Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 635, column 29
Called C++ object pointer is null

Annotated Source Code

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "clang/Sema/Template.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/StringExtras.h"
43#include <map>
44#include <set>
45
46using namespace clang;
47
48//===----------------------------------------------------------------------===//
49// CheckDefaultArgumentVisitor
50//===----------------------------------------------------------------------===//
51
52namespace {
53 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
54 /// the default argument of a parameter to determine whether it
55 /// contains any ill-formed subexpressions. For example, this will
56 /// diagnose the use of local variables or parameters within the
57 /// default argument expression.
58 class CheckDefaultArgumentVisitor
59 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
60 Expr *DefaultArg;
61 Sema *S;
62
63 public:
64 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
65 : DefaultArg(defarg), S(s) {}
66
67 bool VisitExpr(Expr *Node);
68 bool VisitDeclRefExpr(DeclRefExpr *DRE);
69 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
70 bool VisitLambdaExpr(LambdaExpr *Lambda);
71 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
72 };
73
74 /// VisitExpr - Visit all of the children of this expression.
75 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
76 bool IsInvalid = false;
77 for (Stmt *SubStmt : Node->children())
78 IsInvalid |= Visit(SubStmt);
79 return IsInvalid;
80 }
81
82 /// VisitDeclRefExpr - Visit a reference to a declaration, to
83 /// determine whether this declaration can be used in the default
84 /// argument expression.
85 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
86 NamedDecl *Decl = DRE->getDecl();
87 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
88 // C++ [dcl.fct.default]p9
89 // Default arguments are evaluated each time the function is
90 // called. The order of evaluation of function arguments is
91 // unspecified. Consequently, parameters of a function shall not
92 // be used in default argument expressions, even if they are not
93 // evaluated. Parameters of a function declared before a default
94 // argument expression are in scope and can hide namespace and
95 // class member names.
96 return S->Diag(DRE->getLocStart(),
97 diag::err_param_default_argument_references_param)
98 << Param->getDeclName() << DefaultArg->getSourceRange();
99 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
100 // C++ [dcl.fct.default]p7
101 // Local variables shall not be used in default argument
102 // expressions.
103 if (VDecl->isLocalVarDecl())
104 return S->Diag(DRE->getLocStart(),
105 diag::err_param_default_argument_references_local)
106 << VDecl->getDeclName() << DefaultArg->getSourceRange();
107 }
108
109 return false;
110 }
111
112 /// VisitCXXThisExpr - Visit a C++ "this" expression.
113 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
114 // C++ [dcl.fct.default]p8:
115 // The keyword this shall not be used in a default argument of a
116 // member function.
117 return S->Diag(ThisE->getLocStart(),
118 diag::err_param_default_argument_references_this)
119 << ThisE->getSourceRange();
120 }
121
122 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
123 bool Invalid = false;
124 for (PseudoObjectExpr::semantics_iterator
125 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
126 Expr *E = *i;
127
128 // Look through bindings.
129 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
130 E = OVE->getSourceExpr();
131 assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?"
) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 131, __PRETTY_FUNCTION__))
;
132 }
133
134 Invalid |= Visit(E);
135 }
136 return Invalid;
137 }
138
139 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
140 // C++11 [expr.lambda.prim]p13:
141 // A lambda-expression appearing in a default argument shall not
142 // implicitly or explicitly capture any entity.
143 if (Lambda->capture_begin() == Lambda->capture_end())
144 return false;
145
146 return S->Diag(Lambda->getLocStart(),
147 diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 switch(EST) {
171 // If this function can throw any exceptions, make a note of that.
172 case EST_MSAny:
173 case EST_None:
174 ClearExceptions();
175 ComputedEST = EST;
176 return;
177 // FIXME: If the call to this decl is using any of its default arguments, we
178 // need to search them for potentially-throwing calls.
179 // If this function has a basic noexcept, it doesn't affect the outcome.
180 case EST_BasicNoexcept:
181 return;
182 // If we're still at noexcept(true) and there's a nothrow() callee,
183 // change to that specification.
184 case EST_DynamicNone:
185 if (ComputedEST == EST_BasicNoexcept)
186 ComputedEST = EST_DynamicNone;
187 return;
188 // Check out noexcept specs.
189 case EST_ComputedNoexcept:
190 {
191 FunctionProtoType::NoexceptResult NR =
192 Proto->getNoexceptSpec(Self->Context);
193 assert(NR != FunctionProtoType::NR_NoNoexcept &&((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 194, __PRETTY_FUNCTION__))
194 "Must have noexcept result for EST_ComputedNoexcept.")((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 194, __PRETTY_FUNCTION__))
;
195 assert(NR != FunctionProtoType::NR_Dependent &&((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
196 "Should not generate implicit declarations for dependent cases, "((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
197 "and don't know how to handle them anyway.")((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
;
198 // noexcept(false) -> no spec on the new function
199 if (NR == FunctionProtoType::NR_Throw) {
200 ClearExceptions();
201 ComputedEST = EST_None;
202 }
203 // noexcept(true) won't change anything either.
204 return;
205 }
206 default:
207 break;
208 }
209 assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier."
) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 209, __PRETTY_FUNCTION__))
;
210 assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 211, __PRETTY_FUNCTION__))
211 "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 211, __PRETTY_FUNCTION__))
;
212 ComputedEST = EST_Dynamic;
213 // Record the exceptions in this function's exception specification.
214 for (const auto &E : Proto->exceptions())
215 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
216 Exceptions.push_back(E);
217}
218
219void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
220 if (!E || ComputedEST == EST_MSAny)
221 return;
222
223 // FIXME:
224 //
225 // C++0x [except.spec]p14:
226 // [An] implicit exception-specification specifies the type-id T if and
227 // only if T is allowed by the exception-specification of a function directly
228 // invoked by f's implicit definition; f shall allow all exceptions if any
229 // function it directly invokes allows all exceptions, and f shall allow no
230 // exceptions if every function it directly invokes allows no exceptions.
231 //
232 // Note in particular that if an implicit exception-specification is generated
233 // for a function containing a throw-expression, that specification can still
234 // be noexcept(true).
235 //
236 // Note also that 'directly invoked' is not defined in the standard, and there
237 // is no indication that we should only consider potentially-evaluated calls.
238 //
239 // Ultimately we should implement the intent of the standard: the exception
240 // specification should be the set of exceptions which can be thrown by the
241 // implicit definition. For now, we assume that any non-nothrow expression can
242 // throw any exception.
243
244 if (Self->canThrow(E))
245 ComputedEST = EST_None;
246}
247
248bool
249Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
250 SourceLocation EqualLoc) {
251 if (RequireCompleteType(Param->getLocation(), Param->getType(),
252 diag::err_typecheck_decl_incomplete_type)) {
253 Param->setInvalidDecl();
254 return true;
255 }
256
257 // C++ [dcl.fct.default]p5
258 // A default argument expression is implicitly converted (clause
259 // 4) to the parameter type. The default argument expression has
260 // the same semantic constraints as the initializer expression in
261 // a declaration of a variable of the parameter type, using the
262 // copy-initialization semantics (8.5).
263 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
264 Param);
265 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
266 EqualLoc);
267 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
268 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
269 if (Result.isInvalid())
270 return true;
271 Arg = Result.getAs<Expr>();
272
273 CheckCompletedExpr(Arg, EqualLoc);
274 Arg = MaybeCreateExprWithCleanups(Arg);
275
276 // Okay: add the default argument to the parameter
277 Param->setDefaultArg(Arg);
278
279 // We have already instantiated this parameter; provide each of the
280 // instantiations with the uninstantiated default argument.
281 UnparsedDefaultArgInstantiationsMap::iterator InstPos
282 = UnparsedDefaultArgInstantiations.find(Param);
283 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
284 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
285 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
286
287 // We're done tracking this parameter's instantiations.
288 UnparsedDefaultArgInstantiations.erase(InstPos);
289 }
290
291 return false;
292}
293
294/// ActOnParamDefaultArgument - Check whether the default argument
295/// provided for a function parameter is well-formed. If so, attach it
296/// to the parameter declaration.
297void
298Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
299 Expr *DefaultArg) {
300 if (!param || !DefaultArg)
301 return;
302
303 ParmVarDecl *Param = cast<ParmVarDecl>(param);
304 UnparsedDefaultArgLocs.erase(Param);
305
306 // Default arguments are only permitted in C++
307 if (!getLangOpts().CPlusPlus) {
308 Diag(EqualLoc, diag::err_param_default_argument)
309 << DefaultArg->getSourceRange();
310 Param->setInvalidDecl();
311 return;
312 }
313
314 // Check for unexpanded parameter packs.
315 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
316 Param->setInvalidDecl();
317 return;
318 }
319
320 // C++11 [dcl.fct.default]p3
321 // A default argument expression [...] shall not be specified for a
322 // parameter pack.
323 if (Param->isParameterPack()) {
324 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
325 << DefaultArg->getSourceRange();
326 return;
327 }
328
329 // Check that the default argument is well-formed
330 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
331 if (DefaultArgChecker.Visit(DefaultArg)) {
332 Param->setInvalidDecl();
333 return;
334 }
335
336 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
337}
338
339/// ActOnParamUnparsedDefaultArgument - We've seen a default
340/// argument for a function parameter, but we can't parse it yet
341/// because we're inside a class definition. Note that this default
342/// argument will be parsed later.
343void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
344 SourceLocation EqualLoc,
345 SourceLocation ArgLoc) {
346 if (!param)
347 return;
348
349 ParmVarDecl *Param = cast<ParmVarDecl>(param);
350 Param->setUnparsedDefaultArg();
351 UnparsedDefaultArgLocs[Param] = ArgLoc;
352}
353
354/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
355/// the default argument for the parameter param failed.
356void Sema::ActOnParamDefaultArgumentError(Decl *param,
357 SourceLocation EqualLoc) {
358 if (!param)
359 return;
360
361 ParmVarDecl *Param = cast<ParmVarDecl>(param);
362 Param->setInvalidDecl();
363 UnparsedDefaultArgLocs.erase(Param);
364 Param->setDefaultArg(new(Context)
365 OpaqueValueExpr(EqualLoc,
366 Param->getType().getNonReferenceType(),
367 VK_RValue));
368}
369
370/// CheckExtraCXXDefaultArguments - Check for any extra default
371/// arguments in the declarator, which is not a function declaration
372/// or definition and therefore is not permitted to have default
373/// arguments. This routine should be invoked for every declarator
374/// that is not a function declaration or definition.
375void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
376 // C++ [dcl.fct.default]p3
377 // A default argument expression shall be specified only in the
378 // parameter-declaration-clause of a function declaration or in a
379 // template-parameter (14.1). It shall not be specified for a
380 // parameter pack. If it is specified in a
381 // parameter-declaration-clause, it shall not occur within a
382 // declarator or abstract-declarator of a parameter-declaration.
383 bool MightBeFunction = D.isFunctionDeclarationContext();
384 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
385 DeclaratorChunk &chunk = D.getTypeObject(i);
386 if (chunk.Kind == DeclaratorChunk::Function) {
387 if (MightBeFunction) {
388 // This is a function declaration. It can have default arguments, but
389 // keep looking in case its return type is a function type with default
390 // arguments.
391 MightBeFunction = false;
392 continue;
393 }
394 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
395 ++argIdx) {
396 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
397 if (Param->hasUnparsedDefaultArg()) {
398 std::unique_ptr<CachedTokens> Toks =
399 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
400 SourceRange SR;
401 if (Toks->size() > 1)
402 SR = SourceRange((*Toks)[1].getLocation(),
403 Toks->back().getLocation());
404 else
405 SR = UnparsedDefaultArgLocs[Param];
406 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
407 << SR;
408 } else if (Param->getDefaultArg()) {
409 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410 << Param->getDefaultArg()->getSourceRange();
411 Param->setDefaultArg(nullptr);
412 }
413 }
414 } else if (chunk.Kind != DeclaratorChunk::Paren) {
415 MightBeFunction = false;
416 }
417 }
418}
419
420static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
421 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
422 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
423 if (!PVD->hasDefaultArg())
424 return false;
425 if (!PVD->hasInheritedDefaultArg())
426 return true;
427 }
428 return false;
429}
430
431/// MergeCXXFunctionDecl - Merge two declarations of the same C++
432/// function, once we already know that they have the same
433/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
434/// error, false otherwise.
435bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
436 Scope *S) {
437 bool Invalid = false;
438
439 // The declaration context corresponding to the scope is the semantic
440 // parent, unless this is a local function declaration, in which case
441 // it is that surrounding function.
442 DeclContext *ScopeDC = New->isLocalExternDecl()
1
Assuming the condition is false
2
'?' condition is false
443 ? New->getLexicalDeclContext()
444 : New->getDeclContext();
445
446 // Find the previous declaration for the purpose of default arguments.
447 FunctionDecl *PrevForDefaultArgs = Old;
448 for (/**/; PrevForDefaultArgs;
3
Assuming pointer value is null
4
Loop condition is false. Execution continues on line 496
449 // Don't bother looking back past the latest decl if this is a local
450 // extern declaration; nothing else could work.
451 PrevForDefaultArgs = New->isLocalExternDecl()
452 ? nullptr
453 : PrevForDefaultArgs->getPreviousDecl()) {
454 // Ignore hidden declarations.
455 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
456 continue;
457
458 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
459 !New->isCXXClassMember()) {
460 // Ignore default arguments of old decl if they are not in
461 // the same scope and this is not an out-of-line definition of
462 // a member function.
463 continue;
464 }
465
466 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
467 // If only one of these is a local function declaration, then they are
468 // declared in different scopes, even though isDeclInScope may think
469 // they're in the same scope. (If both are local, the scope check is
470 // sufficent, and if neither is local, then they are in the same scope.)
471 continue;
472 }
473
474 // We found the right previous declaration.
475 break;
476 }
477
478 // C++ [dcl.fct.default]p4:
479 // For non-template functions, default arguments can be added in
480 // later declarations of a function in the same
481 // scope. Declarations in different scopes have completely
482 // distinct sets of default arguments. That is, declarations in
483 // inner scopes do not acquire default arguments from
484 // declarations in outer scopes, and vice versa. In a given
485 // function declaration, all parameters subsequent to a
486 // parameter with a default argument shall have default
487 // arguments supplied in this or previous declarations. A
488 // default argument shall not be redefined by a later
489 // declaration (not even to the same value).
490 //
491 // C++ [dcl.fct.default]p6:
492 // Except for member functions of class templates, the default arguments
493 // in a member function definition that appears outside of the class
494 // definition are added to the set of default arguments provided by the
495 // member function declaration in the class definition.
496 for (unsigned p = 0, NumParams = PrevForDefaultArgs
5
'?' condition is false
6
Loop condition is false. Execution continues on line 618
497 ? PrevForDefaultArgs->getNumParams()
498 : 0;
499 p < NumParams; ++p) {
500 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
501 ParmVarDecl *NewParam = New->getParamDecl(p);
502
503 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
504 bool NewParamHasDfl = NewParam->hasDefaultArg();
505
506 if (OldParamHasDfl && NewParamHasDfl) {
507 unsigned DiagDefaultParamID =
508 diag::err_param_default_argument_redefinition;
509
510 // MSVC accepts that default parameters be redefined for member functions
511 // of template class. The new default parameter's value is ignored.
512 Invalid = true;
513 if (getLangOpts().MicrosoftExt) {
514 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
515 if (MD && MD->getParent()->getDescribedClassTemplate()) {
516 // Merge the old default argument into the new parameter.
517 NewParam->setHasInheritedDefaultArg();
518 if (OldParam->hasUninstantiatedDefaultArg())
519 NewParam->setUninstantiatedDefaultArg(
520 OldParam->getUninstantiatedDefaultArg());
521 else
522 NewParam->setDefaultArg(OldParam->getInit());
523 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
524 Invalid = false;
525 }
526 }
527
528 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
529 // hint here. Alternatively, we could walk the type-source information
530 // for NewParam to find the last source location in the type... but it
531 // isn't worth the effort right now. This is the kind of test case that
532 // is hard to get right:
533 // int f(int);
534 // void g(int (*fp)(int) = f);
535 // void g(int (*fp)(int) = &f);
536 Diag(NewParam->getLocation(), DiagDefaultParamID)
537 << NewParam->getDefaultArgRange();
538
539 // Look for the function declaration where the default argument was
540 // actually written, which may be a declaration prior to Old.
541 for (auto Older = PrevForDefaultArgs;
542 OldParam->hasInheritedDefaultArg(); /**/) {
543 Older = Older->getPreviousDecl();
544 OldParam = Older->getParamDecl(p);
545 }
546
547 Diag(OldParam->getLocation(), diag::note_previous_definition)
548 << OldParam->getDefaultArgRange();
549 } else if (OldParamHasDfl) {
550 // Merge the old default argument into the new parameter.
551 // It's important to use getInit() here; getDefaultArg()
552 // strips off any top-level ExprWithCleanups.
553 NewParam->setHasInheritedDefaultArg();
554 if (OldParam->hasUnparsedDefaultArg())
555 NewParam->setUnparsedDefaultArg();
556 else if (OldParam->hasUninstantiatedDefaultArg())
557 NewParam->setUninstantiatedDefaultArg(
558 OldParam->getUninstantiatedDefaultArg());
559 else
560 NewParam->setDefaultArg(OldParam->getInit());
561 } else if (NewParamHasDfl) {
562 if (New->getDescribedFunctionTemplate()) {
563 // Paragraph 4, quoted above, only applies to non-template functions.
564 Diag(NewParam->getLocation(),
565 diag::err_param_default_argument_template_redecl)
566 << NewParam->getDefaultArgRange();
567 Diag(PrevForDefaultArgs->getLocation(),
568 diag::note_template_prev_declaration)
569 << false;
570 } else if (New->getTemplateSpecializationKind()
571 != TSK_ImplicitInstantiation &&
572 New->getTemplateSpecializationKind() != TSK_Undeclared) {
573 // C++ [temp.expr.spec]p21:
574 // Default function arguments shall not be specified in a declaration
575 // or a definition for one of the following explicit specializations:
576 // - the explicit specialization of a function template;
577 // - the explicit specialization of a member function template;
578 // - the explicit specialization of a member function of a class
579 // template where the class template specialization to which the
580 // member function specialization belongs is implicitly
581 // instantiated.
582 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
583 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
584 << New->getDeclName()
585 << NewParam->getDefaultArgRange();
586 } else if (New->getDeclContext()->isDependentContext()) {
587 // C++ [dcl.fct.default]p6 (DR217):
588 // Default arguments for a member function of a class template shall
589 // be specified on the initial declaration of the member function
590 // within the class template.
591 //
592 // Reading the tea leaves a bit in DR217 and its reference to DR205
593 // leads me to the conclusion that one cannot add default function
594 // arguments for an out-of-line definition of a member function of a
595 // dependent type.
596 int WhichKind = 2;
597 if (CXXRecordDecl *Record
598 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
599 if (Record->getDescribedClassTemplate())
600 WhichKind = 0;
601 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
602 WhichKind = 1;
603 else
604 WhichKind = 2;
605 }
606
607 Diag(NewParam->getLocation(),
608 diag::err_param_default_argument_member_template_redecl)
609 << WhichKind
610 << NewParam->getDefaultArgRange();
611 }
612 }
613 }
614
615 // DR1344: If a default argument is added outside a class definition and that
616 // default argument makes the function a special member function, the program
617 // is ill-formed. This can only happen for constructors.
618 if (isa<CXXConstructorDecl>(New) &&
619 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
620 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
621 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
622 if (NewSM != OldSM) {
623 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
624 assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0)
: __assert_fail ("NewParam->hasDefaultArg()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 624, __PRETTY_FUNCTION__))
;
625 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
626 << NewParam->getDefaultArgRange() << NewSM;
627 Diag(Old->getLocation(), diag::note_previous_declaration);
628 }
629 }
630
631 const FunctionDecl *Def;
632 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
633 // template has a constexpr specifier then all its declarations shall
634 // contain the constexpr specifier.
635 if (New->isConstexpr() != Old->isConstexpr()) {
7
Called C++ object pointer is null
636 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
637 << New << New->isConstexpr();
638 Diag(Old->getLocation(), diag::note_previous_declaration);
639 Invalid = true;
640 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
641 Old->isDefined(Def)) {
642 // C++11 [dcl.fcn.spec]p4:
643 // If the definition of a function appears in a translation unit before its
644 // first declaration as inline, the program is ill-formed.
645 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
646 Diag(Def->getLocation(), diag::note_previous_definition);
647 Invalid = true;
648 }
649
650 // FIXME: It's not clear what should happen if multiple declarations of a
651 // deduction guide have different explicitness. For now at least we simply
652 // reject any case where the explicitness changes.
653 auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
654 if (NewGuide && NewGuide->isExplicitSpecified() !=
655 cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
656 Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
657 << NewGuide->isExplicitSpecified();
658 Diag(Old->getLocation(), diag::note_previous_declaration);
659 }
660
661 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
662 // argument expression, that declaration shall be a definition and shall be
663 // the only declaration of the function or function template in the
664 // translation unit.
665 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
666 functionDeclHasDefaultArgument(Old)) {
667 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
668 Diag(Old->getLocation(), diag::note_previous_declaration);
669 Invalid = true;
670 }
671
672 return Invalid;
673}
674
675NamedDecl *
676Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
677 MultiTemplateParamsArg TemplateParamLists) {
678 assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0
) : __assert_fail ("D.isDecompositionDeclarator()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 678, __PRETTY_FUNCTION__))
;
679 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
680
681 // The syntax only allows a decomposition declarator as a simple-declaration
682 // or a for-range-declaration, but we parse it in more cases than that.
683 if (!D.mayHaveDecompositionDeclarator()) {
684 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
685 << Decomp.getSourceRange();
686 return nullptr;
687 }
688
689 if (!TemplateParamLists.empty()) {
690 // FIXME: There's no rule against this, but there are also no rules that
691 // would actually make it usable, so we reject it for now.
692 Diag(TemplateParamLists.front()->getTemplateLoc(),
693 diag::err_decomp_decl_template);
694 return nullptr;
695 }
696
697 Diag(Decomp.getLSquareLoc(), getLangOpts().CPlusPlus1z
698 ? diag::warn_cxx14_compat_decomp_decl
699 : diag::ext_decomp_decl)
700 << Decomp.getSourceRange();
701
702 // The semantic context is always just the current context.
703 DeclContext *const DC = CurContext;
704
705 // C++1z [dcl.dcl]/8:
706 // The decl-specifier-seq shall contain only the type-specifier auto
707 // and cv-qualifiers.
708 auto &DS = D.getDeclSpec();
709 {
710 SmallVector<StringRef, 8> BadSpecifiers;
711 SmallVector<SourceLocation, 8> BadSpecifierLocs;
712 if (auto SCS = DS.getStorageClassSpec()) {
713 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
714 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
715 }
716 if (auto TSCS = DS.getThreadStorageClassSpec()) {
717 BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
718 BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
719 }
720 if (DS.isConstexprSpecified()) {
721 BadSpecifiers.push_back("constexpr");
722 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
723 }
724 if (DS.isInlineSpecified()) {
725 BadSpecifiers.push_back("inline");
726 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
727 }
728 if (!BadSpecifiers.empty()) {
729 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
730 Err << (int)BadSpecifiers.size()
731 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
732 // Don't add FixItHints to remove the specifiers; we do still respect
733 // them when building the underlying variable.
734 for (auto Loc : BadSpecifierLocs)
735 Err << SourceRange(Loc, Loc);
736 }
737 // We can't recover from it being declared as a typedef.
738 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
739 return nullptr;
740 }
741
742 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
743 QualType R = TInfo->getType();
744
745 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
746 UPPC_DeclarationType))
747 D.setInvalidType();
748
749 // The syntax only allows a single ref-qualifier prior to the decomposition
750 // declarator. No other declarator chunks are permitted. Also check the type
751 // specifier here.
752 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
753 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
754 (D.getNumTypeObjects() == 1 &&
755 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
756 Diag(Decomp.getLSquareLoc(),
757 (D.hasGroupingParens() ||
758 (D.getNumTypeObjects() &&
759 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
760 ? diag::err_decomp_decl_parens
761 : diag::err_decomp_decl_type)
762 << R;
763
764 // In most cases, there's no actual problem with an explicitly-specified
765 // type, but a function type won't work here, and ActOnVariableDeclarator
766 // shouldn't be called for such a type.
767 if (R->isFunctionType())
768 D.setInvalidType();
769 }
770
771 // Build the BindingDecls.
772 SmallVector<BindingDecl*, 8> Bindings;
773
774 // Build the BindingDecls.
775 for (auto &B : D.getDecompositionDeclarator().bindings()) {
776 // Check for name conflicts.
777 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
778 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
779 ForRedeclaration);
780 LookupName(Previous, S,
781 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
782
783 // It's not permitted to shadow a template parameter name.
784 if (Previous.isSingleResult() &&
785 Previous.getFoundDecl()->isTemplateParameter()) {
786 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
787 Previous.getFoundDecl());
788 Previous.clear();
789 }
790
791 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
792 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
793 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
794 /*AllowInlineNamespace*/false);
795 if (!Previous.empty()) {
796 auto *Old = Previous.getRepresentativeDecl();
797 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
798 Diag(Old->getLocation(), diag::note_previous_definition);
799 }
800
801 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
802 PushOnScopeChains(BD, S, true);
803 Bindings.push_back(BD);
804 ParsingInitForAutoVars.insert(BD);
805 }
806
807 // There are no prior lookup results for the variable itself, because it
808 // is unnamed.
809 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
810 Decomp.getLSquareLoc());
811 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
812
813 // Build the variable that holds the non-decomposed object.
814 bool AddToScope = true;
815 NamedDecl *New =
816 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
817 MultiTemplateParamsArg(), AddToScope, Bindings);
818 CurContext->addHiddenDecl(New);
819
820 if (isInOpenMPDeclareTargetContext())
821 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
822
823 return New;
824}
825
826static bool checkSimpleDecomposition(
827 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
828 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
829 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
830 if ((int64_t)Bindings.size() != NumElems) {
831 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
832 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
833 << (NumElems < Bindings.size());
834 return true;
835 }
836
837 unsigned I = 0;
838 for (auto *B : Bindings) {
839 SourceLocation Loc = B->getLocation();
840 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
841 if (E.isInvalid())
842 return true;
843 E = GetInit(Loc, E.get(), I++);
844 if (E.isInvalid())
845 return true;
846 B->setBinding(ElemType, E.get());
847 }
848
849 return false;
850}
851
852static bool checkArrayLikeDecomposition(Sema &S,
853 ArrayRef<BindingDecl *> Bindings,
854 ValueDecl *Src, QualType DecompType,
855 const llvm::APSInt &NumElems,
856 QualType ElemType) {
857 return checkSimpleDecomposition(
858 S, Bindings, Src, DecompType, NumElems, ElemType,
859 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
860 ExprResult E = S.ActOnIntegerConstant(Loc, I);
861 if (E.isInvalid())
862 return ExprError();
863 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
864 });
865}
866
867static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
868 ValueDecl *Src, QualType DecompType,
869 const ConstantArrayType *CAT) {
870 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
871 llvm::APSInt(CAT->getSize()),
872 CAT->getElementType());
873}
874
875static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
876 ValueDecl *Src, QualType DecompType,
877 const VectorType *VT) {
878 return checkArrayLikeDecomposition(
879 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
880 S.Context.getQualifiedType(VT->getElementType(),
881 DecompType.getQualifiers()));
882}
883
884static bool checkComplexDecomposition(Sema &S,
885 ArrayRef<BindingDecl *> Bindings,
886 ValueDecl *Src, QualType DecompType,
887 const ComplexType *CT) {
888 return checkSimpleDecomposition(
889 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
890 S.Context.getQualifiedType(CT->getElementType(),
891 DecompType.getQualifiers()),
892 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
893 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
894 });
895}
896
897static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
898 TemplateArgumentListInfo &Args) {
899 SmallString<128> SS;
900 llvm::raw_svector_ostream OS(SS);
901 bool First = true;
902 for (auto &Arg : Args.arguments()) {
903 if (!First)
904 OS << ", ";
905 Arg.getArgument().print(PrintingPolicy, OS);
906 First = false;
907 }
908 return OS.str();
909}
910
911static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
912 SourceLocation Loc, StringRef Trait,
913 TemplateArgumentListInfo &Args,
914 unsigned DiagID) {
915 auto DiagnoseMissing = [&] {
916 if (DiagID)
917 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
918 Args);
919 return true;
920 };
921
922 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
923 NamespaceDecl *Std = S.getStdNamespace();
924 if (!Std)
925 return DiagnoseMissing();
926
927 // Look up the trait itself, within namespace std. We can diagnose various
928 // problems with this lookup even if we've been asked to not diagnose a
929 // missing specialization, because this can only fail if the user has been
930 // declaring their own names in namespace std or we don't support the
931 // standard library implementation in use.
932 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
933 Loc, Sema::LookupOrdinaryName);
934 if (!S.LookupQualifiedName(Result, Std))
935 return DiagnoseMissing();
936 if (Result.isAmbiguous())
937 return true;
938
939 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
940 if (!TraitTD) {
941 Result.suppressDiagnostics();
942 NamedDecl *Found = *Result.begin();
943 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
944 S.Diag(Found->getLocation(), diag::note_declared_at);
945 return true;
946 }
947
948 // Build the template-id.
949 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
950 if (TraitTy.isNull())
951 return true;
952 if (!S.isCompleteType(Loc, TraitTy)) {
953 if (DiagID)
954 S.RequireCompleteType(
955 Loc, TraitTy, DiagID,
956 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
957 return true;
958 }
959
960 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
961 assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?"
) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 961, __PRETTY_FUNCTION__))
;
962
963 // Look up the member of the trait type.
964 S.LookupQualifiedName(TraitMemberLookup, RD);
965 return TraitMemberLookup.isAmbiguous();
966}
967
968static TemplateArgumentLoc
969getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
970 uint64_t I) {
971 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
972 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
973}
974
975static TemplateArgumentLoc
976getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
977 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
978}
979
980namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
981
982static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
983 llvm::APSInt &Size) {
984 EnterExpressionEvaluationContext ContextRAII(S, Sema::ConstantEvaluated);
985
986 DeclarationName Value = S.PP.getIdentifierInfo("value");
987 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
988
989 // Form template argument list for tuple_size<T>.
990 TemplateArgumentListInfo Args(Loc, Loc);
991 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
992
993 // If there's no tuple_size specialization, it's not tuple-like.
994 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
995 return IsTupleLike::NotTupleLike;
996
997 // If we get this far, we've committed to the tuple interpretation, but
998 // we can still fail if there actually isn't a usable ::value.
999
1000 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1001 LookupResult &R;
1002 TemplateArgumentListInfo &Args;
1003 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1004 : R(R), Args(Args) {}
1005 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1006 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1007 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1008 }
1009 } Diagnoser(R, Args);
1010
1011 if (R.empty()) {
1012 Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
1013 return IsTupleLike::Error;
1014 }
1015
1016 ExprResult E =
1017 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1018 if (E.isInvalid())
1019 return IsTupleLike::Error;
1020
1021 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1022 if (E.isInvalid())
1023 return IsTupleLike::Error;
1024
1025 return IsTupleLike::TupleLike;
1026}
1027
1028/// \return std::tuple_element<I, T>::type.
1029static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1030 unsigned I, QualType T) {
1031 // Form template argument list for tuple_element<I, T>.
