator] is trivial if
9622 // -- the [member] selected to copy/move each direct base class subobject
9623 // is trivial
9624 //
9625 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9626 // A [default constructor or destructor] is trivial if
9627 // -- all the direct base classes have trivial [default constructors or
9628 // destructors]
9629 for (const auto &BI : RD->bases())
9630 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
9631 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
9632 return false;
9633
9634 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
9635 // A copy/move [constructor or assignment operator] for a class X is
9636 // trivial if
9637 // -- for each non-static data member of X that is of class type (or array
9638 // thereof), the constructor selected to copy/move that member is
9639 // trivial
9640 //
9641 // C++11 [class.copy]p12, C++11 [class.copy]p25:
9642 // A [default constructor or destructor] is trivial if
9643 // -- for all of the non-static data members of its class that are of class
9644 // type (or array thereof), each such class has a trivial [default
9645 // constructor or destructor]
9646 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
9647 return false;
9648
9649 // C++11 [class.dtor]p5:
9650 // A destructor is trivial if [...]
9651 // -- the destructor is not virtual
9652 if (CSM == CXXDestructor && MD->isVirtual()) {
9653 if (Diagnose)
9654 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
9655 return false;
9656 }
9657
9658 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
9659 // A [special member] for class X is trivial if [...]
9660 // -- class X has no virtual functions and no virtual base classes
9661 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
9662 if (!Diagnose)
9663 return false;
9664
9665 if (RD->getNumVBases()) {
9666 // Check for virtual bases. We already know that the corresponding
9667 // member in all bases is trivial, so vbases must all be direct.
9668 CXXBaseSpecifier &BS = *RD->vbases_begin();
9669 assert(BS.isVirtual())((BS.isVirtual()) ? static_cast<void> (0) : __assert_fail
("BS.isVirtual()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9669, __PRETTY_FUNCTION__))
;
9670 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
9671 return false;
9672 }
9673
9674 // Must have a virtual method.
9675 for (const auto *MI : RD->methods()) {
9676 if (MI->isVirtual()) {
9677 SourceLocation MLoc = MI->getBeginLoc();
9678 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
9679 return false;
9680 }
9681 }
9682
9683 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9683)
;
9684 }
9685
9686 // Looks like it's trivial!
9687 return true;
9688}
9689
9690namespace {
9691struct FindHiddenVirtualMethod {
9692 Sema *S;
9693 CXXMethodDecl *Method;
9694 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
9695 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9696
9697private:
9698 /// Check whether any most overridden method from MD in Methods
9699 static bool CheckMostOverridenMethods(
9700 const CXXMethodDecl *MD,
9701 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
9702 if (MD->size_overridden_methods() == 0)
9703 return Methods.count(MD->getCanonicalDecl());
9704 for (const CXXMethodDecl *O : MD->overridden_methods())
9705 if (CheckMostOverridenMethods(O, Methods))
9706 return true;
9707 return false;
9708 }
9709
9710public:
9711 /// Member lookup function that determines whether a given C++
9712 /// method overloads virtual methods in a base class without overriding any,
9713 /// to be used with CXXRecordDecl::lookupInBases().
9714 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
9715 RecordDecl *BaseRecord =
9716 Specifier->getType()->castAs<RecordType>()->getDecl();
9717
9718 DeclarationName Name = Method->getDeclName();
9719 assert(Name.getNameKind() == DeclarationName::Identifier)((Name.getNameKind() == DeclarationName::Identifier) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 9719, __PRETTY_FUNCTION__))
;
9720
9721 bool foundSameNameMethod = false;
9722 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
9723 for (Path.Decls = BaseRecord->lookup(Name).begin();
9724 Path.Decls != DeclContext::lookup_iterator(); ++Path.Decls) {
9725 NamedDecl *D = *Path.Decls;
9726 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
9727 MD = MD->getCanonicalDecl();
9728 foundSameNameMethod = true;
9729 // Interested only in hidden virtual methods.
9730 if (!MD->isVirtual())
9731 continue;
9732 // If the method we are checking overrides a method from its base
9733 // don't warn about the other overloaded methods. Clang deviates from
9734 // GCC by only diagnosing overloads of inherited virtual functions that
9735 // do not override any other virtual functions in the base. GCC's
9736 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
9737 // function from a base class. These cases may be better served by a
9738 // warning (not specific to virtual functions) on call sites when the
9739 // call would select a different function from the base class, were it
9740 // visible.
9741 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
9742 if (!S->IsOverload(Method, MD, false))
9743 return true;
9744 // Collect the overload only if its hidden.
9745 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
9746 overloadedMethods.push_back(MD);
9747 }
9748 }
9749
9750 if (foundSameNameMethod)
9751 OverloadedMethods.append(overloadedMethods.begin(),
9752 overloadedMethods.end());
9753 return foundSameNameMethod;
9754 }
9755};
9756} // end anonymous namespace
9757
9758/// Add the most overriden methods from MD to Methods
9759static void AddMostOverridenMethods(const CXXMethodDecl *MD,
9760 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
9761 if (MD->size_overridden_methods() == 0)
9762 Methods.insert(MD->getCanonicalDecl());
9763 else
9764 for (const CXXMethodDecl *O : MD->overridden_methods())
9765 AddMostOverridenMethods(O, Methods);
9766}
9767
9768/// Check if a method overloads virtual methods in a base class without
9769/// overriding any.
9770void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
9771 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9772 if (!MD->getDeclName().isIdentifier())
9773 return;
9774
9775 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
9776 /*bool RecordPaths=*/false,
9777 /*bool DetectVirtual=*/false);
9778 FindHiddenVirtualMethod FHVM;
9779 FHVM.Method = MD;
9780 FHVM.S = this;
9781
9782 // Keep the base methods that were overridden or introduced in the subclass
9783 // by 'using' in a set. A base method not in this set is hidden.
9784 CXXRecordDecl *DC = MD->getParent();
9785 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
9786 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
9787 NamedDecl *ND = *I;
9788 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
9789 ND = shad->getTargetDecl();
9790 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
9791 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
9792 }
9793
9794 if (DC->lookupInBases(FHVM, Paths))
9795 OverloadedMethods = FHVM.OverloadedMethods;
9796}
9797
9798void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
9799 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
9800 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
9801 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
9802 PartialDiagnostic PD = PDiag(
9803 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
9804 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
9805 Diag(overloadedMD->getLocation(), PD);
9806 }
9807}
9808
9809/// Diagnose methods which overload virtual methods in a base class
9810/// without overriding any.
9811void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
9812 if (MD->isInvalidDecl())
9813 return;
9814
9815 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
9816 return;
9817
9818 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
9819 FindHiddenVirtualMethods(MD, OverloadedMethods);
9820 if (!OverloadedMethods.empty()) {
9821 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
9822 << MD << (OverloadedMethods.size() > 1);
9823
9824 NoteHiddenVirtualMethods(MD, OverloadedMethods);
9825 }
9826}
9827
9828void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
9829 auto PrintDiagAndRemoveAttr = [&](unsigned N) {
9830 // No diagnostics if this is a template instantiation.
9831 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind())) {
9832 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9833 diag::ext_cannot_use_trivial_abi) << &RD;
9834 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
9835 diag::note_cannot_use_trivial_abi_reason) << &RD << N;
9836 }
9837 RD.dropAttr<TrivialABIAttr>();
9838 };
9839
9840 // Ill-formed if the copy and move constructors are deleted.
9841 auto HasNonDeletedCopyOrMoveConstructor = [&]() {
9842 // If the type is dependent, then assume it might have
9843 // implicit copy or move ctor because we won't know yet at this point.
9844 if (RD.isDependentType())
9845 return true;
9846 if (RD.needsImplicitCopyConstructor() &&
9847 !RD.defaultedCopyConstructorIsDeleted())
9848 return true;
9849 if (RD.needsImplicitMoveConstructor() &&
9850 !RD.defaultedMoveConstructorIsDeleted())
9851 return true;
9852 for (const CXXConstructorDecl *CD : RD.ctors())
9853 if (CD->isCopyOrMoveConstructor() && !CD->isDeleted())
9854 return true;
9855 return false;
9856 };
9857
9858 if (!HasNonDeletedCopyOrMoveConstructor()) {
9859 PrintDiagAndRemoveAttr(0);
9860 return;
9861 }
9862
9863 // Ill-formed if the struct has virtual functions.
9864 if (RD.isPolymorphic()) {
9865 PrintDiagAndRemoveAttr(1);
9866 return;
9867 }
9868
9869 for (const auto &B : RD.bases()) {
9870 // Ill-formed if the base class is non-trivial for the purpose of calls or a
9871 // virtual base.
9872 if (!B.getType()->isDependentType() &&
9873 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) {
9874 PrintDiagAndRemoveAttr(2);
9875 return;
9876 }
9877
9878 if (B.isVirtual()) {
9879 PrintDiagAndRemoveAttr(3);
9880 return;
9881 }
9882 }
9883
9884 for (const auto *FD : RD.fields()) {
9885 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
9886 // non-trivial for the purpose of calls.
9887 QualType FT = FD->getType();
9888 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
9889 PrintDiagAndRemoveAttr(4);
9890 return;
9891 }
9892
9893 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
9894 if (!RT->isDependentType() &&
9895 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
9896 PrintDiagAndRemoveAttr(5);
9897 return;
9898 }
9899 }
9900}
9901
9902void Sema::ActOnFinishCXXMemberSpecification(
9903 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
9904 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
9905 if (!TagDecl)
9906 return;
9907
9908 AdjustDeclIfTemplate(TagDecl);
9909
9910 for (const ParsedAttr &AL : AttrList) {
9911 if (AL.getKind() != ParsedAttr::AT_Visibility)
9912 continue;
9913 AL.setInvalid();
9914 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
9915 }
9916
9917 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
9918 // strict aliasing violation!
9919 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
9920 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
9921
9922 CheckCompletedCXXClass(S, cast<CXXRecordDecl>(TagDecl));
9923}
9924
9925/// Find the equality comparison functions that should be implicitly declared
9926/// in a given class definition, per C++2a [class.compare.default]p3.
9927static void findImplicitlyDeclaredEqualityComparisons(
9928 ASTContext &Ctx, CXXRecordDecl *RD,
9929 llvm::SmallVectorImpl<FunctionDecl *> &Spaceships) {
9930 DeclarationName EqEq = Ctx.DeclarationNames.getCXXOperatorName(OO_EqualEqual);
9931 if (!RD->lookup(EqEq).empty())
9932 // Member operator== explicitly declared: no implicit operator==s.
9933 return;
9934
9935 // Traverse friends looking for an '==' or a '<=>'.
9936 for (FriendDecl *Friend : RD->friends()) {
9937 FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Friend->getFriendDecl());
9938 if (!FD) continue;
9939
9940 if (FD->getOverloadedOperator() == OO_EqualEqual) {
9941 // Friend operator== explicitly declared: no implicit operator==s.
9942 Spaceships.clear();
9943 return;
9944 }
9945
9946 if (FD->getOverloadedOperator() == OO_Spaceship &&
9947 FD->isExplicitlyDefaulted())
9948 Spaceships.push_back(FD);
9949 }
9950
9951 // Look for members named 'operator<=>'.
9952 DeclarationName Cmp = Ctx.DeclarationNames.getCXXOperatorName(OO_Spaceship);
9953 for (NamedDecl *ND : RD->lookup(Cmp)) {
9954 // Note that we could find a non-function here (either a function template
9955 // or a using-declaration). Neither case results in an implicit
9956 // 'operator=='.
9957 if (auto *FD = dyn_cast<FunctionDecl>(ND))
9958 if (FD->isExplicitlyDefaulted())
9959 Spaceships.push_back(FD);
9960 }
9961}
9962
9963/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
9964/// special functions, such as the default constructor, copy
9965/// constructor, or destructor, to the given C++ class (C++
9966/// [special]p1). This routine can only be executed just before the
9967/// definition of the class is complete.
9968void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
9969 // Don't add implicit special members to templated classes.
9970 // FIXME: This means unqualified lookups for 'operator=' within a class
9971 // template don't work properly.
9972 if (!ClassDecl->isDependentType()) {
9973 if (ClassDecl->needsImplicitDefaultConstructor()) {
9974 ++getASTContext().NumImplicitDefaultConstructors;
9975
9976 if (ClassDecl->hasInheritedConstructor())
9977 DeclareImplicitDefaultConstructor(ClassDecl);
9978 }
9979
9980 if (ClassDecl->needsImplicitCopyConstructor()) {
9981 ++getASTContext().NumImplicitCopyConstructors;
9982
9983 // If the properties or semantics of the copy constructor couldn't be
9984 // determined while the class was being declared, force a declaration
9985 // of it now.
9986 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
9987 ClassDecl->hasInheritedConstructor())
9988 DeclareImplicitCopyConstructor(ClassDecl);
9989 // For the MS ABI we need to know whether the copy ctor is deleted. A
9990 // prerequisite for deleting the implicit copy ctor is that the class has
9991 // a move ctor or move assignment that is either user-declared or whose
9992 // semantics are inherited from a subobject. FIXME: We should provide a
9993 // more direct way for CodeGen to ask whether the constructor was deleted.
9994 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
9995 (ClassDecl->hasUserDeclaredMoveConstructor() ||
9996 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
9997 ClassDecl->hasUserDeclaredMoveAssignment() ||
9998 ClassDecl->needsOverloadResolutionForMoveAssignment()))
9999 DeclareImplicitCopyConstructor(ClassDecl);
10000 }
10001
10002 if (getLangOpts().CPlusPlus11 &&
10003 ClassDecl->needsImplicitMoveConstructor()) {
10004 ++getASTContext().NumImplicitMoveConstructors;
10005
10006 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
10007 ClassDecl->hasInheritedConstructor())
10008 DeclareImplicitMoveConstructor(ClassDecl);
10009 }
10010
10011 if (ClassDecl->needsImplicitCopyAssignment()) {
10012 ++getASTContext().NumImplicitCopyAssignmentOperators;
10013
10014 // If we have a dynamic class, then the copy assignment operator may be
10015 // virtual, so we have to declare it immediately. This ensures that, e.g.,
10016 // it shows up in the right place in the vtable and that we diagnose
10017 // problems with the implicit exception specification.
10018 if (ClassDecl->isDynamicClass() ||
10019 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
10020 ClassDecl->hasInheritedAssignment())
10021 DeclareImplicitCopyAssignment(ClassDecl);
10022 }
10023
10024 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
10025 ++getASTContext().NumImplicitMoveAssignmentOperators;
10026
10027 // Likewise for the move assignment operator.
10028 if (ClassDecl->isDynamicClass() ||
10029 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
10030 ClassDecl->hasInheritedAssignment())
10031 DeclareImplicitMoveAssignment(ClassDecl);
10032 }
10033
10034 if (ClassDecl->needsImplicitDestructor()) {
10035 ++getASTContext().NumImplicitDestructors;
10036
10037 // If we have a dynamic class, then the destructor may be virtual, so we
10038 // have to declare the destructor immediately. This ensures that, e.g., it
10039 // shows up in the right place in the vtable and that we diagnose problems
10040 // with the implicit exception specification.
10041 if (ClassDecl->isDynamicClass() ||
10042 ClassDecl->needsOverloadResolutionForDestructor())
10043 DeclareImplicitDestructor(ClassDecl);
10044 }
10045 }
10046
10047 // C++2a [class.compare.default]p3:
10048 // If the member-specification does not explicitly declare any member or
10049 // friend named operator==, an == operator function is declared implicitly
10050 // for each defaulted three-way comparison operator function defined in
10051 // the member-specification
10052 // FIXME: Consider doing this lazily.
10053 // We do this during the initial parse for a class template, not during
10054 // instantiation, so that we can handle unqualified lookups for 'operator=='
10055 // when parsing the template.
10056 if (getLangOpts().CPlusPlus20 && !inTemplateInstantiation()) {
10057 llvm::SmallVector<FunctionDecl *, 4> DefaultedSpaceships;
10058 findImplicitlyDeclaredEqualityComparisons(Context, ClassDecl,
10059 DefaultedSpaceships);
10060 for (auto *FD : DefaultedSpaceships)
10061 DeclareImplicitEqualityComparison(ClassDecl, FD);
10062 }
10063}
10064
10065unsigned
10066Sema::ActOnReenterTemplateScope(Decl *D,
10067 llvm::function_ref<Scope *()> EnterScope) {
10068 if (!D)
10069 return 0;
10070 AdjustDeclIfTemplate(D);
10071
10072 // In order to get name lookup right, reenter template scopes in order from
10073 // outermost to innermost.
10074 SmallVector<TemplateParameterList *, 4> ParameterLists;
10075 DeclContext *LookupDC = dyn_cast<DeclContext>(D);
10076
10077 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
10078 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
10079 ParameterLists.push_back(DD->getTemplateParameterList(i));
10080
10081 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10082 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
10083 ParameterLists.push_back(FTD->getTemplateParameters());
10084 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
10085 LookupDC = VD->getDeclContext();
10086
10087 if (VarTemplateDecl *VTD = VD->getDescribedVarTemplate())
10088 ParameterLists.push_back(VTD->getTemplateParameters());
10089 else if (auto *PSD = dyn_cast<VarTemplatePartialSpecializationDecl>(D))
10090 ParameterLists.push_back(PSD->getTemplateParameters());
10091 }
10092 } else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
10093 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
10094 ParameterLists.push_back(TD->getTemplateParameterList(i));
10095
10096 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
10097 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
10098 ParameterLists.push_back(CTD->getTemplateParameters());
10099 else if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
10100 ParameterLists.push_back(PSD->getTemplateParameters());
10101 }
10102 }
10103 // FIXME: Alias declarations and concepts.
10104
10105 unsigned Count = 0;
10106 Scope *InnermostTemplateScope = nullptr;
10107 for (TemplateParameterList *Params : ParameterLists) {
10108 // Ignore explicit specializations; they don't contribute to the template
10109 // depth.
10110 if (Params->size() == 0)
10111 continue;
10112
10113 InnermostTemplateScope = EnterScope();
10114 for (NamedDecl *Param : *Params) {
10115 if (Param->getDeclName()) {
10116 InnermostTemplateScope->AddDecl(Param);
10117 IdResolver.AddDecl(Param);
10118 }
10119 }
10120 ++Count;
10121 }
10122
10123 // Associate the new template scopes with the corresponding entities.
10124 if (InnermostTemplateScope) {
10125 assert(LookupDC && "no enclosing DeclContext for template lookup")((LookupDC && "no enclosing DeclContext for template lookup"
) ? static_cast<void> (0) : __assert_fail ("LookupDC && \"no enclosing DeclContext for template lookup\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 10125, __PRETTY_FUNCTION__))
;
10126 EnterTemplatedContext(InnermostTemplateScope, LookupDC);
10127 }
10128
10129 return Count;
10130}
10131
10132void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10133 if (!RecordD) return;
10134 AdjustDeclIfTemplate(RecordD);
10135 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
10136 PushDeclContext(S, Record);
10137}
10138
10139void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
10140 if (!RecordD) return;
10141 PopDeclContext();
10142}
10143
10144/// This is used to implement the constant expression evaluation part of the
10145/// attribute enable_if extension. There is nothing in standard C++ which would
10146/// require reentering parameters.
10147void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
10148 if (!Param)
10149 return;
10150
10151 S->AddDecl(Param);
10152 if (Param->getDeclName())
10153 IdResolver.AddDecl(Param);
10154}
10155
10156/// ActOnStartDelayedCXXMethodDeclaration - We have completed
10157/// parsing a top-level (non-nested) C++ class, and we are now
10158/// parsing those parts of the given Method declaration that could
10159/// not be parsed earlier (C++ [class.mem]p2), such as default
10160/// arguments. This action should enter the scope of the given
10161/// Method declaration as if we had just parsed the qualified method
10162/// name. However, it should not bring the parameters into scope;
10163/// that will be performed by ActOnDelayedCXXMethodParameter.
10164void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10165}
10166
10167/// ActOnDelayedCXXMethodParameter - We've already started a delayed
10168/// C++ method declaration. We're (re-)introducing the given
10169/// function parameter into scope for use in parsing later parts of
10170/// the method declaration. For example, we could see an
10171/// ActOnParamDefaultArgument event for this parameter.
10172void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
10173 if (!ParamD)
10174 return;
10175
10176 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
10177
10178 S->AddDecl(Param);
10179 if (Param->getDeclName())
10180 IdResolver.AddDecl(Param);
10181}
10182
10183/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
10184/// processing the delayed method declaration for Method. The method
10185/// declaration is now considered finished. There may be a separate
10186/// ActOnStartOfFunctionDef action later (not necessarily
10187/// immediately!) for this method, if it was also defined inside the
10188/// class body.
10189void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
10190 if (!MethodD)
10191 return;
10192
10193 AdjustDeclIfTemplate(MethodD);
10194
10195 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
10196
10197 // Now that we have our default arguments, check the constructor
10198 // again. It could produce additional diagnostics or affect whether
10199 // the class has implicitly-declared destructors, among other
10200 // things.
10201 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
10202 CheckConstructor(Constructor);
10203
10204 // Check the default arguments, which we may have added.
10205 if (!Method->isInvalidDecl())
10206 CheckCXXDefaultArguments(Method);
10207}
10208
10209// Emit the given diagnostic for each non-address-space qualifier.
10210// Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
10211static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
10212 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10213 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
10214 bool DiagOccured = false;
10215 FTI.MethodQualifiers->forEachQualifier(
10216 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
10217 SourceLocation SL) {
10218 // This diagnostic should be emitted on any qualifier except an addr
10219 // space qualifier. However, forEachQualifier currently doesn't visit
10220 // addr space qualifiers, so there's no way to write this condition
10221 // right now; we just diagnose on everything.
10222 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
10223 DiagOccured = true;
10224 });
10225 if (DiagOccured)
10226 D.setInvalidType();
10227 }
10228}
10229
10230/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
10231/// the well-formedness of the constructor declarator @p D with type @p
10232/// R. If there are any errors in the declarator, this routine will
10233/// emit diagnostics and set the invalid bit to true. In any case, the type
10234/// will be updated to reflect a well-formed type for the constructor and
10235/// returned.
10236QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
10237 StorageClass &SC) {
10238 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
10239
10240 // C++ [class.ctor]p3:
10241 // A constructor shall not be virtual (10.3) or static (9.4). A
10242 // constructor can be invoked for a const, volatile or const
10243 // volatile object. A constructor shall not be declared const,
10244 // volatile, or const volatile (9.3.2).
10245 if (isVirtual) {
10246 if (!D.isInvalidType())
10247 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10248 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
10249 << SourceRange(D.getIdentifierLoc());
10250 D.setInvalidType();
10251 }
10252 if (SC == SC_Static) {
10253 if (!D.isInvalidType())
10254 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
10255 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10256 << SourceRange(D.getIdentifierLoc());
10257 D.setInvalidType();
10258 SC = SC_None;
10259 }
10260
10261 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10262 diagnoseIgnoredQualifiers(
10263 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
10264 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
10265 D.getDeclSpec().getRestrictSpecLoc(),
10266 D.getDeclSpec().getAtomicSpecLoc());
10267 D.setInvalidType();
10268 }
10269
10270 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
10271
10272 // C++0x [class.ctor]p4:
10273 // A constructor shall not be declared with a ref-qualifier.
10274 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10275 if (FTI.hasRefQualifier()) {
10276 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
10277 << FTI.RefQualifierIsLValueRef
10278 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10279 D.setInvalidType();
10280 }
10281
10282 // Rebuild the function type "R" without any type qualifiers (in
10283 // case any of the errors above fired) and with "void" as the
10284 // return type, since constructors don't have return types.
10285 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10286 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
10287 return R;
10288
10289 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10290 EPI.TypeQuals = Qualifiers();
10291 EPI.RefQualifier = RQ_None;
10292
10293 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
10294}
10295
10296/// CheckConstructor - Checks a fully-formed constructor for
10297/// well-formedness, issuing any diagnostics required. Returns true if
10298/// the constructor declarator is invalid.
10299void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
10300 CXXRecordDecl *ClassDecl
10301 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
10302 if (!ClassDecl)
10303 return Constructor->setInvalidDecl();
10304
10305 // C++ [class.copy]p3:
10306 // A declaration of a constructor for a class X is ill-formed if
10307 // its first parameter is of type (optionally cv-qualified) X and
10308 // either there are no other parameters or else all other
10309 // parameters have default arguments.
10310 if (!Constructor->isInvalidDecl() &&
10311 Constructor->hasOneParamOrDefaultArgs() &&
10312 Constructor->getTemplateSpecializationKind() !=
10313 TSK_ImplicitInstantiation) {
10314 QualType ParamType = Constructor->getParamDecl(0)->getType();
10315 QualType ClassTy = Context.getTagDeclType(ClassDecl);
10316 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
10317 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
10318 const char *ConstRef
10319 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
10320 : " const &";
10321 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
10322 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
10323
10324 // FIXME: Rather that making the constructor invalid, we should endeavor
10325 // to fix the type.
10326 Constructor->setInvalidDecl();
10327 }
10328 }
10329}
10330
10331/// CheckDestructor - Checks a fully-formed destructor definition for
10332/// well-formedness, issuing any diagnostics required. Returns true
10333/// on error.
10334bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
10335 CXXRecordDecl *RD = Destructor->getParent();
10336
10337 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
10338 SourceLocation Loc;
10339
10340 if (!Destructor->isImplicit())
10341 Loc = Destructor->getLocation();
10342 else
10343 Loc = RD->getLocation();
10344
10345 // If we have a virtual destructor, look up the deallocation function
10346 if (FunctionDecl *OperatorDelete =
10347 FindDeallocationFunctionForDestructor(Loc, RD)) {
10348 Expr *ThisArg = nullptr;
10349
10350 // If the notional 'delete this' expression requires a non-trivial
10351 // conversion from 'this' to the type of a destroying operator delete's
10352 // first parameter, perform that conversion now.
10353 if (OperatorDelete->isDestroyingOperatorDelete()) {
10354 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
10355 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
10356 // C++ [class.dtor]p13:
10357 // ... as if for the expression 'delete this' appearing in a
10358 // non-virtual destructor of the destructor's class.
10359 ContextRAII SwitchContext(*this, Destructor);
10360 ExprResult This =
10361 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
10362 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")((!This.isInvalid() && "couldn't form 'this' expr in dtor?"
) ? static_cast<void> (0) : __assert_fail ("!This.isInvalid() && \"couldn't form 'this' expr in dtor?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 10362, __PRETTY_FUNCTION__))
;
10363 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
10364 if (This.isInvalid()) {
10365 // FIXME: Register this as a context note so that it comes out
10366 // in the right order.
10367 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
10368 return true;
10369 }
10370 ThisArg = This.get();
10371 }
10372 }
10373
10374 DiagnoseUseOfDecl(OperatorDelete, Loc);
10375 MarkFunctionReferenced(Loc, OperatorDelete);
10376 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
10377 }
10378 }
10379
10380 return false;
10381}
10382
10383/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
10384/// the well-formednes of the destructor declarator @p D with type @p
10385/// R. If there are any errors in the declarator, this routine will
10386/// emit diagnostics and set the declarator to invalid. Even if this happens,
10387/// will be updated to reflect a well-formed type for the destructor and
10388/// returned.
10389QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
10390 StorageClass& SC) {
10391 // C++ [class.dtor]p1:
10392 // [...] A typedef-name that names a class is a class-name
10393 // (7.1.3); however, a typedef-name that names a class shall not
10394 // be used as the identifier in the declarator for a destructor
10395 // declaration.
10396 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
10397 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
10398 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10399 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
10400 else if (const TemplateSpecializationType *TST =
10401 DeclaratorType->getAs<TemplateSpecializationType>())
10402 if (TST->isTypeAlias())
10403 Diag(D.getIdentifierLoc(), diag::ext_destructor_typedef_name)
10404 << DeclaratorType << 1;
10405
10406 // C++ [class.dtor]p2:
10407 // A destructor is used to destroy objects of its class type. A
10408 // destructor takes no parameters, and no return type can be
10409 // specified for it (not even void). The address of a destructor
10410 // shall not be taken. A destructor shall not be static. A
10411 // destructor can be invoked for a const, volatile or const
10412 // volatile object. A destructor shall not be declared const,
10413 // volatile or const volatile (9.3.2).
10414 if (SC == SC_Static) {
10415 if (!D.isInvalidType())
10416 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
10417 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10418 << SourceRange(D.getIdentifierLoc())
10419 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
10420
10421 SC = SC_None;
10422 }
10423 if (!D.isInvalidType()) {
10424 // Destructors don't have return types, but the parser will
10425 // happily parse something like:
10426 //
10427 // class X {
10428 // float ~X();
10429 // };
10430 //
10431 // The return type will be eliminated later.
10432 if (D.getDeclSpec().hasTypeSpecifier())
10433 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
10434 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
10435 << SourceRange(D.getIdentifierLoc());
10436 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
10437 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
10438 SourceLocation(),
10439 D.getDeclSpec().getConstSpecLoc(),
10440 D.getDeclSpec().getVolatileSpecLoc(),
10441 D.getDeclSpec().getRestrictSpecLoc(),
10442 D.getDeclSpec().getAtomicSpecLoc());
10443 D.setInvalidType();
10444 }
10445 }
10446
10447 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
10448
10449 // C++0x [class.dtor]p2:
10450 // A destructor shall not be declared with a ref-qualifier.
10451 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
10452 if (FTI.hasRefQualifier()) {
10453 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
10454 << FTI.RefQualifierIsLValueRef
10455 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
10456 D.setInvalidType();
10457 }
10458
10459 // Make sure we don't have any parameters.
10460 if (FTIHasNonVoidParameters(FTI)) {
10461 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
10462
10463 // Delete the parameters.
10464 FTI.freeParams();
10465 D.setInvalidType();
10466 }
10467
10468 // Make sure the destructor isn't variadic.
10469 if (FTI.isVariadic) {
10470 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
10471 D.setInvalidType();
10472 }
10473
10474 // Rebuild the function type "R" without any type qualifiers or
10475 // parameters (in case any of the errors above fired) and with
10476 // "void" as the return type, since destructors don't have return
10477 // types.
10478 if (!D.isInvalidType())
10479 return R;
10480
10481 const FunctionProtoType *Proto = R->castAs<FunctionProtoType>();
10482 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
10483 EPI.Variadic = false;
10484 EPI.TypeQuals = Qualifiers();
10485 EPI.RefQualifier = RQ_None;
10486 return Context.getFunctionType(Context.VoidTy, None, EPI);
10487}
10488
10489static void extendLeft(SourceRange &R, SourceRange Before) {
10490 if (Before.isInvalid())
10491 return;
10492 R.setBegin(Before.getBegin());
10493 if (R.getEnd().isInvalid())
10494 R.setEnd(Before.getEnd());
10495}
10496
10497static void extendRight(SourceRange &R, SourceRange After) {
10498 if (After.isInvalid())
10499 return;
10500 if (R.getBegin().isInvalid())
10501 R.setBegin(After.getBegin());
10502 R.setEnd(After.getEnd());
10503}
10504
10505/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
10506/// well-formednes of the conversion function declarator @p D with
10507/// type @p R. If there are any errors in the declarator, this routine
10508/// will emit diagnostics and return true. Otherwise, it will return
10509/// false. Either way, the type @p R will be updated to reflect a
10510/// well-formed type for the conversion operator.
10511void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
10512 StorageClass& SC) {
10513 // C++ [class.conv.fct]p1:
10514 // Neither parameter types nor return type can be specified. The
10515 // type of a conversion function (8.3.5) is "function taking no
10516 // parameter returning conversion-type-id."
10517 if (SC == SC_Static) {
10518 if (!D.isInvalidType())
10519 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
10520 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
10521 << D.getName().getSourceRange();
10522 D.setInvalidType();
10523 SC = SC_None;
10524 }
10525
10526 TypeSourceInfo *ConvTSI = nullptr;
10527 QualType ConvType =
10528 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
10529
10530 const DeclSpec &DS = D.getDeclSpec();
10531 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
10532 // Conversion functions don't have return types, but the parser will
10533 // happily parse something like:
10534 //
10535 // class X {
10536 // float operator bool();
10537 // };
10538 //
10539 // The return type will be changed later anyway.
10540 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
10541 << SourceRange(DS.getTypeSpecTypeLoc())
10542 << SourceRange(D.getIdentifierLoc());
10543 D.setInvalidType();
10544 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
10545 // It's also plausible that the user writes type qualifiers in the wrong
10546 // place, such as:
10547 // struct S { const operator int(); };
10548 // FIXME: we could provide a fixit to move the qualifiers onto the
10549 // conversion type.
10550 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
10551 << SourceRange(D.getIdentifierLoc()) << 0;
10552 D.setInvalidType();
10553 }
10554
10555 const auto *Proto = R->castAs<FunctionProtoType>();
10556
10557 // Make sure we don't have any parameters.
10558 if (Proto->getNumParams() > 0) {
10559 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
10560
10561 // Delete the parameters.
10562 D.getFunctionTypeInfo().freeParams();
10563 D.setInvalidType();
10564 } else if (Proto->isVariadic()) {
10565 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
10566 D.setInvalidType();
10567 }
10568
10569 // Diagnose "&operator bool()" and other such nonsense. This
10570 // is actually a gcc extension which we don't support.
10571 if (Proto->getReturnType() != ConvType) {
10572 bool NeedsTypedef = false;
10573 SourceRange Before, After;
10574
10575 // Walk the chunks and extract information on them for our diagnostic.
10576 bool PastFunctionChunk = false;
10577 for (auto &Chunk : D.type_objects()) {
10578 switch (Chunk.Kind) {
10579 case DeclaratorChunk::Function:
10580 if (!PastFunctionChunk) {
10581 if (Chunk.Fun.HasTrailingReturnType) {
10582 TypeSourceInfo *TRT = nullptr;
10583 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
10584 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
10585 }
10586 PastFunctionChunk = true;
10587 break;
10588 }
10589 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10590 case DeclaratorChunk::Array:
10591 NeedsTypedef = true;
10592 extendRight(After, Chunk.getSourceRange());
10593 break;
10594
10595 case DeclaratorChunk::Pointer:
10596 case DeclaratorChunk::BlockPointer:
10597 case DeclaratorChunk::Reference:
10598 case DeclaratorChunk::MemberPointer:
10599 case DeclaratorChunk::Pipe:
10600 extendLeft(Before, Chunk.getSourceRange());
10601 break;
10602
10603 case DeclaratorChunk::Paren:
10604 extendLeft(Before, Chunk.Loc);
10605 extendRight(After, Chunk.EndLoc);
10606 break;
10607 }
10608 }
10609
10610 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
10611 After.isValid() ? After.getBegin() :
10612 D.getIdentifierLoc();
10613 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
10614 DB << Before << After;
10615
10616 if (!NeedsTypedef) {
10617 DB << /*don't need a typedef*/0;
10618
10619 // If we can provide a correct fix-it hint, do so.
10620 if (After.isInvalid() && ConvTSI) {
10621 SourceLocation InsertLoc =
10622 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
10623 DB << FixItHint::CreateInsertion(InsertLoc, " ")
10624 << FixItHint::CreateInsertionFromRange(
10625 InsertLoc, CharSourceRange::getTokenRange(Before))
10626 << FixItHint::CreateRemoval(Before);
10627 }
10628 } else if (!Proto->getReturnType()->isDependentType()) {
10629 DB << /*typedef*/1 << Proto->getReturnType();
10630 } else if (getLangOpts().CPlusPlus11) {
10631 DB << /*alias template*/2 << Proto->getReturnType();
10632 } else {
10633 DB << /*might not be fixable*/3;
10634 }
10635
10636 // Recover by incorporating the other type chunks into the result type.
10637 // Note, this does *not* change the name of the function. This is compatible
10638 // with the GCC extension:
10639 // struct S { &operator int(); } s;
10640 // int &r = s.operator int(); // ok in GCC
10641 // S::operator int&() {} // error in GCC, function name is 'operator int'.
10642 ConvType = Proto->getReturnType();
10643 }
10644
10645 // C++ [class.conv.fct]p4:
10646 // The conversion-type-id shall not represent a function type nor
10647 // an array type.
10648 if (ConvType->isArrayType()) {
10649 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
10650 ConvType = Context.getPointerType(ConvType);
10651 D.setInvalidType();
10652 } else if (ConvType->isFunctionType()) {
10653 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
10654 ConvType = Context.getPointerType(ConvType);
10655 D.setInvalidType();
10656 }
10657
10658 // Rebuild the function type "R" without any parameters (in case any
10659 // of the errors above fired) and with the conversion type as the
10660 // return type.
10661 if (D.isInvalidType())
10662 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
10663
10664 // C++0x explicit conversion operators.
10665 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus20)
10666 Diag(DS.getExplicitSpecLoc(),
10667 getLangOpts().CPlusPlus11
10668 ? diag::warn_cxx98_compat_explicit_conversion_functions
10669 : diag::ext_explicit_conversion_functions)
10670 << SourceRange(DS.getExplicitSpecRange());
10671}
10672
10673/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
10674/// the declaration of the given C++ conversion function. This routine
10675/// is responsible for recording the conversion function in the C++
10676/// class, if possible.
10677Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
10678 assert(Conversion && "Expected to receive a conversion function declaration")((Conversion && "Expected to receive a conversion function declaration"
) ? static_cast<void> (0) : __assert_fail ("Conversion && \"Expected to receive a conversion function declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 10678, __PRETTY_FUNCTION__))
;
10679
10680 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
10681
10682 // Make sure we aren't redeclaring the conversion function.
