Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 15539, column 29
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn373517/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn373517=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-02-234743-9763-1 -x c++ /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for C++ declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/ASTLambda.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/ComparisonCategories.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/AttributeCommonInfo.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/LiteralSupport.h"
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Sema/CXXFieldCollector.h"
33#include "clang/Sema/DeclSpec.h"
34#include "clang/Sema/Initialization.h"
35#include "clang/Sema/Lookup.h"
36#include "clang/Sema/ParsedTemplate.h"
37#include "clang/Sema/Scope.h"
38#include "clang/Sema/ScopeInfo.h"
39#include "clang/Sema/SemaInternal.h"
40#include "clang/Sema/Template.h"
41#include "llvm/ADT/STLExtras.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/StringExtras.h"
44#include <map>
45#include <set>
46
47using namespace clang;
48
49//===----------------------------------------------------------------------===//
50// CheckDefaultArgumentVisitor
51//===----------------------------------------------------------------------===//
52
53namespace {
54 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
55 /// the default argument of a parameter to determine whether it
56 /// contains any ill-formed subexpressions. For example, this will
57 /// diagnose the use of local variables or parameters within the
58 /// default argument expression.
59 class CheckDefaultArgumentVisitor
60 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
61 Expr *DefaultArg;
62 Sema *S;
63
64 public:
65 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
66 : DefaultArg(defarg), S(s) {}
67
68 bool VisitExpr(Expr *Node);
69 bool VisitDeclRefExpr(DeclRefExpr *DRE);
70 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
71 bool VisitLambdaExpr(LambdaExpr *Lambda);
72 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
73 };
74
75 /// VisitExpr - Visit all of the children of this expression.
76 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
77 bool IsInvalid = false;
78 for (Stmt *SubStmt : Node->children())
79 IsInvalid |= Visit(SubStmt);
80 return IsInvalid;
81 }
82
83 /// VisitDeclRefExpr - Visit a reference to a declaration, to
84 /// determine whether this declaration can be used in the default
85 /// argument expression.
86 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
87 NamedDecl *Decl = DRE->getDecl();
88 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
89 // C++ [dcl.fct.default]p9
90 // Default arguments are evaluated each time the function is
91 // called. The order of evaluation of function arguments is
92 // unspecified. Consequently, parameters of a function shall not
93 // be used in default argument expressions, even if they are not
94 // evaluated. Parameters of a function declared before a default
95 // argument expression are in scope and can hide namespace and
96 // class member names.
97 return S->Diag(DRE->getBeginLoc(),
98 diag::err_param_default_argument_references_param)
99 << Param->getDeclName() << DefaultArg->getSourceRange();
100 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
101 // C++ [dcl.fct.default]p7
102 // Local variables shall not be used in default argument
103 // expressions.
104 if (VDecl->isLocalVarDecl())
105 return S->Diag(DRE->getBeginLoc(),
106 diag::err_param_default_argument_references_local)
107 << VDecl->getDeclName() << DefaultArg->getSourceRange();
108 }
109
110 return false;
111 }
112
113 /// VisitCXXThisExpr - Visit a C++ "this" expression.
114 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
115 // C++ [dcl.fct.default]p8:
116 // The keyword this shall not be used in a default argument of a
117 // member function.
118 return S->Diag(ThisE->getBeginLoc(),
119 diag::err_param_default_argument_references_this)
120 << ThisE->getSourceRange();
121 }
122
123 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
124 bool Invalid = false;
125 for (PseudoObjectExpr::semantics_iterator
126 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
127 Expr *E = *i;
128
129 // Look through bindings.
130 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
131 E = OVE->getSourceExpr();
132 assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?"
) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 132, __PRETTY_FUNCTION__))
;
133 }
134
135 Invalid |= Visit(E);
136 }
137 return Invalid;
138 }
139
140 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
141 // C++11 [expr.lambda.prim]p13:
142 // A lambda-expression appearing in a default argument shall not
143 // implicitly or explicitly capture any entity.
144 if (Lambda->capture_begin() == Lambda->capture_end())
145 return false;
146
147 return S->Diag(Lambda->getBeginLoc(), diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
171 EST = EST_BasicNoexcept;
172
173 switch (EST) {
174 case EST_Unparsed:
175 case EST_Uninstantiated:
176 case EST_Unevaluated:
177 llvm_unreachable("should not see unresolved exception specs here")::llvm::llvm_unreachable_internal("should not see unresolved exception specs here"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 177)
;
178
179 // If this function can throw any exceptions, make a note of that.
180 case EST_MSAny:
181 case EST_None:
182 // FIXME: Whichever we see last of MSAny and None determines our result.
183 // We should make a consistent, order-independent choice here.
184 ClearExceptions();
185 ComputedEST = EST;
186 return;
187 case EST_NoexceptFalse:
188 ClearExceptions();
189 ComputedEST = EST_None;
190 return;
191 // FIXME: If the call to this decl is using any of its default arguments, we
192 // need to search them for potentially-throwing calls.
193 // If this function has a basic noexcept, it doesn't affect the outcome.
194 case EST_BasicNoexcept:
195 case EST_NoexceptTrue:
196 case EST_NoThrow:
197 return;
198 // If we're still at noexcept(true) and there's a throw() callee,
199 // change to that specification.
200 case EST_DynamicNone:
201 if (ComputedEST == EST_BasicNoexcept)
202 ComputedEST = EST_DynamicNone;
203 return;
204 case EST_DependentNoexcept:
205 llvm_unreachable(::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 206)
206 "should not generate implicit declarations for dependent cases")::llvm::llvm_unreachable_internal("should not generate implicit declarations for dependent cases"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 206)
;
207 case EST_Dynamic:
208 break;
209 }
210 assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier."
) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 210, __PRETTY_FUNCTION__))
;
211 assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __PRETTY_FUNCTION__))
212 "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __PRETTY_FUNCTION__))
;
213 ComputedEST = EST_Dynamic;
214 // Record the exceptions in this function's exception specification.
215 for (const auto &E : Proto->exceptions())
216 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
217 Exceptions.push_back(E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221 if (!E || ComputedEST == EST_MSAny)
222 return;
223
224 // FIXME:
225 //
226 // C++0x [except.spec]p14:
227 // [An] implicit exception-specification specifies the type-id T if and
228 // only if T is allowed by the exception-specification of a function directly
229 // invoked by f's implicit definition; f shall allow all exceptions if any
230 // function it directly invokes allows all exceptions, and f shall allow no
231 // exceptions if every function it directly invokes allows no exceptions.
232 //
233 // Note in particular that if an implicit exception-specification is generated
234 // for a function containing a throw-expression, that specification can still
235 // be noexcept(true).
236 //
237 // Note also that 'directly invoked' is not defined in the standard, and there
238 // is no indication that we should only consider potentially-evaluated calls.
239 //
240 // Ultimately we should implement the intent of the standard: the exception
241 // specification should be the set of exceptions which can be thrown by the
242 // implicit definition. For now, we assume that any non-nothrow expression can
243 // throw any exception.
244
245 if (Self->canThrow(E))
246 ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251 SourceLocation EqualLoc) {
252 if (RequireCompleteType(Param->getLocation(), Param->getType(),
253 diag::err_typecheck_decl_incomplete_type)) {
254 Param->setInvalidDecl();
255 return true;
256 }
257
258 // C++ [dcl.fct.default]p5
259 // A default argument expression is implicitly converted (clause
260 // 4) to the parameter type. The default argument expression has
261 // the same semantic constraints as the initializer expression in
262 // a declaration of a variable of the parameter type, using the
263 // copy-initialization semantics (8.5).
264 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265 Param);
266 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267 EqualLoc);
268 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270 if (Result.isInvalid())
271 return true;
272 Arg = Result.getAs<Expr>();
273
274 CheckCompletedExpr(Arg, EqualLoc);
275 Arg = MaybeCreateExprWithCleanups(Arg);
276
277 // Okay: add the default argument to the parameter
278 Param->setDefaultArg(Arg);
279
280 // We have already instantiated this parameter; provide each of the
281 // instantiations with the uninstantiated default argument.
282 UnparsedDefaultArgInstantiationsMap::iterator InstPos
283 = UnparsedDefaultArgInstantiations.find(Param);
284 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288 // We're done tracking this parameter's instantiations.
289 UnparsedDefaultArgInstantiations.erase(InstPos);
290 }
291
292 return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300 Expr *DefaultArg) {
301 if (!param || !DefaultArg)
302 return;
303
304 ParmVarDecl *Param = cast<ParmVarDecl>(param);
305 UnparsedDefaultArgLocs.erase(Param);
306
307 // Default arguments are only permitted in C++
308 if (!getLangOpts().CPlusPlus) {
309 Diag(EqualLoc, diag::err_param_default_argument)
310 << DefaultArg->getSourceRange();
311 Param->setInvalidDecl();
312 return;
313 }
314
315 // Check for unexpanded parameter packs.
316 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317 Param->setInvalidDecl();
318 return;
319 }
320
321 // C++11 [dcl.fct.default]p3
322 // A default argument expression [...] shall not be specified for a
323 // parameter pack.
324 if (Param->isParameterPack()) {
325 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
326 << DefaultArg->getSourceRange();
327 return;
328 }
329
330 // Check that the default argument is well-formed
331 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
332 if (DefaultArgChecker.Visit(DefaultArg)) {
333 Param->setInvalidDecl();
334 return;
335 }
336
337 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
338}
339
340/// ActOnParamUnparsedDefaultArgument - We've seen a default
341/// argument for a function parameter, but we can't parse it yet
342/// because we're inside a class definition. Note that this default
343/// argument will be parsed later.
344void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
345 SourceLocation EqualLoc,
346 SourceLocation ArgLoc) {
347 if (!param)
348 return;
349
350 ParmVarDecl *Param = cast<ParmVarDecl>(param);
351 Param->setUnparsedDefaultArg();
352 UnparsedDefaultArgLocs[Param] = ArgLoc;
353}
354
355/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
356/// the default argument for the parameter param failed.
357void Sema::ActOnParamDefaultArgumentError(Decl *param,
358 SourceLocation EqualLoc) {
359 if (!param)
360 return;
361
362 ParmVarDecl *Param = cast<ParmVarDecl>(param);
363 Param->setInvalidDecl();
364 UnparsedDefaultArgLocs.erase(Param);
365 Param->setDefaultArg(new(Context)
366 OpaqueValueExpr(EqualLoc,
367 Param->getType().getNonReferenceType(),
368 VK_RValue));
369}
370
371/// CheckExtraCXXDefaultArguments - Check for any extra default
372/// arguments in the declarator, which is not a function declaration
373/// or definition and therefore is not permitted to have default
374/// arguments. This routine should be invoked for every declarator
375/// that is not a function declaration or definition.
376void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
377 // C++ [dcl.fct.default]p3
378 // A default argument expression shall be specified only in the
379 // parameter-declaration-clause of a function declaration or in a
380 // template-parameter (14.1). It shall not be specified for a
381 // parameter pack. If it is specified in a
382 // parameter-declaration-clause, it shall not occur within a
383 // declarator or abstract-declarator of a parameter-declaration.
384 bool MightBeFunction = D.isFunctionDeclarationContext();
385 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
386 DeclaratorChunk &chunk = D.getTypeObject(i);
387 if (chunk.Kind == DeclaratorChunk::Function) {
388 if (MightBeFunction) {
389 // This is a function declaration. It can have default arguments, but
390 // keep looking in case its return type is a function type with default
391 // arguments.
392 MightBeFunction = false;
393 continue;
394 }
395 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
396 ++argIdx) {
397 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
398 if (Param->hasUnparsedDefaultArg()) {
399 std::unique_ptr<CachedTokens> Toks =
400 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
401 SourceRange SR;
402 if (Toks->size() > 1)
403 SR = SourceRange((*Toks)[1].getLocation(),
404 Toks->back().getLocation());
405 else
406 SR = UnparsedDefaultArgLocs[Param];
407 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
408 << SR;
409 } else if (Param->getDefaultArg()) {
410 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
411 << Param->getDefaultArg()->getSourceRange();
412 Param->setDefaultArg(nullptr);
413 }
414 }
415 } else if (chunk.Kind != DeclaratorChunk::Paren) {
416 MightBeFunction = false;
417 }
418 }
419}
420
421static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
422 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
423 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
424 if (!PVD->hasDefaultArg())
425 return false;
426 if (!PVD->hasInheritedDefaultArg())
427 return true;
428 }
429 return false;
430}
431
432/// MergeCXXFunctionDecl - Merge two declarations of the same C++
433/// function, once we already know that they have the same
434/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
435/// error, false otherwise.
436bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
437 Scope *S) {
438 bool Invalid = false;
439
440 // The declaration context corresponding to the scope is the semantic
441 // parent, unless this is a local function declaration, in which case
442 // it is that surrounding function.
443 DeclContext *ScopeDC = New->isLocalExternDecl()
444 ? New->getLexicalDeclContext()
445 : New->getDeclContext();
446
447 // Find the previous declaration for the purpose of default arguments.
448 FunctionDecl *PrevForDefaultArgs = Old;
449 for (/**/; PrevForDefaultArgs;
450 // Don't bother looking back past the latest decl if this is a local
451 // extern declaration; nothing else could work.
452 PrevForDefaultArgs = New->isLocalExternDecl()
453 ? nullptr
454 : PrevForDefaultArgs->getPreviousDecl()) {
455 // Ignore hidden declarations.
456 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
457 continue;
458
459 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
460 !New->isCXXClassMember()) {
461 // Ignore default arguments of old decl if they are not in
462 // the same scope and this is not an out-of-line definition of
463 // a member function.
464 continue;
465 }
466
467 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
468 // If only one of these is a local function declaration, then they are
469 // declared in different scopes, even though isDeclInScope may think
470 // they're in the same scope. (If both are local, the scope check is
471 // sufficient, and if neither is local, then they are in the same scope.)
472 continue;
473 }
474
475 // We found the right previous declaration.
476 break;
477 }
478
479 // C++ [dcl.fct.default]p4:
480 // For non-template functions, default arguments can be added in
481 // later declarations of a function in the same
482 // scope. Declarations in different scopes have completely
483 // distinct sets of default arguments. That is, declarations in
484 // inner scopes do not acquire default arguments from
485 // declarations in outer scopes, and vice versa. In a given
486 // function declaration, all parameters subsequent to a
487 // parameter with a default argument shall have default
488 // arguments supplied in this or previous declarations. A
489 // default argument shall not be redefined by a later
490 // declaration (not even to the same value).
491 //
492 // C++ [dcl.fct.default]p6:
493 // Except for member functions of class templates, the default arguments
494 // in a member function definition that appears outside of the class
495 // definition are added to the set of default arguments provided by the
496 // member function declaration in the class definition.
497 for (unsigned p = 0, NumParams = PrevForDefaultArgs
498 ? PrevForDefaultArgs->getNumParams()
499 : 0;
500 p < NumParams; ++p) {
501 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
502 ParmVarDecl *NewParam = New->getParamDecl(p);
503
504 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
505 bool NewParamHasDfl = NewParam->hasDefaultArg();
506
507 if (OldParamHasDfl && NewParamHasDfl) {
508 unsigned DiagDefaultParamID =
509 diag::err_param_default_argument_redefinition;
510
511 // MSVC accepts that default parameters be redefined for member functions
512 // of template class. The new default parameter's value is ignored.
513 Invalid = true;
514 if (getLangOpts().MicrosoftExt) {
515 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
516 if (MD && MD->getParent()->getDescribedClassTemplate()) {
517 // Merge the old default argument into the new parameter.
518 NewParam->setHasInheritedDefaultArg();
519 if (OldParam->hasUninstantiatedDefaultArg())
520 NewParam->setUninstantiatedDefaultArg(
521 OldParam->getUninstantiatedDefaultArg());
522 else
523 NewParam->setDefaultArg(OldParam->getInit());
524 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
525 Invalid = false;
526 }
527 }
528
529 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
530 // hint here. Alternatively, we could walk the type-source information
531 // for NewParam to find the last source location in the type... but it
532 // isn't worth the effort right now. This is the kind of test case that
533 // is hard to get right:
534 // int f(int);
535 // void g(int (*fp)(int) = f);
536 // void g(int (*fp)(int) = &f);
537 Diag(NewParam->getLocation(), DiagDefaultParamID)
538 << NewParam->getDefaultArgRange();
539
540 // Look for the function declaration where the default argument was
541 // actually written, which may be a declaration prior to Old.
542 for (auto Older = PrevForDefaultArgs;
543 OldParam->hasInheritedDefaultArg(); /**/) {
544 Older = Older->getPreviousDecl();
545 OldParam = Older->getParamDecl(p);
546 }
547
548 Diag(OldParam->getLocation(), diag::note_previous_definition)
549 << OldParam->getDefaultArgRange();
550 } else if (OldParamHasDfl) {
551 // Merge the old default argument into the new parameter unless the new
552 // function is a friend declaration in a template class. In the latter
553 // case the default arguments will be inherited when the friend
554 // declaration will be instantiated.
555 if (New->getFriendObjectKind() == Decl::FOK_None ||
556 !New->getLexicalDeclContext()->isDependentContext()) {
557 // It's important to use getInit() here; getDefaultArg()
558 // strips off any top-level ExprWithCleanups.
559 NewParam->setHasInheritedDefaultArg();
560 if (OldParam->hasUnparsedDefaultArg())
561 NewParam->setUnparsedDefaultArg();
562 else if (OldParam->hasUninstantiatedDefaultArg())
563 NewParam->setUninstantiatedDefaultArg(
564 OldParam->getUninstantiatedDefaultArg());
565 else
566 NewParam->setDefaultArg(OldParam->getInit());
567 }
568 } else if (NewParamHasDfl) {
569 if (New->getDescribedFunctionTemplate()) {
570 // Paragraph 4, quoted above, only applies to non-template functions.
571 Diag(NewParam->getLocation(),
572 diag::err_param_default_argument_template_redecl)
573 << NewParam->getDefaultArgRange();
574 Diag(PrevForDefaultArgs->getLocation(),
575 diag::note_template_prev_declaration)
576 << false;
577 } else if (New->getTemplateSpecializationKind()
578 != TSK_ImplicitInstantiation &&
579 New->getTemplateSpecializationKind() != TSK_Undeclared) {
580 // C++ [temp.expr.spec]p21:
581 // Default function arguments shall not be specified in a declaration
582 // or a definition for one of the following explicit specializations:
583 // - the explicit specialization of a function template;
584 // - the explicit specialization of a member function template;
585 // - the explicit specialization of a member function of a class
586 // template where the class template specialization to which the
587 // member function specialization belongs is implicitly
588 // instantiated.
589 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
590 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
591 << New->getDeclName()
592 << NewParam->getDefaultArgRange();
593 } else if (New->getDeclContext()->isDependentContext()) {
594 // C++ [dcl.fct.default]p6 (DR217):
595 // Default arguments for a member function of a class template shall
596 // be specified on the initial declaration of the member function
597 // within the class template.
598 //
599 // Reading the tea leaves a bit in DR217 and its reference to DR205
600 // leads me to the conclusion that one cannot add default function
601 // arguments for an out-of-line definition of a member function of a
602 // dependent type.
603 int WhichKind = 2;
604 if (CXXRecordDecl *Record
605 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
606 if (Record->getDescribedClassTemplate())
607 WhichKind = 0;
608 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
609 WhichKind = 1;
610 else
611 WhichKind = 2;
612 }
613
614 Diag(NewParam->getLocation(),
615 diag::err_param_default_argument_member_template_redecl)
616 << WhichKind
617 << NewParam->getDefaultArgRange();
618 }
619 }
620 }
621
622 // DR1344: If a default argument is added outside a class definition and that
623 // default argument makes the function a special member function, the program
624 // is ill-formed. This can only happen for constructors.
625 if (isa<CXXConstructorDecl>(New) &&
626 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
627 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
628 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
629 if (NewSM != OldSM) {
630 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
631 assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0)
: __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 631, __PRETTY_FUNCTION__))
;
632 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
633 << NewParam->getDefaultArgRange() << NewSM;
634 Diag(Old->getLocation(), diag::note_previous_declaration);
635 }
636 }
637
638 const FunctionDecl *Def;
639 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
640 // template has a constexpr specifier then all its declarations shall
641 // contain the constexpr specifier.
642 if (New->getConstexprKind() != Old->getConstexprKind()) {
643 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
644 << New << New->getConstexprKind() << Old->getConstexprKind();
645 Diag(Old->getLocation(), diag::note_previous_declaration);
646 Invalid = true;
647 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
648 Old->isDefined(Def) &&
649 // If a friend function is inlined but does not have 'inline'
650 // specifier, it is a definition. Do not report attribute conflict
651 // in this case, redefinition will be diagnosed later.
652 (New->isInlineSpecified() ||
653 New->getFriendObjectKind() == Decl::FOK_None)) {
654 // C++11 [dcl.fcn.spec]p4:
655 // If the definition of a function appears in a translation unit before its
656 // first declaration as inline, the program is ill-formed.
657 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
658 Diag(Def->getLocation(), diag::note_previous_definition);
659 Invalid = true;
660 }
661
662 // C++17 [temp.deduct.guide]p3:
663 // Two deduction guide declarations in the same translation unit
664 // for the same class template shall not have equivalent
665 // parameter-declaration-clauses.
666 if (isa<CXXDeductionGuideDecl>(New) &&
667 !New->isFunctionTemplateSpecialization()) {
668 Diag(New->getLocation(), diag::err_deduction_guide_redeclared);
669 Diag(Old->getLocation(), diag::note_previous_declaration);
670 }
671
672 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
673 // argument expression, that declaration shall be a definition and shall be
674 // the only declaration of the function or function template in the
675 // translation unit.
676 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
677 functionDeclHasDefaultArgument(Old)) {
678 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
679 Diag(Old->getLocation(), diag::note_previous_declaration);
680 Invalid = true;
681 }
682
683 return Invalid;
684}
685
686NamedDecl *
687Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
688 MultiTemplateParamsArg TemplateParamLists) {
689 assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0
) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 689, __PRETTY_FUNCTION__))
;
690 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
691
692 // The syntax only allows a decomposition declarator as a simple-declaration,
693 // a for-range-declaration, or a condition in Clang, but we parse it in more
694 // cases than that.
695 if (!D.mayHaveDecompositionDeclarator()) {
696 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
697 << Decomp.getSourceRange();
698 return nullptr;
699 }
700
701 if (!TemplateParamLists.empty()) {
702 // FIXME: There's no rule against this, but there are also no rules that
703 // would actually make it usable, so we reject it for now.
704 Diag(TemplateParamLists.front()->getTemplateLoc(),
705 diag::err_decomp_decl_template);
706 return nullptr;
707 }
708
709 Diag(Decomp.getLSquareLoc(),
710 !getLangOpts().CPlusPlus17
711 ? diag::ext_decomp_decl
712 : D.getContext() == DeclaratorContext::ConditionContext
713 ? diag::ext_decomp_decl_cond
714 : diag::warn_cxx14_compat_decomp_decl)
715 << Decomp.getSourceRange();
716
717 // The semantic context is always just the current context.
718 DeclContext *const DC = CurContext;
719
720 // C++17 [dcl.dcl]/8:
721 // The decl-specifier-seq shall contain only the type-specifier auto
722 // and cv-qualifiers.
723 // C++2a [dcl.dcl]/8:
724 // If decl-specifier-seq contains any decl-specifier other than static,
725 // thread_local, auto, or cv-qualifiers, the program is ill-formed.
726 auto &DS = D.getDeclSpec();
727 {
728 SmallVector<StringRef, 8> BadSpecifiers;
729 SmallVector<SourceLocation, 8> BadSpecifierLocs;
730 SmallVector<StringRef, 8> CPlusPlus20Specifiers;
731 SmallVector<SourceLocation, 8> CPlusPlus20SpecifierLocs;
732 if (auto SCS = DS.getStorageClassSpec()) {
733 if (SCS == DeclSpec::SCS_static) {
734 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(SCS));
735 CPlusPlus20SpecifierLocs.push_back(DS.getStorageClassSpecLoc());
736 } else {
737 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
738 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
739 }
740 }
741 if (auto TSCS = DS.getThreadStorageClassSpec()) {
742 CPlusPlus20Specifiers.push_back(DeclSpec::getSpecifierName(TSCS));
743 CPlusPlus20SpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
744 }
745 if (DS.hasConstexprSpecifier()) {
746 BadSpecifiers.push_back(
747 DeclSpec::getSpecifierName(DS.getConstexprSpecifier()));
748 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
749 }
750 if (DS.isInlineSpecified()) {
751 BadSpecifiers.push_back("inline");
752 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
753 }
754 if (!BadSpecifiers.empty()) {
755 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
756 Err << (int)BadSpecifiers.size()
757 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
758 // Don't add FixItHints to remove the specifiers; we do still respect
759 // them when building the underlying variable.
760 for (auto Loc : BadSpecifierLocs)
761 Err << SourceRange(Loc, Loc);
762 } else if (!CPlusPlus20Specifiers.empty()) {
763 auto &&Warn = Diag(CPlusPlus20SpecifierLocs.front(),
764 getLangOpts().CPlusPlus2a
765 ? diag::warn_cxx17_compat_decomp_decl_spec
766 : diag::ext_decomp_decl_spec);
767 Warn << (int)CPlusPlus20Specifiers.size()
768 << llvm::join(CPlusPlus20Specifiers.begin(),
769 CPlusPlus20Specifiers.end(), " ");
770 for (auto Loc : CPlusPlus20SpecifierLocs)
771 Warn << SourceRange(Loc, Loc);
772 }
773 // We can't recover from it being declared as a typedef.
774 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
775 return nullptr;
776 }
777
778 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
779 QualType R = TInfo->getType();
780
781 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
782 UPPC_DeclarationType))
783 D.setInvalidType();
784
785 // The syntax only allows a single ref-qualifier prior to the decomposition
786 // declarator. No other declarator chunks are permitted. Also check the type
787 // specifier here.
788 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
789 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
790 (D.getNumTypeObjects() == 1 &&
791 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
792 Diag(Decomp.getLSquareLoc(),
793 (D.hasGroupingParens() ||
794 (D.getNumTypeObjects() &&
795 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
796 ? diag::err_decomp_decl_parens
797 : diag::err_decomp_decl_type)
798 << R;
799
800 // In most cases, there's no actual problem with an explicitly-specified
801 // type, but a function type won't work here, and ActOnVariableDeclarator
802 // shouldn't be called for such a type.
803 if (R->isFunctionType())
804 D.setInvalidType();
805 }
806
807 // Build the BindingDecls.
808 SmallVector<BindingDecl*, 8> Bindings;
809
810 // Build the BindingDecls.
811 for (auto &B : D.getDecompositionDeclarator().bindings()) {
812 // Check for name conflicts.
813 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
814 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
815 ForVisibleRedeclaration);
816 LookupName(Previous, S,
817 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
818
819 // It's not permitted to shadow a template parameter name.
820 if (Previous.isSingleResult() &&
821 Previous.getFoundDecl()->isTemplateParameter()) {
822 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
823 Previous.getFoundDecl());
824 Previous.clear();
825 }
826
827 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
828 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
829 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
830 /*AllowInlineNamespace*/false);
831 if (!Previous.empty()) {
832 auto *Old = Previous.getRepresentativeDecl();
833 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
834 Diag(Old->getLocation(), diag::note_previous_definition);
835 }
836
837 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
838 PushOnScopeChains(BD, S, true);
839 Bindings.push_back(BD);
840 ParsingInitForAutoVars.insert(BD);
841 }
842
843 // There are no prior lookup results for the variable itself, because it
844 // is unnamed.
845 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
846 Decomp.getLSquareLoc());
847 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
848 ForVisibleRedeclaration);
849
850 // Build the variable that holds the non-decomposed object.
851 bool AddToScope = true;
852 NamedDecl *New =
853 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
854 MultiTemplateParamsArg(), AddToScope, Bindings);
855 if (AddToScope) {
856 S->AddDecl(New);
857 CurContext->addHiddenDecl(New);
858 }
859
860 if (isInOpenMPDeclareTargetContext())
861 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
862
863 return New;
864}
865
866static bool checkSimpleDecomposition(
867 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
868 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
869 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
870 if ((int64_t)Bindings.size() != NumElems) {
871 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
872 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
873 << (NumElems < Bindings.size());
874 return true;
875 }
876
877 unsigned I = 0;
878 for (auto *B : Bindings) {
879 SourceLocation Loc = B->getLocation();
880 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
881 if (E.isInvalid())
882 return true;
883 E = GetInit(Loc, E.get(), I++);
884 if (E.isInvalid())
885 return true;
886 B->setBinding(ElemType, E.get());
887 }
888
889 return false;
890}
891
892static bool checkArrayLikeDecomposition(Sema &S,
893 ArrayRef<BindingDecl *> Bindings,
894 ValueDecl *Src, QualType DecompType,
895 const llvm::APSInt &NumElems,
896 QualType ElemType) {
897 return checkSimpleDecomposition(
898 S, Bindings, Src, DecompType, NumElems, ElemType,
899 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
900 ExprResult E = S.ActOnIntegerConstant(Loc, I);
901 if (E.isInvalid())
902 return ExprError();
903 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
904 });
905}
906
907static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
908 ValueDecl *Src, QualType DecompType,
909 const ConstantArrayType *CAT) {
910 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
911 llvm::APSInt(CAT->getSize()),
912 CAT->getElementType());
913}
914
915static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
916 ValueDecl *Src, QualType DecompType,
917 const VectorType *VT) {
918 return checkArrayLikeDecomposition(
919 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
920 S.Context.getQualifiedType(VT->getElementType(),
921 DecompType.getQualifiers()));
922}
923
924static bool checkComplexDecomposition(Sema &S,
925 ArrayRef<BindingDecl *> Bindings,
926 ValueDecl *Src, QualType DecompType,
927 const ComplexType *CT) {
928 return checkSimpleDecomposition(
929 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
930 S.Context.getQualifiedType(CT->getElementType(),
931 DecompType.getQualifiers()),
932 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
933 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
934 });
935}
936
937static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
938 TemplateArgumentListInfo &Args) {
939 SmallString<128> SS;
940 llvm::raw_svector_ostream OS(SS);
941 bool First = true;
942 for (auto &Arg : Args.arguments()) {
943 if (!First)
944 OS << ", ";
945 Arg.getArgument().print(PrintingPolicy, OS);
946 First = false;
947 }
948 return OS.str();
949}
950
951static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
952 SourceLocation Loc, StringRef Trait,
953 TemplateArgumentListInfo &Args,
954 unsigned DiagID) {
955 auto DiagnoseMissing = [&] {
956 if (DiagID)
957 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
958 Args);
959 return true;
960 };
961
962 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
963 NamespaceDecl *Std = S.getStdNamespace();
964 if (!Std)
965 return DiagnoseMissing();
966
967 // Look up the trait itself, within namespace std. We can diagnose various
968 // problems with this lookup even if we've been asked to not diagnose a
969 // missing specialization, because this can only fail if the user has been
970 // declaring their own names in namespace std or we don't support the
971 // standard library implementation in use.
972 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
973 Loc, Sema::LookupOrdinaryName);
974 if (!S.LookupQualifiedName(Result, Std))
975 return DiagnoseMissing();
976 if (Result.isAmbiguous())
977 return true;
978
979 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
980 if (!TraitTD) {
981 Result.suppressDiagnostics();
982 NamedDecl *Found = *Result.begin();
983 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
984 S.Diag(Found->getLocation(), diag::note_declared_at);
985 return true;
986 }
987
988 // Build the template-id.
989 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
990 if (TraitTy.isNull())
991 return true;
992 if (!S.isCompleteType(Loc, TraitTy)) {
993 if (DiagID)
994 S.RequireCompleteType(
995 Loc, TraitTy, DiagID,
996 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
997 return true;
998 }
999
1000 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
1001 assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?"
) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1001, __PRETTY_FUNCTION__))
;
1002
1003 // Look up the member of the trait type.
1004 S.LookupQualifiedName(TraitMemberLookup, RD);
1005 return TraitMemberLookup.isAmbiguous();
1006}
1007
1008static TemplateArgumentLoc
1009getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
1010 uint64_t I) {
1011 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
1012 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
1013}
1014
1015static TemplateArgumentLoc
1016getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
1017 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
1018}
1019
1020namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
1021
1022static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1023 llvm::APSInt &Size) {
1024 EnterExpressionEvaluationContext ContextRAII(
1025 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1026
1027 DeclarationName Value = S.PP.getIdentifierInfo("value");
1028 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1029
1030 // Form template argument list for tuple_size<T>.
1031 TemplateArgumentListInfo Args(Loc, Loc);
1032 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1033
1034 // If there's no tuple_size specialization or the lookup of 'value' is empty,
1035 // it's not tuple-like.
1036 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/ 0) ||
1037 R.empty())
1038 return IsTupleLike::NotTupleLike;
1039
1040 // If we get this far, we've committed to the tuple interpretation, but
1041 // we can still fail if there actually isn't a usable ::value.
1042
1043 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1044 LookupResult &R;
1045 TemplateArgumentListInfo &Args;
1046 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1047 : R(R), Args(Args) {}
1048 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1049 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1050 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1051 }
1052 } Diagnoser(R, Args);
1053
1054 ExprResult E =
1055 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1056 if (E.isInvalid())
1057 return IsTupleLike::Error;
1058
1059 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1060 if (E.isInvalid())
1061 return IsTupleLike::Error;
1062
1063 return IsTupleLike::TupleLike;
1064}
1065
1066/// \return std::tuple_element<I, T>::type.
1067static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1068 unsigned I, QualType T) {
1069 // Form template argument list for tuple_element<I, T>.
1070 TemplateArgumentListInfo Args(Loc, Loc);
1071 Args.addArgument(
1072 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1073 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1074
1075 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1076 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1077 if (lookupStdTypeTraitMember(
1078 S, R, Loc, "tuple_element", Args,
1079 diag::err_decomp_decl_std_tuple_element_not_specialized))
1080 return QualType();
1081
1082 auto *TD = R.getAsSingle<TypeDecl>();
1083 if (!TD) {
1084 R.suppressDiagnostics();
1085 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1086 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1087 if (!R.empty())
1088 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1089 return QualType();
1090 }
1091
1092 return S.Context.getTypeDeclType(TD);
1093}
1094
1095namespace {
1096struct BindingDiagnosticTrap {
1097 Sema &S;
1098 DiagnosticErrorTrap Trap;
1099 BindingDecl *BD;
1100
1101 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1102 : S(S), Trap(S.Diags), BD(BD) {}
1103 ~BindingDiagnosticTrap() {
1104 if (Trap.hasErrorOccurred())
1105 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1106 }
1107};
1108}
1109
1110static bool checkTupleLikeDecomposition(Sema &S,
1111 ArrayRef<BindingDecl *> Bindings,
1112 VarDecl *Src, QualType DecompType,
1113 const llvm::APSInt &TupleSize) {
1114 if ((int64_t)Bindings.size() != TupleSize) {
1115 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1116 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1117 << (TupleSize < Bindings.size());
1118 return true;
1119 }
1120
1121 if (Bindings.empty())
1122 return false;
1123
1124 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1125
1126 // [dcl.decomp]p3:
1127 // The unqualified-id get is looked up in the scope of E by class member
1128 // access lookup ...
1129 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1130 bool UseMemberGet = false;
1131 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1132 if (auto *RD = DecompType->getAsCXXRecordDecl())
1133 S.LookupQualifiedName(MemberGet, RD);
1134 if (MemberGet.isAmbiguous())
1135 return true;
1136 // ... and if that finds at least one declaration that is a function
1137 // template whose first template parameter is a non-type parameter ...
1138 for (NamedDecl *D : MemberGet) {
1139 if (FunctionTemplateDecl *FTD =
1140 dyn_cast<FunctionTemplateDecl>(D->getUnderlyingDecl())) {
1141 TemplateParameterList *TPL = FTD->getTemplateParameters();
1142 if (TPL->size() != 0 &&
1143 isa<NonTypeTemplateParmDecl>(TPL->getParam(0))) {
1144 // ... the initializer is e.get<i>().
1145 UseMemberGet = true;
1146 break;
1147 }
1148 }
1149 }
1150 }
1151
1152 unsigned I = 0;
1153 for (auto *B : Bindings) {
1154 BindingDiagnosticTrap Trap(S, B);
1155 SourceLocation Loc = B->getLocation();
1156
1157 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1158 if (E.isInvalid())
1159 return true;
1160
1161 // e is an lvalue if the type of the entity is an lvalue reference and
1162 // an xvalue otherwise
1163 if (!Src->getType()->isLValueReferenceType())
1164 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1165 E.get(), nullptr, VK_XValue);
1166
1167 TemplateArgumentListInfo Args(Loc, Loc);
1168 Args.addArgument(
1169 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1170
1171 if (UseMemberGet) {
1172 // if [lookup of member get] finds at least one declaration, the
1173 // initializer is e.get<i-1>().
1174 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1175 CXXScopeSpec(), SourceLocation(), nullptr,
1176 MemberGet, &Args, nullptr);
1177 if (E.isInvalid())
1178 return true;
1179
1180 E = S.BuildCallExpr(nullptr, E.get(), Loc, None, Loc);
1181 } else {
1182 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1183 // in the associated namespaces.
1184 Expr *Get = UnresolvedLookupExpr::Create(
1185 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1186 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1187 UnresolvedSetIterator(), UnresolvedSetIterator());
1188
1189 Expr *Arg = E.get();
1190 E = S.BuildCallExpr(nullptr, Get, Loc, Arg, Loc);
1191 }
1192 if (E.isInvalid())
1193 return true;
1194 Expr *Init = E.get();
1195
1196 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1197 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1198 if (T.isNull())
1199 return true;
1200
1201 // each vi is a variable of type "reference to T" initialized with the
1202 // initializer, where the reference is an lvalue reference if the
1203 // initializer is an lvalue and an rvalue reference otherwise
1204 QualType RefType =
1205 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1206 if (RefType.isNull())
1207 return true;
1208 auto *RefVD = VarDecl::Create(
1209 S.Context, Src->getDeclContext(), Loc, Loc,
1210 B->getDeclName().getAsIdentifierInfo(), RefType,
1211 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1212 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1213 RefVD->setTSCSpec(Src->getTSCSpec());
1214 RefVD->setImplicit();
1215 if (Src->isInlineSpecified())
1216 RefVD->setInlineSpecified();
1217 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1218
1219 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1220 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1221 InitializationSequence Seq(S, Entity, Kind, Init);
1222 E = Seq.Perform(S, Entity, Kind, Init);
1223 if (E.isInvalid())
1224 return true;
1225 E = S.ActOnFinishFullExpr(E.get(), Loc, /*DiscardedValue*/ false);
1226 if (E.isInvalid())
1227 return true;
1228 RefVD->setInit(E.get());
1229 if (!E.get()->isValueDependent())
1230 RefVD->checkInitIsICE();
1231
1232 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1233 DeclarationNameInfo(B->getDeclName(), Loc),
1234 RefVD);
1235 if (E.isInvalid())
1236 return true;
1237
1238 B->setBinding(T, E.get());
1239 I++;
1240 }
1241
1242 return false;
1243}
1244
1245/// Find the base class to decompose in a built-in decomposition of a class type.
1246/// This base class search is, unfortunately, not quite like any other that we
1247/// perform anywhere else in C++.
1248static DeclAccessPair findDecomposableBaseClass(Sema &S, SourceLocation Loc,
1249 const CXXRecordDecl *RD,
1250 CXXCastPath &BasePath) {
1251 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1252 CXXBasePath &Path) {
1253 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1254 };
1255
1256 const CXXRecordDecl *ClassWithFields = nullptr;
1257 AccessSpecifier AS = AS_public;
1258 if (RD->hasDirectFields())
1259 // [dcl.decomp]p4:
1260 // Otherwise, all of E's non-static data members shall be public direct
1261 // members of E ...
1262 ClassWithFields = RD;
1263 else {
1264 // ... or of ...
1265 CXXBasePaths Paths;
1266 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1267 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1268 // If no classes have fields, just decompose RD itself. (This will work
1269 // if and only if zero bindings were provided.)
1270 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(RD), AS_public);
1271 }
1272
1273 CXXBasePath *BestPath = nullptr;
1274 for (auto &P : Paths) {
1275 if (!BestPath)
1276 BestPath = &P;
1277 else if (!S.Context.hasSameType(P.back().Base->getType(),
1278 BestPath->back().Base->getType())) {
1279 // ... the same ...
1280 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1281 << false << RD << BestPath->back().Base->getType()
1282 << P.back().Base->getType();
1283 return DeclAccessPair();
1284 } else if (P.Access < BestPath->Access) {
1285 BestPath = &P;
1286 }
1287 }
1288
1289 // ... unambiguous ...
1290 QualType BaseType = BestPath->back().Base->getType();
1291 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1292 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1293 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1294 return DeclAccessPair();
1295 }
1296
1297 // ... [accessible, implied by other rules] base class of E.
1298 S.CheckBaseClassAccess(Loc, BaseType, S.Context.getRecordType(RD),
1299 *BestPath, diag::err_decomp_decl_inaccessible_base);
1300 AS = BestPath->Access;
1301
1302 ClassWithFields = BaseType->getAsCXXRecordDecl();
1303 S.BuildBasePathArray(Paths, BasePath);
1304 }
1305
1306 // The above search did not check whether the selected class itself has base
1307 // classes with fields, so check that now.
1308 CXXBasePaths Paths;
1309 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1310 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1311 << (ClassWithFields == RD) << RD << ClassWithFields
1312 << Paths.front().back().Base->getType();
1313 return DeclAccessPair();
1314 }
1315
1316 return DeclAccessPair::make(const_cast<CXXRecordDecl*>(ClassWithFields), AS);
1317}
1318
1319static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1320 ValueDecl *Src, QualType DecompType,
1321 const CXXRecordDecl *OrigRD) {
1322 if (S.RequireCompleteType(Src->getLocation(), DecompType,
1323 diag::err_incomplete_type))
1324 return true;
1325
1326 CXXCastPath BasePath;
1327 DeclAccessPair BasePair =
1328 findDecomposableBaseClass(S, Src->getLocation(), OrigRD, BasePath);
1329 const CXXRecordDecl *RD = cast_or_null<CXXRecordDecl>(BasePair.getDecl());
1330 if (!RD)
1331 return true;
1332 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1333 DecompType.getQualifiers());
1334
1335 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1336 unsigned NumFields =
1337 std::count_if(RD->field_begin(), RD->field_end(),
1338 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1339 assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0)
: __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1339, __PRETTY_FUNCTION__))
;
1340 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1341 << DecompType << (unsigned)Bindings.size() << NumFields
1342 << (NumFields < Bindings.size());
1343 return true;
1344 };
1345
1346 // all of E's non-static data members shall be [...] well-formed
1347 // when named as e.name in the context of the structured binding,
1348 // E shall not have an anonymous union member, ...
1349 unsigned I = 0;
1350 for (auto *FD : RD->fields()) {
1351 if (FD->isUnnamedBitfield())
1352 continue;
1353
1354 if (FD->isAnonymousStructOrUnion()) {
1355 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1356 << DecompType << FD->getType()->isUnionType();
1357 S.Diag(FD->getLocation(), diag::note_declared_at);
1358 return true;
1359 }
1360
1361 // We have a real field to bind.
1362 if (I >= Bindings.size())
1363 return DiagnoseBadNumberOfBindings();
1364 auto *B = Bindings[I++];
1365 SourceLocation Loc = B->getLocation();
1366
1367 // The field must be accessible in the context of the structured binding.
1368 // We already checked that the base class is accessible.
1369 // FIXME: Add 'const' to AccessedEntity's classes so we can remove the
1370 // const_cast here.
1371 S.CheckStructuredBindingMemberAccess(
1372 Loc, const_cast<CXXRecordDecl *>(OrigRD),
1373 DeclAccessPair::make(FD, CXXRecordDecl::MergeAccess(
1374 BasePair.getAccess(), FD->getAccess())));
1375
1376 // Initialize the binding to Src.FD.
1377 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1378 if (E.isInvalid())
1379 return true;
1380 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1381 VK_LValue, &BasePath);
1382 if (E.isInvalid())
1383 return true;
1384 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1385 CXXScopeSpec(), FD,
1386 DeclAccessPair::make(FD, FD->getAccess()),
1387 DeclarationNameInfo(FD->getDeclName(), Loc));
1388 if (E.isInvalid())
1389 return true;
1390
1391 // If the type of the member is T, the referenced type is cv T, where cv is
1392 // the cv-qualification of the decomposition expression.
1393 //
1394 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1395 // 'const' to the type of the field.
1396 Qualifiers Q = DecompType.getQualifiers();
1397 if (FD->isMutable())
1398 Q.removeConst();
1399 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1400 }
1401
1402 if (I != Bindings.size())
1403 return DiagnoseBadNumberOfBindings();
1404
1405 return false;
1406}
1407
1408void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1409 QualType DecompType = DD->getType();
1410
1411 // If the type of the decomposition is dependent, then so is the type of
1412 // each binding.
1413 if (DecompType->isDependentType()) {
1414 for (auto *B : DD->bindings())
1415 B->setType(Context.DependentTy);
1416 return;
1417 }
1418
1419 DecompType = DecompType.getNonReferenceType();
1420 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1421
1422 // C++1z [dcl.decomp]/2:
1423 // If E is an array type [...]
1424 // As an extension, we also support decomposition of built-in complex and
1425 // vector types.
1426 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1427 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1428 DD->setInvalidDecl();
1429 return;
1430 }
1431 if (auto *VT = DecompType->getAs<VectorType>()) {
1432 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1433 DD->setInvalidDecl();
1434 return;
1435 }
1436 if (auto *CT = DecompType->getAs<ComplexType>()) {
1437 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1438 DD->setInvalidDecl();
1439 return;
1440 }
1441
1442 // C++1z [dcl.decomp]/3:
1443 // if the expression std::tuple_size<E>::value is a well-formed integral
1444 // constant expression, [...]
1445 llvm::APSInt TupleSize(32);
1446 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1447 case IsTupleLike::Error:
1448 DD->setInvalidDecl();
1449 return;
1450
1451 case IsTupleLike::TupleLike:
1452 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1453 DD->setInvalidDecl();
1454 return;
1455
1456 case IsTupleLike::NotTupleLike:
1457 break;
1458 }
1459
1460 // C++1z [dcl.dcl]/8:
1461 // [E shall be of array or non-union class type]
1462 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1463 if (!RD || RD->isUnion()) {
1464 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1465 << DD << !RD << DecompType;
1466 DD->setInvalidDecl();
1467 return;
1468 }
1469
1470 // C++1z [dcl.decomp]/4:
1471 // all of E's non-static data members shall be [...] direct members of
1472 // E or of the same unambiguous public base class of E, ...
1473 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1474 DD->setInvalidDecl();
1475}
1476
1477/// Merge the exception specifications of two variable declarations.
1478///
1479/// This is called when there's a redeclaration of a VarDecl. The function
1480/// checks if the redeclaration might have an exception specification and
1481/// validates compatibility and merges the specs if necessary.
1482void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1483 // Shortcut if exceptions are disabled.
1484 if (!getLangOpts().CXXExceptions)
1485 return;
1486
1487 assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1488, __PRETTY_FUNCTION__))
1488 "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1488, __PRETTY_FUNCTION__))
;
1489
1490 QualType NewType = New->getType();
1491 QualType OldType = Old->getType();
1492
1493 // We're only interested in pointers and references to functions, as well
1494 // as pointers to member functions.
1495 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1496 NewType = R->getPointeeType();
1497 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1498 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1499 NewType = P->getPointeeType();
1500 OldType = OldType->getAs<PointerType>()->getPointeeType();
1501 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1502 NewType = M->getPointeeType();
1503 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1504 }
1505
1506 if (!NewType->isFunctionProtoType())
1507 return;
1508
1509 // There's lots of special cases for functions. For function pointers, system
1510 // libraries are hopefully not as broken so that we don't need these
1511 // workarounds.
1512 if (CheckEquivalentExceptionSpec(
1513 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1514 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1515 New->setInvalidDecl();
1516 }
1517}
1518
1519/// CheckCXXDefaultArguments - Verify that the default arguments for a
1520/// function declaration are well-formed according to C++
1521/// [dcl.fct.default].
1522void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1523 unsigned NumParams = FD->getNumParams();
1524 unsigned p;
1525
1526 // Find first parameter with a default argument
1527 for (p = 0; p < NumParams; ++p) {
1528 ParmVarDecl *Param = FD->getParamDecl(p);
1529 if (Param->hasDefaultArg())
1530 break;
1531 }
1532
1533 // C++11 [dcl.fct.default]p4:
1534 // In a given function declaration, each parameter subsequent to a parameter
1535 // with a default argument shall have a default argument supplied in this or
1536 // a previous declaration or shall be a function parameter pack. A default
1537 // argument shall not be redefined by a later declaration (not even to the
1538 // same value).
1539 unsigned LastMissingDefaultArg = 0;
1540 for (; p < NumParams; ++p) {
1541 ParmVarDecl *Param = FD->getParamDecl(p);
1542 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1543 if (Param->isInvalidDecl())
1544 /* We already complained about this parameter. */;
1545 else if (Param->getIdentifier())
1546 Diag(Param->getLocation(),
1547 diag::err_param_default_argument_missing_name)
1548 << Param->getIdentifier();
1549 else
1550 Diag(Param->getLocation(),
1551 diag::err_param_default_argument_missing);
1552
1553 LastMissingDefaultArg = p;
1554 }
1555 }
1556
1557 if (LastMissingDefaultArg > 0) {
1558 // Some default arguments were missing. Clear out all of the
1559 // default arguments up to (and including) the last missing
1560 // default argument, so that we leave the function parameters
1561 // in a semantically valid state.
1562 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1563 ParmVarDecl *Param = FD->getParamDecl(p);
1564 if (Param->hasDefaultArg()) {
1565 Param->setDefaultArg(nullptr);
1566 }
1567 }
1568 }
1569}
1570
1571/// Check that the given type is a literal type. Issue a diagnostic if not,
1572/// if Kind is Diagnose.
1573/// \return \c true if a problem has been found (and optionally diagnosed).
1574template <typename... Ts>
1575static bool CheckLiteralType(Sema &SemaRef, Sema::CheckConstexprKind Kind,
1576 SourceLocation Loc, QualType T, unsigned DiagID,
1577 Ts &&...DiagArgs) {
1578 if (T->isDependentType())
1579 return false;
1580
1581 switch (Kind) {
1582 case Sema::CheckConstexprKind::Diagnose:
1583 return SemaRef.RequireLiteralType(Loc, T, DiagID,
1584 std::forward<Ts>(DiagArgs)...);
1585
1586 case Sema::CheckConstexprKind::CheckValid:
1587 return !T->isLiteralType(SemaRef.Context);
1588 }
1589
1590 llvm_unreachable("unknown CheckConstexprKind")::llvm::llvm_unreachable_internal("unknown CheckConstexprKind"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1590)
;
1591}
1592
1593/// Determine whether a destructor cannot be constexpr due to
1594static bool CheckConstexprDestructorSubobjects(Sema &SemaRef,
1595 const CXXDestructorDecl *DD,
1596 Sema::CheckConstexprKind Kind) {
1597 auto Check = [&](SourceLocation Loc, QualType T, const FieldDecl *FD) {
1598 const CXXRecordDecl *RD =
1599 T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1600 if (!RD || RD->hasConstexprDestructor())
1601 return true;
1602
1603 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1604 SemaRef.Diag(DD->getLocation(), diag::err_constexpr_dtor_subobject)
1605 << DD->getConstexprKind() << !FD
1606 << (FD ? FD->getDeclName() : DeclarationName()) << T;
1607 SemaRef.Diag(Loc, diag::note_constexpr_dtor_subobject)
1608 << !FD << (FD ? FD->getDeclName() : DeclarationName()) << T;
1609 }
1610 return false;
1611 };
1612
1613 const CXXRecordDecl *RD = DD->getParent();
1614 for (const CXXBaseSpecifier &B : RD->bases())
1615 if (!Check(B.getBaseTypeLoc(), B.getType(), nullptr))
1616 return false;
1617 for (const FieldDecl *FD : RD->fields())
1618 if (!Check(FD->getLocation(), FD->getType(), FD))
1619 return false;
1620 return true;
1621}
1622
1623// CheckConstexprParameterTypes - Check whether a function's parameter types
1624// are all literal types. If so, return true. If not, produce a suitable
1625// diagnostic and return false.
1626static bool CheckConstexprParameterTypes(Sema &SemaRef,
1627 const FunctionDecl *FD,
1628 Sema::CheckConstexprKind Kind) {
1629 unsigned ArgIndex = 0;
1630 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1631 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1632 e = FT->param_type_end();
1633 i != e; ++i, ++ArgIndex) {
1634 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1635 SourceLocation ParamLoc = PD->getLocation();
1636 if (CheckLiteralType(SemaRef, Kind, ParamLoc, *i,
1637 diag::err_constexpr_non_literal_param, ArgIndex + 1,
1638 PD->getSourceRange(), isa<CXXConstructorDecl>(FD),
1639 FD->isConsteval()))
1640 return false;
1641 }
1642 return true;
1643}
1644
1645/// Get diagnostic %select index for tag kind for
1646/// record diagnostic message.
1647/// WARNING: Indexes apply to particular diagnostics only!
1648///
1649/// \returns diagnostic %select index.
1650static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1651 switch (Tag) {
1652 case TTK_Struct: return 0;
1653 case TTK_Interface: return 1;
1654 case TTK_Class: return 2;
1655 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1655)
;
1656 }
1657}
1658
1659static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
1660 Stmt *Body,
1661 Sema::CheckConstexprKind Kind);
1662
1663// Check whether a function declaration satisfies the requirements of a
1664// constexpr function definition or a constexpr constructor definition. If so,
1665// return true. If not, produce appropriate diagnostics (unless asked not to by
1666// Kind) and return false.
1667//
1668// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1669bool Sema::CheckConstexprFunctionDefinition(const FunctionDecl *NewFD,
1670 CheckConstexprKind Kind) {
1671 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1672 if (MD && MD->isInstance()) {
1673 // C++11 [dcl.constexpr]p4:
1674 // The definition of a constexpr constructor shall satisfy the following
1675 // constraints:
1676 // - the class shall not have any virtual base classes;
1677 //
1678 // FIXME: This only applies to constructors and destructors, not arbitrary
1679 // member functions.
1680 const CXXRecordDecl *RD = MD->getParent();
1681 if (RD->getNumVBases()) {
1682 if (Kind == CheckConstexprKind::CheckValid)
1683 return false;
1684
1685 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1686 << isa<CXXConstructorDecl>(NewFD)
1687 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1688 for (const auto &I : RD->vbases())
1689 Diag(I.getBeginLoc(), diag::note_constexpr_virtual_base_here)
1690 << I.getSourceRange();
1691 return false;
1692 }
1693 }
1694
1695 if (!isa<CXXConstructorDecl>(NewFD)) {
1696 // C++11 [dcl.constexpr]p3:
1697 // The definition of a constexpr function shall satisfy the following
1698 // constraints:
1699 // - it shall not be virtual; (removed in C++20)
1700 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1701 if (Method && Method->isVirtual()) {
1702 if (getLangOpts().CPlusPlus2a) {
1703 if (Kind == CheckConstexprKind::Diagnose)
1704 Diag(Method->getLocation(), diag::warn_cxx17_compat_constexpr_virtual);
1705 } else {
1706 if (Kind == CheckConstexprKind::CheckValid)
1707 return false;
1708
1709 Method = Method->getCanonicalDecl();
1710 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1711
1712 // If it's not obvious why this function is virtual, find an overridden
1713 // function which uses the 'virtual' keyword.
1714 const CXXMethodDecl *WrittenVirtual = Method;
1715 while (!WrittenVirtual->isVirtualAsWritten())
1716 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1717 if (WrittenVirtual != Method)
1718 Diag(WrittenVirtual->getLocation(),
1719 diag::note_overridden_virtual_function);
1720 return false;
1721 }
1722 }
1723
1724 // - its return type shall be a literal type;
1725 QualType RT = NewFD->getReturnType();
1726 if (CheckLiteralType(*this, Kind, NewFD->getLocation(), RT,
1727 diag::err_constexpr_non_literal_return,
1728 NewFD->isConsteval()))
1729 return false;
1730 }
1731
1732 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(NewFD)) {
1733 // A destructor can be constexpr only if the defaulted destructor could be;
1734 // we don't need to check the members and bases if we already know they all
1735 // have constexpr destructors.
1736 if (!Dtor->getParent()->defaultedDestructorIsConstexpr()) {
1737 if (Kind == CheckConstexprKind::CheckValid)
1738 return false;
1739 if (!CheckConstexprDestructorSubobjects(*this, Dtor, Kind))
1740 return false;
1741 }
1742 }
1743
1744 // - each of its parameter types shall be a literal type;
1745 if (!CheckConstexprParameterTypes(*this, NewFD, Kind))
1746 return false;
1747
1748 Stmt *Body = NewFD->getBody();
1749 assert(Body &&((Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? static_cast<void> (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1750, __PRETTY_FUNCTION__))
1750 "CheckConstexprFunctionDefinition called on function with no body")((Body && "CheckConstexprFunctionDefinition called on function with no body"
) ? static_cast<void> (0) : __assert_fail ("Body && \"CheckConstexprFunctionDefinition called on function with no body\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1750, __PRETTY_FUNCTION__))
;
1751 return CheckConstexprFunctionBody(*this, NewFD, Body, Kind);
1752}
1753
1754/// Check the given declaration statement is legal within a constexpr function
1755/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1756///
1757/// \return true if the body is OK (maybe only as an extension), false if we
1758/// have diagnosed a problem.
1759static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1760 DeclStmt *DS, SourceLocation &Cxx1yLoc,
1761 Sema::CheckConstexprKind Kind) {
1762 // C++11 [dcl.constexpr]p3 and p4:
1763 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1764 // contain only
1765 for (const auto *DclIt : DS->decls()) {
1766 switch (DclIt->getKind()) {
1767 case Decl::StaticAssert:
1768 case Decl::Using:
1769 case Decl::UsingShadow:
1770 case Decl::UsingDirective:
1771 case Decl::UnresolvedUsingTypename:
1772 case Decl::UnresolvedUsingValue:
1773 // - static_assert-declarations
1774 // - using-declarations,
1775 // - using-directives,
1776 continue;
1777
1778 case Decl::Typedef:
1779 case Decl::TypeAlias: {
1780 // - typedef declarations and alias-declarations that do not define
1781 // classes or enumerations,
1782 const auto *TN = cast<TypedefNameDecl>(DclIt);
1783 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1784 // Don't allow variably-modified types in constexpr functions.
1785 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1786 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1787 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1788 << TL.getSourceRange() << TL.getType()
1789 << isa<CXXConstructorDecl>(Dcl);
1790 }
1791 return false;
1792 }
1793 continue;
1794 }
1795
1796 case Decl::Enum:
1797 case Decl::CXXRecord:
1798 // C++1y allows types to be defined, not just declared.
1799 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition()) {
1800 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1801 SemaRef.Diag(DS->getBeginLoc(),
1802 SemaRef.getLangOpts().CPlusPlus14
1803 ? diag::warn_cxx11_compat_constexpr_type_definition
1804 : diag::ext_constexpr_type_definition)
1805 << isa<CXXConstructorDecl>(Dcl);
1806 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1807 return false;
1808 }
1809 }
1810 continue;
1811
1812 case Decl::EnumConstant:
1813 case Decl::IndirectField:
1814 case Decl::ParmVar:
1815 // These can only appear with other declarations which are banned in
1816 // C++11 and permitted in C++1y, so ignore them.
1817 continue;
1818
1819 case Decl::Var:
1820 case Decl::Decomposition: {
1821 // C++1y [dcl.constexpr]p3 allows anything except:
1822 // a definition of a variable of non-literal type or of static or
1823 // thread storage duration or [before C++2a] for which no
1824 // initialization is performed.
1825 const auto *VD = cast<VarDecl>(DclIt);
1826 if (VD->isThisDeclarationADefinition()) {
1827 if (VD->isStaticLocal()) {
1828 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1829 SemaRef.Diag(VD->getLocation(),
1830 diag::err_constexpr_local_var_static)
1831 << isa<CXXConstructorDecl>(Dcl)
1832 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1833 }
1834 return false;
1835 }
1836 if (CheckLiteralType(SemaRef, Kind, VD->getLocation(), VD->getType(),
1837 diag::err_constexpr_local_var_non_literal_type,
1838 isa<CXXConstructorDecl>(Dcl)))
1839 return false;
1840 if (!VD->getType()->isDependentType() &&
1841 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1842 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1843 SemaRef.Diag(
1844 VD->getLocation(),
1845 SemaRef.getLangOpts().CPlusPlus2a
1846 ? diag::warn_cxx17_compat_constexpr_local_var_no_init
1847 : diag::ext_constexpr_local_var_no_init)
1848 << isa<CXXConstructorDecl>(Dcl);
1849 } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
1850 return false;
1851 }
1852 continue;
1853 }
1854 }
1855 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1856 SemaRef.Diag(VD->getLocation(),
1857 SemaRef.getLangOpts().CPlusPlus14
1858 ? diag::warn_cxx11_compat_constexpr_local_var
1859 : diag::ext_constexpr_local_var)
1860 << isa<CXXConstructorDecl>(Dcl);
1861 } else if (!SemaRef.getLangOpts().CPlusPlus14) {
1862 return false;
1863 }
1864 continue;
1865 }
1866
1867 case Decl::NamespaceAlias:
1868 case Decl::Function:
1869 // These are disallowed in C++11 and permitted in C++1y. Allow them
1870 // everywhere as an extension.
1871 if (!Cxx1yLoc.isValid())
1872 Cxx1yLoc = DS->getBeginLoc();
1873 continue;
1874
1875 default:
1876 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1877 SemaRef.Diag(DS->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
1878 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
1879 }
1880 return false;
1881 }
1882 }
1883
1884 return true;
1885}
1886
1887/// Check that the given field is initialized within a constexpr constructor.
1888///
1889/// \param Dcl The constexpr constructor being checked.
1890/// \param Field The field being checked. This may be a member of an anonymous
1891/// struct or union nested within the class being checked.
1892/// \param Inits All declarations, including anonymous struct/union members and
1893/// indirect members, for which any initialization was provided.
1894/// \param Diagnosed Whether we've emitted the error message yet. Used to attach
1895/// multiple notes for different members to the same error.
1896/// \param Kind Whether we're diagnosing a constructor as written or determining
1897/// whether the formal requirements are satisfied.
1898/// \return \c false if we're checking for validity and the constructor does
1899/// not satisfy the requirements on a constexpr constructor.
1900static bool CheckConstexprCtorInitializer(Sema &SemaRef,
1901 const FunctionDecl *Dcl,
1902 FieldDecl *Field,
1903 llvm::SmallSet<Decl*, 16> &Inits,
1904 bool &Diagnosed,
1905 Sema::CheckConstexprKind Kind) {
1906 // In C++20 onwards, there's nothing to check for validity.
1907 if (Kind == Sema::CheckConstexprKind::CheckValid &&
1908 SemaRef.getLangOpts().CPlusPlus2a)
1909 return true;
1910
1911 if (Field->isInvalidDecl())
1912 return true;
1913
1914 if (Field->isUnnamedBitfield())
1915 return true;
1916
1917 // Anonymous unions with no variant members and empty anonymous structs do not
1918 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1919 // indirect fields don't need initializing.
1920 if (Field->isAnonymousStructOrUnion() &&
1921 (Field->getType()->isUnionType()
1922 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1923 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1924 return true;
1925
1926 if (!Inits.count(Field)) {
1927 if (Kind == Sema::CheckConstexprKind::Diagnose) {
1928 if (!Diagnosed) {
1929 SemaRef.Diag(Dcl->getLocation(),
1930 SemaRef.getLangOpts().CPlusPlus2a
1931 ? diag::warn_cxx17_compat_constexpr_ctor_missing_init
1932 : diag::ext_constexpr_ctor_missing_init);
1933 Diagnosed = true;
1934 }
1935 SemaRef.Diag(Field->getLocation(),
1936 diag::note_constexpr_ctor_missing_init);
1937 } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
1938 return false;
1939 }
1940 } else if (Field->isAnonymousStructOrUnion()) {
1941 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1942 for (auto *I : RD->fields())
1943 // If an anonymous union contains an anonymous struct of which any member
1944 // is initialized, all members must be initialized.
1945 if (!RD->isUnion() || Inits.count(I))
1946 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
1947 Kind))
1948 return false;
1949 }
1950 return true;
1951}
1952
1953/// Check the provided statement is allowed in a constexpr function
1954/// definition.
1955static bool
1956CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1957 SmallVectorImpl<SourceLocation> &ReturnStmts,
1958 SourceLocation &Cxx1yLoc, SourceLocation &Cxx2aLoc,
1959 Sema::CheckConstexprKind Kind) {
1960 // - its function-body shall be [...] a compound-statement that contains only
1961 switch (S->getStmtClass()) {
1962 case Stmt::NullStmtClass:
1963 // - null statements,
1964 return true;
1965
1966 case Stmt::DeclStmtClass:
1967 // - static_assert-declarations
1968 // - using-declarations,
1969 // - using-directives,
1970 // - typedef declarations and alias-declarations that do not define
1971 // classes or enumerations,
1972 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc, Kind))
1973 return false;
1974 return true;
1975
1976 case Stmt::ReturnStmtClass:
1977 // - and exactly one return statement;
1978 if (isa<CXXConstructorDecl>(Dcl)) {
1979 // C++1y allows return statements in constexpr constructors.
1980 if (!Cxx1yLoc.isValid())
1981 Cxx1yLoc = S->getBeginLoc();
1982 return true;
1983 }
1984
1985 ReturnStmts.push_back(S->getBeginLoc());
1986 return true;
1987
1988 case Stmt::CompoundStmtClass: {
1989 // C++1y allows compound-statements.
1990 if (!Cxx1yLoc.isValid())
1991 Cxx1yLoc = S->getBeginLoc();
1992
1993 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1994 for (auto *BodyIt : CompStmt->body()) {
1995 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1996 Cxx1yLoc, Cxx2aLoc, Kind))
1997 return false;
1998 }
1999 return true;
2000 }
2001
2002 case Stmt::AttributedStmtClass:
2003 if (!Cxx1yLoc.isValid())
2004 Cxx1yLoc = S->getBeginLoc();
2005 return true;
2006
2007 case Stmt::IfStmtClass: {
2008 // C++1y allows if-statements.
2009 if (!Cxx1yLoc.isValid())
2010 Cxx1yLoc = S->getBeginLoc();
2011
2012 IfStmt *If = cast<IfStmt>(S);
2013 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
2014 Cxx1yLoc, Cxx2aLoc, Kind))
2015 return false;
2016 if (If->getElse() &&
2017 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
2018 Cxx1yLoc, Cxx2aLoc, Kind))
2019 return false;
2020 return true;
2021 }
2022
2023 case Stmt::WhileStmtClass:
2024 case Stmt::DoStmtClass:
2025 case Stmt::ForStmtClass:
2026 case Stmt::CXXForRangeStmtClass:
2027 case Stmt::ContinueStmtClass:
2028 // C++1y allows all of these. We don't allow them as extensions in C++11,
2029 // because they don't make sense without variable mutation.
2030 if (!SemaRef.getLangOpts().CPlusPlus14)
2031 break;
2032 if (!Cxx1yLoc.isValid())
2033 Cxx1yLoc = S->getBeginLoc();
2034 for (Stmt *SubStmt : S->children())
2035 if (SubStmt &&
2036 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2037 Cxx1yLoc, Cxx2aLoc, Kind))
2038 return false;
2039 return true;
2040
2041 case Stmt::SwitchStmtClass:
2042 case Stmt::CaseStmtClass:
2043 case Stmt::DefaultStmtClass:
2044 case Stmt::BreakStmtClass:
2045 // C++1y allows switch-statements, and since they don't need variable
2046 // mutation, we can reasonably allow them in C++11 as an extension.
2047 if (!Cxx1yLoc.isValid())
2048 Cxx1yLoc = S->getBeginLoc();
2049 for (Stmt *SubStmt : S->children())
2050 if (SubStmt &&
2051 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2052 Cxx1yLoc, Cxx2aLoc, Kind))
2053 return false;
2054 return true;
2055
2056 case Stmt::GCCAsmStmtClass:
2057 case Stmt::MSAsmStmtClass:
2058 // C++2a allows inline assembly statements.
2059 case Stmt::CXXTryStmtClass:
2060 if (Cxx2aLoc.isInvalid())
2061 Cxx2aLoc = S->getBeginLoc();
2062 for (Stmt *SubStmt : S->children()) {
2063 if (SubStmt &&
2064 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2065 Cxx1yLoc, Cxx2aLoc, Kind))
2066 return false;
2067 }
2068 return true;
2069
2070 case Stmt::CXXCatchStmtClass:
2071 // Do not bother checking the language mode (already covered by the
2072 // try block check).
2073 if (!CheckConstexprFunctionStmt(SemaRef, Dcl,
2074 cast<CXXCatchStmt>(S)->getHandlerBlock(),
2075 ReturnStmts, Cxx1yLoc, Cxx2aLoc, Kind))
2076 return false;
2077 return true;
2078
2079 default:
2080 if (!isa<Expr>(S))
2081 break;
2082
2083 // C++1y allows expression-statements.
2084 if (!Cxx1yLoc.isValid())
2085 Cxx1yLoc = S->getBeginLoc();
2086 return true;
2087 }
2088
2089 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2090 SemaRef.Diag(S->getBeginLoc(), diag::err_constexpr_body_invalid_stmt)
2091 << isa<CXXConstructorDecl>(Dcl) << Dcl->isConsteval();
2092 }
2093 return false;
2094}
2095
2096/// Check the body for the given constexpr function declaration only contains
2097/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
2098///
2099/// \return true if the body is OK, false if we have found or diagnosed a
2100/// problem.
2101static bool CheckConstexprFunctionBody(Sema &SemaRef, const FunctionDecl *Dcl,
2102 Stmt *Body,
2103 Sema::CheckConstexprKind Kind) {
2104 SmallVector<SourceLocation, 4> ReturnStmts;
2105
2106 if (isa<CXXTryStmt>(Body)) {
2107 // C++11 [dcl.constexpr]p3:
2108 // The definition of a constexpr function shall satisfy the following
2109 // constraints: [...]
2110 // - its function-body shall be = delete, = default, or a
2111 // compound-statement
2112 //
2113 // C++11 [dcl.constexpr]p4:
2114 // In the definition of a constexpr constructor, [...]
2115 // - its function-body shall not be a function-try-block;
2116 //
2117 // This restriction is lifted in C++2a, as long as inner statements also
2118 // apply the general constexpr rules.
2119 switch (Kind) {
2120 case Sema::CheckConstexprKind::CheckValid:
2121 if (!SemaRef.getLangOpts().CPlusPlus2a)
2122 return false;
2123 break;
2124
2125 case Sema::CheckConstexprKind::Diagnose:
2126 SemaRef.Diag(Body->getBeginLoc(),
2127 !SemaRef.getLangOpts().CPlusPlus2a
2128 ? diag::ext_constexpr_function_try_block_cxx2a
2129 : diag::warn_cxx17_compat_constexpr_function_try_block)
2130 << isa<CXXConstructorDecl>(Dcl);
2131 break;
2132 }
2133 }
2134
2135 // - its function-body shall be [...] a compound-statement that contains only
2136 // [... list of cases ...]
2137 //
2138 // Note that walking the children here is enough to properly check for
2139 // CompoundStmt and CXXTryStmt body.
2140 SourceLocation Cxx1yLoc, Cxx2aLoc;
2141 for (Stmt *SubStmt : Body->children()) {
2142 if (SubStmt &&
2143 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
2144 Cxx1yLoc, Cxx2aLoc, Kind))
2145 return false;
2146 }
2147
2148 if (Kind == Sema::CheckConstexprKind::CheckValid) {
2149 // If this is only valid as an extension, report that we don't satisfy the
2150 // constraints of the current language.
2151 if ((Cxx2aLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus2a) ||
2152 (Cxx1yLoc.isValid() && !SemaRef.getLangOpts().CPlusPlus17))
2153 return false;
2154 } else if (Cxx2aLoc.isValid()) {
2155 SemaRef.Diag(Cxx2aLoc,
2156 SemaRef.getLangOpts().CPlusPlus2a
2157 ? diag::warn_cxx17_compat_constexpr_body_invalid_stmt
2158 : diag::ext_constexpr_body_invalid_stmt_cxx2a)
2159 << isa<CXXConstructorDecl>(Dcl);
2160 } else if (Cxx1yLoc.isValid()) {
2161 SemaRef.Diag(Cxx1yLoc,
2162 SemaRef.getLangOpts().CPlusPlus14
2163 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
2164 : diag::ext_constexpr_body_invalid_stmt)
2165 << isa<CXXConstructorDecl>(Dcl);
2166 }
2167
2168 if (const CXXConstructorDecl *Constructor
2169 = dyn_cast<CXXConstructorDecl>(Dcl)) {
2170 const CXXRecordDecl *RD = Constructor->getParent();
2171 // DR1359:
2172 // - every non-variant non-static data member and base class sub-object
2173 // shall be initialized;
2174 // DR1460:
2175 // - if the class is a union having variant members, exactly one of them
2176 // shall be initialized;
2177 if (RD->isUnion()) {
2178 if (Constructor->getNumCtorInitializers() == 0 &&
2179 RD->hasVariantMembers()) {
2180 if (Kind == Sema::CheckConstexprKind::Diagnose) {
2181 SemaRef.Diag(
2182 Dcl->getLocation(),
2183 SemaRef.getLangOpts().CPlusPlus2a
2184 ? diag::warn_cxx17_compat_constexpr_union_ctor_no_init
2185 : diag::ext_constexpr_union_ctor_no_init);
2186 } else if (!SemaRef.getLangOpts().CPlusPlus2a) {
2187 return false;
2188 }
2189 }
2190 } else if (!Constructor->isDependentContext() &&
2191 !Constructor->isDelegatingConstructor()) {
2192 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"
) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2192, __PRETTY_FUNCTION__))
;
2193
2194 // Skip detailed checking if we have enough initializers, and we would
2195 // allow at most one initializer per member.
2196 bool AnyAnonStructUnionMembers = false;
2197 unsigned Fields = 0;
2198 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
2199 E = RD->field_end(); I != E; ++I, ++Fields) {
2200 if (I->isAnonymousStructOrUnion()) {
2201 AnyAnonStructUnionMembers = true;
2202 break;
2203 }
2204 }
2205 // DR1460:
2206 // - if the class is a union-like class, but is not a union, for each of
2207 // its anonymous union members having variant members, exactly one of
2208 // them shall be initialized;
2209 if (AnyAnonStructUnionMembers ||
2210 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
2211 // Check initialization of non-static data members. Base classes are
2212 // always initialized so do not need to be checked. Dependent bases
2213 // might not have initializers in the member initializer list.
2214 llvm::SmallSet<Decl*, 16> Inits;
2215 for (const auto *I: Constructor->inits()) {
2216 if (FieldDecl *FD = I->getMember())
2217 Inits.insert(FD);
2218 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2219 Inits.insert(ID->chain_begin(), ID->chain_end());
2220 }
2221
2222 bool Diagnosed = false;
2223 for (auto *I : RD->fields())
2224 if (!CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed,
2225 Kind))
2226 return false;
2227 }
2228 }
2229 } else {
2230 if (ReturnStmts.empty()) {
2231 // C++1y doesn't require constexpr functions to contain a 'return'
2232 // statement. We still do, unless the return type might be void, because
2233 // otherwise if there's no return statement, the function cannot
2234 // be used in a core constant expression.
2235 bool OK = SemaRef.getLangOpts().CPlusPlus14 &&
2236 (Dcl->getReturnType()->isVoidType() ||
2237 Dcl->getReturnType()->isDependentType());
2238 switch (Kind) {
2239 case Sema::CheckConstexprKind::Diagnose:
2240 SemaRef.Diag(Dcl->getLocation(),
2241 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2242 : diag::err_constexpr_body_no_return)
2243 << Dcl->isConsteval();
2244 if (!OK)
2245 return false;
2246 break;
2247
2248 case Sema::CheckConstexprKind::CheckValid:
2249 // The formal requirements don't include this rule in C++14, even
2250 // though the "must be able to produce a constant expression" rules
2251 // still imply it in some cases.
2252 if (!SemaRef.getLangOpts().CPlusPlus14)
2253 return false;
2254 break;
2255 }
2256 } else if (ReturnStmts.size() > 1) {
2257 switch (Kind) {
2258 case Sema::CheckConstexprKind::Diagnose:
2259 SemaRef.Diag(
2260 ReturnStmts.back(),
2261 SemaRef.getLangOpts().CPlusPlus14
2262 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2263 : diag::ext_constexpr_body_multiple_return);
2264 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2265 SemaRef.Diag(ReturnStmts[I],
2266 diag::note_constexpr_body_previous_return);
2267 break;
2268
2269 case Sema::CheckConstexprKind::CheckValid:
2270 if (!SemaRef.getLangOpts().CPlusPlus14)
2271 return false;
2272 break;
2273 }
2274 }
2275 }
2276
2277 // C++11 [dcl.constexpr]p5:
2278 // if no function argument values exist such that the function invocation
2279 // substitution would produce a constant expression, the program is
2280 // ill-formed; no diagnostic required.
2281 // C++11 [dcl.constexpr]p3:
2282 // - every constructor call and implicit conversion used in initializing the
2283 // return value shall be one of those allowed in a constant expression.
2284 // C++11 [dcl.constexpr]p4:
2285 // - every constructor involved in initializing non-static data members and
2286 // base class sub-objects shall be a constexpr constructor.
2287 //
2288 // Note that this rule is distinct from the "requirements for a constexpr
2289 // function", so is not checked in CheckValid mode.
2290 SmallVector<PartialDiagnosticAt, 8> Diags;
2291 if (Kind == Sema::CheckConstexprKind::Diagnose &&
2292 !Expr::isPotentialConstantExpr(Dcl, Diags)) {
2293 SemaRef.Diag(Dcl->getLocation(),
2294 diag::ext_constexpr_function_never_constant_expr)
2295 << isa<CXXConstructorDecl>(Dcl);
2296 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2297 SemaRef.Diag(Diags[I].first, Diags[I].second);
2298 // Don't return false here: we allow this for compatibility in
2299 // system headers.
2300 }
2301
2302 return true;
2303}
2304
2305/// Get the class that is directly named by the current context. This is the
2306/// class for which an unqualified-id in this scope could name a constructor
2307/// or destructor.
2308///
2309/// If the scope specifier denotes a class, this will be that class.
2310/// If the scope specifier is empty, this will be the class whose
2311/// member-specification we are currently within. Otherwise, there
2312/// is no such class.