1032 TemplateArgumentListInfo Args(Loc, Loc);
1033 Args.addArgument(
1034 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1035 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1036
1037 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1038 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1039 if (lookupStdTypeTraitMember(
1040 S, R, Loc, "tuple_element", Args,
1041 diag::err_decomp_decl_std_tuple_element_not_specialized))
1042 return QualType();
1043
1044 auto *TD = R.getAsSingle<TypeDecl>();
1045 if (!TD) {
1046 R.suppressDiagnostics();
1047 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1048 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1049 if (!R.empty())
1050 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1051 return QualType();
1052 }
1053
1054 return S.Context.getTypeDeclType(TD);
1055}
1056
1057namespace {
1058struct BindingDiagnosticTrap {
1059 Sema &S;
1060 DiagnosticErrorTrap Trap;
1061 BindingDecl *BD;
1062
1063 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1064 : S(S), Trap(S.Diags), BD(BD) {}
1065 ~BindingDiagnosticTrap() {
1066 if (Trap.hasErrorOccurred())
1067 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1068 }
1069};
1070}
1071
1072static bool checkTupleLikeDecomposition(Sema &S,
1073 ArrayRef<BindingDecl *> Bindings,
1074 VarDecl *Src, QualType DecompType,
1075 const llvm::APSInt &TupleSize) {
1076 if ((int64_t)Bindings.size() != TupleSize) {
1077 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1078 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1079 << (TupleSize < Bindings.size());
1080 return true;
1081 }
1082
1083 if (Bindings.empty())
1084 return false;
1085
1086 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1087
1088 // [dcl.decomp]p3:
1089 // The unqualified-id get is looked up in the scope of E by class member
1090 // access lookup
1091 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1092 bool UseMemberGet = false;
1093 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1094 if (auto *RD = DecompType->getAsCXXRecordDecl())
1095 S.LookupQualifiedName(MemberGet, RD);
1096 if (MemberGet.isAmbiguous())
1097 return true;
1098 UseMemberGet = !MemberGet.empty();
1099 S.FilterAcceptableTemplateNames(MemberGet);
1100 }
1101
1102 unsigned I = 0;
1103 for (auto *B : Bindings) {
1104 BindingDiagnosticTrap Trap(S, B);
1105 SourceLocation Loc = B->getLocation();
1106
1107 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1108 if (E.isInvalid())
1109 return true;
1110
1111 // e is an lvalue if the type of the entity is an lvalue reference and
1112 // an xvalue otherwise
1113 if (!Src->getType()->isLValueReferenceType())
1114 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1115 E.get(), nullptr, VK_XValue);
1116
1117 TemplateArgumentListInfo Args(Loc, Loc);
1118 Args.addArgument(
1119 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1120
1121 if (UseMemberGet) {
1122 // if [lookup of member get] finds at least one declaration, the
1123 // initializer is e.get<i-1>().
1124 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1125 CXXScopeSpec(), SourceLocation(), nullptr,
1126 MemberGet, &Args, nullptr);
1127 if (E.isInvalid())
1128 return true;
1129
1130 E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
1131 } else {
1132 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1133 // in the associated namespaces.
1134 Expr *Get = UnresolvedLookupExpr::Create(
1135 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1136 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1137 UnresolvedSetIterator(), UnresolvedSetIterator());
1138
1139 Expr *Arg = E.get();
1140 E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
1141 }
1142 if (E.isInvalid())
1143 return true;
1144 Expr *Init = E.get();
1145
1146 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1147 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1148 if (T.isNull())
1149 return true;
1150
1151 // each vi is a variable of type "reference to T" initialized with the
1152 // initializer, where the reference is an lvalue reference if the
1153 // initializer is an lvalue and an rvalue reference otherwise
1154 QualType RefType =
1155 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1156 if (RefType.isNull())
1157 return true;
1158 auto *RefVD = VarDecl::Create(
1159 S.Context, Src->getDeclContext(), Loc, Loc,
1160 B->getDeclName().getAsIdentifierInfo(), RefType,
1161 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1162 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1163 RefVD->setTSCSpec(Src->getTSCSpec());
1164 RefVD->setImplicit();
1165 if (Src->isInlineSpecified())
1166 RefVD->setInlineSpecified();
1167 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1168
1169 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1170 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1171 InitializationSequence Seq(S, Entity, Kind, Init);
1172 E = Seq.Perform(S, Entity, Kind, Init);
1173 if (E.isInvalid())
1174 return true;
1175 E = S.ActOnFinishFullExpr(E.get(), Loc);
1176 if (E.isInvalid())
1177 return true;
1178 RefVD->setInit(E.get());
1179 RefVD->checkInitIsICE();
1180
1181 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1182 DeclarationNameInfo(B->getDeclName(), Loc),
1183 RefVD);
1184 if (E.isInvalid())
1185 return true;
1186
1187 B->setBinding(T, E.get());
1188 I++;
1189 }
1190
1191 return false;
1192}
1193
1194/// Find the base class to decompose in a built-in decomposition of a class type.
1195/// This base class search is, unfortunately, not quite like any other that we
1196/// perform anywhere else in C++.
1197static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
1198 SourceLocation Loc,
1199 const CXXRecordDecl *RD,
1200 CXXCastPath &BasePath) {
1201 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1202 CXXBasePath &Path) {
1203 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1204 };
1205
1206 const CXXRecordDecl *ClassWithFields = nullptr;
1207 if (RD->hasDirectFields())
1208 // [dcl.decomp]p4:
1209 // Otherwise, all of E's non-static data members shall be public direct
1210 // members of E ...
1211 ClassWithFields = RD;
1212 else {
1213 // ... or of ...
1214 CXXBasePaths Paths;
1215 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1216 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1217 // If no classes have fields, just decompose RD itself. (This will work
1218 // if and only if zero bindings were provided.)
1219 return RD;
1220 }
1221
1222 CXXBasePath *BestPath = nullptr;
1223 for (auto &P : Paths) {
1224 if (!BestPath)
1225 BestPath = &P;
1226 else if (!S.Context.hasSameType(P.back().Base->getType(),
1227 BestPath->back().Base->getType())) {
1228 // ... the same ...
1229 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1230 << false << RD << BestPath->back().Base->getType()
1231 << P.back().Base->getType();
1232 return nullptr;
1233 } else if (P.Access < BestPath->Access) {
1234 BestPath = &P;
1235 }
1236 }
1237
1238 // ... unambiguous ...
1239 QualType BaseType = BestPath->back().Base->getType();
1240 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1241 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1242 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1243 return nullptr;
1244 }
1245
1246 // ... public base class of E.
1247 if (BestPath->Access != AS_public) {
1248 S.Diag(Loc, diag::err_decomp_decl_non_public_base)
1249 << RD << BaseType;
1250 for (auto &BS : *BestPath) {
1251 if (BS.Base->getAccessSpecifier() != AS_public) {
1252 S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
1253 << (BS.Base->getAccessSpecifier() == AS_protected)
1254 << (BS.Base->getAccessSpecifierAsWritten() == AS_none);
1255 break;
1256 }
1257 }
1258 return nullptr;
1259 }
1260
1261 ClassWithFields = BaseType->getAsCXXRecordDecl();
1262 S.BuildBasePathArray(Paths, BasePath);
1263 }
1264
1265 // The above search did not check whether the selected class itself has base
1266 // classes with fields, so check that now.
1267 CXXBasePaths Paths;
1268 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1269 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1270 << (ClassWithFields == RD) << RD << ClassWithFields
1271 << Paths.front().back().Base->getType();
1272 return nullptr;
1273 }
1274
1275 return ClassWithFields;
1276}
1277
1278static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1279 ValueDecl *Src, QualType DecompType,
1280 const CXXRecordDecl *RD) {
1281 CXXCastPath BasePath;
1282 RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
1283 if (!RD)
1284 return true;
1285 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1286 DecompType.getQualifiers());
1287
1288 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1289 unsigned NumFields =
1290 std::count_if(RD->field_begin(), RD->field_end(),
1291 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1292 assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0)
: __assert_fail ("Bindings.size() != NumFields", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1292, __PRETTY_FUNCTION__))
;
1293 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1294 << DecompType << (unsigned)Bindings.size() << NumFields
1295 << (NumFields < Bindings.size());
1296 return true;
1297 };
1298
1299 // all of E's non-static data members shall be public [...] members,
1300 // E shall not have an anonymous union member, ...
1301 unsigned I = 0;
1302 for (auto *FD : RD->fields()) {
1303 if (FD->isUnnamedBitfield())
1304 continue;
1305
1306 if (FD->isAnonymousStructOrUnion()) {
1307 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1308 << DecompType << FD->getType()->isUnionType();
1309 S.Diag(FD->getLocation(), diag::note_declared_at);
1310 return true;
1311 }
1312
1313 // We have a real field to bind.
1314 if (I >= Bindings.size())
1315 return DiagnoseBadNumberOfBindings();
1316 auto *B = Bindings[I++];
1317
1318 SourceLocation Loc = B->getLocation();
1319 if (FD->getAccess() != AS_public) {
1320 S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
1321
1322 // Determine whether the access specifier was explicit.
1323 bool Implicit = true;
1324 for (const auto *D : RD->decls()) {
1325 if (declaresSameEntity(D, FD))
1326 break;
1327 if (isa<AccessSpecDecl>(D)) {
1328 Implicit = false;
1329 break;
1330 }
1331 }
1332
1333 S.Diag(FD->getLocation(), diag::note_access_natural)
1334 << (FD->getAccess() == AS_protected) << Implicit;
1335 return true;
1336 }
1337
1338 // Initialize the binding to Src.FD.
1339 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1340 if (E.isInvalid())
1341 return true;
1342 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1343 VK_LValue, &BasePath);
1344 if (E.isInvalid())
1345 return true;
1346 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1347 CXXScopeSpec(), FD,
1348 DeclAccessPair::make(FD, FD->getAccess()),
1349 DeclarationNameInfo(FD->getDeclName(), Loc));
1350 if (E.isInvalid())
1351 return true;
1352
1353 // If the type of the member is T, the referenced type is cv T, where cv is
1354 // the cv-qualification of the decomposition expression.
1355 //
1356 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1357 // 'const' to the type of the field.
1358 Qualifiers Q = DecompType.getQualifiers();
1359 if (FD->isMutable())
1360 Q.removeConst();
1361 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1362 }
1363
1364 if (I != Bindings.size())
1365 return DiagnoseBadNumberOfBindings();
1366
1367 return false;
1368}
1369
1370void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1371 QualType DecompType = DD->getType();
1372
1373 // If the type of the decomposition is dependent, then so is the type of
1374 // each binding.
1375 if (DecompType->isDependentType()) {
1376 for (auto *B : DD->bindings())
1377 B->setType(Context.DependentTy);
1378 return;
1379 }
1380
1381 DecompType = DecompType.getNonReferenceType();
1382 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1383
1384 // C++1z [dcl.decomp]/2:
1385 // If E is an array type [...]
1386 // As an extension, we also support decomposition of built-in complex and
1387 // vector types.
1388 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1389 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1390 DD->setInvalidDecl();
1391 return;
1392 }
1393 if (auto *VT = DecompType->getAs<VectorType>()) {
1394 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1395 DD->setInvalidDecl();
1396 return;
1397 }
1398 if (auto *CT = DecompType->getAs<ComplexType>()) {
1399 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1400 DD->setInvalidDecl();
1401 return;
1402 }
1403
1404 // C++1z [dcl.decomp]/3:
1405 // if the expression std::tuple_size<E>::value is a well-formed integral
1406 // constant expression, [...]
1407 llvm::APSInt TupleSize(32);
1408 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1409 case IsTupleLike::Error:
1410 DD->setInvalidDecl();
1411 return;
1412
1413 case IsTupleLike::TupleLike:
1414 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1415 DD->setInvalidDecl();
1416 return;
1417
1418 case IsTupleLike::NotTupleLike:
1419 break;
1420 }
1421
1422 // C++1z [dcl.dcl]/8:
1423 // [E shall be of array or non-union class type]
1424 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1425 if (!RD || RD->isUnion()) {
1426 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1427 << DD << !RD << DecompType;
1428 DD->setInvalidDecl();
1429 return;
1430 }
1431
1432 // C++1z [dcl.decomp]/4:
1433 // all of E's non-static data members shall be [...] direct members of
1434 // E or of the same unambiguous public base class of E, ...
1435 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1436 DD->setInvalidDecl();
1437}
1438
1439/// \brief Merge the exception specifications of two variable declarations.
1440///
1441/// This is called when there's a redeclaration of a VarDecl. The function
1442/// checks if the redeclaration might have an exception specification and
1443/// validates compatibility and merges the specs if necessary.
1444void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1445 // Shortcut if exceptions are disabled.
1446 if (!getLangOpts().CXXExceptions)
1447 return;
1448
1449 assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1450, __PRETTY_FUNCTION__))
1450 "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1450, __PRETTY_FUNCTION__))
;
1451
1452 QualType NewType = New->getType();
1453 QualType OldType = Old->getType();
1454
1455 // We're only interested in pointers and references to functions, as well
1456 // as pointers to member functions.
1457 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1458 NewType = R->getPointeeType();
1459 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1460 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1461 NewType = P->getPointeeType();
1462 OldType = OldType->getAs<PointerType>()->getPointeeType();
1463 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1464 NewType = M->getPointeeType();
1465 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1466 }
1467
1468 if (!NewType->isFunctionProtoType())
1469 return;
1470
1471 // There's lots of special cases for functions. For function pointers, system
1472 // libraries are hopefully not as broken so that we don't need these
1473 // workarounds.
1474 if (CheckEquivalentExceptionSpec(
1475 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1476 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1477 New->setInvalidDecl();
1478 }
1479}
1480
1481/// CheckCXXDefaultArguments - Verify that the default arguments for a
1482/// function declaration are well-formed according to C++
1483/// [dcl.fct.default].
1484void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1485 unsigned NumParams = FD->getNumParams();
1486 unsigned p;
1487
1488 // Find first parameter with a default argument
1489 for (p = 0; p < NumParams; ++p) {
1490 ParmVarDecl *Param = FD->getParamDecl(p);
1491 if (Param->hasDefaultArg())
1492 break;
1493 }
1494
1495 // C++11 [dcl.fct.default]p4:
1496 // In a given function declaration, each parameter subsequent to a parameter
1497 // with a default argument shall have a default argument supplied in this or
1498 // a previous declaration or shall be a function parameter pack. A default
1499 // argument shall not be redefined by a later declaration (not even to the
1500 // same value).
1501 unsigned LastMissingDefaultArg = 0;
1502 for (; p < NumParams; ++p) {
1503 ParmVarDecl *Param = FD->getParamDecl(p);
1504 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1505 if (Param->isInvalidDecl())
1506 /* We already complained about this parameter. */;
1507 else if (Param->getIdentifier())
1508 Diag(Param->getLocation(),
1509 diag::err_param_default_argument_missing_name)
1510 << Param->getIdentifier();
1511 else
1512 Diag(Param->getLocation(),
1513 diag::err_param_default_argument_missing);
1514
1515 LastMissingDefaultArg = p;
1516 }
1517 }
1518
1519 if (LastMissingDefaultArg > 0) {
1520 // Some default arguments were missing. Clear out all of the
1521 // default arguments up to (and including) the last missing
1522 // default argument, so that we leave the function parameters
1523 // in a semantically valid state.
1524 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1525 ParmVarDecl *Param = FD->getParamDecl(p);
1526 if (Param->hasDefaultArg()) {
1527 Param->setDefaultArg(nullptr);
1528 }
1529 }
1530 }
1531}
1532
1533// CheckConstexprParameterTypes - Check whether a function's parameter types
1534// are all literal types. If so, return true. If not, produce a suitable
1535// diagnostic and return false.
1536static bool CheckConstexprParameterTypes(Sema &SemaRef,
1537 const FunctionDecl *FD) {
1538 unsigned ArgIndex = 0;
1539 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1540 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1541 e = FT->param_type_end();
1542 i != e; ++i, ++ArgIndex) {
1543 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1544 SourceLocation ParamLoc = PD->getLocation();
1545 if (!(*i)->isDependentType() &&
1546 SemaRef.RequireLiteralType(ParamLoc, *i,
1547 diag::err_constexpr_non_literal_param,
1548 ArgIndex+1, PD->getSourceRange(),
1549 isa<CXXConstructorDecl>(FD)))
1550 return false;
1551 }
1552 return true;
1553}
1554
1555/// \brief Get diagnostic %select index for tag kind for
1556/// record diagnostic message.
1557/// WARNING: Indexes apply to particular diagnostics only!
1558///
1559/// \returns diagnostic %select index.
1560static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1561 switch (Tag) {
1562 case TTK_Struct: return 0;
1563 case TTK_Interface: return 1;
1564 case TTK_Class: return 2;
1565 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1565)
;
1566 }
1567}
1568
1569// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
1570// the requirements of a constexpr function definition or a constexpr
1571// constructor definition. If so, return true. If not, produce appropriate
1572// diagnostics and return false.
1573//
1574// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1575bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
1576 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1577 if (MD && MD->isInstance()) {
1578 // C++11 [dcl.constexpr]p4:
1579 // The definition of a constexpr constructor shall satisfy the following
1580 // constraints:
1581 // - the class shall not have any virtual base classes;
1582 const CXXRecordDecl *RD = MD->getParent();
1583 if (RD->getNumVBases()) {
1584 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1585 << isa<CXXConstructorDecl>(NewFD)
1586 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1587 for (const auto &I : RD->vbases())
1588 Diag(I.getLocStart(),
1589 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
1590 return false;
1591 }
1592 }
1593
1594 if (!isa<CXXConstructorDecl>(NewFD)) {
1595 // C++11 [dcl.constexpr]p3:
1596 // The definition of a constexpr function shall satisfy the following
1597 // constraints:
1598 // - it shall not be virtual;
1599 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1600 if (Method && Method->isVirtual()) {
1601 Method = Method->getCanonicalDecl();
1602 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1603
1604 // If it's not obvious why this function is virtual, find an overridden
1605 // function which uses the 'virtual' keyword.
1606 const CXXMethodDecl *WrittenVirtual = Method;
1607 while (!WrittenVirtual->isVirtualAsWritten())
1608 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1609 if (WrittenVirtual != Method)
1610 Diag(WrittenVirtual->getLocation(),
1611 diag::note_overridden_virtual_function);
1612 return false;
1613 }
1614
1615 // - its return type shall be a literal type;
1616 QualType RT = NewFD->getReturnType();
1617 if (!RT->isDependentType() &&
1618 RequireLiteralType(NewFD->getLocation(), RT,
1619 diag::err_constexpr_non_literal_return))
1620 return false;
1621 }
1622
1623 // - each of its parameter types shall be a literal type;
1624 if (!CheckConstexprParameterTypes(*this, NewFD))
1625 return false;
1626
1627 return true;
1628}
1629
1630/// Check the given declaration statement is legal within a constexpr function
1631/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1632///
1633/// \return true if the body is OK (maybe only as an extension), false if we
1634/// have diagnosed a problem.
1635static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1636 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
1637 // C++11 [dcl.constexpr]p3 and p4:
1638 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1639 // contain only
1640 for (const auto *DclIt : DS->decls()) {
1641 switch (DclIt->getKind()) {
1642 case Decl::StaticAssert:
1643 case Decl::Using:
1644 case Decl::UsingShadow:
1645 case Decl::UsingDirective:
1646 case Decl::UnresolvedUsingTypename:
1647 case Decl::UnresolvedUsingValue:
1648 // - static_assert-declarations
1649 // - using-declarations,
1650 // - using-directives,
1651 continue;
1652
1653 case Decl::Typedef:
1654 case Decl::TypeAlias: {
1655 // - typedef declarations and alias-declarations that do not define
1656 // classes or enumerations,
1657 const auto *TN = cast<TypedefNameDecl>(DclIt);
1658 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1659 // Don't allow variably-modified types in constexpr functions.
1660 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1661 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1662 << TL.getSourceRange() << TL.getType()
1663 << isa<CXXConstructorDecl>(Dcl);
1664 return false;
1665 }
1666 continue;
1667 }
1668
1669 case Decl::Enum:
1670 case Decl::CXXRecord:
1671 // C++1y allows types to be defined, not just declared.
1672 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
1673 SemaRef.Diag(DS->getLocStart(),
1674 SemaRef.getLangOpts().CPlusPlus14
1675 ? diag::warn_cxx11_compat_constexpr_type_definition
1676 : diag::ext_constexpr_type_definition)
1677 << isa<CXXConstructorDecl>(Dcl);
1678 continue;
1679
1680 case Decl::EnumConstant:
1681 case Decl::IndirectField:
1682 case Decl::ParmVar:
1683 // These can only appear with other declarations which are banned in
1684 // C++11 and permitted in C++1y, so ignore them.
1685 continue;
1686
1687 case Decl::Var:
1688 case Decl::Decomposition: {
1689 // C++1y [dcl.constexpr]p3 allows anything except:
1690 // a definition of a variable of non-literal type or of static or
1691 // thread storage duration or for which no initialization is performed.
1692 const auto *VD = cast<VarDecl>(DclIt);
1693 if (VD->isThisDeclarationADefinition()) {
1694 if (VD->isStaticLocal()) {
1695 SemaRef.Diag(VD->getLocation(),
1696 diag::err_constexpr_local_var_static)
1697 << isa<CXXConstructorDecl>(Dcl)
1698 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1699 return false;
1700 }
1701 if (!VD->getType()->isDependentType() &&
1702 SemaRef.RequireLiteralType(
1703 VD->getLocation(), VD->getType(),
1704 diag::err_constexpr_local_var_non_literal_type,
1705 isa<CXXConstructorDecl>(Dcl)))
1706 return false;
1707 if (!VD->getType()->isDependentType() &&
1708 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1709 SemaRef.Diag(VD->getLocation(),
1710 diag::err_constexpr_local_var_no_init)
1711 << isa<CXXConstructorDecl>(Dcl);
1712 return false;
1713 }
1714 }
1715 SemaRef.Diag(VD->getLocation(),
1716 SemaRef.getLangOpts().CPlusPlus14
1717 ? diag::warn_cxx11_compat_constexpr_local_var
1718 : diag::ext_constexpr_local_var)
1719 << isa<CXXConstructorDecl>(Dcl);
1720 continue;
1721 }
1722
1723 case Decl::NamespaceAlias:
1724 case Decl::Function:
1725 // These are disallowed in C++11 and permitted in C++1y. Allow them
1726 // everywhere as an extension.
1727 if (!Cxx1yLoc.isValid())
1728 Cxx1yLoc = DS->getLocStart();
1729 continue;
1730
1731 default:
1732 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1733 << isa<CXXConstructorDecl>(Dcl);
1734 return false;
1735 }
1736 }
1737
1738 return true;
1739}
1740
1741/// Check that the given field is initialized within a constexpr constructor.
1742///
1743/// \param Dcl The constexpr constructor being checked.
1744/// \param Field The field being checked. This may be a member of an anonymous
1745/// struct or union nested within the class being checked.
1746/// \param Inits All declarations, including anonymous struct/union members and
1747/// indirect members, for which any initialization was provided.
1748/// \param Diagnosed Set to true if an error is produced.
1749static void CheckConstexprCtorInitializer(Sema &SemaRef,
1750 const FunctionDecl *Dcl,
1751 FieldDecl *Field,
1752 llvm::SmallSet<Decl*, 16> &Inits,
1753 bool &Diagnosed) {
1754 if (Field->isInvalidDecl())
1755 return;
1756
1757 if (Field->isUnnamedBitfield())
1758 return;
1759
1760 // Anonymous unions with no variant members and empty anonymous structs do not
1761 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1762 // indirect fields don't need initializing.
1763 if (Field->isAnonymousStructOrUnion() &&
1764 (Field->getType()->isUnionType()
1765 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1766 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1767 return;
1768
1769 if (!Inits.count(Field)) {
1770 if (!Diagnosed) {
1771 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
1772 Diagnosed = true;
1773 }
1774 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1775 } else if (Field->isAnonymousStructOrUnion()) {
1776 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1777 for (auto *I : RD->fields())
1778 // If an anonymous union contains an anonymous struct of which any member
1779 // is initialized, all members must be initialized.
1780 if (!RD->isUnion() || Inits.count(I))
1781 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1782 }
1783}
1784
1785/// Check the provided statement is allowed in a constexpr function
1786/// definition.
1787static bool
1788CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1789 SmallVectorImpl<SourceLocation> &ReturnStmts,
1790 SourceLocation &Cxx1yLoc) {
1791 // - its function-body shall be [...] a compound-statement that contains only
1792 switch (S->getStmtClass()) {
1793 case Stmt::NullStmtClass:
1794 // - null statements,
1795 return true;
1796
1797 case Stmt::DeclStmtClass:
1798 // - static_assert-declarations
1799 // - using-declarations,
1800 // - using-directives,
1801 // - typedef declarations and alias-declarations that do not define
1802 // classes or enumerations,
1803 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1804 return false;
1805 return true;
1806
1807 case Stmt::ReturnStmtClass:
1808 // - and exactly one return statement;
1809 if (isa<CXXConstructorDecl>(Dcl)) {
1810 // C++1y allows return statements in constexpr constructors.
1811 if (!Cxx1yLoc.isValid())
1812 Cxx1yLoc = S->getLocStart();
1813 return true;
1814 }
1815
1816 ReturnStmts.push_back(S->getLocStart());
1817 return true;
1818
1819 case Stmt::CompoundStmtClass: {
1820 // C++1y allows compound-statements.
1821 if (!Cxx1yLoc.isValid())
1822 Cxx1yLoc = S->getLocStart();
1823
1824 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1825 for (auto *BodyIt : CompStmt->body()) {
1826 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1827 Cxx1yLoc))
1828 return false;
1829 }
1830 return true;
1831 }
1832
1833 case Stmt::AttributedStmtClass:
1834 if (!Cxx1yLoc.isValid())
1835 Cxx1yLoc = S->getLocStart();
1836 return true;
1837
1838 case Stmt::IfStmtClass: {
1839 // C++1y allows if-statements.
1840 if (!Cxx1yLoc.isValid())
1841 Cxx1yLoc = S->getLocStart();
1842
1843 IfStmt *If = cast<IfStmt>(S);
1844 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1845 Cxx1yLoc))
1846 return false;
1847 if (If->getElse() &&
1848 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1849 Cxx1yLoc))
1850 return false;
1851 return true;
1852 }
1853
1854 case Stmt::WhileStmtClass:
1855 case Stmt::DoStmtClass:
1856 case Stmt::ForStmtClass:
1857 case Stmt::CXXForRangeStmtClass:
1858 case Stmt::ContinueStmtClass:
1859 // C++1y allows all of these. We don't allow them as extensions in C++11,
1860 // because they don't make sense without variable mutation.
1861 if (!SemaRef.getLangOpts().CPlusPlus14)
1862 break;
1863 if (!Cxx1yLoc.isValid())
1864 Cxx1yLoc = S->getLocStart();
1865 for (Stmt *SubStmt : S->children())
1866 if (SubStmt &&
1867 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1868 Cxx1yLoc))
1869 return false;
1870 return true;
1871
1872 case Stmt::SwitchStmtClass:
1873 case Stmt::CaseStmtClass:
1874 case Stmt::DefaultStmtClass:
1875 case Stmt::BreakStmtClass:
1876 // C++1y allows switch-statements, and since they don't need variable
1877 // mutation, we can reasonably allow them in C++11 as an extension.
1878 if (!Cxx1yLoc.isValid())
1879 Cxx1yLoc = S->getLocStart();
1880 for (Stmt *SubStmt : S->children())
1881 if (SubStmt &&
1882 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1883 Cxx1yLoc))
1884 return false;
1885 return true;
1886
1887 default:
1888 if (!isa<Expr>(S))
1889 break;
1890
1891 // C++1y allows expression-statements.
1892 if (!Cxx1yLoc.isValid())
1893 Cxx1yLoc = S->getLocStart();
1894 return true;
1895 }
1896
1897 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1898 << isa<CXXConstructorDecl>(Dcl);
1899 return false;
1900}
1901
1902/// Check the body for the given constexpr function declaration only contains
1903/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1904///
1905/// \return true if the body is OK, false if we have diagnosed a problem.
1906bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1907 if (isa<CXXTryStmt>(Body)) {
1908 // C++11 [dcl.constexpr]p3:
1909 // The definition of a constexpr function shall satisfy the following
1910 // constraints: [...]
1911 // - its function-body shall be = delete, = default, or a
1912 // compound-statement
1913 //
1914 // C++11 [dcl.constexpr]p4:
1915 // In the definition of a constexpr constructor, [...]
1916 // - its function-body shall not be a function-try-block;
1917 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1918 << isa<CXXConstructorDecl>(Dcl);
1919 return false;
1920 }
1921
1922 SmallVector<SourceLocation, 4> ReturnStmts;
1923
1924 // - its function-body shall be [...] a compound-statement that contains only
1925 // [... list of cases ...]
1926 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1927 SourceLocation Cxx1yLoc;
1928 for (auto *BodyIt : CompBody->body()) {
1929 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1930 return false;
1931 }
1932
1933 if (Cxx1yLoc.isValid())
1934 Diag(Cxx1yLoc,
1935 getLangOpts().CPlusPlus14
1936 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1937 : diag::ext_constexpr_body_invalid_stmt)
1938 << isa<CXXConstructorDecl>(Dcl);
1939
1940 if (const CXXConstructorDecl *Constructor
1941 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1942 const CXXRecordDecl *RD = Constructor->getParent();
1943 // DR1359:
1944 // - every non-variant non-static data member and base class sub-object
1945 // shall be initialized;
1946 // DR1460:
1947 // - if the class is a union having variant members, exactly one of them
1948 // shall be initialized;
1949 if (RD->isUnion()) {
1950 if (Constructor->getNumCtorInitializers() == 0 &&
1951 RD->hasVariantMembers()) {
1952 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1953 return false;
1954 }
1955 } else if (!Constructor->isDependentContext() &&
1956 !Constructor->isDelegatingConstructor()) {
1957 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"
) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1957, __PRETTY_FUNCTION__))
;
1958
1959 // Skip detailed checking if we have enough initializers, and we would
1960 // allow at most one initializer per member.
1961 bool AnyAnonStructUnionMembers = false;
1962 unsigned Fields = 0;
1963 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1964 E = RD->field_end(); I != E; ++I, ++Fields) {
1965 if (I->isAnonymousStructOrUnion()) {
1966 AnyAnonStructUnionMembers = true;
1967 break;
1968 }
1969 }
1970 // DR1460:
1971 // - if the class is a union-like class, but is not a union, for each of
1972 // its anonymous union members having variant members, exactly one of
1973 // them shall be initialized;
1974 if (AnyAnonStructUnionMembers ||
1975 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1976 // Check initialization of non-static data members. Base classes are
1977 // always initialized so do not need to be checked. Dependent bases
1978 // might not have initializers in the member initializer list.
1979 llvm::SmallSet<Decl*, 16> Inits;
1980 for (const auto *I: Constructor->inits()) {
1981 if (FieldDecl *FD = I->getMember())
1982 Inits.insert(FD);
1983 else if (IndirectFieldDecl *ID = I->getIndirectMember())
1984 Inits.insert(ID->chain_begin(), ID->chain_end());
1985 }
1986
1987 bool Diagnosed = false;
1988 for (auto *I : RD->fields())
1989 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1990 if (Diagnosed)
1991 return false;
1992 }
1993 }
1994 } else {
1995 if (ReturnStmts.empty()) {
1996 // C++1y doesn't require constexpr functions to contain a 'return'
1997 // statement. We still do, unless the return type might be void, because
1998 // otherwise if there's no return statement, the function cannot
1999 // be used in a core constant expression.
2000 bool OK = getLangOpts().CPlusPlus14 &&
2001 (Dcl->getReturnType()->isVoidType() ||
2002 Dcl->getReturnType()->isDependentType());
2003 Diag(Dcl->getLocation(),
2004 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2005 : diag::err_constexpr_body_no_return);
2006 if (!OK)
2007 return false;
2008 } else if (ReturnStmts.size() > 1) {
2009 Diag(ReturnStmts.back(),
2010 getLangOpts().CPlusPlus14
2011 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2012 : diag::ext_constexpr_body_multiple_return);
2013 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2014 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
2015 }
2016 }
2017
2018 // C++11 [dcl.constexpr]p5:
2019 // if no function argument values exist such that the function invocation
2020 // substitution would produce a constant expression, the program is
2021 // ill-formed; no diagnostic required.