10683 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
10684 // C++ [class.conv.fct]p1:
10685 // [...] A conversion function is never used to convert a
10686 // (possibly cv-qualified) object to the (possibly cv-qualified)
10687 // same object type (or a reference to it), to a (possibly
10688 // cv-qualified) base class of that type (or a reference to it),
10689 // or to (possibly cv-qualified) void.
10690 QualType ClassType
10691 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
10692 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
10693 ConvType = ConvTypeRef->getPointeeType();
10694 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
10695 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
10696 /* Suppress diagnostics for instantiations. */;
10697 else if (Conversion->size_overridden_methods() != 0)
10698 /* Suppress diagnostics for overriding virtual function in a base class. */;
10699 else if (ConvType->isRecordType()) {
10700 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
10701 if (ConvType == ClassType)
10702 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
10703 << ClassType;
10704 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
10705 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
10706 << ClassType << ConvType;
10707 } else if (ConvType->isVoidType()) {
10708 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
10709 << ClassType << ConvType;
10710 }
10711
10712 if (FunctionTemplateDecl *ConversionTemplate
10713 = Conversion->getDescribedFunctionTemplate())
10714 return ConversionTemplate;
10715
10716 return Conversion;
10717}
10718
10719namespace {
10720/// Utility class to accumulate and print a diagnostic listing the invalid
10721/// specifier(s) on a declaration.
10722struct BadSpecifierDiagnoser {
10723 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
10724 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
10725 ~BadSpecifierDiagnoser() {
10726 Diagnostic << Specifiers;
10727 }
10728
10729 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
10730 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
10731 }
10732 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
10733 return check(SpecLoc,
10734 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
10735 }
10736 void check(SourceLocation SpecLoc, const char *Spec) {
10737 if (SpecLoc.isInvalid()) return;
10738 Diagnostic << SourceRange(SpecLoc, SpecLoc);
10739 if (!Specifiers.empty()) Specifiers += " ";
10740 Specifiers += Spec;
10741 }
10742
10743 Sema &S;
10744 Sema::SemaDiagnosticBuilder Diagnostic;
10745 std::string Specifiers;
10746};
10747}
10748
10749/// Check the validity of a declarator that we parsed for a deduction-guide.
10750/// These aren't actually declarators in the grammar, so we need to check that
10751/// the user didn't specify any pieces that are not part of the deduction-guide
10752/// grammar.
10753void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
10754 StorageClass &SC) {
10755 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
10756 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
10757 assert(GuidedTemplateDecl && "missing template decl for deduction guide")((GuidedTemplateDecl && "missing template decl for deduction guide"
) ? static_cast<void> (0) : __assert_fail ("GuidedTemplateDecl && \"missing template decl for deduction guide\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 10757, __PRETTY_FUNCTION__))
;
10758
10759 // C++ [temp.deduct.guide]p3:
10760 // A deduction-gide shall be declared in the same scope as the
10761 // corresponding class template.
10762 if (!CurContext->getRedeclContext()->Equals(
10763 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
10764 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
10765 << GuidedTemplateDecl;
10766 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
10767 }
10768
10769 auto &DS = D.getMutableDeclSpec();
10770 // We leave 'friend' and 'virtual' to be rejected in the normal way.
10771 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
10772 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
10773 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
10774 BadSpecifierDiagnoser Diagnoser(
10775 *this, D.getIdentifierLoc(),
10776 diag::err_deduction_guide_invalid_specifier);
10777
10778 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
10779 DS.ClearStorageClassSpecs();
10780 SC = SC_None;
10781
10782 // 'explicit' is permitted.
10783 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
10784 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
10785 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
10786 DS.ClearConstexprSpec();
10787
10788 Diagnoser.check(DS.getConstSpecLoc(), "const");
10789 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
10790 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
10791 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
10792 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
10793 DS.ClearTypeQualifiers();
10794
10795 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
10796 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
10797 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
10798 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
10799 DS.ClearTypeSpecType();
10800 }
10801
10802 if (D.isInvalidType())
10803 return;
10804
10805 // Check the declarator is simple enough.
10806 bool FoundFunction = false;
10807 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
10808 if (Chunk.Kind == DeclaratorChunk::Paren)
10809 continue;
10810 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
10811 Diag(D.getDeclSpec().getBeginLoc(),
10812 diag::err_deduction_guide_with_complex_decl)
10813 << D.getSourceRange();
10814 break;
10815 }
10816 if (!Chunk.Fun.hasTrailingReturnType()) {
10817 Diag(D.getName().getBeginLoc(),
10818 diag::err_deduction_guide_no_trailing_return_type);
10819 break;
10820 }
10821
10822 // Check that the return type is written as a specialization of
10823 // the template specified as the deduction-guide's name.
10824 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
10825 TypeSourceInfo *TSI = nullptr;
10826 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
10827 assert(TSI && "deduction guide has valid type but invalid return type?")((TSI && "deduction guide has valid type but invalid return type?"
) ? static_cast<void> (0) : __assert_fail ("TSI && \"deduction guide has valid type but invalid return type?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 10827, __PRETTY_FUNCTION__))
;
10828 bool AcceptableReturnType = false;
10829 bool MightInstantiateToSpecialization = false;
10830 if (auto RetTST =
10831 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
10832 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
10833 bool TemplateMatches =
10834 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
10835 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
10836 AcceptableReturnType = true;
10837 else {
10838 // This could still instantiate to the right type, unless we know it
10839 // names the wrong class template.
10840 auto *TD = SpecifiedName.getAsTemplateDecl();
10841 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
10842 !TemplateMatches);
10843 }
10844 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
10845 MightInstantiateToSpecialization = true;
10846 }
10847
10848 if (!AcceptableReturnType) {
10849 Diag(TSI->getTypeLoc().getBeginLoc(),
10850 diag::err_deduction_guide_bad_trailing_return_type)
10851 << GuidedTemplate << TSI->getType()
10852 << MightInstantiateToSpecialization
10853 << TSI->getTypeLoc().getSourceRange();
10854 }
10855
10856 // Keep going to check that we don't have any inner declarator pieces (we
10857 // could still have a function returning a pointer to a function).
10858 FoundFunction = true;
10859 }
10860
10861 if (D.isFunctionDefinition())
10862 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
10863}
10864
10865//===----------------------------------------------------------------------===//
10866// Namespace Handling
10867//===----------------------------------------------------------------------===//
10868
10869/// Diagnose a mismatch in 'inline' qualifiers when a namespace is
10870/// reopened.
10871static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
10872 SourceLocation Loc,
10873 IdentifierInfo *II, bool *IsInline,
10874 NamespaceDecl *PrevNS) {
10875 assert(*IsInline != PrevNS->isInline())((*IsInline != PrevNS->isInline()) ? static_cast<void>
(0) : __assert_fail ("*IsInline != PrevNS->isInline()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 10875, __PRETTY_FUNCTION__))
;
10876
10877 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
10878 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
10879 // inline namespaces, with the intention of bringing names into namespace std.
10880 //
10881 // We support this just well enough to get that case working; this is not
10882 // sufficient to support reopening namespaces as inline in general.
10883 if (*IsInline && II && II->getName().startswith("__atomic") &&
10884 S.getSourceManager().isInSystemHeader(Loc)) {
10885 // Mark all prior declarations of the namespace as inline.
10886 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
10887 NS = NS->getPreviousDecl())
10888 NS->setInline(*IsInline);
10889 // Patch up the lookup table for the containing namespace. This isn't really
10890 // correct, but it's good enough for this particular case.
10891 for (auto *I : PrevNS->decls())
10892 if (auto *ND = dyn_cast<NamedDecl>(I))
10893 PrevNS->getParent()->makeDeclVisibleInContext(ND);
10894 return;
10895 }
10896
10897 if (PrevNS->isInline())
10898 // The user probably just forgot the 'inline', so suggest that it
10899 // be added back.
10900 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
10901 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
10902 else
10903 S.Diag(Loc, diag::err_inline_namespace_mismatch);
10904
10905 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
10906 *IsInline = PrevNS->isInline();
10907}
10908
10909/// ActOnStartNamespaceDef - This is called at the start of a namespace
10910/// definition.
10911Decl *Sema::ActOnStartNamespaceDef(
10912 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
10913 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
10914 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
10915 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
10916 // For anonymous namespace, take the location of the left brace.
10917 SourceLocation Loc = II ? IdentLoc : LBrace;
10918 bool IsInline = InlineLoc.isValid();
10919 bool IsInvalid = false;
10920 bool IsStd = false;
10921 bool AddToKnown = false;
10922 Scope *DeclRegionScope = NamespcScope->getParent();
10923
10924 NamespaceDecl *PrevNS = nullptr;
10925 if (II) {
10926 // C++ [namespace.def]p2:
10927 // The identifier in an original-namespace-definition shall not
10928 // have been previously defined in the declarative region in
10929 // which the original-namespace-definition appears. The
10930 // identifier in an original-namespace-definition is the name of
10931 // the namespace. Subsequently in that declarative region, it is
10932 // treated as an original-namespace-name.
10933 //
10934 // Since namespace names are unique in their scope, and we don't
10935 // look through using directives, just look for any ordinary names
10936 // as if by qualified name lookup.
10937 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
10938 ForExternalRedeclaration);
10939 LookupQualifiedName(R, CurContext->getRedeclContext());
10940 NamedDecl *PrevDecl =
10941 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
10942 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
10943
10944 if (PrevNS) {
10945 // This is an extended namespace definition.
10946 if (IsInline != PrevNS->isInline())
10947 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
10948 &IsInline, PrevNS);
10949 } else if (PrevDecl) {
10950 // This is an invalid name redefinition.
10951 Diag(Loc, diag::err_redefinition_different_kind)
10952 << II;
10953 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10954 IsInvalid = true;
10955 // Continue on to push Namespc as current DeclContext and return it.
10956 } else if (II->isStr("std") &&
10957 CurContext->getRedeclContext()->isTranslationUnit()) {
10958 // This is the first "real" definition of the namespace "std", so update
10959 // our cache of the "std" namespace to point at this definition.
10960 PrevNS = getStdNamespace();
10961 IsStd = true;
10962 AddToKnown = !IsInline;
10963 } else {
10964 // We've seen this namespace for the first time.
10965 AddToKnown = !IsInline;
10966 }
10967 } else {
10968 // Anonymous namespaces.
10969
10970 // Determine whether the parent already has an anonymous namespace.
10971 DeclContext *Parent = CurContext->getRedeclContext();
10972 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
10973 PrevNS = TU->getAnonymousNamespace();
10974 } else {
10975 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
10976 PrevNS = ND->getAnonymousNamespace();
10977 }
10978
10979 if (PrevNS && IsInline != PrevNS->isInline())
10980 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
10981 &IsInline, PrevNS);
10982 }
10983
10984 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
10985 StartLoc, Loc, II, PrevNS);
10986 if (IsInvalid)
10987 Namespc->setInvalidDecl();
10988
10989 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
10990 AddPragmaAttributes(DeclRegionScope, Namespc);
10991
10992 // FIXME: Should we be merging attributes?
10993 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
10994 PushNamespaceVisibilityAttr(Attr, Loc);
10995
10996 if (IsStd)
10997 StdNamespace = Namespc;
10998 if (AddToKnown)
10999 KnownNamespaces[Namespc] = false;
11000
11001 if (II) {
11002 PushOnScopeChains(Namespc, DeclRegionScope);
11003 } else {
11004 // Link the anonymous namespace into its parent.
11005 DeclContext *Parent = CurContext->getRedeclContext();
11006 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
11007 TU->setAnonymousNamespace(Namespc);
11008 } else {
11009 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
11010 }
11011
11012 CurContext->addDecl(Namespc);
11013
11014 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
11015 // behaves as if it were replaced by
11016 // namespace unique { /* empty body */ }
11017 // using namespace unique;
11018 // namespace unique { namespace-body }
11019 // where all occurrences of 'unique' in a translation unit are
11020 // replaced by the same identifier and this identifier differs
11021 // from all other identifiers in the entire program.
11022
11023 // We just create the namespace with an empty name and then add an
11024 // implicit using declaration, just like the standard suggests.
11025 //
11026 // CodeGen enforces the "universally unique" aspect by giving all
11027 // declarations semantically contained within an anonymous
11028 // namespace internal linkage.
11029
11030 if (!PrevNS) {
11031 UD = UsingDirectiveDecl::Create(Context, Parent,
11032 /* 'using' */ LBrace,
11033 /* 'namespace' */ SourceLocation(),
11034 /* qualifier */ NestedNameSpecifierLoc(),
11035 /* identifier */ SourceLocation(),
11036 Namespc,
11037 /* Ancestor */ Parent);
11038 UD->setImplicit();
11039 Parent->addDecl(UD);
11040 }
11041 }
11042
11043 ActOnDocumentableDecl(Namespc);
11044
11045 // Although we could have an invalid decl (i.e. the namespace name is a
11046 // redefinition), push it as current DeclContext and try to continue parsing.
11047 // FIXME: We should be able to push Namespc here, so that the each DeclContext
11048 // for the namespace has the declarations that showed up in that particular
11049 // namespace definition.
11050 PushDeclContext(NamespcScope, Namespc);
11051 return Namespc;
11052}
11053
11054/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
11055/// is a namespace alias, returns the namespace it points to.
11056static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
11057 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
11058 return AD->getNamespace();
11059 return dyn_cast_or_null<NamespaceDecl>(D);
11060}
11061
11062/// ActOnFinishNamespaceDef - This callback is called after a namespace is
11063/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
11064void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
11065 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
11066 assert(Namespc && "Invalid parameter, expected NamespaceDecl")((Namespc && "Invalid parameter, expected NamespaceDecl"
) ? static_cast<void> (0) : __assert_fail ("Namespc && \"Invalid parameter, expected NamespaceDecl\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11066, __PRETTY_FUNCTION__))
;
11067 Namespc->setRBraceLoc(RBrace);
11068 PopDeclContext();
11069 if (Namespc->hasAttr<VisibilityAttr>())
11070 PopPragmaVisibility(true, RBrace);
11071 // If this namespace contains an export-declaration, export it now.
11072 if (DeferredExportedNamespaces.erase(Namespc))
11073 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
11074}
11075
11076CXXRecordDecl *Sema::getStdBadAlloc() const {
11077 return cast_or_null<CXXRecordDecl>(
11078 StdBadAlloc.get(Context.getExternalSource()));
11079}
11080
11081EnumDecl *Sema::getStdAlignValT() const {
11082 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
11083}
11084
11085NamespaceDecl *Sema::getStdNamespace() const {
11086 return cast_or_null<NamespaceDecl>(
11087 StdNamespace.get(Context.getExternalSource()));
11088}
11089
11090NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
11091 if (!StdExperimentalNamespaceCache) {
11092 if (auto Std = getStdNamespace()) {
11093 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
11094 SourceLocation(), LookupNamespaceName);
11095 if (!LookupQualifiedName(Result, Std) ||
11096 !(StdExperimentalNamespaceCache =
11097 Result.getAsSingle<NamespaceDecl>()))
11098 Result.suppressDiagnostics();
11099 }
11100 }
11101 return StdExperimentalNamespaceCache;
11102}
11103
11104namespace {
11105
11106enum UnsupportedSTLSelect {
11107 USS_InvalidMember,
11108 USS_MissingMember,
11109 USS_NonTrivial,
11110 USS_Other
11111};
11112
11113struct InvalidSTLDiagnoser {
11114 Sema &S;
11115 SourceLocation Loc;
11116 QualType TyForDiags;
11117
11118 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
11119 const VarDecl *VD = nullptr) {
11120 {
11121 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
11122 << TyForDiags << ((int)Sel);
11123 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
11124 assert(!Name.empty())((!Name.empty()) ? static_cast<void> (0) : __assert_fail
("!Name.empty()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11124, __PRETTY_FUNCTION__))
;
11125 D << Name;
11126 }
11127 }
11128 if (Sel == USS_InvalidMember) {
11129 S.Diag(VD->getLocation(), diag::note_var_declared_here)
11130 << VD << VD->getSourceRange();
11131 }
11132 return QualType();
11133 }
11134};
11135} // namespace
11136
11137QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
11138 SourceLocation Loc,
11139 ComparisonCategoryUsage Usage) {
11140 assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "Looking for comparison category type outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11141, __PRETTY_FUNCTION__))
11141 "Looking for comparison category type outside of C++.")((getLangOpts().CPlusPlus && "Looking for comparison category type outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11141, __PRETTY_FUNCTION__))
;
11142
11143 // Use an elaborated type for diagnostics which has a name containing the
11144 // prepended 'std' namespace but not any inline namespace names.
11145 auto TyForDiags = [&](ComparisonCategoryInfo *Info) {
11146 auto *NNS =
11147 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
11148 return Context.getElaboratedType(ETK_None, NNS, Info->getType());
11149 };
11150
11151 // Check if we've already successfully checked the comparison category type
11152 // before. If so, skip checking it again.
11153 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
11154 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)]) {
11155 // The only thing we need to check is that the type has a reachable
11156 // definition in the current context.
11157 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11158 return QualType();
11159
11160 return Info->getType();
11161 }
11162
11163 // If lookup failed
11164 if (!Info) {
11165 std::string NameForDiags = "std::";
11166 NameForDiags += ComparisonCategories::getCategoryString(Kind);
11167 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
11168 << NameForDiags << (int)Usage;
11169 return QualType();
11170 }
11171
11172 assert(Info->Kind == Kind)((Info->Kind == Kind) ? static_cast<void> (0) : __assert_fail
("Info->Kind == Kind", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11172, __PRETTY_FUNCTION__))
;
11173 assert(Info->Record)((Info->Record) ? static_cast<void> (0) : __assert_fail
("Info->Record", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11173, __PRETTY_FUNCTION__))
;
11174
11175 // Update the Record decl in case we encountered a forward declaration on our
11176 // first pass. FIXME: This is a bit of a hack.
11177 if (Info->Record->hasDefinition())
11178 Info->Record = Info->Record->getDefinition();
11179
11180 if (RequireCompleteType(Loc, TyForDiags(Info), diag::err_incomplete_type))
11181 return QualType();
11182
11183 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags(Info)};
11184
11185 if (!Info->Record->isTriviallyCopyable())
11186 return UnsupportedSTLError(USS_NonTrivial);
11187
11188 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
11189 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
11190 // Tolerate empty base classes.
11191 if (Base->isEmpty())
11192 continue;
11193 // Reject STL implementations which have at least one non-empty base.
11194 return UnsupportedSTLError();
11195 }
11196
11197 // Check that the STL has implemented the types using a single integer field.
11198 // This expectation allows better codegen for builtin operators. We require:
11199 // (1) The class has exactly one field.
11200 // (2) The field is an integral or enumeration type.
11201 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
11202 if (std::distance(FIt, FEnd) != 1 ||
11203 !FIt->getType()->isIntegralOrEnumerationType()) {
11204 return UnsupportedSTLError();
11205 }
11206
11207 // Build each of the require values and store them in Info.
11208 for (ComparisonCategoryResult CCR :
11209 ComparisonCategories::getPossibleResultsForType(Kind)) {
11210 StringRef MemName = ComparisonCategories::getResultString(CCR);
11211 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
11212
11213 if (!ValInfo)
11214 return UnsupportedSTLError(USS_MissingMember, MemName);
11215
11216 VarDecl *VD = ValInfo->VD;
11217 assert(VD && "should not be null!")((VD && "should not be null!") ? static_cast<void>
(0) : __assert_fail ("VD && \"should not be null!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11217, __PRETTY_FUNCTION__))
;
11218
11219 // Attempt to diagnose reasons why the STL definition of this type
11220 // might be foobar, including it failing to be a constant expression.
11221 // TODO Handle more ways the lookup or result can be invalid.
11222 if (!VD->isStaticDataMember() ||
11223 !VD->isUsableInConstantExpressions(Context))
11224 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
11225
11226 // Attempt to evaluate the var decl as a constant expression and extract
11227 // the value of its first field as a ICE. If this fails, the STL
11228 // implementation is not supported.
11229 if (!ValInfo->hasValidIntValue())
11230 return UnsupportedSTLError();
11231
11232 MarkVariableReferenced(Loc, VD);
11233 }
11234
11235 // We've successfully built the required types and expressions. Update
11236 // the cache and return the newly cached value.
11237 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
11238 return Info->getType();
11239}
11240
11241/// Retrieve the special "std" namespace, which may require us to
11242/// implicitly define the namespace.
11243NamespaceDecl *Sema::getOrCreateStdNamespace() {
11244 if (!StdNamespace) {
11245 // The "std" namespace has not yet been defined, so build one implicitly.
11246 StdNamespace = NamespaceDecl::Create(Context,
11247 Context.getTranslationUnitDecl(),
11248 /*Inline=*/false,
11249 SourceLocation(), SourceLocation(),
11250 &PP.getIdentifierTable().get("std"),
11251 /*PrevDecl=*/nullptr);
11252 getStdNamespace()->setImplicit(true);
11253 }
11254
11255 return getStdNamespace();
11256}
11257
11258bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
11259 assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "Looking for std::initializer_list outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11260, __PRETTY_FUNCTION__))
11260 "Looking for std::initializer_list outside of C++.")((getLangOpts().CPlusPlus && "Looking for std::initializer_list outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11260, __PRETTY_FUNCTION__))
;
11261
11262 // We're looking for implicit instantiations of
11263 // template <typename E> class std::initializer_list.
11264
11265 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
11266 return false;
11267
11268 ClassTemplateDecl *Template = nullptr;
11269 const TemplateArgument *Arguments = nullptr;
11270
11271 if (const RecordType *RT = Ty->getAs<RecordType>()) {
11272
11273 ClassTemplateSpecializationDecl *Specialization =
11274 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
11275 if (!Specialization)
11276 return false;
11277
11278 Template = Specialization->getSpecializedTemplate();
11279 Arguments = Specialization->getTemplateArgs().data();
11280 } else if (const TemplateSpecializationType *TST =
11281 Ty->getAs<TemplateSpecializationType>()) {
11282 Template = dyn_cast_or_null<ClassTemplateDecl>(
11283 TST->getTemplateName().getAsTemplateDecl());
11284 Arguments = TST->getArgs();
11285 }
11286 if (!Template)
11287 return false;
11288
11289 if (!StdInitializerList) {
11290 // Haven't recognized std::initializer_list yet, maybe this is it.
11291 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
11292 if (TemplateClass->getIdentifier() !=
11293 &PP.getIdentifierTable().get("initializer_list") ||
11294 !getStdNamespace()->InEnclosingNamespaceSetOf(
11295 TemplateClass->getDeclContext()))
11296 return false;
11297 // This is a template called std::initializer_list, but is it the right
11298 // template?
11299 TemplateParameterList *Params = Template->getTemplateParameters();
11300 if (Params->getMinRequiredArguments() != 1)
11301 return false;
11302 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
11303 return false;
11304
11305 // It's the right template.
11306 StdInitializerList = Template;
11307 }
11308
11309 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
11310 return false;
11311
11312 // This is an instance of std::initializer_list. Find the argument type.
11313 if (Element)
11314 *Element = Arguments[0].getAsType();
11315 return true;
11316}
11317
11318static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
11319 NamespaceDecl *Std = S.getStdNamespace();
11320 if (!Std) {
11321 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11322 return nullptr;
11323 }
11324
11325 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
11326 Loc, Sema::LookupOrdinaryName);
11327 if (!S.LookupQualifiedName(Result, Std)) {
11328 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
11329 return nullptr;
11330 }
11331 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
11332 if (!Template) {
11333 Result.suppressDiagnostics();
11334 // We found something weird. Complain about the first thing we found.
11335 NamedDecl *Found = *Result.begin();
11336 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
11337 return nullptr;
11338 }
11339
11340 // We found some template called std::initializer_list. Now verify that it's
11341 // correct.
11342 TemplateParameterList *Params = Template->getTemplateParameters();
11343 if (Params->getMinRequiredArguments() != 1 ||
11344 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
11345 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
11346 return nullptr;
11347 }
11348
11349 return Template;
11350}
11351
11352QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
11353 if (!StdInitializerList) {
11354 StdInitializerList = LookupStdInitializerList(*this, Loc);
11355 if (!StdInitializerList)
11356 return QualType();
11357 }
11358
11359 TemplateArgumentListInfo Args(Loc, Loc);
11360 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
11361 Context.getTrivialTypeSourceInfo(Element,
11362 Loc)));
11363 return Context.getCanonicalType(
11364 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
11365}
11366
11367bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
11368 // C++ [dcl.init.list]p2:
11369 // A constructor is an initializer-list constructor if its first parameter
11370 // is of type std::initializer_list<E> or reference to possibly cv-qualified
11371 // std::initializer_list<E> for some type E, and either there are no other
11372 // parameters or else all other parameters have default arguments.
11373 if (!Ctor->hasOneParamOrDefaultArgs())
11374 return false;
11375
11376 QualType ArgType = Ctor->getParamDecl(0)->getType();
11377 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
11378 ArgType = RT->getPointeeType().getUnqualifiedType();
11379
11380 return isStdInitializerList(ArgType, nullptr);
11381}
11382
11383/// Determine whether a using statement is in a context where it will be
11384/// apply in all contexts.
11385static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
11386 switch (CurContext->getDeclKind()) {
11387 case Decl::TranslationUnit:
11388 return true;
11389 case Decl::LinkageSpec:
11390 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
11391 default:
11392 return false;
11393 }
11394}
11395
11396namespace {
11397
11398// Callback to only accept typo corrections that are namespaces.
11399class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
11400public:
11401 bool ValidateCandidate(const TypoCorrection &candidate) override {
11402 if (NamedDecl *ND = candidate.getCorrectionDecl())
11403 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
11404 return false;
11405 }
11406
11407 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11408 return std::make_unique<NamespaceValidatorCCC>(*this);
11409 }
11410};
11411
11412}
11413
11414static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
11415 CXXScopeSpec &SS,
11416 SourceLocation IdentLoc,
11417 IdentifierInfo *Ident) {
11418 R.clear();
11419 NamespaceValidatorCCC CCC{};
11420 if (TypoCorrection Corrected =
11421 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
11422 Sema::CTK_ErrorRecovery)) {
11423 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
11424 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
11425 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
11426 Ident->getName().equals(CorrectedStr);
11427 S.diagnoseTypo(Corrected,
11428 S.PDiag(diag::err_using_directive_member_suggest)
11429 << Ident << DC << DroppedSpecifier << SS.getRange(),
11430 S.PDiag(diag::note_namespace_defined_here));
11431 } else {
11432 S.diagnoseTypo(Corrected,
11433 S.PDiag(diag::err_using_directive_suggest) << Ident,
11434 S.PDiag(diag::note_namespace_defined_here));
11435 }
11436 R.addDecl(Corrected.getFoundDecl());
11437 return true;
11438 }
11439 return false;
11440}
11441
11442Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
11443 SourceLocation NamespcLoc, CXXScopeSpec &SS,
11444 SourceLocation IdentLoc,
11445 IdentifierInfo *NamespcName,
11446 const ParsedAttributesView &AttrList) {
11447 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((!SS.isInvalid() && "Invalid CXXScopeSpec.") ? static_cast
<void> (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11447, __PRETTY_FUNCTION__))
;
11448 assert(NamespcName && "Invalid NamespcName.")((NamespcName && "Invalid NamespcName.") ? static_cast
<void> (0) : __assert_fail ("NamespcName && \"Invalid NamespcName.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11448, __PRETTY_FUNCTION__))
;
11449 assert(IdentLoc.isValid() && "Invalid NamespceName location.")((IdentLoc.isValid() && "Invalid NamespceName location."
) ? static_cast<void> (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid NamespceName location.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11449, __PRETTY_FUNCTION__))
;
11450
11451 // This can only happen along a recovery path.
11452 while (S->isTemplateParamScope())
11453 S = S->getParent();
11454 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((S->getFlags() & Scope::DeclScope && "Invalid Scope."
) ? static_cast<void> (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11454, __PRETTY_FUNCTION__))
;
11455
11456 UsingDirectiveDecl *UDir = nullptr;
11457 NestedNameSpecifier *Qualifier = nullptr;
11458 if (SS.isSet())
11459 Qualifier = SS.getScopeRep();
11460
11461 // Lookup namespace name.
11462 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
11463 LookupParsedName(R, S, &SS);
11464 if (R.isAmbiguous())
11465 return nullptr;
11466
11467 if (R.empty()) {
11468 R.clear();
11469 // Allow "using namespace std;" or "using namespace ::std;" even if
11470 // "std" hasn't been defined yet, for GCC compatibility.
11471 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
11472 NamespcName->isStr("std")) {
11473 Diag(IdentLoc, diag::ext_using_undefined_std);
11474 R.addDecl(getOrCreateStdNamespace());
11475 R.resolveKind();
11476 }
11477 // Otherwise, attempt typo correction.
11478 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
11479 }
11480
11481 if (!R.empty()) {
11482 NamedDecl *Named = R.getRepresentativeDecl();
11483 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
11484 assert(NS && "expected namespace decl")((NS && "expected namespace decl") ? static_cast<void
> (0) : __assert_fail ("NS && \"expected namespace decl\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11484, __PRETTY_FUNCTION__))
;
11485
11486 // The use of a nested name specifier may trigger deprecation warnings.
11487 DiagnoseUseOfDecl(Named, IdentLoc);
11488
11489 // C++ [namespace.udir]p1:
11490 // A using-directive specifies that the names in the nominated
11491 // namespace can be used in the scope in which the
11492 // using-directive appears after the using-directive. During
11493 // unqualified name lookup (3.4.1), the names appear as if they
11494 // were declared in the nearest enclosing namespace which
11495 // contains both the using-directive and the nominated
11496 // namespace. [Note: in this context, "contains" means "contains
11497 // directly or indirectly". ]
11498
11499 // Find enclosing context containing both using-directive and
11500 // nominated namespace.
11501 DeclContext *CommonAncestor = NS;
11502 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
11503 CommonAncestor = CommonAncestor->getParent();
11504
11505 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
11506 SS.getWithLocInContext(Context),
11507 IdentLoc, Named, CommonAncestor);
11508
11509 if (IsUsingDirectiveInToplevelContext(CurContext) &&
11510 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
11511 Diag(IdentLoc, diag::warn_using_directive_in_header);
11512 }
11513
11514 PushUsingDirective(S, UDir);
11515 } else {
11516 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
11517 }
11518
11519 if (UDir)
11520 ProcessDeclAttributeList(S, UDir, AttrList);
11521
11522 return UDir;
11523}
11524
11525void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
11526 // If the scope has an associated entity and the using directive is at
11527 // namespace or translation unit scope, add the UsingDirectiveDecl into
11528 // its lookup structure so qualified name lookup can find it.
11529 DeclContext *Ctx = S->getEntity();
11530 if (Ctx && !Ctx->isFunctionOrMethod())
11531 Ctx->addDecl(UDir);
11532 else
11533 // Otherwise, it is at block scope. The using-directives will affect lookup
11534 // only to the end of the scope.
11535 S->PushUsingDirective(UDir);
11536}
11537
11538Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
11539 SourceLocation UsingLoc,
11540 SourceLocation TypenameLoc, CXXScopeSpec &SS,
11541 UnqualifiedId &Name,
11542 SourceLocation EllipsisLoc,
11543 const ParsedAttributesView &AttrList) {
11544 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((S->getFlags() & Scope::DeclScope && "Invalid Scope."
) ? static_cast<void> (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11544, __PRETTY_FUNCTION__))
;
11545
11546 if (SS.isEmpty()) {
11547 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
11548 return nullptr;
11549 }
11550
11551 switch (Name.getKind()) {
11552 case UnqualifiedIdKind::IK_ImplicitSelfParam:
11553 case UnqualifiedIdKind::IK_Identifier:
11554 case UnqualifiedIdKind::IK_OperatorFunctionId:
11555 case UnqualifiedIdKind::IK_LiteralOperatorId:
11556 case UnqualifiedIdKind::IK_ConversionFunctionId:
11557 break;
11558
11559 case UnqualifiedIdKind::IK_ConstructorName:
11560 case UnqualifiedIdKind::IK_ConstructorTemplateId:
11561 // C++11 inheriting constructors.
11562 Diag(Name.getBeginLoc(),
11563 getLangOpts().CPlusPlus11
11564 ? diag::warn_cxx98_compat_using_decl_constructor
11565 : diag::err_using_decl_constructor)
11566 << SS.getRange();
11567
11568 if (getLangOpts().CPlusPlus11) break;
11569
11570 return nullptr;
11571
11572 case UnqualifiedIdKind::IK_DestructorName:
11573 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
11574 return nullptr;
11575
11576 case UnqualifiedIdKind::IK_TemplateId:
11577 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
11578 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
11579 return nullptr;
11580
11581 case UnqualifiedIdKind::IK_DeductionGuideName:
11582 llvm_unreachable("cannot parse qualified deduction guide name")::llvm::llvm_unreachable_internal("cannot parse qualified deduction guide name"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11582)
;
11583 }
11584
11585 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
11586 DeclarationName TargetName = TargetNameInfo.getName();
11587 if (!TargetName)
11588 return nullptr;
11589
11590 // Warn about access declarations.
11591 if (UsingLoc.isInvalid()) {
11592 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
11593 ? diag::err_access_decl
11594 : diag::warn_access_decl_deprecated)
11595 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
11596 }
11597
11598 if (EllipsisLoc.isInvalid()) {
11599 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
11600 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
11601 return nullptr;
11602 } else {
11603 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
11604 !TargetNameInfo.containsUnexpandedParameterPack()) {
11605 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
11606 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
11607 EllipsisLoc = SourceLocation();
11608 }
11609 }
11610
11611 NamedDecl *UD =
11612 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
11613 SS, TargetNameInfo, EllipsisLoc, AttrList,
11614 /*IsInstantiation*/false);
11615 if (UD)
11616 PushOnScopeChains(UD, S, /*AddToContext*/ false);
11617
11618 return UD;
11619}
11620
11621/// Determine whether a using declaration considers the given
11622/// declarations as "equivalent", e.g., if they are redeclarations of
11623/// the same entity or are both typedefs of the same type.
11624static bool
11625IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
11626 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
11627 return true;
11628
11629 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
11630 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
11631 return Context.hasSameType(TD1->getUnderlyingType(),
11632 TD2->getUnderlyingType());
11633
11634 return false;
11635}
11636
11637
11638/// Determines whether to create a using shadow decl for a particular
11639/// decl, given the set of decls existing prior to this using lookup.
11640bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
11641 const LookupResult &Previous,
11642 UsingShadowDecl *&PrevShadow) {
11643 // Diagnose finding a decl which is not from a base class of the
11644 // current class. We do this now because there are cases where this
11645 // function will silently decide not to build a shadow decl, which
11646 // will pre-empt further diagnostics.
11647 //
11648 // We don't need to do this in C++11 because we do the check once on
11649 // the qualifier.
11650 //
11651 // FIXME: diagnose the following if we care enough:
11652 // struct A { int foo; };
11653 // struct B : A { using A::foo; };
11654 // template <class T> struct C : A {};
11655 // template <class T> struct D : C<T> { using B::foo; } // <---
11656 // This is invalid (during instantiation) in C++03 because B::foo
11657 // resolves to the using decl in B, which is not a base class of D<T>.
11658 // We can't diagnose it immediately because C<T> is an unknown
11659 // specialization. The UsingShadowDecl in D<T> then points directly
11660 // to A::foo, which will look well-formed when we instantiate.
11661 // The right solution is to not collapse the shadow-decl chain.
11662 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
11663 DeclContext *OrigDC = Orig->getDeclContext();
11664
11665 // Handle enums and anonymous structs.
11666 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
11667 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
11668 while (OrigRec->isAnonymousStructOrUnion())
11669 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
11670
11671 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
11672 if (OrigDC == CurContext) {
11673 Diag(Using->getLocation(),
11674 diag::err_using_decl_nested_name_specifier_is_current_class)
11675 << Using->getQualifierLoc().getSourceRange();
11676 Diag(Orig->getLocation(), diag::note_using_decl_target);
11677 Using->setInvalidDecl();
11678 return true;
11679 }
11680
11681 Diag(Using->getQualifierLoc().getBeginLoc(),
11682 diag::err_using_decl_nested_name_specifier_is_not_base_class)
11683 << Using->getQualifier()
11684 << cast<CXXRecordDecl>(CurContext)
11685 << Using->getQualifierLoc().getSourceRange();
11686 Diag(Orig->getLocation(), diag::note_using_decl_target);
11687 Using->setInvalidDecl();
11688 return true;
11689 }
11690 }
11691
11692 if (Previous.empty()) return false;
11693
11694 NamedDecl *Target = Orig;
11695 if (isa<UsingShadowDecl>(Target))
11696 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11697
11698 // If the target happens to be one of the previous declarations, we
11699 // don't have a conflict.
11700 //
11701 // FIXME: but we might be increasing its access, in which case we
11702 // should redeclare it.
11703 NamedDecl *NonTag = nullptr, *Tag = nullptr;
11704 bool FoundEquivalentDecl = false;
11705 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
11706 I != E; ++I) {
11707 NamedDecl *D = (*I)->getUnderlyingDecl();
11708 // We can have UsingDecls in our Previous results because we use the same
11709 // LookupResult for checking whether the UsingDecl itself is a valid
11710 // redeclaration.
11711 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
11712 continue;
11713
11714 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
11715 // C++ [class.mem]p19:
11716 // If T is the name of a class, then [every named member other than
11717 // a non-static data member] shall have a name different from T
11718 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
11719 !isa<IndirectFieldDecl>(Target) &&
11720 !isa<UnresolvedUsingValueDecl>(Target) &&
11721 DiagnoseClassNameShadow(
11722 CurContext,
11723 DeclarationNameInfo(Using->getDeclName(), Using->getLocation())))
11724 return true;
11725 }
11726
11727 if (IsEquivalentForUsingDecl(Context, D, Target)) {
11728 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
11729 PrevShadow = Shadow;
11730 FoundEquivalentDecl = true;
11731 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
11732 // We don't conflict with an existing using shadow decl of an equivalent
11733 // declaration, but we're not a redeclaration of it.
