Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 628, column 40
Called C++ object pointer is null

Annotated Source Code

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "clang/Sema/Template.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/StringExtras.h"
43#include <map>
44#include <set>
45
46using namespace clang;
47
48//===----------------------------------------------------------------------===//
49// CheckDefaultArgumentVisitor
50//===----------------------------------------------------------------------===//
51
52namespace {
53 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
54 /// the default argument of a parameter to determine whether it
55 /// contains any ill-formed subexpressions. For example, this will
56 /// diagnose the use of local variables or parameters within the
57 /// default argument expression.
58 class CheckDefaultArgumentVisitor
59 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
60 Expr *DefaultArg;
61 Sema *S;
62
63 public:
64 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
65 : DefaultArg(defarg), S(s) {}
66
67 bool VisitExpr(Expr *Node);
68 bool VisitDeclRefExpr(DeclRefExpr *DRE);
69 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
70 bool VisitLambdaExpr(LambdaExpr *Lambda);
71 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
72 };
73
74 /// VisitExpr - Visit all of the children of this expression.
75 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
76 bool IsInvalid = false;
77 for (Stmt *SubStmt : Node->children())
78 IsInvalid |= Visit(SubStmt);
79 return IsInvalid;
80 }
81
82 /// VisitDeclRefExpr - Visit a reference to a declaration, to
83 /// determine whether this declaration can be used in the default
84 /// argument expression.
85 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
86 NamedDecl *Decl = DRE->getDecl();
87 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
88 // C++ [dcl.fct.default]p9
89 // Default arguments are evaluated each time the function is
90 // called. The order of evaluation of function arguments is
91 // unspecified. Consequently, parameters of a function shall not
92 // be used in default argument expressions, even if they are not
93 // evaluated. Parameters of a function declared before a default
94 // argument expression are in scope and can hide namespace and
95 // class member names.
96 return S->Diag(DRE->getLocStart(),
97 diag::err_param_default_argument_references_param)
98 << Param->getDeclName() << DefaultArg->getSourceRange();
99 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
100 // C++ [dcl.fct.default]p7
101 // Local variables shall not be used in default argument
102 // expressions.
103 if (VDecl->isLocalVarDecl())
104 return S->Diag(DRE->getLocStart(),
105 diag::err_param_default_argument_references_local)
106 << VDecl->getDeclName() << DefaultArg->getSourceRange();
107 }
108
109 return false;
110 }
111
112 /// VisitCXXThisExpr - Visit a C++ "this" expression.
113 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
114 // C++ [dcl.fct.default]p8:
115 // The keyword this shall not be used in a default argument of a
116 // member function.
117 return S->Diag(ThisE->getLocStart(),
118 diag::err_param_default_argument_references_this)
119 << ThisE->getSourceRange();
120 }
121
122 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
123 bool Invalid = false;
124 for (PseudoObjectExpr::semantics_iterator
125 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
126 Expr *E = *i;
127
128 // Look through bindings.
129 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
130 E = OVE->getSourceExpr();
131 assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?"
) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 131, __PRETTY_FUNCTION__))
;
132 }
133
134 Invalid |= Visit(E);
135 }
136 return Invalid;
137 }
138
139 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
140 // C++11 [expr.lambda.prim]p13:
141 // A lambda-expression appearing in a default argument shall not
142 // implicitly or explicitly capture any entity.
143 if (Lambda->capture_begin() == Lambda->capture_end())
144 return false;
145
146 return S->Diag(Lambda->getLocStart(),
147 diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 if (EST == EST_None && Method->hasAttr<NoThrowAttr>())
171 EST = EST_BasicNoexcept;
172
173 switch(EST) {
174 // If this function can throw any exceptions, make a note of that.
175 case EST_MSAny:
176 case EST_None:
177 ClearExceptions();
178 ComputedEST = EST;
179 return;
180 // FIXME: If the call to this decl is using any of its default arguments, we
181 // need to search them for potentially-throwing calls.
182 // If this function has a basic noexcept, it doesn't affect the outcome.
183 case EST_BasicNoexcept:
184 return;
185 // If we're still at noexcept(true) and there's a nothrow() callee,
186 // change to that specification.
187 case EST_DynamicNone:
188 if (ComputedEST == EST_BasicNoexcept)
189 ComputedEST = EST_DynamicNone;
190 return;
191 // Check out noexcept specs.
192 case EST_ComputedNoexcept:
193 {
194 FunctionProtoType::NoexceptResult NR =
195 Proto->getNoexceptSpec(Self->Context);
196 assert(NR != FunctionProtoType::NR_NoNoexcept &&((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
197 "Must have noexcept result for EST_ComputedNoexcept.")((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
;
198 assert(NR != FunctionProtoType::NR_Dependent &&((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __PRETTY_FUNCTION__))
199 "Should not generate implicit declarations for dependent cases, "((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __PRETTY_FUNCTION__))
200 "and don't know how to handle them anyway.")((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 200, __PRETTY_FUNCTION__))
;
201 // noexcept(false) -> no spec on the new function
202 if (NR == FunctionProtoType::NR_Throw) {
203 ClearExceptions();
204 ComputedEST = EST_None;
205 }
206 // noexcept(true) won't change anything either.
207 return;
208 }
209 default:
210 break;
211 }
212 assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier."
) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 212, __PRETTY_FUNCTION__))
;
213 assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 214, __PRETTY_FUNCTION__))
214 "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 214, __PRETTY_FUNCTION__))
;
215 ComputedEST = EST_Dynamic;
216 // Record the exceptions in this function's exception specification.
217 for (const auto &E : Proto->exceptions())
218 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
219 Exceptions.push_back(E);
220}
221
222void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
223 if (!E || ComputedEST == EST_MSAny)
224 return;
225
226 // FIXME:
227 //
228 // C++0x [except.spec]p14:
229 // [An] implicit exception-specification specifies the type-id T if and
230 // only if T is allowed by the exception-specification of a function directly
231 // invoked by f's implicit definition; f shall allow all exceptions if any
232 // function it directly invokes allows all exceptions, and f shall allow no
233 // exceptions if every function it directly invokes allows no exceptions.
234 //
235 // Note in particular that if an implicit exception-specification is generated
236 // for a function containing a throw-expression, that specification can still
237 // be noexcept(true).
238 //
239 // Note also that 'directly invoked' is not defined in the standard, and there
240 // is no indication that we should only consider potentially-evaluated calls.
241 //
242 // Ultimately we should implement the intent of the standard: the exception
243 // specification should be the set of exceptions which can be thrown by the
244 // implicit definition. For now, we assume that any non-nothrow expression can
245 // throw any exception.
246
247 if (Self->canThrow(E))
248 ComputedEST = EST_None;
249}
250
251bool
252Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
253 SourceLocation EqualLoc) {
254 if (RequireCompleteType(Param->getLocation(), Param->getType(),
255 diag::err_typecheck_decl_incomplete_type)) {
256 Param->setInvalidDecl();
257 return true;
258 }
259
260 // C++ [dcl.fct.default]p5
261 // A default argument expression is implicitly converted (clause
262 // 4) to the parameter type. The default argument expression has
263 // the same semantic constraints as the initializer expression in
264 // a declaration of a variable of the parameter type, using the
265 // copy-initialization semantics (8.5).
266 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
267 Param);
268 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
269 EqualLoc);
270 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
271 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
272 if (Result.isInvalid())
273 return true;
274 Arg = Result.getAs<Expr>();
275
276 CheckCompletedExpr(Arg, EqualLoc);
277 Arg = MaybeCreateExprWithCleanups(Arg);
278
279 // Okay: add the default argument to the parameter
280 Param->setDefaultArg(Arg);
281
282 // We have already instantiated this parameter; provide each of the
283 // instantiations with the uninstantiated default argument.
284 UnparsedDefaultArgInstantiationsMap::iterator InstPos
285 = UnparsedDefaultArgInstantiations.find(Param);
286 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
287 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
288 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
289
290 // We're done tracking this parameter's instantiations.
291 UnparsedDefaultArgInstantiations.erase(InstPos);
292 }
293
294 return false;
295}
296
297/// ActOnParamDefaultArgument - Check whether the default argument
298/// provided for a function parameter is well-formed. If so, attach it
299/// to the parameter declaration.
300void
301Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
302 Expr *DefaultArg) {
303 if (!param || !DefaultArg)
304 return;
305
306 ParmVarDecl *Param = cast<ParmVarDecl>(param);
307 UnparsedDefaultArgLocs.erase(Param);
308
309 // Default arguments are only permitted in C++
310 if (!getLangOpts().CPlusPlus) {
311 Diag(EqualLoc, diag::err_param_default_argument)
312 << DefaultArg->getSourceRange();
313 Param->setInvalidDecl();
314 return;
315 }
316
317 // Check for unexpanded parameter packs.
318 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
319 Param->setInvalidDecl();
320 return;
321 }
322
323 // C++11 [dcl.fct.default]p3
324 // A default argument expression [...] shall not be specified for a
325 // parameter pack.
326 if (Param->isParameterPack()) {
327 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
328 << DefaultArg->getSourceRange();
329 return;
330 }
331
332 // Check that the default argument is well-formed
333 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
334 if (DefaultArgChecker.Visit(DefaultArg)) {
335 Param->setInvalidDecl();
336 return;
337 }
338
339 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
340}
341
342/// ActOnParamUnparsedDefaultArgument - We've seen a default
343/// argument for a function parameter, but we can't parse it yet
344/// because we're inside a class definition. Note that this default
345/// argument will be parsed later.
346void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
347 SourceLocation EqualLoc,
348 SourceLocation ArgLoc) {
349 if (!param)
350 return;
351
352 ParmVarDecl *Param = cast<ParmVarDecl>(param);
353 Param->setUnparsedDefaultArg();
354 UnparsedDefaultArgLocs[Param] = ArgLoc;
355}
356
357/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
358/// the default argument for the parameter param failed.
359void Sema::ActOnParamDefaultArgumentError(Decl *param,
360 SourceLocation EqualLoc) {
361 if (!param)
362 return;
363
364 ParmVarDecl *Param = cast<ParmVarDecl>(param);
365 Param->setInvalidDecl();
366 UnparsedDefaultArgLocs.erase(Param);
367 Param->setDefaultArg(new(Context)
368 OpaqueValueExpr(EqualLoc,
369 Param->getType().getNonReferenceType(),
370 VK_RValue));
371}
372
373/// CheckExtraCXXDefaultArguments - Check for any extra default
374/// arguments in the declarator, which is not a function declaration
375/// or definition and therefore is not permitted to have default
376/// arguments. This routine should be invoked for every declarator
377/// that is not a function declaration or definition.
378void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
379 // C++ [dcl.fct.default]p3
380 // A default argument expression shall be specified only in the
381 // parameter-declaration-clause of a function declaration or in a
382 // template-parameter (14.1). It shall not be specified for a
383 // parameter pack. If it is specified in a
384 // parameter-declaration-clause, it shall not occur within a
385 // declarator or abstract-declarator of a parameter-declaration.
386 bool MightBeFunction = D.isFunctionDeclarationContext();
387 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
388 DeclaratorChunk &chunk = D.getTypeObject(i);
389 if (chunk.Kind == DeclaratorChunk::Function) {
390 if (MightBeFunction) {
391 // This is a function declaration. It can have default arguments, but
392 // keep looking in case its return type is a function type with default
393 // arguments.
394 MightBeFunction = false;
395 continue;
396 }
397 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
398 ++argIdx) {
399 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
400 if (Param->hasUnparsedDefaultArg()) {
401 std::unique_ptr<CachedTokens> Toks =
402 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
403 SourceRange SR;
404 if (Toks->size() > 1)
405 SR = SourceRange((*Toks)[1].getLocation(),
406 Toks->back().getLocation());
407 else
408 SR = UnparsedDefaultArgLocs[Param];
409 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410 << SR;
411 } else if (Param->getDefaultArg()) {
412 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
413 << Param->getDefaultArg()->getSourceRange();
414 Param->setDefaultArg(nullptr);
415 }
416 }
417 } else if (chunk.Kind != DeclaratorChunk::Paren) {
418 MightBeFunction = false;
419 }
420 }
421}
422
423static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
424 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
425 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
426 if (!PVD->hasDefaultArg())
427 return false;
428 if (!PVD->hasInheritedDefaultArg())
429 return true;
430 }
431 return false;
432}
433
434/// MergeCXXFunctionDecl - Merge two declarations of the same C++
435/// function, once we already know that they have the same
436/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
437/// error, false otherwise.
438bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
439 Scope *S) {
440 bool Invalid = false;
441
442 // The declaration context corresponding to the scope is the semantic
443 // parent, unless this is a local function declaration, in which case
444 // it is that surrounding function.
445 DeclContext *ScopeDC = New->isLocalExternDecl()
1
Assuming the condition is false
2
'?' condition is false
446 ? New->getLexicalDeclContext()
447 : New->getDeclContext();
448
449 // Find the previous declaration for the purpose of default arguments.
450 FunctionDecl *PrevForDefaultArgs = Old;
451 for (/**/; PrevForDefaultArgs;
3
Assuming pointer value is null
4
Loop condition is false. Execution continues on line 499
452 // Don't bother looking back past the latest decl if this is a local
453 // extern declaration; nothing else could work.
454 PrevForDefaultArgs = New->isLocalExternDecl()
455 ? nullptr
456 : PrevForDefaultArgs->getPreviousDecl()) {
457 // Ignore hidden declarations.
458 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
459 continue;
460
461 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
462 !New->isCXXClassMember()) {
463 // Ignore default arguments of old decl if they are not in
464 // the same scope and this is not an out-of-line definition of
465 // a member function.
466 continue;
467 }
468
469 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
470 // If only one of these is a local function declaration, then they are
471 // declared in different scopes, even though isDeclInScope may think
472 // they're in the same scope. (If both are local, the scope check is
473 // sufficient, and if neither is local, then they are in the same scope.)
474 continue;
475 }
476
477 // We found the right previous declaration.
478 break;
479 }
480
481 // C++ [dcl.fct.default]p4:
482 // For non-template functions, default arguments can be added in
483 // later declarations of a function in the same
484 // scope. Declarations in different scopes have completely
485 // distinct sets of default arguments. That is, declarations in
486 // inner scopes do not acquire default arguments from
487 // declarations in outer scopes, and vice versa. In a given
488 // function declaration, all parameters subsequent to a
489 // parameter with a default argument shall have default
490 // arguments supplied in this or previous declarations. A
491 // default argument shall not be redefined by a later
492 // declaration (not even to the same value).
493 //
494 // C++ [dcl.fct.default]p6:
495 // Except for member functions of class templates, the default arguments
496 // in a member function definition that appears outside of the class
497 // definition are added to the set of default arguments provided by the
498 // member function declaration in the class definition.
499 for (unsigned p = 0, NumParams = PrevForDefaultArgs
5
'?' condition is false
6
Loop condition is false. Execution continues on line 627
500 ? PrevForDefaultArgs->getNumParams()
501 : 0;
502 p < NumParams; ++p) {
503 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
504 ParmVarDecl *NewParam = New->getParamDecl(p);
505
506 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
507 bool NewParamHasDfl = NewParam->hasDefaultArg();
508
509 if (OldParamHasDfl && NewParamHasDfl) {
510 unsigned DiagDefaultParamID =
511 diag::err_param_default_argument_redefinition;
512
513 // MSVC accepts that default parameters be redefined for member functions
514 // of template class. The new default parameter's value is ignored.
515 Invalid = true;
516 if (getLangOpts().MicrosoftExt) {
517 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
518 if (MD && MD->getParent()->getDescribedClassTemplate()) {
519 // Merge the old default argument into the new parameter.
520 NewParam->setHasInheritedDefaultArg();
521 if (OldParam->hasUninstantiatedDefaultArg())
522 NewParam->setUninstantiatedDefaultArg(
523 OldParam->getUninstantiatedDefaultArg());
524 else
525 NewParam->setDefaultArg(OldParam->getInit());
526 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
527 Invalid = false;
528 }
529 }
530
531 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
532 // hint here. Alternatively, we could walk the type-source information
533 // for NewParam to find the last source location in the type... but it
534 // isn't worth the effort right now. This is the kind of test case that
535 // is hard to get right:
536 // int f(int);
537 // void g(int (*fp)(int) = f);
538 // void g(int (*fp)(int) = &f);
539 Diag(NewParam->getLocation(), DiagDefaultParamID)
540 << NewParam->getDefaultArgRange();
541
542 // Look for the function declaration where the default argument was
543 // actually written, which may be a declaration prior to Old.
544 for (auto Older = PrevForDefaultArgs;
545 OldParam->hasInheritedDefaultArg(); /**/) {
546 Older = Older->getPreviousDecl();
547 OldParam = Older->getParamDecl(p);
548 }
549
550 Diag(OldParam->getLocation(), diag::note_previous_definition)
551 << OldParam->getDefaultArgRange();
552 } else if (OldParamHasDfl) {
553 // Merge the old default argument into the new parameter unless the new
554 // function is a friend declaration in a template class. In the latter
555 // case the default arguments will be inherited when the friend
556 // declaration will be instantiated.
557 if (New->getFriendObjectKind() == Decl::FOK_None ||
558 !New->getLexicalDeclContext()->isDependentContext()) {
559 // It's important to use getInit() here; getDefaultArg()
560 // strips off any top-level ExprWithCleanups.
561 NewParam->setHasInheritedDefaultArg();
562 if (OldParam->hasUnparsedDefaultArg())
563 NewParam->setUnparsedDefaultArg();
564 else if (OldParam->hasUninstantiatedDefaultArg())
565 NewParam->setUninstantiatedDefaultArg(
566 OldParam->getUninstantiatedDefaultArg());
567 else
568 NewParam->setDefaultArg(OldParam->getInit());
569 }
570 } else if (NewParamHasDfl) {
571 if (New->getDescribedFunctionTemplate()) {
572 // Paragraph 4, quoted above, only applies to non-template functions.
573 Diag(NewParam->getLocation(),
574 diag::err_param_default_argument_template_redecl)
575 << NewParam->getDefaultArgRange();
576 Diag(PrevForDefaultArgs->getLocation(),
577 diag::note_template_prev_declaration)
578 << false;
579 } else if (New->getTemplateSpecializationKind()
580 != TSK_ImplicitInstantiation &&
581 New->getTemplateSpecializationKind() != TSK_Undeclared) {
582 // C++ [temp.expr.spec]p21:
583 // Default function arguments shall not be specified in a declaration
584 // or a definition for one of the following explicit specializations:
585 // - the explicit specialization of a function template;
586 // - the explicit specialization of a member function template;
587 // - the explicit specialization of a member function of a class
588 // template where the class template specialization to which the
589 // member function specialization belongs is implicitly
590 // instantiated.
591 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
592 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
593 << New->getDeclName()
594 << NewParam->getDefaultArgRange();
595 } else if (New->getDeclContext()->isDependentContext()) {
596 // C++ [dcl.fct.default]p6 (DR217):
597 // Default arguments for a member function of a class template shall
598 // be specified on the initial declaration of the member function
599 // within the class template.
600 //
601 // Reading the tea leaves a bit in DR217 and its reference to DR205
602 // leads me to the conclusion that one cannot add default function
603 // arguments for an out-of-line definition of a member function of a
604 // dependent type.
605 int WhichKind = 2;
606 if (CXXRecordDecl *Record
607 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
608 if (Record->getDescribedClassTemplate())
609 WhichKind = 0;
610 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
611 WhichKind = 1;
612 else
613 WhichKind = 2;
614 }
615
616 Diag(NewParam->getLocation(),
617 diag::err_param_default_argument_member_template_redecl)
618 << WhichKind
619 << NewParam->getDefaultArgRange();
620 }
621 }
622 }
623
624 // DR1344: If a default argument is added outside a class definition and that
625 // default argument makes the function a special member function, the program
626 // is ill-formed. This can only happen for constructors.
627 if (isa<CXXConstructorDecl>(New) &&
628 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
7
Called C++ object pointer is null
629 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
630 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
631 if (NewSM != OldSM) {
632 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
633 assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0)
: __assert_fail ("NewParam->hasDefaultArg()", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 633, __PRETTY_FUNCTION__))
;
634 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
635 << NewParam->getDefaultArgRange() << NewSM;
636 Diag(Old->getLocation(), diag::note_previous_declaration);
637 }
638 }
639
640 const FunctionDecl *Def;
641 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
642 // template has a constexpr specifier then all its declarations shall
643 // contain the constexpr specifier.
644 if (New->isConstexpr() != Old->isConstexpr()) {
645 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
646 << New << New->isConstexpr();
647 Diag(Old->getLocation(), diag::note_previous_declaration);
648 Invalid = true;
649 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
650 Old->isDefined(Def) &&
651 // If a friend function is inlined but does not have 'inline'
652 // specifier, it is a definition. Do not report attribute conflict
653 // in this case, redefinition will be diagnosed later.
654 (New->isInlineSpecified() ||
655 New->getFriendObjectKind() == Decl::FOK_None)) {
656 // C++11 [dcl.fcn.spec]p4:
657 // If the definition of a function appears in a translation unit before its
658 // first declaration as inline, the program is ill-formed.
659 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
660 Diag(Def->getLocation(), diag::note_previous_definition);
661 Invalid = true;
662 }
663
664 // FIXME: It's not clear what should happen if multiple declarations of a
665 // deduction guide have different explicitness. For now at least we simply
666 // reject any case where the explicitness changes.
667 auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
668 if (NewGuide && NewGuide->isExplicitSpecified() !=
669 cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
670 Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
671 << NewGuide->isExplicitSpecified();
672 Diag(Old->getLocation(), diag::note_previous_declaration);
673 }
674
675 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
676 // argument expression, that declaration shall be a definition and shall be
677 // the only declaration of the function or function template in the
678 // translation unit.
679 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
680 functionDeclHasDefaultArgument(Old)) {
681 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
682 Diag(Old->getLocation(), diag::note_previous_declaration);
683 Invalid = true;
684 }
685
686 return Invalid;
687}
688
689NamedDecl *
690Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
691 MultiTemplateParamsArg TemplateParamLists) {
692 assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0
) : __assert_fail ("D.isDecompositionDeclarator()", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 692, __PRETTY_FUNCTION__))
;
693 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
694
695 // The syntax only allows a decomposition declarator as a simple-declaration
696 // or a for-range-declaration, but we parse it in more cases than that.
697 if (!D.mayHaveDecompositionDeclarator()) {
698 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
699 << Decomp.getSourceRange();
700 return nullptr;
701 }
702
703 if (!TemplateParamLists.empty()) {
704 // FIXME: There's no rule against this, but there are also no rules that
705 // would actually make it usable, so we reject it for now.
706 Diag(TemplateParamLists.front()->getTemplateLoc(),
707 diag::err_decomp_decl_template);
708 return nullptr;
709 }
710
711 Diag(Decomp.getLSquareLoc(), getLangOpts().CPlusPlus1z
712 ? diag::warn_cxx14_compat_decomp_decl
713 : diag::ext_decomp_decl)
714 << Decomp.getSourceRange();
715
716 // The semantic context is always just the current context.
717 DeclContext *const DC = CurContext;
718
719 // C++1z [dcl.dcl]/8:
720 // The decl-specifier-seq shall contain only the type-specifier auto
721 // and cv-qualifiers.
722 auto &DS = D.getDeclSpec();
723 {
724 SmallVector<StringRef, 8> BadSpecifiers;
725 SmallVector<SourceLocation, 8> BadSpecifierLocs;
726 if (auto SCS = DS.getStorageClassSpec()) {
727 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
728 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
729 }
730 if (auto TSCS = DS.getThreadStorageClassSpec()) {
731 BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
732 BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
733 }
734 if (DS.isConstexprSpecified()) {
735 BadSpecifiers.push_back("constexpr");
736 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
737 }
738 if (DS.isInlineSpecified()) {
739 BadSpecifiers.push_back("inline");
740 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
741 }
742 if (!BadSpecifiers.empty()) {
743 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
744 Err << (int)BadSpecifiers.size()
745 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
746 // Don't add FixItHints to remove the specifiers; we do still respect
747 // them when building the underlying variable.
748 for (auto Loc : BadSpecifierLocs)
749 Err << SourceRange(Loc, Loc);
750 }
751 // We can't recover from it being declared as a typedef.
752 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
753 return nullptr;
754 }
755
756 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
757 QualType R = TInfo->getType();
758
759 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
760 UPPC_DeclarationType))
761 D.setInvalidType();
762
763 // The syntax only allows a single ref-qualifier prior to the decomposition
764 // declarator. No other declarator chunks are permitted. Also check the type
765 // specifier here.
766 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
767 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
768 (D.getNumTypeObjects() == 1 &&
769 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
770 Diag(Decomp.getLSquareLoc(),
771 (D.hasGroupingParens() ||
772 (D.getNumTypeObjects() &&
773 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
774 ? diag::err_decomp_decl_parens
775 : diag::err_decomp_decl_type)
776 << R;
777
778 // In most cases, there's no actual problem with an explicitly-specified
779 // type, but a function type won't work here, and ActOnVariableDeclarator
780 // shouldn't be called for such a type.
781 if (R->isFunctionType())
782 D.setInvalidType();
783 }
784
785 // Build the BindingDecls.
786 SmallVector<BindingDecl*, 8> Bindings;
787
788 // Build the BindingDecls.
789 for (auto &B : D.getDecompositionDeclarator().bindings()) {
790 // Check for name conflicts.
791 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
792 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
793 ForVisibleRedeclaration);
794 LookupName(Previous, S,
795 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
796
797 // It's not permitted to shadow a template parameter name.
798 if (Previous.isSingleResult() &&
799 Previous.getFoundDecl()->isTemplateParameter()) {
800 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
801 Previous.getFoundDecl());
802 Previous.clear();
803 }
804
805 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
806 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
807 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
808 /*AllowInlineNamespace*/false);
809 if (!Previous.empty()) {
810 auto *Old = Previous.getRepresentativeDecl();
811 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
812 Diag(Old->getLocation(), diag::note_previous_definition);
813 }
814
815 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
816 PushOnScopeChains(BD, S, true);
817 Bindings.push_back(BD);
818 ParsingInitForAutoVars.insert(BD);
819 }
820
821 // There are no prior lookup results for the variable itself, because it
822 // is unnamed.
823 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
824 Decomp.getLSquareLoc());
825 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
826 ForVisibleRedeclaration);
827
828 // Build the variable that holds the non-decomposed object.
829 bool AddToScope = true;
830 NamedDecl *New =
831 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
832 MultiTemplateParamsArg(), AddToScope, Bindings);
833 if (AddToScope) {
834 S->AddDecl(New);
835 CurContext->addHiddenDecl(New);
836 }
837
838 if (isInOpenMPDeclareTargetContext())
839 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
840
841 return New;
842}
843
844static bool checkSimpleDecomposition(
845 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
846 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
847 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
848 if ((int64_t)Bindings.size() != NumElems) {
849 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
850 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
851 << (NumElems < Bindings.size());
852 return true;
853 }
854
855 unsigned I = 0;
856 for (auto *B : Bindings) {
857 SourceLocation Loc = B->getLocation();
858 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
859 if (E.isInvalid())
860 return true;
861 E = GetInit(Loc, E.get(), I++);
862 if (E.isInvalid())
863 return true;
864 B->setBinding(ElemType, E.get());
865 }
866
867 return false;
868}
869
870static bool checkArrayLikeDecomposition(Sema &S,
871 ArrayRef<BindingDecl *> Bindings,
872 ValueDecl *Src, QualType DecompType,
873 const llvm::APSInt &NumElems,
874 QualType ElemType) {
875 return checkSimpleDecomposition(
876 S, Bindings, Src, DecompType, NumElems, ElemType,
877 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
878 ExprResult E = S.ActOnIntegerConstant(Loc, I);
879 if (E.isInvalid())
880 return ExprError();
881 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
882 });
883}
884
885static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
886 ValueDecl *Src, QualType DecompType,
887 const ConstantArrayType *CAT) {
888 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
889 llvm::APSInt(CAT->getSize()),
890 CAT->getElementType());
891}
892
893static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
894 ValueDecl *Src, QualType DecompType,
895 const VectorType *VT) {
896 return checkArrayLikeDecomposition(
897 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
898 S.Context.getQualifiedType(VT->getElementType(),
899 DecompType.getQualifiers()));
900}
901
902static bool checkComplexDecomposition(Sema &S,
903 ArrayRef<BindingDecl *> Bindings,
904 ValueDecl *Src, QualType DecompType,
905 const ComplexType *CT) {
906 return checkSimpleDecomposition(
907 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
908 S.Context.getQualifiedType(CT->getElementType(),
909 DecompType.getQualifiers()),
910 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
911 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
912 });
913}
914
915static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
916 TemplateArgumentListInfo &Args) {
917 SmallString<128> SS;
918 llvm::raw_svector_ostream OS(SS);
919 bool First = true;
920 for (auto &Arg : Args.arguments()) {
921 if (!First)
922 OS << ", ";
923 Arg.getArgument().print(PrintingPolicy, OS);
924 First = false;
925 }
926 return OS.str();
927}
928
929static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
930 SourceLocation Loc, StringRef Trait,
931 TemplateArgumentListInfo &Args,
932 unsigned DiagID) {
933 auto DiagnoseMissing = [&] {
934 if (DiagID)
935 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
936 Args);
937 return true;
938 };
939
940 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
941 NamespaceDecl *Std = S.getStdNamespace();
942 if (!Std)
943 return DiagnoseMissing();
944
945 // Look up the trait itself, within namespace std. We can diagnose various
946 // problems with this lookup even if we've been asked to not diagnose a
947 // missing specialization, because this can only fail if the user has been
948 // declaring their own names in namespace std or we don't support the
949 // standard library implementation in use.
950 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
951 Loc, Sema::LookupOrdinaryName);
952 if (!S.LookupQualifiedName(Result, Std))
953 return DiagnoseMissing();
954 if (Result.isAmbiguous())
955 return true;
956
957 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
958 if (!TraitTD) {
959 Result.suppressDiagnostics();
960 NamedDecl *Found = *Result.begin();
961 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
962 S.Diag(Found->getLocation(), diag::note_declared_at);
963 return true;
964 }
965
966 // Build the template-id.
967 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
968 if (TraitTy.isNull())
969 return true;
970 if (!S.isCompleteType(Loc, TraitTy)) {
971 if (DiagID)
972 S.RequireCompleteType(
973 Loc, TraitTy, DiagID,
974 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
975 return true;
976 }
977
978 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
979 assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?"
) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 979, __PRETTY_FUNCTION__))
;
980
981 // Look up the member of the trait type.
982 S.LookupQualifiedName(TraitMemberLookup, RD);
983 return TraitMemberLookup.isAmbiguous();
984}
985
986static TemplateArgumentLoc
987getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
988 uint64_t I) {
989 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
990 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
991}
992
993static TemplateArgumentLoc
994getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
995 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
996}
997
998namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
999
1000static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
1001 llvm::APSInt &Size) {
1002 EnterExpressionEvaluationContext ContextRAII(
1003 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
1004
1005 DeclarationName Value = S.PP.getIdentifierInfo("value");
1006 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1007
1008 // Form template argument list for tuple_size<T>.
1009 TemplateArgumentListInfo Args(Loc, Loc);
1010 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1011
1012 // If there's no tuple_size specialization, it's not tuple-like.
1013 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
1014 return IsTupleLike::NotTupleLike;
1015
1016 // If we get this far, we've committed to the tuple interpretation, but
1017 // we can still fail if there actually isn't a usable ::value.
1018
1019 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1020 LookupResult &R;
1021 TemplateArgumentListInfo &Args;
1022 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1023 : R(R), Args(Args) {}
1024 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1025 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1026 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1027 }
1028 } Diagnoser(R, Args);
1029
1030 if (R.empty()) {
1031 Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
1032 return IsTupleLike::Error;
1033 }
1034
1035 ExprResult E =
1036 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1037 if (E.isInvalid())
1038 return IsTupleLike::Error;
1039
1040 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1041 if (E.isInvalid())
1042 return IsTupleLike::Error;
1043
1044 return IsTupleLike::TupleLike;
1045}
1046
1047/// \return std::tuple_element<I, T>::type.