2313CXXRecordDecl *Sema::getCurrentClass(Scope *, const CXXScopeSpec *SS) {
2314 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2314, __PRETTY_FUNCTION__))
;
2315
2316 if (SS && SS->isInvalid())
2317 return nullptr;
2318
2319 if (SS && SS->isNotEmpty()) {
2320 DeclContext *DC = computeDeclContext(*SS, true);
2321 return dyn_cast_or_null<CXXRecordDecl>(DC);
2322 }
2323
2324 return dyn_cast_or_null<CXXRecordDecl>(CurContext);
2325}
2326
2327/// isCurrentClassName - Determine whether the identifier II is the
2328/// name of the class type currently being defined. In the case of
2329/// nested classes, this will only return true if II is the name of
2330/// the innermost class.
2331bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *S,
2332 const CXXScopeSpec *SS) {
2333 CXXRecordDecl *CurDecl = getCurrentClass(S, SS);
2334 return CurDecl && &II == CurDecl->getIdentifier();
2335}
2336
2337/// Determine whether the identifier II is a typo for the name of
2338/// the class type currently being defined. If so, update it to the identifier
2339/// that should have been used.
2340bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2341 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2341, __PRETTY_FUNCTION__))
;
2342
2343 if (!getLangOpts().SpellChecking)
2344 return false;
2345
2346 CXXRecordDecl *CurDecl;
2347 if (SS && SS->isSet() && !SS->isInvalid()) {
2348 DeclContext *DC = computeDeclContext(*SS, true);
2349 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2350 } else
2351 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2352
2353 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2354 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2355 < II->getLength()) {
2356 II = CurDecl->getIdentifier();
2357 return true;
2358 }
2359
2360 return false;
2361}
2362
2363/// Determine whether the given class is a base class of the given
2364/// class, including looking at dependent bases.
2365static bool findCircularInheritance(const CXXRecordDecl *Class,
2366 const CXXRecordDecl *Current) {
2367 SmallVector<const CXXRecordDecl*, 8> Queue;
2368
2369 Class = Class->getCanonicalDecl();
2370 while (true) {
2371 for (const auto &I : Current->bases()) {
2372 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2373 if (!Base)
2374 continue;
2375
2376 Base = Base->getDefinition();
2377 if (!Base)
2378 continue;
2379
2380 if (Base->getCanonicalDecl() == Class)
2381 return true;
2382
2383 Queue.push_back(Base);
2384 }
2385
2386 if (Queue.empty())
2387 return false;
2388
2389 Current = Queue.pop_back_val();
2390 }
2391
2392 return false;
2393}
2394
2395/// Check the validity of a C++ base class specifier.
2396///
2397/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2398/// and returns NULL otherwise.
2399CXXBaseSpecifier *
2400Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2401 SourceRange SpecifierRange,
2402 bool Virtual, AccessSpecifier Access,
2403 TypeSourceInfo *TInfo,
2404 SourceLocation EllipsisLoc) {
2405 QualType BaseType = TInfo->getType();
2406
2407 // C++ [class.union]p1:
2408 // A union shall not have base classes.
2409 if (Class->isUnion()) {
2410 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2411 << SpecifierRange;
2412 return nullptr;
2413 }
2414
2415 if (EllipsisLoc.isValid() &&
2416 !TInfo->getType()->containsUnexpandedParameterPack()) {
2417 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2418 << TInfo->getTypeLoc().getSourceRange();
2419 EllipsisLoc = SourceLocation();
2420 }
2421
2422 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2423
2424 if (BaseType->isDependentType()) {
2425 // Make sure that we don't have circular inheritance among our dependent
2426 // bases. For non-dependent bases, the check for completeness below handles
2427 // this.
2428 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2429 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2430 ((BaseDecl = BaseDecl->getDefinition()) &&
2431 findCircularInheritance(Class, BaseDecl))) {
2432 Diag(BaseLoc, diag::err_circular_inheritance)
2433 << BaseType << Context.getTypeDeclType(Class);
2434
2435 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2436 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2437 << BaseType;
2438
2439 return nullptr;
2440 }
2441 }
2442
2443 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2444 Class->getTagKind() == TTK_Class,
2445 Access, TInfo, EllipsisLoc);
2446 }
2447
2448 // Base specifiers must be record types.
2449 if (!BaseType->isRecordType()) {
2450 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2451 return nullptr;
2452 }
2453
2454 // C++ [class.union]p1:
2455 // A union shall not be used as a base class.
2456 if (BaseType->isUnionType()) {
2457 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2458 return nullptr;
2459 }
2460
2461 // For the MS ABI, propagate DLL attributes to base class templates.
2462 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2463 if (Attr *ClassAttr = getDLLAttr(Class)) {
2464 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2465 BaseType->getAsCXXRecordDecl())) {
2466 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2467 BaseLoc);
2468 }
2469 }
2470 }
2471
2472 // C++ [class.derived]p2:
2473 // The class-name in a base-specifier shall not be an incompletely
2474 // defined class.
2475 if (RequireCompleteType(BaseLoc, BaseType,
2476 diag::err_incomplete_base_class, SpecifierRange)) {
2477 Class->setInvalidDecl();
2478 return nullptr;
2479 }
2480
2481 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2482 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2483 assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast
<void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2483, __PRETTY_FUNCTION__))
;
2484 BaseDecl = BaseDecl->getDefinition();
2485 assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition"
) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2485, __PRETTY_FUNCTION__))
;
2486 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2487 assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast
<void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2487, __PRETTY_FUNCTION__))
;
2488
2489 // Microsoft docs say:
2490 // "If a base-class has a code_seg attribute, derived classes must have the
2491 // same attribute."
2492 const auto *BaseCSA = CXXBaseDecl->getAttr<CodeSegAttr>();
2493 const auto *DerivedCSA = Class->getAttr<CodeSegAttr>();
2494 if ((DerivedCSA || BaseCSA) &&
2495 (!BaseCSA || !DerivedCSA || BaseCSA->getName() != DerivedCSA->getName())) {
2496 Diag(Class->getLocation(), diag::err_mismatched_code_seg_base);
2497 Diag(CXXBaseDecl->getLocation(), diag::note_base_class_specified_here)
2498 << CXXBaseDecl;
2499 return nullptr;
2500 }
2501
2502 // A class which contains a flexible array member is not suitable for use as a
2503 // base class:
2504 // - If the layout determines that a base comes before another base,
2505 // the flexible array member would index into the subsequent base.
2506 // - If the layout determines that base comes before the derived class,
2507 // the flexible array member would index into the derived class.
2508 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2509 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2510 << CXXBaseDecl->getDeclName();
2511 return nullptr;
2512 }
2513
2514 // C++ [class]p3:
2515 // If a class is marked final and it appears as a base-type-specifier in
2516 // base-clause, the program is ill-formed.
2517 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2518 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2519 << CXXBaseDecl->getDeclName()
2520 << FA->isSpelledAsSealed();
2521 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2522 << CXXBaseDecl->getDeclName() << FA->getRange();
2523 return nullptr;
2524 }
2525
2526 if (BaseDecl->isInvalidDecl())
2527 Class->setInvalidDecl();
2528
2529 // Create the base specifier.
2530 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2531 Class->getTagKind() == TTK_Class,
2532 Access, TInfo, EllipsisLoc);
2533}
2534
2535/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2536/// one entry in the base class list of a class specifier, for
2537/// example:
2538/// class foo : public bar, virtual private baz {
2539/// 'public bar' and 'virtual private baz' are each base-specifiers.
2540BaseResult
2541Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2542 ParsedAttributes &Attributes,
2543 bool Virtual, AccessSpecifier Access,
2544 ParsedType basetype, SourceLocation BaseLoc,
2545 SourceLocation EllipsisLoc) {
2546 if (!classdecl)
2547 return true;
2548
2549 AdjustDeclIfTemplate(classdecl);
2550 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2551 if (!Class)
2552 return true;
2553
2554 // We haven't yet attached the base specifiers.
2555 Class->setIsParsingBaseSpecifiers();
2556
2557 // We do not support any C++11 attributes on base-specifiers yet.
2558 // Diagnose any attributes we see.
2559 for (const ParsedAttr &AL : Attributes) {
2560 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
2561 continue;
2562 Diag(AL.getLoc(), AL.getKind() == ParsedAttr::UnknownAttribute
2563 ? (unsigned)diag::warn_unknown_attribute_ignored
2564 : (unsigned)diag::err_base_specifier_attribute)
2565 << AL;
2566 }
2567
2568 TypeSourceInfo *TInfo = nullptr;
2569 GetTypeFromParser(basetype, &TInfo);
2570
2571 if (EllipsisLoc.isInvalid() &&
2572 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2573 UPPC_BaseType))
2574 return true;
2575
2576 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2577 Virtual, Access, TInfo,
2578 EllipsisLoc))
2579 return BaseSpec;
2580 else
2581 Class->setInvalidDecl();
2582
2583 return true;
2584}
2585
2586/// Use small set to collect indirect bases. As this is only used
2587/// locally, there's no need to abstract the small size parameter.
2588typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2589
2590/// Recursively add the bases of Type. Don't add Type itself.
2591static void
2592NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2593 const QualType &Type)
2594{
2595 // Even though the incoming type is a base, it might not be
2596 // a class -- it could be a template parm, for instance.
2597 if (auto Rec = Type->getAs<RecordType>()) {
2598 auto Decl = Rec->getAsCXXRecordDecl();
2599
2600 // Iterate over its bases.
2601 for (const auto &BaseSpec : Decl->bases()) {
2602 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2603 .getUnqualifiedType();
2604 if (Set.insert(Base).second)
2605 // If we've not already seen it, recurse.
2606 NoteIndirectBases(Context, Set, Base);
2607 }
2608 }
2609}
2610
2611/// Performs the actual work of attaching the given base class
2612/// specifiers to a C++ class.
2613bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2614 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2615 if (Bases.empty())
2616 return false;
2617
2618 // Used to keep track of which base types we have already seen, so
2619 // that we can properly diagnose redundant direct base types. Note
2620 // that the key is always the unqualified canonical type of the base
2621 // class.
2622 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2623
2624 // Used to track indirect bases so we can see if a direct base is
2625 // ambiguous.
2626 IndirectBaseSet IndirectBaseTypes;
2627
2628 // Copy non-redundant base specifiers into permanent storage.
2629 unsigned NumGoodBases = 0;
2630 bool Invalid = false;
2631 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2632 QualType NewBaseType
2633 = Context.getCanonicalType(Bases[idx]->getType());
2634 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2635
2636 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2637 if (KnownBase) {
2638 // C++ [class.mi]p3:
2639 // A class shall not be specified as a direct base class of a
2640 // derived class more than once.
2641 Diag(Bases[idx]->getBeginLoc(), diag::err_duplicate_base_class)
2642 << KnownBase->getType() << Bases[idx]->getSourceRange();
2643
2644 // Delete the duplicate base class specifier; we're going to
2645 // overwrite its pointer later.
2646 Context.Deallocate(Bases[idx]);
2647
2648 Invalid = true;
2649 } else {
2650 // Okay, add this new base class.
2651 KnownBase = Bases[idx];
2652 Bases[NumGoodBases++] = Bases[idx];
2653
2654 // Note this base's direct & indirect bases, if there could be ambiguity.
2655 if (Bases.size() > 1)
2656 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2657
2658 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2659 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2660 if (Class->isInterface() &&
2661 (!RD->isInterfaceLike() ||
2662 KnownBase->getAccessSpecifier() != AS_public)) {
2663 // The Microsoft extension __interface does not permit bases that
2664 // are not themselves public interfaces.
2665 Diag(KnownBase->getBeginLoc(), diag::err_invalid_base_in_interface)
2666 << getRecordDiagFromTagKind(RD->getTagKind()) << RD
2667 << RD->getSourceRange();
2668 Invalid = true;
2669 }
2670 if (RD->hasAttr<WeakAttr>())
2671 Class->addAttr(WeakAttr::CreateImplicit(Context));
2672 }
2673 }
2674 }
2675
2676 // Attach the remaining base class specifiers to the derived class.
2677 Class->setBases(Bases.data(), NumGoodBases);
2678
2679 // Check that the only base classes that are duplicate are virtual.
2680 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2681 // Check whether this direct base is inaccessible due to ambiguity.
2682 QualType BaseType = Bases[idx]->getType();
2683
2684 // Skip all dependent types in templates being used as base specifiers.
2685 // Checks below assume that the base specifier is a CXXRecord.
2686 if (BaseType->isDependentType())
2687 continue;
2688
2689 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2690 .getUnqualifiedType();
2691
2692 if (IndirectBaseTypes.count(CanonicalBase)) {
2693 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2694 /*DetectVirtual=*/true);
2695 bool found
2696 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2697 assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2697, __PRETTY_FUNCTION__))
;
2698 (void)found;
2699
2700 if (Paths.isAmbiguous(CanonicalBase))
2701 Diag(Bases[idx]->getBeginLoc(), diag::warn_inaccessible_base_class)
2702 << BaseType << getAmbiguousPathsDisplayString(Paths)
2703 << Bases[idx]->getSourceRange();
2704 else
2705 assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) :
__assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2705, __PRETTY_FUNCTION__))
;
2706 }
2707
2708 // Delete the base class specifier, since its data has been copied
2709 // into the CXXRecordDecl.
2710 Context.Deallocate(Bases[idx]);
2711 }
2712
2713 return Invalid;
2714}
2715
2716/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2717/// class, after checking whether there are any duplicate base
2718/// classes.
2719void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2720 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2721 if (!ClassDecl || Bases.empty())
2722 return;
2723
2724 AdjustDeclIfTemplate(ClassDecl);
2725 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2726}
2727
2728/// Determine whether the type \p Derived is a C++ class that is
2729/// derived from the type \p Base.
2730bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2731 if (!getLangOpts().CPlusPlus)
2732 return false;
2733
2734 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2735 if (!DerivedRD)
2736 return false;
2737
2738 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2739 if (!BaseRD)
2740 return false;
2741
2742 // If either the base or the derived type is invalid, don't try to
2743 // check whether one is derived from the other.
2744 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2745 return false;
2746
2747 // FIXME: In a modules build, do we need the entire path to be visible for us
2748 // to be able to use the inheritance relationship?
2749 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2750 return false;
2751
2752 return DerivedRD->isDerivedFrom(BaseRD);
2753}
2754
2755/// Determine whether the type \p Derived is a C++ class that is
2756/// derived from the type \p Base.
2757bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2758 CXXBasePaths &Paths) {
2759 if (!getLangOpts().CPlusPlus)
2760 return false;
2761
2762 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2763 if (!DerivedRD)
2764 return false;
2765
2766 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2767 if (!BaseRD)
2768 return false;
2769
2770 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2771 return false;
2772
2773 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2774}
2775
2776static void BuildBasePathArray(const CXXBasePath &Path,
2777 CXXCastPath &BasePathArray) {
2778 // We first go backward and check if we have a virtual base.
2779 // FIXME: It would be better if CXXBasePath had the base specifier for
2780 // the nearest virtual base.
2781 unsigned Start = 0;
2782 for (unsigned I = Path.size(); I != 0; --I) {
2783 if (Path[I - 1].Base->isVirtual()) {
2784 Start = I - 1;
2785 break;
2786 }
2787 }
2788
2789 // Now add all bases.
2790 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2791 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2792}
2793
2794
2795void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2796 CXXCastPath &BasePathArray) {
2797 assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!"
) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2797, __PRETTY_FUNCTION__))
;
2798 assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ?
static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2798, __PRETTY_FUNCTION__))
;
2799 return ::BuildBasePathArray(Paths.front(), BasePathArray);
2800}
2801/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2802/// conversion (where Derived and Base are class types) is
2803/// well-formed, meaning that the conversion is unambiguous (and
2804/// that all of the base classes are accessible). Returns true
2805/// and emits a diagnostic if the code is ill-formed, returns false
2806/// otherwise. Loc is the location where this routine should point to
2807/// if there is an error, and Range is the source range to highlight
2808/// if there is an error.
2809///
2810/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2811/// diagnostic for the respective type of error will be suppressed, but the
2812/// check for ill-formed code will still be performed.
2813bool
2814Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2815 unsigned InaccessibleBaseID,
2816 unsigned AmbigiousBaseConvID,
2817 SourceLocation Loc, SourceRange Range,
2818 DeclarationName Name,
2819 CXXCastPath *BasePath,
2820 bool IgnoreAccess) {
2821 // First, determine whether the path from Derived to Base is
2822 // ambiguous. This is slightly more expensive than checking whether
2823 // the Derived to Base conversion exists, because here we need to
2824 // explore multiple paths to determine if there is an ambiguity.
2825 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2826 /*DetectVirtual=*/false);
2827 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2828 if (!DerivationOkay)
2829 return true;
2830
2831 const CXXBasePath *Path = nullptr;
2832 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType()))
2833 Path = &Paths.front();
2834
2835 // For MSVC compatibility, check if Derived directly inherits from Base. Clang
2836 // warns about this hierarchy under -Winaccessible-base, but MSVC allows the
2837 // user to access such bases.
2838 if (!Path && getLangOpts().MSVCCompat) {
2839 for (const CXXBasePath &PossiblePath : Paths) {
2840 if (PossiblePath.size() == 1) {
2841 Path = &PossiblePath;
2842 if (AmbigiousBaseConvID)
2843 Diag(Loc, diag::ext_ms_ambiguous_direct_base)
2844 << Base << Derived << Range;
2845 break;
2846 }
2847 }
2848 }
2849
2850 if (Path) {
2851 if (!IgnoreAccess) {
2852 // Check that the base class can be accessed.
2853 switch (
2854 CheckBaseClassAccess(Loc, Base, Derived, *Path, InaccessibleBaseID)) {
2855 case AR_inaccessible:
2856 return true;
2857 case AR_accessible:
2858 case AR_dependent:
2859 case AR_delayed:
2860 break;
2861 }
2862 }
2863
2864 // Build a base path if necessary.
2865 if (BasePath)
2866 ::BuildBasePathArray(*Path, *BasePath);
2867 return false;
2868 }
2869
2870 if (AmbigiousBaseConvID) {
2871 // We know that the derived-to-base conversion is ambiguous, and
2872 // we're going to produce a diagnostic. Perform the derived-to-base
2873 // search just one more time to compute all of the possible paths so
2874 // that we can print them out. This is more expensive than any of
2875 // the previous derived-to-base checks we've done, but at this point
2876 // performance isn't as much of an issue.
2877 Paths.clear();
2878 Paths.setRecordingPaths(true);
2879 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2880 assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2880, __PRETTY_FUNCTION__))
;
2881 (void)StillOkay;
2882
2883 // Build up a textual representation of the ambiguous paths, e.g.,
2884 // D -> B -> A, that will be used to illustrate the ambiguous
2885 // conversions in the diagnostic. We only print one of the paths
2886 // to each base class subobject.
2887 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2888
2889 Diag(Loc, AmbigiousBaseConvID)
2890 << Derived << Base << PathDisplayStr << Range << Name;
2891 }
2892 return true;
2893}
2894
2895bool
2896Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2897 SourceLocation Loc, SourceRange Range,
2898 CXXCastPath *BasePath,
2899 bool IgnoreAccess) {
2900 return CheckDerivedToBaseConversion(
2901 Derived, Base, diag::err_upcast_to_inaccessible_base,
2902 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2903 BasePath, IgnoreAccess);
2904}
2905
2906
2907/// Builds a string representing ambiguous paths from a
2908/// specific derived class to different subobjects of the same base
2909/// class.
2910///
2911/// This function builds a string that can be used in error messages
2912/// to show the different paths that one can take through the
2913/// inheritance hierarchy to go from the derived class to different
2914/// subobjects of a base class. The result looks something like this:
2915/// @code
2916/// struct D -> struct B -> struct A
2917/// struct D -> struct C -> struct A
2918/// @endcode
2919std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2920 std::string PathDisplayStr;
2921 std::set<unsigned> DisplayedPaths;
2922 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2923 Path != Paths.end(); ++Path) {
2924 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2925 // We haven't displayed a path to this particular base
2926 // class subobject yet.
2927 PathDisplayStr += "\n ";
2928 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2929 for (CXXBasePath::const_iterator Element = Path->begin();
2930 Element != Path->end(); ++Element)
2931 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2932 }
2933 }
2934
2935 return PathDisplayStr;
2936}
2937
2938//===----------------------------------------------------------------------===//
2939// C++ class member Handling
2940//===----------------------------------------------------------------------===//
2941
2942/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2943bool Sema::ActOnAccessSpecifier(AccessSpecifier Access, SourceLocation ASLoc,
2944 SourceLocation ColonLoc,
2945 const ParsedAttributesView &Attrs) {
2946 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2946, __PRETTY_FUNCTION__))
;
2947 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2948 ASLoc, ColonLoc);
2949 CurContext->addHiddenDecl(ASDecl);
2950 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2951}
2952
2953/// CheckOverrideControl - Check C++11 override control semantics.
2954void Sema::CheckOverrideControl(NamedDecl *D) {
2955 if (D->isInvalidDecl())
2956 return;
2957
2958 // We only care about "override" and "final" declarations.
2959 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2960 return;
2961
2962 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2963
2964 // We can't check dependent instance methods.
2965 if (MD && MD->isInstance() &&
2966 (MD->getParent()->hasAnyDependentBases() ||
2967 MD->getType()->isDependentType()))
2968 return;
2969
2970 if (MD && !MD->isVirtual()) {
2971 // If we have a non-virtual method, check if if hides a virtual method.
2972 // (In that case, it's most likely the method has the wrong type.)
2973 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2974 FindHiddenVirtualMethods(MD, OverloadedMethods);
2975
2976 if (!OverloadedMethods.empty()) {
2977 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2978 Diag(OA->getLocation(),
2979 diag::override_keyword_hides_virtual_member_function)
2980 << "override" << (OverloadedMethods.size() > 1);
2981 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2982 Diag(FA->getLocation(),
2983 diag::override_keyword_hides_virtual_member_function)
2984 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2985 << (OverloadedMethods.size() > 1);
2986 }
2987 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2988 MD->setInvalidDecl();
2989 return;
2990 }
2991 // Fall through into the general case diagnostic.
2992 // FIXME: We might want to attempt typo correction here.
2993 }
2994
2995 if (!MD || !MD->isVirtual()) {
2996 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2997 Diag(OA->getLocation(),
2998 diag::override_keyword_only_allowed_on_virtual_member_functions)
2999 << "override" << FixItHint::CreateRemoval(OA->getLocation());
3000 D->dropAttr<OverrideAttr>();
3001 }
3002 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
3003 Diag(FA->getLocation(),
3004 diag::override_keyword_only_allowed_on_virtual_member_functions)
3005 << (FA->isSpelledAsSealed() ? "sealed" : "final")
3006 << FixItHint::CreateRemoval(FA->getLocation());
3007 D->dropAttr<FinalAttr>();
3008 }
3009 return;
3010 }
3011
3012 // C++11 [class.virtual]p5:
3013 // If a function is marked with the virt-specifier override and
3014 // does not override a member function of a base class, the program is
3015 // ill-formed.
3016 bool HasOverriddenMethods = MD->size_overridden_methods() != 0;
3017 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
3018 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
3019 << MD->getDeclName();
3020}
3021
3022void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
3023 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
3024 return;
3025 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
3026 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
3027 return;
3028
3029 SourceLocation Loc = MD->getLocation();
3030 SourceLocation SpellingLoc = Loc;
3031 if (getSourceManager().isMacroArgExpansion(Loc))
3032 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).getBegin();
3033 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
3034 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
3035 return;
3036
3037 if (MD->size_overridden_methods() > 0) {
3038 unsigned DiagID = isa<CXXDestructorDecl>(MD)
3039 ? diag::warn_destructor_marked_not_override_overriding
3040 : diag::warn_function_marked_not_override_overriding;
3041 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
3042 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
3043 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
3044 }
3045}
3046
3047/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
3048/// function overrides a virtual member function marked 'final', according to
3049/// C++11 [class.virtual]p4.
3050bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
3051 const CXXMethodDecl *Old) {
3052 FinalAttr *FA = Old->getAttr<FinalAttr>();
3053 if (!FA)
3054 return false;
3055
3056 Diag(New->getLocation(), diag::err_final_function_overridden)
3057 << New->getDeclName()
3058 << FA->isSpelledAsSealed();
3059 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3060 return true;
3061}
3062
3063static bool InitializationHasSideEffects(const FieldDecl &FD) {
3064 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
3065 // FIXME: Destruction of ObjC lifetime types has side-effects.
3066 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3067 return !RD->isCompleteDefinition() ||
3068 !RD->hasTrivialDefaultConstructor() ||
3069 !RD->hasTrivialDestructor();
3070 return false;
3071}
3072
3073static const ParsedAttr *getMSPropertyAttr(const ParsedAttributesView &list) {
3074 ParsedAttributesView::const_iterator Itr =
3075 llvm::find_if(list, [](const ParsedAttr &AL) {
3076 return AL.isDeclspecPropertyAttribute();
3077 });
3078 if (Itr != list.end())
3079 return &*Itr;
3080 return nullptr;
3081}
3082
3083// Check if there is a field shadowing.
3084void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
3085 DeclarationName FieldName,
3086 const CXXRecordDecl *RD,
3087 bool DeclIsField) {
3088 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
3089 return;
3090
3091 // To record a shadowed field in a base
3092 std::map<CXXRecordDecl*, NamedDecl*> Bases;
3093 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
3094 CXXBasePath &Path) {
3095 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
3096 // Record an ambiguous path directly
3097 if (Bases.find(Base) != Bases.end())
3098 return true;
3099 for (const auto Field : Base->lookup(FieldName)) {
3100 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
3101 Field->getAccess() != AS_private) {
3102 assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void>
(0) : __assert_fail ("Field->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3102, __PRETTY_FUNCTION__))
;
3103 assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> (
0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3103, __PRETTY_FUNCTION__))
;
3104 Bases[Base] = Field;
3105 return true;
3106 }
3107 }
3108 return false;
3109 };
3110
3111 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3112 /*DetectVirtual=*/true);
3113 if (!RD->lookupInBases(FieldShadowed, Paths))
3114 return;
3115
3116 for (const auto &P : Paths) {
3117 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
3118 auto It = Bases.find(Base);
3119 // Skip duplicated bases
3120 if (It == Bases.end())
3121 continue;
3122 auto BaseField = It->second;
3123 assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void
> (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3123, __PRETTY_FUNCTION__))
;
3124 if (AS_none !=
3125 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
3126 Diag(Loc, diag::warn_shadow_field)
3127 << FieldName << RD << Base << DeclIsField;
3128 Diag(BaseField->getLocation(), diag::note_shadow_field);
3129 Bases.erase(It);
3130 }
3131 }
3132}
3133
3134/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
3135/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
3136/// bitfield width if there is one, 'InitExpr' specifies the initializer if
3137/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
3138/// present (but parsing it has been deferred).
3139NamedDecl *
3140Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
3141 MultiTemplateParamsArg TemplateParameterLists,
3142 Expr *BW, const VirtSpecifiers &VS,
3143 InClassInitStyle InitStyle) {
3144 const DeclSpec &DS = D.getDeclSpec();
3145 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3146 DeclarationName Name = NameInfo.getName();
3147 SourceLocation Loc = NameInfo.getLoc();
3148
3149 // For anonymous bitfields, the location should point to the type.
3150 if (Loc.isInvalid())
3151 Loc = D.getBeginLoc();
3152
3153 Expr *BitWidth = static_cast<Expr*>(BW);
3154
3155 assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void
> (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3155, __PRETTY_FUNCTION__))
;
3156 assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3156, __PRETTY_FUNCTION__))
;
3157
3158 bool isFunc = D.isDeclarationOfFunction();
3159 const ParsedAttr *MSPropertyAttr =
3160 getMSPropertyAttr(D.getDeclSpec().getAttributes());
3161
3162 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
3163 // The Microsoft extension __interface only permits public member functions
3164 // and prohibits constructors, destructors, operators, non-public member
3165 // functions, static methods and data members.
3166 unsigned InvalidDecl;
3167 bool ShowDeclName = true;
3168 if (!isFunc &&
3169 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
3170 InvalidDecl = 0;
3171 else if (!isFunc)
3172 InvalidDecl = 1;
3173 else if (AS != AS_public)
3174 InvalidDecl = 2;
3175 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
3176 InvalidDecl = 3;
3177 else switch (Name.getNameKind()) {
3178 case DeclarationName::CXXConstructorName:
3179 InvalidDecl = 4;
3180 ShowDeclName = false;
3181 break;
3182
3183 case DeclarationName::CXXDestructorName:
3184 InvalidDecl = 5;
3185 ShowDeclName = false;
3186 break;
3187
3188 case DeclarationName::CXXOperatorName:
3189 case DeclarationName::CXXConversionFunctionName:
3190 InvalidDecl = 6;
3191 break;
3192
3193 default:
3194 InvalidDecl = 0;
3195 break;
3196 }
3197
3198 if (InvalidDecl) {
3199 if (ShowDeclName)
3200 Diag(Loc, diag::err_invalid_member_in_interface)
3201 << (InvalidDecl-1) << Name;
3202 else
3203 Diag(Loc, diag::err_invalid_member_in_interface)
3204 << (InvalidDecl-1) << "";
3205 return nullptr;
3206 }
3207 }
3208
3209 // C++ 9.2p6: A member shall not be declared to have automatic storage
3210 // duration (auto, register) or with the extern storage-class-specifier.
3211 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
3212 // data members and cannot be applied to names declared const or static,
3213 // and cannot be applied to reference members.
3214 switch (DS.getStorageClassSpec()) {
3215 case DeclSpec::SCS_unspecified:
3216 case DeclSpec::SCS_typedef:
3217 case DeclSpec::SCS_static:
3218 break;
3219 case DeclSpec::SCS_mutable:
3220 if (isFunc) {
3221 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
3222
3223 // FIXME: It would be nicer if the keyword was ignored only for this
3224 // declarator. Otherwise we could get follow-up errors.
3225 D.getMutableDeclSpec().ClearStorageClassSpecs();
3226 }
3227 break;
3228 default:
3229 Diag(DS.getStorageClassSpecLoc(),
3230 diag::err_storageclass_invalid_for_member);
3231 D.getMutableDeclSpec().ClearStorageClassSpecs();
3232 break;
3233 }
3234
3235 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
3236 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
3237 !isFunc);
3238
3239 if (DS.hasConstexprSpecifier() && isInstField) {
3240 SemaDiagnosticBuilder B =
3241 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
3242 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
3243 if (InitStyle == ICIS_NoInit) {
3244 B << 0 << 0;
3245 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
3246 B << FixItHint::CreateRemoval(ConstexprLoc);
3247 else {
3248 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
3249 D.getMutableDeclSpec().ClearConstexprSpec();
3250 const char *PrevSpec;
3251 unsigned DiagID;
3252 bool Failed = D.getMutableDeclSpec().SetTypeQual(
3253 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
3254 (void)Failed;
3255 assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail"
) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3255, __PRETTY_FUNCTION__))
;
3256 }
3257 } else {
3258 B << 1;
3259 const char *PrevSpec;
3260 unsigned DiagID;
3261 if (D.getMutableDeclSpec().SetStorageClassSpec(
3262 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
3263 Context.getPrintingPolicy())) {
3264 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3265, __PRETTY_FUNCTION__))
3265 "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3265, __PRETTY_FUNCTION__))
;
3266 B << 1;
3267 } else {
3268 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
3269 isInstField = false;
3270 }
3271 }
3272 }
3273
3274 NamedDecl *Member;
3275 if (isInstField) {
3276 CXXScopeSpec &SS = D.getCXXScopeSpec();
3277
3278 // Data members must have identifiers for names.
3279 if (!Name.isIdentifier()) {
3280 Diag(Loc, diag::err_bad_variable_name)
3281 << Name;
3282 return nullptr;
3283 }
3284
3285 IdentifierInfo *II = Name.getAsIdentifierInfo();
3286
3287 // Member field could not be with "template" keyword.
3288 // So TemplateParameterLists should be empty in this case.
3289 if (TemplateParameterLists.size()) {
3290 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
3291 if (TemplateParams->size()) {
3292 // There is no such thing as a member field template.
3293 Diag(D.getIdentifierLoc(), diag::err_template_member)
3294 << II
3295 << SourceRange(TemplateParams->getTemplateLoc(),
3296 TemplateParams->getRAngleLoc());
3297 } else {
3298 // There is an extraneous 'template<>' for this member.
3299 Diag(TemplateParams->getTemplateLoc(),
3300 diag::err_template_member_noparams)
3301 << II
3302 << SourceRange(TemplateParams->getTemplateLoc(),
3303 TemplateParams->getRAngleLoc());
3304 }
3305 return nullptr;
3306 }
3307
3308 if (SS.isSet() && !SS.isInvalid()) {
3309 // The user provided a superfluous scope specifier inside a class
3310 // definition:
3311 //
3312 // class X {
3313 // int X::member;
3314 // };
3315 if (DeclContext *DC = computeDeclContext(SS, false))
3316 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc(),
3317 D.getName().getKind() ==
3318 UnqualifiedIdKind::IK_TemplateId);
3319 else
3320 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3321 << Name << SS.getRange();
3322
3323 SS.clear();
3324 }
3325
3326 if (MSPropertyAttr) {
3327 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3328 BitWidth, InitStyle, AS, *MSPropertyAttr);
3329 if (!Member)
3330 return nullptr;
3331 isInstField = false;
3332 } else {
3333 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3334 BitWidth, InitStyle, AS);
3335 if (!Member)
3336 return nullptr;
3337 }
3338
3339 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3340 } else {
3341 Member = HandleDeclarator(S, D, TemplateParameterLists);
3342 if (!Member)
3343 return nullptr;
3344
3345 // Non-instance-fields can't have a bitfield.
3346 if (BitWidth) {
3347 if (Member->isInvalidDecl()) {
3348 // don't emit another diagnostic.
3349 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3350 // C++ 9.6p3: A bit-field shall not be a static member.
3351 // "static member 'A' cannot be a bit-field"
3352 Diag(Loc, diag::err_static_not_bitfield)
3353 << Name << BitWidth->getSourceRange();
3354 } else if (isa<TypedefDecl>(Member)) {
3355 // "typedef member 'x' cannot be a bit-field"
3356 Diag(Loc, diag::err_typedef_not_bitfield)
3357 << Name << BitWidth->getSourceRange();
3358 } else {
3359 // A function typedef ("typedef int f(); f a;").
3360 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3361 Diag(Loc, diag::err_not_integral_type_bitfield)
3362 << Name << cast<ValueDecl>(Member)->getType()
3363 << BitWidth->getSourceRange();
3364 }
3365
3366 BitWidth = nullptr;
3367 Member->setInvalidDecl();
3368 }
3369
3370 NamedDecl *NonTemplateMember = Member;
3371 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3372 NonTemplateMember = FunTmpl->getTemplatedDecl();
3373 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3374 NonTemplateMember = VarTmpl->getTemplatedDecl();
3375
3376 Member->setAccess(AS);
3377
3378 // If we have declared a member function template or static data member
3379 // template, set the access of the templated declaration as well.
3380 if (NonTemplateMember != Member)
3381 NonTemplateMember->setAccess(AS);
3382
3383 // C++ [temp.deduct.guide]p3:
3384 // A deduction guide [...] for a member class template [shall be
3385 // declared] with the same access [as the template].
3386 if (auto *DG = dyn_cast<CXXDeductionGuideDecl>(NonTemplateMember)) {
3387 auto *TD = DG->getDeducedTemplate();
3388 // Access specifiers are only meaningful if both the template and the
3389 // deduction guide are from the same scope.
3390 if (AS != TD->getAccess() &&
3391 TD->getDeclContext()->getRedeclContext()->Equals(
3392 DG->getDeclContext()->getRedeclContext())) {
3393 Diag(DG->getBeginLoc(), diag::err_deduction_guide_wrong_access);
3394 Diag(TD->getBeginLoc(), diag::note_deduction_guide_template_access)
3395 << TD->getAccess();
3396 const AccessSpecDecl *LastAccessSpec = nullptr;
3397 for (const auto *D : cast<CXXRecordDecl>(CurContext)->decls()) {
3398 if (const auto *AccessSpec = dyn_cast<AccessSpecDecl>(D))
3399 LastAccessSpec = AccessSpec;
3400 }
3401 assert(LastAccessSpec && "differing access with no access specifier")((LastAccessSpec && "differing access with no access specifier"
) ? static_cast<void> (0) : __assert_fail ("LastAccessSpec && \"differing access with no access specifier\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3401, __PRETTY_FUNCTION__))
;
3402 Diag(LastAccessSpec->getBeginLoc(), diag::note_deduction_guide_access)
3403 << AS;
3404 }
3405 }
3406 }
3407
3408 if (VS.isOverrideSpecified())
3409 Member->addAttr(OverrideAttr::Create(Context, VS.getOverrideLoc(),
3410 AttributeCommonInfo::AS_Keyword));
3411 if (VS.isFinalSpecified())
3412 Member->addAttr(FinalAttr::Create(
3413 Context, VS.getFinalLoc(), AttributeCommonInfo::AS_Keyword,
3414 static_cast<FinalAttr::Spelling>(VS.isFinalSpelledSealed())));
3415
3416 if (VS.getLastLocation().isValid()) {
3417 // Update the end location of a method that has a virt-specifiers.
3418 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3419 MD->setRangeEnd(VS.getLastLocation());
3420 }
3421
3422 CheckOverrideControl(Member);
3423
3424 assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?"
) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3424, __PRETTY_FUNCTION__))
;
3425
3426 if (isInstField) {
3427 FieldDecl *FD = cast<FieldDecl>(Member);
3428 FieldCollector->Add(FD);
3429
3430 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3431 // Remember all explicit private FieldDecls that have a name, no side
3432 // effects and are not part of a dependent type declaration.
3433 if (!FD->isImplicit() && FD->getDeclName() &&
3434 FD->getAccess() == AS_private &&
3435 !FD->hasAttr<UnusedAttr>() &&
3436 !FD->getParent()->isDependentContext() &&
3437 !InitializationHasSideEffects(*FD))
3438 UnusedPrivateFields.insert(FD);
3439 }
3440 }
3441
3442 return Member;
3443}
3444
3445namespace {
3446 class UninitializedFieldVisitor
3447 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3448 Sema &S;
3449 // List of Decls to generate a warning on. Also remove Decls that become
3450 // initialized.
3451 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3452 // List of base classes of the record. Classes are removed after their
3453 // initializers.
3454 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3455 // Vector of decls to be removed from the Decl set prior to visiting the
3456 // nodes. These Decls may have been initialized in the prior initializer.
3457 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3458 // If non-null, add a note to the warning pointing back to the constructor.
3459 const CXXConstructorDecl *Constructor;
3460 // Variables to hold state when processing an initializer list. When
3461 // InitList is true, special case initialization of FieldDecls matching
3462 // InitListFieldDecl.
3463 bool InitList;
3464 FieldDecl *InitListFieldDecl;
3465 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3466
3467 public:
3468 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3469 UninitializedFieldVisitor(Sema &S,
3470 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3471 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3472 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3473 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3474
3475 // Returns true if the use of ME is not an uninitialized use.
3476 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3477 bool CheckReferenceOnly) {
3478 llvm::SmallVector<FieldDecl*, 4> Fields;
3479 bool ReferenceField = false;
3480 while (ME) {
3481 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3482 if (!FD)
3483 return false;
3484 Fields.push_back(FD);
3485 if (FD->getType()->isReferenceType())
3486 ReferenceField = true;
3487 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3488 }
3489
3490 // Binding a reference to an uninitialized field is not an
3491 // uninitialized use.
3492 if (CheckReferenceOnly && !ReferenceField)
3493 return true;
3494
3495 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3496 // Discard the first field since it is the field decl that is being
3497 // initialized.
3498 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3499 UsedFieldIndex.push_back((*I)->getFieldIndex());
3500 }
3501
3502 for (auto UsedIter = UsedFieldIndex.begin(),
3503 UsedEnd = UsedFieldIndex.end(),
3504 OrigIter = InitFieldIndex.begin(),
3505 OrigEnd = InitFieldIndex.end();
3506 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3507 if (*UsedIter < *OrigIter)
3508 return true;
3509 if (*UsedIter > *OrigIter)
3510 break;
3511 }
3512
3513 return false;
3514 }
3515
3516 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3517 bool AddressOf) {
3518 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3519 return;
3520
3521 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3522 // or union.
3523 MemberExpr *FieldME = ME;
3524
3525 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3526
3527 Expr *Base = ME;
3528 while (MemberExpr *SubME =
3529 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3530
3531 if (isa<VarDecl>(SubME->getMemberDecl()))
3532 return;
3533
3534 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3535 if (!FD->isAnonymousStructOrUnion())
3536 FieldME = SubME;
3537
3538 if (!FieldME->getType().isPODType(S.Context))
3539 AllPODFields = false;
3540
3541 Base = SubME->getBase();
3542 }
3543
3544 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3545 return;
3546
3547 if (AddressOf && AllPODFields)
3548 return;
3549
3550 ValueDecl* FoundVD = FieldME->getMemberDecl();
3551
3552 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3553 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3554 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3555 }
3556
3557 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3558 QualType T = BaseCast->getType();
3559 if (T->isPointerType() &&
3560 BaseClasses.count(T->getPointeeType())) {
3561 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3562 << T->getPointeeType() << FoundVD;
3563 }
3564 }
3565 }
3566
3567 if (!Decls.count(FoundVD))
3568 return;
3569
3570 const bool IsReference = FoundVD->getType()->isReferenceType();
3571
3572 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3573 // Special checking for initializer lists.
3574 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3575 return;
3576 }
3577 } else {
3578 // Prevent double warnings on use of unbounded references.
3579 if (CheckReferenceOnly && !IsReference)
3580 return;
3581 }
3582
3583 unsigned diag = IsReference
3584 ? diag::warn_reference_field_is_uninit
3585 : diag::warn_field_is_uninit;
3586 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3587 if (Constructor)
3588 S.Diag(Constructor->getLocation(),
3589 diag::note_uninit_in_this_constructor)
3590 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3591
3592 }
3593
3594 void HandleValue(Expr *E, bool AddressOf) {
3595 E = E->IgnoreParens();
3596
3597 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3598 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3599 AddressOf /*AddressOf*/);
3600 return;
3601 }
3602
3603 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3604 Visit(CO->getCond());
3605 HandleValue(CO->getTrueExpr(), AddressOf);
3606 HandleValue(CO->getFalseExpr(), AddressOf);
3607 return;
3608 }
3609
3610 if (BinaryConditionalOperator *BCO =
3611 dyn_cast<BinaryConditionalOperator>(E)) {
3612 Visit(BCO->getCond());
3613 HandleValue(BCO->getFalseExpr(), AddressOf);
3614 return;
3615 }
3616
3617 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3618 HandleValue(OVE->getSourceExpr(), AddressOf);
3619 return;
3620 }
3621
3622 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3623 switch (BO->getOpcode()) {
3624 default:
3625 break;
3626 case(BO_PtrMemD):
3627 case(BO_PtrMemI):
3628 HandleValue(BO->getLHS(), AddressOf);
3629 Visit(BO->getRHS());
3630 return;
3631 case(BO_Comma):
3632 Visit(BO->getLHS());
3633 HandleValue(BO->getRHS(), AddressOf);
3634 return;
3635 }
3636 }
3637
3638 Visit(E);
3639 }
3640
3641 void CheckInitListExpr(InitListExpr *ILE) {
3642 InitFieldIndex.push_back(0);
3643 for (auto Child : ILE->children()) {
3644 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3645 CheckInitListExpr(SubList);
3646 } else {
3647 Visit(Child);
3648 }
3649 ++InitFieldIndex.back();
3650 }
3651 InitFieldIndex.pop_back();
3652 }
3653
3654 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3655 FieldDecl *Field, const Type *BaseClass) {
3656 // Remove Decls that may have been initialized in the previous
3657 // initializer.
3658 for (ValueDecl* VD : DeclsToRemove)
3659 Decls.erase(VD);
3660 DeclsToRemove.clear();
3661
3662 Constructor = FieldConstructor;
3663 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3664
3665 if (ILE && Field) {
3666 InitList = true;
3667 InitListFieldDecl = Field;
3668 InitFieldIndex.clear();
3669 CheckInitListExpr(ILE);
3670 } else {
3671 InitList = false;
3672 Visit(E);
3673 }
3674
3675 if (Field)
3676 Decls.erase(Field);
3677 if (BaseClass)
3678 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3679 }
3680
3681 void VisitMemberExpr(MemberExpr *ME) {
3682 // All uses of unbounded reference fields will warn.
3683 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3684 }
3685
3686 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3687 if (E->getCastKind() == CK_LValueToRValue) {
3688 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3689 return;
3690 }
3691
3692 Inherited::VisitImplicitCastExpr(E);
3693 }
3694
3695 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3696 if (E->getConstructor()->isCopyConstructor()) {
3697 Expr *ArgExpr = E->getArg(0);
3698 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3699 if (ILE->getNumInits() == 1)
3700 ArgExpr = ILE->getInit(0);
3701 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3702 if (ICE->getCastKind() == CK_NoOp)
3703 ArgExpr = ICE->getSubExpr();
3704 HandleValue(ArgExpr, false /*AddressOf*/);
3705 return;
3706 }
3707 Inherited::VisitCXXConstructExpr(E);
3708 }
3709
3710 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3711 Expr *Callee = E->getCallee();
3712 if (isa<MemberExpr>(Callee)) {
3713 HandleValue(Callee, false /*AddressOf*/);
3714 for (auto Arg : E->arguments())
3715 Visit(Arg);
3716 return;
3717 }
3718
3719 Inherited::VisitCXXMemberCallExpr(E);
3720 }
3721
3722 void VisitCallExpr(CallExpr *E) {
3723 // Treat std::move as a use.
3724 if (E->isCallToStdMove()) {
3725 HandleValue(E->getArg(0), /*AddressOf=*/false);
3726 return;
3727 }
3728
3729 Inherited::VisitCallExpr(E);
3730 }
3731
3732 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3733 Expr *Callee = E->getCallee();
3734
3735 if (isa<UnresolvedLookupExpr>(Callee))
3736 return Inherited::VisitCXXOperatorCallExpr(E);
3737
3738 Visit(Callee);
3739 for (auto Arg : E->arguments())
3740 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3741 }
3742
3743 void VisitBinaryOperator(BinaryOperator *E) {
3744 // If a field assignment is detected, remove the field from the
3745 // uninitiailized field set.
3746 if (E->getOpcode() == BO_Assign)
3747 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3748 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3749 if (!FD->getType()->isReferenceType())
3750 DeclsToRemove.push_back(FD);
3751
3752 if (E->isCompoundAssignmentOp()) {
3753 HandleValue(E->getLHS(), false /*AddressOf*/);
3754 Visit(E->getRHS());
3755 return;
3756 }
3757
3758 Inherited::VisitBinaryOperator(E);
3759 }
3760
3761 void VisitUnaryOperator(UnaryOperator *E) {
3762 if (E->isIncrementDecrementOp()) {
3763 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3764 return;
3765 }
3766 if (E->getOpcode() == UO_AddrOf) {
3767 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3768 HandleValue(ME->getBase(), true /*AddressOf*/);
3769 return;
3770 }
3771 }
3772
3773 Inherited::VisitUnaryOperator(E);
3774 }
3775 };
3776
3777 // Diagnose value-uses of fields to initialize themselves, e.g.
3778 // foo(foo)
3779 // where foo is not also a parameter to the constructor.
3780 // Also diagnose across field uninitialized use such as
3781 // x(y), y(x)
3782 // TODO: implement -Wuninitialized and fold this into that framework.
3783 static void DiagnoseUninitializedFields(
3784 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3785
3786 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3787 Constructor->getLocation())) {
3788 return;
3789 }
3790
3791 if (Constructor->isInvalidDecl())
3792 return;
3793
3794 const CXXRecordDecl *RD = Constructor->getParent();
3795
3796 if (RD->getDescribedClassTemplate())
3797 return;
3798
3799 // Holds fields that are uninitialized.
3800 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3801
3802 // At the beginning, all fields are uninitialized.
3803 for (auto *I : RD->decls()) {
3804 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3805 UninitializedFields.insert(FD);
3806 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3807 UninitializedFields.insert(IFD->getAnonField());
3808 }
3809 }
3810
3811 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3812 for (auto I : RD->bases())
3813 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3814
3815 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3816 return;
3817
3818 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3819 UninitializedFields,
3820 UninitializedBaseClasses);
3821
3822 for (const auto *FieldInit : Constructor->inits()) {
3823 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3824 break;
3825
3826 Expr *InitExpr = FieldInit->getInit();
3827 if (!InitExpr)
3828 continue;
3829
3830 if (CXXDefaultInitExpr *Default =
3831 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3832 InitExpr = Default->getExpr();
3833 if (!InitExpr)
3834 continue;
3835 // In class initializers will point to the constructor.
3836 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3837 FieldInit->getAnyMember(),
3838 FieldInit->getBaseClass());
3839 } else {
3840 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3841 FieldInit->getAnyMember(),
3842 FieldInit->getBaseClass());
3843 }
3844 }
3845 }
3846} // namespace
3847
3848/// Enter a new C++ default initializer scope. After calling this, the
3849/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3850/// parsing or instantiating the initializer failed.
3851void Sema::ActOnStartCXXInClassMemberInitializer() {
3852 // Create a synthetic function scope to represent the call to the constructor
3853 // that notionally surrounds a use of this initializer.
3854 PushFunctionScope();
3855}
3856
3857/// This is invoked after parsing an in-class initializer for a
3858/// non-static C++ class member, and after instantiating an in-class initializer
3859/// in a class template. Such actions are deferred until the class is complete.
3860void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3861 SourceLocation InitLoc,
3862 Expr *InitExpr) {
3863 // Pop the notional constructor scope we created earlier.
3864 PopFunctionScopeInfo(nullptr, D);
3865
3866 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3867 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3868, __PRETTY_FUNCTION__))
3868 "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3868, __PRETTY_FUNCTION__))
;
3869
3870 if (!InitExpr) {
3871 D->setInvalidDecl();
3872 if (FD)
3873 FD->removeInClassInitializer();
3874 return;
3875 }
3876
3877 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3878 FD->setInvalidDecl();
3879 FD->removeInClassInitializer();
3880 return;
3881 }
3882
3883 ExprResult Init = InitExpr;
3884 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3885 InitializedEntity Entity =
3886 InitializedEntity::InitializeMemberFromDefaultMemberInitializer(FD);
3887 InitializationKind Kind =
3888 FD->getInClassInitStyle() == ICIS_ListInit
3889 ? InitializationKind::CreateDirectList(InitExpr->getBeginLoc(),
3890 InitExpr->getBeginLoc(),
3891 InitExpr->getEndLoc())
3892 : InitializationKind::CreateCopy(InitExpr->getBeginLoc(), InitLoc);
3893 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3894 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3895 if (Init.isInvalid()) {
3896 FD->setInvalidDecl();
3897 return;
3898 }
3899 }
3900
3901 // C++11 [class.base.init]p7:
3902 // The initialization of each base and member constitutes a
3903 // full-expression.
3904 Init = ActOnFinishFullExpr(Init.get(), InitLoc, /*DiscardedValue*/ false);
3905 if (Init.isInvalid()) {
3906 FD->setInvalidDecl();
3907 return;
3908 }
3909
3910 InitExpr = Init.get();
3911
3912 FD->setInClassInitializer(InitExpr);
3913}
3914
3915/// Find the direct and/or virtual base specifiers that
3916/// correspond to the given base type, for use in base initialization
3917/// within a constructor.
3918static bool FindBaseInitializer(Sema &SemaRef,
3919 CXXRecordDecl *ClassDecl,
3920 QualType BaseType,
3921 const CXXBaseSpecifier *&DirectBaseSpec,
3922 const CXXBaseSpecifier *&VirtualBaseSpec) {
3923 // First, check for a direct base class.
3924 DirectBaseSpec = nullptr;
3925 for (const auto &Base : ClassDecl->bases()) {
3926 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3927 // We found a direct base of this type. That's what we're
3928 // initializing.
3929 DirectBaseSpec = &Base;
3930 break;
3931 }
3932 }
3933
3934 // Check for a virtual base class.
3935 // FIXME: We might be able to short-circuit this if we know in advance that
3936 // there are no virtual bases.
3937 VirtualBaseSpec = nullptr;
3938 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3939 // We haven't found a base yet; search the class hierarchy for a
3940 // virtual base class.
3941 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3942 /*DetectVirtual=*/false);
3943 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3944 SemaRef.Context.getTypeDeclType(ClassDecl),
3945 BaseType, Paths)) {
3946 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3947 Path != Paths.end(); ++Path) {
3948 if (Path->back().Base->isVirtual()) {
3949 VirtualBaseSpec = Path->back().Base;
3950 break;
3951 }
3952 }
3953 }
3954 }
3955
3956 return DirectBaseSpec || VirtualBaseSpec;
3957}
3958
3959/// Handle a C++ member initializer using braced-init-list syntax.
3960MemInitResult
3961Sema::ActOnMemInitializer(Decl *ConstructorD,
3962 Scope *S,
3963 CXXScopeSpec &SS,
3964 IdentifierInfo *MemberOrBase,
3965 ParsedType TemplateTypeTy,
3966 const DeclSpec &DS,
3967 SourceLocation IdLoc,
3968 Expr *InitList,
3969 SourceLocation EllipsisLoc) {
3970 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3971 DS, IdLoc, InitList,
3972 EllipsisLoc);
3973}
3974
3975/// Handle a C++ member initializer using parentheses syntax.
3976MemInitResult
3977Sema::ActOnMemInitializer(Decl *ConstructorD,
3978 Scope *S,
3979 CXXScopeSpec &SS,
3980 IdentifierInfo *MemberOrBase,
3981 ParsedType TemplateTypeTy,
3982 const DeclSpec &DS,
3983 SourceLocation IdLoc,
3984 SourceLocation LParenLoc,
3985 ArrayRef<Expr *> Args,
3986 SourceLocation RParenLoc,
3987 SourceLocation EllipsisLoc) {
3988 Expr *List = ParenListExpr::Create(Context, LParenLoc, Args, RParenLoc);
3989 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3990 DS, IdLoc, List, EllipsisLoc);
3991}
3992
3993namespace {
3994
3995// Callback to only accept typo corrections that can be a valid C++ member
3996// intializer: either a non-static field member or a base class.
3997class MemInitializerValidatorCCC final : public CorrectionCandidateCallback {
3998public:
3999 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
4000 : ClassDecl(ClassDecl) {}
4001
4002 bool ValidateCandidate(const TypoCorrection &candidate) override {
4003 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
4004 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
4005 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
4006 return isa<TypeDecl>(ND);
4007 }
4008 return false;
4009 }
4010
4011 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4012 return std::make_unique<MemInitializerValidatorCCC>(*this);
4013 }
4014
4015private:
4016 CXXRecordDecl *ClassDecl;
4017};
4018
4019}
4020
4021ValueDecl *Sema::tryLookupCtorInitMemberDecl(CXXRecordDecl *ClassDecl,
4022 CXXScopeSpec &SS,
4023 ParsedType TemplateTypeTy,
4024 IdentifierInfo *MemberOrBase) {
4025 if (SS.getScopeRep() || TemplateTypeTy)
4026 return nullptr;
4027 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
4028 if (Result.empty())
4029 return nullptr;
4030 ValueDecl *Member;
4031 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
4032 (Member = dyn_cast<IndirectFieldDecl>(Result.front())))
4033 return Member;
4034 return nullptr;
4035}
4036
4037/// Handle a C++ member initializer.
4038MemInitResult
4039Sema::BuildMemInitializer(Decl *ConstructorD,
4040 Scope *S,
4041 CXXScopeSpec &SS,
4042 IdentifierInfo *MemberOrBase,
4043 ParsedType TemplateTypeTy,
4044 const DeclSpec &DS,
4045 SourceLocation IdLoc,
4046 Expr *Init,
4047 SourceLocation EllipsisLoc) {
4048 ExprResult Res = CorrectDelayedTyposInExpr(Init);
4049 if (!Res.isUsable())
4050 return true;
4051 Init = Res.get();
4052
4053 if (!ConstructorD)
4054 return true;
4055
4056 AdjustDeclIfTemplate(ConstructorD);
4057
4058 CXXConstructorDecl *Constructor
4059 = dyn_cast<CXXConstructorDecl>(ConstructorD);
4060 if (!Constructor) {
4061 // The user wrote a constructor initializer on a function that is
4062 // not a C++ constructor. Ignore the error for now, because we may
4063 // have more member initializers coming; we'll diagnose it just
4064 // once in ActOnMemInitializers.
4065 return true;
4066 }
4067
4068 CXXRecordDecl *ClassDecl = Constructor->getParent();
4069
4070 // C++ [class.base.init]p2:
4071 // Names in a mem-initializer-id are looked up in the scope of the
4072 // constructor's class and, if not found in that scope, are looked
4073 // up in the scope containing the constructor's definition.
4074 // [Note: if the constructor's class contains a member with the
4075 // same name as a direct or virtual base class of the class, a
4076 // mem-initializer-id naming the member or base class and composed
4077 // of a single identifier refers to the class member. A
4078 // mem-initializer-id for the hidden base class may be specified
4079 // using a qualified name. ]
4080
4081 // Look for a member, first.
4082 if (ValueDecl *Member = tryLookupCtorInitMemberDecl(
4083 ClassDecl, SS, TemplateTypeTy, MemberOrBase)) {
4084 if (EllipsisLoc.isValid())
4085 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
4086 << MemberOrBase
4087 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
4088
4089 return BuildMemberInitializer(Member, Init, IdLoc);
4090 }
4091 // It didn't name a member, so see if it names a class.
4092 QualType BaseType;
4093 TypeSourceInfo *TInfo = nullptr;
4094
4095 if (TemplateTypeTy) {
4096 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
4097 if (BaseType.isNull())
4098 return true;
4099 } else if (DS.getTypeSpecType() == TST_decltype) {
4100 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4101 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
4102 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
4103 return true;
4104 } else {
4105 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
4106 LookupParsedName(R, S, &SS);
4107
4108 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
4109 if (!TyD) {
4110 if (R.isAmbiguous()) return true;
4111
4112 // We don't want access-control diagnostics here.
4113 R.suppressDiagnostics();
4114
4115 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
4116 bool NotUnknownSpecialization = false;
4117 DeclContext *DC = computeDeclContext(SS, false);
4118 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
4119 NotUnknownSpecialization = !Record->hasAnyDependentBases();
4120
4121 if (!NotUnknownSpecialization) {
4122 // When the scope specifier can refer to a member of an unknown
4123 // specialization, we take it as a type name.
4124 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
4125 SS.getWithLocInContext(Context),
4126 *MemberOrBase, IdLoc);
4127 if (BaseType.isNull())
4128 return true;
4129
4130 TInfo = Context.CreateTypeSourceInfo(BaseType);
4131 DependentNameTypeLoc TL =
4132 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
4133 if (!TL.isNull()) {
4134 TL.setNameLoc(IdLoc);
4135 TL.setElaboratedKeywordLoc(SourceLocation());
4136 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4137 }
4138
4139 R.clear();
4140 R.setLookupName(MemberOrBase);
4141 }
4142 }
4143
4144 // If no results were found, try to correct typos.
4145 TypoCorrection Corr;
4146 MemInitializerValidatorCCC CCC(ClassDecl);
4147 if (R.empty() && BaseType.isNull() &&
4148 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
4149 CCC, CTK_ErrorRecovery, ClassDecl))) {
4150 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
4151 // We have found a non-static data member with a similar
4152 // name to what was typed; complain and initialize that
4153 // member.
4154 diagnoseTypo(Corr,
4155 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4156 << MemberOrBase << true);
4157 return BuildMemberInitializer(Member, Init, IdLoc);
4158 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
4159 const CXXBaseSpecifier *DirectBaseSpec;
4160 const CXXBaseSpecifier *VirtualBaseSpec;
4161 if (FindBaseInitializer(*this, ClassDecl,
4162 Context.getTypeDeclType(Type),
4163 DirectBaseSpec, VirtualBaseSpec)) {
4164 // We have found a direct or virtual base class with a
4165 // similar name to what was typed; complain and initialize
4166 // that base class.
4167 diagnoseTypo(Corr,
4168 PDiag(diag::err_mem_init_not_member_or_class_suggest)
4169 << MemberOrBase << false,
4170 PDiag() /*Suppress note, we provide our own.*/);
4171
4172 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
4173 : VirtualBaseSpec;
4174 Diag(BaseSpec->getBeginLoc(), diag::note_base_class_specified_here)
4175 << BaseSpec->getType() << BaseSpec->getSourceRange();
4176
4177 TyD = Type;
4178 }
4179 }
4180 }
4181
4182 if (!TyD && BaseType.isNull()) {
4183 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
4184 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
4185 return true;
4186 }
4187 }
4188
4189 if (BaseType.isNull()) {
4190 BaseType = Context.getTypeDeclType(TyD);
4191 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
4192 if (SS.isSet()) {
4193 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
4194 BaseType);
4195 TInfo = Context.CreateTypeSourceInfo(BaseType);
4196 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
4197 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
4198 TL.setElaboratedKeywordLoc(SourceLocation());
4199 TL.setQualifierLoc(SS.getWithLocInContext(Context));
4200 }
4201 }
4202 }
4203
4204 if (!TInfo)
4205 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
4206
4207 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
4208}
4209
4210MemInitResult
4211Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
4212 SourceLocation IdLoc) {
4213 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
4214 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
4215 assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4216, __PRETTY_FUNCTION__))
4216 "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4216, __PRETTY_FUNCTION__))
;
4217
4218 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4219 return true;
4220
4221 if (Member->isInvalidDecl())
4222 return true;
4223
4224 MultiExprArg Args;
4225 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4226 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4227 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
4228 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
4229 } else {
4230 // Template instantiation doesn't reconstruct ParenListExprs for us.
4231 Args = Init;
4232 }
4233
4234 SourceRange InitRange = Init->getSourceRange();
4235
4236 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
4237 // Can't check initialization for a member of dependent type or when
4238 // any of the arguments are type-dependent expressions.
4239 DiscardCleanupsInEvaluationContext();
4240 } else {
4241 bool InitList = false;
4242 if (isa<InitListExpr>(Init)) {
4243 InitList = true;
4244 Args = Init;
4245 }
4246
4247 // Initialize the member.
4248 InitializedEntity MemberEntity =
4249 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
4250 : InitializedEntity::InitializeMember(IndirectMember,
4251 nullptr);
4252 InitializationKind Kind =
4253 InitList ? InitializationKind::CreateDirectList(
4254 IdLoc, Init->getBeginLoc(), Init->getEndLoc())
4255 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
4256 InitRange.getEnd());
4257
4258 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
4259 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
4260 nullptr);
4261 if (MemberInit.isInvalid())
4262 return true;
4263
4264 // C++11 [class.base.init]p7:
4265 // The initialization of each base and member constitutes a
4266 // full-expression.
4267 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin(),
4268 /*DiscardedValue*/ false);
4269 if (MemberInit.isInvalid())
4270 return true;
4271
4272 Init = MemberInit.get();
4273 }
4274
4275 if (DirectMember) {
4276 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
4277 InitRange.getBegin(), Init,
4278 InitRange.getEnd());
4279 } else {
4280 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
4281 InitRange.getBegin(), Init,
4282 InitRange.getEnd());
4283 }
4284}
4285
4286MemInitResult
4287Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
4288 CXXRecordDecl *ClassDecl) {
4289 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
4290 if (!LangOpts.CPlusPlus11)
4291 return Diag(NameLoc, diag::err_delegating_ctor)
4292 << TInfo->getTypeLoc().getLocalSourceRange();
4293 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4294
4295 bool InitList = true;
4296 MultiExprArg Args = Init;
4297 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4298 InitList = false;
4299 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4300 }
4301
4302 SourceRange InitRange = Init->getSourceRange();
4303 // Initialize the object.
4304 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4305 QualType(ClassDecl->getTypeForDecl(), 0));
4306 InitializationKind Kind =
4307 InitList ? InitializationKind::CreateDirectList(
4308 NameLoc, Init->getBeginLoc(), Init->getEndLoc())
4309 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4310 InitRange.getEnd());
4311 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4312 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4313 Args, nullptr);
4314 if (DelegationInit.isInvalid())
4315 return true;
4316
4317 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4318, __PRETTY_FUNCTION__))
4318 "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4318, __PRETTY_FUNCTION__))
;
4319
4320 // C++11 [class.base.init]p7:
4321 // The initialization of each base and member constitutes a
4322 // full-expression.
4323 DelegationInit = ActOnFinishFullExpr(
4324 DelegationInit.get(), InitRange.getBegin(), /*DiscardedValue*/ false);
4325 if (DelegationInit.isInvalid())
4326 return true;
4327
4328 // If we are in a dependent context, template instantiation will
4329 // perform this type-checking again. Just save the arguments that we
4330 // received in a ParenListExpr.
4331 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4332 // of the information that we have about the base
4333 // initializer. However, deconstructing the ASTs is a dicey process,
4334 // and this approach is far more likely to get the corner cases right.
4335 if (CurContext->isDependentContext())
4336 DelegationInit = Init;
4337
4338 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4339 DelegationInit.getAs<Expr>(),
4340 InitRange.getEnd());
4341}
4342
4343MemInitResult
4344Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4345 Expr *Init, CXXRecordDecl *ClassDecl,
4346 SourceLocation EllipsisLoc) {
4347 SourceLocation BaseLoc
4348 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4349
4350 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4351 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4352 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4353
4354 // C++ [class.base.init]p2:
4355 // [...] Unless the mem-initializer-id names a nonstatic data
4356 // member of the constructor's class or a direct or virtual base
4357 // of that class, the mem-initializer is ill-formed. A
4358 // mem-initializer-list can initialize a base class using any
4359 // name that denotes that base class type.
4360 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4361
4362 SourceRange InitRange = Init->getSourceRange();
4363 if (EllipsisLoc.isValid()) {
4364 // This is a pack expansion.
4365 if (!BaseType->containsUnexpandedParameterPack()) {
4366 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4367 << SourceRange(BaseLoc, InitRange.getEnd());
4368
4369 EllipsisLoc = SourceLocation();
4370 }
4371 } else {
4372 // Check for any unexpanded parameter packs.
4373 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4374 return true;
4375
4376 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4377 return true;
4378 }
4379
4380 // Check for direct and virtual base classes.
4381 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4382 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4383 if (!Dependent) {
4384 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4385 BaseType))
4386 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4387
4388 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4389 VirtualBaseSpec);
4390
4391 // C++ [base.class.init]p2:
4392 // Unless the mem-initializer-id names a nonstatic data member of the
4393 // constructor's class or a direct or virtual base of that class, the
4394 // mem-initializer is ill-formed.
4395 if (!DirectBaseSpec && !VirtualBaseSpec) {
4396 // If the class has any dependent bases, then it's possible that
4397 // one of those types will resolve to the same type as
4398 // BaseType. Therefore, just treat this as a dependent base
4399 // class initialization. FIXME: Should we try to check the
4400 // initialization anyway? It seems odd.
4401 if (ClassDecl->hasAnyDependentBases())
4402 Dependent = true;
4403 else
4404 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4405 << BaseType << Context.getTypeDeclType(ClassDecl)
4406 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4407 }
4408 }
4409
4410 if (Dependent) {
4411 DiscardCleanupsInEvaluationContext();
4412
4413 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4414 /*IsVirtual=*/false,
4415 InitRange.getBegin(), Init,
4416 InitRange.getEnd(), EllipsisLoc);
4417 }
4418
4419 // C++ [base.class.init]p2:
4420 // If a mem-initializer-id is ambiguous because it designates both
4421 // a direct non-virtual base class and an inherited virtual base
4422 // class, the mem-initializer is ill-formed.
4423 if (DirectBaseSpec && VirtualBaseSpec)
4424 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4425 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4426
4427 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4428 if (!BaseSpec)
4429 BaseSpec = VirtualBaseSpec;
4430
4431 // Initialize the base.
4432 bool InitList = true;
4433 MultiExprArg Args = Init;
4434 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4435 InitList = false;
4436 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4437 }
4438
4439 InitializedEntity BaseEntity =
4440 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4441 InitializationKind Kind =
4442 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4443 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4444 InitRange.getEnd());
4445 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4446 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4447 if (BaseInit.isInvalid())
4448 return true;
4449
4450 // C++11 [class.base.init]p7:
4451 // The initialization of each base and member constitutes a
4452 // full-expression.
4453 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin(),
4454 /*DiscardedValue*/ false);
4455 if (BaseInit.isInvalid())
4456 return true;
4457
4458 // If we are in a dependent context, template instantiation will
4459 // perform this type-checking again. Just save the arguments that we
4460 // received in a ParenListExpr.
4461 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4462 // of the information that we have about the base
4463 // initializer. However, deconstructing the ASTs is a dicey process,
4464 // and this approach is far more likely to get the corner cases right.
4465 if (CurContext->isDependentContext())
4466 BaseInit = Init;
4467
4468 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4469 BaseSpec->isVirtual(),
4470 InitRange.getBegin(),
4471 BaseInit.getAs<Expr>(),
4472 InitRange.getEnd(), EllipsisLoc);
4473}
4474
4475// Create a static_cast\<T&&>(expr).
4476static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4477 if (T.isNull()) T = E->getType();
4478 QualType TargetType = SemaRef.BuildReferenceType(
4479 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4480 SourceLocation ExprLoc = E->getBeginLoc();
4481 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4482 TargetType, ExprLoc);
4483
4484 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4485 SourceRange(ExprLoc, ExprLoc),
4486 E->getSourceRange()).get();
4487}
4488
4489/// ImplicitInitializerKind - How an implicit base or member initializer should
4490/// initialize its base or member.
4491enum ImplicitInitializerKind {
4492 IIK_Default,
4493 IIK_Copy,
4494 IIK_Move,
4495 IIK_Inherit
4496};
4497
4498static bool
4499BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4500 ImplicitInitializerKind ImplicitInitKind,
4501 CXXBaseSpecifier *BaseSpec,
4502 bool IsInheritedVirtualBase,
4503 CXXCtorInitializer *&CXXBaseInit) {
4504 InitializedEntity InitEntity
4505 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4506 IsInheritedVirtualBase);
4507
4508 ExprResult BaseInit;
4509
4510 switch (ImplicitInitKind) {
4511 case IIK_Inherit:
4512 case IIK_Default: {
4513 InitializationKind InitKind
4514 = InitializationKind::CreateDefault(Constructor->getLocation());
4515 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4516 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4517 break;
4518 }
4519
4520 case IIK_Move:
4521 case IIK_Copy: {
4522 bool Moving = ImplicitInitKind == IIK_Move;
4523 ParmVarDecl *Param = Constructor->getParamDecl(0);
4524 QualType ParamType = Param->getType().getNonReferenceType();
4525
4526 Expr *CopyCtorArg =
4527 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4528 SourceLocation(), Param, false,
4529 Constructor->getLocation(), ParamType,
4530 VK_LValue, nullptr);
4531
4532 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4533
4534 // Cast to the base class to avoid ambiguities.
4535 QualType ArgTy =
4536 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4537 ParamType.getQualifiers());
4538
4539 if (Moving) {
4540 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4541 }
4542
4543 CXXCastPath BasePath;
4544 BasePath.push_back(BaseSpec);
4545 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4546 CK_UncheckedDerivedToBase,
4547 Moving ? VK_XValue : VK_LValue,
4548 &BasePath).get();
4549
4550 InitializationKind InitKind
4551 = InitializationKind::CreateDirect(Constructor->getLocation(),
4552 SourceLocation(), SourceLocation());
4553 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4554 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4555 break;
4556 }
4557 }
4558
4559 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4560 if (BaseInit.isInvalid())
4561 return true;
4562
4563 CXXBaseInit =
4564 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4565 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4566 SourceLocation()),
4567 BaseSpec->isVirtual(),
4568 SourceLocation(),
4569 BaseInit.getAs<Expr>(),
4570 SourceLocation(),
4571 SourceLocation());
4572
4573 return false;
4574}
4575
4576static bool RefersToRValueRef(Expr *MemRef) {
4577 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4578 return Referenced->getType()->isRValueReferenceType();
4579}
4580
4581static bool
4582BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4583 ImplicitInitializerKind ImplicitInitKind,
4584 FieldDecl *Field, IndirectFieldDecl *Indirect,
4585 CXXCtorInitializer *&CXXMemberInit) {
4586 if (Field->isInvalidDecl())
4587 return true;
4588
4589 SourceLocation Loc = Constructor->getLocation();
4590
4591 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4592 bool Moving = ImplicitInitKind == IIK_Move;
4593 ParmVarDecl *Param = Constructor->getParamDecl(0);
4594 QualType ParamType = Param->getType().getNonReferenceType();
4595
4596 // Suppress copying zero-width bitfields.
4597 if (Field->isZeroLengthBitField(SemaRef.Context))
4598 return false;
4599
4600 Expr *MemberExprBase =
4601 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4602 SourceLocation(), Param, false,
4603 Loc, ParamType, VK_LValue, nullptr);
4604
4605 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4606
4607 if (Moving) {
4608 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4609 }
4610
4611 // Build a reference to this field within the parameter.
4612 CXXScopeSpec SS;
4613 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4614 Sema::LookupMemberName);
4615 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4616 : cast<ValueDecl>(Field), AS_public);
4617 MemberLookup.resolveKind();
4618 ExprResult CtorArg
4619 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4620 ParamType, Loc,
4621 /*IsArrow=*/false,
4622 SS,
4623 /*TemplateKWLoc=*/SourceLocation(),
4624 /*FirstQualifierInScope=*/nullptr,
4625 MemberLookup,
4626 /*TemplateArgs=*/nullptr,
4627 /*S*/nullptr);
4628 if (CtorArg.isInvalid())
4629 return true;
4630
4631 // C++11 [class.copy]p15:
4632 // - if a member m has rvalue reference type T&&, it is direct-initialized
4633 // with static_cast<T&&>(x.m);
4634 if (RefersToRValueRef(CtorArg.get())) {
4635 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4636 }
4637
4638 InitializedEntity Entity =
4639 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4640 /*Implicit*/ true)
4641 : InitializedEntity::InitializeMember(Field, nullptr,
4642 /*Implicit*/ true);
4643
4644 // Direct-initialize to use the copy constructor.
4645 InitializationKind InitKind =
4646 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4647
4648 Expr *CtorArgE = CtorArg.getAs<Expr>();
4649 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4650 ExprResult MemberInit =
4651 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4652 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4653 if (MemberInit.isInvalid())
4654 return true;
4655
4656 if (Indirect)
4657 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4658 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4659 else
4660 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4661 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4662 return false;
4663 }
4664
4665 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4666, __PRETTY_FUNCTION__))
4666 "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4666, __PRETTY_FUNCTION__))
;
4667
4668 QualType FieldBaseElementType =
4669 SemaRef.Context.getBaseElementType(Field->getType());
4670
4671 if (FieldBaseElementType->isRecordType()) {
4672 InitializedEntity InitEntity =
4673 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4674 /*Implicit*/ true)
4675 : InitializedEntity::InitializeMember(Field, nullptr,
4676 /*Implicit*/ true);
4677 InitializationKind InitKind =
4678 InitializationKind::CreateDefault(Loc);
4679
4680 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4681 ExprResult MemberInit =
4682 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4683
4684 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4685 if (MemberInit.isInvalid())
4686 return true;
4687
4688 if (Indirect)
4689 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4690 Indirect, Loc,
4691 Loc,
4692 MemberInit.get(),
4693 Loc);
4694 else
4695 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4696 Field, Loc, Loc,
4697 MemberInit.get(),
4698 Loc);
4699 return false;
4700 }
4701
4702 if (!Field->getParent()->isUnion()) {
4703 if (FieldBaseElementType->isReferenceType()) {
4704 SemaRef.Diag(Constructor->getLocation(),
4705 diag::err_uninitialized_member_in_ctor)
4706 << (int)Constructor->isImplicit()
4707 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4708 << 0 << Field->getDeclName();
4709 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4710 return true;
4711 }
4712
4713 if (FieldBaseElementType.isConstQualified()) {
4714 SemaRef.Diag(Constructor->getLocation(),
4715 diag::err_uninitialized_member_in_ctor)
4716 << (int)Constructor->isImplicit()
4717 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4718 << 1 << Field->getDeclName();
4719 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4720 return true;
4721 }
4722 }
4723
4724 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4725 // ARC and Weak:
4726 // Default-initialize Objective-C pointers to NULL.
4727 CXXMemberInit
4728 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4729 Loc, Loc,
4730 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4731 Loc);
4732 return false;
4733 }
4734
4735 // Nothing to initialize.
4736 CXXMemberInit = nullptr;
4737 return false;
4738}
4739
4740namespace {
4741struct BaseAndFieldInfo {
4742 Sema &S;
4743 CXXConstructorDecl *Ctor;
4744 bool AnyErrorsInInits;
4745 ImplicitInitializerKind IIK;
4746 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4747 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4748 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4749
4750 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4751 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4752 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4753 if (Ctor->getInheritedConstructor())
4754 IIK = IIK_Inherit;
4755 else if (Generated && Ctor->isCopyConstructor())
4756 IIK = IIK_Copy;
4757 else if (Generated && Ctor->isMoveConstructor())
4758 IIK = IIK_Move;
4759 else
4760 IIK = IIK_Default;
4761 }
4762
4763 bool isImplicitCopyOrMove() const {
4764 switch (IIK) {
4765 case IIK_Copy:
4766 case IIK_Move:
4767 return true;
4768
4769 case IIK_Default:
4770 case IIK_Inherit:
4771 return false;
4772 }
4773
4774 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4774)
;
4775 }
4776
4777 bool addFieldInitializer(CXXCtorInitializer *Init) {
4778 AllToInit.push_back(Init);
4779
4780 // Check whether this initializer makes the field "used".
4781 if (Init->getInit()->HasSideEffects(S.Context))
4782 S.UnusedPrivateFields.remove(Init->getAnyMember());
4783
4784 return false;
4785 }
4786
4787 bool isInactiveUnionMember(FieldDecl *Field) {
4788 RecordDecl *Record = Field->getParent();
4789 if (!Record->isUnion())
4790 return false;
4791
4792 if (FieldDecl *Active =
4793 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4794 return Active != Field->getCanonicalDecl();
4795
4796 // In an implicit copy or move constructor, ignore any in-class initializer.
4797 if (isImplicitCopyOrMove())
4798 return true;
4799
4800 // If there's no explicit initialization, the field is active only if it
4801 // has an in-class initializer...
4802 if (Field->hasInClassInitializer())
4803 return false;
4804 // ... or it's an anonymous struct or union whose class has an in-class
4805 // initializer.