11734 FoundEquivalentDecl = true;
11735 }
11736
11737 if (isVisible(D))
11738 (isa<TagDecl>(D) ? Tag : NonTag) = D;
11739 }
11740
11741 if (FoundEquivalentDecl)
11742 return false;
11743
11744 if (FunctionDecl *FD = Target->getAsFunction()) {
11745 NamedDecl *OldDecl = nullptr;
11746 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
11747 /*IsForUsingDecl*/ true)) {
11748 case Ovl_Overload:
11749 return false;
11750
11751 case Ovl_NonFunction:
11752 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11753 break;
11754
11755 // We found a decl with the exact signature.
11756 case Ovl_Match:
11757 // If we're in a record, we want to hide the target, so we
11758 // return true (without a diagnostic) to tell the caller not to
11759 // build a shadow decl.
11760 if (CurContext->isRecord())
11761 return true;
11762
11763 // If we're not in a record, this is an error.
11764 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11765 break;
11766 }
11767
11768 Diag(Target->getLocation(), diag::note_using_decl_target);
11769 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
11770 Using->setInvalidDecl();
11771 return true;
11772 }
11773
11774 // Target is not a function.
11775
11776 if (isa<TagDecl>(Target)) {
11777 // No conflict between a tag and a non-tag.
11778 if (!Tag) return false;
11779
11780 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11781 Diag(Target->getLocation(), diag::note_using_decl_target);
11782 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
11783 Using->setInvalidDecl();
11784 return true;
11785 }
11786
11787 // No conflict between a tag and a non-tag.
11788 if (!NonTag) return false;
11789
11790 Diag(Using->getLocation(), diag::err_using_decl_conflict);
11791 Diag(Target->getLocation(), diag::note_using_decl_target);
11792 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
11793 Using->setInvalidDecl();
11794 return true;
11795}
11796
11797/// Determine whether a direct base class is a virtual base class.
11798static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
11799 if (!Derived->getNumVBases())
11800 return false;
11801 for (auto &B : Derived->bases())
11802 if (B.getType()->getAsCXXRecordDecl() == Base)
11803 return B.isVirtual();
11804 llvm_unreachable("not a direct base class")::llvm::llvm_unreachable_internal("not a direct base class", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11804)
;
11805}
11806
11807/// Builds a shadow declaration corresponding to a 'using' declaration.
11808UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
11809 UsingDecl *UD,
11810 NamedDecl *Orig,
11811 UsingShadowDecl *PrevDecl) {
11812 // If we resolved to another shadow declaration, just coalesce them.
11813 NamedDecl *Target = Orig;
11814 if (isa<UsingShadowDecl>(Target)) {
11815 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
11816 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")((!isa<UsingShadowDecl>(Target) && "nested shadow declaration"
) ? static_cast<void> (0) : __assert_fail ("!isa<UsingShadowDecl>(Target) && \"nested shadow declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 11816, __PRETTY_FUNCTION__))
;
11817 }
11818
11819 NamedDecl *NonTemplateTarget = Target;
11820 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
11821 NonTemplateTarget = TargetTD->getTemplatedDecl();
11822
11823 UsingShadowDecl *Shadow;
11824 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
11825 bool IsVirtualBase =
11826 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
11827 UD->getQualifier()->getAsRecordDecl());
11828 Shadow = ConstructorUsingShadowDecl::Create(
11829 Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
11830 } else {
11831 Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
11832 Target);
11833 }
11834 UD->addShadowDecl(Shadow);
11835
11836 Shadow->setAccess(UD->getAccess());
11837 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
11838 Shadow->setInvalidDecl();
11839
11840 Shadow->setPreviousDecl(PrevDecl);
11841
11842 if (S)
11843 PushOnScopeChains(Shadow, S);
11844 else
11845 CurContext->addDecl(Shadow);
11846
11847
11848 return Shadow;
11849}
11850
11851/// Hides a using shadow declaration. This is required by the current
11852/// using-decl implementation when a resolvable using declaration in a
11853/// class is followed by a declaration which would hide or override
11854/// one or more of the using decl's targets; for example:
11855///
11856/// struct Base { void foo(int); };
11857/// struct Derived : Base {
11858/// using Base::foo;
11859/// void foo(int);
11860/// };
11861///
11862/// The governing language is C++03 [namespace.udecl]p12:
11863///
11864/// When a using-declaration brings names from a base class into a
11865/// derived class scope, member functions in the derived class
11866/// override and/or hide member functions with the same name and
11867/// parameter types in a base class (rather than conflicting).
11868///
11869/// There are two ways to implement this:
11870/// (1) optimistically create shadow decls when they're not hidden
11871/// by existing declarations, or
11872/// (2) don't create any shadow decls (or at least don't make them
11873/// visible) until we've fully parsed/instantiated the class.
11874/// The problem with (1) is that we might have to retroactively remove
11875/// a shadow decl, which requires several O(n) operations because the
11876/// decl structures are (very reasonably) not designed for removal.
11877/// (2) avoids this but is very fiddly and phase-dependent.
11878void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
11879 if (Shadow->getDeclName().getNameKind() ==
11880 DeclarationName::CXXConversionFunctionName)
11881 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
11882
11883 // Remove it from the DeclContext...
11884 Shadow->getDeclContext()->removeDecl(Shadow);
11885
11886 // ...and the scope, if applicable...
11887 if (S) {
11888 S->RemoveDecl(Shadow);
11889 IdResolver.RemoveDecl(Shadow);
11890 }
11891
11892 // ...and the using decl.
11893 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
11894
11895 // TODO: complain somehow if Shadow was used. It shouldn't
11896 // be possible for this to happen, because...?
11897}
11898
11899/// Find the base specifier for a base class with the given type.
11900static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
11901 QualType DesiredBase,
11902 bool &AnyDependentBases) {
11903 // Check whether the named type is a direct base class.
11904 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
11905 .getUnqualifiedType();
11906 for (auto &Base : Derived->bases()) {
11907 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
11908 if (CanonicalDesiredBase == BaseType)
11909 return &Base;
11910 if (BaseType->isDependentType())
11911 AnyDependentBases = true;
11912 }
11913 return nullptr;
11914}
11915
11916namespace {
11917class UsingValidatorCCC final : public CorrectionCandidateCallback {
11918public:
11919 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
11920 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
11921 : HasTypenameKeyword(HasTypenameKeyword),
11922 IsInstantiation(IsInstantiation), OldNNS(NNS),
11923 RequireMemberOf(RequireMemberOf) {}
11924
11925 bool ValidateCandidate(const TypoCorrection &Candidate) override {
11926 NamedDecl *ND = Candidate.getCorrectionDecl();
11927
11928 // Keywords are not valid here.
11929 if (!ND || isa<NamespaceDecl>(ND))
11930 return false;
11931
11932 // Completely unqualified names are invalid for a 'using' declaration.
11933 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
11934 return false;
11935
11936 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
11937 // reject.
11938
11939 if (RequireMemberOf) {
11940 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11941 if (FoundRecord && FoundRecord->isInjectedClassName()) {
11942 // No-one ever wants a using-declaration to name an injected-class-name
11943 // of a base class, unless they're declaring an inheriting constructor.
11944 ASTContext &Ctx = ND->getASTContext();
11945 if (!Ctx.getLangOpts().CPlusPlus11)
11946 return false;
11947 QualType FoundType = Ctx.getRecordType(FoundRecord);
11948
11949 // Check that the injected-class-name is named as a member of its own
11950 // type; we don't want to suggest 'using Derived::Base;', since that
11951 // means something else.
11952 NestedNameSpecifier *Specifier =
11953 Candidate.WillReplaceSpecifier()
11954 ? Candidate.getCorrectionSpecifier()
11955 : OldNNS;
11956 if (!Specifier->getAsType() ||
11957 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
11958 return false;
11959
11960 // Check that this inheriting constructor declaration actually names a
11961 // direct base class of the current class.
11962 bool AnyDependentBases = false;
11963 if (!findDirectBaseWithType(RequireMemberOf,
11964 Ctx.getRecordType(FoundRecord),
11965 AnyDependentBases) &&
11966 !AnyDependentBases)
11967 return false;
11968 } else {
11969 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
11970 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
11971 return false;
11972
11973 // FIXME: Check that the base class member is accessible?
11974 }
11975 } else {
11976 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
11977 if (FoundRecord && FoundRecord->isInjectedClassName())
11978 return false;
11979 }
11980
11981 if (isa<TypeDecl>(ND))
11982 return HasTypenameKeyword || !IsInstantiation;
11983
11984 return !HasTypenameKeyword;
11985 }
11986
11987 std::unique_ptr<CorrectionCandidateCallback> clone() override {
11988 return std::make_unique<UsingValidatorCCC>(*this);
11989 }
11990
11991private:
11992 bool HasTypenameKeyword;
11993 bool IsInstantiation;
11994 NestedNameSpecifier *OldNNS;
11995 CXXRecordDecl *RequireMemberOf;
11996};
11997} // end anonymous namespace
11998
11999/// Builds a using declaration.
12000///
12001/// \param IsInstantiation - Whether this call arises from an
12002/// instantiation of an unresolved using declaration. We treat
12003/// the lookup differently for these declarations.
12004NamedDecl *Sema::BuildUsingDeclaration(
12005 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
12006 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
12007 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
12008 const ParsedAttributesView &AttrList, bool IsInstantiation) {
12009 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((!SS.isInvalid() && "Invalid CXXScopeSpec.") ? static_cast
<void> (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12009, __PRETTY_FUNCTION__))
;
12010 SourceLocation IdentLoc = NameInfo.getLoc();
12011 assert(IdentLoc.isValid() && "Invalid TargetName location.")((IdentLoc.isValid() && "Invalid TargetName location."
) ? static_cast<void> (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid TargetName location.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12011, __PRETTY_FUNCTION__))
;
12012
12013 // FIXME: We ignore attributes for now.
12014
12015 // For an inheriting constructor declaration, the name of the using
12016 // declaration is the name of a constructor in this class, not in the
12017 // base class.
12018 DeclarationNameInfo UsingName = NameInfo;
12019 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
12020 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
12021 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12022 Context.getCanonicalType(Context.getRecordType(RD))));
12023
12024 // Do the redeclaration lookup in the current scope.
12025 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
12026 ForVisibleRedeclaration);
12027 Previous.setHideTags(false);
12028 if (S) {
12029 LookupName(Previous, S);
12030
12031 // It is really dumb that we have to do this.
12032 LookupResult::Filter F = Previous.makeFilter();
12033 while (F.hasNext()) {
12034 NamedDecl *D = F.next();
12035 if (!isDeclInScope(D, CurContext, S))
12036 F.erase();
12037 // If we found a local extern declaration that's not ordinarily visible,
12038 // and this declaration is being added to a non-block scope, ignore it.
12039 // We're only checking for scope conflicts here, not also for violations
12040 // of the linkage rules.
12041 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
12042 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
12043 F.erase();
12044 }
12045 F.done();
12046 } else {
12047 assert(IsInstantiation && "no scope in non-instantiation")((IsInstantiation && "no scope in non-instantiation")
? static_cast<void> (0) : __assert_fail ("IsInstantiation && \"no scope in non-instantiation\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12047, __PRETTY_FUNCTION__))
;
12048 if (CurContext->isRecord())
12049 LookupQualifiedName(Previous, CurContext);
12050 else {
12051 // No redeclaration check is needed here; in non-member contexts we
12052 // diagnosed all possible conflicts with other using-declarations when
12053 // building the template:
12054 //
12055 // For a dependent non-type using declaration, the only valid case is
12056 // if we instantiate to a single enumerator. We check for conflicts
12057 // between shadow declarations we introduce, and we check in the template
12058 // definition for conflicts between a non-type using declaration and any
12059 // other declaration, which together covers all cases.
12060 //
12061 // A dependent typename using declaration will never successfully
12062 // instantiate, since it will always name a class member, so we reject
12063 // that in the template definition.
12064 }
12065 }
12066
12067 // Check for invalid redeclarations.
12068 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
12069 SS, IdentLoc, Previous))
12070 return nullptr;
12071
12072 // Check for bad qualifiers.
12073 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
12074 IdentLoc))
12075 return nullptr;
12076
12077 DeclContext *LookupContext = computeDeclContext(SS);
12078 NamedDecl *D;
12079 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
12080 if (!LookupContext || EllipsisLoc.isValid()) {
12081 if (HasTypenameKeyword) {
12082 // FIXME: not all declaration name kinds are legal here
12083 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
12084 UsingLoc, TypenameLoc,
12085 QualifierLoc,
12086 IdentLoc, NameInfo.getName(),
12087 EllipsisLoc);
12088 } else {
12089 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
12090 QualifierLoc, NameInfo, EllipsisLoc);
12091 }
12092 D->setAccess(AS);
12093 CurContext->addDecl(D);
12094 return D;
12095 }
12096
12097 auto Build = [&](bool Invalid) {
12098 UsingDecl *UD =
12099 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
12100 UsingName, HasTypenameKeyword);
12101 UD->setAccess(AS);
12102 CurContext->addDecl(UD);
12103 UD->setInvalidDecl(Invalid);
12104 return UD;
12105 };
12106 auto BuildInvalid = [&]{ return Build(true); };
12107 auto BuildValid = [&]{ return Build(false); };
12108
12109 if (RequireCompleteDeclContext(SS, LookupContext))
12110 return BuildInvalid();
12111
12112 // Look up the target name.
12113 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12114
12115 // Unlike most lookups, we don't always want to hide tag
12116 // declarations: tag names are visible through the using declaration
12117 // even if hidden by ordinary names, *except* in a dependent context
12118 // where it's important for the sanity of two-phase lookup.
12119 if (!IsInstantiation)
12120 R.setHideTags(false);
12121
12122 // For the purposes of this lookup, we have a base object type
12123 // equal to that of the current context.
12124 if (CurContext->isRecord()) {
12125 R.setBaseObjectType(
12126 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
12127 }
12128
12129 LookupQualifiedName(R, LookupContext);
12130
12131 // Try to correct typos if possible. If constructor name lookup finds no
12132 // results, that means the named class has no explicit constructors, and we
12133 // suppressed declaring implicit ones (probably because it's dependent or
12134 // invalid).
12135 if (R.empty() &&
12136 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
12137 // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes
12138 // it will believe that glibc provides a ::gets in cases where it does not,
12139 // and will try to pull it into namespace std with a using-declaration.
12140 // Just ignore the using-declaration in that case.
12141 auto *II = NameInfo.getName().getAsIdentifierInfo();
12142 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
12143 CurContext->isStdNamespace() &&
12144 isa<TranslationUnitDecl>(LookupContext) &&
12145 getSourceManager().isInSystemHeader(UsingLoc))
12146 return nullptr;
12147 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
12148 dyn_cast<CXXRecordDecl>(CurContext));
12149 if (TypoCorrection Corrected =
12150 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
12151 CTK_ErrorRecovery)) {
12152 // We reject candidates where DroppedSpecifier == true, hence the
12153 // literal '0' below.
12154 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
12155 << NameInfo.getName() << LookupContext << 0
12156 << SS.getRange());
12157
12158 // If we picked a correction with no attached Decl we can't do anything
12159 // useful with it, bail out.
12160 NamedDecl *ND = Corrected.getCorrectionDecl();
12161 if (!ND)
12162 return BuildInvalid();
12163
12164 // If we corrected to an inheriting constructor, handle it as one.
12165 auto *RD = dyn_cast<CXXRecordDecl>(ND);
12166 if (RD && RD->isInjectedClassName()) {
12167 // The parent of the injected class name is the class itself.
12168 RD = cast<CXXRecordDecl>(RD->getParent());
12169
12170 // Fix up the information we'll use to build the using declaration.
12171 if (Corrected.WillReplaceSpecifier()) {
12172 NestedNameSpecifierLocBuilder Builder;
12173 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
12174 QualifierLoc.getSourceRange());
12175 QualifierLoc = Builder.getWithLocInContext(Context);
12176 }
12177
12178 // In this case, the name we introduce is the name of a derived class
12179 // constructor.
12180 auto *CurClass = cast<CXXRecordDecl>(CurContext);
12181 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
12182 Context.getCanonicalType(Context.getRecordType(CurClass))));
12183 UsingName.setNamedTypeInfo(nullptr);
12184 for (auto *Ctor : LookupConstructors(RD))
12185 R.addDecl(Ctor);
12186 R.resolveKind();
12187 } else {
12188 // FIXME: Pick up all the declarations if we found an overloaded
12189 // function.
12190 UsingName.setName(ND->getDeclName());
12191 R.addDecl(ND);
12192 }
12193 } else {
12194 Diag(IdentLoc, diag::err_no_member)
12195 << NameInfo.getName() << LookupContext << SS.getRange();
12196 return BuildInvalid();
12197 }
12198 }
12199
12200 if (R.isAmbiguous())
12201 return BuildInvalid();
12202
12203 if (HasTypenameKeyword) {
12204 // If we asked for a typename and got a non-type decl, error out.
12205 if (!R.getAsSingle<TypeDecl>()) {
12206 Diag(IdentLoc, diag::err_using_typename_non_type);
12207 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
12208 Diag((*I)->getUnderlyingDecl()->getLocation(),
12209 diag::note_using_decl_target);
12210 return BuildInvalid();
12211 }
12212 } else {
12213 // If we asked for a non-typename and we got a type, error out,
12214 // but only if this is an instantiation of an unresolved using
12215 // decl. Otherwise just silently find the type name.
12216 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
12217 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
12218 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
12219 return BuildInvalid();
12220 }
12221 }
12222
12223 // C++14 [namespace.udecl]p6:
12224 // A using-declaration shall not name a namespace.
12225 if (R.getAsSingle<NamespaceDecl>()) {
12226 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
12227 << SS.getRange();
12228 return BuildInvalid();
12229 }
12230
12231 // C++14 [namespace.udecl]p7:
12232 // A using-declaration shall not name a scoped enumerator.
12233 if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
12234 if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
12235 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
12236 << SS.getRange();
12237 return BuildInvalid();
12238 }
12239 }
12240
12241 UsingDecl *UD = BuildValid();
12242
12243 // Some additional rules apply to inheriting constructors.
12244 if (UsingName.getName().getNameKind() ==
12245 DeclarationName::CXXConstructorName) {
12246 // Suppress access diagnostics; the access check is instead performed at the
12247 // point of use for an inheriting constructor.
12248 R.suppressDiagnostics();
12249 if (CheckInheritingConstructorUsingDecl(UD))
12250 return UD;
12251 }
12252
12253 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
12254 UsingShadowDecl *PrevDecl = nullptr;
12255 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
12256 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
12257 }
12258
12259 return UD;
12260}
12261
12262NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
12263 ArrayRef<NamedDecl *> Expansions) {
12264 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12266, __PRETTY_FUNCTION__))
12265 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12266, __PRETTY_FUNCTION__))
12266 isa<UsingPackDecl>(InstantiatedFrom))((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12266, __PRETTY_FUNCTION__))
;
12267
12268 auto *UPD =
12269 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
12270 UPD->setAccess(InstantiatedFrom->getAccess());
12271 CurContext->addDecl(UPD);
12272 return UPD;
12273}
12274
12275/// Additional checks for a using declaration referring to a constructor name.
12276bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
12277 assert(!UD->hasTypename() && "expecting a constructor name")((!UD->hasTypename() && "expecting a constructor name"
) ? static_cast<void> (0) : __assert_fail ("!UD->hasTypename() && \"expecting a constructor name\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12277, __PRETTY_FUNCTION__))
;
12278
12279 const Type *SourceType = UD->getQualifier()->getAsType();
12280 assert(SourceType &&((SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? static_cast<void> (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12281, __PRETTY_FUNCTION__))
12281 "Using decl naming constructor doesn't have type in scope spec.")((SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? static_cast<void> (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12281, __PRETTY_FUNCTION__))
;
12282 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
12283
12284 // Check whether the named type is a direct base class.
12285 bool AnyDependentBases = false;
12286 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
12287 AnyDependentBases);
12288 if (!Base && !AnyDependentBases) {
12289 Diag(UD->getUsingLoc(),
12290 diag::err_using_decl_constructor_not_in_direct_base)
12291 << UD->getNameInfo().getSourceRange()
12292 << QualType(SourceType, 0) << TargetClass;
12293 UD->setInvalidDecl();
12294 return true;
12295 }
12296
12297 if (Base)
12298 Base->setInheritConstructors();
12299
12300 return false;
12301}
12302
12303/// Checks that the given using declaration is not an invalid
12304/// redeclaration. Note that this is checking only for the using decl
12305/// itself, not for any ill-formedness among the UsingShadowDecls.
12306bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
12307 bool HasTypenameKeyword,
12308 const CXXScopeSpec &SS,
12309 SourceLocation NameLoc,
12310 const LookupResult &Prev) {
12311 NestedNameSpecifier *Qual = SS.getScopeRep();
12312
12313 // C++03 [namespace.udecl]p8:
12314 // C++0x [namespace.udecl]p10:
12315 // A using-declaration is a declaration and can therefore be used
12316 // repeatedly where (and only where) multiple declarations are
12317 // allowed.
12318 //
12319 // That's in non-member contexts.
12320 if (!CurContext->getRedeclContext()->isRecord()) {
12321 // A dependent qualifier outside a class can only ever resolve to an
12322 // enumeration type. Therefore it conflicts with any other non-type
12323 // declaration in the same scope.
12324 // FIXME: How should we check for dependent type-type conflicts at block
12325 // scope?
12326 if (Qual->isDependent() && !HasTypenameKeyword) {
12327 for (auto *D : Prev) {
12328 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
12329 bool OldCouldBeEnumerator =
12330 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
12331 Diag(NameLoc,
12332 OldCouldBeEnumerator ? diag::err_redefinition
12333 : diag::err_redefinition_different_kind)
12334 << Prev.getLookupName();
12335 Diag(D->getLocation(), diag::note_previous_definition);
12336 return true;
12337 }
12338 }
12339 }
12340 return false;
12341 }
12342
12343 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
12344 NamedDecl *D = *I;
12345
12346 bool DTypename;
12347 NestedNameSpecifier *DQual;
12348 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
12349 DTypename = UD->hasTypename();
12350 DQual = UD->getQualifier();
12351 } else if (UnresolvedUsingValueDecl *UD
12352 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
12353 DTypename = false;
12354 DQual = UD->getQualifier();
12355 } else if (UnresolvedUsingTypenameDecl *UD
12356 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
12357 DTypename = true;
12358 DQual = UD->getQualifier();
12359 } else continue;
12360
12361 // using decls differ if one says 'typename' and the other doesn't.
12362 // FIXME: non-dependent using decls?
12363 if (HasTypenameKeyword != DTypename) continue;
12364
12365 // using decls differ if they name different scopes (but note that
12366 // template instantiation can cause this check to trigger when it
12367 // didn't before instantiation).
12368 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
12369 Context.getCanonicalNestedNameSpecifier(DQual))
12370 continue;
12371
12372 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
12373 Diag(D->getLocation(), diag::note_using_decl) << 1;
12374 return true;
12375 }
12376
12377 return false;
12378}
12379
12380
12381/// Checks that the given nested-name qualifier used in a using decl
12382/// in the current context is appropriately related to the current
12383/// scope. If an error is found, diagnoses it and returns true.
12384bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
12385 bool HasTypename,
12386 const CXXScopeSpec &SS,
12387 const DeclarationNameInfo &NameInfo,
12388 SourceLocation NameLoc) {
12389 DeclContext *NamedContext = computeDeclContext(SS);
12390
12391 if (!CurContext->isRecord()) {
12392 // C++03 [namespace.udecl]p3:
12393 // C++0x [namespace.udecl]p8:
12394 // A using-declaration for a class member shall be a member-declaration.
12395
12396 // If we weren't able to compute a valid scope, it might validly be a
12397 // dependent class scope or a dependent enumeration unscoped scope. If
12398 // we have a 'typename' keyword, the scope must resolve to a class type.
12399 if ((HasTypename && !NamedContext) ||
12400 (NamedContext && NamedContext->getRedeclContext()->isRecord())) {
12401 auto *RD = NamedContext
12402 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
12403 : nullptr;
12404 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
12405 RD = nullptr;
12406
12407 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
12408 << SS.getRange();
12409
12410 // If we have a complete, non-dependent source type, try to suggest a
12411 // way to get the same effect.
12412 if (!RD)
12413 return true;
12414
12415 // Find what this using-declaration was referring to.
12416 LookupResult R(*this, NameInfo, LookupOrdinaryName);
12417 R.setHideTags(false);
12418 R.suppressDiagnostics();
12419 LookupQualifiedName(R, RD);
12420
12421 if (R.getAsSingle<TypeDecl>()) {
12422 if (getLangOpts().CPlusPlus11) {
12423 // Convert 'using X::Y;' to 'using Y = X::Y;'.
12424 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
12425 << 0 // alias declaration
12426 << FixItHint::CreateInsertion(SS.getBeginLoc(),
12427 NameInfo.getName().getAsString() +
12428 " = ");
12429 } else {
12430 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
12431 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
12432 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
12433 << 1 // typedef declaration
12434 << FixItHint::CreateReplacement(UsingLoc, "typedef")
12435 << FixItHint::CreateInsertion(
12436 InsertLoc, " " + NameInfo.getName().getAsString());
12437 }
12438 } else if (R.getAsSingle<VarDecl>()) {
12439 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12440 // repeating the type of the static data member here.
12441 FixItHint FixIt;
12442 if (getLangOpts().CPlusPlus11) {
12443 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12444 FixIt = FixItHint::CreateReplacement(
12445 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
12446 }
12447
12448 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12449 << 2 // reference declaration
12450 << FixIt;
12451 } else if (R.getAsSingle<EnumConstantDecl>()) {
12452 // Don't provide a fixit outside C++11 mode; we don't want to suggest
12453 // repeating the type of the enumeration here, and we can't do so if
12454 // the type is anonymous.
12455 FixItHint FixIt;
12456 if (getLangOpts().CPlusPlus11) {
12457 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
12458 FixIt = FixItHint::CreateReplacement(
12459 UsingLoc,
12460 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
12461 }
12462
12463 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
12464 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
12465 << FixIt;
12466 }
12467 return true;
12468 }
12469
12470 // Otherwise, this might be valid.
12471 return false;
12472 }
12473
12474 // The current scope is a record.
12475
12476 // If the named context is dependent, we can't decide much.
12477 if (!NamedContext) {
12478 // FIXME: in C++0x, we can diagnose if we can prove that the
12479 // nested-name-specifier does not refer to a base class, which is
12480 // still possible in some cases.
12481
12482 // Otherwise we have to conservatively report that things might be
12483 // okay.
12484 return false;
12485 }
12486
12487 if (!NamedContext->isRecord()) {
12488 // Ideally this would point at the last name in the specifier,
12489 // but we don't have that level of source info.
12490 Diag(SS.getRange().getBegin(),
12491 diag::err_using_decl_nested_name_specifier_is_not_class)
12492 << SS.getScopeRep() << SS.getRange();
12493 return true;
12494 }
12495
12496 if (!NamedContext->isDependentContext() &&
12497 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
12498 return true;
12499
12500 if (getLangOpts().CPlusPlus11) {
12501 // C++11 [namespace.udecl]p3:
12502 // In a using-declaration used as a member-declaration, the
12503 // nested-name-specifier shall name a base class of the class
12504 // being defined.
12505
12506 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
12507 cast<CXXRecordDecl>(NamedContext))) {
12508 if (CurContext == NamedContext) {
12509 Diag(NameLoc,
12510 diag::err_using_decl_nested_name_specifier_is_current_class)
12511 << SS.getRange();
12512 return true;
12513 }
12514
12515 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
12516 Diag(SS.getRange().getBegin(),
12517 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12518 << SS.getScopeRep()
12519 << cast<CXXRecordDecl>(CurContext)
12520 << SS.getRange();
12521 }
12522 return true;
12523 }
12524
12525 return false;
12526 }
12527
12528 // C++03 [namespace.udecl]p4:
12529 // A using-declaration used as a member-declaration shall refer
12530 // to a member of a base class of the class being defined [etc.].
12531
12532 // Salient point: SS doesn't have to name a base class as long as
12533 // lookup only finds members from base classes. Therefore we can
12534 // diagnose here only if we can prove that that can't happen,
12535 // i.e. if the class hierarchies provably don't intersect.
12536
12537 // TODO: it would be nice if "definitely valid" results were cached
12538 // in the UsingDecl and UsingShadowDecl so that these checks didn't
12539 // need to be repeated.
12540
12541 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
12542 auto Collect = [&Bases](const CXXRecordDecl *Base) {
12543 Bases.insert(Base);
12544 return true;
12545 };
12546
12547 // Collect all bases. Return false if we find a dependent base.
12548 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
12549 return false;
12550
12551 // Returns true if the base is dependent or is one of the accumulated base
12552 // classes.
12553 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
12554 return !Bases.count(Base);
12555 };
12556
12557 // Return false if the class has a dependent base or if it or one
12558 // of its bases is present in the base set of the current context.
12559 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
12560 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
12561 return false;
12562
12563 Diag(SS.getRange().getBegin(),
12564 diag::err_using_decl_nested_name_specifier_is_not_base_class)
12565 << SS.getScopeRep()
12566 << cast<CXXRecordDecl>(CurContext)
12567 << SS.getRange();
12568
12569 return true;
12570}
12571
12572Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
12573 MultiTemplateParamsArg TemplateParamLists,
12574 SourceLocation UsingLoc, UnqualifiedId &Name,
12575 const ParsedAttributesView &AttrList,
12576 TypeResult Type, Decl *DeclFromDeclSpec) {
12577 // Skip up to the relevant declaration scope.
12578 while (S->isTemplateParamScope())
12579 S = S->getParent();
12580 assert((S->getFlags() & Scope::DeclScope) &&(((S->getFlags() & Scope::DeclScope) && "got alias-declaration outside of declaration scope"
) ? static_cast<void> (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12581, __PRETTY_FUNCTION__))
12581 "got alias-declaration outside of declaration scope")(((S->getFlags() & Scope::DeclScope) && "got alias-declaration outside of declaration scope"
) ? static_cast<void> (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12581, __PRETTY_FUNCTION__))
;
12582
12583 if (Type.isInvalid())
12584 return nullptr;
12585
12586 bool Invalid = false;
12587 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
12588 TypeSourceInfo *TInfo = nullptr;
12589 GetTypeFromParser(Type.get(), &TInfo);
12590
12591 if (DiagnoseClassNameShadow(CurContext, NameInfo))
12592 return nullptr;
12593
12594 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
12595 UPPC_DeclarationType)) {
12596 Invalid = true;
12597 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
12598 TInfo->getTypeLoc().getBeginLoc());
12599 }
12600
12601 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
12602 TemplateParamLists.size()
12603 ? forRedeclarationInCurContext()
12604 : ForVisibleRedeclaration);
12605 LookupName(Previous, S);
12606
12607 // Warn about shadowing the name of a template parameter.
12608 if (Previous.isSingleResult() &&
12609 Previous.getFoundDecl()->isTemplateParameter()) {
12610 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
12611 Previous.clear();
12612 }
12613
12614 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&((Name.Kind == UnqualifiedIdKind::IK_Identifier && "name in alias declaration must be an identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12615, __PRETTY_FUNCTION__))
12615 "name in alias declaration must be an identifier")((Name.Kind == UnqualifiedIdKind::IK_Identifier && "name in alias declaration must be an identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12615, __PRETTY_FUNCTION__))
;
12616 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
12617 Name.StartLocation,
12618 Name.Identifier, TInfo);
12619
12620 NewTD->setAccess(AS);
12621
12622 if (Invalid)
12623 NewTD->setInvalidDecl();
12624
12625 ProcessDeclAttributeList(S, NewTD, AttrList);
12626 AddPragmaAttributes(S, NewTD);
12627
12628 CheckTypedefForVariablyModifiedType(S, NewTD);
12629 Invalid |= NewTD->isInvalidDecl();
12630
12631 bool Redeclaration = false;
12632
12633 NamedDecl *NewND;
12634 if (TemplateParamLists.size()) {
12635 TypeAliasTemplateDecl *OldDecl = nullptr;
12636 TemplateParameterList *OldTemplateParams = nullptr;
12637
12638 if (TemplateParamLists.size() != 1) {
12639 Diag(UsingLoc, diag::err_alias_template_extra_headers)
12640 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
12641 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
12642 }
12643 TemplateParameterList *TemplateParams = TemplateParamLists[0];
12644
12645 // Check that we can declare a template here.
12646 if (CheckTemplateDeclScope(S, TemplateParams))
12647 return nullptr;
12648
12649 // Only consider previous declarations in the same scope.
12650 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
12651 /*ExplicitInstantiationOrSpecialization*/false);
12652 if (!Previous.empty()) {
12653 Redeclaration = true;
12654
12655 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
12656 if (!OldDecl && !Invalid) {
12657 Diag(UsingLoc, diag::err_redefinition_different_kind)
12658 << Name.Identifier;
12659
12660 NamedDecl *OldD = Previous.getRepresentativeDecl();
12661 if (OldD->getLocation().isValid())
12662 Diag(OldD->getLocation(), diag::note_previous_definition);
12663
12664 Invalid = true;
12665 }
12666
12667 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
12668 if (TemplateParameterListsAreEqual(TemplateParams,
12669 OldDecl->getTemplateParameters(),
12670 /*Complain=*/true,
12671 TPL_TemplateMatch))
12672 OldTemplateParams =
12673 OldDecl->getMostRecentDecl()->getTemplateParameters();
12674 else
12675 Invalid = true;
12676
12677 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
12678 if (!Invalid &&
12679 !Context.hasSameType(OldTD->getUnderlyingType(),
12680 NewTD->getUnderlyingType())) {
12681 // FIXME: The C++0x standard does not clearly say this is ill-formed,
12682 // but we can't reasonably accept it.
12683 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
12684 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
12685 if (OldTD->getLocation().isValid())
12686 Diag(OldTD->getLocation(), diag::note_previous_definition);
12687 Invalid = true;
12688 }
12689 }
12690 }
12691
12692 // Merge any previous default template arguments into our parameters,
12693 // and check the parameter list.
12694 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
12695 TPC_TypeAliasTemplate))
12696 return nullptr;
12697
12698 TypeAliasTemplateDecl *NewDecl =
12699 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
12700 Name.Identifier, TemplateParams,
12701 NewTD);
12702 NewTD->setDescribedAliasTemplate(NewDecl);
12703
12704 NewDecl->setAccess(AS);
12705
12706 if (Invalid)
12707 NewDecl->setInvalidDecl();
12708 else if (OldDecl) {
12709 NewDecl->setPreviousDecl(OldDecl);
12710 CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
12711 }
12712
12713 NewND = NewDecl;
12714 } else {
12715 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
12716 setTagNameForLinkagePurposes(TD, NewTD);
12717 handleTagNumbering(TD, S);
12718 }
12719 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
12720 NewND = NewTD;
12721 }
12722
12723 PushOnScopeChains(NewND, S);
12724 ActOnDocumentableDecl(NewND);
12725 return NewND;
12726}
12727
12728Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
12729 SourceLocation AliasLoc,
12730 IdentifierInfo *Alias, CXXScopeSpec &SS,
12731 SourceLocation IdentLoc,
12732 IdentifierInfo *Ident) {
12733
12734 // Lookup the namespace name.
12735 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
12736 LookupParsedName(R, S, &SS);
12737
12738 if (R.isAmbiguous())
12739 return nullptr;
12740
12741 if (R.empty()) {
12742 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
12743 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
12744 return nullptr;
12745 }
12746 }
12747 assert(!R.isAmbiguous() && !R.empty())((!R.isAmbiguous() && !R.empty()) ? static_cast<void
> (0) : __assert_fail ("!R.isAmbiguous() && !R.empty()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 12747, __PRETTY_FUNCTION__))
;
12748 NamedDecl *ND = R.getRepresentativeDecl();
12749
12750 // Check if we have a previous declaration with the same name.
12751 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
12752 ForVisibleRedeclaration);
12753 LookupName(PrevR, S);
12754
12755 // Check we're not shadowing a template parameter.
12756 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
12757 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
12758 PrevR.clear();
12759 }
12760
12761 // Filter out any other lookup result from an enclosing scope.
12762 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
12763 /*AllowInlineNamespace*/false);
12764
12765 // Find the previous declaration and check that we can redeclare it.
12766 NamespaceAliasDecl *Prev = nullptr;
12767 if (PrevR.isSingleResult()) {
12768 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
12769 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
12770 // We already have an alias with the same name that points to the same
12771 // namespace; check that it matches.
12772 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
12773 Prev = AD;
12774 } else if (isVisible(PrevDecl)) {
12775 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
12776 << Alias;
12777 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
12778 << AD->getNamespace();
12779 return nullptr;
12780 }
12781 } else if (isVisible(PrevDecl)) {
12782 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
12783 ? diag::err_redefinition
12784 : diag::err_redefinition_different_kind;
12785 Diag(AliasLoc, DiagID) << Alias;
12786 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12787 return nullptr;
12788 }
12789 }
12790
12791 // The use of a nested name specifier may trigger deprecation warnings.