1048static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1049 unsigned I, QualType T) {
1050 // Form template argument list for tuple_element<I, T>.
1051 TemplateArgumentListInfo Args(Loc, Loc);
1052 Args.addArgument(
1053 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1054 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1055
1056 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1057 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1058 if (lookupStdTypeTraitMember(
1059 S, R, Loc, "tuple_element", Args,
1060 diag::err_decomp_decl_std_tuple_element_not_specialized))
1061 return QualType();
1062
1063 auto *TD = R.getAsSingle<TypeDecl>();
1064 if (!TD) {
1065 R.suppressDiagnostics();
1066 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1067 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1068 if (!R.empty())
1069 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1070 return QualType();
1071 }
1072
1073 return S.Context.getTypeDeclType(TD);
1074}
1075
1076namespace {
1077struct BindingDiagnosticTrap {
1078 Sema &S;
1079 DiagnosticErrorTrap Trap;
1080 BindingDecl *BD;
1081
1082 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1083 : S(S), Trap(S.Diags), BD(BD) {}
1084 ~BindingDiagnosticTrap() {
1085 if (Trap.hasErrorOccurred())
1086 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1087 }
1088};
1089}
1090
1091static bool checkTupleLikeDecomposition(Sema &S,
1092 ArrayRef<BindingDecl *> Bindings,
1093 VarDecl *Src, QualType DecompType,
1094 const llvm::APSInt &TupleSize) {
1095 if ((int64_t)Bindings.size() != TupleSize) {
1096 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1097 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1098 << (TupleSize < Bindings.size());
1099 return true;
1100 }
1101
1102 if (Bindings.empty())
1103 return false;
1104
1105 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1106
1107 // [dcl.decomp]p3:
1108 // The unqualified-id get is looked up in the scope of E by class member
1109 // access lookup
1110 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1111 bool UseMemberGet = false;
1112 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1113 if (auto *RD = DecompType->getAsCXXRecordDecl())
1114 S.LookupQualifiedName(MemberGet, RD);
1115 if (MemberGet.isAmbiguous())
1116 return true;
1117 UseMemberGet = !MemberGet.empty();
1118 S.FilterAcceptableTemplateNames(MemberGet);
1119 }
1120
1121 unsigned I = 0;
1122 for (auto *B : Bindings) {
1123 BindingDiagnosticTrap Trap(S, B);
1124 SourceLocation Loc = B->getLocation();
1125
1126 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1127 if (E.isInvalid())
1128 return true;
1129
1130 // e is an lvalue if the type of the entity is an lvalue reference and
1131 // an xvalue otherwise
1132 if (!Src->getType()->isLValueReferenceType())
1133 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1134 E.get(), nullptr, VK_XValue);
1135
1136 TemplateArgumentListInfo Args(Loc, Loc);
1137 Args.addArgument(
1138 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1139
1140 if (UseMemberGet) {
1141 // if [lookup of member get] finds at least one declaration, the
1142 // initializer is e.get<i-1>().
1143 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1144 CXXScopeSpec(), SourceLocation(), nullptr,
1145 MemberGet, &Args, nullptr);
1146 if (E.isInvalid())
1147 return true;
1148
1149 E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
1150 } else {
1151 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1152 // in the associated namespaces.
1153 Expr *Get = UnresolvedLookupExpr::Create(
1154 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1155 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1156 UnresolvedSetIterator(), UnresolvedSetIterator());
1157
1158 Expr *Arg = E.get();
1159 E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
1160 }
1161 if (E.isInvalid())
1162 return true;
1163 Expr *Init = E.get();
1164
1165 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1166 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1167 if (T.isNull())
1168 return true;
1169
1170 // each vi is a variable of type "reference to T" initialized with the
1171 // initializer, where the reference is an lvalue reference if the
1172 // initializer is an lvalue and an rvalue reference otherwise
1173 QualType RefType =
1174 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1175 if (RefType.isNull())
1176 return true;
1177 auto *RefVD = VarDecl::Create(
1178 S.Context, Src->getDeclContext(), Loc, Loc,
1179 B->getDeclName().getAsIdentifierInfo(), RefType,
1180 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1181 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1182 RefVD->setTSCSpec(Src->getTSCSpec());
1183 RefVD->setImplicit();
1184 if (Src->isInlineSpecified())
1185 RefVD->setInlineSpecified();
1186 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1187
1188 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1189 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1190 InitializationSequence Seq(S, Entity, Kind, Init);
1191 E = Seq.Perform(S, Entity, Kind, Init);
1192 if (E.isInvalid())
1193 return true;
1194 E = S.ActOnFinishFullExpr(E.get(), Loc);
1195 if (E.isInvalid())
1196 return true;
1197 RefVD->setInit(E.get());
1198 RefVD->checkInitIsICE();
1199
1200 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1201 DeclarationNameInfo(B->getDeclName(), Loc),
1202 RefVD);
1203 if (E.isInvalid())
1204 return true;
1205
1206 B->setBinding(T, E.get());
1207 I++;
1208 }
1209
1210 return false;
1211}
1212
1213/// Find the base class to decompose in a built-in decomposition of a class type.
1214/// This base class search is, unfortunately, not quite like any other that we
1215/// perform anywhere else in C++.
1216static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
1217 SourceLocation Loc,
1218 const CXXRecordDecl *RD,
1219 CXXCastPath &BasePath) {
1220 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1221 CXXBasePath &Path) {
1222 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1223 };
1224
1225 const CXXRecordDecl *ClassWithFields = nullptr;
1226 if (RD->hasDirectFields())
1227 // [dcl.decomp]p4:
1228 // Otherwise, all of E's non-static data members shall be public direct
1229 // members of E ...
1230 ClassWithFields = RD;
1231 else {
1232 // ... or of ...
1233 CXXBasePaths Paths;
1234 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1235 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1236 // If no classes have fields, just decompose RD itself. (This will work
1237 // if and only if zero bindings were provided.)
1238 return RD;
1239 }
1240
1241 CXXBasePath *BestPath = nullptr;
1242 for (auto &P : Paths) {
1243 if (!BestPath)
1244 BestPath = &P;
1245 else if (!S.Context.hasSameType(P.back().Base->getType(),
1246 BestPath->back().Base->getType())) {
1247 // ... the same ...
1248 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1249 << false << RD << BestPath->back().Base->getType()
1250 << P.back().Base->getType();
1251 return nullptr;
1252 } else if (P.Access < BestPath->Access) {
1253 BestPath = &P;
1254 }
1255 }
1256
1257 // ... unambiguous ...
1258 QualType BaseType = BestPath->back().Base->getType();
1259 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1260 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1261 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1262 return nullptr;
1263 }
1264
1265 // ... public base class of E.
1266 if (BestPath->Access != AS_public) {
1267 S.Diag(Loc, diag::err_decomp_decl_non_public_base)
1268 << RD << BaseType;
1269 for (auto &BS : *BestPath) {
1270 if (BS.Base->getAccessSpecifier() != AS_public) {
1271 S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
1272 << (BS.Base->getAccessSpecifier() == AS_protected)
1273 << (BS.Base->getAccessSpecifierAsWritten() == AS_none);
1274 break;
1275 }
1276 }
1277 return nullptr;
1278 }
1279
1280 ClassWithFields = BaseType->getAsCXXRecordDecl();
1281 S.BuildBasePathArray(Paths, BasePath);
1282 }
1283
1284 // The above search did not check whether the selected class itself has base
1285 // classes with fields, so check that now.
1286 CXXBasePaths Paths;
1287 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1288 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1289 << (ClassWithFields == RD) << RD << ClassWithFields
1290 << Paths.front().back().Base->getType();
1291 return nullptr;
1292 }
1293
1294 return ClassWithFields;
1295}
1296
1297static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1298 ValueDecl *Src, QualType DecompType,
1299 const CXXRecordDecl *RD) {
1300 CXXCastPath BasePath;
1301 RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
1302 if (!RD)
1303 return true;
1304 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1305 DecompType.getQualifiers());
1306
1307 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1308 unsigned NumFields =
1309 std::count_if(RD->field_begin(), RD->field_end(),
1310 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1311 assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0)
: __assert_fail ("Bindings.size() != NumFields", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1311, __PRETTY_FUNCTION__))
;
1312 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1313 << DecompType << (unsigned)Bindings.size() << NumFields
1314 << (NumFields < Bindings.size());
1315 return true;
1316 };
1317
1318 // all of E's non-static data members shall be public [...] members,
1319 // E shall not have an anonymous union member, ...
1320 unsigned I = 0;
1321 for (auto *FD : RD->fields()) {
1322 if (FD->isUnnamedBitfield())
1323 continue;
1324
1325 if (FD->isAnonymousStructOrUnion()) {
1326 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1327 << DecompType << FD->getType()->isUnionType();
1328 S.Diag(FD->getLocation(), diag::note_declared_at);
1329 return true;
1330 }
1331
1332 // We have a real field to bind.
1333 if (I >= Bindings.size())
1334 return DiagnoseBadNumberOfBindings();
1335 auto *B = Bindings[I++];
1336
1337 SourceLocation Loc = B->getLocation();
1338 if (FD->getAccess() != AS_public) {
1339 S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
1340
1341 // Determine whether the access specifier was explicit.
1342 bool Implicit = true;
1343 for (const auto *D : RD->decls()) {
1344 if (declaresSameEntity(D, FD))
1345 break;
1346 if (isa<AccessSpecDecl>(D)) {
1347 Implicit = false;
1348 break;
1349 }
1350 }
1351
1352 S.Diag(FD->getLocation(), diag::note_access_natural)
1353 << (FD->getAccess() == AS_protected) << Implicit;
1354 return true;
1355 }
1356
1357 // Initialize the binding to Src.FD.
1358 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1359 if (E.isInvalid())
1360 return true;
1361 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1362 VK_LValue, &BasePath);
1363 if (E.isInvalid())
1364 return true;
1365 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1366 CXXScopeSpec(), FD,
1367 DeclAccessPair::make(FD, FD->getAccess()),
1368 DeclarationNameInfo(FD->getDeclName(), Loc));
1369 if (E.isInvalid())
1370 return true;
1371
1372 // If the type of the member is T, the referenced type is cv T, where cv is
1373 // the cv-qualification of the decomposition expression.
1374 //
1375 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1376 // 'const' to the type of the field.
1377 Qualifiers Q = DecompType.getQualifiers();
1378 if (FD->isMutable())
1379 Q.removeConst();
1380 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1381 }
1382
1383 if (I != Bindings.size())
1384 return DiagnoseBadNumberOfBindings();
1385
1386 return false;
1387}
1388
1389void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1390 QualType DecompType = DD->getType();
1391
1392 // If the type of the decomposition is dependent, then so is the type of
1393 // each binding.
1394 if (DecompType->isDependentType()) {
1395 for (auto *B : DD->bindings())
1396 B->setType(Context.DependentTy);
1397 return;
1398 }
1399
1400 DecompType = DecompType.getNonReferenceType();
1401 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1402
1403 // C++1z [dcl.decomp]/2:
1404 // If E is an array type [...]
1405 // As an extension, we also support decomposition of built-in complex and
1406 // vector types.
1407 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1408 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1409 DD->setInvalidDecl();
1410 return;
1411 }
1412 if (auto *VT = DecompType->getAs<VectorType>()) {
1413 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1414 DD->setInvalidDecl();
1415 return;
1416 }
1417 if (auto *CT = DecompType->getAs<ComplexType>()) {
1418 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1419 DD->setInvalidDecl();
1420 return;
1421 }
1422
1423 // C++1z [dcl.decomp]/3:
1424 // if the expression std::tuple_size<E>::value is a well-formed integral
1425 // constant expression, [...]
1426 llvm::APSInt TupleSize(32);
1427 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1428 case IsTupleLike::Error:
1429 DD->setInvalidDecl();
1430 return;
1431
1432 case IsTupleLike::TupleLike:
1433 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1434 DD->setInvalidDecl();
1435 return;
1436
1437 case IsTupleLike::NotTupleLike:
1438 break;
1439 }
1440
1441 // C++1z [dcl.dcl]/8:
1442 // [E shall be of array or non-union class type]
1443 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1444 if (!RD || RD->isUnion()) {
1445 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1446 << DD << !RD << DecompType;
1447 DD->setInvalidDecl();
1448 return;
1449 }
1450
1451 // C++1z [dcl.decomp]/4:
1452 // all of E's non-static data members shall be [...] direct members of
1453 // E or of the same unambiguous public base class of E, ...
1454 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1455 DD->setInvalidDecl();
1456}
1457
1458/// \brief Merge the exception specifications of two variable declarations.
1459///
1460/// This is called when there's a redeclaration of a VarDecl. The function
1461/// checks if the redeclaration might have an exception specification and
1462/// validates compatibility and merges the specs if necessary.
1463void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1464 // Shortcut if exceptions are disabled.
1465 if (!getLangOpts().CXXExceptions)
1466 return;
1467
1468 assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1469, __PRETTY_FUNCTION__))
1469 "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1469, __PRETTY_FUNCTION__))
;
1470
1471 QualType NewType = New->getType();
1472 QualType OldType = Old->getType();
1473
1474 // We're only interested in pointers and references to functions, as well
1475 // as pointers to member functions.
1476 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1477 NewType = R->getPointeeType();
1478 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1479 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1480 NewType = P->getPointeeType();
1481 OldType = OldType->getAs<PointerType>()->getPointeeType();
1482 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1483 NewType = M->getPointeeType();
1484 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1485 }
1486
1487 if (!NewType->isFunctionProtoType())
1488 return;
1489
1490 // There's lots of special cases for functions. For function pointers, system
1491 // libraries are hopefully not as broken so that we don't need these
1492 // workarounds.
1493 if (CheckEquivalentExceptionSpec(
1494 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1495 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1496 New->setInvalidDecl();
1497 }
1498}
1499
1500/// CheckCXXDefaultArguments - Verify that the default arguments for a
1501/// function declaration are well-formed according to C++
1502/// [dcl.fct.default].
1503void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1504 unsigned NumParams = FD->getNumParams();
1505 unsigned p;
1506
1507 // Find first parameter with a default argument
1508 for (p = 0; p < NumParams; ++p) {
1509 ParmVarDecl *Param = FD->getParamDecl(p);
1510 if (Param->hasDefaultArg())
1511 break;
1512 }
1513
1514 // C++11 [dcl.fct.default]p4:
1515 // In a given function declaration, each parameter subsequent to a parameter
1516 // with a default argument shall have a default argument supplied in this or
1517 // a previous declaration or shall be a function parameter pack. A default
1518 // argument shall not be redefined by a later declaration (not even to the
1519 // same value).
1520 unsigned LastMissingDefaultArg = 0;
1521 for (; p < NumParams; ++p) {
1522 ParmVarDecl *Param = FD->getParamDecl(p);
1523 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1524 if (Param->isInvalidDecl())
1525 /* We already complained about this parameter. */;
1526 else if (Param->getIdentifier())
1527 Diag(Param->getLocation(),
1528 diag::err_param_default_argument_missing_name)
1529 << Param->getIdentifier();
1530 else
1531 Diag(Param->getLocation(),
1532 diag::err_param_default_argument_missing);
1533
1534 LastMissingDefaultArg = p;
1535 }
1536 }
1537
1538 if (LastMissingDefaultArg > 0) {
1539 // Some default arguments were missing. Clear out all of the
1540 // default arguments up to (and including) the last missing
1541 // default argument, so that we leave the function parameters
1542 // in a semantically valid state.
1543 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1544 ParmVarDecl *Param = FD->getParamDecl(p);
1545 if (Param->hasDefaultArg()) {
1546 Param->setDefaultArg(nullptr);
1547 }
1548 }
1549 }
1550}
1551
1552// CheckConstexprParameterTypes - Check whether a function's parameter types
1553// are all literal types. If so, return true. If not, produce a suitable
1554// diagnostic and return false.
1555static bool CheckConstexprParameterTypes(Sema &SemaRef,
1556 const FunctionDecl *FD) {
1557 unsigned ArgIndex = 0;
1558 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1559 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1560 e = FT->param_type_end();
1561 i != e; ++i, ++ArgIndex) {
1562 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1563 SourceLocation ParamLoc = PD->getLocation();
1564 if (!(*i)->isDependentType() &&
1565 SemaRef.RequireLiteralType(ParamLoc, *i,
1566 diag::err_constexpr_non_literal_param,
1567 ArgIndex+1, PD->getSourceRange(),
1568 isa<CXXConstructorDecl>(FD)))
1569 return false;
1570 }
1571 return true;
1572}
1573
1574/// \brief Get diagnostic %select index for tag kind for
1575/// record diagnostic message.
1576/// WARNING: Indexes apply to particular diagnostics only!
1577///
1578/// \returns diagnostic %select index.
1579static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1580 switch (Tag) {
1581 case TTK_Struct: return 0;
1582 case TTK_Interface: return 1;
1583 case TTK_Class: return 2;
1584 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1584)
;
1585 }
1586}
1587
1588// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
1589// the requirements of a constexpr function definition or a constexpr
1590// constructor definition. If so, return true. If not, produce appropriate
1591// diagnostics and return false.
1592//
1593// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1594bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
1595 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1596 if (MD && MD->isInstance()) {
1597 // C++11 [dcl.constexpr]p4:
1598 // The definition of a constexpr constructor shall satisfy the following
1599 // constraints:
1600 // - the class shall not have any virtual base classes;
1601 const CXXRecordDecl *RD = MD->getParent();
1602 if (RD->getNumVBases()) {
1603 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1604 << isa<CXXConstructorDecl>(NewFD)
1605 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1606 for (const auto &I : RD->vbases())
1607 Diag(I.getLocStart(),
1608 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
1609 return false;
1610 }
1611 }
1612
1613 if (!isa<CXXConstructorDecl>(NewFD)) {
1614 // C++11 [dcl.constexpr]p3:
1615 // The definition of a constexpr function shall satisfy the following
1616 // constraints:
1617 // - it shall not be virtual;
1618 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1619 if (Method && Method->isVirtual()) {
1620 Method = Method->getCanonicalDecl();
1621 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1622
1623 // If it's not obvious why this function is virtual, find an overridden
1624 // function which uses the 'virtual' keyword.
1625 const CXXMethodDecl *WrittenVirtual = Method;
1626 while (!WrittenVirtual->isVirtualAsWritten())
1627 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1628 if (WrittenVirtual != Method)
1629 Diag(WrittenVirtual->getLocation(),
1630 diag::note_overridden_virtual_function);
1631 return false;
1632 }
1633
1634 // - its return type shall be a literal type;
1635 QualType RT = NewFD->getReturnType();
1636 if (!RT->isDependentType() &&
1637 RequireLiteralType(NewFD->getLocation(), RT,
1638 diag::err_constexpr_non_literal_return))
1639 return false;
1640 }
1641
1642 // - each of its parameter types shall be a literal type;
1643 if (!CheckConstexprParameterTypes(*this, NewFD))
1644 return false;
1645
1646 return true;
1647}
1648
1649/// Check the given declaration statement is legal within a constexpr function
1650/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1651///
1652/// \return true if the body is OK (maybe only as an extension), false if we
1653/// have diagnosed a problem.
1654static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1655 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
1656 // C++11 [dcl.constexpr]p3 and p4:
1657 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1658 // contain only
1659 for (const auto *DclIt : DS->decls()) {
1660 switch (DclIt->getKind()) {
1661 case Decl::StaticAssert:
1662 case Decl::Using:
1663 case Decl::UsingShadow:
1664 case Decl::UsingDirective:
1665 case Decl::UnresolvedUsingTypename:
1666 case Decl::UnresolvedUsingValue:
1667 // - static_assert-declarations
1668 // - using-declarations,
1669 // - using-directives,
1670 continue;
1671
1672 case Decl::Typedef:
1673 case Decl::TypeAlias: {
1674 // - typedef declarations and alias-declarations that do not define
1675 // classes or enumerations,
1676 const auto *TN = cast<TypedefNameDecl>(DclIt);
1677 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1678 // Don't allow variably-modified types in constexpr functions.
1679 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1680 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1681 << TL.getSourceRange() << TL.getType()
1682 << isa<CXXConstructorDecl>(Dcl);
1683 return false;
1684 }
1685 continue;
1686 }
1687
1688 case Decl::Enum:
1689 case Decl::CXXRecord:
1690 // C++1y allows types to be defined, not just declared.
1691 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
1692 SemaRef.Diag(DS->getLocStart(),
1693 SemaRef.getLangOpts().CPlusPlus14
1694 ? diag::warn_cxx11_compat_constexpr_type_definition
1695 : diag::ext_constexpr_type_definition)
1696 << isa<CXXConstructorDecl>(Dcl);
1697 continue;
1698
1699 case Decl::EnumConstant:
1700 case Decl::IndirectField:
1701 case Decl::ParmVar:
1702 // These can only appear with other declarations which are banned in
1703 // C++11 and permitted in C++1y, so ignore them.
1704 continue;
1705
1706 case Decl::Var:
1707 case Decl::Decomposition: {
1708 // C++1y [dcl.constexpr]p3 allows anything except:
1709 // a definition of a variable of non-literal type or of static or
1710 // thread storage duration or for which no initialization is performed.
1711 const auto *VD = cast<VarDecl>(DclIt);
1712 if (VD->isThisDeclarationADefinition()) {
1713 if (VD->isStaticLocal()) {
1714 SemaRef.Diag(VD->getLocation(),
1715 diag::err_constexpr_local_var_static)
1716 << isa<CXXConstructorDecl>(Dcl)
1717 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1718 return false;
1719 }
1720 if (!VD->getType()->isDependentType() &&
1721 SemaRef.RequireLiteralType(
1722 VD->getLocation(), VD->getType(),
1723 diag::err_constexpr_local_var_non_literal_type,
1724 isa<CXXConstructorDecl>(Dcl)))
1725 return false;
1726 if (!VD->getType()->isDependentType() &&
1727 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1728 SemaRef.Diag(VD->getLocation(),
1729 diag::err_constexpr_local_var_no_init)
1730 << isa<CXXConstructorDecl>(Dcl);
1731 return false;
1732 }
1733 }
1734 SemaRef.Diag(VD->getLocation(),
1735 SemaRef.getLangOpts().CPlusPlus14
1736 ? diag::warn_cxx11_compat_constexpr_local_var
1737 : diag::ext_constexpr_local_var)
1738 << isa<CXXConstructorDecl>(Dcl);
1739 continue;
1740 }
1741
1742 case Decl::NamespaceAlias:
1743 case Decl::Function:
1744 // These are disallowed in C++11 and permitted in C++1y. Allow them
1745 // everywhere as an extension.
1746 if (!Cxx1yLoc.isValid())
1747 Cxx1yLoc = DS->getLocStart();
1748 continue;
1749
1750 default:
1751 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1752 << isa<CXXConstructorDecl>(Dcl);
1753 return false;
1754 }
1755 }
1756
1757 return true;
1758}
1759
1760/// Check that the given field is initialized within a constexpr constructor.
1761///
1762/// \param Dcl The constexpr constructor being checked.
1763/// \param Field The field being checked. This may be a member of an anonymous
1764/// struct or union nested within the class being checked.
1765/// \param Inits All declarations, including anonymous struct/union members and
1766/// indirect members, for which any initialization was provided.
1767/// \param Diagnosed Set to true if an error is produced.
1768static void CheckConstexprCtorInitializer(Sema &SemaRef,
1769 const FunctionDecl *Dcl,
1770 FieldDecl *Field,
1771 llvm::SmallSet<Decl*, 16> &Inits,
1772 bool &Diagnosed) {
1773 if (Field->isInvalidDecl())
1774 return;
1775
1776 if (Field->isUnnamedBitfield())
1777 return;
1778
1779 // Anonymous unions with no variant members and empty anonymous structs do not
1780 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1781 // indirect fields don't need initializing.
1782 if (Field->isAnonymousStructOrUnion() &&
1783 (Field->getType()->isUnionType()
1784 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1785 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1786 return;
1787
1788 if (!Inits.count(Field)) {
1789 if (!Diagnosed) {
1790 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
1791 Diagnosed = true;
1792 }
1793 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1794 } else if (Field->isAnonymousStructOrUnion()) {
1795 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1796 for (auto *I : RD->fields())
1797 // If an anonymous union contains an anonymous struct of which any member
1798 // is initialized, all members must be initialized.
1799 if (!RD->isUnion() || Inits.count(I))
1800 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1801 }
1802}
1803
1804/// Check the provided statement is allowed in a constexpr function
1805/// definition.
1806static bool
1807CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1808 SmallVectorImpl<SourceLocation> &ReturnStmts,
1809 SourceLocation &Cxx1yLoc) {
1810 // - its function-body shall be [...] a compound-statement that contains only
1811 switch (S->getStmtClass()) {
1812 case Stmt::NullStmtClass:
1813 // - null statements,
1814 return true;
1815
1816 case Stmt::DeclStmtClass:
1817 // - static_assert-declarations
1818 // - using-declarations,
1819 // - using-directives,
1820 // - typedef declarations and alias-declarations that do not define
1821 // classes or enumerations,
1822 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1823 return false;
1824 return true;
1825
1826 case Stmt::ReturnStmtClass:
1827 // - and exactly one return statement;
1828 if (isa<CXXConstructorDecl>(Dcl)) {
1829 // C++1y allows return statements in constexpr constructors.
1830 if (!Cxx1yLoc.isValid())
1831 Cxx1yLoc = S->getLocStart();
1832 return true;
1833 }
1834
1835 ReturnStmts.push_back(S->getLocStart());
1836 return true;
1837
1838 case Stmt::CompoundStmtClass: {
1839 // C++1y allows compound-statements.
1840 if (!Cxx1yLoc.isValid())
1841 Cxx1yLoc = S->getLocStart();
1842
1843 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1844 for (auto *BodyIt : CompStmt->body()) {
1845 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1846 Cxx1yLoc))
1847 return false;
1848 }
1849 return true;
1850 }
1851
1852 case Stmt::AttributedStmtClass:
1853 if (!Cxx1yLoc.isValid())
1854 Cxx1yLoc = S->getLocStart();
1855 return true;
1856
1857 case Stmt::IfStmtClass: {
1858 // C++1y allows if-statements.
1859 if (!Cxx1yLoc.isValid())
1860 Cxx1yLoc = S->getLocStart();
1861
1862 IfStmt *If = cast<IfStmt>(S);
1863 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1864 Cxx1yLoc))
1865 return false;
1866 if (If->getElse() &&
1867 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1868 Cxx1yLoc))
1869 return false;
1870 return true;
1871 }
1872
1873 case Stmt::WhileStmtClass:
1874 case Stmt::DoStmtClass:
1875 case Stmt::ForStmtClass:
1876 case Stmt::CXXForRangeStmtClass:
1877 case Stmt::ContinueStmtClass:
1878 // C++1y allows all of these. We don't allow them as extensions in C++11,
1879 // because they don't make sense without variable mutation.
1880 if (!SemaRef.getLangOpts().CPlusPlus14)
1881 break;
1882 if (!Cxx1yLoc.isValid())
1883 Cxx1yLoc = S->getLocStart();
1884 for (Stmt *SubStmt : S->children())
1885 if (SubStmt &&
1886 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1887 Cxx1yLoc))
1888 return false;
1889 return true;
1890
1891 case Stmt::SwitchStmtClass:
1892 case Stmt::CaseStmtClass:
1893 case Stmt::DefaultStmtClass:
1894 case Stmt::BreakStmtClass:
1895 // C++1y allows switch-statements, and since they don't need variable
1896 // mutation, we can reasonably allow them in C++11 as an extension.
1897 if (!Cxx1yLoc.isValid())
1898 Cxx1yLoc = S->getLocStart();
1899 for (Stmt *SubStmt : S->children())
1900 if (SubStmt &&
1901 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1902 Cxx1yLoc))
1903 return false;
1904 return true;
1905
1906 default:
1907 if (!isa<Expr>(S))
1908 break;
1909
1910 // C++1y allows expression-statements.
1911 if (!Cxx1yLoc.isValid())
1912 Cxx1yLoc = S->getLocStart();
1913 return true;
1914 }
1915
1916 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1917 << isa<CXXConstructorDecl>(Dcl);
1918 return false;
1919}
1920
1921/// Check the body for the given constexpr function declaration only contains
1922/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1923///
1924/// \return true if the body is OK, false if we have diagnosed a problem.
1925bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1926 if (isa<CXXTryStmt>(Body)) {
1927 // C++11 [dcl.constexpr]p3:
1928 // The definition of a constexpr function shall satisfy the following
1929 // constraints: [...]
1930 // - its function-body shall be = delete, = default, or a
1931 // compound-statement
1932 //
1933 // C++11 [dcl.constexpr]p4:
1934 // In the definition of a constexpr constructor, [...]
1935 // - its function-body shall not be a function-try-block;
1936 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1937 << isa<CXXConstructorDecl>(Dcl);
1938 return false;
1939 }
1940
1941 SmallVector<SourceLocation, 4> ReturnStmts;
1942
1943 // - its function-body shall be [...] a compound-statement that contains only
1944 // [... list of cases ...]
1945 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1946 SourceLocation Cxx1yLoc;
1947 for (auto *BodyIt : CompBody->body()) {
1948 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1949 return false;
1950 }
1951
1952 if (Cxx1yLoc.isValid())
1953 Diag(Cxx1yLoc,
1954 getLangOpts().CPlusPlus14
1955 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1956 : diag::ext_constexpr_body_invalid_stmt)
1957 << isa<CXXConstructorDecl>(Dcl);
1958
1959 if (const CXXConstructorDecl *Constructor
1960 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1961 const CXXRecordDecl *RD = Constructor->getParent();
1962 // DR1359:
1963 // - every non-variant non-static data member and base class sub-object
1964 // shall be initialized;
1965 // DR1460:
1966 // - if the class is a union having variant members, exactly one of them
1967 // shall be initialized;
1968 if (RD->isUnion()) {
1969 if (Constructor->getNumCtorInitializers() == 0 &&
1970 RD->hasVariantMembers()) {
1971 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1972 return false;
1973 }
1974 } else if (!Constructor->isDependentContext() &&
1975 !Constructor->isDelegatingConstructor()) {
1976 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"
) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1976, __PRETTY_FUNCTION__))
;
1977
1978 // Skip detailed checking if we have enough initializers, and we would
1979 // allow at most one initializer per member.
1980 bool AnyAnonStructUnionMembers = false;
1981 unsigned Fields = 0;
1982 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1983 E = RD->field_end(); I != E; ++I, ++Fields) {
1984 if (I->isAnonymousStructOrUnion()) {
1985 AnyAnonStructUnionMembers = true;
1986 break;
1987 }
1988 }
1989 // DR1460:
1990 // - if the class is a union-like class, but is not a union, for each of
1991 // its anonymous union members having variant members, exactly one of
1992 // them shall be initialized;
1993 if (AnyAnonStructUnionMembers ||
1994 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1995 // Check initialization of non-static data members. Base classes are
1996 // always initialized so do not need to be checked. Dependent bases
1997 // might not have initializers in the member initializer list.
1998 llvm::SmallSet<Decl*, 16> Inits;
1999 for (const auto *I: Constructor->inits()) {
2000 if (FieldDecl *FD = I->getMember())
2001 Inits.insert(FD);
2002 else if (IndirectFieldDecl *ID = I->getIndirectMember())
2003 Inits.insert(ID->chain_begin(), ID->chain_end());
2004 }
2005
2006 bool Diagnosed = false;
2007 for (auto *I : RD->fields())
2008 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
2009 if (Diagnosed)
2010 return false;
2011 }
2012 }
2013 } else {
2014 if (ReturnStmts.empty()) {
2015 // C++1y doesn't require constexpr functions to contain a 'return'
2016 // statement. We still do, unless the return type might be void, because
2017 // otherwise if there's no return statement, the function cannot
2018 // be used in a core constant expression.