4806 if (!Field->isAnonymousStructOrUnion())
4807 return true;
4808 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4809 return !FieldRD->hasInClassInitializer();
4810 }
4811
4812 /// Determine whether the given field is, or is within, a union member
4813 /// that is inactive (because there was an initializer given for a different
4814 /// member of the union, or because the union was not initialized at all).
4815 bool isWithinInactiveUnionMember(FieldDecl *Field,
4816 IndirectFieldDecl *Indirect) {
4817 if (!Indirect)
4818 return isInactiveUnionMember(Field);
4819
4820 for (auto *C : Indirect->chain()) {
4821 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4822 if (Field && isInactiveUnionMember(Field))
4823 return true;
4824 }
4825 return false;
4826 }
4827};
4828}
4829
4830/// Determine whether the given type is an incomplete or zero-lenfgth
4831/// array type.
4832static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4833 if (T->isIncompleteArrayType())
4834 return true;
4835
4836 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4837 if (!ArrayT->getSize())
4838 return true;
4839
4840 T = ArrayT->getElementType();
4841 }
4842
4843 return false;
4844}
4845
4846static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4847 FieldDecl *Field,
4848 IndirectFieldDecl *Indirect = nullptr) {
4849 if (Field->isInvalidDecl())
4850 return false;
4851
4852 // Overwhelmingly common case: we have a direct initializer for this field.
4853 if (CXXCtorInitializer *Init =
4854 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4855 return Info.addFieldInitializer(Init);
4856
4857 // C++11 [class.base.init]p8:
4858 // if the entity is a non-static data member that has a
4859 // brace-or-equal-initializer and either
4860 // -- the constructor's class is a union and no other variant member of that
4861 // union is designated by a mem-initializer-id or
4862 // -- the constructor's class is not a union, and, if the entity is a member
4863 // of an anonymous union, no other member of that union is designated by
4864 // a mem-initializer-id,
4865 // the entity is initialized as specified in [dcl.init].
4866 //
4867 // We also apply the same rules to handle anonymous structs within anonymous
4868 // unions.
4869 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4870 return false;
4871
4872 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4873 ExprResult DIE =
4874 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4875 if (DIE.isInvalid())
4876 return true;
4877
4878 auto Entity = InitializedEntity::InitializeMember(Field, nullptr, true);
4879 SemaRef.checkInitializerLifetime(Entity, DIE.get());
4880
4881 CXXCtorInitializer *Init;
4882 if (Indirect)
4883 Init = new (SemaRef.Context)
4884 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4885 SourceLocation(), DIE.get(), SourceLocation());
4886 else
4887 Init = new (SemaRef.Context)
4888 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4889 SourceLocation(), DIE.get(), SourceLocation());
4890 return Info.addFieldInitializer(Init);
4891 }
4892
4893 // Don't initialize incomplete or zero-length arrays.
4894 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4895 return false;
4896
4897 // Don't try to build an implicit initializer if there were semantic
4898 // errors in any of the initializers (and therefore we might be
4899 // missing some that the user actually wrote).
4900 if (Info.AnyErrorsInInits)
4901 return false;
4902
4903 CXXCtorInitializer *Init = nullptr;
4904 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4905 Indirect, Init))
4906 return true;
4907
4908 if (!Init)
4909 return false;
4910
4911 return Info.addFieldInitializer(Init);
4912}
4913
4914bool
4915Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4916 CXXCtorInitializer *Initializer) {
4917 assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast<
void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4917, __PRETTY_FUNCTION__))
;
4918 Constructor->setNumCtorInitializers(1);
4919 CXXCtorInitializer **initializer =
4920 new (Context) CXXCtorInitializer*[1];
4921 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4922 Constructor->setCtorInitializers(initializer);
4923
4924 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4925 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4926 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4927 }
4928
4929 DelegatingCtorDecls.push_back(Constructor);
4930
4931 DiagnoseUninitializedFields(*this, Constructor);
4932
4933 return false;
4934}
4935
4936bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4937 ArrayRef<CXXCtorInitializer *> Initializers) {
4938 if (Constructor->isDependentContext()) {
4939 // Just store the initializers as written, they will be checked during
4940 // instantiation.
4941 if (!Initializers.empty()) {
4942 Constructor->setNumCtorInitializers(Initializers.size());
4943 CXXCtorInitializer **baseOrMemberInitializers =
4944 new (Context) CXXCtorInitializer*[Initializers.size()];
4945 memcpy(baseOrMemberInitializers, Initializers.data(),
4946 Initializers.size() * sizeof(CXXCtorInitializer*));
4947 Constructor->setCtorInitializers(baseOrMemberInitializers);
4948 }
4949
4950 // Let template instantiation know whether we had errors.
4951 if (AnyErrors)
4952 Constructor->setInvalidDecl();
4953
4954 return false;
4955 }
4956
4957 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4958
4959 // We need to build the initializer AST according to order of construction
4960 // and not what user specified in the Initializers list.
4961 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4962 if (!ClassDecl)
4963 return true;
4964
4965 bool HadError = false;
4966
4967 for (unsigned i = 0; i < Initializers.size(); i++) {
4968 CXXCtorInitializer *Member = Initializers[i];
4969
4970 if (Member->isBaseInitializer())
4971 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4972 else {
4973 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4974
4975 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4976 for (auto *C : F->chain()) {
4977 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4978 if (FD && FD->getParent()->isUnion())
4979 Info.ActiveUnionMember.insert(std::make_pair(
4980 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4981 }
4982 } else if (FieldDecl *FD = Member->getMember()) {
4983 if (FD->getParent()->isUnion())
4984 Info.ActiveUnionMember.insert(std::make_pair(
4985 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4986 }
4987 }
4988 }
4989
4990 // Keep track of the direct virtual bases.
4991 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4992 for (auto &I : ClassDecl->bases()) {
4993 if (I.isVirtual())
4994 DirectVBases.insert(&I);
4995 }
4996
4997 // Push virtual bases before others.
4998 for (auto &VBase : ClassDecl->vbases()) {
4999 if (CXXCtorInitializer *Value
5000 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
5001 // [class.base.init]p7, per DR257:
5002 // A mem-initializer where the mem-initializer-id names a virtual base
5003 // class is ignored during execution of a constructor of any class that
5004 // is not the most derived class.
5005 if (ClassDecl->isAbstract()) {
5006 // FIXME: Provide a fixit to remove the base specifier. This requires
5007 // tracking the location of the associated comma for a base specifier.
5008 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
5009 << VBase.getType() << ClassDecl;
5010 DiagnoseAbstractType(ClassDecl);
5011 }
5012
5013 Info.AllToInit.push_back(Value);
5014 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
5015 // [class.base.init]p8, per DR257:
5016 // If a given [...] base class is not named by a mem-initializer-id
5017 // [...] and the entity is not a virtual base class of an abstract
5018 // class, then [...] the entity is default-initialized.
5019 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
5020 CXXCtorInitializer *CXXBaseInit;
5021 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5022 &VBase, IsInheritedVirtualBase,
5023 CXXBaseInit)) {
5024 HadError = true;
5025 continue;
5026 }
5027
5028 Info.AllToInit.push_back(CXXBaseInit);
5029 }
5030 }
5031
5032 // Non-virtual bases.
5033 for (auto &Base : ClassDecl->bases()) {
5034 // Virtuals are in the virtual base list and already constructed.
5035 if (Base.isVirtual())
5036 continue;
5037
5038 if (CXXCtorInitializer *Value
5039 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
5040 Info.AllToInit.push_back(Value);
5041 } else if (!AnyErrors) {
5042 CXXCtorInitializer *CXXBaseInit;
5043 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
5044 &Base, /*IsInheritedVirtualBase=*/false,
5045 CXXBaseInit)) {
5046 HadError = true;
5047 continue;
5048 }
5049
5050 Info.AllToInit.push_back(CXXBaseInit);
5051 }
5052 }
5053
5054 // Fields.
5055 for (auto *Mem : ClassDecl->decls()) {
5056 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
5057 // C++ [class.bit]p2:
5058 // A declaration for a bit-field that omits the identifier declares an
5059 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
5060 // initialized.
5061 if (F->isUnnamedBitfield())
5062 continue;
5063
5064 // If we're not generating the implicit copy/move constructor, then we'll
5065 // handle anonymous struct/union fields based on their individual
5066 // indirect fields.
5067 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
5068 continue;
5069
5070 if (CollectFieldInitializer(*this, Info, F))
5071 HadError = true;
5072 continue;
5073 }
5074
5075 // Beyond this point, we only consider default initialization.
5076 if (Info.isImplicitCopyOrMove())
5077 continue;
5078
5079 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
5080 if (F->getType()->isIncompleteArrayType()) {
5081 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5082, __PRETTY_FUNCTION__))
5082 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5082, __PRETTY_FUNCTION__))
;
5083 continue;
5084 }
5085
5086 // Initialize each field of an anonymous struct individually.
5087 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
5088 HadError = true;
5089
5090 continue;
5091 }
5092 }
5093
5094 unsigned NumInitializers = Info.AllToInit.size();
5095 if (NumInitializers > 0) {
5096 Constructor->setNumCtorInitializers(NumInitializers);
5097 CXXCtorInitializer **baseOrMemberInitializers =
5098 new (Context) CXXCtorInitializer*[NumInitializers];
5099 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
5100 NumInitializers * sizeof(CXXCtorInitializer*));
5101 Constructor->setCtorInitializers(baseOrMemberInitializers);
5102
5103 // Constructors implicitly reference the base and member
5104 // destructors.
5105 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
5106 Constructor->getParent());
5107 }
5108
5109 return HadError;
5110}
5111
5112static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
5113 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
5114 const RecordDecl *RD = RT->getDecl();
5115 if (RD->isAnonymousStructOrUnion()) {
5116 for (auto *Field : RD->fields())
5117 PopulateKeysForFields(Field, IdealInits);
5118 return;
5119 }
5120 }
5121 IdealInits.push_back(Field->getCanonicalDecl());
5122}
5123
5124static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
5125 return Context.getCanonicalType(BaseType).getTypePtr();
5126}
5127
5128static const void *GetKeyForMember(ASTContext &Context,
5129 CXXCtorInitializer *Member) {
5130 if (!Member->isAnyMemberInitializer())
5131 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
5132
5133 return Member->getAnyMember()->getCanonicalDecl();
5134}
5135
5136static void DiagnoseBaseOrMemInitializerOrder(
5137 Sema &SemaRef, const CXXConstructorDecl *Constructor,
5138 ArrayRef<CXXCtorInitializer *> Inits) {
5139 if (Constructor->getDeclContext()->isDependentContext())
5140 return;
5141
5142 // Don't check initializers order unless the warning is enabled at the
5143 // location of at least one initializer.
5144 bool ShouldCheckOrder = false;
5145 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5146 CXXCtorInitializer *Init = Inits[InitIndex];
5147 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
5148 Init->getSourceLocation())) {
5149 ShouldCheckOrder = true;
5150 break;
5151 }
5152 }
5153 if (!ShouldCheckOrder)
5154 return;
5155
5156 // Build the list of bases and members in the order that they'll
5157 // actually be initialized. The explicit initializers should be in
5158 // this same order but may be missing things.
5159 SmallVector<const void*, 32> IdealInitKeys;
5160
5161 const CXXRecordDecl *ClassDecl = Constructor->getParent();
5162
5163 // 1. Virtual bases.
5164 for (const auto &VBase : ClassDecl->vbases())
5165 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
5166
5167 // 2. Non-virtual bases.
5168 for (const auto &Base : ClassDecl->bases()) {
5169 if (Base.isVirtual())
5170 continue;
5171 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
5172 }
5173
5174 // 3. Direct fields.
5175 for (auto *Field : ClassDecl->fields()) {
5176 if (Field->isUnnamedBitfield())
5177 continue;
5178
5179 PopulateKeysForFields(Field, IdealInitKeys);
5180 }
5181
5182 unsigned NumIdealInits = IdealInitKeys.size();
5183 unsigned IdealIndex = 0;
5184
5185 CXXCtorInitializer *PrevInit = nullptr;
5186 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
5187 CXXCtorInitializer *Init = Inits[InitIndex];
5188 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
5189
5190 // Scan forward to try to find this initializer in the idealized
5191 // initializers list.
5192 for (; IdealIndex != NumIdealInits; ++IdealIndex)
5193 if (InitKey == IdealInitKeys[IdealIndex])
5194 break;
5195
5196 // If we didn't find this initializer, it must be because we
5197 // scanned past it on a previous iteration. That can only
5198 // happen if we're out of order; emit a warning.
5199 if (IdealIndex == NumIdealInits && PrevInit) {
5200 Sema::SemaDiagnosticBuilder D =
5201 SemaRef.Diag(PrevInit->getSourceLocation(),
5202 diag::warn_initializer_out_of_order);
5203
5204 if (PrevInit->isAnyMemberInitializer())
5205 D << 0 << PrevInit->getAnyMember()->getDeclName();
5206 else
5207 D << 1 << PrevInit->getTypeSourceInfo()->getType();
5208
5209 if (Init->isAnyMemberInitializer())
5210 D << 0 << Init->getAnyMember()->getDeclName();
5211 else
5212 D << 1 << Init->getTypeSourceInfo()->getType();
5213
5214 // Move back to the initializer's location in the ideal list.
5215 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
5216 if (InitKey == IdealInitKeys[IdealIndex])
5217 break;
5218
5219 assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5220, __PRETTY_FUNCTION__))
5220 "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5220, __PRETTY_FUNCTION__))
;
5221 }
5222
5223 PrevInit = Init;
5224 }
5225}
5226
5227namespace {
5228bool CheckRedundantInit(Sema &S,
5229 CXXCtorInitializer *Init,
5230 CXXCtorInitializer *&PrevInit) {
5231 if (!PrevInit) {
5232 PrevInit = Init;
5233 return false;
5234 }
5235
5236 if (FieldDecl *Field = Init->getAnyMember())
5237 S.Diag(Init->getSourceLocation(),
5238 diag::err_multiple_mem_initialization)
5239 << Field->getDeclName()
5240 << Init->getSourceRange();
5241 else {
5242 const Type *BaseClass = Init->getBaseClass();
5243 assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast
<void> (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5243, __PRETTY_FUNCTION__))
;
5244 S.Diag(Init->getSourceLocation(),
5245 diag::err_multiple_base_initialization)
5246 << QualType(BaseClass, 0)
5247 << Init->getSourceRange();
5248 }
5249 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
5250 << 0 << PrevInit->getSourceRange();
5251
5252 return true;
5253}
5254
5255typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
5256typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
5257
5258bool CheckRedundantUnionInit(Sema &S,
5259 CXXCtorInitializer *Init,
5260 RedundantUnionMap &Unions) {
5261 FieldDecl *Field = Init->getAnyMember();
5262 RecordDecl *Parent = Field->getParent();
5263 NamedDecl *Child = Field;
5264
5265 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
5266 if (Parent->isUnion()) {
5267 UnionEntry &En = Unions[Parent];
5268 if (En.first && En.first != Child) {
5269 S.Diag(Init->getSourceLocation(),
5270 diag::err_multiple_mem_union_initialization)
5271 << Field->getDeclName()
5272 << Init->getSourceRange();
5273 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
5274 << 0 << En.second->getSourceRange();
5275 return true;
5276 }
5277 if (!En.first) {
5278 En.first = Child;
5279 En.second = Init;
5280 }
5281 if (!Parent->isAnonymousStructOrUnion())
5282 return false;
5283 }
5284
5285 Child = Parent;
5286 Parent = cast<RecordDecl>(Parent->getDeclContext());
5287 }
5288
5289 return false;
5290}
5291}
5292
5293/// ActOnMemInitializers - Handle the member initializers for a constructor.
5294void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
5295 SourceLocation ColonLoc,
5296 ArrayRef<CXXCtorInitializer*> MemInits,
5297 bool AnyErrors) {
5298 if (!ConstructorDecl)
5299 return;
5300
5301 AdjustDeclIfTemplate(ConstructorDecl);
5302
5303 CXXConstructorDecl *Constructor
5304 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5305
5306 if (!Constructor) {
5307 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5308 return;
5309 }
5310
5311 // Mapping for the duplicate initializers check.
5312 // For member initializers, this is keyed with a FieldDecl*.
5313 // For base initializers, this is keyed with a Type*.
5314 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5315
5316 // Mapping for the inconsistent anonymous-union initializers check.
5317 RedundantUnionMap MemberUnions;
5318
5319 bool HadError = false;
5320 for (unsigned i = 0; i < MemInits.size(); i++) {
5321 CXXCtorInitializer *Init = MemInits[i];
5322
5323 // Set the source order index.
5324 Init->setSourceOrder(i);
5325
5326 if (Init->isAnyMemberInitializer()) {
5327 const void *Key = GetKeyForMember(Context, Init);
5328 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5329 CheckRedundantUnionInit(*this, Init, MemberUnions))
5330 HadError = true;
5331 } else if (Init->isBaseInitializer()) {
5332 const void *Key = GetKeyForMember(Context, Init);
5333 if (CheckRedundantInit(*this, Init, Members[Key]))
5334 HadError = true;
5335 } else {
5336 assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void>
(0) : __assert_fail ("Init->isDelegatingInitializer()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5336, __PRETTY_FUNCTION__))
;
5337 // This must be the only initializer
5338 if (MemInits.size() != 1) {
5339 Diag(Init->getSourceLocation(),
5340 diag::err_delegating_initializer_alone)
5341 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5342 // We will treat this as being the only initializer.
5343 }
5344 SetDelegatingInitializer(Constructor, MemInits[i]);
5345 // Return immediately as the initializer is set.
5346 return;
5347 }
5348 }
5349
5350 if (HadError)
5351 return;
5352
5353 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5354
5355 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5356
5357 DiagnoseUninitializedFields(*this, Constructor);
5358}
5359
5360void
5361Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5362 CXXRecordDecl *ClassDecl) {
5363 // Ignore dependent contexts. Also ignore unions, since their members never
5364 // have destructors implicitly called.
5365 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5366 return;
5367
5368 // FIXME: all the access-control diagnostics are positioned on the
5369 // field/base declaration. That's probably good; that said, the
5370 // user might reasonably want to know why the destructor is being
5371 // emitted, and we currently don't say.
5372
5373 // Non-static data members.
5374 for (auto *Field : ClassDecl->fields()) {
5375 if (Field->isInvalidDecl())
5376 continue;
5377
5378 // Don't destroy incomplete or zero-length arrays.
5379 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5380 continue;
5381
5382 QualType FieldType = Context.getBaseElementType(Field->getType());
5383
5384 const RecordType* RT = FieldType->getAs<RecordType>();
5385 if (!RT)
5386 continue;
5387
5388 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5389 if (FieldClassDecl->isInvalidDecl())
5390 continue;
5391 if (FieldClassDecl->hasIrrelevantDestructor())
5392 continue;
5393 // The destructor for an implicit anonymous union member is never invoked.
5394 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5395 continue;
5396
5397 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5398 assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5398, __PRETTY_FUNCTION__))
;
5399 CheckDestructorAccess(Field->getLocation(), Dtor,
5400 PDiag(diag::err_access_dtor_field)
5401 << Field->getDeclName()
5402 << FieldType);
5403
5404 MarkFunctionReferenced(Location, Dtor);
5405 DiagnoseUseOfDecl(Dtor, Location);
5406 }
5407
5408 // We only potentially invoke the destructors of potentially constructed
5409 // subobjects.
5410 bool VisitVirtualBases = !ClassDecl->isAbstract();
5411
5412 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5413
5414 // Bases.
5415 for (const auto &Base : ClassDecl->bases()) {
5416 // Bases are always records in a well-formed non-dependent class.
5417 const RecordType *RT = Base.getType()->getAs<RecordType>();
5418
5419 // Remember direct virtual bases.
5420 if (Base.isVirtual()) {
5421 if (!VisitVirtualBases)
5422 continue;
5423 DirectVirtualBases.insert(RT);
5424 }
5425
5426 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5427 // If our base class is invalid, we probably can't get its dtor anyway.
5428 if (BaseClassDecl->isInvalidDecl())
5429 continue;
5430 if (BaseClassDecl->hasIrrelevantDestructor())
5431 continue;
5432
5433 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5434 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5434, __PRETTY_FUNCTION__))
;
5435
5436 // FIXME: caret should be on the start of the class name
5437 CheckDestructorAccess(Base.getBeginLoc(), Dtor,
5438 PDiag(diag::err_access_dtor_base)
5439 << Base.getType() << Base.getSourceRange(),
5440 Context.getTypeDeclType(ClassDecl));
5441
5442 MarkFunctionReferenced(Location, Dtor);
5443 DiagnoseUseOfDecl(Dtor, Location);
5444 }
5445
5446 if (!VisitVirtualBases)
5447 return;
5448
5449 // Virtual bases.
5450 for (const auto &VBase : ClassDecl->vbases()) {
5451 // Bases are always records in a well-formed non-dependent class.
5452 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5453
5454 // Ignore direct virtual bases.
5455 if (DirectVirtualBases.count(RT))
5456 continue;
5457
5458 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5459 // If our base class is invalid, we probably can't get its dtor anyway.
5460 if (BaseClassDecl->isInvalidDecl())
5461 continue;
5462 if (BaseClassDecl->hasIrrelevantDestructor())
5463 continue;
5464
5465 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5466 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5466, __PRETTY_FUNCTION__))
;
5467 if (CheckDestructorAccess(
5468 ClassDecl->getLocation(), Dtor,
5469 PDiag(diag::err_access_dtor_vbase)
5470 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5471 Context.getTypeDeclType(ClassDecl)) ==
5472 AR_accessible) {
5473 CheckDerivedToBaseConversion(
5474 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5475 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5476 SourceRange(), DeclarationName(), nullptr);
5477 }
5478
5479 MarkFunctionReferenced(Location, Dtor);
5480 DiagnoseUseOfDecl(Dtor, Location);
5481 }
5482}
5483
5484void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5485 if (!CDtorDecl)
5486 return;
5487
5488 if (CXXConstructorDecl *Constructor
5489 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5490 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5491 DiagnoseUninitializedFields(*this, Constructor);
5492 }
5493}
5494
5495bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5496 if (!getLangOpts().CPlusPlus)
5497 return false;
5498
5499 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5500 if (!RD)
5501 return false;
5502
5503 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5504 // class template specialization here, but doing so breaks a lot of code.
5505
5506 // We can't answer whether something is abstract until it has a
5507 // definition. If it's currently being defined, we'll walk back
5508 // over all the declarations when we have a full definition.
5509 const CXXRecordDecl *Def = RD->getDefinition();
5510 if (!Def || Def->isBeingDefined())
5511 return false;
5512
5513 return RD->isAbstract();
5514}
5515
5516bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5517 TypeDiagnoser &Diagnoser) {
5518 if (!isAbstractType(Loc, T))
5519 return false;
5520
5521 T = Context.getBaseElementType(T);
5522 Diagnoser.diagnose(*this, Loc, T);
5523 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5524 return true;
5525}
5526
5527void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5528 // Check if we've already emitted the list of pure virtual functions
5529 // for this class.
5530 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5531 return;
5532
5533 // If the diagnostic is suppressed, don't emit the notes. We're only
5534 // going to emit them once, so try to attach them to a diagnostic we're
5535 // actually going to show.
5536 if (Diags.isLastDiagnosticIgnored())
5537 return;
5538
5539 CXXFinalOverriderMap FinalOverriders;
5540 RD->getFinalOverriders(FinalOverriders);
5541
5542 // Keep a set of seen pure methods so we won't diagnose the same method
5543 // more than once.
5544 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5545
5546 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5547 MEnd = FinalOverriders.end();
5548 M != MEnd;
5549 ++M) {
5550 for (OverridingMethods::iterator SO = M->second.begin(),
5551 SOEnd = M->second.end();
5552 SO != SOEnd; ++SO) {
5553 // C++ [class.abstract]p4:
5554 // A class is abstract if it contains or inherits at least one
5555 // pure virtual function for which the final overrider is pure
5556 // virtual.
5557
5558 //
5559 if (SO->second.size() != 1)
5560 continue;
5561
5562 if (!SO->second.front().Method->isPure())
5563 continue;
5564
5565 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5566 continue;
5567
5568 Diag(SO->second.front().Method->getLocation(),
5569 diag::note_pure_virtual_function)
5570 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5571 }
5572 }
5573
5574 if (!PureVirtualClassDiagSet)
5575 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5576 PureVirtualClassDiagSet->insert(RD);
5577}
5578
5579namespace {
5580struct AbstractUsageInfo {
5581 Sema &S;
5582 CXXRecordDecl *Record;
5583 CanQualType AbstractType;
5584 bool Invalid;
5585
5586 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5587 : S(S), Record(Record),
5588 AbstractType(S.Context.getCanonicalType(
5589 S.Context.getTypeDeclType(Record))),
5590 Invalid(false) {}
5591
5592 void DiagnoseAbstractType() {
5593 if (Invalid) return;
5594 S.DiagnoseAbstractType(Record);
5595 Invalid = true;
5596 }
5597
5598 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5599};
5600
5601struct CheckAbstractUsage {
5602 AbstractUsageInfo &Info;
5603 const NamedDecl *Ctx;
5604
5605 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5606 : Info(Info), Ctx(Ctx) {}
5607
5608 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5609 switch (TL.getTypeLocClass()) {
5610#define ABSTRACT_TYPELOC(CLASS, PARENT)
5611#define TYPELOC(CLASS, PARENT) \
5612 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5613#include "clang/AST/TypeLocNodes.def"
5614 }
5615 }
5616
5617 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5618 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5619 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5620 if (!TL.getParam(I))
5621 continue;
5622
5623 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5624 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5625 }
5626 }
5627
5628 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5629 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5630 }
5631
5632 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5633 // Visit the type parameters from a permissive context.
5634 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5635 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5636 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5637 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5638 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5639 // TODO: other template argument types?
5640 }
5641 }
5642
5643 // Visit pointee types from a permissive context.
5644#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5645 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5646 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5647 }
5648 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5649 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5650 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5651 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5652 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5653
5654 /// Handle all the types we haven't given a more specific
5655 /// implementation for above.
5656 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5657 // Every other kind of type that we haven't called out already
5658 // that has an inner type is either (1) sugar or (2) contains that
5659 // inner type in some way as a subobject.
5660 if (TypeLoc Next = TL.getNextTypeLoc())
5661 return Visit(Next, Sel);
5662
5663 // If there's no inner type and we're in a permissive context,
5664 // don't diagnose.
5665 if (Sel == Sema::AbstractNone) return;
5666
5667 // Check whether the type matches the abstract type.
5668 QualType T = TL.getType();
5669 if (T->isArrayType()) {
5670 Sel = Sema::AbstractArrayType;
5671 T = Info.S.Context.getBaseElementType(T);
5672 }
5673 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5674 if (CT != Info.AbstractType) return;
5675
5676 // It matched; do some magic.
5677 if (Sel == Sema::AbstractArrayType) {
5678 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5679 << T << TL.getSourceRange();
5680 } else {
5681 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5682 << Sel << T << TL.getSourceRange();
5683 }
5684 Info.DiagnoseAbstractType();
5685 }
5686};
5687
5688void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5689 Sema::AbstractDiagSelID Sel) {
5690 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5691}
5692
5693}
5694
5695/// Check for invalid uses of an abstract type in a method declaration.
5696static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5697 CXXMethodDecl *MD) {
5698 // No need to do the check on definitions, which require that
5699 // the return/param types be complete.
5700 if (MD->doesThisDeclarationHaveABody())
5701 return;
5702
5703 // For safety's sake, just ignore it if we don't have type source
5704 // information. This should never happen for non-implicit methods,
5705 // but...
5706 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5707 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5708}
5709
5710/// Check for invalid uses of an abstract type within a class definition.
5711static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5712 CXXRecordDecl *RD) {
5713 for (auto *D : RD->decls()) {
5714 if (D->isImplicit()) continue;
5715
5716 // Methods and method templates.
5717 if (isa<CXXMethodDecl>(D)) {
5718 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5719 } else if (isa<FunctionTemplateDecl>(D)) {
5720 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5721 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5722
5723 // Fields and static variables.
5724 } else if (isa<FieldDecl>(D)) {
5725 FieldDecl *FD = cast<FieldDecl>(D);
5726 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5727 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5728 } else if (isa<VarDecl>(D)) {
5729 VarDecl *VD = cast<VarDecl>(D);
5730 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5731 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5732
5733 // Nested classes and class templates.
5734 } else if (isa<CXXRecordDecl>(D)) {
5735 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5736 } else if (isa<ClassTemplateDecl>(D)) {
5737 CheckAbstractClassUsage(Info,
5738 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5739 }
5740 }
5741}
5742
5743static void ReferenceDllExportedMembers(Sema &S, CXXRecordDecl *Class) {
5744 Attr *ClassAttr = getDLLAttr(Class);
5745 if (!ClassAttr)
5746 return;
5747
5748 assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast<
void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5748, __PRETTY_FUNCTION__))
;
5749
5750 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5751
5752 if (TSK == TSK_ExplicitInstantiationDeclaration)
5753 // Don't go any further if this is just an explicit instantiation
5754 // declaration.
5755 return;
5756
5757 if (S.Context.getTargetInfo().getTriple().isWindowsGNUEnvironment())
5758 S.MarkVTableUsed(Class->getLocation(), Class, true);
5759
5760 for (Decl *Member : Class->decls()) {
5761 // Defined static variables that are members of an exported base
5762 // class must be marked export too.
5763 auto *VD = dyn_cast<VarDecl>(Member);
5764 if (VD && Member->getAttr<DLLExportAttr>() &&
5765 VD->getStorageClass() == SC_Static &&
5766 TSK == TSK_ImplicitInstantiation)
5767 S.MarkVariableReferenced(VD->getLocation(), VD);
5768
5769 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5770 if (!MD)
5771 continue;
5772
5773 if (Member->getAttr<DLLExportAttr>()) {
5774 if (MD->isUserProvided()) {
5775 // Instantiate non-default class member functions ...
5776
5777 // .. except for certain kinds of template specializations.
5778 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5779 continue;
5780
5781 S.MarkFunctionReferenced(Class->getLocation(), MD);
5782
5783 // The function will be passed to the consumer when its definition is
5784 // encountered.
5785 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5786 MD->isCopyAssignmentOperator() ||
5787 MD->isMoveAssignmentOperator()) {
5788 // Synthesize and instantiate non-trivial implicit methods, explicitly
5789 // defaulted methods, and the copy and move assignment operators. The
5790 // latter are exported even if they are trivial, because the address of
5791 // an operator can be taken and should compare equal across libraries.
5792 DiagnosticErrorTrap Trap(S.Diags);
5793 S.MarkFunctionReferenced(Class->getLocation(), MD);
5794 if (Trap.hasErrorOccurred()) {
5795 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5796 << Class << !S.getLangOpts().CPlusPlus11;
5797 break;
5798 }
5799
5800 // There is no later point when we will see the definition of this
5801 // function, so pass it to the consumer now.
5802 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5803 }
5804 }
5805 }
5806}
5807
5808static void checkForMultipleExportedDefaultConstructors(Sema &S,
5809 CXXRecordDecl *Class) {
5810 // Only the MS ABI has default constructor closures, so we don't need to do
5811 // this semantic checking anywhere else.
5812 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5813 return;
5814
5815 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5816 for (Decl *Member : Class->decls()) {
5817 // Look for exported default constructors.
5818 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5819 if (!CD || !CD->isDefaultConstructor())
5820 continue;
5821 auto *Attr = CD->getAttr<DLLExportAttr>();
5822 if (!Attr)
5823 continue;
5824
5825 // If the class is non-dependent, mark the default arguments as ODR-used so
5826 // that we can properly codegen the constructor closure.
5827 if (!Class->isDependentContext()) {
5828 for (ParmVarDecl *PD : CD->parameters()) {
5829 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5830 S.DiscardCleanupsInEvaluationContext();
5831 }
5832 }
5833
5834 if (LastExportedDefaultCtor) {
5835 S.Diag(LastExportedDefaultCtor->getLocation(),
5836 diag::err_attribute_dll_ambiguous_default_ctor)
5837 << Class;
5838 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5839 << CD->getDeclName();
5840 return;
5841 }
5842 LastExportedDefaultCtor = CD;
5843 }
5844}
5845
5846void Sema::checkClassLevelCodeSegAttribute(CXXRecordDecl *Class) {
5847 // Mark any compiler-generated routines with the implicit code_seg attribute.
5848 for (auto *Method : Class->methods()) {
5849 if (Method->isUserProvided())
5850 continue;
5851 if (Attr *A = getImplicitCodeSegOrSectionAttrForFunction(Method, /*IsDefinition=*/true))
5852 Method->addAttr(A);
5853 }
5854}
5855
5856/// Check class-level dllimport/dllexport attribute.
5857void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5858 Attr *ClassAttr = getDLLAttr(Class);
5859
5860 // MSVC inherits DLL attributes to partial class template specializations.
5861 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5862 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5863 if (Attr *TemplateAttr =
5864 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5865 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5866 A->setInherited(true);
5867 ClassAttr = A;
5868 }
5869 }
5870 }
5871
5872 if (!ClassAttr)
5873 return;
5874
5875 if (!Class->isExternallyVisible()) {
5876 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5877 << Class << ClassAttr;
5878 return;
5879 }
5880
5881 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5882 !ClassAttr->isInherited()) {
5883 // Diagnose dll attributes on members of class with dll attribute.
5884 for (Decl *Member : Class->decls()) {
5885 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5886 continue;
5887 InheritableAttr *MemberAttr = getDLLAttr(Member);
5888 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5889 continue;
5890
5891 Diag(MemberAttr->getLocation(),
5892 diag::err_attribute_dll_member_of_dll_class)
5893 << MemberAttr << ClassAttr;
5894 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5895 Member->setInvalidDecl();
5896 }
5897 }
5898
5899 if (Class->getDescribedClassTemplate())
5900 // Don't inherit dll attribute until the template is instantiated.
5901 return;
5902
5903 // The class is either imported or exported.
5904 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5905
5906 // Check if this was a dllimport attribute propagated from a derived class to
5907 // a base class template specialization. We don't apply these attributes to
5908 // static data members.
5909 const bool PropagatedImport =
5910 !ClassExported &&
5911 cast<DLLImportAttr>(ClassAttr)->wasPropagatedToBaseTemplate();
5912
5913 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5914
5915 // Ignore explicit dllexport on explicit class template instantiation
5916 // declarations, except in MinGW mode.
5917 if (ClassExported && !ClassAttr->isInherited() &&
5918 TSK == TSK_ExplicitInstantiationDeclaration &&
5919 !Context.getTargetInfo().getTriple().isWindowsGNUEnvironment()) {
5920 Class->dropAttr<DLLExportAttr>();
5921 return;
5922 }
5923
5924 // Force declaration of implicit members so they can inherit the attribute.
5925 ForceDeclarationOfImplicitMembers(Class);
5926
5927 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5928 // seem to be true in practice?
5929
5930 for (Decl *Member : Class->decls()) {
5931 VarDecl *VD = dyn_cast<VarDecl>(Member);
5932 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5933
5934 // Only methods and static fields inherit the attributes.
5935 if (!VD && !MD)
5936 continue;
5937
5938 if (MD) {
5939 // Don't process deleted methods.
5940 if (MD->isDeleted())
5941 continue;
5942
5943 if (MD->isInlined()) {
5944 // MinGW does not import or export inline methods. But do it for
5945 // template instantiations.
5946 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5947 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment() &&
5948 TSK != TSK_ExplicitInstantiationDeclaration &&
5949 TSK != TSK_ExplicitInstantiationDefinition)
5950 continue;
5951
5952 // MSVC versions before 2015 don't export the move assignment operators
5953 // and move constructor, so don't attempt to import/export them if
5954 // we have a definition.
5955 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5956 if ((MD->isMoveAssignmentOperator() ||
5957 (Ctor && Ctor->isMoveConstructor())) &&
5958 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5959 continue;
5960
5961 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5962 // operator is exported anyway.
5963 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5964 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5965 continue;
5966 }
5967 }
5968
5969 // Don't apply dllimport attributes to static data members of class template
5970 // instantiations when the attribute is propagated from a derived class.
5971 if (VD && PropagatedImport)
5972 continue;
5973
5974 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5975 continue;
5976
5977 if (!getDLLAttr(Member)) {
5978 InheritableAttr *NewAttr = nullptr;
5979
5980 // Do not export/import inline function when -fno-dllexport-inlines is
5981 // passed. But add attribute for later local static var check.
5982 if (!getLangOpts().DllExportInlines && MD && MD->isInlined() &&
5983 TSK != TSK_ExplicitInstantiationDeclaration &&
5984 TSK != TSK_ExplicitInstantiationDefinition) {
5985 if (ClassExported) {
5986 NewAttr = ::new (getASTContext())
5987 DLLExportStaticLocalAttr(getASTContext(), *ClassAttr);
5988 } else {
5989 NewAttr = ::new (getASTContext())
5990 DLLImportStaticLocalAttr(getASTContext(), *ClassAttr);
5991 }
5992 } else {
5993 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5994 }
5995
5996 NewAttr->setInherited(true);
5997 Member->addAttr(NewAttr);
5998
5999 if (MD) {
6000 // Propagate DLLAttr to friend re-declarations of MD that have already
6001 // been constructed.
6002 for (FunctionDecl *FD = MD->getMostRecentDecl(); FD;
6003 FD = FD->getPreviousDecl()) {
6004 if (FD->getFriendObjectKind() == Decl::FOK_None)
6005 continue;
6006 assert(!getDLLAttr(FD) &&((!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? static_cast<void> (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6007, __PRETTY_FUNCTION__))
6007 "friend re-decl should not already have a DLLAttr")((!getDLLAttr(FD) && "friend re-decl should not already have a DLLAttr"
) ? static_cast<void> (0) : __assert_fail ("!getDLLAttr(FD) && \"friend re-decl should not already have a DLLAttr\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6007, __PRETTY_FUNCTION__))
;
6008 NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6009 NewAttr->setInherited(true);
6010 FD->addAttr(NewAttr);
6011 }
6012 }
6013 }
6014 }
6015
6016 if (ClassExported)
6017 DelayedDllExportClasses.push_back(Class);
6018}
6019
6020/// Perform propagation of DLL attributes from a derived class to a
6021/// templated base class for MS compatibility.
6022void Sema::propagateDLLAttrToBaseClassTemplate(
6023 CXXRecordDecl *Class, Attr *ClassAttr,
6024 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
6025 if (getDLLAttr(
6026 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
6027 // If the base class template has a DLL attribute, don't try to change it.
6028 return;
6029 }
6030
6031 auto TSK = BaseTemplateSpec->getSpecializationKind();
6032 if (!getDLLAttr(BaseTemplateSpec) &&
6033 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
6034 TSK == TSK_ImplicitInstantiation)) {
6035 // The template hasn't been instantiated yet (or it has, but only as an
6036 // explicit instantiation declaration or implicit instantiation, which means
6037 // we haven't codegenned any members yet), so propagate the attribute.
6038 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
6039 NewAttr->setInherited(true);
6040 BaseTemplateSpec->addAttr(NewAttr);
6041
6042 // If this was an import, mark that we propagated it from a derived class to
6043 // a base class template specialization.
6044 if (auto *ImportAttr = dyn_cast<DLLImportAttr>(NewAttr))
6045 ImportAttr->setPropagatedToBaseTemplate();
6046
6047 // If the template is already instantiated, checkDLLAttributeRedeclaration()
6048 // needs to be run again to work see the new attribute. Otherwise this will
6049 // get run whenever the template is instantiated.
6050 if (TSK != TSK_Undeclared)
6051 checkClassLevelDLLAttribute(BaseTemplateSpec);
6052
6053 return;
6054 }
6055
6056 if (getDLLAttr(BaseTemplateSpec)) {
6057 // The template has already been specialized or instantiated with an
6058 // attribute, explicitly or through propagation. We should not try to change
6059 // it.
6060 return;
6061 }
6062
6063 // The template was previously instantiated or explicitly specialized without
6064 // a dll attribute, It's too late for us to add an attribute, so warn that
6065 // this is unsupported.
6066 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
6067 << BaseTemplateSpec->isExplicitSpecialization();
6068 Diag(ClassAttr->getLocation(), diag::note_attribute);
6069 if (BaseTemplateSpec->isExplicitSpecialization()) {
6070 Diag(BaseTemplateSpec->getLocation(),
6071 diag::note_template_class_explicit_specialization_was_here)
6072 << BaseTemplateSpec;
6073 } else {
6074 Diag(BaseTemplateSpec->getPointOfInstantiation(),
6075 diag::note_template_class_instantiation_was_here)
6076 << BaseTemplateSpec;
6077 }
6078}
6079
6080static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
6081 SourceLocation DefaultLoc) {
6082 switch (S.getSpecialMember(MD)) {
4
Control jumps to 'case CXXDestructor:' at line 6093
6083 case Sema::CXXDefaultConstructor:
6084 S.DefineImplicitDefaultConstructor(DefaultLoc,
6085 cast<CXXConstructorDecl>(MD));
6086 break;
6087 case Sema::CXXCopyConstructor:
6088 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
6089 break;
6090 case Sema::CXXCopyAssignment:
6091 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
6092 break;
6093 case Sema::CXXDestructor:
6094 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5
'MD' is a 'CXXDestructorDecl'
6
Calling 'Sema::DefineImplicitDestructor'
6095 break;
6096 case Sema::CXXMoveConstructor:
6097 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
6098 break;
6099 case Sema::CXXMoveAssignment:
6100 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
6101 break;
6102 case Sema::CXXInvalid:
6103 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6103)
;
6104 }
6105}
6106
6107/// Determine whether a type is permitted to be passed or returned in
6108/// registers, per C++ [class.temporary]p3.
6109static bool canPassInRegisters(Sema &S, CXXRecordDecl *D,
6110 TargetInfo::CallingConvKind CCK) {
6111 if (D->isDependentType() || D->isInvalidDecl())
6112 return false;
6113
6114 // Clang <= 4 used the pre-C++11 rule, which ignores move operations.
6115 // The PS4 platform ABI follows the behavior of Clang 3.2.
6116 if (CCK == TargetInfo::CCK_ClangABI4OrPS4)
6117 return !D->hasNonTrivialDestructorForCall() &&
6118 !D->hasNonTrivialCopyConstructorForCall();
6119
6120 if (CCK == TargetInfo::CCK_MicrosoftWin64) {
6121 bool CopyCtorIsTrivial = false, CopyCtorIsTrivialForCall = false;
6122 bool DtorIsTrivialForCall = false;
6123
6124 // If a class has at least one non-deleted, trivial copy constructor, it
6125 // is passed according to the C ABI. Otherwise, it is passed indirectly.
6126 //
6127 // Note: This permits classes with non-trivial copy or move ctors to be
6128 // passed in registers, so long as they *also* have a trivial copy ctor,
6129 // which is non-conforming.
6130 if (D->needsImplicitCopyConstructor()) {
6131 if (!D->defaultedCopyConstructorIsDeleted()) {
6132 if (D->hasTrivialCopyConstructor())
6133 CopyCtorIsTrivial = true;
6134 if (D->hasTrivialCopyConstructorForCall())
6135 CopyCtorIsTrivialForCall = true;
6136 }
6137 } else {
6138 for (const CXXConstructorDecl *CD : D->ctors()) {
6139 if (CD->isCopyConstructor() && !CD->isDeleted()) {
6140 if (CD->isTrivial())
6141 CopyCtorIsTrivial = true;
6142 if (CD->isTrivialForCall())
6143 CopyCtorIsTrivialForCall = true;
6144 }
6145 }
6146 }
6147
6148 if (D->needsImplicitDestructor()) {
6149 if (!D->defaultedDestructorIsDeleted() &&
6150 D->hasTrivialDestructorForCall())
6151 DtorIsTrivialForCall = true;
6152 } else if (const auto *DD = D->getDestructor()) {
6153 if (!DD->isDeleted() && DD->isTrivialForCall())
6154 DtorIsTrivialForCall = true;
6155 }
6156
6157 // If the copy ctor and dtor are both trivial-for-calls, pass direct.
6158 if (CopyCtorIsTrivialForCall && DtorIsTrivialForCall)
6159 return true;
6160
6161 // If a class has a destructor, we'd really like to pass it indirectly
6162 // because it allows us to elide copies. Unfortunately, MSVC makes that
6163 // impossible for small types, which it will pass in a single register or
6164 // stack slot. Most objects with dtors are large-ish, so handle that early.
6165 // We can't call out all large objects as being indirect because there are
6166 // multiple x64 calling conventions and the C++ ABI code shouldn't dictate
6167 // how we pass large POD types.
6168
6169 // Note: This permits small classes with nontrivial destructors to be
6170 // passed in registers, which is non-conforming.
6171 bool isAArch64 = S.Context.getTargetInfo().getTriple().isAArch64();
6172 uint64_t TypeSize = isAArch64 ? 128 : 64;
6173
6174 if (CopyCtorIsTrivial &&
6175 S.getASTContext().getTypeSize(D->getTypeForDecl()) <= TypeSize)
6176 return true;
6177 return false;
6178 }
6179
6180 // Per C++ [class.temporary]p3, the relevant condition is:
6181 // each copy constructor, move constructor, and destructor of X is
6182 // either trivial or deleted, and X has at least one non-deleted copy
6183 // or move constructor
6184 bool HasNonDeletedCopyOrMove = false;
6185
6186 if (D->needsImplicitCopyConstructor() &&
6187 !D->defaultedCopyConstructorIsDeleted()) {
6188 if (!D->hasTrivialCopyConstructorForCall())
6189 return false;
6190 HasNonDeletedCopyOrMove = true;
6191 }
6192
6193 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
6194 !D->defaultedMoveConstructorIsDeleted()) {
6195 if (!D->hasTrivialMoveConstructorForCall())
6196 return false;
6197 HasNonDeletedCopyOrMove = true;
6198 }
6199
6200 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
6201 !D->hasTrivialDestructorForCall())
6202 return false;
6203
6204 for (const CXXMethodDecl *MD : D->methods()) {
6205 if (MD->isDeleted())
6206 continue;
6207
6208 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
6209 if (CD && CD->isCopyOrMoveConstructor())
6210 HasNonDeletedCopyOrMove = true;
6211 else if (!isa<CXXDestructorDecl>(MD))
6212 continue;
6213
6214 if (!MD->isTrivialForCall())
6215 return false;
6216 }
6217
6218 return HasNonDeletedCopyOrMove;
6219}
6220
6221/// Perform semantic checks on a class definition that has been
6222/// completing, introducing implicitly-declared members, checking for
6223/// abstract types, etc.
6224void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
6225 if (!Record)
6226 return;
6227
6228 if (Record->isAbstract() && !Record->isInvalidDecl()) {
6229 AbstractUsageInfo Info(*this, Record);
6230 CheckAbstractClassUsage(Info, Record);
6231 }
6232
6233 // If this is not an aggregate type and has no user-declared constructor,
6234 // complain about any non-static data members of reference or const scalar
6235 // type, since they will never get initializers.
6236 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
6237 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
6238 !Record->isLambda()) {
6239 bool Complained = false;
6240 for (const auto *F : Record->fields()) {
6241 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
6242 continue;
6243
6244 if (F->getType()->isReferenceType() ||
6245 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
6246 if (!Complained) {
6247 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
6248 << Record->getTagKind() << Record;
6249 Complained = true;
6250 }
6251
6252 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
6253 << F->getType()->isReferenceType()
6254 << F->getDeclName();
6255 }
6256 }
6257 }
6258
6259 if (Record->getIdentifier()) {
6260 // C++ [class.mem]p13:
6261 // If T is the name of a class, then each of the following shall have a
6262 // name different from T:
6263 // - every member of every anonymous union that is a member of class T.
6264 //
6265 // C++ [class.mem]p14:
6266 // In addition, if class T has a user-declared constructor (12.1), every
6267 // non-static data member of class T shall have a name different from T.
6268 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
6269 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6270 ++I) {
6271 NamedDecl *D = (*I)->getUnderlyingDecl();
6272 if (((isa<FieldDecl>(D) || isa<UnresolvedUsingValueDecl>(D)) &&
6273 Record->hasUserDeclaredConstructor()) ||
6274 isa<IndirectFieldDecl>(D)) {
6275 Diag((*I)->getLocation(), diag::err_member_name_of_class)
6276 << D->getDeclName();
6277 break;
6278 }
6279 }
6280 }
6281
6282 // Warn if the class has virtual methods but non-virtual public destructor.
6283 if (Record->isPolymorphic() && !Record->isDependentType()) {
6284 CXXDestructorDecl *dtor = Record->getDestructor();
6285 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
6286 !Record->hasAttr<FinalAttr>())
6287 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
6288 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
6289 }
6290
6291 if (Record->isAbstract()) {
6292 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
6293 Diag(Record->getLocation(), diag::warn_abstract_final_class)
6294 << FA->isSpelledAsSealed();
6295 DiagnoseAbstractType(Record);
6296 }
6297 }
6298
6299 // Warn if the class has a final destructor but is not itself marked final.
6300 if (!Record->hasAttr<FinalAttr>()) {
6301 if (const CXXDestructorDecl *dtor = Record->getDestructor()) {
6302 if (const FinalAttr *FA = dtor->getAttr<FinalAttr>()) {
6303 Diag(FA->getLocation(), diag::warn_final_dtor_non_final_class)
6304 << FA->isSpelledAsSealed()
6305 << FixItHint::CreateInsertion(
6306 getLocForEndOfToken(Record->getLocation()),
6307 (FA->isSpelledAsSealed() ? " sealed" : " final"));
6308 Diag(Record->getLocation(),
6309 diag::note_final_dtor_non_final_class_silence)
6310 << Context.getRecordType(Record) << FA->isSpelledAsSealed();
6311 }
6312 }
6313 }
6314
6315 // See if trivial_abi has to be dropped.
6316 if (Record->hasAttr<TrivialABIAttr>())
6317 checkIllFormedTrivialABIStruct(*Record);
6318
6319 // Set HasTrivialSpecialMemberForCall if the record has attribute
6320 // "trivial_abi".
6321 bool HasTrivialABI = Record->hasAttr<TrivialABIAttr>();
6322
6323 if (HasTrivialABI)
6324 Record->setHasTrivialSpecialMemberForCall();
6325
6326 auto CompleteMemberFunction = [&](CXXMethodDecl *M) {
6327 // Check whether the explicitly-defaulted special members are valid.
6328 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
6329 CheckExplicitlyDefaultedSpecialMember(M);
6330
6331 // For an explicitly defaulted or deleted special member, we defer
6332 // determining triviality until the class is complete. That time is now!
6333 CXXSpecialMember CSM = getSpecialMember(M);
6334 if (!M->isImplicit() && !M->isUserProvided()) {
6335 if (CSM != CXXInvalid) {
6336 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
6337 // Inform the class that we've finished declaring this member.
6338 Record->finishedDefaultedOrDeletedMember(M);
6339 M->setTrivialForCall(
6340 HasTrivialABI ||
6341 SpecialMemberIsTrivial(M, CSM, TAH_ConsiderTrivialABI));
6342 Record->setTrivialForCallFlags(M);
6343 }
6344 }
6345
6346 // Set triviality for the purpose of calls if this is a user-provided
6347 // copy/move constructor or destructor.
6348 if ((CSM == CXXCopyConstructor || CSM == CXXMoveConstructor ||
6349 CSM == CXXDestructor) && M->isUserProvided()) {
6350 M->setTrivialForCall(HasTrivialABI);
6351 Record->setTrivialForCallFlags(M);
6352 }
6353
6354 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
6355 M->hasAttr<DLLExportAttr>()) {
6356 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
6357 M->isTrivial() &&
6358 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
6359 CSM == CXXDestructor))
6360 M->dropAttr<DLLExportAttr>();
6361
6362 if (M->hasAttr<DLLExportAttr>()) {
6363 // Define after any fields with in-class initializers have been parsed.
6364 DelayedDllExportMemberFunctions.push_back(M);
6365 }
6366 }
6367
6368 // Define defaulted constexpr virtual functions that override a base class
6369 // function right away.
6370 // FIXME: We can defer doing this until the vtable is marked as used.
6371 if (M->isDefaulted() && M->isConstexpr() && M->size_overridden_methods())
6372 DefineImplicitSpecialMember(*this, M, M->getLocation());
6373 };
6374
6375 bool HasMethodWithOverrideControl = false,
6376 HasOverridingMethodWithoutOverrideControl = false;
6377 if (!Record->isDependentType()) {
6378 // Check the destructor before any other member function. We need to
6379 // determine whether it's trivial in order to determine whether the claas
6380 // type is a literal type, which is a prerequisite for determining whether
6381 // other special member functions are valid and whether they're implicitly
6382 // 'constexpr'.
6383 if (CXXDestructorDecl *Dtor = Record->getDestructor())
6384 CompleteMemberFunction(Dtor);
6385
6386 for (auto *M : Record->methods()) {
6387 // See if a method overloads virtual methods in a base
6388 // class without overriding any.
6389 if (!M->isStatic())
6390 DiagnoseHiddenVirtualMethods(M);
6391 if (M->hasAttr<OverrideAttr>())
6392 HasMethodWithOverrideControl = true;
6393 else if (M->size_overridden_methods() > 0)
6394 HasOverridingMethodWithoutOverrideControl = true;
6395
6396 if (!isa<CXXDestructorDecl>(M))
6397 CompleteMemberFunction(M);
6398 }
6399 }
6400
6401 if (HasMethodWithOverrideControl &&
6402 HasOverridingMethodWithoutOverrideControl) {
6403 // At least one method has the 'override' control declared.
6404 // Diagnose all other overridden methods which do not have 'override' specified on them.
6405 for (auto *M : Record->methods())
6406 DiagnoseAbsenceOfOverrideControl(M);
6407 }
6408
6409 // ms_struct is a request to use the same ABI rules as MSVC. Check
6410 // whether this class uses any C++ features that are implemented
6411 // completely differently in MSVC, and if so, emit a diagnostic.
6412 // That diagnostic defaults to an error, but we allow projects to
6413 // map it down to a warning (or ignore it). It's a fairly common
6414 // practice among users of the ms_struct pragma to mass-annotate
6415 // headers, sweeping up a bunch of types that the project doesn't
6416 // really rely on MSVC-compatible layout for. We must therefore
6417 // support "ms_struct except for C++ stuff" as a secondary ABI.
6418 if (Record->isMsStruct(Context) &&
6419 (Record->isPolymorphic() || Record->getNumBases())) {
6420 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
6421 }
6422
6423 checkClassLevelDLLAttribute(Record);
6424 checkClassLevelCodeSegAttribute(Record);
6425
6426 bool ClangABICompat4 =
6427 Context.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver4;
6428 TargetInfo::CallingConvKind CCK =
6429 Context.getTargetInfo().getCallingConvKind(ClangABICompat4);
6430 bool CanPass = canPassInRegisters(*this, Record, CCK);
6431
6432 // Do not change ArgPassingRestrictions if it has already been set to
6433 // APK_CanNeverPassInRegs.
6434 if (Record->getArgPassingRestrictions() != RecordDecl::APK_CanNeverPassInRegs)
6435 Record->setArgPassingRestrictions(CanPass
6436 ? RecordDecl::APK_CanPassInRegs
6437 : RecordDecl::APK_CannotPassInRegs);
6438
6439 // If canPassInRegisters returns true despite the record having a non-trivial
6440 // destructor, the record is destructed in the callee. This happens only when
6441 // the record or one of its subobjects has a field annotated with trivial_abi
6442 // or a field qualified with ObjC __strong/__weak.
6443 if (Context.getTargetInfo().getCXXABI().areArgsDestroyedLeftToRightInCallee())
6444 Record->setParamDestroyedInCallee(true);
6445 else if (Record->hasNonTrivialDestructor())
6446 Record->setParamDestroyedInCallee(CanPass);
6447
6448 if (getLangOpts().ForceEmitVTables) {
6449 // If we want to emit all the vtables, we need to mark it as used. This
6450 // is especially required for cases like vtable assumption loads.
6451 MarkVTableUsed(Record->getInnerLocStart(), Record);
6452 }
6453}
6454
6455/// Look up the special member function that would be called by a special
6456/// member function for a subobject of class type.
6457///
6458/// \param Class The class type of the subobject.
6459/// \param CSM The kind of special member function.
6460/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
6461/// \param ConstRHS True if this is a copy operation with a const object
6462/// on its RHS, that is, if the argument to the outer special member
6463/// function is 'const' and this is not a field marked 'mutable'.
6464static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
6465 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
6466 unsigned FieldQuals, bool ConstRHS) {
6467 unsigned LHSQuals = 0;
6468 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
6469 LHSQuals = FieldQuals;
6470
6471 unsigned RHSQuals = FieldQuals;
6472 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
6473 RHSQuals = 0;
6474 else if (ConstRHS)
6475 RHSQuals |= Qualifiers::Const;
6476
6477 return S.LookupSpecialMember(Class, CSM,
6478 RHSQuals & Qualifiers::Const,
6479 RHSQuals & Qualifiers::Volatile,
6480 false,
6481 LHSQuals & Qualifiers::Const,
6482 LHSQuals & Qualifiers::Volatile);
6483}
6484
6485class Sema::InheritedConstructorInfo {
6486 Sema &S;
6487 SourceLocation UseLoc;
6488
6489 /// A mapping from the base classes through which the constructor was
6490 /// inherited to the using shadow declaration in that base class (or a null
6491 /// pointer if the constructor was declared in that base class).
6492 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
6493 InheritedFromBases;
6494
6495public:
6496 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
6497 ConstructorUsingShadowDecl *Shadow)
6498 : S(S), UseLoc(UseLoc) {
6499 bool DiagnosedMultipleConstructedBases = false;
6500 CXXRecordDecl *ConstructedBase = nullptr;
6501 UsingDecl *ConstructedBaseUsing = nullptr;
6502
6503 // Find the set of such base class subobjects and check that there's a
6504 // unique constructed subobject.
6505 for (auto *D : Shadow->redecls()) {
6506 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
6507 auto *DNominatedBase = DShadow->getNominatedBaseClass();
6508 auto *DConstructedBase = DShadow->getConstructedBaseClass();
6509
6510 InheritedFromBases.insert(
6511 std::make_pair(DNominatedBase->getCanonicalDecl(),
6512 DShadow->getNominatedBaseClassShadowDecl()));
6513 if (DShadow->constructsVirtualBase())
6514 InheritedFromBases.insert(
6515 std::make_pair(DConstructedBase->getCanonicalDecl(),
6516 DShadow->getConstructedBaseClassShadowDecl()));
6517 else
6518 assert(DNominatedBase == DConstructedBase)((DNominatedBase == DConstructedBase) ? static_cast<void>
(0) : __assert_fail ("DNominatedBase == DConstructedBase", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6518, __PRETTY_FUNCTION__))
;
6519
6520 // [class.inhctor.init]p2:
6521 // If the constructor was inherited from multiple base class subobjects
6522 // of type B, the program is ill-formed.
6523 if (!ConstructedBase) {
6524 ConstructedBase = DConstructedBase;
6525 ConstructedBaseUsing = D->getUsingDecl();
6526 } else if (ConstructedBase != DConstructedBase &&
6527 !Shadow->isInvalidDecl()) {
6528 if (!DiagnosedMultipleConstructedBases) {
6529 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
6530 << Shadow->getTargetDecl();
6531 S.Diag(ConstructedBaseUsing->getLocation(),
6532 diag::note_ambiguous_inherited_constructor_using)
6533 << ConstructedBase;
6534 DiagnosedMultipleConstructedBases = true;
6535 }
6536 S.Diag(D->getUsingDecl()->getLocation(),
6537 diag::note_ambiguous_inherited_constructor_using)
6538 << DConstructedBase;
6539 }
6540 }
6541
6542 if (DiagnosedMultipleConstructedBases)
6543 Shadow->setInvalidDecl();
6544 }
6545
6546 /// Find the constructor to use for inherited construction of a base class,
6547 /// and whether that base class constructor inherits the constructor from a
6548 /// virtual base class (in which case it won't actually invoke it).
6549 std::pair<CXXConstructorDecl *, bool>
6550 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
6551 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
6552 if (It == InheritedFromBases.end())
6553 return std::make_pair(nullptr, false);
6554
6555 // This is an intermediary class.
6556 if (It->second)
6557 return std::make_pair(
6558 S.findInheritingConstructor(UseLoc, Ctor, It->second),
6559 It->second->constructsVirtualBase());
6560
6561 // This is the base class from which the constructor was inherited.
6562 return std::make_pair(Ctor, false);
6563 }
6564};
6565
6566/// Is the special member function which would be selected to perform the
6567/// specified operation on the specified class type a constexpr constructor?
6568static bool
6569specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
6570 Sema::CXXSpecialMember CSM, unsigned Quals,
6571 bool ConstRHS,
6572 CXXConstructorDecl *InheritedCtor = nullptr,
6573 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6574 // If we're inheriting a constructor, see if we need to call it for this base
6575 // class.
6576 if (InheritedCtor) {
6577 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6577, __PRETTY_FUNCTION__))
;
6578 auto BaseCtor =
6579 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
6580 if (BaseCtor)
6581 return BaseCtor->isConstexpr();
6582 }
6583
6584 if (CSM == Sema::CXXDefaultConstructor)
6585 return ClassDecl->hasConstexprDefaultConstructor();
6586 if (CSM == Sema::CXXDestructor)
6587 return ClassDecl->hasConstexprDestructor();
6588
6589 Sema::SpecialMemberOverloadResult SMOR =
6590 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
6591 if (!SMOR.getMethod())
6592 // A constructor we wouldn't select can't be "involved in initializing"
6593 // anything.
6594 return true;
6595 return SMOR.getMethod()->isConstexpr();
6596}
6597
6598/// Determine whether the specified special member function would be constexpr
6599/// if it were implicitly defined.
6600static bool defaultedSpecialMemberIsConstexpr(
6601 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6602 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6603 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6604 if (!S.getLangOpts().CPlusPlus11)
6605 return false;
6606
6607 // C++11 [dcl.constexpr]p4:
6608 // In the definition of a constexpr constructor [...]
6609 bool Ctor = true;
6610 switch (CSM) {
6611 case Sema::CXXDefaultConstructor:
6612 if (Inherited)
6613 break;
6614 // Since default constructor lookup is essentially trivial (and cannot
6615 // involve, for instance, template instantiation), we compute whether a
6616 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6617 //
6618 // This is important for performance; we need to know whether the default
6619 // constructor is constexpr to determine whether the type is a literal type.
6620 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6621
6622 case Sema::CXXCopyConstructor:
6623 case Sema::CXXMoveConstructor:
6624 // For copy or move constructors, we need to perform overload resolution.
6625 break;
6626
6627 case Sema::CXXCopyAssignment:
6628 case Sema::CXXMoveAssignment:
6629 if (!S.getLangOpts().CPlusPlus14)
6630 return false;
6631 // In C++1y, we need to perform overload resolution.
6632 Ctor = false;
6633 break;
6634
6635 case Sema::CXXDestructor:
6636 return ClassDecl->defaultedDestructorIsConstexpr();
6637
6638 case Sema::CXXInvalid:
6639 return false;
6640 }
6641
6642 // -- if the class is a non-empty union, or for each non-empty anonymous
6643 // union member of a non-union class, exactly one non-static data member
6644 // shall be initialized; [DR1359]
6645 //
6646 // If we squint, this is guaranteed, since exactly one non-static data member
6647 // will be initialized (if the constructor isn't deleted), we just don't know
6648 // which one.
6649 if (Ctor && ClassDecl->isUnion())
6650 return CSM == Sema::CXXDefaultConstructor
6651 ? ClassDecl->hasInClassInitializer() ||
6652 !ClassDecl->hasVariantMembers()
6653 : true;
6654
6655 // -- the class shall not have any virtual base classes;
6656 if (Ctor && ClassDecl->getNumVBases())
6657 return false;
6658
6659 // C++1y [class.copy]p26:
6660 // -- [the class] is a literal type, and
6661 if (!Ctor && !ClassDecl->isLiteral())
6662 return false;
6663
6664 // -- every constructor involved in initializing [...] base class
6665 // sub-objects shall be a constexpr constructor;
6666 // -- the assignment operator selected to copy/move each direct base
6667 // class is a constexpr function, and
6668 for (const auto &B : ClassDecl->bases()) {
6669 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6670 if (!BaseType) continue;
6671
6672 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6673 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6674 InheritedCtor, Inherited))
6675 return false;
6676 }
6677
6678 // -- every constructor involved in initializing non-static data members
6679 // [...] shall be a constexpr constructor;
6680 // -- every non-static data member and base class sub-object shall be
6681 // initialized
6682 // -- for each non-static data member of X that is of class type (or array
6683 // thereof), the assignment operator selected to copy/move that member is
6684 // a constexpr function
6685 for (const auto *F : ClassDecl->fields()) {
6686 if (F->isInvalidDecl())
6687 continue;
6688 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6689 continue;
6690 QualType BaseType = S.Context.getBaseElementType(F->getType());
6691 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6692 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6693 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6694 BaseType.getCVRQualifiers(),
6695 ConstArg && !F->isMutable()))
6696 return false;
6697 } else if (CSM == Sema::CXXDefaultConstructor) {
6698 return false;
6699 }
6700 }
6701
6702 // All OK, it's constexpr!
6703 return true;
6704}
6705
6706static Sema::ImplicitExceptionSpecification
6707ComputeDefaultedSpecialMemberExceptionSpec(
6708 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6709 Sema::InheritedConstructorInfo *ICI);
6710
6711static Sema::ImplicitExceptionSpecification
6712computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
6713 auto CSM = S.getSpecialMember(MD);
6714 if (CSM != Sema::CXXInvalid)
6715 return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr);
6716
6717 auto *CD = cast<CXXConstructorDecl>(MD);
6718 assert(CD->getInheritedConstructor() &&((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6719, __PRETTY_FUNCTION__))
6719 "only special members have implicit exception specs")((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6719, __PRETTY_FUNCTION__))
;
6720 Sema::InheritedConstructorInfo ICI(
6721 S, Loc, CD->getInheritedConstructor().getShadowDecl());
6722 return ComputeDefaultedSpecialMemberExceptionSpec(
6723 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6724}
6725
6726static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6727 CXXMethodDecl *MD) {
6728 FunctionProtoType::ExtProtoInfo EPI;
6729
6730 // Build an exception specification pointing back at this member.
6731 EPI.ExceptionSpec.Type = EST_Unevaluated;
6732 EPI.ExceptionSpec.SourceDecl = MD;
6733
6734 // Set the calling convention to the default for C++ instance methods.
6735 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6736 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6737 /*IsCXXMethod=*/true));
6738 return EPI;
6739}
6740
6741void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
6742 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
6743 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6744 return;
6745
6746 // Evaluate the exception specification.
6747 auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
6748 auto ESI = IES.getExceptionSpec();
6749
6750 // Update the type of the special member to use it.
6751 UpdateExceptionSpec(MD, ESI);
6752
6753 // A user-provided destructor can be defined outside the class. When that
6754 // happens, be sure to update the exception specification on both
6755 // declarations.
6756 const FunctionProtoType *CanonicalFPT =
6757 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
6758 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
6759 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
6760}
6761
6762void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
6763 CXXRecordDecl *RD = MD->getParent();
6764 CXXSpecialMember CSM = getSpecialMember(MD);
6765
6766 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6767, __PRETTY_FUNCTION__))
6767 "not an explicitly-defaulted special member")((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6767, __PRETTY_FUNCTION__))
;
6768
6769 // Whether this was the first-declared instance of the constructor.
6770 // This affects whether we implicitly add an exception spec and constexpr.
6771 bool First = MD == MD->getCanonicalDecl();
6772
6773 bool HadError = false;
6774
6775 // C++11 [dcl.fct.def.default]p1:
6776 // A function that is explicitly defaulted shall
6777 // -- be a special member function (checked elsewhere),
6778 // -- have the same type (except for ref-qualifiers, and except that a
6779 // copy operation can take a non-const reference) as an implicit
6780 // declaration, and
6781 // -- not have default arguments.
6782 // C++2a changes the second bullet to instead delete the function if it's
6783 // defaulted on its first declaration, unless it's "an assignment operator,
6784 // and its return type differs or its parameter type is not a reference".
6785 bool DeleteOnTypeMismatch = getLangOpts().CPlusPlus2a && First;
6786 bool ShouldDeleteForTypeMismatch = false;
6787 unsigned ExpectedParams = 1;
6788 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6789 ExpectedParams = 0;
6790 if (MD->getNumParams() != ExpectedParams) {
6791 // This checks for default arguments: a copy or move constructor with a
6792 // default argument is classified as a default constructor, and assignment
6793 // operations and destructors can't have default arguments.
6794 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6795 << CSM << MD->getSourceRange();
6796 HadError = true;
6797 } else if (MD->isVariadic()) {
6798 if (DeleteOnTypeMismatch)
6799 ShouldDeleteForTypeMismatch = true;
6800 else {
6801 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6802 << CSM << MD->getSourceRange();
6803 HadError = true;
6804 }
6805 }
6806
6807 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6808
6809 bool CanHaveConstParam = false;
6810 if (CSM == CXXCopyConstructor)
6811 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6812 else if (CSM == CXXCopyAssignment)
6813 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6814
6815 QualType ReturnType = Context.VoidTy;
6816 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6817 // Check for return type matching.
6818 ReturnType = Type->getReturnType();
6819
6820 QualType DeclType = Context.getTypeDeclType(RD);
6821 DeclType = Context.getAddrSpaceQualType(DeclType, MD->getMethodQualifiers().getAddressSpace());
6822 QualType ExpectedReturnType = Context.getLValueReferenceType(DeclType);
6823
6824 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6825 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6826 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
6827 HadError = true;
6828 }
6829
6830 // A defaulted special member cannot have cv-qualifiers.
6831 if (Type->getMethodQuals().hasConst() || Type->getMethodQuals().hasVolatile()) {
6832 if (DeleteOnTypeMismatch)
6833 ShouldDeleteForTypeMismatch = true;
6834 else {
6835 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
6836 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
6837 HadError = true;
6838 }
6839 }
6840 }
6841
6842 // Check for parameter type matching.
6843 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
6844 bool HasConstParam = false;
6845 if (ExpectedParams && ArgType->isReferenceType()) {
6846 // Argument must be reference to possibly-const T.
6847 QualType ReferentType = ArgType->getPointeeType();
6848 HasConstParam = ReferentType.isConstQualified();
6849
6850 if (ReferentType.isVolatileQualified()) {
6851 if (DeleteOnTypeMismatch)
6852 ShouldDeleteForTypeMismatch = true;
6853 else {
6854 Diag(MD->getLocation(),
6855 diag::err_defaulted_special_member_volatile_param) << CSM;
6856 HadError = true;
6857 }
6858 }
6859
6860 if (HasConstParam && !CanHaveConstParam) {
6861 if (DeleteOnTypeMismatch)
6862 ShouldDeleteForTypeMismatch = true;
6863 else if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
6864 Diag(MD->getLocation(),
6865 diag::err_defaulted_special_member_copy_const_param)
6866 << (CSM == CXXCopyAssignment);
6867 // FIXME: Explain why this special member can't be const.
6868 HadError = true;
6869 } else {
6870 Diag(MD->getLocation(),
6871 diag::err_defaulted_special_member_move_const_param)
6872 << (CSM == CXXMoveAssignment);
6873 HadError = true;
6874 }
6875 }
6876 } else if (ExpectedParams) {
6877 // A copy assignment operator can take its argument by value, but a
6878 // defaulted one cannot.
6879 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((CSM == CXXCopyAssignment && "unexpected non-ref argument"
) ? static_cast<void> (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6879, __PRETTY_FUNCTION__))
;
6880 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
6881 HadError = true;
6882 }
6883
6884 // C++11 [dcl.fct.def.default]p2:
6885 // An explicitly-defaulted function may be declared constexpr only if it
6886 // would have been implicitly declared as constexpr,
6887 // Do not apply this rule to members of class templates, since core issue 1358
6888 // makes such functions always instantiate to constexpr functions. For
6889 // functions which cannot be constexpr (for non-constructors in C++11 and for
6890 // destructors in C++14 and C++17), this is checked elsewhere.
6891 //
6892 // FIXME: This should not apply if the member is deleted.
6893 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
6894 HasConstParam);
6895 if ((getLangOpts().CPlusPlus2a ||
6896 (getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
6897 : isa<CXXConstructorDecl>(MD))) &&
6898 MD->isConstexpr() && !Constexpr &&
6899 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
6900 Diag(MD->getBeginLoc(), MD->isConsteval()
6901 ? diag::err_incorrect_defaulted_consteval
6902 : diag::err_incorrect_defaulted_constexpr)
6903 << CSM;
6904 // FIXME: Explain why the special member can't be constexpr.
6905 HadError = true;
6906 }
6907
6908 if (First) {
6909 // C++2a [dcl.fct.def.default]p3:
6910 // If a function is explicitly defaulted on its first declaration, it is
6911 // implicitly considered to be constexpr if the implicit declaration
6912 // would be.
6913 MD->setConstexprKind(Constexpr ? CSK_constexpr : CSK_unspecified);
6914
6915 if (!Type->hasExceptionSpec()) {
6916 // C++2a [except.spec]p3:
6917 // If a declaration of a function does not have a noexcept-specifier
6918 // [and] is defaulted on its first declaration, [...] the exception
6919 // specification is as specified below
6920 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
6921 EPI.ExceptionSpec.Type = EST_Unevaluated;
6922 EPI.ExceptionSpec.SourceDecl = MD;
6923 MD->setType(Context.getFunctionType(ReturnType,
6924 llvm::makeArrayRef(&ArgType,
6925 ExpectedParams),
6926 EPI));
6927 }
6928 }
6929
6930 if (ShouldDeleteForTypeMismatch || ShouldDeleteSpecialMember(MD, CSM)) {
6931 if (First) {
6932 SetDeclDeleted(MD, MD->getLocation());
6933 if (!inTemplateInstantiation() && !HadError) {
6934 Diag(MD->getLocation(), diag::warn_defaulted_method_deleted) << CSM;
6935 if (ShouldDeleteForTypeMismatch) {
6936 Diag(MD->getLocation(), diag::note_deleted_type_mismatch) << CSM;
6937 } else {
6938 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6939 }
6940 }
6941 if (ShouldDeleteForTypeMismatch && !HadError) {
6942 Diag(MD->getLocation(),
6943 diag::warn_cxx17_compat_defaulted_method_type_mismatch) << CSM;
6944 }
6945 } else {
6946 // C++11 [dcl.fct.def.default]p4:
6947 // [For a] user-provided explicitly-defaulted function [...] if such a
6948 // function is implicitly defined as deleted, the program is ill-formed.
6949 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
6950 assert(!ShouldDeleteForTypeMismatch && "deleted non-first decl")((!ShouldDeleteForTypeMismatch && "deleted non-first decl"
) ? static_cast<void> (0) : __assert_fail ("!ShouldDeleteForTypeMismatch && \"deleted non-first decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6950, __PRETTY_FUNCTION__))
;
6951 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6952 HadError = true;
6953 }
6954 }
6955
6956 if (HadError)
6957 MD->setInvalidDecl();
6958}
6959
6960void Sema::CheckDelayedMemberExceptionSpecs() {
6961 decltype(DelayedOverridingExceptionSpecChecks) Overriding;
6962 decltype(DelayedEquivalentExceptionSpecChecks) Equivalent;
6963
6964 std::swap(Overriding, DelayedOverridingExceptionSpecChecks);
6965 std::swap(Equivalent, DelayedEquivalentExceptionSpecChecks);
6966
6967 // Perform any deferred checking of exception specifications for virtual
6968 // destructors.
6969 for (auto &Check : Overriding)
6970 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
6971
6972 // Perform any deferred checking of exception specifications for befriended
6973 // special members.
6974 for (auto &Check : Equivalent)
6975 CheckEquivalentExceptionSpec(Check.second, Check.first);
6976}
6977
6978namespace {
6979/// CRTP base class for visiting operations performed by a special member
6980/// function (or inherited constructor).
6981template<typename Derived>
6982struct SpecialMemberVisitor {
6983 Sema &S;
6984 CXXMethodDecl *MD;
6985 Sema::CXXSpecialMember CSM;
6986 Sema::InheritedConstructorInfo *ICI;
6987
6988 // Properties of the special member, computed for convenience.
6989 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
6990
6991 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6992 Sema::InheritedConstructorInfo *ICI)
6993 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
6994 switch (CSM) {
6995 case Sema::CXXDefaultConstructor:
6996 case Sema::CXXCopyConstructor:
6997 case Sema::CXXMoveConstructor:
6998 IsConstructor = true;
6999 break;
7000 case Sema::CXXCopyAssignment:
7001 case Sema::CXXMoveAssignment:
7002 IsAssignment = true;
7003 break;
7004 case Sema::CXXDestructor:
7005 break;
7006 case Sema::CXXInvalid:
7007 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7007)
;
7008 }
7009
7010 if (MD->getNumParams()) {
7011 if (const ReferenceType *RT =
7012 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
7013 ConstArg = RT->getPointeeType().isConstQualified();
7014 }
7015 }
7016
7017 Derived &getDerived() { return static_cast<Derived&>(*this); }
7018
7019 /// Is this a "move" special member?
7020 bool isMove() const {
7021 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
7022 }
7023
7024 /// Look up the corresponding special member in the given class.
7025 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
7026 unsigned Quals, bool IsMutable) {
7027 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
7028 ConstArg && !IsMutable);
7029 }
7030
7031 /// Look up the constructor for the specified base class to see if it's
7032 /// overridden due to this being an inherited constructor.
7033 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
7034 if (!ICI)
7035 return {};
7036 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7036, __PRETTY_FUNCTION__))
;
7037 auto *BaseCtor =
7038 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
7039 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
7040 return MD;
7041 return {};
7042 }
7043
7044 /// A base or member subobject.
7045 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
7046
7047 /// Get the location to use for a subobject in diagnostics.
7048 static SourceLocation getSubobjectLoc(Subobject Subobj) {
7049 // FIXME: For an indirect virtual base, the direct base leading to
7050 // the indirect virtual base would be a more useful choice.
7051 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
7052 return B->getBaseTypeLoc();
7053 else
7054 return Subobj.get<FieldDecl*>()->getLocation();
7055 }
7056
7057 enum BasesToVisit {
7058 /// Visit all non-virtual (direct) bases.
7059 VisitNonVirtualBases,
7060 /// Visit all direct bases, virtual or not.
7061 VisitDirectBases,
7062 /// Visit all non-virtual bases, and all virtual bases if the class
7063 /// is not abstract.
7064 VisitPotentiallyConstructedBases,
7065 /// Visit all direct or virtual bases.
7066 VisitAllBases
7067 };
7068
7069 // Visit the bases and members of the class.