12792 DiagnoseUseOfDecl(ND, IdentLoc);
12793
12794 NamespaceAliasDecl *AliasDecl =
12795 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
12796 Alias, SS.getWithLocInContext(Context),
12797 IdentLoc, ND);
12798 if (Prev)
12799 AliasDecl->setPreviousDecl(Prev);
12800
12801 PushOnScopeChains(AliasDecl, S);
12802 return AliasDecl;
12803}
12804
12805namespace {
12806struct SpecialMemberExceptionSpecInfo
12807 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
12808 SourceLocation Loc;
12809 Sema::ImplicitExceptionSpecification ExceptSpec;
12810
12811 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
12812 Sema::CXXSpecialMember CSM,
12813 Sema::InheritedConstructorInfo *ICI,
12814 SourceLocation Loc)
12815 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
12816
12817 bool visitBase(CXXBaseSpecifier *Base);
12818 bool visitField(FieldDecl *FD);
12819
12820 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
12821 unsigned Quals);
12822
12823 void visitSubobjectCall(Subobject Subobj,
12824 Sema::SpecialMemberOverloadResult SMOR);
12825};
12826}
12827
12828bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
12829 auto *RT = Base->getType()->getAs<RecordType>();
12830 if (!RT)
12831 return false;
12832
12833 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
12834 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
12835 if (auto *BaseCtor = SMOR.getMethod()) {
12836 visitSubobjectCall(Base, BaseCtor);
12837 return false;
12838 }
12839
12840 visitClassSubobject(BaseClass, Base, 0);
12841 return false;
12842}
12843
12844bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
12845 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
12846 Expr *E = FD->getInClassInitializer();
12847 if (!E)
12848 // FIXME: It's a little wasteful to build and throw away a
12849 // CXXDefaultInitExpr here.
12850 // FIXME: We should have a single context note pointing at Loc, and
12851 // this location should be MD->getLocation() instead, since that's
12852 // the location where we actually use the default init expression.
12853 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
12854 if (E)
12855 ExceptSpec.CalledExpr(E);
12856 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
12857 ->getAs<RecordType>()) {
12858 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
12859 FD->getType().getCVRQualifiers());
12860 }
12861 return false;
12862}
12863
12864void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
12865 Subobject Subobj,
12866 unsigned Quals) {
12867 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
12868 bool IsMutable = Field && Field->isMutable();
12869 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
12870}
12871
12872void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
12873 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
12874 // Note, if lookup fails, it doesn't matter what exception specification we
12875 // choose because the special member will be deleted.
12876 if (CXXMethodDecl *MD = SMOR.getMethod())
12877 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
12878}
12879
12880bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
12881 llvm::APSInt Result;
12882 ExprResult Converted = CheckConvertedConstantExpression(
12883 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
12884 ExplicitSpec.setExpr(Converted.get());
12885 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
12886 ExplicitSpec.setKind(Result.getBoolValue()
12887 ? ExplicitSpecKind::ResolvedTrue
12888 : ExplicitSpecKind::ResolvedFalse);
12889 return true;
12890 }
12891 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
12892 return false;
12893}
12894
12895ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
12896 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
12897 if (!ExplicitExpr->isTypeDependent())
12898 tryResolveExplicitSpecifier(ES);
12899 return ES;
12900}
12901
12902static Sema::ImplicitExceptionSpecification
12903ComputeDefaultedSpecialMemberExceptionSpec(
12904 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
12905 Sema::InheritedConstructorInfo *ICI) {
12906 ComputingExceptionSpec CES(S, MD, Loc);
12907
12908 CXXRecordDecl *ClassDecl = MD->getParent();
12909
12910 // C++ [except.spec]p14:
12911 // An implicitly declared special member function (Clause 12) shall have an
12912 // exception-specification. [...]
12913 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
12914 if (ClassDecl->isInvalidDecl())
12915 return Info.ExceptSpec;
12916
12917 // FIXME: If this diagnostic fires, we're probably missing a check for
12918 // attempting to resolve an exception specification before it's known
12919 // at a higher level.
12920 if (S.RequireCompleteType(MD->getLocation(),
12921 S.Context.getRecordType(ClassDecl),
12922 diag::err_exception_spec_incomplete_type))
12923 return Info.ExceptSpec;
12924
12925 // C++1z [except.spec]p7:
12926 // [Look for exceptions thrown by] a constructor selected [...] to
12927 // initialize a potentially constructed subobject,
12928 // C++1z [except.spec]p8:
12929 // The exception specification for an implicitly-declared destructor, or a
12930 // destructor without a noexcept-specifier, is potentially-throwing if and
12931 // only if any of the destructors for any of its potentially constructed
12932 // subojects is potentially throwing.
12933 // FIXME: We respect the first rule but ignore the "potentially constructed"
12934 // in the second rule to resolve a core issue (no number yet) that would have
12935 // us reject:
12936 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
12937 // struct B : A {};
12938 // struct C : B { void f(); };
12939 // ... due to giving B::~B() a non-throwing exception specification.
12940 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
12941 : Info.VisitAllBases);
12942
12943 return Info.ExceptSpec;
12944}
12945
12946namespace {
12947/// RAII object to register a special member as being currently declared.
12948struct DeclaringSpecialMember {
12949 Sema &S;
12950 Sema::SpecialMemberDecl D;
12951 Sema::ContextRAII SavedContext;
12952 bool WasAlreadyBeingDeclared;
12953
12954 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
12955 : S(S), D(RD, CSM), SavedContext(S, RD) {
12956 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
12957 if (WasAlreadyBeingDeclared)
12958 // This almost never happens, but if it does, ensure that our cache
12959 // doesn't contain a stale result.
12960 S.SpecialMemberCache.clear();
12961 else {
12962 // Register a note to be produced if we encounter an error while
12963 // declaring the special member.
12964 Sema::CodeSynthesisContext Ctx;
12965 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
12966 // FIXME: We don't have a location to use here. Using the class's
12967 // location maintains the fiction that we declare all special members
12968 // with the class, but (1) it's not clear that lying about that helps our
12969 // users understand what's going on, and (2) there may be outer contexts
12970 // on the stack (some of which are relevant) and printing them exposes
12971 // our lies.
12972 Ctx.PointOfInstantiation = RD->getLocation();
12973 Ctx.Entity = RD;
12974 Ctx.SpecialMember = CSM;
12975 S.pushCodeSynthesisContext(Ctx);
12976 }
12977 }
12978 ~DeclaringSpecialMember() {
12979 if (!WasAlreadyBeingDeclared) {
12980 S.SpecialMembersBeingDeclared.erase(D);
12981 S.popCodeSynthesisContext();
12982 }
12983 }
12984
12985 /// Are we already trying to declare this special member?
12986 bool isAlreadyBeingDeclared() const {
12987 return WasAlreadyBeingDeclared;
12988 }
12989};
12990}
12991
12992void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
12993 // Look up any existing declarations, but don't trigger declaration of all
12994 // implicit special members with this name.
12995 DeclarationName Name = FD->getDeclName();
12996 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
12997 ForExternalRedeclaration);
12998 for (auto *D : FD->getParent()->lookup(Name))
12999 if (auto *Acceptable = R.getAcceptableDecl(D))
13000 R.addDecl(Acceptable);
13001 R.resolveKind();
13002 R.suppressDiagnostics();
13003
13004 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
13005}
13006
13007void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
13008 QualType ResultTy,
13009 ArrayRef<QualType> Args) {
13010 // Build an exception specification pointing back at this constructor.
13011 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
13012
13013 LangAS AS = getDefaultCXXMethodAddrSpace();
13014 if (AS != LangAS::Default) {
13015 EPI.TypeQuals.addAddressSpace(AS);
13016 }
13017
13018 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
13019 SpecialMem->setType(QT);
13020}
13021
13022CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
13023 CXXRecordDecl *ClassDecl) {
13024 // C++ [class.ctor]p5:
13025 // A default constructor for a class X is a constructor of class X
13026 // that can be called without an argument. If there is no
13027 // user-declared constructor for class X, a default constructor is
13028 // implicitly declared. An implicitly-declared default constructor
13029 // is an inline public member of its class.
13030 assert(ClassDecl->needsImplicitDefaultConstructor() &&((ClassDecl->needsImplicitDefaultConstructor() && "Should not build implicit default constructor!"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13031, __PRETTY_FUNCTION__))
13031 "Should not build implicit default constructor!")((ClassDecl->needsImplicitDefaultConstructor() && "Should not build implicit default constructor!"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13031, __PRETTY_FUNCTION__))
;
13032
13033 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
13034 if (DSM.isAlreadyBeingDeclared())
13035 return nullptr;
13036
13037 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13038 CXXDefaultConstructor,
13039 false);
13040
13041 // Create the actual constructor declaration.
13042 CanQualType ClassType
13043 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13044 SourceLocation ClassLoc = ClassDecl->getLocation();
13045 DeclarationName Name
13046 = Context.DeclarationNames.getCXXConstructorName(ClassType);
13047 DeclarationNameInfo NameInfo(Name, ClassLoc);
13048 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
13049 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
13050 /*TInfo=*/nullptr, ExplicitSpecifier(),
13051 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
13052 Constexpr ? ConstexprSpecKind::Constexpr
13053 : ConstexprSpecKind::Unspecified);
13054 DefaultCon->setAccess(AS_public);
13055 DefaultCon->setDefaulted();
13056
13057 if (getLangOpts().CUDA) {
13058 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
13059 DefaultCon,
13060 /* ConstRHS */ false,
13061 /* Diagnose */ false);
13062 }
13063
13064 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
13065
13066 // We don't need to use SpecialMemberIsTrivial here; triviality for default
13067 // constructors is easy to compute.
13068 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
13069
13070 // Note that we have declared this constructor.
13071 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
13072
13073 Scope *S = getScopeForContext(ClassDecl);
13074 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
13075
13076 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
13077 SetDeclDeleted(DefaultCon, ClassLoc);
13078
13079 if (S)
13080 PushOnScopeChains(DefaultCon, S, false);
13081 ClassDecl->addDecl(DefaultCon);
13082
13083 return DefaultCon;
13084}
13085
13086void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
13087 CXXConstructorDecl *Constructor) {
13088 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13091, __PRETTY_FUNCTION__))
13089 !Constructor->doesThisDeclarationHaveABody() &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13091, __PRETTY_FUNCTION__))
13090 !Constructor->isDeleted()) &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13091, __PRETTY_FUNCTION__))
13091 "DefineImplicitDefaultConstructor - call it for implicit default ctor")(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13091, __PRETTY_FUNCTION__))
;
13092 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13093 return;
13094
13095 CXXRecordDecl *ClassDecl = Constructor->getParent();
13096 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")((ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitDefaultConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13096, __PRETTY_FUNCTION__))
;
13097
13098 SynthesizedFunctionScope Scope(*this, Constructor);
13099
13100 // The exception specification is needed because we are defining the
13101 // function.
13102 ResolveExceptionSpec(CurrentLocation,
13103 Constructor->getType()->castAs<FunctionProtoType>());
13104 MarkVTableUsed(CurrentLocation, ClassDecl);
13105
13106 // Add a context note for diagnostics produced after this point.
13107 Scope.addContextNote(CurrentLocation);
13108
13109 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
13110 Constructor->setInvalidDecl();
13111 return;
13112 }
13113
13114 SourceLocation Loc = Constructor->getEndLoc().isValid()
13115 ? Constructor->getEndLoc()
13116 : Constructor->getLocation();
13117 Constructor->setBody(new (Context) CompoundStmt(Loc));
13118 Constructor->markUsed(Context);
13119
13120 if (ASTMutationListener *L = getASTMutationListener()) {
13121 L->CompletedImplicitDefinition(Constructor);
13122 }
13123
13124 DiagnoseUninitializedFields(*this, Constructor);
13125}
13126
13127void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
13128 // Perform any delayed checks on exception specifications.
13129 CheckDelayedMemberExceptionSpecs();
13130}
13131
13132/// Find or create the fake constructor we synthesize to model constructing an
13133/// object of a derived class via a constructor of a base class.
13134CXXConstructorDecl *
13135Sema::findInheritingConstructor(SourceLocation Loc,
13136 CXXConstructorDecl *BaseCtor,
13137 ConstructorUsingShadowDecl *Shadow) {
13138 CXXRecordDecl *Derived = Shadow->getParent();
13139 SourceLocation UsingLoc = Shadow->getLocation();
13140
13141 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
13142 // For now we use the name of the base class constructor as a member of the
13143 // derived class to indicate a (fake) inherited constructor name.
13144 DeclarationName Name = BaseCtor->getDeclName();
13145
13146 // Check to see if we already have a fake constructor for this inherited
13147 // constructor call.
13148 for (NamedDecl *Ctor : Derived->lookup(Name))
13149 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
13150 ->getInheritedConstructor()
13151 .getConstructor(),
13152 BaseCtor))
13153 return cast<CXXConstructorDecl>(Ctor);
13154
13155 DeclarationNameInfo NameInfo(Name, UsingLoc);
13156 TypeSourceInfo *TInfo =
13157 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
13158 FunctionProtoTypeLoc ProtoLoc =
13159 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
13160
13161 // Check the inherited constructor is valid and find the list of base classes
13162 // from which it was inherited.
13163 InheritedConstructorInfo ICI(*this, Loc, Shadow);
13164
13165 bool Constexpr =
13166 BaseCtor->isConstexpr() &&
13167 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
13168 false, BaseCtor, &ICI);
13169
13170 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
13171 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
13172 BaseCtor->getExplicitSpecifier(), /*isInline=*/true,
13173 /*isImplicitlyDeclared=*/true,
13174 Constexpr ? BaseCtor->getConstexprKind() : ConstexprSpecKind::Unspecified,
13175 InheritedConstructor(Shadow, BaseCtor),
13176 BaseCtor->getTrailingRequiresClause());
13177 if (Shadow->isInvalidDecl())
13178 DerivedCtor->setInvalidDecl();
13179
13180 // Build an unevaluated exception specification for this fake constructor.
13181 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
13182 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
13183 EPI.ExceptionSpec.Type = EST_Unevaluated;
13184 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
13185 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
13186 FPT->getParamTypes(), EPI));
13187
13188 // Build the parameter declarations.
13189 SmallVector<ParmVarDecl *, 16> ParamDecls;
13190 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
13191 TypeSourceInfo *TInfo =
13192 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
13193 ParmVarDecl *PD = ParmVarDecl::Create(
13194 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
13195 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
13196 PD->setScopeInfo(0, I);
13197 PD->setImplicit();
13198 // Ensure attributes are propagated onto parameters (this matters for
13199 // format, pass_object_size, ...).
13200 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
13201 ParamDecls.push_back(PD);
13202 ProtoLoc.setParam(I, PD);
13203 }
13204
13205 // Set up the new constructor.
13206 assert(!BaseCtor->isDeleted() && "should not use deleted constructor")((!BaseCtor->isDeleted() && "should not use deleted constructor"
) ? static_cast<void> (0) : __assert_fail ("!BaseCtor->isDeleted() && \"should not use deleted constructor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13206, __PRETTY_FUNCTION__))
;
13207 DerivedCtor->setAccess(BaseCtor->getAccess());
13208 DerivedCtor->setParams(ParamDecls);
13209 Derived->addDecl(DerivedCtor);
13210
13211 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
13212 SetDeclDeleted(DerivedCtor, UsingLoc);
13213
13214 return DerivedCtor;
13215}
13216
13217void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
13218 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
13219 Ctor->getInheritedConstructor().getShadowDecl());
13220 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
13221 /*Diagnose*/true);
13222}
13223
13224void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
13225 CXXConstructorDecl *Constructor) {
13226 CXXRecordDecl *ClassDecl = Constructor->getParent();
13227 assert(Constructor->getInheritedConstructor() &&((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13229, __PRETTY_FUNCTION__))
13228 !Constructor->doesThisDeclarationHaveABody() &&((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13229, __PRETTY_FUNCTION__))
13229 !Constructor->isDeleted())((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13229, __PRETTY_FUNCTION__))
;
13230 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
13231 return;
13232
13233 // Initializations are performed "as if by a defaulted default constructor",
13234 // so enter the appropriate scope.
13235 SynthesizedFunctionScope Scope(*this, Constructor);
13236
13237 // The exception specification is needed because we are defining the
13238 // function.
13239 ResolveExceptionSpec(CurrentLocation,
13240 Constructor->getType()->castAs<FunctionProtoType>());
13241 MarkVTableUsed(CurrentLocation, ClassDecl);
13242
13243 // Add a context note for diagnostics produced after this point.
13244 Scope.addContextNote(CurrentLocation);
13245
13246 ConstructorUsingShadowDecl *Shadow =
13247 Constructor->getInheritedConstructor().getShadowDecl();
13248 CXXConstructorDecl *InheritedCtor =
13249 Constructor->getInheritedConstructor().getConstructor();
13250
13251 // [class.inhctor.init]p1:
13252 // initialization proceeds as if a defaulted default constructor is used to
13253 // initialize the D object and each base class subobject from which the
13254 // constructor was inherited
13255
13256 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
13257 CXXRecordDecl *RD = Shadow->getParent();
13258 SourceLocation InitLoc = Shadow->getLocation();
13259
13260 // Build explicit initializers for all base classes from which the
13261 // constructor was inherited.
13262 SmallVector<CXXCtorInitializer*, 8> Inits;
13263 for (bool VBase : {false, true}) {
13264 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
13265 if (B.isVirtual() != VBase)
13266 continue;
13267
13268 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
13269 if (!BaseRD)
13270 continue;
13271
13272 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
13273 if (!BaseCtor.first)
13274 continue;
13275
13276 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
13277 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
13278 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
13279
13280 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
13281 Inits.push_back(new (Context) CXXCtorInitializer(
13282 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
13283 SourceLocation()));
13284 }
13285 }
13286
13287 // We now proceed as if for a defaulted default constructor, with the relevant
13288 // initializers replaced.
13289
13290 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
13291 Constructor->setInvalidDecl();
13292 return;
13293 }
13294
13295 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
13296 Constructor->markUsed(Context);
13297
13298 if (ASTMutationListener *L = getASTMutationListener()) {
13299 L->CompletedImplicitDefinition(Constructor);
13300 }
13301
13302 DiagnoseUninitializedFields(*this, Constructor);
13303}
13304
13305CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
13306 // C++ [class.dtor]p2:
13307 // If a class has no user-declared destructor, a destructor is
13308 // declared implicitly. An implicitly-declared destructor is an
13309 // inline public member of its class.
13310 assert(ClassDecl->needsImplicitDestructor())((ClassDecl->needsImplicitDestructor()) ? static_cast<void
> (0) : __assert_fail ("ClassDecl->needsImplicitDestructor()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13310, __PRETTY_FUNCTION__))
;
13311
13312 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
13313 if (DSM.isAlreadyBeingDeclared())
13314 return nullptr;
13315
13316 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13317 CXXDestructor,
13318 false);
13319
13320 // Create the actual destructor declaration.
13321 CanQualType ClassType
13322 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
13323 SourceLocation ClassLoc = ClassDecl->getLocation();
13324 DeclarationName Name
13325 = Context.DeclarationNames.getCXXDestructorName(ClassType);
13326 DeclarationNameInfo NameInfo(Name, ClassLoc);
13327 CXXDestructorDecl *Destructor =
13328 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
13329 QualType(), nullptr, /*isInline=*/true,
13330 /*isImplicitlyDeclared=*/true,
13331 Constexpr ? ConstexprSpecKind::Constexpr
13332 : ConstexprSpecKind::Unspecified);
13333 Destructor->setAccess(AS_public);
13334 Destructor->setDefaulted();
13335
13336 if (getLangOpts().CUDA) {
13337 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
13338 Destructor,
13339 /* ConstRHS */ false,
13340 /* Diagnose */ false);
13341 }
13342
13343 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
13344
13345 // We don't need to use SpecialMemberIsTrivial here; triviality for
13346 // destructors is easy to compute.
13347 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
13348 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
13349 ClassDecl->hasTrivialDestructorForCall());
13350
13351 // Note that we have declared this destructor.
13352 ++getASTContext().NumImplicitDestructorsDeclared;
13353
13354 Scope *S = getScopeForContext(ClassDecl);
13355 CheckImplicitSpecialMemberDeclaration(S, Destructor);
13356
13357 // We can't check whether an implicit destructor is deleted before we complete
13358 // the definition of the class, because its validity depends on the alignment
13359 // of the class. We'll check this from ActOnFields once the class is complete.
13360 if (ClassDecl->isCompleteDefinition() &&
13361 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
13362 SetDeclDeleted(Destructor, ClassLoc);
13363
13364 // Introduce this destructor into its scope.
13365 if (S)
13366 PushOnScopeChains(Destructor, S, false);
13367 ClassDecl->addDecl(Destructor);
13368
13369 return Destructor;
13370}
13371
13372void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
13373 CXXDestructorDecl *Destructor) {
13374 assert((Destructor->isDefaulted() &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13377, __PRETTY_FUNCTION__))
13375 !Destructor->doesThisDeclarationHaveABody() &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13377, __PRETTY_FUNCTION__))
13376 !Destructor->isDeleted()) &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13377, __PRETTY_FUNCTION__))
13377 "DefineImplicitDestructor - call it for implicit default dtor")(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13377, __PRETTY_FUNCTION__))
;
13378 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
13379 return;
13380
13381 CXXRecordDecl *ClassDecl = Destructor->getParent();
13382 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor")((ClassDecl && "DefineImplicitDestructor - invalid destructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitDestructor - invalid destructor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13382, __PRETTY_FUNCTION__))
;
13383
13384 SynthesizedFunctionScope Scope(*this, Destructor);
13385
13386 // The exception specification is needed because we are defining the
13387 // function.
13388 ResolveExceptionSpec(CurrentLocation,
13389 Destructor->getType()->castAs<FunctionProtoType>());
13390 MarkVTableUsed(CurrentLocation, ClassDecl);
13391
13392 // Add a context note for diagnostics produced after this point.
13393 Scope.addContextNote(CurrentLocation);
13394
13395 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13396 Destructor->getParent());
13397
13398 if (CheckDestructor(Destructor)) {
13399 Destructor->setInvalidDecl();
13400 return;
13401 }
13402
13403 SourceLocation Loc = Destructor->getEndLoc().isValid()
13404 ? Destructor->getEndLoc()
13405 : Destructor->getLocation();
13406 Destructor->setBody(new (Context) CompoundStmt(Loc));
13407 Destructor->markUsed(Context);
13408
13409 if (ASTMutationListener *L = getASTMutationListener()) {
13410 L->CompletedImplicitDefinition(Destructor);
13411 }
13412}
13413
13414void Sema::CheckCompleteDestructorVariant(SourceLocation CurrentLocation,
13415 CXXDestructorDecl *Destructor) {
13416 if (Destructor->isInvalidDecl())
13417 return;
13418
13419 CXXRecordDecl *ClassDecl = Destructor->getParent();
13420 assert(Context.getTargetInfo().getCXXABI().isMicrosoft() &&((Context.getTargetInfo().getCXXABI().isMicrosoft() &&
"implicit complete dtors unneeded outside MS ABI") ? static_cast
<void> (0) : __assert_fail ("Context.getTargetInfo().getCXXABI().isMicrosoft() && \"implicit complete dtors unneeded outside MS ABI\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13421, __PRETTY_FUNCTION__))
13421 "implicit complete dtors unneeded outside MS ABI")((Context.getTargetInfo().getCXXABI().isMicrosoft() &&
"implicit complete dtors unneeded outside MS ABI") ? static_cast
<void> (0) : __assert_fail ("Context.getTargetInfo().getCXXABI().isMicrosoft() && \"implicit complete dtors unneeded outside MS ABI\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13421, __PRETTY_FUNCTION__))
;
13422 assert(ClassDecl->getNumVBases() > 0 &&((ClassDecl->getNumVBases() > 0 && "complete dtor only exists for classes with vbases"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->getNumVBases() > 0 && \"complete dtor only exists for classes with vbases\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13423, __PRETTY_FUNCTION__))
13423 "complete dtor only exists for classes with vbases")((ClassDecl->getNumVBases() > 0 && "complete dtor only exists for classes with vbases"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->getNumVBases() > 0 && \"complete dtor only exists for classes with vbases\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13423, __PRETTY_FUNCTION__))
;
13424
13425 SynthesizedFunctionScope Scope(*this, Destructor);
13426
13427 // Add a context note for diagnostics produced after this point.
13428 Scope.addContextNote(CurrentLocation);
13429
13430 MarkVirtualBaseDestructorsReferenced(Destructor->getLocation(), ClassDecl);
13431}
13432
13433/// Perform any semantic analysis which needs to be delayed until all
13434/// pending class member declarations have been parsed.
13435void Sema::ActOnFinishCXXMemberDecls() {
13436 // If the context is an invalid C++ class, just suppress these checks.
13437 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
13438 if (Record->isInvalidDecl()) {
13439 DelayedOverridingExceptionSpecChecks.clear();
13440 DelayedEquivalentExceptionSpecChecks.clear();
13441 return;
13442 }
13443 checkForMultipleExportedDefaultConstructors(*this, Record);
13444 }
13445}
13446
13447void Sema::ActOnFinishCXXNonNestedClass() {
13448 referenceDLLExportedClassMethods();
13449
13450 if (!DelayedDllExportMemberFunctions.empty()) {
13451 SmallVector<CXXMethodDecl*, 4> WorkList;
13452 std::swap(DelayedDllExportMemberFunctions, WorkList);
13453 for (CXXMethodDecl *M : WorkList) {
13454 DefineDefaultedFunction(*this, M, M->getLocation());
13455
13456 // Pass the method to the consumer to get emitted. This is not necessary
13457 // for explicit instantiation definitions, as they will get emitted
13458 // anyway.
13459 if (M->getParent()->getTemplateSpecializationKind() !=
13460 TSK_ExplicitInstantiationDefinition)
13461 ActOnFinishInlineFunctionDef(M);
13462 }
13463 }
13464}
13465
13466void Sema::referenceDLLExportedClassMethods() {
13467 if (!DelayedDllExportClasses.empty()) {
13468 // Calling ReferenceDllExportedMembers might cause the current function to
13469 // be called again, so use a local copy of DelayedDllExportClasses.
13470 SmallVector<CXXRecordDecl *, 4> WorkList;
13471 std::swap(DelayedDllExportClasses, WorkList);
13472 for (CXXRecordDecl *Class : WorkList)
13473 ReferenceDllExportedMembers(*this, Class);
13474 }
13475}
13476
13477void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
13478 assert(getLangOpts().CPlusPlus11 &&((getLangOpts().CPlusPlus11 && "adjusting dtor exception specs was introduced in c++11"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13479, __PRETTY_FUNCTION__))
13479 "adjusting dtor exception specs was introduced in c++11")((getLangOpts().CPlusPlus11 && "adjusting dtor exception specs was introduced in c++11"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13479, __PRETTY_FUNCTION__))
;
13480
13481 if (Destructor->isDependentContext())
13482 return;
13483
13484 // C++11 [class.dtor]p3:
13485 // A declaration of a destructor that does not have an exception-
13486 // specification is implicitly considered to have the same exception-
13487 // specification as an implicit declaration.
13488 const auto *DtorType = Destructor->getType()->castAs<FunctionProtoType>();
13489 if (DtorType->hasExceptionSpec())
13490 return;
13491
13492 // Replace the destructor's type, building off the existing one. Fortunately,
13493 // the only thing of interest in the destructor type is its extended info.
13494 // The return and arguments are fixed.
13495 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
13496 EPI.ExceptionSpec.Type = EST_Unevaluated;
13497 EPI.ExceptionSpec.SourceDecl = Destructor;
13498 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
13499
13500 // FIXME: If the destructor has a body that could throw, and the newly created
13501 // spec doesn't allow exceptions, we should emit a warning, because this
13502 // change in behavior can break conforming C++03 programs at runtime.
13503 // However, we don't have a body or an exception specification yet, so it
13504 // needs to be done somewhere else.
13505}
13506
13507namespace {
13508/// An abstract base class for all helper classes used in building the
13509// copy/move operators. These classes serve as factory functions and help us
13510// avoid using the same Expr* in the AST twice.
13511class ExprBuilder {
13512 ExprBuilder(const ExprBuilder&) = delete;
13513 ExprBuilder &operator=(const ExprBuilder&) = delete;
13514
13515protected:
13516 static Expr *assertNotNull(Expr *E) {
13517 assert(E && "Expression construction must not fail.")((E && "Expression construction must not fail.") ? static_cast
<void> (0) : __assert_fail ("E && \"Expression construction must not fail.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13517, __PRETTY_FUNCTION__))
;
13518 return E;
13519 }
13520
13521public:
13522 ExprBuilder() {}
13523 virtual ~ExprBuilder() {}
13524
13525 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
13526};
13527
13528class RefBuilder: public ExprBuilder {
13529 VarDecl *Var;
13530 QualType VarType;
13531
13532public:
13533 Expr *build(Sema &S, SourceLocation Loc) const override {
13534 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
13535 }
13536
13537 RefBuilder(VarDecl *Var, QualType VarType)
13538 : Var(Var), VarType(VarType) {}
13539};
13540
13541class ThisBuilder: public ExprBuilder {
13542public:
13543 Expr *build(Sema &S, SourceLocation Loc) const override {
13544 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
13545 }
13546};
13547
13548class CastBuilder: public ExprBuilder {
13549 const ExprBuilder &Builder;
13550 QualType Type;
13551 ExprValueKind Kind;
13552 const CXXCastPath &Path;
13553
13554public:
13555 Expr *build(Sema &S, SourceLocation Loc) const override {
13556 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
13557 CK_UncheckedDerivedToBase, Kind,
13558 &Path).get());
13559 }
13560
13561 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
13562 const CXXCastPath &Path)
13563 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
13564};
13565
13566class DerefBuilder: public ExprBuilder {
13567 const ExprBuilder &Builder;
13568
13569public:
13570 Expr *build(Sema &S, SourceLocation Loc) const override {
13571 return assertNotNull(
13572 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
13573 }
13574
13575 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13576};
13577
13578class MemberBuilder: public ExprBuilder {
13579 const ExprBuilder &Builder;
13580 QualType Type;
13581 CXXScopeSpec SS;
13582 bool IsArrow;
13583 LookupResult &MemberLookup;
13584
13585public:
13586 Expr *build(Sema &S, SourceLocation Loc) const override {
13587 return assertNotNull(S.BuildMemberReferenceExpr(
13588 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
13589 nullptr, MemberLookup, nullptr, nullptr).get());
13590 }
13591
13592 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
13593 LookupResult &MemberLookup)
13594 : Builder(Builder), Type(Type), IsArrow(IsArrow),
13595 MemberLookup(MemberLookup) {}
13596};
13597
13598class MoveCastBuilder: public ExprBuilder {
13599 const ExprBuilder &Builder;
13600
13601public:
13602 Expr *build(Sema &S, SourceLocation Loc) const override {
13603 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
13604 }
13605
13606 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13607};
13608
13609class LvalueConvBuilder: public ExprBuilder {
13610 const ExprBuilder &Builder;
13611
13612public:
13613 Expr *build(Sema &S, SourceLocation Loc) const override {
13614 return assertNotNull(
13615 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
13616 }
13617
13618 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
13619};
13620
13621class SubscriptBuilder: public ExprBuilder {
13622 const ExprBuilder &Base;
13623 const ExprBuilder &Index;
13624
13625public:
13626 Expr *build(Sema &S, SourceLocation Loc) const override {
13627 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
13628 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
13629 }
13630
13631 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
13632 : Base(Base), Index(Index) {}
13633};
13634
13635} // end anonymous namespace
13636
13637/// When generating a defaulted copy or move assignment operator, if a field
13638/// should be copied with __builtin_memcpy rather than via explicit assignments,
13639/// do so. This optimization only applies for arrays of scalars, and for arrays
13640/// of class type where the selected copy/move-assignment operator is trivial.
13641static StmtResult
13642buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
13643 const ExprBuilder &ToB, const ExprBuilder &FromB) {
13644 // Compute the size of the memory buffer to be copied.
13645 QualType SizeType = S.Context.getSizeType();
13646 llvm::APInt Size(S.Context.getTypeSize(SizeType),
13647 S.Context.getTypeSizeInChars(T).getQuantity());
13648
13649 // Take the address of the field references for "from" and "to". We
13650 // directly construct UnaryOperators here because semantic analysis
13651 // does not permit us to take the address of an xvalue.
13652 Expr *From = FromB.build(S, Loc);
13653 From = UnaryOperator::Create(
13654 S.Context, From, UO_AddrOf, S.Context.getPointerType(From->getType()),
13655 VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
13656 Expr *To = ToB.build(S, Loc);
13657 To = UnaryOperator::Create(
13658 S.Context, To, UO_AddrOf, S.Context.getPointerType(To->getType()),
13659 VK_RValue, OK_Ordinary, Loc, false, S.CurFPFeatureOverrides());
13660
13661 const Type *E = T->getBaseElementTypeUnsafe();
13662 bool NeedsCollectableMemCpy =
13663 E->isRecordType() &&
13664 E->castAs<RecordType>()->getDecl()->hasObjectMember();
13665
13666 // Create a reference to the __builtin_objc_memmove_collectable function
13667 StringRef MemCpyName = NeedsCollectableMemCpy ?
13668 "__builtin_objc_memmove_collectable" :
13669 "__builtin_memcpy";
13670 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
13671 Sema::LookupOrdinaryName);
13672 S.LookupName(R, S.TUScope, true);
13673
13674 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
13675 if (!MemCpy)
13676 // Something went horribly wrong earlier, and we will have complained
13677 // about it.
13678 return StmtError();
13679
13680 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
13681 VK_RValue, Loc, nullptr);
13682 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")((MemCpyRef.isUsable() && "Builtin reference cannot fail"
) ? static_cast<void> (0) : __assert_fail ("MemCpyRef.isUsable() && \"Builtin reference cannot fail\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13682, __PRETTY_FUNCTION__))
;
13683
13684 Expr *CallArgs[] = {
13685 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
13686 };
13687 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
13688 Loc, CallArgs, Loc);
13689
13690 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")((!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"
) ? static_cast<void> (0) : __assert_fail ("!Call.isInvalid() && \"Call to __builtin_memcpy cannot fail!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13690, __PRETTY_FUNCTION__))
;
13691 return Call.getAs<Stmt>();
13692}
13693
13694/// Builds a statement that copies/moves the given entity from \p From to
13695/// \c To.
13696///
13697/// This routine is used to copy/move the members of a class with an
13698/// implicitly-declared copy/move assignment operator. When the entities being
13699/// copied are arrays, this routine builds for loops to copy them.
13700///
13701/// \param S The Sema object used for type-checking.
13702///
13703/// \param Loc The location where the implicit copy/move is being generated.
13704///
13705/// \param T The type of the expressions being copied/moved. Both expressions
13706/// must have this type.
13707///
13708/// \param To The expression we are copying/moving to.
13709///
13710/// \param From The expression we are copying/moving from.
13711///
13712/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
13713/// Otherwise, it's a non-static member subobject.
13714///
13715/// \param Copying Whether we're copying or moving.
13716///
13717/// \param Depth Internal parameter recording the depth of the recursion.
13718///
13719/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
13720/// if a memcpy should be used instead.
13721static StmtResult
13722buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
13723 const ExprBuilder &To, const ExprBuilder &From,
13724 bool CopyingBaseSubobject, bool Copying,
13725 unsigned Depth = 0) {
13726 // C++11 [class.copy]p28:
13727 // Each subobject is assigned in the manner appropriate to its type:
13728 //
13729 // - if the subobject is of class type, as if by a call to operator= with
13730 // the subobject as the object expression and the corresponding
13731 // subobject of x as a single function argument (as if by explicit
13732 // qualification; that is, ignoring any possible virtual overriding
13733 // functions in more derived classes);
13734 //
13735 // C++03 [class.copy]p13:
13736 // - if the subobject is of class type, the copy assignment operator for
13737 // the class is used (as if by explicit qualification; that is,
13738 // ignoring any possible virtual overriding functions in more derived
13739 // classes);
13740 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
13741 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
13742
13743 // Look for operator=.
13744 DeclarationName Name
13745 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13746 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
13747 S.LookupQualifiedName(OpLookup, ClassDecl, false);
13748
13749 // Prior to C++11, filter out any result that isn't a copy/move-assignment
13750 // operator.
13751 if (!S.getLangOpts().CPlusPlus11) {
13752 LookupResult::Filter F = OpLookup.makeFilter();
13753 while (F.hasNext()) {
13754 NamedDecl *D = F.next();
13755 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
13756 if (Method->isCopyAssignmentOperator() ||
13757 (!Copying && Method->isMoveAssignmentOperator()))
13758 continue;
13759
13760 F.erase();
13761 }
13762 F.done();
13763 }
13764
13765 // Suppress the protected check (C++ [class.protected]) for each of the
13766 // assignment operators we found. This strange dance is required when
13767 // we're assigning via a base classes's copy-assignment operator. To
13768 // ensure that we're getting the right base class subobject (without
13769 // ambiguities), we need to cast "this" to that subobject type; to
13770 // ensure that we don't go through the virtual call mechanism, we need
13771 // to qualify the operator= name with the base class (see below). However,
13772 // this means that if the base class has a protected copy assignment
13773 // operator, the protected member access check will fail. So, we
13774 // rewrite "protected" access to "public" access in this case, since we
13775 // know by construction that we're calling from a derived class.
13776 if (CopyingBaseSubobject) {
13777 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
13778 L != LEnd; ++L) {
13779 if (L.getAccess() == AS_protected)
13780 L.setAccess(AS_public);
13781 }
13782 }
13783
13784 // Create the nested-name-specifier that will be used to qualify the
13785 // reference to operator=; this is required to suppress the virtual
13786 // call mechanism.