2022 // C++11 [dcl.constexpr]p3:
2023 // - every constructor call and implicit conversion used in initializing the
2024 // return value shall be one of those allowed in a constant expression.
2025 // C++11 [dcl.constexpr]p4:
2026 // - every constructor involved in initializing non-static data members and
2027 // base class sub-objects shall be a constexpr constructor.
2028 SmallVector<PartialDiagnosticAt, 8> Diags;
2029 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
2030 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
2031 << isa<CXXConstructorDecl>(Dcl);
2032 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2033 Diag(Diags[I].first, Diags[I].second);
2034 // Don't return false here: we allow this for compatibility in
2035 // system headers.
2036 }
2037
2038 return true;
2039}
2040
2041/// isCurrentClassName - Determine whether the identifier II is the
2042/// name of the class type currently being defined. In the case of
2043/// nested classes, this will only return true if II is the name of
2044/// the innermost class.
2045bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
2046 const CXXScopeSpec *SS) {
2047 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2047, __PRETTY_FUNCTION__))
;
2048
2049 CXXRecordDecl *CurDecl;
2050 if (SS && SS->isSet() && !SS->isInvalid()) {
2051 DeclContext *DC = computeDeclContext(*SS, true);
2052 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2053 } else
2054 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2055
2056 if (CurDecl && CurDecl->getIdentifier())
2057 return &II == CurDecl->getIdentifier();
2058 return false;
2059}
2060
2061/// \brief Determine whether the identifier II is a typo for the name of
2062/// the class type currently being defined. If so, update it to the identifier
2063/// that should have been used.
2064bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2065 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2065, __PRETTY_FUNCTION__))
;
2066
2067 if (!getLangOpts().SpellChecking)
2068 return false;
2069
2070 CXXRecordDecl *CurDecl;
2071 if (SS && SS->isSet() && !SS->isInvalid()) {
2072 DeclContext *DC = computeDeclContext(*SS, true);
2073 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2074 } else
2075 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2076
2077 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2078 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2079 < II->getLength()) {
2080 II = CurDecl->getIdentifier();
2081 return true;
2082 }
2083
2084 return false;
2085}
2086
2087/// \brief Determine whether the given class is a base class of the given
2088/// class, including looking at dependent bases.
2089static bool findCircularInheritance(const CXXRecordDecl *Class,
2090 const CXXRecordDecl *Current) {
2091 SmallVector<const CXXRecordDecl*, 8> Queue;
2092
2093 Class = Class->getCanonicalDecl();
2094 while (true) {
2095 for (const auto &I : Current->bases()) {
2096 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2097 if (!Base)
2098 continue;
2099
2100 Base = Base->getDefinition();
2101 if (!Base)
2102 continue;
2103
2104 if (Base->getCanonicalDecl() == Class)
2105 return true;
2106
2107 Queue.push_back(Base);
2108 }
2109
2110 if (Queue.empty())
2111 return false;
2112
2113 Current = Queue.pop_back_val();
2114 }
2115
2116 return false;
2117}
2118
2119/// \brief Check the validity of a C++ base class specifier.
2120///
2121/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2122/// and returns NULL otherwise.
2123CXXBaseSpecifier *
2124Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2125 SourceRange SpecifierRange,
2126 bool Virtual, AccessSpecifier Access,
2127 TypeSourceInfo *TInfo,
2128 SourceLocation EllipsisLoc) {
2129 QualType BaseType = TInfo->getType();
2130
2131 // C++ [class.union]p1:
2132 // A union shall not have base classes.
2133 if (Class->isUnion()) {
2134 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2135 << SpecifierRange;
2136 return nullptr;
2137 }
2138
2139 if (EllipsisLoc.isValid() &&
2140 !TInfo->getType()->containsUnexpandedParameterPack()) {
2141 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2142 << TInfo->getTypeLoc().getSourceRange();
2143 EllipsisLoc = SourceLocation();
2144 }
2145
2146 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2147
2148 if (BaseType->isDependentType()) {
2149 // Make sure that we don't have circular inheritance among our dependent
2150 // bases. For non-dependent bases, the check for completeness below handles
2151 // this.
2152 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2153 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2154 ((BaseDecl = BaseDecl->getDefinition()) &&
2155 findCircularInheritance(Class, BaseDecl))) {
2156 Diag(BaseLoc, diag::err_circular_inheritance)
2157 << BaseType << Context.getTypeDeclType(Class);
2158
2159 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2160 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2161 << BaseType;
2162
2163 return nullptr;
2164 }
2165 }
2166
2167 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2168 Class->getTagKind() == TTK_Class,
2169 Access, TInfo, EllipsisLoc);
2170 }
2171
2172 // Base specifiers must be record types.
2173 if (!BaseType->isRecordType()) {
2174 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2175 return nullptr;
2176 }
2177
2178 // C++ [class.union]p1:
2179 // A union shall not be used as a base class.
2180 if (BaseType->isUnionType()) {
2181 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2182 return nullptr;
2183 }
2184
2185 // For the MS ABI, propagate DLL attributes to base class templates.
2186 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2187 if (Attr *ClassAttr = getDLLAttr(Class)) {
2188 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2189 BaseType->getAsCXXRecordDecl())) {
2190 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2191 BaseLoc);
2192 }
2193 }
2194 }
2195
2196 // C++ [class.derived]p2:
2197 // The class-name in a base-specifier shall not be an incompletely
2198 // defined class.
2199 if (RequireCompleteType(BaseLoc, BaseType,
2200 diag::err_incomplete_base_class, SpecifierRange)) {
2201 Class->setInvalidDecl();
2202 return nullptr;
2203 }
2204
2205 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2206 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2207 assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast
<void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2207, __PRETTY_FUNCTION__))
;
2208 BaseDecl = BaseDecl->getDefinition();
2209 assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition"
) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2209, __PRETTY_FUNCTION__))
;
2210 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2211 assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast
<void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2211, __PRETTY_FUNCTION__))
;
2212
2213 // A class which contains a flexible array member is not suitable for use as a
2214 // base class:
2215 // - If the layout determines that a base comes before another base,
2216 // the flexible array member would index into the subsequent base.
2217 // - If the layout determines that base comes before the derived class,
2218 // the flexible array member would index into the derived class.
2219 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2220 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2221 << CXXBaseDecl->getDeclName();
2222 return nullptr;
2223 }
2224
2225 // C++ [class]p3:
2226 // If a class is marked final and it appears as a base-type-specifier in
2227 // base-clause, the program is ill-formed.
2228 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2229 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2230 << CXXBaseDecl->getDeclName()
2231 << FA->isSpelledAsSealed();
2232 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2233 << CXXBaseDecl->getDeclName() << FA->getRange();
2234 return nullptr;
2235 }
2236
2237 if (BaseDecl->isInvalidDecl())
2238 Class->setInvalidDecl();
2239
2240 // Create the base specifier.
2241 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2242 Class->getTagKind() == TTK_Class,
2243 Access, TInfo, EllipsisLoc);
2244}
2245
2246/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2247/// one entry in the base class list of a class specifier, for
2248/// example:
2249/// class foo : public bar, virtual private baz {
2250/// 'public bar' and 'virtual private baz' are each base-specifiers.
2251BaseResult
2252Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2253 ParsedAttributes &Attributes,
2254 bool Virtual, AccessSpecifier Access,
2255 ParsedType basetype, SourceLocation BaseLoc,
2256 SourceLocation EllipsisLoc) {
2257 if (!classdecl)
2258 return true;
2259
2260 AdjustDeclIfTemplate(classdecl);
2261 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2262 if (!Class)
2263 return true;
2264
2265 // We haven't yet attached the base specifiers.
2266 Class->setIsParsingBaseSpecifiers();
2267
2268 // We do not support any C++11 attributes on base-specifiers yet.
2269 // Diagnose any attributes we see.
2270 if (!Attributes.empty()) {
2271 for (AttributeList *Attr = Attributes.getList(); Attr;
2272 Attr = Attr->getNext()) {
2273 if (Attr->isInvalid() ||
2274 Attr->getKind() == AttributeList::IgnoredAttribute)
2275 continue;
2276 Diag(Attr->getLoc(),
2277 Attr->getKind() == AttributeList::UnknownAttribute
2278 ? diag::warn_unknown_attribute_ignored
2279 : diag::err_base_specifier_attribute)
2280 << Attr->getName();
2281 }
2282 }
2283
2284 TypeSourceInfo *TInfo = nullptr;
2285 GetTypeFromParser(basetype, &TInfo);
2286
2287 if (EllipsisLoc.isInvalid() &&
2288 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2289 UPPC_BaseType))
2290 return true;
2291
2292 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2293 Virtual, Access, TInfo,
2294 EllipsisLoc))
2295 return BaseSpec;
2296 else
2297 Class->setInvalidDecl();
2298
2299 return true;
2300}
2301
2302/// Use small set to collect indirect bases. As this is only used
2303/// locally, there's no need to abstract the small size parameter.
2304typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2305
2306/// \brief Recursively add the bases of Type. Don't add Type itself.
2307static void
2308NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2309 const QualType &Type)
2310{
2311 // Even though the incoming type is a base, it might not be
2312 // a class -- it could be a template parm, for instance.
2313 if (auto Rec = Type->getAs<RecordType>()) {
2314 auto Decl = Rec->getAsCXXRecordDecl();
2315
2316 // Iterate over its bases.
2317 for (const auto &BaseSpec : Decl->bases()) {
2318 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2319 .getUnqualifiedType();
2320 if (Set.insert(Base).second)
2321 // If we've not already seen it, recurse.
2322 NoteIndirectBases(Context, Set, Base);
2323 }
2324 }
2325}
2326
2327/// \brief Performs the actual work of attaching the given base class
2328/// specifiers to a C++ class.
2329bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2330 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2331 if (Bases.empty())
2332 return false;
2333
2334 // Used to keep track of which base types we have already seen, so
2335 // that we can properly diagnose redundant direct base types. Note
2336 // that the key is always the unqualified canonical type of the base
2337 // class.
2338 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2339
2340 // Used to track indirect bases so we can see if a direct base is
2341 // ambiguous.
2342 IndirectBaseSet IndirectBaseTypes;
2343
2344 // Copy non-redundant base specifiers into permanent storage.
2345 unsigned NumGoodBases = 0;
2346 bool Invalid = false;
2347 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2348 QualType NewBaseType
2349 = Context.getCanonicalType(Bases[idx]->getType());
2350 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2351
2352 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2353 if (KnownBase) {
2354 // C++ [class.mi]p3:
2355 // A class shall not be specified as a direct base class of a
2356 // derived class more than once.
2357 Diag(Bases[idx]->getLocStart(),
2358 diag::err_duplicate_base_class)
2359 << KnownBase->getType()
2360 << Bases[idx]->getSourceRange();
2361
2362 // Delete the duplicate base class specifier; we're going to
2363 // overwrite its pointer later.
2364 Context.Deallocate(Bases[idx]);
2365
2366 Invalid = true;
2367 } else {
2368 // Okay, add this new base class.
2369 KnownBase = Bases[idx];
2370 Bases[NumGoodBases++] = Bases[idx];
2371
2372 // Note this base's direct & indirect bases, if there could be ambiguity.
2373 if (Bases.size() > 1)
2374 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2375
2376 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2377 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2378 if (Class->isInterface() &&
2379 (!RD->isInterface() ||
2380 KnownBase->getAccessSpecifier() != AS_public)) {
2381 // The Microsoft extension __interface does not permit bases that
2382 // are not themselves public interfaces.
2383 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
2384 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
2385 << RD->getSourceRange();
2386 Invalid = true;
2387 }
2388 if (RD->hasAttr<WeakAttr>())
2389 Class->addAttr(WeakAttr::CreateImplicit(Context));
2390 }
2391 }
2392 }
2393
2394 // Attach the remaining base class specifiers to the derived class.
2395 Class->setBases(Bases.data(), NumGoodBases);
2396
2397 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2398 // Check whether this direct base is inaccessible due to ambiguity.
2399 QualType BaseType = Bases[idx]->getType();
2400 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2401 .getUnqualifiedType();
2402
2403 if (IndirectBaseTypes.count(CanonicalBase)) {
2404 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2405 /*DetectVirtual=*/true);
2406 bool found
2407 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2408 assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2408, __PRETTY_FUNCTION__))
;
2409 (void)found;
2410
2411 if (Paths.isAmbiguous(CanonicalBase))
2412 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
2413 << BaseType << getAmbiguousPathsDisplayString(Paths)
2414 << Bases[idx]->getSourceRange();
2415 else
2416 assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) :
__assert_fail ("Bases[idx]->isVirtual()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2416, __PRETTY_FUNCTION__))
;
2417 }
2418
2419 // Delete the base class specifier, since its data has been copied
2420 // into the CXXRecordDecl.
2421 Context.Deallocate(Bases[idx]);
2422 }
2423
2424 return Invalid;
2425}
2426
2427/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2428/// class, after checking whether there are any duplicate base
2429/// classes.
2430void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2431 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2432 if (!ClassDecl || Bases.empty())
2433 return;
2434
2435 AdjustDeclIfTemplate(ClassDecl);
2436 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2437}
2438
2439/// \brief Determine whether the type \p Derived is a C++ class that is
2440/// derived from the type \p Base.
2441bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2442 if (!getLangOpts().CPlusPlus)
2443 return false;
2444
2445 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2446 if (!DerivedRD)
2447 return false;
2448
2449 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2450 if (!BaseRD)
2451 return false;
2452
2453 // If either the base or the derived type is invalid, don't try to
2454 // check whether one is derived from the other.
2455 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2456 return false;
2457
2458 // FIXME: In a modules build, do we need the entire path to be visible for us
2459 // to be able to use the inheritance relationship?
2460 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2461 return false;
2462
2463 return DerivedRD->isDerivedFrom(BaseRD);
2464}
2465
2466/// \brief Determine whether the type \p Derived is a C++ class that is
2467/// derived from the type \p Base.
2468bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2469 CXXBasePaths &Paths) {
2470 if (!getLangOpts().CPlusPlus)
2471 return false;
2472
2473 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2474 if (!DerivedRD)
2475 return false;
2476
2477 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2478 if (!BaseRD)
2479 return false;
2480
2481 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2482 return false;
2483
2484 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2485}
2486
2487void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2488 CXXCastPath &BasePathArray) {
2489 assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!"
) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2489, __PRETTY_FUNCTION__))
;
2490 assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ?
static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2490, __PRETTY_FUNCTION__))
;
2491
2492 const CXXBasePath &Path = Paths.front();
2493
2494 // We first go backward and check if we have a virtual base.
2495 // FIXME: It would be better if CXXBasePath had the base specifier for
2496 // the nearest virtual base.
2497 unsigned Start = 0;
2498 for (unsigned I = Path.size(); I != 0; --I) {
2499 if (Path[I - 1].Base->isVirtual()) {
2500 Start = I - 1;
2501 break;
2502 }
2503 }
2504
2505 // Now add all bases.
2506 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2507 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2508}
2509
2510/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2511/// conversion (where Derived and Base are class types) is
2512/// well-formed, meaning that the conversion is unambiguous (and
2513/// that all of the base classes are accessible). Returns true
2514/// and emits a diagnostic if the code is ill-formed, returns false
2515/// otherwise. Loc is the location where this routine should point to
2516/// if there is an error, and Range is the source range to highlight
2517/// if there is an error.
2518///
2519/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2520/// diagnostic for the respective type of error will be suppressed, but the
2521/// check for ill-formed code will still be performed.
2522bool
2523Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2524 unsigned InaccessibleBaseID,
2525 unsigned AmbigiousBaseConvID,
2526 SourceLocation Loc, SourceRange Range,
2527 DeclarationName Name,
2528 CXXCastPath *BasePath,
2529 bool IgnoreAccess) {
2530 // First, determine whether the path from Derived to Base is
2531 // ambiguous. This is slightly more expensive than checking whether
2532 // the Derived to Base conversion exists, because here we need to
2533 // explore multiple paths to determine if there is an ambiguity.
2534 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2535 /*DetectVirtual=*/false);
2536 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2537 assert(DerivationOkay &&((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2538, __PRETTY_FUNCTION__))
2538 "Can only be used with a derived-to-base conversion")((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2538, __PRETTY_FUNCTION__))
;
2539 (void)DerivationOkay;
2540
2541 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
2542 if (!IgnoreAccess) {
2543 // Check that the base class can be accessed.
2544 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
2545 InaccessibleBaseID)) {
2546 case AR_inaccessible:
2547 return true;
2548 case AR_accessible:
2549 case AR_dependent:
2550 case AR_delayed:
2551 break;
2552 }
2553 }
2554
2555 // Build a base path if necessary.
2556 if (BasePath)
2557 BuildBasePathArray(Paths, *BasePath);
2558 return false;
2559 }
2560
2561 if (AmbigiousBaseConvID) {
2562 // We know that the derived-to-base conversion is ambiguous, and
2563 // we're going to produce a diagnostic. Perform the derived-to-base
2564 // search just one more time to compute all of the possible paths so
2565 // that we can print them out. This is more expensive than any of
2566 // the previous derived-to-base checks we've done, but at this point
2567 // performance isn't as much of an issue.
2568 Paths.clear();
2569 Paths.setRecordingPaths(true);
2570 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2571 assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2571, __PRETTY_FUNCTION__))
;
2572 (void)StillOkay;
2573
2574 // Build up a textual representation of the ambiguous paths, e.g.,
2575 // D -> B -> A, that will be used to illustrate the ambiguous
2576 // conversions in the diagnostic. We only print one of the paths
2577 // to each base class subobject.
2578 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2579
2580 Diag(Loc, AmbigiousBaseConvID)
2581 << Derived << Base << PathDisplayStr << Range << Name;
2582 }
2583 return true;
2584}
2585
2586bool
2587Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2588 SourceLocation Loc, SourceRange Range,
2589 CXXCastPath *BasePath,
2590 bool IgnoreAccess) {
2591 return CheckDerivedToBaseConversion(
2592 Derived, Base, diag::err_upcast_to_inaccessible_base,
2593 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2594 BasePath, IgnoreAccess);
2595}
2596
2597
2598/// @brief Builds a string representing ambiguous paths from a
2599/// specific derived class to different subobjects of the same base
2600/// class.
2601///
2602/// This function builds a string that can be used in error messages
2603/// to show the different paths that one can take through the
2604/// inheritance hierarchy to go from the derived class to different
2605/// subobjects of a base class. The result looks something like this:
2606/// @code
2607/// struct D -> struct B -> struct A
2608/// struct D -> struct C -> struct A
2609/// @endcode
2610std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2611 std::string PathDisplayStr;
2612 std::set<unsigned> DisplayedPaths;
2613 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2614 Path != Paths.end(); ++Path) {
2615 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2616 // We haven't displayed a path to this particular base
2617 // class subobject yet.
2618 PathDisplayStr += "\n ";
2619 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2620 for (CXXBasePath::const_iterator Element = Path->begin();
2621 Element != Path->end(); ++Element)
2622 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2623 }
2624 }
2625
2626 return PathDisplayStr;
2627}
2628
2629//===----------------------------------------------------------------------===//
2630// C++ class member Handling
2631//===----------------------------------------------------------------------===//
2632
2633/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2634bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
2635 SourceLocation ASLoc,
2636 SourceLocation ColonLoc,
2637 AttributeList *Attrs) {
2638 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2638, __PRETTY_FUNCTION__))
;
2639 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2640 ASLoc, ColonLoc);
2641 CurContext->addHiddenDecl(ASDecl);
2642 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2643}
2644
2645/// CheckOverrideControl - Check C++11 override control semantics.
2646void Sema::CheckOverrideControl(NamedDecl *D) {
2647 if (D->isInvalidDecl())
2648 return;
2649
2650 // We only care about "override" and "final" declarations.
2651 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2652 return;
2653
2654 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2655
2656 // We can't check dependent instance methods.
2657 if (MD && MD->isInstance() &&
2658 (MD->getParent()->hasAnyDependentBases() ||
2659 MD->getType()->isDependentType()))
2660 return;
2661
2662 if (MD && !MD->isVirtual()) {
2663 // If we have a non-virtual method, check if if hides a virtual method.
2664 // (In that case, it's most likely the method has the wrong type.)
2665 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2666 FindHiddenVirtualMethods(MD, OverloadedMethods);
2667
2668 if (!OverloadedMethods.empty()) {
2669 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2670 Diag(OA->getLocation(),
2671 diag::override_keyword_hides_virtual_member_function)
2672 << "override" << (OverloadedMethods.size() > 1);
2673 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2674 Diag(FA->getLocation(),
2675 diag::override_keyword_hides_virtual_member_function)
2676 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2677 << (OverloadedMethods.size() > 1);
2678 }
2679 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2680 MD->setInvalidDecl();
2681 return;
2682 }
2683 // Fall through into the general case diagnostic.
2684 // FIXME: We might want to attempt typo correction here.
2685 }
2686
2687 if (!MD || !MD->isVirtual()) {
2688 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2689 Diag(OA->getLocation(),
2690 diag::override_keyword_only_allowed_on_virtual_member_functions)
2691 << "override" << FixItHint::CreateRemoval(OA->getLocation());
2692 D->dropAttr<OverrideAttr>();
2693 }
2694 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2695 Diag(FA->getLocation(),
2696 diag::override_keyword_only_allowed_on_virtual_member_functions)
2697 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2698 << FixItHint::CreateRemoval(FA->getLocation());
2699 D->dropAttr<FinalAttr>();
2700 }
2701 return;
2702 }
2703
2704 // C++11 [class.virtual]p5:
2705 // If a function is marked with the virt-specifier override and
2706 // does not override a member function of a base class, the program is
2707 // ill-formed.
2708 bool HasOverriddenMethods =
2709 MD->begin_overridden_methods() != MD->end_overridden_methods();
2710 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
2711 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
2712 << MD->getDeclName();
2713}
2714
2715void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
2716 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
2717 return;
2718 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2719 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>() ||
2720 isa<CXXDestructorDecl>(MD))
2721 return;
2722
2723 SourceLocation Loc = MD->getLocation();
2724 SourceLocation SpellingLoc = Loc;
2725 if (getSourceManager().isMacroArgExpansion(Loc))
2726 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
2727 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
2728 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
2729 return;
2730
2731 if (MD->size_overridden_methods() > 0) {
2732 Diag(MD->getLocation(), diag::warn_function_marked_not_override_overriding)
2733 << MD->getDeclName();
2734 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
2735 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
2736 }
2737}
2738
2739/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
2740/// function overrides a virtual member function marked 'final', according to
2741/// C++11 [class.virtual]p4.
2742bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
2743 const CXXMethodDecl *Old) {
2744 FinalAttr *FA = Old->getAttr<FinalAttr>();
2745 if (!FA)
2746 return false;
2747
2748 Diag(New->getLocation(), diag::err_final_function_overridden)
2749 << New->getDeclName()
2750 << FA->isSpelledAsSealed();
2751 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2752 return true;
2753}
2754
2755static bool InitializationHasSideEffects(const FieldDecl &FD) {
2756 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2757 // FIXME: Destruction of ObjC lifetime types has side-effects.
2758 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2759 return !RD->isCompleteDefinition() ||
2760 !RD->hasTrivialDefaultConstructor() ||
2761 !RD->hasTrivialDestructor();
2762 return false;
2763}
2764
2765static AttributeList *getMSPropertyAttr(AttributeList *list) {
2766 for (AttributeList *it = list; it != nullptr; it = it->getNext())
2767 if (it->isDeclspecPropertyAttribute())
2768 return it;
2769 return nullptr;
2770}
2771
2772// Check if there is a field shadowing.
2773void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
2774 DeclarationName FieldName,
2775 const CXXRecordDecl *RD) {
2776 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
2777 return;
2778
2779 // To record a shadowed field in a base
2780 std::map<CXXRecordDecl*, NamedDecl*> Bases;
2781 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
2782 CXXBasePath &Path) {
2783 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
2784 // Record an ambiguous path directly
2785 if (Bases.find(Base) != Bases.end())
2786 return true;
2787 for (const auto Field : Base->lookup(FieldName)) {
2788 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
2789 Field->getAccess() != AS_private) {
2790 assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void>
(0) : __assert_fail ("Field->getAccess() != AS_none", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2790, __PRETTY_FUNCTION__))
;
2791 assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> (
0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2791, __PRETTY_FUNCTION__))
;
2792 Bases[Base] = Field;
2793 return true;
2794 }
2795 }
2796 return false;
2797 };
2798
2799 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2800 /*DetectVirtual=*/true);
2801 if (!RD->lookupInBases(FieldShadowed, Paths))
2802 return;
2803
2804 for (const auto &P : Paths) {
2805 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
2806 auto It = Bases.find(Base);
2807 // Skip duplicated bases
2808 if (It == Bases.end())
2809 continue;
2810 auto BaseField = It->second;
2811 assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void
> (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2811, __PRETTY_FUNCTION__))
;
2812 if (AS_none !=
2813 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
2814 Diag(Loc, diag::warn_shadow_field)
2815 << FieldName.getAsString() << RD->getName() << Base->getName();
2816 Diag(BaseField->getLocation(), diag::note_shadow_field);
2817 Bases.erase(It);
2818 }
2819 }
2820}
2821
2822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2824/// bitfield width if there is one, 'InitExpr' specifies the initializer if
2825/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2826/// present (but parsing it has been deferred).
2827NamedDecl *
2828Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2829 MultiTemplateParamsArg TemplateParameterLists,
2830 Expr *BW, const VirtSpecifiers &VS,
2831 InClassInitStyle InitStyle) {
2832 const DeclSpec &DS = D.getDeclSpec();
2833 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2834 DeclarationName Name = NameInfo.getName();
2835 SourceLocation Loc = NameInfo.getLoc();
2836
2837 // For anonymous bitfields, the location should point to the type.
2838 if (Loc.isInvalid())
2839 Loc = D.getLocStart();
2840
2841 Expr *BitWidth = static_cast<Expr*>(BW);
2842
2843 assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void
> (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2843, __PRETTY_FUNCTION__))
;
2844 assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("!DS.isFriendSpecified()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2844, __PRETTY_FUNCTION__))
;
2845
2846 bool isFunc = D.isDeclarationOfFunction();
2847
2848 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2849 // The Microsoft extension __interface only permits public member functions
2850 // and prohibits constructors, destructors, operators, non-public member
2851 // functions, static methods and data members.
2852 unsigned InvalidDecl;
2853 bool ShowDeclName = true;
2854 if (!isFunc)
2855 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
2856 else if (AS != AS_public)
2857 InvalidDecl = 2;
2858 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2859 InvalidDecl = 3;
2860 else switch (Name.getNameKind()) {
2861 case DeclarationName::CXXConstructorName:
2862 InvalidDecl = 4;
2863 ShowDeclName = false;
2864 break;
2865
2866 case DeclarationName::CXXDestructorName:
2867 InvalidDecl = 5;
2868 ShowDeclName = false;
2869 break;
2870
2871 case DeclarationName::CXXOperatorName:
2872 case DeclarationName::CXXConversionFunctionName:
2873 InvalidDecl = 6;
2874 break;
2875
2876 default:
2877 InvalidDecl = 0;
2878 break;
2879 }
2880
2881 if (InvalidDecl) {
2882 if (ShowDeclName)
2883 Diag(Loc, diag::err_invalid_member_in_interface)
2884 << (InvalidDecl-1) << Name;
2885 else
2886 Diag(Loc, diag::err_invalid_member_in_interface)
2887 << (InvalidDecl-1) << "";
2888 return nullptr;
2889 }
2890 }
2891
2892 // C++ 9.2p6: A member shall not be declared to have automatic storage
2893 // duration (auto, register) or with the extern storage-class-specifier.
2894 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2895 // data members and cannot be applied to names declared const or static,
2896 // and cannot be applied to reference members.
2897 switch (DS.getStorageClassSpec()) {
2898 case DeclSpec::SCS_unspecified:
2899 case DeclSpec::SCS_typedef:
2900 case DeclSpec::SCS_static:
2901 break;
2902 case DeclSpec::SCS_mutable:
2903 if (isFunc) {
2904 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2905
2906 // FIXME: It would be nicer if the keyword was ignored only for this
2907 // declarator. Otherwise we could get follow-up errors.
2908 D.getMutableDeclSpec().ClearStorageClassSpecs();
2909 }
2910 break;
2911 default:
2912 Diag(DS.getStorageClassSpecLoc(),
2913 diag::err_storageclass_invalid_for_member);
2914 D.getMutableDeclSpec().ClearStorageClassSpecs();
2915 break;
2916 }
2917
2918 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2919 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2920 !isFunc);
2921
2922 if (DS.isConstexprSpecified() && isInstField) {
2923 SemaDiagnosticBuilder B =
2924 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2925 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2926 if (InitStyle == ICIS_NoInit) {
2927 B << 0 << 0;
2928 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2929 B << FixItHint::CreateRemoval(ConstexprLoc);
2930 else {
2931 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2932 D.getMutableDeclSpec().ClearConstexprSpec();
2933 const char *PrevSpec;
2934 unsigned DiagID;
2935 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2936 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2937 (void)Failed;
2938 assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail"
) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2938, __PRETTY_FUNCTION__))
;
2939 }
2940 } else {
2941 B << 1;
2942 const char *PrevSpec;
2943 unsigned DiagID;
2944 if (D.getMutableDeclSpec().SetStorageClassSpec(
2945 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2946 Context.getPrintingPolicy())) {
2947 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2948, __PRETTY_FUNCTION__))
2948 "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2948, __PRETTY_FUNCTION__))
;
2949 B << 1;
2950 } else {
2951 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2952 isInstField = false;
2953 }
2954 }
2955 }
2956
2957 NamedDecl *Member;
2958 if (isInstField) {
2959 CXXScopeSpec &SS = D.getCXXScopeSpec();
2960
2961 // Data members must have identifiers for names.
2962 if (!Name.isIdentifier()) {
2963 Diag(Loc, diag::err_bad_variable_name)
2964 << Name;
2965 return nullptr;
2966 }
2967
2968 IdentifierInfo *II = Name.getAsIdentifierInfo();
2969
2970 // Member field could not be with "template" keyword.
2971 // So TemplateParameterLists should be empty in this case.
2972 if (TemplateParameterLists.size()) {
2973 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2974 if (TemplateParams->size()) {
2975 // There is no such thing as a member field template.
2976 Diag(D.getIdentifierLoc(), diag::err_template_member)
2977 << II
2978 << SourceRange(TemplateParams->getTemplateLoc(),
2979 TemplateParams->getRAngleLoc());
2980 } else {
2981 // There is an extraneous 'template<>' for this member.
2982 Diag(TemplateParams->getTemplateLoc(),
2983 diag::err_template_member_noparams)
2984 << II
2985 << SourceRange(TemplateParams->getTemplateLoc(),
2986 TemplateParams->getRAngleLoc());
2987 }
2988 return nullptr;
2989 }
2990
2991 if (SS.isSet() && !SS.isInvalid()) {
2992 // The user provided a superfluous scope specifier inside a class
2993 // definition:
2994 //
2995 // class X {
2996 // int X::member;
2997 // };
2998 if (DeclContext *DC = computeDeclContext(SS, false))
2999 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
3000 else
3001 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3002 << Name << SS.getRange();
3003
3004 SS.clear();
3005 }
3006
3007 AttributeList *MSPropertyAttr =
3008 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
3009 if (MSPropertyAttr) {
3010 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3011 BitWidth, InitStyle, AS, MSPropertyAttr);
3012 if (!Member)
3013 return nullptr;
3014 isInstField = false;
3015 } else {
3016 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3017 BitWidth, InitStyle, AS);
3018 if (!Member)
3019 return nullptr;
3020 }
3021
3022 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3023 } else {
3024 Member = HandleDeclarator(S, D, TemplateParameterLists);
3025 if (!Member)
3026 return nullptr;
3027
3028 // Non-instance-fields can't have a bitfield.
3029 if (BitWidth) {
3030 if (Member->isInvalidDecl()) {
3031 // don't emit another diagnostic.