2019 bool OK = getLangOpts().CPlusPlus14 &&
2020 (Dcl->getReturnType()->isVoidType() ||
2021 Dcl->getReturnType()->isDependentType());
2022 Diag(Dcl->getLocation(),
2023 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2024 : diag::err_constexpr_body_no_return);
2025 if (!OK)
2026 return false;
2027 } else if (ReturnStmts.size() > 1) {
2028 Diag(ReturnStmts.back(),
2029 getLangOpts().CPlusPlus14
2030 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2031 : diag::ext_constexpr_body_multiple_return);
2032 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2033 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
2034 }
2035 }
2036
2037 // C++11 [dcl.constexpr]p5:
2038 // if no function argument values exist such that the function invocation
2039 // substitution would produce a constant expression, the program is
2040 // ill-formed; no diagnostic required.
2041 // C++11 [dcl.constexpr]p3:
2042 // - every constructor call and implicit conversion used in initializing the
2043 // return value shall be one of those allowed in a constant expression.
2044 // C++11 [dcl.constexpr]p4:
2045 // - every constructor involved in initializing non-static data members and
2046 // base class sub-objects shall be a constexpr constructor.
2047 SmallVector<PartialDiagnosticAt, 8> Diags;
2048 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
2049 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
2050 << isa<CXXConstructorDecl>(Dcl);
2051 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2052 Diag(Diags[I].first, Diags[I].second);
2053 // Don't return false here: we allow this for compatibility in
2054 // system headers.
2055 }
2056
2057 return true;
2058}
2059
2060/// isCurrentClassName - Determine whether the identifier II is the
2061/// name of the class type currently being defined. In the case of
2062/// nested classes, this will only return true if II is the name of
2063/// the innermost class.
2064bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
2065 const CXXScopeSpec *SS) {
2066 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2066, __PRETTY_FUNCTION__))
;
2067
2068 CXXRecordDecl *CurDecl;
2069 if (SS && SS->isSet() && !SS->isInvalid()) {
2070 DeclContext *DC = computeDeclContext(*SS, true);
2071 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2072 } else
2073 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2074
2075 if (CurDecl && CurDecl->getIdentifier())
2076 return &II == CurDecl->getIdentifier();
2077 return false;
2078}
2079
2080/// \brief Determine whether the identifier II is a typo for the name of
2081/// the class type currently being defined. If so, update it to the identifier
2082/// that should have been used.
2083bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2084 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2084, __PRETTY_FUNCTION__))
;
2085
2086 if (!getLangOpts().SpellChecking)
2087 return false;
2088
2089 CXXRecordDecl *CurDecl;
2090 if (SS && SS->isSet() && !SS->isInvalid()) {
2091 DeclContext *DC = computeDeclContext(*SS, true);
2092 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2093 } else
2094 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2095
2096 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2097 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2098 < II->getLength()) {
2099 II = CurDecl->getIdentifier();
2100 return true;
2101 }
2102
2103 return false;
2104}
2105
2106/// \brief Determine whether the given class is a base class of the given
2107/// class, including looking at dependent bases.
2108static bool findCircularInheritance(const CXXRecordDecl *Class,
2109 const CXXRecordDecl *Current) {
2110 SmallVector<const CXXRecordDecl*, 8> Queue;
2111
2112 Class = Class->getCanonicalDecl();
2113 while (true) {
2114 for (const auto &I : Current->bases()) {
2115 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2116 if (!Base)
2117 continue;
2118
2119 Base = Base->getDefinition();
2120 if (!Base)
2121 continue;
2122
2123 if (Base->getCanonicalDecl() == Class)
2124 return true;
2125
2126 Queue.push_back(Base);
2127 }
2128
2129 if (Queue.empty())
2130 return false;
2131
2132 Current = Queue.pop_back_val();
2133 }
2134
2135 return false;
2136}
2137
2138/// \brief Check the validity of a C++ base class specifier.
2139///
2140/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2141/// and returns NULL otherwise.
2142CXXBaseSpecifier *
2143Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2144 SourceRange SpecifierRange,
2145 bool Virtual, AccessSpecifier Access,
2146 TypeSourceInfo *TInfo,
2147 SourceLocation EllipsisLoc) {
2148 QualType BaseType = TInfo->getType();
2149
2150 // C++ [class.union]p1:
2151 // A union shall not have base classes.
2152 if (Class->isUnion()) {
2153 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2154 << SpecifierRange;
2155 return nullptr;
2156 }
2157
2158 if (EllipsisLoc.isValid() &&
2159 !TInfo->getType()->containsUnexpandedParameterPack()) {
2160 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2161 << TInfo->getTypeLoc().getSourceRange();
2162 EllipsisLoc = SourceLocation();
2163 }
2164
2165 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2166
2167 if (BaseType->isDependentType()) {
2168 // Make sure that we don't have circular inheritance among our dependent
2169 // bases. For non-dependent bases, the check for completeness below handles
2170 // this.
2171 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2172 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2173 ((BaseDecl = BaseDecl->getDefinition()) &&
2174 findCircularInheritance(Class, BaseDecl))) {
2175 Diag(BaseLoc, diag::err_circular_inheritance)
2176 << BaseType << Context.getTypeDeclType(Class);
2177
2178 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2179 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2180 << BaseType;
2181
2182 return nullptr;
2183 }
2184 }
2185
2186 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2187 Class->getTagKind() == TTK_Class,
2188 Access, TInfo, EllipsisLoc);
2189 }
2190
2191 // Base specifiers must be record types.
2192 if (!BaseType->isRecordType()) {
2193 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2194 return nullptr;
2195 }
2196
2197 // C++ [class.union]p1:
2198 // A union shall not be used as a base class.
2199 if (BaseType->isUnionType()) {
2200 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2201 return nullptr;
2202 }
2203
2204 // For the MS ABI, propagate DLL attributes to base class templates.
2205 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2206 if (Attr *ClassAttr = getDLLAttr(Class)) {
2207 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2208 BaseType->getAsCXXRecordDecl())) {
2209 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2210 BaseLoc);
2211 }
2212 }
2213 }
2214
2215 // C++ [class.derived]p2:
2216 // The class-name in a base-specifier shall not be an incompletely
2217 // defined class.
2218 if (RequireCompleteType(BaseLoc, BaseType,
2219 diag::err_incomplete_base_class, SpecifierRange)) {
2220 Class->setInvalidDecl();
2221 return nullptr;
2222 }
2223
2224 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2225 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2226 assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast
<void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2226, __PRETTY_FUNCTION__))
;
2227 BaseDecl = BaseDecl->getDefinition();
2228 assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition"
) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2228, __PRETTY_FUNCTION__))
;
2229 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2230 assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast
<void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2230, __PRETTY_FUNCTION__))
;
2231
2232 // A class which contains a flexible array member is not suitable for use as a
2233 // base class:
2234 // - If the layout determines that a base comes before another base,
2235 // the flexible array member would index into the subsequent base.
2236 // - If the layout determines that base comes before the derived class,
2237 // the flexible array member would index into the derived class.
2238 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2239 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2240 << CXXBaseDecl->getDeclName();
2241 return nullptr;
2242 }
2243
2244 // C++ [class]p3:
2245 // If a class is marked final and it appears as a base-type-specifier in
2246 // base-clause, the program is ill-formed.
2247 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2248 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2249 << CXXBaseDecl->getDeclName()
2250 << FA->isSpelledAsSealed();
2251 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2252 << CXXBaseDecl->getDeclName() << FA->getRange();
2253 return nullptr;
2254 }
2255
2256 if (BaseDecl->isInvalidDecl())
2257 Class->setInvalidDecl();
2258
2259 // Create the base specifier.
2260 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2261 Class->getTagKind() == TTK_Class,
2262 Access, TInfo, EllipsisLoc);
2263}
2264
2265/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2266/// one entry in the base class list of a class specifier, for
2267/// example:
2268/// class foo : public bar, virtual private baz {
2269/// 'public bar' and 'virtual private baz' are each base-specifiers.
2270BaseResult
2271Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2272 ParsedAttributes &Attributes,
2273 bool Virtual, AccessSpecifier Access,
2274 ParsedType basetype, SourceLocation BaseLoc,
2275 SourceLocation EllipsisLoc) {
2276 if (!classdecl)
2277 return true;
2278
2279 AdjustDeclIfTemplate(classdecl);
2280 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2281 if (!Class)
2282 return true;
2283
2284 // We haven't yet attached the base specifiers.
2285 Class->setIsParsingBaseSpecifiers();
2286
2287 // We do not support any C++11 attributes on base-specifiers yet.
2288 // Diagnose any attributes we see.
2289 if (!Attributes.empty()) {
2290 for (AttributeList *Attr = Attributes.getList(); Attr;
2291 Attr = Attr->getNext()) {
2292 if (Attr->isInvalid() ||
2293 Attr->getKind() == AttributeList::IgnoredAttribute)
2294 continue;
2295 Diag(Attr->getLoc(),
2296 Attr->getKind() == AttributeList::UnknownAttribute
2297 ? diag::warn_unknown_attribute_ignored
2298 : diag::err_base_specifier_attribute)
2299 << Attr->getName();
2300 }
2301 }
2302
2303 TypeSourceInfo *TInfo = nullptr;
2304 GetTypeFromParser(basetype, &TInfo);
2305
2306 if (EllipsisLoc.isInvalid() &&
2307 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2308 UPPC_BaseType))
2309 return true;
2310
2311 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2312 Virtual, Access, TInfo,
2313 EllipsisLoc))
2314 return BaseSpec;
2315 else
2316 Class->setInvalidDecl();
2317
2318 return true;
2319}
2320
2321/// Use small set to collect indirect bases. As this is only used
2322/// locally, there's no need to abstract the small size parameter.
2323typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2324
2325/// \brief Recursively add the bases of Type. Don't add Type itself.
2326static void
2327NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2328 const QualType &Type)
2329{
2330 // Even though the incoming type is a base, it might not be
2331 // a class -- it could be a template parm, for instance.
2332 if (auto Rec = Type->getAs<RecordType>()) {
2333 auto Decl = Rec->getAsCXXRecordDecl();
2334
2335 // Iterate over its bases.
2336 for (const auto &BaseSpec : Decl->bases()) {
2337 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2338 .getUnqualifiedType();
2339 if (Set.insert(Base).second)
2340 // If we've not already seen it, recurse.
2341 NoteIndirectBases(Context, Set, Base);
2342 }
2343 }
2344}
2345
2346/// \brief Performs the actual work of attaching the given base class
2347/// specifiers to a C++ class.
2348bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2349 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2350 if (Bases.empty())
2351 return false;
2352
2353 // Used to keep track of which base types we have already seen, so
2354 // that we can properly diagnose redundant direct base types. Note
2355 // that the key is always the unqualified canonical type of the base
2356 // class.
2357 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2358
2359 // Used to track indirect bases so we can see if a direct base is
2360 // ambiguous.
2361 IndirectBaseSet IndirectBaseTypes;
2362
2363 // Copy non-redundant base specifiers into permanent storage.
2364 unsigned NumGoodBases = 0;
2365 bool Invalid = false;
2366 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2367 QualType NewBaseType
2368 = Context.getCanonicalType(Bases[idx]->getType());
2369 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2370
2371 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2372 if (KnownBase) {
2373 // C++ [class.mi]p3:
2374 // A class shall not be specified as a direct base class of a
2375 // derived class more than once.
2376 Diag(Bases[idx]->getLocStart(),
2377 diag::err_duplicate_base_class)
2378 << KnownBase->getType()
2379 << Bases[idx]->getSourceRange();
2380
2381 // Delete the duplicate base class specifier; we're going to
2382 // overwrite its pointer later.
2383 Context.Deallocate(Bases[idx]);
2384
2385 Invalid = true;
2386 } else {
2387 // Okay, add this new base class.
2388 KnownBase = Bases[idx];
2389 Bases[NumGoodBases++] = Bases[idx];
2390
2391 // Note this base's direct & indirect bases, if there could be ambiguity.
2392 if (Bases.size() > 1)
2393 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2394
2395 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2396 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2397 if (Class->isInterface() &&
2398 (!RD->isInterfaceLike() ||
2399 KnownBase->getAccessSpecifier() != AS_public)) {
2400 // The Microsoft extension __interface does not permit bases that
2401 // are not themselves public interfaces.
2402 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
2403 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
2404 << RD->getSourceRange();
2405 Invalid = true;
2406 }
2407 if (RD->hasAttr<WeakAttr>())
2408 Class->addAttr(WeakAttr::CreateImplicit(Context));
2409 }
2410 }
2411 }
2412
2413 // Attach the remaining base class specifiers to the derived class.
2414 Class->setBases(Bases.data(), NumGoodBases);
2415
2416 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2417 // Check whether this direct base is inaccessible due to ambiguity.
2418 QualType BaseType = Bases[idx]->getType();
2419 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2420 .getUnqualifiedType();
2421
2422 if (IndirectBaseTypes.count(CanonicalBase)) {
2423 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2424 /*DetectVirtual=*/true);
2425 bool found
2426 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2427 assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2427, __PRETTY_FUNCTION__))
;
2428 (void)found;
2429
2430 if (Paths.isAmbiguous(CanonicalBase))
2431 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
2432 << BaseType << getAmbiguousPathsDisplayString(Paths)
2433 << Bases[idx]->getSourceRange();
2434 else
2435 assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) :
__assert_fail ("Bases[idx]->isVirtual()", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2435, __PRETTY_FUNCTION__))
;
2436 }
2437
2438 // Delete the base class specifier, since its data has been copied
2439 // into the CXXRecordDecl.
2440 Context.Deallocate(Bases[idx]);
2441 }
2442
2443 return Invalid;
2444}
2445
2446/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2447/// class, after checking whether there are any duplicate base
2448/// classes.
2449void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2450 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2451 if (!ClassDecl || Bases.empty())
2452 return;
2453
2454 AdjustDeclIfTemplate(ClassDecl);
2455 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2456}
2457
2458/// \brief Determine whether the type \p Derived is a C++ class that is
2459/// derived from the type \p Base.
2460bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2461 if (!getLangOpts().CPlusPlus)
2462 return false;
2463
2464 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2465 if (!DerivedRD)
2466 return false;
2467
2468 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2469 if (!BaseRD)
2470 return false;
2471
2472 // If either the base or the derived type is invalid, don't try to
2473 // check whether one is derived from the other.
2474 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2475 return false;
2476
2477 // FIXME: In a modules build, do we need the entire path to be visible for us
2478 // to be able to use the inheritance relationship?
2479 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2480 return false;
2481
2482 return DerivedRD->isDerivedFrom(BaseRD);
2483}
2484
2485/// \brief Determine whether the type \p Derived is a C++ class that is
2486/// derived from the type \p Base.
2487bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2488 CXXBasePaths &Paths) {
2489 if (!getLangOpts().CPlusPlus)
2490 return false;
2491
2492 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2493 if (!DerivedRD)
2494 return false;
2495
2496 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2497 if (!BaseRD)
2498 return false;
2499
2500 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2501 return false;
2502
2503 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2504}
2505
2506void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2507 CXXCastPath &BasePathArray) {
2508 assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!"
) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2508, __PRETTY_FUNCTION__))
;
2509 assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ?
static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2509, __PRETTY_FUNCTION__))
;
2510
2511 const CXXBasePath &Path = Paths.front();
2512
2513 // We first go backward and check if we have a virtual base.
2514 // FIXME: It would be better if CXXBasePath had the base specifier for
2515 // the nearest virtual base.
2516 unsigned Start = 0;
2517 for (unsigned I = Path.size(); I != 0; --I) {
2518 if (Path[I - 1].Base->isVirtual()) {
2519 Start = I - 1;
2520 break;
2521 }
2522 }
2523
2524 // Now add all bases.
2525 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2526 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2527}
2528
2529/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2530/// conversion (where Derived and Base are class types) is
2531/// well-formed, meaning that the conversion is unambiguous (and
2532/// that all of the base classes are accessible). Returns true
2533/// and emits a diagnostic if the code is ill-formed, returns false
2534/// otherwise. Loc is the location where this routine should point to
2535/// if there is an error, and Range is the source range to highlight
2536/// if there is an error.
2537///
2538/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2539/// diagnostic for the respective type of error will be suppressed, but the
2540/// check for ill-formed code will still be performed.
2541bool
2542Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2543 unsigned InaccessibleBaseID,
2544 unsigned AmbigiousBaseConvID,
2545 SourceLocation Loc, SourceRange Range,
2546 DeclarationName Name,
2547 CXXCastPath *BasePath,
2548 bool IgnoreAccess) {
2549 // First, determine whether the path from Derived to Base is
2550 // ambiguous. This is slightly more expensive than checking whether
2551 // the Derived to Base conversion exists, because here we need to
2552 // explore multiple paths to determine if there is an ambiguity.
2553 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2554 /*DetectVirtual=*/false);
2555 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2556 assert(DerivationOkay &&((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2557, __PRETTY_FUNCTION__))
2557 "Can only be used with a derived-to-base conversion")((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2557, __PRETTY_FUNCTION__))
;
2558 (void)DerivationOkay;
2559
2560 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
2561 if (!IgnoreAccess) {
2562 // Check that the base class can be accessed.
2563 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
2564 InaccessibleBaseID)) {
2565 case AR_inaccessible:
2566 return true;
2567 case AR_accessible:
2568 case AR_dependent:
2569 case AR_delayed:
2570 break;
2571 }
2572 }
2573
2574 // Build a base path if necessary.
2575 if (BasePath)
2576 BuildBasePathArray(Paths, *BasePath);
2577 return false;
2578 }
2579
2580 if (AmbigiousBaseConvID) {
2581 // We know that the derived-to-base conversion is ambiguous, and
2582 // we're going to produce a diagnostic. Perform the derived-to-base
2583 // search just one more time to compute all of the possible paths so
2584 // that we can print them out. This is more expensive than any of
2585 // the previous derived-to-base checks we've done, but at this point
2586 // performance isn't as much of an issue.
2587 Paths.clear();
2588 Paths.setRecordingPaths(true);
2589 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2590 assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2590, __PRETTY_FUNCTION__))
;
2591 (void)StillOkay;
2592
2593 // Build up a textual representation of the ambiguous paths, e.g.,
2594 // D -> B -> A, that will be used to illustrate the ambiguous
2595 // conversions in the diagnostic. We only print one of the paths
2596 // to each base class subobject.
2597 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2598
2599 Diag(Loc, AmbigiousBaseConvID)
2600 << Derived << Base << PathDisplayStr << Range << Name;
2601 }
2602 return true;
2603}
2604
2605bool
2606Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2607 SourceLocation Loc, SourceRange Range,
2608 CXXCastPath *BasePath,
2609 bool IgnoreAccess) {
2610 return CheckDerivedToBaseConversion(
2611 Derived, Base, diag::err_upcast_to_inaccessible_base,
2612 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2613 BasePath, IgnoreAccess);
2614}
2615
2616
2617/// @brief Builds a string representing ambiguous paths from a
2618/// specific derived class to different subobjects of the same base
2619/// class.
2620///
2621/// This function builds a string that can be used in error messages
2622/// to show the different paths that one can take through the
2623/// inheritance hierarchy to go from the derived class to different
2624/// subobjects of a base class. The result looks something like this:
2625/// @code
2626/// struct D -> struct B -> struct A
2627/// struct D -> struct C -> struct A
2628/// @endcode
2629std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2630 std::string PathDisplayStr;
2631 std::set<unsigned> DisplayedPaths;
2632 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2633 Path != Paths.end(); ++Path) {
2634 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2635 // We haven't displayed a path to this particular base
2636 // class subobject yet.
2637 PathDisplayStr += "\n ";
2638 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2639 for (CXXBasePath::const_iterator Element = Path->begin();
2640 Element != Path->end(); ++Element)
2641 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2642 }
2643 }
2644
2645 return PathDisplayStr;
2646}
2647
2648//===----------------------------------------------------------------------===//
2649// C++ class member Handling
2650//===----------------------------------------------------------------------===//
2651
2652/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2653bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
2654 SourceLocation ASLoc,
2655 SourceLocation ColonLoc,
2656 AttributeList *Attrs) {
2657 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2657, __PRETTY_FUNCTION__))
;
2658 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2659 ASLoc, ColonLoc);
2660 CurContext->addHiddenDecl(ASDecl);
2661 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2662}
2663
2664/// CheckOverrideControl - Check C++11 override control semantics.
2665void Sema::CheckOverrideControl(NamedDecl *D) {
2666 if (D->isInvalidDecl())
2667 return;
2668
2669 // We only care about "override" and "final" declarations.
2670 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2671 return;
2672
2673 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2674
2675 // We can't check dependent instance methods.
2676 if (MD && MD->isInstance() &&
2677 (MD->getParent()->hasAnyDependentBases() ||
2678 MD->getType()->isDependentType()))
2679 return;
2680
2681 if (MD && !MD->isVirtual()) {
2682 // If we have a non-virtual method, check if if hides a virtual method.
2683 // (In that case, it's most likely the method has the wrong type.)
2684 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2685 FindHiddenVirtualMethods(MD, OverloadedMethods);
2686
2687 if (!OverloadedMethods.empty()) {
2688 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2689 Diag(OA->getLocation(),
2690 diag::override_keyword_hides_virtual_member_function)
2691 << "override" << (OverloadedMethods.size() > 1);
2692 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2693 Diag(FA->getLocation(),
2694 diag::override_keyword_hides_virtual_member_function)
2695 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2696 << (OverloadedMethods.size() > 1);
2697 }
2698 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2699 MD->setInvalidDecl();
2700 return;
2701 }
2702 // Fall through into the general case diagnostic.
2703 // FIXME: We might want to attempt typo correction here.
2704 }
2705
2706 if (!MD || !MD->isVirtual()) {
2707 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2708 Diag(OA->getLocation(),
2709 diag::override_keyword_only_allowed_on_virtual_member_functions)
2710 << "override" << FixItHint::CreateRemoval(OA->getLocation());
2711 D->dropAttr<OverrideAttr>();
2712 }
2713 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2714 Diag(FA->getLocation(),
2715 diag::override_keyword_only_allowed_on_virtual_member_functions)
2716 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2717 << FixItHint::CreateRemoval(FA->getLocation());
2718 D->dropAttr<FinalAttr>();
2719 }
2720 return;
2721 }
2722
2723 // C++11 [class.virtual]p5:
2724 // If a function is marked with the virt-specifier override and
2725 // does not override a member function of a base class, the program is
2726 // ill-formed.
2727 bool HasOverriddenMethods =
2728 MD->begin_overridden_methods() != MD->end_overridden_methods();
2729 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
2730 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
2731 << MD->getDeclName();
2732}
2733
2734void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
2735 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
2736 return;
2737 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2738 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
2739 return;
2740
2741 SourceLocation Loc = MD->getLocation();
2742 SourceLocation SpellingLoc = Loc;
2743 if (getSourceManager().isMacroArgExpansion(Loc))
2744 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
2745 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
2746 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
2747 return;
2748
2749 if (MD->size_overridden_methods() > 0) {
2750 unsigned DiagID = isa<CXXDestructorDecl>(MD)
2751 ? diag::warn_destructor_marked_not_override_overriding
2752 : diag::warn_function_marked_not_override_overriding;
2753 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
2754 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
2755 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
2756 }
2757}
2758
2759/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
2760/// function overrides a virtual member function marked 'final', according to
2761/// C++11 [class.virtual]p4.
2762bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
2763 const CXXMethodDecl *Old) {
2764 FinalAttr *FA = Old->getAttr<FinalAttr>();
2765 if (!FA)
2766 return false;
2767
2768 Diag(New->getLocation(), diag::err_final_function_overridden)
2769 << New->getDeclName()
2770 << FA->isSpelledAsSealed();
2771 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2772 return true;
2773}
2774
2775static bool InitializationHasSideEffects(const FieldDecl &FD) {
2776 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2777 // FIXME: Destruction of ObjC lifetime types has side-effects.
2778 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2779 return !RD->isCompleteDefinition() ||
2780 !RD->hasTrivialDefaultConstructor() ||
2781 !RD->hasTrivialDestructor();
2782 return false;
2783}
2784
2785static AttributeList *getMSPropertyAttr(AttributeList *list) {
2786 for (AttributeList *it = list; it != nullptr; it = it->getNext())
2787 if (it->isDeclspecPropertyAttribute())
2788 return it;
2789 return nullptr;
2790}
2791
2792// Check if there is a field shadowing.
2793void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
2794 DeclarationName FieldName,
2795 const CXXRecordDecl *RD) {
2796 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
2797 return;
2798
2799 // To record a shadowed field in a base
2800 std::map<CXXRecordDecl*, NamedDecl*> Bases;
2801 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
2802 CXXBasePath &Path) {
2803 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
2804 // Record an ambiguous path directly
2805 if (Bases.find(Base) != Bases.end())
2806 return true;
2807 for (const auto Field : Base->lookup(FieldName)) {
2808 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
2809 Field->getAccess() != AS_private) {
2810 assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void>
(0) : __assert_fail ("Field->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2810, __PRETTY_FUNCTION__))
;
2811 assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> (
0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2811, __PRETTY_FUNCTION__))
;
2812 Bases[Base] = Field;
2813 return true;
2814 }
2815 }
2816 return false;
2817 };
2818
2819 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2820 /*DetectVirtual=*/true);
2821 if (!RD->lookupInBases(FieldShadowed, Paths))
2822 return;
2823
2824 for (const auto &P : Paths) {
2825 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
2826 auto It = Bases.find(Base);
2827 // Skip duplicated bases
2828 if (It == Bases.end())
2829 continue;
2830 auto BaseField = It->second;
2831 assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void
> (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2831, __PRETTY_FUNCTION__))
;
2832 if (AS_none !=
2833 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
2834 Diag(Loc, diag::warn_shadow_field)
2835 << FieldName.getAsString() << RD->getName() << Base->getName();
2836 Diag(BaseField->getLocation(), diag::note_shadow_field);
2837 Bases.erase(It);
2838 }
2839 }
2840}
2841
2842/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2843/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2844/// bitfield width if there is one, 'InitExpr' specifies the initializer if
2845/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2846/// present (but parsing it has been deferred).
2847NamedDecl *
2848Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2849 MultiTemplateParamsArg TemplateParameterLists,
2850 Expr *BW, const VirtSpecifiers &VS,
2851 InClassInitStyle InitStyle) {
2852 const DeclSpec &DS = D.getDeclSpec();
2853 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2854 DeclarationName Name = NameInfo.getName();
2855 SourceLocation Loc = NameInfo.getLoc();
2856
2857 // For anonymous bitfields, the location should point to the type.
2858 if (Loc.isInvalid())
2859 Loc = D.getLocStart();
2860
2861 Expr *BitWidth = static_cast<Expr*>(BW);
2862
2863 assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void
> (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2863, __PRETTY_FUNCTION__))
;
2864 assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("!DS.isFriendSpecified()", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2864, __PRETTY_FUNCTION__))
;
2865
2866 bool isFunc = D.isDeclarationOfFunction();
2867 AttributeList *MSPropertyAttr =
2868 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2869
2870 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2871 // The Microsoft extension __interface only permits public member functions
2872 // and prohibits constructors, destructors, operators, non-public member
2873 // functions, static methods and data members.
2874 unsigned InvalidDecl;
2875 bool ShowDeclName = true;
2876 if (!isFunc &&
2877 (DS.getStorageClassSpec() == DeclSpec::SCS_typedef || MSPropertyAttr))
2878 InvalidDecl = 0;
2879 else if (!isFunc)
2880 InvalidDecl = 1;
2881 else if (AS != AS_public)
2882 InvalidDecl = 2;
2883 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2884 InvalidDecl = 3;
2885 else switch (Name.getNameKind()) {
2886 case DeclarationName::CXXConstructorName:
2887 InvalidDecl = 4;
2888 ShowDeclName = false;
2889 break;
2890
2891 case DeclarationName::CXXDestructorName:
2892 InvalidDecl = 5;
2893 ShowDeclName = false;
2894 break;
2895
2896 case DeclarationName::CXXOperatorName:
2897 case DeclarationName::CXXConversionFunctionName:
2898 InvalidDecl = 6;
2899 break;
2900
2901 default:
2902 InvalidDecl = 0;
2903 break;
2904 }
2905
2906 if (InvalidDecl) {
2907 if (ShowDeclName)
2908 Diag(Loc, diag::err_invalid_member_in_interface)
2909 << (InvalidDecl-1) << Name;
2910 else
2911 Diag(Loc, diag::err_invalid_member_in_interface)
2912 << (InvalidDecl-1) << "";
2913 return nullptr;
2914 }
2915 }
2916
2917 // C++ 9.2p6: A member shall not be declared to have automatic storage
2918 // duration (auto, register) or with the extern storage-class-specifier.
2919 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2920 // data members and cannot be applied to names declared const or static,
2921 // and cannot be applied to reference members.
2922 switch (DS.getStorageClassSpec()) {
2923 case DeclSpec::SCS_unspecified:
2924 case DeclSpec::SCS_typedef:
2925 case DeclSpec::SCS_static:
2926 break;
2927 case DeclSpec::SCS_mutable:
2928 if (isFunc) {
2929 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2930
2931 // FIXME: It would be nicer if the keyword was ignored only for this
2932 // declarator. Otherwise we could get follow-up errors.
2933 D.getMutableDeclSpec().ClearStorageClassSpecs();
2934 }
2935 break;
2936 default:
2937 Diag(DS.getStorageClassSpecLoc(),
2938 diag::err_storageclass_invalid_for_member);
2939 D.getMutableDeclSpec().ClearStorageClassSpecs();
2940 break;
2941 }
2942
2943 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2944 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2945 !isFunc);
2946
2947 if (DS.isConstexprSpecified() && isInstField) {
2948 SemaDiagnosticBuilder B =
2949 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2950 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2951 if (InitStyle == ICIS_NoInit) {
2952 B << 0 << 0;
2953 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2954 B << FixItHint::CreateRemoval(ConstexprLoc);
2955 else {
2956 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2957 D.getMutableDeclSpec().ClearConstexprSpec();
2958 const char *PrevSpec;
2959 unsigned DiagID;
2960 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2961 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2962 (void)Failed;
2963 assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail"
) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2963, __PRETTY_FUNCTION__))
;
2964 }
2965 } else {
2966 B << 1;
2967 const char *PrevSpec;
2968 unsigned DiagID;
2969 if (D.getMutableDeclSpec().SetStorageClassSpec(
2970 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2971 Context.getPrintingPolicy())) {
2972 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2973, __PRETTY_FUNCTION__))
2973 "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2973, __PRETTY_FUNCTION__))
;
2974 B << 1;
2975 } else {
2976 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2977 isInstField = false;
2978 }
2979 }
2980 }
2981
2982 NamedDecl *Member;
2983 if (isInstField) {
2984 CXXScopeSpec &SS = D.getCXXScopeSpec();
2985
2986 // Data members must have identifiers for names.
2987 if (!Name.isIdentifier()) {
2988 Diag(Loc, diag::err_bad_variable_name)
2989 << Name;
2990 return nullptr;
2991 }
2992
2993 IdentifierInfo *II = Name.getAsIdentifierInfo();
2994
2995 // Member field could not be with "template" keyword.
2996 // So TemplateParameterLists should be empty in this case.
2997 if (TemplateParameterLists.size()) {
2998 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2999 if (TemplateParams->size()) {
3000 // There is no such thing as a member field template.
3001 Diag(D.getIdentifierLoc(), diag::err_template_member)
3002 << II
3003 << SourceRange(TemplateParams->getTemplateLoc(),
3004 TemplateParams->getRAngleLoc());
3005 } else {
3006 // There is an extraneous 'template<>' for this member.
