Bug Summary

File:tools/clang/lib/Sema/SemaDeclObjC.cpp
Warning:line 4481, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclObjC.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn325874/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn325874/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn325874/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-02-23-163436-368-1 -x c++ /build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp

/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp

1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ExprObjC.h"
21#include "clang/AST/RecursiveASTVisitor.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/Scope.h"
26#include "clang/Sema/ScopeInfo.h"
27#include "clang/Sema/SemaInternal.h"
28#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/DenseSet.h"
30
31using namespace clang;
32
33/// Check whether the given method, which must be in the 'init'
34/// family, is a valid member of that family.
35///
36/// \param receiverTypeIfCall - if null, check this as if declaring it;
37/// if non-null, check this as if making a call to it with the given
38/// receiver type
39///
40/// \return true to indicate that there was an error and appropriate
41/// actions were taken
42bool Sema::checkInitMethod(ObjCMethodDecl *method,
43 QualType receiverTypeIfCall) {
44 if (method->isInvalidDecl()) return true;
45
46 // This castAs is safe: methods that don't return an object
47 // pointer won't be inferred as inits and will reject an explicit
48 // objc_method_family(init).
49
50 // We ignore protocols here. Should we? What about Class?
51
52 const ObjCObjectType *result =
53 method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55 if (result->isObjCId()) {
56 return false;
57 } else if (result->isObjCClass()) {
58 // fall through: always an error
59 } else {
60 ObjCInterfaceDecl *resultClass = result->getInterface();
61 assert(resultClass && "unexpected object type!")(static_cast <bool> (resultClass && "unexpected object type!"
) ? void (0) : __assert_fail ("resultClass && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 61, __extension__ __PRETTY_FUNCTION__))
;
62
63 // It's okay for the result type to still be a forward declaration
64 // if we're checking an interface declaration.
65 if (!resultClass->hasDefinition()) {
66 if (receiverTypeIfCall.isNull() &&
67 !isa<ObjCImplementationDecl>(method->getDeclContext()))
68 return false;
69
70 // Otherwise, we try to compare class types.
71 } else {
72 // If this method was declared in a protocol, we can't check
73 // anything unless we have a receiver type that's an interface.
74 const ObjCInterfaceDecl *receiverClass = nullptr;
75 if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76 if (receiverTypeIfCall.isNull())
77 return false;
78
79 receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80 ->getInterfaceDecl();
81
82 // This can be null for calls to e.g. id<Foo>.
83 if (!receiverClass) return false;
84 } else {
85 receiverClass = method->getClassInterface();
86 assert(receiverClass && "method not associated with a class!")(static_cast <bool> (receiverClass && "method not associated with a class!"
) ? void (0) : __assert_fail ("receiverClass && \"method not associated with a class!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 86, __extension__ __PRETTY_FUNCTION__))
;
87 }
88
89 // If either class is a subclass of the other, it's fine.
90 if (receiverClass->isSuperClassOf(resultClass) ||
91 resultClass->isSuperClassOf(receiverClass))
92 return false;
93 }
94 }
95
96 SourceLocation loc = method->getLocation();
97
98 // If we're in a system header, and this is not a call, just make
99 // the method unusable.
100 if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101 method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102 UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103 return true;
104 }
105
106 // Otherwise, it's an error.
107 Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108 method->setInvalidDecl();
109 return true;
110}
111
112void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
113 const ObjCMethodDecl *Overridden) {
114 if (Overridden->hasRelatedResultType() &&
115 !NewMethod->hasRelatedResultType()) {
116 // This can only happen when the method follows a naming convention that
117 // implies a related result type, and the original (overridden) method has
118 // a suitable return type, but the new (overriding) method does not have
119 // a suitable return type.
120 QualType ResultType = NewMethod->getReturnType();
121 SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
122
123 // Figure out which class this method is part of, if any.
124 ObjCInterfaceDecl *CurrentClass
125 = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
126 if (!CurrentClass) {
127 DeclContext *DC = NewMethod->getDeclContext();
128 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
129 CurrentClass = Cat->getClassInterface();
130 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
131 CurrentClass = Impl->getClassInterface();
132 else if (ObjCCategoryImplDecl *CatImpl
133 = dyn_cast<ObjCCategoryImplDecl>(DC))
134 CurrentClass = CatImpl->getClassInterface();
135 }
136
137 if (CurrentClass) {
138 Diag(NewMethod->getLocation(),
139 diag::warn_related_result_type_compatibility_class)
140 << Context.getObjCInterfaceType(CurrentClass)
141 << ResultType
142 << ResultTypeRange;
143 } else {
144 Diag(NewMethod->getLocation(),
145 diag::warn_related_result_type_compatibility_protocol)
146 << ResultType
147 << ResultTypeRange;
148 }
149
150 if (ObjCMethodFamily Family = Overridden->getMethodFamily())
151 Diag(Overridden->getLocation(),
152 diag::note_related_result_type_family)
153 << /*overridden method*/ 0
154 << Family;
155 else
156 Diag(Overridden->getLocation(),
157 diag::note_related_result_type_overridden);
158 }
159
160 if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
161 Overridden->hasAttr<NSReturnsRetainedAttr>())) {
162 Diag(NewMethod->getLocation(),
163 getLangOpts().ObjCAutoRefCount
164 ? diag::err_nsreturns_retained_attribute_mismatch
165 : diag::warn_nsreturns_retained_attribute_mismatch)
166 << 1;
167 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
168 }
169 if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
170 Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
171 Diag(NewMethod->getLocation(),
172 getLangOpts().ObjCAutoRefCount
173 ? diag::err_nsreturns_retained_attribute_mismatch
174 : diag::warn_nsreturns_retained_attribute_mismatch)
175 << 0;
176 Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
177 }
178
179 ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
180 oe = Overridden->param_end();
181 for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
182 ne = NewMethod->param_end();
183 ni != ne && oi != oe; ++ni, ++oi) {
184 const ParmVarDecl *oldDecl = (*oi);
185 ParmVarDecl *newDecl = (*ni);
186 if (newDecl->hasAttr<NSConsumedAttr>() !=
187 oldDecl->hasAttr<NSConsumedAttr>()) {
188 Diag(newDecl->getLocation(),
189 getLangOpts().ObjCAutoRefCount
190 ? diag::err_nsconsumed_attribute_mismatch
191 : diag::warn_nsconsumed_attribute_mismatch);
192 Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
193 }
194
195 // A parameter of the overriding method should be annotated with noescape
196 // if the corresponding parameter of the overridden method is annotated.