7070 bool visit(BasesToVisit Bases) {
7071 CXXRecordDecl *RD = MD->getParent();
7072
7073 if (Bases == VisitPotentiallyConstructedBases)
7074 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
7075
7076 for (auto &B : RD->bases())
7077 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
7078 getDerived().visitBase(&B))
7079 return true;
7080
7081 if (Bases == VisitAllBases)
7082 for (auto &B : RD->vbases())
7083 if (getDerived().visitBase(&B))
7084 return true;
7085
7086 for (auto *F : RD->fields())
7087 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
7088 getDerived().visitField(F))
7089 return true;
7090
7091 return false;
7092 }
7093};
7094}
7095
7096namespace {
7097struct SpecialMemberDeletionInfo
7098 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
7099 bool Diagnose;
7100
7101 SourceLocation Loc;
7102
7103 bool AllFieldsAreConst;
7104
7105 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
7106 Sema::CXXSpecialMember CSM,
7107 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
7108 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
7109 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
7110
7111 bool inUnion() const { return MD->getParent()->isUnion(); }
7112
7113 Sema::CXXSpecialMember getEffectiveCSM() {
7114 return ICI ? Sema::CXXInvalid : CSM;
7115 }
7116
7117 bool shouldDeleteForVariantObjCPtrMember(FieldDecl *FD, QualType FieldType);
7118
7119 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
7120 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
7121
7122 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
7123 bool shouldDeleteForField(FieldDecl *FD);
7124 bool shouldDeleteForAllConstMembers();
7125
7126 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
7127 unsigned Quals);
7128 bool shouldDeleteForSubobjectCall(Subobject Subobj,
7129 Sema::SpecialMemberOverloadResult SMOR,
7130 bool IsDtorCallInCtor);
7131
7132 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
7133};
7134}
7135
7136/// Is the given special member inaccessible when used on the given
7137/// sub-object.
7138bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
7139 CXXMethodDecl *target) {
7140 /// If we're operating on a base class, the object type is the
7141 /// type of this special member.
7142 QualType objectTy;
7143 AccessSpecifier access = target->getAccess();
7144 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
7145 objectTy = S.Context.getTypeDeclType(MD->getParent());
7146 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
7147
7148 // If we're operating on a field, the object type is the type of the field.
7149 } else {
7150 objectTy = S.Context.getTypeDeclType(target->getParent());
7151 }
7152
7153 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
7154}
7155
7156/// Check whether we should delete a special member due to the implicit
7157/// definition containing a call to a special member of a subobject.
7158bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
7159 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
7160 bool IsDtorCallInCtor) {
7161 CXXMethodDecl *Decl = SMOR.getMethod();
7162 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
7163
7164 int DiagKind = -1;
7165
7166 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
7167 DiagKind = !Decl ? 0 : 1;
7168 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
7169 DiagKind = 2;
7170 else if (!isAccessible(Subobj, Decl))
7171 DiagKind = 3;
7172 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
7173 !Decl->isTrivial()) {
7174 // A member of a union must have a trivial corresponding special member.
7175 // As a weird special case, a destructor call from a union's constructor
7176 // must be accessible and non-deleted, but need not be trivial. Such a
7177 // destructor is never actually called, but is semantically checked as
7178 // if it were.
7179 DiagKind = 4;
7180 }
7181
7182 if (DiagKind == -1)
7183 return false;
7184
7185 if (Diagnose) {
7186 if (Field) {
7187 S.Diag(Field->getLocation(),
7188 diag::note_deleted_special_member_class_subobject)
7189 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
7190 << Field << DiagKind << IsDtorCallInCtor << /*IsObjCPtr*/false;
7191 } else {
7192 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
7193 S.Diag(Base->getBeginLoc(),
7194 diag::note_deleted_special_member_class_subobject)
7195 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
7196 << Base->getType() << DiagKind << IsDtorCallInCtor
7197 << /*IsObjCPtr*/false;
7198 }
7199
7200 if (DiagKind == 1)
7201 S.NoteDeletedFunction(Decl);
7202 // FIXME: Explain inaccessibility if DiagKind == 3.
7203 }
7204
7205 return true;
7206}
7207
7208/// Check whether we should delete a special member function due to having a
7209/// direct or virtual base class or non-static data member of class type M.
7210bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
7211 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
7212 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
7213 bool IsMutable = Field && Field->isMutable();
7214
7215 // C++11 [class.ctor]p5:
7216 // -- any direct or virtual base class, or non-static data member with no
7217 // brace-or-equal-initializer, has class type M (or array thereof) and
7218 // either M has no default constructor or overload resolution as applied
7219 // to M's default constructor results in an ambiguity or in a function
7220 // that is deleted or inaccessible
7221 // C++11 [class.copy]p11, C++11 [class.copy]p23:
7222 // -- a direct or virtual base class B that cannot be copied/moved because
7223 // overload resolution, as applied to B's corresponding special member,
7224 // results in an ambiguity or a function that is deleted or inaccessible
7225 // from the defaulted special member
7226 // C++11 [class.dtor]p5:
7227 // -- any direct or virtual base class [...] has a type with a destructor
7228 // that is deleted or inaccessible
7229 if (!(CSM == Sema::CXXDefaultConstructor &&
7230 Field && Field->hasInClassInitializer()) &&
7231 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
7232 false))
7233 return true;
7234
7235 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
7236 // -- any direct or virtual base class or non-static data member has a
7237 // type with a destructor that is deleted or inaccessible
7238 if (IsConstructor) {
7239 Sema::SpecialMemberOverloadResult SMOR =
7240 S.LookupSpecialMember(Class, Sema::CXXDestructor,
7241 false, false, false, false, false);
7242 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
7243 return true;
7244 }
7245
7246 return false;
7247}
7248
7249bool SpecialMemberDeletionInfo::shouldDeleteForVariantObjCPtrMember(
7250 FieldDecl *FD, QualType FieldType) {
7251 // The defaulted special functions are defined as deleted if this is a variant
7252 // member with a non-trivial ownership type, e.g., ObjC __strong or __weak
7253 // type under ARC.
7254 if (!FieldType.hasNonTrivialObjCLifetime())
7255 return false;
7256
7257 // Don't make the defaulted default constructor defined as deleted if the
7258 // member has an in-class initializer.
7259 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())
7260 return false;
7261
7262 if (Diagnose) {
7263 auto *ParentClass = cast<CXXRecordDecl>(FD->getParent());
7264 S.Diag(FD->getLocation(),
7265 diag::note_deleted_special_member_class_subobject)
7266 << getEffectiveCSM() << ParentClass << /*IsField*/true
7267 << FD << 4 << /*IsDtorCallInCtor*/false << /*IsObjCPtr*/true;
7268 }
7269
7270 return true;
7271}
7272
7273/// Check whether we should delete a special member function due to the class
7274/// having a particular direct or virtual base class.
7275bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
7276 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
7277 // If program is correct, BaseClass cannot be null, but if it is, the error
7278 // must be reported elsewhere.
7279 if (!BaseClass)
7280 return false;
7281 // If we have an inheriting constructor, check whether we're calling an
7282 // inherited constructor instead of a default constructor.
7283 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
7284 if (auto *BaseCtor = SMOR.getMethod()) {
7285 // Note that we do not check access along this path; other than that,
7286 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
7287 // FIXME: Check that the base has a usable destructor! Sink this into
7288 // shouldDeleteForClassSubobject.
7289 if (BaseCtor->isDeleted() && Diagnose) {
7290 S.Diag(Base->getBeginLoc(),
7291 diag::note_deleted_special_member_class_subobject)
7292 << getEffectiveCSM() << MD->getParent() << /*IsField*/ false
7293 << Base->getType() << /*Deleted*/ 1 << /*IsDtorCallInCtor*/ false
7294 << /*IsObjCPtr*/false;
7295 S.NoteDeletedFunction(BaseCtor);
7296 }
7297 return BaseCtor->isDeleted();
7298 }
7299 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
7300}
7301
7302/// Check whether we should delete a special member function due to the class
7303/// having a particular non-static data member.
7304bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
7305 QualType FieldType = S.Context.getBaseElementType(FD->getType());
7306 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
7307
7308 if (inUnion() && shouldDeleteForVariantObjCPtrMember(FD, FieldType))
7309 return true;
7310
7311 if (CSM == Sema::CXXDefaultConstructor) {
7312 // For a default constructor, all references must be initialized in-class
7313 // and, if a union, it must have a non-const member.
7314 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
7315 if (Diagnose)
7316 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
7317 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
7318 return true;
7319 }
7320 // C++11 [class.ctor]p5: any non-variant non-static data member of
7321 // const-qualified type (or array thereof) with no
7322 // brace-or-equal-initializer does not have a user-provided default
7323 // constructor.
7324 if (!inUnion() && FieldType.isConstQualified() &&
7325 !FD->hasInClassInitializer() &&
7326 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
7327 if (Diagnose)
7328 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
7329 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
7330 return true;
7331 }
7332
7333 if (inUnion() && !FieldType.isConstQualified())
7334 AllFieldsAreConst = false;
7335 } else if (CSM == Sema::CXXCopyConstructor) {
7336 // For a copy constructor, data members must not be of rvalue reference
7337 // type.
7338 if (FieldType->isRValueReferenceType()) {
7339 if (Diagnose)
7340 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
7341 << MD->getParent() << FD << FieldType;
7342 return true;
7343 }
7344 } else if (IsAssignment) {
7345 // For an assignment operator, data members must not be of reference type.
7346 if (FieldType->isReferenceType()) {
7347 if (Diagnose)
7348 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
7349 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
7350 return true;
7351 }
7352 if (!FieldRecord && FieldType.isConstQualified()) {
7353 // C++11 [class.copy]p23:
7354 // -- a non-static data member of const non-class type (or array thereof)
7355 if (Diagnose)
7356 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
7357 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
7358 return true;
7359 }
7360 }
7361
7362 if (FieldRecord) {
7363 // Some additional restrictions exist on the variant members.
7364 if (!inUnion() && FieldRecord->isUnion() &&
7365 FieldRecord->isAnonymousStructOrUnion()) {
7366 bool AllVariantFieldsAreConst = true;
7367
7368 // FIXME: Handle anonymous unions declared within anonymous unions.
7369 for (auto *UI : FieldRecord->fields()) {
7370 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
7371
7372 if (shouldDeleteForVariantObjCPtrMember(&*UI, UnionFieldType))
7373 return true;
7374
7375 if (!UnionFieldType.isConstQualified())
7376 AllVariantFieldsAreConst = false;
7377
7378 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
7379 if (UnionFieldRecord &&
7380 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
7381 UnionFieldType.getCVRQualifiers()))
7382 return true;
7383 }
7384
7385 // At least one member in each anonymous union must be non-const
7386 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
7387 !FieldRecord->field_empty()) {
7388 if (Diagnose)
7389 S.Diag(FieldRecord->getLocation(),
7390 diag::note_deleted_default_ctor_all_const)
7391 << !!ICI << MD->getParent() << /*anonymous union*/1;
7392 return true;
7393 }
7394
7395 // Don't check the implicit member of the anonymous union type.
7396 // This is technically non-conformant, but sanity demands it.
7397 return false;
7398 }
7399
7400 if (shouldDeleteForClassSubobject(FieldRecord, FD,
7401 FieldType.getCVRQualifiers()))
7402 return true;
7403 }
7404
7405 return false;
7406}
7407
7408/// C++11 [class.ctor] p5:
7409/// A defaulted default constructor for a class X is defined as deleted if
7410/// X is a union and all of its variant members are of const-qualified type.
7411bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
7412 // This is a silly definition, because it gives an empty union a deleted
7413 // default constructor. Don't do that.
7414 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
7415 bool AnyFields = false;
7416 for (auto *F : MD->getParent()->fields())
7417 if ((AnyFields = !F->isUnnamedBitfield()))
7418 break;
7419 if (!AnyFields)
7420 return false;
7421 if (Diagnose)
7422 S.Diag(MD->getParent()->getLocation(),
7423 diag::note_deleted_default_ctor_all_const)
7424 << !!ICI << MD->getParent() << /*not anonymous union*/0;
7425 return true;
7426 }
7427 return false;
7428}
7429
7430/// Determine whether a defaulted special member function should be defined as
7431/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
7432/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
7433bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
7434 InheritedConstructorInfo *ICI,
7435 bool Diagnose) {
7436 if (MD->isInvalidDecl())
7437 return false;
7438 CXXRecordDecl *RD = MD->getParent();
7439 assert(!RD->isDependentType() && "do deletion after instantiation")((!RD->isDependentType() && "do deletion after instantiation"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDependentType() && \"do deletion after instantiation\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7439, __PRETTY_FUNCTION__))
;
7440 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
7441 return false;
7442
7443 // C++11 [expr.lambda.prim]p19:
7444 // The closure type associated with a lambda-expression has a
7445 // deleted (8.4.3) default constructor and a deleted copy
7446 // assignment operator.
7447 // C++2a adds back these operators if the lambda has no lambda-capture.
7448 if (RD->isLambda() && !RD->lambdaIsDefaultConstructibleAndAssignable() &&
7449 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
7450 if (Diagnose)
7451 Diag(RD->getLocation(), diag::note_lambda_decl);
7452 return true;
7453 }
7454
7455 // For an anonymous struct or union, the copy and assignment special members
7456 // will never be used, so skip the check. For an anonymous union declared at
7457 // namespace scope, the constructor and destructor are used.
7458 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
7459 RD->isAnonymousStructOrUnion())
7460 return false;
7461
7462 // C++11 [class.copy]p7, p18:
7463 // If the class definition declares a move constructor or move assignment
7464 // operator, an implicitly declared copy constructor or copy assignment
7465 // operator is defined as deleted.
7466 if (MD->isImplicit() &&
7467 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
7468 CXXMethodDecl *UserDeclaredMove = nullptr;
7469
7470 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
7471 // deletion of the corresponding copy operation, not both copy operations.
7472 // MSVC 2015 has adopted the standards conforming behavior.
7473 bool DeletesOnlyMatchingCopy =
7474 getLangOpts().MSVCCompat &&
7475 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
7476
7477 if (RD->hasUserDeclaredMoveConstructor() &&
7478 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
7479 if (!Diagnose) return true;
7480
7481 // Find any user-declared move constructor.
7482 for (auto *I : RD->ctors()) {
7483 if (I->isMoveConstructor()) {
7484 UserDeclaredMove = I;
7485 break;
7486 }
7487 }
7488 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7488, __PRETTY_FUNCTION__))
;
7489 } else if (RD->hasUserDeclaredMoveAssignment() &&
7490 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
7491 if (!Diagnose) return true;
7492
7493 // Find any user-declared move assignment operator.
7494 for (auto *I : RD->methods()) {
7495 if (I->isMoveAssignmentOperator()) {
7496 UserDeclaredMove = I;
7497 break;
7498 }
7499 }
7500 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7500, __PRETTY_FUNCTION__))
;
7501 }
7502
7503 if (UserDeclaredMove) {
7504 Diag(UserDeclaredMove->getLocation(),
7505 diag::note_deleted_copy_user_declared_move)
7506 << (CSM == CXXCopyAssignment) << RD
7507 << UserDeclaredMove->isMoveAssignmentOperator();
7508 return true;
7509 }
7510 }
7511
7512 // Do access control from the special member function
7513 ContextRAII MethodContext(*this, MD);
7514
7515 // C++11 [class.dtor]p5:
7516 // -- for a virtual destructor, lookup of the non-array deallocation function
7517 // results in an ambiguity or in a function that is deleted or inaccessible
7518 if (CSM == CXXDestructor && MD->isVirtual()) {
7519 FunctionDecl *OperatorDelete = nullptr;
7520 DeclarationName Name =
7521 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
7522 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
7523 OperatorDelete, /*Diagnose*/false)) {
7524 if (Diagnose)
7525 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
7526 return true;
7527 }
7528 }
7529
7530 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
7531
7532 // Per DR1611, do not consider virtual bases of constructors of abstract
7533 // classes, since we are not going to construct them.
7534 // Per DR1658, do not consider virtual bases of destructors of abstract
7535 // classes either.
7536 // Per DR2180, for assignment operators we only assign (and thus only
7537 // consider) direct bases.
7538 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
7539 : SMI.VisitPotentiallyConstructedBases))
7540 return true;
7541
7542 if (SMI.shouldDeleteForAllConstMembers())
7543 return true;
7544
7545 if (getLangOpts().CUDA) {
7546 // We should delete the special member in CUDA mode if target inference
7547 // failed.
7548 // For inherited constructors (non-null ICI), CSM may be passed so that MD
7549 // is treated as certain special member, which may not reflect what special
7550 // member MD really is. However inferCUDATargetForImplicitSpecialMember
7551 // expects CSM to match MD, therefore recalculate CSM.
7552 assert(ICI || CSM == getSpecialMember(MD))((ICI || CSM == getSpecialMember(MD)) ? static_cast<void>
(0) : __assert_fail ("ICI || CSM == getSpecialMember(MD)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7552, __PRETTY_FUNCTION__))
;
7553 auto RealCSM = CSM;
7554 if (ICI)
7555 RealCSM = getSpecialMember(MD);
7556
7557 return inferCUDATargetForImplicitSpecialMember(RD, RealCSM, MD,
7558 SMI.ConstArg, Diagnose);
7559 }
7560
7561 return false;
7562}
7563
7564/// Perform lookup for a special member of the specified kind, and determine
7565/// whether it is trivial. If the triviality can be determined without the
7566/// lookup, skip it. This is intended for use when determining whether a
7567/// special member of a containing object is trivial, and thus does not ever
7568/// perform overload resolution for default constructors.
7569///
7570/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
7571/// member that was most likely to be intended to be trivial, if any.
7572///
7573/// If \p ForCall is true, look at CXXRecord::HasTrivialSpecialMembersForCall to
7574/// determine whether the special member is trivial.
7575static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
7576 Sema::CXXSpecialMember CSM, unsigned Quals,
7577 bool ConstRHS,
7578 Sema::TrivialABIHandling TAH,
7579 CXXMethodDecl **Selected) {
7580 if (Selected)
7581 *Selected = nullptr;
7582
7583 switch (CSM) {
7584 case Sema::CXXInvalid:
7585 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7585)
;
7586
7587 case Sema::CXXDefaultConstructor:
7588 // C++11 [class.ctor]p5:
7589 // A default constructor is trivial if:
7590 // - all the [direct subobjects] have trivial default constructors
7591 //
7592 // Note, no overload resolution is performed in this case.
7593 if (RD->hasTrivialDefaultConstructor())
7594 return true;
7595
7596 if (Selected) {
7597 // If there's a default constructor which could have been trivial, dig it
7598 // out. Otherwise, if there's any user-provided default constructor, point
7599 // to that as an example of why there's not a trivial one.
7600 CXXConstructorDecl *DefCtor = nullptr;
7601 if (RD->needsImplicitDefaultConstructor())
7602 S.DeclareImplicitDefaultConstructor(RD);
7603 for (auto *CI : RD->ctors()) {
7604 if (!CI->isDefaultConstructor())
7605 continue;
7606 DefCtor = CI;
7607 if (!DefCtor->isUserProvided())
7608 break;
7609 }
7610
7611 *Selected = DefCtor;
7612 }
7613
7614 return false;
7615
7616 case Sema::CXXDestructor:
7617 // C++11 [class.dtor]p5:
7618 // A destructor is trivial if:
7619 // - all the direct [subobjects] have trivial destructors
7620 if (RD->hasTrivialDestructor() ||
7621 (TAH == Sema::TAH_ConsiderTrivialABI &&
7622 RD->hasTrivialDestructorForCall()))
7623 return true;
7624
7625 if (Selected) {
7626 if (RD->needsImplicitDestructor())
7627 S.DeclareImplicitDestructor(RD);
7628 *Selected = RD->getDestructor();
7629 }
7630
7631 return false;
7632
7633 case Sema::CXXCopyConstructor:
7634 // C++11 [class.copy]p12:
7635 // A copy constructor is trivial if:
7636 // - the constructor selected to copy each direct [subobject] is trivial
7637 if (RD->hasTrivialCopyConstructor() ||
7638 (TAH == Sema::TAH_ConsiderTrivialABI &&
7639 RD->hasTrivialCopyConstructorForCall())) {
7640 if (Quals == Qualifiers::Const)
7641 // We must either select the trivial copy constructor or reach an
7642 // ambiguity; no need to actually perform overload resolution.
7643 return true;
7644 } else if (!Selected) {
7645 return false;
7646 }
7647 // In C++98, we are not supposed to perform overload resolution here, but we
7648 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
7649 // cases like B as having a non-trivial copy constructor:
7650 // struct A { template<typename T> A(T&); };
7651 // struct B { mutable A a; };
7652 goto NeedOverloadResolution;
7653
7654 case Sema::CXXCopyAssignment:
7655 // C++11 [class.copy]p25:
7656 // A copy assignment operator is trivial if:
7657 // - the assignment operator selected to copy each direct [subobject] is
7658 // trivial
7659 if (RD->hasTrivialCopyAssignment()) {
7660 if (Quals == Qualifiers::Const)
7661 return true;
7662 } else if (!Selected) {
7663 return false;
7664 }
7665 // In C++98, we are not supposed to perform overload resolution here, but we
7666 // treat that as a language defect.
7667 goto NeedOverloadResolution;
7668
7669 case Sema::CXXMoveConstructor:
7670 case Sema::CXXMoveAssignment:
7671 NeedOverloadResolution:
7672 Sema::SpecialMemberOverloadResult SMOR =
7673 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
7674
7675 // The standard doesn't describe how to behave if the lookup is ambiguous.
7676 // We treat it as not making the member non-trivial, just like the standard
7677 // mandates for the default constructor. This should rarely matter, because
7678 // the member will also be deleted.
7679 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
7680 return true;
7681
7682 if (!SMOR.getMethod()) {
7683 assert(SMOR.getKind() ==((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7684, __PRETTY_FUNCTION__))
7684 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7684, __PRETTY_FUNCTION__))
;
7685 return false;
7686 }
7687
7688 // We deliberately don't check if we found a deleted special member. We're
7689 // not supposed to!
7690 if (Selected)
7691 *Selected = SMOR.getMethod();
7692
7693 if (TAH == Sema::TAH_ConsiderTrivialABI &&
7694 (CSM == Sema::CXXCopyConstructor || CSM == Sema::CXXMoveConstructor))
7695 return SMOR.getMethod()->isTrivialForCall();
7696 return SMOR.getMethod()->isTrivial();
7697 }
7698
7699 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7699)
;
7700}
7701
7702static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
7703 for (auto *CI : RD->ctors())
7704 if (!CI->isImplicit())
7705 return CI;
7706
7707 // Look for constructor templates.
7708 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
7709 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
7710 if (CXXConstructorDecl *CD =
7711 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
7712 return CD;
7713 }
7714
7715 return nullptr;
7716}
7717
7718/// The kind of subobject we are checking for triviality. The values of this
7719/// enumeration are used in diagnostics.
7720enum TrivialSubobjectKind {
7721 /// The subobject is a base class.
7722 TSK_BaseClass,
7723 /// The subobject is a non-static data member.
7724 TSK_Field,
7725 /// The object is actually the complete object.
7726 TSK_CompleteObject
7727};
7728
7729/// Check whether the special member selected for a given type would be trivial.
7730static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
7731 QualType SubType, bool ConstRHS,
7732 Sema::CXXSpecialMember CSM,
7733 TrivialSubobjectKind Kind,
7734 Sema::TrivialABIHandling TAH, bool Diagnose) {
7735 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
7736 if (!SubRD)
7737 return true;
7738
7739 CXXMethodDecl *Selected;
7740 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
7741 ConstRHS, TAH, Diagnose ? &Selected : nullptr))
7742 return true;
7743
7744 if (Diagnose) {
7745 if (ConstRHS)
7746 SubType.addConst();
7747
7748 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
7749 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
7750 << Kind << SubType.getUnqualifiedType();
7751 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
7752 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
7753 } else if (!Selected)
7754 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
7755 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
7756 else if (Selected->isUserProvided()) {
7757 if (Kind == TSK_CompleteObject)
7758 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
7759 << Kind << SubType.getUnqualifiedType() << CSM;
7760 else {
7761 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
7762 << Kind << SubType.getUnqualifiedType() << CSM;
7763 S.Diag(Selected->getLocation(), diag::note_declared_at);
7764 }
7765 } else {
7766 if (Kind != TSK_CompleteObject)
7767 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
7768 << Kind << SubType.getUnqualifiedType() << CSM;
7769
7770 // Explain why the defaulted or deleted special member isn't trivial.
7771 S.SpecialMemberIsTrivial(Selected, CSM, Sema::TAH_IgnoreTrivialABI,
7772 Diagnose);
7773 }
7774 }
7775
7776 return false;
7777}
7778
7779/// Check whether the members of a class type allow a special member to be
7780/// trivial.
7781static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
7782 Sema::CXXSpecialMember CSM,
7783 bool ConstArg,
7784 Sema::TrivialABIHandling TAH,
7785 bool Diagnose) {
7786 for (const auto *FI : RD->fields()) {
7787 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
7788 continue;
7789
7790 QualType FieldType = S.Context.getBaseElementType(FI->getType());
7791
7792 // Pretend anonymous struct or union members are members of this class.
7793 if (FI->isAnonymousStructOrUnion()) {
7794 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
7795 CSM, ConstArg, TAH, Diagnose))
7796 return false;
7797 continue;
7798 }
7799
7800 // C++11 [class.ctor]p5:
7801 // A default constructor is trivial if [...]
7802 // -- no non-static data member of its class has a
7803 // brace-or-equal-initializer
7804 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
7805 if (Diagnose)
7806 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
7807 return false;
7808 }
7809
7810 // Objective C ARC 4.3.5:
7811 // [...] nontrivally ownership-qualified types are [...] not trivially
7812 // default constructible, copy constructible, move constructible, copy
7813 // assignable, move assignable, or destructible [...]
7814 if (FieldType.hasNonTrivialObjCLifetime()) {
7815 if (Diagnose)
7816 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
7817 << RD << FieldType.getObjCLifetime();
7818 return false;
7819 }
7820
7821 bool ConstRHS = ConstArg && !FI->isMutable();
7822 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
7823 CSM, TSK_Field, TAH, Diagnose))
7824 return false;
7825 }
7826
7827 return true;
7828}
7829
7830/// Diagnose why the specified class does not have a trivial special member of
7831/// the given kind.
7832void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
7833 QualType Ty = Context.getRecordType(RD);
7834
7835 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
7836 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
7837 TSK_CompleteObject, TAH_IgnoreTrivialABI,
7838 /*Diagnose*/true);
7839}
7840
7841/// Determine whether a defaulted or deleted special member function is trivial,
7842/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
7843/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
7844bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
7845 TrivialABIHandling TAH, bool Diagnose) {
7846 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((!MD->isUserProvided() && CSM != CXXInvalid &&
"not special enough") ? static_cast<void> (0) : __assert_fail
("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7846, __PRETTY_FUNCTION__))
;
7847
7848 CXXRecordDecl *RD = MD->getParent();
7849
7850 bool ConstArg = false;
7851
7852 // C++11 [class.copy]p12, p25: [DR1593]
7853 // A [special member] is trivial if [...] its parameter-type-list is
7854 // equivalent to the parameter-type-list of an implicit declaration [...]
7855 switch (CSM) {
7856 case CXXDefaultConstructor:
7857 case CXXDestructor:
7858 // Trivial default constructors and destructors cannot have parameters.
7859 break;
7860
7861 case CXXCopyConstructor:
7862 case CXXCopyAssignment: {
7863 // Trivial copy operations always have const, non-volatile parameter types.
7864 ConstArg = true;
7865 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7866 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
7867 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
7868 if (Diagnose)
7869 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7870 << Param0->getSourceRange() << Param0->getType()
7871 << Context.getLValueReferenceType(
7872 Context.getRecordType(RD).withConst());
7873 return false;
7874 }
7875 break;
7876 }
7877
7878 case CXXMoveConstructor:
7879 case CXXMoveAssignment: {
7880 // Trivial move operations always have non-cv-qualified parameters.
7881 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7882 const RValueReferenceType *RT =
7883 Param0->getType()->getAs<RValueReferenceType>();
7884 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
7885 if (Diagnose)
7886 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7887 << Param0->getSourceRange() << Param0->getType()
7888 << Context.getRValueReferenceType(Context.getRecordType(RD));
7889 return false;
7890 }
7891 break;
7892 }
7893
7894 case CXXInvalid:
7895 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7895)
;
7896 }
7897
7898 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
7899 if (Diagnose)
7900 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
7901 diag::note_nontrivial_default_arg)
7902 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
7903 return false;
7904 }
7905 if (MD->isVariadic()) {
7906 if (Diagnose)
7907 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
7908 return false;
7909 }
7910
7911 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7912 // A copy/move [constructor or assignment operator] is trivial if
7913 // -- the [member] selected to copy/move each direct base class subobject
7914 // is trivial
7915 //
7916 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7917 // A [default constructor or destructor] is trivial if
7918 // -- all the direct base classes have trivial [default constructors or
7919 // destructors]
7920 for (const auto &BI : RD->bases())
7921 if (!checkTrivialSubobjectCall(*this, BI.getBeginLoc(), BI.getType(),
7922 ConstArg, CSM, TSK_BaseClass, TAH, Diagnose))
7923 return false;
7924
7925 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7926 // A copy/move [constructor or assignment operator] for a class X is
7927 // trivial if
7928 // -- for each non-static data member of X that is of class type (or array
7929 // thereof), the constructor selected to copy/move that member is
7930 // trivial
7931 //
7932 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7933 // A [default constructor or destructor] is trivial if
7934 // -- for all of the non-static data members of its class that are of class
7935 // type (or array thereof), each such class has a trivial [default
7936 // constructor or destructor]
7937 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, TAH, Diagnose))
7938 return false;
7939
7940 // C++11 [class.dtor]p5:
7941 // A destructor is trivial if [...]
7942 // -- the destructor is not virtual
7943 if (CSM == CXXDestructor && MD->isVirtual()) {
7944 if (Diagnose)
7945 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
7946 return false;
7947 }
7948
7949 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
7950 // A [special member] for class X is trivial if [...]
7951 // -- class X has no virtual functions and no virtual base classes
7952 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
7953 if (!Diagnose)
7954 return false;
7955
7956 if (RD->getNumVBases()) {
7957 // Check for virtual bases. We already know that the corresponding
7958 // member in all bases is trivial, so vbases must all be direct.
7959 CXXBaseSpecifier &BS = *RD->vbases_begin();
7960 assert(BS.isVirtual())((BS.isVirtual()) ? static_cast<void> (0) : __assert_fail
("BS.isVirtual()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7960, __PRETTY_FUNCTION__))
;
7961 Diag(BS.getBeginLoc(), diag::note_nontrivial_has_virtual) << RD << 1;
7962 return false;
7963 }
7964
7965 // Must have a virtual method.
7966 for (const auto *MI : RD->methods()) {
7967 if (MI->isVirtual()) {
7968 SourceLocation MLoc = MI->getBeginLoc();
7969 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
7970 return false;
7971 }
7972 }
7973
7974 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7974)
;
7975 }
7976
7977 // Looks like it's trivial!
7978 return true;
7979}
7980
7981namespace {
7982struct FindHiddenVirtualMethod {
7983 Sema *S;
7984 CXXMethodDecl *Method;
7985 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
7986 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7987
7988private:
7989 /// Check whether any most overridden method from MD in Methods
7990 static bool CheckMostOverridenMethods(
7991 const CXXMethodDecl *MD,
7992 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
7993 if (MD->size_overridden_methods() == 0)
7994 return Methods.count(MD->getCanonicalDecl());
7995 for (const CXXMethodDecl *O : MD->overridden_methods())
7996 if (CheckMostOverridenMethods(O, Methods))
7997 return true;
7998 return false;
7999 }
8000
8001public:
8002 /// Member lookup function that determines whether a given C++
8003 /// method overloads virtual methods in a base class without overriding any,
8004 /// to be used with CXXRecordDecl::lookupInBases().
8005 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8006 RecordDecl *BaseRecord =
8007 Specifier->getType()->getAs<RecordType>()->getDecl();
8008
8009 DeclarationName Name = Method->getDeclName();
8010 assert(Name.getNameKind() == DeclarationName::Identifier)((Name.getNameKind() == DeclarationName::Identifier) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8010, __PRETTY_FUNCTION__))
;
8011
8012 bool foundSameNameMethod = false;
8013 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
8014 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
8015 Path.Decls = Path.Decls.slice(1)) {
8016 NamedDecl *D = Path.Decls.front();
8017 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
8018 MD = MD->getCanonicalDecl();
8019 foundSameNameMethod = true;
8020 // Interested only in hidden virtual methods.
8021 if (!MD->isVirtual())
8022 continue;
8023 // If the method we are checking overrides a method from its base
8024 // don't warn about the other overloaded methods. Clang deviates from
8025 // GCC by only diagnosing overloads of inherited virtual functions that
8026 // do not override any other virtual functions in the base. GCC's
8027 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
8028 // function from a base class. These cases may be better served by a
8029 // warning (not specific to virtual functions) on call sites when the
8030 // call would select a different function from the base class, were it
8031 // visible.
8032 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
8033 if (!S->IsOverload(Method, MD, false))
8034 return true;
8035 // Collect the overload only if its hidden.
8036 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
8037 overloadedMethods.push_back(MD);
8038 }
8039 }
8040
8041 if (foundSameNameMethod)
8042 OverloadedMethods.append(overloadedMethods.begin(),
8043 overloadedMethods.end());
8044 return foundSameNameMethod;
8045 }
8046};
8047} // end anonymous namespace
8048
8049/// Add the most overriden methods from MD to Methods
8050static void AddMostOverridenMethods(const CXXMethodDecl *MD,
8051 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
8052 if (MD->size_overridden_methods() == 0)
8053 Methods.insert(MD->getCanonicalDecl());
8054 else
8055 for (const CXXMethodDecl *O : MD->overridden_methods())
8056 AddMostOverridenMethods(O, Methods);
8057}
8058
8059/// Check if a method overloads virtual methods in a base class without
8060/// overriding any.
8061void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
8062 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
8063 if (!MD->getDeclName().isIdentifier())
8064 return;
8065
8066 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
8067 /*bool RecordPaths=*/false,
8068 /*bool DetectVirtual=*/false);
8069 FindHiddenVirtualMethod FHVM;
8070 FHVM.Method = MD;
8071 FHVM.S = this;
8072
8073 // Keep the base methods that were overridden or introduced in the subclass
8074 // by 'using' in a set. A base method not in this set is hidden.
8075 CXXRecordDecl *DC = MD->getParent();
8076 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
8077 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
8078 NamedDecl *ND = *I;
8079 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
8080 ND = shad->getTargetDecl();
8081 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
8082 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
8083 }
8084
8085 if (DC->lookupInBases(FHVM, Paths))
8086 OverloadedMethods = FHVM.OverloadedMethods;
8087}
8088
8089void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
8090 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
8091 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
8092 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
8093 PartialDiagnostic PD = PDiag(
8094 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
8095 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
8096 Diag(overloadedMD->getLocation(), PD);
8097 }
8098}
8099
8100/// Diagnose methods which overload virtual methods in a base class
8101/// without overriding any.
8102void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
8103 if (MD->isInvalidDecl())
8104 return;
8105
8106 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
8107 return;
8108
8109 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
8110 FindHiddenVirtualMethods(MD, OverloadedMethods);
8111 if (!OverloadedMethods.empty()) {
8112 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
8113 << MD << (OverloadedMethods.size() > 1);
8114
8115 NoteHiddenVirtualMethods(MD, OverloadedMethods);
8116 }
8117}
8118
8119void Sema::checkIllFormedTrivialABIStruct(CXXRecordDecl &RD) {
8120 auto PrintDiagAndRemoveAttr = [&]() {
8121 // No diagnostics if this is a template instantiation.
8122 if (!isTemplateInstantiation(RD.getTemplateSpecializationKind()))
8123 Diag(RD.getAttr<TrivialABIAttr>()->getLocation(),
8124 diag::ext_cannot_use_trivial_abi) << &RD;
8125 RD.dropAttr<TrivialABIAttr>();
8126 };
8127
8128 // Ill-formed if the struct has virtual functions.
8129 if (RD.isPolymorphic()) {
8130 PrintDiagAndRemoveAttr();
8131 return;
8132 }
8133
8134 for (const auto &B : RD.bases()) {
8135 // Ill-formed if the base class is non-trivial for the purpose of calls or a
8136 // virtual base.
8137 if ((!B.getType()->isDependentType() &&
8138 !B.getType()->getAsCXXRecordDecl()->canPassInRegisters()) ||
8139 B.isVirtual()) {
8140 PrintDiagAndRemoveAttr();
8141 return;
8142 }
8143 }
8144
8145 for (const auto *FD : RD.fields()) {
8146 // Ill-formed if the field is an ObjectiveC pointer or of a type that is
8147 // non-trivial for the purpose of calls.
8148 QualType FT = FD->getType();
8149 if (FT.getObjCLifetime() == Qualifiers::OCL_Weak) {
8150 PrintDiagAndRemoveAttr();
8151 return;
8152 }
8153
8154 if (const auto *RT = FT->getBaseElementTypeUnsafe()->getAs<RecordType>())
8155 if (!RT->isDependentType() &&
8156 !cast<CXXRecordDecl>(RT->getDecl())->canPassInRegisters()) {
8157 PrintDiagAndRemoveAttr();
8158 return;
8159 }
8160 }
8161}
8162
8163void Sema::ActOnFinishCXXMemberSpecification(
8164 Scope *S, SourceLocation RLoc, Decl *TagDecl, SourceLocation LBrac,
8165 SourceLocation RBrac, const ParsedAttributesView &AttrList) {
8166 if (!TagDecl)
8167 return;
8168
8169 AdjustDeclIfTemplate(TagDecl);
8170
8171 for (const ParsedAttr &AL : AttrList) {
8172 if (AL.getKind() != ParsedAttr::AT_Visibility)
8173 continue;
8174 AL.setInvalid();
8175 Diag(AL.getLoc(), diag::warn_attribute_after_definition_ignored) << AL;
8176 }
8177
8178 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
8179 // strict aliasing violation!
8180 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
8181 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
8182
8183 CheckCompletedCXXClass(cast<CXXRecordDecl>(TagDecl));
8184}
8185
8186/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
8187/// special functions, such as the default constructor, copy
8188/// constructor, or destructor, to the given C++ class (C++
8189/// [special]p1). This routine can only be executed just before the
8190/// definition of the class is complete.
8191void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
8192 if (ClassDecl->needsImplicitDefaultConstructor()) {
8193 ++getASTContext().NumImplicitDefaultConstructors;
8194
8195 if (ClassDecl->hasInheritedConstructor())
8196 DeclareImplicitDefaultConstructor(ClassDecl);
8197 }
8198
8199 if (ClassDecl->needsImplicitCopyConstructor()) {
8200 ++getASTContext().NumImplicitCopyConstructors;
8201
8202 // If the properties or semantics of the copy constructor couldn't be
8203 // determined while the class was being declared, force a declaration
8204 // of it now.
8205 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
8206 ClassDecl->hasInheritedConstructor())
8207 DeclareImplicitCopyConstructor(ClassDecl);
8208 // For the MS ABI we need to know whether the copy ctor is deleted. A
8209 // prerequisite for deleting the implicit copy ctor is that the class has a
8210 // move ctor or move assignment that is either user-declared or whose
8211 // semantics are inherited from a subobject. FIXME: We should provide a more
8212 // direct way for CodeGen to ask whether the constructor was deleted.
8213 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
8214 (ClassDecl->hasUserDeclaredMoveConstructor() ||
8215 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
8216 ClassDecl->hasUserDeclaredMoveAssignment() ||
8217 ClassDecl->needsOverloadResolutionForMoveAssignment()))
8218 DeclareImplicitCopyConstructor(ClassDecl);
8219 }
8220
8221 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
8222 ++getASTContext().NumImplicitMoveConstructors;
8223
8224 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
8225 ClassDecl->hasInheritedConstructor())
8226 DeclareImplicitMoveConstructor(ClassDecl);
8227 }
8228
8229 if (ClassDecl->needsImplicitCopyAssignment()) {
8230 ++getASTContext().NumImplicitCopyAssignmentOperators;
8231
8232 // If we have a dynamic class, then the copy assignment operator may be
8233 // virtual, so we have to declare it immediately. This ensures that, e.g.,
8234 // it shows up in the right place in the vtable and that we diagnose
8235 // problems with the implicit exception specification.
8236 if (ClassDecl->isDynamicClass() ||
8237 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
8238 ClassDecl->hasInheritedAssignment())
8239 DeclareImplicitCopyAssignment(ClassDecl);
8240 }
8241
8242 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
8243 ++getASTContext().NumImplicitMoveAssignmentOperators;
8244
8245 // Likewise for the move assignment operator.
8246 if (ClassDecl->isDynamicClass() ||
8247 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
8248 ClassDecl->hasInheritedAssignment())
8249 DeclareImplicitMoveAssignment(ClassDecl);
8250 }
8251
8252 if (ClassDecl->needsImplicitDestructor()) {
8253 ++getASTContext().NumImplicitDestructors;
8254
8255 // If we have a dynamic class, then the destructor may be virtual, so we
8256 // have to declare the destructor immediately. This ensures that, e.g., it
8257 // shows up in the right place in the vtable and that we diagnose problems
8258 // with the implicit exception specification.
8259 if (ClassDecl->isDynamicClass() ||
8260 ClassDecl->needsOverloadResolutionForDestructor())
8261 DeclareImplicitDestructor(ClassDecl);
8262 }
8263}
8264
8265unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
8266 if (!D)
8267 return 0;
8268
8269 // The order of template parameters is not important here. All names
8270 // get added to the same scope.
8271 SmallVector<TemplateParameterList *, 4> ParameterLists;
8272
8273 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8274 D = TD->getTemplatedDecl();
8275
8276 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
8277 ParameterLists.push_back(PSD->getTemplateParameters());
8278
8279 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
8280 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
8281 ParameterLists.push_back(DD->getTemplateParameterList(i));
8282
8283 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
8284 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
8285 ParameterLists.push_back(FTD->getTemplateParameters());
8286 }
8287 }
8288
8289 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
8290 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
8291 ParameterLists.push_back(TD->getTemplateParameterList(i));
8292
8293 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
8294 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
8295 ParameterLists.push_back(CTD->getTemplateParameters());
8296 }
8297 }
8298
8299 unsigned Count = 0;
8300 for (TemplateParameterList *Params : ParameterLists) {
8301 if (Params->size() > 0)
8302 // Ignore explicit specializations; they don't contribute to the template
8303 // depth.
8304 ++Count;
8305 for (NamedDecl *Param : *Params) {
8306 if (Param->getDeclName()) {
8307 S->AddDecl(Param);
8308 IdResolver.AddDecl(Param);
8309 }
8310 }
8311 }
8312
8313 return Count;
8314}
8315
8316void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
8317 if (!RecordD) return;
8318 AdjustDeclIfTemplate(RecordD);
8319 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
8320 PushDeclContext(S, Record);
8321}
8322
8323void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
8324 if (!RecordD) return;
8325 PopDeclContext();
8326}
8327
8328/// This is used to implement the constant expression evaluation part of the
8329/// attribute enable_if extension. There is nothing in standard C++ which would
8330/// require reentering parameters.
8331void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
8332 if (!Param)
8333 return;
8334
8335 S->AddDecl(Param);
8336 if (Param->getDeclName())
8337 IdResolver.AddDecl(Param);
8338}
8339
8340/// ActOnStartDelayedCXXMethodDeclaration - We have completed
8341/// parsing a top-level (non-nested) C++ class, and we are now
8342/// parsing those parts of the given Method declaration that could
8343/// not be parsed earlier (C++ [class.mem]p2), such as default
8344/// arguments. This action should enter the scope of the given
8345/// Method declaration as if we had just parsed the qualified method
8346/// name. However, it should not bring the parameters into scope;
8347/// that will be performed by ActOnDelayedCXXMethodParameter.
8348void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
8349}
8350
8351/// ActOnDelayedCXXMethodParameter - We've already started a delayed
8352/// C++ method declaration. We're (re-)introducing the given
8353/// function parameter into scope for use in parsing later parts of
8354/// the method declaration. For example, we could see an
8355/// ActOnParamDefaultArgument event for this parameter.
8356void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
8357 if (!ParamD)
8358 return;
8359
8360 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
8361
8362 // If this parameter has an unparsed default argument, clear it out
8363 // to make way for the parsed default argument.
8364 if (Param->hasUnparsedDefaultArg())
8365 Param->setDefaultArg(nullptr);
8366
8367 S->AddDecl(Param);
8368 if (Param->getDeclName())
8369 IdResolver.AddDecl(Param);
8370}
8371
8372/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
8373/// processing the delayed method declaration for Method. The method
8374/// declaration is now considered finished. There may be a separate
8375/// ActOnStartOfFunctionDef action later (not necessarily
8376/// immediately!) for this method, if it was also defined inside the
8377/// class body.
8378void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
8379 if (!MethodD)
8380 return;
8381
8382 AdjustDeclIfTemplate(MethodD);
8383
8384 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
8385
8386 // Now that we have our default arguments, check the constructor
8387 // again. It could produce additional diagnostics or affect whether
8388 // the class has implicitly-declared destructors, among other
8389 // things.
8390 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
8391 CheckConstructor(Constructor);
8392
8393 // Check the default arguments, which we may have added.
8394 if (!Method->isInvalidDecl())
8395 CheckCXXDefaultArguments(Method);
8396}
8397
8398// Emit the given diagnostic for each non-address-space qualifier.
8399// Common part of CheckConstructorDeclarator and CheckDestructorDeclarator.
8400static void checkMethodTypeQualifiers(Sema &S, Declarator &D, unsigned DiagID) {
8401 const DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8402 if (FTI.hasMethodTypeQualifiers() && !D.isInvalidType()) {
8403 bool DiagOccured = false;
8404 FTI.MethodQualifiers->forEachQualifier(
8405 [DiagID, &S, &DiagOccured](DeclSpec::TQ, StringRef QualName,
8406 SourceLocation SL) {
8407 // This diagnostic should be emitted on any qualifier except an addr
8408 // space qualifier. However, forEachQualifier currently doesn't visit
8409 // addr space qualifiers, so there's no way to write this condition
8410 // right now; we just diagnose on everything.
8411 S.Diag(SL, DiagID) << QualName << SourceRange(SL);
8412 DiagOccured = true;
8413 });
8414 if (DiagOccured)
8415 D.setInvalidType();
8416 }
8417}
8418
8419/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
8420/// the well-formedness of the constructor declarator @p D with type @p
8421/// R. If there are any errors in the declarator, this routine will
8422/// emit diagnostics and set the invalid bit to true. In any case, the type
8423/// will be updated to reflect a well-formed type for the constructor and
8424/// returned.
8425QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
8426 StorageClass &SC) {
8427 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8428
8429 // C++ [class.ctor]p3:
8430 // A constructor shall not be virtual (10.3) or static (9.4). A
8431 // constructor can be invoked for a const, volatile or const
8432 // volatile object. A constructor shall not be declared const,
8433 // volatile, or const volatile (9.3.2).
8434 if (isVirtual) {
8435 if (!D.isInvalidType())
8436 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
8437 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
8438 << SourceRange(D.getIdentifierLoc());
8439 D.setInvalidType();
8440 }
8441 if (SC == SC_Static) {
8442 if (!D.isInvalidType())
8443 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
8444 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
8445 << SourceRange(D.getIdentifierLoc());
8446 D.setInvalidType();
8447 SC = SC_None;
8448 }
8449
8450 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
8451 diagnoseIgnoredQualifiers(
8452 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
8453 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
8454 D.getDeclSpec().getRestrictSpecLoc(),
8455 D.getDeclSpec().getAtomicSpecLoc());
8456 D.setInvalidType();
8457 }
8458
8459 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_constructor);
8460
8461 // C++0x [class.ctor]p4:
8462 // A constructor shall not be declared with a ref-qualifier.
8463 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8464 if (FTI.hasRefQualifier()) {
8465 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
8466 << FTI.RefQualifierIsLValueRef
8467 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
8468 D.setInvalidType();
8469 }
8470
8471 // Rebuild the function type "R" without any type qualifiers (in
8472 // case any of the errors above fired) and with "void" as the
8473 // return type, since constructors don't have return types.
8474 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8475 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
8476 return R;
8477
8478 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
8479 EPI.TypeQuals = Qualifiers();
8480 EPI.RefQualifier = RQ_None;
8481
8482 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
8483}
8484
8485/// CheckConstructor - Checks a fully-formed constructor for
8486/// well-formedness, issuing any diagnostics required. Returns true if
8487/// the constructor declarator is invalid.
8488void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
8489 CXXRecordDecl *ClassDecl
8490 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
8491 if (!ClassDecl)
8492 return Constructor->setInvalidDecl();
8493
8494 // C++ [class.copy]p3:
8495 // A declaration of a constructor for a class X is ill-formed if
8496 // its first parameter is of type (optionally cv-qualified) X and
8497 // either there are no other parameters or else all other
8498 // parameters have default arguments.
8499 if (!Constructor->isInvalidDecl() &&
8500 ((Constructor->getNumParams() == 1) ||
8501 (Constructor->getNumParams() > 1 &&
8502 Constructor->getParamDecl(1)->hasDefaultArg())) &&
8503 Constructor->getTemplateSpecializationKind()
8504 != TSK_ImplicitInstantiation) {
8505 QualType ParamType = Constructor->getParamDecl(0)->getType();
8506 QualType ClassTy = Context.getTagDeclType(ClassDecl);
8507 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
8508 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
8509 const char *ConstRef
8510 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
8511 : " const &";
8512 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
8513 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
8514
8515 // FIXME: Rather that making the constructor invalid, we should endeavor
8516 // to fix the type.
8517 Constructor->setInvalidDecl();
8518 }
8519 }
8520}
8521
8522/// CheckDestructor - Checks a fully-formed destructor definition for
8523/// well-formedness, issuing any diagnostics required. Returns true
8524/// on error.
8525bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
8526 CXXRecordDecl *RD = Destructor->getParent();
8527
8528 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
8529 SourceLocation Loc;
8530
8531 if (!Destructor->isImplicit())
8532 Loc = Destructor->getLocation();
8533 else
8534 Loc = RD->getLocation();
8535
8536 // If we have a virtual destructor, look up the deallocation function
8537 if (FunctionDecl *OperatorDelete =
8538 FindDeallocationFunctionForDestructor(Loc, RD)) {
8539 Expr *ThisArg = nullptr;
8540
8541 // If the notional 'delete this' expression requires a non-trivial
8542 // conversion from 'this' to the type of a destroying operator delete's
8543 // first parameter, perform that conversion now.
8544 if (OperatorDelete->isDestroyingOperatorDelete()) {
8545 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
8546 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
8547 // C++ [class.dtor]p13:
8548 // ... as if for the expression 'delete this' appearing in a
8549 // non-virtual destructor of the destructor's class.
8550 ContextRAII SwitchContext(*this, Destructor);
8551 ExprResult This =
8552 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
8553 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")((!This.isInvalid() && "couldn't form 'this' expr in dtor?"
) ? static_cast<void> (0) : __assert_fail ("!This.isInvalid() && \"couldn't form 'this' expr in dtor?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8553, __PRETTY_FUNCTION__))
;
8554 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
8555 if (This.isInvalid()) {
8556 // FIXME: Register this as a context note so that it comes out
8557 // in the right order.
8558 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
8559 return true;
8560 }
8561 ThisArg = This.get();
8562 }
8563 }
8564
8565 DiagnoseUseOfDecl(OperatorDelete, Loc);
8566 MarkFunctionReferenced(Loc, OperatorDelete);
8567 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
8568 }
8569 }
8570
8571 return false;
8572}
8573
8574/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
8575/// the well-formednes of the destructor declarator @p D with type @p
8576/// R. If there are any errors in the declarator, this routine will
8577/// emit diagnostics and set the declarator to invalid. Even if this happens,
8578/// will be updated to reflect a well-formed type for the destructor and
8579/// returned.
8580QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
8581 StorageClass& SC) {
8582 // C++ [class.dtor]p1:
8583 // [...] A typedef-name that names a class is a class-name
8584 // (7.1.3); however, a typedef-name that names a class shall not
8585 // be used as the identifier in the declarator for a destructor
8586 // declaration.
8587 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
8588 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
8589 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
8590 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
8591 else if (const TemplateSpecializationType *TST =
8592 DeclaratorType->getAs<TemplateSpecializationType>())
8593 if (TST->isTypeAlias())
8594 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
8595 << DeclaratorType << 1;
8596
8597 // C++ [class.dtor]p2:
8598 // A destructor is used to destroy objects of its class type. A
8599 // destructor takes no parameters, and no return type can be
8600 // specified for it (not even void). The address of a destructor
8601 // shall not be taken. A destructor shall not be static. A
8602 // destructor can be invoked for a const, volatile or const
8603 // volatile object. A destructor shall not be declared const,
8604 // volatile or const volatile (9.3.2).
8605 if (SC == SC_Static) {
8606 if (!D.isInvalidType())
8607 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
8608 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
8609 << SourceRange(D.getIdentifierLoc())
8610 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8611
8612 SC = SC_None;
8613 }
8614 if (!D.isInvalidType()) {
8615 // Destructors don't have return types, but the parser will
8616 // happily parse something like:
8617 //
8618 // class X {
8619 // float ~X();
8620 // };
8621 //
8622 // The return type will be eliminated later.
8623 if (D.getDeclSpec().hasTypeSpecifier())
8624 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
8625 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8626 << SourceRange(D.getIdentifierLoc());
8627 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
8628 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
8629 SourceLocation(),
8630 D.getDeclSpec().getConstSpecLoc(),
8631 D.getDeclSpec().getVolatileSpecLoc(),
8632 D.getDeclSpec().getRestrictSpecLoc(),
8633 D.getDeclSpec().getAtomicSpecLoc());
8634 D.setInvalidType();
8635 }
8636 }
8637
8638 checkMethodTypeQualifiers(*this, D, diag::err_invalid_qualified_destructor);
8639
8640 // C++0x [class.dtor]p2:
8641 // A destructor shall not be declared with a ref-qualifier.
8642 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8643 if (FTI.hasRefQualifier()) {
8644 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
8645 << FTI.RefQualifierIsLValueRef
8646 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
8647 D.setInvalidType();
8648 }
8649
8650 // Make sure we don't have any parameters.
8651 if (FTIHasNonVoidParameters(FTI)) {
8652 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
8653
8654 // Delete the parameters.
8655 FTI.freeParams();
8656 D.setInvalidType();
8657 }
8658
8659 // Make sure the destructor isn't variadic.
8660 if (FTI.isVariadic) {
8661 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
8662 D.setInvalidType();
8663 }
8664
8665 // Rebuild the function type "R" without any type qualifiers or
8666 // parameters (in case any of the errors above fired) and with
8667 // "void" as the return type, since destructors don't have return
8668 // types.
8669 if (!D.isInvalidType())
8670 return R;
8671
8672 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8673 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
8674 EPI.Variadic = false;
8675 EPI.TypeQuals = Qualifiers();
8676 EPI.RefQualifier = RQ_None;
8677 return Context.getFunctionType(Context.VoidTy, None, EPI);
8678}
8679
8680static void extendLeft(SourceRange &R, SourceRange Before) {
8681 if (Before.isInvalid())
8682 return;
8683 R.setBegin(Before.getBegin());
8684 if (R.getEnd().isInvalid())
8685 R.setEnd(Before.getEnd());
8686}
8687
8688static void extendRight(SourceRange &R, SourceRange After) {
8689 if (After.isInvalid())
8690 return;
8691 if (R.getBegin().isInvalid())
8692 R.setBegin(After.getBegin());
8693 R.setEnd(After.getEnd());
8694}
8695
8696/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
8697/// well-formednes of the conversion function declarator @p D with
8698/// type @p R. If there are any errors in the declarator, this routine
8699/// will emit diagnostics and return true. Otherwise, it will return
8700/// false. Either way, the type @p R will be updated to reflect a
8701/// well-formed type for the conversion operator.
8702void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
8703 StorageClass& SC) {
8704 // C++ [class.conv.fct]p1:
8705 // Neither parameter types nor return type can be specified. The
8706 // type of a conversion function (8.3.5) is "function taking no
8707 // parameter returning conversion-type-id."
8708 if (SC == SC_Static) {
8709 if (!D.isInvalidType())
8710 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
8711 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
8712 << D.getName().getSourceRange();
8713 D.setInvalidType();
8714 SC = SC_None;
8715 }
8716
8717 TypeSourceInfo *ConvTSI = nullptr;
8718 QualType ConvType =
8719 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
8720
8721 const DeclSpec &DS = D.getDeclSpec();
8722 if (DS.hasTypeSpecifier() && !D.isInvalidType()) {
8723 // Conversion functions don't have return types, but the parser will
8724 // happily parse something like:
8725 //
8726 // class X {
8727 // float operator bool();
8728 // };
8729 //
8730 // The return type will be changed later anyway.
8731 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
8732 << SourceRange(DS.getTypeSpecTypeLoc())
8733 << SourceRange(D.getIdentifierLoc());
8734 D.setInvalidType();
8735 } else if (DS.getTypeQualifiers() && !D.isInvalidType()) {
8736 // It's also plausible that the user writes type qualifiers in the wrong
8737 // place, such as:
8738 // struct S { const operator int(); };
8739 // FIXME: we could provide a fixit to move the qualifiers onto the
8740 // conversion type.
8741 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
8742 << SourceRange(D.getIdentifierLoc()) << 0;
8743 D.setInvalidType();
8744 }
8745
8746 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8747
8748 // Make sure we don't have any parameters.
8749 if (Proto->getNumParams() > 0) {
8750 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
8751
8752 // Delete the parameters.
8753 D.getFunctionTypeInfo().freeParams();
8754 D.setInvalidType();
8755 } else if (Proto->isVariadic()) {
8756 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
8757 D.setInvalidType();
8758 }
8759
8760 // Diagnose "&operator bool()" and other such nonsense. This
8761 // is actually a gcc extension which we don't support.
8762 if (Proto->getReturnType() != ConvType) {
8763 bool NeedsTypedef = false;
8764 SourceRange Before, After;
8765
8766 // Walk the chunks and extract information on them for our diagnostic.
8767 bool PastFunctionChunk = false;
8768 for (auto &Chunk : D.type_objects()) {
8769 switch (Chunk.Kind) {
8770 case DeclaratorChunk::Function:
8771 if (!PastFunctionChunk) {
8772 if (Chunk.Fun.HasTrailingReturnType) {
8773 TypeSourceInfo *TRT = nullptr;
8774 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
8775 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
8776 }
8777 PastFunctionChunk = true;
8778 break;
8779 }
8780 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8781 case DeclaratorChunk::Array:
8782 NeedsTypedef = true;
8783 extendRight(After, Chunk.getSourceRange());
8784 break;
8785
8786 case DeclaratorChunk::Pointer:
8787 case DeclaratorChunk::BlockPointer:
8788 case DeclaratorChunk::Reference:
8789 case DeclaratorChunk::MemberPointer:
8790 case DeclaratorChunk::Pipe:
8791 extendLeft(Before, Chunk.getSourceRange());
8792 break;
8793
8794 case DeclaratorChunk::Paren:
8795 extendLeft(Before, Chunk.Loc);
8796 extendRight(After, Chunk.EndLoc);
8797 break;
8798 }
8799 }
8800
8801 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
8802 After.isValid() ? After.getBegin() :
8803 D.getIdentifierLoc();
8804 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
8805 DB << Before << After;
8806
8807 if (!NeedsTypedef) {
8808 DB << /*don't need a typedef*/0;
8809
8810 // If we can provide a correct fix-it hint, do so.
8811 if (After.isInvalid() && ConvTSI) {
8812 SourceLocation InsertLoc =
8813 getLocForEndOfToken(ConvTSI->getTypeLoc().getEndLoc());
8814 DB << FixItHint::CreateInsertion(InsertLoc, " ")
8815 << FixItHint::CreateInsertionFromRange(
8816 InsertLoc, CharSourceRange::getTokenRange(Before))
8817 << FixItHint::CreateRemoval(Before);
8818 }
8819 } else if (!Proto->getReturnType()->isDependentType()) {
8820 DB << /*typedef*/1 << Proto->getReturnType();
8821 } else if (getLangOpts().CPlusPlus11) {
8822 DB << /*alias template*/2 << Proto->getReturnType();
8823 } else {
8824 DB << /*might not be fixable*/3;
8825 }
8826
8827 // Recover by incorporating the other type chunks into the result type.
8828 // Note, this does *not* change the name of the function. This is compatible
8829 // with the GCC extension:
8830 // struct S { &operator int(); } s;
8831 // int &r = s.operator int(); // ok in GCC
8832 // S::operator int&() {} // error in GCC, function name is 'operator int'.
8833 ConvType = Proto->getReturnType();
8834 }
8835
8836 // C++ [class.conv.fct]p4:
8837 // The conversion-type-id shall not represent a function type nor
8838 // an array type.
8839 if (ConvType->isArrayType()) {
8840 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
8841 ConvType = Context.getPointerType(ConvType);
8842 D.setInvalidType();
8843 } else if (ConvType->isFunctionType()) {
8844 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
8845 ConvType = Context.getPointerType(ConvType);
8846 D.setInvalidType();
8847 }
8848
8849 // Rebuild the function type "R" without any parameters (in case any
8850 // of the errors above fired) and with the conversion type as the
8851 // return type.
8852 if (D.isInvalidType())
8853 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
8854
8855 // C++0x explicit conversion operators.
8856 if (DS.hasExplicitSpecifier() && !getLangOpts().CPlusPlus2a)
8857 Diag(DS.getExplicitSpecLoc(),
8858 getLangOpts().CPlusPlus11
8859 ? diag::warn_cxx98_compat_explicit_conversion_functions
8860 : diag::ext_explicit_conversion_functions)
8861 << SourceRange(DS.getExplicitSpecRange());
8862}
8863
8864/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
8865/// the declaration of the given C++ conversion function. This routine
8866/// is responsible for recording the conversion function in the C++
8867/// class, if possible.
8868Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
8869 assert(Conversion && "Expected to receive a conversion function declaration")((Conversion && "Expected to receive a conversion function declaration"
) ? static_cast<void> (0) : __assert_fail ("Conversion && \"Expected to receive a conversion function declaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8869, __PRETTY_FUNCTION__))
;
8870
8871 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
8872
8873 // Make sure we aren't redeclaring the conversion function.
8874 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
8875
8876 // C++ [class.conv.fct]p1:
8877 // [...] A conversion function is never used to convert a
8878 // (possibly cv-qualified) object to the (possibly cv-qualified)
8879 // same object type (or a reference to it), to a (possibly
8880 // cv-qualified) base class of that type (or a reference to it),
8881 // or to (possibly cv-qualified) void.
8882 // FIXME: Suppress this warning if the conversion function ends up being a
8883 // virtual function that overrides a virtual function in a base class.
8884 QualType ClassType
8885 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8886 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
8887 ConvType = ConvTypeRef->getPointeeType();
8888 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
8889 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
8890 /* Suppress diagnostics for instantiations. */;
8891 else if (ConvType->isRecordType()) {
8892 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
8893 if (ConvType == ClassType)
8894 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
8895 << ClassType;
8896 else if (IsDerivedFrom(Conversion->getLocation(), ClassType, ConvType))
8897 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
8898 << ClassType << ConvType;
8899 } else if (ConvType->isVoidType()) {
8900 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
8901 << ClassType << ConvType;
8902 }
8903
8904 if (FunctionTemplateDecl *ConversionTemplate
8905 = Conversion->getDescribedFunctionTemplate())
8906 return ConversionTemplate;
8907
8908 return Conversion;
8909}
8910
8911namespace {
8912/// Utility class to accumulate and print a diagnostic listing the invalid
8913/// specifier(s) on a declaration.
8914struct BadSpecifierDiagnoser {
8915 BadSpecifierDiagnoser(Sema &S, SourceLocation Loc, unsigned DiagID)
8916 : S(S), Diagnostic(S.Diag(Loc, DiagID)) {}
8917 ~BadSpecifierDiagnoser() {
8918 Diagnostic << Specifiers;
8919 }
8920
8921 template<typename T> void check(SourceLocation SpecLoc, T Spec) {
8922 return check(SpecLoc, DeclSpec::getSpecifierName(Spec));
8923 }
8924 void check(SourceLocation SpecLoc, DeclSpec::TST Spec) {
8925 return check(SpecLoc,
8926 DeclSpec::getSpecifierName(Spec, S.getPrintingPolicy()));
8927 }
8928 void check(SourceLocation SpecLoc, const char *Spec) {
8929 if (SpecLoc.isInvalid()) return;
8930 Diagnostic << SourceRange(SpecLoc, SpecLoc);
8931 if (!Specifiers.empty()) Specifiers += " ";
8932 Specifiers += Spec;
8933 }
8934
8935 Sema &S;
8936 Sema::SemaDiagnosticBuilder Diagnostic;
8937 std::string Specifiers;
8938};
8939}
8940
8941/// Check the validity of a declarator that we parsed for a deduction-guide.
8942/// These aren't actually declarators in the grammar, so we need to check that
8943/// the user didn't specify any pieces that are not part of the deduction-guide
8944/// grammar.
8945void Sema::CheckDeductionGuideDeclarator(Declarator &D, QualType &R,
8946 StorageClass &SC) {
8947 TemplateName GuidedTemplate = D.getName().TemplateName.get().get();
8948 TemplateDecl *GuidedTemplateDecl = GuidedTemplate.getAsTemplateDecl();
8949 assert(GuidedTemplateDecl && "missing template decl for deduction guide")((GuidedTemplateDecl && "missing template decl for deduction guide"
) ? static_cast<void> (0) : __assert_fail ("GuidedTemplateDecl && \"missing template decl for deduction guide\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 8949, __PRETTY_FUNCTION__))
;
8950
8951 // C++ [temp.deduct.guide]p3:
8952 // A deduction-gide shall be declared in the same scope as the
8953 // corresponding class template.
8954 if (!CurContext->getRedeclContext()->Equals(
8955 GuidedTemplateDecl->getDeclContext()->getRedeclContext())) {
8956 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_wrong_scope)
8957 << GuidedTemplateDecl;
8958 Diag(GuidedTemplateDecl->getLocation(), diag::note_template_decl_here);
8959 }
8960
8961 auto &DS = D.getMutableDeclSpec();
8962 // We leave 'friend' and 'virtual' to be rejected in the normal way.
8963 if (DS.hasTypeSpecifier() || DS.getTypeQualifiers() ||
8964 DS.getStorageClassSpecLoc().isValid() || DS.isInlineSpecified() ||
8965 DS.isNoreturnSpecified() || DS.hasConstexprSpecifier()) {
8966 BadSpecifierDiagnoser Diagnoser(
8967 *this, D.getIdentifierLoc(),
8968 diag::err_deduction_guide_invalid_specifier);
8969
8970 Diagnoser.check(DS.getStorageClassSpecLoc(), DS.getStorageClassSpec());
8971 DS.ClearStorageClassSpecs();
8972 SC = SC_None;
8973
8974 // 'explicit' is permitted.
8975 Diagnoser.check(DS.getInlineSpecLoc(), "inline");
8976 Diagnoser.check(DS.getNoreturnSpecLoc(), "_Noreturn");
8977 Diagnoser.check(DS.getConstexprSpecLoc(), "constexpr");
8978 DS.ClearConstexprSpec();
8979
8980 Diagnoser.check(DS.getConstSpecLoc(), "const");
8981 Diagnoser.check(DS.getRestrictSpecLoc(), "__restrict");
8982 Diagnoser.check(DS.getVolatileSpecLoc(), "volatile");
8983 Diagnoser.check(DS.getAtomicSpecLoc(), "_Atomic");
8984 Diagnoser.check(DS.getUnalignedSpecLoc(), "__unaligned");
8985 DS.ClearTypeQualifiers();
8986
8987 Diagnoser.check(DS.getTypeSpecComplexLoc(), DS.getTypeSpecComplex());
8988 Diagnoser.check(DS.getTypeSpecSignLoc(), DS.getTypeSpecSign());
8989 Diagnoser.check(DS.getTypeSpecWidthLoc(), DS.getTypeSpecWidth());
8990 Diagnoser.check(DS.getTypeSpecTypeLoc(), DS.getTypeSpecType());
8991 DS.ClearTypeSpecType();
8992 }
8993
8994 if (D.isInvalidType())
8995 return;
8996
8997 // Check the declarator is simple enough.
8998 bool FoundFunction = false;
8999 for (const DeclaratorChunk &Chunk : llvm::reverse(D.type_objects())) {
9000 if (Chunk.Kind == DeclaratorChunk::Paren)
9001 continue;
9002 if (Chunk.Kind != DeclaratorChunk::Function || FoundFunction) {
9003 Diag(D.getDeclSpec().getBeginLoc(),
9004 diag::err_deduction_guide_with_complex_decl)
9005 << D.getSourceRange();
9006 break;
9007 }
9008 if (!Chunk.Fun.hasTrailingReturnType()) {
9009 Diag(D.getName().getBeginLoc(),
9010 diag::err_deduction_guide_no_trailing_return_type);
9011 break;
9012 }
9013
9014 // Check that the return type is written as a specialization of
9015 // the template specified as the deduction-guide's name.
9016 ParsedType TrailingReturnType = Chunk.Fun.getTrailingReturnType();
9017 TypeSourceInfo *TSI = nullptr;
9018 QualType RetTy = GetTypeFromParser(TrailingReturnType, &TSI);
9019 assert(TSI && "deduction guide has valid type but invalid return type?")((TSI && "deduction guide has valid type but invalid return type?"
) ? static_cast<void> (0) : __assert_fail ("TSI && \"deduction guide has valid type but invalid return type?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9019, __PRETTY_FUNCTION__))
;
9020 bool AcceptableReturnType = false;
9021 bool MightInstantiateToSpecialization = false;
9022 if (auto RetTST =
9023 TSI->getTypeLoc().getAs<TemplateSpecializationTypeLoc>()) {
9024 TemplateName SpecifiedName = RetTST.getTypePtr()->getTemplateName();
9025 bool TemplateMatches =
9026 Context.hasSameTemplateName(SpecifiedName, GuidedTemplate);
9027 if (SpecifiedName.getKind() == TemplateName::Template && TemplateMatches)
9028 AcceptableReturnType = true;
9029 else {
9030 // This could still instantiate to the right type, unless we know it
9031 // names the wrong class template.
9032 auto *TD = SpecifiedName.getAsTemplateDecl();
9033 MightInstantiateToSpecialization = !(TD && isa<ClassTemplateDecl>(TD) &&
9034 !TemplateMatches);
9035 }
9036 } else if (!RetTy.hasQualifiers() && RetTy->isDependentType()) {
9037 MightInstantiateToSpecialization = true;
9038 }
9039
9040 if (!AcceptableReturnType) {
9041 Diag(TSI->getTypeLoc().getBeginLoc(),
9042 diag::err_deduction_guide_bad_trailing_return_type)
9043 << GuidedTemplate << TSI->getType()
9044 << MightInstantiateToSpecialization
9045 << TSI->getTypeLoc().getSourceRange();
9046 }
9047
9048 // Keep going to check that we don't have any inner declarator pieces (we
9049 // could still have a function returning a pointer to a function).
9050 FoundFunction = true;
9051 }
9052
9053 if (D.isFunctionDefinition())
9054 Diag(D.getIdentifierLoc(), diag::err_deduction_guide_defines_function);
9055}
9056
9057//===----------------------------------------------------------------------===//
9058// Namespace Handling
9059//===----------------------------------------------------------------------===//
9060
9061/// Diagnose a mismatch in 'inline' qualifiers when a namespace is
9062/// reopened.
9063static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
9064 SourceLocation Loc,
9065 IdentifierInfo *II, bool *IsInline,
9066 NamespaceDecl *PrevNS) {
9067 assert(*IsInline != PrevNS->isInline())((*IsInline != PrevNS->isInline()) ? static_cast<void>
(0) : __assert_fail ("*IsInline != PrevNS->isInline()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9067, __PRETTY_FUNCTION__))
;
9068
9069 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
9070 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
9071 // inline namespaces, with the intention of bringing names into namespace std.
9072 //
9073 // We support this just well enough to get that case working; this is not
9074 // sufficient to support reopening namespaces as inline in general.
9075 if (*IsInline && II && II->getName().startswith("__atomic") &&
9076 S.getSourceManager().isInSystemHeader(Loc)) {
9077 // Mark all prior declarations of the namespace as inline.
9078 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
9079 NS = NS->getPreviousDecl())
9080 NS->setInline(*IsInline);
9081 // Patch up the lookup table for the containing namespace. This isn't really
9082 // correct, but it's good enough for this particular case.
9083 for (auto *I : PrevNS->decls())
9084 if (auto *ND = dyn_cast<NamedDecl>(I))
9085 PrevNS->getParent()->makeDeclVisibleInContext(ND);
9086 return;
9087 }
9088
9089 if (PrevNS->isInline())
9090 // The user probably just forgot the 'inline', so suggest that it
9091 // be added back.
9092 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
9093 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
9094 else
9095 S.Diag(Loc, diag::err_inline_namespace_mismatch);
9096
9097 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
9098 *IsInline = PrevNS->isInline();
9099}
9100
9101/// ActOnStartNamespaceDef - This is called at the start of a namespace
9102/// definition.
9103Decl *Sema::ActOnStartNamespaceDef(
9104 Scope *NamespcScope, SourceLocation InlineLoc, SourceLocation NamespaceLoc,
9105 SourceLocation IdentLoc, IdentifierInfo *II, SourceLocation LBrace,
9106 const ParsedAttributesView &AttrList, UsingDirectiveDecl *&UD) {
9107 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
9108 // For anonymous namespace, take the location of the left brace.
9109 SourceLocation Loc = II ? IdentLoc : LBrace;
9110 bool IsInline = InlineLoc.isValid();
9111 bool IsInvalid = false;
9112 bool IsStd = false;
9113 bool AddToKnown = false;
9114 Scope *DeclRegionScope = NamespcScope->getParent();
9115
9116 NamespaceDecl *PrevNS = nullptr;
9117 if (II) {
9118 // C++ [namespace.def]p2:
9119 // The identifier in an original-namespace-definition shall not
9120 // have been previously defined in the declarative region in
9121 // which the original-namespace-definition appears. The
9122 // identifier in an original-namespace-definition is the name of
9123 // the namespace. Subsequently in that declarative region, it is
9124 // treated as an original-namespace-name.
9125 //
9126 // Since namespace names are unique in their scope, and we don't
9127 // look through using directives, just look for any ordinary names
9128 // as if by qualified name lookup.
9129 LookupResult R(*this, II, IdentLoc, LookupOrdinaryName,
9130 ForExternalRedeclaration);
9131 LookupQualifiedName(R, CurContext->getRedeclContext());
9132 NamedDecl *PrevDecl =
9133 R.isSingleResult() ? R.getRepresentativeDecl() : nullptr;
9134 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
9135
9136 if (PrevNS) {
9137 // This is an extended namespace definition.
9138 if (IsInline != PrevNS->isInline())
9139 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
9140 &IsInline, PrevNS);
9141 } else if (PrevDecl) {
9142 // This is an invalid name redefinition.
9143 Diag(Loc, diag::err_redefinition_different_kind)
9144 << II;
9145 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9146 IsInvalid = true;
9147 // Continue on to push Namespc as current DeclContext and return it.
9148 } else if (II->isStr("std") &&
9149 CurContext->getRedeclContext()->isTranslationUnit()) {
9150 // This is the first "real" definition of the namespace "std", so update
9151 // our cache of the "std" namespace to point at this definition.
9152 PrevNS = getStdNamespace();
9153 IsStd = true;
9154 AddToKnown = !IsInline;
9155 } else {
9156 // We've seen this namespace for the first time.
9157 AddToKnown = !IsInline;
9158 }
9159 } else {
9160 // Anonymous namespaces.
9161
9162 // Determine whether the parent already has an anonymous namespace.
9163 DeclContext *Parent = CurContext->getRedeclContext();
9164 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
9165 PrevNS = TU->getAnonymousNamespace();
9166 } else {
9167 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
9168 PrevNS = ND->getAnonymousNamespace();
9169 }
9170
9171 if (PrevNS && IsInline != PrevNS->isInline())
9172 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
9173 &IsInline, PrevNS);
9174 }
9175
9176 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
9177 StartLoc, Loc, II, PrevNS);
9178 if (IsInvalid)
9179 Namespc->setInvalidDecl();
9180
9181 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
9182 AddPragmaAttributes(DeclRegionScope, Namespc);
9183
9184 // FIXME: Should we be merging attributes?
9185 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
9186 PushNamespaceVisibilityAttr(Attr, Loc);
9187
9188 if (IsStd)
9189 StdNamespace = Namespc;
9190 if (AddToKnown)
9191 KnownNamespaces[Namespc] = false;
9192
9193 if (II) {
9194 PushOnScopeChains(Namespc, DeclRegionScope);
9195 } else {
9196 // Link the anonymous namespace into its parent.
9197 DeclContext *Parent = CurContext->getRedeclContext();
9198 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
9199 TU->setAnonymousNamespace(Namespc);
9200 } else {
9201 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
9202 }
9203
9204 CurContext->addDecl(Namespc);
9205
9206 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
9207 // behaves as if it were replaced by
9208 // namespace unique { /* empty body */ }
9209 // using namespace unique;
9210 // namespace unique { namespace-body }
9211 // where all occurrences of 'unique' in a translation unit are
9212 // replaced by the same identifier and this identifier differs
9213 // from all other identifiers in the entire program.
9214
9215 // We just create the namespace with an empty name and then add an
9216 // implicit using declaration, just like the standard suggests.
9217 //
9218 // CodeGen enforces the "universally unique" aspect by giving all
9219 // declarations semantically contained within an anonymous
9220 // namespace internal linkage.
9221
9222 if (!PrevNS) {
9223 UD = UsingDirectiveDecl::Create(Context, Parent,
9224 /* 'using' */ LBrace,
9225 /* 'namespace' */ SourceLocation(),
9226 /* qualifier */ NestedNameSpecifierLoc(),
9227 /* identifier */ SourceLocation(),
9228 Namespc,
9229 /* Ancestor */ Parent);
9230 UD->setImplicit();
9231 Parent->addDecl(UD);
9232 }
9233 }
9234
9235 ActOnDocumentableDecl(Namespc);
9236
9237 // Although we could have an invalid decl (i.e. the namespace name is a
9238 // redefinition), push it as current DeclContext and try to continue parsing.
9239 // FIXME: We should be able to push Namespc here, so that the each DeclContext
9240 // for the namespace has the declarations that showed up in that particular
9241 // namespace definition.
9242 PushDeclContext(NamespcScope, Namespc);
9243 return Namespc;
9244}
9245
9246/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
9247/// is a namespace alias, returns the namespace it points to.