3007 Diag(TemplateParams->getTemplateLoc(),
3008 diag::err_template_member_noparams)
3009 << II
3010 << SourceRange(TemplateParams->getTemplateLoc(),
3011 TemplateParams->getRAngleLoc());
3012 }
3013 return nullptr;
3014 }
3015
3016 if (SS.isSet() && !SS.isInvalid()) {
3017 // The user provided a superfluous scope specifier inside a class
3018 // definition:
3019 //
3020 // class X {
3021 // int X::member;
3022 // };
3023 if (DeclContext *DC = computeDeclContext(SS, false))
3024 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
3025 else
3026 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3027 << Name << SS.getRange();
3028
3029 SS.clear();
3030 }
3031
3032 if (MSPropertyAttr) {
3033 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3034 BitWidth, InitStyle, AS, MSPropertyAttr);
3035 if (!Member)
3036 return nullptr;
3037 isInstField = false;
3038 } else {
3039 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3040 BitWidth, InitStyle, AS);
3041 if (!Member)
3042 return nullptr;
3043 }
3044
3045 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3046 } else {
3047 Member = HandleDeclarator(S, D, TemplateParameterLists);
3048 if (!Member)
3049 return nullptr;
3050
3051 // Non-instance-fields can't have a bitfield.
3052 if (BitWidth) {
3053 if (Member->isInvalidDecl()) {
3054 // don't emit another diagnostic.
3055 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3056 // C++ 9.6p3: A bit-field shall not be a static member.
3057 // "static member 'A' cannot be a bit-field"
3058 Diag(Loc, diag::err_static_not_bitfield)
3059 << Name << BitWidth->getSourceRange();
3060 } else if (isa<TypedefDecl>(Member)) {
3061 // "typedef member 'x' cannot be a bit-field"
3062 Diag(Loc, diag::err_typedef_not_bitfield)
3063 << Name << BitWidth->getSourceRange();
3064 } else {
3065 // A function typedef ("typedef int f(); f a;").
3066 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3067 Diag(Loc, diag::err_not_integral_type_bitfield)
3068 << Name << cast<ValueDecl>(Member)->getType()
3069 << BitWidth->getSourceRange();
3070 }
3071
3072 BitWidth = nullptr;
3073 Member->setInvalidDecl();
3074 }
3075
3076 Member->setAccess(AS);
3077
3078 // If we have declared a member function template or static data member
3079 // template, set the access of the templated declaration as well.
3080 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3081 FunTmpl->getTemplatedDecl()->setAccess(AS);
3082 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3083 VarTmpl->getTemplatedDecl()->setAccess(AS);
3084 }
3085
3086 if (VS.isOverrideSpecified())
3087 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
3088 if (VS.isFinalSpecified())
3089 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
3090 VS.isFinalSpelledSealed()));
3091
3092 if (VS.getLastLocation().isValid()) {
3093 // Update the end location of a method that has a virt-specifiers.
3094 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3095 MD->setRangeEnd(VS.getLastLocation());
3096 }
3097
3098 CheckOverrideControl(Member);
3099
3100 assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?"
) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3100, __PRETTY_FUNCTION__))
;
3101
3102 if (isInstField) {
3103 FieldDecl *FD = cast<FieldDecl>(Member);
3104 FieldCollector->Add(FD);
3105
3106 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3107 // Remember all explicit private FieldDecls that have a name, no side
3108 // effects and are not part of a dependent type declaration.
3109 if (!FD->isImplicit() && FD->getDeclName() &&
3110 FD->getAccess() == AS_private &&
3111 !FD->hasAttr<UnusedAttr>() &&
3112 !FD->getParent()->isDependentContext() &&
3113 !InitializationHasSideEffects(*FD))
3114 UnusedPrivateFields.insert(FD);
3115 }
3116 }
3117
3118 return Member;
3119}
3120
3121namespace {
3122 class UninitializedFieldVisitor
3123 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3124 Sema &S;
3125 // List of Decls to generate a warning on. Also remove Decls that become
3126 // initialized.
3127 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3128 // List of base classes of the record. Classes are removed after their
3129 // initializers.
3130 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3131 // Vector of decls to be removed from the Decl set prior to visiting the
3132 // nodes. These Decls may have been initialized in the prior initializer.
3133 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3134 // If non-null, add a note to the warning pointing back to the constructor.
3135 const CXXConstructorDecl *Constructor;
3136 // Variables to hold state when processing an initializer list. When
3137 // InitList is true, special case initialization of FieldDecls matching
3138 // InitListFieldDecl.
3139 bool InitList;
3140 FieldDecl *InitListFieldDecl;
3141 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3142
3143 public:
3144 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3145 UninitializedFieldVisitor(Sema &S,
3146 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3147 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3148 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3149 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3150
3151 // Returns true if the use of ME is not an uninitialized use.
3152 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3153 bool CheckReferenceOnly) {
3154 llvm::SmallVector<FieldDecl*, 4> Fields;
3155 bool ReferenceField = false;
3156 while (ME) {
3157 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3158 if (!FD)
3159 return false;
3160 Fields.push_back(FD);
3161 if (FD->getType()->isReferenceType())
3162 ReferenceField = true;
3163 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3164 }
3165
3166 // Binding a reference to an unintialized field is not an
3167 // uninitialized use.
3168 if (CheckReferenceOnly && !ReferenceField)
3169 return true;
3170
3171 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3172 // Discard the first field since it is the field decl that is being
3173 // initialized.
3174 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3175 UsedFieldIndex.push_back((*I)->getFieldIndex());
3176 }
3177
3178 for (auto UsedIter = UsedFieldIndex.begin(),
3179 UsedEnd = UsedFieldIndex.end(),
3180 OrigIter = InitFieldIndex.begin(),
3181 OrigEnd = InitFieldIndex.end();
3182 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3183 if (*UsedIter < *OrigIter)
3184 return true;
3185 if (*UsedIter > *OrigIter)
3186 break;
3187 }
3188
3189 return false;
3190 }
3191
3192 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3193 bool AddressOf) {
3194 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3195 return;
3196
3197 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3198 // or union.
3199 MemberExpr *FieldME = ME;
3200
3201 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3202
3203 Expr *Base = ME;
3204 while (MemberExpr *SubME =
3205 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3206
3207 if (isa<VarDecl>(SubME->getMemberDecl()))
3208 return;
3209
3210 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3211 if (!FD->isAnonymousStructOrUnion())
3212 FieldME = SubME;
3213
3214 if (!FieldME->getType().isPODType(S.Context))
3215 AllPODFields = false;
3216
3217 Base = SubME->getBase();
3218 }
3219
3220 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3221 return;
3222
3223 if (AddressOf && AllPODFields)
3224 return;
3225
3226 ValueDecl* FoundVD = FieldME->getMemberDecl();
3227
3228 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3229 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3230 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3231 }
3232
3233 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3234 QualType T = BaseCast->getType();
3235 if (T->isPointerType() &&
3236 BaseClasses.count(T->getPointeeType())) {
3237 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3238 << T->getPointeeType() << FoundVD;
3239 }
3240 }
3241 }
3242
3243 if (!Decls.count(FoundVD))
3244 return;
3245
3246 const bool IsReference = FoundVD->getType()->isReferenceType();
3247
3248 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3249 // Special checking for initializer lists.
3250 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3251 return;
3252 }
3253 } else {
3254 // Prevent double warnings on use of unbounded references.
3255 if (CheckReferenceOnly && !IsReference)
3256 return;
3257 }
3258
3259 unsigned diag = IsReference
3260 ? diag::warn_reference_field_is_uninit
3261 : diag::warn_field_is_uninit;
3262 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3263 if (Constructor)
3264 S.Diag(Constructor->getLocation(),
3265 diag::note_uninit_in_this_constructor)
3266 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3267
3268 }
3269
3270 void HandleValue(Expr *E, bool AddressOf) {
3271 E = E->IgnoreParens();
3272
3273 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3274 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3275 AddressOf /*AddressOf*/);
3276 return;
3277 }
3278
3279 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3280 Visit(CO->getCond());
3281 HandleValue(CO->getTrueExpr(), AddressOf);
3282 HandleValue(CO->getFalseExpr(), AddressOf);
3283 return;
3284 }
3285
3286 if (BinaryConditionalOperator *BCO =
3287 dyn_cast<BinaryConditionalOperator>(E)) {
3288 Visit(BCO->getCond());
3289 HandleValue(BCO->getFalseExpr(), AddressOf);
3290 return;
3291 }
3292
3293 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3294 HandleValue(OVE->getSourceExpr(), AddressOf);
3295 return;
3296 }
3297
3298 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3299 switch (BO->getOpcode()) {
3300 default:
3301 break;
3302 case(BO_PtrMemD):
3303 case(BO_PtrMemI):
3304 HandleValue(BO->getLHS(), AddressOf);
3305 Visit(BO->getRHS());
3306 return;
3307 case(BO_Comma):
3308 Visit(BO->getLHS());
3309 HandleValue(BO->getRHS(), AddressOf);
3310 return;
3311 }
3312 }
3313
3314 Visit(E);
3315 }
3316
3317 void CheckInitListExpr(InitListExpr *ILE) {
3318 InitFieldIndex.push_back(0);
3319 for (auto Child : ILE->children()) {
3320 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3321 CheckInitListExpr(SubList);
3322 } else {
3323 Visit(Child);
3324 }
3325 ++InitFieldIndex.back();
3326 }
3327 InitFieldIndex.pop_back();
3328 }
3329
3330 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3331 FieldDecl *Field, const Type *BaseClass) {
3332 // Remove Decls that may have been initialized in the previous
3333 // initializer.
3334 for (ValueDecl* VD : DeclsToRemove)
3335 Decls.erase(VD);
3336 DeclsToRemove.clear();
3337
3338 Constructor = FieldConstructor;
3339 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3340
3341 if (ILE && Field) {
3342 InitList = true;
3343 InitListFieldDecl = Field;
3344 InitFieldIndex.clear();
3345 CheckInitListExpr(ILE);
3346 } else {
3347 InitList = false;
3348 Visit(E);
3349 }
3350
3351 if (Field)
3352 Decls.erase(Field);
3353 if (BaseClass)
3354 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3355 }
3356
3357 void VisitMemberExpr(MemberExpr *ME) {
3358 // All uses of unbounded reference fields will warn.
3359 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3360 }
3361
3362 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3363 if (E->getCastKind() == CK_LValueToRValue) {
3364 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3365 return;
3366 }
3367
3368 Inherited::VisitImplicitCastExpr(E);
3369 }
3370
3371 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3372 if (E->getConstructor()->isCopyConstructor()) {
3373 Expr *ArgExpr = E->getArg(0);
3374 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3375 if (ILE->getNumInits() == 1)
3376 ArgExpr = ILE->getInit(0);
3377 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3378 if (ICE->getCastKind() == CK_NoOp)
3379 ArgExpr = ICE->getSubExpr();
3380 HandleValue(ArgExpr, false /*AddressOf*/);
3381 return;
3382 }
3383 Inherited::VisitCXXConstructExpr(E);
3384 }
3385
3386 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3387 Expr *Callee = E->getCallee();
3388 if (isa<MemberExpr>(Callee)) {
3389 HandleValue(Callee, false /*AddressOf*/);
3390 for (auto Arg : E->arguments())
3391 Visit(Arg);
3392 return;
3393 }
3394
3395 Inherited::VisitCXXMemberCallExpr(E);
3396 }
3397
3398 void VisitCallExpr(CallExpr *E) {
3399 // Treat std::move as a use.
3400 if (E->isCallToStdMove()) {
3401 HandleValue(E->getArg(0), /*AddressOf=*/false);
3402 return;
3403 }
3404
3405 Inherited::VisitCallExpr(E);
3406 }
3407
3408 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3409 Expr *Callee = E->getCallee();
3410
3411 if (isa<UnresolvedLookupExpr>(Callee))
3412 return Inherited::VisitCXXOperatorCallExpr(E);
3413
3414 Visit(Callee);
3415 for (auto Arg : E->arguments())
3416 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3417 }
3418
3419 void VisitBinaryOperator(BinaryOperator *E) {
3420 // If a field assignment is detected, remove the field from the
3421 // uninitiailized field set.
3422 if (E->getOpcode() == BO_Assign)
3423 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3424 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3425 if (!FD->getType()->isReferenceType())
3426 DeclsToRemove.push_back(FD);
3427
3428 if (E->isCompoundAssignmentOp()) {
3429 HandleValue(E->getLHS(), false /*AddressOf*/);
3430 Visit(E->getRHS());
3431 return;
3432 }
3433
3434 Inherited::VisitBinaryOperator(E);
3435 }
3436
3437 void VisitUnaryOperator(UnaryOperator *E) {
3438 if (E->isIncrementDecrementOp()) {
3439 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3440 return;
3441 }
3442 if (E->getOpcode() == UO_AddrOf) {
3443 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3444 HandleValue(ME->getBase(), true /*AddressOf*/);
3445 return;
3446 }
3447 }
3448
3449 Inherited::VisitUnaryOperator(E);
3450 }
3451 };
3452
3453 // Diagnose value-uses of fields to initialize themselves, e.g.
3454 // foo(foo)
3455 // where foo is not also a parameter to the constructor.
3456 // Also diagnose across field uninitialized use such as
3457 // x(y), y(x)
3458 // TODO: implement -Wuninitialized and fold this into that framework.
3459 static void DiagnoseUninitializedFields(
3460 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3461
3462 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3463 Constructor->getLocation())) {
3464 return;
3465 }
3466
3467 if (Constructor->isInvalidDecl())
3468 return;
3469
3470 const CXXRecordDecl *RD = Constructor->getParent();
3471
3472 if (RD->getDescribedClassTemplate())
3473 return;
3474
3475 // Holds fields that are uninitialized.
3476 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3477
3478 // At the beginning, all fields are uninitialized.
3479 for (auto *I : RD->decls()) {
3480 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3481 UninitializedFields.insert(FD);
3482 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3483 UninitializedFields.insert(IFD->getAnonField());
3484 }
3485 }
3486
3487 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3488 for (auto I : RD->bases())
3489 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3490
3491 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3492 return;
3493
3494 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3495 UninitializedFields,
3496 UninitializedBaseClasses);
3497
3498 for (const auto *FieldInit : Constructor->inits()) {
3499 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3500 break;
3501
3502 Expr *InitExpr = FieldInit->getInit();
3503 if (!InitExpr)
3504 continue;
3505
3506 if (CXXDefaultInitExpr *Default =
3507 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3508 InitExpr = Default->getExpr();
3509 if (!InitExpr)
3510 continue;
3511 // In class initializers will point to the constructor.
3512 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3513 FieldInit->getAnyMember(),
3514 FieldInit->getBaseClass());
3515 } else {
3516 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3517 FieldInit->getAnyMember(),
3518 FieldInit->getBaseClass());
3519 }
3520 }
3521 }
3522} // namespace
3523
3524/// \brief Enter a new C++ default initializer scope. After calling this, the
3525/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3526/// parsing or instantiating the initializer failed.
3527void Sema::ActOnStartCXXInClassMemberInitializer() {
3528 // Create a synthetic function scope to represent the call to the constructor
3529 // that notionally surrounds a use of this initializer.
3530 PushFunctionScope();
3531}
3532
3533/// \brief This is invoked after parsing an in-class initializer for a
3534/// non-static C++ class member, and after instantiating an in-class initializer
3535/// in a class template. Such actions are deferred until the class is complete.
3536void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3537 SourceLocation InitLoc,
3538 Expr *InitExpr) {
3539 // Pop the notional constructor scope we created earlier.
3540 PopFunctionScopeInfo(nullptr, D);
3541
3542 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3543 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3544, __PRETTY_FUNCTION__))
3544 "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3544, __PRETTY_FUNCTION__))
;
3545
3546 if (!InitExpr) {
3547 D->setInvalidDecl();
3548 if (FD)
3549 FD->removeInClassInitializer();
3550 return;
3551 }
3552
3553 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3554 FD->setInvalidDecl();
3555 FD->removeInClassInitializer();
3556 return;
3557 }
3558
3559 ExprResult Init = InitExpr;
3560 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3561 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
3562 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
3563 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
3564 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
3565 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3566 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3567 if (Init.isInvalid()) {
3568 FD->setInvalidDecl();
3569 return;
3570 }
3571 }
3572
3573 // C++11 [class.base.init]p7:
3574 // The initialization of each base and member constitutes a
3575 // full-expression.
3576 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
3577 if (Init.isInvalid()) {
3578 FD->setInvalidDecl();
3579 return;
3580 }
3581
3582 InitExpr = Init.get();
3583
3584 FD->setInClassInitializer(InitExpr);
3585}
3586
3587/// \brief Find the direct and/or virtual base specifiers that
3588/// correspond to the given base type, for use in base initialization
3589/// within a constructor.
3590static bool FindBaseInitializer(Sema &SemaRef,
3591 CXXRecordDecl *ClassDecl,
3592 QualType BaseType,
3593 const CXXBaseSpecifier *&DirectBaseSpec,
3594 const CXXBaseSpecifier *&VirtualBaseSpec) {
3595 // First, check for a direct base class.
3596 DirectBaseSpec = nullptr;
3597 for (const auto &Base : ClassDecl->bases()) {
3598 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3599 // We found a direct base of this type. That's what we're
3600 // initializing.
3601 DirectBaseSpec = &Base;
3602 break;
3603 }
3604 }
3605
3606 // Check for a virtual base class.
3607 // FIXME: We might be able to short-circuit this if we know in advance that
3608 // there are no virtual bases.
3609 VirtualBaseSpec = nullptr;
3610 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3611 // We haven't found a base yet; search the class hierarchy for a
3612 // virtual base class.
3613 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3614 /*DetectVirtual=*/false);
3615 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3616 SemaRef.Context.getTypeDeclType(ClassDecl),
3617 BaseType, Paths)) {
3618 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3619 Path != Paths.end(); ++Path) {
3620 if (Path->back().Base->isVirtual()) {
3621 VirtualBaseSpec = Path->back().Base;
3622 break;
3623 }
3624 }
3625 }
3626 }
3627
3628 return DirectBaseSpec || VirtualBaseSpec;
3629}
3630
3631/// \brief Handle a C++ member initializer using braced-init-list syntax.
3632MemInitResult
3633Sema::ActOnMemInitializer(Decl *ConstructorD,
3634 Scope *S,
3635 CXXScopeSpec &SS,
3636 IdentifierInfo *MemberOrBase,
3637 ParsedType TemplateTypeTy,
3638 const DeclSpec &DS,
3639 SourceLocation IdLoc,
3640 Expr *InitList,
3641 SourceLocation EllipsisLoc) {
3642 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3643 DS, IdLoc, InitList,
3644 EllipsisLoc);
3645}
3646
3647/// \brief Handle a C++ member initializer using parentheses syntax.
3648MemInitResult
3649Sema::ActOnMemInitializer(Decl *ConstructorD,
3650 Scope *S,
3651 CXXScopeSpec &SS,
3652 IdentifierInfo *MemberOrBase,
3653 ParsedType TemplateTypeTy,
3654 const DeclSpec &DS,
3655 SourceLocation IdLoc,
3656 SourceLocation LParenLoc,
3657 ArrayRef<Expr *> Args,
3658 SourceLocation RParenLoc,
3659 SourceLocation EllipsisLoc) {
3660 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
3661 Args, RParenLoc);
3662 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3663 DS, IdLoc, List, EllipsisLoc);
3664}
3665
3666namespace {
3667
3668// Callback to only accept typo corrections that can be a valid C++ member
3669// intializer: either a non-static field member or a base class.
3670class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
3671public:
3672 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
3673 : ClassDecl(ClassDecl) {}
3674
3675 bool ValidateCandidate(const TypoCorrection &candidate) override {
3676 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
3677 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
3678 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
3679 return isa<TypeDecl>(ND);
3680 }
3681 return false;
3682 }
3683
3684private:
3685 CXXRecordDecl *ClassDecl;
3686};
3687
3688}
3689
3690/// \brief Handle a C++ member initializer.
3691MemInitResult
3692Sema::BuildMemInitializer(Decl *ConstructorD,
3693 Scope *S,
3694 CXXScopeSpec &SS,
3695 IdentifierInfo *MemberOrBase,
3696 ParsedType TemplateTypeTy,
3697 const DeclSpec &DS,
3698 SourceLocation IdLoc,
3699 Expr *Init,
3700 SourceLocation EllipsisLoc) {
3701 ExprResult Res = CorrectDelayedTyposInExpr(Init);
3702 if (!Res.isUsable())
3703 return true;
3704 Init = Res.get();
3705
3706 if (!ConstructorD)
3707 return true;
3708
3709 AdjustDeclIfTemplate(ConstructorD);
3710
3711 CXXConstructorDecl *Constructor
3712 = dyn_cast<CXXConstructorDecl>(ConstructorD);
3713 if (!Constructor) {
3714 // The user wrote a constructor initializer on a function that is
3715 // not a C++ constructor. Ignore the error for now, because we may
3716 // have more member initializers coming; we'll diagnose it just
3717 // once in ActOnMemInitializers.
3718 return true;
3719 }
3720
3721 CXXRecordDecl *ClassDecl = Constructor->getParent();
3722
3723 // C++ [class.base.init]p2:
3724 // Names in a mem-initializer-id are looked up in the scope of the
3725 // constructor's class and, if not found in that scope, are looked
3726 // up in the scope containing the constructor's definition.
3727 // [Note: if the constructor's class contains a member with the
3728 // same name as a direct or virtual base class of the class, a
3729 // mem-initializer-id naming the member or base class and composed
3730 // of a single identifier refers to the class member. A
3731 // mem-initializer-id for the hidden base class may be specified
3732 // using a qualified name. ]
3733 if (!SS.getScopeRep() && !TemplateTypeTy) {
3734 // Look for a member, first.
3735 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
3736 if (!Result.empty()) {
3737 ValueDecl *Member;
3738 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
3739 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
3740 if (EllipsisLoc.isValid())
3741 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
3742 << MemberOrBase
3743 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
3744
3745 return BuildMemberInitializer(Member, Init, IdLoc);
3746 }
3747 }
3748 }
3749 // It didn't name a member, so see if it names a class.
3750 QualType BaseType;
3751 TypeSourceInfo *TInfo = nullptr;
3752
3753 if (TemplateTypeTy) {
3754 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
3755 } else if (DS.getTypeSpecType() == TST_decltype) {
3756 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
3757 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
3758 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
3759 return true;
3760 } else {
3761 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
3762 LookupParsedName(R, S, &SS);
3763
3764 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
3765 if (!TyD) {
3766 if (R.isAmbiguous()) return true;
3767
3768 // We don't want access-control diagnostics here.
3769 R.suppressDiagnostics();
3770
3771 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
3772 bool NotUnknownSpecialization = false;
3773 DeclContext *DC = computeDeclContext(SS, false);
3774 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
3775 NotUnknownSpecialization = !Record->hasAnyDependentBases();
3776
3777 if (!NotUnknownSpecialization) {
3778 // When the scope specifier can refer to a member of an unknown
3779 // specialization, we take it as a type name.
3780 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
3781 SS.getWithLocInContext(Context),
3782 *MemberOrBase, IdLoc);
3783 if (BaseType.isNull())
3784 return true;
3785
3786 TInfo = Context.CreateTypeSourceInfo(BaseType);
3787 DependentNameTypeLoc TL =
3788 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
3789 if (!TL.isNull()) {
3790 TL.setNameLoc(IdLoc);
3791 TL.setElaboratedKeywordLoc(SourceLocation());
3792 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3793 }
3794
3795 R.clear();
3796 R.setLookupName(MemberOrBase);
3797 }
3798 }
3799
3800 // If no results were found, try to correct typos.
3801 TypoCorrection Corr;
3802 if (R.empty() && BaseType.isNull() &&
3803 (Corr = CorrectTypo(
3804 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
3805 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
3806 CTK_ErrorRecovery, ClassDecl))) {
3807 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
3808 // We have found a non-static data member with a similar
3809 // name to what was typed; complain and initialize that
3810 // member.
3811 diagnoseTypo(Corr,
3812 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3813 << MemberOrBase << true);
3814 return BuildMemberInitializer(Member, Init, IdLoc);
3815 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
3816 const CXXBaseSpecifier *DirectBaseSpec;
3817 const CXXBaseSpecifier *VirtualBaseSpec;
3818 if (FindBaseInitializer(*this, ClassDecl,
3819 Context.getTypeDeclType(Type),
3820 DirectBaseSpec, VirtualBaseSpec)) {
3821 // We have found a direct or virtual base class with a
3822 // similar name to what was typed; complain and initialize
3823 // that base class.
3824 diagnoseTypo(Corr,
3825 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3826 << MemberOrBase << false,
3827 PDiag() /*Suppress note, we provide our own.*/);
3828
3829 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
3830 : VirtualBaseSpec;
3831 Diag(BaseSpec->getLocStart(),
3832 diag::note_base_class_specified_here)
3833 << BaseSpec->getType()
3834 << BaseSpec->getSourceRange();
3835
3836 TyD = Type;
3837 }
3838 }
3839 }
3840
3841 if (!TyD && BaseType.isNull()) {
3842 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3843 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3844 return true;
3845 }
3846 }
3847
3848 if (BaseType.isNull()) {
3849 BaseType = Context.getTypeDeclType(TyD);
3850 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3851 if (SS.isSet()) {
3852 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3853 BaseType);
3854 TInfo = Context.CreateTypeSourceInfo(BaseType);
3855 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
3856 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
3857 TL.setElaboratedKeywordLoc(SourceLocation());
3858 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3859 }
3860 }
3861 }
3862
3863 if (!TInfo)
3864 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3865
3866 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3867}
3868
3869/// Checks a member initializer expression for cases where reference (or
3870/// pointer) members are bound to by-value parameters (or their addresses).
3871static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3872 Expr *Init,
3873 SourceLocation IdLoc) {
3874 QualType MemberTy = Member->getType();
3875
3876 // We only handle pointers and references currently.
3877 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3878 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3879 return;
3880
3881 const bool IsPointer = MemberTy->isPointerType();
3882 if (IsPointer) {
3883 if (const UnaryOperator *Op
3884 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3885 // The only case we're worried about with pointers requires taking the
3886 // address.
3887 if (Op->getOpcode() != UO_AddrOf)
3888 return;
3889
3890 Init = Op->getSubExpr();
3891 } else {
3892 // We only handle address-of expression initializers for pointers.
3893 return;
3894 }
3895 }
3896
3897 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3898 // We only warn when referring to a non-reference parameter declaration.
3899 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3900 if (!Parameter || Parameter->getType()->isReferenceType())
3901 return;
3902
3903 S.Diag(Init->getExprLoc(),
3904 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3905 : diag::warn_bind_ref_member_to_parameter)
3906 << Member << Parameter << Init->getSourceRange();
3907 } else {
3908 // Other initializers are fine.
3909 return;
3910 }
3911
3912 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3913 << (unsigned)IsPointer;
3914}
3915
3916MemInitResult
3917Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3918 SourceLocation IdLoc) {
3919 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3920 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3921 assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3922, __PRETTY_FUNCTION__))
3922 "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3922, __PRETTY_FUNCTION__))
;
3923
3924 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3925 return true;
3926
3927 if (Member->isInvalidDecl())
3928 return true;
3929
3930 MultiExprArg Args;
3931 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3932 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3933 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3934 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3935 } else {
3936 // Template instantiation doesn't reconstruct ParenListExprs for us.
3937 Args = Init;
3938 }
3939
3940 SourceRange InitRange = Init->getSourceRange();
3941
3942 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3943 // Can't check initialization for a member of dependent type or when
3944 // any of the arguments are type-dependent expressions.
3945 DiscardCleanupsInEvaluationContext();
3946 } else {
3947 bool InitList = false;
3948 if (isa<InitListExpr>(Init)) {
3949 InitList = true;
3950 Args = Init;
3951 }
3952
3953 // Initialize the member.
3954 InitializedEntity MemberEntity =
3955 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3956 : InitializedEntity::InitializeMember(IndirectMember,
3957 nullptr);
3958 InitializationKind Kind =
3959 InitList ? InitializationKind::CreateDirectList(IdLoc)
3960 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3961 InitRange.getEnd());
3962
3963 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3964 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3965 nullptr);
3966 if (MemberInit.isInvalid())
3967 return true;
3968
3969 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3970
3971 // C++11 [class.base.init]p7:
3972 // The initialization of each base and member constitutes a
3973 // full-expression.
3974 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3975 if (MemberInit.isInvalid())
3976 return true;
3977
3978 Init = MemberInit.get();
3979 }
3980
3981 if (DirectMember) {
3982 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3983 InitRange.getBegin(), Init,
3984 InitRange.getEnd());
3985 } else {
3986 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3987 InitRange.getBegin(), Init,
3988 InitRange.getEnd());
3989 }
3990}
3991
3992MemInitResult
3993Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3994 CXXRecordDecl *ClassDecl) {
3995 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3996 if (!LangOpts.CPlusPlus11)
3997 return Diag(NameLoc, diag::err_delegating_ctor)
3998 << TInfo->getTypeLoc().getLocalSourceRange();
3999 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
4000
4001 bool InitList = true;
4002 MultiExprArg Args = Init;
4003 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4004 InitList = false;
4005 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4006 }
4007
4008 SourceRange InitRange = Init->getSourceRange();
4009 // Initialize the object.
4010 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4011 QualType(ClassDecl->getTypeForDecl(), 0));
4012 InitializationKind Kind =
4013 InitList ? InitializationKind::CreateDirectList(NameLoc)
4014 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4015 InitRange.getEnd());
4016 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4017 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4018 Args, nullptr);
4019 if (DelegationInit.isInvalid())
4020 return true;
4021
4022 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4023, __PRETTY_FUNCTION__))
4023 "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4023, __PRETTY_FUNCTION__))
;
4024
4025 // C++11 [class.base.init]p7:
4026 // The initialization of each base and member constitutes a
4027 // full-expression.
4028 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
4029 InitRange.getBegin());
4030 if (DelegationInit.isInvalid())
4031 return true;
4032
4033 // If we are in a dependent context, template instantiation will
4034 // perform this type-checking again. Just save the arguments that we
4035 // received in a ParenListExpr.
4036 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4037 // of the information that we have about the base
4038 // initializer. However, deconstructing the ASTs is a dicey process,
4039 // and this approach is far more likely to get the corner cases right.
4040 if (CurContext->isDependentContext())
4041 DelegationInit = Init;
4042
4043 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4044 DelegationInit.getAs<Expr>(),
4045 InitRange.getEnd());
4046}
4047
4048MemInitResult
4049Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4050 Expr *Init, CXXRecordDecl *ClassDecl,
4051 SourceLocation EllipsisLoc) {
4052 SourceLocation BaseLoc
4053 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4054
4055 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4056 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4057 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4058
4059 // C++ [class.base.init]p2:
4060 // [...] Unless the mem-initializer-id names a nonstatic data
4061 // member of the constructor's class or a direct or virtual base
4062 // of that class, the mem-initializer is ill-formed. A
4063 // mem-initializer-list can initialize a base class using any
4064 // name that denotes that base class type.
4065 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4066
4067 SourceRange InitRange = Init->getSourceRange();
4068 if (EllipsisLoc.isValid()) {
4069 // This is a pack expansion.
4070 if (!BaseType->containsUnexpandedParameterPack()) {
4071 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4072 << SourceRange(BaseLoc, InitRange.getEnd());
4073
4074 EllipsisLoc = SourceLocation();
4075 }
4076 } else {
4077 // Check for any unexpanded parameter packs.
4078 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4079 return true;
4080
4081 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4082 return true;
4083 }
4084
4085 // Check for direct and virtual base classes.
4086 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4087 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4088 if (!Dependent) {
4089 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4090 BaseType))
4091 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4092
4093 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4094 VirtualBaseSpec);
4095
4096 // C++ [base.class.init]p2:
4097 // Unless the mem-initializer-id names a nonstatic data member of the
4098 // constructor's class or a direct or virtual base of that class, the
4099 // mem-initializer is ill-formed.
4100 if (!DirectBaseSpec && !VirtualBaseSpec) {
4101 // If the class has any dependent bases, then it's possible that
4102 // one of those types will resolve to the same type as
4103 // BaseType. Therefore, just treat this as a dependent base
4104 // class initialization. FIXME: Should we try to check the
4105 // initialization anyway? It seems odd.