13787 CXXScopeSpec SS;
13788 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
13789 SS.MakeTrivial(S.Context,
13790 NestedNameSpecifier::Create(S.Context, nullptr, false,
13791 CanonicalT),
13792 Loc);
13793
13794 // Create the reference to operator=.
13795 ExprResult OpEqualRef
13796 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
13797 SS, /*TemplateKWLoc=*/SourceLocation(),
13798 /*FirstQualifierInScope=*/nullptr,
13799 OpLookup,
13800 /*TemplateArgs=*/nullptr, /*S*/nullptr,
13801 /*SuppressQualifierCheck=*/true);
13802 if (OpEqualRef.isInvalid())
13803 return StmtError();
13804
13805 // Build the call to the assignment operator.
13806
13807 Expr *FromInst = From.build(S, Loc);
13808 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
13809 OpEqualRef.getAs<Expr>(),
13810 Loc, FromInst, Loc);
13811 if (Call.isInvalid())
13812 return StmtError();
13813
13814 // If we built a call to a trivial 'operator=' while copying an array,
13815 // bail out. We'll replace the whole shebang with a memcpy.
13816 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
13817 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
13818 return StmtResult((Stmt*)nullptr);
13819
13820 // Convert to an expression-statement, and clean up any produced
13821 // temporaries.
13822 return S.ActOnExprStmt(Call);
13823 }
13824
13825 // - if the subobject is of scalar type, the built-in assignment
13826 // operator is used.
13827 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
13828 if (!ArrayTy) {
13829 ExprResult Assignment = S.CreateBuiltinBinOp(
13830 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
13831 if (Assignment.isInvalid())
13832 return StmtError();
13833 return S.ActOnExprStmt(Assignment);
13834 }
13835
13836 // - if the subobject is an array, each element is assigned, in the
13837 // manner appropriate to the element type;
13838
13839 // Construct a loop over the array bounds, e.g.,
13840 //
13841 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
13842 //
13843 // that will copy each of the array elements.
13844 QualType SizeType = S.Context.getSizeType();
13845
13846 // Create the iteration variable.
13847 IdentifierInfo *IterationVarName = nullptr;
13848 {
13849 SmallString<8> Str;
13850 llvm::raw_svector_ostream OS(Str);
13851 OS << "__i" << Depth;
13852 IterationVarName = &S.Context.Idents.get(OS.str());
13853 }
13854 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
13855 IterationVarName, SizeType,
13856 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
13857 SC_None);
13858
13859 // Initialize the iteration variable to zero.
13860 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
13861 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
13862
13863 // Creates a reference to the iteration variable.
13864 RefBuilder IterationVarRef(IterationVar, SizeType);
13865 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
13866
13867 // Create the DeclStmt that holds the iteration variable.
13868 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
13869
13870 // Subscript the "from" and "to" expressions with the iteration variable.
13871 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
13872 MoveCastBuilder FromIndexMove(FromIndexCopy);
13873 const ExprBuilder *FromIndex;
13874 if (Copying)
13875 FromIndex = &FromIndexCopy;
13876 else
13877 FromIndex = &FromIndexMove;
13878
13879 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
13880
13881 // Build the copy/move for an individual element of the array.
13882 StmtResult Copy =
13883 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
13884 ToIndex, *FromIndex, CopyingBaseSubobject,
13885 Copying, Depth + 1);
13886 // Bail out if copying fails or if we determined that we should use memcpy.
13887 if (Copy.isInvalid() || !Copy.get())
13888 return Copy;
13889
13890 // Create the comparison against the array bound.
13891 llvm::APInt Upper
13892 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
13893 Expr *Comparison = BinaryOperator::Create(
13894 S.Context, IterationVarRefRVal.build(S, Loc),
13895 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc), BO_NE,
13896 S.Context.BoolTy, VK_RValue, OK_Ordinary, Loc, S.CurFPFeatureOverrides());
13897
13898 // Create the pre-increment of the iteration variable. We can determine
13899 // whether the increment will overflow based on the value of the array
13900 // bound.
13901 Expr *Increment = UnaryOperator::Create(
13902 S.Context, IterationVarRef.build(S, Loc), UO_PreInc, SizeType, VK_LValue,
13903 OK_Ordinary, Loc, Upper.isMaxValue(), S.CurFPFeatureOverrides());
13904
13905 // Construct the loop that copies all elements of this array.
13906 return S.ActOnForStmt(
13907 Loc, Loc, InitStmt,
13908 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
13909 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
13910}
13911
13912static StmtResult
13913buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
13914 const ExprBuilder &To, const ExprBuilder &From,
13915 bool CopyingBaseSubobject, bool Copying) {
13916 // Maybe we should use a memcpy?
13917 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
13918 T.isTriviallyCopyableType(S.Context))
13919 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13920
13921 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
13922 CopyingBaseSubobject,
13923 Copying, 0));
13924
13925 // If we ended up picking a trivial assignment operator for an array of a
13926 // non-trivially-copyable class type, just emit a memcpy.
13927 if (!Result.isInvalid() && !Result.get())
13928 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
13929
13930 return Result;
13931}
13932
13933CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
13934 // Note: The following rules are largely analoguous to the copy
13935 // constructor rules. Note that virtual bases are not taken into account
13936 // for determining the argument type of the operator. Note also that
13937 // operators taking an object instead of a reference are allowed.
13938 assert(ClassDecl->needsImplicitCopyAssignment())((ClassDecl->needsImplicitCopyAssignment()) ? static_cast<
void> (0) : __assert_fail ("ClassDecl->needsImplicitCopyAssignment()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 13938, __PRETTY_FUNCTION__))
;
13939
13940 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
13941 if (DSM.isAlreadyBeingDeclared())
13942 return nullptr;
13943
13944 QualType ArgType = Context.getTypeDeclType(ClassDecl);
13945 LangAS AS = getDefaultCXXMethodAddrSpace();
13946 if (AS != LangAS::Default)
13947 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
13948 QualType RetType = Context.getLValueReferenceType(ArgType);
13949 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
13950 if (Const)
13951 ArgType = ArgType.withConst();
13952
13953 ArgType = Context.getLValueReferenceType(ArgType);
13954
13955 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
13956 CXXCopyAssignment,
13957 Const);
13958
13959 // An implicitly-declared copy assignment operator is an inline public
13960 // member of its class.
13961 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
13962 SourceLocation ClassLoc = ClassDecl->getLocation();
13963 DeclarationNameInfo NameInfo(Name, ClassLoc);
13964 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
13965 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
13966 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
13967 /*isInline=*/true,
13968 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
13969 SourceLocation());
13970 CopyAssignment->setAccess(AS_public);
13971 CopyAssignment->setDefaulted();
13972 CopyAssignment->setImplicit();
13973
13974 if (getLangOpts().CUDA) {
13975 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
13976 CopyAssignment,
13977 /* ConstRHS */ Const,
13978 /* Diagnose */ false);
13979 }
13980
13981 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
13982
13983 // Add the parameter to the operator.
13984 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
13985 ClassLoc, ClassLoc,
13986 /*Id=*/nullptr, ArgType,
13987 /*TInfo=*/nullptr, SC_None,
13988 nullptr);
13989 CopyAssignment->setParams(FromParam);
13990
13991 CopyAssignment->setTrivial(
13992 ClassDecl->needsOverloadResolutionForCopyAssignment()
13993 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
13994 : ClassDecl->hasTrivialCopyAssignment());
13995
13996 // Note that we have added this copy-assignment operator.
13997 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
13998
13999 Scope *S = getScopeForContext(ClassDecl);
14000 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
14001
14002 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment)) {
14003 ClassDecl->setImplicitCopyAssignmentIsDeleted();
14004 SetDeclDeleted(CopyAssignment, ClassLoc);
14005 }
14006
14007 if (S)
14008 PushOnScopeChains(CopyAssignment, S, false);
14009 ClassDecl->addDecl(CopyAssignment);
14010
14011 return CopyAssignment;
14012}
14013
14014/// Diagnose an implicit copy operation for a class which is odr-used, but
14015/// which is deprecated because the class has a user-declared copy constructor,
14016/// copy assignment operator, or destructor.
14017static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
14018 assert(CopyOp->isImplicit())((CopyOp->isImplicit()) ? static_cast<void> (0) : __assert_fail
("CopyOp->isImplicit()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14018, __PRETTY_FUNCTION__))
;
14019
14020 CXXRecordDecl *RD = CopyOp->getParent();
14021 CXXMethodDecl *UserDeclaredOperation = nullptr;
14022
14023 // In Microsoft mode, assignment operations don't affect constructors and
14024 // vice versa.
14025 if (RD->hasUserDeclaredDestructor()) {
14026 UserDeclaredOperation = RD->getDestructor();
14027 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
14028 RD->hasUserDeclaredCopyConstructor() &&
14029 !S.getLangOpts().MSVCCompat) {
14030 // Find any user-declared copy constructor.
14031 for (auto *I : RD->ctors()) {
14032 if (I->isCopyConstructor()) {
14033 UserDeclaredOperation = I;
14034 break;
14035 }
14036 }
14037 assert(UserDeclaredOperation)((UserDeclaredOperation) ? static_cast<void> (0) : __assert_fail
("UserDeclaredOperation", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14037, __PRETTY_FUNCTION__))
;
14038 } else if (isa<CXXConstructorDecl>(CopyOp) &&
14039 RD->hasUserDeclaredCopyAssignment() &&
14040 !S.getLangOpts().MSVCCompat) {
14041 // Find any user-declared move assignment operator.
14042 for (auto *I : RD->methods()) {
14043 if (I->isCopyAssignmentOperator()) {
14044 UserDeclaredOperation = I;
14045 break;
14046 }
14047 }
14048 assert(UserDeclaredOperation)((UserDeclaredOperation) ? static_cast<void> (0) : __assert_fail
("UserDeclaredOperation", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14048, __PRETTY_FUNCTION__))
;
14049 }
14050
14051 if (UserDeclaredOperation && UserDeclaredOperation->isUserProvided()) {
14052 S.Diag(UserDeclaredOperation->getLocation(),
14053 isa<CXXDestructorDecl>(UserDeclaredOperation)
14054 ? diag::warn_deprecated_copy_dtor_operation
14055 : diag::warn_deprecated_copy_operation)
14056 << RD << /*copy assignment*/ !isa<CXXConstructorDecl>(CopyOp);
14057 }
14058}
14059
14060void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
14061 CXXMethodDecl *CopyAssignOperator) {
14062 assert((CopyAssignOperator->isDefaulted() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14067, __PRETTY_FUNCTION__))
14063 CopyAssignOperator->isOverloadedOperator() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14067, __PRETTY_FUNCTION__))
14064 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14067, __PRETTY_FUNCTION__))
14065 !CopyAssignOperator->doesThisDeclarationHaveABody() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14067, __PRETTY_FUNCTION__))
14066 !CopyAssignOperator->isDeleted()) &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14067, __PRETTY_FUNCTION__))
14067 "DefineImplicitCopyAssignment called for wrong function")(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14067, __PRETTY_FUNCTION__))
;
14068 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
14069 return;
14070
14071 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
14072 if (ClassDecl->isInvalidDecl()) {
14073 CopyAssignOperator->setInvalidDecl();
14074 return;
14075 }
14076
14077 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
14078
14079 // The exception specification is needed because we are defining the
14080 // function.
14081 ResolveExceptionSpec(CurrentLocation,
14082 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
14083
14084 // Add a context note for diagnostics produced after this point.
14085 Scope.addContextNote(CurrentLocation);
14086
14087 // C++11 [class.copy]p18:
14088 // The [definition of an implicitly declared copy assignment operator] is
14089 // deprecated if the class has a user-declared copy constructor or a
14090 // user-declared destructor.
14091 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
14092 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
14093
14094 // C++0x [class.copy]p30:
14095 // The implicitly-defined or explicitly-defaulted copy assignment operator
14096 // for a non-union class X performs memberwise copy assignment of its
14097 // subobjects. The direct base classes of X are assigned first, in the
14098 // order of their declaration in the base-specifier-list, and then the
14099 // immediate non-static data members of X are assigned, in the order in
14100 // which they were declared in the class definition.
14101
14102 // The statements that form the synthesized function body.
14103 SmallVector<Stmt*, 8> Statements;
14104
14105 // The parameter for the "other" object, which we are copying from.
14106 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
14107 Qualifiers OtherQuals = Other->getType().getQualifiers();
14108 QualType OtherRefType = Other->getType();
14109 if (const LValueReferenceType *OtherRef
14110 = OtherRefType->getAs<LValueReferenceType>()) {
14111 OtherRefType = OtherRef->getPointeeType();
14112 OtherQuals = OtherRefType.getQualifiers();
14113 }
14114
14115 // Our location for everything implicitly-generated.
14116 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
14117 ? CopyAssignOperator->getEndLoc()
14118 : CopyAssignOperator->getLocation();
14119
14120 // Builds a DeclRefExpr for the "other" object.
14121 RefBuilder OtherRef(Other, OtherRefType);
14122
14123 // Builds the "this" pointer.
14124 ThisBuilder This;
14125
14126 // Assign base classes.
14127 bool Invalid = false;
14128 for (auto &Base : ClassDecl->bases()) {
14129 // Form the assignment:
14130 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
14131 QualType BaseType = Base.getType().getUnqualifiedType();
14132 if (!BaseType->isRecordType()) {
14133 Invalid = true;
14134 continue;
14135 }
14136
14137 CXXCastPath BasePath;
14138 BasePath.push_back(&Base);
14139
14140 // Construct the "from" expression, which is an implicit cast to the
14141 // appropriately-qualified base type.
14142 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
14143 VK_LValue, BasePath);
14144
14145 // Dereference "this".
14146 DerefBuilder DerefThis(This);
14147 CastBuilder To(DerefThis,
14148 Context.getQualifiedType(
14149 BaseType, CopyAssignOperator->getMethodQualifiers()),
14150 VK_LValue, BasePath);
14151
14152 // Build the copy.
14153 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
14154 To, From,
14155 /*CopyingBaseSubobject=*/true,
14156 /*Copying=*/true);
14157 if (Copy.isInvalid()) {
14158 CopyAssignOperator->setInvalidDecl();
14159 return;
14160 }
14161
14162 // Success! Record the copy.
14163 Statements.push_back(Copy.getAs<Expr>());
14164 }
14165
14166 // Assign non-static members.
14167 for (auto *Field : ClassDecl->fields()) {
14168 // FIXME: We should form some kind of AST representation for the implied
14169 // memcpy in a union copy operation.
14170 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14171 continue;
14172
14173 if (Field->isInvalidDecl()) {
14174 Invalid = true;
14175 continue;
14176 }
14177
14178 // Check for members of reference type; we can't copy those.
14179 if (Field->getType()->isReferenceType()) {
14180 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14181 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14182 Diag(Field->getLocation(), diag::note_declared_at);
14183 Invalid = true;
14184 continue;
14185 }
14186
14187 // Check for members of const-qualified, non-class type.
14188 QualType BaseType = Context.getBaseElementType(Field->getType());
14189 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14190 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14191 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14192 Diag(Field->getLocation(), diag::note_declared_at);
14193 Invalid = true;
14194 continue;
14195 }
14196
14197 // Suppress assigning zero-width bitfields.
14198 if (Field->isZeroLengthBitField(Context))
14199 continue;
14200
14201 QualType FieldType = Field->getType().getNonReferenceType();
14202 if (FieldType->isIncompleteArrayType()) {
14203 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14204, __PRETTY_FUNCTION__))
14204 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14204, __PRETTY_FUNCTION__))
;
14205 continue;
14206 }
14207
14208 // Build references to the field in the object we're copying from and to.
14209 CXXScopeSpec SS; // Intentionally empty
14210 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14211 LookupMemberName);
14212 MemberLookup.addDecl(Field);
14213 MemberLookup.resolveKind();
14214
14215 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
14216
14217 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
14218
14219 // Build the copy of this field.
14220 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
14221 To, From,
14222 /*CopyingBaseSubobject=*/false,
14223 /*Copying=*/true);
14224 if (Copy.isInvalid()) {
14225 CopyAssignOperator->setInvalidDecl();
14226 return;
14227 }
14228
14229 // Success! Record the copy.
14230 Statements.push_back(Copy.getAs<Stmt>());
14231 }
14232
14233 if (!Invalid) {
14234 // Add a "return *this;"
14235 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14236
14237 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14238 if (Return.isInvalid())
14239 Invalid = true;
14240 else
14241 Statements.push_back(Return.getAs<Stmt>());
14242 }
14243
14244 if (Invalid) {
14245 CopyAssignOperator->setInvalidDecl();
14246 return;
14247 }
14248
14249 StmtResult Body;
14250 {
14251 CompoundScopeRAII CompoundScope(*this);
14252 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14253 /*isStmtExpr=*/false);
14254 assert(!Body.isInvalid() && "Compound statement creation cannot fail")((!Body.isInvalid() && "Compound statement creation cannot fail"
) ? static_cast<void> (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14254, __PRETTY_FUNCTION__))
;
14255 }
14256 CopyAssignOperator->setBody(Body.getAs<Stmt>());
14257 CopyAssignOperator->markUsed(Context);
14258
14259 if (ASTMutationListener *L = getASTMutationListener()) {
14260 L->CompletedImplicitDefinition(CopyAssignOperator);
14261 }
14262}
14263
14264CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
14265 assert(ClassDecl->needsImplicitMoveAssignment())((ClassDecl->needsImplicitMoveAssignment()) ? static_cast<
void> (0) : __assert_fail ("ClassDecl->needsImplicitMoveAssignment()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14265, __PRETTY_FUNCTION__))
;
14266
14267 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
14268 if (DSM.isAlreadyBeingDeclared())
14269 return nullptr;
14270
14271 // Note: The following rules are largely analoguous to the move
14272 // constructor rules.
14273
14274 QualType ArgType = Context.getTypeDeclType(ClassDecl);
14275 LangAS AS = getDefaultCXXMethodAddrSpace();
14276 if (AS != LangAS::Default)
14277 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14278 QualType RetType = Context.getLValueReferenceType(ArgType);
14279 ArgType = Context.getRValueReferenceType(ArgType);
14280
14281 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14282 CXXMoveAssignment,
14283 false);
14284
14285 // An implicitly-declared move assignment operator is an inline public
14286 // member of its class.
14287 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
14288 SourceLocation ClassLoc = ClassDecl->getLocation();
14289 DeclarationNameInfo NameInfo(Name, ClassLoc);
14290 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
14291 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
14292 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
14293 /*isInline=*/true,
14294 Constexpr ? ConstexprSpecKind::Constexpr : ConstexprSpecKind::Unspecified,
14295 SourceLocation());
14296 MoveAssignment->setAccess(AS_public);
14297 MoveAssignment->setDefaulted();
14298 MoveAssignment->setImplicit();
14299
14300 if (getLangOpts().CUDA) {
14301 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
14302 MoveAssignment,
14303 /* ConstRHS */ false,
14304 /* Diagnose */ false);
14305 }
14306
14307 // Build an exception specification pointing back at this member.
14308 FunctionProtoType::ExtProtoInfo EPI =
14309 getImplicitMethodEPI(*this, MoveAssignment);
14310 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
14311
14312 // Add the parameter to the operator.
14313 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
14314 ClassLoc, ClassLoc,
14315 /*Id=*/nullptr, ArgType,
14316 /*TInfo=*/nullptr, SC_None,
14317 nullptr);
14318 MoveAssignment->setParams(FromParam);
14319
14320 MoveAssignment->setTrivial(
14321 ClassDecl->needsOverloadResolutionForMoveAssignment()
14322 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
14323 : ClassDecl->hasTrivialMoveAssignment());
14324
14325 // Note that we have added this copy-assignment operator.
14326 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
14327
14328 Scope *S = getScopeForContext(ClassDecl);
14329 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
14330
14331 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
14332 ClassDecl->setImplicitMoveAssignmentIsDeleted();
14333 SetDeclDeleted(MoveAssignment, ClassLoc);
14334 }
14335
14336 if (S)
14337 PushOnScopeChains(MoveAssignment, S, false);
14338 ClassDecl->addDecl(MoveAssignment);
14339
14340 return MoveAssignment;
14341}
14342
14343/// Check if we're implicitly defining a move assignment operator for a class
14344/// with virtual bases. Such a move assignment might move-assign the virtual
14345/// base multiple times.
14346static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
14347 SourceLocation CurrentLocation) {
14348 assert(!Class->isDependentContext() && "should not define dependent move")((!Class->isDependentContext() && "should not define dependent move"
) ? static_cast<void> (0) : __assert_fail ("!Class->isDependentContext() && \"should not define dependent move\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14348, __PRETTY_FUNCTION__))
;
14349
14350 // Only a virtual base could get implicitly move-assigned multiple times.
14351 // Only a non-trivial move assignment can observe this. We only want to
14352 // diagnose if we implicitly define an assignment operator that assigns
14353 // two base classes, both of which move-assign the same virtual base.
14354 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
14355 Class->getNumBases() < 2)
14356 return;
14357
14358 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
14359 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
14360 VBaseMap VBases;
14361
14362 for (auto &BI : Class->bases()) {
14363 Worklist.push_back(&BI);
14364 while (!Worklist.empty()) {
14365 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
14366 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
14367
14368 // If the base has no non-trivial move assignment operators,
14369 // we don't care about moves from it.
14370 if (!Base->hasNonTrivialMoveAssignment())
14371 continue;
14372
14373 // If there's nothing virtual here, skip it.
14374 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
14375 continue;
14376
14377 // If we're not actually going to call a move assignment for this base,
14378 // or the selected move assignment is trivial, skip it.
14379 Sema::SpecialMemberOverloadResult SMOR =
14380 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
14381 /*ConstArg*/false, /*VolatileArg*/false,
14382 /*RValueThis*/true, /*ConstThis*/false,
14383 /*VolatileThis*/false);
14384 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
14385 !SMOR.getMethod()->isMoveAssignmentOperator())
14386 continue;
14387
14388 if (BaseSpec->isVirtual()) {
14389 // We're going to move-assign this virtual base, and its move
14390 // assignment operator is not trivial. If this can happen for
14391 // multiple distinct direct bases of Class, diagnose it. (If it
14392 // only happens in one base, we'll diagnose it when synthesizing
14393 // that base class's move assignment operator.)
14394 CXXBaseSpecifier *&Existing =
14395 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
14396 .first->second;
14397 if (Existing && Existing != &BI) {
14398 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
14399 << Class << Base;
14400 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
14401 << (Base->getCanonicalDecl() ==
14402 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14403 << Base << Existing->getType() << Existing->getSourceRange();
14404 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
14405 << (Base->getCanonicalDecl() ==
14406 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
14407 << Base << BI.getType() << BaseSpec->getSourceRange();
14408
14409 // Only diagnose each vbase once.
14410 Existing = nullptr;
14411 }
14412 } else {
14413 // Only walk over bases that have defaulted move assignment operators.
14414 // We assume that any user-provided move assignment operator handles
14415 // the multiple-moves-of-vbase case itself somehow.
14416 if (!SMOR.getMethod()->isDefaulted())
14417 continue;
14418
14419 // We're going to move the base classes of Base. Add them to the list.
14420 for (auto &BI : Base->bases())
14421 Worklist.push_back(&BI);
14422 }
14423 }
14424 }
14425}
14426
14427void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
14428 CXXMethodDecl *MoveAssignOperator) {
14429 assert((MoveAssignOperator->isDefaulted() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14434, __PRETTY_FUNCTION__))
14430 MoveAssignOperator->isOverloadedOperator() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14434, __PRETTY_FUNCTION__))
14431 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14434, __PRETTY_FUNCTION__))
14432 !MoveAssignOperator->doesThisDeclarationHaveABody() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14434, __PRETTY_FUNCTION__))
14433 !MoveAssignOperator->isDeleted()) &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14434, __PRETTY_FUNCTION__))
14434 "DefineImplicitMoveAssignment called for wrong function")(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14434, __PRETTY_FUNCTION__))
;
14435 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
14436 return;
14437
14438 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
14439 if (ClassDecl->isInvalidDecl()) {
14440 MoveAssignOperator->setInvalidDecl();
14441 return;
14442 }
14443
14444 // C++0x [class.copy]p28:
14445 // The implicitly-defined or move assignment operator for a non-union class
14446 // X performs memberwise move assignment of its subobjects. The direct base
14447 // classes of X are assigned first, in the order of their declaration in the
14448 // base-specifier-list, and then the immediate non-static data members of X
14449 // are assigned, in the order in which they were declared in the class
14450 // definition.
14451
14452 // Issue a warning if our implicit move assignment operator will move
14453 // from a virtual base more than once.
14454 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
14455
14456 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
14457
14458 // The exception specification is needed because we are defining the
14459 // function.
14460 ResolveExceptionSpec(CurrentLocation,
14461 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
14462
14463 // Add a context note for diagnostics produced after this point.
14464 Scope.addContextNote(CurrentLocation);
14465
14466 // The statements that form the synthesized function body.
14467 SmallVector<Stmt*, 8> Statements;
14468
14469 // The parameter for the "other" object, which we are move from.
14470 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
14471 QualType OtherRefType =
14472 Other->getType()->castAs<RValueReferenceType>()->getPointeeType();
14473
14474 // Our location for everything implicitly-generated.
14475 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
14476 ? MoveAssignOperator->getEndLoc()
14477 : MoveAssignOperator->getLocation();
14478
14479 // Builds a reference to the "other" object.
14480 RefBuilder OtherRef(Other, OtherRefType);
14481 // Cast to rvalue.
14482 MoveCastBuilder MoveOther(OtherRef);
14483
14484 // Builds the "this" pointer.
14485 ThisBuilder This;
14486
14487 // Assign base classes.
14488 bool Invalid = false;
14489 for (auto &Base : ClassDecl->bases()) {
14490 // C++11 [class.copy]p28:
14491 // It is unspecified whether subobjects representing virtual base classes
14492 // are assigned more than once by the implicitly-defined copy assignment
14493 // operator.
14494 // FIXME: Do not assign to a vbase that will be assigned by some other base
14495 // class. For a move-assignment, this can result in the vbase being moved
14496 // multiple times.
14497
14498 // Form the assignment:
14499 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
14500 QualType BaseType = Base.getType().getUnqualifiedType();
14501 if (!BaseType->isRecordType()) {
14502 Invalid = true;
14503 continue;
14504 }
14505
14506 CXXCastPath BasePath;
14507 BasePath.push_back(&Base);
14508
14509 // Construct the "from" expression, which is an implicit cast to the
14510 // appropriately-qualified base type.
14511 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
14512
14513 // Dereference "this".
14514 DerefBuilder DerefThis(This);
14515
14516 // Implicitly cast "this" to the appropriately-qualified base type.
14517 CastBuilder To(DerefThis,
14518 Context.getQualifiedType(
14519 BaseType, MoveAssignOperator->getMethodQualifiers()),
14520 VK_LValue, BasePath);
14521
14522 // Build the move.
14523 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
14524 To, From,
14525 /*CopyingBaseSubobject=*/true,
14526 /*Copying=*/false);
14527 if (Move.isInvalid()) {
14528 MoveAssignOperator->setInvalidDecl();
14529 return;
14530 }
14531
14532 // Success! Record the move.
14533 Statements.push_back(Move.getAs<Expr>());
14534 }
14535
14536 // Assign non-static members.
14537 for (auto *Field : ClassDecl->fields()) {
14538 // FIXME: We should form some kind of AST representation for the implied
14539 // memcpy in a union copy operation.
14540 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
14541 continue;
14542
14543 if (Field->isInvalidDecl()) {
14544 Invalid = true;
14545 continue;
14546 }
14547
14548 // Check for members of reference type; we can't move those.
14549 if (Field->getType()->isReferenceType()) {
14550 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14551 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
14552 Diag(Field->getLocation(), diag::note_declared_at);
14553 Invalid = true;
14554 continue;
14555 }
14556
14557 // Check for members of const-qualified, non-class type.
14558 QualType BaseType = Context.getBaseElementType(Field->getType());
14559 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
14560 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
14561 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
14562 Diag(Field->getLocation(), diag::note_declared_at);
14563 Invalid = true;
14564 continue;
14565 }
14566
14567 // Suppress assigning zero-width bitfields.
14568 if (Field->isZeroLengthBitField(Context))
14569 continue;
14570
14571 QualType FieldType = Field->getType().getNonReferenceType();
14572 if (FieldType->isIncompleteArrayType()) {
14573 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14574, __PRETTY_FUNCTION__))
14574 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14574, __PRETTY_FUNCTION__))
;
14575 continue;
14576 }
14577
14578 // Build references to the field in the object we're copying from and to.
14579 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
14580 LookupMemberName);
14581 MemberLookup.addDecl(Field);
14582 MemberLookup.resolveKind();
14583 MemberBuilder From(MoveOther, OtherRefType,
14584 /*IsArrow=*/false, MemberLookup);
14585 MemberBuilder To(This, getCurrentThisType(),
14586 /*IsArrow=*/true, MemberLookup);
14587
14588 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14590, __PRETTY_FUNCTION__))
14589 "Member reference with rvalue base must be rvalue except for reference "((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14590, __PRETTY_FUNCTION__))
14590 "members, which aren't allowed for move assignment.")((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14590, __PRETTY_FUNCTION__))
;
14591
14592 // Build the move of this field.
14593 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
14594 To, From,
14595 /*CopyingBaseSubobject=*/false,
14596 /*Copying=*/false);
14597 if (Move.isInvalid()) {
14598 MoveAssignOperator->setInvalidDecl();
14599 return;
14600 }
14601
14602 // Success! Record the copy.
14603 Statements.push_back(Move.getAs<Stmt>());
14604 }
14605
14606 if (!Invalid) {
14607 // Add a "return *this;"
14608 ExprResult ThisObj =
14609 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
14610
14611 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
14612 if (Return.isInvalid())
14613 Invalid = true;
14614 else
14615 Statements.push_back(Return.getAs<Stmt>());
14616 }
14617
14618 if (Invalid) {
14619 MoveAssignOperator->setInvalidDecl();
14620 return;
14621 }
14622
14623 StmtResult Body;
14624 {
14625 CompoundScopeRAII CompoundScope(*this);
14626 Body = ActOnCompoundStmt(Loc, Loc, Statements,
14627 /*isStmtExpr=*/false);
14628 assert(!Body.isInvalid() && "Compound statement creation cannot fail")((!Body.isInvalid() && "Compound statement creation cannot fail"
) ? static_cast<void> (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14628, __PRETTY_FUNCTION__))
;
14629 }
14630 MoveAssignOperator->setBody(Body.getAs<Stmt>());
14631 MoveAssignOperator->markUsed(Context);
14632
14633 if (ASTMutationListener *L = getASTMutationListener()) {
14634 L->CompletedImplicitDefinition(MoveAssignOperator);
14635 }
14636}
14637
14638CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
14639 CXXRecordDecl *ClassDecl) {
14640 // C++ [class.copy]p4:
14641 // If the class definition does not explicitly declare a copy
14642 // constructor, one is declared implicitly.
14643 assert(ClassDecl->needsImplicitCopyConstructor())((ClassDecl->needsImplicitCopyConstructor()) ? static_cast
<void> (0) : __assert_fail ("ClassDecl->needsImplicitCopyConstructor()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14643, __PRETTY_FUNCTION__))
;
14644
14645 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
14646 if (DSM.isAlreadyBeingDeclared())
14647 return nullptr;
14648
14649 QualType ClassType = Context.getTypeDeclType(ClassDecl);
14650 QualType ArgType = ClassType;
14651 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
14652 if (Const)
14653 ArgType = ArgType.withConst();
14654
14655 LangAS AS = getDefaultCXXMethodAddrSpace();
14656 if (AS != LangAS::Default)
14657 ArgType = Context.getAddrSpaceQualType(ArgType, AS);
14658
14659 ArgType = Context.getLValueReferenceType(ArgType);
14660
14661 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14662 CXXCopyConstructor,
14663 Const);
14664
14665 DeclarationName Name
14666 = Context.DeclarationNames.getCXXConstructorName(
14667 Context.getCanonicalType(ClassType));
14668 SourceLocation ClassLoc = ClassDecl->getLocation();
14669 DeclarationNameInfo NameInfo(Name, ClassLoc);
14670
14671 // An implicitly-declared copy constructor is an inline public
14672 // member of its class.
14673 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
14674 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14675 ExplicitSpecifier(),
14676 /*isInline=*/true,
14677 /*isImplicitlyDeclared=*/true,
14678 Constexpr ? ConstexprSpecKind::Constexpr
14679 : ConstexprSpecKind::Unspecified);
14680 CopyConstructor->setAccess(AS_public);
14681 CopyConstructor->setDefaulted();
14682
14683 if (getLangOpts().CUDA) {
14684 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
14685 CopyConstructor,
14686 /* ConstRHS */ Const,
14687 /* Diagnose */ false);
14688 }
14689
14690 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
14691
14692 // Add the parameter to the constructor.
14693 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
14694 ClassLoc, ClassLoc,
14695 /*IdentifierInfo=*/nullptr,
14696 ArgType, /*TInfo=*/nullptr,
14697 SC_None, nullptr);
14698 CopyConstructor->setParams(FromParam);
14699
14700 CopyConstructor->setTrivial(
14701 ClassDecl->needsOverloadResolutionForCopyConstructor()
14702 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
14703 : ClassDecl->hasTrivialCopyConstructor());
14704
14705 CopyConstructor->setTrivialForCall(
14706 ClassDecl->hasAttr<TrivialABIAttr>() ||
14707 (ClassDecl->needsOverloadResolutionForCopyConstructor()
14708 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
14709 TAH_ConsiderTrivialABI)
14710 : ClassDecl->hasTrivialCopyConstructorForCall()));
14711
14712 // Note that we have declared this constructor.
14713 ++getASTContext().NumImplicitCopyConstructorsDeclared;
14714
14715 Scope *S = getScopeForContext(ClassDecl);
14716 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
14717
14718 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
14719 ClassDecl->setImplicitCopyConstructorIsDeleted();
14720 SetDeclDeleted(CopyConstructor, ClassLoc);
14721 }
14722
14723 if (S)
14724 PushOnScopeChains(CopyConstructor, S, false);
14725 ClassDecl->addDecl(CopyConstructor);
14726
14727 return CopyConstructor;
14728}
14729
14730void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
14731 CXXConstructorDecl *CopyConstructor) {
14732 assert((CopyConstructor->isDefaulted() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14736, __PRETTY_FUNCTION__))
14733 CopyConstructor->isCopyConstructor() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14736, __PRETTY_FUNCTION__))
14734 !CopyConstructor->doesThisDeclarationHaveABody() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14736, __PRETTY_FUNCTION__))
14735 !CopyConstructor->isDeleted()) &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14736, __PRETTY_FUNCTION__))
14736 "DefineImplicitCopyConstructor - call it for implicit copy ctor")(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14736, __PRETTY_FUNCTION__))
;
14737 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
14738 return;
14739
14740 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
14741 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")((ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitCopyConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14741, __PRETTY_FUNCTION__))
;
14742
14743 SynthesizedFunctionScope Scope(*this, CopyConstructor);
14744
14745 // The exception specification is needed because we are defining the
14746 // function.
14747 ResolveExceptionSpec(CurrentLocation,
14748 CopyConstructor->getType()->castAs<FunctionProtoType>());
14749 MarkVTableUsed(CurrentLocation, ClassDecl);
14750
14751 // Add a context note for diagnostics produced after this point.
14752 Scope.addContextNote(CurrentLocation);
14753
14754 // C++11 [class.copy]p7:
14755 // The [definition of an implicitly declared copy constructor] is
14756 // deprecated if the class has a user-declared copy assignment operator
14757 // or a user-declared destructor.
14758 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
14759 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
14760
14761 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
14762 CopyConstructor->setInvalidDecl();
14763 } else {
14764 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
14765 ? CopyConstructor->getEndLoc()
14766 : CopyConstructor->getLocation();
14767 Sema::CompoundScopeRAII CompoundScope(*this);
14768 CopyConstructor->setBody(
14769 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
14770 CopyConstructor->markUsed(Context);
14771 }
14772
14773 if (ASTMutationListener *L = getASTMutationListener()) {
14774 L->CompletedImplicitDefinition(CopyConstructor);
14775 }
14776}
14777
14778CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
14779 CXXRecordDecl *ClassDecl) {
14780 assert(ClassDecl->needsImplicitMoveConstructor())((ClassDecl->needsImplicitMoveConstructor()) ? static_cast
<void> (0) : __assert_fail ("ClassDecl->needsImplicitMoveConstructor()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14780, __PRETTY_FUNCTION__))
;
14781
14782 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
14783 if (DSM.isAlreadyBeingDeclared())
14784 return nullptr;
14785
14786 QualType ClassType = Context.getTypeDeclType(ClassDecl);
14787
14788 QualType ArgType = ClassType;
14789 LangAS AS = getDefaultCXXMethodAddrSpace();
14790 if (AS != LangAS::Default)
14791 ArgType = Context.getAddrSpaceQualType(ClassType, AS);
14792 ArgType = Context.getRValueReferenceType(ArgType);
14793
14794 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
14795 CXXMoveConstructor,
14796 false);
14797
14798 DeclarationName Name
14799 = Context.DeclarationNames.getCXXConstructorName(
14800 Context.getCanonicalType(ClassType));
14801 SourceLocation ClassLoc = ClassDecl->getLocation();
14802 DeclarationNameInfo NameInfo(Name, ClassLoc);
14803
14804 // C++11 [class.copy]p11:
14805 // An implicitly-declared copy/move constructor is an inline public
14806 // member of its class.