9248static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
9249 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
9250 return AD->getNamespace();
9251 return dyn_cast_or_null<NamespaceDecl>(D);
9252}
9253
9254/// ActOnFinishNamespaceDef - This callback is called after a namespace is
9255/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
9256void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
9257 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
9258 assert(Namespc && "Invalid parameter, expected NamespaceDecl")((Namespc && "Invalid parameter, expected NamespaceDecl"
) ? static_cast<void> (0) : __assert_fail ("Namespc && \"Invalid parameter, expected NamespaceDecl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9258, __PRETTY_FUNCTION__))
;
9259 Namespc->setRBraceLoc(RBrace);
9260 PopDeclContext();
9261 if (Namespc->hasAttr<VisibilityAttr>())
9262 PopPragmaVisibility(true, RBrace);
9263 // If this namespace contains an export-declaration, export it now.
9264 if (DeferredExportedNamespaces.erase(Namespc))
9265 Dcl->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
9266}
9267
9268CXXRecordDecl *Sema::getStdBadAlloc() const {
9269 return cast_or_null<CXXRecordDecl>(
9270 StdBadAlloc.get(Context.getExternalSource()));
9271}
9272
9273EnumDecl *Sema::getStdAlignValT() const {
9274 return cast_or_null<EnumDecl>(StdAlignValT.get(Context.getExternalSource()));
9275}
9276
9277NamespaceDecl *Sema::getStdNamespace() const {
9278 return cast_or_null<NamespaceDecl>(
9279 StdNamespace.get(Context.getExternalSource()));
9280}
9281
9282NamespaceDecl *Sema::lookupStdExperimentalNamespace() {
9283 if (!StdExperimentalNamespaceCache) {
9284 if (auto Std = getStdNamespace()) {
9285 LookupResult Result(*this, &PP.getIdentifierTable().get("experimental"),
9286 SourceLocation(), LookupNamespaceName);
9287 if (!LookupQualifiedName(Result, Std) ||
9288 !(StdExperimentalNamespaceCache =
9289 Result.getAsSingle<NamespaceDecl>()))
9290 Result.suppressDiagnostics();
9291 }
9292 }
9293 return StdExperimentalNamespaceCache;
9294}
9295
9296namespace {
9297
9298enum UnsupportedSTLSelect {
9299 USS_InvalidMember,
9300 USS_MissingMember,
9301 USS_NonTrivial,
9302 USS_Other
9303};
9304
9305struct InvalidSTLDiagnoser {
9306 Sema &S;
9307 SourceLocation Loc;
9308 QualType TyForDiags;
9309
9310 QualType operator()(UnsupportedSTLSelect Sel = USS_Other, StringRef Name = "",
9311 const VarDecl *VD = nullptr) {
9312 {
9313 auto D = S.Diag(Loc, diag::err_std_compare_type_not_supported)
9314 << TyForDiags << ((int)Sel);
9315 if (Sel == USS_InvalidMember || Sel == USS_MissingMember) {
9316 assert(!Name.empty())((!Name.empty()) ? static_cast<void> (0) : __assert_fail
("!Name.empty()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9316, __PRETTY_FUNCTION__))
;
9317 D << Name;
9318 }
9319 }
9320 if (Sel == USS_InvalidMember) {
9321 S.Diag(VD->getLocation(), diag::note_var_declared_here)
9322 << VD << VD->getSourceRange();
9323 }
9324 return QualType();
9325 }
9326};
9327} // namespace
9328
9329QualType Sema::CheckComparisonCategoryType(ComparisonCategoryType Kind,
9330 SourceLocation Loc) {
9331 assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "Looking for comparison category type outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9332, __PRETTY_FUNCTION__))
9332 "Looking for comparison category type outside of C++.")((getLangOpts().CPlusPlus && "Looking for comparison category type outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for comparison category type outside of C++.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9332, __PRETTY_FUNCTION__))
;
9333
9334 // Check if we've already successfully checked the comparison category type
9335 // before. If so, skip checking it again.
9336 ComparisonCategoryInfo *Info = Context.CompCategories.lookupInfo(Kind);
9337 if (Info && FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)])
9338 return Info->getType();
9339
9340 // If lookup failed
9341 if (!Info) {
9342 std::string NameForDiags = "std::";
9343 NameForDiags += ComparisonCategories::getCategoryString(Kind);
9344 Diag(Loc, diag::err_implied_comparison_category_type_not_found)
9345 << NameForDiags;
9346 return QualType();
9347 }
9348
9349 assert(Info->Kind == Kind)((Info->Kind == Kind) ? static_cast<void> (0) : __assert_fail
("Info->Kind == Kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9349, __PRETTY_FUNCTION__))
;
9350 assert(Info->Record)((Info->Record) ? static_cast<void> (0) : __assert_fail
("Info->Record", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9350, __PRETTY_FUNCTION__))
;
9351
9352 // Update the Record decl in case we encountered a forward declaration on our
9353 // first pass. FIXME: This is a bit of a hack.
9354 if (Info->Record->hasDefinition())
9355 Info->Record = Info->Record->getDefinition();
9356
9357 // Use an elaborated type for diagnostics which has a name containing the
9358 // prepended 'std' namespace but not any inline namespace names.
9359 QualType TyForDiags = [&]() {
9360 auto *NNS =
9361 NestedNameSpecifier::Create(Context, nullptr, getStdNamespace());
9362 return Context.getElaboratedType(ETK_None, NNS, Info->getType());
9363 }();
9364
9365 if (RequireCompleteType(Loc, TyForDiags, diag::err_incomplete_type))
9366 return QualType();
9367
9368 InvalidSTLDiagnoser UnsupportedSTLError{*this, Loc, TyForDiags};
9369
9370 if (!Info->Record->isTriviallyCopyable())
9371 return UnsupportedSTLError(USS_NonTrivial);
9372
9373 for (const CXXBaseSpecifier &BaseSpec : Info->Record->bases()) {
9374 CXXRecordDecl *Base = BaseSpec.getType()->getAsCXXRecordDecl();
9375 // Tolerate empty base classes.
9376 if (Base->isEmpty())
9377 continue;
9378 // Reject STL implementations which have at least one non-empty base.
9379 return UnsupportedSTLError();
9380 }
9381
9382 // Check that the STL has implemented the types using a single integer field.
9383 // This expectation allows better codegen for builtin operators. We require:
9384 // (1) The class has exactly one field.
9385 // (2) The field is an integral or enumeration type.
9386 auto FIt = Info->Record->field_begin(), FEnd = Info->Record->field_end();
9387 if (std::distance(FIt, FEnd) != 1 ||
9388 !FIt->getType()->isIntegralOrEnumerationType()) {
9389 return UnsupportedSTLError();
9390 }
9391
9392 // Build each of the require values and store them in Info.
9393 for (ComparisonCategoryResult CCR :
9394 ComparisonCategories::getPossibleResultsForType(Kind)) {
9395 StringRef MemName = ComparisonCategories::getResultString(CCR);
9396 ComparisonCategoryInfo::ValueInfo *ValInfo = Info->lookupValueInfo(CCR);
9397
9398 if (!ValInfo)
9399 return UnsupportedSTLError(USS_MissingMember, MemName);
9400
9401 VarDecl *VD = ValInfo->VD;
9402 assert(VD && "should not be null!")((VD && "should not be null!") ? static_cast<void>
(0) : __assert_fail ("VD && \"should not be null!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9402, __PRETTY_FUNCTION__))
;
9403
9404 // Attempt to diagnose reasons why the STL definition of this type
9405 // might be foobar, including it failing to be a constant expression.
9406 // TODO Handle more ways the lookup or result can be invalid.
9407 if (!VD->isStaticDataMember() || !VD->isConstexpr() || !VD->hasInit() ||
9408 !VD->checkInitIsICE())
9409 return UnsupportedSTLError(USS_InvalidMember, MemName, VD);
9410
9411 // Attempt to evaluate the var decl as a constant expression and extract
9412 // the value of its first field as a ICE. If this fails, the STL
9413 // implementation is not supported.
9414 if (!ValInfo->hasValidIntValue())
9415 return UnsupportedSTLError();
9416
9417 MarkVariableReferenced(Loc, VD);
9418 }
9419
9420 // We've successfully built the required types and expressions. Update
9421 // the cache and return the newly cached value.
9422 FullyCheckedComparisonCategories[static_cast<unsigned>(Kind)] = true;
9423 return Info->getType();
9424}
9425
9426/// Retrieve the special "std" namespace, which may require us to
9427/// implicitly define the namespace.
9428NamespaceDecl *Sema::getOrCreateStdNamespace() {
9429 if (!StdNamespace) {
9430 // The "std" namespace has not yet been defined, so build one implicitly.
9431 StdNamespace = NamespaceDecl::Create(Context,
9432 Context.getTranslationUnitDecl(),
9433 /*Inline=*/false,
9434 SourceLocation(), SourceLocation(),
9435 &PP.getIdentifierTable().get("std"),
9436 /*PrevDecl=*/nullptr);
9437 getStdNamespace()->setImplicit(true);
9438 }
9439
9440 return getStdNamespace();
9441}
9442
9443bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
9444 assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "Looking for std::initializer_list outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9445, __PRETTY_FUNCTION__))
9445 "Looking for std::initializer_list outside of C++.")((getLangOpts().CPlusPlus && "Looking for std::initializer_list outside of C++."
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Looking for std::initializer_list outside of C++.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9445, __PRETTY_FUNCTION__))
;
9446
9447 // We're looking for implicit instantiations of
9448 // template <typename E> class std::initializer_list.
9449
9450 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
9451 return false;
9452
9453 ClassTemplateDecl *Template = nullptr;
9454 const TemplateArgument *Arguments = nullptr;
9455
9456 if (const RecordType *RT = Ty->getAs<RecordType>()) {
9457
9458 ClassTemplateSpecializationDecl *Specialization =
9459 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
9460 if (!Specialization)
9461 return false;
9462
9463 Template = Specialization->getSpecializedTemplate();
9464 Arguments = Specialization->getTemplateArgs().data();
9465 } else if (const TemplateSpecializationType *TST =
9466 Ty->getAs<TemplateSpecializationType>()) {
9467 Template = dyn_cast_or_null<ClassTemplateDecl>(
9468 TST->getTemplateName().getAsTemplateDecl());
9469 Arguments = TST->getArgs();
9470 }
9471 if (!Template)
9472 return false;
9473
9474 if (!StdInitializerList) {
9475 // Haven't recognized std::initializer_list yet, maybe this is it.
9476 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
9477 if (TemplateClass->getIdentifier() !=
9478 &PP.getIdentifierTable().get("initializer_list") ||
9479 !getStdNamespace()->InEnclosingNamespaceSetOf(
9480 TemplateClass->getDeclContext()))
9481 return false;
9482 // This is a template called std::initializer_list, but is it the right
9483 // template?
9484 TemplateParameterList *Params = Template->getTemplateParameters();
9485 if (Params->getMinRequiredArguments() != 1)
9486 return false;
9487 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
9488 return false;
9489
9490 // It's the right template.
9491 StdInitializerList = Template;
9492 }
9493
9494 if (Template->getCanonicalDecl() != StdInitializerList->getCanonicalDecl())
9495 return false;
9496
9497 // This is an instance of std::initializer_list. Find the argument type.
9498 if (Element)
9499 *Element = Arguments[0].getAsType();
9500 return true;
9501}
9502
9503static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
9504 NamespaceDecl *Std = S.getStdNamespace();
9505 if (!Std) {
9506 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
9507 return nullptr;
9508 }
9509
9510 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
9511 Loc, Sema::LookupOrdinaryName);
9512 if (!S.LookupQualifiedName(Result, Std)) {
9513 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
9514 return nullptr;
9515 }
9516 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
9517 if (!Template) {
9518 Result.suppressDiagnostics();
9519 // We found something weird. Complain about the first thing we found.
9520 NamedDecl *Found = *Result.begin();
9521 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
9522 return nullptr;
9523 }
9524
9525 // We found some template called std::initializer_list. Now verify that it's
9526 // correct.
9527 TemplateParameterList *Params = Template->getTemplateParameters();
9528 if (Params->getMinRequiredArguments() != 1 ||
9529 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
9530 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
9531 return nullptr;
9532 }
9533
9534 return Template;
9535}
9536
9537QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
9538 if (!StdInitializerList) {
9539 StdInitializerList = LookupStdInitializerList(*this, Loc);
9540 if (!StdInitializerList)
9541 return QualType();
9542 }
9543
9544 TemplateArgumentListInfo Args(Loc, Loc);
9545 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
9546 Context.getTrivialTypeSourceInfo(Element,
9547 Loc)));
9548 return Context.getCanonicalType(
9549 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
9550}
9551
9552bool Sema::isInitListConstructor(const FunctionDecl *Ctor) {
9553 // C++ [dcl.init.list]p2:
9554 // A constructor is an initializer-list constructor if its first parameter
9555 // is of type std::initializer_list<E> or reference to possibly cv-qualified
9556 // std::initializer_list<E> for some type E, and either there are no other
9557 // parameters or else all other parameters have default arguments.
9558 if (Ctor->getNumParams() < 1 ||
9559 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
9560 return false;
9561
9562 QualType ArgType = Ctor->getParamDecl(0)->getType();
9563 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
9564 ArgType = RT->getPointeeType().getUnqualifiedType();
9565
9566 return isStdInitializerList(ArgType, nullptr);
9567}
9568
9569/// Determine whether a using statement is in a context where it will be
9570/// apply in all contexts.
9571static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
9572 switch (CurContext->getDeclKind()) {
9573 case Decl::TranslationUnit:
9574 return true;
9575 case Decl::LinkageSpec:
9576 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
9577 default:
9578 return false;
9579 }
9580}
9581
9582namespace {
9583
9584// Callback to only accept typo corrections that are namespaces.
9585class NamespaceValidatorCCC final : public CorrectionCandidateCallback {
9586public:
9587 bool ValidateCandidate(const TypoCorrection &candidate) override {
9588 if (NamedDecl *ND = candidate.getCorrectionDecl())
9589 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
9590 return false;
9591 }
9592
9593 std::unique_ptr<CorrectionCandidateCallback> clone() override {
9594 return std::make_unique<NamespaceValidatorCCC>(*this);
9595 }
9596};
9597
9598}
9599
9600static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
9601 CXXScopeSpec &SS,
9602 SourceLocation IdentLoc,
9603 IdentifierInfo *Ident) {
9604 R.clear();
9605 NamespaceValidatorCCC CCC{};
9606 if (TypoCorrection Corrected =
9607 S.CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), Sc, &SS, CCC,
9608 Sema::CTK_ErrorRecovery)) {
9609 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
9610 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
9611 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
9612 Ident->getName().equals(CorrectedStr);
9613 S.diagnoseTypo(Corrected,
9614 S.PDiag(diag::err_using_directive_member_suggest)
9615 << Ident << DC << DroppedSpecifier << SS.getRange(),
9616 S.PDiag(diag::note_namespace_defined_here));
9617 } else {
9618 S.diagnoseTypo(Corrected,
9619 S.PDiag(diag::err_using_directive_suggest) << Ident,
9620 S.PDiag(diag::note_namespace_defined_here));
9621 }
9622 R.addDecl(Corrected.getFoundDecl());
9623 return true;
9624 }
9625 return false;
9626}
9627
9628Decl *Sema::ActOnUsingDirective(Scope *S, SourceLocation UsingLoc,
9629 SourceLocation NamespcLoc, CXXScopeSpec &SS,
9630 SourceLocation IdentLoc,
9631 IdentifierInfo *NamespcName,
9632 const ParsedAttributesView &AttrList) {
9633 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((!SS.isInvalid() && "Invalid CXXScopeSpec.") ? static_cast
<void> (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9633, __PRETTY_FUNCTION__))
;
9634 assert(NamespcName && "Invalid NamespcName.")((NamespcName && "Invalid NamespcName.") ? static_cast
<void> (0) : __assert_fail ("NamespcName && \"Invalid NamespcName.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9634, __PRETTY_FUNCTION__))
;
9635 assert(IdentLoc.isValid() && "Invalid NamespceName location.")((IdentLoc.isValid() && "Invalid NamespceName location."
) ? static_cast<void> (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid NamespceName location.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9635, __PRETTY_FUNCTION__))
;
9636
9637 // This can only happen along a recovery path.
9638 while (S->isTemplateParamScope())
9639 S = S->getParent();
9640 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((S->getFlags() & Scope::DeclScope && "Invalid Scope."
) ? static_cast<void> (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9640, __PRETTY_FUNCTION__))
;
9641
9642 UsingDirectiveDecl *UDir = nullptr;
9643 NestedNameSpecifier *Qualifier = nullptr;
9644 if (SS.isSet())
9645 Qualifier = SS.getScopeRep();
9646
9647 // Lookup namespace name.
9648 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
9649 LookupParsedName(R, S, &SS);
9650 if (R.isAmbiguous())
9651 return nullptr;
9652
9653 if (R.empty()) {
9654 R.clear();
9655 // Allow "using namespace std;" or "using namespace ::std;" even if
9656 // "std" hasn't been defined yet, for GCC compatibility.
9657 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
9658 NamespcName->isStr("std")) {
9659 Diag(IdentLoc, diag::ext_using_undefined_std);
9660 R.addDecl(getOrCreateStdNamespace());
9661 R.resolveKind();
9662 }
9663 // Otherwise, attempt typo correction.
9664 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
9665 }
9666
9667 if (!R.empty()) {
9668 NamedDecl *Named = R.getRepresentativeDecl();
9669 NamespaceDecl *NS = R.getAsSingle<NamespaceDecl>();
9670 assert(NS && "expected namespace decl")((NS && "expected namespace decl") ? static_cast<void
> (0) : __assert_fail ("NS && \"expected namespace decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9670, __PRETTY_FUNCTION__))
;
9671
9672 // The use of a nested name specifier may trigger deprecation warnings.
9673 DiagnoseUseOfDecl(Named, IdentLoc);
9674
9675 // C++ [namespace.udir]p1:
9676 // A using-directive specifies that the names in the nominated
9677 // namespace can be used in the scope in which the
9678 // using-directive appears after the using-directive. During
9679 // unqualified name lookup (3.4.1), the names appear as if they
9680 // were declared in the nearest enclosing namespace which
9681 // contains both the using-directive and the nominated
9682 // namespace. [Note: in this context, "contains" means "contains
9683 // directly or indirectly". ]
9684
9685 // Find enclosing context containing both using-directive and
9686 // nominated namespace.
9687 DeclContext *CommonAncestor = NS;
9688 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
9689 CommonAncestor = CommonAncestor->getParent();
9690
9691 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
9692 SS.getWithLocInContext(Context),
9693 IdentLoc, Named, CommonAncestor);
9694
9695 if (IsUsingDirectiveInToplevelContext(CurContext) &&
9696 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
9697 Diag(IdentLoc, diag::warn_using_directive_in_header);
9698 }
9699
9700 PushUsingDirective(S, UDir);
9701 } else {
9702 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
9703 }
9704
9705 if (UDir)
9706 ProcessDeclAttributeList(S, UDir, AttrList);
9707
9708 return UDir;
9709}
9710
9711void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
9712 // If the scope has an associated entity and the using directive is at
9713 // namespace or translation unit scope, add the UsingDirectiveDecl into
9714 // its lookup structure so qualified name lookup can find it.
9715 DeclContext *Ctx = S->getEntity();
9716 if (Ctx && !Ctx->isFunctionOrMethod())
9717 Ctx->addDecl(UDir);
9718 else
9719 // Otherwise, it is at block scope. The using-directives will affect lookup
9720 // only to the end of the scope.
9721 S->PushUsingDirective(UDir);
9722}
9723
9724Decl *Sema::ActOnUsingDeclaration(Scope *S, AccessSpecifier AS,
9725 SourceLocation UsingLoc,
9726 SourceLocation TypenameLoc, CXXScopeSpec &SS,
9727 UnqualifiedId &Name,
9728 SourceLocation EllipsisLoc,
9729 const ParsedAttributesView &AttrList) {
9730 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.")((S->getFlags() & Scope::DeclScope && "Invalid Scope."
) ? static_cast<void> (0) : __assert_fail ("S->getFlags() & Scope::DeclScope && \"Invalid Scope.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9730, __PRETTY_FUNCTION__))
;
9731
9732 if (SS.isEmpty()) {
9733 Diag(Name.getBeginLoc(), diag::err_using_requires_qualname);
9734 return nullptr;
9735 }
9736
9737 switch (Name.getKind()) {
9738 case UnqualifiedIdKind::IK_ImplicitSelfParam:
9739 case UnqualifiedIdKind::IK_Identifier:
9740 case UnqualifiedIdKind::IK_OperatorFunctionId:
9741 case UnqualifiedIdKind::IK_LiteralOperatorId:
9742 case UnqualifiedIdKind::IK_ConversionFunctionId:
9743 break;
9744
9745 case UnqualifiedIdKind::IK_ConstructorName:
9746 case UnqualifiedIdKind::IK_ConstructorTemplateId:
9747 // C++11 inheriting constructors.
9748 Diag(Name.getBeginLoc(),
9749 getLangOpts().CPlusPlus11
9750 ? diag::warn_cxx98_compat_using_decl_constructor
9751 : diag::err_using_decl_constructor)
9752 << SS.getRange();
9753
9754 if (getLangOpts().CPlusPlus11) break;
9755
9756 return nullptr;
9757
9758 case UnqualifiedIdKind::IK_DestructorName:
9759 Diag(Name.getBeginLoc(), diag::err_using_decl_destructor) << SS.getRange();
9760 return nullptr;
9761
9762 case UnqualifiedIdKind::IK_TemplateId:
9763 Diag(Name.getBeginLoc(), diag::err_using_decl_template_id)
9764 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
9765 return nullptr;
9766
9767 case UnqualifiedIdKind::IK_DeductionGuideName:
9768 llvm_unreachable("cannot parse qualified deduction guide name")::llvm::llvm_unreachable_internal("cannot parse qualified deduction guide name"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9768)
;
9769 }
9770
9771 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
9772 DeclarationName TargetName = TargetNameInfo.getName();
9773 if (!TargetName)
9774 return nullptr;
9775
9776 // Warn about access declarations.
9777 if (UsingLoc.isInvalid()) {
9778 Diag(Name.getBeginLoc(), getLangOpts().CPlusPlus11
9779 ? diag::err_access_decl
9780 : diag::warn_access_decl_deprecated)
9781 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
9782 }
9783
9784 if (EllipsisLoc.isInvalid()) {
9785 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
9786 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
9787 return nullptr;
9788 } else {
9789 if (!SS.getScopeRep()->containsUnexpandedParameterPack() &&
9790 !TargetNameInfo.containsUnexpandedParameterPack()) {
9791 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
9792 << SourceRange(SS.getBeginLoc(), TargetNameInfo.getEndLoc());
9793 EllipsisLoc = SourceLocation();
9794 }
9795 }
9796
9797 NamedDecl *UD =
9798 BuildUsingDeclaration(S, AS, UsingLoc, TypenameLoc.isValid(), TypenameLoc,
9799 SS, TargetNameInfo, EllipsisLoc, AttrList,
9800 /*IsInstantiation*/false);
9801 if (UD)
9802 PushOnScopeChains(UD, S, /*AddToContext*/ false);
9803
9804 return UD;
9805}
9806
9807/// Determine whether a using declaration considers the given
9808/// declarations as "equivalent", e.g., if they are redeclarations of
9809/// the same entity or are both typedefs of the same type.
9810static bool
9811IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
9812 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
9813 return true;
9814
9815 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
9816 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
9817 return Context.hasSameType(TD1->getUnderlyingType(),
9818 TD2->getUnderlyingType());
9819
9820 return false;
9821}
9822
9823
9824/// Determines whether to create a using shadow decl for a particular
9825/// decl, given the set of decls existing prior to this using lookup.
9826bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
9827 const LookupResult &Previous,
9828 UsingShadowDecl *&PrevShadow) {
9829 // Diagnose finding a decl which is not from a base class of the
9830 // current class. We do this now because there are cases where this
9831 // function will silently decide not to build a shadow decl, which
9832 // will pre-empt further diagnostics.
9833 //
9834 // We don't need to do this in C++11 because we do the check once on
9835 // the qualifier.
9836 //
9837 // FIXME: diagnose the following if we care enough:
9838 // struct A { int foo; };
9839 // struct B : A { using A::foo; };
9840 // template <class T> struct C : A {};
9841 // template <class T> struct D : C<T> { using B::foo; } // <---
9842 // This is invalid (during instantiation) in C++03 because B::foo
9843 // resolves to the using decl in B, which is not a base class of D<T>.
9844 // We can't diagnose it immediately because C<T> is an unknown
9845 // specialization. The UsingShadowDecl in D<T> then points directly
9846 // to A::foo, which will look well-formed when we instantiate.
9847 // The right solution is to not collapse the shadow-decl chain.
9848 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
9849 DeclContext *OrigDC = Orig->getDeclContext();
9850
9851 // Handle enums and anonymous structs.
9852 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
9853 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
9854 while (OrigRec->isAnonymousStructOrUnion())
9855 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
9856
9857 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
9858 if (OrigDC == CurContext) {
9859 Diag(Using->getLocation(),
9860 diag::err_using_decl_nested_name_specifier_is_current_class)
9861 << Using->getQualifierLoc().getSourceRange();
9862 Diag(Orig->getLocation(), diag::note_using_decl_target);
9863 Using->setInvalidDecl();
9864 return true;
9865 }
9866
9867 Diag(Using->getQualifierLoc().getBeginLoc(),
9868 diag::err_using_decl_nested_name_specifier_is_not_base_class)
9869 << Using->getQualifier()
9870 << cast<CXXRecordDecl>(CurContext)
9871 << Using->getQualifierLoc().getSourceRange();
9872 Diag(Orig->getLocation(), diag::note_using_decl_target);
9873 Using->setInvalidDecl();
9874 return true;
9875 }
9876 }
9877
9878 if (Previous.empty()) return false;
9879
9880 NamedDecl *Target = Orig;
9881 if (isa<UsingShadowDecl>(Target))
9882 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
9883
9884 // If the target happens to be one of the previous declarations, we
9885 // don't have a conflict.
9886 //
9887 // FIXME: but we might be increasing its access, in which case we
9888 // should redeclare it.
9889 NamedDecl *NonTag = nullptr, *Tag = nullptr;
9890 bool FoundEquivalentDecl = false;
9891 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
9892 I != E; ++I) {
9893 NamedDecl *D = (*I)->getUnderlyingDecl();
9894 // We can have UsingDecls in our Previous results because we use the same
9895 // LookupResult for checking whether the UsingDecl itself is a valid
9896 // redeclaration.
9897 if (isa<UsingDecl>(D) || isa<UsingPackDecl>(D))
9898 continue;
9899
9900 if (auto *RD = dyn_cast<CXXRecordDecl>(D)) {
9901 // C++ [class.mem]p19:
9902 // If T is the name of a class, then [every named member other than
9903 // a non-static data member] shall have a name different from T
9904 if (RD->isInjectedClassName() && !isa<FieldDecl>(Target) &&
9905 !isa<IndirectFieldDecl>(Target) &&
9906 !isa<UnresolvedUsingValueDecl>(Target) &&
9907 DiagnoseClassNameShadow(
9908 CurContext,
9909 DeclarationNameInfo(Using->getDeclName(), Using->getLocation())))
9910 return true;
9911 }
9912
9913 if (IsEquivalentForUsingDecl(Context, D, Target)) {
9914 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
9915 PrevShadow = Shadow;
9916 FoundEquivalentDecl = true;
9917 } else if (isEquivalentInternalLinkageDeclaration(D, Target)) {
9918 // We don't conflict with an existing using shadow decl of an equivalent
9919 // declaration, but we're not a redeclaration of it.
9920 FoundEquivalentDecl = true;
9921 }
9922
9923 if (isVisible(D))
9924 (isa<TagDecl>(D) ? Tag : NonTag) = D;
9925 }
9926
9927 if (FoundEquivalentDecl)
9928 return false;
9929
9930 if (FunctionDecl *FD = Target->getAsFunction()) {
9931 NamedDecl *OldDecl = nullptr;
9932 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
9933 /*IsForUsingDecl*/ true)) {
9934 case Ovl_Overload:
9935 return false;
9936
9937 case Ovl_NonFunction:
9938 Diag(Using->getLocation(), diag::err_using_decl_conflict);
9939 break;
9940
9941 // We found a decl with the exact signature.
9942 case Ovl_Match:
9943 // If we're in a record, we want to hide the target, so we
9944 // return true (without a diagnostic) to tell the caller not to
9945 // build a shadow decl.
9946 if (CurContext->isRecord())
9947 return true;
9948
9949 // If we're not in a record, this is an error.
9950 Diag(Using->getLocation(), diag::err_using_decl_conflict);
9951 break;
9952 }
9953
9954 Diag(Target->getLocation(), diag::note_using_decl_target);
9955 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
9956 Using->setInvalidDecl();
9957 return true;
9958 }
9959
9960 // Target is not a function.
9961
9962 if (isa<TagDecl>(Target)) {
9963 // No conflict between a tag and a non-tag.
9964 if (!Tag) return false;
9965
9966 Diag(Using->getLocation(), diag::err_using_decl_conflict);
9967 Diag(Target->getLocation(), diag::note_using_decl_target);
9968 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
9969 Using->setInvalidDecl();
9970 return true;
9971 }
9972
9973 // No conflict between a tag and a non-tag.
9974 if (!NonTag) return false;
9975
9976 Diag(Using->getLocation(), diag::err_using_decl_conflict);
9977 Diag(Target->getLocation(), diag::note_using_decl_target);
9978 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
9979 Using->setInvalidDecl();
9980 return true;
9981}
9982
9983/// Determine whether a direct base class is a virtual base class.
9984static bool isVirtualDirectBase(CXXRecordDecl *Derived, CXXRecordDecl *Base) {
9985 if (!Derived->getNumVBases())
9986 return false;
9987 for (auto &B : Derived->bases())
9988 if (B.getType()->getAsCXXRecordDecl() == Base)
9989 return B.isVirtual();
9990 llvm_unreachable("not a direct base class")::llvm::llvm_unreachable_internal("not a direct base class", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 9990)
;
9991}
9992
9993/// Builds a shadow declaration corresponding to a 'using' declaration.
9994UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
9995 UsingDecl *UD,
9996 NamedDecl *Orig,
9997 UsingShadowDecl *PrevDecl) {
9998 // If we resolved to another shadow declaration, just coalesce them.
9999 NamedDecl *Target = Orig;
10000 if (isa<UsingShadowDecl>(Target)) {
10001 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
10002 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration")((!isa<UsingShadowDecl>(Target) && "nested shadow declaration"
) ? static_cast<void> (0) : __assert_fail ("!isa<UsingShadowDecl>(Target) && \"nested shadow declaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10002, __PRETTY_FUNCTION__))
;
10003 }
10004
10005 NamedDecl *NonTemplateTarget = Target;
10006 if (auto *TargetTD = dyn_cast<TemplateDecl>(Target))
10007 NonTemplateTarget = TargetTD->getTemplatedDecl();
10008
10009 UsingShadowDecl *Shadow;
10010 if (NonTemplateTarget && isa<CXXConstructorDecl>(NonTemplateTarget)) {
10011 bool IsVirtualBase =
10012 isVirtualDirectBase(cast<CXXRecordDecl>(CurContext),
10013 UD->getQualifier()->getAsRecordDecl());
10014 Shadow = ConstructorUsingShadowDecl::Create(
10015 Context, CurContext, UD->getLocation(), UD, Orig, IsVirtualBase);
10016 } else {
10017 Shadow = UsingShadowDecl::Create(Context, CurContext, UD->getLocation(), UD,
10018 Target);
10019 }
10020 UD->addShadowDecl(Shadow);
10021
10022 Shadow->setAccess(UD->getAccess());
10023 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
10024 Shadow->setInvalidDecl();
10025
10026 Shadow->setPreviousDecl(PrevDecl);
10027
10028 if (S)
10029 PushOnScopeChains(Shadow, S);
10030 else
10031 CurContext->addDecl(Shadow);
10032
10033
10034 return Shadow;
10035}
10036
10037/// Hides a using shadow declaration. This is required by the current
10038/// using-decl implementation when a resolvable using declaration in a
10039/// class is followed by a declaration which would hide or override
10040/// one or more of the using decl's targets; for example:
10041///
10042/// struct Base { void foo(int); };
10043/// struct Derived : Base {
10044/// using Base::foo;
10045/// void foo(int);
10046/// };
10047///
10048/// The governing language is C++03 [namespace.udecl]p12:
10049///
10050/// When a using-declaration brings names from a base class into a
10051/// derived class scope, member functions in the derived class
10052/// override and/or hide member functions with the same name and
10053/// parameter types in a base class (rather than conflicting).
10054///
10055/// There are two ways to implement this:
10056/// (1) optimistically create shadow decls when they're not hidden
10057/// by existing declarations, or
10058/// (2) don't create any shadow decls (or at least don't make them
10059/// visible) until we've fully parsed/instantiated the class.
10060/// The problem with (1) is that we might have to retroactively remove
10061/// a shadow decl, which requires several O(n) operations because the
10062/// decl structures are (very reasonably) not designed for removal.
10063/// (2) avoids this but is very fiddly and phase-dependent.
10064void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
10065 if (Shadow->getDeclName().getNameKind() ==
10066 DeclarationName::CXXConversionFunctionName)
10067 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
10068
10069 // Remove it from the DeclContext...
10070 Shadow->getDeclContext()->removeDecl(Shadow);
10071
10072 // ...and the scope, if applicable...
10073 if (S) {
10074 S->RemoveDecl(Shadow);
10075 IdResolver.RemoveDecl(Shadow);
10076 }
10077
10078 // ...and the using decl.
10079 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
10080
10081 // TODO: complain somehow if Shadow was used. It shouldn't
10082 // be possible for this to happen, because...?
10083}
10084
10085/// Find the base specifier for a base class with the given type.
10086static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
10087 QualType DesiredBase,
10088 bool &AnyDependentBases) {
10089 // Check whether the named type is a direct base class.
10090 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified()
10091 .getUnqualifiedType();
10092 for (auto &Base : Derived->bases()) {
10093 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
10094 if (CanonicalDesiredBase == BaseType)
10095 return &Base;
10096 if (BaseType->isDependentType())
10097 AnyDependentBases = true;
10098 }
10099 return nullptr;
10100}
10101
10102namespace {
10103class UsingValidatorCCC final : public CorrectionCandidateCallback {
10104public:
10105 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
10106 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
10107 : HasTypenameKeyword(HasTypenameKeyword),
10108 IsInstantiation(IsInstantiation), OldNNS(NNS),
10109 RequireMemberOf(RequireMemberOf) {}
10110
10111 bool ValidateCandidate(const TypoCorrection &Candidate) override {
10112 NamedDecl *ND = Candidate.getCorrectionDecl();
10113
10114 // Keywords are not valid here.
10115 if (!ND || isa<NamespaceDecl>(ND))
10116 return false;
10117
10118 // Completely unqualified names are invalid for a 'using' declaration.
10119 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
10120 return false;
10121
10122 // FIXME: Don't correct to a name that CheckUsingDeclRedeclaration would
10123 // reject.
10124
10125 if (RequireMemberOf) {
10126 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
10127 if (FoundRecord && FoundRecord->isInjectedClassName()) {
10128 // No-one ever wants a using-declaration to name an injected-class-name
10129 // of a base class, unless they're declaring an inheriting constructor.
10130 ASTContext &Ctx = ND->getASTContext();
10131 if (!Ctx.getLangOpts().CPlusPlus11)
10132 return false;
10133 QualType FoundType = Ctx.getRecordType(FoundRecord);
10134
10135 // Check that the injected-class-name is named as a member of its own
10136 // type; we don't want to suggest 'using Derived::Base;', since that
10137 // means something else.
10138 NestedNameSpecifier *Specifier =
10139 Candidate.WillReplaceSpecifier()
10140 ? Candidate.getCorrectionSpecifier()
10141 : OldNNS;
10142 if (!Specifier->getAsType() ||
10143 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
10144 return false;
10145
10146 // Check that this inheriting constructor declaration actually names a
10147 // direct base class of the current class.
10148 bool AnyDependentBases = false;
10149 if (!findDirectBaseWithType(RequireMemberOf,
10150 Ctx.getRecordType(FoundRecord),
10151 AnyDependentBases) &&
10152 !AnyDependentBases)
10153 return false;
10154 } else {
10155 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
10156 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
10157 return false;
10158
10159 // FIXME: Check that the base class member is accessible?
10160 }
10161 } else {
10162 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
10163 if (FoundRecord && FoundRecord->isInjectedClassName())
10164 return false;
10165 }
10166
10167 if (isa<TypeDecl>(ND))
10168 return HasTypenameKeyword || !IsInstantiation;
10169
10170 return !HasTypenameKeyword;
10171 }
10172
10173 std::unique_ptr<CorrectionCandidateCallback> clone() override {
10174 return std::make_unique<UsingValidatorCCC>(*this);
10175 }
10176
10177private:
10178 bool HasTypenameKeyword;
10179 bool IsInstantiation;
10180 NestedNameSpecifier *OldNNS;
10181 CXXRecordDecl *RequireMemberOf;
10182};
10183} // end anonymous namespace
10184
10185/// Builds a using declaration.
10186///
10187/// \param IsInstantiation - Whether this call arises from an
10188/// instantiation of an unresolved using declaration. We treat
10189/// the lookup differently for these declarations.
10190NamedDecl *Sema::BuildUsingDeclaration(
10191 Scope *S, AccessSpecifier AS, SourceLocation UsingLoc,
10192 bool HasTypenameKeyword, SourceLocation TypenameLoc, CXXScopeSpec &SS,
10193 DeclarationNameInfo NameInfo, SourceLocation EllipsisLoc,
10194 const ParsedAttributesView &AttrList, bool IsInstantiation) {
10195 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.")((!SS.isInvalid() && "Invalid CXXScopeSpec.") ? static_cast
<void> (0) : __assert_fail ("!SS.isInvalid() && \"Invalid CXXScopeSpec.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10195, __PRETTY_FUNCTION__))
;
10196 SourceLocation IdentLoc = NameInfo.getLoc();
10197 assert(IdentLoc.isValid() && "Invalid TargetName location.")((IdentLoc.isValid() && "Invalid TargetName location."
) ? static_cast<void> (0) : __assert_fail ("IdentLoc.isValid() && \"Invalid TargetName location.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10197, __PRETTY_FUNCTION__))
;
10198
10199 // FIXME: We ignore attributes for now.
10200
10201 // For an inheriting constructor declaration, the name of the using
10202 // declaration is the name of a constructor in this class, not in the
10203 // base class.
10204 DeclarationNameInfo UsingName = NameInfo;
10205 if (UsingName.getName().getNameKind() == DeclarationName::CXXConstructorName)
10206 if (auto *RD = dyn_cast<CXXRecordDecl>(CurContext))
10207 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
10208 Context.getCanonicalType(Context.getRecordType(RD))));
10209
10210 // Do the redeclaration lookup in the current scope.
10211 LookupResult Previous(*this, UsingName, LookupUsingDeclName,
10212 ForVisibleRedeclaration);
10213 Previous.setHideTags(false);
10214 if (S) {
10215 LookupName(Previous, S);
10216
10217 // It is really dumb that we have to do this.
10218 LookupResult::Filter F = Previous.makeFilter();
10219 while (F.hasNext()) {
10220 NamedDecl *D = F.next();
10221 if (!isDeclInScope(D, CurContext, S))
10222 F.erase();
10223 // If we found a local extern declaration that's not ordinarily visible,
10224 // and this declaration is being added to a non-block scope, ignore it.
10225 // We're only checking for scope conflicts here, not also for violations
10226 // of the linkage rules.
10227 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
10228 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
10229 F.erase();
10230 }
10231 F.done();
10232 } else {
10233 assert(IsInstantiation && "no scope in non-instantiation")((IsInstantiation && "no scope in non-instantiation")
? static_cast<void> (0) : __assert_fail ("IsInstantiation && \"no scope in non-instantiation\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10233, __PRETTY_FUNCTION__))
;
10234 if (CurContext->isRecord())
10235 LookupQualifiedName(Previous, CurContext);
10236 else {
10237 // No redeclaration check is needed here; in non-member contexts we
10238 // diagnosed all possible conflicts with other using-declarations when
10239 // building the template:
10240 //
10241 // For a dependent non-type using declaration, the only valid case is
10242 // if we instantiate to a single enumerator. We check for conflicts
10243 // between shadow declarations we introduce, and we check in the template
10244 // definition for conflicts between a non-type using declaration and any
10245 // other declaration, which together covers all cases.
10246 //
10247 // A dependent typename using declaration will never successfully
10248 // instantiate, since it will always name a class member, so we reject
10249 // that in the template definition.
10250 }
10251 }
10252
10253 // Check for invalid redeclarations.
10254 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
10255 SS, IdentLoc, Previous))
10256 return nullptr;
10257
10258 // Check for bad qualifiers.
10259 if (CheckUsingDeclQualifier(UsingLoc, HasTypenameKeyword, SS, NameInfo,
10260 IdentLoc))
10261 return nullptr;
10262
10263 DeclContext *LookupContext = computeDeclContext(SS);
10264 NamedDecl *D;
10265 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10266 if (!LookupContext || EllipsisLoc.isValid()) {
10267 if (HasTypenameKeyword) {
10268 // FIXME: not all declaration name kinds are legal here
10269 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
10270 UsingLoc, TypenameLoc,
10271 QualifierLoc,
10272 IdentLoc, NameInfo.getName(),
10273 EllipsisLoc);
10274 } else {
10275 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
10276 QualifierLoc, NameInfo, EllipsisLoc);
10277 }
10278 D->setAccess(AS);
10279 CurContext->addDecl(D);
10280 return D;
10281 }
10282
10283 auto Build = [&](bool Invalid) {
10284 UsingDecl *UD =
10285 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
10286 UsingName, HasTypenameKeyword);
10287 UD->setAccess(AS);
10288 CurContext->addDecl(UD);
10289 UD->setInvalidDecl(Invalid);
10290 return UD;
10291 };
10292 auto BuildInvalid = [&]{ return Build(true); };
10293 auto BuildValid = [&]{ return Build(false); };
10294
10295 if (RequireCompleteDeclContext(SS, LookupContext))
10296 return BuildInvalid();
10297
10298 // Look up the target name.
10299 LookupResult R(*this, NameInfo, LookupOrdinaryName);
10300
10301 // Unlike most lookups, we don't always want to hide tag
10302 // declarations: tag names are visible through the using declaration
10303 // even if hidden by ordinary names, *except* in a dependent context
10304 // where it's important for the sanity of two-phase lookup.
10305 if (!IsInstantiation)
10306 R.setHideTags(false);
10307
10308 // For the purposes of this lookup, we have a base object type
10309 // equal to that of the current context.
10310 if (CurContext->isRecord()) {
10311 R.setBaseObjectType(
10312 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
10313 }
10314
10315 LookupQualifiedName(R, LookupContext);
10316
10317 // Try to correct typos if possible. If constructor name lookup finds no
10318 // results, that means the named class has no explicit constructors, and we
10319 // suppressed declaring implicit ones (probably because it's dependent or
10320 // invalid).
10321 if (R.empty() &&
10322 NameInfo.getName().getNameKind() != DeclarationName::CXXConstructorName) {
10323 // HACK: Work around a bug in libstdc++'s detection of ::gets. Sometimes
10324 // it will believe that glibc provides a ::gets in cases where it does not,
10325 // and will try to pull it into namespace std with a using-declaration.
10326 // Just ignore the using-declaration in that case.
10327 auto *II = NameInfo.getName().getAsIdentifierInfo();
10328 if (getLangOpts().CPlusPlus14 && II && II->isStr("gets") &&
10329 CurContext->isStdNamespace() &&
10330 isa<TranslationUnitDecl>(LookupContext) &&
10331 getSourceManager().isInSystemHeader(UsingLoc))
10332 return nullptr;
10333 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
10334 dyn_cast<CXXRecordDecl>(CurContext));
10335 if (TypoCorrection Corrected =
10336 CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
10337 CTK_ErrorRecovery)) {
10338 // We reject candidates where DroppedSpecifier == true, hence the
10339 // literal '0' below.
10340 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
10341 << NameInfo.getName() << LookupContext << 0
10342 << SS.getRange());
10343
10344 // If we picked a correction with no attached Decl we can't do anything
10345 // useful with it, bail out.
10346 NamedDecl *ND = Corrected.getCorrectionDecl();
10347 if (!ND)
10348 return BuildInvalid();
10349
10350 // If we corrected to an inheriting constructor, handle it as one.
10351 auto *RD = dyn_cast<CXXRecordDecl>(ND);
10352 if (RD && RD->isInjectedClassName()) {
10353 // The parent of the injected class name is the class itself.
10354 RD = cast<CXXRecordDecl>(RD->getParent());
10355
10356 // Fix up the information we'll use to build the using declaration.
10357 if (Corrected.WillReplaceSpecifier()) {
10358 NestedNameSpecifierLocBuilder Builder;
10359 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
10360 QualifierLoc.getSourceRange());
10361 QualifierLoc = Builder.getWithLocInContext(Context);
10362 }
10363
10364 // In this case, the name we introduce is the name of a derived class
10365 // constructor.
10366 auto *CurClass = cast<CXXRecordDecl>(CurContext);
10367 UsingName.setName(Context.DeclarationNames.getCXXConstructorName(
10368 Context.getCanonicalType(Context.getRecordType(CurClass))));
10369 UsingName.setNamedTypeInfo(nullptr);
10370 for (auto *Ctor : LookupConstructors(RD))
10371 R.addDecl(Ctor);
10372 R.resolveKind();
10373 } else {
10374 // FIXME: Pick up all the declarations if we found an overloaded
10375 // function.
10376 UsingName.setName(ND->getDeclName());
10377 R.addDecl(ND);
10378 }
10379 } else {
10380 Diag(IdentLoc, diag::err_no_member)
10381 << NameInfo.getName() << LookupContext << SS.getRange();
10382 return BuildInvalid();
10383 }
10384 }
10385
10386 if (R.isAmbiguous())
10387 return BuildInvalid();
10388
10389 if (HasTypenameKeyword) {
10390 // If we asked for a typename and got a non-type decl, error out.
10391 if (!R.getAsSingle<TypeDecl>()) {
10392 Diag(IdentLoc, diag::err_using_typename_non_type);
10393 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
10394 Diag((*I)->getUnderlyingDecl()->getLocation(),
10395 diag::note_using_decl_target);
10396 return BuildInvalid();
10397 }
10398 } else {
10399 // If we asked for a non-typename and we got a type, error out,
10400 // but only if this is an instantiation of an unresolved using
10401 // decl. Otherwise just silently find the type name.
10402 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
10403 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
10404 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
10405 return BuildInvalid();
10406 }
10407 }
10408
10409 // C++14 [namespace.udecl]p6:
10410 // A using-declaration shall not name a namespace.
10411 if (R.getAsSingle<NamespaceDecl>()) {
10412 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
10413 << SS.getRange();
10414 return BuildInvalid();
10415 }
10416
10417 // C++14 [namespace.udecl]p7:
10418 // A using-declaration shall not name a scoped enumerator.
10419 if (auto *ED = R.getAsSingle<EnumConstantDecl>()) {
10420 if (cast<EnumDecl>(ED->getDeclContext())->isScoped()) {
10421 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_scoped_enum)
10422 << SS.getRange();
10423 return BuildInvalid();
10424 }
10425 }
10426
10427 UsingDecl *UD = BuildValid();
10428
10429 // Some additional rules apply to inheriting constructors.
10430 if (UsingName.getName().getNameKind() ==
10431 DeclarationName::CXXConstructorName) {
10432 // Suppress access diagnostics; the access check is instead performed at the
10433 // point of use for an inheriting constructor.
10434 R.suppressDiagnostics();
10435 if (CheckInheritingConstructorUsingDecl(UD))
10436 return UD;
10437 }
10438
10439 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
10440 UsingShadowDecl *PrevDecl = nullptr;
10441 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
10442 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
10443 }
10444
10445 return UD;
10446}
10447
10448NamedDecl *Sema::BuildUsingPackDecl(NamedDecl *InstantiatedFrom,
10449 ArrayRef<NamedDecl *> Expansions) {
10450 assert(isa<UnresolvedUsingValueDecl>(InstantiatedFrom) ||((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10452, __PRETTY_FUNCTION__))
10451 isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) ||((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10452, __PRETTY_FUNCTION__))
10452 isa<UsingPackDecl>(InstantiatedFrom))((isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa
<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<
UsingPackDecl>(InstantiatedFrom)) ? static_cast<void>
(0) : __assert_fail ("isa<UnresolvedUsingValueDecl>(InstantiatedFrom) || isa<UnresolvedUsingTypenameDecl>(InstantiatedFrom) || isa<UsingPackDecl>(InstantiatedFrom)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10452, __PRETTY_FUNCTION__))
;
10453
10454 auto *UPD =
10455 UsingPackDecl::Create(Context, CurContext, InstantiatedFrom, Expansions);
10456 UPD->setAccess(InstantiatedFrom->getAccess());
10457 CurContext->addDecl(UPD);
10458 return UPD;
10459}
10460
10461/// Additional checks for a using declaration referring to a constructor name.
10462bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
10463 assert(!UD->hasTypename() && "expecting a constructor name")((!UD->hasTypename() && "expecting a constructor name"
) ? static_cast<void> (0) : __assert_fail ("!UD->hasTypename() && \"expecting a constructor name\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10463, __PRETTY_FUNCTION__))
;
10464
10465 const Type *SourceType = UD->getQualifier()->getAsType();
10466 assert(SourceType &&((SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? static_cast<void> (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10467, __PRETTY_FUNCTION__))
10467 "Using decl naming constructor doesn't have type in scope spec.")((SourceType && "Using decl naming constructor doesn't have type in scope spec."
) ? static_cast<void> (0) : __assert_fail ("SourceType && \"Using decl naming constructor doesn't have type in scope spec.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10467, __PRETTY_FUNCTION__))
;
10468 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
10469
10470 // Check whether the named type is a direct base class.
10471 bool AnyDependentBases = false;
10472 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
10473 AnyDependentBases);
10474 if (!Base && !AnyDependentBases) {
10475 Diag(UD->getUsingLoc(),
10476 diag::err_using_decl_constructor_not_in_direct_base)
10477 << UD->getNameInfo().getSourceRange()
10478 << QualType(SourceType, 0) << TargetClass;
10479 UD->setInvalidDecl();
10480 return true;
10481 }
10482
10483 if (Base)
10484 Base->setInheritConstructors();
10485
10486 return false;
10487}
10488
10489/// Checks that the given using declaration is not an invalid
10490/// redeclaration. Note that this is checking only for the using decl
10491/// itself, not for any ill-formedness among the UsingShadowDecls.
10492bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
10493 bool HasTypenameKeyword,
10494 const CXXScopeSpec &SS,
10495 SourceLocation NameLoc,
10496 const LookupResult &Prev) {
10497 NestedNameSpecifier *Qual = SS.getScopeRep();
10498
10499 // C++03 [namespace.udecl]p8:
10500 // C++0x [namespace.udecl]p10:
10501 // A using-declaration is a declaration and can therefore be used
10502 // repeatedly where (and only where) multiple declarations are
10503 // allowed.
10504 //
10505 // That's in non-member contexts.
10506 if (!CurContext->getRedeclContext()->isRecord()) {
10507 // A dependent qualifier outside a class can only ever resolve to an
10508 // enumeration type. Therefore it conflicts with any other non-type
10509 // declaration in the same scope.
10510 // FIXME: How should we check for dependent type-type conflicts at block
10511 // scope?
10512 if (Qual->isDependent() && !HasTypenameKeyword) {
10513 for (auto *D : Prev) {
10514 if (!isa<TypeDecl>(D) && !isa<UsingDecl>(D) && !isa<UsingPackDecl>(D)) {
10515 bool OldCouldBeEnumerator =
10516 isa<UnresolvedUsingValueDecl>(D) || isa<EnumConstantDecl>(D);
10517 Diag(NameLoc,
10518 OldCouldBeEnumerator ? diag::err_redefinition
10519 : diag::err_redefinition_different_kind)
10520 << Prev.getLookupName();
10521 Diag(D->getLocation(), diag::note_previous_definition);
10522 return true;
10523 }
10524 }
10525 }
10526 return false;
10527 }
10528
10529 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
10530 NamedDecl *D = *I;
10531
10532 bool DTypename;
10533 NestedNameSpecifier *DQual;
10534 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
10535 DTypename = UD->hasTypename();
10536 DQual = UD->getQualifier();
10537 } else if (UnresolvedUsingValueDecl *UD
10538 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
10539 DTypename = false;
10540 DQual = UD->getQualifier();
10541 } else if (UnresolvedUsingTypenameDecl *UD
10542 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
10543 DTypename = true;
10544 DQual = UD->getQualifier();
10545 } else continue;
10546
10547 // using decls differ if one says 'typename' and the other doesn't.
10548 // FIXME: non-dependent using decls?
10549 if (HasTypenameKeyword != DTypename) continue;
10550
10551 // using decls differ if they name different scopes (but note that
10552 // template instantiation can cause this check to trigger when it
10553 // didn't before instantiation).
10554 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
10555 Context.getCanonicalNestedNameSpecifier(DQual))
10556 continue;
10557
10558 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
10559 Diag(D->getLocation(), diag::note_using_decl) << 1;
10560 return true;
10561 }
10562
10563 return false;
10564}
10565
10566
10567/// Checks that the given nested-name qualifier used in a using decl
10568/// in the current context is appropriately related to the current
10569/// scope. If an error is found, diagnoses it and returns true.
10570bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
10571 bool HasTypename,
10572 const CXXScopeSpec &SS,
10573 const DeclarationNameInfo &NameInfo,
10574 SourceLocation NameLoc) {
10575 DeclContext *NamedContext = computeDeclContext(SS);
10576
10577 if (!CurContext->isRecord()) {
10578 // C++03 [namespace.udecl]p3:
10579 // C++0x [namespace.udecl]p8:
10580 // A using-declaration for a class member shall be a member-declaration.
10581
10582 // If we weren't able to compute a valid scope, it might validly be a
10583 // dependent class scope or a dependent enumeration unscoped scope. If
10584 // we have a 'typename' keyword, the scope must resolve to a class type.
10585 if ((HasTypename && !NamedContext) ||
10586 (NamedContext && NamedContext->getRedeclContext()->isRecord())) {
10587 auto *RD = NamedContext
10588 ? cast<CXXRecordDecl>(NamedContext->getRedeclContext())
10589 : nullptr;
10590 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
10591 RD = nullptr;
10592
10593 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
10594 << SS.getRange();
10595
10596 // If we have a complete, non-dependent source type, try to suggest a
10597 // way to get the same effect.
10598 if (!RD)
10599 return true;
10600
10601 // Find what this using-declaration was referring to.
10602 LookupResult R(*this, NameInfo, LookupOrdinaryName);
10603 R.setHideTags(false);
10604 R.suppressDiagnostics();
10605 LookupQualifiedName(R, RD);
10606
10607 if (R.getAsSingle<TypeDecl>()) {
10608 if (getLangOpts().CPlusPlus11) {
10609 // Convert 'using X::Y;' to 'using Y = X::Y;'.
10610 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
10611 << 0 // alias declaration
10612 << FixItHint::CreateInsertion(SS.getBeginLoc(),
10613 NameInfo.getName().getAsString() +
10614 " = ");
10615 } else {
10616 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
10617 SourceLocation InsertLoc = getLocForEndOfToken(NameInfo.getEndLoc());
10618 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
10619 << 1 // typedef declaration
10620 << FixItHint::CreateReplacement(UsingLoc, "typedef")
10621 << FixItHint::CreateInsertion(
10622 InsertLoc, " " + NameInfo.getName().getAsString());
10623 }
10624 } else if (R.getAsSingle<VarDecl>()) {
10625 // Don't provide a fixit outside C++11 mode; we don't want to suggest
10626 // repeating the type of the static data member here.
10627 FixItHint FixIt;
10628 if (getLangOpts().CPlusPlus11) {
10629 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
10630 FixIt = FixItHint::CreateReplacement(
10631 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
10632 }
10633
10634 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
10635 << 2 // reference declaration
10636 << FixIt;
10637 } else if (R.getAsSingle<EnumConstantDecl>()) {
10638 // Don't provide a fixit outside C++11 mode; we don't want to suggest
10639 // repeating the type of the enumeration here, and we can't do so if
10640 // the type is anonymous.
10641 FixItHint FixIt;
10642 if (getLangOpts().CPlusPlus11) {
10643 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
10644 FixIt = FixItHint::CreateReplacement(
10645 UsingLoc,
10646 "constexpr auto " + NameInfo.getName().getAsString() + " = ");
10647 }
10648
10649 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
10650 << (getLangOpts().CPlusPlus11 ? 4 : 3) // const[expr] variable
10651 << FixIt;
10652 }
10653 return true;
10654 }
10655
10656 // Otherwise, this might be valid.
10657 return false;
10658 }
10659
10660 // The current scope is a record.
10661
10662 // If the named context is dependent, we can't decide much.
10663 if (!NamedContext) {
10664 // FIXME: in C++0x, we can diagnose if we can prove that the
10665 // nested-name-specifier does not refer to a base class, which is
10666 // still possible in some cases.
10667
10668 // Otherwise we have to conservatively report that things might be
10669 // okay.
10670 return false;
10671 }
10672
10673 if (!NamedContext->isRecord()) {
10674 // Ideally this would point at the last name in the specifier,
10675 // but we don't have that level of source info.
10676 Diag(SS.getRange().getBegin(),
10677 diag::err_using_decl_nested_name_specifier_is_not_class)
10678 << SS.getScopeRep() << SS.getRange();
10679 return true;
10680 }
10681
10682 if (!NamedContext->isDependentContext() &&
10683 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
10684 return true;
10685
10686 if (getLangOpts().CPlusPlus11) {
10687 // C++11 [namespace.udecl]p3:
10688 // In a using-declaration used as a member-declaration, the
10689 // nested-name-specifier shall name a base class of the class
10690 // being defined.
10691
10692 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
10693 cast<CXXRecordDecl>(NamedContext))) {
10694 if (CurContext == NamedContext) {
10695 Diag(NameLoc,
10696 diag::err_using_decl_nested_name_specifier_is_current_class)
10697 << SS.getRange();
10698 return true;
10699 }
10700
10701 if (!cast<CXXRecordDecl>(NamedContext)->isInvalidDecl()) {
10702 Diag(SS.getRange().getBegin(),
10703 diag::err_using_decl_nested_name_specifier_is_not_base_class)
10704 << SS.getScopeRep()
10705 << cast<CXXRecordDecl>(CurContext)
10706 << SS.getRange();
10707 }
10708 return true;
10709 }
10710
10711 return false;
10712 }
10713
10714 // C++03 [namespace.udecl]p4:
10715 // A using-declaration used as a member-declaration shall refer
10716 // to a member of a base class of the class being defined [etc.].
10717
10718 // Salient point: SS doesn't have to name a base class as long as
10719 // lookup only finds members from base classes. Therefore we can
10720 // diagnose here only if we can prove that that can't happen,
10721 // i.e. if the class hierarchies provably don't intersect.
10722
10723 // TODO: it would be nice if "definitely valid" results were cached
10724 // in the UsingDecl and UsingShadowDecl so that these checks didn't
10725 // need to be repeated.
10726
10727 llvm::SmallPtrSet<const CXXRecordDecl *, 4> Bases;
10728 auto Collect = [&Bases](const CXXRecordDecl *Base) {
10729 Bases.insert(Base);
10730 return true;
10731 };
10732
10733 // Collect all bases. Return false if we find a dependent base.
10734 if (!cast<CXXRecordDecl>(CurContext)->forallBases(Collect))
10735 return false;
10736
10737 // Returns true if the base is dependent or is one of the accumulated base
10738 // classes.
10739 auto IsNotBase = [&Bases](const CXXRecordDecl *Base) {
10740 return !Bases.count(Base);
10741 };
10742
10743 // Return false if the class has a dependent base or if it or one
10744 // of its bases is present in the base set of the current context.
10745 if (Bases.count(cast<CXXRecordDecl>(NamedContext)) ||
10746 !cast<CXXRecordDecl>(NamedContext)->forallBases(IsNotBase))
10747 return false;
10748
10749 Diag(SS.getRange().getBegin(),
10750 diag::err_using_decl_nested_name_specifier_is_not_base_class)
10751 << SS.getScopeRep()
10752 << cast<CXXRecordDecl>(CurContext)
10753 << SS.getRange();
10754
10755 return true;
10756}
10757
10758Decl *Sema::ActOnAliasDeclaration(Scope *S, AccessSpecifier AS,
10759 MultiTemplateParamsArg TemplateParamLists,
10760 SourceLocation UsingLoc, UnqualifiedId &Name,
10761 const ParsedAttributesView &AttrList,
10762 TypeResult Type, Decl *DeclFromDeclSpec) {
10763 // Skip up to the relevant declaration scope.
10764 while (S->isTemplateParamScope())
10765 S = S->getParent();
10766 assert((S->getFlags() & Scope::DeclScope) &&(((S->getFlags() & Scope::DeclScope) && "got alias-declaration outside of declaration scope"
) ? static_cast<void> (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10767, __PRETTY_FUNCTION__))
10767 "got alias-declaration outside of declaration scope")(((S->getFlags() & Scope::DeclScope) && "got alias-declaration outside of declaration scope"
) ? static_cast<void> (0) : __assert_fail ("(S->getFlags() & Scope::DeclScope) && \"got alias-declaration outside of declaration scope\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10767, __PRETTY_FUNCTION__))
;
10768
10769 if (Type.isInvalid())
10770 return nullptr;
10771
10772 bool Invalid = false;
10773 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
10774 TypeSourceInfo *TInfo = nullptr;
10775 GetTypeFromParser(Type.get(), &TInfo);
10776
10777 if (DiagnoseClassNameShadow(CurContext, NameInfo))
10778 return nullptr;
10779
10780 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
10781 UPPC_DeclarationType)) {
10782 Invalid = true;
10783 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10784 TInfo->getTypeLoc().getBeginLoc());
10785 }
10786
10787 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10788 TemplateParamLists.size()
10789 ? forRedeclarationInCurContext()
10790 : ForVisibleRedeclaration);
10791 LookupName(Previous, S);
10792
10793 // Warn about shadowing the name of a template parameter.
10794 if (Previous.isSingleResult() &&
10795 Previous.getFoundDecl()->isTemplateParameter()) {
10796 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
10797 Previous.clear();
10798 }
10799
10800 assert(Name.Kind == UnqualifiedIdKind::IK_Identifier &&((Name.Kind == UnqualifiedIdKind::IK_Identifier && "name in alias declaration must be an identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10801, __PRETTY_FUNCTION__))
10801 "name in alias declaration must be an identifier")((Name.Kind == UnqualifiedIdKind::IK_Identifier && "name in alias declaration must be an identifier"
) ? static_cast<void> (0) : __assert_fail ("Name.Kind == UnqualifiedIdKind::IK_Identifier && \"name in alias declaration must be an identifier\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10801, __PRETTY_FUNCTION__))
;
10802 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
10803 Name.StartLocation,
10804 Name.Identifier, TInfo);
10805
10806 NewTD->setAccess(AS);
10807
10808 if (Invalid)
10809 NewTD->setInvalidDecl();
10810
10811 ProcessDeclAttributeList(S, NewTD, AttrList);
10812 AddPragmaAttributes(S, NewTD);
10813
10814 CheckTypedefForVariablyModifiedType(S, NewTD);
10815 Invalid |= NewTD->isInvalidDecl();
10816
10817 bool Redeclaration = false;
10818
10819 NamedDecl *NewND;
10820 if (TemplateParamLists.size()) {
10821 TypeAliasTemplateDecl *OldDecl = nullptr;
10822 TemplateParameterList *OldTemplateParams = nullptr;
10823
10824 if (TemplateParamLists.size() != 1) {
10825 Diag(UsingLoc, diag::err_alias_template_extra_headers)
10826 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
10827 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
10828 }
10829 TemplateParameterList *TemplateParams = TemplateParamLists[0];
10830
10831 // Check that we can declare a template here.
10832 if (CheckTemplateDeclScope(S, TemplateParams))
10833 return nullptr;
10834
10835 // Only consider previous declarations in the same scope.
10836 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
10837 /*ExplicitInstantiationOrSpecialization*/false);
10838 if (!Previous.empty()) {
10839 Redeclaration = true;
10840
10841 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
10842 if (!OldDecl && !Invalid) {
10843 Diag(UsingLoc, diag::err_redefinition_different_kind)
10844 << Name.Identifier;
10845
10846 NamedDecl *OldD = Previous.getRepresentativeDecl();
10847 if (OldD->getLocation().isValid())
10848 Diag(OldD->getLocation(), diag::note_previous_definition);
10849
10850 Invalid = true;
10851 }
10852
10853 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
10854 if (TemplateParameterListsAreEqual(TemplateParams,
10855 OldDecl->getTemplateParameters(),
10856 /*Complain=*/true,
10857 TPL_TemplateMatch))
10858 OldTemplateParams =
10859 OldDecl->getMostRecentDecl()->getTemplateParameters();
10860 else
10861 Invalid = true;
10862
10863 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
10864 if (!Invalid &&
10865 !Context.hasSameType(OldTD->getUnderlyingType(),
10866 NewTD->getUnderlyingType())) {
10867 // FIXME: The C++0x standard does not clearly say this is ill-formed,
10868 // but we can't reasonably accept it.
10869 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
10870 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
10871 if (OldTD->getLocation().isValid())
10872 Diag(OldTD->getLocation(), diag::note_previous_definition);
10873 Invalid = true;
10874 }
10875 }
10876 }
10877
10878 // Merge any previous default template arguments into our parameters,
10879 // and check the parameter list.
10880 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
10881 TPC_TypeAliasTemplate))
10882 return nullptr;
10883
10884 TypeAliasTemplateDecl *NewDecl =
10885 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
10886 Name.Identifier, TemplateParams,
10887 NewTD);
10888 NewTD->setDescribedAliasTemplate(NewDecl);
10889
10890 NewDecl->setAccess(AS);
10891
10892 if (Invalid)
10893 NewDecl->setInvalidDecl();
10894 else if (OldDecl) {
10895 NewDecl->setPreviousDecl(OldDecl);
10896 CheckRedeclarationModuleOwnership(NewDecl, OldDecl);
10897 }
10898
10899 NewND = NewDecl;
10900 } else {
10901 if (auto *TD = dyn_cast_or_null<TagDecl>(DeclFromDeclSpec)) {
10902 setTagNameForLinkagePurposes(TD, NewTD);
10903 handleTagNumbering(TD, S);
10904 }
10905 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
10906 NewND = NewTD;
10907 }
10908
10909 PushOnScopeChains(NewND, S);
10910 ActOnDocumentableDecl(NewND);
10911 return NewND;
10912}
10913
10914Decl *Sema::ActOnNamespaceAliasDef(Scope *S, SourceLocation NamespaceLoc,
10915 SourceLocation AliasLoc,
10916 IdentifierInfo *Alias, CXXScopeSpec &SS,
10917 SourceLocation IdentLoc,
10918 IdentifierInfo *Ident) {
10919
10920 // Lookup the namespace name.
10921 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
10922 LookupParsedName(R, S, &SS);
10923
10924 if (R.isAmbiguous())
10925 return nullptr;
10926
10927 if (R.empty()) {
10928 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
10929 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
10930 return nullptr;
10931 }
10932 }
10933 assert(!R.isAmbiguous() && !R.empty())((!R.isAmbiguous() && !R.empty()) ? static_cast<void
> (0) : __assert_fail ("!R.isAmbiguous() && !R.empty()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 10933, __PRETTY_FUNCTION__))
;
10934 NamedDecl *ND = R.getRepresentativeDecl();
10935
10936 // Check if we have a previous declaration with the same name.
10937 LookupResult PrevR(*this, Alias, AliasLoc, LookupOrdinaryName,
10938 ForVisibleRedeclaration);
10939 LookupName(PrevR, S);
10940
10941 // Check we're not shadowing a template parameter.
10942 if (PrevR.isSingleResult() && PrevR.getFoundDecl()->isTemplateParameter()) {
10943 DiagnoseTemplateParameterShadow(AliasLoc, PrevR.getFoundDecl());
10944 PrevR.clear();
10945 }
10946
10947 // Filter out any other lookup result from an enclosing scope.
10948 FilterLookupForScope(PrevR, CurContext, S, /*ConsiderLinkage*/false,
10949 /*AllowInlineNamespace*/false);
10950
10951 // Find the previous declaration and check that we can redeclare it.
10952 NamespaceAliasDecl *Prev = nullptr;
10953 if (PrevR.isSingleResult()) {
10954 NamedDecl *PrevDecl = PrevR.getRepresentativeDecl();
10955 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
10956 // We already have an alias with the same name that points to the same
10957 // namespace; check that it matches.
10958 if (AD->getNamespace()->Equals(getNamespaceDecl(ND))) {
10959 Prev = AD;
10960 } else if (isVisible(PrevDecl)) {
10961 Diag(AliasLoc, diag::err_redefinition_different_namespace_alias)
10962 << Alias;
10963 Diag(AD->getLocation(), diag::note_previous_namespace_alias)
10964 << AD->getNamespace();
10965 return nullptr;
10966 }
10967 } else if (isVisible(PrevDecl)) {
10968 unsigned DiagID = isa<NamespaceDecl>(PrevDecl->getUnderlyingDecl())
10969 ? diag::err_redefinition
10970 : diag::err_redefinition_different_kind;
10971 Diag(AliasLoc, DiagID) << Alias;
10972 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10973 return nullptr;
10974 }
10975 }
10976
10977 // The use of a nested name specifier may trigger deprecation warnings.
10978 DiagnoseUseOfDecl(ND, IdentLoc);
10979
10980 NamespaceAliasDecl *AliasDecl =
10981 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
10982 Alias, SS.getWithLocInContext(Context),
10983 IdentLoc, ND);
10984 if (Prev)
10985 AliasDecl->setPreviousDecl(Prev);
10986
10987 PushOnScopeChains(AliasDecl, S);
10988 return AliasDecl;
10989}
10990
10991namespace {
10992struct SpecialMemberExceptionSpecInfo
10993 : SpecialMemberVisitor<SpecialMemberExceptionSpecInfo> {
10994 SourceLocation Loc;
10995 Sema::ImplicitExceptionSpecification ExceptSpec;
10996
10997 SpecialMemberExceptionSpecInfo(Sema &S, CXXMethodDecl *MD,
10998 Sema::CXXSpecialMember CSM,
10999 Sema::InheritedConstructorInfo *ICI,
11000 SourceLocation Loc)
11001 : SpecialMemberVisitor(S, MD, CSM, ICI), Loc(Loc), ExceptSpec(S) {}
11002
11003 bool visitBase(CXXBaseSpecifier *Base);
11004 bool visitField(FieldDecl *FD);
11005
11006 void visitClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
11007 unsigned Quals);
11008
11009 void visitSubobjectCall(Subobject Subobj,
11010 Sema::SpecialMemberOverloadResult SMOR);
11011};
11012}
11013
11014bool SpecialMemberExceptionSpecInfo::visitBase(CXXBaseSpecifier *Base) {
11015 auto *RT = Base->getType()->getAs<RecordType>();
11016 if (!RT)
11017 return false;
11018
11019 auto *BaseClass = cast<CXXRecordDecl>(RT->getDecl());
11020 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
11021 if (auto *BaseCtor = SMOR.getMethod()) {
11022 visitSubobjectCall(Base, BaseCtor);
11023 return false;
11024 }
11025
11026 visitClassSubobject(BaseClass, Base, 0);
11027 return false;
11028}
11029
11030bool SpecialMemberExceptionSpecInfo::visitField(FieldDecl *FD) {
11031 if (CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer()) {
11032 Expr *E = FD->getInClassInitializer();
11033 if (!E)
11034 // FIXME: It's a little wasteful to build and throw away a
11035 // CXXDefaultInitExpr here.
11036 // FIXME: We should have a single context note pointing at Loc, and
11037 // this location should be MD->getLocation() instead, since that's
11038 // the location where we actually use the default init expression.
11039 E = S.BuildCXXDefaultInitExpr(Loc, FD).get();
11040 if (E)
11041 ExceptSpec.CalledExpr(E);
11042 } else if (auto *RT = S.Context.getBaseElementType(FD->getType())
11043 ->getAs<RecordType>()) {
11044 visitClassSubobject(cast<CXXRecordDecl>(RT->getDecl()), FD,
11045 FD->getType().getCVRQualifiers());
11046 }
11047 return false;
11048}
11049
11050void SpecialMemberExceptionSpecInfo::visitClassSubobject(CXXRecordDecl *Class,
11051 Subobject Subobj,
11052 unsigned Quals) {
11053 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
11054 bool IsMutable = Field && Field->isMutable();
11055 visitSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable));
11056}
11057
11058void SpecialMemberExceptionSpecInfo::visitSubobjectCall(
11059 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR) {
11060 // Note, if lookup fails, it doesn't matter what exception specification we
11061 // choose because the special member will be deleted.
11062 if (CXXMethodDecl *MD = SMOR.getMethod())
11063 ExceptSpec.CalledDecl(getSubobjectLoc(Subobj), MD);
11064}
11065
11066namespace {
11067/// RAII object to register a special member as being currently declared.
11068struct ComputingExceptionSpec {
11069 Sema &S;
11070
11071 ComputingExceptionSpec(Sema &S, CXXMethodDecl *MD, SourceLocation Loc)
11072 : S(S) {
11073 Sema::CodeSynthesisContext Ctx;
11074 Ctx.Kind = Sema::CodeSynthesisContext::ExceptionSpecEvaluation;
11075 Ctx.PointOfInstantiation = Loc;
11076 Ctx.Entity = MD;
11077 S.pushCodeSynthesisContext(Ctx);
11078 }
11079 ~ComputingExceptionSpec() {
11080 S.popCodeSynthesisContext();
11081 }
11082};
11083}
11084
11085bool Sema::tryResolveExplicitSpecifier(ExplicitSpecifier &ExplicitSpec) {
11086 llvm::APSInt Result;
11087 ExprResult Converted = CheckConvertedConstantExpression(
11088 ExplicitSpec.getExpr(), Context.BoolTy, Result, CCEK_ExplicitBool);
11089 ExplicitSpec.setExpr(Converted.get());
11090 if (Converted.isUsable() && !Converted.get()->isValueDependent()) {
11091 ExplicitSpec.setKind(Result.getBoolValue()
11092 ? ExplicitSpecKind::ResolvedTrue
11093 : ExplicitSpecKind::ResolvedFalse);
11094 return true;
11095 }
11096 ExplicitSpec.setKind(ExplicitSpecKind::Unresolved);
11097 return false;
11098}
11099
11100ExplicitSpecifier Sema::ActOnExplicitBoolSpecifier(Expr *ExplicitExpr) {
11101 ExplicitSpecifier ES(ExplicitExpr, ExplicitSpecKind::Unresolved);
11102 if (!ExplicitExpr->isTypeDependent())
11103 tryResolveExplicitSpecifier(ES);
11104 return ES;
11105}
11106
11107static Sema::ImplicitExceptionSpecification
11108ComputeDefaultedSpecialMemberExceptionSpec(
11109 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
11110 Sema::InheritedConstructorInfo *ICI) {
11111 ComputingExceptionSpec CES(S, MD, Loc);
11112
11113 CXXRecordDecl *ClassDecl = MD->getParent();
11114
11115 // C++ [except.spec]p14:
11116 // An implicitly declared special member function (Clause 12) shall have an
11117 // exception-specification. [...]
11118 SpecialMemberExceptionSpecInfo Info(S, MD, CSM, ICI, MD->getLocation());
11119 if (ClassDecl->isInvalidDecl())
11120 return Info.ExceptSpec;
11121
11122 // FIXME: If this diagnostic fires, we're probably missing a check for
11123 // attempting to resolve an exception specification before it's known
11124 // at a higher level.
11125 if (S.RequireCompleteType(MD->getLocation(),
11126 S.Context.getRecordType(ClassDecl),
11127 diag::err_exception_spec_incomplete_type))
11128 return Info.ExceptSpec;
11129
11130 // C++1z [except.spec]p7:
11131 // [Look for exceptions thrown by] a constructor selected [...] to
11132 // initialize a potentially constructed subobject,
11133 // C++1z [except.spec]p8:
11134 // The exception specification for an implicitly-declared destructor, or a
11135 // destructor without a noexcept-specifier, is potentially-throwing if and
11136 // only if any of the destructors for any of its potentially constructed
11137 // subojects is potentially throwing.
11138 // FIXME: We respect the first rule but ignore the "potentially constructed"
11139 // in the second rule to resolve a core issue (no number yet) that would have
11140 // us reject:
11141 // struct A { virtual void f() = 0; virtual ~A() noexcept(false) = 0; };
11142 // struct B : A {};
11143 // struct C : B { void f(); };
11144 // ... due to giving B::~B() a non-throwing exception specification.
11145 Info.visit(Info.IsConstructor ? Info.VisitPotentiallyConstructedBases
11146 : Info.VisitAllBases);
11147
11148 return Info.ExceptSpec;
11149}
11150
11151namespace {
11152/// RAII object to register a special member as being currently declared.
11153struct DeclaringSpecialMember {
11154 Sema &S;
11155 Sema::SpecialMemberDecl D;
11156 Sema::ContextRAII SavedContext;
11157 bool WasAlreadyBeingDeclared;
11158
11159 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
11160 : S(S), D(RD, CSM), SavedContext(S, RD) {
11161 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D).second;
11162 if (WasAlreadyBeingDeclared)
11163 // This almost never happens, but if it does, ensure that our cache
11164 // doesn't contain a stale result.
11165 S.SpecialMemberCache.clear();
11166 else {
11167 // Register a note to be produced if we encounter an error while
11168 // declaring the special member.
11169 Sema::CodeSynthesisContext Ctx;
11170 Ctx.Kind = Sema::CodeSynthesisContext::DeclaringSpecialMember;
11171 // FIXME: We don't have a location to use here. Using the class's
11172 // location maintains the fiction that we declare all special members
11173 // with the class, but (1) it's not clear that lying about that helps our
11174 // users understand what's going on, and (2) there may be outer contexts
11175 // on the stack (some of which are relevant) and printing them exposes
11176 // our lies.
11177 Ctx.PointOfInstantiation = RD->getLocation();
11178 Ctx.Entity = RD;
11179 Ctx.SpecialMember = CSM;
11180 S.pushCodeSynthesisContext(Ctx);
11181 }
11182 }
11183 ~DeclaringSpecialMember() {
11184 if (!WasAlreadyBeingDeclared) {
11185 S.SpecialMembersBeingDeclared.erase(D);
11186 S.popCodeSynthesisContext();
11187 }
11188 }
11189
11190 /// Are we already trying to declare this special member?