3032 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3033 // C++ 9.6p3: A bit-field shall not be a static member.
3034 // "static member 'A' cannot be a bit-field"
3035 Diag(Loc, diag::err_static_not_bitfield)
3036 << Name << BitWidth->getSourceRange();
3037 } else if (isa<TypedefDecl>(Member)) {
3038 // "typedef member 'x' cannot be a bit-field"
3039 Diag(Loc, diag::err_typedef_not_bitfield)
3040 << Name << BitWidth->getSourceRange();
3041 } else {
3042 // A function typedef ("typedef int f(); f a;").
3043 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3044 Diag(Loc, diag::err_not_integral_type_bitfield)
3045 << Name << cast<ValueDecl>(Member)->getType()
3046 << BitWidth->getSourceRange();
3047 }
3048
3049 BitWidth = nullptr;
3050 Member->setInvalidDecl();
3051 }
3052
3053 Member->setAccess(AS);
3054
3055 // If we have declared a member function template or static data member
3056 // template, set the access of the templated declaration as well.
3057 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3058 FunTmpl->getTemplatedDecl()->setAccess(AS);
3059 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3060 VarTmpl->getTemplatedDecl()->setAccess(AS);
3061 }
3062
3063 if (VS.isOverrideSpecified())
3064 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
3065 if (VS.isFinalSpecified())
3066 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
3067 VS.isFinalSpelledSealed()));
3068
3069 if (VS.getLastLocation().isValid()) {
3070 // Update the end location of a method that has a virt-specifiers.
3071 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3072 MD->setRangeEnd(VS.getLastLocation());
3073 }
3074
3075 CheckOverrideControl(Member);
3076
3077 assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?"
) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3077, __PRETTY_FUNCTION__))
;
3078
3079 if (isInstField) {
3080 FieldDecl *FD = cast<FieldDecl>(Member);
3081 FieldCollector->Add(FD);
3082
3083 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3084 // Remember all explicit private FieldDecls that have a name, no side
3085 // effects and are not part of a dependent type declaration.
3086 if (!FD->isImplicit() && FD->getDeclName() &&
3087 FD->getAccess() == AS_private &&
3088 !FD->hasAttr<UnusedAttr>() &&
3089 !FD->getParent()->isDependentContext() &&
3090 !InitializationHasSideEffects(*FD))
3091 UnusedPrivateFields.insert(FD);
3092 }
3093 }
3094
3095 return Member;
3096}
3097
3098namespace {
3099 class UninitializedFieldVisitor
3100 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3101 Sema &S;
3102 // List of Decls to generate a warning on. Also remove Decls that become
3103 // initialized.
3104 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3105 // List of base classes of the record. Classes are removed after their
3106 // initializers.
3107 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3108 // Vector of decls to be removed from the Decl set prior to visiting the
3109 // nodes. These Decls may have been initialized in the prior initializer.
3110 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3111 // If non-null, add a note to the warning pointing back to the constructor.
3112 const CXXConstructorDecl *Constructor;
3113 // Variables to hold state when processing an initializer list. When
3114 // InitList is true, special case initialization of FieldDecls matching
3115 // InitListFieldDecl.
3116 bool InitList;
3117 FieldDecl *InitListFieldDecl;
3118 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3119
3120 public:
3121 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3122 UninitializedFieldVisitor(Sema &S,
3123 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3124 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3125 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3126 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3127
3128 // Returns true if the use of ME is not an uninitialized use.
3129 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3130 bool CheckReferenceOnly) {
3131 llvm::SmallVector<FieldDecl*, 4> Fields;
3132 bool ReferenceField = false;
3133 while (ME) {
3134 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3135 if (!FD)
3136 return false;
3137 Fields.push_back(FD);
3138 if (FD->getType()->isReferenceType())
3139 ReferenceField = true;
3140 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3141 }
3142
3143 // Binding a reference to an unintialized field is not an
3144 // uninitialized use.
3145 if (CheckReferenceOnly && !ReferenceField)
3146 return true;
3147
3148 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3149 // Discard the first field since it is the field decl that is being
3150 // initialized.
3151 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3152 UsedFieldIndex.push_back((*I)->getFieldIndex());
3153 }
3154
3155 for (auto UsedIter = UsedFieldIndex.begin(),
3156 UsedEnd = UsedFieldIndex.end(),
3157 OrigIter = InitFieldIndex.begin(),
3158 OrigEnd = InitFieldIndex.end();
3159 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3160 if (*UsedIter < *OrigIter)
3161 return true;
3162 if (*UsedIter > *OrigIter)
3163 break;
3164 }
3165
3166 return false;
3167 }
3168
3169 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3170 bool AddressOf) {
3171 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3172 return;
3173
3174 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3175 // or union.
3176 MemberExpr *FieldME = ME;
3177
3178 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3179
3180 Expr *Base = ME;
3181 while (MemberExpr *SubME =
3182 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3183
3184 if (isa<VarDecl>(SubME->getMemberDecl()))
3185 return;
3186
3187 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3188 if (!FD->isAnonymousStructOrUnion())
3189 FieldME = SubME;
3190
3191 if (!FieldME->getType().isPODType(S.Context))
3192 AllPODFields = false;
3193
3194 Base = SubME->getBase();
3195 }
3196
3197 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3198 return;
3199
3200 if (AddressOf && AllPODFields)
3201 return;
3202
3203 ValueDecl* FoundVD = FieldME->getMemberDecl();
3204
3205 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3206 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3207 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3208 }
3209
3210 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3211 QualType T = BaseCast->getType();
3212 if (T->isPointerType() &&
3213 BaseClasses.count(T->getPointeeType())) {
3214 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3215 << T->getPointeeType() << FoundVD;
3216 }
3217 }
3218 }
3219
3220 if (!Decls.count(FoundVD))
3221 return;
3222
3223 const bool IsReference = FoundVD->getType()->isReferenceType();
3224
3225 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3226 // Special checking for initializer lists.
3227 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3228 return;
3229 }
3230 } else {
3231 // Prevent double warnings on use of unbounded references.
3232 if (CheckReferenceOnly && !IsReference)
3233 return;
3234 }
3235
3236 unsigned diag = IsReference
3237 ? diag::warn_reference_field_is_uninit
3238 : diag::warn_field_is_uninit;
3239 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3240 if (Constructor)
3241 S.Diag(Constructor->getLocation(),
3242 diag::note_uninit_in_this_constructor)
3243 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3244
3245 }
3246
3247 void HandleValue(Expr *E, bool AddressOf) {
3248 E = E->IgnoreParens();
3249
3250 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3251 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3252 AddressOf /*AddressOf*/);
3253 return;
3254 }
3255
3256 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3257 Visit(CO->getCond());
3258 HandleValue(CO->getTrueExpr(), AddressOf);
3259 HandleValue(CO->getFalseExpr(), AddressOf);
3260 return;
3261 }
3262
3263 if (BinaryConditionalOperator *BCO =
3264 dyn_cast<BinaryConditionalOperator>(E)) {
3265 Visit(BCO->getCond());
3266 HandleValue(BCO->getFalseExpr(), AddressOf);
3267 return;
3268 }
3269
3270 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3271 HandleValue(OVE->getSourceExpr(), AddressOf);
3272 return;
3273 }
3274
3275 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3276 switch (BO->getOpcode()) {
3277 default:
3278 break;
3279 case(BO_PtrMemD):
3280 case(BO_PtrMemI):
3281 HandleValue(BO->getLHS(), AddressOf);
3282 Visit(BO->getRHS());
3283 return;
3284 case(BO_Comma):
3285 Visit(BO->getLHS());
3286 HandleValue(BO->getRHS(), AddressOf);
3287 return;
3288 }
3289 }
3290
3291 Visit(E);
3292 }
3293
3294 void CheckInitListExpr(InitListExpr *ILE) {
3295 InitFieldIndex.push_back(0);
3296 for (auto Child : ILE->children()) {
3297 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3298 CheckInitListExpr(SubList);
3299 } else {
3300 Visit(Child);
3301 }
3302 ++InitFieldIndex.back();
3303 }
3304 InitFieldIndex.pop_back();
3305 }
3306
3307 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3308 FieldDecl *Field, const Type *BaseClass) {
3309 // Remove Decls that may have been initialized in the previous
3310 // initializer.
3311 for (ValueDecl* VD : DeclsToRemove)
3312 Decls.erase(VD);
3313 DeclsToRemove.clear();
3314
3315 Constructor = FieldConstructor;
3316 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3317
3318 if (ILE && Field) {
3319 InitList = true;
3320 InitListFieldDecl = Field;
3321 InitFieldIndex.clear();
3322 CheckInitListExpr(ILE);
3323 } else {
3324 InitList = false;
3325 Visit(E);
3326 }
3327
3328 if (Field)
3329 Decls.erase(Field);
3330 if (BaseClass)
3331 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3332 }
3333
3334 void VisitMemberExpr(MemberExpr *ME) {
3335 // All uses of unbounded reference fields will warn.
3336 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3337 }
3338
3339 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3340 if (E->getCastKind() == CK_LValueToRValue) {
3341 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3342 return;
3343 }
3344
3345 Inherited::VisitImplicitCastExpr(E);
3346 }
3347
3348 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3349 if (E->getConstructor()->isCopyConstructor()) {
3350 Expr *ArgExpr = E->getArg(0);
3351 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3352 if (ILE->getNumInits() == 1)
3353 ArgExpr = ILE->getInit(0);
3354 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3355 if (ICE->getCastKind() == CK_NoOp)
3356 ArgExpr = ICE->getSubExpr();
3357 HandleValue(ArgExpr, false /*AddressOf*/);
3358 return;
3359 }
3360 Inherited::VisitCXXConstructExpr(E);
3361 }
3362
3363 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3364 Expr *Callee = E->getCallee();
3365 if (isa<MemberExpr>(Callee)) {
3366 HandleValue(Callee, false /*AddressOf*/);
3367 for (auto Arg : E->arguments())
3368 Visit(Arg);
3369 return;
3370 }
3371
3372 Inherited::VisitCXXMemberCallExpr(E);
3373 }
3374
3375 void VisitCallExpr(CallExpr *E) {
3376 // Treat std::move as a use.
3377 if (E->getNumArgs() == 1) {
3378 if (FunctionDecl *FD = E->getDirectCallee()) {
3379 if (FD->isInStdNamespace() && FD->getIdentifier() &&
3380 FD->getIdentifier()->isStr("move")) {
3381 HandleValue(E->getArg(0), false /*AddressOf*/);
3382 return;
3383 }
3384 }
3385 }
3386
3387 Inherited::VisitCallExpr(E);
3388 }
3389
3390 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3391 Expr *Callee = E->getCallee();
3392
3393 if (isa<UnresolvedLookupExpr>(Callee))
3394 return Inherited::VisitCXXOperatorCallExpr(E);
3395
3396 Visit(Callee);
3397 for (auto Arg : E->arguments())
3398 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3399 }
3400
3401 void VisitBinaryOperator(BinaryOperator *E) {
3402 // If a field assignment is detected, remove the field from the
3403 // uninitiailized field set.
3404 if (E->getOpcode() == BO_Assign)
3405 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3406 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3407 if (!FD->getType()->isReferenceType())
3408 DeclsToRemove.push_back(FD);
3409
3410 if (E->isCompoundAssignmentOp()) {
3411 HandleValue(E->getLHS(), false /*AddressOf*/);
3412 Visit(E->getRHS());
3413 return;
3414 }
3415
3416 Inherited::VisitBinaryOperator(E);
3417 }
3418
3419 void VisitUnaryOperator(UnaryOperator *E) {
3420 if (E->isIncrementDecrementOp()) {
3421 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3422 return;
3423 }
3424 if (E->getOpcode() == UO_AddrOf) {
3425 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3426 HandleValue(ME->getBase(), true /*AddressOf*/);
3427 return;
3428 }
3429 }
3430
3431 Inherited::VisitUnaryOperator(E);
3432 }
3433 };
3434
3435 // Diagnose value-uses of fields to initialize themselves, e.g.
3436 // foo(foo)
3437 // where foo is not also a parameter to the constructor.
3438 // Also diagnose across field uninitialized use such as
3439 // x(y), y(x)
3440 // TODO: implement -Wuninitialized and fold this into that framework.
3441 static void DiagnoseUninitializedFields(
3442 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3443
3444 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3445 Constructor->getLocation())) {
3446 return;
3447 }
3448
3449 if (Constructor->isInvalidDecl())
3450 return;
3451
3452 const CXXRecordDecl *RD = Constructor->getParent();
3453
3454 if (RD->getDescribedClassTemplate())
3455 return;
3456
3457 // Holds fields that are uninitialized.
3458 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3459
3460 // At the beginning, all fields are uninitialized.
3461 for (auto *I : RD->decls()) {
3462 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3463 UninitializedFields.insert(FD);
3464 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3465 UninitializedFields.insert(IFD->getAnonField());
3466 }
3467 }
3468
3469 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3470 for (auto I : RD->bases())
3471 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3472
3473 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3474 return;
3475
3476 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3477 UninitializedFields,
3478 UninitializedBaseClasses);
3479
3480 for (const auto *FieldInit : Constructor->inits()) {
3481 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3482 break;
3483
3484 Expr *InitExpr = FieldInit->getInit();
3485 if (!InitExpr)
3486 continue;
3487
3488 if (CXXDefaultInitExpr *Default =
3489 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3490 InitExpr = Default->getExpr();
3491 if (!InitExpr)
3492 continue;
3493 // In class initializers will point to the constructor.
3494 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3495 FieldInit->getAnyMember(),
3496 FieldInit->getBaseClass());
3497 } else {
3498 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3499 FieldInit->getAnyMember(),
3500 FieldInit->getBaseClass());
3501 }
3502 }
3503 }
3504} // namespace
3505
3506/// \brief Enter a new C++ default initializer scope. After calling this, the
3507/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3508/// parsing or instantiating the initializer failed.
3509void Sema::ActOnStartCXXInClassMemberInitializer() {
3510 // Create a synthetic function scope to represent the call to the constructor
3511 // that notionally surrounds a use of this initializer.
3512 PushFunctionScope();
3513}
3514
3515/// \brief This is invoked after parsing an in-class initializer for a
3516/// non-static C++ class member, and after instantiating an in-class initializer
3517/// in a class template. Such actions are deferred until the class is complete.
3518void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3519 SourceLocation InitLoc,
3520 Expr *InitExpr) {
3521 // Pop the notional constructor scope we created earlier.
3522 PopFunctionScopeInfo(nullptr, D);
3523
3524 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3525 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3526, __PRETTY_FUNCTION__))
3526 "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3526, __PRETTY_FUNCTION__))
;
3527
3528 if (!InitExpr) {
3529 D->setInvalidDecl();
3530 if (FD)
3531 FD->removeInClassInitializer();
3532 return;
3533 }
3534
3535 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3536 FD->setInvalidDecl();
3537 FD->removeInClassInitializer();
3538 return;
3539 }
3540
3541 ExprResult Init = InitExpr;
3542 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3543 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
3544 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
3545 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
3546 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
3547 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3548 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3549 if (Init.isInvalid()) {
3550 FD->setInvalidDecl();
3551 return;
3552 }
3553 }
3554
3555 // C++11 [class.base.init]p7:
3556 // The initialization of each base and member constitutes a
3557 // full-expression.
3558 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
3559 if (Init.isInvalid()) {
3560 FD->setInvalidDecl();
3561 return;
3562 }
3563
3564 InitExpr = Init.get();
3565
3566 FD->setInClassInitializer(InitExpr);
3567}
3568
3569/// \brief Find the direct and/or virtual base specifiers that
3570/// correspond to the given base type, for use in base initialization
3571/// within a constructor.
3572static bool FindBaseInitializer(Sema &SemaRef,
3573 CXXRecordDecl *ClassDecl,
3574 QualType BaseType,
3575 const CXXBaseSpecifier *&DirectBaseSpec,
3576 const CXXBaseSpecifier *&VirtualBaseSpec) {
3577 // First, check for a direct base class.
3578 DirectBaseSpec = nullptr;
3579 for (const auto &Base : ClassDecl->bases()) {
3580 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3581 // We found a direct base of this type. That's what we're
3582 // initializing.
3583 DirectBaseSpec = &Base;
3584 break;
3585 }
3586 }
3587
3588 // Check for a virtual base class.
3589 // FIXME: We might be able to short-circuit this if we know in advance that
3590 // there are no virtual bases.
3591 VirtualBaseSpec = nullptr;
3592 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3593 // We haven't found a base yet; search the class hierarchy for a
3594 // virtual base class.
3595 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3596 /*DetectVirtual=*/false);
3597 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3598 SemaRef.Context.getTypeDeclType(ClassDecl),
3599 BaseType, Paths)) {
3600 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3601 Path != Paths.end(); ++Path) {
3602 if (Path->back().Base->isVirtual()) {
3603 VirtualBaseSpec = Path->back().Base;
3604 break;
3605 }
3606 }
3607 }
3608 }
3609
3610 return DirectBaseSpec || VirtualBaseSpec;
3611}
3612
3613/// \brief Handle a C++ member initializer using braced-init-list syntax.
3614MemInitResult
3615Sema::ActOnMemInitializer(Decl *ConstructorD,
3616 Scope *S,
3617 CXXScopeSpec &SS,
3618 IdentifierInfo *MemberOrBase,
3619 ParsedType TemplateTypeTy,
3620 const DeclSpec &DS,
3621 SourceLocation IdLoc,
3622 Expr *InitList,
3623 SourceLocation EllipsisLoc) {
3624 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3625 DS, IdLoc, InitList,
3626 EllipsisLoc);
3627}
3628
3629/// \brief Handle a C++ member initializer using parentheses syntax.
3630MemInitResult
3631Sema::ActOnMemInitializer(Decl *ConstructorD,
3632 Scope *S,
3633 CXXScopeSpec &SS,
3634 IdentifierInfo *MemberOrBase,
3635 ParsedType TemplateTypeTy,
3636 const DeclSpec &DS,
3637 SourceLocation IdLoc,
3638 SourceLocation LParenLoc,
3639 ArrayRef<Expr *> Args,
3640 SourceLocation RParenLoc,
3641 SourceLocation EllipsisLoc) {
3642 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
3643 Args, RParenLoc);
3644 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3645 DS, IdLoc, List, EllipsisLoc);
3646}
3647
3648namespace {
3649
3650// Callback to only accept typo corrections that can be a valid C++ member
3651// intializer: either a non-static field member or a base class.
3652class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
3653public:
3654 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
3655 : ClassDecl(ClassDecl) {}
3656
3657 bool ValidateCandidate(const TypoCorrection &candidate) override {
3658 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
3659 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
3660 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
3661 return isa<TypeDecl>(ND);
3662 }
3663 return false;
3664 }
3665
3666private:
3667 CXXRecordDecl *ClassDecl;
3668};
3669
3670}
3671
3672/// \brief Handle a C++ member initializer.
3673MemInitResult
3674Sema::BuildMemInitializer(Decl *ConstructorD,
3675 Scope *S,
3676 CXXScopeSpec &SS,
3677 IdentifierInfo *MemberOrBase,
3678 ParsedType TemplateTypeTy,
3679 const DeclSpec &DS,
3680 SourceLocation IdLoc,
3681 Expr *Init,
3682 SourceLocation EllipsisLoc) {
3683 ExprResult Res = CorrectDelayedTyposInExpr(Init);
3684 if (!Res.isUsable())
3685 return true;
3686 Init = Res.get();
3687
3688 if (!ConstructorD)
3689 return true;
3690
3691 AdjustDeclIfTemplate(ConstructorD);
3692
3693 CXXConstructorDecl *Constructor
3694 = dyn_cast<CXXConstructorDecl>(ConstructorD);
3695 if (!Constructor) {
3696 // The user wrote a constructor initializer on a function that is
3697 // not a C++ constructor. Ignore the error for now, because we may
3698 // have more member initializers coming; we'll diagnose it just
3699 // once in ActOnMemInitializers.
3700 return true;
3701 }
3702
3703 CXXRecordDecl *ClassDecl = Constructor->getParent();
3704
3705 // C++ [class.base.init]p2:
3706 // Names in a mem-initializer-id are looked up in the scope of the
3707 // constructor's class and, if not found in that scope, are looked
3708 // up in the scope containing the constructor's definition.
3709 // [Note: if the constructor's class contains a member with the
3710 // same name as a direct or virtual base class of the class, a
3711 // mem-initializer-id naming the member or base class and composed
3712 // of a single identifier refers to the class member. A
3713 // mem-initializer-id for the hidden base class may be specified
3714 // using a qualified name. ]
3715 if (!SS.getScopeRep() && !TemplateTypeTy) {
3716 // Look for a member, first.
3717 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
3718 if (!Result.empty()) {
3719 ValueDecl *Member;
3720 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
3721 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
3722 if (EllipsisLoc.isValid())
3723 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
3724 << MemberOrBase
3725 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
3726
3727 return BuildMemberInitializer(Member, Init, IdLoc);
3728 }
3729 }
3730 }
3731 // It didn't name a member, so see if it names a class.
3732 QualType BaseType;
3733 TypeSourceInfo *TInfo = nullptr;
3734
3735 if (TemplateTypeTy) {
3736 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
3737 } else if (DS.getTypeSpecType() == TST_decltype) {
3738 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
3739 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
3740 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
3741 return true;
3742 } else {
3743 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
3744 LookupParsedName(R, S, &SS);
3745
3746 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
3747 if (!TyD) {
3748 if (R.isAmbiguous()) return true;
3749
3750 // We don't want access-control diagnostics here.
3751 R.suppressDiagnostics();
3752
3753 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
3754 bool NotUnknownSpecialization = false;
3755 DeclContext *DC = computeDeclContext(SS, false);
3756 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
3757 NotUnknownSpecialization = !Record->hasAnyDependentBases();
3758
3759 if (!NotUnknownSpecialization) {
3760 // When the scope specifier can refer to a member of an unknown
3761 // specialization, we take it as a type name.
3762 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
3763 SS.getWithLocInContext(Context),
3764 *MemberOrBase, IdLoc);
3765 if (BaseType.isNull())
3766 return true;
3767
3768 R.clear();
3769 R.setLookupName(MemberOrBase);
3770 }
3771 }
3772
3773 // If no results were found, try to correct typos.
3774 TypoCorrection Corr;
3775 if (R.empty() && BaseType.isNull() &&
3776 (Corr = CorrectTypo(
3777 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
3778 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
3779 CTK_ErrorRecovery, ClassDecl))) {
3780 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
3781 // We have found a non-static data member with a similar
3782 // name to what was typed; complain and initialize that
3783 // member.
3784 diagnoseTypo(Corr,
3785 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3786 << MemberOrBase << true);
3787 return BuildMemberInitializer(Member, Init, IdLoc);
3788 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
3789 const CXXBaseSpecifier *DirectBaseSpec;
3790 const CXXBaseSpecifier *VirtualBaseSpec;
3791 if (FindBaseInitializer(*this, ClassDecl,
3792 Context.getTypeDeclType(Type),
3793 DirectBaseSpec, VirtualBaseSpec)) {
3794 // We have found a direct or virtual base class with a
3795 // similar name to what was typed; complain and initialize
3796 // that base class.
3797 diagnoseTypo(Corr,
3798 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3799 << MemberOrBase << false,
3800 PDiag() /*Suppress note, we provide our own.*/);
3801
3802 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
3803 : VirtualBaseSpec;
3804 Diag(BaseSpec->getLocStart(),
3805 diag::note_base_class_specified_here)
3806 << BaseSpec->getType()
3807 << BaseSpec->getSourceRange();
3808
3809 TyD = Type;
3810 }
3811 }
3812 }
3813
3814 if (!TyD && BaseType.isNull()) {
3815 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3816 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3817 return true;
3818 }
3819 }
3820
3821 if (BaseType.isNull()) {
3822 BaseType = Context.getTypeDeclType(TyD);
3823 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3824 if (SS.isSet()) {
3825 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3826 BaseType);
3827 TInfo = Context.CreateTypeSourceInfo(BaseType);
3828 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
3829 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
3830 TL.setElaboratedKeywordLoc(SourceLocation());
3831 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3832 }
3833 }
3834 }
3835
3836 if (!TInfo)
3837 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3838
3839 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3840}
3841
3842/// Checks a member initializer expression for cases where reference (or
3843/// pointer) members are bound to by-value parameters (or their addresses).
3844static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3845 Expr *Init,
3846 SourceLocation IdLoc) {
3847 QualType MemberTy = Member->getType();
3848
3849 // We only handle pointers and references currently.
3850 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3851 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3852 return;
3853
3854 const bool IsPointer = MemberTy->isPointerType();
3855 if (IsPointer) {
3856 if (const UnaryOperator *Op
3857 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3858 // The only case we're worried about with pointers requires taking the
3859 // address.
3860 if (Op->getOpcode() != UO_AddrOf)
3861 return;
3862
3863 Init = Op->getSubExpr();
3864 } else {
3865 // We only handle address-of expression initializers for pointers.
3866 return;
3867 }
3868 }
3869
3870 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3871 // We only warn when referring to a non-reference parameter declaration.
3872 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3873 if (!Parameter || Parameter->getType()->isReferenceType())
3874 return;
3875
3876 S.Diag(Init->getExprLoc(),
3877 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3878 : diag::warn_bind_ref_member_to_parameter)
3879 << Member << Parameter << Init->getSourceRange();
3880 } else {
3881 // Other initializers are fine.
3882 return;
3883 }
3884
3885 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3886 << (unsigned)IsPointer;
3887}
3888
3889MemInitResult
3890Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3891 SourceLocation IdLoc) {
3892 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3893 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3894 assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3895, __PRETTY_FUNCTION__))
3895 "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3895, __PRETTY_FUNCTION__))
;
3896
3897 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3898 return true;
3899
3900 if (Member->isInvalidDecl())
3901 return true;
3902
3903 MultiExprArg Args;
3904 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3905 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3906 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3907 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3908 } else {
3909 // Template instantiation doesn't reconstruct ParenListExprs for us.
3910 Args = Init;
3911 }
3912
3913 SourceRange InitRange = Init->getSourceRange();
3914
3915 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3916 // Can't check initialization for a member of dependent type or when
3917 // any of the arguments are type-dependent expressions.
3918 DiscardCleanupsInEvaluationContext();
3919 } else {
3920 bool InitList = false;
3921 if (isa<InitListExpr>(Init)) {
3922 InitList = true;
3923 Args = Init;
3924 }
3925
3926 // Initialize the member.
3927 InitializedEntity MemberEntity =
3928 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3929 : InitializedEntity::InitializeMember(IndirectMember,
3930 nullptr);
3931 InitializationKind Kind =
3932 InitList ? InitializationKind::CreateDirectList(IdLoc)
3933 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3934 InitRange.getEnd());
3935
3936 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3937 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3938 nullptr);
3939 if (MemberInit.isInvalid())
3940 return true;
3941
3942 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3943
3944 // C++11 [class.base.init]p7:
3945 // The initialization of each base and member constitutes a
3946 // full-expression.
3947 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3948 if (MemberInit.isInvalid())
3949 return true;
3950
3951 Init = MemberInit.get();
3952 }
3953
3954 if (DirectMember) {
3955 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3956 InitRange.getBegin(), Init,
3957 InitRange.getEnd());
3958 } else {
3959 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3960 InitRange.getBegin(), Init,
3961 InitRange.getEnd());
3962 }
3963}
3964
3965MemInitResult
3966Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3967 CXXRecordDecl *ClassDecl) {
3968 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3969 if (!LangOpts.CPlusPlus11)
3970 return Diag(NameLoc, diag::err_delegating_ctor)
3971 << TInfo->getTypeLoc().getLocalSourceRange();
3972 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
3973
3974 bool InitList = true;
3975 MultiExprArg Args = Init;
3976 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3977 InitList = false;
3978 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3979 }
3980
3981 SourceRange InitRange = Init->getSourceRange();
3982 // Initialize the object.
3983 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
3984 QualType(ClassDecl->getTypeForDecl(), 0));
3985 InitializationKind Kind =
3986 InitList ? InitializationKind::CreateDirectList(NameLoc)
3987 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
3988 InitRange.getEnd());
3989 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
3990 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
3991 Args, nullptr);
3992 if (DelegationInit.isInvalid())
3993 return true;
3994
3995 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3996, __PRETTY_FUNCTION__))
3996 "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3996, __PRETTY_FUNCTION__))
;
3997
3998 // C++11 [class.base.init]p7:
3999 // The initialization of each base and member constitutes a
4000 // full-expression.
4001 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
4002 InitRange.getBegin());
4003 if (DelegationInit.isInvalid())
4004 return true;
4005
4006 // If we are in a dependent context, template instantiation will
4007 // perform this type-checking again. Just save the arguments that we
4008 // received in a ParenListExpr.
4009 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4010 // of the information that we have about the base
4011 // initializer. However, deconstructing the ASTs is a dicey process,
4012 // and this approach is far more likely to get the corner cases right.
4013 if (CurContext->isDependentContext())
4014 DelegationInit = Init;
4015
4016 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4017 DelegationInit.getAs<Expr>(),
4018 InitRange.getEnd());
4019}
4020
4021MemInitResult
4022Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4023 Expr *Init, CXXRecordDecl *ClassDecl,
4024 SourceLocation EllipsisLoc) {
4025 SourceLocation BaseLoc
4026 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4027
4028 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4029 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4030 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4031
4032 // C++ [class.base.init]p2:
4033 // [...] Unless the mem-initializer-id names a nonstatic data
4034 // member of the constructor's class or a direct or virtual base
4035 // of that class, the mem-initializer is ill-formed. A
4036 // mem-initializer-list can initialize a base class using any
4037 // name that denotes that base class type.
4038 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4039
4040 SourceRange InitRange = Init->getSourceRange();
4041 if (EllipsisLoc.isValid()) {
4042 // This is a pack expansion.
4043 if (!BaseType->containsUnexpandedParameterPack()) {
4044 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4045 << SourceRange(BaseLoc, InitRange.getEnd());
4046
4047 EllipsisLoc = SourceLocation();
4048 }
4049 } else {
4050 // Check for any unexpanded parameter packs.
4051 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4052 return true;
4053
4054 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4055 return true;
4056 }
4057
4058 // Check for direct and virtual base classes.
4059 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4060 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4061 if (!Dependent) {
4062 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4063 BaseType))
4064 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4065
4066 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4067 VirtualBaseSpec);
4068
4069 // C++ [base.class.init]p2:
4070 // Unless the mem-initializer-id names a nonstatic data member of the
4071 // constructor's class or a direct or virtual base of that class, the
4072 // mem-initializer is ill-formed.
4073 if (!DirectBaseSpec && !VirtualBaseSpec) {
4074 // If the class has any dependent bases, then it's possible that
4075 // one of those types will resolve to the same type as
4076 // BaseType. Therefore, just treat this as a dependent base
4077 // class initialization. FIXME: Should we try to check the
4078 // initialization anyway? It seems odd.
4079 if (ClassDecl->hasAnyDependentBases())
4080 Dependent = true;
4081 else
4082 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4083 << BaseType << Context.getTypeDeclType(ClassDecl)
4084 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4085 }
4086 }
4087
4088 if (Dependent) {
4089 DiscardCleanupsInEvaluationContext();
4090
4091 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4092 /*IsVirtual=*/false,
4093 InitRange.getBegin(), Init,
4094 InitRange.getEnd(), EllipsisLoc);
4095 }
4096
4097 // C++ [base.class.init]p2:
4098 // If a mem-initializer-id is ambiguous because it designates both
4099 // a direct non-virtual base class and an inherited virtual base
4100 // class, the mem-initializer is ill-formed.
4101 if (DirectBaseSpec && VirtualBaseSpec)
4102 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4103 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4104
4105 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4106 if (!BaseSpec)
4107 BaseSpec = VirtualBaseSpec;
4108
4109 // Initialize the base.