197 if (oldDecl->hasAttr<NoEscapeAttr>() && !newDecl->hasAttr<NoEscapeAttr>()) {
198 Diag(newDecl->getLocation(),
199 diag::warn_overriding_method_missing_noescape);
200 Diag(oldDecl->getLocation(), diag::note_overridden_marked_noescape);
201 }
202 }
203}
204
205/// \brief Check a method declaration for compatibility with the Objective-C
206/// ARC conventions.
207bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
208 ObjCMethodFamily family = method->getMethodFamily();
209 switch (family) {
21
Control jumps to 'case OMF_new:' at line 252
210 case OMF_None:
211 case OMF_finalize:
212 case OMF_retain:
213 case OMF_release:
214 case OMF_autorelease:
215 case OMF_retainCount:
216 case OMF_self:
217 case OMF_initialize:
218 case OMF_performSelector:
219 return false;
220
221 case OMF_dealloc:
222 if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
223 SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
224 if (ResultTypeRange.isInvalid())
225 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
226 << method->getReturnType()
227 << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
228 else
229 Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
230 << method->getReturnType()
231 << FixItHint::CreateReplacement(ResultTypeRange, "void");
232 return true;
233 }
234 return false;
235
236 case OMF_init:
237 // If the method doesn't obey the init rules, don't bother annotating it.
238 if (checkInitMethod(method, QualType()))
239 return true;
240
241 method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
242
243 // Don't add a second copy of this attribute, but otherwise don't
244 // let it be suppressed.
245 if (method->hasAttr<NSReturnsRetainedAttr>())
246 return false;
247 break;
248
249 case OMF_alloc:
250 case OMF_copy:
251 case OMF_mutableCopy:
252 case OMF_new:
253 if (method->hasAttr<NSReturnsRetainedAttr>() ||
22
Taking false branch
254 method->hasAttr<NSReturnsNotRetainedAttr>() ||
255 method->hasAttr<NSReturnsAutoreleasedAttr>())
256 return false;
257 break;
23
Execution continues on line 260
258 }
259
260 method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
24
Calling 'NSReturnsRetainedAttr::CreateImplicit'
261 return false;
262}
263
264static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
265 SourceLocation ImplLoc) {
266 if (!ND)
267 return;
268 bool IsCategory = false;
269 AvailabilityResult Availability = ND->getAvailability();
270 if (Availability != AR_Deprecated) {
271 if (isa<ObjCMethodDecl>(ND)) {
272 if (Availability != AR_Unavailable)
273 return;
274 // Warn about implementing unavailable methods.
275 S.Diag(ImplLoc, diag::warn_unavailable_def);
276 S.Diag(ND->getLocation(), diag::note_method_declared_at)
277 << ND->getDeclName();
278 return;
279 }
280 if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
281 if (!CD->getClassInterface()->isDeprecated())
282 return;
283 ND = CD->getClassInterface();
284 IsCategory = true;
285 } else
286 return;
287 }
288 S.Diag(ImplLoc, diag::warn_deprecated_def)
289 << (isa<ObjCMethodDecl>(ND)
290 ? /*Method*/ 0
291 : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
292 : /*Class*/ 1);
293 if (isa<ObjCMethodDecl>(ND))
294 S.Diag(ND->getLocation(), diag::note_method_declared_at)
295 << ND->getDeclName();
296 else
297 S.Diag(ND->getLocation(), diag::note_previous_decl)
298 << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
299}
300
301/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
302/// pool.
303void Sema::AddAnyMethodToGlobalPool(Decl *D) {
304 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
305
306 // If we don't have a valid method decl, simply return.
307 if (!MDecl)
308 return;
309 if (MDecl->isInstanceMethod())
310 AddInstanceMethodToGlobalPool(MDecl, true);
311 else
312 AddFactoryMethodToGlobalPool(MDecl, true);
313}
314
315/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
316/// has explicit ownership attribute; false otherwise.
317static bool
318HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
319 QualType T = Param->getType();
320
321 if (const PointerType *PT = T->getAs<PointerType>()) {
322 T = PT->getPointeeType();
323 } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
324 T = RT->getPointeeType();
325 } else {
326 return true;
327 }
328
329 // If we have a lifetime qualifier, but it's local, we must have
330 // inferred it. So, it is implicit.
331 return !T.getLocalQualifiers().hasObjCLifetime();
332}
333
334/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
335/// and user declared, in the method definition's AST.
336void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
337 assert((getCurMethodDecl() == nullptr) && "Methodparsing confused")(static_cast <bool> ((getCurMethodDecl() == nullptr) &&
"Methodparsing confused") ? void (0) : __assert_fail ("(getCurMethodDecl() == nullptr) && \"Methodparsing confused\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 337, __extension__ __PRETTY_FUNCTION__))
;
338 ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
339
340 // If we don't have a valid method decl, simply return.
341 if (!MDecl)
342 return;
343
344 // Allow all of Sema to see that we are entering a method definition.
345 PushDeclContext(FnBodyScope, MDecl);
346 PushFunctionScope();
347
348 // Create Decl objects for each parameter, entrring them in the scope for
349 // binding to their use.