4106 if (ClassDecl->hasAnyDependentBases())
4107 Dependent = true;
4108 else
4109 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4110 << BaseType << Context.getTypeDeclType(ClassDecl)
4111 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4112 }
4113 }
4114
4115 if (Dependent) {
4116 DiscardCleanupsInEvaluationContext();
4117
4118 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4119 /*IsVirtual=*/false,
4120 InitRange.getBegin(), Init,
4121 InitRange.getEnd(), EllipsisLoc);
4122 }
4123
4124 // C++ [base.class.init]p2:
4125 // If a mem-initializer-id is ambiguous because it designates both
4126 // a direct non-virtual base class and an inherited virtual base
4127 // class, the mem-initializer is ill-formed.
4128 if (DirectBaseSpec && VirtualBaseSpec)
4129 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4130 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4131
4132 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4133 if (!BaseSpec)
4134 BaseSpec = VirtualBaseSpec;
4135
4136 // Initialize the base.
4137 bool InitList = true;
4138 MultiExprArg Args = Init;
4139 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4140 InitList = false;
4141 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4142 }
4143
4144 InitializedEntity BaseEntity =
4145 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4146 InitializationKind Kind =
4147 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4148 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4149 InitRange.getEnd());
4150 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4151 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4152 if (BaseInit.isInvalid())
4153 return true;
4154
4155 // C++11 [class.base.init]p7:
4156 // The initialization of each base and member constitutes a
4157 // full-expression.
4158 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
4159 if (BaseInit.isInvalid())
4160 return true;
4161
4162 // If we are in a dependent context, template instantiation will
4163 // perform this type-checking again. Just save the arguments that we
4164 // received in a ParenListExpr.
4165 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4166 // of the information that we have about the base
4167 // initializer. However, deconstructing the ASTs is a dicey process,
4168 // and this approach is far more likely to get the corner cases right.
4169 if (CurContext->isDependentContext())
4170 BaseInit = Init;
4171
4172 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4173 BaseSpec->isVirtual(),
4174 InitRange.getBegin(),
4175 BaseInit.getAs<Expr>(),
4176 InitRange.getEnd(), EllipsisLoc);
4177}
4178
4179// Create a static_cast\<T&&>(expr).
4180static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4181 if (T.isNull()) T = E->getType();
4182 QualType TargetType = SemaRef.BuildReferenceType(
4183 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4184 SourceLocation ExprLoc = E->getLocStart();
4185 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4186 TargetType, ExprLoc);
4187
4188 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4189 SourceRange(ExprLoc, ExprLoc),
4190 E->getSourceRange()).get();
4191}
4192
4193/// ImplicitInitializerKind - How an implicit base or member initializer should
4194/// initialize its base or member.
4195enum ImplicitInitializerKind {
4196 IIK_Default,
4197 IIK_Copy,
4198 IIK_Move,
4199 IIK_Inherit
4200};
4201
4202static bool
4203BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4204 ImplicitInitializerKind ImplicitInitKind,
4205 CXXBaseSpecifier *BaseSpec,
4206 bool IsInheritedVirtualBase,
4207 CXXCtorInitializer *&CXXBaseInit) {
4208 InitializedEntity InitEntity
4209 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4210 IsInheritedVirtualBase);
4211
4212 ExprResult BaseInit;
4213
4214 switch (ImplicitInitKind) {
4215 case IIK_Inherit:
4216 case IIK_Default: {
4217 InitializationKind InitKind
4218 = InitializationKind::CreateDefault(Constructor->getLocation());
4219 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4220 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4221 break;
4222 }
4223
4224 case IIK_Move:
4225 case IIK_Copy: {
4226 bool Moving = ImplicitInitKind == IIK_Move;
4227 ParmVarDecl *Param = Constructor->getParamDecl(0);
4228 QualType ParamType = Param->getType().getNonReferenceType();
4229
4230 Expr *CopyCtorArg =
4231 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4232 SourceLocation(), Param, false,
4233 Constructor->getLocation(), ParamType,
4234 VK_LValue, nullptr);
4235
4236 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4237
4238 // Cast to the base class to avoid ambiguities.
4239 QualType ArgTy =
4240 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4241 ParamType.getQualifiers());
4242
4243 if (Moving) {
4244 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4245 }
4246
4247 CXXCastPath BasePath;
4248 BasePath.push_back(BaseSpec);
4249 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4250 CK_UncheckedDerivedToBase,
4251 Moving ? VK_XValue : VK_LValue,
4252 &BasePath).get();
4253
4254 InitializationKind InitKind
4255 = InitializationKind::CreateDirect(Constructor->getLocation(),
4256 SourceLocation(), SourceLocation());
4257 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4258 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4259 break;
4260 }
4261 }
4262
4263 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4264 if (BaseInit.isInvalid())
4265 return true;
4266
4267 CXXBaseInit =
4268 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4269 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4270 SourceLocation()),
4271 BaseSpec->isVirtual(),
4272 SourceLocation(),
4273 BaseInit.getAs<Expr>(),
4274 SourceLocation(),
4275 SourceLocation());
4276
4277 return false;
4278}
4279
4280static bool RefersToRValueRef(Expr *MemRef) {
4281 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4282 return Referenced->getType()->isRValueReferenceType();
4283}
4284
4285static bool
4286BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4287 ImplicitInitializerKind ImplicitInitKind,
4288 FieldDecl *Field, IndirectFieldDecl *Indirect,
4289 CXXCtorInitializer *&CXXMemberInit) {
4290 if (Field->isInvalidDecl())
4291 return true;
4292
4293 SourceLocation Loc = Constructor->getLocation();
4294
4295 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4296 bool Moving = ImplicitInitKind == IIK_Move;
4297 ParmVarDecl *Param = Constructor->getParamDecl(0);
4298 QualType ParamType = Param->getType().getNonReferenceType();
4299
4300 // Suppress copying zero-width bitfields.
4301 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
4302 return false;
4303
4304 Expr *MemberExprBase =
4305 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4306 SourceLocation(), Param, false,
4307 Loc, ParamType, VK_LValue, nullptr);
4308
4309 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4310
4311 if (Moving) {
4312 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4313 }
4314
4315 // Build a reference to this field within the parameter.
4316 CXXScopeSpec SS;
4317 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4318 Sema::LookupMemberName);
4319 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4320 : cast<ValueDecl>(Field), AS_public);
4321 MemberLookup.resolveKind();
4322 ExprResult CtorArg
4323 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4324 ParamType, Loc,
4325 /*IsArrow=*/false,
4326 SS,
4327 /*TemplateKWLoc=*/SourceLocation(),
4328 /*FirstQualifierInScope=*/nullptr,
4329 MemberLookup,
4330 /*TemplateArgs=*/nullptr,
4331 /*S*/nullptr);
4332 if (CtorArg.isInvalid())
4333 return true;
4334
4335 // C++11 [class.copy]p15:
4336 // - if a member m has rvalue reference type T&&, it is direct-initialized
4337 // with static_cast<T&&>(x.m);
4338 if (RefersToRValueRef(CtorArg.get())) {
4339 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4340 }
4341
4342 InitializedEntity Entity =
4343 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4344 /*Implicit*/ true)
4345 : InitializedEntity::InitializeMember(Field, nullptr,
4346 /*Implicit*/ true);
4347
4348 // Direct-initialize to use the copy constructor.
4349 InitializationKind InitKind =
4350 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4351
4352 Expr *CtorArgE = CtorArg.getAs<Expr>();
4353 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4354 ExprResult MemberInit =
4355 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4356 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4357 if (MemberInit.isInvalid())
4358 return true;
4359
4360 if (Indirect)
4361 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4362 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4363 else
4364 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4365 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4366 return false;
4367 }
4368
4369 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4370, __PRETTY_FUNCTION__))
4370 "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4370, __PRETTY_FUNCTION__))
;
4371
4372 QualType FieldBaseElementType =
4373 SemaRef.Context.getBaseElementType(Field->getType());
4374
4375 if (FieldBaseElementType->isRecordType()) {
4376 InitializedEntity InitEntity =
4377 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4378 /*Implicit*/ true)
4379 : InitializedEntity::InitializeMember(Field, nullptr,
4380 /*Implicit*/ true);
4381 InitializationKind InitKind =
4382 InitializationKind::CreateDefault(Loc);
4383
4384 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4385 ExprResult MemberInit =
4386 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4387
4388 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4389 if (MemberInit.isInvalid())
4390 return true;
4391
4392 if (Indirect)
4393 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4394 Indirect, Loc,
4395 Loc,
4396 MemberInit.get(),
4397 Loc);
4398 else
4399 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4400 Field, Loc, Loc,
4401 MemberInit.get(),
4402 Loc);
4403 return false;
4404 }
4405
4406 if (!Field->getParent()->isUnion()) {
4407 if (FieldBaseElementType->isReferenceType()) {
4408 SemaRef.Diag(Constructor->getLocation(),
4409 diag::err_uninitialized_member_in_ctor)
4410 << (int)Constructor->isImplicit()
4411 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4412 << 0 << Field->getDeclName();
4413 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4414 return true;
4415 }
4416
4417 if (FieldBaseElementType.isConstQualified()) {
4418 SemaRef.Diag(Constructor->getLocation(),
4419 diag::err_uninitialized_member_in_ctor)
4420 << (int)Constructor->isImplicit()
4421 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4422 << 1 << Field->getDeclName();
4423 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4424 return true;
4425 }
4426 }
4427
4428 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4429 // ARC and Weak:
4430 // Default-initialize Objective-C pointers to NULL.
4431 CXXMemberInit
4432 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4433 Loc, Loc,
4434 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4435 Loc);
4436 return false;
4437 }
4438
4439 // Nothing to initialize.
4440 CXXMemberInit = nullptr;
4441 return false;
4442}
4443
4444namespace {
4445struct BaseAndFieldInfo {
4446 Sema &S;
4447 CXXConstructorDecl *Ctor;
4448 bool AnyErrorsInInits;
4449 ImplicitInitializerKind IIK;
4450 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4451 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4452 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4453
4454 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4455 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4456 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4457 if (Ctor->getInheritedConstructor())
4458 IIK = IIK_Inherit;
4459 else if (Generated && Ctor->isCopyConstructor())
4460 IIK = IIK_Copy;
4461 else if (Generated && Ctor->isMoveConstructor())
4462 IIK = IIK_Move;
4463 else
4464 IIK = IIK_Default;
4465 }
4466
4467 bool isImplicitCopyOrMove() const {
4468 switch (IIK) {
4469 case IIK_Copy:
4470 case IIK_Move:
4471 return true;
4472
4473 case IIK_Default:
4474 case IIK_Inherit:
4475 return false;
4476 }
4477
4478 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4478)
;
4479 }
4480
4481 bool addFieldInitializer(CXXCtorInitializer *Init) {
4482 AllToInit.push_back(Init);
4483
4484 // Check whether this initializer makes the field "used".
4485 if (Init->getInit()->HasSideEffects(S.Context))
4486 S.UnusedPrivateFields.remove(Init->getAnyMember());
4487
4488 return false;
4489 }
4490
4491 bool isInactiveUnionMember(FieldDecl *Field) {
4492 RecordDecl *Record = Field->getParent();
4493 if (!Record->isUnion())
4494 return false;
4495
4496 if (FieldDecl *Active =
4497 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4498 return Active != Field->getCanonicalDecl();
4499
4500 // In an implicit copy or move constructor, ignore any in-class initializer.
4501 if (isImplicitCopyOrMove())
4502 return true;
4503
4504 // If there's no explicit initialization, the field is active only if it
4505 // has an in-class initializer...
4506 if (Field->hasInClassInitializer())
4507 return false;
4508 // ... or it's an anonymous struct or union whose class has an in-class
4509 // initializer.
4510 if (!Field->isAnonymousStructOrUnion())
4511 return true;
4512 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4513 return !FieldRD->hasInClassInitializer();
4514 }
4515
4516 /// \brief Determine whether the given field is, or is within, a union member
4517 /// that is inactive (because there was an initializer given for a different
4518 /// member of the union, or because the union was not initialized at all).
4519 bool isWithinInactiveUnionMember(FieldDecl *Field,
4520 IndirectFieldDecl *Indirect) {
4521 if (!Indirect)
4522 return isInactiveUnionMember(Field);
4523
4524 for (auto *C : Indirect->chain()) {
4525 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4526 if (Field && isInactiveUnionMember(Field))
4527 return true;
4528 }
4529 return false;
4530 }
4531};
4532}
4533
4534/// \brief Determine whether the given type is an incomplete or zero-lenfgth
4535/// array type.
4536static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4537 if (T->isIncompleteArrayType())
4538 return true;
4539
4540 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4541 if (!ArrayT->getSize())
4542 return true;
4543
4544 T = ArrayT->getElementType();
4545 }
4546
4547 return false;
4548}
4549
4550static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4551 FieldDecl *Field,
4552 IndirectFieldDecl *Indirect = nullptr) {
4553 if (Field->isInvalidDecl())
4554 return false;
4555
4556 // Overwhelmingly common case: we have a direct initializer for this field.
4557 if (CXXCtorInitializer *Init =
4558 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4559 return Info.addFieldInitializer(Init);
4560
4561 // C++11 [class.base.init]p8:
4562 // if the entity is a non-static data member that has a
4563 // brace-or-equal-initializer and either
4564 // -- the constructor's class is a union and no other variant member of that
4565 // union is designated by a mem-initializer-id or
4566 // -- the constructor's class is not a union, and, if the entity is a member
4567 // of an anonymous union, no other member of that union is designated by
4568 // a mem-initializer-id,
4569 // the entity is initialized as specified in [dcl.init].
4570 //
4571 // We also apply the same rules to handle anonymous structs within anonymous
4572 // unions.
4573 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4574 return false;
4575
4576 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4577 ExprResult DIE =
4578 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4579 if (DIE.isInvalid())
4580 return true;
4581 CXXCtorInitializer *Init;
4582 if (Indirect)
4583 Init = new (SemaRef.Context)
4584 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4585 SourceLocation(), DIE.get(), SourceLocation());
4586 else
4587 Init = new (SemaRef.Context)
4588 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4589 SourceLocation(), DIE.get(), SourceLocation());
4590 return Info.addFieldInitializer(Init);
4591 }
4592
4593 // Don't initialize incomplete or zero-length arrays.
4594 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4595 return false;
4596
4597 // Don't try to build an implicit initializer if there were semantic
4598 // errors in any of the initializers (and therefore we might be
4599 // missing some that the user actually wrote).
4600 if (Info.AnyErrorsInInits)
4601 return false;
4602
4603 CXXCtorInitializer *Init = nullptr;
4604 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4605 Indirect, Init))
4606 return true;
4607
4608 if (!Init)
4609 return false;
4610
4611 return Info.addFieldInitializer(Init);
4612}
4613
4614bool
4615Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4616 CXXCtorInitializer *Initializer) {
4617 assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast<
void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4617, __PRETTY_FUNCTION__))
;
4618 Constructor->setNumCtorInitializers(1);
4619 CXXCtorInitializer **initializer =
4620 new (Context) CXXCtorInitializer*[1];
4621 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4622 Constructor->setCtorInitializers(initializer);
4623
4624 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4625 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4626 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4627 }
4628
4629 DelegatingCtorDecls.push_back(Constructor);
4630
4631 DiagnoseUninitializedFields(*this, Constructor);
4632
4633 return false;
4634}
4635
4636bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4637 ArrayRef<CXXCtorInitializer *> Initializers) {
4638 if (Constructor->isDependentContext()) {
4639 // Just store the initializers as written, they will be checked during
4640 // instantiation.
4641 if (!Initializers.empty()) {
4642 Constructor->setNumCtorInitializers(Initializers.size());
4643 CXXCtorInitializer **baseOrMemberInitializers =
4644 new (Context) CXXCtorInitializer*[Initializers.size()];
4645 memcpy(baseOrMemberInitializers, Initializers.data(),
4646 Initializers.size() * sizeof(CXXCtorInitializer*));
4647 Constructor->setCtorInitializers(baseOrMemberInitializers);
4648 }
4649
4650 // Let template instantiation know whether we had errors.
4651 if (AnyErrors)
4652 Constructor->setInvalidDecl();
4653
4654 return false;
4655 }
4656
4657 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4658
4659 // We need to build the initializer AST according to order of construction
4660 // and not what user specified in the Initializers list.
4661 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4662 if (!ClassDecl)
4663 return true;
4664
4665 bool HadError = false;
4666
4667 for (unsigned i = 0; i < Initializers.size(); i++) {
4668 CXXCtorInitializer *Member = Initializers[i];
4669
4670 if (Member->isBaseInitializer())
4671 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4672 else {
4673 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4674
4675 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4676 for (auto *C : F->chain()) {
4677 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4678 if (FD && FD->getParent()->isUnion())
4679 Info.ActiveUnionMember.insert(std::make_pair(
4680 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4681 }
4682 } else if (FieldDecl *FD = Member->getMember()) {
4683 if (FD->getParent()->isUnion())
4684 Info.ActiveUnionMember.insert(std::make_pair(
4685 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4686 }
4687 }
4688 }
4689
4690 // Keep track of the direct virtual bases.
4691 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4692 for (auto &I : ClassDecl->bases()) {
4693 if (I.isVirtual())
4694 DirectVBases.insert(&I);
4695 }
4696
4697 // Push virtual bases before others.
4698 for (auto &VBase : ClassDecl->vbases()) {
4699 if (CXXCtorInitializer *Value
4700 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
4701 // [class.base.init]p7, per DR257:
4702 // A mem-initializer where the mem-initializer-id names a virtual base
4703 // class is ignored during execution of a constructor of any class that
4704 // is not the most derived class.
4705 if (ClassDecl->isAbstract()) {
4706 // FIXME: Provide a fixit to remove the base specifier. This requires
4707 // tracking the location of the associated comma for a base specifier.
4708 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
4709 << VBase.getType() << ClassDecl;
4710 DiagnoseAbstractType(ClassDecl);
4711 }
4712
4713 Info.AllToInit.push_back(Value);
4714 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
4715 // [class.base.init]p8, per DR257:
4716 // If a given [...] base class is not named by a mem-initializer-id
4717 // [...] and the entity is not a virtual base class of an abstract
4718 // class, then [...] the entity is default-initialized.
4719 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
4720 CXXCtorInitializer *CXXBaseInit;
4721 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4722 &VBase, IsInheritedVirtualBase,
4723 CXXBaseInit)) {
4724 HadError = true;
4725 continue;
4726 }
4727
4728 Info.AllToInit.push_back(CXXBaseInit);
4729 }
4730 }
4731
4732 // Non-virtual bases.
4733 for (auto &Base : ClassDecl->bases()) {
4734 // Virtuals are in the virtual base list and already constructed.
4735 if (Base.isVirtual())
4736 continue;
4737
4738 if (CXXCtorInitializer *Value
4739 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
4740 Info.AllToInit.push_back(Value);
4741 } else if (!AnyErrors) {
4742 CXXCtorInitializer *CXXBaseInit;
4743 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4744 &Base, /*IsInheritedVirtualBase=*/false,
4745 CXXBaseInit)) {
4746 HadError = true;
4747 continue;
4748 }
4749
4750 Info.AllToInit.push_back(CXXBaseInit);
4751 }
4752 }
4753
4754 // Fields.
4755 for (auto *Mem : ClassDecl->decls()) {
4756 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4757 // C++ [class.bit]p2:
4758 // A declaration for a bit-field that omits the identifier declares an
4759 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4760 // initialized.
4761 if (F->isUnnamedBitfield())
4762 continue;
4763
4764 // If we're not generating the implicit copy/move constructor, then we'll
4765 // handle anonymous struct/union fields based on their individual
4766 // indirect fields.
4767 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4768 continue;
4769
4770 if (CollectFieldInitializer(*this, Info, F))
4771 HadError = true;
4772 continue;
4773 }
4774
4775 // Beyond this point, we only consider default initialization.
4776 if (Info.isImplicitCopyOrMove())
4777 continue;
4778
4779 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4780 if (F->getType()->isIncompleteArrayType()) {
4781 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4782, __PRETTY_FUNCTION__))
4782 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4782, __PRETTY_FUNCTION__))
;
4783 continue;
4784 }
4785
4786 // Initialize each field of an anonymous struct individually.
4787 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4788 HadError = true;
4789
4790 continue;
4791 }
4792 }
4793
4794 unsigned NumInitializers = Info.AllToInit.size();
4795 if (NumInitializers > 0) {
4796 Constructor->setNumCtorInitializers(NumInitializers);
4797 CXXCtorInitializer **baseOrMemberInitializers =
4798 new (Context) CXXCtorInitializer*[NumInitializers];
4799 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4800 NumInitializers * sizeof(CXXCtorInitializer*));
4801 Constructor->setCtorInitializers(baseOrMemberInitializers);
4802
4803 // Constructors implicitly reference the base and member
4804 // destructors.
4805 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4806 Constructor->getParent());
4807 }
4808
4809 return HadError;
4810}
4811
4812static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4813 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4814 const RecordDecl *RD = RT->getDecl();
4815 if (RD->isAnonymousStructOrUnion()) {
4816 for (auto *Field : RD->fields())
4817 PopulateKeysForFields(Field, IdealInits);
4818 return;
4819 }
4820 }
4821 IdealInits.push_back(Field->getCanonicalDecl());
4822}
4823
4824static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4825 return Context.getCanonicalType(BaseType).getTypePtr();
4826}
4827
4828static const void *GetKeyForMember(ASTContext &Context,
4829 CXXCtorInitializer *Member) {
4830 if (!Member->isAnyMemberInitializer())
4831 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4832
4833 return Member->getAnyMember()->getCanonicalDecl();
4834}
4835
4836static void DiagnoseBaseOrMemInitializerOrder(
4837 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4838 ArrayRef<CXXCtorInitializer *> Inits) {
4839 if (Constructor->getDeclContext()->isDependentContext())
4840 return;
4841
4842 // Don't check initializers order unless the warning is enabled at the
4843 // location of at least one initializer.
4844 bool ShouldCheckOrder = false;
4845 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4846 CXXCtorInitializer *Init = Inits[InitIndex];
4847 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4848 Init->getSourceLocation())) {
4849 ShouldCheckOrder = true;
4850 break;
4851 }
4852 }
4853 if (!ShouldCheckOrder)
4854 return;
4855
4856 // Build the list of bases and members in the order that they'll
4857 // actually be initialized. The explicit initializers should be in
4858 // this same order but may be missing things.
4859 SmallVector<const void*, 32> IdealInitKeys;
4860
4861 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4862
4863 // 1. Virtual bases.
4864 for (const auto &VBase : ClassDecl->vbases())
4865 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4866
4867 // 2. Non-virtual bases.
4868 for (const auto &Base : ClassDecl->bases()) {
4869 if (Base.isVirtual())
4870 continue;
4871 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4872 }
4873
4874 // 3. Direct fields.
4875 for (auto *Field : ClassDecl->fields()) {
4876 if (Field->isUnnamedBitfield())
4877 continue;
4878
4879 PopulateKeysForFields(Field, IdealInitKeys);
4880 }
4881
4882 unsigned NumIdealInits = IdealInitKeys.size();
4883 unsigned IdealIndex = 0;
4884
4885 CXXCtorInitializer *PrevInit = nullptr;
4886 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4887 CXXCtorInitializer *Init = Inits[InitIndex];
4888 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4889
4890 // Scan forward to try to find this initializer in the idealized
4891 // initializers list.
4892 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4893 if (InitKey == IdealInitKeys[IdealIndex])
4894 break;
4895
4896 // If we didn't find this initializer, it must be because we
4897 // scanned past it on a previous iteration. That can only
4898 // happen if we're out of order; emit a warning.
4899 if (IdealIndex == NumIdealInits && PrevInit) {
4900 Sema::SemaDiagnosticBuilder D =
4901 SemaRef.Diag(PrevInit->getSourceLocation(),
4902 diag::warn_initializer_out_of_order);
4903
4904 if (PrevInit->isAnyMemberInitializer())
4905 D << 0 << PrevInit->getAnyMember()->getDeclName();
4906 else
4907 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4908
4909 if (Init->isAnyMemberInitializer())
4910 D << 0 << Init->getAnyMember()->getDeclName();
4911 else
4912 D << 1 << Init->getTypeSourceInfo()->getType();
4913
4914 // Move back to the initializer's location in the ideal list.
4915 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4916 if (InitKey == IdealInitKeys[IdealIndex])
4917 break;
4918
4919 assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4920, __PRETTY_FUNCTION__))
4920 "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4920, __PRETTY_FUNCTION__))
;
4921 }
4922
4923 PrevInit = Init;
4924 }
4925}
4926
4927namespace {
4928bool CheckRedundantInit(Sema &S,
4929 CXXCtorInitializer *Init,
4930 CXXCtorInitializer *&PrevInit) {
4931 if (!PrevInit) {
4932 PrevInit = Init;
4933 return false;
4934 }
4935
4936 if (FieldDecl *Field = Init->getAnyMember())
4937 S.Diag(Init->getSourceLocation(),
4938 diag::err_multiple_mem_initialization)
4939 << Field->getDeclName()
4940 << Init->getSourceRange();
4941 else {
4942 const Type *BaseClass = Init->getBaseClass();
4943 assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast
<void> (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4943, __PRETTY_FUNCTION__))
;
4944 S.Diag(Init->getSourceLocation(),
4945 diag::err_multiple_base_initialization)
4946 << QualType(BaseClass, 0)
4947 << Init->getSourceRange();
4948 }
4949 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4950 << 0 << PrevInit->getSourceRange();
4951
4952 return true;
4953}
4954
4955typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4956typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4957
4958bool CheckRedundantUnionInit(Sema &S,
4959 CXXCtorInitializer *Init,
4960 RedundantUnionMap &Unions) {
4961 FieldDecl *Field = Init->getAnyMember();
4962 RecordDecl *Parent = Field->getParent();
4963 NamedDecl *Child = Field;
4964
4965 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4966 if (Parent->isUnion()) {
4967 UnionEntry &En = Unions[Parent];
4968 if (En.first && En.first != Child) {
4969 S.Diag(Init->getSourceLocation(),
4970 diag::err_multiple_mem_union_initialization)
4971 << Field->getDeclName()
4972 << Init->getSourceRange();
4973 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4974 << 0 << En.second->getSourceRange();
4975 return true;
4976 }
4977 if (!En.first) {
4978 En.first = Child;
4979 En.second = Init;
4980 }
4981 if (!Parent->isAnonymousStructOrUnion())
4982 return false;
4983 }
4984
4985 Child = Parent;
4986 Parent = cast<RecordDecl>(Parent->getDeclContext());
4987 }
4988
4989 return false;
4990}
4991}
4992
4993/// ActOnMemInitializers - Handle the member initializers for a constructor.
4994void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4995 SourceLocation ColonLoc,
4996 ArrayRef<CXXCtorInitializer*> MemInits,
4997 bool AnyErrors) {
4998 if (!ConstructorDecl)
4999 return;
5000
5001 AdjustDeclIfTemplate(ConstructorDecl);
5002
5003 CXXConstructorDecl *Constructor
5004 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5005
5006 if (!Constructor) {
5007 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5008 return;
5009 }
5010
5011 // Mapping for the duplicate initializers check.
5012 // For member initializers, this is keyed with a FieldDecl*.
5013 // For base initializers, this is keyed with a Type*.
5014 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5015
5016 // Mapping for the inconsistent anonymous-union initializers check.
5017 RedundantUnionMap MemberUnions;
5018
5019 bool HadError = false;
5020 for (unsigned i = 0; i < MemInits.size(); i++) {
5021 CXXCtorInitializer *Init = MemInits[i];
5022
5023 // Set the source order index.
5024 Init->setSourceOrder(i);
5025
5026 if (Init->isAnyMemberInitializer()) {
5027 const void *Key = GetKeyForMember(Context, Init);
5028 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5029 CheckRedundantUnionInit(*this, Init, MemberUnions))
5030 HadError = true;
5031 } else if (Init->isBaseInitializer()) {
5032 const void *Key = GetKeyForMember(Context, Init);
5033 if (CheckRedundantInit(*this, Init, Members[Key]))
5034 HadError = true;
5035 } else {
5036 assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void>
(0) : __assert_fail ("Init->isDelegatingInitializer()", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5036, __PRETTY_FUNCTION__))
;
5037 // This must be the only initializer
5038 if (MemInits.size() != 1) {
5039 Diag(Init->getSourceLocation(),
5040 diag::err_delegating_initializer_alone)
5041 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5042 // We will treat this as being the only initializer.
5043 }
5044 SetDelegatingInitializer(Constructor, MemInits[i]);
5045 // Return immediately as the initializer is set.
5046 return;
5047 }
5048 }
5049
5050 if (HadError)
5051 return;
5052
5053 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5054
5055 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5056
5057 DiagnoseUninitializedFields(*this, Constructor);
5058}
5059
5060void
5061Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5062 CXXRecordDecl *ClassDecl) {
5063 // Ignore dependent contexts. Also ignore unions, since their members never
5064 // have destructors implicitly called.
5065 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5066 return;
5067
5068 // FIXME: all the access-control diagnostics are positioned on the
5069 // field/base declaration. That's probably good; that said, the
5070 // user might reasonably want to know why the destructor is being
5071 // emitted, and we currently don't say.
5072
5073 // Non-static data members.
5074 for (auto *Field : ClassDecl->fields()) {
5075 if (Field->isInvalidDecl())
5076 continue;
5077
5078 // Don't destroy incomplete or zero-length arrays.
5079 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5080 continue;
5081
5082 QualType FieldType = Context.getBaseElementType(Field->getType());
5083
5084 const RecordType* RT = FieldType->getAs<RecordType>();
5085 if (!RT)
5086 continue;
5087
5088 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5089 if (FieldClassDecl->isInvalidDecl())
5090 continue;
5091 if (FieldClassDecl->hasIrrelevantDestructor())
5092 continue;
5093 // The destructor for an implicit anonymous union member is never invoked.
5094 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5095 continue;
5096
5097 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5098 assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5098, __PRETTY_FUNCTION__))
;
5099 CheckDestructorAccess(Field->getLocation(), Dtor,
5100 PDiag(diag::err_access_dtor_field)
5101 << Field->getDeclName()
5102 << FieldType);
5103
5104 MarkFunctionReferenced(Location, Dtor);
5105 DiagnoseUseOfDecl(Dtor, Location);
5106 }
5107
5108 // We only potentially invoke the destructors of potentially constructed
5109 // subobjects.
5110 bool VisitVirtualBases = !ClassDecl->isAbstract();
5111
5112 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5113
5114 // Bases.
5115 for (const auto &Base : ClassDecl->bases()) {
5116 // Bases are always records in a well-formed non-dependent class.
5117 const RecordType *RT = Base.getType()->getAs<RecordType>();
5118
5119 // Remember direct virtual bases.
5120 if (Base.isVirtual()) {
5121 if (!VisitVirtualBases)
5122 continue;
5123 DirectVirtualBases.insert(RT);
5124 }
5125
5126 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5127 // If our base class is invalid, we probably can't get its dtor anyway.
5128 if (BaseClassDecl->isInvalidDecl())
5129 continue;
5130 if (BaseClassDecl->hasIrrelevantDestructor())
5131 continue;
5132
5133 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5134 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5134, __PRETTY_FUNCTION__))
;
5135
5136 // FIXME: caret should be on the start of the class name
5137 CheckDestructorAccess(Base.getLocStart(), Dtor,
5138 PDiag(diag::err_access_dtor_base)
5139 << Base.getType()
5140 << Base.getSourceRange(),
5141 Context.getTypeDeclType(ClassDecl));
5142
5143 MarkFunctionReferenced(Location, Dtor);
5144 DiagnoseUseOfDecl(Dtor, Location);
5145 }
5146
5147 if (!VisitVirtualBases)
5148 return;
5149
5150 // Virtual bases.