4110 bool InitList = true;
4111 MultiExprArg Args = Init;
4112 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4113 InitList = false;
4114 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4115 }
4116
4117 InitializedEntity BaseEntity =
4118 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4119 InitializationKind Kind =
4120 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4121 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4122 InitRange.getEnd());
4123 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4124 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4125 if (BaseInit.isInvalid())
4126 return true;
4127
4128 // C++11 [class.base.init]p7:
4129 // The initialization of each base and member constitutes a
4130 // full-expression.
4131 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
4132 if (BaseInit.isInvalid())
4133 return true;
4134
4135 // If we are in a dependent context, template instantiation will
4136 // perform this type-checking again. Just save the arguments that we
4137 // received in a ParenListExpr.
4138 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4139 // of the information that we have about the base
4140 // initializer. However, deconstructing the ASTs is a dicey process,
4141 // and this approach is far more likely to get the corner cases right.
4142 if (CurContext->isDependentContext())
4143 BaseInit = Init;
4144
4145 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4146 BaseSpec->isVirtual(),
4147 InitRange.getBegin(),
4148 BaseInit.getAs<Expr>(),
4149 InitRange.getEnd(), EllipsisLoc);
4150}
4151
4152// Create a static_cast\<T&&>(expr).
4153static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4154 if (T.isNull()) T = E->getType();
4155 QualType TargetType = SemaRef.BuildReferenceType(
4156 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4157 SourceLocation ExprLoc = E->getLocStart();
4158 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4159 TargetType, ExprLoc);
4160
4161 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4162 SourceRange(ExprLoc, ExprLoc),
4163 E->getSourceRange()).get();
4164}
4165
4166/// ImplicitInitializerKind - How an implicit base or member initializer should
4167/// initialize its base or member.
4168enum ImplicitInitializerKind {
4169 IIK_Default,
4170 IIK_Copy,
4171 IIK_Move,
4172 IIK_Inherit
4173};
4174
4175static bool
4176BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4177 ImplicitInitializerKind ImplicitInitKind,
4178 CXXBaseSpecifier *BaseSpec,
4179 bool IsInheritedVirtualBase,
4180 CXXCtorInitializer *&CXXBaseInit) {
4181 InitializedEntity InitEntity
4182 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4183 IsInheritedVirtualBase);
4184
4185 ExprResult BaseInit;
4186
4187 switch (ImplicitInitKind) {
4188 case IIK_Inherit:
4189 case IIK_Default: {
4190 InitializationKind InitKind
4191 = InitializationKind::CreateDefault(Constructor->getLocation());
4192 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4193 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4194 break;
4195 }
4196
4197 case IIK_Move:
4198 case IIK_Copy: {
4199 bool Moving = ImplicitInitKind == IIK_Move;
4200 ParmVarDecl *Param = Constructor->getParamDecl(0);
4201 QualType ParamType = Param->getType().getNonReferenceType();
4202
4203 Expr *CopyCtorArg =
4204 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4205 SourceLocation(), Param, false,
4206 Constructor->getLocation(), ParamType,
4207 VK_LValue, nullptr);
4208
4209 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4210
4211 // Cast to the base class to avoid ambiguities.
4212 QualType ArgTy =
4213 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4214 ParamType.getQualifiers());
4215
4216 if (Moving) {
4217 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4218 }
4219
4220 CXXCastPath BasePath;
4221 BasePath.push_back(BaseSpec);
4222 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4223 CK_UncheckedDerivedToBase,
4224 Moving ? VK_XValue : VK_LValue,
4225 &BasePath).get();
4226
4227 InitializationKind InitKind
4228 = InitializationKind::CreateDirect(Constructor->getLocation(),
4229 SourceLocation(), SourceLocation());
4230 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4231 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4232 break;
4233 }
4234 }
4235
4236 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4237 if (BaseInit.isInvalid())
4238 return true;
4239
4240 CXXBaseInit =
4241 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4242 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4243 SourceLocation()),
4244 BaseSpec->isVirtual(),
4245 SourceLocation(),
4246 BaseInit.getAs<Expr>(),
4247 SourceLocation(),
4248 SourceLocation());
4249
4250 return false;
4251}
4252
4253static bool RefersToRValueRef(Expr *MemRef) {
4254 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4255 return Referenced->getType()->isRValueReferenceType();
4256}
4257
4258static bool
4259BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4260 ImplicitInitializerKind ImplicitInitKind,
4261 FieldDecl *Field, IndirectFieldDecl *Indirect,
4262 CXXCtorInitializer *&CXXMemberInit) {
4263 if (Field->isInvalidDecl())
4264 return true;
4265
4266 SourceLocation Loc = Constructor->getLocation();
4267
4268 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4269 bool Moving = ImplicitInitKind == IIK_Move;
4270 ParmVarDecl *Param = Constructor->getParamDecl(0);
4271 QualType ParamType = Param->getType().getNonReferenceType();
4272
4273 // Suppress copying zero-width bitfields.
4274 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
4275 return false;
4276
4277 Expr *MemberExprBase =
4278 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4279 SourceLocation(), Param, false,
4280 Loc, ParamType, VK_LValue, nullptr);
4281
4282 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4283
4284 if (Moving) {
4285 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4286 }
4287
4288 // Build a reference to this field within the parameter.
4289 CXXScopeSpec SS;
4290 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4291 Sema::LookupMemberName);
4292 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4293 : cast<ValueDecl>(Field), AS_public);
4294 MemberLookup.resolveKind();
4295 ExprResult CtorArg
4296 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4297 ParamType, Loc,
4298 /*IsArrow=*/false,
4299 SS,
4300 /*TemplateKWLoc=*/SourceLocation(),
4301 /*FirstQualifierInScope=*/nullptr,
4302 MemberLookup,
4303 /*TemplateArgs=*/nullptr,
4304 /*S*/nullptr);
4305 if (CtorArg.isInvalid())
4306 return true;
4307
4308 // C++11 [class.copy]p15:
4309 // - if a member m has rvalue reference type T&&, it is direct-initialized
4310 // with static_cast<T&&>(x.m);
4311 if (RefersToRValueRef(CtorArg.get())) {
4312 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4313 }
4314
4315 InitializedEntity Entity =
4316 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4317 /*Implicit*/ true)
4318 : InitializedEntity::InitializeMember(Field, nullptr,
4319 /*Implicit*/ true);
4320
4321 // Direct-initialize to use the copy constructor.
4322 InitializationKind InitKind =
4323 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4324
4325 Expr *CtorArgE = CtorArg.getAs<Expr>();
4326 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4327 ExprResult MemberInit =
4328 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4329 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4330 if (MemberInit.isInvalid())
4331 return true;
4332
4333 if (Indirect)
4334 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4335 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4336 else
4337 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4338 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4339 return false;
4340 }
4341
4342 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4343, __PRETTY_FUNCTION__))
4343 "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4343, __PRETTY_FUNCTION__))
;
4344
4345 QualType FieldBaseElementType =
4346 SemaRef.Context.getBaseElementType(Field->getType());
4347
4348 if (FieldBaseElementType->isRecordType()) {
4349 InitializedEntity InitEntity =
4350 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4351 /*Implicit*/ true)
4352 : InitializedEntity::InitializeMember(Field, nullptr,
4353 /*Implicit*/ true);
4354 InitializationKind InitKind =
4355 InitializationKind::CreateDefault(Loc);
4356
4357 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4358 ExprResult MemberInit =
4359 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4360
4361 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4362 if (MemberInit.isInvalid())
4363 return true;
4364
4365 if (Indirect)
4366 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4367 Indirect, Loc,
4368 Loc,
4369 MemberInit.get(),
4370 Loc);
4371 else
4372 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4373 Field, Loc, Loc,
4374 MemberInit.get(),
4375 Loc);
4376 return false;
4377 }
4378
4379 if (!Field->getParent()->isUnion()) {
4380 if (FieldBaseElementType->isReferenceType()) {
4381 SemaRef.Diag(Constructor->getLocation(),
4382 diag::err_uninitialized_member_in_ctor)
4383 << (int)Constructor->isImplicit()
4384 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4385 << 0 << Field->getDeclName();
4386 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4387 return true;
4388 }
4389
4390 if (FieldBaseElementType.isConstQualified()) {
4391 SemaRef.Diag(Constructor->getLocation(),
4392 diag::err_uninitialized_member_in_ctor)
4393 << (int)Constructor->isImplicit()
4394 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4395 << 1 << Field->getDeclName();
4396 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4397 return true;
4398 }
4399 }
4400
4401 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
4402 FieldBaseElementType->isObjCRetainableType() &&
4403 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
4404 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
4405 // ARC:
4406 // Default-initialize Objective-C pointers to NULL.
4407 CXXMemberInit
4408 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4409 Loc, Loc,
4410 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4411 Loc);
4412 return false;
4413 }
4414
4415 // Nothing to initialize.
4416 CXXMemberInit = nullptr;
4417 return false;
4418}
4419
4420namespace {
4421struct BaseAndFieldInfo {
4422 Sema &S;
4423 CXXConstructorDecl *Ctor;
4424 bool AnyErrorsInInits;
4425 ImplicitInitializerKind IIK;
4426 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4427 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4428 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4429
4430 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4431 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4432 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4433 if (Ctor->getInheritedConstructor())
4434 IIK = IIK_Inherit;
4435 else if (Generated && Ctor->isCopyConstructor())
4436 IIK = IIK_Copy;
4437 else if (Generated && Ctor->isMoveConstructor())
4438 IIK = IIK_Move;
4439 else
4440 IIK = IIK_Default;
4441 }
4442
4443 bool isImplicitCopyOrMove() const {
4444 switch (IIK) {
4445 case IIK_Copy:
4446 case IIK_Move:
4447 return true;
4448
4449 case IIK_Default:
4450 case IIK_Inherit:
4451 return false;
4452 }
4453
4454 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4454)
;
4455 }
4456
4457 bool addFieldInitializer(CXXCtorInitializer *Init) {
4458 AllToInit.push_back(Init);
4459
4460 // Check whether this initializer makes the field "used".
4461 if (Init->getInit()->HasSideEffects(S.Context))
4462 S.UnusedPrivateFields.remove(Init->getAnyMember());
4463
4464 return false;
4465 }
4466
4467 bool isInactiveUnionMember(FieldDecl *Field) {
4468 RecordDecl *Record = Field->getParent();
4469 if (!Record->isUnion())
4470 return false;
4471
4472 if (FieldDecl *Active =
4473 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4474 return Active != Field->getCanonicalDecl();
4475
4476 // In an implicit copy or move constructor, ignore any in-class initializer.
4477 if (isImplicitCopyOrMove())
4478 return true;
4479
4480 // If there's no explicit initialization, the field is active only if it
4481 // has an in-class initializer...
4482 if (Field->hasInClassInitializer())
4483 return false;
4484 // ... or it's an anonymous struct or union whose class has an in-class
4485 // initializer.
4486 if (!Field->isAnonymousStructOrUnion())
4487 return true;
4488 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4489 return !FieldRD->hasInClassInitializer();
4490 }
4491
4492 /// \brief Determine whether the given field is, or is within, a union member
4493 /// that is inactive (because there was an initializer given for a different
4494 /// member of the union, or because the union was not initialized at all).
4495 bool isWithinInactiveUnionMember(FieldDecl *Field,
4496 IndirectFieldDecl *Indirect) {
4497 if (!Indirect)
4498 return isInactiveUnionMember(Field);
4499
4500 for (auto *C : Indirect->chain()) {
4501 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4502 if (Field && isInactiveUnionMember(Field))
4503 return true;
4504 }
4505 return false;
4506 }
4507};
4508}
4509
4510/// \brief Determine whether the given type is an incomplete or zero-lenfgth
4511/// array type.
4512static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4513 if (T->isIncompleteArrayType())
4514 return true;
4515
4516 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4517 if (!ArrayT->getSize())
4518 return true;
4519
4520 T = ArrayT->getElementType();
4521 }
4522
4523 return false;
4524}
4525
4526static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4527 FieldDecl *Field,
4528 IndirectFieldDecl *Indirect = nullptr) {
4529 if (Field->isInvalidDecl())
4530 return false;
4531
4532 // Overwhelmingly common case: we have a direct initializer for this field.
4533 if (CXXCtorInitializer *Init =
4534 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4535 return Info.addFieldInitializer(Init);
4536
4537 // C++11 [class.base.init]p8:
4538 // if the entity is a non-static data member that has a
4539 // brace-or-equal-initializer and either
4540 // -- the constructor's class is a union and no other variant member of that
4541 // union is designated by a mem-initializer-id or
4542 // -- the constructor's class is not a union, and, if the entity is a member
4543 // of an anonymous union, no other member of that union is designated by
4544 // a mem-initializer-id,
4545 // the entity is initialized as specified in [dcl.init].
4546 //
4547 // We also apply the same rules to handle anonymous structs within anonymous
4548 // unions.
4549 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4550 return false;
4551
4552 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4553 ExprResult DIE =
4554 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4555 if (DIE.isInvalid())
4556 return true;
4557 CXXCtorInitializer *Init;
4558 if (Indirect)
4559 Init = new (SemaRef.Context)
4560 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4561 SourceLocation(), DIE.get(), SourceLocation());
4562 else
4563 Init = new (SemaRef.Context)
4564 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4565 SourceLocation(), DIE.get(), SourceLocation());
4566 return Info.addFieldInitializer(Init);
4567 }
4568
4569 // Don't initialize incomplete or zero-length arrays.
4570 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4571 return false;
4572
4573 // Don't try to build an implicit initializer if there were semantic
4574 // errors in any of the initializers (and therefore we might be
4575 // missing some that the user actually wrote).
4576 if (Info.AnyErrorsInInits)
4577 return false;
4578
4579 CXXCtorInitializer *Init = nullptr;
4580 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4581 Indirect, Init))
4582 return true;
4583
4584 if (!Init)
4585 return false;
4586
4587 return Info.addFieldInitializer(Init);
4588}
4589
4590bool
4591Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4592 CXXCtorInitializer *Initializer) {
4593 assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast<
void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4593, __PRETTY_FUNCTION__))
;
4594 Constructor->setNumCtorInitializers(1);
4595 CXXCtorInitializer **initializer =
4596 new (Context) CXXCtorInitializer*[1];
4597 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4598 Constructor->setCtorInitializers(initializer);
4599
4600 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4601 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4602 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4603 }
4604
4605 DelegatingCtorDecls.push_back(Constructor);
4606
4607 DiagnoseUninitializedFields(*this, Constructor);
4608
4609 return false;
4610}
4611
4612bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4613 ArrayRef<CXXCtorInitializer *> Initializers) {
4614 if (Constructor->isDependentContext()) {
4615 // Just store the initializers as written, they will be checked during
4616 // instantiation.
4617 if (!Initializers.empty()) {
4618 Constructor->setNumCtorInitializers(Initializers.size());
4619 CXXCtorInitializer **baseOrMemberInitializers =
4620 new (Context) CXXCtorInitializer*[Initializers.size()];
4621 memcpy(baseOrMemberInitializers, Initializers.data(),
4622 Initializers.size() * sizeof(CXXCtorInitializer*));
4623 Constructor->setCtorInitializers(baseOrMemberInitializers);
4624 }
4625
4626 // Let template instantiation know whether we had errors.
4627 if (AnyErrors)
4628 Constructor->setInvalidDecl();
4629
4630 return false;
4631 }
4632
4633 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4634
4635 // We need to build the initializer AST according to order of construction
4636 // and not what user specified in the Initializers list.
4637 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4638 if (!ClassDecl)
4639 return true;
4640
4641 bool HadError = false;
4642
4643 for (unsigned i = 0; i < Initializers.size(); i++) {
4644 CXXCtorInitializer *Member = Initializers[i];
4645
4646 if (Member->isBaseInitializer())
4647 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4648 else {
4649 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4650
4651 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4652 for (auto *C : F->chain()) {
4653 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4654 if (FD && FD->getParent()->isUnion())
4655 Info.ActiveUnionMember.insert(std::make_pair(
4656 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4657 }
4658 } else if (FieldDecl *FD = Member->getMember()) {
4659 if (FD->getParent()->isUnion())
4660 Info.ActiveUnionMember.insert(std::make_pair(
4661 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4662 }
4663 }
4664 }
4665
4666 // Keep track of the direct virtual bases.
4667 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4668 for (auto &I : ClassDecl->bases()) {
4669 if (I.isVirtual())
4670 DirectVBases.insert(&I);
4671 }
4672
4673 // Push virtual bases before others.
4674 for (auto &VBase : ClassDecl->vbases()) {
4675 if (CXXCtorInitializer *Value
4676 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
4677 // [class.base.init]p7, per DR257:
4678 // A mem-initializer where the mem-initializer-id names a virtual base
4679 // class is ignored during execution of a constructor of any class that
4680 // is not the most derived class.
4681 if (ClassDecl->isAbstract()) {
4682 // FIXME: Provide a fixit to remove the base specifier. This requires
4683 // tracking the location of the associated comma for a base specifier.
4684 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
4685 << VBase.getType() << ClassDecl;
4686 DiagnoseAbstractType(ClassDecl);
4687 }
4688
4689 Info.AllToInit.push_back(Value);
4690 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
4691 // [class.base.init]p8, per DR257:
4692 // If a given [...] base class is not named by a mem-initializer-id
4693 // [...] and the entity is not a virtual base class of an abstract
4694 // class, then [...] the entity is default-initialized.
4695 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
4696 CXXCtorInitializer *CXXBaseInit;
4697 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4698 &VBase, IsInheritedVirtualBase,
4699 CXXBaseInit)) {
4700 HadError = true;
4701 continue;
4702 }
4703
4704 Info.AllToInit.push_back(CXXBaseInit);
4705 }
4706 }
4707
4708 // Non-virtual bases.
4709 for (auto &Base : ClassDecl->bases()) {
4710 // Virtuals are in the virtual base list and already constructed.
4711 if (Base.isVirtual())
4712 continue;
4713
4714 if (CXXCtorInitializer *Value
4715 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
4716 Info.AllToInit.push_back(Value);
4717 } else if (!AnyErrors) {
4718 CXXCtorInitializer *CXXBaseInit;
4719 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4720 &Base, /*IsInheritedVirtualBase=*/false,
4721 CXXBaseInit)) {
4722 HadError = true;
4723 continue;
4724 }
4725
4726 Info.AllToInit.push_back(CXXBaseInit);
4727 }
4728 }
4729
4730 // Fields.
4731 for (auto *Mem : ClassDecl->decls()) {
4732 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4733 // C++ [class.bit]p2:
4734 // A declaration for a bit-field that omits the identifier declares an
4735 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4736 // initialized.
4737 if (F->isUnnamedBitfield())
4738 continue;
4739
4740 // If we're not generating the implicit copy/move constructor, then we'll
4741 // handle anonymous struct/union fields based on their individual
4742 // indirect fields.
4743 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4744 continue;
4745
4746 if (CollectFieldInitializer(*this, Info, F))
4747 HadError = true;
4748 continue;
4749 }
4750
4751 // Beyond this point, we only consider default initialization.
4752 if (Info.isImplicitCopyOrMove())
4753 continue;
4754
4755 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4756 if (F->getType()->isIncompleteArrayType()) {
4757 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4758, __PRETTY_FUNCTION__))
4758 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4758, __PRETTY_FUNCTION__))
;
4759 continue;
4760 }
4761
4762 // Initialize each field of an anonymous struct individually.
4763 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4764 HadError = true;
4765
4766 continue;
4767 }
4768 }
4769
4770 unsigned NumInitializers = Info.AllToInit.size();
4771 if (NumInitializers > 0) {
4772 Constructor->setNumCtorInitializers(NumInitializers);
4773 CXXCtorInitializer **baseOrMemberInitializers =
4774 new (Context) CXXCtorInitializer*[NumInitializers];
4775 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4776 NumInitializers * sizeof(CXXCtorInitializer*));
4777 Constructor->setCtorInitializers(baseOrMemberInitializers);
4778
4779 // Constructors implicitly reference the base and member
4780 // destructors.
4781 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4782 Constructor->getParent());
4783 }
4784
4785 return HadError;
4786}
4787
4788static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4789 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4790 const RecordDecl *RD = RT->getDecl();
4791 if (RD->isAnonymousStructOrUnion()) {
4792 for (auto *Field : RD->fields())
4793 PopulateKeysForFields(Field, IdealInits);
4794 return;
4795 }
4796 }
4797 IdealInits.push_back(Field->getCanonicalDecl());
4798}
4799
4800static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4801 return Context.getCanonicalType(BaseType).getTypePtr();
4802}
4803
4804static const void *GetKeyForMember(ASTContext &Context,
4805 CXXCtorInitializer *Member) {
4806 if (!Member->isAnyMemberInitializer())
4807 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4808
4809 return Member->getAnyMember()->getCanonicalDecl();
4810}
4811
4812static void DiagnoseBaseOrMemInitializerOrder(
4813 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4814 ArrayRef<CXXCtorInitializer *> Inits) {
4815 if (Constructor->getDeclContext()->isDependentContext())
4816 return;
4817
4818 // Don't check initializers order unless the warning is enabled at the
4819 // location of at least one initializer.
4820 bool ShouldCheckOrder = false;
4821 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4822 CXXCtorInitializer *Init = Inits[InitIndex];
4823 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4824 Init->getSourceLocation())) {
4825 ShouldCheckOrder = true;
4826 break;
4827 }
4828 }
4829 if (!ShouldCheckOrder)
4830 return;
4831
4832 // Build the list of bases and members in the order that they'll
4833 // actually be initialized. The explicit initializers should be in
4834 // this same order but may be missing things.
4835 SmallVector<const void*, 32> IdealInitKeys;
4836
4837 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4838
4839 // 1. Virtual bases.
4840 for (const auto &VBase : ClassDecl->vbases())
4841 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4842
4843 // 2. Non-virtual bases.
4844 for (const auto &Base : ClassDecl->bases()) {
4845 if (Base.isVirtual())
4846 continue;
4847 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4848 }
4849
4850 // 3. Direct fields.
4851 for (auto *Field : ClassDecl->fields()) {
4852 if (Field->isUnnamedBitfield())
4853 continue;
4854
4855 PopulateKeysForFields(Field, IdealInitKeys);
4856 }
4857
4858 unsigned NumIdealInits = IdealInitKeys.size();
4859 unsigned IdealIndex = 0;
4860
4861 CXXCtorInitializer *PrevInit = nullptr;
4862 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4863 CXXCtorInitializer *Init = Inits[InitIndex];
4864 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4865
4866 // Scan forward to try to find this initializer in the idealized
4867 // initializers list.
4868 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4869 if (InitKey == IdealInitKeys[IdealIndex])
4870 break;
4871
4872 // If we didn't find this initializer, it must be because we
4873 // scanned past it on a previous iteration. That can only
4874 // happen if we're out of order; emit a warning.
4875 if (IdealIndex == NumIdealInits && PrevInit) {
4876 Sema::SemaDiagnosticBuilder D =
4877 SemaRef.Diag(PrevInit->getSourceLocation(),
4878 diag::warn_initializer_out_of_order);
4879
4880 if (PrevInit->isAnyMemberInitializer())
4881 D << 0 << PrevInit->getAnyMember()->getDeclName();
4882 else
4883 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4884
4885 if (Init->isAnyMemberInitializer())
4886 D << 0 << Init->getAnyMember()->getDeclName();
4887 else
4888 D << 1 << Init->getTypeSourceInfo()->getType();
4889
4890 // Move back to the initializer's location in the ideal list.
4891 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4892 if (InitKey == IdealInitKeys[IdealIndex])
4893 break;
4894
4895 assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4896, __PRETTY_FUNCTION__))
4896 "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4896, __PRETTY_FUNCTION__))
;
4897 }
4898
4899 PrevInit = Init;
4900 }
4901}
4902
4903namespace {
4904bool CheckRedundantInit(Sema &S,
4905 CXXCtorInitializer *Init,
4906 CXXCtorInitializer *&PrevInit) {
4907 if (!PrevInit) {
4908 PrevInit = Init;
4909 return false;
4910 }
4911
4912 if (FieldDecl *Field = Init->getAnyMember())
4913 S.Diag(Init->getSourceLocation(),
4914 diag::err_multiple_mem_initialization)
4915 << Field->getDeclName()
4916 << Init->getSourceRange();
4917 else {
4918 const Type *BaseClass = Init->getBaseClass();
4919 assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast
<void> (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4919, __PRETTY_FUNCTION__))
;
4920 S.Diag(Init->getSourceLocation(),
4921 diag::err_multiple_base_initialization)
4922 << QualType(BaseClass, 0)
4923 << Init->getSourceRange();
4924 }
4925 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4926 << 0 << PrevInit->getSourceRange();
4927
4928 return true;
4929}
4930
4931typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4932typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4933
4934bool CheckRedundantUnionInit(Sema &S,
4935 CXXCtorInitializer *Init,
4936 RedundantUnionMap &Unions) {
4937 FieldDecl *Field = Init->getAnyMember();
4938 RecordDecl *Parent = Field->getParent();
4939 NamedDecl *Child = Field;
4940
4941 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4942 if (Parent->isUnion()) {
4943 UnionEntry &En = Unions[Parent];
4944 if (En.first && En.first != Child) {
4945 S.Diag(Init->getSourceLocation(),
4946 diag::err_multiple_mem_union_initialization)
4947 << Field->getDeclName()
4948 << Init->getSourceRange();
4949 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4950 << 0 << En.second->getSourceRange();
4951 return true;
4952 }
4953 if (!En.first) {
4954 En.first = Child;
4955 En.second = Init;
4956 }
4957 if (!Parent->isAnonymousStructOrUnion())
4958 return false;
4959 }
4960
4961 Child = Parent;
4962 Parent = cast<RecordDecl>(Parent->getDeclContext());
4963 }
4964
4965 return false;
4966}
4967}
4968
4969/// ActOnMemInitializers - Handle the member initializers for a constructor.
4970void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4971 SourceLocation ColonLoc,
4972 ArrayRef<CXXCtorInitializer*> MemInits,
4973 bool AnyErrors) {
4974 if (!ConstructorDecl)
4975 return;
4976
4977 AdjustDeclIfTemplate(ConstructorDecl);
4978
4979 CXXConstructorDecl *Constructor
4980 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
4981
4982 if (!Constructor) {
4983 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
4984 return;
4985 }
4986
4987 // Mapping for the duplicate initializers check.
4988 // For member initializers, this is keyed with a FieldDecl*.
4989 // For base initializers, this is keyed with a Type*.
4990 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
4991
4992 // Mapping for the inconsistent anonymous-union initializers check.
4993 RedundantUnionMap MemberUnions;
4994
4995 bool HadError = false;
4996 for (unsigned i = 0; i < MemInits.size(); i++) {
4997 CXXCtorInitializer *Init = MemInits[i];
4998
4999 // Set the source order index.
5000 Init->setSourceOrder(i);
5001
5002 if (Init->isAnyMemberInitializer()) {
5003 const void *Key = GetKeyForMember(Context, Init);
5004 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5005 CheckRedundantUnionInit(*this, Init, MemberUnions))
5006 HadError = true;
5007 } else if (Init->isBaseInitializer()) {
5008 const void *Key = GetKeyForMember(Context, Init);
5009 if (CheckRedundantInit(*this, Init, Members[Key]))
5010 HadError = true;
5011 } else {
5012 assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void>
(0) : __assert_fail ("Init->isDelegatingInitializer()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5012, __PRETTY_FUNCTION__))
;
5013 // This must be the only initializer
5014 if (MemInits.size() != 1) {
5015 Diag(Init->getSourceLocation(),
5016 diag::err_delegating_initializer_alone)
5017 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5018 // We will treat this as being the only initializer.
5019 }
5020 SetDelegatingInitializer(Constructor, MemInits[i]);
5021 // Return immediately as the initializer is set.
5022 return;
5023 }
5024 }
5025
5026 if (HadError)
5027 return;
5028
5029 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5030
5031 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5032
5033 DiagnoseUninitializedFields(*this, Constructor);
5034}
5035
5036void
5037Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5038 CXXRecordDecl *ClassDecl) {
5039 // Ignore dependent contexts. Also ignore unions, since their members never
5040 // have destructors implicitly called.
5041 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5042 return;
5043
5044 // FIXME: all the access-control diagnostics are positioned on the
5045 // field/base declaration. That's probably good; that said, the
5046 // user might reasonably want to know why the destructor is being
5047 // emitted, and we currently don't say.
5048
5049 // Non-static data members.
5050 for (auto *Field : ClassDecl->fields()) {
5051 if (Field->isInvalidDecl())
5052 continue;
5053
5054 // Don't destroy incomplete or zero-length arrays.
5055 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5056 continue;
5057
5058 QualType FieldType = Context.getBaseElementType(Field->getType());
5059
5060 const RecordType* RT = FieldType->getAs<RecordType>();
5061 if (!RT)
5062 continue;
5063
5064 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5065 if (FieldClassDecl->isInvalidDecl())
5066 continue;
5067 if (FieldClassDecl->hasIrrelevantDestructor())
5068 continue;
5069 // The destructor for an implicit anonymous union member is never invoked.
5070 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5071 continue;
5072
5073 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5074 assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5074, __PRETTY_FUNCTION__))
;
5075 CheckDestructorAccess(Field->getLocation(), Dtor,
5076 PDiag(diag::err_access_dtor_field)
5077 << Field->getDeclName()
5078 << FieldType);
5079
5080 MarkFunctionReferenced(Location, Dtor);
5081 DiagnoseUseOfDecl(Dtor, Location);
5082 }
5083
5084 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5085
5086 // Bases.
5087 for (const auto &Base : ClassDecl->bases()) {
5088 // Bases are always records in a well-formed non-dependent class.
5089 const RecordType *RT = Base.getType()->getAs<RecordType>();
5090
5091 // Remember direct virtual bases.
5092 if (Base.isVirtual())
5093 DirectVirtualBases.insert(RT);
5094
5095 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5096 // If our base class is invalid, we probably can't get its dtor anyway.
5097 if (BaseClassDecl->isInvalidDecl())
5098 continue;
5099 if (BaseClassDecl->hasIrrelevantDestructor())
5100 continue;
5101
5102 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5103 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5103, __PRETTY_FUNCTION__))
;
5104
5105 // FIXME: caret should be on the start of the class name
5106 CheckDestructorAccess(Base.getLocStart(), Dtor,
5107 PDiag(diag::err_access_dtor_base)
5108 << Base.getType()
5109 << Base.getSourceRange(),
5110 Context.getTypeDeclType(ClassDecl));
5111
5112 MarkFunctionReferenced(Location, Dtor);
5113 DiagnoseUseOfDecl(Dtor, Location);
5114 }
5115
5116 // Virtual bases.
5117 for (const auto &VBase : ClassDecl->vbases()) {
5118 // Bases are always records in a well-formed non-dependent class.
5119 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5120
5121 // Ignore direct virtual bases.
5122 if (DirectVirtualBases.count(RT))
5123 continue;
5124
5125 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5126 // If our base class is invalid, we probably can't get its dtor anyway.
5127 if (BaseClassDecl->isInvalidDecl())
5128 continue;
5129 if (BaseClassDecl->hasIrrelevantDestructor())
5130 continue;
5131
5132 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5133 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5133, __PRETTY_FUNCTION__))
;
5134 if (CheckDestructorAccess(
5135 ClassDecl->getLocation(), Dtor,
5136 PDiag(diag::err_access_dtor_vbase)
5137 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5138 Context.getTypeDeclType(ClassDecl)) ==
5139 AR_accessible) {
5140 CheckDerivedToBaseConversion(
5141 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5142 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5143 SourceRange(), DeclarationName(), nullptr);
5144 }
5145
5146 MarkFunctionReferenced(Location, Dtor);
5147 DiagnoseUseOfDecl(Dtor, Location);
5148 }
5149}
5150
5151void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5152 if (!CDtorDecl)
5153 return;
5154
5155 if (CXXConstructorDecl *Constructor
5156 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5157 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5158 DiagnoseUninitializedFields(*this, Constructor);
5159 }
5160}
5161
5162bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5163 if (!getLangOpts().CPlusPlus)
5164 return false;
5165
5166 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5167 if (!RD)
5168 return false;
5169
5170 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5171 // class template specialization here, but doing so breaks a lot of code.