350
351 // Insert the invisible arguments, self and _cmd!
352 MDecl->createImplicitParams(Context, MDecl->getClassInterface());
353
354 PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
355 PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
356
357 // The ObjC parser requires parameter names so there's no need to check.
358 CheckParmsForFunctionDef(MDecl->parameters(),
359 /*CheckParameterNames=*/false);
360
361 // Introduce all of the other parameters into this scope.
362 for (auto *Param : MDecl->parameters()) {
363 if (!Param->isInvalidDecl() &&
364 getLangOpts().ObjCAutoRefCount &&
365 !HasExplicitOwnershipAttr(*this, Param))
366 Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
367 Param->getType();
368
369 if (Param->getIdentifier())
370 PushOnScopeChains(Param, FnBodyScope);
371 }
372
373 // In ARC, disallow definition of retain/release/autorelease/retainCount
374 if (getLangOpts().ObjCAutoRefCount) {
375 switch (MDecl->getMethodFamily()) {
376 case OMF_retain:
377 case OMF_retainCount:
378 case OMF_release:
379 case OMF_autorelease:
380 Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
381 << 0 << MDecl->getSelector();
382 break;
383
384 case OMF_None:
385 case OMF_dealloc:
386 case OMF_finalize:
387 case OMF_alloc:
388 case OMF_init:
389 case OMF_mutableCopy:
390 case OMF_copy:
391 case OMF_new:
392 case OMF_self:
393 case OMF_initialize:
394 case OMF_performSelector:
395 break;
396 }
397 }
398
399 // Warn on deprecated methods under -Wdeprecated-implementations,
400 // and prepare for warning on missing super calls.
401 if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
402 ObjCMethodDecl *IMD =
403 IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
404
405 if (IMD) {
406 ObjCImplDecl *ImplDeclOfMethodDef =
407 dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
408 ObjCContainerDecl *ContDeclOfMethodDecl =
409 dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
410 ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
411 if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
412 ImplDeclOfMethodDecl = OID->getImplementation();
413 else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
414 if (CD->IsClassExtension()) {
415 if (ObjCInterfaceDecl *OID = CD->getClassInterface())
416 ImplDeclOfMethodDecl = OID->getImplementation();
417 } else
418 ImplDeclOfMethodDecl = CD->getImplementation();
419 }
420 // No need to issue deprecated warning if deprecated mehod in class/category
421 // is being implemented in its own implementation (no overriding is involved).
422 if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
423 DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
424 }
425
426 if (MDecl->getMethodFamily() == OMF_init) {
427 if (MDecl->isDesignatedInitializerForTheInterface()) {
428 getCurFunction()->ObjCIsDesignatedInit = true;
429 getCurFunction()->ObjCWarnForNoDesignatedInitChain =
430 IC->getSuperClass() != nullptr;
431 } else if (IC->hasDesignatedInitializers()) {
432 getCurFunction()->ObjCIsSecondaryInit = true;
433 getCurFunction()->ObjCWarnForNoInitDelegation = true;
434 }
435 }
436
437 // If this is "dealloc" or "finalize", set some bit here.
438 // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
439 // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
440 // Only do this if the current class actually has a superclass.
441 if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
442 ObjCMethodFamily Family = MDecl->getMethodFamily();
443 if (Family == OMF_dealloc) {
444 if (!(getLangOpts().ObjCAutoRefCount ||
445 getLangOpts().getGC() == LangOptions::GCOnly))
446 getCurFunction()->ObjCShouldCallSuper = true;
447
448 } else if (Family == OMF_finalize) {
449 if (Context.getLangOpts().getGC() != LangOptions::NonGC)
450 getCurFunction()->ObjCShouldCallSuper = true;
451
452 } else {
453 const ObjCMethodDecl *SuperMethod =
454 SuperClass->lookupMethod(MDecl->getSelector(),
455 MDecl->isInstanceMethod());
456 getCurFunction()->ObjCShouldCallSuper =
457 (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
458 }
459 }
460 }
461}
462
463namespace {
464
465// Callback to only accept typo corrections that are Objective-C classes.
466// If an ObjCInterfaceDecl* is given to the constructor, then the validation
467// function will reject corrections to that class.
468class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
469 public:
470 ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
471 explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
472 : CurrentIDecl(IDecl) {}
473
474 bool ValidateCandidate(const TypoCorrection &candidate) override {
475 ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
476 return ID && !declaresSameEntity(ID, CurrentIDecl);
477 }
478
479 private:
480 ObjCInterfaceDecl *CurrentIDecl;
481};
482
483} // end anonymous namespace
484
485static void diagnoseUseOfProtocols(Sema &TheSema,
486 ObjCContainerDecl *CD,
487 ObjCProtocolDecl *const *ProtoRefs,
488 unsigned NumProtoRefs,
489 const SourceLocation *ProtoLocs) {
490 assert(ProtoRefs)(static_cast <bool> (ProtoRefs) ? void (0) : __assert_fail
("ProtoRefs", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 // Diagnose availability in the context of the ObjC container.
492 Sema::ContextRAII SavedContext(TheSema, CD);
493 for (unsigned i = 0; i < NumProtoRefs; ++i) {
494 (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
495 /*UnknownObjCClass=*/nullptr,
496 /*ObjCPropertyAccess=*/false,
497 /*AvoidPartialAvailabilityChecks=*/true);
498 }
499}
500
501void Sema::
502ActOnSuperClassOfClassInterface(Scope *S,
503 SourceLocation AtInterfaceLoc,
504 ObjCInterfaceDecl *IDecl,
505 IdentifierInfo *ClassName,
506 SourceLocation ClassLoc,
507 IdentifierInfo *SuperName,
508 SourceLocation SuperLoc,
509 ArrayRef<ParsedType> SuperTypeArgs,
510 SourceRange SuperTypeArgsRange) {
511 // Check if a different kind of symbol declared in this scope.