11191 bool isAlreadyBeingDeclared() const {
11192 return WasAlreadyBeingDeclared;
11193 }
11194};
11195}
11196
11197void Sema::CheckImplicitSpecialMemberDeclaration(Scope *S, FunctionDecl *FD) {
11198 // Look up any existing declarations, but don't trigger declaration of all
11199 // implicit special members with this name.
11200 DeclarationName Name = FD->getDeclName();
11201 LookupResult R(*this, Name, SourceLocation(), LookupOrdinaryName,
11202 ForExternalRedeclaration);
11203 for (auto *D : FD->getParent()->lookup(Name))
11204 if (auto *Acceptable = R.getAcceptableDecl(D))
11205 R.addDecl(Acceptable);
11206 R.resolveKind();
11207 R.suppressDiagnostics();
11208
11209 CheckFunctionDeclaration(S, FD, R, /*IsMemberSpecialization*/false);
11210}
11211
11212void Sema::setupImplicitSpecialMemberType(CXXMethodDecl *SpecialMem,
11213 QualType ResultTy,
11214 ArrayRef<QualType> Args) {
11215 // Build an exception specification pointing back at this constructor.
11216 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, SpecialMem);
11217
11218 if (getLangOpts().OpenCLCPlusPlus) {
11219 // OpenCL: Implicitly defaulted special member are of the generic address
11220 // space.
11221 EPI.TypeQuals.addAddressSpace(LangAS::opencl_generic);
11222 }
11223
11224 auto QT = Context.getFunctionType(ResultTy, Args, EPI);
11225 SpecialMem->setType(QT);
11226}
11227
11228CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
11229 CXXRecordDecl *ClassDecl) {
11230 // C++ [class.ctor]p5:
11231 // A default constructor for a class X is a constructor of class X
11232 // that can be called without an argument. If there is no
11233 // user-declared constructor for class X, a default constructor is
11234 // implicitly declared. An implicitly-declared default constructor
11235 // is an inline public member of its class.
11236 assert(ClassDecl->needsImplicitDefaultConstructor() &&((ClassDecl->needsImplicitDefaultConstructor() && "Should not build implicit default constructor!"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11237, __PRETTY_FUNCTION__))
11237 "Should not build implicit default constructor!")((ClassDecl->needsImplicitDefaultConstructor() && "Should not build implicit default constructor!"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->needsImplicitDefaultConstructor() && \"Should not build implicit default constructor!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11237, __PRETTY_FUNCTION__))
;
11238
11239 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
11240 if (DSM.isAlreadyBeingDeclared())
11241 return nullptr;
11242
11243 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
11244 CXXDefaultConstructor,
11245 false);
11246
11247 // Create the actual constructor declaration.
11248 CanQualType ClassType
11249 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
11250 SourceLocation ClassLoc = ClassDecl->getLocation();
11251 DeclarationName Name
11252 = Context.DeclarationNames.getCXXConstructorName(ClassType);
11253 DeclarationNameInfo NameInfo(Name, ClassLoc);
11254 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
11255 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/ QualType(),
11256 /*TInfo=*/nullptr, ExplicitSpecifier(),
11257 /*isInline=*/true, /*isImplicitlyDeclared=*/true,
11258 Constexpr ? CSK_constexpr : CSK_unspecified);
11259 DefaultCon->setAccess(AS_public);
11260 DefaultCon->setDefaulted();
11261
11262 if (getLangOpts().CUDA) {
11263 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDefaultConstructor,
11264 DefaultCon,
11265 /* ConstRHS */ false,
11266 /* Diagnose */ false);
11267 }
11268
11269 setupImplicitSpecialMemberType(DefaultCon, Context.VoidTy, None);
11270
11271 // We don't need to use SpecialMemberIsTrivial here; triviality for default
11272 // constructors is easy to compute.
11273 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
11274
11275 // Note that we have declared this constructor.
11276 ++getASTContext().NumImplicitDefaultConstructorsDeclared;
11277
11278 Scope *S = getScopeForContext(ClassDecl);
11279 CheckImplicitSpecialMemberDeclaration(S, DefaultCon);
11280
11281 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
11282 SetDeclDeleted(DefaultCon, ClassLoc);
11283
11284 if (S)
11285 PushOnScopeChains(DefaultCon, S, false);
11286 ClassDecl->addDecl(DefaultCon);
11287
11288 return DefaultCon;
11289}
11290
11291void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
11292 CXXConstructorDecl *Constructor) {
11293 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11296, __PRETTY_FUNCTION__))
11294 !Constructor->doesThisDeclarationHaveABody() &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11296, __PRETTY_FUNCTION__))
11295 !Constructor->isDeleted()) &&(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11296, __PRETTY_FUNCTION__))
11296 "DefineImplicitDefaultConstructor - call it for implicit default ctor")(((Constructor->isDefaulted() && Constructor->isDefaultConstructor
() && !Constructor->doesThisDeclarationHaveABody()
&& !Constructor->isDeleted()) && "DefineImplicitDefaultConstructor - call it for implicit default ctor"
) ? static_cast<void> (0) : __assert_fail ("(Constructor->isDefaulted() && Constructor->isDefaultConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()) && \"DefineImplicitDefaultConstructor - call it for implicit default ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11296, __PRETTY_FUNCTION__))
;
11297 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
11298 return;
11299
11300 CXXRecordDecl *ClassDecl = Constructor->getParent();
11301 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor")((ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitDefaultConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11301, __PRETTY_FUNCTION__))
;
11302
11303 SynthesizedFunctionScope Scope(*this, Constructor);
11304
11305 // The exception specification is needed because we are defining the
11306 // function.
11307 ResolveExceptionSpec(CurrentLocation,
11308 Constructor->getType()->castAs<FunctionProtoType>());
11309 MarkVTableUsed(CurrentLocation, ClassDecl);
11310
11311 // Add a context note for diagnostics produced after this point.
11312 Scope.addContextNote(CurrentLocation);
11313
11314 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false)) {
11315 Constructor->setInvalidDecl();
11316 return;
11317 }
11318
11319 SourceLocation Loc = Constructor->getEndLoc().isValid()
11320 ? Constructor->getEndLoc()
11321 : Constructor->getLocation();
11322 Constructor->setBody(new (Context) CompoundStmt(Loc));
11323 Constructor->markUsed(Context);
11324
11325 if (ASTMutationListener *L = getASTMutationListener()) {
11326 L->CompletedImplicitDefinition(Constructor);
11327 }
11328
11329 DiagnoseUninitializedFields(*this, Constructor);
11330}
11331
11332void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
11333 // Perform any delayed checks on exception specifications.
11334 CheckDelayedMemberExceptionSpecs();
11335}
11336
11337/// Find or create the fake constructor we synthesize to model constructing an
11338/// object of a derived class via a constructor of a base class.
11339CXXConstructorDecl *
11340Sema::findInheritingConstructor(SourceLocation Loc,
11341 CXXConstructorDecl *BaseCtor,
11342 ConstructorUsingShadowDecl *Shadow) {
11343 CXXRecordDecl *Derived = Shadow->getParent();
11344 SourceLocation UsingLoc = Shadow->getLocation();
11345
11346 // FIXME: Add a new kind of DeclarationName for an inherited constructor.
11347 // For now we use the name of the base class constructor as a member of the
11348 // derived class to indicate a (fake) inherited constructor name.
11349 DeclarationName Name = BaseCtor->getDeclName();
11350
11351 // Check to see if we already have a fake constructor for this inherited
11352 // constructor call.
11353 for (NamedDecl *Ctor : Derived->lookup(Name))
11354 if (declaresSameEntity(cast<CXXConstructorDecl>(Ctor)
11355 ->getInheritedConstructor()
11356 .getConstructor(),
11357 BaseCtor))
11358 return cast<CXXConstructorDecl>(Ctor);
11359
11360 DeclarationNameInfo NameInfo(Name, UsingLoc);
11361 TypeSourceInfo *TInfo =
11362 Context.getTrivialTypeSourceInfo(BaseCtor->getType(), UsingLoc);
11363 FunctionProtoTypeLoc ProtoLoc =
11364 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
11365
11366 // Check the inherited constructor is valid and find the list of base classes
11367 // from which it was inherited.
11368 InheritedConstructorInfo ICI(*this, Loc, Shadow);
11369
11370 bool Constexpr =
11371 BaseCtor->isConstexpr() &&
11372 defaultedSpecialMemberIsConstexpr(*this, Derived, CXXDefaultConstructor,
11373 false, BaseCtor, &ICI);
11374
11375 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
11376 Context, Derived, UsingLoc, NameInfo, TInfo->getType(), TInfo,
11377 BaseCtor->getExplicitSpecifier(), /*isInline=*/true,
11378 /*isImplicitlyDeclared=*/true,
11379 Constexpr ? BaseCtor->getConstexprKind() : CSK_unspecified,
11380 InheritedConstructor(Shadow, BaseCtor));
11381 if (Shadow->isInvalidDecl())
11382 DerivedCtor->setInvalidDecl();
11383
11384 // Build an unevaluated exception specification for this fake constructor.
11385 const FunctionProtoType *FPT = TInfo->getType()->castAs<FunctionProtoType>();
11386 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
11387 EPI.ExceptionSpec.Type = EST_Unevaluated;
11388 EPI.ExceptionSpec.SourceDecl = DerivedCtor;
11389 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
11390 FPT->getParamTypes(), EPI));
11391
11392 // Build the parameter declarations.
11393 SmallVector<ParmVarDecl *, 16> ParamDecls;
11394 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
11395 TypeSourceInfo *TInfo =
11396 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
11397 ParmVarDecl *PD = ParmVarDecl::Create(
11398 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
11399 FPT->getParamType(I), TInfo, SC_None, /*DefArg=*/nullptr);
11400 PD->setScopeInfo(0, I);
11401 PD->setImplicit();
11402 // Ensure attributes are propagated onto parameters (this matters for
11403 // format, pass_object_size, ...).
11404 mergeDeclAttributes(PD, BaseCtor->getParamDecl(I));
11405 ParamDecls.push_back(PD);
11406 ProtoLoc.setParam(I, PD);
11407 }
11408
11409 // Set up the new constructor.
11410 assert(!BaseCtor->isDeleted() && "should not use deleted constructor")((!BaseCtor->isDeleted() && "should not use deleted constructor"
) ? static_cast<void> (0) : __assert_fail ("!BaseCtor->isDeleted() && \"should not use deleted constructor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11410, __PRETTY_FUNCTION__))
;
11411 DerivedCtor->setAccess(BaseCtor->getAccess());
11412 DerivedCtor->setParams(ParamDecls);
11413 Derived->addDecl(DerivedCtor);
11414
11415 if (ShouldDeleteSpecialMember(DerivedCtor, CXXDefaultConstructor, &ICI))
11416 SetDeclDeleted(DerivedCtor, UsingLoc);
11417
11418 return DerivedCtor;
11419}
11420
11421void Sema::NoteDeletedInheritingConstructor(CXXConstructorDecl *Ctor) {
11422 InheritedConstructorInfo ICI(*this, Ctor->getLocation(),
11423 Ctor->getInheritedConstructor().getShadowDecl());
11424 ShouldDeleteSpecialMember(Ctor, CXXDefaultConstructor, &ICI,
11425 /*Diagnose*/true);
11426}
11427
11428void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
11429 CXXConstructorDecl *Constructor) {
11430 CXXRecordDecl *ClassDecl = Constructor->getParent();
11431 assert(Constructor->getInheritedConstructor() &&((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11433, __PRETTY_FUNCTION__))
11432 !Constructor->doesThisDeclarationHaveABody() &&((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11433, __PRETTY_FUNCTION__))
11433 !Constructor->isDeleted())((Constructor->getInheritedConstructor() && !Constructor
->doesThisDeclarationHaveABody() && !Constructor->
isDeleted()) ? static_cast<void> (0) : __assert_fail ("Constructor->getInheritedConstructor() && !Constructor->doesThisDeclarationHaveABody() && !Constructor->isDeleted()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11433, __PRETTY_FUNCTION__))
;
11434 if (Constructor->willHaveBody() || Constructor->isInvalidDecl())
11435 return;
11436
11437 // Initializations are performed "as if by a defaulted default constructor",
11438 // so enter the appropriate scope.
11439 SynthesizedFunctionScope Scope(*this, Constructor);
11440
11441 // The exception specification is needed because we are defining the
11442 // function.
11443 ResolveExceptionSpec(CurrentLocation,
11444 Constructor->getType()->castAs<FunctionProtoType>());
11445 MarkVTableUsed(CurrentLocation, ClassDecl);
11446
11447 // Add a context note for diagnostics produced after this point.
11448 Scope.addContextNote(CurrentLocation);
11449
11450 ConstructorUsingShadowDecl *Shadow =
11451 Constructor->getInheritedConstructor().getShadowDecl();
11452 CXXConstructorDecl *InheritedCtor =
11453 Constructor->getInheritedConstructor().getConstructor();
11454
11455 // [class.inhctor.init]p1:
11456 // initialization proceeds as if a defaulted default constructor is used to
11457 // initialize the D object and each base class subobject from which the
11458 // constructor was inherited
11459
11460 InheritedConstructorInfo ICI(*this, CurrentLocation, Shadow);
11461 CXXRecordDecl *RD = Shadow->getParent();
11462 SourceLocation InitLoc = Shadow->getLocation();
11463
11464 // Build explicit initializers for all base classes from which the
11465 // constructor was inherited.
11466 SmallVector<CXXCtorInitializer*, 8> Inits;
11467 for (bool VBase : {false, true}) {
11468 for (CXXBaseSpecifier &B : VBase ? RD->vbases() : RD->bases()) {
11469 if (B.isVirtual() != VBase)
11470 continue;
11471
11472 auto *BaseRD = B.getType()->getAsCXXRecordDecl();
11473 if (!BaseRD)
11474 continue;
11475
11476 auto BaseCtor = ICI.findConstructorForBase(BaseRD, InheritedCtor);
11477 if (!BaseCtor.first)
11478 continue;
11479
11480 MarkFunctionReferenced(CurrentLocation, BaseCtor.first);
11481 ExprResult Init = new (Context) CXXInheritedCtorInitExpr(
11482 InitLoc, B.getType(), BaseCtor.first, VBase, BaseCtor.second);
11483
11484 auto *TInfo = Context.getTrivialTypeSourceInfo(B.getType(), InitLoc);
11485 Inits.push_back(new (Context) CXXCtorInitializer(
11486 Context, TInfo, VBase, InitLoc, Init.get(), InitLoc,
11487 SourceLocation()));
11488 }
11489 }
11490
11491 // We now proceed as if for a defaulted default constructor, with the relevant
11492 // initializers replaced.
11493
11494 if (SetCtorInitializers(Constructor, /*AnyErrors*/false, Inits)) {
11495 Constructor->setInvalidDecl();
11496 return;
11497 }
11498
11499 Constructor->setBody(new (Context) CompoundStmt(InitLoc));
11500 Constructor->markUsed(Context);
11501
11502 if (ASTMutationListener *L = getASTMutationListener()) {
11503 L->CompletedImplicitDefinition(Constructor);
11504 }
11505
11506 DiagnoseUninitializedFields(*this, Constructor);
11507}
11508
11509CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
11510 // C++ [class.dtor]p2:
11511 // If a class has no user-declared destructor, a destructor is
11512 // declared implicitly. An implicitly-declared destructor is an
11513 // inline public member of its class.
11514 assert(ClassDecl->needsImplicitDestructor())((ClassDecl->needsImplicitDestructor()) ? static_cast<void
> (0) : __assert_fail ("ClassDecl->needsImplicitDestructor()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11514, __PRETTY_FUNCTION__))
;
11515
11516 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
11517 if (DSM.isAlreadyBeingDeclared())
11518 return nullptr;
11519
11520 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
11521 CXXDestructor,
11522 false);
11523
11524 // Create the actual destructor declaration.
11525 CanQualType ClassType
11526 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
11527 SourceLocation ClassLoc = ClassDecl->getLocation();
11528 DeclarationName Name
11529 = Context.DeclarationNames.getCXXDestructorName(ClassType);
11530 DeclarationNameInfo NameInfo(Name, ClassLoc);
11531 CXXDestructorDecl *Destructor =
11532 CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
11533 QualType(), nullptr, /*isInline=*/true,
11534 /*isImplicitlyDeclared=*/true,
11535 Constexpr ? CSK_constexpr : CSK_unspecified);
11536 Destructor->setAccess(AS_public);
11537 Destructor->setDefaulted();
11538
11539 if (getLangOpts().CUDA) {
11540 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXDestructor,
11541 Destructor,
11542 /* ConstRHS */ false,
11543 /* Diagnose */ false);
11544 }
11545
11546 setupImplicitSpecialMemberType(Destructor, Context.VoidTy, None);
11547
11548 // We don't need to use SpecialMemberIsTrivial here; triviality for
11549 // destructors is easy to compute.
11550 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
11551 Destructor->setTrivialForCall(ClassDecl->hasAttr<TrivialABIAttr>() ||
11552 ClassDecl->hasTrivialDestructorForCall());
11553
11554 // Note that we have declared this destructor.
11555 ++getASTContext().NumImplicitDestructorsDeclared;
11556
11557 Scope *S = getScopeForContext(ClassDecl);
11558 CheckImplicitSpecialMemberDeclaration(S, Destructor);
11559
11560 // We can't check whether an implicit destructor is deleted before we complete
11561 // the definition of the class, because its validity depends on the alignment
11562 // of the class. We'll check this from ActOnFields once the class is complete.
11563 if (ClassDecl->isCompleteDefinition() &&
11564 ShouldDeleteSpecialMember(Destructor, CXXDestructor))
11565 SetDeclDeleted(Destructor, ClassLoc);
11566
11567 // Introduce this destructor into its scope.
11568 if (S)
11569 PushOnScopeChains(Destructor, S, false);
11570 ClassDecl->addDecl(Destructor);
11571
11572 return Destructor;
11573}
11574
11575void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
11576 CXXDestructorDecl *Destructor) {
11577 assert((Destructor->isDefaulted() &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11580, __PRETTY_FUNCTION__))
7
Assuming the condition is true
8
Assuming the condition is true
9
Assuming the condition is true
10
'?' condition is true
11578 !Destructor->doesThisDeclarationHaveABody() &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11580, __PRETTY_FUNCTION__))
11579 !Destructor->isDeleted()) &&(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11580, __PRETTY_FUNCTION__))
11580 "DefineImplicitDestructor - call it for implicit default dtor")(((Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody
() && !Destructor->isDeleted()) && "DefineImplicitDestructor - call it for implicit default dtor"
) ? static_cast<void> (0) : __assert_fail ("(Destructor->isDefaulted() && !Destructor->doesThisDeclarationHaveABody() && !Destructor->isDeleted()) && \"DefineImplicitDestructor - call it for implicit default dtor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11580, __PRETTY_FUNCTION__))
;
11581 if (Destructor->willHaveBody() || Destructor->isInvalidDecl())
11
Assuming the condition is false
12
Assuming the condition is false
13
Taking false branch
11582 return;
11583
11584 CXXRecordDecl *ClassDecl = Destructor->getParent();
11585 assert
13.1
'ClassDecl' is non-null
13.1
'ClassDecl' is non-null
(ClassDecl && "DefineImplicitDestructor - invalid destructor")((ClassDecl && "DefineImplicitDestructor - invalid destructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitDestructor - invalid destructor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11585, __PRETTY_FUNCTION__))
;
14
'?' condition is true
11586
11587 SynthesizedFunctionScope Scope(*this, Destructor);
11588
11589 // The exception specification is needed because we are defining the
11590 // function.
11591 ResolveExceptionSpec(CurrentLocation,
11592 Destructor->getType()->castAs<FunctionProtoType>());
15
The object is a 'FunctionProtoType'
11593 MarkVTableUsed(CurrentLocation, ClassDecl);
16
Calling 'Sema::MarkVTableUsed'
11594
11595 // Add a context note for diagnostics produced after this point.
11596 Scope.addContextNote(CurrentLocation);
11597
11598 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
11599 Destructor->getParent());
11600
11601 if (CheckDestructor(Destructor)) {
11602 Destructor->setInvalidDecl();
11603 return;
11604 }
11605
11606 SourceLocation Loc = Destructor->getEndLoc().isValid()
11607 ? Destructor->getEndLoc()
11608 : Destructor->getLocation();
11609 Destructor->setBody(new (Context) CompoundStmt(Loc));
11610 Destructor->markUsed(Context);
11611
11612 if (ASTMutationListener *L = getASTMutationListener()) {
11613 L->CompletedImplicitDefinition(Destructor);
11614 }
11615}
11616
11617/// Perform any semantic analysis which needs to be delayed until all
11618/// pending class member declarations have been parsed.
11619void Sema::ActOnFinishCXXMemberDecls() {
11620 // If the context is an invalid C++ class, just suppress these checks.
11621 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
11622 if (Record->isInvalidDecl()) {
11623 DelayedOverridingExceptionSpecChecks.clear();
11624 DelayedEquivalentExceptionSpecChecks.clear();
11625 return;
11626 }
11627 checkForMultipleExportedDefaultConstructors(*this, Record);
11628 }
11629}
11630
11631void Sema::ActOnFinishCXXNonNestedClass(Decl *D) {
11632 referenceDLLExportedClassMethods();
11633
11634 if (!DelayedDllExportMemberFunctions.empty()) {
1
Taking true branch
11635 SmallVector<CXXMethodDecl*, 4> WorkList;
11636 std::swap(DelayedDllExportMemberFunctions, WorkList);
11637 for (CXXMethodDecl *M : WorkList) {
2
Assuming '__begin2' is not equal to '__end2'
11638 DefineImplicitSpecialMember(*this, M, M->getLocation());
3
Calling 'DefineImplicitSpecialMember'
11639
11640 // Pass the method to the consumer to get emitted. This is not necessary
11641 // for explicit instantiation definitions, as they will get emitted
11642 // anyway.
11643 if (M->getParent()->getTemplateSpecializationKind() !=
11644 TSK_ExplicitInstantiationDefinition)
11645 ActOnFinishInlineFunctionDef(M);
11646 }
11647 }
11648}
11649
11650void Sema::referenceDLLExportedClassMethods() {
11651 if (!DelayedDllExportClasses.empty()) {
11652 // Calling ReferenceDllExportedMembers might cause the current function to
11653 // be called again, so use a local copy of DelayedDllExportClasses.
11654 SmallVector<CXXRecordDecl *, 4> WorkList;
11655 std::swap(DelayedDllExportClasses, WorkList);
11656 for (CXXRecordDecl *Class : WorkList)
11657 ReferenceDllExportedMembers(*this, Class);
11658 }
11659}
11660
11661void Sema::AdjustDestructorExceptionSpec(CXXDestructorDecl *Destructor) {
11662 assert(getLangOpts().CPlusPlus11 &&((getLangOpts().CPlusPlus11 && "adjusting dtor exception specs was introduced in c++11"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11663, __PRETTY_FUNCTION__))
11663 "adjusting dtor exception specs was introduced in c++11")((getLangOpts().CPlusPlus11 && "adjusting dtor exception specs was introduced in c++11"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus11 && \"adjusting dtor exception specs was introduced in c++11\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11663, __PRETTY_FUNCTION__))
;
11664
11665 if (Destructor->isDependentContext())
11666 return;
11667
11668 // C++11 [class.dtor]p3:
11669 // A declaration of a destructor that does not have an exception-
11670 // specification is implicitly considered to have the same exception-
11671 // specification as an implicit declaration.
11672 const FunctionProtoType *DtorType = Destructor->getType()->
11673 getAs<FunctionProtoType>();
11674 if (DtorType->hasExceptionSpec())
11675 return;
11676
11677 // Replace the destructor's type, building off the existing one. Fortunately,
11678 // the only thing of interest in the destructor type is its extended info.
11679 // The return and arguments are fixed.
11680 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
11681 EPI.ExceptionSpec.Type = EST_Unevaluated;
11682 EPI.ExceptionSpec.SourceDecl = Destructor;
11683 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
11684
11685 // FIXME: If the destructor has a body that could throw, and the newly created
11686 // spec doesn't allow exceptions, we should emit a warning, because this
11687 // change in behavior can break conforming C++03 programs at runtime.
11688 // However, we don't have a body or an exception specification yet, so it
11689 // needs to be done somewhere else.
11690}
11691
11692namespace {
11693/// An abstract base class for all helper classes used in building the
11694// copy/move operators. These classes serve as factory functions and help us
11695// avoid using the same Expr* in the AST twice.
11696class ExprBuilder {
11697 ExprBuilder(const ExprBuilder&) = delete;
11698 ExprBuilder &operator=(const ExprBuilder&) = delete;
11699
11700protected:
11701 static Expr *assertNotNull(Expr *E) {
11702 assert(E && "Expression construction must not fail.")((E && "Expression construction must not fail.") ? static_cast
<void> (0) : __assert_fail ("E && \"Expression construction must not fail.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11702, __PRETTY_FUNCTION__))
;
11703 return E;
11704 }
11705
11706public:
11707 ExprBuilder() {}
11708 virtual ~ExprBuilder() {}
11709
11710 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
11711};
11712
11713class RefBuilder: public ExprBuilder {
11714 VarDecl *Var;
11715 QualType VarType;
11716
11717public:
11718 Expr *build(Sema &S, SourceLocation Loc) const override {
11719 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc));
11720 }
11721
11722 RefBuilder(VarDecl *Var, QualType VarType)
11723 : Var(Var), VarType(VarType) {}
11724};
11725
11726class ThisBuilder: public ExprBuilder {
11727public:
11728 Expr *build(Sema &S, SourceLocation Loc) const override {
11729 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
11730 }
11731};
11732
11733class CastBuilder: public ExprBuilder {
11734 const ExprBuilder &Builder;
11735 QualType Type;
11736 ExprValueKind Kind;
11737 const CXXCastPath &Path;
11738
11739public:
11740 Expr *build(Sema &S, SourceLocation Loc) const override {
11741 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
11742 CK_UncheckedDerivedToBase, Kind,
11743 &Path).get());
11744 }
11745
11746 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
11747 const CXXCastPath &Path)
11748 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
11749};
11750
11751class DerefBuilder: public ExprBuilder {
11752 const ExprBuilder &Builder;
11753
11754public:
11755 Expr *build(Sema &S, SourceLocation Loc) const override {
11756 return assertNotNull(
11757 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
11758 }
11759
11760 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
11761};
11762
11763class MemberBuilder: public ExprBuilder {
11764 const ExprBuilder &Builder;
11765 QualType Type;
11766 CXXScopeSpec SS;
11767 bool IsArrow;
11768 LookupResult &MemberLookup;
11769
11770public:
11771 Expr *build(Sema &S, SourceLocation Loc) const override {
11772 return assertNotNull(S.BuildMemberReferenceExpr(
11773 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
11774 nullptr, MemberLookup, nullptr, nullptr).get());
11775 }
11776
11777 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
11778 LookupResult &MemberLookup)
11779 : Builder(Builder), Type(Type), IsArrow(IsArrow),
11780 MemberLookup(MemberLookup) {}
11781};
11782
11783class MoveCastBuilder: public ExprBuilder {
11784 const ExprBuilder &Builder;
11785
11786public:
11787 Expr *build(Sema &S, SourceLocation Loc) const override {
11788 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
11789 }
11790
11791 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
11792};
11793
11794class LvalueConvBuilder: public ExprBuilder {
11795 const ExprBuilder &Builder;
11796
11797public:
11798 Expr *build(Sema &S, SourceLocation Loc) const override {
11799 return assertNotNull(
11800 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
11801 }
11802
11803 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
11804};
11805
11806class SubscriptBuilder: public ExprBuilder {
11807 const ExprBuilder &Base;
11808 const ExprBuilder &Index;
11809
11810public:
11811 Expr *build(Sema &S, SourceLocation Loc) const override {
11812 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
11813 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
11814 }
11815
11816 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
11817 : Base(Base), Index(Index) {}
11818};
11819
11820} // end anonymous namespace
11821
11822/// When generating a defaulted copy or move assignment operator, if a field
11823/// should be copied with __builtin_memcpy rather than via explicit assignments,
11824/// do so. This optimization only applies for arrays of scalars, and for arrays
11825/// of class type where the selected copy/move-assignment operator is trivial.
11826static StmtResult
11827buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
11828 const ExprBuilder &ToB, const ExprBuilder &FromB) {
11829 // Compute the size of the memory buffer to be copied.
11830 QualType SizeType = S.Context.getSizeType();
11831 llvm::APInt Size(S.Context.getTypeSize(SizeType),
11832 S.Context.getTypeSizeInChars(T).getQuantity());
11833
11834 // Take the address of the field references for "from" and "to". We
11835 // directly construct UnaryOperators here because semantic analysis
11836 // does not permit us to take the address of an xvalue.
11837 Expr *From = FromB.build(S, Loc);
11838 From = new (S.Context) UnaryOperator(From, UO_AddrOf,
11839 S.Context.getPointerType(From->getType()),
11840 VK_RValue, OK_Ordinary, Loc, false);
11841 Expr *To = ToB.build(S, Loc);
11842 To = new (S.Context) UnaryOperator(To, UO_AddrOf,
11843 S.Context.getPointerType(To->getType()),
11844 VK_RValue, OK_Ordinary, Loc, false);
11845
11846 const Type *E = T->getBaseElementTypeUnsafe();
11847 bool NeedsCollectableMemCpy =
11848 E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
11849
11850 // Create a reference to the __builtin_objc_memmove_collectable function
11851 StringRef MemCpyName = NeedsCollectableMemCpy ?
11852 "__builtin_objc_memmove_collectable" :
11853 "__builtin_memcpy";
11854 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
11855 Sema::LookupOrdinaryName);
11856 S.LookupName(R, S.TUScope, true);
11857
11858 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
11859 if (!MemCpy)
11860 // Something went horribly wrong earlier, and we will have complained
11861 // about it.
11862 return StmtError();
11863
11864 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
11865 VK_RValue, Loc, nullptr);
11866 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail")((MemCpyRef.isUsable() && "Builtin reference cannot fail"
) ? static_cast<void> (0) : __assert_fail ("MemCpyRef.isUsable() && \"Builtin reference cannot fail\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11866, __PRETTY_FUNCTION__))
;
11867
11868 Expr *CallArgs[] = {
11869 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
11870 };
11871 ExprResult Call = S.BuildCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
11872 Loc, CallArgs, Loc);
11873
11874 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!")((!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!"
) ? static_cast<void> (0) : __assert_fail ("!Call.isInvalid() && \"Call to __builtin_memcpy cannot fail!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 11874, __PRETTY_FUNCTION__))
;
11875 return Call.getAs<Stmt>();
11876}
11877
11878/// Builds a statement that copies/moves the given entity from \p From to
11879/// \c To.
11880///
11881/// This routine is used to copy/move the members of a class with an
11882/// implicitly-declared copy/move assignment operator. When the entities being
11883/// copied are arrays, this routine builds for loops to copy them.
11884///
11885/// \param S The Sema object used for type-checking.
11886///
11887/// \param Loc The location where the implicit copy/move is being generated.
11888///
11889/// \param T The type of the expressions being copied/moved. Both expressions
11890/// must have this type.
11891///
11892/// \param To The expression we are copying/moving to.
11893///
11894/// \param From The expression we are copying/moving from.
11895///
11896/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
11897/// Otherwise, it's a non-static member subobject.
11898///
11899/// \param Copying Whether we're copying or moving.
11900///
11901/// \param Depth Internal parameter recording the depth of the recursion.
11902///
11903/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
11904/// if a memcpy should be used instead.
11905static StmtResult
11906buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
11907 const ExprBuilder &To, const ExprBuilder &From,
11908 bool CopyingBaseSubobject, bool Copying,
11909 unsigned Depth = 0) {
11910 // C++11 [class.copy]p28:
11911 // Each subobject is assigned in the manner appropriate to its type:
11912 //
11913 // - if the subobject is of class type, as if by a call to operator= with
11914 // the subobject as the object expression and the corresponding
11915 // subobject of x as a single function argument (as if by explicit
11916 // qualification; that is, ignoring any possible virtual overriding
11917 // functions in more derived classes);
11918 //
11919 // C++03 [class.copy]p13:
11920 // - if the subobject is of class type, the copy assignment operator for
11921 // the class is used (as if by explicit qualification; that is,
11922 // ignoring any possible virtual overriding functions in more derived
11923 // classes);
11924 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
11925 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
11926
11927 // Look for operator=.
11928 DeclarationName Name
11929 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
11930 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
11931 S.LookupQualifiedName(OpLookup, ClassDecl, false);
11932
11933 // Prior to C++11, filter out any result that isn't a copy/move-assignment
11934 // operator.
11935 if (!S.getLangOpts().CPlusPlus11) {
11936 LookupResult::Filter F = OpLookup.makeFilter();
11937 while (F.hasNext()) {
11938 NamedDecl *D = F.next();
11939 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
11940 if (Method->isCopyAssignmentOperator() ||
11941 (!Copying && Method->isMoveAssignmentOperator()))
11942 continue;
11943
11944 F.erase();
11945 }
11946 F.done();
11947 }
11948
11949 // Suppress the protected check (C++ [class.protected]) for each of the
11950 // assignment operators we found. This strange dance is required when
11951 // we're assigning via a base classes's copy-assignment operator. To
11952 // ensure that we're getting the right base class subobject (without
11953 // ambiguities), we need to cast "this" to that subobject type; to
11954 // ensure that we don't go through the virtual call mechanism, we need
11955 // to qualify the operator= name with the base class (see below). However,
11956 // this means that if the base class has a protected copy assignment
11957 // operator, the protected member access check will fail. So, we
11958 // rewrite "protected" access to "public" access in this case, since we
11959 // know by construction that we're calling from a derived class.
11960 if (CopyingBaseSubobject) {
11961 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
11962 L != LEnd; ++L) {
11963 if (L.getAccess() == AS_protected)
11964 L.setAccess(AS_public);
11965 }
11966 }
11967
11968 // Create the nested-name-specifier that will be used to qualify the
11969 // reference to operator=; this is required to suppress the virtual
11970 // call mechanism.
11971 CXXScopeSpec SS;
11972 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
11973 SS.MakeTrivial(S.Context,
11974 NestedNameSpecifier::Create(S.Context, nullptr, false,
11975 CanonicalT),
11976 Loc);
11977
11978 // Create the reference to operator=.
11979 ExprResult OpEqualRef
11980 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*IsArrow=*/false,
11981 SS, /*TemplateKWLoc=*/SourceLocation(),
11982 /*FirstQualifierInScope=*/nullptr,
11983 OpLookup,
11984 /*TemplateArgs=*/nullptr, /*S*/nullptr,
11985 /*SuppressQualifierCheck=*/true);
11986 if (OpEqualRef.isInvalid())
11987 return StmtError();
11988
11989 // Build the call to the assignment operator.
11990
11991 Expr *FromInst = From.build(S, Loc);
11992 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
11993 OpEqualRef.getAs<Expr>(),
11994 Loc, FromInst, Loc);
11995 if (Call.isInvalid())
11996 return StmtError();
11997
11998 // If we built a call to a trivial 'operator=' while copying an array,
11999 // bail out. We'll replace the whole shebang with a memcpy.
12000 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
12001 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
12002 return StmtResult((Stmt*)nullptr);
12003
12004 // Convert to an expression-statement, and clean up any produced
12005 // temporaries.
12006 return S.ActOnExprStmt(Call);
12007 }
12008
12009 // - if the subobject is of scalar type, the built-in assignment
12010 // operator is used.
12011 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
12012 if (!ArrayTy) {
12013 ExprResult Assignment = S.CreateBuiltinBinOp(
12014 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
12015 if (Assignment.isInvalid())
12016 return StmtError();
12017 return S.ActOnExprStmt(Assignment);
12018 }
12019
12020 // - if the subobject is an array, each element is assigned, in the
12021 // manner appropriate to the element type;
12022
12023 // Construct a loop over the array bounds, e.g.,
12024 //
12025 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
12026 //
12027 // that will copy each of the array elements.
12028 QualType SizeType = S.Context.getSizeType();
12029
12030 // Create the iteration variable.
12031 IdentifierInfo *IterationVarName = nullptr;
12032 {
12033 SmallString<8> Str;
12034 llvm::raw_svector_ostream OS(Str);
12035 OS << "__i" << Depth;
12036 IterationVarName = &S.Context.Idents.get(OS.str());
12037 }
12038 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
12039 IterationVarName, SizeType,
12040 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
12041 SC_None);
12042
12043 // Initialize the iteration variable to zero.
12044 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
12045 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
12046
12047 // Creates a reference to the iteration variable.
12048 RefBuilder IterationVarRef(IterationVar, SizeType);
12049 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
12050
12051 // Create the DeclStmt that holds the iteration variable.
12052 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
12053
12054 // Subscript the "from" and "to" expressions with the iteration variable.
12055 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
12056 MoveCastBuilder FromIndexMove(FromIndexCopy);
12057 const ExprBuilder *FromIndex;
12058 if (Copying)
12059 FromIndex = &FromIndexCopy;
12060 else
12061 FromIndex = &FromIndexMove;
12062
12063 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
12064
12065 // Build the copy/move for an individual element of the array.
12066 StmtResult Copy =
12067 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
12068 ToIndex, *FromIndex, CopyingBaseSubobject,
12069 Copying, Depth + 1);
12070 // Bail out if copying fails or if we determined that we should use memcpy.
12071 if (Copy.isInvalid() || !Copy.get())
12072 return Copy;
12073
12074 // Create the comparison against the array bound.
12075 llvm::APInt Upper
12076 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
12077 Expr *Comparison
12078 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
12079 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
12080 BO_NE, S.Context.BoolTy,
12081 VK_RValue, OK_Ordinary, Loc, FPOptions());
12082
12083 // Create the pre-increment of the iteration variable. We can determine
12084 // whether the increment will overflow based on the value of the array
12085 // bound.
12086 Expr *Increment = new (S.Context)
12087 UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc, SizeType,
12088 VK_LValue, OK_Ordinary, Loc, Upper.isMaxValue());
12089
12090 // Construct the loop that copies all elements of this array.
12091 return S.ActOnForStmt(
12092 Loc, Loc, InitStmt,
12093 S.ActOnCondition(nullptr, Loc, Comparison, Sema::ConditionKind::Boolean),
12094 S.MakeFullDiscardedValueExpr(Increment), Loc, Copy.get());
12095}
12096
12097static StmtResult
12098buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
12099 const ExprBuilder &To, const ExprBuilder &From,
12100 bool CopyingBaseSubobject, bool Copying) {
12101 // Maybe we should use a memcpy?
12102 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
12103 T.isTriviallyCopyableType(S.Context))
12104 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
12105
12106 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
12107 CopyingBaseSubobject,
12108 Copying, 0));
12109
12110 // If we ended up picking a trivial assignment operator for an array of a
12111 // non-trivially-copyable class type, just emit a memcpy.
12112 if (!Result.isInvalid() && !Result.get())
12113 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
12114
12115 return Result;
12116}
12117
12118CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
12119 // Note: The following rules are largely analoguous to the copy
12120 // constructor rules. Note that virtual bases are not taken into account
12121 // for determining the argument type of the operator. Note also that
12122 // operators taking an object instead of a reference are allowed.
12123 assert(ClassDecl->needsImplicitCopyAssignment())((ClassDecl->needsImplicitCopyAssignment()) ? static_cast<
void> (0) : __assert_fail ("ClassDecl->needsImplicitCopyAssignment()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12123, __PRETTY_FUNCTION__))
;
12124
12125 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
12126 if (DSM.isAlreadyBeingDeclared())
12127 return nullptr;
12128
12129 QualType ArgType = Context.getTypeDeclType(ClassDecl);
12130 if (Context.getLangOpts().OpenCLCPlusPlus)
12131 ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic);
12132 QualType RetType = Context.getLValueReferenceType(ArgType);
12133 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
12134 if (Const)
12135 ArgType = ArgType.withConst();
12136
12137 ArgType = Context.getLValueReferenceType(ArgType);
12138
12139 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12140 CXXCopyAssignment,
12141 Const);
12142
12143 // An implicitly-declared copy assignment operator is an inline public
12144 // member of its class.
12145 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
12146 SourceLocation ClassLoc = ClassDecl->getLocation();
12147 DeclarationNameInfo NameInfo(Name, ClassLoc);
12148 CXXMethodDecl *CopyAssignment = CXXMethodDecl::Create(
12149 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
12150 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
12151 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified,
12152 SourceLocation());
12153 CopyAssignment->setAccess(AS_public);
12154 CopyAssignment->setDefaulted();
12155 CopyAssignment->setImplicit();
12156
12157 if (getLangOpts().CUDA) {
12158 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyAssignment,
12159 CopyAssignment,
12160 /* ConstRHS */ Const,
12161 /* Diagnose */ false);
12162 }
12163
12164 setupImplicitSpecialMemberType(CopyAssignment, RetType, ArgType);
12165
12166 // Add the parameter to the operator.
12167 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
12168 ClassLoc, ClassLoc,
12169 /*Id=*/nullptr, ArgType,
12170 /*TInfo=*/nullptr, SC_None,
12171 nullptr);
12172 CopyAssignment->setParams(FromParam);
12173
12174 CopyAssignment->setTrivial(
12175 ClassDecl->needsOverloadResolutionForCopyAssignment()
12176 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
12177 : ClassDecl->hasTrivialCopyAssignment());
12178
12179 // Note that we have added this copy-assignment operator.
12180 ++getASTContext().NumImplicitCopyAssignmentOperatorsDeclared;
12181
12182 Scope *S = getScopeForContext(ClassDecl);
12183 CheckImplicitSpecialMemberDeclaration(S, CopyAssignment);
12184
12185 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
12186 SetDeclDeleted(CopyAssignment, ClassLoc);
12187
12188 if (S)
12189 PushOnScopeChains(CopyAssignment, S, false);
12190 ClassDecl->addDecl(CopyAssignment);
12191
12192 return CopyAssignment;
12193}
12194
12195/// Diagnose an implicit copy operation for a class which is odr-used, but
12196/// which is deprecated because the class has a user-declared copy constructor,
12197/// copy assignment operator, or destructor.
12198static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp) {
12199 assert(CopyOp->isImplicit())((CopyOp->isImplicit()) ? static_cast<void> (0) : __assert_fail
("CopyOp->isImplicit()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12199, __PRETTY_FUNCTION__))
;
12200
12201 CXXRecordDecl *RD = CopyOp->getParent();
12202 CXXMethodDecl *UserDeclaredOperation = nullptr;
12203
12204 // In Microsoft mode, assignment operations don't affect constructors and
12205 // vice versa.
12206 if (RD->hasUserDeclaredDestructor()) {
12207 UserDeclaredOperation = RD->getDestructor();
12208 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
12209 RD->hasUserDeclaredCopyConstructor() &&
12210 !S.getLangOpts().MSVCCompat) {
12211 // Find any user-declared copy constructor.
12212 for (auto *I : RD->ctors()) {
12213 if (I->isCopyConstructor()) {
12214 UserDeclaredOperation = I;
12215 break;
12216 }
12217 }
12218 assert(UserDeclaredOperation)((UserDeclaredOperation) ? static_cast<void> (0) : __assert_fail
("UserDeclaredOperation", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12218, __PRETTY_FUNCTION__))
;
12219 } else if (isa<CXXConstructorDecl>(CopyOp) &&
12220 RD->hasUserDeclaredCopyAssignment() &&
12221 !S.getLangOpts().MSVCCompat) {
12222 // Find any user-declared move assignment operator.
12223 for (auto *I : RD->methods()) {
12224 if (I->isCopyAssignmentOperator()) {
12225 UserDeclaredOperation = I;
12226 break;
12227 }
12228 }
12229 assert(UserDeclaredOperation)((UserDeclaredOperation) ? static_cast<void> (0) : __assert_fail
("UserDeclaredOperation", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12229, __PRETTY_FUNCTION__))
;
12230 }
12231
12232 if (UserDeclaredOperation) {
12233 S.Diag(UserDeclaredOperation->getLocation(),
12234 diag::warn_deprecated_copy_operation)
12235 << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
12236 << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
12237 }
12238}
12239
12240void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
12241 CXXMethodDecl *CopyAssignOperator) {
12242 assert((CopyAssignOperator->isDefaulted() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12247, __PRETTY_FUNCTION__))
12243 CopyAssignOperator->isOverloadedOperator() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12247, __PRETTY_FUNCTION__))
12244 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12247, __PRETTY_FUNCTION__))
12245 !CopyAssignOperator->doesThisDeclarationHaveABody() &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12247, __PRETTY_FUNCTION__))
12246 !CopyAssignOperator->isDeleted()) &&(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12247, __PRETTY_FUNCTION__))
12247 "DefineImplicitCopyAssignment called for wrong function")(((CopyAssignOperator->isDefaulted() && CopyAssignOperator
->isOverloadedOperator() && CopyAssignOperator->
getOverloadedOperator() == OO_Equal && !CopyAssignOperator
->doesThisDeclarationHaveABody() && !CopyAssignOperator
->isDeleted()) && "DefineImplicitCopyAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(CopyAssignOperator->isDefaulted() && CopyAssignOperator->isOverloadedOperator() && CopyAssignOperator->getOverloadedOperator() == OO_Equal && !CopyAssignOperator->doesThisDeclarationHaveABody() && !CopyAssignOperator->isDeleted()) && \"DefineImplicitCopyAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12247, __PRETTY_FUNCTION__))
;
12248 if (CopyAssignOperator->willHaveBody() || CopyAssignOperator->isInvalidDecl())
12249 return;
12250
12251 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
12252 if (ClassDecl->isInvalidDecl()) {
12253 CopyAssignOperator->setInvalidDecl();
12254 return;
12255 }
12256
12257 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
12258
12259 // The exception specification is needed because we are defining the
12260 // function.
12261 ResolveExceptionSpec(CurrentLocation,
12262 CopyAssignOperator->getType()->castAs<FunctionProtoType>());
12263
12264 // Add a context note for diagnostics produced after this point.
12265 Scope.addContextNote(CurrentLocation);
12266
12267 // C++11 [class.copy]p18:
12268 // The [definition of an implicitly declared copy assignment operator] is
12269 // deprecated if the class has a user-declared copy constructor or a
12270 // user-declared destructor.
12271 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
12272 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator);
12273
12274 // C++0x [class.copy]p30:
12275 // The implicitly-defined or explicitly-defaulted copy assignment operator
12276 // for a non-union class X performs memberwise copy assignment of its
12277 // subobjects. The direct base classes of X are assigned first, in the
12278 // order of their declaration in the base-specifier-list, and then the
12279 // immediate non-static data members of X are assigned, in the order in
12280 // which they were declared in the class definition.
12281
12282 // The statements that form the synthesized function body.
12283 SmallVector<Stmt*, 8> Statements;
12284
12285 // The parameter for the "other" object, which we are copying from.
12286 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
12287 Qualifiers OtherQuals = Other->getType().getQualifiers();
12288 QualType OtherRefType = Other->getType();
12289 if (const LValueReferenceType *OtherRef
12290 = OtherRefType->getAs<LValueReferenceType>()) {
12291 OtherRefType = OtherRef->getPointeeType();
12292 OtherQuals = OtherRefType.getQualifiers();
12293 }
12294
12295 // Our location for everything implicitly-generated.
12296 SourceLocation Loc = CopyAssignOperator->getEndLoc().isValid()
12297 ? CopyAssignOperator->getEndLoc()
12298 : CopyAssignOperator->getLocation();
12299
12300 // Builds a DeclRefExpr for the "other" object.
12301 RefBuilder OtherRef(Other, OtherRefType);
12302
12303 // Builds the "this" pointer.
12304 ThisBuilder This;
12305
12306 // Assign base classes.
12307 bool Invalid = false;
12308 for (auto &Base : ClassDecl->bases()) {
12309 // Form the assignment:
12310 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
12311 QualType BaseType = Base.getType().getUnqualifiedType();
12312 if (!BaseType->isRecordType()) {
12313 Invalid = true;
12314 continue;
12315 }
12316
12317 CXXCastPath BasePath;
12318 BasePath.push_back(&Base);
12319
12320 // Construct the "from" expression, which is an implicit cast to the
12321 // appropriately-qualified base type.
12322 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
12323 VK_LValue, BasePath);
12324
12325 // Dereference "this".
12326 DerefBuilder DerefThis(This);
12327 CastBuilder To(DerefThis,
12328 Context.getQualifiedType(
12329 BaseType, CopyAssignOperator->getMethodQualifiers()),
12330 VK_LValue, BasePath);
12331
12332 // Build the copy.
12333 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
12334 To, From,
12335 /*CopyingBaseSubobject=*/true,
12336 /*Copying=*/true);
12337 if (Copy.isInvalid()) {
12338 CopyAssignOperator->setInvalidDecl();
12339 return;
12340 }
12341
12342 // Success! Record the copy.
12343 Statements.push_back(Copy.getAs<Expr>());
12344 }
12345
12346 // Assign non-static members.
12347 for (auto *Field : ClassDecl->fields()) {
12348 // FIXME: We should form some kind of AST representation for the implied
12349 // memcpy in a union copy operation.
12350 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
12351 continue;
12352
12353 if (Field->isInvalidDecl()) {
12354 Invalid = true;
12355 continue;
12356 }
12357
12358 // Check for members of reference type; we can't copy those.
12359 if (Field->getType()->isReferenceType()) {
12360 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
12361 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
12362 Diag(Field->getLocation(), diag::note_declared_at);
12363 Invalid = true;
12364 continue;
12365 }
12366
12367 // Check for members of const-qualified, non-class type.
12368 QualType BaseType = Context.getBaseElementType(Field->getType());
12369 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
12370 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
12371 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
12372 Diag(Field->getLocation(), diag::note_declared_at);
12373 Invalid = true;
12374 continue;
12375 }
12376
12377 // Suppress assigning zero-width bitfields.
12378 if (Field->isZeroLengthBitField(Context))
12379 continue;
12380
12381 QualType FieldType = Field->getType().getNonReferenceType();
12382 if (FieldType->isIncompleteArrayType()) {
12383 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12384, __PRETTY_FUNCTION__))
12384 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12384, __PRETTY_FUNCTION__))
;
12385 continue;
12386 }
12387
12388 // Build references to the field in the object we're copying from and to.
12389 CXXScopeSpec SS; // Intentionally empty
12390 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
12391 LookupMemberName);
12392 MemberLookup.addDecl(Field);
12393 MemberLookup.resolveKind();
12394
12395 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
12396
12397 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
12398
12399 // Build the copy of this field.
12400 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
12401 To, From,
12402 /*CopyingBaseSubobject=*/false,
12403 /*Copying=*/true);
12404 if (Copy.isInvalid()) {
12405 CopyAssignOperator->setInvalidDecl();
12406 return;
12407 }
12408
12409 // Success! Record the copy.
12410 Statements.push_back(Copy.getAs<Stmt>());
12411 }
12412
12413 if (!Invalid) {
12414 // Add a "return *this;"
12415 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
12416
12417 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
12418 if (Return.isInvalid())
12419 Invalid = true;
12420 else
12421 Statements.push_back(Return.getAs<Stmt>());
12422 }
12423
12424 if (Invalid) {
12425 CopyAssignOperator->setInvalidDecl();
12426 return;
12427 }
12428
12429 StmtResult Body;
12430 {
12431 CompoundScopeRAII CompoundScope(*this);
12432 Body = ActOnCompoundStmt(Loc, Loc, Statements,
12433 /*isStmtExpr=*/false);
12434 assert(!Body.isInvalid() && "Compound statement creation cannot fail")((!Body.isInvalid() && "Compound statement creation cannot fail"
) ? static_cast<void> (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12434, __PRETTY_FUNCTION__))
;
12435 }
12436 CopyAssignOperator->setBody(Body.getAs<Stmt>());
12437 CopyAssignOperator->markUsed(Context);
12438
12439 if (ASTMutationListener *L = getASTMutationListener()) {
12440 L->CompletedImplicitDefinition(CopyAssignOperator);
12441 }
12442}
12443
12444CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
12445 assert(ClassDecl->needsImplicitMoveAssignment())((ClassDecl->needsImplicitMoveAssignment()) ? static_cast<
void> (0) : __assert_fail ("ClassDecl->needsImplicitMoveAssignment()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12445, __PRETTY_FUNCTION__))
;
12446
12447 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
12448 if (DSM.isAlreadyBeingDeclared())
12449 return nullptr;
12450
12451 // Note: The following rules are largely analoguous to the move
12452 // constructor rules.
12453
12454 QualType ArgType = Context.getTypeDeclType(ClassDecl);
12455 if (Context.getLangOpts().OpenCLCPlusPlus)
12456 ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic);
12457 QualType RetType = Context.getLValueReferenceType(ArgType);
12458 ArgType = Context.getRValueReferenceType(ArgType);
12459
12460 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12461 CXXMoveAssignment,
12462 false);
12463
12464 // An implicitly-declared move assignment operator is an inline public
12465 // member of its class.
12466 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
12467 SourceLocation ClassLoc = ClassDecl->getLocation();
12468 DeclarationNameInfo NameInfo(Name, ClassLoc);
12469 CXXMethodDecl *MoveAssignment = CXXMethodDecl::Create(
12470 Context, ClassDecl, ClassLoc, NameInfo, QualType(),
12471 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
12472 /*isInline=*/true, Constexpr ? CSK_constexpr : CSK_unspecified,
12473 SourceLocation());
12474 MoveAssignment->setAccess(AS_public);
12475 MoveAssignment->setDefaulted();
12476 MoveAssignment->setImplicit();
12477
12478 if (getLangOpts().CUDA) {
12479 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveAssignment,
12480 MoveAssignment,
12481 /* ConstRHS */ false,
12482 /* Diagnose */ false);
12483 }
12484
12485 // Build an exception specification pointing back at this member.
12486 FunctionProtoType::ExtProtoInfo EPI =
12487 getImplicitMethodEPI(*this, MoveAssignment);
12488 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
12489
12490 // Add the parameter to the operator.
12491 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
12492 ClassLoc, ClassLoc,
12493 /*Id=*/nullptr, ArgType,
12494 /*TInfo=*/nullptr, SC_None,
12495 nullptr);
12496 MoveAssignment->setParams(FromParam);
12497
12498 MoveAssignment->setTrivial(
12499 ClassDecl->needsOverloadResolutionForMoveAssignment()
12500 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
12501 : ClassDecl->hasTrivialMoveAssignment());
12502
12503 // Note that we have added this copy-assignment operator.
12504 ++getASTContext().NumImplicitMoveAssignmentOperatorsDeclared;
12505
12506 Scope *S = getScopeForContext(ClassDecl);
12507 CheckImplicitSpecialMemberDeclaration(S, MoveAssignment);
12508
12509 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
12510 ClassDecl->setImplicitMoveAssignmentIsDeleted();
12511 SetDeclDeleted(MoveAssignment, ClassLoc);
12512 }
12513
12514 if (S)
12515 PushOnScopeChains(MoveAssignment, S, false);
12516 ClassDecl->addDecl(MoveAssignment);
12517
12518 return MoveAssignment;
12519}
12520
12521/// Check if we're implicitly defining a move assignment operator for a class
12522/// with virtual bases. Such a move assignment might move-assign the virtual
12523/// base multiple times.
12524static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
12525 SourceLocation CurrentLocation) {
12526 assert(!Class->isDependentContext() && "should not define dependent move")((!Class->isDependentContext() && "should not define dependent move"
) ? static_cast<void> (0) : __assert_fail ("!Class->isDependentContext() && \"should not define dependent move\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12526, __PRETTY_FUNCTION__))
;
12527
12528 // Only a virtual base could get implicitly move-assigned multiple times.
12529 // Only a non-trivial move assignment can observe this. We only want to
12530 // diagnose if we implicitly define an assignment operator that assigns
12531 // two base classes, both of which move-assign the same virtual base.
12532 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
12533 Class->getNumBases() < 2)
12534 return;
12535
12536 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
12537 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
12538 VBaseMap VBases;
12539
12540 for (auto &BI : Class->bases()) {
12541 Worklist.push_back(&BI);
12542 while (!Worklist.empty()) {
12543 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
12544 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
12545
12546 // If the base has no non-trivial move assignment operators,
12547 // we don't care about moves from it.
12548 if (!Base->hasNonTrivialMoveAssignment())
12549 continue;
12550
12551 // If there's nothing virtual here, skip it.
12552 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
12553 continue;
12554
12555 // If we're not actually going to call a move assignment for this base,
12556 // or the selected move assignment is trivial, skip it.
12557 Sema::SpecialMemberOverloadResult SMOR =
12558 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
12559 /*ConstArg*/false, /*VolatileArg*/false,
12560 /*RValueThis*/true, /*ConstThis*/false,
12561 /*VolatileThis*/false);
12562 if (!SMOR.getMethod() || SMOR.getMethod()->isTrivial() ||
12563 !SMOR.getMethod()->isMoveAssignmentOperator())
12564 continue;
12565
12566 if (BaseSpec->isVirtual()) {
12567 // We're going to move-assign this virtual base, and its move
12568 // assignment operator is not trivial. If this can happen for
12569 // multiple distinct direct bases of Class, diagnose it. (If it
12570 // only happens in one base, we'll diagnose it when synthesizing
12571 // that base class's move assignment operator.)
12572 CXXBaseSpecifier *&Existing =
12573 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
12574 .first->second;
12575 if (Existing && Existing != &BI) {
12576 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
12577 << Class << Base;
12578 S.Diag(Existing->getBeginLoc(), diag::note_vbase_moved_here)
12579 << (Base->getCanonicalDecl() ==
12580 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
12581 << Base << Existing->getType() << Existing->getSourceRange();
12582 S.Diag(BI.getBeginLoc(), diag::note_vbase_moved_here)
12583 << (Base->getCanonicalDecl() ==
12584 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
12585 << Base << BI.getType() << BaseSpec->getSourceRange();
12586
12587 // Only diagnose each vbase once.
12588 Existing = nullptr;
12589 }
12590 } else {
12591 // Only walk over bases that have defaulted move assignment operators.
12592 // We assume that any user-provided move assignment operator handles
12593 // the multiple-moves-of-vbase case itself somehow.
12594 if (!SMOR.getMethod()->isDefaulted())
12595 continue;
12596
12597 // We're going to move the base classes of Base. Add them to the list.
12598 for (auto &BI : Base->bases())
12599 Worklist.push_back(&BI);
12600 }
12601 }
12602 }
12603}
12604
12605void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
12606 CXXMethodDecl *MoveAssignOperator) {
12607 assert((MoveAssignOperator->isDefaulted() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12612, __PRETTY_FUNCTION__))
12608 MoveAssignOperator->isOverloadedOperator() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12612, __PRETTY_FUNCTION__))
12609 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12612, __PRETTY_FUNCTION__))
12610 !MoveAssignOperator->doesThisDeclarationHaveABody() &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12612, __PRETTY_FUNCTION__))
12611 !MoveAssignOperator->isDeleted()) &&(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12612, __PRETTY_FUNCTION__))
12612 "DefineImplicitMoveAssignment called for wrong function")(((MoveAssignOperator->isDefaulted() && MoveAssignOperator
->isOverloadedOperator() && MoveAssignOperator->
getOverloadedOperator() == OO_Equal && !MoveAssignOperator
->doesThisDeclarationHaveABody() && !MoveAssignOperator
->isDeleted()) && "DefineImplicitMoveAssignment called for wrong function"
) ? static_cast<void> (0) : __assert_fail ("(MoveAssignOperator->isDefaulted() && MoveAssignOperator->isOverloadedOperator() && MoveAssignOperator->getOverloadedOperator() == OO_Equal && !MoveAssignOperator->doesThisDeclarationHaveABody() && !MoveAssignOperator->isDeleted()) && \"DefineImplicitMoveAssignment called for wrong function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12612, __PRETTY_FUNCTION__))
;
12613 if (MoveAssignOperator->willHaveBody() || MoveAssignOperator->isInvalidDecl())
12614 return;
12615
12616 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
12617 if (ClassDecl->isInvalidDecl()) {
12618 MoveAssignOperator->setInvalidDecl();
12619 return;
12620 }
12621
12622 // C++0x [class.copy]p28:
12623 // The implicitly-defined or move assignment operator for a non-union class
12624 // X performs memberwise move assignment of its subobjects. The direct base
12625 // classes of X are assigned first, in the order of their declaration in the
12626 // base-specifier-list, and then the immediate non-static data members of X
12627 // are assigned, in the order in which they were declared in the class
12628 // definition.
12629
12630 // Issue a warning if our implicit move assignment operator will move
12631 // from a virtual base more than once.
12632 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
12633
12634 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
12635
12636 // The exception specification is needed because we are defining the
12637 // function.
12638 ResolveExceptionSpec(CurrentLocation,
12639 MoveAssignOperator->getType()->castAs<FunctionProtoType>());
12640
12641 // Add a context note for diagnostics produced after this point.
12642 Scope.addContextNote(CurrentLocation);
12643
12644 // The statements that form the synthesized function body.
12645 SmallVector<Stmt*, 8> Statements;
12646
12647 // The parameter for the "other" object, which we are move from.
12648 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
12649 QualType OtherRefType = Other->getType()->
12650 getAs<RValueReferenceType>()->getPointeeType();
12651
12652 // Our location for everything implicitly-generated.
12653 SourceLocation Loc = MoveAssignOperator->getEndLoc().isValid()
12654 ? MoveAssignOperator->getEndLoc()
12655 : MoveAssignOperator->getLocation();
12656
12657 // Builds a reference to the "other" object.
12658 RefBuilder OtherRef(Other, OtherRefType);
12659 // Cast to rvalue.
12660 MoveCastBuilder MoveOther(OtherRef);
12661
12662 // Builds the "this" pointer.
12663 ThisBuilder This;
12664
12665 // Assign base classes.
12666 bool Invalid = false;
12667 for (auto &Base : ClassDecl->bases()) {
12668 // C++11 [class.copy]p28:
12669 // It is unspecified whether subobjects representing virtual base classes
12670 // are assigned more than once by the implicitly-defined copy assignment
12671 // operator.
12672 // FIXME: Do not assign to a vbase that will be assigned by some other base
12673 // class. For a move-assignment, this can result in the vbase being moved
12674 // multiple times.
12675
12676 // Form the assignment:
12677 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
12678 QualType BaseType = Base.getType().getUnqualifiedType();
12679 if (!BaseType->isRecordType()) {
12680 Invalid = true;
12681 continue;
12682 }
12683
12684 CXXCastPath BasePath;
12685 BasePath.push_back(&Base);
12686
12687 // Construct the "from" expression, which is an implicit cast to the
12688 // appropriately-qualified base type.
12689 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
12690
12691 // Dereference "this".
12692 DerefBuilder DerefThis(This);
12693
12694 // Implicitly cast "this" to the appropriately-qualified base type.
12695 CastBuilder To(DerefThis,
12696 Context.getQualifiedType(
12697 BaseType, MoveAssignOperator->getMethodQualifiers()),
12698 VK_LValue, BasePath);
12699
12700 // Build the move.
12701 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
12702 To, From,
12703 /*CopyingBaseSubobject=*/true,
12704 /*Copying=*/false);
12705 if (Move.isInvalid()) {
12706 MoveAssignOperator->setInvalidDecl();
12707 return;
12708 }
12709
12710 // Success! Record the move.
12711 Statements.push_back(Move.getAs<Expr>());
12712 }
12713
12714 // Assign non-static members.
12715 for (auto *Field : ClassDecl->fields()) {
12716 // FIXME: We should form some kind of AST representation for the implied
12717 // memcpy in a union copy operation.
12718 if (Field->isUnnamedBitfield() || Field->getParent()->isUnion())
12719 continue;
12720
12721 if (Field->isInvalidDecl()) {
12722 Invalid = true;
12723 continue;
12724 }
12725
12726 // Check for members of reference type; we can't move those.
12727 if (Field->getType()->isReferenceType()) {
12728 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
12729 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
12730 Diag(Field->getLocation(), diag::note_declared_at);
12731 Invalid = true;
12732 continue;
12733 }
12734
12735 // Check for members of const-qualified, non-class type.
12736 QualType BaseType = Context.getBaseElementType(Field->getType());
12737 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
12738 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
12739 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
12740 Diag(Field->getLocation(), diag::note_declared_at);
12741 Invalid = true;
12742 continue;
12743 }
12744
12745 // Suppress assigning zero-width bitfields.
12746 if (Field->isZeroLengthBitField(Context))
12747 continue;
12748
12749 QualType FieldType = Field->getType().getNonReferenceType();
12750 if (FieldType->isIncompleteArrayType()) {
12751 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12752, __PRETTY_FUNCTION__))
12752 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12752, __PRETTY_FUNCTION__))
;
12753 continue;
12754 }
12755
12756 // Build references to the field in the object we're copying from and to.
12757 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
12758 LookupMemberName);
12759 MemberLookup.addDecl(Field);
12760 MemberLookup.resolveKind();
12761 MemberBuilder From(MoveOther, OtherRefType,
12762 /*IsArrow=*/false, MemberLookup);
12763 MemberBuilder To(This, getCurrentThisType(),
12764 /*IsArrow=*/true, MemberLookup);
12765
12766 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12768, __PRETTY_FUNCTION__))
12767 "Member reference with rvalue base must be rvalue except for reference "((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12768, __PRETTY_FUNCTION__))
12768 "members, which aren't allowed for move assignment.")((!From.build(*this, Loc)->isLValue() && "Member reference with rvalue base must be rvalue except for reference "
"members, which aren't allowed for move assignment.") ? static_cast
<void> (0) : __assert_fail ("!From.build(*this, Loc)->isLValue() && \"Member reference with rvalue base must be rvalue except for reference \" \"members, which aren't allowed for move assignment.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12768, __PRETTY_FUNCTION__))
;
12769
12770 // Build the move of this field.
12771 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
12772 To, From,
12773 /*CopyingBaseSubobject=*/false,
12774 /*Copying=*/false);
12775 if (Move.isInvalid()) {
12776 MoveAssignOperator->setInvalidDecl();
12777 return;
12778 }
12779
12780 // Success! Record the copy.
12781 Statements.push_back(Move.getAs<Stmt>());
12782 }
12783
12784 if (!Invalid) {
12785 // Add a "return *this;"
12786 ExprResult ThisObj =
12787 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
12788
12789 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
12790 if (Return.isInvalid())
12791 Invalid = true;
12792 else
12793 Statements.push_back(Return.getAs<Stmt>());
12794 }
12795
12796 if (Invalid) {
12797 MoveAssignOperator->setInvalidDecl();
12798 return;
12799 }
12800
12801 StmtResult Body;
12802 {
12803 CompoundScopeRAII CompoundScope(*this);
12804 Body = ActOnCompoundStmt(Loc, Loc, Statements,
12805 /*isStmtExpr=*/false);
12806 assert(!Body.isInvalid() && "Compound statement creation cannot fail")((!Body.isInvalid() && "Compound statement creation cannot fail"
) ? static_cast<void> (0) : __assert_fail ("!Body.isInvalid() && \"Compound statement creation cannot fail\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12806, __PRETTY_FUNCTION__))
;
12807 }
12808 MoveAssignOperator->setBody(Body.getAs<Stmt>());
12809 MoveAssignOperator->markUsed(Context);
12810
12811 if (ASTMutationListener *L = getASTMutationListener()) {
12812 L->CompletedImplicitDefinition(MoveAssignOperator);
12813 }
12814}
12815
12816CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
12817 CXXRecordDecl *ClassDecl) {
12818 // C++ [class.copy]p4:
12819 // If the class definition does not explicitly declare a copy
12820 // constructor, one is declared implicitly.
12821 assert(ClassDecl->needsImplicitCopyConstructor())((ClassDecl->needsImplicitCopyConstructor()) ? static_cast
<void> (0) : __assert_fail ("ClassDecl->needsImplicitCopyConstructor()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12821, __PRETTY_FUNCTION__))
;
12822
12823 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
12824 if (DSM.isAlreadyBeingDeclared())
12825 return nullptr;
12826
12827 QualType ClassType = Context.getTypeDeclType(ClassDecl);
12828 QualType ArgType = ClassType;
12829 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
12830 if (Const)
12831 ArgType = ArgType.withConst();
12832
12833 if (Context.getLangOpts().OpenCLCPlusPlus)
12834 ArgType = Context.getAddrSpaceQualType(ArgType, LangAS::opencl_generic);
12835
12836 ArgType = Context.getLValueReferenceType(ArgType);
12837
12838 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12839 CXXCopyConstructor,
12840 Const);
12841
12842 DeclarationName Name
12843 = Context.DeclarationNames.getCXXConstructorName(
12844 Context.getCanonicalType(ClassType));
12845 SourceLocation ClassLoc = ClassDecl->getLocation();
12846 DeclarationNameInfo NameInfo(Name, ClassLoc);
12847
12848 // An implicitly-declared copy constructor is an inline public
12849 // member of its class.
12850 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
12851 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
12852 ExplicitSpecifier(),
12853 /*isInline=*/true,
12854 /*isImplicitlyDeclared=*/true,
12855 Constexpr ? CSK_constexpr : CSK_unspecified);
12856 CopyConstructor->setAccess(AS_public);
12857 CopyConstructor->setDefaulted();
12858
12859 if (getLangOpts().CUDA) {
12860 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXCopyConstructor,
12861 CopyConstructor,
12862 /* ConstRHS */ Const,
12863 /* Diagnose */ false);
12864 }
12865
12866 setupImplicitSpecialMemberType(CopyConstructor, Context.VoidTy, ArgType);
12867
12868 // Add the parameter to the constructor.
12869 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
12870 ClassLoc, ClassLoc,
12871 /*IdentifierInfo=*/nullptr,
12872 ArgType, /*TInfo=*/nullptr,
12873 SC_None, nullptr);
12874 CopyConstructor->setParams(FromParam);
12875
12876 CopyConstructor->setTrivial(
12877 ClassDecl->needsOverloadResolutionForCopyConstructor()
12878 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
12879 : ClassDecl->hasTrivialCopyConstructor());
12880
12881 CopyConstructor->setTrivialForCall(
12882 ClassDecl->hasAttr<TrivialABIAttr>() ||
12883 (ClassDecl->needsOverloadResolutionForCopyConstructor()
12884 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor,
12885 TAH_ConsiderTrivialABI)
12886 : ClassDecl->hasTrivialCopyConstructorForCall()));
12887
12888 // Note that we have declared this constructor.
12889 ++getASTContext().NumImplicitCopyConstructorsDeclared;
12890
12891 Scope *S = getScopeForContext(ClassDecl);
12892 CheckImplicitSpecialMemberDeclaration(S, CopyConstructor);
12893
12894 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor)) {
12895 ClassDecl->setImplicitCopyConstructorIsDeleted();
12896 SetDeclDeleted(CopyConstructor, ClassLoc);
12897 }
12898
12899 if (S)
12900 PushOnScopeChains(CopyConstructor, S, false);
12901 ClassDecl->addDecl(CopyConstructor);
12902
12903 return CopyConstructor;
12904}
12905
12906void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
12907 CXXConstructorDecl *CopyConstructor) {
12908 assert((CopyConstructor->isDefaulted() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12912, __PRETTY_FUNCTION__))
12909 CopyConstructor->isCopyConstructor() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12912, __PRETTY_FUNCTION__))
12910 !CopyConstructor->doesThisDeclarationHaveABody() &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12912, __PRETTY_FUNCTION__))
12911 !CopyConstructor->isDeleted()) &&(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12912, __PRETTY_FUNCTION__))
12912 "DefineImplicitCopyConstructor - call it for implicit copy ctor")(((CopyConstructor->isDefaulted() && CopyConstructor
->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody
() && !CopyConstructor->isDeleted()) && "DefineImplicitCopyConstructor - call it for implicit copy ctor"
) ? static_cast<void> (0) : __assert_fail ("(CopyConstructor->isDefaulted() && CopyConstructor->isCopyConstructor() && !CopyConstructor->doesThisDeclarationHaveABody() && !CopyConstructor->isDeleted()) && \"DefineImplicitCopyConstructor - call it for implicit copy ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12912, __PRETTY_FUNCTION__))
;
12913 if (CopyConstructor->willHaveBody() || CopyConstructor->isInvalidDecl())
12914 return;
12915
12916 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
12917 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor")((ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitCopyConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12917, __PRETTY_FUNCTION__))
;
12918
12919 SynthesizedFunctionScope Scope(*this, CopyConstructor);
12920
12921 // The exception specification is needed because we are defining the
12922 // function.
12923 ResolveExceptionSpec(CurrentLocation,
12924 CopyConstructor->getType()->castAs<FunctionProtoType>());
12925 MarkVTableUsed(CurrentLocation, ClassDecl);
12926
12927 // Add a context note for diagnostics produced after this point.
12928 Scope.addContextNote(CurrentLocation);
12929
12930 // C++11 [class.copy]p7:
12931 // The [definition of an implicitly declared copy constructor] is
12932 // deprecated if the class has a user-declared copy assignment operator
12933 // or a user-declared destructor.
12934 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
12935 diagnoseDeprecatedCopyOperation(*this, CopyConstructor);
12936
12937 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false)) {
12938 CopyConstructor->setInvalidDecl();
12939 } else {
12940 SourceLocation Loc = CopyConstructor->getEndLoc().isValid()
12941 ? CopyConstructor->getEndLoc()
12942 : CopyConstructor->getLocation();
12943 Sema::CompoundScopeRAII CompoundScope(*this);
12944 CopyConstructor->setBody(
12945 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
12946 CopyConstructor->markUsed(Context);
12947 }
12948
12949 if (ASTMutationListener *L = getASTMutationListener()) {
12950 L->CompletedImplicitDefinition(CopyConstructor);
12951 }
12952}
12953
12954CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
12955 CXXRecordDecl *ClassDecl) {
12956 assert(ClassDecl->needsImplicitMoveConstructor())((ClassDecl->needsImplicitMoveConstructor()) ? static_cast
<void> (0) : __assert_fail ("ClassDecl->needsImplicitMoveConstructor()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 12956, __PRETTY_FUNCTION__))
;
12957
12958 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
12959 if (DSM.isAlreadyBeingDeclared())
12960 return nullptr;
12961
12962 QualType ClassType = Context.getTypeDeclType(ClassDecl);
12963
12964 QualType ArgType = ClassType;
12965 if (Context.getLangOpts().OpenCLCPlusPlus)
12966 ArgType = Context.getAddrSpaceQualType(ClassType, LangAS::opencl_generic);
12967 ArgType = Context.getRValueReferenceType(ArgType);
12968
12969 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
12970 CXXMoveConstructor,
12971 false);
12972
12973 DeclarationName Name
12974 = Context.DeclarationNames.getCXXConstructorName(
12975 Context.getCanonicalType(ClassType));
12976 SourceLocation ClassLoc = ClassDecl->getLocation();
12977 DeclarationNameInfo NameInfo(Name, ClassLoc);
12978
12979 // C++11 [class.copy]p11:
12980 // An implicitly-declared copy/move constructor is an inline public
12981 // member of its class.
12982 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
12983 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
12984 ExplicitSpecifier(),
12985 /*isInline=*/true,
12986 /*isImplicitlyDeclared=*/true,
12987 Constexpr ? CSK_constexpr : CSK_unspecified);
12988 MoveConstructor->setAccess(AS_public);
12989 MoveConstructor->setDefaulted();
12990
12991 if (getLangOpts().CUDA) {
12992 inferCUDATargetForImplicitSpecialMember(ClassDecl, CXXMoveConstructor,
12993 MoveConstructor,
12994 /* ConstRHS */ false,
12995 /* Diagnose */ false);
12996 }
12997
12998 setupImplicitSpecialMemberType(MoveConstructor, Context.VoidTy, ArgType);
12999
13000 // Add the parameter to the constructor.
13001 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
13002 ClassLoc, ClassLoc,
13003 /*IdentifierInfo=*/nullptr,
13004 ArgType, /*TInfo=*/nullptr,
13005 SC_None, nullptr);
13006 MoveConstructor->setParams(FromParam);
13007
13008 MoveConstructor->setTrivial(
13009 ClassDecl->needsOverloadResolutionForMoveConstructor()
13010 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
13011 : ClassDecl->hasTrivialMoveConstructor());
13012
13013 MoveConstructor->setTrivialForCall(
13014 ClassDecl->hasAttr<TrivialABIAttr>() ||
13015 (ClassDecl->needsOverloadResolutionForMoveConstructor()
13016 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor,
13017 TAH_ConsiderTrivialABI)
13018 : ClassDecl->hasTrivialMoveConstructorForCall()));
13019
13020 // Note that we have declared this constructor.
13021 ++getASTContext().NumImplicitMoveConstructorsDeclared;
13022
13023 Scope *S = getScopeForContext(ClassDecl);
13024 CheckImplicitSpecialMemberDeclaration(S, MoveConstructor);
13025
13026 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
13027 ClassDecl->setImplicitMoveConstructorIsDeleted();
13028 SetDeclDeleted(MoveConstructor, ClassLoc);
13029 }
13030
13031 if (S)
13032 PushOnScopeChains(MoveConstructor, S, false);
13033 ClassDecl->addDecl(MoveConstructor);
13034
13035 return MoveConstructor;
13036}
13037
13038void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
13039 CXXConstructorDecl *MoveConstructor) {
13040 assert((MoveConstructor->isDefaulted() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13044, __PRETTY_FUNCTION__))
13041 MoveConstructor->isMoveConstructor() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13044, __PRETTY_FUNCTION__))
13042 !MoveConstructor->doesThisDeclarationHaveABody() &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13044, __PRETTY_FUNCTION__))
13043 !MoveConstructor->isDeleted()) &&(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13044, __PRETTY_FUNCTION__))
13044 "DefineImplicitMoveConstructor - call it for implicit move ctor")(((MoveConstructor->isDefaulted() && MoveConstructor
->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody
() && !MoveConstructor->isDeleted()) && "DefineImplicitMoveConstructor - call it for implicit move ctor"
) ? static_cast<void> (0) : __assert_fail ("(MoveConstructor->isDefaulted() && MoveConstructor->isMoveConstructor() && !MoveConstructor->doesThisDeclarationHaveABody() && !MoveConstructor->isDeleted()) && \"DefineImplicitMoveConstructor - call it for implicit move ctor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13044, __PRETTY_FUNCTION__))
;
13045 if (MoveConstructor->willHaveBody() || MoveConstructor->isInvalidDecl())
13046 return;
13047
13048 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
13049 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor")((ClassDecl && "DefineImplicitMoveConstructor - invalid constructor"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl && \"DefineImplicitMoveConstructor - invalid constructor\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13049, __PRETTY_FUNCTION__))
;
13050
13051 SynthesizedFunctionScope Scope(*this, MoveConstructor);
13052
13053 // The exception specification is needed because we are defining the
13054 // function.