5151 for (const auto &VBase : ClassDecl->vbases()) {
5152 // Bases are always records in a well-formed non-dependent class.
5153 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5154
5155 // Ignore direct virtual bases.
5156 if (DirectVirtualBases.count(RT))
5157 continue;
5158
5159 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5160 // If our base class is invalid, we probably can't get its dtor anyway.
5161 if (BaseClassDecl->isInvalidDecl())
5162 continue;
5163 if (BaseClassDecl->hasIrrelevantDestructor())
5164 continue;
5165
5166 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5167 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5167, __PRETTY_FUNCTION__))
;
5168 if (CheckDestructorAccess(
5169 ClassDecl->getLocation(), Dtor,
5170 PDiag(diag::err_access_dtor_vbase)
5171 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5172 Context.getTypeDeclType(ClassDecl)) ==
5173 AR_accessible) {
5174 CheckDerivedToBaseConversion(
5175 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5176 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5177 SourceRange(), DeclarationName(), nullptr);
5178 }
5179
5180 MarkFunctionReferenced(Location, Dtor);
5181 DiagnoseUseOfDecl(Dtor, Location);
5182 }
5183}
5184
5185void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5186 if (!CDtorDecl)
5187 return;
5188
5189 if (CXXConstructorDecl *Constructor
5190 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5191 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5192 DiagnoseUninitializedFields(*this, Constructor);
5193 }
5194}
5195
5196bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5197 if (!getLangOpts().CPlusPlus)
5198 return false;
5199
5200 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5201 if (!RD)
5202 return false;
5203
5204 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5205 // class template specialization here, but doing so breaks a lot of code.
5206
5207 // We can't answer whether something is abstract until it has a
5208 // definition. If it's currently being defined, we'll walk back
5209 // over all the declarations when we have a full definition.
5210 const CXXRecordDecl *Def = RD->getDefinition();
5211 if (!Def || Def->isBeingDefined())
5212 return false;
5213
5214 return RD->isAbstract();
5215}
5216
5217bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5218 TypeDiagnoser &Diagnoser) {
5219 if (!isAbstractType(Loc, T))
5220 return false;
5221
5222 T = Context.getBaseElementType(T);
5223 Diagnoser.diagnose(*this, Loc, T);
5224 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5225 return true;
5226}
5227
5228void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5229 // Check if we've already emitted the list of pure virtual functions
5230 // for this class.
5231 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5232 return;
5233
5234 // If the diagnostic is suppressed, don't emit the notes. We're only
5235 // going to emit them once, so try to attach them to a diagnostic we're
5236 // actually going to show.
5237 if (Diags.isLastDiagnosticIgnored())
5238 return;
5239
5240 CXXFinalOverriderMap FinalOverriders;
5241 RD->getFinalOverriders(FinalOverriders);
5242
5243 // Keep a set of seen pure methods so we won't diagnose the same method
5244 // more than once.
5245 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5246
5247 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5248 MEnd = FinalOverriders.end();
5249 M != MEnd;
5250 ++M) {
5251 for (OverridingMethods::iterator SO = M->second.begin(),
5252 SOEnd = M->second.end();
5253 SO != SOEnd; ++SO) {
5254 // C++ [class.abstract]p4:
5255 // A class is abstract if it contains or inherits at least one
5256 // pure virtual function for which the final overrider is pure
5257 // virtual.
5258
5259 //
5260 if (SO->second.size() != 1)
5261 continue;
5262
5263 if (!SO->second.front().Method->isPure())
5264 continue;
5265
5266 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5267 continue;
5268
5269 Diag(SO->second.front().Method->getLocation(),
5270 diag::note_pure_virtual_function)
5271 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5272 }
5273 }
5274
5275 if (!PureVirtualClassDiagSet)
5276 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5277 PureVirtualClassDiagSet->insert(RD);
5278}
5279
5280namespace {
5281struct AbstractUsageInfo {
5282 Sema &S;
5283 CXXRecordDecl *Record;
5284 CanQualType AbstractType;
5285 bool Invalid;
5286
5287 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5288 : S(S), Record(Record),
5289 AbstractType(S.Context.getCanonicalType(
5290 S.Context.getTypeDeclType(Record))),
5291 Invalid(false) {}
5292
5293 void DiagnoseAbstractType() {
5294 if (Invalid) return;
5295 S.DiagnoseAbstractType(Record);
5296 Invalid = true;
5297 }
5298
5299 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5300};
5301
5302struct CheckAbstractUsage {
5303 AbstractUsageInfo &Info;
5304 const NamedDecl *Ctx;
5305
5306 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5307 : Info(Info), Ctx(Ctx) {}
5308
5309 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5310 switch (TL.getTypeLocClass()) {
5311#define ABSTRACT_TYPELOC(CLASS, PARENT)
5312#define TYPELOC(CLASS, PARENT) \
5313 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5314#include "clang/AST/TypeLocNodes.def"
5315 }
5316 }
5317
5318 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5319 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5320 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5321 if (!TL.getParam(I))
5322 continue;
5323
5324 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5325 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5326 }
5327 }
5328
5329 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5330 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5331 }
5332
5333 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5334 // Visit the type parameters from a permissive context.
5335 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5336 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5337 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5338 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5339 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5340 // TODO: other template argument types?
5341 }
5342 }
5343
5344 // Visit pointee types from a permissive context.
5345#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5346 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5347 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5348 }
5349 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5350 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5351 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5352 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5353 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5354
5355 /// Handle all the types we haven't given a more specific
5356 /// implementation for above.
5357 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5358 // Every other kind of type that we haven't called out already
5359 // that has an inner type is either (1) sugar or (2) contains that
5360 // inner type in some way as a subobject.
5361 if (TypeLoc Next = TL.getNextTypeLoc())
5362 return Visit(Next, Sel);
5363
5364 // If there's no inner type and we're in a permissive context,
5365 // don't diagnose.
5366 if (Sel == Sema::AbstractNone) return;
5367
5368 // Check whether the type matches the abstract type.
5369 QualType T = TL.getType();
5370 if (T->isArrayType()) {
5371 Sel = Sema::AbstractArrayType;
5372 T = Info.S.Context.getBaseElementType(T);
5373 }
5374 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5375 if (CT != Info.AbstractType) return;
5376
5377 // It matched; do some magic.
5378 if (Sel == Sema::AbstractArrayType) {
5379 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5380 << T << TL.getSourceRange();
5381 } else {
5382 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5383 << Sel << T << TL.getSourceRange();
5384 }
5385 Info.DiagnoseAbstractType();
5386 }
5387};
5388
5389void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5390 Sema::AbstractDiagSelID Sel) {
5391 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5392}
5393
5394}
5395
5396/// Check for invalid uses of an abstract type in a method declaration.
5397static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5398 CXXMethodDecl *MD) {
5399 // No need to do the check on definitions, which require that
5400 // the return/param types be complete.
5401 if (MD->doesThisDeclarationHaveABody())
5402 return;
5403
5404 // For safety's sake, just ignore it if we don't have type source
5405 // information. This should never happen for non-implicit methods,
5406 // but...
5407 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5408 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5409}
5410
5411/// Check for invalid uses of an abstract type within a class definition.
5412static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5413 CXXRecordDecl *RD) {
5414 for (auto *D : RD->decls()) {
5415 if (D->isImplicit()) continue;
5416
5417 // Methods and method templates.
5418 if (isa<CXXMethodDecl>(D)) {
5419 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5420 } else if (isa<FunctionTemplateDecl>(D)) {
5421 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5422 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5423
5424 // Fields and static variables.
5425 } else if (isa<FieldDecl>(D)) {
5426 FieldDecl *FD = cast<FieldDecl>(D);
5427 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5428 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5429 } else if (isa<VarDecl>(D)) {
5430 VarDecl *VD = cast<VarDecl>(D);
5431 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5432 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5433
5434 // Nested classes and class templates.
5435 } else if (isa<CXXRecordDecl>(D)) {
5436 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5437 } else if (isa<ClassTemplateDecl>(D)) {
5438 CheckAbstractClassUsage(Info,
5439 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5440 }
5441 }
5442}
5443
5444static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
5445 Attr *ClassAttr = getDLLAttr(Class);
5446 if (!ClassAttr)
5447 return;
5448
5449 assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast<
void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5449, __PRETTY_FUNCTION__))
;
5450
5451 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5452
5453 if (TSK == TSK_ExplicitInstantiationDeclaration)
5454 // Don't go any further if this is just an explicit instantiation
5455 // declaration.
5456 return;
5457
5458 for (Decl *Member : Class->decls()) {
5459 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5460 if (!MD)
5461 continue;
5462
5463 if (Member->getAttr<DLLExportAttr>()) {
5464 if (MD->isUserProvided()) {
5465 // Instantiate non-default class member functions ...
5466
5467 // .. except for certain kinds of template specializations.
5468 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5469 continue;
5470
5471 S.MarkFunctionReferenced(Class->getLocation(), MD);
5472
5473 // The function will be passed to the consumer when its definition is
5474 // encountered.
5475 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5476 MD->isCopyAssignmentOperator() ||
5477 MD->isMoveAssignmentOperator()) {
5478 // Synthesize and instantiate non-trivial implicit methods, explicitly
5479 // defaulted methods, and the copy and move assignment operators. The
5480 // latter are exported even if they are trivial, because the address of
5481 // an operator can be taken and should compare equal across libraries.
5482 DiagnosticErrorTrap Trap(S.Diags);
5483 S.MarkFunctionReferenced(Class->getLocation(), MD);
5484 if (Trap.hasErrorOccurred()) {
5485 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5486 << Class->getName() << !S.getLangOpts().CPlusPlus11;
5487 break;
5488 }
5489
5490 // There is no later point when we will see the definition of this
5491 // function, so pass it to the consumer now.
5492 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5493 }
5494 }
5495 }
5496}
5497
5498static void checkForMultipleExportedDefaultConstructors(Sema &S,
5499 CXXRecordDecl *Class) {
5500 // Only the MS ABI has default constructor closures, so we don't need to do
5501 // this semantic checking anywhere else.
5502 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5503 return;
5504
5505 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5506 for (Decl *Member : Class->decls()) {
5507 // Look for exported default constructors.
5508 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5509 if (!CD || !CD->isDefaultConstructor())
5510 continue;
5511 auto *Attr = CD->getAttr<DLLExportAttr>();
5512 if (!Attr)
5513 continue;
5514
5515 // If the class is non-dependent, mark the default arguments as ODR-used so
5516 // that we can properly codegen the constructor closure.
5517 if (!Class->isDependentContext()) {
5518 for (ParmVarDecl *PD : CD->parameters()) {
5519 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5520 S.DiscardCleanupsInEvaluationContext();
5521 }
5522 }
5523
5524 if (LastExportedDefaultCtor) {
5525 S.Diag(LastExportedDefaultCtor->getLocation(),
5526 diag::err_attribute_dll_ambiguous_default_ctor)
5527 << Class;
5528 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5529 << CD->getDeclName();
5530 return;
5531 }
5532 LastExportedDefaultCtor = CD;
5533 }
5534}
5535
5536/// \brief Check class-level dllimport/dllexport attribute.
5537void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5538 Attr *ClassAttr = getDLLAttr(Class);
5539
5540 // MSVC inherits DLL attributes to partial class template specializations.
5541 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5542 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5543 if (Attr *TemplateAttr =
5544 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5545 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5546 A->setInherited(true);
5547 ClassAttr = A;
5548 }
5549 }
5550 }
5551
5552 if (!ClassAttr)
5553 return;
5554
5555 if (!Class->isExternallyVisible()) {
5556 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5557 << Class << ClassAttr;
5558 return;
5559 }
5560
5561 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5562 !ClassAttr->isInherited()) {
5563 // Diagnose dll attributes on members of class with dll attribute.
5564 for (Decl *Member : Class->decls()) {
5565 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5566 continue;
5567 InheritableAttr *MemberAttr = getDLLAttr(Member);
5568 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5569 continue;
5570
5571 Diag(MemberAttr->getLocation(),
5572 diag::err_attribute_dll_member_of_dll_class)
5573 << MemberAttr << ClassAttr;
5574 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5575 Member->setInvalidDecl();
5576 }
5577 }
5578
5579 if (Class->getDescribedClassTemplate())
5580 // Don't inherit dll attribute until the template is instantiated.
5581 return;
5582
5583 // The class is either imported or exported.
5584 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5585
5586 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5587
5588 // Ignore explicit dllexport on explicit class template instantiation declarations.
5589 if (ClassExported && !ClassAttr->isInherited() &&
5590 TSK == TSK_ExplicitInstantiationDeclaration) {
5591 Class->dropAttr<DLLExportAttr>();
5592 return;
5593 }
5594
5595 // Force declaration of implicit members so they can inherit the attribute.
5596 ForceDeclarationOfImplicitMembers(Class);
5597
5598 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5599 // seem to be true in practice?
5600
5601 for (Decl *Member : Class->decls()) {
5602 VarDecl *VD = dyn_cast<VarDecl>(Member);
5603 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5604
5605 // Only methods and static fields inherit the attributes.
5606 if (!VD && !MD)
5607 continue;
5608
5609 if (MD) {
5610 // Don't process deleted methods.
5611 if (MD->isDeleted())
5612 continue;
5613
5614 if (MD->isInlined()) {
5615 // MinGW does not import or export inline methods.
5616 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5617 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
5618 continue;
5619
5620 // MSVC versions before 2015 don't export the move assignment operators
5621 // and move constructor, so don't attempt to import/export them if
5622 // we have a definition.
5623 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5624 if ((MD->isMoveAssignmentOperator() ||
5625 (Ctor && Ctor->isMoveConstructor())) &&
5626 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5627 continue;
5628
5629 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5630 // operator is exported anyway.
5631 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5632 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5633 continue;
5634 }
5635 }
5636
5637 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5638 continue;
5639
5640 if (!getDLLAttr(Member)) {
5641 auto *NewAttr =
5642 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5643 NewAttr->setInherited(true);
5644 Member->addAttr(NewAttr);
5645 }
5646 }
5647
5648 if (ClassExported)
5649 DelayedDllExportClasses.push_back(Class);
5650}
5651
5652/// \brief Perform propagation of DLL attributes from a derived class to a
5653/// templated base class for MS compatibility.
5654void Sema::propagateDLLAttrToBaseClassTemplate(
5655 CXXRecordDecl *Class, Attr *ClassAttr,
5656 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
5657 if (getDLLAttr(
5658 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
5659 // If the base class template has a DLL attribute, don't try to change it.
5660 return;
5661 }
5662
5663 auto TSK = BaseTemplateSpec->getSpecializationKind();
5664 if (!getDLLAttr(BaseTemplateSpec) &&
5665 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
5666 TSK == TSK_ImplicitInstantiation)) {
5667 // The template hasn't been instantiated yet (or it has, but only as an
5668 // explicit instantiation declaration or implicit instantiation, which means
5669 // we haven't codegenned any members yet), so propagate the attribute.
5670 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5671 NewAttr->setInherited(true);
5672 BaseTemplateSpec->addAttr(NewAttr);
5673
5674 // If the template is already instantiated, checkDLLAttributeRedeclaration()
5675 // needs to be run again to work see the new attribute. Otherwise this will
5676 // get run whenever the template is instantiated.
5677 if (TSK != TSK_Undeclared)
5678 checkClassLevelDLLAttribute(BaseTemplateSpec);
5679
5680 return;
5681 }
5682
5683 if (getDLLAttr(BaseTemplateSpec)) {
5684 // The template has already been specialized or instantiated with an
5685 // attribute, explicitly or through propagation. We should not try to change
5686 // it.
5687 return;
5688 }
5689
5690 // The template was previously instantiated or explicitly specialized without
5691 // a dll attribute, It's too late for us to add an attribute, so warn that
5692 // this is unsupported.
5693 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
5694 << BaseTemplateSpec->isExplicitSpecialization();
5695 Diag(ClassAttr->getLocation(), diag::note_attribute);
5696 if (BaseTemplateSpec->isExplicitSpecialization()) {
5697 Diag(BaseTemplateSpec->getLocation(),
5698 diag::note_template_class_explicit_specialization_was_here)
5699 << BaseTemplateSpec;
5700 } else {
5701 Diag(BaseTemplateSpec->getPointOfInstantiation(),
5702 diag::note_template_class_instantiation_was_here)
5703 << BaseTemplateSpec;
5704 }
5705}
5706
5707static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
5708 SourceLocation DefaultLoc) {
5709 switch (S.getSpecialMember(MD)) {
5710 case Sema::CXXDefaultConstructor:
5711 S.DefineImplicitDefaultConstructor(DefaultLoc,
5712 cast<CXXConstructorDecl>(MD));
5713 break;
5714 case Sema::CXXCopyConstructor:
5715 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5716 break;
5717 case Sema::CXXCopyAssignment:
5718 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
5719 break;
5720 case Sema::CXXDestructor:
5721 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5722 break;
5723 case Sema::CXXMoveConstructor:
5724 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5725 break;
5726 case Sema::CXXMoveAssignment:
5727 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
5728 break;
5729 case Sema::CXXInvalid:
5730 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5730)
;
5731 }
5732}
5733
5734/// Determine whether a type is permitted to be passed or returned in
5735/// registers, per C++ [class.temporary]p3.
5736static bool computeCanPassInRegisters(Sema &S, CXXRecordDecl *D) {
5737 if (D->isDependentType() || D->isInvalidDecl())
5738 return false;
5739
5740 // Per C++ [class.temporary]p3, the relevant condition is:
5741 // each copy constructor, move constructor, and destructor of X is
5742 // either trivial or deleted, and X has at least one non-deleted copy
5743 // or move constructor
5744 bool HasNonDeletedCopyOrMove = false;
5745
5746 if (D->needsImplicitCopyConstructor() &&
5747 !D->defaultedCopyConstructorIsDeleted()) {
5748 if (!D->hasTrivialCopyConstructor())
5749 return false;
5750 HasNonDeletedCopyOrMove = true;
5751 }
5752
5753 if (S.getLangOpts().CPlusPlus11 && D->needsImplicitMoveConstructor() &&
5754 !D->defaultedMoveConstructorIsDeleted()) {
5755 if (!D->hasTrivialMoveConstructor())
5756 return false;
5757 HasNonDeletedCopyOrMove = true;
5758 }
5759
5760 if (D->needsImplicitDestructor() && !D->defaultedDestructorIsDeleted() &&
5761 !D->hasTrivialDestructor())
5762 return false;
5763
5764 for (const CXXMethodDecl *MD : D->methods()) {
5765 if (MD->isDeleted())
5766 continue;
5767
5768 auto *CD = dyn_cast<CXXConstructorDecl>(MD);
5769 if (CD && CD->isCopyOrMoveConstructor())
5770 HasNonDeletedCopyOrMove = true;
5771 else if (!isa<CXXDestructorDecl>(MD))
5772 continue;
5773
5774 if (!MD->isTrivial())
5775 return false;
5776 }
5777
5778 return HasNonDeletedCopyOrMove;
5779}
5780
5781/// \brief Perform semantic checks on a class definition that has been
5782/// completing, introducing implicitly-declared members, checking for
5783/// abstract types, etc.
5784void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
5785 if (!Record)
5786 return;
5787
5788 if (Record->isAbstract() && !Record->isInvalidDecl()) {
5789 AbstractUsageInfo Info(*this, Record);
5790 CheckAbstractClassUsage(Info, Record);
5791 }
5792
5793 // If this is not an aggregate type and has no user-declared constructor,
5794 // complain about any non-static data members of reference or const scalar
5795 // type, since they will never get initializers.
5796 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
5797 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
5798 !Record->isLambda()) {
5799 bool Complained = false;
5800 for (const auto *F : Record->fields()) {
5801 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
5802 continue;
5803
5804 if (F->getType()->isReferenceType() ||
5805 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
5806 if (!Complained) {
5807 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
5808 << Record->getTagKind() << Record;
5809 Complained = true;
5810 }
5811
5812 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
5813 << F->getType()->isReferenceType()
5814 << F->getDeclName();
5815 }
5816 }
5817 }
5818
5819 if (Record->getIdentifier()) {
5820 // C++ [class.mem]p13:
5821 // If T is the name of a class, then each of the following shall have a
5822 // name different from T:
5823 // - every member of every anonymous union that is a member of class T.
5824 //
5825 // C++ [class.mem]p14:
5826 // In addition, if class T has a user-declared constructor (12.1), every
5827 // non-static data member of class T shall have a name different from T.
5828 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
5829 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
5830 ++I) {
5831 NamedDecl *D = *I;
5832 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
5833 isa<IndirectFieldDecl>(D)) {
5834 Diag(D->getLocation(), diag::err_member_name_of_class)
5835 << D->getDeclName();
5836 break;
5837 }
5838 }
5839 }
5840
5841 // Warn if the class has virtual methods but non-virtual public destructor.
5842 if (Record->isPolymorphic() && !Record->isDependentType()) {
5843 CXXDestructorDecl *dtor = Record->getDestructor();
5844 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
5845 !Record->hasAttr<FinalAttr>())
5846 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
5847 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
5848 }
5849
5850 if (Record->isAbstract()) {
5851 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
5852 Diag(Record->getLocation(), diag::warn_abstract_final_class)
5853 << FA->isSpelledAsSealed();
5854 DiagnoseAbstractType(Record);
5855 }
5856 }
5857
5858 bool HasMethodWithOverrideControl = false,
5859 HasOverridingMethodWithoutOverrideControl = false;
5860 if (!Record->isDependentType()) {
5861 for (auto *M : Record->methods()) {
5862 // See if a method overloads virtual methods in a base
5863 // class without overriding any.
5864 if (!M->isStatic())
5865 DiagnoseHiddenVirtualMethods(M);
5866 if (M->hasAttr<OverrideAttr>())
5867 HasMethodWithOverrideControl = true;
5868 else if (M->size_overridden_methods() > 0)
5869 HasOverridingMethodWithoutOverrideControl = true;
5870 // Check whether the explicitly-defaulted special members are valid.
5871 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
5872 CheckExplicitlyDefaultedSpecialMember(M);
5873
5874 // For an explicitly defaulted or deleted special member, we defer
5875 // determining triviality until the class is complete. That time is now!
5876 CXXSpecialMember CSM = getSpecialMember(M);
5877 if (!M->isImplicit() && !M->isUserProvided()) {
5878 if (CSM != CXXInvalid) {
5879 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
5880
5881 // Inform the class that we've finished declaring this member.
5882 Record->finishedDefaultedOrDeletedMember(M);
5883 }
5884 }
5885
5886 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
5887 M->hasAttr<DLLExportAttr>()) {
5888 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5889 M->isTrivial() &&
5890 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
5891 CSM == CXXDestructor))
5892 M->dropAttr<DLLExportAttr>();
5893
5894 if (M->hasAttr<DLLExportAttr>()) {
5895 DefineImplicitSpecialMember(*this, M, M->getLocation());
5896 ActOnFinishInlineFunctionDef(M);
5897 }
5898 }
5899 }
5900 }
5901
5902 if (HasMethodWithOverrideControl &&
5903 HasOverridingMethodWithoutOverrideControl) {
5904 // At least one method has the 'override' control declared.
5905 // Diagnose all other overridden methods which do not have 'override' specified on them.
5906 for (auto *M : Record->methods())
5907 DiagnoseAbsenceOfOverrideControl(M);
5908 }
5909
5910 // ms_struct is a request to use the same ABI rules as MSVC. Check
5911 // whether this class uses any C++ features that are implemented
5912 // completely differently in MSVC, and if so, emit a diagnostic.
5913 // That diagnostic defaults to an error, but we allow projects to
5914 // map it down to a warning (or ignore it). It's a fairly common
5915 // practice among users of the ms_struct pragma to mass-annotate
5916 // headers, sweeping up a bunch of types that the project doesn't
5917 // really rely on MSVC-compatible layout for. We must therefore
5918 // support "ms_struct except for C++ stuff" as a secondary ABI.
5919 if (Record->isMsStruct(Context) &&
5920 (Record->isPolymorphic() || Record->getNumBases())) {
5921 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
5922 }
5923
5924 checkClassLevelDLLAttribute(Record);
5925
5926 Record->setCanPassInRegisters(computeCanPassInRegisters(*this, Record));
5927}
5928
5929/// Look up the special member function that would be called by a special
5930/// member function for a subobject of class type.
5931///
5932/// \param Class The class type of the subobject.
5933/// \param CSM The kind of special member function.
5934/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
5935/// \param ConstRHS True if this is a copy operation with a const object
5936/// on its RHS, that is, if the argument to the outer special member
5937/// function is 'const' and this is not a field marked 'mutable'.
5938static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
5939 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5940 unsigned FieldQuals, bool ConstRHS) {
5941 unsigned LHSQuals = 0;
5942 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5943 LHSQuals = FieldQuals;
5944
5945 unsigned RHSQuals = FieldQuals;
5946 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5947 RHSQuals = 0;
5948 else if (ConstRHS)
5949 RHSQuals |= Qualifiers::Const;
5950
5951 return S.LookupSpecialMember(Class, CSM,
5952 RHSQuals & Qualifiers::Const,
5953 RHSQuals & Qualifiers::Volatile,
5954 false,
5955 LHSQuals & Qualifiers::Const,
5956 LHSQuals & Qualifiers::Volatile);
5957}
5958
5959class Sema::InheritedConstructorInfo {
5960 Sema &S;
5961 SourceLocation UseLoc;
5962
5963 /// A mapping from the base classes through which the constructor was
5964 /// inherited to the using shadow declaration in that base class (or a null
5965 /// pointer if the constructor was declared in that base class).
5966 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
5967 InheritedFromBases;
5968
5969public:
5970 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
5971 ConstructorUsingShadowDecl *Shadow)
5972 : S(S), UseLoc(UseLoc) {
5973 bool DiagnosedMultipleConstructedBases = false;
5974 CXXRecordDecl *ConstructedBase = nullptr;
5975 UsingDecl *ConstructedBaseUsing = nullptr;
5976
5977 // Find the set of such base class subobjects and check that there's a
5978 // unique constructed subobject.
5979 for (auto *D : Shadow->redecls()) {
5980 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
5981 auto *DNominatedBase = DShadow->getNominatedBaseClass();
5982 auto *DConstructedBase = DShadow->getConstructedBaseClass();
5983
5984 InheritedFromBases.insert(
5985 std::make_pair(DNominatedBase->getCanonicalDecl(),
5986 DShadow->getNominatedBaseClassShadowDecl()));
5987 if (DShadow->constructsVirtualBase())
5988 InheritedFromBases.insert(
5989 std::make_pair(DConstructedBase->getCanonicalDecl(),
5990 DShadow->getConstructedBaseClassShadowDecl()));
5991 else
5992 assert(DNominatedBase == DConstructedBase)((DNominatedBase == DConstructedBase) ? static_cast<void>
(0) : __assert_fail ("DNominatedBase == DConstructedBase", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5992, __PRETTY_FUNCTION__))
;
5993
5994 // [class.inhctor.init]p2:
5995 // If the constructor was inherited from multiple base class subobjects
5996 // of type B, the program is ill-formed.
5997 if (!ConstructedBase) {
5998 ConstructedBase = DConstructedBase;
5999 ConstructedBaseUsing = D->getUsingDecl();
6000 } else if (ConstructedBase != DConstructedBase &&
6001 !Shadow->isInvalidDecl()) {
6002 if (!DiagnosedMultipleConstructedBases) {
6003 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
6004 << Shadow->getTargetDecl();
6005 S.Diag(ConstructedBaseUsing->getLocation(),
6006 diag::note_ambiguous_inherited_constructor_using)
6007 << ConstructedBase;
6008 DiagnosedMultipleConstructedBases = true;
6009 }
6010 S.Diag(D->getUsingDecl()->getLocation(),
6011 diag::note_ambiguous_inherited_constructor_using)
6012 << DConstructedBase;
6013 }
6014 }
6015
6016 if (DiagnosedMultipleConstructedBases)
6017 Shadow->setInvalidDecl();
6018 }
6019
6020 /// Find the constructor to use for inherited construction of a base class,
6021 /// and whether that base class constructor inherits the constructor from a
6022 /// virtual base class (in which case it won't actually invoke it).
6023 std::pair<CXXConstructorDecl *, bool>
6024 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
6025 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
6026 if (It == InheritedFromBases.end())
6027 return std::make_pair(nullptr, false);
6028
6029 // This is an intermediary class.
6030 if (It->second)
6031 return std::make_pair(
6032 S.findInheritingConstructor(UseLoc, Ctor, It->second),
6033 It->second->constructsVirtualBase());
6034
6035 // This is the base class from which the constructor was inherited.
6036 return std::make_pair(Ctor, false);
6037 }
6038};
6039
6040/// Is the special member function which would be selected to perform the
6041/// specified operation on the specified class type a constexpr constructor?
6042static bool
6043specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
6044 Sema::CXXSpecialMember CSM, unsigned Quals,
6045 bool ConstRHS,
6046 CXXConstructorDecl *InheritedCtor = nullptr,
6047 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6048 // If we're inheriting a constructor, see if we need to call it for this base
6049 // class.
6050 if (InheritedCtor) {
6051 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6051, __PRETTY_FUNCTION__))
;
6052 auto BaseCtor =
6053 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
6054 if (BaseCtor)
6055 return BaseCtor->isConstexpr();
6056 }
6057
6058 if (CSM == Sema::CXXDefaultConstructor)
6059 return ClassDecl->hasConstexprDefaultConstructor();
6060
6061 Sema::SpecialMemberOverloadResult SMOR =
6062 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
6063 if (!SMOR.getMethod())
6064 // A constructor we wouldn't select can't be "involved in initializing"
6065 // anything.
6066 return true;
6067 return SMOR.getMethod()->isConstexpr();
6068}
6069
6070/// Determine whether the specified special member function would be constexpr
6071/// if it were implicitly defined.
6072static bool defaultedSpecialMemberIsConstexpr(
6073 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6074 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6075 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6076 if (!S.getLangOpts().CPlusPlus11)
6077 return false;
6078
6079 // C++11 [dcl.constexpr]p4:
6080 // In the definition of a constexpr constructor [...]
6081 bool Ctor = true;
6082 switch (CSM) {
6083 case Sema::CXXDefaultConstructor:
6084 if (Inherited)
6085 break;
6086 // Since default constructor lookup is essentially trivial (and cannot
6087 // involve, for instance, template instantiation), we compute whether a
6088 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6089 //
6090 // This is important for performance; we need to know whether the default
6091 // constructor is constexpr to determine whether the type is a literal type.
6092 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6093
6094 case Sema::CXXCopyConstructor:
6095 case Sema::CXXMoveConstructor:
6096 // For copy or move constructors, we need to perform overload resolution.
6097 break;
6098
6099 case Sema::CXXCopyAssignment:
6100 case Sema::CXXMoveAssignment:
6101 if (!S.getLangOpts().CPlusPlus14)
6102 return false;
6103 // In C++1y, we need to perform overload resolution.
6104 Ctor = false;
6105 break;
6106
6107 case Sema::CXXDestructor:
6108 case Sema::CXXInvalid:
6109 return false;
6110 }
6111
6112 // -- if the class is a non-empty union, or for each non-empty anonymous
6113 // union member of a non-union class, exactly one non-static data member
6114 // shall be initialized; [DR1359]
6115 //
6116 // If we squint, this is guaranteed, since exactly one non-static data member
6117 // will be initialized (if the constructor isn't deleted), we just don't know
6118 // which one.