512 NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
513 LookupOrdinaryName);
514
515 if (!PrevDecl) {
516 // Try to correct for a typo in the superclass name without correcting
517 // to the class we're defining.
518 if (TypoCorrection Corrected = CorrectTypo(
519 DeclarationNameInfo(SuperName, SuperLoc),
520 LookupOrdinaryName, TUScope,
521 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(IDecl),
522 CTK_ErrorRecovery)) {
523 diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
524 << SuperName << ClassName);
525 PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
526 }
527 }
528
529 if (declaresSameEntity(PrevDecl, IDecl)) {
530 Diag(SuperLoc, diag::err_recursive_superclass)
531 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
532 IDecl->setEndOfDefinitionLoc(ClassLoc);
533 } else {
534 ObjCInterfaceDecl *SuperClassDecl =
535 dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
536 QualType SuperClassType;
537
538 // Diagnose classes that inherit from deprecated classes.
539 if (SuperClassDecl) {
540 (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
541 SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
542 }
543
544 if (PrevDecl && !SuperClassDecl) {
545 // The previous declaration was not a class decl. Check if we have a
546 // typedef. If we do, get the underlying class type.
547 if (const TypedefNameDecl *TDecl =
548 dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
549 QualType T = TDecl->getUnderlyingType();
550 if (T->isObjCObjectType()) {
551 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
552 SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
553 SuperClassType = Context.getTypeDeclType(TDecl);
554
555 // This handles the following case:
556 // @interface NewI @end
557 // typedef NewI DeprI __attribute__((deprecated("blah")))
558 // @interface SI : DeprI /* warn here */ @end
559 (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
560 }
561 }
562 }
563
564 // This handles the following case:
565 //
566 // typedef int SuperClass;
567 // @interface MyClass : SuperClass {} @end
568 //
569 if (!SuperClassDecl) {
570 Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
571 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
572 }
573 }
574
575 if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
576 if (!SuperClassDecl)
577 Diag(SuperLoc, diag::err_undef_superclass)
578 << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
579 else if (RequireCompleteType(SuperLoc,
580 SuperClassType,
581 diag::err_forward_superclass,
582 SuperClassDecl->getDeclName(),
583 ClassName,
584 SourceRange(AtInterfaceLoc, ClassLoc))) {
585 SuperClassDecl = nullptr;
586 SuperClassType = QualType();
587 }
588 }
589
590 if (SuperClassType.isNull()) {
591 assert(!SuperClassDecl && "Failed to set SuperClassType?")(static_cast <bool> (!SuperClassDecl && "Failed to set SuperClassType?"
) ? void (0) : __assert_fail ("!SuperClassDecl && \"Failed to set SuperClassType?\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 591, __extension__ __PRETTY_FUNCTION__))
;
592 return;
593 }
594
595 // Handle type arguments on the superclass.
596 TypeSourceInfo *SuperClassTInfo = nullptr;
597 if (!SuperTypeArgs.empty()) {
598 TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
599 S,
600 SuperLoc,
601 CreateParsedType(SuperClassType,
602 nullptr),
603 SuperTypeArgsRange.getBegin(),
604 SuperTypeArgs,
605 SuperTypeArgsRange.getEnd(),
606 SourceLocation(),
607 { },
608 { },
609 SourceLocation());
610 if (!fullSuperClassType.isUsable())
611 return;
612
613 SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
614 &SuperClassTInfo);
615 }
616
617 if (!SuperClassTInfo) {
618 SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
619 SuperLoc);
620 }
621
622 IDecl->setSuperClass(SuperClassTInfo);
623 IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getLocEnd());
624 }
625}
626
627DeclResult Sema::actOnObjCTypeParam(Scope *S,
628 ObjCTypeParamVariance variance,
629 SourceLocation varianceLoc,
630 unsigned index,
631 IdentifierInfo *paramName,
632 SourceLocation paramLoc,
633 SourceLocation colonLoc,
634 ParsedType parsedTypeBound) {
635 // If there was an explicitly-provided type bound, check it.
636 TypeSourceInfo *typeBoundInfo = nullptr;
637 if (parsedTypeBound) {
638 // The type bound can be any Objective-C pointer type.
639 QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
640 if (typeBound->isObjCObjectPointerType()) {
641 // okay
642 } else if (typeBound->isObjCObjectType()) {
643 // The user forgot the * on an Objective-C pointer type, e.g.,
644 // "T : NSView".
645 SourceLocation starLoc = getLocForEndOfToken(
646 typeBoundInfo->getTypeLoc().getEndLoc());
647 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
648 diag::err_objc_type_param_bound_missing_pointer)
649 << typeBound << paramName
650 << FixItHint::CreateInsertion(starLoc, " *");
651
652 // Create a new type location builder so we can update the type
653 // location information we have.
654 TypeLocBuilder builder;
655 builder.pushFullCopy(typeBoundInfo->getTypeLoc());
656
657 // Create the Objective-C pointer type.
658 typeBound = Context.getObjCObjectPointerType(typeBound);
659 ObjCObjectPointerTypeLoc newT
660 = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
661 newT.setStarLoc(starLoc);
662
663 // Form the new type source information.
664 typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
665 } else {
666 // Not a valid type bound.
667 Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
668 diag::err_objc_type_param_bound_nonobject)
669 << typeBound << paramName;
670
671 // Forget the bound; we'll default to id later.
672 typeBoundInfo = nullptr;
673 }
674
675 // Type bounds cannot have qualifiers (even indirectly) or explicit
676 // nullability.