5172
5173 // We can't answer whether something is abstract until it has a
5174 // definition. If it's currently being defined, we'll walk back
5175 // over all the declarations when we have a full definition.
5176 const CXXRecordDecl *Def = RD->getDefinition();
5177 if (!Def || Def->isBeingDefined())
5178 return false;
5179
5180 return RD->isAbstract();
5181}
5182
5183bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5184 TypeDiagnoser &Diagnoser) {
5185 if (!isAbstractType(Loc, T))
5186 return false;
5187
5188 T = Context.getBaseElementType(T);
5189 Diagnoser.diagnose(*this, Loc, T);
5190 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5191 return true;
5192}
5193
5194void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5195 // Check if we've already emitted the list of pure virtual functions
5196 // for this class.
5197 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5198 return;
5199
5200 // If the diagnostic is suppressed, don't emit the notes. We're only
5201 // going to emit them once, so try to attach them to a diagnostic we're
5202 // actually going to show.
5203 if (Diags.isLastDiagnosticIgnored())
5204 return;
5205
5206 CXXFinalOverriderMap FinalOverriders;
5207 RD->getFinalOverriders(FinalOverriders);
5208
5209 // Keep a set of seen pure methods so we won't diagnose the same method
5210 // more than once.
5211 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5212
5213 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5214 MEnd = FinalOverriders.end();
5215 M != MEnd;
5216 ++M) {
5217 for (OverridingMethods::iterator SO = M->second.begin(),
5218 SOEnd = M->second.end();
5219 SO != SOEnd; ++SO) {
5220 // C++ [class.abstract]p4:
5221 // A class is abstract if it contains or inherits at least one
5222 // pure virtual function for which the final overrider is pure
5223 // virtual.
5224
5225 //
5226 if (SO->second.size() != 1)
5227 continue;
5228
5229 if (!SO->second.front().Method->isPure())
5230 continue;
5231
5232 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5233 continue;
5234
5235 Diag(SO->second.front().Method->getLocation(),
5236 diag::note_pure_virtual_function)
5237 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5238 }
5239 }
5240
5241 if (!PureVirtualClassDiagSet)
5242 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5243 PureVirtualClassDiagSet->insert(RD);
5244}
5245
5246namespace {
5247struct AbstractUsageInfo {
5248 Sema &S;
5249 CXXRecordDecl *Record;
5250 CanQualType AbstractType;
5251 bool Invalid;
5252
5253 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5254 : S(S), Record(Record),
5255 AbstractType(S.Context.getCanonicalType(
5256 S.Context.getTypeDeclType(Record))),
5257 Invalid(false) {}
5258
5259 void DiagnoseAbstractType() {
5260 if (Invalid) return;
5261 S.DiagnoseAbstractType(Record);
5262 Invalid = true;
5263 }
5264
5265 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5266};
5267
5268struct CheckAbstractUsage {
5269 AbstractUsageInfo &Info;
5270 const NamedDecl *Ctx;
5271
5272 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5273 : Info(Info), Ctx(Ctx) {}
5274
5275 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5276 switch (TL.getTypeLocClass()) {
5277#define ABSTRACT_TYPELOC(CLASS, PARENT)
5278#define TYPELOC(CLASS, PARENT) \
5279 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5280#include "clang/AST/TypeLocNodes.def"
5281 }
5282 }
5283
5284 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5285 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5286 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5287 if (!TL.getParam(I))
5288 continue;
5289
5290 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5291 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5292 }
5293 }
5294
5295 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5296 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5297 }
5298
5299 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5300 // Visit the type parameters from a permissive context.
5301 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5302 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5303 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5304 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5305 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5306 // TODO: other template argument types?
5307 }
5308 }
5309
5310 // Visit pointee types from a permissive context.
5311#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5312 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5313 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5314 }
5315 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5316 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5317 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5318 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5319 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5320
5321 /// Handle all the types we haven't given a more specific
5322 /// implementation for above.
5323 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5324 // Every other kind of type that we haven't called out already
5325 // that has an inner type is either (1) sugar or (2) contains that
5326 // inner type in some way as a subobject.
5327 if (TypeLoc Next = TL.getNextTypeLoc())
5328 return Visit(Next, Sel);
5329
5330 // If there's no inner type and we're in a permissive context,
5331 // don't diagnose.
5332 if (Sel == Sema::AbstractNone) return;
5333
5334 // Check whether the type matches the abstract type.
5335 QualType T = TL.getType();
5336 if (T->isArrayType()) {
5337 Sel = Sema::AbstractArrayType;
5338 T = Info.S.Context.getBaseElementType(T);
5339 }
5340 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5341 if (CT != Info.AbstractType) return;
5342
5343 // It matched; do some magic.
5344 if (Sel == Sema::AbstractArrayType) {
5345 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5346 << T << TL.getSourceRange();
5347 } else {
5348 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5349 << Sel << T << TL.getSourceRange();
5350 }
5351 Info.DiagnoseAbstractType();
5352 }
5353};
5354
5355void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5356 Sema::AbstractDiagSelID Sel) {
5357 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5358}
5359
5360}
5361
5362/// Check for invalid uses of an abstract type in a method declaration.
5363static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5364 CXXMethodDecl *MD) {
5365 // No need to do the check on definitions, which require that
5366 // the return/param types be complete.
5367 if (MD->doesThisDeclarationHaveABody())
5368 return;
5369
5370 // For safety's sake, just ignore it if we don't have type source
5371 // information. This should never happen for non-implicit methods,
5372 // but...
5373 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5374 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5375}
5376
5377/// Check for invalid uses of an abstract type within a class definition.
5378static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5379 CXXRecordDecl *RD) {
5380 for (auto *D : RD->decls()) {
5381 if (D->isImplicit()) continue;
5382
5383 // Methods and method templates.
5384 if (isa<CXXMethodDecl>(D)) {
5385 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5386 } else if (isa<FunctionTemplateDecl>(D)) {
5387 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5388 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5389
5390 // Fields and static variables.
5391 } else if (isa<FieldDecl>(D)) {
5392 FieldDecl *FD = cast<FieldDecl>(D);
5393 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5394 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5395 } else if (isa<VarDecl>(D)) {
5396 VarDecl *VD = cast<VarDecl>(D);
5397 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5398 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5399
5400 // Nested classes and class templates.
5401 } else if (isa<CXXRecordDecl>(D)) {
5402 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5403 } else if (isa<ClassTemplateDecl>(D)) {
5404 CheckAbstractClassUsage(Info,
5405 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5406 }
5407 }
5408}
5409
5410static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
5411 Attr *ClassAttr = getDLLAttr(Class);
5412 if (!ClassAttr)
5413 return;
5414
5415 assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast<
void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5415, __PRETTY_FUNCTION__))
;
5416
5417 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5418
5419 if (TSK == TSK_ExplicitInstantiationDeclaration)
5420 // Don't go any further if this is just an explicit instantiation
5421 // declaration.
5422 return;
5423
5424 for (Decl *Member : Class->decls()) {
5425 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5426 if (!MD)
5427 continue;
5428
5429 if (Member->getAttr<DLLExportAttr>()) {
5430 if (MD->isUserProvided()) {
5431 // Instantiate non-default class member functions ...
5432
5433 // .. except for certain kinds of template specializations.
5434 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5435 continue;
5436
5437 S.MarkFunctionReferenced(Class->getLocation(), MD);
5438
5439 // The function will be passed to the consumer when its definition is
5440 // encountered.
5441 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5442 MD->isCopyAssignmentOperator() ||
5443 MD->isMoveAssignmentOperator()) {
5444 // Synthesize and instantiate non-trivial implicit methods, explicitly
5445 // defaulted methods, and the copy and move assignment operators. The
5446 // latter are exported even if they are trivial, because the address of
5447 // an operator can be taken and should compare equal accross libraries.
5448 DiagnosticErrorTrap Trap(S.Diags);
5449 S.MarkFunctionReferenced(Class->getLocation(), MD);
5450 if (Trap.hasErrorOccurred()) {
5451 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5452 << Class->getName() << !S.getLangOpts().CPlusPlus11;
5453 break;
5454 }
5455
5456 // There is no later point when we will see the definition of this
5457 // function, so pass it to the consumer now.
5458 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5459 }
5460 }
5461 }
5462}
5463
5464static void checkForMultipleExportedDefaultConstructors(Sema &S,
5465 CXXRecordDecl *Class) {
5466 // Only the MS ABI has default constructor closures, so we don't need to do
5467 // this semantic checking anywhere else.
5468 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5469 return;
5470
5471 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5472 for (Decl *Member : Class->decls()) {
5473 // Look for exported default constructors.
5474 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5475 if (!CD || !CD->isDefaultConstructor())
5476 continue;
5477 auto *Attr = CD->getAttr<DLLExportAttr>();
5478 if (!Attr)
5479 continue;
5480
5481 // If the class is non-dependent, mark the default arguments as ODR-used so
5482 // that we can properly codegen the constructor closure.
5483 if (!Class->isDependentContext()) {
5484 for (ParmVarDecl *PD : CD->parameters()) {
5485 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5486 S.DiscardCleanupsInEvaluationContext();
5487 }
5488 }
5489
5490 if (LastExportedDefaultCtor) {
5491 S.Diag(LastExportedDefaultCtor->getLocation(),
5492 diag::err_attribute_dll_ambiguous_default_ctor)
5493 << Class;
5494 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5495 << CD->getDeclName();
5496 return;
5497 }
5498 LastExportedDefaultCtor = CD;
5499 }
5500}
5501
5502/// \brief Check class-level dllimport/dllexport attribute.
5503void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5504 Attr *ClassAttr = getDLLAttr(Class);
5505
5506 // MSVC inherits DLL attributes to partial class template specializations.
5507 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5508 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5509 if (Attr *TemplateAttr =
5510 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5511 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5512 A->setInherited(true);
5513 ClassAttr = A;
5514 }
5515 }
5516 }
5517
5518 if (!ClassAttr)
5519 return;
5520
5521 if (!Class->isExternallyVisible()) {
5522 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5523 << Class << ClassAttr;
5524 return;
5525 }
5526
5527 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5528 !ClassAttr->isInherited()) {
5529 // Diagnose dll attributes on members of class with dll attribute.
5530 for (Decl *Member : Class->decls()) {
5531 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5532 continue;
5533 InheritableAttr *MemberAttr = getDLLAttr(Member);
5534 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5535 continue;
5536
5537 Diag(MemberAttr->getLocation(),
5538 diag::err_attribute_dll_member_of_dll_class)
5539 << MemberAttr << ClassAttr;
5540 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5541 Member->setInvalidDecl();
5542 }
5543 }
5544
5545 if (Class->getDescribedClassTemplate())
5546 // Don't inherit dll attribute until the template is instantiated.
5547 return;
5548
5549 // The class is either imported or exported.
5550 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5551
5552 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5553
5554 // Ignore explicit dllexport on explicit class template instantiation declarations.
5555 if (ClassExported && !ClassAttr->isInherited() &&
5556 TSK == TSK_ExplicitInstantiationDeclaration) {
5557 Class->dropAttr<DLLExportAttr>();
5558 return;
5559 }
5560
5561 // Force declaration of implicit members so they can inherit the attribute.
5562 ForceDeclarationOfImplicitMembers(Class);
5563
5564 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5565 // seem to be true in practice?
5566
5567 for (Decl *Member : Class->decls()) {
5568 VarDecl *VD = dyn_cast<VarDecl>(Member);
5569 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5570
5571 // Only methods and static fields inherit the attributes.
5572 if (!VD && !MD)
5573 continue;
5574
5575 if (MD) {
5576 // Don't process deleted methods.
5577 if (MD->isDeleted())
5578 continue;
5579
5580 if (MD->isInlined()) {
5581 // MinGW does not import or export inline methods.
5582 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5583 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
5584 continue;
5585
5586 // MSVC versions before 2015 don't export the move assignment operators
5587 // and move constructor, so don't attempt to import/export them if
5588 // we have a definition.
5589 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5590 if ((MD->isMoveAssignmentOperator() ||
5591 (Ctor && Ctor->isMoveConstructor())) &&
5592 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5593 continue;
5594
5595 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5596 // operator is exported anyway.
5597 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5598 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5599 continue;
5600 }
5601 }
5602
5603 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5604 continue;
5605
5606 if (!getDLLAttr(Member)) {
5607 auto *NewAttr =
5608 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5609 NewAttr->setInherited(true);
5610 Member->addAttr(NewAttr);
5611 }
5612 }
5613
5614 if (ClassExported)
5615 DelayedDllExportClasses.push_back(Class);
5616}
5617
5618/// \brief Perform propagation of DLL attributes from a derived class to a
5619/// templated base class for MS compatibility.
5620void Sema::propagateDLLAttrToBaseClassTemplate(
5621 CXXRecordDecl *Class, Attr *ClassAttr,
5622 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
5623 if (getDLLAttr(
5624 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
5625 // If the base class template has a DLL attribute, don't try to change it.
5626 return;
5627 }
5628
5629 auto TSK = BaseTemplateSpec->getSpecializationKind();
5630 if (!getDLLAttr(BaseTemplateSpec) &&
5631 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
5632 TSK == TSK_ImplicitInstantiation)) {
5633 // The template hasn't been instantiated yet (or it has, but only as an
5634 // explicit instantiation declaration or implicit instantiation, which means
5635 // we haven't codegenned any members yet), so propagate the attribute.
5636 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5637 NewAttr->setInherited(true);
5638 BaseTemplateSpec->addAttr(NewAttr);
5639
5640 // If the template is already instantiated, checkDLLAttributeRedeclaration()
5641 // needs to be run again to work see the new attribute. Otherwise this will
5642 // get run whenever the template is instantiated.
5643 if (TSK != TSK_Undeclared)
5644 checkClassLevelDLLAttribute(BaseTemplateSpec);
5645
5646 return;
5647 }
5648
5649 if (getDLLAttr(BaseTemplateSpec)) {
5650 // The template has already been specialized or instantiated with an
5651 // attribute, explicitly or through propagation. We should not try to change
5652 // it.
5653 return;
5654 }
5655
5656 // The template was previously instantiated or explicitly specialized without
5657 // a dll attribute, It's too late for us to add an attribute, so warn that
5658 // this is unsupported.
5659 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
5660 << BaseTemplateSpec->isExplicitSpecialization();
5661 Diag(ClassAttr->getLocation(), diag::note_attribute);
5662 if (BaseTemplateSpec->isExplicitSpecialization()) {
5663 Diag(BaseTemplateSpec->getLocation(),
5664 diag::note_template_class_explicit_specialization_was_here)
5665 << BaseTemplateSpec;
5666 } else {
5667 Diag(BaseTemplateSpec->getPointOfInstantiation(),
5668 diag::note_template_class_instantiation_was_here)
5669 << BaseTemplateSpec;
5670 }
5671}
5672
5673static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
5674 SourceLocation DefaultLoc) {
5675 switch (S.getSpecialMember(MD)) {
5676 case Sema::CXXDefaultConstructor:
5677 S.DefineImplicitDefaultConstructor(DefaultLoc,
5678 cast<CXXConstructorDecl>(MD));
5679 break;
5680 case Sema::CXXCopyConstructor:
5681 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5682 break;
5683 case Sema::CXXCopyAssignment:
5684 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
5685 break;
5686 case Sema::CXXDestructor:
5687 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5688 break;
5689 case Sema::CXXMoveConstructor:
5690 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5691 break;
5692 case Sema::CXXMoveAssignment:
5693 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
5694 break;
5695 case Sema::CXXInvalid:
5696 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5696)
;
5697 }
5698}
5699
5700/// \brief Perform semantic checks on a class definition that has been
5701/// completing, introducing implicitly-declared members, checking for
5702/// abstract types, etc.
5703void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
5704 if (!Record)
5705 return;
5706
5707 if (Record->isAbstract() && !Record->isInvalidDecl()) {
5708 AbstractUsageInfo Info(*this, Record);
5709 CheckAbstractClassUsage(Info, Record);
5710 }
5711
5712 // If this is not an aggregate type and has no user-declared constructor,
5713 // complain about any non-static data members of reference or const scalar
5714 // type, since they will never get initializers.
5715 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
5716 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
5717 !Record->isLambda()) {
5718 bool Complained = false;
5719 for (const auto *F : Record->fields()) {
5720 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
5721 continue;
5722
5723 if (F->getType()->isReferenceType() ||
5724 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
5725 if (!Complained) {
5726 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
5727 << Record->getTagKind() << Record;
5728 Complained = true;
5729 }
5730
5731 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
5732 << F->getType()->isReferenceType()
5733 << F->getDeclName();
5734 }
5735 }
5736 }
5737
5738 if (Record->getIdentifier()) {
5739 // C++ [class.mem]p13:
5740 // If T is the name of a class, then each of the following shall have a
5741 // name different from T:
5742 // - every member of every anonymous union that is a member of class T.
5743 //
5744 // C++ [class.mem]p14:
5745 // In addition, if class T has a user-declared constructor (12.1), every
5746 // non-static data member of class T shall have a name different from T.
5747 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
5748 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
5749 ++I) {
5750 NamedDecl *D = *I;
5751 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
5752 isa<IndirectFieldDecl>(D)) {
5753 Diag(D->getLocation(), diag::err_member_name_of_class)
5754 << D->getDeclName();
5755 break;
5756 }
5757 }
5758 }
5759
5760 // Warn if the class has virtual methods but non-virtual public destructor.
5761 if (Record->isPolymorphic() && !Record->isDependentType()) {
5762 CXXDestructorDecl *dtor = Record->getDestructor();
5763 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
5764 !Record->hasAttr<FinalAttr>())
5765 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
5766 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
5767 }
5768
5769 if (Record->isAbstract()) {
5770 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
5771 Diag(Record->getLocation(), diag::warn_abstract_final_class)
5772 << FA->isSpelledAsSealed();
5773 DiagnoseAbstractType(Record);
5774 }
5775 }
5776
5777 bool HasMethodWithOverrideControl = false,
5778 HasOverridingMethodWithoutOverrideControl = false;
5779 if (!Record->isDependentType()) {
5780 for (auto *M : Record->methods()) {
5781 // See if a method overloads virtual methods in a base
5782 // class without overriding any.
5783 if (!M->isStatic())
5784 DiagnoseHiddenVirtualMethods(M);
5785 if (M->hasAttr<OverrideAttr>())
5786 HasMethodWithOverrideControl = true;
5787 else if (M->size_overridden_methods() > 0)
5788 HasOverridingMethodWithoutOverrideControl = true;
5789 // Check whether the explicitly-defaulted special members are valid.
5790 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
5791 CheckExplicitlyDefaultedSpecialMember(M);
5792
5793 // For an explicitly defaulted or deleted special member, we defer
5794 // determining triviality until the class is complete. That time is now!
5795 CXXSpecialMember CSM = getSpecialMember(M);
5796 if (!M->isImplicit() && !M->isUserProvided()) {
5797 if (CSM != CXXInvalid) {
5798 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
5799
5800 // Inform the class that we've finished declaring this member.
5801 Record->finishedDefaultedOrDeletedMember(M);
5802 }
5803 }
5804
5805 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
5806 M->hasAttr<DLLExportAttr>()) {
5807 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5808 M->isTrivial() &&
5809 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
5810 CSM == CXXDestructor))
5811 M->dropAttr<DLLExportAttr>();
5812
5813 if (M->hasAttr<DLLExportAttr>()) {
5814 DefineImplicitSpecialMember(*this, M, M->getLocation());
5815 ActOnFinishInlineFunctionDef(M);
5816 }
5817 }
5818 }
5819 }
5820
5821 if (HasMethodWithOverrideControl &&
5822 HasOverridingMethodWithoutOverrideControl) {
5823 // At least one method has the 'override' control declared.
5824 // Diagnose all other overridden methods which do not have 'override' specified on them.
5825 for (auto *M : Record->methods())
5826 DiagnoseAbsenceOfOverrideControl(M);
5827 }
5828
5829 // ms_struct is a request to use the same ABI rules as MSVC. Check
5830 // whether this class uses any C++ features that are implemented
5831 // completely differently in MSVC, and if so, emit a diagnostic.
5832 // That diagnostic defaults to an error, but we allow projects to
5833 // map it down to a warning (or ignore it). It's a fairly common
5834 // practice among users of the ms_struct pragma to mass-annotate
5835 // headers, sweeping up a bunch of types that the project doesn't
5836 // really rely on MSVC-compatible layout for. We must therefore
5837 // support "ms_struct except for C++ stuff" as a secondary ABI.
5838 if (Record->isMsStruct(Context) &&
5839 (Record->isPolymorphic() || Record->getNumBases())) {
5840 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
5841 }
5842
5843 checkClassLevelDLLAttribute(Record);
5844}
5845
5846/// Look up the special member function that would be called by a special
5847/// member function for a subobject of class type.
5848///
5849/// \param Class The class type of the subobject.
5850/// \param CSM The kind of special member function.
5851/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
5852/// \param ConstRHS True if this is a copy operation with a const object
5853/// on its RHS, that is, if the argument to the outer special member
5854/// function is 'const' and this is not a field marked 'mutable'.
5855static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
5856 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5857 unsigned FieldQuals, bool ConstRHS) {
5858 unsigned LHSQuals = 0;
5859 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5860 LHSQuals = FieldQuals;
5861
5862 unsigned RHSQuals = FieldQuals;
5863 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5864 RHSQuals = 0;
5865 else if (ConstRHS)
5866 RHSQuals |= Qualifiers::Const;
5867
5868 return S.LookupSpecialMember(Class, CSM,
5869 RHSQuals & Qualifiers::Const,
5870 RHSQuals & Qualifiers::Volatile,
5871 false,
5872 LHSQuals & Qualifiers::Const,
5873 LHSQuals & Qualifiers::Volatile);
5874}
5875
5876class Sema::InheritedConstructorInfo {
5877 Sema &S;
5878 SourceLocation UseLoc;
5879
5880 /// A mapping from the base classes through which the constructor was
5881 /// inherited to the using shadow declaration in that base class (or a null
5882 /// pointer if the constructor was declared in that base class).
5883 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
5884 InheritedFromBases;
5885
5886public:
5887 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
5888 ConstructorUsingShadowDecl *Shadow)
5889 : S(S), UseLoc(UseLoc) {
5890 bool DiagnosedMultipleConstructedBases = false;
5891 CXXRecordDecl *ConstructedBase = nullptr;
5892 UsingDecl *ConstructedBaseUsing = nullptr;
5893
5894 // Find the set of such base class subobjects and check that there's a
5895 // unique constructed subobject.
5896 for (auto *D : Shadow->redecls()) {
5897 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
5898 auto *DNominatedBase = DShadow->getNominatedBaseClass();
5899 auto *DConstructedBase = DShadow->getConstructedBaseClass();
5900
5901 InheritedFromBases.insert(
5902 std::make_pair(DNominatedBase->getCanonicalDecl(),
5903 DShadow->getNominatedBaseClassShadowDecl()));
5904 if (DShadow->constructsVirtualBase())
5905 InheritedFromBases.insert(
5906 std::make_pair(DConstructedBase->getCanonicalDecl(),
5907 DShadow->getConstructedBaseClassShadowDecl()));
5908 else
5909 assert(DNominatedBase == DConstructedBase)((DNominatedBase == DConstructedBase) ? static_cast<void>
(0) : __assert_fail ("DNominatedBase == DConstructedBase", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5909, __PRETTY_FUNCTION__))
;
5910
5911 // [class.inhctor.init]p2:
5912 // If the constructor was inherited from multiple base class subobjects
5913 // of type B, the program is ill-formed.
5914 if (!ConstructedBase) {
5915 ConstructedBase = DConstructedBase;
5916 ConstructedBaseUsing = D->getUsingDecl();
5917 } else if (ConstructedBase != DConstructedBase &&
5918 !Shadow->isInvalidDecl()) {
5919 if (!DiagnosedMultipleConstructedBases) {
5920 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
5921 << Shadow->getTargetDecl();
5922 S.Diag(ConstructedBaseUsing->getLocation(),
5923 diag::note_ambiguous_inherited_constructor_using)
5924 << ConstructedBase;
5925 DiagnosedMultipleConstructedBases = true;
5926 }
5927 S.Diag(D->getUsingDecl()->getLocation(),
5928 diag::note_ambiguous_inherited_constructor_using)
5929 << DConstructedBase;
5930 }
5931 }
5932
5933 if (DiagnosedMultipleConstructedBases)
5934 Shadow->setInvalidDecl();
5935 }
5936
5937 /// Find the constructor to use for inherited construction of a base class,
5938 /// and whether that base class constructor inherits the constructor from a
5939 /// virtual base class (in which case it won't actually invoke it).
5940 std::pair<CXXConstructorDecl *, bool>
5941 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
5942 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
5943 if (It == InheritedFromBases.end())
5944 return std::make_pair(nullptr, false);
5945
5946 // This is an intermediary class.
5947 if (It->second)
5948 return std::make_pair(
5949 S.findInheritingConstructor(UseLoc, Ctor, It->second),
5950 It->second->constructsVirtualBase());
5951
5952 // This is the base class from which the constructor was inherited.
5953 return std::make_pair(Ctor, false);
5954 }
5955};
5956
5957/// Is the special member function which would be selected to perform the
5958/// specified operation on the specified class type a constexpr constructor?
5959static bool
5960specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5961 Sema::CXXSpecialMember CSM, unsigned Quals,
5962 bool ConstRHS,
5963 CXXConstructorDecl *InheritedCtor = nullptr,
5964 Sema::InheritedConstructorInfo *Inherited = nullptr) {
5965 // If we're inheriting a constructor, see if we need to call it for this base
5966 // class.
5967 if (InheritedCtor) {
5968 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5968, __PRETTY_FUNCTION__))
;
5969 auto BaseCtor =
5970 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
5971 if (BaseCtor)
5972 return BaseCtor->isConstexpr();
5973 }
5974
5975 if (CSM == Sema::CXXDefaultConstructor)
5976 return ClassDecl->hasConstexprDefaultConstructor();
5977
5978 Sema::SpecialMemberOverloadResult *SMOR =
5979 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
5980 if (!SMOR || !SMOR->getMethod())
5981 // A constructor we wouldn't select can't be "involved in initializing"
5982 // anything.
5983 return true;
5984 return SMOR->getMethod()->isConstexpr();
5985}
5986
5987/// Determine whether the specified special member function would be constexpr
5988/// if it were implicitly defined.
5989static bool defaultedSpecialMemberIsConstexpr(
5990 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
5991 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
5992 Sema::InheritedConstructorInfo *Inherited = nullptr) {
5993 if (!S.getLangOpts().CPlusPlus11)
5994 return false;
5995
5996 // C++11 [dcl.constexpr]p4:
5997 // In the definition of a constexpr constructor [...]
5998 bool Ctor = true;
5999 switch (CSM) {
6000 case Sema::CXXDefaultConstructor:
6001 if (Inherited)
6002 break;
6003 // Since default constructor lookup is essentially trivial (and cannot
6004 // involve, for instance, template instantiation), we compute whether a
6005 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6006 //
6007 // This is important for performance; we need to know whether the default
6008 // constructor is constexpr to determine whether the type is a literal type.
6009 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6010
6011 case Sema::CXXCopyConstructor:
6012 case Sema::CXXMoveConstructor:
6013 // For copy or move constructors, we need to perform overload resolution.
6014 break;
6015
6016 case Sema::CXXCopyAssignment:
6017 case Sema::CXXMoveAssignment:
6018 if (!S.getLangOpts().CPlusPlus14)
6019 return false;
6020 // In C++1y, we need to perform overload resolution.
6021 Ctor = false;
6022 break;
6023
6024 case Sema::CXXDestructor:
6025 case Sema::CXXInvalid:
6026 return false;
6027 }
6028
6029 // -- if the class is a non-empty union, or for each non-empty anonymous
6030 // union member of a non-union class, exactly one non-static data member
6031 // shall be initialized; [DR1359]
6032 //
6033 // If we squint, this is guaranteed, since exactly one non-static data member
6034 // will be initialized (if the constructor isn't deleted), we just don't know
6035 // which one.
6036 if (Ctor && ClassDecl->isUnion())
6037 return CSM == Sema::CXXDefaultConstructor
6038 ? ClassDecl->hasInClassInitializer() ||
6039 !ClassDecl->hasVariantMembers()
6040 : true;
6041
6042 // -- the class shall not have any virtual base classes;
6043 if (Ctor && ClassDecl->getNumVBases())
6044 return false;
6045
6046 // C++1y [class.copy]p26:
6047 // -- [the class] is a literal type, and
6048 if (!Ctor && !ClassDecl->isLiteral())
6049 return false;
6050
6051 // -- every constructor involved in initializing [...] base class
6052 // sub-objects shall be a constexpr constructor;
6053 // -- the assignment operator selected to copy/move each direct base
6054 // class is a constexpr function, and
6055 for (const auto &B : ClassDecl->bases()) {
6056 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6057 if (!BaseType) continue;
6058
6059 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6060 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6061 InheritedCtor, Inherited))
6062 return false;
6063 }
6064
6065 // -- every constructor involved in initializing non-static data members
6066 // [...] shall be a constexpr constructor;
6067 // -- every non-static data member and base class sub-object shall be
6068 // initialized
6069 // -- for each non-static data member of X that is of class type (or array
6070 // thereof), the assignment operator selected to copy/move that member is
6071 // a constexpr function
6072 for (const auto *F : ClassDecl->fields()) {
6073 if (F->isInvalidDecl())
6074 continue;
6075 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6076 continue;
6077 QualType BaseType = S.Context.getBaseElementType(F->getType());
6078 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6079 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6080 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6081 BaseType.getCVRQualifiers(),
6082 ConstArg && !F->isMutable()))
6083 return false;
6084 } else if (CSM == Sema::CXXDefaultConstructor) {
6085 return false;
6086 }
6087 }
6088
6089 // All OK, it's constexpr!
6090 return true;
6091}
6092
6093static Sema::ImplicitExceptionSpecification
6094computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
6095 switch (S.getSpecialMember(MD)) {
6096 case Sema::CXXDefaultConstructor:
6097 return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
6098 case Sema::CXXCopyConstructor:
6099 return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
6100 case Sema::CXXCopyAssignment:
6101 return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
6102 case Sema::CXXMoveConstructor:
6103 return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
6104 case Sema::CXXMoveAssignment:
6105 return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
6106 case Sema::CXXDestructor:
6107 return S.ComputeDefaultedDtorExceptionSpec(MD);
6108 case Sema::CXXInvalid:
6109 break;
6110 }
6111 assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&((cast<CXXConstructorDecl>(MD)->getInheritedConstructor
() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("cast<CXXConstructorDecl>(MD)->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6112, __PRETTY_FUNCTION__))
6112 "only special members have implicit exception specs")((cast<CXXConstructorDecl>(MD)->getInheritedConstructor
() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("cast<CXXConstructorDecl>(MD)->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6112, __PRETTY_FUNCTION__))
;
6113 return S.ComputeInheritingCtorExceptionSpec(Loc,
6114 cast<CXXConstructorDecl>(MD));
6115}
6116
6117static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6118 CXXMethodDecl *MD) {
6119 FunctionProtoType::ExtProtoInfo EPI;
6120
6121 // Build an exception specification pointing back at this member.
6122 EPI.ExceptionSpec.Type = EST_Unevaluated;
6123 EPI.ExceptionSpec.SourceDecl = MD;
6124
6125 // Set the calling convention to the default for C++ instance methods.
6126 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6127 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6128 /*IsCXXMethod=*/true));
6129 return EPI;
6130}
6131
6132void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
6133 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
6134 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6135 return;
6136
6137 // Evaluate the exception specification.
6138 auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
6139 auto ESI = IES.getExceptionSpec();
6140
6141 // Update the type of the special member to use it.