6119 if (Ctor && ClassDecl->isUnion())
6120 return CSM == Sema::CXXDefaultConstructor
6121 ? ClassDecl->hasInClassInitializer() ||
6122 !ClassDecl->hasVariantMembers()
6123 : true;
6124
6125 // -- the class shall not have any virtual base classes;
6126 if (Ctor && ClassDecl->getNumVBases())
6127 return false;
6128
6129 // C++1y [class.copy]p26:
6130 // -- [the class] is a literal type, and
6131 if (!Ctor && !ClassDecl->isLiteral())
6132 return false;
6133
6134 // -- every constructor involved in initializing [...] base class
6135 // sub-objects shall be a constexpr constructor;
6136 // -- the assignment operator selected to copy/move each direct base
6137 // class is a constexpr function, and
6138 for (const auto &B : ClassDecl->bases()) {
6139 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6140 if (!BaseType) continue;
6141
6142 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6143 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6144 InheritedCtor, Inherited))
6145 return false;
6146 }
6147
6148 // -- every constructor involved in initializing non-static data members
6149 // [...] shall be a constexpr constructor;
6150 // -- every non-static data member and base class sub-object shall be
6151 // initialized
6152 // -- for each non-static data member of X that is of class type (or array
6153 // thereof), the assignment operator selected to copy/move that member is
6154 // a constexpr function
6155 for (const auto *F : ClassDecl->fields()) {
6156 if (F->isInvalidDecl())
6157 continue;
6158 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6159 continue;
6160 QualType BaseType = S.Context.getBaseElementType(F->getType());
6161 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6162 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6163 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6164 BaseType.getCVRQualifiers(),
6165 ConstArg && !F->isMutable()))
6166 return false;
6167 } else if (CSM == Sema::CXXDefaultConstructor) {
6168 return false;
6169 }
6170 }
6171
6172 // All OK, it's constexpr!
6173 return true;
6174}
6175
6176static Sema::ImplicitExceptionSpecification
6177ComputeDefaultedSpecialMemberExceptionSpec(
6178 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6179 Sema::InheritedConstructorInfo *ICI);
6180
6181static Sema::ImplicitExceptionSpecification
6182computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
6183 auto CSM = S.getSpecialMember(MD);
6184 if (CSM != Sema::CXXInvalid)
6185 return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr);
6186
6187 auto *CD = cast<CXXConstructorDecl>(MD);
6188 assert(CD->getInheritedConstructor() &&((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6189, __PRETTY_FUNCTION__))
6189 "only special members have implicit exception specs")((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6189, __PRETTY_FUNCTION__))
;
6190 Sema::InheritedConstructorInfo ICI(
6191 S, Loc, CD->getInheritedConstructor().getShadowDecl());
6192 return ComputeDefaultedSpecialMemberExceptionSpec(
6193 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6194}
6195
6196static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6197 CXXMethodDecl *MD) {
6198 FunctionProtoType::ExtProtoInfo EPI;
6199
6200 // Build an exception specification pointing back at this member.
6201 EPI.ExceptionSpec.Type = EST_Unevaluated;
6202 EPI.ExceptionSpec.SourceDecl = MD;
6203
6204 // Set the calling convention to the default for C++ instance methods.
6205 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6206 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6207 /*IsCXXMethod=*/true));
6208 return EPI;
6209}
6210
6211void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
6212 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
6213 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6214 return;
6215
6216 // Evaluate the exception specification.
6217 auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
6218 auto ESI = IES.getExceptionSpec();
6219
6220 // Update the type of the special member to use it.
6221 UpdateExceptionSpec(MD, ESI);
6222
6223 // A user-provided destructor can be defined outside the class. When that
6224 // happens, be sure to update the exception specification on both
6225 // declarations.
6226 const FunctionProtoType *CanonicalFPT =
6227 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
6228 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
6229 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
6230}
6231
6232void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
6233 CXXRecordDecl *RD = MD->getParent();
6234 CXXSpecialMember CSM = getSpecialMember(MD);
6235
6236 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6237, __PRETTY_FUNCTION__))
6237 "not an explicitly-defaulted special member")((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6237, __PRETTY_FUNCTION__))
;
6238
6239 // Whether this was the first-declared instance of the constructor.
6240 // This affects whether we implicitly add an exception spec and constexpr.
6241 bool First = MD == MD->getCanonicalDecl();
6242
6243 bool HadError = false;
6244
6245 // C++11 [dcl.fct.def.default]p1:
6246 // A function that is explicitly defaulted shall
6247 // -- be a special member function (checked elsewhere),
6248 // -- have the same type (except for ref-qualifiers, and except that a
6249 // copy operation can take a non-const reference) as an implicit
6250 // declaration, and
6251 // -- not have default arguments.
6252 unsigned ExpectedParams = 1;
6253 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6254 ExpectedParams = 0;
6255 if (MD->getNumParams() != ExpectedParams) {
6256 // This also checks for default arguments: a copy or move constructor with a
6257 // default argument is classified as a default constructor, and assignment
6258 // operations and destructors can't have default arguments.
6259 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6260 << CSM << MD->getSourceRange();
6261 HadError = true;
6262 } else if (MD->isVariadic()) {
6263 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6264 << CSM << MD->getSourceRange();
6265 HadError = true;
6266 }
6267
6268 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6269
6270 bool CanHaveConstParam = false;
6271 if (CSM == CXXCopyConstructor)
6272 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6273 else if (CSM == CXXCopyAssignment)
6274 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6275
6276 QualType ReturnType = Context.VoidTy;
6277 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6278 // Check for return type matching.
6279 ReturnType = Type->getReturnType();
6280 QualType ExpectedReturnType =
6281 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
6282 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6283 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6284 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
6285 HadError = true;
6286 }
6287
6288 // A defaulted special member cannot have cv-qualifiers.
6289 if (Type->getTypeQuals()) {
6290 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
6291 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
6292 HadError = true;
6293 }
6294 }
6295
6296 // Check for parameter type matching.
6297 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
6298 bool HasConstParam = false;
6299 if (ExpectedParams && ArgType->isReferenceType()) {
6300 // Argument must be reference to possibly-const T.
6301 QualType ReferentType = ArgType->getPointeeType();
6302 HasConstParam = ReferentType.isConstQualified();
6303
6304 if (ReferentType.isVolatileQualified()) {
6305 Diag(MD->getLocation(),
6306 diag::err_defaulted_special_member_volatile_param) << CSM;
6307 HadError = true;
6308 }
6309
6310 if (HasConstParam && !CanHaveConstParam) {
6311 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
6312 Diag(MD->getLocation(),
6313 diag::err_defaulted_special_member_copy_const_param)
6314 << (CSM == CXXCopyAssignment);
6315 // FIXME: Explain why this special member can't be const.
6316 } else {
6317 Diag(MD->getLocation(),
6318 diag::err_defaulted_special_member_move_const_param)
6319 << (CSM == CXXMoveAssignment);
6320 }
6321 HadError = true;
6322 }
6323 } else if (ExpectedParams) {
6324 // A copy assignment operator can take its argument by value, but a
6325 // defaulted one cannot.
6326 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((CSM == CXXCopyAssignment && "unexpected non-ref argument"
) ? static_cast<void> (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6326, __PRETTY_FUNCTION__))
;
6327 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
6328 HadError = true;
6329 }
6330
6331 // C++11 [dcl.fct.def.default]p2:
6332 // An explicitly-defaulted function may be declared constexpr only if it
6333 // would have been implicitly declared as constexpr,
6334 // Do not apply this rule to members of class templates, since core issue 1358
6335 // makes such functions always instantiate to constexpr functions. For
6336 // functions which cannot be constexpr (for non-constructors in C++11 and for
6337 // destructors in C++1y), this is checked elsewhere.
6338 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
6339 HasConstParam);
6340 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
6341 : isa<CXXConstructorDecl>(MD)) &&
6342 MD->isConstexpr() && !Constexpr &&
6343 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
6344 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
6345 // FIXME: Explain why the special member can't be constexpr.
6346 HadError = true;
6347 }
6348
6349 // and may have an explicit exception-specification only if it is compatible
6350 // with the exception-specification on the implicit declaration.
6351 if (Type->hasExceptionSpec()) {
6352 // Delay the check if this is the first declaration of the special member,
6353 // since we may not have parsed some necessary in-class initializers yet.
6354 if (First) {
6355 // If the exception specification needs to be instantiated, do so now,
6356 // before we clobber it with an EST_Unevaluated specification below.
6357 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
6358 InstantiateExceptionSpec(MD->getLocStart(), MD);
6359 Type = MD->getType()->getAs<FunctionProtoType>();
6360 }
6361 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
6362 } else
6363 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
6364 }
6365
6366 // If a function is explicitly defaulted on its first declaration,
6367 if (First) {
6368 // -- it is implicitly considered to be constexpr if the implicit
6369 // definition would be,
6370 MD->setConstexpr(Constexpr);
6371
6372 // -- it is implicitly considered to have the same exception-specification
6373 // as if it had been implicitly declared,
6374 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
6375 EPI.ExceptionSpec.Type = EST_Unevaluated;
6376 EPI.ExceptionSpec.SourceDecl = MD;
6377 MD->setType(Context.getFunctionType(ReturnType,
6378 llvm::makeArrayRef(&ArgType,
6379 ExpectedParams),
6380 EPI));
6381 }
6382
6383 if (ShouldDeleteSpecialMember(MD, CSM)) {
6384 if (First) {
6385 SetDeclDeleted(MD, MD->getLocation());
6386 } else {
6387 // C++11 [dcl.fct.def.default]p4:
6388 // [For a] user-provided explicitly-defaulted function [...] if such a
6389 // function is implicitly defined as deleted, the program is ill-formed.
6390 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
6391 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6392 HadError = true;
6393 }
6394 }
6395
6396 if (HadError)
6397 MD->setInvalidDecl();
6398}
6399
6400/// Check whether the exception specification provided for an
6401/// explicitly-defaulted special member matches the exception specification
6402/// that would have been generated for an implicit special member, per
6403/// C++11 [dcl.fct.def.default]p2.
6404void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
6405 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
6406 // If the exception specification was explicitly specified but hadn't been
6407 // parsed when the method was defaulted, grab it now.
6408 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
6409 SpecifiedType =
6410 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
6411
6412 // Compute the implicit exception specification.
6413 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6414 /*IsCXXMethod=*/true);
6415 FunctionProtoType::ExtProtoInfo EPI(CC);
6416 auto IES = computeImplicitExceptionSpec(*this, MD->getLocation(), MD);
6417 EPI.ExceptionSpec = IES.getExceptionSpec();
6418 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
6419 Context.getFunctionType(Context.VoidTy, None, EPI));
6420
6421 // Ensure that it matches.
6422 CheckEquivalentExceptionSpec(
6423 PDiag(diag::err_incorrect_defaulted_exception_spec)
6424 << getSpecialMember(MD), PDiag(),
6425 ImplicitType, SourceLocation(),
6426 SpecifiedType, MD->getLocation());
6427}
6428
6429void Sema::CheckDelayedMemberExceptionSpecs() {
6430 decltype(DelayedExceptionSpecChecks) Checks;
6431 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
6432
6433 std::swap(Checks, DelayedExceptionSpecChecks);
6434 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
6435
6436 // Perform any deferred checking of exception specifications for virtual
6437 // destructors.
6438 for (auto &Check : Checks)
6439 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
6440
6441 // Check that any explicitly-defaulted methods have exception specifications
6442 // compatible with their implicit exception specifications.
6443 for (auto &Spec : Specs)
6444 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
6445}
6446
6447namespace {
6448/// CRTP base class for visiting operations performed by a special member
6449/// function (or inherited constructor).
6450template<typename Derived>
6451struct SpecialMemberVisitor {
6452 Sema &S;
6453 CXXMethodDecl *MD;
6454 Sema::CXXSpecialMember CSM;
6455 Sema::InheritedConstructorInfo *ICI;
6456
6457 // Properties of the special member, computed for convenience.
6458 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
6459
6460 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6461 Sema::InheritedConstructorInfo *ICI)
6462 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
6463 switch (CSM) {
6464 case Sema::CXXDefaultConstructor:
6465 case Sema::CXXCopyConstructor:
6466 case Sema::CXXMoveConstructor:
6467 IsConstructor = true;
6468 break;
6469 case Sema::CXXCopyAssignment:
6470 case Sema::CXXMoveAssignment:
6471 IsAssignment = true;
6472 break;
6473 case Sema::CXXDestructor:
6474 break;
6475 case Sema::CXXInvalid:
6476 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6476)
;
6477 }
6478
6479 if (MD->getNumParams()) {
6480 if (const ReferenceType *RT =
6481 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
6482 ConstArg = RT->getPointeeType().isConstQualified();
6483 }
6484 }
6485
6486 Derived &getDerived() { return static_cast<Derived&>(*this); }
6487
6488 /// Is this a "move" special member?
6489 bool isMove() const {
6490 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
6491 }
6492
6493 /// Look up the corresponding special member in the given class.
6494 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
6495 unsigned Quals, bool IsMutable) {
6496 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
6497 ConstArg && !IsMutable);
6498 }
6499
6500 /// Look up the constructor for the specified base class to see if it's
6501 /// overridden due to this being an inherited constructor.
6502 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
6503 if (!ICI)
6504 return {};
6505 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6505, __PRETTY_FUNCTION__))
;
6506 auto *BaseCtor =
6507 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
6508 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
6509 return MD;
6510 return {};
6511 }
6512
6513 /// A base or member subobject.
6514 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
6515
6516 /// Get the location to use for a subobject in diagnostics.
6517 static SourceLocation getSubobjectLoc(Subobject Subobj) {
6518 // FIXME: For an indirect virtual base, the direct base leading to
6519 // the indirect virtual base would be a more useful choice.
6520 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
6521 return B->getBaseTypeLoc();
6522 else
6523 return Subobj.get<FieldDecl*>()->getLocation();
6524 }
6525
6526 enum BasesToVisit {
6527 /// Visit all non-virtual (direct) bases.
6528 VisitNonVirtualBases,
6529 /// Visit all direct bases, virtual or not.
6530 VisitDirectBases,
6531 /// Visit all non-virtual bases, and all virtual bases if the class
6532 /// is not abstract.
6533 VisitPotentiallyConstructedBases,
6534 /// Visit all direct or virtual bases.
6535 VisitAllBases
6536 };
6537
6538 // Visit the bases and members of the class.
6539 bool visit(BasesToVisit Bases) {
6540 CXXRecordDecl *RD = MD->getParent();
6541
6542 if (Bases == VisitPotentiallyConstructedBases)
6543 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
6544
6545 for (auto &B : RD->bases())
6546 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
6547 getDerived().visitBase(&B))
6548 return true;
6549
6550 if (Bases == VisitAllBases)
6551 for (auto &B : RD->vbases())
6552 if (getDerived().visitBase(&B))
6553 return true;
6554
6555 for (auto *F : RD->fields())
6556 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
6557 getDerived().visitField(F))
6558 return true;
6559
6560 return false;
6561 }
6562};
6563}
6564
6565namespace {
6566struct SpecialMemberDeletionInfo
6567 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
6568 bool Diagnose;
6569
6570 SourceLocation Loc;
6571
6572 bool AllFieldsAreConst;
6573
6574 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
6575 Sema::CXXSpecialMember CSM,
6576 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
6577 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
6578 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
6579
6580 bool inUnion() const { return MD->getParent()->isUnion(); }
6581
6582 Sema::CXXSpecialMember getEffectiveCSM() {
6583 return ICI ? Sema::CXXInvalid : CSM;
6584 }
6585
6586 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
6587 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
6588
6589 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
6590 bool shouldDeleteForField(FieldDecl *FD);
6591 bool shouldDeleteForAllConstMembers();
6592
6593 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
6594 unsigned Quals);
6595 bool shouldDeleteForSubobjectCall(Subobject Subobj,
6596 Sema::SpecialMemberOverloadResult SMOR,
6597 bool IsDtorCallInCtor);
6598
6599 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
6600};
6601}
6602
6603/// Is the given special member inaccessible when used on the given
6604/// sub-object.
6605bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
6606 CXXMethodDecl *target) {
6607 /// If we're operating on a base class, the object type is the
6608 /// type of this special member.
6609 QualType objectTy;
6610 AccessSpecifier access = target->getAccess();
6611 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
6612 objectTy = S.Context.getTypeDeclType(MD->getParent());
6613 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
6614
6615 // If we're operating on a field, the object type is the type of the field.
6616 } else {
6617 objectTy = S.Context.getTypeDeclType(target->getParent());
6618 }
6619
6620 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
6621}
6622
6623/// Check whether we should delete a special member due to the implicit
6624/// definition containing a call to a special member of a subobject.
6625bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
6626 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
6627 bool IsDtorCallInCtor) {
6628 CXXMethodDecl *Decl = SMOR.getMethod();
6629 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6630
6631 int DiagKind = -1;
6632
6633 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
6634 DiagKind = !Decl ? 0 : 1;
6635 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
6636 DiagKind = 2;
6637 else if (!isAccessible(Subobj, Decl))
6638 DiagKind = 3;
6639 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
6640 !Decl->isTrivial()) {
6641 // A member of a union must have a trivial corresponding special member.
6642 // As a weird special case, a destructor call from a union's constructor
6643 // must be accessible and non-deleted, but need not be trivial. Such a
6644 // destructor is never actually called, but is semantically checked as
6645 // if it were.
6646 DiagKind = 4;
6647 }
6648
6649 if (DiagKind == -1)
6650 return false;
6651
6652 if (Diagnose) {
6653 if (Field) {
6654 S.Diag(Field->getLocation(),
6655 diag::note_deleted_special_member_class_subobject)
6656 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
6657 << Field << DiagKind << IsDtorCallInCtor;
6658 } else {
6659 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
6660 S.Diag(Base->getLocStart(),
6661 diag::note_deleted_special_member_class_subobject)
6662 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6663 << Base->getType() << DiagKind << IsDtorCallInCtor;
6664 }
6665
6666 if (DiagKind == 1)
6667 S.NoteDeletedFunction(Decl);
6668 // FIXME: Explain inaccessibility if DiagKind == 3.
6669 }
6670
6671 return true;
6672}
6673
6674/// Check whether we should delete a special member function due to having a
6675/// direct or virtual base class or non-static data member of class type M.
6676bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
6677 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
6678 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6679 bool IsMutable = Field && Field->isMutable();
6680
6681 // C++11 [class.ctor]p5:
6682 // -- any direct or virtual base class, or non-static data member with no
6683 // brace-or-equal-initializer, has class type M (or array thereof) and
6684 // either M has no default constructor or overload resolution as applied
6685 // to M's default constructor results in an ambiguity or in a function
6686 // that is deleted or inaccessible
6687 // C++11 [class.copy]p11, C++11 [class.copy]p23:
6688 // -- a direct or virtual base class B that cannot be copied/moved because
6689 // overload resolution, as applied to B's corresponding special member,
6690 // results in an ambiguity or a function that is deleted or inaccessible
6691 // from the defaulted special member
6692 // C++11 [class.dtor]p5:
6693 // -- any direct or virtual base class [...] has a type with a destructor
6694 // that is deleted or inaccessible
6695 if (!(CSM == Sema::CXXDefaultConstructor &&
6696 Field && Field->hasInClassInitializer()) &&
6697 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
6698 false))
6699 return true;
6700
6701 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
6702 // -- any direct or virtual base class or non-static data member has a
6703 // type with a destructor that is deleted or inaccessible
6704 if (IsConstructor) {
6705 Sema::SpecialMemberOverloadResult SMOR =
6706 S.LookupSpecialMember(Class, Sema::CXXDestructor,
6707 false, false, false, false, false);
6708 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
6709 return true;
6710 }
6711
6712 return false;
6713}
6714
6715/// Check whether we should delete a special member function due to the class
6716/// having a particular direct or virtual base class.
6717bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
6718 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
6719 // If program is correct, BaseClass cannot be null, but if it is, the error
6720 // must be reported elsewhere.
6721 if (!BaseClass)
6722 return false;
6723 // If we have an inheriting constructor, check whether we're calling an
6724 // inherited constructor instead of a default constructor.
6725 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
6726 if (auto *BaseCtor = SMOR.getMethod()) {
6727 // Note that we do not check access along this path; other than that,
6728 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
6729 // FIXME: Check that the base has a usable destructor! Sink this into
6730 // shouldDeleteForClassSubobject.
6731 if (BaseCtor->isDeleted() && Diagnose) {
6732 S.Diag(Base->getLocStart(),
6733 diag::note_deleted_special_member_class_subobject)
6734 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6735 << Base->getType() << /*Deleted*/1 << /*IsDtorCallInCtor*/false;
6736 S.NoteDeletedFunction(BaseCtor);
6737 }
6738 return BaseCtor->isDeleted();
6739 }
6740 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
6741}
6742
6743/// Check whether we should delete a special member function due to the class
6744/// having a particular non-static data member.
6745bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
6746 QualType FieldType = S.Context.getBaseElementType(FD->getType());
6747 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
6748
6749 if (CSM == Sema::CXXDefaultConstructor) {
6750 // For a default constructor, all references must be initialized in-class
6751 // and, if a union, it must have a non-const member.
6752 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
6753 if (Diagnose)
6754 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6755 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
6756 return true;
6757 }
6758 // C++11 [class.ctor]p5: any non-variant non-static data member of
6759 // const-qualified type (or array thereof) with no
6760 // brace-or-equal-initializer does not have a user-provided default
6761 // constructor.
6762 if (!inUnion() && FieldType.isConstQualified() &&
6763 !FD->hasInClassInitializer() &&
6764 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
6765 if (Diagnose)
6766 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6767 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
6768 return true;
6769 }
6770
6771 if (inUnion() && !FieldType.isConstQualified())
6772 AllFieldsAreConst = false;
6773 } else if (CSM == Sema::CXXCopyConstructor) {
6774 // For a copy constructor, data members must not be of rvalue reference
6775 // type.
6776 if (FieldType->isRValueReferenceType()) {
6777 if (Diagnose)
6778 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
6779 << MD->getParent() << FD << FieldType;
6780 return true;
6781 }
6782 } else if (IsAssignment) {
6783 // For an assignment operator, data members must not be of reference type.
6784 if (FieldType->isReferenceType()) {
6785 if (Diagnose)
6786 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6787 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
6788 return true;
6789 }
6790 if (!FieldRecord && FieldType.isConstQualified()) {
6791 // C++11 [class.copy]p23:
6792 // -- a non-static data member of const non-class type (or array thereof)
6793 if (Diagnose)
6794 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6795 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
6796 return true;
6797 }
6798 }
6799
6800 if (FieldRecord) {
6801 // Some additional restrictions exist on the variant members.
6802 if (!inUnion() && FieldRecord->isUnion() &&
6803 FieldRecord->isAnonymousStructOrUnion()) {
6804 bool AllVariantFieldsAreConst = true;
6805
6806 // FIXME: Handle anonymous unions declared within anonymous unions.
6807 for (auto *UI : FieldRecord->fields()) {
6808 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
6809
6810 if (!UnionFieldType.isConstQualified())
6811 AllVariantFieldsAreConst = false;
6812
6813 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
6814 if (UnionFieldRecord &&
6815 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
6816 UnionFieldType.getCVRQualifiers()))
6817 return true;
6818 }
6819
6820 // At least one member in each anonymous union must be non-const
6821 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
6822 !FieldRecord->field_empty()) {
6823 if (Diagnose)
6824 S.Diag(FieldRecord->getLocation(),
6825 diag::note_deleted_default_ctor_all_const)
6826 << !!ICI << MD->getParent() << /*anonymous union*/1;
6827 return true;
6828 }
6829
6830 // Don't check the implicit member of the anonymous union type.
6831 // This is technically non-conformant, but sanity demands it.
6832 return false;
6833 }
6834
6835 if (shouldDeleteForClassSubobject(FieldRecord, FD,
6836 FieldType.getCVRQualifiers()))
6837 return true;
6838 }
6839
6840 return false;
6841}
6842
6843/// C++11 [class.ctor] p5:
6844/// A defaulted default constructor for a class X is defined as deleted if
6845/// X is a union and all of its variant members are of const-qualified type.
6846bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
6847 // This is a silly definition, because it gives an empty union a deleted
6848 // default constructor. Don't do that.
6849 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
6850 bool AnyFields = false;
6851 for (auto *F : MD->getParent()->fields())
6852 if ((AnyFields = !F->isUnnamedBitfield()))
6853 break;
6854 if (!AnyFields)
6855 return false;
6856 if (Diagnose)
6857 S.Diag(MD->getParent()->getLocation(),
6858 diag::note_deleted_default_ctor_all_const)
6859 << !!ICI << MD->getParent() << /*not anonymous union*/0;
6860 return true;
6861 }
6862 return false;
6863}
6864
6865/// Determine whether a defaulted special member function should be defined as
6866/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
6867/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
6868bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
6869 InheritedConstructorInfo *ICI,
6870 bool Diagnose) {
6871 if (MD->isInvalidDecl())
6872 return false;
6873 CXXRecordDecl *RD = MD->getParent();
6874 assert(!RD->isDependentType() && "do deletion after instantiation")((!RD->isDependentType() && "do deletion after instantiation"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDependentType() && \"do deletion after instantiation\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6874, __PRETTY_FUNCTION__))
;
6875 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
6876 return false;
6877
6878 // C++11 [expr.lambda.prim]p19:
6879 // The closure type associated with a lambda-expression has a
6880 // deleted (8.4.3) default constructor and a deleted copy
6881 // assignment operator.
6882 if (RD->isLambda() &&
6883 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
6884 if (Diagnose)
6885 Diag(RD->getLocation(), diag::note_lambda_decl);
6886 return true;
6887 }
6888
6889 // For an anonymous struct or union, the copy and assignment special members
6890 // will never be used, so skip the check. For an anonymous union declared at
6891 // namespace scope, the constructor and destructor are used.
6892 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
6893 RD->isAnonymousStructOrUnion())
6894 return false;
6895
6896 // C++11 [class.copy]p7, p18:
6897 // If the class definition declares a move constructor or move assignment
6898 // operator, an implicitly declared copy constructor or copy assignment
6899 // operator is defined as deleted.
6900 if (MD->isImplicit() &&
6901 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
6902 CXXMethodDecl *UserDeclaredMove = nullptr;
6903
6904 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
6905 // deletion of the corresponding copy operation, not both copy operations.
6906 // MSVC 2015 has adopted the standards conforming behavior.
6907 bool DeletesOnlyMatchingCopy =
6908 getLangOpts().MSVCCompat &&
6909 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
6910
6911 if (RD->hasUserDeclaredMoveConstructor() &&
6912 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
6913 if (!Diagnose) return true;
6914
6915 // Find any user-declared move constructor.
6916 for (auto *I : RD->ctors()) {
6917 if (I->isMoveConstructor()) {
6918 UserDeclaredMove = I;
6919 break;
6920 }
6921 }
6922 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6922, __PRETTY_FUNCTION__))
;
6923 } else if (RD->hasUserDeclaredMoveAssignment() &&
6924 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
6925 if (!Diagnose) return true;
6926
6927 // Find any user-declared move assignment operator.
6928 for (auto *I : RD->methods()) {
6929 if (I->isMoveAssignmentOperator()) {
6930 UserDeclaredMove = I;
6931 break;
6932 }
6933 }
6934 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6934, __PRETTY_FUNCTION__))
;
6935 }
6936
6937 if (UserDeclaredMove) {
6938 Diag(UserDeclaredMove->getLocation(),
6939 diag::note_deleted_copy_user_declared_move)
6940 << (CSM == CXXCopyAssignment) << RD
6941 << UserDeclaredMove->isMoveAssignmentOperator();
6942 return true;
6943 }
6944 }
6945
6946 // Do access control from the special member function
6947 ContextRAII MethodContext(*this, MD);
6948
6949 // C++11 [class.dtor]p5:
6950 // -- for a virtual destructor, lookup of the non-array deallocation function
6951 // results in an ambiguity or in a function that is deleted or inaccessible
6952 if (CSM == CXXDestructor && MD->isVirtual()) {
6953 FunctionDecl *OperatorDelete = nullptr;
6954 DeclarationName Name =
6955 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6956 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
6957 OperatorDelete, /*Diagnose*/false)) {
6958 if (Diagnose)
6959 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
6960 return true;
6961 }
6962 }
6963
6964 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
6965
6966 // Per DR1611, do not consider virtual bases of constructors of abstract
6967 // classes, since we are not going to construct them.
6968 // Per DR1658, do not consider virtual bases of destructors of abstract
6969 // classes either.
6970 // Per DR2180, for assignment operators we only assign (and thus only
6971 // consider) direct bases.
6972 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
6973 : SMI.VisitPotentiallyConstructedBases))
6974 return true;
6975
6976 if (SMI.shouldDeleteForAllConstMembers())
6977 return true;
6978
6979 if (getLangOpts().CUDA) {
6980 // We should delete the special member in CUDA mode if target inference
6981 // failed.
6982 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
6983 Diagnose);
6984 }
6985
6986 return false;
6987}
6988
6989/// Perform lookup for a special member of the specified kind, and determine
6990/// whether it is trivial. If the triviality can be determined without the
6991/// lookup, skip it. This is intended for use when determining whether a
6992/// special member of a containing object is trivial, and thus does not ever
6993/// perform overload resolution for default constructors.
6994///
6995/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
6996/// member that was most likely to be intended to be trivial, if any.
6997static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
6998 Sema::CXXSpecialMember CSM, unsigned Quals,
6999 bool ConstRHS, CXXMethodDecl **Selected) {
7000 if (Selected)
7001 *Selected = nullptr;
7002
7003 switch (CSM) {
7004 case Sema::CXXInvalid:
7005 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7005)
;
7006
7007 case Sema::CXXDefaultConstructor:
7008 // C++11 [class.ctor]p5:
7009 // A default constructor is trivial if:
7010 // - all the [direct subobjects] have trivial default constructors
7011 //
7012 // Note, no overload resolution is performed in this case.
7013 if (RD->hasTrivialDefaultConstructor())
7014 return true;
7015
7016 if (Selected) {
7017 // If there's a default constructor which could have been trivial, dig it
7018 // out. Otherwise, if there's any user-provided default constructor, point
7019 // to that as an example of why there's not a trivial one.
7020 CXXConstructorDecl *DefCtor = nullptr;
7021 if (RD->needsImplicitDefaultConstructor())
7022 S.DeclareImplicitDefaultConstructor(RD);
7023 for (auto *CI : RD->ctors()) {
7024 if (!CI->isDefaultConstructor())
7025 continue;
7026 DefCtor = CI;
7027 if (!DefCtor->isUserProvided())
7028 break;
7029 }
7030
7031 *Selected = DefCtor;
7032 }
7033
7034 return false;
7035
7036 case Sema::CXXDestructor:
7037 // C++11 [class.dtor]p5:
7038 // A destructor is trivial if:
7039 // - all the direct [subobjects] have trivial destructors
7040 if (RD->hasTrivialDestructor())
7041 return true;
7042
7043 if (Selected) {
7044 if (RD->needsImplicitDestructor())
7045 S.DeclareImplicitDestructor(RD);
7046 *Selected = RD->getDestructor();
7047 }
7048
7049 return false;
7050
7051 case Sema::CXXCopyConstructor:
7052 // C++11 [class.copy]p12:
7053 // A copy constructor is trivial if:
7054 // - the constructor selected to copy each direct [subobject] is trivial
7055 if (RD->hasTrivialCopyConstructor()) {
7056 if (Quals == Qualifiers::Const)
7057 // We must either select the trivial copy constructor or reach an
7058 // ambiguity; no need to actually perform overload resolution.
7059 return true;
7060 } else if (!Selected) {
7061 return false;
7062 }
7063 // In C++98, we are not supposed to perform overload resolution here, but we
7064 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
7065 // cases like B as having a non-trivial copy constructor:
7066 // struct A { template<typename T> A(T&); };
7067 // struct B { mutable A a; };
7068 goto NeedOverloadResolution;
7069
7070 case Sema::CXXCopyAssignment:
7071 // C++11 [class.copy]p25:
7072 // A copy assignment operator is trivial if:
7073 // - the assignment operator selected to copy each direct [subobject] is
7074 // trivial
7075 if (RD->hasTrivialCopyAssignment()) {
7076 if (Quals == Qualifiers::Const)
7077 return true;
7078 } else if (!Selected) {
7079 return false;
7080 }
7081 // In C++98, we are not supposed to perform overload resolution here, but we
7082 // treat that as a language defect.