677 if (typeBoundInfo) {
678 QualType typeBound = typeBoundInfo->getType();
679 TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
680 if (qual || typeBound.hasQualifiers()) {
681 bool diagnosed = false;
682 SourceRange rangeToRemove;
683 if (qual) {
684 if (auto attr = qual.getAs<AttributedTypeLoc>()) {
685 rangeToRemove = attr.getLocalSourceRange();
686 if (attr.getTypePtr()->getImmediateNullability()) {
687 Diag(attr.getLocStart(),
688 diag::err_objc_type_param_bound_explicit_nullability)
689 << paramName << typeBound
690 << FixItHint::CreateRemoval(rangeToRemove);
691 diagnosed = true;
692 }
693 }
694 }
695
696 if (!diagnosed) {
697 Diag(qual ? qual.getLocStart()
698 : typeBoundInfo->getTypeLoc().getLocStart(),
699 diag::err_objc_type_param_bound_qualified)
700 << paramName << typeBound << typeBound.getQualifiers().getAsString()
701 << FixItHint::CreateRemoval(rangeToRemove);
702 }
703
704 // If the type bound has qualifiers other than CVR, we need to strip
705 // them or we'll probably assert later when trying to apply new
706 // qualifiers.
707 Qualifiers quals = typeBound.getQualifiers();
708 quals.removeCVRQualifiers();
709 if (!quals.empty()) {
710 typeBoundInfo =
711 Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
712 }
713 }
714 }
715 }
716
717 // If there was no explicit type bound (or we removed it due to an error),
718 // use 'id' instead.
719 if (!typeBoundInfo) {
720 colonLoc = SourceLocation();
721 typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
722 }
723
724 // Create the type parameter.
725 return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
726 index, paramLoc, paramName, colonLoc,
727 typeBoundInfo);
728}
729
730ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
731 SourceLocation lAngleLoc,
732 ArrayRef<Decl *> typeParamsIn,
733 SourceLocation rAngleLoc) {
734 // We know that the array only contains Objective-C type parameters.
735 ArrayRef<ObjCTypeParamDecl *>
736 typeParams(
737 reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
738 typeParamsIn.size());
739
740 // Diagnose redeclarations of type parameters.
741 // We do this now because Objective-C type parameters aren't pushed into
742 // scope until later (after the instance variable block), but we want the
743 // diagnostics to occur right after we parse the type parameter list.
744 llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
745 for (auto typeParam : typeParams) {
746 auto known = knownParams.find(typeParam->getIdentifier());
747 if (known != knownParams.end()) {
748 Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
749 << typeParam->getIdentifier()
750 << SourceRange(known->second->getLocation());
751
752 typeParam->setInvalidDecl();
753 } else {
754 knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
755
756 // Push the type parameter into scope.
757 PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
758 }
759 }
760
761 // Create the parameter list.
762 return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
763}
764
765void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
766 for (auto typeParam : *typeParamList) {
767 if (!typeParam->isInvalidDecl()) {
768 S->RemoveDecl(typeParam);
769 IdResolver.RemoveDecl(typeParam);
770 }
771 }
772}
773
774namespace {
775 /// The context in which an Objective-C type parameter list occurs, for use
776 /// in diagnostics.
777 enum class TypeParamListContext {
778 ForwardDeclaration,
779 Definition,
780 Category,
781 Extension
782 };
783} // end anonymous namespace
784
785/// Check consistency between two Objective-C type parameter lists, e.g.,
786/// between a category/extension and an \@interface or between an \@class and an
787/// \@interface.
788static bool checkTypeParamListConsistency(Sema &S,
789 ObjCTypeParamList *prevTypeParams,
790 ObjCTypeParamList *newTypeParams,
791 TypeParamListContext newContext) {
792 // If the sizes don't match, complain about that.
793 if (prevTypeParams->size() != newTypeParams->size()) {
794 SourceLocation diagLoc;
795 if (newTypeParams->size() > prevTypeParams->size()) {
796 diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
797 } else {
798 diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getLocEnd());
799 }
800
801 S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
802 << static_cast<unsigned>(newContext)
803 << (newTypeParams->size() > prevTypeParams->size())
804 << prevTypeParams->size()
805 << newTypeParams->size();
806
807 return true;
808 }
809
810 // Match up the type parameters.
811 for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
812 ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
813 ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
814
815 // Check for consistency of the variance.
816 if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
817 if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
818 newContext != TypeParamListContext::Definition) {
819 // When the new type parameter is invariant and is not part
820 // of the definition, just propagate the variance.
821 newTypeParam->setVariance(prevTypeParam->getVariance());
822 } else if (prevTypeParam->getVariance()
823 == ObjCTypeParamVariance::Invariant &&
824 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
825 cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
826 ->getDefinition() == prevTypeParam->getDeclContext())) {
827 // When the old parameter is invariant and was not part of the
828 // definition, just ignore the difference because it doesn't
829 // matter.
830 } else {
831 {
832 // Diagnose the conflict and update the second declaration.
833 SourceLocation diagLoc = newTypeParam->getVarianceLoc();
834 if (diagLoc.isInvalid())
835 diagLoc = newTypeParam->getLocStart();
836
837 auto diag = S.Diag(diagLoc,
838 diag::err_objc_type_param_variance_conflict)
839 << static_cast<unsigned>(newTypeParam->getVariance())
840 << newTypeParam->getDeclName()
841 << static_cast<unsigned>(prevTypeParam->getVariance())
842 << prevTypeParam->getDeclName();
843 switch (prevTypeParam->getVariance()) {
844 case ObjCTypeParamVariance::Invariant:
845 diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
846 break;
847
848 case ObjCTypeParamVariance::Covariant:
849 case ObjCTypeParamVariance::Contravariant: {
850 StringRef newVarianceStr
851 = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
852 ? "__covariant"
853 : "__contravariant";
854 if (newTypeParam->getVariance()
855 == ObjCTypeParamVariance::Invariant) {
856 diag << FixItHint::CreateInsertion(newTypeParam->getLocStart(),
857 (newVarianceStr + " ").str());
858 } else {
859 diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
860 newVarianceStr);
861 }
862 }
863 }
864 }
865
866 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
867 << prevTypeParam->getDeclName();
868
869 // Override the variance.