13055 ResolveExceptionSpec(CurrentLocation,
13056 MoveConstructor->getType()->castAs<FunctionProtoType>());
13057 MarkVTableUsed(CurrentLocation, ClassDecl);
13058
13059 // Add a context note for diagnostics produced after this point.
13060 Scope.addContextNote(CurrentLocation);
13061
13062 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false)) {
13063 MoveConstructor->setInvalidDecl();
13064 } else {
13065 SourceLocation Loc = MoveConstructor->getEndLoc().isValid()
13066 ? MoveConstructor->getEndLoc()
13067 : MoveConstructor->getLocation();
13068 Sema::CompoundScopeRAII CompoundScope(*this);
13069 MoveConstructor->setBody(ActOnCompoundStmt(
13070 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
13071 MoveConstructor->markUsed(Context);
13072 }
13073
13074 if (ASTMutationListener *L = getASTMutationListener()) {
13075 L->CompletedImplicitDefinition(MoveConstructor);
13076 }
13077}
13078
13079bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
13080 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
13081}
13082
13083void Sema::DefineImplicitLambdaToFunctionPointerConversion(
13084 SourceLocation CurrentLocation,
13085 CXXConversionDecl *Conv) {
13086 SynthesizedFunctionScope Scope(*this, Conv);
13087 assert(!Conv->getReturnType()->isUndeducedType())((!Conv->getReturnType()->isUndeducedType()) ? static_cast
<void> (0) : __assert_fail ("!Conv->getReturnType()->isUndeducedType()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13087, __PRETTY_FUNCTION__))
;
13088
13089 CXXRecordDecl *Lambda = Conv->getParent();
13090 FunctionDecl *CallOp = Lambda->getLambdaCallOperator();
13091 FunctionDecl *Invoker = Lambda->getLambdaStaticInvoker();
13092
13093 if (auto *TemplateArgs = Conv->getTemplateSpecializationArgs()) {
13094 CallOp = InstantiateFunctionDeclaration(
13095 CallOp->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
13096 if (!CallOp)
13097 return;
13098
13099 Invoker = InstantiateFunctionDeclaration(
13100 Invoker->getDescribedFunctionTemplate(), TemplateArgs, CurrentLocation);
13101 if (!Invoker)
13102 return;
13103 }
13104
13105 if (CallOp->isInvalidDecl())
13106 return;
13107
13108 // Mark the call operator referenced (and add to pending instantiations
13109 // if necessary).
13110 // For both the conversion and static-invoker template specializations
13111 // we construct their body's in this function, so no need to add them
13112 // to the PendingInstantiations.
13113 MarkFunctionReferenced(CurrentLocation, CallOp);
13114
13115 // Fill in the __invoke function with a dummy implementation. IR generation
13116 // will fill in the actual details. Update its type in case it contained
13117 // an 'auto'.
13118 Invoker->markUsed(Context);
13119 Invoker->setReferenced();
13120 Invoker->setType(Conv->getReturnType()->getPointeeType());
13121 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
13122
13123 // Construct the body of the conversion function { return __invoke; }.
13124 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
13125 VK_LValue, Conv->getLocation());
13126 assert(FunctionRef && "Can't refer to __invoke function?")((FunctionRef && "Can't refer to __invoke function?")
? static_cast<void> (0) : __assert_fail ("FunctionRef && \"Can't refer to __invoke function?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13126, __PRETTY_FUNCTION__))
;
13127 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
13128 Conv->setBody(CompoundStmt::Create(Context, Return, Conv->getLocation(),
13129 Conv->getLocation()));
13130 Conv->markUsed(Context);
13131 Conv->setReferenced();
13132
13133 if (ASTMutationListener *L = getASTMutationListener()) {
13134 L->CompletedImplicitDefinition(Conv);
13135 L->CompletedImplicitDefinition(Invoker);
13136 }
13137}
13138
13139
13140
13141void Sema::DefineImplicitLambdaToBlockPointerConversion(
13142 SourceLocation CurrentLocation,
13143 CXXConversionDecl *Conv)
13144{
13145 assert(!Conv->getParent()->isGenericLambda())((!Conv->getParent()->isGenericLambda()) ? static_cast<
void> (0) : __assert_fail ("!Conv->getParent()->isGenericLambda()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13145, __PRETTY_FUNCTION__))
;
13146
13147 SynthesizedFunctionScope Scope(*this, Conv);
13148
13149 // Copy-initialize the lambda object as needed to capture it.
13150 Expr *This = ActOnCXXThis(CurrentLocation).get();
13151 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
13152
13153 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
13154 Conv->getLocation(),
13155 Conv, DerefThis);
13156
13157 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
13158 // behavior. Note that only the general conversion function does this
13159 // (since it's unusable otherwise); in the case where we inline the
13160 // block literal, it has block literal lifetime semantics.
13161 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
13162 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
13163 CK_CopyAndAutoreleaseBlockObject,
13164 BuildBlock.get(), nullptr, VK_RValue);
13165
13166 if (BuildBlock.isInvalid()) {
13167 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
13168 Conv->setInvalidDecl();
13169 return;
13170 }
13171
13172 // Create the return statement that returns the block from the conversion
13173 // function.
13174 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
13175 if (Return.isInvalid()) {
13176 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
13177 Conv->setInvalidDecl();
13178 return;
13179 }
13180
13181 // Set the body of the conversion function.
13182 Stmt *ReturnS = Return.get();
13183 Conv->setBody(CompoundStmt::Create(Context, ReturnS, Conv->getLocation(),
13184 Conv->getLocation()));
13185 Conv->markUsed(Context);
13186
13187 // We're done; notify the mutation listener, if any.
13188 if (ASTMutationListener *L = getASTMutationListener()) {
13189 L->CompletedImplicitDefinition(Conv);
13190 }
13191}
13192
13193/// Determine whether the given list arguments contains exactly one
13194/// "real" (non-default) argument.
13195static bool hasOneRealArgument(MultiExprArg Args) {
13196 switch (Args.size()) {
13197 case 0:
13198 return false;
13199
13200 default:
13201 if (!Args[1]->isDefaultArgument())
13202 return false;
13203
13204 LLVM_FALLTHROUGH[[gnu::fallthrough]];
13205 case 1:
13206 return !Args[0]->isDefaultArgument();
13207 }
13208
13209 return false;
13210}
13211
13212ExprResult
13213Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
13214 NamedDecl *FoundDecl,
13215 CXXConstructorDecl *Constructor,
13216 MultiExprArg ExprArgs,
13217 bool HadMultipleCandidates,
13218 bool IsListInitialization,
13219 bool IsStdInitListInitialization,
13220 bool RequiresZeroInit,
13221 unsigned ConstructKind,
13222 SourceRange ParenRange) {
13223 bool Elidable = false;
13224
13225 // C++0x [class.copy]p34:
13226 // When certain criteria are met, an implementation is allowed to
13227 // omit the copy/move construction of a class object, even if the
13228 // copy/move constructor and/or destructor for the object have
13229 // side effects. [...]
13230 // - when a temporary class object that has not been bound to a
13231 // reference (12.2) would be copied/moved to a class object
13232 // with the same cv-unqualified type, the copy/move operation
13233 // can be omitted by constructing the temporary object
13234 // directly into the target of the omitted copy/move
13235 if (ConstructKind == CXXConstructExpr::CK_Complete && Constructor &&
13236 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
13237 Expr *SubExpr = ExprArgs[0];
13238 Elidable = SubExpr->isTemporaryObject(
13239 Context, cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
13240 }
13241
13242 return BuildCXXConstructExpr(ConstructLoc, DeclInitType,
13243 FoundDecl, Constructor,
13244 Elidable, ExprArgs, HadMultipleCandidates,
13245 IsListInitialization,
13246 IsStdInitListInitialization, RequiresZeroInit,
13247 ConstructKind, ParenRange);
13248}
13249
13250ExprResult
13251Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
13252 NamedDecl *FoundDecl,
13253 CXXConstructorDecl *Constructor,
13254 bool Elidable,
13255 MultiExprArg ExprArgs,
13256 bool HadMultipleCandidates,
13257 bool IsListInitialization,
13258 bool IsStdInitListInitialization,
13259 bool RequiresZeroInit,
13260 unsigned ConstructKind,
13261 SourceRange ParenRange) {
13262 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(FoundDecl)) {
13263 Constructor = findInheritingConstructor(ConstructLoc, Constructor, Shadow);
13264 if (DiagnoseUseOfDecl(Constructor, ConstructLoc))
13265 return ExprError();
13266 }
13267
13268 return BuildCXXConstructExpr(
13269 ConstructLoc, DeclInitType, Constructor, Elidable, ExprArgs,
13270 HadMultipleCandidates, IsListInitialization, IsStdInitListInitialization,
13271 RequiresZeroInit, ConstructKind, ParenRange);
13272}
13273
13274/// BuildCXXConstructExpr - Creates a complete call to a constructor,
13275/// including handling of its default argument expressions.
13276ExprResult
13277Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
13278 CXXConstructorDecl *Constructor,
13279 bool Elidable,
13280 MultiExprArg ExprArgs,
13281 bool HadMultipleCandidates,
13282 bool IsListInitialization,
13283 bool IsStdInitListInitialization,
13284 bool RequiresZeroInit,
13285 unsigned ConstructKind,
13286 SourceRange ParenRange) {
13287 assert(declaresSameEntity(((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13290, __PRETTY_FUNCTION__))
13288 Constructor->getParent(),((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13290, __PRETTY_FUNCTION__))
13289 DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13290, __PRETTY_FUNCTION__))
13290 "given constructor for wrong type")((declaresSameEntity( Constructor->getParent(), DeclInitType
->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) &&
"given constructor for wrong type") ? static_cast<void>
(0) : __assert_fail ("declaresSameEntity( Constructor->getParent(), DeclInitType->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) && \"given constructor for wrong type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13290, __PRETTY_FUNCTION__))
;
13291 MarkFunctionReferenced(ConstructLoc, Constructor);
13292 if (getLangOpts().CUDA && !CheckCUDACall(ConstructLoc, Constructor))
13293 return ExprError();
13294
13295 return CXXConstructExpr::Create(
13296 Context, DeclInitType, ConstructLoc, Constructor, Elidable,
13297 ExprArgs, HadMultipleCandidates, IsListInitialization,
13298 IsStdInitListInitialization, RequiresZeroInit,
13299 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
13300 ParenRange);
13301}
13302
13303ExprResult Sema::BuildCXXDefaultInitExpr(SourceLocation Loc, FieldDecl *Field) {
13304 assert(Field->hasInClassInitializer())((Field->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Field->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13304, __PRETTY_FUNCTION__))
;
13305
13306 // If we already have the in-class initializer nothing needs to be done.
13307 if (Field->getInClassInitializer())
13308 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
13309
13310 // If we might have already tried and failed to instantiate, don't try again.
13311 if (Field->isInvalidDecl())
13312 return ExprError();
13313
13314 // Maybe we haven't instantiated the in-class initializer. Go check the
13315 // pattern FieldDecl to see if it has one.
13316 CXXRecordDecl *ParentRD = cast<CXXRecordDecl>(Field->getParent());
13317
13318 if (isTemplateInstantiation(ParentRD->getTemplateSpecializationKind())) {
13319 CXXRecordDecl *ClassPattern = ParentRD->getTemplateInstantiationPattern();
13320 DeclContext::lookup_result Lookup =
13321 ClassPattern->lookup(Field->getDeclName());
13322
13323 // Lookup can return at most two results: the pattern for the field, or the
13324 // injected class name of the parent record. No other member can have the
13325 // same name as the field.
13326 // In modules mode, lookup can return multiple results (coming from
13327 // different modules).
13328 assert((getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) &&(((getLangOpts().Modules || (!Lookup.empty() && Lookup
.size() <= 2)) && "more than two lookup results for field name"
) ? static_cast<void> (0) : __assert_fail ("(getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && \"more than two lookup results for field name\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13329, __PRETTY_FUNCTION__))
13329 "more than two lookup results for field name")(((getLangOpts().Modules || (!Lookup.empty() && Lookup
.size() <= 2)) && "more than two lookup results for field name"
) ? static_cast<void> (0) : __assert_fail ("(getLangOpts().Modules || (!Lookup.empty() && Lookup.size() <= 2)) && \"more than two lookup results for field name\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13329, __PRETTY_FUNCTION__))
;
13330 FieldDecl *Pattern = dyn_cast<FieldDecl>(Lookup[0]);
13331 if (!Pattern) {
13332 assert(isa<CXXRecordDecl>(Lookup[0]) &&((isa<CXXRecordDecl>(Lookup[0]) && "cannot have other non-field member with same name"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(Lookup[0]) && \"cannot have other non-field member with same name\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13333, __PRETTY_FUNCTION__))
13333 "cannot have other non-field member with same name")((isa<CXXRecordDecl>(Lookup[0]) && "cannot have other non-field member with same name"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(Lookup[0]) && \"cannot have other non-field member with same name\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13333, __PRETTY_FUNCTION__))
;
13334 for (auto L : Lookup)
13335 if (isa<FieldDecl>(L)) {
13336 Pattern = cast<FieldDecl>(L);
13337 break;
13338 }
13339 assert(Pattern && "We must have set the Pattern!")((Pattern && "We must have set the Pattern!") ? static_cast
<void> (0) : __assert_fail ("Pattern && \"We must have set the Pattern!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13339, __PRETTY_FUNCTION__))
;
13340 }
13341
13342 if (!Pattern->hasInClassInitializer() ||
13343 InstantiateInClassInitializer(Loc, Field, Pattern,
13344 getTemplateInstantiationArgs(Field))) {
13345 // Don't diagnose this again.
13346 Field->setInvalidDecl();
13347 return ExprError();
13348 }
13349 return CXXDefaultInitExpr::Create(Context, Loc, Field, CurContext);
13350 }
13351
13352 // DR1351:
13353 // If the brace-or-equal-initializer of a non-static data member
13354 // invokes a defaulted default constructor of its class or of an
13355 // enclosing class in a potentially evaluated subexpression, the
13356 // program is ill-formed.
13357 //
13358 // This resolution is unworkable: the exception specification of the
13359 // default constructor can be needed in an unevaluated context, in
13360 // particular, in the operand of a noexcept-expression, and we can be
13361 // unable to compute an exception specification for an enclosed class.
13362 //
13363 // Any attempt to resolve the exception specification of a defaulted default
13364 // constructor before the initializer is lexically complete will ultimately
13365 // come here at which point we can diagnose it.
13366 RecordDecl *OutermostClass = ParentRD->getOuterLexicalRecordContext();
13367 Diag(Loc, diag::err_in_class_initializer_not_yet_parsed)
13368 << OutermostClass << Field;
13369 Diag(Field->getEndLoc(), diag::note_in_class_initializer_not_yet_parsed);
13370 // Recover by marking the field invalid, unless we're in a SFINAE context.
13371 if (!isSFINAEContext())
13372 Field->setInvalidDecl();
13373 return ExprError();
13374}
13375
13376void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
13377 if (VD->isInvalidDecl()) return;
13378
13379 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
13380 if (ClassDecl->isInvalidDecl()) return;
13381 if (ClassDecl->hasIrrelevantDestructor()) return;
13382 if (ClassDecl->isDependentContext()) return;
13383
13384 if (VD->isNoDestroy(getASTContext()))
13385 return;
13386
13387 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13388
13389 // If this is an array, we'll require the destructor during initialization, so
13390 // we can skip over this. We still want to emit exit-time destructor warnings
13391 // though.
13392 if (!VD->getType()->isArrayType()) {
13393 MarkFunctionReferenced(VD->getLocation(), Destructor);
13394 CheckDestructorAccess(VD->getLocation(), Destructor,
13395 PDiag(diag::err_access_dtor_var)
13396 << VD->getDeclName() << VD->getType());
13397 DiagnoseUseOfDecl(Destructor, VD->getLocation());
13398 }
13399
13400 if (Destructor->isTrivial()) return;
13401
13402 // If the destructor is constexpr, check whether the variable has constant
13403 // destruction now.
13404 if (Destructor->isConstexpr() && VD->getInit() &&
13405 !VD->getInit()->isValueDependent() && VD->evaluateValue()) {
13406 SmallVector<PartialDiagnosticAt, 8> Notes;
13407 if (!VD->evaluateDestruction(Notes) && VD->isConstexpr()) {
13408 Diag(VD->getLocation(),
13409 diag::err_constexpr_var_requires_const_destruction) << VD;
13410 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13411 Diag(Notes[I].first, Notes[I].second);
13412 }
13413 }
13414
13415 if (!VD->hasGlobalStorage()) return;
13416
13417 // Emit warning for non-trivial dtor in global scope (a real global,
13418 // class-static, function-static).
13419 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
13420
13421 // TODO: this should be re-enabled for static locals by !CXAAtExit
13422 if (!VD->isStaticLocal())
13423 Diag(VD->getLocation(), diag::warn_global_destructor);
13424}
13425
13426/// Given a constructor and the set of arguments provided for the
13427/// constructor, convert the arguments and add any required default arguments
13428/// to form a proper call to this constructor.
13429///
13430/// \returns true if an error occurred, false otherwise.
13431bool
13432Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
13433 MultiExprArg ArgsPtr,
13434 SourceLocation Loc,
13435 SmallVectorImpl<Expr*> &ConvertedArgs,
13436 bool AllowExplicit,
13437 bool IsListInitialization) {
13438 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
13439 unsigned NumArgs = ArgsPtr.size();
13440 Expr **Args = ArgsPtr.data();
13441
13442 const FunctionProtoType *Proto
13443 = Constructor->getType()->getAs<FunctionProtoType>();
13444 assert(Proto && "Constructor without a prototype?")((Proto && "Constructor without a prototype?") ? static_cast
<void> (0) : __assert_fail ("Proto && \"Constructor without a prototype?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13444, __PRETTY_FUNCTION__))
;
13445 unsigned NumParams = Proto->getNumParams();
13446
13447 // If too few arguments are available, we'll fill in the rest with defaults.
13448 if (NumArgs < NumParams)
13449 ConvertedArgs.reserve(NumParams);
13450 else
13451 ConvertedArgs.reserve(NumArgs);
13452
13453 VariadicCallType CallType =
13454 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
13455 SmallVector<Expr *, 8> AllArgs;
13456 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
13457 Proto, 0,
13458 llvm::makeArrayRef(Args, NumArgs),
13459 AllArgs,
13460 CallType, AllowExplicit,
13461 IsListInitialization);
13462 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
13463
13464 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
13465
13466 CheckConstructorCall(Constructor,
13467 llvm::makeArrayRef(AllArgs.data(), AllArgs.size()),
13468 Proto, Loc);
13469
13470 return Invalid;
13471}
13472
13473static inline bool
13474CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
13475 const FunctionDecl *FnDecl) {
13476 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
13477 if (isa<NamespaceDecl>(DC)) {
13478 return SemaRef.Diag(FnDecl->getLocation(),
13479 diag::err_operator_new_delete_declared_in_namespace)
13480 << FnDecl->getDeclName();
13481 }
13482
13483 if (isa<TranslationUnitDecl>(DC) &&
13484 FnDecl->getStorageClass() == SC_Static) {
13485 return SemaRef.Diag(FnDecl->getLocation(),
13486 diag::err_operator_new_delete_declared_static)
13487 << FnDecl->getDeclName();
13488 }
13489
13490 return false;
13491}
13492
13493static QualType
13494RemoveAddressSpaceFromPtr(Sema &SemaRef, const PointerType *PtrTy) {
13495 QualType QTy = PtrTy->getPointeeType();
13496 QTy = SemaRef.Context.removeAddrSpaceQualType(QTy);
13497 return SemaRef.Context.getPointerType(QTy);
13498}
13499
13500static inline bool
13501CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
13502 CanQualType ExpectedResultType,
13503 CanQualType ExpectedFirstParamType,
13504 unsigned DependentParamTypeDiag,
13505 unsigned InvalidParamTypeDiag) {
13506 QualType ResultType =
13507 FnDecl->getType()->getAs<FunctionType>()->getReturnType();
13508
13509 // Check that the result type is not dependent.
13510 if (ResultType->isDependentType())
13511 return SemaRef.Diag(FnDecl->getLocation(),
13512 diag::err_operator_new_delete_dependent_result_type)
13513 << FnDecl->getDeclName() << ExpectedResultType;
13514
13515 // The operator is valid on any address space for OpenCL.
13516 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
13517 if (auto *PtrTy = ResultType->getAs<PointerType>()) {
13518 ResultType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
13519 }
13520 }
13521
13522 // Check that the result type is what we expect.
13523 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
13524 return SemaRef.Diag(FnDecl->getLocation(),
13525 diag::err_operator_new_delete_invalid_result_type)
13526 << FnDecl->getDeclName() << ExpectedResultType;
13527
13528 // A function template must have at least 2 parameters.
13529 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
13530 return SemaRef.Diag(FnDecl->getLocation(),
13531 diag::err_operator_new_delete_template_too_few_parameters)
13532 << FnDecl->getDeclName();
13533
13534 // The function decl must have at least 1 parameter.
13535 if (FnDecl->getNumParams() == 0)
13536 return SemaRef.Diag(FnDecl->getLocation(),
13537 diag::err_operator_new_delete_too_few_parameters)
13538 << FnDecl->getDeclName();
13539
13540 // Check the first parameter type is not dependent.
13541 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
13542 if (FirstParamType->isDependentType())
13543 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
13544 << FnDecl->getDeclName() << ExpectedFirstParamType;
13545
13546 // Check that the first parameter type is what we expect.
13547 if (SemaRef.getLangOpts().OpenCLCPlusPlus) {
13548 // The operator is valid on any address space for OpenCL.
13549 if (auto *PtrTy =
13550 FnDecl->getParamDecl(0)->getType()->getAs<PointerType>()) {
13551 FirstParamType = RemoveAddressSpaceFromPtr(SemaRef, PtrTy);
13552 }
13553 }
13554 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
13555 ExpectedFirstParamType)
13556 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
13557 << FnDecl->getDeclName() << ExpectedFirstParamType;
13558
13559 return false;
13560}
13561
13562static bool
13563CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
13564 // C++ [basic.stc.dynamic.allocation]p1:
13565 // A program is ill-formed if an allocation function is declared in a
13566 // namespace scope other than global scope or declared static in global
13567 // scope.
13568 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
13569 return true;
13570
13571 CanQualType SizeTy =
13572 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
13573
13574 // C++ [basic.stc.dynamic.allocation]p1:
13575 // The return type shall be void*. The first parameter shall have type
13576 // std::size_t.
13577 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
13578 SizeTy,
13579 diag::err_operator_new_dependent_param_type,
13580 diag::err_operator_new_param_type))
13581 return true;
13582
13583 // C++ [basic.stc.dynamic.allocation]p1:
13584 // The first parameter shall not have an associated default argument.
13585 if (FnDecl->getParamDecl(0)->hasDefaultArg())
13586 return SemaRef.Diag(FnDecl->getLocation(),
13587 diag::err_operator_new_default_arg)
13588 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
13589
13590 return false;
13591}
13592
13593static bool
13594CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
13595 // C++ [basic.stc.dynamic.deallocation]p1:
13596 // A program is ill-formed if deallocation functions are declared in a
13597 // namespace scope other than global scope or declared static in global
13598 // scope.
13599 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
13600 return true;
13601
13602 auto *MD = dyn_cast<CXXMethodDecl>(FnDecl);
13603
13604 // C++ P0722:
13605 // Within a class C, the first parameter of a destroying operator delete
13606 // shall be of type C *. The first parameter of any other deallocation
13607 // function shall be of type void *.
13608 CanQualType ExpectedFirstParamType =
13609 MD && MD->isDestroyingOperatorDelete()
13610 ? SemaRef.Context.getCanonicalType(SemaRef.Context.getPointerType(
13611 SemaRef.Context.getRecordType(MD->getParent())))
13612 : SemaRef.Context.VoidPtrTy;
13613
13614 // C++ [basic.stc.dynamic.deallocation]p2:
13615 // Each deallocation function shall return void
13616 if (CheckOperatorNewDeleteTypes(
13617 SemaRef, FnDecl, SemaRef.Context.VoidTy, ExpectedFirstParamType,
13618 diag::err_operator_delete_dependent_param_type,
13619 diag::err_operator_delete_param_type))
13620 return true;
13621
13622 // C++ P0722:
13623 // A destroying operator delete shall be a usual deallocation function.
13624 if (MD && !MD->getParent()->isDependentContext() &&
13625 MD->isDestroyingOperatorDelete() &&
13626 !SemaRef.isUsualDeallocationFunction(MD)) {
13627 SemaRef.Diag(MD->getLocation(),
13628 diag::err_destroying_operator_delete_not_usual);
13629 return true;
13630 }
13631
13632 return false;
13633}
13634
13635/// CheckOverloadedOperatorDeclaration - Check whether the declaration
13636/// of this overloaded operator is well-formed. If so, returns false;
13637/// otherwise, emits appropriate diagnostics and returns true.
13638bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
13639 assert(FnDecl && FnDecl->isOverloadedOperator() &&((FnDecl && FnDecl->isOverloadedOperator() &&
"Expected an overloaded operator declaration") ? static_cast
<void> (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13640, __PRETTY_FUNCTION__))
13640 "Expected an overloaded operator declaration")((FnDecl && FnDecl->isOverloadedOperator() &&
"Expected an overloaded operator declaration") ? static_cast
<void> (0) : __assert_fail ("FnDecl && FnDecl->isOverloadedOperator() && \"Expected an overloaded operator declaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13640, __PRETTY_FUNCTION__))
;
13641
13642 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
13643
13644 // C++ [over.oper]p5:
13645 // The allocation and deallocation functions, operator new,
13646 // operator new[], operator delete and operator delete[], are
13647 // described completely in 3.7.3. The attributes and restrictions
13648 // found in the rest of this subclause do not apply to them unless
13649 // explicitly stated in 3.7.3.
13650 if (Op == OO_Delete || Op == OO_Array_Delete)
13651 return CheckOperatorDeleteDeclaration(*this, FnDecl);
13652
13653 if (Op == OO_New || Op == OO_Array_New)
13654 return CheckOperatorNewDeclaration(*this, FnDecl);
13655
13656 // C++ [over.oper]p6:
13657 // An operator function shall either be a non-static member
13658 // function or be a non-member function and have at least one
13659 // parameter whose type is a class, a reference to a class, an
13660 // enumeration, or a reference to an enumeration.
13661 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
13662 if (MethodDecl->isStatic())
13663 return Diag(FnDecl->getLocation(),
13664 diag::err_operator_overload_static) << FnDecl->getDeclName();
13665 } else {
13666 bool ClassOrEnumParam = false;
13667 for (auto Param : FnDecl->parameters()) {
13668 QualType ParamType = Param->getType().getNonReferenceType();
13669 if (ParamType->isDependentType() || ParamType->isRecordType() ||
13670 ParamType->isEnumeralType()) {
13671 ClassOrEnumParam = true;
13672 break;
13673 }
13674 }
13675
13676 if (!ClassOrEnumParam)
13677 return Diag(FnDecl->getLocation(),
13678 diag::err_operator_overload_needs_class_or_enum)
13679 << FnDecl->getDeclName();
13680 }
13681
13682 // C++ [over.oper]p8:
13683 // An operator function cannot have default arguments (8.3.6),
13684 // except where explicitly stated below.
13685 //
13686 // Only the function-call operator allows default arguments
13687 // (C++ [over.call]p1).
13688 if (Op != OO_Call) {
13689 for (auto Param : FnDecl->parameters()) {
13690 if (Param->hasDefaultArg())
13691 return Diag(Param->getLocation(),
13692 diag::err_operator_overload_default_arg)
13693 << FnDecl->getDeclName() << Param->getDefaultArgRange();
13694 }
13695 }
13696
13697 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
13698 { false, false, false }
13699#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
13700 , { Unary, Binary, MemberOnly }
13701#include "clang/Basic/OperatorKinds.def"
13702 };
13703
13704 bool CanBeUnaryOperator = OperatorUses[Op][0];
13705 bool CanBeBinaryOperator = OperatorUses[Op][1];
13706 bool MustBeMemberOperator = OperatorUses[Op][2];
13707
13708 // C++ [over.oper]p8:
13709 // [...] Operator functions cannot have more or fewer parameters
13710 // than the number required for the corresponding operator, as
13711 // described in the rest of this subclause.
13712 unsigned NumParams = FnDecl->getNumParams()
13713 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
13714 if (Op != OO_Call &&
13715 ((NumParams == 1 && !CanBeUnaryOperator) ||
13716 (NumParams == 2 && !CanBeBinaryOperator) ||
13717 (NumParams < 1) || (NumParams > 2))) {
13718 // We have the wrong number of parameters.
13719 unsigned ErrorKind;
13720 if (CanBeUnaryOperator && CanBeBinaryOperator) {
13721 ErrorKind = 2; // 2 -> unary or binary.
13722 } else if (CanBeUnaryOperator) {
13723 ErrorKind = 0; // 0 -> unary
13724 } else {
13725 assert(CanBeBinaryOperator &&((CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? static_cast<void> (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13726, __PRETTY_FUNCTION__))
13726 "All non-call overloaded operators are unary or binary!")((CanBeBinaryOperator && "All non-call overloaded operators are unary or binary!"
) ? static_cast<void> (0) : __assert_fail ("CanBeBinaryOperator && \"All non-call overloaded operators are unary or binary!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 13726, __PRETTY_FUNCTION__))
;
13727 ErrorKind = 1; // 1 -> binary
13728 }
13729
13730 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
13731 << FnDecl->getDeclName() << NumParams << ErrorKind;
13732 }
13733
13734 // Overloaded operators other than operator() cannot be variadic.
13735 if (Op != OO_Call &&
13736 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
13737 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
13738 << FnDecl->getDeclName();
13739 }
13740
13741 // Some operators must be non-static member functions.
13742 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
13743 return Diag(FnDecl->getLocation(),
13744 diag::err_operator_overload_must_be_member)
13745 << FnDecl->getDeclName();
13746 }
13747
13748 // C++ [over.inc]p1:
13749 // The user-defined function called operator++ implements the
13750 // prefix and postfix ++ operator. If this function is a member
13751 // function with no parameters, or a non-member function with one
13752 // parameter of class or enumeration type, it defines the prefix
13753 // increment operator ++ for objects of that type. If the function
13754 // is a member function with one parameter (which shall be of type
13755 // int) or a non-member function with two parameters (the second
13756 // of which shall be of type int), it defines the postfix
13757 // increment operator ++ for objects of that type.
13758 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
13759 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
13760 QualType ParamType = LastParam->getType();
13761
13762 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
13763 !ParamType->isDependentType())
13764 return Diag(LastParam->getLocation(),
13765 diag::err_operator_overload_post_incdec_must_be_int)
13766 << LastParam->getType() << (Op == OO_MinusMinus);
13767 }
13768
13769 return false;
13770}
13771
13772static bool
13773checkLiteralOperatorTemplateParameterList(Sema &SemaRef,
13774 FunctionTemplateDecl *TpDecl) {
13775 TemplateParameterList *TemplateParams = TpDecl->getTemplateParameters();
13776
13777 // Must have one or two template parameters.
13778 if (TemplateParams->size() == 1) {
13779 NonTypeTemplateParmDecl *PmDecl =
13780 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(0));
13781
13782 // The template parameter must be a char parameter pack.
13783 if (PmDecl && PmDecl->isTemplateParameterPack() &&
13784 SemaRef.Context.hasSameType(PmDecl->getType(), SemaRef.Context.CharTy))
13785 return false;
13786
13787 } else if (TemplateParams->size() == 2) {
13788 TemplateTypeParmDecl *PmType =
13789 dyn_cast<TemplateTypeParmDecl>(TemplateParams->getParam(0));
13790 NonTypeTemplateParmDecl *PmArgs =
13791 dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(1));
13792
13793 // The second template parameter must be a parameter pack with the
13794 // first template parameter as its type.
13795 if (PmType && PmArgs && !PmType->isTemplateParameterPack() &&
13796 PmArgs->isTemplateParameterPack()) {
13797 const TemplateTypeParmType *TArgs =
13798 PmArgs->getType()->getAs<TemplateTypeParmType>();
13799 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
13800 TArgs->getIndex() == PmType->getIndex()) {
13801 if (!SemaRef.inTemplateInstantiation())
13802 SemaRef.Diag(TpDecl->getLocation(),
13803 diag::ext_string_literal_operator_template);
13804 return false;
13805 }
13806 }
13807 }
13808
13809 SemaRef.Diag(TpDecl->getTemplateParameters()->getSourceRange().getBegin(),
13810 diag::err_literal_operator_template)
13811 << TpDecl->getTemplateParameters()->getSourceRange();
13812 return true;
13813}
13814
13815/// CheckLiteralOperatorDeclaration - Check whether the declaration
13816/// of this literal operator function is well-formed. If so, returns
13817/// false; otherwise, emits appropriate diagnostics and returns true.
13818bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
13819 if (isa<CXXMethodDecl>(FnDecl)) {
13820 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
13821 << FnDecl->getDeclName();
13822 return true;
13823 }
13824
13825 if (FnDecl->isExternC()) {
13826 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
13827 if (const LinkageSpecDecl *LSD =
13828 FnDecl->getDeclContext()->getExternCContext())
13829 Diag(LSD->getExternLoc(), diag::note_extern_c_begins_here);
13830 return true;
13831 }
13832
13833 // This might be the definition of a literal operator template.
13834 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
13835
13836 // This might be a specialization of a literal operator template.
13837 if (!TpDecl)
13838 TpDecl = FnDecl->getPrimaryTemplate();
13839
13840 // template <char...> type operator "" name() and
13841 // template <class T, T...> type operator "" name() are the only valid
13842 // template signatures, and the only valid signatures with no parameters.
13843 if (TpDecl) {
13844 if (FnDecl->param_size() != 0) {
13845 Diag(FnDecl->getLocation(),
13846 diag::err_literal_operator_template_with_params);
13847 return true;
13848 }
13849
13850 if (checkLiteralOperatorTemplateParameterList(*this, TpDecl))
13851 return true;
13852
13853 } else if (FnDecl->param_size() == 1) {
13854 const ParmVarDecl *Param = FnDecl->getParamDecl(0);
13855
13856 QualType ParamType = Param->getType().getUnqualifiedType();
13857
13858 // Only unsigned long long int, long double, any character type, and const
13859 // char * are allowed as the only parameters.
13860 if (ParamType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
13861 ParamType->isSpecificBuiltinType(BuiltinType::LongDouble) ||
13862 Context.hasSameType(ParamType, Context.CharTy) ||
13863 Context.hasSameType(ParamType, Context.WideCharTy) ||
13864 Context.hasSameType(ParamType, Context.Char8Ty) ||
13865 Context.hasSameType(ParamType, Context.Char16Ty) ||
13866 Context.hasSameType(ParamType, Context.Char32Ty)) {
13867 } else if (const PointerType *Ptr = ParamType->getAs<PointerType>()) {
13868 QualType InnerType = Ptr->getPointeeType();
13869
13870 // Pointer parameter must be a const char *.
13871 if (!(Context.hasSameType(InnerType.getUnqualifiedType(),
13872 Context.CharTy) &&
13873 InnerType.isConstQualified() && !InnerType.isVolatileQualified())) {
13874 Diag(Param->getSourceRange().getBegin(),
13875 diag::err_literal_operator_param)
13876 << ParamType << "'const char *'" << Param->getSourceRange();
13877 return true;
13878 }
13879
13880 } else if (ParamType->isRealFloatingType()) {
13881 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
13882 << ParamType << Context.LongDoubleTy << Param->getSourceRange();
13883 return true;
13884
13885 } else if (ParamType->isIntegerType()) {
13886 Diag(Param->getSourceRange().getBegin(), diag::err_literal_operator_param)
13887 << ParamType << Context.UnsignedLongLongTy << Param->getSourceRange();
13888 return true;
13889
13890 } else {
13891 Diag(Param->getSourceRange().getBegin(),
13892 diag::err_literal_operator_invalid_param)
13893 << ParamType << Param->getSourceRange();
13894 return true;
13895 }
13896
13897 } else if (FnDecl->param_size() == 2) {
13898 FunctionDecl::param_iterator Param = FnDecl->param_begin();
13899
13900 // First, verify that the first parameter is correct.
13901
13902 QualType FirstParamType = (*Param)->getType().getUnqualifiedType();
13903
13904 // Two parameter function must have a pointer to const as a
13905 // first parameter; let's strip those qualifiers.
13906 const PointerType *PT = FirstParamType->getAs<PointerType>();
13907
13908 if (!PT) {
13909 Diag((*Param)->getSourceRange().getBegin(),
13910 diag::err_literal_operator_param)
13911 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
13912 return true;
13913 }
13914
13915 QualType PointeeType = PT->getPointeeType();
13916 // First parameter must be const
13917 if (!PointeeType.isConstQualified() || PointeeType.isVolatileQualified()) {
13918 Diag((*Param)->getSourceRange().getBegin(),
13919 diag::err_literal_operator_param)
13920 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
13921 return true;
13922 }
13923
13924 QualType InnerType = PointeeType.getUnqualifiedType();
13925 // Only const char *, const wchar_t*, const char8_t*, const char16_t*, and
13926 // const char32_t* are allowed as the first parameter to a two-parameter
13927 // function
13928 if (!(Context.hasSameType(InnerType, Context.CharTy) ||
13929 Context.hasSameType(InnerType, Context.WideCharTy) ||
13930 Context.hasSameType(InnerType, Context.Char8Ty) ||
13931 Context.hasSameType(InnerType, Context.Char16Ty) ||
13932 Context.hasSameType(InnerType, Context.Char32Ty))) {
13933 Diag((*Param)->getSourceRange().getBegin(),
13934 diag::err_literal_operator_param)
13935 << FirstParamType << "'const char *'" << (*Param)->getSourceRange();
13936 return true;
13937 }
13938
13939 // Move on to the second and final parameter.
13940 ++Param;
13941
13942 // The second parameter must be a std::size_t.
13943 QualType SecondParamType = (*Param)->getType().getUnqualifiedType();
13944 if (!Context.hasSameType(SecondParamType, Context.getSizeType())) {
13945 Diag((*Param)->getSourceRange().getBegin(),
13946 diag::err_literal_operator_param)
13947 << SecondParamType << Context.getSizeType()
13948 << (*Param)->getSourceRange();
13949 return true;
13950 }
13951 } else {
13952 Diag(FnDecl->getLocation(), diag::err_literal_operator_bad_param_count);
13953 return true;
13954 }
13955
13956 // Parameters are good.
13957
13958 // A parameter-declaration-clause containing a default argument is not
13959 // equivalent to any of the permitted forms.
13960 for (auto Param : FnDecl->parameters()) {
13961 if (Param->hasDefaultArg()) {
13962 Diag(Param->getDefaultArgRange().getBegin(),
13963 diag::err_literal_operator_default_argument)
13964 << Param->getDefaultArgRange();
13965 break;
13966 }
13967 }
13968
13969 StringRef LiteralName
13970 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
13971 if (LiteralName[0] != '_' &&
13972 !getSourceManager().isInSystemHeader(FnDecl->getLocation())) {
13973 // C++11 [usrlit.suffix]p1:
13974 // Literal suffix identifiers that do not start with an underscore
13975 // are reserved for future standardization.
13976 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
13977 << StringLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
13978 }
13979
13980 return false;
13981}
13982
13983/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
13984/// linkage specification, including the language and (if present)
13985/// the '{'. ExternLoc is the location of the 'extern', Lang is the
13986/// language string literal. LBraceLoc, if valid, provides the location of
13987/// the '{' brace. Otherwise, this linkage specification does not
13988/// have any braces.
13989Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
13990 Expr *LangStr,
13991 SourceLocation LBraceLoc) {
13992 StringLiteral *Lit = cast<StringLiteral>(LangStr);
13993 if (!Lit->isAscii()) {
13994 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
13995 << LangStr->getSourceRange();
13996 return nullptr;
13997 }
13998
13999 StringRef Lang = Lit->getString();
14000 LinkageSpecDecl::LanguageIDs Language;
14001 if (Lang == "C")
14002 Language = LinkageSpecDecl::lang_c;
14003 else if (Lang == "C++")
14004 Language = LinkageSpecDecl::lang_cxx;
14005 else if (Lang == "C++11")
14006 Language = LinkageSpecDecl::lang_cxx_11;
14007 else if (Lang == "C++14")
14008 Language = LinkageSpecDecl::lang_cxx_14;
14009 else {
14010 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
14011 << LangStr->getSourceRange();
14012 return nullptr;
14013 }
14014
14015 // FIXME: Add all the various semantics of linkage specifications
14016
14017 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
14018 LangStr->getExprLoc(), Language,
14019 LBraceLoc.isValid());
14020 CurContext->addDecl(D);
14021 PushDeclContext(S, D);
14022 return D;
14023}
14024
14025/// ActOnFinishLinkageSpecification - Complete the definition of
14026/// the C++ linkage specification LinkageSpec. If RBraceLoc is
14027/// valid, it's the position of the closing '}' brace in a linkage
14028/// specification that uses braces.
14029Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
14030 Decl *LinkageSpec,
14031 SourceLocation RBraceLoc) {
14032 if (RBraceLoc.isValid()) {
14033 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
14034 LSDecl->setRBraceLoc(RBraceLoc);
14035 }
14036 PopDeclContext();
14037 return LinkageSpec;
14038}
14039
14040Decl *Sema::ActOnEmptyDeclaration(Scope *S,
14041 const ParsedAttributesView &AttrList,
14042 SourceLocation SemiLoc) {
14043 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
14044 // Attribute declarations appertain to empty declaration so we handle
14045 // them here.
14046 ProcessDeclAttributeList(S, ED, AttrList);
14047
14048 CurContext->addDecl(ED);
14049 return ED;
14050}
14051
14052/// Perform semantic analysis for the variable declaration that
14053/// occurs within a C++ catch clause, returning the newly-created
14054/// variable.
14055VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
14056 TypeSourceInfo *TInfo,
14057 SourceLocation StartLoc,
14058 SourceLocation Loc,
14059 IdentifierInfo *Name) {
14060 bool Invalid = false;
14061 QualType ExDeclType = TInfo->getType();
14062
14063 // Arrays and functions decay.
14064 if (ExDeclType->isArrayType())
14065 ExDeclType = Context.getArrayDecayedType(ExDeclType);
14066 else if (ExDeclType->isFunctionType())
14067 ExDeclType = Context.getPointerType(ExDeclType);
14068
14069 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
14070 // The exception-declaration shall not denote a pointer or reference to an
14071 // incomplete type, other than [cv] void*.
14072 // N2844 forbids rvalue references.
14073 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
14074 Diag(Loc, diag::err_catch_rvalue_ref);
14075 Invalid = true;
14076 }
14077
14078 if (ExDeclType->isVariablyModifiedType()) {
14079 Diag(Loc, diag::err_catch_variably_modified) << ExDeclType;
14080 Invalid = true;
14081 }
14082
14083 QualType BaseType = ExDeclType;
14084 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
14085 unsigned DK = diag::err_catch_incomplete;
14086 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
14087 BaseType = Ptr->getPointeeType();
14088 Mode = 1;
14089 DK = diag::err_catch_incomplete_ptr;
14090 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
14091 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
14092 BaseType = Ref->getPointeeType();
14093 Mode = 2;
14094 DK = diag::err_catch_incomplete_ref;
14095 }
14096 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
14097 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
14098 Invalid = true;
14099
14100 if (!Invalid && !ExDeclType->isDependentType() &&
14101 RequireNonAbstractType(Loc, ExDeclType,
14102 diag::err_abstract_type_in_decl,
14103 AbstractVariableType))
14104 Invalid = true;
14105
14106 // Only the non-fragile NeXT runtime currently supports C++ catches
14107 // of ObjC types, and no runtime supports catching ObjC types by value.
14108 if (!Invalid && getLangOpts().ObjC) {
14109 QualType T = ExDeclType;
14110 if (const ReferenceType *RT = T->getAs<ReferenceType>())
14111 T = RT->getPointeeType();
14112
14113 if (T->isObjCObjectType()) {
14114 Diag(Loc, diag::err_objc_object_catch);
14115 Invalid = true;
14116 } else if (T->isObjCObjectPointerType()) {
14117 // FIXME: should this be a test for macosx-fragile specifically?
14118 if (getLangOpts().ObjCRuntime.isFragile())
14119 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
14120 }
14121 }
14122
14123 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
14124 ExDeclType, TInfo, SC_None);
14125 ExDecl->setExceptionVariable(true);
14126
14127 // In ARC, infer 'retaining' for variables of retainable type.
14128 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
14129 Invalid = true;
14130
14131 if (!Invalid && !ExDeclType->isDependentType()) {
14132 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
14133 // Insulate this from anything else we might currently be parsing.
14134 EnterExpressionEvaluationContext scope(
14135 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
14136
14137 // C++ [except.handle]p16:
14138 // The object declared in an exception-declaration or, if the
14139 // exception-declaration does not specify a name, a temporary (12.2) is
14140 // copy-initialized (8.5) from the exception object. [...]
14141 // The object is destroyed when the handler exits, after the destruction
14142 // of any automatic objects initialized within the handler.
14143 //
14144 // We just pretend to initialize the object with itself, then make sure
14145 // it can be destroyed later.
14146 QualType initType = Context.getExceptionObjectType(ExDeclType);
14147
14148 InitializedEntity entity =
14149 InitializedEntity::InitializeVariable(ExDecl);
14150 InitializationKind initKind =
14151 InitializationKind::CreateCopy(Loc, SourceLocation());
14152
14153 Expr *opaqueValue =
14154 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
14155 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
14156 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
14157 if (result.isInvalid())
14158 Invalid = true;
14159 else {
14160 // If the constructor used was non-trivial, set this as the
14161 // "initializer".
14162 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
14163 if (!construct->getConstructor()->isTrivial()) {
14164 Expr *init = MaybeCreateExprWithCleanups(construct);
14165 ExDecl->setInit(init);
14166 }
14167
14168 // And make sure it's destructable.
14169 FinalizeVarWithDestructor(ExDecl, recordType);
14170 }
14171 }
14172 }
14173
14174 if (Invalid)
14175 ExDecl->setInvalidDecl();
14176
14177 return ExDecl;
14178}
14179
14180/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
14181/// handler.
14182Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
14183 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
14184 bool Invalid = D.isInvalidType();
14185
14186 // Check for unexpanded parameter packs.
14187 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
14188 UPPC_ExceptionType)) {
14189 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
14190 D.getIdentifierLoc());
14191 Invalid = true;
14192 }
14193
14194 IdentifierInfo *II = D.getIdentifier();
14195 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
14196 LookupOrdinaryName,
14197 ForVisibleRedeclaration)) {
14198 // The scope should be freshly made just for us. There is just no way
14199 // it contains any previous declaration, except for function parameters in
14200 // a function-try-block's catch statement.
14201 assert(!S->isDeclScope(PrevDecl))((!S->isDeclScope(PrevDecl)) ? static_cast<void> (0)
: __assert_fail ("!S->isDeclScope(PrevDecl)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14201, __PRETTY_FUNCTION__))
;
14202 if (isDeclInScope(PrevDecl, CurContext, S)) {
14203 Diag(D.getIdentifierLoc(), diag::err_redefinition)
14204 << D.getIdentifier();
14205 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
14206 Invalid = true;
14207 } else if (PrevDecl->isTemplateParameter())
14208 // Maybe we will complain about the shadowed template parameter.
14209 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
14210 }
14211
14212 if (D.getCXXScopeSpec().isSet() && !Invalid) {
14213 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
14214 << D.getCXXScopeSpec().getRange();
14215 Invalid = true;
14216 }
14217
14218 VarDecl *ExDecl = BuildExceptionDeclaration(
14219 S, TInfo, D.getBeginLoc(), D.getIdentifierLoc(), D.getIdentifier());
14220 if (Invalid)
14221 ExDecl->setInvalidDecl();
14222
14223 // Add the exception declaration into this scope.
14224 if (II)
14225 PushOnScopeChains(ExDecl, S);
14226 else
14227 CurContext->addDecl(ExDecl);
14228
14229 ProcessDeclAttributes(S, ExDecl, D);
14230 return ExDecl;
14231}
14232
14233Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
14234 Expr *AssertExpr,
14235 Expr *AssertMessageExpr,
14236 SourceLocation RParenLoc) {
14237 StringLiteral *AssertMessage =
14238 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
14239
14240 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
14241 return nullptr;
14242
14243 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
14244 AssertMessage, RParenLoc, false);
14245}
14246
14247Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
14248 Expr *AssertExpr,
14249 StringLiteral *AssertMessage,
14250 SourceLocation RParenLoc,
14251 bool Failed) {
14252 assert(AssertExpr != nullptr && "Expected non-null condition")((AssertExpr != nullptr && "Expected non-null condition"
) ? static_cast<void> (0) : __assert_fail ("AssertExpr != nullptr && \"Expected non-null condition\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14252, __PRETTY_FUNCTION__))
;
14253 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
14254 !Failed) {
14255 // In a static_assert-declaration, the constant-expression shall be a
14256 // constant expression that can be contextually converted to bool.
14257 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
14258 if (Converted.isInvalid())
14259 Failed = true;
14260
14261 ExprResult FullAssertExpr =
14262 ActOnFinishFullExpr(Converted.get(), StaticAssertLoc,
14263 /*DiscardedValue*/ false,
14264 /*IsConstexpr*/ true);
14265 if (FullAssertExpr.isInvalid())
14266 Failed = true;
14267 else
14268 AssertExpr = FullAssertExpr.get();
14269
14270 llvm::APSInt Cond;
14271 if (!Failed && VerifyIntegerConstantExpression(AssertExpr, &Cond,
14272 diag::err_static_assert_expression_is_not_constant,
14273 /*AllowFold=*/false).isInvalid())
14274 Failed = true;
14275
14276 if (!Failed && !Cond) {
14277 SmallString<256> MsgBuffer;
14278 llvm::raw_svector_ostream Msg(MsgBuffer);
14279 if (AssertMessage)
14280 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
14281
14282 Expr *InnerCond = nullptr;
14283 std::string InnerCondDescription;
14284 std::tie(InnerCond, InnerCondDescription) =
14285 findFailedBooleanCondition(Converted.get());
14286 if (InnerCond && !isa<CXXBoolLiteralExpr>(InnerCond)
14287 && !isa<IntegerLiteral>(InnerCond)) {
14288 Diag(StaticAssertLoc, diag::err_static_assert_requirement_failed)
14289 << InnerCondDescription << !AssertMessage
14290 << Msg.str() << InnerCond->getSourceRange();
14291 } else {
14292 Diag(StaticAssertLoc, diag::err_static_assert_failed)
14293 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
14294 }
14295 Failed = true;
14296 }
14297 } else {
14298 ExprResult FullAssertExpr = ActOnFinishFullExpr(AssertExpr, StaticAssertLoc,
14299 /*DiscardedValue*/false,
14300 /*IsConstexpr*/true);
14301 if (FullAssertExpr.isInvalid())
14302 Failed = true;
14303 else
14304 AssertExpr = FullAssertExpr.get();
14305 }
14306
14307 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
14308 AssertExpr, AssertMessage, RParenLoc,
14309 Failed);
14310
14311 CurContext->addDecl(Decl);
14312 return Decl;
14313}
14314
14315/// Perform semantic analysis of the given friend type declaration.
14316///
14317/// \returns A friend declaration that.
14318FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
14319 SourceLocation FriendLoc,
14320 TypeSourceInfo *TSInfo) {
14321 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration")((TSInfo && "NULL TypeSourceInfo for friend type declaration"
) ? static_cast<void> (0) : __assert_fail ("TSInfo && \"NULL TypeSourceInfo for friend type declaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14321, __PRETTY_FUNCTION__))
;
14322
14323 QualType T = TSInfo->getType();
14324 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
14325
14326 // C++03 [class.friend]p2:
14327 // An elaborated-type-specifier shall be used in a friend declaration
14328 // for a class.*
14329 //
14330 // * The class-key of the elaborated-type-specifier is required.
14331 if (!CodeSynthesisContexts.empty()) {
14332 // Do not complain about the form of friend template types during any kind
14333 // of code synthesis. For template instantiation, we will have complained
14334 // when the template was defined.
14335 } else {
14336 if (!T->isElaboratedTypeSpecifier()) {
14337 // If we evaluated the type to a record type, suggest putting
14338 // a tag in front.
14339 if (const RecordType *RT = T->getAs<RecordType>()) {
14340 RecordDecl *RD = RT->getDecl();
14341
14342 SmallString<16> InsertionText(" ");
14343 InsertionText += RD->getKindName();
14344
14345 Diag(TypeRange.getBegin(),
14346 getLangOpts().CPlusPlus11 ?
14347 diag::warn_cxx98_compat_unelaborated_friend_type :
14348 diag::ext_unelaborated_friend_type)
14349 << (unsigned) RD->getTagKind()
14350 << T
14351 << FixItHint::CreateInsertion(getLocForEndOfToken(FriendLoc),
14352 InsertionText);
14353 } else {
14354 Diag(FriendLoc,
14355 getLangOpts().CPlusPlus11 ?
14356 diag::warn_cxx98_compat_nonclass_type_friend :
14357 diag::ext_nonclass_type_friend)
14358 << T
14359 << TypeRange;
14360 }
14361 } else if (T->getAs<EnumType>()) {
14362 Diag(FriendLoc,
14363 getLangOpts().CPlusPlus11 ?
14364 diag::warn_cxx98_compat_enum_friend :
14365 diag::ext_enum_friend)
14366 << T
14367 << TypeRange;
14368 }
14369
14370 // C++11 [class.friend]p3:
14371 // A friend declaration that does not declare a function shall have one
14372 // of the following forms:
14373 // friend elaborated-type-specifier ;
14374 // friend simple-type-specifier ;
14375 // friend typename-specifier ;
14376 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
14377 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
14378 }
14379
14380 // If the type specifier in a friend declaration designates a (possibly
14381 // cv-qualified) class type, that class is declared as a friend; otherwise,
14382 // the friend declaration is ignored.
14383 return FriendDecl::Create(Context, CurContext,
14384 TSInfo->getTypeLoc().getBeginLoc(), TSInfo,
14385 FriendLoc);
14386}
14387
14388/// Handle a friend tag declaration where the scope specifier was
14389/// templated.
14390Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
14391 unsigned TagSpec, SourceLocation TagLoc,
14392 CXXScopeSpec &SS, IdentifierInfo *Name,
14393 SourceLocation NameLoc,
14394 const ParsedAttributesView &Attr,
14395 MultiTemplateParamsArg TempParamLists) {
14396 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14397
14398 bool IsMemberSpecialization = false;
14399 bool Invalid = false;
14400
14401 if (TemplateParameterList *TemplateParams =
14402 MatchTemplateParametersToScopeSpecifier(
14403 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
14404 IsMemberSpecialization, Invalid)) {
14405 if (TemplateParams->size() > 0) {
14406 // This is a declaration of a class template.
14407 if (Invalid)
14408 return nullptr;
14409
14410 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc, SS, Name,
14411 NameLoc, Attr, TemplateParams, AS_public,
14412 /*ModulePrivateLoc=*/SourceLocation(),
14413 FriendLoc, TempParamLists.size() - 1,
14414 TempParamLists.data()).get();
14415 } else {
14416 // The "template<>" header is extraneous.
14417 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14418 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14419 IsMemberSpecialization = true;
14420 }
14421 }
14422
14423 if (Invalid) return nullptr;
14424
14425 bool isAllExplicitSpecializations = true;
14426 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
14427 if (TempParamLists[I]->size()) {
14428 isAllExplicitSpecializations = false;
14429 break;
14430 }
14431 }
14432
14433 // FIXME: don't ignore attributes.
14434
14435 // If it's explicit specializations all the way down, just forget
14436 // about the template header and build an appropriate non-templated
14437 // friend. TODO: for source fidelity, remember the headers.
14438 if (isAllExplicitSpecializations) {
14439 if (SS.isEmpty()) {
14440 bool Owned = false;
14441 bool IsDependent = false;
14442 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
14443 Attr, AS_public,
14444 /*ModulePrivateLoc=*/SourceLocation(),
14445 MultiTemplateParamsArg(), Owned, IsDependent,
14446 /*ScopedEnumKWLoc=*/SourceLocation(),
14447 /*ScopedEnumUsesClassTag=*/false,
14448 /*UnderlyingType=*/TypeResult(),
14449 /*IsTypeSpecifier=*/false,
14450 /*IsTemplateParamOrArg=*/false);
14451 }
14452
14453 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
14454 ElaboratedTypeKeyword Keyword
14455 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
14456 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
14457 *Name, NameLoc);
14458 if (T.isNull())
14459 return nullptr;
14460
14461 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
14462 if (isa<DependentNameType>(T)) {
14463 DependentNameTypeLoc TL =
14464 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
14465 TL.setElaboratedKeywordLoc(TagLoc);
14466 TL.setQualifierLoc(QualifierLoc);
14467 TL.setNameLoc(NameLoc);
14468 } else {
14469 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
14470 TL.setElaboratedKeywordLoc(TagLoc);
14471 TL.setQualifierLoc(QualifierLoc);
14472 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
14473 }
14474
14475 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
14476 TSI, FriendLoc, TempParamLists);
14477 Friend->setAccess(AS_public);
14478 CurContext->addDecl(Friend);
14479 return Friend;
14480 }
14481
14482 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?")((SS.isNotEmpty() && "valid templated tag with no SS and no direct?"
) ? static_cast<void> (0) : __assert_fail ("SS.isNotEmpty() && \"valid templated tag with no SS and no direct?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14482, __PRETTY_FUNCTION__))
;
14483
14484
14485
14486 // Handle the case of a templated-scope friend class. e.g.
14487 // template <class T> class A<T>::B;
14488 // FIXME: we don't support these right now.
14489 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
14490 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
14491 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
14492 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
14493 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
14494 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
14495 TL.setElaboratedKeywordLoc(TagLoc);
14496 TL.setQualifierLoc(SS.getWithLocInContext(Context));
14497 TL.setNameLoc(NameLoc);
14498
14499 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
14500 TSI, FriendLoc, TempParamLists);
14501 Friend->setAccess(AS_public);
14502 Friend->setUnsupportedFriend(true);
14503 CurContext->addDecl(Friend);
14504 return Friend;
14505}
14506
14507/// Handle a friend type declaration. This works in tandem with
14508/// ActOnTag.
14509///
14510/// Notes on friend class templates:
14511///
14512/// We generally treat friend class declarations as if they were
14513/// declaring a class. So, for example, the elaborated type specifier
14514/// in a friend declaration is required to obey the restrictions of a
14515/// class-head (i.e. no typedefs in the scope chain), template
14516/// parameters are required to match up with simple template-ids, &c.
14517/// However, unlike when declaring a template specialization, it's
14518/// okay to refer to a template specialization without an empty
14519/// template parameter declaration, e.g.
14520/// friend class A<T>::B<unsigned>;
14521/// We permit this as a special case; if there are any template
14522/// parameters present at all, require proper matching, i.e.
14523/// template <> template \<class T> friend class A<int>::B;
14524Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
14525 MultiTemplateParamsArg TempParams) {
14526 SourceLocation Loc = DS.getBeginLoc();
14527
14528 assert(DS.isFriendSpecified())((DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14528, __PRETTY_FUNCTION__))
;
14529 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) ? static_cast
<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14529, __PRETTY_FUNCTION__))
;
14530
14531 // C++ [class.friend]p3:
14532 // A friend declaration that does not declare a function shall have one of
14533 // the following forms:
14534 // friend elaborated-type-specifier ;
14535 // friend simple-type-specifier ;
14536 // friend typename-specifier ;
14537 //
14538 // Any declaration with a type qualifier does not have that form. (It's
14539 // legal to specify a qualified type as a friend, you just can't write the
14540 // keywords.)
14541 if (DS.getTypeQualifiers()) {
14542 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
14543 Diag(DS.getConstSpecLoc(), diag::err_friend_decl_spec) << "const";
14544 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
14545 Diag(DS.getVolatileSpecLoc(), diag::err_friend_decl_spec) << "volatile";
14546 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
14547 Diag(DS.getRestrictSpecLoc(), diag::err_friend_decl_spec) << "restrict";
14548 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
14549 Diag(DS.getAtomicSpecLoc(), diag::err_friend_decl_spec) << "_Atomic";
14550 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
14551 Diag(DS.getUnalignedSpecLoc(), diag::err_friend_decl_spec) << "__unaligned";
14552 }
14553
14554 // Try to convert the decl specifier to a type. This works for
14555 // friend templates because ActOnTag never produces a ClassTemplateDecl
14556 // for a TUK_Friend.
14557 Declarator TheDeclarator(DS, DeclaratorContext::MemberContext);
14558 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
14559 QualType T = TSI->getType();
14560 if (TheDeclarator.isInvalidType())
14561 return nullptr;
14562
14563 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
14564 return nullptr;
14565
14566 // This is definitely an error in C++98. It's probably meant to
14567 // be forbidden in C++0x, too, but the specification is just
14568 // poorly written.
14569 //
14570 // The problem is with declarations like the following:
14571 // template <T> friend A<T>::foo;
14572 // where deciding whether a class C is a friend or not now hinges
14573 // on whether there exists an instantiation of A that causes
14574 // 'foo' to equal C. There are restrictions on class-heads
14575 // (which we declare (by fiat) elaborated friend declarations to
14576 // be) that makes this tractable.
14577 //
14578 // FIXME: handle "template <> friend class A<T>;", which
14579 // is possibly well-formed? Who even knows?
14580 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
14581 Diag(Loc, diag::err_tagless_friend_type_template)
14582 << DS.getSourceRange();
14583 return nullptr;
14584 }
14585
14586 // C++98 [class.friend]p1: A friend of a class is a function
14587 // or class that is not a member of the class . . .
14588 // This is fixed in DR77, which just barely didn't make the C++03
14589 // deadline. It's also a very silly restriction that seriously
14590 // affects inner classes and which nobody else seems to implement;
14591 // thus we never diagnose it, not even in -pedantic.
14592 //
14593 // But note that we could warn about it: it's always useless to
14594 // friend one of your own members (it's not, however, worthless to
14595 // friend a member of an arbitrary specialization of your template).
14596
14597 Decl *D;
14598 if (!TempParams.empty())
14599 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
14600 TempParams,
14601 TSI,
14602 DS.getFriendSpecLoc());
14603 else
14604 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
14605
14606 if (!D)
14607 return nullptr;
14608
14609 D->setAccess(AS_public);
14610 CurContext->addDecl(D);
14611
14612 return D;
14613}
14614
14615NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
14616 MultiTemplateParamsArg TemplateParams) {
14617 const DeclSpec &DS = D.getDeclSpec();
14618
14619 assert(DS.isFriendSpecified())((DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14619, __PRETTY_FUNCTION__))
;
14620 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified)((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) ? static_cast
<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_unspecified"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14620, __PRETTY_FUNCTION__))
;
14621
14622 SourceLocation Loc = D.getIdentifierLoc();
14623 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
14624
14625 // C++ [class.friend]p1
14626 // A friend of a class is a function or class....
14627 // Note that this sees through typedefs, which is intended.
14628 // It *doesn't* see through dependent types, which is correct
14629 // according to [temp.arg.type]p3:
14630 // If a declaration acquires a function type through a
14631 // type dependent on a template-parameter and this causes
14632 // a declaration that does not use the syntactic form of a
14633 // function declarator to have a function type, the program
14634 // is ill-formed.
14635 if (!TInfo->getType()->isFunctionType()) {
14636 Diag(Loc, diag::err_unexpected_friend);
14637
14638 // It might be worthwhile to try to recover by creating an
14639 // appropriate declaration.
14640 return nullptr;
14641 }
14642
14643 // C++ [namespace.memdef]p3
14644 // - If a friend declaration in a non-local class first declares a
14645 // class or function, the friend class or function is a member
14646 // of the innermost enclosing namespace.
14647 // - The name of the friend is not found by simple name lookup
14648 // until a matching declaration is provided in that namespace
14649 // scope (either before or after the class declaration granting
14650 // friendship).
14651 // - If a friend function is called, its name may be found by the
14652 // name lookup that considers functions from namespaces and
14653 // classes associated with the types of the function arguments.
14654 // - When looking for a prior declaration of a class or a function
14655 // declared as a friend, scopes outside the innermost enclosing
14656 // namespace scope are not considered.
14657
14658 CXXScopeSpec &SS = D.getCXXScopeSpec();
14659 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
14660 assert(NameInfo.getName())((NameInfo.getName()) ? static_cast<void> (0) : __assert_fail
("NameInfo.getName()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14660, __PRETTY_FUNCTION__))
;
14661
14662 // Check for unexpanded parameter packs.
14663 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
14664 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
14665 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
14666 return nullptr;
14667
14668 // The context we found the declaration in, or in which we should
14669 // create the declaration.
14670 DeclContext *DC;
14671 Scope *DCScope = S;
14672 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
14673 ForExternalRedeclaration);
14674
14675 // There are five cases here.
14676 // - There's no scope specifier and we're in a local class. Only look
14677 // for functions declared in the immediately-enclosing block scope.
14678 // We recover from invalid scope qualifiers as if they just weren't there.
14679 FunctionDecl *FunctionContainingLocalClass = nullptr;
14680 if ((SS.isInvalid() || !SS.isSet()) &&
14681 (FunctionContainingLocalClass =
14682 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
14683 // C++11 [class.friend]p11:
14684 // If a friend declaration appears in a local class and the name
14685 // specified is an unqualified name, a prior declaration is
14686 // looked up without considering scopes that are outside the
14687 // innermost enclosing non-class scope. For a friend function
14688 // declaration, if there is no prior declaration, the program is
14689 // ill-formed.
14690
14691 // Find the innermost enclosing non-class scope. This is the block
14692 // scope containing the local class definition (or for a nested class,
14693 // the outer local class).
14694 DCScope = S->getFnParent();
14695
14696 // Look up the function name in the scope.
14697 Previous.clear(LookupLocalFriendName);
14698 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
14699
14700 if (!Previous.empty()) {
14701 // All possible previous declarations must have the same context:
14702 // either they were declared at block scope or they are members of
14703 // one of the enclosing local classes.
14704 DC = Previous.getRepresentativeDecl()->getDeclContext();
14705 } else {
14706 // This is ill-formed, but provide the context that we would have
14707 // declared the function in, if we were permitted to, for error recovery.
14708 DC = FunctionContainingLocalClass;
14709 }
14710 adjustContextForLocalExternDecl(DC);
14711
14712 // C++ [class.friend]p6:
14713 // A function can be defined in a friend declaration of a class if and
14714 // only if the class is a non-local class (9.8), the function name is
14715 // unqualified, and the function has namespace scope.
14716 if (D.isFunctionDefinition()) {
14717 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
14718 }
14719
14720 // - There's no scope specifier, in which case we just go to the
14721 // appropriate scope and look for a function or function template
14722 // there as appropriate.
14723 } else if (SS.isInvalid() || !SS.isSet()) {
14724 // C++11 [namespace.memdef]p3:
14725 // If the name in a friend declaration is neither qualified nor
14726 // a template-id and the declaration is a function or an
14727 // elaborated-type-specifier, the lookup to determine whether
14728 // the entity has been previously declared shall not consider
14729 // any scopes outside the innermost enclosing namespace.
14730 bool isTemplateId =
14731 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId;
14732
14733 // Find the appropriate context according to the above.
14734 DC = CurContext;
14735
14736 // Skip class contexts. If someone can cite chapter and verse
14737 // for this behavior, that would be nice --- it's what GCC and
14738 // EDG do, and it seems like a reasonable intent, but the spec
14739 // really only says that checks for unqualified existing
14740 // declarations should stop at the nearest enclosing namespace,
14741 // not that they should only consider the nearest enclosing
14742 // namespace.
14743 while (DC->isRecord())
14744 DC = DC->getParent();
14745
14746 DeclContext *LookupDC = DC;
14747 while (LookupDC->isTransparentContext())
14748 LookupDC = LookupDC->getParent();
14749
14750 while (true) {
14751 LookupQualifiedName(Previous, LookupDC);
14752
14753 if (!Previous.empty()) {
14754 DC = LookupDC;
14755 break;
14756 }
14757
14758 if (isTemplateId) {
14759 if (isa<TranslationUnitDecl>(LookupDC)) break;
14760 } else {
14761 if (LookupDC->isFileContext()) break;
14762 }
14763 LookupDC = LookupDC->getParent();
14764 }
14765
14766 DCScope = getScopeForDeclContext(S, DC);
14767
14768 // - There's a non-dependent scope specifier, in which case we
14769 // compute it and do a previous lookup there for a function
14770 // or function template.
14771 } else if (!SS.getScopeRep()->isDependent()) {
14772 DC = computeDeclContext(SS);
14773 if (!DC) return nullptr;
14774
14775 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
14776
14777 LookupQualifiedName(Previous, DC);
14778
14779 // C++ [class.friend]p1: A friend of a class is a function or
14780 // class that is not a member of the class . . .
14781 if (DC->Equals(CurContext))
14782 Diag(DS.getFriendSpecLoc(),
14783 getLangOpts().CPlusPlus11 ?
14784 diag::warn_cxx98_compat_friend_is_member :
14785 diag::err_friend_is_member);
14786
14787 if (D.isFunctionDefinition()) {
14788 // C++ [class.friend]p6:
14789 // A function can be defined in a friend declaration of a class if and
14790 // only if the class is a non-local class (9.8), the function name is
14791 // unqualified, and the function has namespace scope.
14792 //
14793 // FIXME: We should only do this if the scope specifier names the
14794 // innermost enclosing namespace; otherwise the fixit changes the
14795 // meaning of the code.
14796 SemaDiagnosticBuilder DB
14797 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
14798
14799 DB << SS.getScopeRep();
14800 if (DC->isFileContext())
14801 DB << FixItHint::CreateRemoval(SS.getRange());
14802 SS.clear();
14803 }
14804
14805 // - There's a scope specifier that does not match any template
14806 // parameter lists, in which case we use some arbitrary context,
14807 // create a method or method template, and wait for instantiation.
14808 // - There's a scope specifier that does match some template
14809 // parameter lists, which we don't handle right now.
14810 } else {
14811 if (D.isFunctionDefinition()) {
14812 // C++ [class.friend]p6:
14813 // A function can be defined in a friend declaration of a class if and
14814 // only if the class is a non-local class (9.8), the function name is
14815 // unqualified, and the function has namespace scope.
14816 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
14817 << SS.getScopeRep();
14818 }
14819
14820 DC = CurContext;
14821 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?")((isa<CXXRecordDecl>(DC) && "friend declaration not in class?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"friend declaration not in class?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14821, __PRETTY_FUNCTION__))
;
14822 }
14823
14824 if (!DC->isRecord()) {
14825 int DiagArg = -1;
14826 switch (D.getName().getKind()) {
14827 case UnqualifiedIdKind::IK_ConstructorTemplateId:
14828 case UnqualifiedIdKind::IK_ConstructorName:
14829 DiagArg = 0;
14830 break;
14831 case UnqualifiedIdKind::IK_DestructorName:
14832 DiagArg = 1;
14833 break;
14834 case UnqualifiedIdKind::IK_ConversionFunctionId:
14835 DiagArg = 2;
14836 break;
14837 case UnqualifiedIdKind::IK_DeductionGuideName:
14838 DiagArg = 3;
14839 break;
14840 case UnqualifiedIdKind::IK_Identifier:
14841 case UnqualifiedIdKind::IK_ImplicitSelfParam:
14842 case UnqualifiedIdKind::IK_LiteralOperatorId:
14843 case UnqualifiedIdKind::IK_OperatorFunctionId:
14844 case UnqualifiedIdKind::IK_TemplateId:
14845 break;
14846 }
14847 // This implies that it has to be an operator or function.
14848 if (DiagArg >= 0) {
14849 Diag(Loc, diag::err_introducing_special_friend) << DiagArg;
14850 return nullptr;
14851 }
14852 }
14853
14854 // FIXME: This is an egregious hack to cope with cases where the scope stack
14855 // does not contain the declaration context, i.e., in an out-of-line
14856 // definition of a class.
14857 Scope FakeDCScope(S, Scope::DeclScope, Diags);
14858 if (!DCScope) {
14859 FakeDCScope.setEntity(DC);
14860 DCScope = &FakeDCScope;
14861 }
14862
14863 bool AddToScope = true;
14864 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
14865 TemplateParams, AddToScope);
14866 if (!ND) return nullptr;
14867
14868 assert(ND->getLexicalDeclContext() == CurContext)((ND->getLexicalDeclContext() == CurContext) ? static_cast
<void> (0) : __assert_fail ("ND->getLexicalDeclContext() == CurContext"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 14868, __PRETTY_FUNCTION__))
;
14869
14870 // If we performed typo correction, we might have added a scope specifier
14871 // and changed the decl context.
14872 DC = ND->getDeclContext();
14873
14874 // Add the function declaration to the appropriate lookup tables,
14875 // adjusting the redeclarations list as necessary. We don't
14876 // want to do this yet if the friending class is dependent.
14877 //
14878 // Also update the scope-based lookup if the target context's
14879 // lookup context is in lexical scope.
14880 if (!CurContext->isDependentContext()) {
14881 DC = DC->getRedeclContext();
14882 DC->makeDeclVisibleInContext(ND);
14883 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
14884 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
14885 }
14886
14887 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
14888 D.getIdentifierLoc(), ND,
14889 DS.getFriendSpecLoc());
14890 FrD->setAccess(AS_public);
14891 CurContext->addDecl(FrD);
14892
14893 if (ND->isInvalidDecl()) {
14894 FrD->setInvalidDecl();
14895 } else {
14896 if (DC->isRecord()) CheckFriendAccess(ND);
14897
14898 FunctionDecl *FD;
14899 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
14900 FD = FTD->getTemplatedDecl();
14901 else
14902 FD = cast<FunctionDecl>(ND);
14903
14904 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
14905 // default argument expression, that declaration shall be a definition
14906 // and shall be the only declaration of the function or function
14907 // template in the translation unit.
14908 if (functionDeclHasDefaultArgument(FD)) {
14909 // We can't look at FD->getPreviousDecl() because it may not have been set
14910 // if we're in a dependent context. If the function is known to be a
14911 // redeclaration, we will have narrowed Previous down to the right decl.
14912 if (D.isRedeclaration()) {
14913 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
14914 Diag(Previous.getRepresentativeDecl()->getLocation(),
14915 diag::note_previous_declaration);
14916 } else if (!D.isFunctionDefinition())
14917 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
14918 }
14919
14920 // Mark templated-scope function declarations as unsupported.
14921 if (FD->getNumTemplateParameterLists() && SS.isValid()) {
14922 Diag(FD->getLocation(), diag::warn_template_qualified_friend_unsupported)
14923 << SS.getScopeRep() << SS.getRange()
14924 << cast<CXXRecordDecl>(CurContext);
14925 FrD->setUnsupportedFriend(true);
14926 }
14927 }
14928
14929 return ND;
14930}
14931
14932void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
14933 AdjustDeclIfTemplate(Dcl);
14934
14935 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
14936 if (!Fn) {
14937 Diag(DelLoc, diag::err_deleted_non_function);
14938 return;
14939 }
14940
14941 // Deleted function does not have a body.
14942 Fn->setWillHaveBody(false);
14943
14944 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
14945 // Don't consider the implicit declaration we generate for explicit
14946 // specializations. FIXME: Do not generate these implicit declarations.
14947 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
14948 Prev->getPreviousDecl()) &&
14949 !Prev->isDefined()) {
14950 Diag(DelLoc, diag::err_deleted_decl_not_first);
14951 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
14952 Prev->isImplicit() ? diag::note_previous_implicit_declaration
14953 : diag::note_previous_declaration);
14954 }
14955 // If the declaration wasn't the first, we delete the function anyway for
14956 // recovery.
14957 Fn = Fn->getCanonicalDecl();
14958 }
14959
14960 // dllimport/dllexport cannot be deleted.
14961 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
14962 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
14963 Fn->setInvalidDecl();
14964 }
14965
14966 if (Fn->isDeleted())
14967 return;
14968
14969 // See if we're deleting a function which is already known to override a
14970 // non-deleted virtual function.
14971 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
14972 bool IssuedDiagnostic = false;
14973 for (const CXXMethodDecl *O : MD->overridden_methods()) {
14974 if (!(*MD->begin_overridden_methods())->isDeleted()) {
14975 if (!IssuedDiagnostic) {
14976 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
14977 IssuedDiagnostic = true;
14978 }
14979 Diag(O->getLocation(), diag::note_overridden_virtual_function);
14980 }
14981 }
14982 // If this function was implicitly deleted because it was defaulted,
14983 // explain why it was deleted.
14984 if (IssuedDiagnostic && MD->isDefaulted())
14985 ShouldDeleteSpecialMember(MD, getSpecialMember(MD), nullptr,
14986 /*Diagnose*/true);
14987 }
14988
14989 // C++11 [basic.start.main]p3:
14990 // A program that defines main as deleted [...] is ill-formed.
14991 if (Fn->isMain())
14992 Diag(DelLoc, diag::err_deleted_main);
14993
14994 // C++11 [dcl.fct.def.delete]p4:
14995 // A deleted function is implicitly inline.
14996 Fn->setImplicitlyInline();
14997 Fn->setDeletedAsWritten();
14998}
14999
15000void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
15001 CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
15002
15003 if (MD) {
15004 if (MD->getParent()->isDependentType()) {
15005 MD->setDefaulted();
15006 MD->setExplicitlyDefaulted();
15007 return;
15008 }
15009
15010 CXXSpecialMember Member = getSpecialMember(MD);
15011 if (Member == CXXInvalid) {
15012 if (!MD->isInvalidDecl())
15013 Diag(DefaultLoc, diag::err_default_special_members);
15014 return;
15015 }
15016
15017 MD->setDefaulted();
15018 MD->setExplicitlyDefaulted();
15019
15020 // Unset that we will have a body for this function. We might not,
15021 // if it turns out to be trivial, and we don't need this marking now
15022 // that we've marked it as defaulted.
15023 MD->setWillHaveBody(false);
15024
15025 // If this definition appears within the record, do the checking when
15026 // the record is complete.
15027 const FunctionDecl *Primary = MD;
15028 if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
15029 // Ask the template instantiation pattern that actually had the
15030 // '= default' on it.
15031 Primary = Pattern;
15032
15033 // If the method was defaulted on its first declaration, we will have
15034 // already performed the checking in CheckCompletedCXXClass. Such a
15035 // declaration doesn't trigger an implicit definition.