14807 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
14808 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
14809 ExplicitSpecifier(),
14810 /*isInline=*/true,
14811 /*isImplicitlyDeclared=*/true,
14812 Constexpr ? ConstexprSpecKind::Constexpr
14813 : ConstexprSpecKind::Unspecified);
14814 MoveConstructor->setAccess(AS_public);
14815 MoveConstructor->setDefaulted();
14816
14817 if (getLangOpts().CUDA) {
14818 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
14819 MoveConstructor,
14820 /* ConstRHS */ false,
14821 /* Diagnose */ false);
14822 }
14823
14824 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
14825
14826 // Add the parameter to the constructor.
14827 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
14828 ClassLoc, ClassLoc,
14829 /*IdentifierInfo=*/nullptr,
14830 ArgType, /*TInfo=*/nullptr,
14831 SC_None, nullptr);
14832 MoveConstructor->setParams(FromParam);
14833
14834 MoveConstructor->setTrivial(
14835 ClassDecl->needsOverloadResolutionForMoveConstructor()
14836 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
14837 : ClassDecl->hasTrivialMoveConstructor());
14838
14839 MoveConstructor->setTrivialForCall(
14840 ClassDecl->hasAttr<TrivialABIAttr>() ||
14841 (ClassDecl->needsOverloadResolutionForMoveConstructor()
14842 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
14843 TAH_ConsiderTrivialABI)
14844 : ClassDecl->hasTrivialMoveConstructorForCall()));
14845
14846 // Note that we have declared this constructor.
14847 ++getASTContext().NumImplicitMoveConstructorsDeclared;
14848
14849 Scope *S = getScopeForContext(ClassDecl);
14850 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
14851
14852 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
14853 ClassDecl->setImplicitMoveConstructorIsDeleted();
14854 SetDeclDeleted(MoveConstructor, ClassLoc);
14855 }
14856
14857 if (S)
14858 PushOnScopeChains(MoveConstructor, S, false);
14859 ClassDecl->addDecl(MoveConstructor);
14860
14861 return MoveConstructor;
14862}
14863
14864void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
14865 CXXConstructorDecl *MoveConstructor) {
14866 assert((MoveConstructor->isDefaulted() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14870, __PRETTY_FUNCTION__))
14867 MoveConstructor->isMoveConstructor() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14870, __PRETTY_FUNCTION__))
14868 !MoveConstructor->doesThisDeclarationHaveABody() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14870, __PRETTY_FUNCTION__))
14869 !MoveConstructor->isDeleted()) &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14870, __PRETTY_FUNCTION__))
14870 "DefineImplicitMoveConstructor - call it for implicit move ctor")(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14870, __PRETTY_FUNCTION__))
;
14871 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
14872 return;
14873
14874 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
14875 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")((ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitMoveConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14875, __PRETTY_FUNCTION__))
;
14876
14877 SynthesizedFunctionScope Scope(*this, MoveConstructor);
14878
14879 // The exception specification is needed because we are defining the
14880 // function.
14881 ResolveExceptionSpec(CurrentLocation,
14882 MoveConstructor->getType()->castAs<FunctionProtoType>());
14883 MarkVTableUsed(CurrentLocation, ClassDecl);
14884
14885 // Add a context note for diagnostics produced after this point.
14886 Scope.addContextNote(CurrentLocation);
14887
14888 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
14889 MoveConstructor->setInvalidDecl();
14890 } else {
14891 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
14892 ? MoveConstructor->getEndLoc()
14893 : MoveConstructor->getLocation();
14894 Sema::CompoundScopeRAII CompoundScope(*this);
14895 MoveConstructor->setBody(ActOnCompoundStmt(
14896 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
14897 MoveConstructor->markUsed(Context);
14898 }
14899
14900 if (ASTMutationListener *L = getASTMutationListener()) {
14901 L->CompletedImplicitDefinition(MoveConstructor);
14902 }
14903}
14904
14905bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
14906 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
14907}
14908
14909void Sema::DefineImplicitLambdaToFunctionPointerConversion(
14910 SourceLocation CurrentLocation,
14911 CXXConversionDecl *Conv) {
14912 SynthesizedFunctionScope Scope(*this, Conv);
14913 assert(!Conv->getReturnType()->isUndeducedType())((!Conv->getReturnType()->isUndeducedType()) ? static_cast
<void> (0) : __assert_fail ("!Conv->getReturnType()->isUndeducedType()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14913, __PRETTY_FUNCTION__))
;
1
'?' condition is true
14914
14915 QualType ConvRT = Conv->getType()->getAs<FunctionType>()->getReturnType();
2
Assuming the object is a 'FunctionType'
14916 CallingConv CC =
14917 ConvRT->getPointeeType()->getAs<FunctionType>()->getCallConv();
3
Assuming the object is not a 'FunctionType'
4
Called C++ object pointer is null
14918
14919 CXXRecordDecl *Lambda = Conv->getParent();
14920 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
14921 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker(CC);
14922
14923 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
14924 CallOp = InstantiateFunctionDeclaration(
14925 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14926 if (!CallOp)
14927 return;
14928
14929 Invoker = InstantiateFunctionDeclaration(
14930 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
14931 if (!Invoker)
14932 return;
14933 }
14934
14935 if (CallOp->isInvalidDecl())
14936 return;
14937
14938 // Mark the call operator referenced (and add to pending instantiations
14939 // if necessary).
14940 // For both the conversion and static-invoker template specializations
14941 // we construct their body's in this function, so no need to add them
14942 // to the PendingInstantiations.
14943 MarkFunctionReferenced(CurrentLocation, CallOp);
14944
14945 // Fill in the __invoke function with a dummy implementation. IR generation
14946 // will fill in the actual details. Update its type in case it contained
14947 // an 'auto'.
14948 Invoker->markUsed(Context);
14949 Invoker->setReferenced();
14950 Invoker->setType(Conv->getReturnType()->getPointeeType());
14951 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
14952
14953 // Construct the body of the conversion function { return __invoke; }.
14954 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
14955 VK_LValue, Conv->getLocation());
14956 assert(FunctionRef && "Can't refer to __invoke function?")((FunctionRef && "Can't refer to __invoke function?")
? static_cast<void> (0) : __assert_fail ("FunctionRef && \"Can't refer to __invoke function?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14956, __PRETTY_FUNCTION__))
;
14957 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
14958 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
14959 Conv->getLocation()));
14960 Conv->markUsed(Context);
14961 Conv->setReferenced();
14962
14963 if (ASTMutationListener *L = getASTMutationListener()) {
14964 L->CompletedImplicitDefinition(Conv);
14965 L->CompletedImplicitDefinition(Invoker);
14966 }
14967}
14968
14969
14970
14971void Sema::DefineImplicitLambdaToBlockPointerConversion(
14972 SourceLocation CurrentLocation,
14973 CXXConversionDecl *Conv)
14974{
14975 assert(!Conv->getParent()->isGenericLambda())((!Conv->getParent()->isGenericLambda()) ? static_cast<
void> (0) : __assert_fail ("!Conv->getParent()->isGenericLambda()"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 14975, __PRETTY_FUNCTION__))
;
14976
14977 SynthesizedFunctionScope Scope(*this, Conv);
14978
14979 // Copy-initialize the lambda object as needed to capture it.
14980 Expr *This = ActOnCXXThis(CurrentLocation).get();
14981 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
14982
14983 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
14984 Conv->getLocation(),
14985 Conv, DerefThis);
14986
14987 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
14988 // behavior. Note that only the general conversion function does this
14989 // (since it's unusable otherwise); in the case where we inline the
14990 // block literal, it has block literal lifetime semantics.
14991 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
14992 BuildBlock = ImplicitCastExpr::Create(
14993 Context, BuildBlock.get()->getType(), CK_CopyAndAutoreleaseBlockObject,
14994 BuildBlock.get(), nullptr, VK_RValue, FPOptionsOverride());
14995
14996 if (BuildBlock.isInvalid()) {
14997 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
14998 Conv->setInvalidDecl();
14999 return;
15000 }
15001
15002 // Create the return statement that returns the block from the conversion
15003 // function.
15004 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
15005 if (Return.isInvalid()) {
15006 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
15007 Conv->setInvalidDecl();
15008 return;
15009 }
15010
15011 // Set the body of the conversion function.
15012 Stmt *ReturnS = Return.get();
15013 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
15014 Conv->getLocation()));
15015 Conv->markUsed(Context);
15016
15017 // We're done; notify the mutation listener, if any.
15018 if (ASTMutationListener *L = getASTMutationListener()) {
15019 L->CompletedImplicitDefinition(Conv);
15020 }
15021}
15022
15023/// Determine whether the given list arguments contains exactly one
15024/// "real" (non-default) argument.
15025static bool hasOneRealArgument(MultiExprArg Args) {
15026 switch (Args.size()) {
15027 case 0:
15028 return false;
15029
15030 default:
15031 if (!Args[1]->isDefaultArgument())
15032 return false;
15033
15034 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15035 case 1:
15036 return !Args[0]->isDefaultArgument();
15037 }
15038
15039 return false;
15040}
15041
15042ExprResult
15043Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15044 NamedDecl *FoundDecl,
15045 CXXConstructorDecl *Constructor,
15046 MultiExprArg ExprArgs,
15047 bool HadMultipleCandidates,
15048 bool IsListInitialization,
15049 bool IsStdInitListInitialization,
15050 bool RequiresZeroInit,
15051 unsigned ConstructKind,
15052 SourceRange ParenRange) {
15053 bool Elidable = false;
15054
15055 // C++0x [class.copy]p34:
15056 // When certain criteria are met, an implementation is allowed to
15057 // omit the copy/move construction of a class object, even if the
15058 // copy/move constructor and/or destructor for the object have
15059 // side effects. [...]
15060 // - when a temporary class object that has not been bound to a
15061 // reference (12.2) would be copied/moved to a class object
15062 // with the same cv-unqualified type, the copy/move operation
15063 // can be omitted by constructing the temporary object
15064 // directly into the target of the omitted copy/move
15065 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
15066 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
15067 Expr *SubExpr = ExprArgs[0];
15068 Elidable = SubExpr->isTemporaryObject(
15069 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
15070 }
15071
15072 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
15073 FoundDecl, Constructor,
15074 Elidable, ExprArgs, HadMultipleCandidates,
15075 IsListInitialization,
15076 IsStdInitListInitialization, RequiresZeroInit,
15077 ConstructKind, ParenRange);
15078}
15079
15080ExprResult
15081Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15082 NamedDecl *FoundDecl,
15083 CXXConstructorDecl *Constructor,
15084 bool Elidable,
15085 MultiExprArg ExprArgs,
15086 bool HadMultipleCandidates,
15087 bool IsListInitialization,
15088 bool IsStdInitListInitialization,
15089 bool RequiresZeroInit,
15090 unsigned ConstructKind,
15091 SourceRange ParenRange) {
15092 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
15093 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
15094 if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
15095 return ExprError();
15096 }
15097
15098 return BuildCXXConstructExpr(
15099 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
15100 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
15101 RequiresZeroInit, ConstructKind, ParenRange);
15102}
15103
15104/// BuildCXXConstructExpr - Creates a complete call to a constructor,
15105/// including handling of its default argument expressions.
15106ExprResult
15107Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
15108 CXXConstructorDecl *Constructor,
15109 bool Elidable,
15110 MultiExprArg ExprArgs,
15111 bool HadMultipleCandidates,
15112 bool IsListInitialization,
15113 bool IsStdInitListInitialization,
15114 bool RequiresZeroInit,
15115 unsigned ConstructKind,
15116 SourceRange ParenRange) {
15117 assert(declaresSameEntity(((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15120, __PRETTY_FUNCTION__))
15118 Constructor->getParent(),((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15120, __PRETTY_FUNCTION__))
15119 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15120, __PRETTY_FUNCTION__))
15120 "given constructor for wrong type")((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15120, __PRETTY_FUNCTION__))
;
15121 MarkFunctionReferenced(ConstructLoc, Constructor);
15122 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
15123 return ExprError();
15124 if (getLangOpts().SYCLIsDevice &&
15125 !checkSYCLDeviceFunction(ConstructLoc, Constructor))
15126 return ExprError();
15127
15128 return CheckForImmediateInvocation(
15129 CXXConstructExpr::Create(
15130 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
15131 HadMultipleCandidates, IsListInitialization,
15132 IsStdInitListInitialization, RequiresZeroInit,
15133 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
15134 ParenRange),
15135 Constructor);
15136}
15137
15138ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
15139 assert(Field->hasInClassInitializer())((Field->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Field->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15139, __PRETTY_FUNCTION__))
;
15140
15141 // If we already have the in-class initializer nothing needs to be done.
15142 if (Field->getInClassInitializer())
15143 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15144
15145 // If we might have already tried and failed to instantiate, don't try again.
15146 if (Field->isInvalidDecl())
15147 return ExprError();
15148
15149 // Maybe we haven't instantiated the in-class initializer. Go check the
15150 // pattern FieldDecl to see if it has one.
15151 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
15152
15153 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
15154 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
15155 DeclContext::lookup_result Lookup =
15156 ClassPattern->lookup(Field->getDeclName());
15157
15158 FieldDecl *Pattern = nullptr;
15159 for (auto L : Lookup) {
15160 if (isa<FieldDecl>(L)) {
15161 Pattern = cast<FieldDecl>(L);
15162 break;
15163 }
15164 }
15165 assert(Pattern && "We must have set the Pattern!")((Pattern && "We must have set the Pattern!") ? static_cast
<void> (0) : __assert_fail ("Pattern && \"We must have set the Pattern!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15165, __PRETTY_FUNCTION__))
;
15166
15167 if (!Pattern->hasInClassInitializer() ||
15168 InstantiateInClassInitializer(Loc, Field, Pattern,
15169 getTemplateInstantiationArgs(Field))) {
15170 // Don't diagnose this again.
15171 Field->setInvalidDecl();
15172 return ExprError();
15173 }
15174 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
15175 }
15176
15177 // DR1351:
15178 // If the brace-or-equal-initializer of a non-static data member
15179 // invokes a defaulted default constructor of its class or of an
15180 // enclosing class in a potentially evaluated subexpression, the
15181 // program is ill-formed.
15182 //
15183 // This resolution is unworkable: the exception specification of the
15184 // default constructor can be needed in an unevaluated context, in
15185 // particular, in the operand of a noexcept-expression, and we can be
15186 // unable to compute an exception specification for an enclosed class.
15187 //
15188 // Any attempt to resolve the exception specification of a defaulted default
15189 // constructor before the initializer is lexically complete will ultimately
15190 // come here at which point we can diagnose it.
15191 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
15192 Diag(Loc, diag::err_default_member_initializer_not_yet_parsed)
15193 << OutermostClass << Field;
15194 Diag(Field->getEndLoc(),
15195 diag::note_default_member_initializer_not_yet_parsed);
15196 // Recover by marking the field invalid, unless we're in a SFINAE context.
15197 if (!isSFINAEContext())
15198 Field->setInvalidDecl();
15199 return ExprError();
15200}
15201
15202void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
15203 if (VD->isInvalidDecl()) return;
15204 // If initializing the variable failed, don't also diagnose problems with
15205 // the desctructor, they're likely related.
15206 if (VD->getInit() && VD->getInit()->containsErrors())
15207 return;
15208
15209 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
15210 if (ClassDecl->isInvalidDecl()) return;
15211 if (ClassDecl->hasIrrelevantDestructor()) return;
15212 if (ClassDecl->isDependentContext()) return;
15213
15214 if (VD->isNoDestroy(getASTContext()))
15215 return;
15216
15217 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
15218
15219 // If this is an array, we'll require the destructor during initialization, so
15220 // we can skip over this. We still want to emit exit-time destructor warnings
15221 // though.
15222 if (!VD->getType()->isArrayType()) {
15223 MarkFunctionReferenced(VD->getLocation(), Destructor);
15224 CheckDestructorAccess(VD->getLocation(), Destructor,
15225 PDiag(diag::err_access_dtor_var)
15226 << VD->getDeclName() << VD->getType());
15227 DiagnoseUseOfDecl(Destructor, VD->getLocation());
15228 }
15229
15230 if (Destructor->isTrivial()) return;
15231
15232 // If the destructor is constexpr, check whether the variable has constant
15233 // destruction now.
15234 if (Destructor->isConstexpr()) {
15235 bool HasConstantInit = false;
15236 if (VD->getInit() && !VD->getInit()->isValueDependent())
15237 HasConstantInit = VD->evaluateValue();
15238 SmallVector<PartialDiagnosticAt, 8> Notes;
15239 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr() &&
15240 HasConstantInit) {
15241 Diag(VD->getLocation(),
15242 diag::err_constexpr_var_requires_const_destruction) << VD;
15243 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
15244 Diag(Notes[I].first, Notes[I].second);
15245 }
15246 }
15247
15248 if (!VD->hasGlobalStorage()) return;
15249
15250 // Emit warning for non-trivial dtor in global scope (a real global,
15251 // class-static, function-static).
15252 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
15253
15254 // TODO: this should be re-enabled for static locals by !CXAAtExit
15255 if (!VD->isStaticLocal())
15256 Diag(VD->getLocation(), diag::warn_global_destructor);
15257}
15258
15259/// Given a constructor and the set of arguments provided for the
15260/// constructor, convert the arguments and add any required default arguments
15261/// to form a proper call to this constructor.
15262///
15263/// \returns true if an error occurred, false otherwise.
15264bool Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
15265 QualType DeclInitType, MultiExprArg ArgsPtr,
15266 SourceLocation Loc,
15267 SmallVectorImpl<Expr *> &ConvertedArgs,
15268 bool AllowExplicit,
15269 bool IsListInitialization) {
15270 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
15271 unsigned NumArgs = ArgsPtr.size();
15272 Expr **Args = ArgsPtr.data();
15273
15274 const auto *Proto = Constructor->getType()->castAs<FunctionProtoType>();
15275 unsigned NumParams = Proto->getNumParams();
15276
15277 // If too few arguments are available, we'll fill in the rest with defaults.
15278 if (NumArgs < NumParams)
15279 ConvertedArgs.reserve(NumParams);
15280 else
15281 ConvertedArgs.reserve(NumArgs);
15282
15283 VariadicCallType CallType =
15284 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
15285 SmallVector<Expr *, 8> AllArgs;
15286 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
15287 Proto, 0,
15288 llvm::makeArrayRef(Args, NumArgs),
15289 AllArgs,
15290 CallType, AllowExplicit,
15291 IsListInitialization);
15292 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
15293
15294 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
15295
15296 CheckConstructorCall(Constructor, DeclInitType,
15297 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
15298 Proto, Loc);
15299
15300 return Invalid;
15301}
15302
15303static inline bool
15304CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
15305 const FunctionDecl *FnDecl) {
15306 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
15307 if (isa<NamespaceDecl>(DC)) {
15308 return SemaRef.Diag(FnDecl->getLocation(),
15309 diag::err_operator_new_delete_declared_in_namespace)
15310 << FnDecl->getDeclName();
15311 }
15312
15313 if (isa<TranslationUnitDecl>(DC) &&
15314 FnDecl->getStorageClass() == SC_Static) {
15315 return SemaRef.Diag(FnDecl->getLocation(),
15316 diag::err_operator_new_delete_declared_static)
15317 << FnDecl->getDeclName();
15318 }
15319
15320 return false;
15321}
15322
15323static CanQualType RemoveAddressSpaceFromPtr(Sema &SemaRef,
15324 const PointerType *PtrTy) {
15325 auto &Ctx = SemaRef.Context;
15326 Qualifiers PtrQuals = PtrTy->getPointeeType().getQualifiers();
15327 PtrQuals.removeAddressSpace();
15328 return Ctx.getPointerType(Ctx.getCanonicalType(Ctx.getQualifiedType(
15329 PtrTy->getPointeeType().getUnqualifiedType(), PtrQuals)));
15330}
15331
15332static inline bool
15333CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
15334 CanQualType ExpectedResultType,
15335 CanQualType ExpectedFirstParamType,
15336 unsigned DependentParamTypeDiag,
15337 unsigned InvalidParamTypeDiag) {
15338 QualType ResultType =
15339 FnDecl->getType()->castAs<FunctionType>()->getReturnType();
15340
15341 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15342 // The operator is valid on any address space for OpenCL.
15343 // Drop address space from actual and expected result types.
15344 if (const auto *PtrTy = ResultType->getAs<PointerType>())
15345 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15346
15347 if (auto ExpectedPtrTy = ExpectedResultType->getAs<PointerType>())
15348 ExpectedResultType = RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15349 }
15350
15351 // Check that the result type is what we expect.
15352 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType) {
15353 // Reject even if the type is dependent; an operator delete function is
15354 // required to have a non-dependent result type.
15355 return SemaRef.Diag(
15356 FnDecl->getLocation(),
15357 ResultType->isDependentType()
15358 ? diag::err_operator_new_delete_dependent_result_type
15359 : diag::err_operator_new_delete_invalid_result_type)
15360 << FnDecl->getDeclName() << ExpectedResultType;
15361 }
15362
15363 // A function template must have at least 2 parameters.
15364 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
15365 return SemaRef.Diag(FnDecl->getLocation(),
15366 diag::err_operator_new_delete_template_too_few_parameters)
15367 << FnDecl->getDeclName();
15368
15369 // The function decl must have at least 1 parameter.
15370 if (FnDecl->getNumParams() == 0)
15371 return SemaRef.Diag(FnDecl->getLocation(),
15372 diag::err_operator_new_delete_too_few_parameters)
15373 << FnDecl->getDeclName();
15374
15375 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
15376 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
15377 // The operator is valid on any address space for OpenCL.
15378 // Drop address space from actual and expected first parameter types.
15379 if (const auto *PtrTy =
15380 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>())
15381 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
15382
15383 if (auto ExpectedPtrTy = ExpectedFirstParamType->getAs<PointerType>())
15384 ExpectedFirstParamType =
15385 RemoveAddressSpaceFromPtr(SemaRef, ExpectedPtrTy);
15386 }
15387
15388 // Check that the first parameter type is what we expect.
15389 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
15390 ExpectedFirstParamType) {
15391 // The first parameter type is not allowed to be dependent. As a tentative
15392 // DR resolution, we allow a dependent parameter type if it is the right
15393 // type anyway, to allow destroying operator delete in class templates.
15394 return SemaRef.Diag(FnDecl->getLocation(), FirstParamType->isDependentType()
15395 ? DependentParamTypeDiag
15396 : InvalidParamTypeDiag)
15397 << FnDecl->getDeclName() << ExpectedFirstParamType;
15398 }
15399
15400 return false;
15401}
15402
15403static bool
15404CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
15405 // C++ [basic.stc.dynamic.allocation]p1:
15406 // A program is ill-formed if an allocation function is declared in a
15407 // namespace scope other than global scope or declared static in global
15408 // scope.
15409 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15410 return true;
15411
15412 CanQualType SizeTy =
15413 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
15414
15415 // C++ [basic.stc.dynamic.allocation]p1:
15416 // The return type shall be void*. The first parameter shall have type
15417 // std::size_t.
15418 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
15419 SizeTy,
15420 diag::err_operator_new_dependent_param_type,
15421 diag::err_operator_new_param_type))
15422 return true;
15423
15424 // C++ [basic.stc.dynamic.allocation]p1:
15425 // The first parameter shall not have an associated default argument.
15426 if (FnDecl->getParamDecl(0)->hasDefaultArg())
15427 return SemaRef.Diag(FnDecl->getLocation(),
15428 diag::err_operator_new_default_arg)
15429 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
15430
15431 return false;
15432}
15433
15434static bool
15435CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
15436 // C++ [basic.stc.dynamic.deallocation]p1:
15437 // A program is ill-formed if deallocation functions are declared in a
15438 // namespace scope other than global scope or declared static in global
15439 // scope.
15440 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
15441 return true;
15442
15443 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
15444
15445 // C++ P0722:
15446 // Within a class C, the first parameter of a destroying operator delete
15447 // shall be of type C *. The first parameter of any other deallocation
15448 // function shall be of type void *.
15449 CanQualType ExpectedFirstParamType =
15450 MD && MD->isDestroyingOperatorDelete()
15451 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
15452 SemaRef.Context.getRecordType(MD->getParent())))
15453 : SemaRef.Context.VoidPtrTy;
15454
15455 // C++ [basic.stc.dynamic.deallocation]p2:
15456 // Each deallocation function shall return void
15457 if (CheckOperatorNewDeleteTypes(
15458 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
15459 diag::err_operator_delete_dependent_param_type,
15460 diag::err_operator_delete_param_type))
15461 return true;
15462
15463 // C++ P0722:
15464 // A destroying operator delete shall be a usual deallocation function.
15465 if (MD && !MD->getParent()->isDependentContext() &&
15466 MD->isDestroyingOperatorDelete() &&
15467 !SemaRef.isUsualDeallocationFunction(MD)) {
15468 SemaRef.Diag(MD->getLocation(),
15469 diag::err_destroying_operator_delete_not_usual);
15470 return true;
15471 }
15472
15473 return false;
15474}
15475
15476/// CheckOverloadedOperatorDeclaration - Check whether the declaration
15477/// of this overloaded operator is well-formed. If so, returns false;
15478/// otherwise, emits appropriate diagnostics and returns true.
15479bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
15480 assert(FnDecl && FnDecl->isOverloadedOperator() &&((FnDecl && FnDecl->isOverloadedOperator() &&
"Expected an overloaded operator declaration") ? static_cast
<void> (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15481, __PRETTY_FUNCTION__))
15481 "Expected an overloaded operator declaration")((FnDecl && FnDecl->isOverloadedOperator() &&
"Expected an overloaded operator declaration") ? static_cast
<void> (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15481, __PRETTY_FUNCTION__))
;
15482
15483 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
15484
15485 // C++ [over.oper]p5:
15486 // The allocation and deallocation functions, operator new,
15487 // operator new[], operator delete and operator delete[], are
15488 // described completely in 3.7.3. The attributes and restrictions
15489 // found in the rest of this subclause do not apply to them unless
15490 // explicitly stated in 3.7.3.
15491 if (Op == OO_Delete || Op == OO_Array_Delete)
15492 return CheckOperatorDeleteDeclaration(*this, FnDecl);
15493
15494 if (Op == OO_New || Op == OO_Array_New)
15495 return CheckOperatorNewDeclaration(*this, FnDecl);
15496
15497 // C++ [over.oper]p6:
15498 // An operator function shall either be a non-static member
15499 // function or be a non-member function and have at least one
15500 // parameter whose type is a class, a reference to a class, an
15501 // enumeration, or a reference to an enumeration.
15502 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
15503 if (MethodDecl->isStatic())
15504 return Diag(FnDecl->getLocation(),
15505 diag::err_operator_overload_static) << FnDecl->getDeclName();
15506 } else {
15507 bool ClassOrEnumParam = false;
15508 for (auto Param : FnDecl->parameters()) {
15509 QualType ParamType = Param->getType().getNonReferenceType();
15510 if (ParamType->isDependentType() || ParamType->isRecordType() ||
15511 ParamType->isEnumeralType()) {
15512 ClassOrEnumParam = true;
15513 break;
15514 }
15515 }
15516
15517 if (!ClassOrEnumParam)
15518 return Diag(FnDecl->getLocation(),
15519 diag::err_operator_overload_needs_class_or_enum)
15520 << FnDecl->getDeclName();
15521 }
15522
15523 // C++ [over.oper]p8:
15524 // An operator function cannot have default arguments (8.3.6),
15525 // except where explicitly stated below.
15526 //
15527 // Only the function-call operator allows default arguments
15528 // (C++ [over.call]p1).
15529 if (Op != OO_Call) {
15530 for (auto Param : FnDecl->parameters()) {
15531 if (Param->hasDefaultArg())
15532 return Diag(Param->getLocation(),
15533 diag::err_operator_overload_default_arg)
15534 << FnDecl->getDeclName() << Param->getDefaultArgRange();
15535 }
15536 }
15537
15538 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
15539 { false, false, false }
15540#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
15541 , { Unary, Binary, MemberOnly }
15542#include "clang/Basic/OperatorKinds.def"
15543 };
15544
15545 bool CanBeUnaryOperator = OperatorUses[Op][0];
15546 bool CanBeBinaryOperator = OperatorUses[Op][1];
15547 bool MustBeMemberOperator = OperatorUses[Op][2];
15548
15549 // C++ [over.oper]p8:
15550 // [...] Operator functions cannot have more or fewer parameters
15551 // than the number required for the corresponding operator, as
15552 // described in the rest of this subclause.
15553 unsigned NumParams = FnDecl->getNumParams()
15554 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
15555 if (Op != OO_Call &&
15556 ((NumParams == 1 && !CanBeUnaryOperator) ||
15557 (NumParams == 2 && !CanBeBinaryOperator) ||
15558 (NumParams < 1) || (NumParams > 2))) {
15559 // We have the wrong number of parameters.
15560 unsigned ErrorKind;
15561 if (CanBeUnaryOperator && CanBeBinaryOperator) {
15562 ErrorKind = 2; // 2 -> unary or binary.
15563 } else if (CanBeUnaryOperator) {
15564 ErrorKind = 0; // 0 -> unary
15565 } else {
15566 assert(CanBeBinaryOperator &&((CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? static_cast<void> (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15567, __PRETTY_FUNCTION__))
15567 "All non-call overloaded operators are unary or binary!")((CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? static_cast<void> (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 15567, __PRETTY_FUNCTION__))
;
15568 ErrorKind = 1; // 1 -> binary
15569 }
15570
15571 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
15572 << FnDecl->getDeclName() << NumParams << ErrorKind;
15573 }
15574
15575 // Overloaded operators other than operator() cannot be variadic.
15576 if (Op != OO_Call &&
15577 FnDecl->getType()->castAs<FunctionProtoType>()->isVariadic()) {
15578 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
15579 << FnDecl->getDeclName();
15580 }
15581
15582 // Some operators must be non-static member functions.
15583 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
15584 return Diag(FnDecl->getLocation(),
15585 diag::err_operator_overload_must_be_member)
15586 << FnDecl->getDeclName();
15587 }
15588
15589 // C++ [over.inc]p1:
15590 // The user-defined function called operator++ implements the
15591 // prefix and postfix ++ operator. If this function is a member
15592 // function with no parameters, or a non-member function with one
15593 // parameter of class or enumeration type, it defines the prefix
15594 // increment operator ++ for objects of that type. If the function
15595 // is a member function with one parameter (which shall be of type
15596 // int) or a non-member function with two parameters (the second
15597 // of which shall be of type int), it defines the postfix
15598 // increment operator ++ for objects of that type.
15599 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
15600 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
15601 QualType ParamType = LastParam->getType();
15602
15603 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
15604 !ParamType->isDependentType())
15605 return Diag(LastParam->getLocation(),
15606 diag::err_operator_overload_post_incdec_must_be_int)
15607 << LastParam->getType() << (Op == OO_MinusMinus);
15608 }
15609
15610 return false;
15611}
15612
15613static bool
15614checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
15615 FunctionTemplateDecl *TpDecl) {
15616 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
15617
15618 // Must have one or two template parameters.
15619 if (TemplateParams->size() == 1) {
15620 NonTypeTemplateParmDecl *PmDecl =
15621 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
15622
15623 // The template parameter must be a char parameter pack.
15624 if (PmDecl && PmDecl->isTemplateParameterPack() &&
15625 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
15626 return false;
15627
15628 // C++20 [over.literal]p5:
15629 // A string literal operator template is a literal operator template
15630 // whose template-parameter-list comprises a single non-type
15631 // template-parameter of class type.
15632 //
15633 // As a DR resolution, we also allow placeholders for deduced class
15634 // template specializations.
15635 if (SemaRef.getLangOpts().CPlusPlus20 &&
15636 !PmDecl->isTemplateParameterPack() &&
15637 (PmDecl->getType()->isRecordType() ||
15638 PmDecl->getType()->getAs<DeducedTemplateSpecializationType>()))
15639 return false;
15640 } else if (TemplateParams->size() == 2) {
15641 TemplateTypeParmDecl *PmType =
15642 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
15643 NonTypeTemplateParmDecl *PmArgs =
15644 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
15645
15646 // The second template parameter must be a parameter pack with the
15647 // first template parameter as its type.
15648 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
15649 PmArgs->isTemplateParameterPack()) {
15650 const TemplateTypeParmType *TArgs =
15651 PmArgs->getType()->getAs<TemplateTypeParmType>();
15652 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
15653 TArgs->getIndex() == PmType->getIndex()) {
15654 if (!SemaRef.inTemplateInstantiation())
15655 SemaRef.Diag(TpDecl->getLocation(),
15656 diag::ext_string_literal_operator_template);
15657 return false;
15658 }
15659 }
15660 }
15661
15662 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
15663 diag::err_literal_operator_template)
15664 << TpDecl->getTemplateParameters()->getSourceRange();
15665 return true;
15666}
15667
15668/// CheckLiteralOperatorDeclaration - Check whether the declaration
15669/// of this literal operator function is well-formed. If so, returns
15670/// false; otherwise, emits appropriate diagnostics and returns true.
15671bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
15672 if (isa<CXXMethodDecl>(FnDecl)) {
15673 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
15674 << FnDecl->getDeclName();
15675 return true;
15676 }
15677
15678 if (FnDecl->isExternC()) {
15679 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
15680 if (const LinkageSpecDecl *LSD =
15681 FnDecl->getDeclContext()->getExternCContext())
15682 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
15683 return true;
15684 }
15685
15686 // This might be the definition of a literal operator template.
15687 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
15688
15689 // This might be a specialization of a literal operator template.
15690 if (!TpDecl)
15691 TpDecl = FnDecl->getPrimaryTemplate();
15692
15693 // template <char...> type operator "" name() and
15694 // template <class T, T...> type operator "" name() are the only valid
15695 // template signatures, and the only valid signatures with no parameters.
15696 //
15697 // C++20 also allows template <SomeClass T> type operator "" name().
15698 if (TpDecl) {
15699 if (FnDecl->param_size() != 0) {
15700 Diag(FnDecl->getLocation(),
15701 diag::err_literal_operator_template_with_params);
15702 return true;
15703 }
15704
15705 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
15706 return true;
15707
15708 } else if (FnDecl->param_size() == 1) {
15709 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
15710
15711 QualType ParamType = Param->getType().getUnqualifiedType();
15712
15713 // Only unsigned long long int, long double, any character type, and const
15714 // char * are allowed as the only parameters.
15715 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
15716 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
15717 Context.hasSameType(ParamType, Context.CharTy) ||
15718 Context.hasSameType(ParamType, Context.WideCharTy) ||
15719 Context.hasSameType(ParamType, Context.Char8Ty) ||
15720 Context.hasSameType(ParamType, Context.Char16Ty) ||
15721 Context.hasSameType(ParamType, Context.Char32Ty)) {
15722 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
15723 QualType InnerType = Ptr->getPointeeType();
15724
15725 // Pointer parameter must be a const char *.
15726 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
15727 Context.CharTy) &&
15728 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
15729 Diag(Param->getSourceRange().getBegin(),
15730 diag::err_literal_operator_param)
15731 << ParamType << "'const char *'" << Param->getSourceRange();
15732 return true;
15733 }
15734
15735 } else if (ParamType->isRealFloatingType()) {
15736 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15737 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
15738 return true;
15739
15740 } else if (ParamType->isIntegerType()) {
15741 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
15742 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
15743 return true;
15744
15745 } else {
15746 Diag(Param->getSourceRange().getBegin(),
15747 diag::err_literal_operator_invalid_param)
15748 << ParamType << Param->getSourceRange();
15749 return true;
15750 }
15751
15752 } else if (FnDecl->param_size() == 2) {
15753 FunctionDecl::param_iterator Param = FnDecl->param_begin();
15754
15755 // First, verify that the first parameter is correct.
15756
15757 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
15758
15759 // Two parameter function must have a pointer to const as a
15760 // first parameter; let's strip those qualifiers.
15761 const PointerType *PT = FirstParamType->getAs<PointerType>();
15762
15763 if (!PT) {
15764 Diag((*Param)->getSourceRange().getBegin(),
15765 diag::err_literal_operator_param)
15766 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15767 return true;
15768 }
15769
15770 QualType PointeeType = PT->getPointeeType();
15771 // First parameter must be const
15772 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
15773 Diag((*Param)->getSourceRange().getBegin(),
15774 diag::err_literal_operator_param)
15775 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15776 return true;
15777 }
15778
15779 QualType InnerType = PointeeType.getUnqualifiedType();
15780 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
15781 // const char32_t* are allowed as the first parameter to a two-parameter
15782 // function
15783 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
15784 Context.hasSameType(InnerType, Context.WideCharTy) ||
15785 Context.hasSameType(InnerType, Context.Char8Ty) ||
15786 Context.hasSameType(InnerType, Context.Char16Ty) ||
15787 Context.hasSameType(InnerType, Context.Char32Ty))) {
15788 Diag((*Param)->getSourceRange().getBegin(),
15789 diag::err_literal_operator_param)
15790 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
15791 return true;
15792 }
15793
15794 // Move on to the second and final parameter.
15795 ++Param;
15796
15797 // The second parameter must be a std::size_t.
15798 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
15799 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
15800 Diag((*Param)->getSourceRange().getBegin(),
15801 diag::err_literal_operator_param)
15802 << SecondParamType << Context.getSizeType()
15803 << (*Param)->getSourceRange();
15804 return true;
15805 }
15806 } else {
15807 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
15808 return true;
15809 }
15810
15811 // Parameters are good.
15812
15813 // A parameter-declaration-clause containing a default argument is not
15814 // equivalent to any of the permitted forms.