6142 UpdateExceptionSpec(MD, ESI);
6143
6144 // A user-provided destructor can be defined outside the class. When that
6145 // happens, be sure to update the exception specification on both
6146 // declarations.
6147 const FunctionProtoType *CanonicalFPT =
6148 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
6149 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
6150 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
6151}
6152
6153void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
6154 CXXRecordDecl *RD = MD->getParent();
6155 CXXSpecialMember CSM = getSpecialMember(MD);
6156
6157 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6158, __PRETTY_FUNCTION__))
6158 "not an explicitly-defaulted special member")((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6158, __PRETTY_FUNCTION__))
;
6159
6160 // Whether this was the first-declared instance of the constructor.
6161 // This affects whether we implicitly add an exception spec and constexpr.
6162 bool First = MD == MD->getCanonicalDecl();
6163
6164 bool HadError = false;
6165
6166 // C++11 [dcl.fct.def.default]p1:
6167 // A function that is explicitly defaulted shall
6168 // -- be a special member function (checked elsewhere),
6169 // -- have the same type (except for ref-qualifiers, and except that a
6170 // copy operation can take a non-const reference) as an implicit
6171 // declaration, and
6172 // -- not have default arguments.
6173 unsigned ExpectedParams = 1;
6174 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6175 ExpectedParams = 0;
6176 if (MD->getNumParams() != ExpectedParams) {
6177 // This also checks for default arguments: a copy or move constructor with a
6178 // default argument is classified as a default constructor, and assignment
6179 // operations and destructors can't have default arguments.
6180 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6181 << CSM << MD->getSourceRange();
6182 HadError = true;
6183 } else if (MD->isVariadic()) {
6184 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6185 << CSM << MD->getSourceRange();
6186 HadError = true;
6187 }
6188
6189 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6190
6191 bool CanHaveConstParam = false;
6192 if (CSM == CXXCopyConstructor)
6193 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6194 else if (CSM == CXXCopyAssignment)
6195 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6196
6197 QualType ReturnType = Context.VoidTy;
6198 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6199 // Check for return type matching.
6200 ReturnType = Type->getReturnType();
6201 QualType ExpectedReturnType =
6202 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
6203 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6204 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6205 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
6206 HadError = true;
6207 }
6208
6209 // A defaulted special member cannot have cv-qualifiers.
6210 if (Type->getTypeQuals()) {
6211 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
6212 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
6213 HadError = true;
6214 }
6215 }
6216
6217 // Check for parameter type matching.
6218 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
6219 bool HasConstParam = false;
6220 if (ExpectedParams && ArgType->isReferenceType()) {
6221 // Argument must be reference to possibly-const T.
6222 QualType ReferentType = ArgType->getPointeeType();
6223 HasConstParam = ReferentType.isConstQualified();
6224
6225 if (ReferentType.isVolatileQualified()) {
6226 Diag(MD->getLocation(),
6227 diag::err_defaulted_special_member_volatile_param) << CSM;
6228 HadError = true;
6229 }
6230
6231 if (HasConstParam && !CanHaveConstParam) {
6232 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
6233 Diag(MD->getLocation(),
6234 diag::err_defaulted_special_member_copy_const_param)
6235 << (CSM == CXXCopyAssignment);
6236 // FIXME: Explain why this special member can't be const.
6237 } else {
6238 Diag(MD->getLocation(),
6239 diag::err_defaulted_special_member_move_const_param)
6240 << (CSM == CXXMoveAssignment);
6241 }
6242 HadError = true;
6243 }
6244 } else if (ExpectedParams) {
6245 // A copy assignment operator can take its argument by value, but a
6246 // defaulted one cannot.
6247 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((CSM == CXXCopyAssignment && "unexpected non-ref argument"
) ? static_cast<void> (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6247, __PRETTY_FUNCTION__))
;
6248 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
6249 HadError = true;
6250 }
6251
6252 // C++11 [dcl.fct.def.default]p2:
6253 // An explicitly-defaulted function may be declared constexpr only if it
6254 // would have been implicitly declared as constexpr,
6255 // Do not apply this rule to members of class templates, since core issue 1358
6256 // makes such functions always instantiate to constexpr functions. For
6257 // functions which cannot be constexpr (for non-constructors in C++11 and for
6258 // destructors in C++1y), this is checked elsewhere.
6259 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
6260 HasConstParam);
6261 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
6262 : isa<CXXConstructorDecl>(MD)) &&
6263 MD->isConstexpr() && !Constexpr &&
6264 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
6265 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
6266 // FIXME: Explain why the special member can't be constexpr.
6267 HadError = true;
6268 }
6269
6270 // and may have an explicit exception-specification only if it is compatible
6271 // with the exception-specification on the implicit declaration.
6272 if (Type->hasExceptionSpec()) {
6273 // Delay the check if this is the first declaration of the special member,
6274 // since we may not have parsed some necessary in-class initializers yet.
6275 if (First) {
6276 // If the exception specification needs to be instantiated, do so now,
6277 // before we clobber it with an EST_Unevaluated specification below.
6278 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
6279 InstantiateExceptionSpec(MD->getLocStart(), MD);
6280 Type = MD->getType()->getAs<FunctionProtoType>();
6281 }
6282 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
6283 } else
6284 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
6285 }
6286
6287 // If a function is explicitly defaulted on its first declaration,
6288 if (First) {
6289 // -- it is implicitly considered to be constexpr if the implicit
6290 // definition would be,
6291 MD->setConstexpr(Constexpr);
6292
6293 // -- it is implicitly considered to have the same exception-specification
6294 // as if it had been implicitly declared,
6295 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
6296 EPI.ExceptionSpec.Type = EST_Unevaluated;
6297 EPI.ExceptionSpec.SourceDecl = MD;
6298 MD->setType(Context.getFunctionType(ReturnType,
6299 llvm::makeArrayRef(&ArgType,
6300 ExpectedParams),
6301 EPI));
6302 }
6303
6304 if (ShouldDeleteSpecialMember(MD, CSM)) {
6305 if (First) {
6306 SetDeclDeleted(MD, MD->getLocation());
6307 } else {
6308 // C++11 [dcl.fct.def.default]p4:
6309 // [For a] user-provided explicitly-defaulted function [...] if such a
6310 // function is implicitly defined as deleted, the program is ill-formed.
6311 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
6312 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6313 HadError = true;
6314 }
6315 }
6316
6317 if (HadError)
6318 MD->setInvalidDecl();
6319}
6320
6321/// Check whether the exception specification provided for an
6322/// explicitly-defaulted special member matches the exception specification
6323/// that would have been generated for an implicit special member, per
6324/// C++11 [dcl.fct.def.default]p2.
6325void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
6326 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
6327 // If the exception specification was explicitly specified but hadn't been
6328 // parsed when the method was defaulted, grab it now.
6329 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
6330 SpecifiedType =
6331 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
6332
6333 // Compute the implicit exception specification.
6334 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6335 /*IsCXXMethod=*/true);
6336 FunctionProtoType::ExtProtoInfo EPI(CC);
6337 auto IES = computeImplicitExceptionSpec(*this, MD->getLocation(), MD);
6338 EPI.ExceptionSpec = IES.getExceptionSpec();
6339 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
6340 Context.getFunctionType(Context.VoidTy, None, EPI));
6341
6342 // Ensure that it matches.
6343 CheckEquivalentExceptionSpec(
6344 PDiag(diag::err_incorrect_defaulted_exception_spec)
6345 << getSpecialMember(MD), PDiag(),
6346 ImplicitType, SourceLocation(),
6347 SpecifiedType, MD->getLocation());
6348}
6349
6350void Sema::CheckDelayedMemberExceptionSpecs() {
6351 decltype(DelayedExceptionSpecChecks) Checks;
6352 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
6353
6354 std::swap(Checks, DelayedExceptionSpecChecks);
6355 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
6356
6357 // Perform any deferred checking of exception specifications for virtual
6358 // destructors.
6359 for (auto &Check : Checks)
6360 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
6361
6362 // Check that any explicitly-defaulted methods have exception specifications
6363 // compatible with their implicit exception specifications.
6364 for (auto &Spec : Specs)
6365 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
6366}
6367
6368namespace {
6369struct SpecialMemberDeletionInfo {
6370 Sema &S;
6371 CXXMethodDecl *MD;
6372 Sema::CXXSpecialMember CSM;
6373 Sema::InheritedConstructorInfo *ICI;
6374 bool Diagnose;
6375
6376 // Properties of the special member, computed for convenience.
6377 bool IsConstructor, IsAssignment, IsMove, ConstArg;
6378 SourceLocation Loc;
6379
6380 bool AllFieldsAreConst;
6381
6382 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
6383 Sema::CXXSpecialMember CSM,
6384 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
6385 : S(S), MD(MD), CSM(CSM), ICI(ICI), Diagnose(Diagnose),
6386 IsConstructor(false), IsAssignment(false), IsMove(false),
6387 ConstArg(false), Loc(MD->getLocation()), AllFieldsAreConst(true) {
6388 switch (CSM) {
6389 case Sema::CXXDefaultConstructor:
6390 case Sema::CXXCopyConstructor:
6391 IsConstructor = true;
6392 break;
6393 case Sema::CXXMoveConstructor:
6394 IsConstructor = true;
6395 IsMove = true;
6396 break;
6397 case Sema::CXXCopyAssignment:
6398 IsAssignment = true;
6399 break;
6400 case Sema::CXXMoveAssignment:
6401 IsAssignment = true;
6402 IsMove = true;
6403 break;
6404 case Sema::CXXDestructor:
6405 break;
6406 case Sema::CXXInvalid:
6407 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6407)
;
6408 }
6409
6410 if (MD->getNumParams()) {
6411 if (const ReferenceType *RT =
6412 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
6413 ConstArg = RT->getPointeeType().isConstQualified();
6414 }
6415 }
6416
6417 bool inUnion() const { return MD->getParent()->isUnion(); }
6418
6419 Sema::CXXSpecialMember getEffectiveCSM() {
6420 return ICI ? Sema::CXXInvalid : CSM;
6421 }
6422
6423 /// Look up the corresponding special member in the given class.
6424 Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
6425 unsigned Quals, bool IsMutable) {
6426 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
6427 ConstArg && !IsMutable);
6428 }
6429
6430 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
6431
6432 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
6433 bool shouldDeleteForField(FieldDecl *FD);
6434 bool shouldDeleteForAllConstMembers();
6435
6436 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
6437 unsigned Quals);
6438 bool shouldDeleteForSubobjectCall(Subobject Subobj,
6439 Sema::SpecialMemberOverloadResult *SMOR,
6440 bool IsDtorCallInCtor);
6441
6442 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
6443};
6444}
6445
6446/// Is the given special member inaccessible when used on the given
6447/// sub-object.
6448bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
6449 CXXMethodDecl *target) {
6450 /// If we're operating on a base class, the object type is the
6451 /// type of this special member.
6452 QualType objectTy;
6453 AccessSpecifier access = target->getAccess();
6454 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
6455 objectTy = S.Context.getTypeDeclType(MD->getParent());
6456 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
6457
6458 // If we're operating on a field, the object type is the type of the field.
6459 } else {
6460 objectTy = S.Context.getTypeDeclType(target->getParent());
6461 }
6462
6463 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
6464}
6465
6466/// Check whether we should delete a special member due to the implicit
6467/// definition containing a call to a special member of a subobject.
6468bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
6469 Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
6470 bool IsDtorCallInCtor) {
6471 CXXMethodDecl *Decl = SMOR->getMethod();
6472 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6473
6474 int DiagKind = -1;
6475
6476 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
6477 DiagKind = !Decl ? 0 : 1;
6478 else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
6479 DiagKind = 2;
6480 else if (!isAccessible(Subobj, Decl))
6481 DiagKind = 3;
6482 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
6483 !Decl->isTrivial()) {
6484 // A member of a union must have a trivial corresponding special member.
6485 // As a weird special case, a destructor call from a union's constructor
6486 // must be accessible and non-deleted, but need not be trivial. Such a
6487 // destructor is never actually called, but is semantically checked as
6488 // if it were.
6489 DiagKind = 4;
6490 }
6491
6492 if (DiagKind == -1)
6493 return false;
6494
6495 if (Diagnose) {
6496 if (Field) {
6497 S.Diag(Field->getLocation(),
6498 diag::note_deleted_special_member_class_subobject)
6499 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
6500 << Field << DiagKind << IsDtorCallInCtor;
6501 } else {
6502 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
6503 S.Diag(Base->getLocStart(),
6504 diag::note_deleted_special_member_class_subobject)
6505 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6506 << Base->getType() << DiagKind << IsDtorCallInCtor;
6507 }
6508
6509 if (DiagKind == 1)
6510 S.NoteDeletedFunction(Decl);
6511 // FIXME: Explain inaccessibility if DiagKind == 3.
6512 }
6513
6514 return true;
6515}
6516
6517/// Check whether we should delete a special member function due to having a
6518/// direct or virtual base class or non-static data member of class type M.
6519bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
6520 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
6521 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6522 bool IsMutable = Field && Field->isMutable();
6523
6524 // C++11 [class.ctor]p5:
6525 // -- any direct or virtual base class, or non-static data member with no
6526 // brace-or-equal-initializer, has class type M (or array thereof) and
6527 // either M has no default constructor or overload resolution as applied
6528 // to M's default constructor results in an ambiguity or in a function
6529 // that is deleted or inaccessible
6530 // C++11 [class.copy]p11, C++11 [class.copy]p23:
6531 // -- a direct or virtual base class B that cannot be copied/moved because
6532 // overload resolution, as applied to B's corresponding special member,
6533 // results in an ambiguity or a function that is deleted or inaccessible
6534 // from the defaulted special member
6535 // C++11 [class.dtor]p5:
6536 // -- any direct or virtual base class [...] has a type with a destructor
6537 // that is deleted or inaccessible
6538 if (!(CSM == Sema::CXXDefaultConstructor &&
6539 Field && Field->hasInClassInitializer()) &&
6540 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
6541 false))
6542 return true;
6543
6544 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
6545 // -- any direct or virtual base class or non-static data member has a
6546 // type with a destructor that is deleted or inaccessible
6547 if (IsConstructor) {
6548 Sema::SpecialMemberOverloadResult *SMOR =
6549 S.LookupSpecialMember(Class, Sema::CXXDestructor,
6550 false, false, false, false, false);
6551 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
6552 return true;
6553 }
6554
6555 return false;
6556}
6557
6558/// Check whether we should delete a special member function due to the class
6559/// having a particular direct or virtual base class.
6560bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
6561 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
6562 // If program is correct, BaseClass cannot be null, but if it is, the error
6563 // must be reported elsewhere.
6564 if (!BaseClass)
6565 return false;
6566 // If we have an inheriting constructor, check whether we're calling an
6567 // inherited constructor instead of a default constructor.
6568 if (ICI) {
6569 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6569, __PRETTY_FUNCTION__))
;
6570 auto *BaseCtor =
6571 ICI->findConstructorForBase(BaseClass, cast<CXXConstructorDecl>(MD)
6572 ->getInheritedConstructor()
6573 .getConstructor())
6574 .first;
6575 if (BaseCtor) {
6576 if (BaseCtor->isDeleted() && Diagnose) {
6577 S.Diag(Base->getLocStart(),
6578 diag::note_deleted_special_member_class_subobject)
6579 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6580 << Base->getType() << /*Deleted*/1 << /*IsDtorCallInCtor*/false;
6581 S.NoteDeletedFunction(BaseCtor);
6582 }
6583 return BaseCtor->isDeleted();
6584 }
6585 }
6586 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
6587}
6588
6589/// Check whether we should delete a special member function due to the class
6590/// having a particular non-static data member.
6591bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
6592 QualType FieldType = S.Context.getBaseElementType(FD->getType());
6593 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
6594
6595 if (CSM == Sema::CXXDefaultConstructor) {
6596 // For a default constructor, all references must be initialized in-class
6597 // and, if a union, it must have a non-const member.
6598 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
6599 if (Diagnose)
6600 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6601 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
6602 return true;
6603 }
6604 // C++11 [class.ctor]p5: any non-variant non-static data member of
6605 // const-qualified type (or array thereof) with no
6606 // brace-or-equal-initializer does not have a user-provided default
6607 // constructor.
6608 if (!inUnion() && FieldType.isConstQualified() &&
6609 !FD->hasInClassInitializer() &&
6610 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
6611 if (Diagnose)
6612 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6613 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
6614 return true;
6615 }
6616
6617 if (inUnion() && !FieldType.isConstQualified())
6618 AllFieldsAreConst = false;
6619 } else if (CSM == Sema::CXXCopyConstructor) {
6620 // For a copy constructor, data members must not be of rvalue reference
6621 // type.
6622 if (FieldType->isRValueReferenceType()) {
6623 if (Diagnose)
6624 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
6625 << MD->getParent() << FD << FieldType;
6626 return true;
6627 }
6628 } else if (IsAssignment) {
6629 // For an assignment operator, data members must not be of reference type.
6630 if (FieldType->isReferenceType()) {
6631 if (Diagnose)
6632 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6633 << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
6634 return true;
6635 }
6636 if (!FieldRecord && FieldType.isConstQualified()) {
6637 // C++11 [class.copy]p23:
6638 // -- a non-static data member of const non-class type (or array thereof)
6639 if (Diagnose)
6640 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6641 << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
6642 return true;
6643 }
6644 }
6645
6646 if (FieldRecord) {
6647 // Some additional restrictions exist on the variant members.
6648 if (!inUnion() && FieldRecord->isUnion() &&
6649 FieldRecord->isAnonymousStructOrUnion()) {
6650 bool AllVariantFieldsAreConst = true;
6651
6652 // FIXME: Handle anonymous unions declared within anonymous unions.
6653 for (auto *UI : FieldRecord->fields()) {
6654 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
6655
6656 if (!UnionFieldType.isConstQualified())
6657 AllVariantFieldsAreConst = false;
6658
6659 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
6660 if (UnionFieldRecord &&
6661 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
6662 UnionFieldType.getCVRQualifiers()))
6663 return true;
6664 }
6665
6666 // At least one member in each anonymous union must be non-const
6667 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
6668 !FieldRecord->field_empty()) {
6669 if (Diagnose)
6670 S.Diag(FieldRecord->getLocation(),
6671 diag::note_deleted_default_ctor_all_const)
6672 << !!ICI << MD->getParent() << /*anonymous union*/1;
6673 return true;
6674 }
6675
6676 // Don't check the implicit member of the anonymous union type.
6677 // This is technically non-conformant, but sanity demands it.
6678 return false;
6679 }
6680
6681 if (shouldDeleteForClassSubobject(FieldRecord, FD,
6682 FieldType.getCVRQualifiers()))
6683 return true;
6684 }
6685
6686 return false;
6687}
6688
6689/// C++11 [class.ctor] p5:
6690/// A defaulted default constructor for a class X is defined as deleted if
6691/// X is a union and all of its variant members are of const-qualified type.
6692bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
6693 // This is a silly definition, because it gives an empty union a deleted
6694 // default constructor. Don't do that.
6695 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
6696 bool AnyFields = false;
6697 for (auto *F : MD->getParent()->fields())
6698 if ((AnyFields = !F->isUnnamedBitfield()))
6699 break;
6700 if (!AnyFields)
6701 return false;
6702 if (Diagnose)
6703 S.Diag(MD->getParent()->getLocation(),
6704 diag::note_deleted_default_ctor_all_const)
6705 << !!ICI << MD->getParent() << /*not anonymous union*/0;
6706 return true;
6707 }
6708 return false;
6709}
6710
6711/// Determine whether a defaulted special member function should be defined as
6712/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
6713/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
6714bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
6715 InheritedConstructorInfo *ICI,
6716 bool Diagnose) {
6717 if (MD->isInvalidDecl())
6718 return false;
6719 CXXRecordDecl *RD = MD->getParent();
6720 assert(!RD->isDependentType() && "do deletion after instantiation")((!RD->isDependentType() && "do deletion after instantiation"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDependentType() && \"do deletion after instantiation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6720, __PRETTY_FUNCTION__))
;
6721 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
6722 return false;
6723
6724 // C++11 [expr.lambda.prim]p19:
6725 // The closure type associated with a lambda-expression has a
6726 // deleted (8.4.3) default constructor and a deleted copy
6727 // assignment operator.
6728 if (RD->isLambda() &&
6729 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
6730 if (Diagnose)
6731 Diag(RD->getLocation(), diag::note_lambda_decl);
6732 return true;
6733 }
6734
6735 // For an anonymous struct or union, the copy and assignment special members
6736 // will never be used, so skip the check. For an anonymous union declared at
6737 // namespace scope, the constructor and destructor are used.
6738 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
6739 RD->isAnonymousStructOrUnion())
6740 return false;
6741
6742 // C++11 [class.copy]p7, p18:
6743 // If the class definition declares a move constructor or move assignment
6744 // operator, an implicitly declared copy constructor or copy assignment
6745 // operator is defined as deleted.
6746 if (MD->isImplicit() &&
6747 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
6748 CXXMethodDecl *UserDeclaredMove = nullptr;
6749
6750 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
6751 // deletion of the corresponding copy operation, not both copy operations.
6752 // MSVC 2015 has adopted the standards conforming behavior.
6753 bool DeletesOnlyMatchingCopy =
6754 getLangOpts().MSVCCompat &&
6755 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
6756
6757 if (RD->hasUserDeclaredMoveConstructor() &&
6758 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
6759 if (!Diagnose) return true;
6760
6761 // Find any user-declared move constructor.
6762 for (auto *I : RD->ctors()) {
6763 if (I->isMoveConstructor()) {
6764 UserDeclaredMove = I;
6765 break;
6766 }
6767 }
6768 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6768, __PRETTY_FUNCTION__))
;
6769 } else if (RD->hasUserDeclaredMoveAssignment() &&
6770 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
6771 if (!Diagnose) return true;
6772
6773 // Find any user-declared move assignment operator.
6774 for (auto *I : RD->methods()) {
6775 if (I->isMoveAssignmentOperator()) {
6776 UserDeclaredMove = I;
6777 break;
6778 }
6779 }
6780 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6780, __PRETTY_FUNCTION__))
;
6781 }
6782
6783 if (UserDeclaredMove) {
6784 Diag(UserDeclaredMove->getLocation(),
6785 diag::note_deleted_copy_user_declared_move)
6786 << (CSM == CXXCopyAssignment) << RD
6787 << UserDeclaredMove->isMoveAssignmentOperator();
6788 return true;
6789 }
6790 }
6791
6792 // Do access control from the special member function
6793 ContextRAII MethodContext(*this, MD);
6794
6795 // C++11 [class.dtor]p5:
6796 // -- for a virtual destructor, lookup of the non-array deallocation function
6797 // results in an ambiguity or in a function that is deleted or inaccessible
6798 if (CSM == CXXDestructor && MD->isVirtual()) {
6799 FunctionDecl *OperatorDelete = nullptr;
6800 DeclarationName Name =
6801 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6802 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
6803 OperatorDelete, /*Diagnose*/false)) {
6804 if (Diagnose)
6805 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
6806 return true;
6807 }
6808 }
6809
6810 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
6811
6812 for (auto &BI : RD->bases())
6813 if ((SMI.IsAssignment || !BI.isVirtual()) &&
6814 SMI.shouldDeleteForBase(&BI))
6815 return true;
6816
6817 // Per DR1611, do not consider virtual bases of constructors of abstract
6818 // classes, since we are not going to construct them. For assignment
6819 // operators, we only assign (and thus only consider) direct bases.
6820 if ((!RD->isAbstract() || !SMI.IsConstructor) && !SMI.IsAssignment) {
6821 for (auto &BI : RD->vbases())
6822 if (SMI.shouldDeleteForBase(&BI))
6823 return true;
6824 }
6825
6826 for (auto *FI : RD->fields())
6827 if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
6828 SMI.shouldDeleteForField(FI))
6829 return true;
6830
6831 if (SMI.shouldDeleteForAllConstMembers())
6832 return true;
6833
6834 if (getLangOpts().CUDA) {
6835 // We should delete the special member in CUDA mode if target inference
6836 // failed.
6837 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
6838 Diagnose);
6839 }
6840
6841 return false;
6842}
6843
6844/// Perform lookup for a special member of the specified kind, and determine
6845/// whether it is trivial. If the triviality can be determined without the
6846/// lookup, skip it. This is intended for use when determining whether a
6847/// special member of a containing object is trivial, and thus does not ever
6848/// perform overload resolution for default constructors.
6849///
6850/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
6851/// member that was most likely to be intended to be trivial, if any.
6852static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
6853 Sema::CXXSpecialMember CSM, unsigned Quals,
6854 bool ConstRHS, CXXMethodDecl **Selected) {
6855 if (Selected)
6856 *Selected = nullptr;
6857
6858 switch (CSM) {
6859 case Sema::CXXInvalid:
6860 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6860)
;
6861
6862 case Sema::CXXDefaultConstructor:
6863 // C++11 [class.ctor]p5:
6864 // A default constructor is trivial if:
6865 // - all the [direct subobjects] have trivial default constructors
6866 //
6867 // Note, no overload resolution is performed in this case.
6868 if (RD->hasTrivialDefaultConstructor())
6869 return true;
6870
6871 if (Selected) {
6872 // If there's a default constructor which could have been trivial, dig it
6873 // out. Otherwise, if there's any user-provided default constructor, point
6874 // to that as an example of why there's not a trivial one.
6875 CXXConstructorDecl *DefCtor = nullptr;
6876 if (RD->needsImplicitDefaultConstructor())
6877 S.DeclareImplicitDefaultConstructor(RD);
6878 for (auto *CI : RD->ctors()) {
6879 if (!CI->isDefaultConstructor())
6880 continue;
6881 DefCtor = CI;
6882 if (!DefCtor->isUserProvided())
6883 break;
6884 }
6885
6886 *Selected = DefCtor;
6887 }
6888
6889 return false;
6890
6891 case Sema::CXXDestructor:
6892 // C++11 [class.dtor]p5:
6893 // A destructor is trivial if:
6894 // - all the direct [subobjects] have trivial destructors
6895 if (RD->hasTrivialDestructor())
6896 return true;
6897
6898 if (Selected) {
6899 if (RD->needsImplicitDestructor())
6900 S.DeclareImplicitDestructor(RD);
6901 *Selected = RD->getDestructor();
6902 }
6903
6904 return false;
6905
6906 case Sema::CXXCopyConstructor:
6907 // C++11 [class.copy]p12:
6908 // A copy constructor is trivial if:
6909 // - the constructor selected to copy each direct [subobject] is trivial
6910 if (RD->hasTrivialCopyConstructor()) {
6911 if (Quals == Qualifiers::Const)
6912 // We must either select the trivial copy constructor or reach an
6913 // ambiguity; no need to actually perform overload resolution.
6914 return true;
6915 } else if (!Selected) {
6916 return false;
6917 }
6918 // In C++98, we are not supposed to perform overload resolution here, but we
6919 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
6920 // cases like B as having a non-trivial copy constructor:
6921 // struct A { template<typename T> A(T&); };
6922 // struct B { mutable A a; };
6923 goto NeedOverloadResolution;
6924
6925 case Sema::CXXCopyAssignment:
6926 // C++11 [class.copy]p25:
6927 // A copy assignment operator is trivial if:
6928 // - the assignment operator selected to copy each direct [subobject] is
6929 // trivial
6930 if (RD->hasTrivialCopyAssignment()) {
6931 if (Quals == Qualifiers::Const)
6932 return true;
6933 } else if (!Selected) {
6934 return false;
6935 }
6936 // In C++98, we are not supposed to perform overload resolution here, but we
6937 // treat that as a language defect.
6938 goto NeedOverloadResolution;
6939
6940 case Sema::CXXMoveConstructor:
6941 case Sema::CXXMoveAssignment:
6942 NeedOverloadResolution:
6943 Sema::SpecialMemberOverloadResult *SMOR =
6944 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
6945
6946 // The standard doesn't describe how to behave if the lookup is ambiguous.
6947 // We treat it as not making the member non-trivial, just like the standard
6948 // mandates for the default constructor. This should rarely matter, because
6949 // the member will also be deleted.
6950 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
6951 return true;
6952
6953 if (!SMOR->getMethod()) {
6954 assert(SMOR->getKind() ==((SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6955, __PRETTY_FUNCTION__))
6955 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6955, __PRETTY_FUNCTION__))
;
6956 return false;
6957 }
6958
6959 // We deliberately don't check if we found a deleted special member. We're
6960 // not supposed to!
6961 if (Selected)
6962 *Selected = SMOR->getMethod();
6963 return SMOR->getMethod()->isTrivial();
6964 }
6965
6966 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6966)
;
6967}
6968
6969static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
6970 for (auto *CI : RD->ctors())
6971 if (!CI->isImplicit())
6972 return CI;
6973
6974 // Look for constructor templates.
6975 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
6976 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
6977 if (CXXConstructorDecl *CD =
6978 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
6979 return CD;
6980 }
6981
6982 return nullptr;
6983}
6984
6985/// The kind of subobject we are checking for triviality. The values of this
6986/// enumeration are used in diagnostics.
6987enum TrivialSubobjectKind {
6988 /// The subobject is a base class.
6989 TSK_BaseClass,
6990 /// The subobject is a non-static data member.
6991 TSK_Field,
6992 /// The object is actually the complete object.
6993 TSK_CompleteObject
6994};
6995
6996/// Check whether the special member selected for a given type would be trivial.
6997static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
6998 QualType SubType, bool ConstRHS,
6999 Sema::CXXSpecialMember CSM,
7000 TrivialSubobjectKind Kind,
7001 bool Diagnose) {
7002 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
7003 if (!SubRD)
7004 return true;
7005
7006 CXXMethodDecl *Selected;
7007 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
7008 ConstRHS, Diagnose ? &Selected : nullptr))
7009 return true;
7010
7011 if (Diagnose) {
7012 if (ConstRHS)
7013 SubType.addConst();
7014
7015 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
7016 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
7017 << Kind << SubType.getUnqualifiedType();
7018 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
7019 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
7020 } else if (!Selected)
7021 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
7022 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
7023 else if (Selected->isUserProvided()) {
7024 if (Kind == TSK_CompleteObject)
7025 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
7026 << Kind << SubType.getUnqualifiedType() << CSM;
7027 else {
7028 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
7029 << Kind << SubType.getUnqualifiedType() << CSM;
7030 S.Diag(Selected->getLocation(), diag::note_declared_at);
7031 }
7032 } else {
7033 if (Kind != TSK_CompleteObject)
7034 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
7035 << Kind << SubType.getUnqualifiedType() << CSM;
7036
7037 // Explain why the defaulted or deleted special member isn't trivial.
7038 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
7039 }
7040 }
7041
7042 return false;
7043}
7044
7045/// Check whether the members of a class type allow a special member to be
7046/// trivial.
7047static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
7048 Sema::CXXSpecialMember CSM,
7049 bool ConstArg, bool Diagnose) {
7050 for (const auto *FI : RD->fields()) {
7051 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
7052 continue;
7053
7054 QualType FieldType = S.Context.getBaseElementType(FI->getType());
7055
7056 // Pretend anonymous struct or union members are members of this class.
7057 if (FI->isAnonymousStructOrUnion()) {
7058 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
7059 CSM, ConstArg, Diagnose))
7060 return false;
7061 continue;
7062 }
7063
7064 // C++11 [class.ctor]p5:
7065 // A default constructor is trivial if [...]
7066 // -- no non-static data member of its class has a
7067 // brace-or-equal-initializer
7068 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
7069 if (Diagnose)
7070 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
7071 return false;
7072 }
7073
7074 // Objective C ARC 4.3.5:
7075 // [...] nontrivally ownership-qualified types are [...] not trivially
7076 // default constructible, copy constructible, move constructible, copy
7077 // assignable, move assignable, or destructible [...]