870 newTypeParam->setVariance(prevTypeParam->getVariance());
871 }
872 }
873
874 // If the bound types match, there's nothing to do.
875 if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
876 newTypeParam->getUnderlyingType()))
877 continue;
878
879 // If the new type parameter's bound was explicit, complain about it being
880 // different from the original.
881 if (newTypeParam->hasExplicitBound()) {
882 SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
883 ->getTypeLoc().getSourceRange();
884 S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
885 << newTypeParam->getUnderlyingType()
886 << newTypeParam->getDeclName()
887 << prevTypeParam->hasExplicitBound()
888 << prevTypeParam->getUnderlyingType()
889 << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
890 << prevTypeParam->getDeclName()
891 << FixItHint::CreateReplacement(
892 newBoundRange,
893 prevTypeParam->getUnderlyingType().getAsString(
894 S.Context.getPrintingPolicy()));
895
896 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
897 << prevTypeParam->getDeclName();
898
899 // Override the new type parameter's bound type with the previous type,
900 // so that it's consistent.
901 newTypeParam->setTypeSourceInfo(
902 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
903 continue;
904 }
905
906 // The new type parameter got the implicit bound of 'id'. That's okay for
907 // categories and extensions (overwrite it later), but not for forward
908 // declarations and @interfaces, because those must be standalone.
909 if (newContext == TypeParamListContext::ForwardDeclaration ||
910 newContext == TypeParamListContext::Definition) {
911 // Diagnose this problem for forward declarations and definitions.
912 SourceLocation insertionLoc
913 = S.getLocForEndOfToken(newTypeParam->getLocation());
914 std::string newCode
915 = " : " + prevTypeParam->getUnderlyingType().getAsString(
916 S.Context.getPrintingPolicy());
917 S.Diag(newTypeParam->getLocation(),
918 diag::err_objc_type_param_bound_missing)
919 << prevTypeParam->getUnderlyingType()
920 << newTypeParam->getDeclName()
921 << (newContext == TypeParamListContext::ForwardDeclaration)
922 << FixItHint::CreateInsertion(insertionLoc, newCode);
923
924 S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
925 << prevTypeParam->getDeclName();
926 }
927
928 // Update the new type parameter's bound to match the previous one.
929 newTypeParam->setTypeSourceInfo(
930 S.Context.getTrivialTypeSourceInfo(prevTypeParam->getUnderlyingType()));
931 }
932
933 return false;
934}
935
936Decl *Sema::
937ActOnStartClassInterface(Scope *S, SourceLocation AtInterfaceLoc,
938 IdentifierInfo *ClassName, SourceLocation ClassLoc,
939 ObjCTypeParamList *typeParamList,
940 IdentifierInfo *SuperName, SourceLocation SuperLoc,
941 ArrayRef<ParsedType> SuperTypeArgs,
942 SourceRange SuperTypeArgsRange,
943 Decl * const *ProtoRefs, unsigned NumProtoRefs,
944 const SourceLocation *ProtoLocs,
945 SourceLocation EndProtoLoc, AttributeList *AttrList) {
946 assert(ClassName && "Missing class identifier")(static_cast <bool> (ClassName && "Missing class identifier"
) ? void (0) : __assert_fail ("ClassName && \"Missing class identifier\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 946, __extension__ __PRETTY_FUNCTION__))
;
947
948 // Check for another declaration kind with the same name.
949 NamedDecl *PrevDecl =
950 LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
951 forRedeclarationInCurContext());
952
953 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
954 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
955 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
956 }
957
958 // Create a declaration to describe this @interface.
959 ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
960
961 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
962 // A previous decl with a different name is because of
963 // @compatibility_alias, for example:
964 // \code
965 // @class NewImage;
966 // @compatibility_alias OldImage NewImage;
967 // \endcode
968 // A lookup for 'OldImage' will return the 'NewImage' decl.
969 //
970 // In such a case use the real declaration name, instead of the alias one,
971 // otherwise we will break IdentifierResolver and redecls-chain invariants.
972 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
973 // has been aliased.
974 ClassName = PrevIDecl->getIdentifier();
975 }
976
977 // If there was a forward declaration with type parameters, check
978 // for consistency.
979 if (PrevIDecl) {
980 if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
981 if (typeParamList) {
982 // Both have type parameter lists; check for consistency.
983 if (checkTypeParamListConsistency(*this, prevTypeParamList,
984 typeParamList,
985 TypeParamListContext::Definition)) {
986 typeParamList = nullptr;
987 }
988 } else {
989 Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
990 << ClassName;
991 Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
992 << ClassName;
993
994 // Clone the type parameter list.
995 SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
996 for (auto typeParam : *prevTypeParamList) {
997 clonedTypeParams.push_back(
998 ObjCTypeParamDecl::Create(
999 Context,
1000 CurContext,
1001 typeParam->getVariance(),
1002 SourceLocation(),
1003 typeParam->getIndex(),
1004 SourceLocation(),
1005 typeParam->getIdentifier(),
1006 SourceLocation(),
1007 Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1008 }
1009
1010 typeParamList = ObjCTypeParamList::create(Context,
1011 SourceLocation(),
1012 clonedTypeParams,
1013 SourceLocation());
1014 }
1015 }
1016 }
1017
1018 ObjCInterfaceDecl *IDecl
1019 = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1020 typeParamList, PrevIDecl, ClassLoc);
1021 if (PrevIDecl) {
1022 // Class already seen. Was it a definition?
1023 if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1024 Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1025 << PrevIDecl->getDeclName();
1026 Diag(Def->getLocation(), diag::note_previous_definition);
1027 IDecl->setInvalidDecl();
1028 }
1029 }
1030
1031 if (AttrList)
1032 ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1033 AddPragmaAttributes(TUScope, IDecl);
1034 PushOnScopeChains(IDecl, TUScope);
1035
1036 // Start the definition of this class. If we're in a redefinition case, there
1037 // may already be a definition, so we'll end up adding to it.