15815 for (auto Param : FnDecl->parameters()) {
15816 if (Param->hasDefaultArg()) {
15817 Diag(Param->getDefaultArgRange().getBegin(),
15818 diag::err_literal_operator_default_argument)
15819 << Param->getDefaultArgRange();
15820 break;
15821 }
15822 }
15823
15824 StringRef LiteralName
15825 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
15826 if (LiteralName[0] != '_' &&
15827 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
15828 // C++11 [usrlit.suffix]p1:
15829 // Literal suffix identifiers that do not start with an underscore
15830 // are reserved for future standardization.
15831 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
15832 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
15833 }
15834
15835 return false;
15836}
15837
15838/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
15839/// linkage specification, including the language and (if present)
15840/// the '{'. ExternLoc is the location of the 'extern', Lang is the
15841/// language string literal. LBraceLoc, if valid, provides the location of
15842/// the '{' brace. Otherwise, this linkage specification does not
15843/// have any braces.
15844Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
15845 Expr *LangStr,
15846 SourceLocation LBraceLoc) {
15847 StringLiteral *Lit = cast<StringLiteral>(LangStr);
15848 if (!Lit->isAscii()) {
15849 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
15850 << LangStr->getSourceRange();
15851 return nullptr;
15852 }
15853
15854 StringRef Lang = Lit->getString();
15855 LinkageSpecDecl::LanguageIDs Language;
15856 if (Lang == "C")
15857 Language = LinkageSpecDecl::lang_c;
15858 else if (Lang == "C++")
15859 Language = LinkageSpecDecl::lang_cxx;
15860 else {
15861 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
15862 << LangStr->getSourceRange();
15863 return nullptr;
15864 }
15865
15866 // FIXME: Add all the various semantics of linkage specifications
15867
15868 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
15869 LangStr->getExprLoc(), Language,
15870 LBraceLoc.isValid());
15871 CurContext->addDecl(D);
15872 PushDeclContext(S, D);
15873 return D;
15874}
15875
15876/// ActOnFinishLinkageSpecification - Complete the definition of
15877/// the C++ linkage specification LinkageSpec. If RBraceLoc is
15878/// valid, it's the position of the closing '}' brace in a linkage
15879/// specification that uses braces.
15880Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
15881 Decl *LinkageSpec,
15882 SourceLocation RBraceLoc) {
15883 if (RBraceLoc.isValid()) {
15884 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
15885 LSDecl->setRBraceLoc(RBraceLoc);
15886 }
15887 PopDeclContext();
15888 return LinkageSpec;
15889}
15890
15891Decl *Sema::ActOnEmptyDeclaration(Scope *S,
15892 const ParsedAttributesView &AttrList,
15893 SourceLocation SemiLoc) {
15894 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
15895 // Attribute declarations appertain to empty declaration so we handle
15896 // them here.
15897 ProcessDeclAttributeList(S, ED, AttrList);
15898
15899 CurContext->addDecl(ED);
15900 return ED;
15901}
15902
15903/// Perform semantic analysis for the variable declaration that
15904/// occurs within a C++ catch clause, returning the newly-created
15905/// variable.
15906VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
15907 TypeSourceInfo *TInfo,
15908 SourceLocation StartLoc,
15909 SourceLocation Loc,
15910 IdentifierInfo *Name) {
15911 bool Invalid = false;
15912 QualType ExDeclType = TInfo->getType();
15913
15914 // Arrays and functions decay.
15915 if (ExDeclType->isArrayType())
15916 ExDeclType = Context.getArrayDecayedType(ExDeclType);
15917 else if (ExDeclType->isFunctionType())
15918 ExDeclType = Context.getPointerType(ExDeclType);
15919
15920 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
15921 // The exception-declaration shall not denote a pointer or reference to an
15922 // incomplete type, other than [cv] void*.
15923 // N2844 forbids rvalue references.
15924 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
15925 Diag(Loc, diag::err_catch_rvalue_ref);
15926 Invalid = true;
15927 }
15928
15929 if (ExDeclType->isVariablyModifiedType()) {
15930 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
15931 Invalid = true;
15932 }
15933
15934 QualType BaseType = ExDeclType;
15935 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
15936 unsigned DK = diag::err_catch_incomplete;
15937 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
15938 BaseType = Ptr->getPointeeType();
15939 Mode = 1;
15940 DK = diag::err_catch_incomplete_ptr;
15941 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
15942 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
15943 BaseType = Ref->getPointeeType();
15944 Mode = 2;
15945 DK = diag::err_catch_incomplete_ref;
15946 }
15947 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
15948 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
15949 Invalid = true;
15950
15951 if (!Invalid && Mode != 1 && BaseType->isSizelessType()) {
15952 Diag(Loc, diag::err_catch_sizeless) << (Mode == 2 ? 1 : 0) << BaseType;
15953 Invalid = true;
15954 }
15955
15956 if (!Invalid && !ExDeclType->isDependentType() &&
15957 RequireNonAbstractType(Loc, ExDeclType,
15958 diag::err_abstract_type_in_decl,
15959 AbstractVariableType))
15960 Invalid = true;
15961
15962 // Only the non-fragile NeXT runtime currently supports C++ catches
15963 // of ObjC types, and no runtime supports catching ObjC types by value.
15964 if (!Invalid && getLangOpts().ObjC) {
15965 QualType T = ExDeclType;
15966 if (const ReferenceType *RT = T->getAs<ReferenceType>())
15967 T = RT->getPointeeType();
15968
15969 if (T->isObjCObjectType()) {
15970 Diag(Loc, diag::err_objc_object_catch);
15971 Invalid = true;
15972 } else if (T->isObjCObjectPointerType()) {
15973 // FIXME: should this be a test for macosx-fragile specifically?
15974 if (getLangOpts().ObjCRuntime.isFragile())
15975 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
15976 }
15977 }
15978
15979 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
15980 ExDeclType, TInfo, SC_None);
15981 ExDecl->setExceptionVariable(true);
15982
15983 // In ARC, infer 'retaining' for variables of retainable type.
15984 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
15985 Invalid = true;
15986
15987 if (!Invalid && !ExDeclType->isDependentType()) {
15988 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
15989 // Insulate this from anything else we might currently be parsing.
15990 EnterExpressionEvaluationContext scope(
15991 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15992
15993 // C++ [except.handle]p16:
15994 // The object declared in an exception-declaration or, if the
15995 // exception-declaration does not specify a name, a temporary (12.2) is
15996 // copy-initialized (8.5) from the exception object. [...]
15997 // The object is destroyed when the handler exits, after the destruction
15998 // of any automatic objects initialized within the handler.
15999 //
16000 // We just pretend to initialize the object with itself, then make sure
16001 // it can be destroyed later.
16002 QualType initType = Context.getExceptionObjectType(ExDeclType);
16003
16004 InitializedEntity entity =
16005 InitializedEntity::InitializeVariable(ExDecl);
16006 InitializationKind initKind =
16007 InitializationKind::CreateCopy(Loc, SourceLocation());
16008
16009 Expr *opaqueValue =
16010 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
16011 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
16012 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
16013 if (result.isInvalid())
16014 Invalid = true;
16015 else {
16016 // If the constructor used was non-trivial, set this as the
16017 // "initializer".
16018 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
16019 if (!construct->getConstructor()->isTrivial()) {
16020 Expr *init = MaybeCreateExprWithCleanups(construct);
16021 ExDecl->setInit(init);
16022 }
16023
16024 // And make sure it's destructable.
16025 FinalizeVarWithDestructor(ExDecl, recordType);
16026 }
16027 }
16028 }
16029
16030 if (Invalid)
16031 ExDecl->setInvalidDecl();
16032
16033 return ExDecl;
16034}
16035
16036/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
16037/// handler.
16038Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
16039 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16040 bool Invalid = D.isInvalidType();
16041
16042 // Check for unexpanded parameter packs.
16043 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16044 UPPC_ExceptionType)) {
16045 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
16046 D.getIdentifierLoc());
16047 Invalid = true;
16048 }
16049
16050 IdentifierInfo *II = D.getIdentifier();
16051 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
16052 LookupOrdinaryName,
16053 ForVisibleRedeclaration)) {
16054 // The scope should be freshly made just for us. There is just no way
16055 // it contains any previous declaration, except for function parameters in
16056 // a function-try-block's catch statement.
16057 assert(!S->isDeclScope(PrevDecl))((!S->isDeclScope(PrevDecl)) ? static_cast<void> (0)
: __assert_fail ("!S->isDeclScope(PrevDecl)", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16057, __PRETTY_FUNCTION__))
;
16058 if (isDeclInScope(PrevDecl, CurContext, S)) {
16059 Diag(D.getIdentifierLoc(), diag::err_redefinition)
16060 << D.getIdentifier();
16061 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
16062 Invalid = true;
16063 } else if (PrevDecl->isTemplateParameter())
16064 // Maybe we will complain about the shadowed template parameter.
16065 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16066 }
16067
16068 if (D.getCXXScopeSpec().isSet() && !Invalid) {
16069 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
16070 << D.getCXXScopeSpec().getRange();
16071 Invalid = true;
16072 }
16073
16074 VarDecl *ExDecl = BuildExceptionDeclaration(
16075 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
16076 if (Invalid)
16077 ExDecl->setInvalidDecl();
16078
16079 // Add the exception declaration into this scope.
16080 if (II)
16081 PushOnScopeChains(ExDecl, S);
16082 else
16083 CurContext->addDecl(ExDecl);
16084
16085 ProcessDeclAttributes(S, ExDecl, D);
16086 return ExDecl;
16087}
16088
16089Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16090 Expr *AssertExpr,
16091 Expr *AssertMessageExpr,
16092 SourceLocation RParenLoc) {
16093 StringLiteral *AssertMessage =
16094 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
16095
16096 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
16097 return nullptr;
16098
16099 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
16100 AssertMessage, RParenLoc, false);
16101}
16102
16103Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
16104 Expr *AssertExpr,
16105 StringLiteral *AssertMessage,
16106 SourceLocation RParenLoc,
16107 bool Failed) {
16108 assert(AssertExpr != nullptr && "Expected non-null condition")((AssertExpr != nullptr && "Expected non-null condition"
) ? static_cast<void> (0) : __assert_fail ("AssertExpr != nullptr && \"Expected non-null condition\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16108, __PRETTY_FUNCTION__))
;
16109 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
16110 !Failed) {
16111 // In a static_assert-declaration, the constant-expression shall be a
16112 // constant expression that can be contextually converted to bool.
16113 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
16114 if (Converted.isInvalid())
16115 Failed = true;
16116
16117 ExprResult FullAssertExpr =
16118 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
16119 /*DiscardedValue*/ false,
16120 /*IsConstexpr*/ true);
16121 if (FullAssertExpr.isInvalid())
16122 Failed = true;
16123 else
16124 AssertExpr = FullAssertExpr.get();
16125
16126 llvm::APSInt Cond;
16127 if (!Failed && VerifyIntegerConstantExpression(
16128 AssertExpr, &Cond,
16129 diag::err_static_assert_expression_is_not_constant)
16130 .isInvalid())
16131 Failed = true;
16132
16133 if (!Failed && !Cond) {
16134 SmallString<256> MsgBuffer;
16135 llvm::raw_svector_ostream Msg(MsgBuffer);
16136 if (AssertMessage)
16137 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
16138
16139 Expr *InnerCond = nullptr;
16140 std::string InnerCondDescription;
16141 std::tie(InnerCond, InnerCondDescription) =
16142 findFailedBooleanCondition(Converted.get());
16143 if (InnerCond && isa<ConceptSpecializationExpr>(InnerCond)) {
16144 // Drill down into concept specialization expressions to see why they
16145 // weren't satisfied.
16146 Diag(StaticAssertLoc, diag::err_static_assert_failed)
16147 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16148 ConstraintSatisfaction Satisfaction;
16149 if (!CheckConstraintSatisfaction(InnerCond, Satisfaction))
16150 DiagnoseUnsatisfiedConstraint(Satisfaction);
16151 } else if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
16152 && !isa<IntegerLiteral>(InnerCond)) {
16153 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
16154 << InnerCondDescription << !AssertMessage
16155 << Msg.str() << InnerCond->getSourceRange();
16156 } else {
16157 Diag(StaticAssertLoc, diag::err_static_assert_failed)
16158 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
16159 }
16160 Failed = true;
16161 }
16162 } else {
16163 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
16164 /*DiscardedValue*/false,
16165 /*IsConstexpr*/true);
16166 if (FullAssertExpr.isInvalid())
16167 Failed = true;
16168 else
16169 AssertExpr = FullAssertExpr.get();
16170 }
16171
16172 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
16173 AssertExpr, AssertMessage, RParenLoc,
16174 Failed);
16175
16176 CurContext->addDecl(Decl);
16177 return Decl;
16178}
16179
16180/// Perform semantic analysis of the given friend type declaration.
16181///
16182/// \returns A friend declaration that.
16183FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
16184 SourceLocation FriendLoc,
16185 TypeSourceInfo *TSInfo) {
16186 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")((TSInfo && "NULL TypeSourceInfo for friend type declaration"
) ? static_cast<void> (0) : __assert_fail ("TSInfo && \"NULL TypeSourceInfo for friend type declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16186, __PRETTY_FUNCTION__))
;
16187
16188 QualType T = TSInfo->getType();
16189 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
16190
16191 // C++03 [class.friend]p2:
16192 // An elaborated-type-specifier shall be used in a friend declaration
16193 // for a class.*
16194 //
16195 // * The class-key of the elaborated-type-specifier is required.
16196 if (!CodeSynthesisContexts.empty()) {
16197 // Do not complain about the form of friend template types during any kind
16198 // of code synthesis. For template instantiation, we will have complained
16199 // when the template was defined.
16200 } else {
16201 if (!T->isElaboratedTypeSpecifier()) {
16202 // If we evaluated the type to a record type, suggest putting
16203 // a tag in front.
16204 if (const RecordType *RT = T->getAs<RecordType>()) {
16205 RecordDecl *RD = RT->getDecl();
16206
16207 SmallString<16> InsertionText(" ");
16208 InsertionText += RD->getKindName();
16209
16210 Diag(TypeRange.getBegin(),
16211 getLangOpts().CPlusPlus11 ?
16212 diag::warn_cxx98_compat_unelaborated_friend_type :
16213 diag::ext_unelaborated_friend_type)
16214 << (unsigned) RD->getTagKind()
16215 << T
16216 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
16217 InsertionText);
16218 } else {
16219 Diag(FriendLoc,
16220 getLangOpts().CPlusPlus11 ?
16221 diag::warn_cxx98_compat_nonclass_type_friend :
16222 diag::ext_nonclass_type_friend)
16223 << T
16224 << TypeRange;
16225 }
16226 } else if (T->getAs<EnumType>()) {
16227 Diag(FriendLoc,
16228 getLangOpts().CPlusPlus11 ?
16229 diag::warn_cxx98_compat_enum_friend :
16230 diag::ext_enum_friend)
16231 << T
16232 << TypeRange;
16233 }
16234
16235 // C++11 [class.friend]p3:
16236 // A friend declaration that does not declare a function shall have one
16237 // of the following forms:
16238 // friend elaborated-type-specifier ;
16239 // friend simple-type-specifier ;
16240 // friend typename-specifier ;
16241 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
16242 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
16243 }
16244
16245 // If the type specifier in a friend declaration designates a (possibly
16246 // cv-qualified) class type, that class is declared as a friend; otherwise,
16247 // the friend declaration is ignored.
16248 return FriendDecl::Create(Context, CurContext,
16249 TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
16250 FriendLoc);
16251}
16252
16253/// Handle a friend tag declaration where the scope specifier was
16254/// templated.
16255Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
16256 unsigned TagSpec, SourceLocation TagLoc,
16257 CXXScopeSpec &SS, IdentifierInfo *Name,
16258 SourceLocation NameLoc,
16259 const ParsedAttributesView &Attr,
16260 MultiTemplateParamsArg TempParamLists) {
16261 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
16262
16263 bool IsMemberSpecialization = false;
16264 bool Invalid = false;
16265
16266 if (TemplateParameterList *TemplateParams =
16267 MatchTemplateParametersToScopeSpecifier(
16268 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
16269 IsMemberSpecialization, Invalid)) {
16270 if (TemplateParams->size() > 0) {
16271 // This is a declaration of a class template.
16272 if (Invalid)
16273 return nullptr;
16274
16275 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
16276 NameLoc, Attr, TemplateParams, AS_public,
16277 /*ModulePrivateLoc=*/SourceLocation(),
16278 FriendLoc, TempParamLists.size() - 1,
16279 TempParamLists.data()).get();
16280 } else {
16281 // The "template<>" header is extraneous.
16282 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
16283 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
16284 IsMemberSpecialization = true;
16285 }
16286 }
16287
16288 if (Invalid) return nullptr;
16289
16290 bool isAllExplicitSpecializations = true;
16291 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
16292 if (TempParamLists[I]->size()) {
16293 isAllExplicitSpecializations = false;
16294 break;
16295 }
16296 }
16297
16298 // FIXME: don't ignore attributes.
16299
16300 // If it's explicit specializations all the way down, just forget
16301 // about the template header and build an appropriate non-templated
16302 // friend. TODO: for source fidelity, remember the headers.
16303 if (isAllExplicitSpecializations) {
16304 if (SS.isEmpty()) {
16305 bool Owned = false;
16306 bool IsDependent = false;
16307 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
16308 Attr, AS_public,
16309 /*ModulePrivateLoc=*/SourceLocation(),
16310 MultiTemplateParamsArg(), Owned, IsDependent,
16311 /*ScopedEnumKWLoc=*/SourceLocation(),
16312 /*ScopedEnumUsesClassTag=*/false,
16313 /*UnderlyingType=*/TypeResult(),
16314 /*IsTypeSpecifier=*/false,
16315 /*IsTemplateParamOrArg=*/false);
16316 }
16317
16318 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
16319 ElaboratedTypeKeyword Keyword
16320 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16321 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
16322 *Name, NameLoc);
16323 if (T.isNull())
16324 return nullptr;
16325
16326 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16327 if (isa<DependentNameType>(T)) {
16328 DependentNameTypeLoc TL =
16329 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16330 TL.setElaboratedKeywordLoc(TagLoc);
16331 TL.setQualifierLoc(QualifierLoc);
16332 TL.setNameLoc(NameLoc);
16333 } else {
16334 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
16335 TL.setElaboratedKeywordLoc(TagLoc);
16336 TL.setQualifierLoc(QualifierLoc);
16337 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
16338 }
16339
16340 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16341 TSI, FriendLoc, TempParamLists);
16342 Friend->setAccess(AS_public);
16343 CurContext->addDecl(Friend);
16344 return Friend;
16345 }
16346
16347 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")((SS.isNotEmpty() && "valid templated tag with no SS and no direct?"
) ? static_cast<void> (0) : __assert_fail ("SS.isNotEmpty() && \"valid templated tag with no SS and no direct?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16347, __PRETTY_FUNCTION__))
;
16348
16349
16350
16351 // Handle the case of a templated-scope friend class. e.g.
16352 // template <class T> class A<T>::B;
16353 // FIXME: we don't support these right now.
16354 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
16355 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
16356 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
16357 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
16358 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
16359 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
16360 TL.setElaboratedKeywordLoc(TagLoc);
16361 TL.setQualifierLoc(SS.getWithLocInContext(Context));
16362 TL.setNameLoc(NameLoc);
16363
16364 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
16365 TSI, FriendLoc, TempParamLists);
16366 Friend->setAccess(AS_public);
16367 Friend->setUnsupportedFriend(true);
16368 CurContext->addDecl(Friend);
16369 return Friend;
16370}
16371
16372/// Handle a friend type declaration. This works in tandem with
16373/// ActOnTag.
16374///
16375/// Notes on friend class templates:
16376///
16377/// We generally treat friend class declarations as if they were
16378/// declaring a class. So, for example, the elaborated type specifier
16379/// in a friend declaration is required to obey the restrictions of a
16380/// class-head (i.e. no typedefs in the scope chain), template
16381/// parameters are required to match up with simple template-ids, &c.
16382/// However, unlike when declaring a template specialization, it's
16383/// okay to refer to a template specialization without an empty
16384/// template parameter declaration, e.g.
16385/// friend class A<T>::B<unsigned>;
16386/// We permit this as a special case; if there are any template
16387/// parameters present at all, require proper matching, i.e.
16388/// template <> template \<class T> friend class A<int>::B;
16389Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
16390 MultiTemplateParamsArg TempParams) {
16391 SourceLocation Loc = DS.getBeginLoc();
16392
16393 assert(DS.isFriendSpecified())((DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16393, __PRETTY_FUNCTION__))
;
16394 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) ? static_cast
<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16394, __PRETTY_FUNCTION__))
;
16395
16396 // C++ [class.friend]p3:
16397 // A friend declaration that does not declare a function shall have one of
16398 // the following forms:
16399 // friend elaborated-type-specifier ;
16400 // friend simple-type-specifier ;
16401 // friend typename-specifier ;
16402 //
16403 // Any declaration with a type qualifier does not have that form. (It's
16404 // legal to specify a qualified type as a friend, you just can't write the
16405 // keywords.)
16406 if (DS.getTypeQualifiers()) {
16407 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
16408 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
16409 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
16410 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
16411 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
16412 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
16413 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
16414 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
16415 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
16416 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
16417 }
16418
16419 // Try to convert the decl specifier to a type. This works for
16420 // friend templates because ActOnTag never produces a ClassTemplateDecl
16421 // for a TUK_Friend.
16422 Declarator TheDeclarator(DS, DeclaratorContext::Member);
16423 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
16424 QualType T = TSI->getType();
16425 if (TheDeclarator.isInvalidType())
16426 return nullptr;
16427
16428 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
16429 return nullptr;
16430
16431 // This is definitely an error in C++98. It's probably meant to
16432 // be forbidden in C++0x, too, but the specification is just
16433 // poorly written.
16434 //
16435 // The problem is with declarations like the following:
16436 // template <T> friend A<T>::foo;
16437 // where deciding whether a class C is a friend or not now hinges
16438 // on whether there exists an instantiation of A that causes
16439 // 'foo' to equal C. There are restrictions on class-heads
16440 // (which we declare (by fiat) elaborated friend declarations to
16441 // be) that makes this tractable.
16442 //
16443 // FIXME: handle "template <> friend class A<T>;", which
16444 // is possibly well-formed? Who even knows?
16445 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
16446 Diag(Loc, diag::err_tagless_friend_type_template)
16447 << DS.getSourceRange();
16448 return nullptr;
16449 }
16450
16451 // C++98 [class.friend]p1: A friend of a class is a function
16452 // or class that is not a member of the class . . .
16453 // This is fixed in DR77, which just barely didn't make the C++03
16454 // deadline. It's also a very silly restriction that seriously
16455 // affects inner classes and which nobody else seems to implement;
16456 // thus we never diagnose it, not even in -pedantic.
16457 //
16458 // But note that we could warn about it: it's always useless to
16459 // friend one of your own members (it's not, however, worthless to
16460 // friend a member of an arbitrary specialization of your template).
16461
16462 Decl *D;
16463 if (!TempParams.empty())
16464 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
16465 TempParams,
16466 TSI,
16467 DS.getFriendSpecLoc());
16468 else
16469 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
16470
16471 if (!D)
16472 return nullptr;
16473
16474 D->setAccess(AS_public);
16475 CurContext->addDecl(D);
16476
16477 return D;
16478}
16479
16480NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
16481 MultiTemplateParamsArg TemplateParams) {
16482 const DeclSpec &DS = D.getDeclSpec();
16483
16484 assert(DS.isFriendSpecified())((DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16484, __PRETTY_FUNCTION__))
;
16485 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) ? static_cast
<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16485, __PRETTY_FUNCTION__))
;
16486
16487 SourceLocation Loc = D.getIdentifierLoc();
16488 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16489
16490 // C++ [class.friend]p1
16491 // A friend of a class is a function or class....
16492 // Note that this sees through typedefs, which is intended.
16493 // It *doesn't* see through dependent types, which is correct
16494 // according to [temp.arg.type]p3:
16495 // If a declaration acquires a function type through a
16496 // type dependent on a template-parameter and this causes
16497 // a declaration that does not use the syntactic form of a
16498 // function declarator to have a function type, the program
16499 // is ill-formed.
16500 if (!TInfo->getType()->isFunctionType()) {
16501 Diag(Loc, diag::err_unexpected_friend);
16502
16503 // It might be worthwhile to try to recover by creating an
16504 // appropriate declaration.
16505 return nullptr;
16506 }
16507
16508 // C++ [namespace.memdef]p3
16509 // - If a friend declaration in a non-local class first declares a
16510 // class or function, the friend class or function is a member
16511 // of the innermost enclosing namespace.
16512 // - The name of the friend is not found by simple name lookup
16513 // until a matching declaration is provided in that namespace
16514 // scope (either before or after the class declaration granting
16515 // friendship).
16516 // - If a friend function is called, its name may be found by the
16517 // name lookup that considers functions from namespaces and
16518 // classes associated with the types of the function arguments.
16519 // - When looking for a prior declaration of a class or a function
16520 // declared as a friend, scopes outside the innermost enclosing
16521 // namespace scope are not considered.
16522
16523 CXXScopeSpec &SS = D.getCXXScopeSpec();
16524 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
16525 assert(NameInfo.getName())((NameInfo.getName()) ? static_cast<void> (0) : __assert_fail
("NameInfo.getName()", "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16525, __PRETTY_FUNCTION__))
;
16526
16527 // Check for unexpanded parameter packs.
16528 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
16529 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
16530 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
16531 return nullptr;
16532
16533 // The context we found the declaration in, or in which we should
16534 // create the declaration.
16535 DeclContext *DC;
16536 Scope *DCScope = S;
16537 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
16538 ForExternalRedeclaration);
16539
16540 // There are five cases here.
16541 // - There's no scope specifier and we're in a local class. Only look
16542 // for functions declared in the immediately-enclosing block scope.
16543 // We recover from invalid scope qualifiers as if they just weren't there.
16544 FunctionDecl *FunctionContainingLocalClass = nullptr;
16545 if ((SS.isInvalid() || !SS.isSet()) &&
16546 (FunctionContainingLocalClass =
16547 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
16548 // C++11 [class.friend]p11:
16549 // If a friend declaration appears in a local class and the name
16550 // specified is an unqualified name, a prior declaration is
16551 // looked up without considering scopes that are outside the
16552 // innermost enclosing non-class scope. For a friend function
16553 // declaration, if there is no prior declaration, the program is
16554 // ill-formed.
16555
16556 // Find the innermost enclosing non-class scope. This is the block
16557 // scope containing the local class definition (or for a nested class,
16558 // the outer local class).
16559 DCScope = S->getFnParent();
16560
16561 // Look up the function name in the scope.
16562 Previous.clear(LookupLocalFriendName);
16563 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
16564
16565 if (!Previous.empty()) {
16566 // All possible previous declarations must have the same context:
16567 // either they were declared at block scope or they are members of
16568 // one of the enclosing local classes.
16569 DC = Previous.getRepresentativeDecl()->getDeclContext();
16570 } else {
16571 // This is ill-formed, but provide the context that we would have
16572 // declared the function in, if we were permitted to, for error recovery.
16573 DC = FunctionContainingLocalClass;
16574 }
16575 adjustContextForLocalExternDecl(DC);
16576
16577 // C++ [class.friend]p6:
16578 // A function can be defined in a friend declaration of a class if and
16579 // only if the class is a non-local class (9.8), the function name is
16580 // unqualified, and the function has namespace scope.
16581 if (D.isFunctionDefinition()) {
16582 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
16583 }
16584
16585 // - There's no scope specifier, in which case we just go to the
16586 // appropriate scope and look for a function or function template
16587 // there as appropriate.
16588 } else if (SS.isInvalid() || !SS.isSet()) {
16589 // C++11 [namespace.memdef]p3:
16590 // If the name in a friend declaration is neither qualified nor
16591 // a template-id and the declaration is a function or an
16592 // elaborated-type-specifier, the lookup to determine whether
16593 // the entity has been previously declared shall not consider
16594 // any scopes outside the innermost enclosing namespace.
16595 bool isTemplateId =
16596 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
16597
16598 // Find the appropriate context according to the above.
16599 DC = CurContext;
16600
16601 // Skip class contexts. If someone can cite chapter and verse
16602 // for this behavior, that would be nice --- it's what GCC and
16603 // EDG do, and it seems like a reasonable intent, but the spec
16604 // really only says that checks for unqualified existing
16605 // declarations should stop at the nearest enclosing namespace,
16606 // not that they should only consider the nearest enclosing
16607 // namespace.
16608 while (DC->isRecord())
16609 DC = DC->getParent();
16610
16611 DeclContext *LookupDC = DC;
16612 while (LookupDC->isTransparentContext())
16613 LookupDC = LookupDC->getParent();
16614
16615 while (true) {
16616 LookupQualifiedName(Previous, LookupDC);
16617
16618 if (!Previous.empty()) {
16619 DC = LookupDC;
16620 break;
16621 }
16622
16623 if (isTemplateId) {
16624 if (isa<TranslationUnitDecl>(LookupDC)) break;
16625 } else {
16626 if (LookupDC->isFileContext()) break;
16627 }
16628 LookupDC = LookupDC->getParent();
16629 }
16630
16631 DCScope = getScopeForDeclContext(S, DC);
16632
16633 // - There's a non-dependent scope specifier, in which case we
16634 // compute it and do a previous lookup there for a function
16635 // or function template.
16636 } else if (!SS.getScopeRep()->isDependent()) {
16637 DC = computeDeclContext(SS);
16638 if (!DC) return nullptr;
16639
16640 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
16641
16642 LookupQualifiedName(Previous, DC);
16643
16644 // C++ [class.friend]p1: A friend of a class is a function or
16645 // class that is not a member of the class . . .
16646 if (DC->Equals(CurContext))
16647 Diag(DS.getFriendSpecLoc(),
16648 getLangOpts().CPlusPlus11 ?
16649 diag::warn_cxx98_compat_friend_is_member :
16650 diag::err_friend_is_member);
16651
16652 if (D.isFunctionDefinition()) {
16653 // C++ [class.friend]p6:
16654 // A function can be defined in a friend declaration of a class if and
16655 // only if the class is a non-local class (9.8), the function name is
16656 // unqualified, and the function has namespace scope.
16657 //
16658 // FIXME: We should only do this if the scope specifier names the
16659 // innermost enclosing namespace; otherwise the fixit changes the
16660 // meaning of the code.
16661 SemaDiagnosticBuilder DB
16662 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
16663
16664 DB << SS.getScopeRep();
16665 if (DC->isFileContext())
16666 DB << FixItHint::CreateRemoval(SS.getRange());
16667 SS.clear();
16668 }
16669
16670 // - There's a scope specifier that does not match any template
16671 // parameter lists, in which case we use some arbitrary context,
16672 // create a method or method template, and wait for instantiation.
16673 // - There's a scope specifier that does match some template
16674 // parameter lists, which we don't handle right now.
16675 } else {
16676 if (D.isFunctionDefinition()) {
16677 // C++ [class.friend]p6:
16678 // A function can be defined in a friend declaration of a class if and
16679 // only if the class is a non-local class (9.8), the function name is
16680 // unqualified, and the function has namespace scope.
16681 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
16682 << SS.getScopeRep();
16683 }
16684
16685 DC = CurContext;
16686 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")((isa<CXXRecordDecl>(DC) && "friend declaration not in class?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"friend declaration not in class?\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16686, __PRETTY_FUNCTION__))
;
16687 }
16688
16689 if (!DC->isRecord()) {
16690 int DiagArg = -1;
16691 switch (D.getName().getKind()) {
16692 case UnqualifiedIdKind::IK_ConstructorTemplateId:
16693 case UnqualifiedIdKind::IK_ConstructorName:
16694 DiagArg = 0;
16695 break;
16696 case UnqualifiedIdKind::IK_DestructorName:
16697 DiagArg = 1;
16698 break;
16699 case UnqualifiedIdKind::IK_ConversionFunctionId:
16700 DiagArg = 2;
16701 break;
16702 case UnqualifiedIdKind::IK_DeductionGuideName:
16703 DiagArg = 3;
16704 break;
16705 case UnqualifiedIdKind::IK_Identifier:
16706 case UnqualifiedIdKind::IK_ImplicitSelfParam:
16707 case UnqualifiedIdKind::IK_LiteralOperatorId:
16708 case UnqualifiedIdKind::IK_OperatorFunctionId:
16709 case UnqualifiedIdKind::IK_TemplateId:
16710 break;
16711 }
16712 // This implies that it has to be an operator or function.
16713 if (DiagArg >= 0) {
16714 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
16715 return nullptr;
16716 }
16717 }
16718
16719 // FIXME: This is an egregious hack to cope with cases where the scope stack
16720 // does not contain the declaration context, i.e., in an out-of-line
16721 // definition of a class.
16722 Scope FakeDCScope(S, Scope::DeclScope, Diags);
16723 if (!DCScope) {
16724 FakeDCScope.setEntity(DC);
16725 DCScope = &FakeDCScope;
16726 }
16727
16728 bool AddToScope = true;
16729 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
16730 TemplateParams, AddToScope);
16731 if (!ND) return nullptr;
16732
16733 assert(ND->getLexicalDeclContext() == CurContext)((ND->getLexicalDeclContext() == CurContext) ? static_cast
<void> (0) : __assert_fail ("ND->getLexicalDeclContext() == CurContext"
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 16733, __PRETTY_FUNCTION__))
;
16734
16735 // If we performed typo correction, we might have added a scope specifier
16736 // and changed the decl context.
16737 DC = ND->getDeclContext();
16738
16739 // Add the function declaration to the appropriate lookup tables,
16740 // adjusting the redeclarations list as necessary. We don't
16741 // want to do this yet if the friending class is dependent.
16742 //
16743 // Also update the scope-based lookup if the target context's
16744 // lookup context is in lexical scope.
16745 if (!CurContext->isDependentContext()) {
16746 DC = DC->getRedeclContext();
16747 DC->makeDeclVisibleInContext(ND);
16748 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16749 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
16750 }
16751
16752 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
16753 D.getIdentifierLoc(), ND,
16754 DS.getFriendSpecLoc());
16755 FrD->setAccess(AS_public);
16756 CurContext->addDecl(FrD);
16757
16758 if (ND->isInvalidDecl()) {
16759 FrD->setInvalidDecl();
16760 } else {
16761 if (DC->isRecord()) CheckFriendAccess(ND);
16762
16763 FunctionDecl *FD;
16764 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
16765 FD = FTD->getTemplatedDecl();
16766 else
16767 FD = cast<FunctionDecl>(ND);
16768
16769 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
16770 // default argument expression, that declaration shall be a definition
16771 // and shall be the only declaration of the function or function
16772 // template in the translation unit.
16773 if (functionDeclHasDefaultArgument(FD)) {
16774 // We can't look at FD->getPreviousDecl() because it may not have been set
16775 // if we're in a dependent context. If the function is known to be a
16776 // redeclaration, we will have narrowed Previous down to the right decl.
16777 if (D.isRedeclaration()) {
16778 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
16779 Diag(Previous.getRepresentativeDecl()->getLocation(),
16780 diag::note_previous_declaration);
16781 } else if (!D.isFunctionDefinition())
16782 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
16783 }
16784
16785 // Mark templated-scope function declarations as unsupported.
16786 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
16787 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
16788 << SS.getScopeRep() << SS.getRange()
16789 << cast<CXXRecordDecl>(CurContext);
16790 FrD->setUnsupportedFriend(true);
16791 }
16792 }
16793
16794 return ND;
16795}
16796
16797void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
16798 AdjustDeclIfTemplate(Dcl);
16799
16800 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
16801 if (!Fn) {
16802 Diag(DelLoc, diag::err_deleted_non_function);
16803 return;
16804 }
16805
16806 // Deleted function does not have a body.
16807 Fn->setWillHaveBody(false);
16808
16809 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
16810 // Don't consider the implicit declaration we generate for explicit
16811 // specializations. FIXME: Do not generate these implicit declarations.
16812 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
16813 Prev->getPreviousDecl()) &&
16814 !Prev->isDefined()) {
16815 Diag(DelLoc, diag::err_deleted_decl_not_first);
16816 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
16817 Prev->isImplicit() ? diag::note_previous_implicit_declaration
16818 : diag::note_previous_declaration);
16819 // We can't recover from this; the declaration might have already
16820 // been used.
16821 Fn->setInvalidDecl();
16822 return;
16823 }
16824
16825 // To maintain the invariant that functions are only deleted on their first
16826 // declaration, mark the implicitly-instantiated declaration of the
16827 // explicitly-specialized function as deleted instead of marking the
16828 // instantiated redeclaration.
16829 Fn = Fn->getCanonicalDecl();
16830 }
16831
16832 // dllimport/dllexport cannot be deleted.
16833 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
16834 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
16835 Fn->setInvalidDecl();
16836 }
16837
16838 // C++11 [basic.start.main]p3:
16839 // A program that defines main as deleted [...] is ill-formed.
16840 if (Fn->isMain())
16841 Diag(DelLoc, diag::err_deleted_main);
16842
16843 // C++11 [dcl.fct.def.delete]p4:
16844 // A deleted function is implicitly inline.
16845 Fn->setImplicitlyInline();
16846 Fn->setDeletedAsWritten();
16847}
16848
16849void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
16850 if (!Dcl || Dcl->isInvalidDecl())
16851 return;
16852
16853 auto *FD = dyn_cast<FunctionDecl>(Dcl);
16854 if (!FD) {
16855 if (auto *FTD = dyn_cast<FunctionTemplateDecl>(Dcl)) {
16856 if (getDefaultedFunctionKind(FTD->getTemplatedDecl()).isComparison()) {
16857 Diag(DefaultLoc, diag::err_defaulted_comparison_template);
16858 return;
16859 }
16860 }
16861
16862 Diag(DefaultLoc, diag::err_default_special_members)
16863 << getLangOpts().CPlusPlus20;
16864 return;
16865 }
16866
16867 // Reject if this can't possibly be a defaultable function.