7078 if (S.getLangOpts().ObjCAutoRefCount &&
7079 FieldType.hasNonTrivialObjCLifetime()) {
7080 if (Diagnose)
7081 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
7082 << RD << FieldType.getObjCLifetime();
7083 return false;
7084 }
7085
7086 bool ConstRHS = ConstArg && !FI->isMutable();
7087 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
7088 CSM, TSK_Field, Diagnose))
7089 return false;
7090 }
7091
7092 return true;
7093}
7094
7095/// Diagnose why the specified class does not have a trivial special member of
7096/// the given kind.
7097void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
7098 QualType Ty = Context.getRecordType(RD);
7099
7100 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
7101 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
7102 TSK_CompleteObject, /*Diagnose*/true);
7103}
7104
7105/// Determine whether a defaulted or deleted special member function is trivial,
7106/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
7107/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
7108bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
7109 bool Diagnose) {
7110 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((!MD->isUserProvided() && CSM != CXXInvalid &&
"not special enough") ? static_cast<void> (0) : __assert_fail
("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7110, __PRETTY_FUNCTION__))
;
7111
7112 CXXRecordDecl *RD = MD->getParent();
7113
7114 bool ConstArg = false;
7115
7116 // C++11 [class.copy]p12, p25: [DR1593]
7117 // A [special member] is trivial if [...] its parameter-type-list is
7118 // equivalent to the parameter-type-list of an implicit declaration [...]
7119 switch (CSM) {
7120 case CXXDefaultConstructor:
7121 case CXXDestructor:
7122 // Trivial default constructors and destructors cannot have parameters.
7123 break;
7124
7125 case CXXCopyConstructor:
7126 case CXXCopyAssignment: {
7127 // Trivial copy operations always have const, non-volatile parameter types.
7128 ConstArg = true;
7129 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7130 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
7131 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
7132 if (Diagnose)
7133 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7134 << Param0->getSourceRange() << Param0->getType()
7135 << Context.getLValueReferenceType(
7136 Context.getRecordType(RD).withConst());
7137 return false;
7138 }
7139 break;
7140 }
7141
7142 case CXXMoveConstructor:
7143 case CXXMoveAssignment: {
7144 // Trivial move operations always have non-cv-qualified parameters.
7145 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7146 const RValueReferenceType *RT =
7147 Param0->getType()->getAs<RValueReferenceType>();
7148 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
7149 if (Diagnose)
7150 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7151 << Param0->getSourceRange() << Param0->getType()
7152 << Context.getRValueReferenceType(Context.getRecordType(RD));
7153 return false;
7154 }
7155 break;
7156 }
7157
7158 case CXXInvalid:
7159 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7159)
;
7160 }
7161
7162 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
7163 if (Diagnose)
7164 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
7165 diag::note_nontrivial_default_arg)
7166 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
7167 return false;
7168 }
7169 if (MD->isVariadic()) {
7170 if (Diagnose)
7171 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
7172 return false;
7173 }
7174
7175 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7176 // A copy/move [constructor or assignment operator] is trivial if
7177 // -- the [member] selected to copy/move each direct base class subobject
7178 // is trivial
7179 //
7180 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7181 // A [default constructor or destructor] is trivial if
7182 // -- all the direct base classes have trivial [default constructors or
7183 // destructors]
7184 for (const auto &BI : RD->bases())
7185 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
7186 ConstArg, CSM, TSK_BaseClass, Diagnose))
7187 return false;
7188
7189 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7190 // A copy/move [constructor or assignment operator] for a class X is
7191 // trivial if
7192 // -- for each non-static data member of X that is of class type (or array
7193 // thereof), the constructor selected to copy/move that member is
7194 // trivial
7195 //
7196 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7197 // A [default constructor or destructor] is trivial if
7198 // -- for all of the non-static data members of its class that are of class
7199 // type (or array thereof), each such class has a trivial [default
7200 // constructor or destructor]
7201 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
7202 return false;
7203
7204 // C++11 [class.dtor]p5:
7205 // A destructor is trivial if [...]
7206 // -- the destructor is not virtual
7207 if (CSM == CXXDestructor && MD->isVirtual()) {
7208 if (Diagnose)
7209 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
7210 return false;
7211 }
7212
7213 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
7214 // A [special member] for class X is trivial if [...]
7215 // -- class X has no virtual functions and no virtual base classes
7216 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
7217 if (!Diagnose)
7218 return false;
7219
7220 if (RD->getNumVBases()) {
7221 // Check for virtual bases. We already know that the corresponding
7222 // member in all bases is trivial, so vbases must all be direct.
7223 CXXBaseSpecifier &BS = *RD->vbases_begin();
7224 assert(BS.isVirtual())((BS.isVirtual()) ? static_cast<void> (0) : __assert_fail
("BS.isVirtual()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7224, __PRETTY_FUNCTION__))
;
7225 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
7226 return false;
7227 }
7228
7229 // Must have a virtual method.
7230 for (const auto *MI : RD->methods()) {
7231 if (MI->isVirtual()) {
7232 SourceLocation MLoc = MI->getLocStart();
7233 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
7234 return false;
7235 }
7236 }
7237
7238 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7238)
;
7239 }
7240
7241 // Looks like it's trivial!
7242 return true;
7243}
7244
7245namespace {
7246struct FindHiddenVirtualMethod {
7247 Sema *S;
7248 CXXMethodDecl *Method;
7249 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
7250 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7251
7252private:
7253 /// Check whether any most overriden method from MD in Methods
7254 static bool CheckMostOverridenMethods(
7255 const CXXMethodDecl *MD,
7256 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
7257 if (MD->size_overridden_methods() == 0)
7258 return Methods.count(MD->getCanonicalDecl());
7259 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7260 E = MD->end_overridden_methods();
7261 I != E; ++I)
7262 if (CheckMostOverridenMethods(*I, Methods))
7263 return true;
7264 return false;
7265 }
7266
7267public:
7268 /// Member lookup function that determines whether a given C++
7269 /// method overloads virtual methods in a base class without overriding any,
7270 /// to be used with CXXRecordDecl::lookupInBases().
7271 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7272 RecordDecl *BaseRecord =
7273 Specifier->getType()->getAs<RecordType>()->getDecl();
7274
7275 DeclarationName Name = Method->getDeclName();
7276 assert(Name.getNameKind() == DeclarationName::Identifier)((Name.getNameKind() == DeclarationName::Identifier) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295818/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7276, __PRETTY_FUNCTION__))
;
7277
7278 bool foundSameNameMethod = false;
7279 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
7280 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7281 Path.Decls = Path.Decls.slice(1)) {
7282 NamedDecl *D = Path.Decls.front();
7283 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7284 MD = MD->getCanonicalDecl();
7285 foundSameNameMethod = true;
7286 // Interested only in hidden virtual methods.
7287 if (!MD->isVirtual())
7288 continue;
7289 // If the method we are checking overrides a method from its base
7290 // don't warn about the other overloaded methods. Clang deviates from
7291 // GCC by only diagnosing overloads of inherited virtual functions that
7292 // do not override any other virtual functions in the base. GCC's
7293 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
7294 // function from a base class. These cases may be better served by a
7295 // warning (not specific to virtual functions) on call sites when the
7296 // call would select a different function from the base class, were it
7297 // visible.
7298 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
7299 if (!S->IsOverload(Method, MD, false))
7300 return true;
7301 // Collect the overload only if its hidden.
7302 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
7303 overloadedMethods.push_back(MD);
7304 }
7305 }
7306
7307 if (foundSameNameMethod)
7308 OverloadedMethods.append(overloadedMethods.begin(),
7309 overloadedMethods.end());
7310 return foundSameNameMethod;
7311 }
7312};
7313} // end anonymous namespace
7314
7315/// \brief Add the most overriden methods from MD to Methods
7316static void AddMostOverridenMethods(const CXXMethodDecl *MD,
7317 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
7318 if (MD->size_overridden_methods() == 0)
7319 Methods.insert(MD->getCanonicalDecl());
7320 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7321 E = MD->end_overridden_methods();
7322 I != E; ++I)
7323 AddMostOverridenMethods(*I, Methods);
7324}
7325
7326/// \brief Check if a method overloads virtual methods in a base class without
7327/// overriding any.
7328void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
7329 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7330 if (!MD->getDeclName().isIdentifier())
7331 return;
7332
7333 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
7334 /*bool RecordPaths=*/false,
7335 /*bool DetectVirtual=*/false);
7336 FindHiddenVirtualMethod FHVM;
7337 FHVM.Method = MD;
7338 FHVM.S = this;
7339
7340 // Keep the base methods that were overriden or introduced in the subclass
7341 // by 'using' in a set. A base method not in this set is hidden.
7342 CXXRecordDecl *DC = MD->getParent();
7343 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
7344 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
7345 NamedDecl *ND = *I;
7346 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
7347 ND = shad->getTargetDecl();
7348 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7349 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
7350 }
7351
7352 if (DC->lookupInBases(FHVM, Paths))
7353 OverloadedMethods = FHVM.OverloadedMethods;
7354}
7355
7356void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
7357 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7358 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
7359 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
7360 PartialDiagnostic PD = PDiag(
7361 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
7362 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
7363 Diag(overloadedMD->getLocation(), PD);
7364 }
7365}
7366
7367/// \brief Diagnose methods which overload virtual methods in a base class
7368/// without overriding any.
7369void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
7370 if (MD->isInvalidDecl())
7371 return;
7372
7373 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
7374 return;
7375
7376 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7377 FindHiddenVirtualMethods(MD, OverloadedMethods);
7378 if (!OverloadedMethods.empty()) {
7379 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
7380 << MD << (OverloadedMethods.size() > 1);
7381
7382 NoteHiddenVirtualMethods(MD, OverloadedMethods);
7383 }
7384}
7385
7386void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
7387 Decl *TagDecl,
7388 SourceLocation LBrac,
7389 SourceLocation RBrac,
7390 AttributeList *AttrList) {
7391 if (!TagDecl)
7392 return;
7393
7394 AdjustDeclIfTemplate(TagDecl);
7395
7396 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
7397 if (l->getKind() != AttributeList::AT_Visibility)
7398 continue;
7399 l->setInvalid();
7400 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
7401 l->getName();
7402 }
7403
7404 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
7405 // strict aliasing violation!
7406 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
7407 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
7408
7409 CheckCompletedCXXClass(
7410 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
7411}
7412
7413/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
7414/// special functions, such as the default constructor, copy
7415/// constructor, or destructor, to the given C++ class (C++
7416/// [special]p1). This routine can only be executed just before the
7417/// definition of the class is complete.
7418void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
7419 if (ClassDecl->needsImplicitDefaultConstructor()) {
7420 ++ASTContext::NumImplicitDefaultConstructors;
7421
7422 if (ClassDecl->hasInheritedConstructor())
7423 DeclareImplicitDefaultConstructor(ClassDecl);
7424 }
7425
7426 if (ClassDecl->needsImplicitCopyConstructor()) {
7427 ++ASTContext::NumImplicitCopyConstructors;
7428
7429 // If the properties or semantics of the copy constructor couldn't be
7430 // determined while the class was being declared, force a declaration
7431 // of it now.
7432 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
7433 ClassDecl->hasInheritedConstructor())
7434 DeclareImplicitCopyConstructor(ClassDecl);
7435 // For the MS ABI we need to know whether the copy ctor is deleted. A
7436 // prerequisite for deleting the implicit copy ctor is that the class has a
7437 // move ctor or move assignment that is either user-declared or whose
7438 // semantics are inherited from a subobject. FIXME: We should provide a more
7439 // direct way for CodeGen to ask whether the constructor was deleted.
7440 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
7441 (ClassDecl->hasUserDeclaredMoveConstructor() ||
7442 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7443 ClassDecl->hasUserDeclaredMoveAssignment() ||
7444 ClassDecl->needsOverloadResolutionForMoveAssignment()))
7445 DeclareImplicitCopyConstructor(ClassDecl);
7446 }
7447
7448 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
7449 ++ASTContext::NumImplicitMoveConstructors;
7450
7451 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7452 ClassDecl->hasInheritedConstructor())
7453 DeclareImplicitMoveConstructor(ClassDecl);
7454 }
7455
7456 if (ClassDecl->needsImplicitCopyAssignment()) {
7457 ++ASTContext::NumImplicitCopyAssignmentOperators;
7458
7459 // If we have a dynamic class, then the copy assignment operator may be
7460 // virtual, so we have to declare it immediately. This ensures that, e.g.,
7461 // it shows up in the right place in the vtable and that we diagnose
7462 // problems with the implicit exception specification.
7463 if (ClassDecl->isDynamicClass() ||
7464 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
7465 ClassDecl->hasInheritedAssignment())
7466 DeclareImplicitCopyAssignment(ClassDecl);
7467 }
7468
7469 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
7470 ++ASTContext::NumImplicitMoveAssignmentOperators;
7471
7472 // Likewise for the move assignment operator.
7473 if (ClassDecl->isDynamicClass() ||
7474 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
7475 ClassDecl->hasInheritedAssignment())
7476 DeclareImplicitMoveAssignment(ClassDecl);
7477 }
7478
7479 if (ClassDecl->needsImplicitDestructor()) {
7480 ++ASTContext::NumImplicitDestructors;
7481
7482 // If we have a dynamic class, then the destructor may be virtual, so we
7483 // have to declare the destructor immediately. This ensures that, e.g., it
7484 // shows up in the right place in the vtable and that we diagnose problems
7485 // with the implicit exception specification.
7486 if (ClassDecl->isDynamicClass() ||
7487 ClassDecl->needsOverloadResolutionForDestructor())
7488 DeclareImplicitDestructor(ClassDecl);
7489 }
7490}
7491
7492unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
7493 if (!D)
7494 return 0;
7495
7496 // The order of template parameters is not important here. All names
7497 // get added to the same scope.
7498 SmallVector<TemplateParameterList *, 4> ParameterLists;
7499
7500 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7501 D = TD->getTemplatedDecl();
7502
7503 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
7504 ParameterLists.push_back(PSD->getTemplateParameters());
7505
7506 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
7507 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
7508 ParameterLists.push_back(DD->getTemplateParameterList(i));
7509
7510 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7511 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
7512 ParameterLists.push_back(FTD->getTemplateParameters());
7513 }
7514 }
7515
7516 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
7517 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
7518 ParameterLists.push_back(TD->getTemplateParameterList(i));
7519
7520 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
7521 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
7522 ParameterLists.push_back(CTD->getTemplateParameters());
7523 }
7524 }
7525
7526 unsigned Count = 0;
7527 for (TemplateParameterList *Params : ParameterLists) {
7528 if (Params->size() > 0)
7529 // Ignore explicit specializations; they don't contribute to the template
7530 // depth.
7531 ++Count;
7532 for (NamedDecl *Param : *Params) {
7533 if (Param->getDeclName()) {
7534 S->AddDecl(Param);
7535 IdResolver.AddDecl(Param);
7536 }
7537 }
7538 }
7539
7540 return Count;
7541}
7542
7543void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7544 if (!RecordD) return;
7545 AdjustDeclIfTemplate(RecordD);
7546 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
7547 PushDeclContext(S, Record);
7548}
7549
7550void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7551 if (!RecordD) return;
7552 PopDeclContext();
7553}
7554
7555/// This is used to implement the constant expression evaluation part of the
7556/// attribute enable_if extension. There is nothing in standard C++ which would
7557/// require reentering parameters.
7558void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
7559 if (!Param)
7560 return;
7561
7562 S->AddDecl(Param);
7563 if (Param->getDeclName())
7564 IdResolver.AddDecl(Param);
7565}
7566
7567/// ActOnStartDelayedCXXMethodDeclaration - We have completed
7568/// parsing a top-level (non-nested) C++ class, and we are now
7569/// parsing those parts of the given Method declaration that could
7570/// not be parsed earlier (C++ [class.mem]p2), such as default
7571/// arguments. This action should enter the scope of the given
7572/// Method declaration as if we had just parsed the qualified method
7573/// name. However, it should not bring the parameters into scope;
7574/// that will be performed by ActOnDelayedCXXMethodParameter.
7575void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7576}
7577
7578/// ActOnDelayedCXXMethodParameter - We've already started a delayed
7579/// C++ method declaration. We're (re-)introducing the given
7580/// function parameter into scope for use in parsing later parts of
7581/// the method declaration. For example, we could see an
7582/// ActOnParamDefaultArgument event for this parameter.
7583void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
7584 if (!ParamD)
7585 return;
7586
7587 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
7588
7589 // If this parameter has an unparsed default argument, clear it out
7590 // to make way for the parsed default argument.
7591 if (Param->hasUnparsedDefaultArg())
7592 Param->setDefaultArg(nullptr);
7593
7594 S->AddDecl(Param);
7595 if (Param->getDeclName())
7596 IdResolver.AddDecl(Param);
7597}
7598
7599/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
7600/// processing the delayed method declaration for Method. The method
7601/// declaration is now considered finished. There may be a separate
7602/// ActOnStartOfFunctionDef action later (not necessarily
7603/// immediately!) for this method, if it was also defined inside the
7604/// class body.
7605void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7606 if (!MethodD)
7607 return;
7608
7609 AdjustDeclIfTemplate(MethodD);
7610
7611 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
7612
7613 // Now that we have our default arguments, check the constructor
7614 // again. It could produce additional diagnostics or affect whether
7615 // the class has implicitly-declared destructors, among other
7616 // things.
7617 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
7618 CheckConstructor(Constructor);
7619
7620 // Check the default arguments, which we may have added.
7621 if (!Method->isInvalidDecl())
7622 CheckCXXDefaultArguments(Method);
7623}
7624
7625/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
7626/// the well-formedness of the constructor declarator @p D with type @p
7627/// R. If there are any errors in the declarator, this routine will
7628/// emit diagnostics and set the invalid bit to true. In any case, the type
7629/// will be updated to reflect a well-formed type for the constructor and
7630/// returned.
7631QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
7632 StorageClass &SC) {
7633 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7634
7635 // C++ [class.ctor]p3:
7636 // A constructor shall not be virtual (10.3) or static (9.4). A
7637 // constructor can be invoked for a const, volatile or const
7638 // volatile object. A constructor shall not be declared const,
7639 // volatile, or const volatile (9.3.2).
7640 if (isVirtual) {
7641 if (!D.isInvalidType())
7642 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7643 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
7644 << SourceRange(D.getIdentifierLoc());
7645 D.setInvalidType();
7646 }
7647 if (SC == SC_Static) {
7648 if (!D.isInvalidType())
7649 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7650 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7651 << SourceRange(D.getIdentifierLoc());
7652 D.setInvalidType();
7653 SC = SC_None;
7654 }
7655
7656 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7657 diagnoseIgnoredQualifiers(
7658 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
7659 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
7660 D.getDeclSpec().getRestrictSpecLoc(),
7661 D.getDeclSpec().getAtomicSpecLoc());
7662 D.setInvalidType();
7663 }
7664
7665 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7666 if (FTI.TypeQuals != 0) {
7667 if (FTI.TypeQuals & Qualifiers::Const)
7668 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7669 << "const" << SourceRange(D.getIdentifierLoc());
7670 if (FTI.TypeQuals & Qualifiers::Volatile)
7671 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7672 << "volatile" << SourceRange(D.getIdentifierLoc());
7673 if (FTI.TypeQuals & Qualifiers::Restrict)
7674 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7675 << "restrict" << SourceRange(D.getIdentifierLoc());
7676 D.setInvalidType();
7677 }
7678
7679 // C++0x [class.ctor]p4:
7680 // A constructor shall not be declared with a ref-qualifier.
7681 if (FTI.hasRefQualifier()) {
7682 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
7683 << FTI.RefQualifierIsLValueRef
7684 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7685 D.setInvalidType();
7686 }
7687
7688 // Rebuild the function type "R" without any type qualifiers (in
7689 // case any of the errors above fired) and with "void" as the
7690 // return type, since constructors don't have return types.
7691 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7692 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
7693 return R;
7694
7695 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7696 EPI.TypeQuals = 0;
7697 EPI.RefQualifier = RQ_None;
7698
7699 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
7700}
7701
7702/// CheckConstructor - Checks a fully-formed constructor for
7703/// well-formedness, issuing any diagnostics required. Returns true if
7704/// the constructor declarator is invalid.
7705void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
7706 CXXRecordDecl *ClassDecl
7707 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
7708 if (!ClassDecl)
7709 return Constructor->setInvalidDecl();
7710
7711 // C++ [class.copy]p3:
7712 // A declaration of a constructor for a class X is ill-formed if
7713 // its first parameter is of type (optionally cv-qualified) X and
7714 // either there are no other parameters or else all other
7715 // parameters have default arguments.
7716 if (!Constructor->isInvalidDecl() &&
7717 ((Constructor->getNumParams() == 1) ||
7718 (Constructor->getNumParams() > 1 &&
7719 Constructor->getParamDecl(1)->hasDefaultArg())) &&
7720 Constructor->getTemplateSpecializationKind()
7721 != TSK_ImplicitInstantiation) {
7722 QualType ParamType = Constructor->getParamDecl(0)->getType();
7723 QualType ClassTy = Context.getTagDeclType(ClassDecl);
7724 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
7725 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
7726 const char *ConstRef
7727 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
7728 : " const &";
7729 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
7730 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
7731
7732 // FIXME: Rather that making the constructor invalid, we should endeavor
7733 // to fix the type.
7734 Constructor->setInvalidDecl();
7735 }
7736 }
7737}
7738
7739/// CheckDestructor - Checks a fully-formed destructor definition for
7740/// well-formedness, issuing any diagnostics required. Returns true
7741/// on error.
7742bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
7743 CXXRecordDecl *RD = Destructor->getParent();
7744
7745 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
7746 SourceLocation Loc;
7747
7748 if (!Destructor->isImplicit())
7749 Loc = Destructor->getLocation();
7750 else
7751 Loc = RD->getLocation();
7752
7753 // If we have a virtual destructor, look up the deallocation function
7754 if (FunctionDecl *OperatorDelete =
7755 FindDeallocationFunctionForDestructor(Loc, RD)) {
7756 MarkFunctionReferenced(Loc, OperatorDelete);
7757 Destructor->setOperatorDelete(OperatorDelete);
7758 }
7759 }
7760
7761 return false;
7762}
7763
7764/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
7765/// the well-formednes of the destructor declarator @p D with type @p
7766/// R. If there are any errors in the declarator, this routine will
7767/// emit diagnostics and set the declarator to invalid. Even if this happens,
7768/// will be updated to reflect a well-formed type for the destructor and
7769/// returned.
7770QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
7771 StorageClass& SC) {
7772 // C++ [class.dtor]p1:
7773 // [...] A typedef-name that names a class is a class-name
7774 // (7.1.3); however, a typedef-name that names a class shall not
7775 // be used as the identifier in the declarator for a destructor
7776 // declaration.
7777 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
7778 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
7779 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7780 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
7781 else if (const TemplateSpecializationType *TST =
7782 DeclaratorType->getAs<TemplateSpecializationType>())
7783 if (TST->isTypeAlias())
7784 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7785 << DeclaratorType << 1;
7786
7787 // C++ [class.dtor]p2:
7788 // A destructor is used to destroy objects of its class type. A
7789 // destructor takes no parameters, and no return type can be
7790 // specified for it (not even void). The address of a destructor
7791 // shall not be taken. A destructor shall not be static. A
7792 // destructor can be invoked for a const, volatile or const
7793 // volatile object. A destructor shall not be declared const,
7794 // volatile or const volatile (9.3.2).
7795 if (SC == SC_Static) {
7796 if (!D.isInvalidType())
7797 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
7798 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7799 << SourceRange(D.getIdentifierLoc())
7800 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7801
7802 SC = SC_None;
7803 }
7804 if (!D.isInvalidType()) {
7805 // Destructors don't have return types, but the parser will
7806 // happily parse something like:
7807 //
7808 // class X {
7809 // float ~X();
7810 // };
7811 //
7812 // The return type will be eliminated later.
7813 if (D.getDeclSpec().hasTypeSpecifier())
7814 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
7815 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7816 << SourceRange(D.getIdentifierLoc());
7817 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7818 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
7819 SourceLocation(),
7820 D.getDeclSpec().getConstSpecLoc(),
7821 D.getDeclSpec().getVolatileSpecLoc(),
7822 D.getDeclSpec().getRestrictSpecLoc(),
7823 D.getDeclSpec().getAtomicSpecLoc());
7824 D.setInvalidType();
7825 }
7826 }
7827
7828 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7829 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
7830 if (FTI.TypeQuals & Qualifiers::Const)
7831 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7832 << "const" << SourceRange(D.getIdentifierLoc());
7833 if (FTI.TypeQuals & Qualifiers::Volatile)
7834 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7835 << "volatile" << SourceRange(D.getIdentifierLoc());
7836 if (FTI.TypeQuals & Qualifiers::Restrict)
7837 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7838 << "restrict" << SourceRange(D.getIdentifierLoc());
7839 D.setInvalidType();
7840 }
7841
7842 // C++0x [class.dtor]p2:
7843 // A destructor shall not be declared with a ref-qualifier.
7844 if (FTI.hasRefQualifier()) {
7845 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
7846 << FTI.RefQualifierIsLValueRef
7847 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7848 D.setInvalidType();
7849 }
7850
7851 // Make sure we don't have any parameters.
7852 if (FTIHasNonVoidParameters(FTI)) {
7853 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
7854
7855 // Delete the parameters.
7856 FTI.freeParams();
7857 D.setInvalidType();
7858 }
7859
7860 // Make sure the destructor isn't variadic.
7861 if (FTI.isVariadic) {
7862 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
7863 D.setInvalidType();
7864 }
7865
7866 // Rebuild the function type "R" without any type qualifiers or
7867 // parameters (in case any of the errors above fired) and with
7868 // "void" as the return type, since destructors don't have return
7869 // types.
7870 if (!D.isInvalidType())
7871 return R;
7872
7873 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7874 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7875 EPI.Variadic = false;
7876 EPI.TypeQuals = 0;
7877 EPI.RefQualifier = RQ_None;
7878 return Context.getFunctionType(Context.VoidTy, None, EPI);
7879}
7880
7881static void extendLeft(SourceRange &R, SourceRange Before) {
7882 if (Before.isInvalid())
7883 return;
7884 R.setBegin(Before.getBegin());
7885 if (R.getEnd().isInvalid())
7886 R.setEnd(Before.getEnd());
7887}
7888
7889static void extendRight(SourceRange &R, SourceRange After) {
7890 if (After.isInvalid())
7891 return;
7892 if (R.getBegin().isInvalid())
7893 R.setBegin(After.getBegin());
7894 R.setEnd(After.getEnd());
7895}
7896
7897/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
7898/// well-formednes of the conversion function declarator @p D with
7899/// type @p R. If there are any errors in the declarator, this routine
7900/// will emit diagnostics and return true. Otherwise, it will return
7901/// false. Either way, the type @p R will be updated to reflect a
7902/// well-formed type for the conversion operator.
7903void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
7904 StorageClass& SC) {
7905 // C++ [class.conv.fct]p1:
7906 // Neither parameter types nor return type can be specified. The
7907 // type of a conversion function (8.3.5) is "function taking no
7908 // parameter returning conversion-type-id."
7909 if (SC == SC_Static) {
7910 if (!D.isInvalidType())
7911 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
7912 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7913 << D.getName().getSourceRange();
7914 D.setInvalidType();
7915 SC = SC_None;
7916 }
7917
7918 TypeSourceInfo *ConvTSI = nullptr;
7919 QualType ConvType =
7920 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
7921
7922 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
7923 // Conversion functions don't have return types, but the parser will
7924 // happily parse something like:
7925 //
7926 // class X {
7927 // float operator bool();
7928 // };
7929 //
7930 // The return type will be changed later anyway.
7931 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
7932 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7933 << SourceRange(D.getIdentifierLoc());
7934 D.setInvalidType();
7935 }
7936
7937 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7938
7939 // Make sure we don't have any parameters.
7940 if (Proto->getNumParams() > 0) {
7941 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
7942
7943 // Delete the parameters.
7944 D.getFunctionTypeInfo().freeParams();
7945 D.setInvalidType();
7946 } else if (Proto->isVariadic()) {
7947 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
7948 D.setInvalidType();
7949 }
7950
7951 // Diagnose "&operator bool()" and other such nonsense. This
7952 // is actually a gcc extension which we don't support.
7953 if (Proto->getReturnType() != ConvType) {
7954 bool NeedsTypedef = false;
7955 SourceRange Before, After;
7956
7957 // Walk the chunks and extract information on them for our diagnostic.
7958 bool PastFunctionChunk = false;
7959 for (auto &Chunk : D.type_objects()) {
7960 switch (Chunk.Kind) {
7961 case DeclaratorChunk::Function:
7962 if (!PastFunctionChunk) {
7963 if (Chunk.Fun.HasTrailingReturnType) {
7964 TypeSourceInfo *TRT = nullptr;
7965 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
7966 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
7967 }
7968 PastFunctionChunk = true;
7969 break;
7970 }
7971 // Fall through.
7972 case DeclaratorChunk::Array:
7973 NeedsTypedef = true;
7974 extendRight(After, Chunk.getSourceRange());
7975 break;
7976
7977 case DeclaratorChunk::Pointer:
7978 case DeclaratorChunk::BlockPointer:
7979 case DeclaratorChunk::Reference:
7980 case DeclaratorChunk::MemberPointer:
7981 case DeclaratorChunk::Pipe:
7982 extendLeft(Before, Chunk.getSourceRange());
7983 break;
7984
7985 case DeclaratorChunk::Paren:
7986 extendLeft(Before, Chunk.Loc);
7987 extendRight(After, Chunk.EndLoc);
7988 break;
7989 }
7990 }
7991
7992 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
7993 After.isValid() ? After.getBegin() :
7994 D.getIdentifierLoc();
7995 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
7996 DB << Before << After;
7997
7998 if (!NeedsTypedef) {
7999 DB << /*don't need a typedef*/0;
8000
8001 // If we can provide a correct fix-it hint, do so.
8002 if (After.isInvalid() && ConvTSI) {
8003 SourceLocation InsertLoc =
8004 getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
8005 DB << FixItHint::CreateInsertion(InsertLoc, " ")
8006 << FixItHint::CreateInsertionFromRange(
8007 InsertLoc, CharSourceRange::getTokenRange(Before))
8008 << FixItHint::CreateRemoval(Before);
8009 }
8010 } else if (!Proto->getReturnType()->isDependentType()) {
8011 DB << /*typedef*/1 << Proto->getReturnType();
8012 } else if (getLangOpts().CPlusPlus11) {
8013 DB << /*alias template*/2 << Proto->getReturnType();
8014 } else {
8015 DB << /*might not be fixable*/3;
8016 }
8017
8018 // Recover by incorporating the other type chunks into the result type.
8019 // Note, this does *not* change the name of the function. This is compatible
8020 // with the GCC extension:
8021 // struct S { &operator int(); } s;
8022 // int &r = s.operator int(); // ok in GCC
8023 // S::operator int&() {} // error in GCC, function name is 'operator int'.
8024 ConvType = Proto->getReturnType();
8025 }
8026
8027 // C++ [class.conv.fct]p4:
8028 // The conversion-type-id shall not represent a function type nor
8029 // an array type.
8030 if (ConvType->isArrayType()) {
8031 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
8032 ConvType = Context.getPointerType(ConvType);
8033 D.setInvalidType();
8034 } else if (ConvType->isFunctionType()) {
8035 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
8036 ConvType = Context.getPointerType(ConvType);
8037 D.setInvalidType();
8038 }
8039
8040 // Rebuild the function type "R" without any parameters (in case any
8041 // of the errors above fired) and with the conversion type as the
8042 // return type.
8043 if (D.isInvalidType())
8044 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
8045
8046 // C++0x explicit conversion operators.
8047 if (D.getDeclSpec().isExplicitSpecified())
8048 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8049 getLangOpts().CPlusPlus11 ?
8050 diag::warn_cxx98_compat_explicit_conversion_functions :
8051 diag::ext_explicit_conversion_functions)
8052 << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
8053}
8054
8055/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
8056/// the declaration of the given C++ conversion function. This routine