1038 if (!IDecl->hasDefinition())
1039 IDecl->startDefinition();
1040
1041 if (SuperName) {
1042 // Diagnose availability in the context of the @interface.
1043 ContextRAII SavedContext(*this, IDecl);
1044
1045 ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1046 ClassName, ClassLoc,
1047 SuperName, SuperLoc, SuperTypeArgs,
1048 SuperTypeArgsRange);
1049 } else { // we have a root class.
1050 IDecl->setEndOfDefinitionLoc(ClassLoc);
1051 }
1052
1053 // Check then save referenced protocols.
1054 if (NumProtoRefs) {
1055 diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1056 NumProtoRefs, ProtoLocs);
1057 IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1058 ProtoLocs, Context);
1059 IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1060 }
1061
1062 CheckObjCDeclScope(IDecl);
1063 return ActOnObjCContainerStartDefinition(IDecl);
1064}
1065
1066/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1067/// typedef'ed use for a qualified super class and adds them to the list
1068/// of the protocols.
1069void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1070 SmallVectorImpl<SourceLocation> &ProtocolLocs,
1071 IdentifierInfo *SuperName,
1072 SourceLocation SuperLoc) {
1073 if (!SuperName)
1074 return;
1075 NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1076 LookupOrdinaryName);
1077 if (!IDecl)
1078 return;
1079
1080 if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1081 QualType T = TDecl->getUnderlyingType();
1082 if (T->isObjCObjectType())
1083 if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1084 ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1085 // FIXME: Consider whether this should be an invalid loc since the loc
1086 // is not actually pointing to a protocol name reference but to the
1087 // typedef reference. Note that the base class name loc is also pointing
1088 // at the typedef.
1089 ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1090 }
1091 }
1092}
1093
1094/// ActOnCompatibilityAlias - this action is called after complete parsing of
1095/// a \@compatibility_alias declaration. It sets up the alias relationships.
1096Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1097 IdentifierInfo *AliasName,
1098 SourceLocation AliasLocation,
1099 IdentifierInfo *ClassName,
1100 SourceLocation ClassLocation) {
1101 // Look for previous declaration of alias name
1102 NamedDecl *ADecl =
1103 LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1104 forRedeclarationInCurContext());
1105 if (ADecl) {
1106 Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1107 Diag(ADecl->getLocation(), diag::note_previous_declaration);
1108 return nullptr;
1109 }
1110 // Check for class declaration
1111 NamedDecl *CDeclU =
1112 LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1113 forRedeclarationInCurContext());
1114 if (const TypedefNameDecl *TDecl =
1115 dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1116 QualType T = TDecl->getUnderlyingType();
1117 if (T->isObjCObjectType()) {
1118 if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
1119 ClassName = IDecl->getIdentifier();
1120 CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1121 LookupOrdinaryName,
1122 forRedeclarationInCurContext());
1123 }
1124 }
1125 }
1126 ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1127 if (!CDecl) {
1128 Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1129 if (CDeclU)
1130 Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1131 return nullptr;
1132 }
1133
1134 // Everything checked out, instantiate a new alias declaration AST.
1135 ObjCCompatibleAliasDecl *AliasDecl =
1136 ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1137
1138 if (!CheckObjCDeclScope(AliasDecl))
1139 PushOnScopeChains(AliasDecl, TUScope);
1140
1141 return AliasDecl;
1142}
1143
1144bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1145 IdentifierInfo *PName,
1146 SourceLocation &Ploc, SourceLocation PrevLoc,
1147 const ObjCList<ObjCProtocolDecl> &PList) {
1148
1149 bool res = false;
1150 for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1151 E = PList.end(); I != E; ++I) {
1152 if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1153 Ploc)) {
1154 if (PDecl->getIdentifier() == PName) {
1155 Diag(Ploc, diag::err_protocol_has_circular_dependency);
1156 Diag(PrevLoc, diag::note_previous_definition);
1157 res = true;
1158 }
1159
1160 if (!PDecl->hasDefinition())
1161 continue;
1162
1163 if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1164 PDecl->getLocation(), PDecl->getReferencedProtocols()))
1165 res = true;
1166 }
1167 }
1168 return res;
1169}
1170
1171Decl *
1172Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
1173 IdentifierInfo *ProtocolName,
1174 SourceLocation ProtocolLoc,
1175 Decl * const *ProtoRefs,
1176 unsigned NumProtoRefs,
1177 const SourceLocation *ProtoLocs,
1178 SourceLocation EndProtoLoc,
1179 AttributeList *AttrList) {
1180 bool err = false;
1181 // FIXME: Deal with AttrList.
1182 assert(ProtocolName && "Missing protocol identifier")(static_cast <bool> (ProtocolName && "Missing protocol identifier"
) ? void (0) : __assert_fail ("ProtocolName && \"Missing protocol identifier\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1182, __extension__ __PRETTY_FUNCTION__))
;
1183 ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1184 forRedeclarationInCurContext());
1185 ObjCProtocolDecl *PDecl = nullptr;
1186 if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1187 // If we already have a definition, complain.
1188 Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1189 Diag(Def->getLocation(), diag::note_previous_definition);
1190
1191 // Create a new protocol that is completely distinct from previous
1192 // declarations, and do not make this protocol available for name lookup.
1193 // That way, we'll end up completely ignoring the duplicate.
1194 // FIXME: Can we turn this into an error?
1195 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1196 ProtocolLoc, AtProtoInterfaceLoc,
1197 /*PrevDecl=*/nullptr);
1198 PDecl->startDefinition();
1199 } else {
1200 if (PrevDecl) {
1201 // Check for circular dependencies among protocol declarations. This can
1202 // only happen if this protocol was forward-declared.