15036 if (Primary->getCanonicalDecl()->isDefaulted())
15037 return;
15038
15039 CheckExplicitlyDefaultedSpecialMember(MD);
15040
15041 if (!MD->isInvalidDecl())
15042 DefineImplicitSpecialMember(*this, MD, DefaultLoc);
15043 } else {
15044 Diag(DefaultLoc, diag::err_default_special_members);
15045 }
15046}
15047
15048static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
15049 for (Stmt *SubStmt : S->children()) {
15050 if (!SubStmt)
15051 continue;
15052 if (isa<ReturnStmt>(SubStmt))
15053 Self.Diag(SubStmt->getBeginLoc(),
15054 diag::err_return_in_constructor_handler);
15055 if (!isa<Expr>(SubStmt))
15056 SearchForReturnInStmt(Self, SubStmt);
15057 }
15058}
15059
15060void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
15061 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
15062 CXXCatchStmt *Handler = TryBlock->getHandler(I);
15063 SearchForReturnInStmt(*this, Handler);
15064 }
15065}
15066
15067bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
15068 const CXXMethodDecl *Old) {
15069 const auto *NewFT = New->getType()->getAs<FunctionProtoType>();
15070 const auto *OldFT = Old->getType()->getAs<FunctionProtoType>();
15071
15072 if (OldFT->hasExtParameterInfos()) {
15073 for (unsigned I = 0, E = OldFT->getNumParams(); I != E; ++I)
15074 // A parameter of the overriding method should be annotated with noescape
15075 // if the corresponding parameter of the overridden method is annotated.
15076 if (OldFT->getExtParameterInfo(I).isNoEscape() &&
15077 !NewFT->getExtParameterInfo(I).isNoEscape()) {
15078 Diag(New->getParamDecl(I)->getLocation(),
15079 diag::warn_overriding_method_missing_noescape);
15080 Diag(Old->getParamDecl(I)->getLocation(),
15081 diag::note_overridden_marked_noescape);
15082 }
15083 }
15084
15085 // Virtual overrides must have the same code_seg.
15086 const auto *OldCSA = Old->getAttr<CodeSegAttr>();
15087 const auto *NewCSA = New->getAttr<CodeSegAttr>();
15088 if ((NewCSA || OldCSA) &&
15089 (!OldCSA || !NewCSA || NewCSA->getName() != OldCSA->getName())) {
15090 Diag(New->getLocation(), diag::err_mismatched_code_seg_override);
15091 Diag(Old->getLocation(), diag::note_previous_declaration);
15092 return true;
15093 }
15094
15095 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
15096
15097 // If the calling conventions match, everything is fine
15098 if (NewCC == OldCC)
15099 return false;
15100
15101 // If the calling conventions mismatch because the new function is static,
15102 // suppress the calling convention mismatch error; the error about static
15103 // function override (err_static_overrides_virtual from
15104 // Sema::CheckFunctionDeclaration) is more clear.
15105 if (New->getStorageClass() == SC_Static)
15106 return false;
15107
15108 Diag(New->getLocation(),
15109 diag::err_conflicting_overriding_cc_attributes)
15110 << New->getDeclName() << New->getType() << Old->getType();
15111 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
15112 return true;
15113}
15114
15115bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
15116 const CXXMethodDecl *Old) {
15117 QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
15118 QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
15119
15120 if (Context.hasSameType(NewTy, OldTy) ||
15121 NewTy->isDependentType() || OldTy->isDependentType())
15122 return false;
15123
15124 // Check if the return types are covariant
15125 QualType NewClassTy, OldClassTy;
15126
15127 /// Both types must be pointers or references to classes.
15128 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
15129 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
15130 NewClassTy = NewPT->getPointeeType();
15131 OldClassTy = OldPT->getPointeeType();
15132 }
15133 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
15134 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
15135 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
15136 NewClassTy = NewRT->getPointeeType();
15137 OldClassTy = OldRT->getPointeeType();
15138 }
15139 }
15140 }
15141
15142 // The return types aren't either both pointers or references to a class type.
15143 if (NewClassTy.isNull()) {
15144 Diag(New->getLocation(),
15145 diag::err_different_return_type_for_overriding_virtual_function)
15146 << New->getDeclName() << NewTy << OldTy
15147 << New->getReturnTypeSourceRange();
15148 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
15149 << Old->getReturnTypeSourceRange();
15150
15151 return true;
15152 }
15153
15154 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
15155 // C++14 [class.virtual]p8:
15156 // If the class type in the covariant return type of D::f differs from
15157 // that of B::f, the class type in the return type of D::f shall be
15158 // complete at the point of declaration of D::f or shall be the class
15159 // type D.
15160 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
15161 if (!RT->isBeingDefined() &&
15162 RequireCompleteType(New->getLocation(), NewClassTy,
15163 diag::err_covariant_return_incomplete,
15164 New->getDeclName()))
15165 return true;
15166 }
15167
15168 // Check if the new class derives from the old class.
15169 if (!IsDerivedFrom(New->getLocation(), NewClassTy, OldClassTy)) {
15170 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
15171 << New->getDeclName() << NewTy << OldTy
15172 << New->getReturnTypeSourceRange();
15173 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
15174 << Old->getReturnTypeSourceRange();
15175 return true;
15176 }
15177
15178 // Check if we the conversion from derived to base is valid.
15179 if (CheckDerivedToBaseConversion(
15180 NewClassTy, OldClassTy,
15181 diag::err_covariant_return_inaccessible_base,
15182 diag::err_covariant_return_ambiguous_derived_to_base_conv,
15183 New->getLocation(), New->getReturnTypeSourceRange(),
15184 New->getDeclName(), nullptr)) {
15185 // FIXME: this note won't trigger for delayed access control
15186 // diagnostics, and it's impossible to get an undelayed error
15187 // here from access control during the original parse because
15188 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
15189 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
15190 << Old->getReturnTypeSourceRange();
15191 return true;
15192 }
15193 }
15194
15195 // The qualifiers of the return types must be the same.
15196 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
15197 Diag(New->getLocation(),
15198 diag::err_covariant_return_type_different_qualifications)
15199 << New->getDeclName() << NewTy << OldTy
15200 << New->getReturnTypeSourceRange();
15201 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
15202 << Old->getReturnTypeSourceRange();
15203 return true;
15204 }
15205
15206
15207 // The new class type must have the same or less qualifiers as the old type.
15208 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
15209 Diag(New->getLocation(),
15210 diag::err_covariant_return_type_class_type_more_qualified)
15211 << New->getDeclName() << NewTy << OldTy
15212 << New->getReturnTypeSourceRange();
15213 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
15214 << Old->getReturnTypeSourceRange();
15215 return true;
15216 }
15217
15218 return false;
15219}
15220
15221/// Mark the given method pure.
15222///
15223/// \param Method the method to be marked pure.
15224///
15225/// \param InitRange the source range that covers the "0" initializer.
15226bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
15227 SourceLocation EndLoc = InitRange.getEnd();
15228 if (EndLoc.isValid())
15229 Method->setRangeEnd(EndLoc);
15230
15231 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
15232 Method->setPure();
15233 return false;
15234 }
15235
15236 if (!Method->isInvalidDecl())
15237 Diag(Method->getLocation(), diag::err_non_virtual_pure)
15238 << Method->getDeclName() << InitRange;
15239 return true;
15240}
15241
15242void Sema::ActOnPureSpecifier(Decl *D, SourceLocation ZeroLoc) {
15243 if (D->getFriendObjectKind())
15244 Diag(D->getLocation(), diag::err_pure_friend);
15245 else if (auto *M = dyn_cast<CXXMethodDecl>(D))
15246 CheckPureMethod(M, ZeroLoc);
15247 else
15248 Diag(D->getLocation(), diag::err_illegal_initializer);
15249}
15250
15251/// Determine whether the given declaration is a global variable or
15252/// static data member.
15253static bool isNonlocalVariable(const Decl *D) {
15254 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
15255 return Var->hasGlobalStorage();
15256
15257 return false;
15258}
15259
15260/// Invoked when we are about to parse an initializer for the declaration
15261/// 'Dcl'.
15262///
15263/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
15264/// static data member of class X, names should be looked up in the scope of
15265/// class X. If the declaration had a scope specifier, a scope will have
15266/// been created and passed in for this purpose. Otherwise, S will be null.
15267void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
15268 // If there is no declaration, there was an error parsing it.
15269 if (!D || D->isInvalidDecl())
15270 return;
15271
15272 // We will always have a nested name specifier here, but this declaration
15273 // might not be out of line if the specifier names the current namespace:
15274 // extern int n;
15275 // int ::n = 0;
15276 if (S && D->isOutOfLine())
15277 EnterDeclaratorContext(S, D->getDeclContext());
15278
15279 // If we are parsing the initializer for a static data member, push a
15280 // new expression evaluation context that is associated with this static
15281 // data member.
15282 if (isNonlocalVariable(D))
15283 PushExpressionEvaluationContext(
15284 ExpressionEvaluationContext::PotentiallyEvaluated, D);
15285}
15286
15287/// Invoked after we are finished parsing an initializer for the declaration D.
15288void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
15289 // If there is no declaration, there was an error parsing it.
15290 if (!D || D->isInvalidDecl())
15291 return;
15292
15293 if (isNonlocalVariable(D))
15294 PopExpressionEvaluationContext();
15295
15296 if (S && D->isOutOfLine())
15297 ExitDeclaratorContext(S);
15298}
15299
15300/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
15301/// C++ if/switch/while/for statement.
15302/// e.g: "if (int x = f()) {...}"
15303DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
15304 // C++ 6.4p2:
15305 // The declarator shall not specify a function or an array.
15306 // The type-specifier-seq shall not contain typedef and shall not declare a
15307 // new class or enumeration.
15308 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&((D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class of condition decl."
) ? static_cast<void> (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15309, __PRETTY_FUNCTION__))
15309 "Parser allowed 'typedef' as storage class of condition decl.")((D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class of condition decl."
) ? static_cast<void> (0) : __assert_fail ("D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class of condition decl.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15309, __PRETTY_FUNCTION__))
;
15310
15311 Decl *Dcl = ActOnDeclarator(S, D);
15312 if (!Dcl)
15313 return true;
15314
15315 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
15316 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
15317 << D.getSourceRange();
15318 return true;
15319 }
15320
15321 return Dcl;
15322}
15323
15324void Sema::LoadExternalVTableUses() {
15325 if (!ExternalSource)
15326 return;
15327
15328 SmallVector<ExternalVTableUse, 4> VTables;
15329 ExternalSource->ReadUsedVTables(VTables);
15330 SmallVector<VTableUse, 4> NewUses;
15331 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
15332 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
15333 = VTablesUsed.find(VTables[I].Record);
15334 // Even if a definition wasn't required before, it may be required now.
15335 if (Pos != VTablesUsed.end()) {
15336 if (!Pos->second && VTables[I].DefinitionRequired)
15337 Pos->second = true;
15338 continue;
15339 }
15340
15341 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
15342 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
15343 }
15344
15345 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
15346}
15347
15348void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
15349 bool DefinitionRequired) {
15350 // Ignore any vtable uses in unevaluated operands or for classes that do
15351 // not have a vtable.
15352 if (!Class->isDynamicClass() || Class->isDependentContext() ||
17
Assuming the condition is false
20
Taking false branch
15353 CurContext->isDependentContext() || isUnevaluatedContext())
18
Assuming the condition is false
19
Assuming the condition is false
15354 return;
15355 // Do not mark as used if compiling for the device outside of the target
15356 // region.
15357 if (LangOpts.OpenMP && LangOpts.OpenMPIsDevice &&
21
Assuming field 'OpenMP' is not equal to 0
22
Assuming field 'OpenMPIsDevice' is not equal to 0
24
Taking true branch
15358 !isInOpenMPDeclareTargetContext() &&
15359 !isInOpenMPTargetExecutionDirective()) {
23
Assuming the condition is true
15360 if (!DefinitionRequired
24.1
'DefinitionRequired' is false
24.1
'DefinitionRequired' is false
)
25
Taking true branch
15361 MarkVirtualMembersReferenced(Loc, Class);
26
Calling 'Sema::MarkVirtualMembersReferenced'
15362 return;
15363 }
15364
15365 // Try to insert this class into the map.
15366 LoadExternalVTableUses();
15367 Class = Class->getCanonicalDecl();
15368 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
15369 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
15370 if (!Pos.second) {
15371 // If we already had an entry, check to see if we are promoting this vtable
15372 // to require a definition. If so, we need to reappend to the VTableUses
15373 // list, since we may have already processed the first entry.
15374 if (DefinitionRequired && !Pos.first->second) {
15375 Pos.first->second = true;
15376 } else {
15377 // Otherwise, we can early exit.
15378 return;
15379 }
15380 } else {
15381 // The Microsoft ABI requires that we perform the destructor body
15382 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
15383 // the deleting destructor is emitted with the vtable, not with the
15384 // destructor definition as in the Itanium ABI.
15385 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
15386 CXXDestructorDecl *DD = Class->getDestructor();
15387 if (DD && DD->isVirtual() && !DD->isDeleted()) {
15388 if (Class->hasUserDeclaredDestructor() && !DD->isDefined()) {
15389 // If this is an out-of-line declaration, marking it referenced will
15390 // not do anything. Manually call CheckDestructor to look up operator
15391 // delete().
15392 ContextRAII SavedContext(*this, DD);
15393 CheckDestructor(DD);
15394 } else {
15395 MarkFunctionReferenced(Loc, Class->getDestructor());
15396 }
15397 }
15398 }
15399 }
15400
15401 // Local classes need to have their virtual members marked
15402 // immediately. For all other classes, we mark their virtual members
15403 // at the end of the translation unit.
15404 if (Class->isLocalClass())
15405 MarkVirtualMembersReferenced(Loc, Class);
15406 else
15407 VTableUses.push_back(std::make_pair(Class, Loc));
15408}
15409
15410bool Sema::DefineUsedVTables() {
15411 LoadExternalVTableUses();
15412 if (VTableUses.empty())
15413 return false;
15414
15415 // Note: The VTableUses vector could grow as a result of marking
15416 // the members of a class as "used", so we check the size each
15417 // time through the loop and prefer indices (which are stable) to
15418 // iterators (which are not).
15419 bool DefinedAnything = false;
15420 for (unsigned I = 0; I != VTableUses.size(); ++I) {
15421 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
15422 if (!Class)
15423 continue;
15424 TemplateSpecializationKind ClassTSK =
15425 Class->getTemplateSpecializationKind();
15426
15427 SourceLocation Loc = VTableUses[I].second;
15428
15429 bool DefineVTable = true;
15430
15431 // If this class has a key function, but that key function is
15432 // defined in another translation unit, we don't need to emit the
15433 // vtable even though we're using it.
15434 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
15435 if (KeyFunction && !KeyFunction->hasBody()) {
15436 // The key function is in another translation unit.
15437 DefineVTable = false;
15438 TemplateSpecializationKind TSK =
15439 KeyFunction->getTemplateSpecializationKind();
15440 assert(TSK != TSK_ExplicitInstantiationDefinition &&((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15442, __PRETTY_FUNCTION__))
15441 TSK != TSK_ImplicitInstantiation &&((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15442, __PRETTY_FUNCTION__))
15442 "Instantiations don't have key functions")((TSK != TSK_ExplicitInstantiationDefinition && TSK !=
TSK_ImplicitInstantiation && "Instantiations don't have key functions"
) ? static_cast<void> (0) : __assert_fail ("TSK != TSK_ExplicitInstantiationDefinition && TSK != TSK_ImplicitInstantiation && \"Instantiations don't have key functions\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15442, __PRETTY_FUNCTION__))
;
15443 (void)TSK;
15444 } else if (!KeyFunction) {
15445 // If we have a class with no key function that is the subject
15446 // of an explicit instantiation declaration, suppress the
15447 // vtable; it will live with the explicit instantiation
15448 // definition.
15449 bool IsExplicitInstantiationDeclaration =
15450 ClassTSK == TSK_ExplicitInstantiationDeclaration;
15451 for (auto R : Class->redecls()) {
15452 TemplateSpecializationKind TSK
15453 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
15454 if (TSK == TSK_ExplicitInstantiationDeclaration)
15455 IsExplicitInstantiationDeclaration = true;
15456 else if (TSK == TSK_ExplicitInstantiationDefinition) {
15457 IsExplicitInstantiationDeclaration = false;
15458 break;
15459 }
15460 }
15461
15462 if (IsExplicitInstantiationDeclaration)
15463 DefineVTable = false;
15464 }
15465
15466 // The exception specifications for all virtual members may be needed even
15467 // if we are not providing an authoritative form of the vtable in this TU.
15468 // We may choose to emit it available_externally anyway.
15469 if (!DefineVTable) {
15470 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
15471 continue;
15472 }
15473
15474 // Mark all of the virtual members of this class as referenced, so
15475 // that we can build a vtable. Then, tell the AST consumer that a
15476 // vtable for this class is required.
15477 DefinedAnything = true;
15478 MarkVirtualMembersReferenced(Loc, Class);
15479 CXXRecordDecl *Canonical = Class->getCanonicalDecl();
15480 if (VTablesUsed[Canonical])
15481 Consumer.HandleVTable(Class);
15482
15483 // Warn if we're emitting a weak vtable. The vtable will be weak if there is
15484 // no key function or the key function is inlined. Don't warn in C++ ABIs
15485 // that lack key functions, since the user won't be able to make one.
15486 if (Context.getTargetInfo().getCXXABI().hasKeyFunctions() &&
15487 Class->isExternallyVisible() && ClassTSK != TSK_ImplicitInstantiation) {
15488 const FunctionDecl *KeyFunctionDef = nullptr;
15489 if (!KeyFunction || (KeyFunction->hasBody(KeyFunctionDef) &&
15490 KeyFunctionDef->isInlined())) {
15491 Diag(Class->getLocation(),
15492 ClassTSK == TSK_ExplicitInstantiationDefinition
15493 ? diag::warn_weak_template_vtable
15494 : diag::warn_weak_vtable)
15495 << Class;
15496 }
15497 }
15498 }
15499 VTableUses.clear();
15500
15501 return DefinedAnything;
15502}
15503
15504void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
15505 const CXXRecordDecl *RD) {
15506 for (const auto *I : RD->methods())
15507 if (I->isVirtual() && !I->isPure())
15508 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
15509}
15510
15511void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
15512 const CXXRecordDecl *RD,
15513 bool ConstexprOnly) {
15514 // Mark all functions which will appear in RD's vtable as used.
15515 CXXFinalOverriderMap FinalOverriders;
15516 RD->getFinalOverriders(FinalOverriders);
15517 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
31
Loop condition is false. Execution continues on line 15534
15518 E = FinalOverriders.end();
15519 I != E; ++I) {
27
Calling 'operator!=<const std::pair<const clang::CXXMethodDecl *, clang::OverridingMethods> *, std::vector<std::pair<const clang::CXXMethodDecl *, clang::OverridingMethods>, std::allocator<std::pair<const clang::CXXMethodDecl *, clang::OverridingMethods> > >>'
30
Returning from 'operator!=<const std::pair<const clang::CXXMethodDecl *, clang::OverridingMethods> *, std::vector<std::pair<const clang::CXXMethodDecl *, clang::OverridingMethods>, std::allocator<std::pair<const clang::CXXMethodDecl *, clang::OverridingMethods> > >>'
15520 for (OverridingMethods::const_iterator OI = I->second.begin(),
15521 OE = I->second.end();
15522 OI != OE; ++OI) {
15523 assert(OI->second.size() > 0 && "no final overrider")((OI->second.size() > 0 && "no final overrider"
) ? static_cast<void> (0) : __assert_fail ("OI->second.size() > 0 && \"no final overrider\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15523, __PRETTY_FUNCTION__))
;
15524 CXXMethodDecl *Overrider = OI->second.front().Method;
15525
15526 // C++ [basic.def.odr]p2:
15527 // [...] A virtual member function is used if it is not pure. [...]
15528 if (!Overrider->isPure() && (!ConstexprOnly || Overrider->isConstexpr()))
15529 MarkFunctionReferenced(Loc, Overrider);
15530 }
15531 }
15532
15533 // Only classes that have virtual bases need a VTT.
15534 if (RD->getNumVBases() == 0)
32
Assuming the condition is false
33
Taking false branch
15535 return;
15536
15537 for (const auto &I : RD->bases()) {
34
Assuming '__begin1' is not equal to '__end1'
15538 const CXXRecordDecl *Base =
15539 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
35
Assuming the object is not a 'RecordType'
36
Called C++ object pointer is null
15540 if (Base->getNumVBases() == 0)
15541 continue;
15542 MarkVirtualMembersReferenced(Loc, Base);
15543 }
15544}
15545
15546/// SetIvarInitializers - This routine builds initialization ASTs for the
15547/// Objective-C implementation whose ivars need be initialized.
15548void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
15549 if (!getLangOpts().CPlusPlus)
15550 return;
15551 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
15552 SmallVector<ObjCIvarDecl*, 8> ivars;
15553 CollectIvarsToConstructOrDestruct(OID, ivars);
15554 if (ivars.empty())
15555 return;
15556 SmallVector<CXXCtorInitializer*, 32> AllToInit;
15557 for (unsigned i = 0; i < ivars.size(); i++) {
15558 FieldDecl *Field = ivars[i];
15559 if (Field->isInvalidDecl())
15560 continue;
15561
15562 CXXCtorInitializer *Member;
15563 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
15564 InitializationKind InitKind =
15565 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
15566
15567 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
15568 ExprResult MemberInit =
15569 InitSeq.Perform(*this, InitEntity, InitKind, None);
15570 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
15571 // Note, MemberInit could actually come back empty if no initialization
15572 // is required (e.g., because it would call a trivial default constructor)
15573 if (!MemberInit.get() || MemberInit.isInvalid())
15574 continue;
15575
15576 Member =
15577 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
15578 SourceLocation(),
15579 MemberInit.getAs<Expr>(),
15580 SourceLocation());
15581 AllToInit.push_back(Member);
15582
15583 // Be sure that the destructor is accessible and is marked as referenced.
15584 if (const RecordType *RecordTy =
15585 Context.getBaseElementType(Field->getType())
15586 ->getAs<RecordType>()) {
15587 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
15588 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
15589 MarkFunctionReferenced(Field->getLocation(), Destructor);
15590 CheckDestructorAccess(Field->getLocation(), Destructor,
15591 PDiag(diag::err_access_dtor_ivar)
15592 << Context.getBaseElementType(Field->getType()));
15593 }
15594 }
15595 }
15596 ObjCImplementation->setIvarInitializers(Context,
15597 AllToInit.data(), AllToInit.size());
15598 }
15599}
15600
15601static
15602void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
15603 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Valid,
15604 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Invalid,
15605 llvm::SmallPtrSet<CXXConstructorDecl*, 4> &Current,
15606 Sema &S) {
15607 if (Ctor->isInvalidDecl())
15608 return;
15609
15610 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
15611
15612 // Target may not be determinable yet, for instance if this is a dependent
15613 // call in an uninstantiated template.
15614 if (Target) {
15615 const FunctionDecl *FNTarget = nullptr;
15616 (void)Target->hasBody(FNTarget);
15617 Target = const_cast<CXXConstructorDecl*>(
15618 cast_or_null<CXXConstructorDecl>(FNTarget));
15619 }
15620
15621 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
15622 // Avoid dereferencing a null pointer here.
15623 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
15624
15625 if (!Current.insert(Canonical).second)
15626 return;
15627
15628 // We know that beyond here, we aren't chaining into a cycle.
15629 if (!Target || !Target->isDelegatingConstructor() ||
15630 Target->isInvalidDecl() || Valid.count(TCanonical)) {
15631 Valid.insert(Current.begin(), Current.end());
15632 Current.clear();
15633 // We've hit a cycle.
15634 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
15635 Current.count(TCanonical)) {
15636 // If we haven't diagnosed this cycle yet, do so now.
15637 if (!Invalid.count(TCanonical)) {
15638 S.Diag((*Ctor->init_begin())->getSourceLocation(),
15639 diag::warn_delegating_ctor_cycle)
15640 << Ctor;
15641
15642 // Don't add a note for a function delegating directly to itself.
15643 if (TCanonical != Canonical)
15644 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
15645
15646 CXXConstructorDecl *C = Target;
15647 while (C->getCanonicalDecl() != Canonical) {
15648 const FunctionDecl *FNTarget = nullptr;
15649 (void)C->getTargetConstructor()->hasBody(FNTarget);
15650 assert(FNTarget && "Ctor cycle through bodiless function")((FNTarget && "Ctor cycle through bodiless function")
? static_cast<void> (0) : __assert_fail ("FNTarget && \"Ctor cycle through bodiless function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15650, __PRETTY_FUNCTION__))
;
15651
15652 C = const_cast<CXXConstructorDecl*>(
15653 cast<CXXConstructorDecl>(FNTarget));
15654 S.Diag(C->getLocation(), diag::note_which_delegates_to);
15655 }
15656 }
15657
15658 Invalid.insert(Current.begin(), Current.end());
15659 Current.clear();
15660 } else {
15661 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
15662 }
15663}
15664
15665
15666void Sema::CheckDelegatingCtorCycles() {
15667 llvm::SmallPtrSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
15668
15669 for (DelegatingCtorDeclsType::iterator
15670 I = DelegatingCtorDecls.begin(ExternalSource),
15671 E = DelegatingCtorDecls.end();
15672 I != E; ++I)
15673 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
15674
15675 for (auto CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
15676 (*CI)->setInvalidDecl();
15677}
15678
15679namespace {
15680 /// AST visitor that finds references to the 'this' expression.
15681 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
15682 Sema &S;
15683
15684 public:
15685 explicit FindCXXThisExpr(Sema &S) : S(S) { }
15686
15687 bool VisitCXXThisExpr(CXXThisExpr *E) {
15688 S.Diag(E->getLocation(), diag::err_this_static_member_func)
15689 << E->isImplicit();
15690 return false;
15691 }
15692 };
15693}
15694
15695bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
15696 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
15697 if (!TSInfo)
15698 return false;
15699
15700 TypeLoc TL = TSInfo->getTypeLoc();
15701 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
15702 if (!ProtoTL)
15703 return false;
15704
15705 // C++11 [expr.prim.general]p3:
15706 // [The expression this] shall not appear before the optional
15707 // cv-qualifier-seq and it shall not appear within the declaration of a
15708 // static member function (although its type and value category are defined
15709 // within a static member function as they are within a non-static member
15710 // function). [ Note: this is because declaration matching does not occur
15711 // until the complete declarator is known. - end note ]
15712 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
15713 FindCXXThisExpr Finder(*this);
15714
15715 // If the return type came after the cv-qualifier-seq, check it now.
15716 if (Proto->hasTrailingReturn() &&
15717 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
15718 return true;
15719
15720 // Check the exception specification.
15721 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
15722 return true;
15723
15724 return checkThisInStaticMemberFunctionAttributes(Method);
15725}
15726
15727bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
15728 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
15729 if (!TSInfo)
15730 return false;
15731
15732 TypeLoc TL = TSInfo->getTypeLoc();
15733 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
15734 if (!ProtoTL)
15735 return false;
15736
15737 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
15738 FindCXXThisExpr Finder(*this);
15739
15740 switch (Proto->getExceptionSpecType()) {
15741 case EST_Unparsed:
15742 case EST_Uninstantiated:
15743 case EST_Unevaluated:
15744 case EST_BasicNoexcept:
15745 case EST_NoThrow:
15746 case EST_DynamicNone:
15747 case EST_MSAny:
15748 case EST_None:
15749 break;
15750
15751 case EST_DependentNoexcept:
15752 case EST_NoexceptFalse:
15753 case EST_NoexceptTrue:
15754 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
15755 return true;
15756 LLVM_FALLTHROUGH[[gnu::fallthrough]];
15757
15758 case EST_Dynamic:
15759 for (const auto &E : Proto->exceptions()) {
15760 if (!Finder.TraverseType(E))
15761 return true;
15762 }
15763 break;
15764 }
15765
15766 return false;
15767}
15768
15769bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
15770 FindCXXThisExpr Finder(*this);
15771
15772 // Check attributes.
15773 for (const auto *A : Method->attrs()) {
15774 // FIXME: This should be emitted by tblgen.
15775 Expr *Arg = nullptr;
15776 ArrayRef<Expr *> Args;
15777 if (const auto *G = dyn_cast<GuardedByAttr>(A))
15778 Arg = G->getArg();
15779 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
15780 Arg = G->getArg();
15781 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
15782 Args = llvm::makeArrayRef(AA->args_begin(), AA->args_size());
15783 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
15784 Args = llvm::makeArrayRef(AB->args_begin(), AB->args_size());
15785 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
15786 Arg = ETLF->getSuccessValue();
15787 Args = llvm::makeArrayRef(ETLF->args_begin(), ETLF->args_size());
15788 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
15789 Arg = STLF->getSuccessValue();
15790 Args = llvm::makeArrayRef(STLF->args_begin(), STLF->args_size());
15791 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
15792 Arg = LR->getArg();
15793 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
15794 Args = llvm::makeArrayRef(LE->args_begin(), LE->args_size());
15795 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
15796 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
15797 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
15798 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
15799 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
15800 Args = llvm::makeArrayRef(AC->args_begin(), AC->args_size());
15801 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
15802 Args = llvm::makeArrayRef(RC->args_begin(), RC->args_size());
15803
15804 if (Arg && !Finder.TraverseStmt(Arg))
15805 return true;
15806
15807 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
15808 if (!Finder.TraverseStmt(Args[I]))
15809 return true;
15810 }
15811 }
15812
15813 return false;
15814}
15815
15816void Sema::checkExceptionSpecification(
15817 bool IsTopLevel, ExceptionSpecificationType EST,
15818 ArrayRef<ParsedType> DynamicExceptions,
15819 ArrayRef<SourceRange> DynamicExceptionRanges, Expr *NoexceptExpr,
15820 SmallVectorImpl<QualType> &Exceptions,
15821 FunctionProtoType::ExceptionSpecInfo &ESI) {
15822 Exceptions.clear();
15823 ESI.Type = EST;
15824 if (EST == EST_Dynamic) {
15825 Exceptions.reserve(DynamicExceptions.size());
15826 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
15827 // FIXME: Preserve type source info.
15828 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
15829
15830 if (IsTopLevel) {
15831 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
15832 collectUnexpandedParameterPacks(ET, Unexpanded);
15833 if (!Unexpanded.empty()) {
15834 DiagnoseUnexpandedParameterPacks(
15835 DynamicExceptionRanges[ei].getBegin(), UPPC_ExceptionType,
15836 Unexpanded);
15837 continue;
15838 }
15839 }
15840
15841 // Check that the type is valid for an exception spec, and
15842 // drop it if not.
15843 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
15844 Exceptions.push_back(ET);
15845 }
15846 ESI.Exceptions = Exceptions;
15847 return;
15848 }
15849
15850 if (isComputedNoexcept(EST)) {
15851 assert((NoexceptExpr->isTypeDependent() ||(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15854, __PRETTY_FUNCTION__))
15852 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15854, __PRETTY_FUNCTION__))
15853 Context.BoolTy) &&(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15854, __PRETTY_FUNCTION__))
15854 "Parser should have made sure that the expression is boolean")(((NoexceptExpr->isTypeDependent() || NoexceptExpr->getType
()->getCanonicalTypeUnqualified() == Context.BoolTy) &&
"Parser should have made sure that the expression is boolean"
) ? static_cast<void> (0) : __assert_fail ("(NoexceptExpr->isTypeDependent() || NoexceptExpr->getType()->getCanonicalTypeUnqualified() == Context.BoolTy) && \"Parser should have made sure that the expression is boolean\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 15854, __PRETTY_FUNCTION__))
;
15855 if (IsTopLevel && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
15856 ESI.Type = EST_BasicNoexcept;
15857 return;
15858 }
15859
15860 ESI.NoexceptExpr = NoexceptExpr;
15861 return;
15862 }
15863}
15864
15865void Sema::actOnDelayedExceptionSpecification(Decl *MethodD,
15866 ExceptionSpecificationType EST,
15867 SourceRange SpecificationRange,
15868 ArrayRef<ParsedType> DynamicExceptions,
15869 ArrayRef<SourceRange> DynamicExceptionRanges,
15870 Expr *NoexceptExpr) {
15871 if (!MethodD)
15872 return;
15873
15874 // Dig out the method we're referring to.
15875 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(MethodD))
15876 MethodD = FunTmpl->getTemplatedDecl();
15877
15878 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(MethodD);
15879 if (!Method)
15880 return;
15881
15882 // Check the exception specification.
15883 llvm::SmallVector<QualType, 4> Exceptions;
15884 FunctionProtoType::ExceptionSpecInfo ESI;
15885 checkExceptionSpecification(/*IsTopLevel*/true, EST, DynamicExceptions,
15886 DynamicExceptionRanges, NoexceptExpr, Exceptions,
15887 ESI);
15888
15889 // Update the exception specification on the function type.
15890 Context.adjustExceptionSpec(Method, ESI, /*AsWritten*/true);
15891
15892 if (Method->isStatic())
15893 checkThisInStaticMemberFunctionExceptionSpec(Method);
15894
15895 if (Method->isVirtual()) {
15896 // Check overrides, which we previously had to delay.
15897 for (const CXXMethodDecl *O : Method->overridden_methods())
15898 CheckOverridingFunctionExceptionSpec(Method, O);
15899 }
15900}
15901
15902/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
15903///
15904MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
15905 SourceLocation DeclStart, Declarator &D,
15906 Expr *BitWidth,
15907 InClassInitStyle InitStyle,
15908 AccessSpecifier AS,
15909 const ParsedAttr &MSPropertyAttr) {
15910 IdentifierInfo *II = D.getIdentifier();
15911 if (!II) {
15912 Diag(DeclStart, diag::err_anonymous_property);
15913 return nullptr;
15914 }
15915 SourceLocation Loc = D.getIdentifierLoc();
15916
15917 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15918 QualType T = TInfo->getType();
15919 if (getLangOpts().CPlusPlus) {
15920 CheckExtraCXXDefaultArguments(D);
15921
15922 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15923 UPPC_DataMemberType)) {
15924 D.setInvalidType();
15925 T = Context.IntTy;
15926 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15927 }
15928 }
15929
15930 DiagnoseFunctionSpecifiers(D.getDeclSpec());
15931
15932 if (D.getDeclSpec().isInlineSpecified())
15933 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15934 << getLangOpts().CPlusPlus17;
15935 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15936 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15937 diag::err_invalid_thread)
15938 << DeclSpec::getSpecifierName(TSCS);
15939
15940 // Check to see if this name was declared as a member previously
15941 NamedDecl *PrevDecl = nullptr;
15942 LookupResult Previous(*this, II, Loc, LookupMemberName,
15943 ForVisibleRedeclaration);
15944 LookupName(Previous, S);
15945 switch (Previous.getResultKind()) {
15946 case LookupResult::Found:
15947 case LookupResult::FoundUnresolvedValue:
15948 PrevDecl = Previous.getAsSingle<NamedDecl>();
15949 break;
15950
15951 case LookupResult::FoundOverloaded:
15952 PrevDecl = Previous.getRepresentativeDecl();
15953 break;
15954
15955 case LookupResult::NotFound:
15956 case LookupResult::NotFoundInCurrentInstantiation:
15957 case LookupResult::Ambiguous:
15958 break;
15959 }
15960
15961 if (PrevDecl && PrevDecl->isTemplateParameter()) {
15962 // Maybe we will complain about the shadowed template parameter.
15963 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15964 // Just pretend that we didn't see the previous declaration.
15965 PrevDecl = nullptr;
15966 }
15967
15968 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15969 PrevDecl = nullptr;
15970
15971 SourceLocation TSSL = D.getBeginLoc();
15972 MSPropertyDecl *NewPD =
15973 MSPropertyDecl::Create(Context, Record, Loc, II, T, TInfo, TSSL,
15974 MSPropertyAttr.getPropertyDataGetter(),
15975 MSPropertyAttr.getPropertyDataSetter());
15976 ProcessDeclAttributes(TUScope, NewPD, D);
15977 NewPD->setAccess(AS);
15978
15979 if (NewPD->isInvalidDecl())
15980 Record->setInvalidDecl();
15981
15982 if (D.getDeclSpec().isModulePrivateSpecified())
15983 NewPD->setModulePrivate();
15984
15985 if (NewPD->isInvalidDecl() && PrevDecl) {
15986 // Don't introduce NewFD into scope; there's already something
15987 // with the same name in the same scope.
15988 } else if (II) {
15989 PushOnScopeChains(NewPD, S);
15990 } else
15991 Record->addDecl(NewPD);
15992
15993 return NewPD;
15994}

/usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/bits/stl_iterator.h

1// Iterators -*- C++ -*-
2
3// Copyright (C) 2001-2016 Free Software Foundation, Inc.
4//
5// This file is part of the GNU ISO C++ Library. This library is free
6// software; you can redistribute it and/or modify it under the
7// terms of the GNU General Public License as published by the
8// Free Software Foundation; either version 3, or (at your option)
9// any later version.
10
11// This library is distributed in the hope that it will be useful,
12// but WITHOUT ANY WARRANTY; without even the implied warranty of
13// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14// GNU General Public License for more details.
15
16// Under Section 7 of GPL version 3, you are granted additional
17// permissions described in the GCC Runtime Library Exception, version
18// 3.1, as published by the Free Software Foundation.
19
20// You should have received a copy of the GNU General Public License and
21// a copy of the GCC Runtime Library Exception along with this program;
22// see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23// <http://www.gnu.org/licenses/>.
24
25/*
26 *
27 * Copyright (c) 1994
28 * Hewlett-Packard Company
29 *
30 * Permission to use, copy, modify, distribute and sell this software
31 * and its documentation for any purpose is hereby granted without fee,
32 * provided that the above copyright notice appear in all copies and
33 * that both that copyright notice and this permission notice appear
34 * in supporting documentation. Hewlett-Packard Company makes no
35 * representations about the suitability of this software for any
36 * purpose. It is provided "as is" without express or implied warranty.
37 *
38 *
39 * Copyright (c) 1996-1998
40 * Silicon Graphics Computer Systems, Inc.
41 *
42 * Permission to use, copy, modify, distribute and sell this software
43 * and its documentation for any purpose is hereby granted without fee,
44 * provided that the above copyright notice appear in all copies and
45 * that both that copyright notice and this permission notice appear
46 * in supporting documentation. Silicon Graphics makes no
47 * representations about the suitability of this software for any
48 * purpose. It is provided "as is" without express or implied warranty.
49 */
50
51/** @file bits/stl_iterator.h
52 * This is an internal header file, included by other library headers.
53 * Do not attempt to use it directly. @headername{iterator}
54 *
55 * This file implements reverse_iterator, back_insert_iterator,
56 * front_insert_iterator, insert_iterator, __normal_iterator, and their
57 * supporting functions and overloaded operators.
58 */
59
60#ifndef _STL_ITERATOR_H1
61#define _STL_ITERATOR_H1 1
62
63#include <bits/cpp_type_traits.h>
64#include <ext/type_traits.h>
65#include <bits/move.h>
66#include <bits/ptr_traits.h>
67
68namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
69{
70_GLIBCXX_BEGIN_NAMESPACE_VERSION
71
72 /**
73 * @addtogroup iterators
74 * @{
75 */
76
77 // 24.4.1 Reverse iterators
78 /**
79 * Bidirectional and random access iterators have corresponding reverse
80 * %iterator adaptors that iterate through the data structure in the
81 * opposite direction. They have the same signatures as the corresponding
82 * iterators. The fundamental relation between a reverse %iterator and its
83 * corresponding %iterator @c i is established by the identity:
84 * @code
85 * &*(reverse_iterator(i)) == &*(i - 1)
86 * @endcode
87 *
88 * <em>This mapping is dictated by the fact that while there is always a
89 * pointer past the end of an array, there might not be a valid pointer
90 * before the beginning of an array.</em> [24.4.1]/1,2
91 *
92 * Reverse iterators can be tricky and surprising at first. Their
93 * semantics make sense, however, and the trickiness is a side effect of
94 * the requirement that the iterators must be safe.
95 */
96 template<typename _Iterator>
97 class reverse_iterator
98 : public iterator<typename iterator_traits<_Iterator>::iterator_category,
99 typename iterator_traits<_Iterator>::value_type,
100 typename iterator_traits<_Iterator>::difference_type,
101 typename iterator_traits<_Iterator>::pointer,
102 typename iterator_traits<_Iterator>::reference>
103 {
104 protected:
105 _Iterator current;
106
107 typedef iterator_traits<_Iterator> __traits_type;
108
109 public:
110 typedef _Iterator iterator_type;
111 typedef typename __traits_type::difference_type difference_type;
112 typedef typename __traits_type::pointer pointer;
113 typedef typename __traits_type::reference reference;
114
115 /**
116 * The default constructor value-initializes member @p current.
117 * If it is a pointer, that means it is zero-initialized.
118 */
119 // _GLIBCXX_RESOLVE_LIB_DEFECTS
120 // 235 No specification of default ctor for reverse_iterator
121 reverse_iterator() : current() { }
122
123 /**
124 * This %iterator will move in the opposite direction that @p x does.
125 */
126 explicit
127 reverse_iterator(iterator_type __x) : current(__x) { }
128
129 /**
130 * The copy constructor is normal.
131 */
132 reverse_iterator(const reverse_iterator& __x)
133 : current(__x.current) { }
134
135 /**
136 * A %reverse_iterator across other types can be copied if the
137 * underlying %iterator can be converted to the type of @c current.
138 */
139 template<typename _Iter>
140 reverse_iterator(const reverse_iterator<_Iter>& __x)
141 : current(__x.base()) { }
142
143 /**
144 * @return @c current, the %iterator used for underlying work.
145 */
146 iterator_type
147 base() const
148 { return current; }
149
150 /**
151 * @return A reference to the value at @c --current
152 *
153 * This requires that @c --current is dereferenceable.
154 *
155 * @warning This implementation requires that for an iterator of the
156 * underlying iterator type, @c x, a reference obtained by
157 * @c *x remains valid after @c x has been modified or
158 * destroyed. This is a bug: http://gcc.gnu.org/PR51823
159 */
160 reference
161 operator*() const
162 {
163 _Iterator __tmp = current;
164 return *--__tmp;
165 }
166
167 /**
168 * @return A pointer to the value at @c --current
169 *
170 * This requires that @c --current is dereferenceable.
171 */
172 pointer
173 operator->() const
174 { return &(operator*()); }
175
176 /**
177 * @return @c *this
178 *
179 * Decrements the underlying iterator.
180 */
181 reverse_iterator&
182 operator++()
183 {
184 --current;
185 return *this;
186 }
187
188 /**
189 * @return The original value of @c *this
190 *
191 * Decrements the underlying iterator.
192 */
193 reverse_iterator
194 operator++(int)
195 {
196 reverse_iterator __tmp = *this;
197 --current;
198 return __tmp;
199 }
200
201 /**
202 * @return @c *this
203 *
204 * Increments the underlying iterator.
205 */
206 reverse_iterator&
207 operator--()
208 {
209 ++current;
210 return *this;
211 }
212
213 /**
214 * @return A reverse_iterator with the previous value of @c *this
215 *
216 * Increments the underlying iterator.
217 */
218 reverse_iterator
219 operator--(int)
220 {
221 reverse_iterator __tmp = *this;
222 ++current;
223 return __tmp;
224 }
225
226 /**
227 * @return A reverse_iterator that refers to @c current - @a __n
228 *
229 * The underlying iterator must be a Random Access Iterator.
230 */
231 reverse_iterator
232 operator+(difference_type __n) const
233 { return reverse_iterator(current - __n); }
234
235 /**
236 * @return *this
237 *
238 * Moves the underlying iterator backwards @a __n steps.
239 * The underlying iterator must be a Random Access Iterator.
240 */
241 reverse_iterator&
242 operator+=(difference_type __n)
243 {
244 current -= __n;
245 return *this;
246 }
247
248 /**
249 * @return A reverse_iterator that refers to @c current - @a __n
250 *
251 * The underlying iterator must be a Random Access Iterator.
252 */
253 reverse_iterator
254 operator-(difference_type __n) const
255 { return reverse_iterator(current + __n); }
256
257 /**
258 * @return *this
259 *
260 * Moves the underlying iterator forwards @a __n steps.
261 * The underlying iterator must be a Random Access Iterator.
262 */
263 reverse_iterator&
264 operator-=(difference_type __n)
265 {
266 current += __n;
267 return *this;
268 }
269
270 /**
271 * @return The value at @c current - @a __n - 1
272 *
273 * The underlying iterator must be a Random Access Iterator.
274 */
275 reference
276 operator[](difference_type __n) const
277 { return *(*this + __n); }
278 };
279
280 //@{
281 /**
282 * @param __x A %reverse_iterator.
283 * @param __y A %reverse_iterator.
284 * @return A simple bool.
285 *
286 * Reverse iterators forward many operations to their underlying base()
287 * iterators. Others are implemented in terms of one another.
288 *
289 */
290 template<typename _Iterator>
291 inline bool
292 operator==(const reverse_iterator<_Iterator>& __x,
293 const reverse_iterator<_Iterator>& __y)
294 { return __x.base() == __y.base(); }
295
296 template<typename _Iterator>
297 inline bool
298 operator<(const reverse_iterator<_Iterator>& __x,
299 const reverse_iterator<_Iterator>& __y)
300 { return __y.base() < __x.base(); }
301
302 template<typename _Iterator>
303 inline bool
304 operator!=(const reverse_iterator<_Iterator>& __x,
305 const reverse_iterator<_Iterator>& __y)
306 { return !(__x == __y); }
307
308 template<typename _Iterator>
309 inline bool
310 operator>(const reverse_iterator<_Iterator>& __x,
311 const reverse_iterator<_Iterator>& __y)
312 { return __y < __x; }
313
314 template<typename _Iterator>
315 inline bool
316 operator<=(const reverse_iterator<_Iterator>& __x,
317 const reverse_iterator<_Iterator>& __y)
318 { return !(__y < __x); }
319
320 template<typename _Iterator>
321 inline bool
322 operator>=(const reverse_iterator<_Iterator>& __x,
323 const reverse_iterator<_Iterator>& __y)
324 { return !(__x < __y); }
325
326 template<typename _Iterator>
327#if __cplusplus201402L < 201103L
328 inline typename reverse_iterator<_Iterator>::difference_type
329 operator-(const reverse_iterator<_Iterator>& __x,
330 const reverse_iterator<_Iterator>& __y)
331#else
332 inline auto
333 operator-(const reverse_iterator<_Iterator>& __x,
334 const reverse_iterator<_Iterator>& __y)
335 -> decltype(__x.base() - __y.base())
336#endif
337 { return __y.base() - __x.base(); }
338
339 template<typename _Iterator>
340 inline reverse_iterator<_Iterator>
341 operator+(typename reverse_iterator<_Iterator>::difference_type __n,
342 const reverse_iterator<_Iterator>& __x)
343 { return reverse_iterator<_Iterator>(__x.base() - __n); }
344
345 // _GLIBCXX_RESOLVE_LIB_DEFECTS
346 // DR 280. Comparison of reverse_iterator to const reverse_iterator.
347 template<typename _IteratorL, typename _IteratorR>
348 inline bool
349 operator==(const reverse_iterator<_IteratorL>& __x,
350 const reverse_iterator<_IteratorR>& __y)
351 { return __x.base() == __y.base(); }
352
353 template<typename _IteratorL, typename _IteratorR>
354 inline bool
355 operator<(const reverse_iterator<_IteratorL>& __x,
356 const reverse_iterator<_IteratorR>& __y)
357 { return __y.base() < __x.base(); }
358
359 template<typename _IteratorL, typename _IteratorR>
360 inline bool
361 operator!=(const reverse_iterator<_IteratorL>& __x,
362 const reverse_iterator<_IteratorR>& __y)
363 { return !(__x == __y); }
364
365 template<typename _IteratorL, typename _IteratorR>
366 inline bool
367 operator>(const reverse_iterator<_IteratorL>& __x,
368 const reverse_iterator<_IteratorR>& __y)
369 { return __y < __x; }
370
371 template<typename _IteratorL, typename _IteratorR>
372 inline bool
373 operator<=(const reverse_iterator<_IteratorL>& __x,
374 const reverse_iterator<_IteratorR>& __y)
375 { return !(__y < __x); }
376
377 template<typename _IteratorL, typename _IteratorR>
378 inline bool
379 operator>=(const reverse_iterator<_IteratorL>& __x,
380 const reverse_iterator<_IteratorR>& __y)
381 { return !(__x < __y); }
382
383 template<typename _IteratorL, typename _IteratorR>
384#if __cplusplus201402L >= 201103L
385 // DR 685.
386 inline auto
387 operator-(const reverse_iterator<_IteratorL>& __x,
388 const reverse_iterator<_IteratorR>& __y)
389 -> decltype(__y.base() - __x.base())
390#else
391 inline typename reverse_iterator<_IteratorL>::difference_type
392 operator-(const reverse_iterator<_IteratorL>& __x,
393 const reverse_iterator<_IteratorR>& __y)
394#endif
395 { return __y.base() - __x.base(); }
396 //@}
397
398#if __cplusplus201402L >= 201103L
399 // Same as C++14 make_reverse_iterator but used in C++03 mode too.
400 template<typename _Iterator>
401 inline reverse_iterator<_Iterator>
402 __make_reverse_iterator(_Iterator __i)
403 { return reverse_iterator<_Iterator>(__i); }
404
405# if __cplusplus201402L > 201103L
406# define __cpp_lib_make_reverse_iterator201402 201402
407
408 // _GLIBCXX_RESOLVE_LIB_DEFECTS
409 // DR 2285. make_reverse_iterator
410 /// Generator function for reverse_iterator.
411 template<typename _Iterator>
412 inline reverse_iterator<_Iterator>
413 make_reverse_iterator(_Iterator __i)
414 { return reverse_iterator<_Iterator>(__i); }
415# endif
416#endif
417
418#if __cplusplus201402L >= 201103L
419 template<typename _Iterator>
420 auto
421 __niter_base(reverse_iterator<_Iterator> __it)
422 -> decltype(__make_reverse_iterator(__niter_base(__it.base())))
423 { return __make_reverse_iterator(__niter_base(__it.base())); }
424
425 template<typename _Iterator>
426 struct __is_move_iterator<reverse_iterator<_Iterator> >
427 : __is_move_iterator<_Iterator>
428 { };
429
430 template<typename _Iterator>
431 auto
432 __miter_base(reverse_iterator<_Iterator> __it)
433 -> decltype(__make_reverse_iterator(__miter_base(__it.base())))
434 { return __make_reverse_iterator(__miter_base(__it.base())); }
435#endif
436
437 // 24.4.2.2.1 back_insert_iterator
438 /**
439 * @brief Turns assignment into insertion.
440 *
441 * These are output iterators, constructed from a container-of-T.
442 * Assigning a T to the iterator appends it to the container using
443 * push_back.
444 *
445 * Tip: Using the back_inserter function to create these iterators can
446 * save typing.
447 */
448 template<typename _Container>
449 class back_insert_iterator
450 : public iterator<output_iterator_tag, void, void, void, void>
451 {
452 protected:
453 _Container* container;
454
455 public:
456 /// A nested typedef for the type of whatever container you used.
457 typedef _Container container_type;
458
459 /// The only way to create this %iterator is with a container.
460 explicit
461 back_insert_iterator(_Container& __x)
462 : container(std::__addressof(__x)) { }
463
464 /**
465 * @param __value An instance of whatever type
466 * container_type::const_reference is; presumably a
467 * reference-to-const T for container<T>.
468 * @return This %iterator, for chained operations.
469 *
470 * This kind of %iterator doesn't really have a @a position in the
471 * container (you can think of the position as being permanently at
472 * the end, if you like). Assigning a value to the %iterator will
473 * always append the value to the end of the container.
474 */
475#if __cplusplus201402L < 201103L
476 back_insert_iterator&
477 operator=(typename _Container::const_reference __value)
478 {
479 container->push_back(__value);
480 return *this;
481 }
482#else
483 back_insert_iterator&
484 operator=(const typename _Container::value_type& __value)
485 {
486 container->push_back(__value);
487 return *this;
488 }
489
490 back_insert_iterator&
491 operator=(typename _Container::value_type&& __value)
492 {
493 container->push_back(std::move(__value));
494 return *this;
495 }
496#endif
497
498 /// Simply returns *this.
499 back_insert_iterator&
500 operator*()
501 { return *this; }
502
503 /// Simply returns *this. (This %iterator does not @a move.)
504 back_insert_iterator&
505 operator++()
506 { return *this; }
507
508 /// Simply returns *this. (This %iterator does not @a move.)
509 back_insert_iterator
510 operator++(int)
511 { return *this; }
512 };
513
514 /**
515 * @param __x A container of arbitrary type.
516 * @return An instance of back_insert_iterator working on @p __x.
517 *
518 * This wrapper function helps in creating back_insert_iterator instances.
519 * Typing the name of the %iterator requires knowing the precise full
520 * type of the container, which can be tedious and impedes generic
521 * programming. Using this function lets you take advantage of automatic
522 * template parameter deduction, making the compiler match the correct
523 * types for you.
524 */
525 template<typename _Container>
526 inline back_insert_iterator<_Container>
527 back_inserter(_Container& __x)
528 { return back_insert_iterator<_Container>(__x); }
529
530 /**
531 * @brief Turns assignment into insertion.
532 *
533 * These are output iterators, constructed from a container-of-T.
534 * Assigning a T to the iterator prepends it to the container using
535 * push_front.
536 *
537 * Tip: Using the front_inserter function to create these iterators can
538 * save typing.
539 */
540 template<typename _Container>
541 class front_insert_iterator
542 : public iterator<output_iterator_tag, void, void, void, void>
543 {
544 protected:
545 _Container* container;
546
547 public:
548 /// A nested typedef for the type of whatever container you used.
549 typedef _Container container_type;
550
551 /// The only way to create this %iterator is with a container.
552 explicit front_insert_iterator(_Container& __x)
553 : container(std::__addressof(__x)) { }
554
555 /**
556 * @param __value An instance of whatever type
557 * container_type::const_reference is; presumably a
558 * reference-to-const T for container<T>.
559 * @return This %iterator, for chained operations.
560 *
561 * This kind of %iterator doesn't really have a @a position in the
562 * container (you can think of the position as being permanently at
563 * the front, if you like). Assigning a value to the %iterator will
564 * always prepend the value to the front of the container.
565 */
566#if __cplusplus201402L < 201103L
567 front_insert_iterator&
568 operator=(typename _Container::const_reference __value)
569 {
570 container->push_front(__value);
571 return *this;
572 }
573#else
574 front_insert_iterator&
575 operator=(const typename _Container::value_type& __value)
576 {
577 container->push_front(__value);
578 return *this;
579 }
580
581 front_insert_iterator&
582 operator=(typename _Container::value_type&& __value)
583 {
584 container->push_front(std::move(__value));
585 return *this;
586 }
587#endif
588
589 /// Simply returns *this.
590 front_insert_iterator&
591 operator*()
592 { return *this; }
593
594 /// Simply returns *this. (This %iterator does not @a move.)
595 front_insert_iterator&
596 operator++()
597 { return *this; }
598
599 /// Simply returns *this. (This %iterator does not @a move.)
600 front_insert_iterator
601 operator++(int)
602 { return *this; }
603 };
604
605 /**
606 * @param __x A container of arbitrary type.
607 * @return An instance of front_insert_iterator working on @p x.
608 *
609 * This wrapper function helps in creating front_insert_iterator instances.
610 * Typing the name of the %iterator requires knowing the precise full
611 * type of the container, which can be tedious and impedes generic
612 * programming. Using this function lets you take advantage of automatic
613 * template parameter deduction, making the compiler match the correct
614 * types for you.
615 */
616 template<typename _Container>
617 inline front_insert_iterator<_Container>
618 front_inserter(_Container& __x)
619 { return front_insert_iterator<_Container>(__x); }
620
621 /**
622 * @brief Turns assignment into insertion.
623 *
624 * These are output iterators, constructed from a container-of-T.
625 * Assigning a T to the iterator inserts it in the container at the
626 * %iterator's position, rather than overwriting the value at that
627 * position.
628 *
629 * (Sequences will actually insert a @e copy of the value before the
630 * %iterator's position.)
631 *
632 * Tip: Using the inserter function to create these iterators can
633 * save typing.
634 */
635 template<typename _Container>
636 class insert_iterator
637 : public iterator<output_iterator_tag, void, void, void, void>
638 {
639 protected:
640 _Container* container;
641 typename _Container::iterator iter;
642
643 public:
644 /// A nested typedef for the type of whatever container you used.
645 typedef _Container container_type;
646
647 /**
648 * The only way to create this %iterator is with a container and an
649 * initial position (a normal %iterator into the container).
650 */
651 insert_iterator(_Container& __x, typename _Container::iterator __i)
652 : container(std::__addressof(__x)), iter(__i) {}
653
654 /**
655 * @param __value An instance of whatever type
656 * container_type::const_reference is; presumably a
657 * reference-to-const T for container<T>.
658 * @return This %iterator, for chained operations.
659 *
660 * This kind of %iterator maintains its own position in the
661 * container. Assigning a value to the %iterator will insert the
662 * value into the container at the place before the %iterator.
663 *
664 * The position is maintained such that subsequent assignments will
665 * insert values immediately after one another. For example,
666 * @code
667 * // vector v contains A and Z
668 *
669 * insert_iterator i (v, ++v.begin());
670 * i = 1;
671 * i = 2;
672 * i = 3;
673 *
674 * // vector v contains A, 1, 2, 3, and Z
675 * @endcode
676 */
677#if __cplusplus201402L < 201103L
678 insert_iterator&
679 operator=(typename _Container::const_reference __value)
680 {
681 iter = container->insert(iter, __value);
682 ++iter;
683 return *this;
684 }
685#else
686 insert_iterator&
687 operator=(const typename _Container::value_type& __value)
688 {
689 iter = container->insert(iter, __value);
690 ++iter;
691 return *this;
692 }
693
694 insert_iterator&
695 operator=(typename _Container::value_type&& __value)
696 {
697 iter = container->insert(iter, std::move(__value));
698 ++iter;
699 return *this;
700 }
701#endif
702
703 /// Simply returns *this.
704 insert_iterator&
705 operator*()
706 { return *this; }
707
708 /// Simply returns *this. (This %iterator does not @a move.)
709 insert_iterator&
710 operator++()
711 { return *this; }
712
713 /// Simply returns *this. (This %iterator does not @a move.)
714 insert_iterator&
715 operator++(int)
716 { return *this; }
717 };
718
719 /**
720 * @param __x A container of arbitrary type.
721 * @return An instance of insert_iterator working on @p __x.
722 *
723 * This wrapper function helps in creating insert_iterator instances.
724 * Typing the name of the %iterator requires knowing the precise full
725 * type of the container, which can be tedious and impedes generic
726 * programming. Using this function lets you take advantage of automatic
727 * template parameter deduction, making the compiler match the correct
728 * types for you.
729 */
730 template<typename _Container, typename _Iterator>
731 inline insert_iterator<_Container>
732 inserter(_Container& __x, _Iterator __i)
733 {
734 return insert_iterator<_Container>(__x,
735 typename _Container::iterator(__i));
736 }
737
738 // @} group iterators
739
740_GLIBCXX_END_NAMESPACE_VERSION
741} // namespace
742
743namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
744{
745_GLIBCXX_BEGIN_NAMESPACE_VERSION
746
747 // This iterator adapter is @a normal in the sense that it does not
748 // change the semantics of any of the operators of its iterator
749 // parameter. Its primary purpose is to convert an iterator that is
750 // not a class, e.g. a pointer, into an iterator that is a class.
751 // The _Container parameter exists solely so that different containers
752 // using this template can instantiate different types, even if the
753 // _Iterator parameter is the same.
754 using std::iterator_traits;
755 using std::iterator;
756 template<typename _Iterator, typename _Container>
757 class __normal_iterator
758 {
759 protected:
760 _Iterator _M_current;
761
762 typedef iterator_traits<_Iterator> __traits_type;
763
764 public:
765 typedef _Iterator iterator_type;
766 typedef typename __traits_type::iterator_category iterator_category;
767 typedef typename __traits_type::value_type value_type;
768 typedef typename __traits_type::difference_type difference_type;
769 typedef typename __traits_type::reference reference;
770 typedef typename __traits_type::pointer pointer;
771
772 _GLIBCXX_CONSTEXPRconstexpr __normal_iterator() _GLIBCXX_NOEXCEPTnoexcept
773 : _M_current(_Iterator()) { }
774
775 explicit
776 __normal_iterator(const _Iterator& __i) _GLIBCXX_NOEXCEPTnoexcept
777 : _M_current(__i) { }
778
779 // Allow iterator to const_iterator conversion
780 template<typename _Iter>
781 __normal_iterator(const __normal_iterator<_Iter,
782 typename __enable_if<
783 (std::__are_same<_Iter, typename _Container::pointer>::__value),
784 _Container>::__type>& __i) _GLIBCXX_NOEXCEPTnoexcept
785 : _M_current(__i.base()) { }
786
787 // Forward iterator requirements
788 reference
789 operator*() const _GLIBCXX_NOEXCEPTnoexcept
790 { return *_M_current; }
791
792 pointer
793 operator->() const _GLIBCXX_NOEXCEPTnoexcept
794 { return _M_current; }
795
796 __normal_iterator&
797 operator++() _GLIBCXX_NOEXCEPTnoexcept
798 {
799 ++_M_current;
800 return *this;
801 }
802
803 __normal_iterator
804 operator++(int) _GLIBCXX_NOEXCEPTnoexcept
805 { return __normal_iterator(_M_current++); }
806
807 // Bidirectional iterator requirements
808 __normal_iterator&
809 operator--() _GLIBCXX_NOEXCEPTnoexcept
810 {
811 --_M_current;
812 return *this;
813 }
814
815 __normal_iterator
816 operator--(int) _GLIBCXX_NOEXCEPTnoexcept
817 { return __normal_iterator(_M_current--); }
818
819 // Random access iterator requirements
820 reference
821 operator[](difference_type __n) const _GLIBCXX_NOEXCEPTnoexcept
822 { return _M_current[__n]; }
823
824 __normal_iterator&
825 operator+=(difference_type __n) _GLIBCXX_NOEXCEPTnoexcept
826 { _M_current += __n; return *this; }
827
828 __normal_iterator
829 operator+(difference_type __n) const _GLIBCXX_NOEXCEPTnoexcept
830 { return __normal_iterator(_M_current + __n); }
831
832 __normal_iterator&
833 operator-=(difference_type __n) _GLIBCXX_NOEXCEPTnoexcept
834 { _M_current -= __n; return *this; }
835
836 __normal_iterator
837 operator-(difference_type __n) const _GLIBCXX_NOEXCEPTnoexcept
838 { return __normal_iterator(_M_current - __n); }
839
840 const _Iterator&
841 base() const _GLIBCXX_NOEXCEPTnoexcept
842 { return _M_current; }
843 };
844
845 // Note: In what follows, the left- and right-hand-side iterators are
846 // allowed to vary in types (conceptually in cv-qualification) so that
847 // comparison between cv-qualified and non-cv-qualified iterators be
848 // valid. However, the greedy and unfriendly operators in std::rel_ops
849 // will make overload resolution ambiguous (when in scope) if we don't
850 // provide overloads whose operands are of the same type. Can someone
851 // remind me what generic programming is about? -- Gaby
852
853 // Forward iterator requirements
854 template<typename _IteratorL, typename _IteratorR, typename _Container>
855 inline bool
856 operator==(const __normal_iterator<_IteratorL, _Container>& __lhs,
857 const __normal_iterator<_IteratorR, _Container>& __rhs)
858 _GLIBCXX_NOEXCEPTnoexcept
859 { return __lhs.base() == __rhs.base(); }
860
861 template<typename _Iterator, typename _Container>
862 inline bool
863 operator==(const __normal_iterator<_Iterator, _Container>& __lhs,
864 const __normal_iterator<_Iterator, _Container>& __rhs)
865 _GLIBCXX_NOEXCEPTnoexcept
866 { return __lhs.base() == __rhs.base(); }
867
868 template<typename _IteratorL, typename _IteratorR, typename _Container>
869 inline bool
870 operator!=(const __normal_iterator<_IteratorL, _Container>& __lhs,
871 const __normal_iterator<_IteratorR, _Container>& __rhs)
872 _GLIBCXX_NOEXCEPTnoexcept
873 { return __lhs.base() != __rhs.base(); }
874
875 template<typename _Iterator, typename _Container>
876 inline bool
877 operator!=(const __normal_iterator<_Iterator, _Container>& __lhs,
878 const __normal_iterator<_Iterator, _Container>& __rhs)
879 _GLIBCXX_NOEXCEPTnoexcept
880 { return __lhs.base() != __rhs.base(); }
28
Assuming the condition is false
29
Returning zero, which participates in a condition later
881
882 // Random access iterator requirements
883 template<typename _IteratorL, typename _IteratorR, typename _Container>
884 inline bool
885 operator<(const __normal_iterator<_IteratorL, _Container>& __lhs,
886 const __normal_iterator<_IteratorR, _Container>& __rhs)
887 _GLIBCXX_NOEXCEPTnoexcept
888 { return __lhs.base() < __rhs.base(); }
889
890 template<typename _Iterator, typename _Container>
891 inline bool
892 operator<(const __normal_iterator<_Iterator, _Container>& __lhs,
893 const __normal_iterator<_Iterator, _Container>& __rhs)
894 _GLIBCXX_NOEXCEPTnoexcept
895 { return __lhs.base() < __rhs.base(); }
896
897 template<typename _IteratorL, typename _IteratorR, typename _Container>
898 inline bool
899 operator>(const __normal_iterator<_IteratorL, _Container>& __lhs,
900 const __normal_iterator<_IteratorR, _Container>& __rhs)
901 _GLIBCXX_NOEXCEPTnoexcept
902 { return __lhs.base() > __rhs.base(); }
903
904 template<typename _Iterator, typename _Container>
905 inline bool
906 operator>(const __normal_iterator<_Iterator, _Container>& __lhs,
907 const __normal_iterator<_Iterator, _Container>& __rhs)
908 _GLIBCXX_NOEXCEPTnoexcept
909 { return __lhs.base() > __rhs.base(); }
910
911 template<typename _IteratorL, typename _IteratorR, typename _Container>
912 inline bool
913 operator<=(const __normal_iterator<_IteratorL, _Container>& __lhs,
914 const __normal_iterator<_IteratorR, _Container>& __rhs)
915 _GLIBCXX_NOEXCEPTnoexcept
916 { return __lhs.base() <= __rhs.base(); }
917
918 template<typename _Iterator, typename _Container>
919 inline bool
920 operator<=(const __normal_iterator<_Iterator, _Container>& __lhs,
921 const __normal_iterator<_Iterator, _Container>& __rhs)
922 _GLIBCXX_NOEXCEPTnoexcept
923 { return __lhs.base() <= __rhs.base(); }
924
925 template<typename _IteratorL, typename _IteratorR, typename _Container>
926 inline bool
927 operator>=(const __normal_iterator<_IteratorL, _Container>& __lhs,
928 const __normal_iterator<_IteratorR, _Container>& __rhs)
929 _GLIBCXX_NOEXCEPTnoexcept
930 { return __lhs.base() >= __rhs.base(); }
931
932 template<typename _Iterator, typename _Container>
933 inline bool
934 operator>=(const __normal_iterator<_Iterator, _Container>& __lhs,
935 const __normal_iterator<_Iterator, _Container>& __rhs)
936 _GLIBCXX_NOEXCEPTnoexcept
937 { return __lhs.base() >= __rhs.base(); }
938
939 // _GLIBCXX_RESOLVE_LIB_DEFECTS
940 // According to the resolution of DR179 not only the various comparison
941 // operators but also operator- must accept mixed iterator/const_iterator
942 // parameters.
943 template<typename _IteratorL, typename _IteratorR, typename _Container>
944#if __cplusplus201402L >= 201103L
945 // DR 685.
946 inline auto
947 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
948 const __normal_iterator<_IteratorR, _Container>& __rhs) noexcept
949 -> decltype(__lhs.base() - __rhs.base())
950#else
951 inline typename __normal_iterator<_IteratorL, _Container>::difference_type
952 operator-(const __normal_iterator<_IteratorL, _Container>& __lhs,
953 const __normal_iterator<_IteratorR, _Container>& __rhs)
954#endif
955 { return __lhs.base() - __rhs.base(); }
956
957 template<typename _Iterator, typename _Container>
958 inline typename __normal_iterator<_Iterator, _Container>::difference_type
959 operator-(const __normal_iterator<_Iterator, _Container>& __lhs,
960 const __normal_iterator<_Iterator, _Container>& __rhs)
961 _GLIBCXX_NOEXCEPTnoexcept
962 { return __lhs.base() - __rhs.base(); }
963
964 template<typename _Iterator, typename _Container>
965 inline __normal_iterator<_Iterator, _Container>
966 operator+(typename __normal_iterator<_Iterator, _Container>::difference_type
967 __n, const __normal_iterator<_Iterator, _Container>& __i)
968 _GLIBCXX_NOEXCEPTnoexcept
969 { return __normal_iterator<_Iterator, _Container>(__i.base() + __n); }
970
971_GLIBCXX_END_NAMESPACE_VERSION
972} // namespace
973
974namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
975{
976_GLIBCXX_BEGIN_NAMESPACE_VERSION
977
978 template<typename _Iterator, typename _Container>
979 _Iterator
980 __niter_base(__gnu_cxx::__normal_iterator<_Iterator, _Container> __it)
981 { return __it.base(); }
982
983_GLIBCXX_END_NAMESPACE_VERSION
984} // namespace
985
986#if __cplusplus201402L >= 201103L
987
988namespace std _GLIBCXX_VISIBILITY(default)__attribute__ ((__visibility__ ("default")))
989{
990_GLIBCXX_BEGIN_NAMESPACE_VERSION
991
992 /**
993 * @addtogroup iterators
994 * @{
995 */
996
997 // 24.4.3 Move iterators
998 /**
999 * Class template move_iterator is an iterator adapter with the same
1000 * behavior as the underlying iterator except that its dereference
1001 * operator implicitly converts the value returned by the underlying
1002 * iterator's dereference operator to an rvalue reference. Some
1003 * generic algorithms can be called with move iterators to replace
1004 * copying with moving.
1005 */
1006 template<typename _Iterator>
1007 class move_iterator
1008 {
1009 protected:
1010 _Iterator _M_current;
1011
1012 typedef iterator_traits<_Iterator> __traits_type;
1013 typedef typename __traits_type::reference __base_ref;
1014
1015 public:
1016 typedef _Iterator iterator_type;
1017 typedef typename __traits_type::iterator_category iterator_category;
1018 typedef typename __traits_type::value_type value_type;
1019 typedef typename __traits_type::difference_type difference_type;
1020 // NB: DR 680.
1021 typedef _Iterator pointer;
1022 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1023 // 2106. move_iterator wrapping iterators returning prvalues
1024 typedef typename conditional<is_reference<__base_ref>::value,
1025 typename remove_reference<__base_ref>::type&&,
1026 __base_ref>::type reference;
1027
1028 move_iterator()
1029 : _M_current() { }
1030
1031 explicit
1032 move_iterator(iterator_type __i)
1033 : _M_current(__i) { }
1034
1035 template<typename _Iter>
1036 move_iterator(const move_iterator<_Iter>& __i)
1037 : _M_current(__i.base()) { }
1038
1039 iterator_type
1040 base() const
1041 { return _M_current; }
1042
1043 reference
1044 operator*() const
1045 { return static_cast<reference>(*_M_current); }
1046
1047 pointer
1048 operator->() const
1049 { return _M_current; }
1050
1051 move_iterator&
1052 operator++()
1053 {
1054 ++_M_current;
1055 return *this;
1056 }
1057
1058 move_iterator
1059 operator++(int)
1060 {
1061 move_iterator __tmp = *this;
1062 ++_M_current;
1063 return __tmp;
1064 }
1065
1066 move_iterator&
1067 operator--()
1068 {
1069 --_M_current;
1070 return *this;
1071 }
1072
1073 move_iterator
1074 operator--(int)
1075 {
1076 move_iterator __tmp = *this;
1077 --_M_current;
1078 return __tmp;
1079 }
1080
1081 move_iterator
1082 operator+(difference_type __n) const
1083 { return move_iterator(_M_current + __n); }
1084
1085 move_iterator&
1086 operator+=(difference_type __n)
1087 {
1088 _M_current += __n;
1089 return *this;
1090 }
1091
1092 move_iterator
1093 operator-(difference_type __n) const
1094 { return move_iterator(_M_current - __n); }
1095
1096 move_iterator&
1097 operator-=(difference_type __n)
1098 {
1099 _M_current -= __n;
1100 return *this;
1101 }
1102
1103 reference
1104 operator[](difference_type __n) const
1105 { return std::move(_M_current[__n]); }
1106 };
1107
1108 // Note: See __normal_iterator operators note from Gaby to understand
1109 // why there are always 2 versions for most of the move_iterator
1110 // operators.
1111 template<typename _IteratorL, typename _IteratorR>
1112 inline bool
1113 operator==(const move_iterator<_IteratorL>& __x,
1114 const move_iterator<_IteratorR>& __y)
1115 { return __x.base() == __y.base(); }
1116
1117 template<typename _Iterator>
1118 inline bool
1119 operator==(const move_iterator<_Iterator>& __x,
1120 const move_iterator<_Iterator>& __y)
1121 { return __x.base() == __y.base(); }
1122
1123 template<typename _IteratorL, typename _IteratorR>
1124 inline bool
1125 operator!=(const move_iterator<_IteratorL>& __x,
1126 const move_iterator<_IteratorR>& __y)
1127 { return !(__x == __y); }
1128
1129 template<typename _Iterator>
1130 inline bool
1131 operator!=(const move_iterator<_Iterator>& __x,
1132 const move_iterator<_Iterator>& __y)
1133 { return !(__x == __y); }
1134
1135 template<typename _IteratorL, typename _IteratorR>
1136 inline bool
1137 operator<(const move_iterator<_IteratorL>& __x,
1138 const move_iterator<_IteratorR>& __y)
1139 { return __x.base() < __y.base(); }
1140
1141 template<typename _Iterator>
1142 inline bool
1143 operator<(const move_iterator<_Iterator>& __x,
1144 const move_iterator<_Iterator>& __y)
1145 { return __x.base() < __y.base(); }
1146
1147 template<typename _IteratorL, typename _IteratorR>
1148 inline bool
1149 operator<=(const move_iterator<_IteratorL>& __x,
1150 const move_iterator<_IteratorR>& __y)
1151 { return !(__y < __x); }
1152
1153 template<typename _Iterator>
1154 inline bool
1155 operator<=(const move_iterator<_Iterator>& __x,
1156 const move_iterator<_Iterator>& __y)
1157 { return !(__y < __x); }
1158
1159 template<typename _IteratorL, typename _IteratorR>
1160 inline bool
1161 operator>(const move_iterator<_IteratorL>& __x,
1162 const move_iterator<_IteratorR>& __y)
1163 { return __y < __x; }
1164
1165 template<typename _Iterator>
1166 inline bool
1167 operator>(const move_iterator<_Iterator>& __x,
1168 const move_iterator<_Iterator>& __y)
1169 { return __y < __x; }
1170
1171 template<typename _IteratorL, typename _IteratorR>
1172 inline bool
1173 operator>=(const move_iterator<_IteratorL>& __x,
1174 const move_iterator<_IteratorR>& __y)
1175 { return !(__x < __y); }
1176
1177 template<typename _Iterator>
1178 inline bool
1179 operator>=(const move_iterator<_Iterator>& __x,
1180 const move_iterator<_Iterator>& __y)
1181 { return !(__x < __y); }
1182
1183 // DR 685.
1184 template<typename _IteratorL, typename _IteratorR>
1185 inline auto
1186 operator-(const move_iterator<_IteratorL>& __x,
1187 const move_iterator<_IteratorR>& __y)
1188 -> decltype(__x.base() - __y.base())
1189 { return __x.base() - __y.base(); }
1190
1191 template<typename _Iterator>
1192 inline auto
1193 operator-(const move_iterator<_Iterator>& __x,
1194 const move_iterator<_Iterator>& __y)
1195 -> decltype(__x.base() - __y.base())
1196 { return __x.base() - __y.base(); }
1197
1198 template<typename _Iterator>
1199 inline move_iterator<_Iterator>
1200 operator+(typename move_iterator<_Iterator>::difference_type __n,
1201 const move_iterator<_Iterator>& __x)
1202 { return __x + __n; }
1203
1204 template<typename _Iterator>
1205 inline move_iterator<_Iterator>
1206 make_move_iterator(_Iterator __i)
1207 { return move_iterator<_Iterator>(__i); }
1208
1209 template<typename _Iterator, typename _ReturnType
1210 = typename conditional<__move_if_noexcept_cond
1211 <typename iterator_traits<_Iterator>::value_type>::value,
1212 _Iterator, move_iterator<_Iterator>>::type>
1213 inline _ReturnType
1214 __make_move_if_noexcept_iterator(_Iterator __i)
1215 { return _ReturnType(__i); }
1216
1217 // Overload for pointers that matches std::move_if_noexcept more closely,
1218 // returning a constant iterator when we don't want to move.
1219 template<typename _Tp, typename _ReturnType
1220 = typename conditional<__move_if_noexcept_cond<_Tp>::value,
1221 const _Tp*, move_iterator<_Tp*>>::type>
1222 inline _ReturnType
1223 __make_move_if_noexcept_iterator(_Tp* __i)
1224 { return _ReturnType(__i); }
1225
1226 // @} group iterators
1227
1228 template<typename _Iterator>
1229 auto
1230 __niter_base(move_iterator<_Iterator> __it)
1231 -> decltype(make_move_iterator(__niter_base(__it.base())))
1232 { return make_move_iterator(__niter_base(__it.base())); }
1233
1234 template<typename _Iterator>
1235 struct __is_move_iterator<move_iterator<_Iterator> >
1236 {
1237 enum { __value = 1 };
1238 typedef __true_type __type;
1239 };
1240
1241 template<typename _Iterator>
1242 auto
1243 __miter_base(move_iterator<_Iterator> __it)
1244 -> decltype(__miter_base(__it.base()))
1245 { return __miter_base(__it.base()); }
1246
1247_GLIBCXX_END_NAMESPACE_VERSION
1248} // namespace
1249
1250#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) std::make_move_iterator(_Iter)
1251#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) \
1252 std::__make_move_if_noexcept_iterator(_Iter)
1253#else
1254#define _GLIBCXX_MAKE_MOVE_ITERATOR(_Iter)std::make_move_iterator(_Iter) (_Iter)
1255#define _GLIBCXX_MAKE_MOVE_IF_NOEXCEPT_ITERATOR(_Iter)std::__make_move_if_noexcept_iterator(_Iter) (_Iter)
1256#endif // C++11
1257
1258#ifdef _GLIBCXX_DEBUG
1259# include <debug/stl_iterator.h>
1260#endif
1261
1262#endif