7083 goto NeedOverloadResolution;
7084
7085 case Sema::CXXMoveConstructor:
7086 case Sema::CXXMoveAssignment:
7087 NeedOverloadResolution:
7088 Sema::SpecialMemberOverloadResult SMOR =
7089 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
7090
7091 // The standard doesn't describe how to behave if the lookup is ambiguous.
7092 // We treat it as not making the member non-trivial, just like the standard
7093 // mandates for the default constructor. This should rarely matter, because
7094 // the member will also be deleted.
7095 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
7096 return true;
7097
7098 if (!SMOR.getMethod()) {
7099 assert(SMOR.getKind() ==((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7100, __PRETTY_FUNCTION__))
7100 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7100, __PRETTY_FUNCTION__))
;
7101 return false;
7102 }
7103
7104 // We deliberately don't check if we found a deleted special member. We're
7105 // not supposed to!
7106 if (Selected)
7107 *Selected = SMOR.getMethod();
7108 return SMOR.getMethod()->isTrivial();
7109 }
7110
7111 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7111)
;
7112}
7113
7114static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
7115 for (auto *CI : RD->ctors())
7116 if (!CI->isImplicit())
7117 return CI;
7118
7119 // Look for constructor templates.
7120 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
7121 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
7122 if (CXXConstructorDecl *CD =
7123 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
7124 return CD;
7125 }
7126
7127 return nullptr;
7128}
7129
7130/// The kind of subobject we are checking for triviality. The values of this
7131/// enumeration are used in diagnostics.
7132enum TrivialSubobjectKind {
7133 /// The subobject is a base class.
7134 TSK_BaseClass,
7135 /// The subobject is a non-static data member.
7136 TSK_Field,
7137 /// The object is actually the complete object.
7138 TSK_CompleteObject
7139};
7140
7141/// Check whether the special member selected for a given type would be trivial.
7142static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
7143 QualType SubType, bool ConstRHS,
7144 Sema::CXXSpecialMember CSM,
7145 TrivialSubobjectKind Kind,
7146 bool Diagnose) {
7147 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
7148 if (!SubRD)
7149 return true;
7150
7151 CXXMethodDecl *Selected;
7152 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
7153 ConstRHS, Diagnose ? &Selected : nullptr))
7154 return true;
7155
7156 if (Diagnose) {
7157 if (ConstRHS)
7158 SubType.addConst();
7159
7160 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
7161 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
7162 << Kind << SubType.getUnqualifiedType();
7163 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
7164 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
7165 } else if (!Selected)
7166 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
7167 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
7168 else if (Selected->isUserProvided()) {
7169 if (Kind == TSK_CompleteObject)
7170 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
7171 << Kind << SubType.getUnqualifiedType() << CSM;
7172 else {
7173 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
7174 << Kind << SubType.getUnqualifiedType() << CSM;
7175 S.Diag(Selected->getLocation(), diag::note_declared_at);
7176 }
7177 } else {
7178 if (Kind != TSK_CompleteObject)
7179 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
7180 << Kind << SubType.getUnqualifiedType() << CSM;
7181
7182 // Explain why the defaulted or deleted special member isn't trivial.
7183 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
7184 }
7185 }
7186
7187 return false;
7188}
7189
7190/// Check whether the members of a class type allow a special member to be
7191/// trivial.
7192static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
7193 Sema::CXXSpecialMember CSM,
7194 bool ConstArg, bool Diagnose) {
7195 for (const auto *FI : RD->fields()) {
7196 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
7197 continue;
7198
7199 QualType FieldType = S.Context.getBaseElementType(FI->getType());
7200
7201 // Pretend anonymous struct or union members are members of this class.
7202 if (FI->isAnonymousStructOrUnion()) {
7203 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
7204 CSM, ConstArg, Diagnose))
7205 return false;
7206 continue;
7207 }
7208
7209 // C++11 [class.ctor]p5:
7210 // A default constructor is trivial if [...]
7211 // -- no non-static data member of its class has a
7212 // brace-or-equal-initializer
7213 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
7214 if (Diagnose)
7215 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
7216 return false;
7217 }
7218
7219 // Objective C ARC 4.3.5:
7220 // [...] nontrivally ownership-qualified types are [...] not trivially
7221 // default constructible, copy constructible, move constructible, copy
7222 // assignable, move assignable, or destructible [...]
7223 if (FieldType.hasNonTrivialObjCLifetime()) {
7224 if (Diagnose)
7225 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
7226 << RD << FieldType.getObjCLifetime();
7227 return false;
7228 }
7229
7230 bool ConstRHS = ConstArg && !FI->isMutable();
7231 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
7232 CSM, TSK_Field, Diagnose))
7233 return false;
7234 }
7235
7236 return true;
7237}
7238
7239/// Diagnose why the specified class does not have a trivial special member of
7240/// the given kind.
7241void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
7242 QualType Ty = Context.getRecordType(RD);
7243
7244 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
7245 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
7246 TSK_CompleteObject, /*Diagnose*/true);
7247}
7248
7249/// Determine whether a defaulted or deleted special member function is trivial,
7250/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
7251/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
7252bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
7253 bool Diagnose) {
7254 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((!MD->isUserProvided() && CSM != CXXInvalid &&
"not special enough") ? static_cast<void> (0) : __assert_fail
("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7254, __PRETTY_FUNCTION__))
;
7255
7256 CXXRecordDecl *RD = MD->getParent();
7257
7258 bool ConstArg = false;
7259
7260 // C++11 [class.copy]p12, p25: [DR1593]
7261 // A [special member] is trivial if [...] its parameter-type-list is
7262 // equivalent to the parameter-type-list of an implicit declaration [...]
7263 switch (CSM) {
7264 case CXXDefaultConstructor:
7265 case CXXDestructor:
7266 // Trivial default constructors and destructors cannot have parameters.
7267 break;
7268
7269 case CXXCopyConstructor:
7270 case CXXCopyAssignment: {
7271 // Trivial copy operations always have const, non-volatile parameter types.
7272 ConstArg = true;
7273 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7274 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
7275 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
7276 if (Diagnose)
7277 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7278 << Param0->getSourceRange() << Param0->getType()
7279 << Context.getLValueReferenceType(
7280 Context.getRecordType(RD).withConst());
7281 return false;
7282 }
7283 break;
7284 }
7285
7286 case CXXMoveConstructor:
7287 case CXXMoveAssignment: {
7288 // Trivial move operations always have non-cv-qualified parameters.
7289 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7290 const RValueReferenceType *RT =
7291 Param0->getType()->getAs<RValueReferenceType>();
7292 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
7293 if (Diagnose)
7294 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7295 << Param0->getSourceRange() << Param0->getType()
7296 << Context.getRValueReferenceType(Context.getRecordType(RD));
7297 return false;
7298 }
7299 break;
7300 }
7301
7302 case CXXInvalid:
7303 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7303)
;
7304 }
7305
7306 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
7307 if (Diagnose)
7308 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
7309 diag::note_nontrivial_default_arg)
7310 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
7311 return false;
7312 }
7313 if (MD->isVariadic()) {
7314 if (Diagnose)
7315 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
7316 return false;
7317 }
7318
7319 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7320 // A copy/move [constructor or assignment operator] is trivial if
7321 // -- the [member] selected to copy/move each direct base class subobject
7322 // is trivial
7323 //
7324 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7325 // A [default constructor or destructor] is trivial if
7326 // -- all the direct base classes have trivial [default constructors or
7327 // destructors]
7328 for (const auto &BI : RD->bases())
7329 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
7330 ConstArg, CSM, TSK_BaseClass, Diagnose))
7331 return false;
7332
7333 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7334 // A copy/move [constructor or assignment operator] for a class X is
7335 // trivial if
7336 // -- for each non-static data member of X that is of class type (or array
7337 // thereof), the constructor selected to copy/move that member is
7338 // trivial
7339 //
7340 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7341 // A [default constructor or destructor] is trivial if
7342 // -- for all of the non-static data members of its class that are of class
7343 // type (or array thereof), each such class has a trivial [default
7344 // constructor or destructor]
7345 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
7346 return false;
7347
7348 // C++11 [class.dtor]p5:
7349 // A destructor is trivial if [...]
7350 // -- the destructor is not virtual
7351 if (CSM == CXXDestructor && MD->isVirtual()) {
7352 if (Diagnose)
7353 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
7354 return false;
7355 }
7356
7357 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
7358 // A [special member] for class X is trivial if [...]
7359 // -- class X has no virtual functions and no virtual base classes
7360 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
7361 if (!Diagnose)
7362 return false;
7363
7364 if (RD->getNumVBases()) {
7365 // Check for virtual bases. We already know that the corresponding
7366 // member in all bases is trivial, so vbases must all be direct.
7367 CXXBaseSpecifier &BS = *RD->vbases_begin();
7368 assert(BS.isVirtual())((BS.isVirtual()) ? static_cast<void> (0) : __assert_fail
("BS.isVirtual()", "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7368, __PRETTY_FUNCTION__))
;
7369 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
7370 return false;
7371 }
7372
7373 // Must have a virtual method.
7374 for (const auto *MI : RD->methods()) {
7375 if (MI->isVirtual()) {
7376 SourceLocation MLoc = MI->getLocStart();
7377 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
7378 return false;
7379 }
7380 }
7381
7382 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7382)
;
7383 }
7384
7385 // Looks like it's trivial!
7386 return true;
7387}
7388
7389namespace {
7390struct FindHiddenVirtualMethod {
7391 Sema *S;
7392 CXXMethodDecl *Method;
7393 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
7394 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7395
7396private:
7397 /// Check whether any most overriden method from MD in Methods
7398 static bool CheckMostOverridenMethods(
7399 const CXXMethodDecl *MD,
7400 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
7401 if (MD->size_overridden_methods() == 0)
7402 return Methods.count(MD->getCanonicalDecl());
7403 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7404 E = MD->end_overridden_methods();
7405 I != E; ++I)
7406 if (CheckMostOverridenMethods(*I, Methods))
7407 return true;
7408 return false;
7409 }
7410
7411public:
7412 /// Member lookup function that determines whether a given C++
7413 /// method overloads virtual methods in a base class without overriding any,
7414 /// to be used with CXXRecordDecl::lookupInBases().
7415 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7416 RecordDecl *BaseRecord =
7417 Specifier->getType()->getAs<RecordType>()->getDecl();
7418
7419 DeclarationName Name = Method->getDeclName();
7420 assert(Name.getNameKind() == DeclarationName::Identifier)((Name.getNameKind() == DeclarationName::Identifier) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7420, __PRETTY_FUNCTION__))
;
7421
7422 bool foundSameNameMethod = false;
7423 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
7424 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7425 Path.Decls = Path.Decls.slice(1)) {
7426 NamedDecl *D = Path.Decls.front();
7427 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7428 MD = MD->getCanonicalDecl();
7429 foundSameNameMethod = true;
7430 // Interested only in hidden virtual methods.
7431 if (!MD->isVirtual())
7432 continue;
7433 // If the method we are checking overrides a method from its base
7434 // don't warn about the other overloaded methods. Clang deviates from
7435 // GCC by only diagnosing overloads of inherited virtual functions that
7436 // do not override any other virtual functions in the base. GCC's
7437 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
7438 // function from a base class. These cases may be better served by a
7439 // warning (not specific to virtual functions) on call sites when the
7440 // call would select a different function from the base class, were it
7441 // visible.
7442 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
7443 if (!S->IsOverload(Method, MD, false))
7444 return true;
7445 // Collect the overload only if its hidden.
7446 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
7447 overloadedMethods.push_back(MD);
7448 }
7449 }
7450
7451 if (foundSameNameMethod)
7452 OverloadedMethods.append(overloadedMethods.begin(),
7453 overloadedMethods.end());
7454 return foundSameNameMethod;
7455 }
7456};
7457} // end anonymous namespace
7458
7459/// \brief Add the most overriden methods from MD to Methods
7460static void AddMostOverridenMethods(const CXXMethodDecl *MD,
7461 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
7462 if (MD->size_overridden_methods() == 0)
7463 Methods.insert(MD->getCanonicalDecl());
7464 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7465 E = MD->end_overridden_methods();
7466 I != E; ++I)
7467 AddMostOverridenMethods(*I, Methods);
7468}
7469
7470/// \brief Check if a method overloads virtual methods in a base class without
7471/// overriding any.
7472void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
7473 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7474 if (!MD->getDeclName().isIdentifier())
7475 return;
7476
7477 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
7478 /*bool RecordPaths=*/false,
7479 /*bool DetectVirtual=*/false);
7480 FindHiddenVirtualMethod FHVM;
7481 FHVM.Method = MD;
7482 FHVM.S = this;
7483
7484 // Keep the base methods that were overriden or introduced in the subclass
7485 // by 'using' in a set. A base method not in this set is hidden.
7486 CXXRecordDecl *DC = MD->getParent();
7487 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
7488 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
7489 NamedDecl *ND = *I;
7490 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
7491 ND = shad->getTargetDecl();
7492 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7493 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
7494 }
7495
7496 if (DC->lookupInBases(FHVM, Paths))
7497 OverloadedMethods = FHVM.OverloadedMethods;
7498}
7499
7500void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
7501 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7502 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
7503 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
7504 PartialDiagnostic PD = PDiag(
7505 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
7506 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
7507 Diag(overloadedMD->getLocation(), PD);
7508 }
7509}
7510
7511/// \brief Diagnose methods which overload virtual methods in a base class
7512/// without overriding any.
7513void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
7514 if (MD->isInvalidDecl())
7515 return;
7516
7517 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
7518 return;
7519
7520 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7521 FindHiddenVirtualMethods(MD, OverloadedMethods);
7522 if (!OverloadedMethods.empty()) {
7523 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
7524 << MD << (OverloadedMethods.size() > 1);
7525
7526 NoteHiddenVirtualMethods(MD, OverloadedMethods);
7527 }
7528}
7529
7530void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
7531 Decl *TagDecl,
7532 SourceLocation LBrac,
7533 SourceLocation RBrac,
7534 AttributeList *AttrList) {
7535 if (!TagDecl)
7536 return;
7537
7538 AdjustDeclIfTemplate(TagDecl);
7539
7540 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
7541 if (l->getKind() != AttributeList::AT_Visibility)
7542 continue;
7543 l->setInvalid();
7544 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
7545 l->getName();
7546 }
7547
7548 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
7549 // strict aliasing violation!
7550 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
7551 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
7552
7553 CheckCompletedCXXClass(dyn_cast_or_null<CXXRecordDecl>(TagDecl));
7554}
7555
7556/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
7557/// special functions, such as the default constructor, copy
7558/// constructor, or destructor, to the given C++ class (C++
7559/// [special]p1). This routine can only be executed just before the
7560/// definition of the class is complete.
7561void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
7562 if (ClassDecl->needsImplicitDefaultConstructor()) {
7563 ++ASTContext::NumImplicitDefaultConstructors;
7564
7565 if (ClassDecl->hasInheritedConstructor())
7566 DeclareImplicitDefaultConstructor(ClassDecl);
7567 }
7568
7569 if (ClassDecl->needsImplicitCopyConstructor()) {
7570 ++ASTContext::NumImplicitCopyConstructors;
7571
7572 // If the properties or semantics of the copy constructor couldn't be
7573 // determined while the class was being declared, force a declaration
7574 // of it now.
7575 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
7576 ClassDecl->hasInheritedConstructor())
7577 DeclareImplicitCopyConstructor(ClassDecl);
7578 // For the MS ABI we need to know whether the copy ctor is deleted. A
7579 // prerequisite for deleting the implicit copy ctor is that the class has a
7580 // move ctor or move assignment that is either user-declared or whose
7581 // semantics are inherited from a subobject. FIXME: We should provide a more
7582 // direct way for CodeGen to ask whether the constructor was deleted.
7583 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
7584 (ClassDecl->hasUserDeclaredMoveConstructor() ||
7585 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7586 ClassDecl->hasUserDeclaredMoveAssignment() ||
7587 ClassDecl->needsOverloadResolutionForMoveAssignment()))
7588 DeclareImplicitCopyConstructor(ClassDecl);
7589 }
7590
7591 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
7592 ++ASTContext::NumImplicitMoveConstructors;
7593
7594 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7595 ClassDecl->hasInheritedConstructor())
7596 DeclareImplicitMoveConstructor(ClassDecl);
7597 }
7598
7599 if (ClassDecl->needsImplicitCopyAssignment()) {
7600 ++ASTContext::NumImplicitCopyAssignmentOperators;
7601
7602 // If we have a dynamic class, then the copy assignment operator may be
7603 // virtual, so we have to declare it immediately. This ensures that, e.g.,
7604 // it shows up in the right place in the vtable and that we diagnose
7605 // problems with the implicit exception specification.
7606 if (ClassDecl->isDynamicClass() ||
7607 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
7608 ClassDecl->hasInheritedAssignment())
7609 DeclareImplicitCopyAssignment(ClassDecl);
7610 }
7611
7612 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
7613 ++ASTContext::NumImplicitMoveAssignmentOperators;
7614
7615 // Likewise for the move assignment operator.
7616 if (ClassDecl->isDynamicClass() ||
7617 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
7618 ClassDecl->hasInheritedAssignment())
7619 DeclareImplicitMoveAssignment(ClassDecl);
7620 }
7621
7622 if (ClassDecl->needsImplicitDestructor()) {
7623 ++ASTContext::NumImplicitDestructors;
7624
7625 // If we have a dynamic class, then the destructor may be virtual, so we
7626 // have to declare the destructor immediately. This ensures that, e.g., it
7627 // shows up in the right place in the vtable and that we diagnose problems
7628 // with the implicit exception specification.
7629 if (ClassDecl->isDynamicClass() ||
7630 ClassDecl->needsOverloadResolutionForDestructor())
7631 DeclareImplicitDestructor(ClassDecl);
7632 }
7633}
7634
7635unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
7636 if (!D)
7637 return 0;
7638
7639 // The order of template parameters is not important here. All names
7640 // get added to the same scope.
7641 SmallVector<TemplateParameterList *, 4> ParameterLists;
7642
7643 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7644 D = TD->getTemplatedDecl();
7645
7646 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
7647 ParameterLists.push_back(PSD->getTemplateParameters());
7648
7649 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
7650 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
7651 ParameterLists.push_back(DD->getTemplateParameterList(i));
7652
7653 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7654 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
7655 ParameterLists.push_back(FTD->getTemplateParameters());
7656 }
7657 }
7658
7659 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
7660 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
7661 ParameterLists.push_back(TD->getTemplateParameterList(i));
7662
7663 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
7664 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
7665 ParameterLists.push_back(CTD->getTemplateParameters());
7666 }
7667 }
7668
7669 unsigned Count = 0;
7670 for (TemplateParameterList *Params : ParameterLists) {
7671 if (Params->size() > 0)
7672 // Ignore explicit specializations; they don't contribute to the template
7673 // depth.
7674 ++Count;
7675 for (NamedDecl *Param : *Params) {
7676 if (Param->getDeclName()) {
7677 S->AddDecl(Param);
7678 IdResolver.AddDecl(Param);
7679 }
7680 }
7681 }
7682
7683 return Count;
7684}
7685
7686void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7687 if (!RecordD) return;
7688 AdjustDeclIfTemplate(RecordD);
7689 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
7690 PushDeclContext(S, Record);
7691}
7692
7693void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7694 if (!RecordD) return;
7695 PopDeclContext();
7696}
7697
7698/// This is used to implement the constant expression evaluation part of the
7699/// attribute enable_if extension. There is nothing in standard C++ which would
7700/// require reentering parameters.
7701void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
7702 if (!Param)
7703 return;
7704
7705 S->AddDecl(Param);
7706 if (Param->getDeclName())
7707 IdResolver.AddDecl(Param);
7708}
7709
7710/// ActOnStartDelayedCXXMethodDeclaration - We have completed
7711/// parsing a top-level (non-nested) C++ class, and we are now
7712/// parsing those parts of the given Method declaration that could
7713/// not be parsed earlier (C++ [class.mem]p2), such as default
7714/// arguments. This action should enter the scope of the given
7715/// Method declaration as if we had just parsed the qualified method
7716/// name. However, it should not bring the parameters into scope;
7717/// that will be performed by ActOnDelayedCXXMethodParameter.
7718void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7719}
7720
7721/// ActOnDelayedCXXMethodParameter - We've already started a delayed
7722/// C++ method declaration. We're (re-)introducing the given
7723/// function parameter into scope for use in parsing later parts of
7724/// the method declaration. For example, we could see an
7725/// ActOnParamDefaultArgument event for this parameter.
7726void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
7727 if (!ParamD)
7728 return;
7729
7730 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
7731
7732 // If this parameter has an unparsed default argument, clear it out
7733 // to make way for the parsed default argument.
7734 if (Param->hasUnparsedDefaultArg())
7735 Param->setDefaultArg(nullptr);
7736
7737 S->AddDecl(Param);
7738 if (Param->getDeclName())
7739 IdResolver.AddDecl(Param);
7740}
7741
7742/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
7743/// processing the delayed method declaration for Method. The method
7744/// declaration is now considered finished. There may be a separate
7745/// ActOnStartOfFunctionDef action later (not necessarily
7746/// immediately!) for this method, if it was also defined inside the
7747/// class body.
7748void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7749 if (!MethodD)
7750 return;
7751
7752 AdjustDeclIfTemplate(MethodD);
7753
7754 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
7755
7756 // Now that we have our default arguments, check the constructor
7757 // again. It could produce additional diagnostics or affect whether
7758 // the class has implicitly-declared destructors, among other
7759 // things.
7760 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
7761 CheckConstructor(Constructor);
7762
7763 // Check the default arguments, which we may have added.
7764 if (!Method->isInvalidDecl())
7765 CheckCXXDefaultArguments(Method);
7766}
7767
7768/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
7769/// the well-formedness of the constructor declarator @p D with type @p
7770/// R. If there are any errors in the declarator, this routine will
7771/// emit diagnostics and set the invalid bit to true. In any case, the type
7772/// will be updated to reflect a well-formed type for the constructor and
7773/// returned.
7774QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
7775 StorageClass &SC) {
7776 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7777
7778 // C++ [class.ctor]p3:
7779 // A constructor shall not be virtual (10.3) or static (9.4). A
7780 // constructor can be invoked for a const, volatile or const
7781 // volatile object. A constructor shall not be declared const,
7782 // volatile, or const volatile (9.3.2).
7783 if (isVirtual) {
7784 if (!D.isInvalidType())
7785 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7786 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
7787 << SourceRange(D.getIdentifierLoc());
7788 D.setInvalidType();
7789 }
7790 if (SC == SC_Static) {
7791 if (!D.isInvalidType())
7792 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7793 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7794 << SourceRange(D.getIdentifierLoc());
7795 D.setInvalidType();
7796 SC = SC_None;
7797 }
7798
7799 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7800 diagnoseIgnoredQualifiers(
7801 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
7802 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
7803 D.getDeclSpec().getRestrictSpecLoc(),
7804 D.getDeclSpec().getAtomicSpecLoc());
7805 D.setInvalidType();
7806 }
7807
7808 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7809 if (FTI.TypeQuals != 0) {
7810 if (FTI.TypeQuals & Qualifiers::Const)
7811 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7812 << "const" << SourceRange(D.getIdentifierLoc());
7813 if (FTI.TypeQuals & Qualifiers::Volatile)
7814 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7815 << "volatile" << SourceRange(D.getIdentifierLoc());
7816 if (FTI.TypeQuals & Qualifiers::Restrict)
7817 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7818 << "restrict" << SourceRange(D.getIdentifierLoc());
7819 D.setInvalidType();
7820 }
7821
7822 // C++0x [class.ctor]p4:
7823 // A constructor shall not be declared with a ref-qualifier.
7824 if (FTI.hasRefQualifier()) {
7825 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
7826 << FTI.RefQualifierIsLValueRef
7827 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7828 D.setInvalidType();
7829 }
7830
7831 // Rebuild the function type "R" without any type qualifiers (in
7832 // case any of the errors above fired) and with "void" as the
7833 // return type, since constructors don't have return types.
7834 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7835 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
7836 return R;
7837
7838 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7839 EPI.TypeQuals = 0;
7840 EPI.RefQualifier = RQ_None;
7841
7842 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
7843}
7844
7845/// CheckConstructor - Checks a fully-formed constructor for
7846/// well-formedness, issuing any diagnostics required. Returns true if
7847/// the constructor declarator is invalid.
7848void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
7849 CXXRecordDecl *ClassDecl
7850 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
7851 if (!ClassDecl)
7852 return Constructor->setInvalidDecl();
7853
7854 // C++ [class.copy]p3:
7855 // A declaration of a constructor for a class X is ill-formed if
7856 // its first parameter is of type (optionally cv-qualified) X and
7857 // either there are no other parameters or else all other
7858 // parameters have default arguments.
7859 if (!Constructor->isInvalidDecl() &&
7860 ((Constructor->getNumParams() == 1) ||
7861 (Constructor->getNumParams() > 1 &&
7862 Constructor->getParamDecl(1)->hasDefaultArg())) &&
7863 Constructor->getTemplateSpecializationKind()
7864 != TSK_ImplicitInstantiation) {
7865 QualType ParamType = Constructor->getParamDecl(0)->getType();
7866 QualType ClassTy = Context.getTagDeclType(ClassDecl);
7867 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
7868 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
7869 const char *ConstRef
7870 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
7871 : " const &";
7872 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
7873 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
7874
7875 // FIXME: Rather that making the constructor invalid, we should endeavor
7876 // to fix the type.
7877 Constructor->setInvalidDecl();
7878 }
7879 }
7880}
7881
7882/// CheckDestructor - Checks a fully-formed destructor definition for
7883/// well-formedness, issuing any diagnostics required. Returns true
7884/// on error.
7885bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
7886 CXXRecordDecl *RD = Destructor->getParent();
7887
7888 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
7889 SourceLocation Loc;
7890
7891 if (!Destructor->isImplicit())
7892 Loc = Destructor->getLocation();
7893 else
7894 Loc = RD->getLocation();
7895
7896 // If we have a virtual destructor, look up the deallocation function
7897 if (FunctionDecl *OperatorDelete =
7898 FindDeallocationFunctionForDestructor(Loc, RD)) {
7899 Expr *ThisArg = nullptr;
7900
7901 // If the notional 'delete this' expression requires a non-trivial
7902 // conversion from 'this' to the type of a destroying operator delete's
7903 // first parameter, perform that conversion now.
7904 if (OperatorDelete->isDestroyingOperatorDelete()) {
7905 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
7906 if (!declaresSameEntity(ParamType->getAsCXXRecordDecl(), RD)) {
7907 // C++ [class.dtor]p13:
7908 // ... as if for the expression 'delete this' appearing in a
7909 // non-virtual destructor of the destructor's class.
7910 ContextRAII SwitchContext(*this, Destructor);
7911 ExprResult This =
7912 ActOnCXXThis(OperatorDelete->getParamDecl(0)->getLocation());
7913 assert(!This.isInvalid() && "couldn't form 'this' expr in dtor?")((!This.isInvalid() && "couldn't form 'this' expr in dtor?"
) ? static_cast<void> (0) : __assert_fail ("!This.isInvalid() && \"couldn't form 'this' expr in dtor?\""
, "/build/llvm-toolchain-snapshot-6.0~svn316068/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7913, __PRETTY_FUNCTION__))
;
7914 This = PerformImplicitConversion(This.get(), ParamType, AA_Passing);
7915 if (This.isInvalid()) {
7916 // FIXME: Register this as a context note so that it comes out
7917 // in the right order.
7918 Diag(Loc, diag::note_implicit_delete_this_in_destructor_here);
7919 return true;
7920 }
7921 ThisArg = This.get();
7922 }
7923 }
7924
7925 MarkFunctionReferenced(Loc, OperatorDelete);
7926 Destructor->setOperatorDelete(OperatorDelete, ThisArg);
7927 }
7928 }
7929
7930 return false;
7931}
7932
7933/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
7934/// the well-formednes of the destructor declarator @p D with type @p
7935/// R. If there are any errors in the declarator, this routine will
7936/// emit diagnostics and set the declarator to invalid. Even if this happens,
7937/// will be updated to reflect a well-formed type for the destructor and
7938/// returned.
7939QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
7940 StorageClass& SC) {
7941 // C++ [class.dtor]p1:
7942 // [...] A typedef-name that names a class is a class-name
7943 // (7.1.3); however, a typedef-name that names a class shall not
7944 // be used as the identifier in the declarator for a destructor
7945 // declaration.
7946 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
7947 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
7948 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7949 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
7950 else if (const TemplateSpecializationType *TST =
7951 DeclaratorType->getAs<TemplateSpecializationType>())
7952 if (TST->isTypeAlias())
7953 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7954 << DeclaratorType << 1;
7955
7956 // C++ [class.dtor]p2:
7957 // A destructor is used to destroy objects of its class type. A
7958 // destructor takes no parameters, and no return type can be
7959 // specified for it (not even void). The address of a destructor
7960 // shall not be taken. A destructor shall not be static. A
7961 // destructor can be invoked for a const, volatile or const
7962 // volatile object. A destructor shall not be declared const,
7963 // volatile or const volatile (9.3.2).
7964 if (SC == SC_Static) {
7965 if (!D.isInvalidType())
7966 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
7967 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7968 << SourceRange(D.getIdentifierLoc())
7969 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7970
7971 SC = SC_None;
7972 }
7973 if (!D.isInvalidType()) {
7974 // Destructors don't have return types, but the parser will
7975 // happily parse something like:
7976 //
7977 // class X {
7978 // float ~X();
7979 // };
7980 //
7981 // The return type will be eliminated later.
7982 if (D.getDeclSpec().hasTypeSpecifier())
7983 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
7984 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7985 << SourceRange(D.getIdentifierLoc());
7986 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7987 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
7988 SourceLocation(),
7989 D.getDeclSpec().getConstSpecLoc(),
7990 D.getDeclSpec().getVolatileSpecLoc(),
7991 D.getDeclSpec().getRestrictSpecLoc(),
7992 D.getDeclSpec().getAtomicSpecLoc());
7993 D.setInvalidType();
7994 }
7995 }
7996
7997 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7998 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
7999 if (FTI.TypeQuals & Qualifiers::Const)
8000 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8001 << "const" << SourceRange(D.getIdentifierLoc());
8002 if (FTI.TypeQuals & Qualifiers::Volatile)
8003 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8004 << "volatile" << SourceRange(D.getIdentifierLoc());
8005 if (FTI.TypeQuals & Qualifiers::Restrict)
8006 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
8007 << "restrict" << SourceRange(D.getIdentifierLoc());
8008 D.setInvalidType();
8009 }
8010
8011 // C++0x [class.dtor]p2:
8012 // A destructor shall not be declared with a ref-qualifier.
8013 if (FTI.hasRefQualifier()) {
8014 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
8015 << FTI.RefQualifierIsLValueRef
8016 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
8017 D.setInvalidType();
8018 }
8019
8020 // Make sure we don't have any parameters.
8021 if (FTIHasNonVoidParameters(FTI)) {
8022 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
8023
8024 // Delete the parameters.
8025 FTI.freeParams();
8026 D.setInvalidType();
8027 }
8028
8029 // Make sure the destructor isn't variadic.
8030 if (FTI.isVariadic) {
8031 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
8032 D.setInvalidType();
8033 }
8034
8035 // Rebuild the function type "R" without any type qualifiers or
8036 // parameters (in case any of the errors above fired) and with
8037 // "void" as the return type, since destructors don't have return
8038 // types.
8039 if (!D.isInvalidType())
8040 return R;
8041
8042 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8043 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
8044 EPI.Variadic = false;
8045 EPI.TypeQuals = 0;
8046 EPI.RefQualifier = RQ_None;
8047 return Context.getFunctionType(Context.VoidTy, None, EPI);
8048}
8049
8050static void extendLeft(SourceRange &R, SourceRange Before) {
8051 if (Before.isInvalid())
8052 return;
8053 R.setBegin(Before.getBegin());
8054 if (R.getEnd().isInvalid())
8055 R.s