16868 DefaultedFunctionKind DefKind = getDefaultedFunctionKind(FD);
16869 if (!DefKind &&
16870 // A dependent function that doesn't locally look defaultable can
16871 // still instantiate to a defaultable function if it's a constructor
16872 // or assignment operator.
16873 (!FD->isDependentContext() ||
16874 (!isa<CXXConstructorDecl>(FD) &&
16875 FD->getDeclName().getCXXOverloadedOperator() != OO_Equal))) {
16876 Diag(DefaultLoc, diag::err_default_special_members)
16877 << getLangOpts().CPlusPlus20;
16878 return;
16879 }
16880
16881 if (DefKind.isComparison() &&
16882 !isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
16883 Diag(FD->getLocation(), diag::err_defaulted_comparison_out_of_class)
16884 << (int)DefKind.asComparison();
16885 return;
16886 }
16887
16888 // Issue compatibility warning. We already warned if the operator is
16889 // 'operator<=>' when parsing the '<=>' token.
16890 if (DefKind.isComparison() &&
16891 DefKind.asComparison() != DefaultedComparisonKind::ThreeWay) {
16892 Diag(DefaultLoc, getLangOpts().CPlusPlus20
16893 ? diag::warn_cxx17_compat_defaulted_comparison
16894 : diag::ext_defaulted_comparison);
16895 }
16896
16897 FD->setDefaulted();
16898 FD->setExplicitlyDefaulted();
16899
16900 // Defer checking functions that are defaulted in a dependent context.
16901 if (FD->isDependentContext())
16902 return;
16903
16904 // Unset that we will have a body for this function. We might not,
16905 // if it turns out to be trivial, and we don't need this marking now
16906 // that we've marked it as defaulted.
16907 FD->setWillHaveBody(false);
16908
16909 // If this definition appears within the record, do the checking when
16910 // the record is complete. This is always the case for a defaulted
16911 // comparison.
16912 if (DefKind.isComparison())
16913 return;
16914 auto *MD = cast<CXXMethodDecl>(FD);
16915
16916 const FunctionDecl *Primary = FD;
16917 if (const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
16918 // Ask the template instantiation pattern that actually had the
16919 // '= default' on it.
16920 Primary = Pattern;
16921
16922 // If the method was defaulted on its first declaration, we will have
16923 // already performed the checking in CheckCompletedCXXClass. Such a
16924 // declaration doesn't trigger an implicit definition.
16925 if (Primary->getCanonicalDecl()->isDefaulted())
16926 return;
16927
16928 // FIXME: Once we support defining comparisons out of class, check for a
16929 // defaulted comparison here.
16930 if (CheckExplicitlyDefaultedSpecialMember(MD, DefKind.asSpecialMember()))
16931 MD->setInvalidDecl();
16932 else
16933 DefineDefaultedFunction(*this, MD, DefaultLoc);
16934}
16935
16936static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
16937 for (Stmt *SubStmt : S->children()) {
16938 if (!SubStmt)
16939 continue;
16940 if (isa<ReturnStmt>(SubStmt))
16941 Self.Diag(SubStmt->getBeginLoc(),
16942 diag::err_return_in_constructor_handler);
16943 if (!isa<Expr>(SubStmt))
16944 SearchForReturnInStmt(Self, SubStmt);
16945 }
16946}
16947
16948void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
16949 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
16950 CXXCatchStmt *Handler = TryBlock->getHandler(I);
16951 SearchForReturnInStmt(*this, Handler);
16952 }
16953}
16954
16955bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
16956 const CXXMethodDecl *Old) {
16957 const auto *NewFT = New->getType()->castAs<FunctionProtoType>();
16958 const auto *OldFT = Old->getType()->castAs<FunctionProtoType>();
16959
16960 if (OldFT->hasExtParameterInfos()) {
16961 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
16962 // A parameter of the overriding method should be annotated with noescape
16963 // if the corresponding parameter of the overridden method is annotated.
16964 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
16965 !NewFT->getExtParameterInfo(I).isNoEscape()) {
16966 Diag(New->getParamDecl(I)->getLocation(),
16967 diag::warn_overriding_method_missing_noescape);
16968 Diag(Old->getParamDecl(I)->getLocation(),
16969 diag::note_overridden_marked_noescape);
16970 }
16971 }
16972
16973 // Virtual overrides must have the same code_seg.
16974 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
16975 const auto *NewCSA = New->getAttr<CodeSegAttr>();
16976 if ((NewCSA || OldCSA) &&
16977 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
16978 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
16979 Diag(Old->getLocation(), diag::note_previous_declaration);
16980 return true;
16981 }
16982
16983 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
16984
16985 // If the calling conventions match, everything is fine
16986 if (NewCC == OldCC)
16987 return false;
16988
16989 // If the calling conventions mismatch because the new function is static,
16990 // suppress the calling convention mismatch error; the error about static
16991 // function override (err_static_overrides_virtual from
16992 // Sema::CheckFunctionDeclaration) is more clear.
16993 if (New->getStorageClass() == SC_Static)
16994 return false;
16995
16996 Diag(New->getLocation(),
16997 diag::err_conflicting_overriding_cc_attributes)
16998 << New->getDeclName() << New->getType() << Old->getType();
16999 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
17000 return true;
17001}
17002
17003bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
17004 const CXXMethodDecl *Old) {
17005 QualType NewTy = New->getType()->castAs<FunctionType>()->getReturnType();
17006 QualType OldTy = Old->getType()->castAs<FunctionType>()->getReturnType();
17007
17008 if (Context.hasSameType(NewTy, OldTy) ||
17009 NewTy->isDependentType() || OldTy->isDependentType())
17010 return false;
17011
17012 // Check if the return types are covariant
17013 QualType NewClassTy, OldClassTy;
17014
17015 /// Both types must be pointers or references to classes.
17016 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
17017 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
17018 NewClassTy = NewPT->getPointeeType();
17019 OldClassTy = OldPT->getPointeeType();
17020 }
17021 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
17022 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
17023 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
17024 NewClassTy = NewRT->getPointeeType();
17025 OldClassTy = OldRT->getPointeeType();
17026 }
17027 }
17028 }
17029
17030 // The return types aren't either both pointers or references to a class type.
17031 if (NewClassTy.isNull()) {
17032 Diag(New->getLocation(),
17033 diag::err_different_return_type_for_overriding_virtual_function)
17034 << New->getDeclName() << NewTy << OldTy
17035 << New->getReturnTypeSourceRange();
17036 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17037 << Old->getReturnTypeSourceRange();
17038
17039 return true;
17040 }
17041
17042 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
17043 // C++14 [class.virtual]p8:
17044 // If the class type in the covariant return type of D::f differs from
17045 // that of B::f, the class type in the return type of D::f shall be
17046 // complete at the point of declaration of D::f or shall be the class
17047 // type D.
17048 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
17049 if (!RT->isBeingDefined() &&
17050 RequireCompleteType(New->getLocation(), NewClassTy,
17051 diag::err_covariant_return_incomplete,
17052 New->getDeclName()))
17053 return true;
17054 }
17055
17056 // Check if the new class derives from the old class.
17057 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
17058 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
17059 << New->getDeclName() << NewTy << OldTy
17060 << New->getReturnTypeSourceRange();
17061 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17062 << Old->getReturnTypeSourceRange();
17063 return true;
17064 }
17065
17066 // Check if we the conversion from derived to base is valid.
17067 if (CheckDerivedToBaseConversion(
17068 NewClassTy, OldClassTy,
17069 diag::err_covariant_return_inaccessible_base,
17070 diag::err_covariant_return_ambiguous_derived_to_base_conv,
17071 New->getLocation(), New->getReturnTypeSourceRange(),
17072 New->getDeclName(), nullptr)) {
17073 // FIXME: this note won't trigger for delayed access control
17074 // diagnostics, and it's impossible to get an undelayed error
17075 // here from access control during the original parse because
17076 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
17077 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17078 << Old->getReturnTypeSourceRange();
17079 return true;
17080 }
17081 }
17082
17083 // The qualifiers of the return types must be the same.
17084 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
17085 Diag(New->getLocation(),
17086 diag::err_covariant_return_type_different_qualifications)
17087 << New->getDeclName() << NewTy << OldTy
17088 << New->getReturnTypeSourceRange();
17089 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17090 << Old->getReturnTypeSourceRange();
17091 return true;
17092 }
17093
17094
17095 // The new class type must have the same or less qualifiers as the old type.
17096 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
17097 Diag(New->getLocation(),
17098 diag::err_covariant_return_type_class_type_more_qualified)
17099 << New->getDeclName() << NewTy << OldTy
17100 << New->getReturnTypeSourceRange();
17101 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
17102 << Old->getReturnTypeSourceRange();
17103 return true;
17104 }
17105
17106 return false;
17107}
17108
17109/// Mark the given method pure.
17110///
17111/// \param Method the method to be marked pure.
17112///
17113/// \param InitRange the source range that covers the "0" initializer.
17114bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
17115 SourceLocation EndLoc = InitRange.getEnd();
17116 if (EndLoc.isValid())
17117 Method->setRangeEnd(EndLoc);
17118
17119 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
17120 Method->setPure();
17121 return false;
17122 }
17123
17124 if (!Method->isInvalidDecl())
17125 Diag(Method->getLocation(), diag::err_non_virtual_pure)
17126 << Method->getDeclName() << InitRange;
17127 return true;
17128}
17129
17130void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
17131 if (D->getFriendObjectKind())
17132 Diag(D->getLocation(), diag::err_pure_friend);
17133 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
17134 CheckPureMethod(M, ZeroLoc);
17135 else
17136 Diag(D->getLocation(), diag::err_illegal_initializer);
17137}
17138
17139/// Determine whether the given declaration is a global variable or
17140/// static data member.
17141static bool isNonlocalVariable(const Decl *D) {
17142 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
17143 return Var->hasGlobalStorage();
17144
17145 return false;
17146}
17147
17148/// Invoked when we are about to parse an initializer for the declaration
17149/// 'Dcl'.
17150///
17151/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
17152/// static data member of class X, names should be looked up in the scope of
17153/// class X. If the declaration had a scope specifier, a scope will have
17154/// been created and passed in for this purpose. Otherwise, S will be null.
17155void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
17156 // If there is no declaration, there was an error parsing it.
17157 if (!D || D->isInvalidDecl())
17158 return;
17159
17160 // We will always have a nested name specifier here, but this declaration
17161 // might not be out of line if the specifier names the current namespace:
17162 // extern int n;
17163 // int ::n = 0;
17164 if (S && D->isOutOfLine())
17165 EnterDeclaratorContext(S, D->getDeclContext());
17166
17167 // If we are parsing the initializer for a static data member, push a
17168 // new expression evaluation context that is associated with this static
17169 // data member.
17170 if (isNonlocalVariable(D))
17171 PushExpressionEvaluationContext(
17172 ExpressionEvaluationContext::PotentiallyEvaluated, D);
17173}
17174
17175/// Invoked after we are finished parsing an initializer for the declaration D.
17176void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
17177 // If there is no declaration, there was an error parsing it.
17178 if (!D || D->isInvalidDecl())
17179 return;
17180
17181 if (isNonlocalVariable(D))
17182 PopExpressionEvaluationContext();
17183
17184 if (S && D->isOutOfLine())
17185 ExitDeclaratorContext(S);
17186}
17187
17188/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
17189/// C++ if/switch/while/for statement.
17190/// e.g: "if (int x = f()) {...}"
17191DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
17192 // C++ 6.4p2:
17193 // The declarator shall not specify a function or an array.
17194 // The type-specifier-seq shall not contain typedef and shall not declare a
17195 // new class or enumeration.
17196 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&((D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class of condition decl."
) ? static_cast<void> (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17197, __PRETTY_FUNCTION__))
17197 "Parser allowed 'typedef' as storage class of condition decl.")((D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class of condition decl."
) ? static_cast<void> (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17197, __PRETTY_FUNCTION__))
;
17198
17199 Decl *Dcl = ActOnDeclarator(S, D);
17200 if (!Dcl)
17201 return true;
17202
17203 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
17204 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
17205 << D.getSourceRange();
17206 return true;
17207 }
17208
17209 return Dcl;
17210}
17211
17212void Sema::LoadExternalVTableUses() {
17213 if (!ExternalSource)
17214 return;
17215
17216 SmallVector<ExternalVTableUse, 4> VTables;
17217 ExternalSource->ReadUsedVTables(VTables);
17218 SmallVector<VTableUse, 4> NewUses;
17219 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
17220 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
17221 = VTablesUsed.find(VTables[I].Record);
17222 // Even if a definition wasn't required before, it may be required now.
17223 if (Pos != VTablesUsed.end()) {
17224 if (!Pos->second && VTables[I].DefinitionRequired)
17225 Pos->second = true;
17226 continue;
17227 }
17228
17229 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
17230 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
17231 }
17232
17233 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
17234}
17235
17236void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
17237 bool DefinitionRequired) {
17238 // Ignore any vtable uses in unevaluated operands or for classes that do
17239 // not have a vtable.
17240 if (!Class->isDynamicClass() || Class->isDependentContext() ||
17241 CurContext->isDependentContext() || isUnevaluatedContext())
17242 return;
17243 // Do not mark as used if compiling for the device outside of the target
17244 // region.
17245 if (TUKind != TU_Prefix && LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
17246 !isInOpenMPDeclareTargetContext() &&
17247 !isInOpenMPTargetExecutionDirective()) {
17248 if (!DefinitionRequired)
17249 MarkVirtualMembersReferenced(Loc, Class);
17250 return;
17251 }
17252
17253 // Try to insert this class into the map.
17254 LoadExternalVTableUses();
17255 Class = Class->getCanonicalDecl();
17256 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
17257 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
17258 if (!Pos.second) {
17259 // If we already had an entry, check to see if we are promoting this vtable
17260 // to require a definition. If so, we need to reappend to the VTableUses
17261 // list, since we may have already processed the first entry.
17262 if (DefinitionRequired && !Pos.first->second) {
17263 Pos.first->second = true;
17264 } else {
17265 // Otherwise, we can early exit.
17266 return;
17267 }
17268 } else {
17269 // The Microsoft ABI requires that we perform the destructor body
17270 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
17271 // the deleting destructor is emitted with the vtable, not with the
17272 // destructor definition as in the Itanium ABI.
17273 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17274 CXXDestructorDecl *DD = Class->getDestructor();
17275 if (DD && DD->isVirtual() && !DD->isDeleted()) {
17276 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
17277 // If this is an out-of-line declaration, marking it referenced will
17278 // not do anything. Manually call CheckDestructor to look up operator
17279 // delete().
17280 ContextRAII SavedContext(*this, DD);
17281 CheckDestructor(DD);
17282 } else {
17283 MarkFunctionReferenced(Loc, Class->getDestructor());
17284 }
17285 }
17286 }
17287 }
17288
17289 // Local classes need to have their virtual members marked
17290 // immediately. For all other classes, we mark their virtual members
17291 // at the end of the translation unit.
17292 if (Class->isLocalClass())
17293 MarkVirtualMembersReferenced(Loc, Class);
17294 else
17295 VTableUses.push_back(std::make_pair(Class, Loc));
17296}
17297
17298bool Sema::DefineUsedVTables() {
17299 LoadExternalVTableUses();
17300 if (VTableUses.empty())
17301 return false;
17302
17303 // Note: The VTableUses vector could grow as a result of marking
17304 // the members of a class as "used", so we check the size each
17305 // time through the loop and prefer indices (which are stable) to
17306 // iterators (which are not).
17307 bool DefinedAnything = false;
17308 for (unsigned I = 0; I != VTableUses.size(); ++I) {
17309 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
17310 if (!Class)
17311 continue;
17312 TemplateSpecializationKind ClassTSK =
17313 Class->getTemplateSpecializationKind();
17314
17315 SourceLocation Loc = VTableUses[I].second;
17316
17317 bool DefineVTable = true;
17318
17319 // If this class has a key function, but that key function is
17320 // defined in another translation unit, we don't need to emit the
17321 // vtable even though we're using it.
17322 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
17323 if (KeyFunction && !KeyFunction->hasBody()) {
17324 // The key function is in another translation unit.
17325 DefineVTable = false;
17326 TemplateSpecializationKind TSK =
17327 KeyFunction->getTemplateSpecializationKind();
17328 assert(TSK != TSK_ExplicitInstantiationDefinition &&((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17330, __PRETTY_FUNCTION__))
17329 TSK != TSK_ImplicitInstantiation &&((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17330, __PRETTY_FUNCTION__))
17330 "Instantiations don't have key functions")((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17330, __PRETTY_FUNCTION__))
;
17331 (void)TSK;
17332 } else if (!KeyFunction) {
17333 // If we have a class with no key function that is the subject
17334 // of an explicit instantiation declaration, suppress the
17335 // vtable; it will live with the explicit instantiation
17336 // definition.
17337 bool IsExplicitInstantiationDeclaration =
17338 ClassTSK == TSK_ExplicitInstantiationDeclaration;
17339 for (auto R : Class->redecls()) {
17340 TemplateSpecializationKind TSK
17341 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
17342 if (TSK == TSK_ExplicitInstantiationDeclaration)
17343 IsExplicitInstantiationDeclaration = true;
17344 else if (TSK == TSK_ExplicitInstantiationDefinition) {
17345 IsExplicitInstantiationDeclaration = false;
17346 break;
17347 }
17348 }
17349
17350 if (IsExplicitInstantiationDeclaration)
17351 DefineVTable = false;
17352 }
17353
17354 // The exception specifications for all virtual members may be needed even
17355 // if we are not providing an authoritative form of the vtable in this TU.
17356 // We may choose to emit it available_externally anyway.
17357 if (!DefineVTable) {
17358 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
17359 continue;
17360 }
17361
17362 // Mark all of the virtual members of this class as referenced, so
17363 // that we can build a vtable. Then, tell the AST consumer that a
17364 // vtable for this class is required.
17365 DefinedAnything = true;
17366 MarkVirtualMembersReferenced(Loc, Class);
17367 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
17368 if (VTablesUsed[Canonical])
17369 Consumer.HandleVTable(Class);
17370
17371 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
17372 // no key function or the key function is inlined. Don't warn in C++ ABIs
17373 // that lack key functions, since the user won't be able to make one.
17374 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
17375 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
17376 const FunctionDecl *KeyFunctionDef = nullptr;
17377 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
17378 KeyFunctionDef->isInlined())) {
17379 Diag(Class->getLocation(),
17380 ClassTSK == TSK_ExplicitInstantiationDefinition
17381 ? diag::warn_weak_template_vtable
17382 : diag::warn_weak_vtable)
17383 << Class;
17384 }
17385 }
17386 }
17387 VTableUses.clear();
17388
17389 return DefinedAnything;
17390}
17391
17392void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
17393 const CXXRecordDecl *RD) {
17394 for (const auto *I : RD->methods())
17395 if (I->isVirtual() && !I->isPure())
17396 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
17397}
17398
17399void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
17400 const CXXRecordDecl *RD,
17401 bool ConstexprOnly) {
17402 // Mark all functions which will appear in RD's vtable as used.
17403 CXXFinalOverriderMap FinalOverriders;
17404 RD->getFinalOverriders(FinalOverriders);
17405 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
17406 E = FinalOverriders.end();
17407 I != E; ++I) {
17408 for (OverridingMethods::const_iterator OI = I->second.begin(),
17409 OE = I->second.end();
17410 OI != OE; ++OI) {
17411 assert(OI->second.size() > 0 && "no final overrider")((OI->second.size() > 0 && "no final overrider"
) ? static_cast<void> (0) : __assert_fail ("OI->second.size() > 0 && \"no final overrider\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17411, __PRETTY_FUNCTION__))
;
17412 CXXMethodDecl *Overrider = OI->second.front().Method;
17413
17414 // C++ [basic.def.odr]p2:
17415 // [...] A virtual member function is used if it is not pure. [...]
17416 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
17417 MarkFunctionReferenced(Loc, Overrider);
17418 }
17419 }
17420
17421 // Only classes that have virtual bases need a VTT.
17422 if (RD->getNumVBases() == 0)
17423 return;
17424
17425 for (const auto &I : RD->bases()) {
17426 const auto *Base =
17427 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
17428 if (Base->getNumVBases() == 0)
17429 continue;
17430 MarkVirtualMembersReferenced(Loc, Base);
17431 }
17432}
17433
17434/// SetIvarInitializers - This routine builds initialization ASTs for the
17435/// Objective-C implementation whose ivars need be initialized.
17436void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
17437 if (!getLangOpts().CPlusPlus)
17438 return;
17439 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
17440 SmallVector<ObjCIvarDecl*, 8> ivars;
17441 CollectIvarsToConstructOrDestruct(OID, ivars);
17442 if (ivars.empty())
17443 return;
17444 SmallVector<CXXCtorInitializer*, 32> AllToInit;
17445 for (unsigned i = 0; i < ivars.size(); i++) {
17446 FieldDecl *Field = ivars[i];
17447 if (Field->isInvalidDecl())
17448 continue;
17449
17450 CXXCtorInitializer *Member;
17451 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
17452 InitializationKind InitKind =
17453 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
17454
17455 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
17456 ExprResult MemberInit =
17457 InitSeq.Perform(*this, InitEntity, InitKind, None);
17458 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
17459 // Note, MemberInit could actually come back empty if no initialization
17460 // is required (e.g., because it would call a trivial default constructor)
17461 if (!MemberInit.get() || MemberInit.isInvalid())
17462 continue;
17463
17464 Member =
17465 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
17466 SourceLocation(),
17467 MemberInit.getAs<Expr>(),
17468 SourceLocation());
17469 AllToInit.push_back(Member);
17470
17471 // Be sure that the destructor is accessible and is marked as referenced.
17472 if (const RecordType *RecordTy =
17473 Context.getBaseElementType(Field->getType())
17474 ->getAs<RecordType>()) {
17475 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
17476 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
17477 MarkFunctionReferenced(Field->getLocation(), Destructor);
17478 CheckDestructorAccess(Field->getLocation(), Destructor,
17479 PDiag(diag::err_access_dtor_ivar)
17480 << Context.getBaseElementType(Field->getType()));
17481 }
17482 }
17483 }
17484 ObjCImplementation->setIvarInitializers(Context,
17485 AllToInit.data(), AllToInit.size());
17486 }
17487}
17488
17489static
17490void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
17491 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
17492 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
17493 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
17494 Sema &S) {
17495 if (Ctor->isInvalidDecl())
17496 return;
17497
17498 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
17499
17500 // Target may not be determinable yet, for instance if this is a dependent
17501 // call in an uninstantiated template.
17502 if (Target) {
17503 const FunctionDecl *FNTarget = nullptr;
17504 (void)Target->hasBody(FNTarget);
17505 Target = const_cast<CXXConstructorDecl*>(
17506 cast_or_null<CXXConstructorDecl>(FNTarget));
17507 }
17508
17509 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
17510 // Avoid dereferencing a null pointer here.
17511 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
17512
17513 if (!Current.insert(Canonical).second)
17514 return;
17515
17516 // We know that beyond here, we aren't chaining into a cycle.
17517 if (!Target || !Target->isDelegatingConstructor() ||
17518 Target->isInvalidDecl() || Valid.count(TCanonical)) {
17519 Valid.insert(Current.begin(), Current.end());
17520 Current.clear();
17521 // We've hit a cycle.
17522 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
17523 Current.count(TCanonical)) {
17524 // If we haven't diagnosed this cycle yet, do so now.
17525 if (!Invalid.count(TCanonical)) {
17526 S.Diag((*Ctor->init_begin())->getSourceLocation(),
17527 diag::warn_delegating_ctor_cycle)
17528 << Ctor;
17529
17530 // Don't add a note for a function delegating directly to itself.
17531 if (TCanonical != Canonical)
17532 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
17533
17534 CXXConstructorDecl *C = Target;
17535 while (C->getCanonicalDecl() != Canonical) {
17536 const FunctionDecl *FNTarget = nullptr;
17537 (void)C->getTargetConstructor()->hasBody(FNTarget);
17538 assert(FNTarget && "Ctor cycle through bodiless function")((FNTarget && "Ctor cycle through bodiless function")
? static_cast<void> (0) : __assert_fail ("FNTarget && \"Ctor cycle through bodiless function\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17538, __PRETTY_FUNCTION__))
;
17539
17540 C = const_cast<CXXConstructorDecl*>(
17541 cast<CXXConstructorDecl>(FNTarget));
17542 S.Diag(C->getLocation(), diag::note_which_delegates_to);
17543 }
17544 }
17545
17546 Invalid.insert(Current.begin(), Current.end());
17547 Current.clear();
17548 } else {
17549 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
17550 }
17551}
17552
17553
17554void Sema::CheckDelegatingCtorCycles() {
17555 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
17556
17557 for (DelegatingCtorDeclsType::iterator
17558 I = DelegatingCtorDecls.begin(ExternalSource),
17559 E = DelegatingCtorDecls.end();
17560 I != E; ++I)
17561 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
17562
17563 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
17564 (*CI)->setInvalidDecl();
17565}
17566
17567namespace {
17568 /// AST visitor that finds references to the 'this' expression.
17569 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
17570 Sema &S;
17571
17572 public:
17573 explicit FindCXXThisExpr(Sema &S) : S(S) { }
17574
17575 bool VisitCXXThisExpr(CXXThisExpr *E) {
17576 S.Diag(E->getLocation(), diag::err_this_static_member_func)
17577 << E->isImplicit();
17578 return false;
17579 }
17580 };
17581}
17582
17583bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
17584 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17585 if (!TSInfo)
17586 return false;
17587
17588 TypeLoc TL = TSInfo->getTypeLoc();
17589 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17590 if (!ProtoTL)
17591 return false;
17592
17593 // C++11 [expr.prim.general]p3:
17594 // [The expression this] shall not appear before the optional
17595 // cv-qualifier-seq and it shall not appear within the declaration of a
17596 // static member function (although its type and value category are defined
17597 // within a static member function as they are within a non-static member
17598 // function). [ Note: this is because declaration matching does not occur
17599 // until the complete declarator is known. - end note ]
17600 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17601 FindCXXThisExpr Finder(*this);
17602
17603 // If the return type came after the cv-qualifier-seq, check it now.
17604 if (Proto->hasTrailingReturn() &&
17605 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
17606 return true;
17607
17608 // Check the exception specification.
17609 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
17610 return true;
17611
17612 // Check the trailing requires clause
17613 if (Expr *E = Method->getTrailingRequiresClause())
17614 if (!Finder.TraverseStmt(E))
17615 return true;
17616
17617 return checkThisInStaticMemberFunctionAttributes(Method);
17618}
17619
17620bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
17621 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
17622 if (!TSInfo)
17623 return false;
17624
17625 TypeLoc TL = TSInfo->getTypeLoc();
17626 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
17627 if (!ProtoTL)
17628 return false;
17629
17630 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
17631 FindCXXThisExpr Finder(*this);
17632
17633 switch (Proto->getExceptionSpecType()) {
17634 case EST_Unparsed:
17635 case EST_Uninstantiated:
17636 case EST_Unevaluated:
17637 case EST_BasicNoexcept:
17638 case EST_NoThrow:
17639 case EST_DynamicNone:
17640 case EST_MSAny:
17641 case EST_None:
17642 break;
17643
17644 case EST_DependentNoexcept:
17645 case EST_NoexceptFalse:
17646 case EST_NoexceptTrue:
17647 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
17648 return true;
17649 LLVM_FALLTHROUGH[[gnu::fallthrough]];
17650
17651 case EST_Dynamic:
17652 for (const auto &E : Proto->exceptions()) {
17653 if (!Finder.TraverseType(E))
17654 return true;
17655 }
17656 break;
17657 }
17658
17659 return false;
17660}
17661
17662bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
17663 FindCXXThisExpr Finder(*this);
17664
17665 // Check attributes.
17666 for (const auto *A : Method->attrs()) {
17667 // FIXME: This should be emitted by tblgen.
17668 Expr *Arg = nullptr;
17669 ArrayRef<Expr *> Args;
17670 if (const auto *G = dyn_cast<GuardedByAttr>(A))
17671 Arg = G->getArg();
17672 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
17673 Arg = G->getArg();
17674 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
17675 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
17676 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
17677 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
17678 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
17679 Arg = ETLF->getSuccessValue();
17680 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
17681 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
17682 Arg = STLF->getSuccessValue();
17683 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
17684 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
17685 Arg = LR->getArg();
17686 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
17687 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
17688 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
17689 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17690 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
17691 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17692 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
17693 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
17694 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
17695 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
17696
17697 if (Arg && !Finder.TraverseStmt(Arg))
17698 return true;
17699
17700 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
17701 if (!Finder.TraverseStmt(Args[I]))
17702 return true;
17703 }
17704 }
17705
17706 return false;
17707}
17708
17709void Sema::checkExceptionSpecification(
17710 bool IsTopLevel, ExceptionSpecificationType EST,
17711 ArrayRef<ParsedType> DynamicExceptions,
17712 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
17713 SmallVectorImpl<QualType> &Exceptions,
17714 FunctionProtoType::ExceptionSpecInfo &ESI) {
17715 Exceptions.clear();
17716 ESI.Type = EST;
17717 if (EST == EST_Dynamic) {
17718 Exceptions.reserve(DynamicExceptions.size());
17719 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
17720 // FIXME: Preserve type source info.
17721 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
17722
17723 if (IsTopLevel) {
17724 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
17725 collectUnexpandedParameterPacks(ET, Unexpanded);
17726 if (!Unexpanded.empty()) {
17727 DiagnoseUnexpandedParameterPacks(
17728 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
17729 Unexpanded);
17730 continue;
17731 }
17732 }
17733
17734 // Check that the type is valid for an exception spec, and
17735 // drop it if not.
17736 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
17737 Exceptions.push_back(ET);
17738 }
17739 ESI.Exceptions = Exceptions;
17740 return;
17741 }
17742
17743 if (isComputedNoexcept(EST)) {
17744 assert((NoexceptExpr->isTypeDependent() ||(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17747, __PRETTY_FUNCTION__))
17745 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17747, __PRETTY_FUNCTION__))
17746 Context.BoolTy) &&(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17747, __PRETTY_FUNCTION__))
17747 "Parser should have made sure that the expression is boolean")(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-13~++20210405022414+5f57793c4fe4/clang/lib/Sema/SemaDeclCXX.cpp"
, 17747, __PRETTY_FUNCTION__))
;
17748 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
17749 ESI.Type = EST_BasicNoexcept;
17750 return;
17751 }
17752
17753 ESI.NoexceptExpr = NoexceptExpr;
17754 return;
17755 }
17756}
17757
17758void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
17759 ExceptionSpecificationType EST,
17760 SourceRange SpecificationRange,
17761 ArrayRef<ParsedType> DynamicExceptions,
17762 ArrayRef<SourceRange> DynamicExceptionRanges,
17763 Expr *NoexceptExpr) {
17764 if (!MethodD)
17765 return;
17766
17767 // Dig out the method we're referring to.
17768 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
17769 MethodD = FunTmpl->getTemplatedDecl();
17770
17771 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
17772 if (!Method)
17773 return;
17774
17775 // Check the exception specification.
17776 llvm::SmallVector<QualType, 4> Exceptions;
17777 FunctionProtoType::ExceptionSpecInfo ESI;
17778 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
17779 DynamicExceptionRanges, NoexceptExpr, Exceptions,
17780 ESI);
17781
17782 // Update the exception specification on the function type.
17783 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
17784
17785 if (Method->isStatic())
17786 checkThisInStaticMemberFunctionExceptionSpec(Method);
17787
17788 if (Method->isVirtual()) {
17789 // Check overrides, which we previously had to delay.
17790 for (const CXXMethodDecl *O : Method->overridden_methods())
17791 CheckOverridingFunctionExceptionSpec(Method, O);
17792 }
17793}
17794
17795/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
17796///
17797MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
17798 SourceLocation DeclStart, Declarator &D,
17799 Expr *BitWidth,
17800 InClassInitStyle InitStyle,
17801 AccessSpecifier AS,
17802 const ParsedAttr &MSPropertyAttr) {
17803 IdentifierInfo *II = D.getIdentifier();
17804 if (!II) {
17805 Diag(DeclStart, diag::err_anonymous_property);
17806 return nullptr;
17807 }
17808 SourceLocation Loc = D.getIdentifierLoc();
17809
17810 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
17811 QualType T = TInfo->getType();
17812 if (getLangOpts().CPlusPlus) {
17813 CheckExtraCXXDefaultArguments(D);
17814
17815 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
17816 UPPC_DataMemberType)) {
17817 D.setInvalidType();
17818 T = Context.IntTy;
17819 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
17820 }
17821 }
17822
17823 DiagnoseFunctionSpecifiers(D.getDeclSpec());
17824
17825 if (D.getDeclSpec().isInlineSpecified())
17826 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
17827 << getLangOpts().CPlusPlus17;
17828 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
17829 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
17830 diag::err_invalid_thread)
17831 << DeclSpec::getSpecifierName(TSCS);
17832
17833 // Check to see if this name was declared as a member previously
17834 NamedDecl *PrevDecl = nullptr;
17835 LookupResult Previous(*this, II, Loc, LookupMemberName,
17836 ForVisibleRedeclaration);
17837 LookupName(Previous, S);
17838 switch (Previous.getResultKind()) {
17839 case LookupResult::Found:
17840 case LookupResult::FoundUnresolvedValue:
17841 PrevDecl = Previous.getAsSingle<NamedDecl>();
17842 break;
17843
17844 case LookupResult::FoundOverloaded:
17845 PrevDecl = Previous.getRepresentativeDecl();
17846 break;
17847
17848 case LookupResult::NotFound:
17849 case LookupResult::NotFoundInCurrentInstantiation:
17850 case LookupResult::Ambiguous:
17851 break;
17852 }
17853
17854 if (PrevDecl && PrevDecl->isTemplateParameter()) {
17855 // Maybe we will complain about the shadowed template parameter.
17856 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
17857 // Just pretend that we didn't see the previous declaration.
17858 PrevDecl = nullptr;
17859 }
17860
17861 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
17862 PrevDecl = nullptr;
17863
17864 SourceLocation TSSL = D.getBeginLoc();
17865 MSPropertyDecl *NewPD =
17866 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
17867 MSPropertyAttr.getPropertyDataGetter(),
17868 MSPropertyAttr.getPropertyDataSetter());
17869 ProcessDeclAttributes(TUScope, NewPD, D);
17870 NewPD->setAccess(AS);
17871
17872 if (NewPD->isInvalidDecl())
17873 Record->setInvalidDecl();
17874
17875 if (D.getDeclSpec().isModulePrivateSpecified())
17876 NewPD->setModulePrivate();
17877
17878 if (NewPD->isInvalidDecl() && PrevDecl) {
17879 // Don't introduce NewFD into scope; there's already something
17880 // with the same name in the same scope.
17881 } else if (II) {
17882 PushOnScopeChains(NewPD, S);
17883 } else
17884 Record->addDecl(NewPD);
17885
17886 return NewPD;
17887}
17888
17889void Sema::ActOnStartFunctionDeclarationDeclarator(
17890 Declarator &Declarator, unsigned TemplateParameterDepth) {
17891 auto &Info = InventedParameterInfos.emplace_back();
17892 TemplateParameterList *ExplicitParams = nullptr;
17893 ArrayRef<TemplateParameterList *> ExplicitLists =
17894 Declarator.getTemplateParameterLists();
17895 if (!ExplicitLists.empty()) {
17896 bool IsMemberSpecialization, IsInvalid;
17897 ExplicitParams = MatchTemplateParametersToScopeSpecifier(
17898 Declarator.getBeginLoc(), Declarator.getIdentifierLoc(),
17899 Declarator.getCXXScopeSpec(), /*TemplateId=*/nullptr,
17900 ExplicitLists, /*IsFriend=*/false, IsMemberSpecialization, IsInvalid,
17901 /*SuppressDiagnostic=*/true);
17902 }
17903 if (ExplicitParams) {
17904 Info.AutoTemplateParameterDepth = ExplicitParams->getDepth();
17905 for (NamedDecl *Param : *ExplicitParams)
17906 Info.TemplateParams.push_back(Param);
17907 Info.NumExplicitTemplateParams = ExplicitParams->size();
17908 } else {
17909 Info.AutoTemplateParameterDepth = TemplateParameterDepth;
17910 Info.NumExplicitTemplateParams = 0;
17911 }
17912}
17913
17914void Sema::ActOnFinishFunctionDeclarationDeclarator(Declarator &Declarator) {
17915 auto &FSI = InventedParameterInfos.back();
17916 if (FSI.TemplateParams.size() > FSI.NumExplicitTemplateParams) {
17917 if (FSI.NumExplicitTemplateParams != 0) {
17918 TemplateParameterList *ExplicitParams =
17919 Declarator.getTemplateParameterLists().back();
17920 Declarator.setInventedTemplateParameterList(
17921 TemplateParameterList::Create(
17922 Context, ExplicitParams->getTemplateLoc(),
17923 ExplicitParams->getLAngleLoc(), FSI.TemplateParams,
17924 ExplicitParams->getRAngleLoc(),
17925 ExplicitParams->getRequiresClause()));
17926 } else {
17927 Declarator.setInventedTemplateParameterList(
17928 TemplateParameterList::Create(
17929 Context, SourceLocation(), SourceLocation(), FSI.TemplateParams,
17930 SourceLocation(), /*RequiresClause=*/nullptr));
17931 }
17932 }
17933 InventedParameterInfos.pop_back();
17934}