1203 ObjCList<ObjCProtocolDecl> PList;
1204 PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1205 err = CheckForwardProtocolDeclarationForCircularDependency(
1206 ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1207 }
1208
1209 // Create the new declaration.
1210 PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1211 ProtocolLoc, AtProtoInterfaceLoc,
1212 /*PrevDecl=*/PrevDecl);
1213
1214 PushOnScopeChains(PDecl, TUScope);
1215 PDecl->startDefinition();
1216 }
1217
1218 if (AttrList)
1219 ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1220 AddPragmaAttributes(TUScope, PDecl);
1221
1222 // Merge attributes from previous declarations.
1223 if (PrevDecl)
1224 mergeDeclAttributes(PDecl, PrevDecl);
1225
1226 if (!err && NumProtoRefs ) {
1227 /// Check then save referenced protocols.
1228 diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1229 NumProtoRefs, ProtoLocs);
1230 PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1231 ProtoLocs, Context);
1232 }
1233
1234 CheckObjCDeclScope(PDecl);
1235 return ActOnObjCContainerStartDefinition(PDecl);
1236}
1237
1238static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1239 ObjCProtocolDecl *&UndefinedProtocol) {
1240 if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
1241 UndefinedProtocol = PDecl;
1242 return true;
1243 }
1244
1245 for (auto *PI : PDecl->protocols())
1246 if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1247 UndefinedProtocol = PI;
1248 return true;
1249 }
1250 return false;
1251}
1252
1253/// FindProtocolDeclaration - This routine looks up protocols and
1254/// issues an error if they are not declared. It returns list of
1255/// protocol declarations in its 'Protocols' argument.
1256void
1257Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1258 ArrayRef<IdentifierLocPair> ProtocolId,
1259 SmallVectorImpl<Decl *> &Protocols) {
1260 for (const IdentifierLocPair &Pair : ProtocolId) {
1261 ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1262 if (!PDecl) {
1263 TypoCorrection Corrected = CorrectTypo(
1264 DeclarationNameInfo(Pair.first, Pair.second),
1265 LookupObjCProtocolName, TUScope, nullptr,
1266 llvm::make_unique<DeclFilterCCC<ObjCProtocolDecl>>(),
1267 CTK_ErrorRecovery);
1268 if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1269 diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1270 << Pair.first);
1271 }
1272
1273 if (!PDecl) {
1274 Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1275 continue;
1276 }
1277 // If this is a forward protocol declaration, get its definition.
1278 if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1279 PDecl = PDecl->getDefinition();
1280
1281 // For an objc container, delay protocol reference checking until after we
1282 // can set the objc decl as the availability context, otherwise check now.
1283 if (!ForObjCContainer) {
1284 (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1285 }
1286
1287 // If this is a forward declaration and we are supposed to warn in this
1288 // case, do it.
1289 // FIXME: Recover nicely in the hidden case.
1290 ObjCProtocolDecl *UndefinedProtocol;
1291
1292 if (WarnOnDeclarations &&
1293 NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1294 Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1295 Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1296 << UndefinedProtocol;
1297 }
1298 Protocols.push_back(PDecl);
1299 }
1300}
1301
1302namespace {
1303// Callback to only accept typo corrections that are either
1304// Objective-C protocols or valid Objective-C type arguments.
1305class ObjCTypeArgOrProtocolValidatorCCC : public CorrectionCandidateCallback {
1306 ASTContext &Context;
1307 Sema::LookupNameKind LookupKind;
1308 public:
1309 ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1310 Sema::LookupNameKind lookupKind)
1311 : Context(context), LookupKind(lookupKind) { }
1312
1313 bool ValidateCandidate(const TypoCorrection &candidate) override {
1314 // If we're allowed to find protocols and we have a protocol, accept it.
1315 if (LookupKind != Sema::LookupOrdinaryName) {
1316 if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1317 return true;
1318 }
1319
1320 // If we're allowed to find type names and we have one, accept it.
1321 if (LookupKind != Sema::LookupObjCProtocolName) {
1322 // If we have a type declaration, we might accept this result.
1323 if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1324 // If we found a tag declaration outside of C++, skip it. This
1325 // can happy because we look for any name when there is no
1326 // bias to protocol or type names.
1327 if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1328 return false;
1329
1330 // Make sure the type is something we would accept as a type
1331 // argument.
1332 auto type = Context.getTypeDeclType(typeDecl);
1333 if (type->isObjCObjectPointerType() ||
1334 type->isBlockPointerType() ||
1335 type->isDependentType() ||
1336 type->isObjCObjectType())
1337 return true;
1338
1339 return false;
1340 }
1341
1342 // If we have an Objective-C class type, accept it; there will
1343 // be another fix to add the '*'.
1344 if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1345 return true;
1346
1347 return false;
1348 }
1349
1350 return false;
1351 }
1352};
1353} // end anonymous namespace
1354
1355void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1356 SourceLocation ProtocolLoc,
1357 IdentifierInfo *TypeArgId,
1358 SourceLocation TypeArgLoc,
1359 bool SelectProtocolFirst) {
1360 Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1361 << SelectProtocolFirst << TypeArgId << ProtocolId
1362 << SourceRange(ProtocolLoc);
1363}
1364
1365void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1366 Scope *S,
1367 ParsedType baseType,
1368 SourceLocation lAngleLoc,
1369 ArrayRef<IdentifierInfo *> identifiers,
1370 ArrayRef<SourceLocation> identifierLocs,
1371 SourceLocation rAngleLoc,
1372 SourceLocation &typeArgsLAngleLoc,
1373 SmallVectorImpl<ParsedType> &typeArgs,
1374 SourceLocation &typeArgsRAngleLoc,
1375 SourceLocation &protocolLAngleLoc,
1376 SmallVectorImpl<Decl *> &protocols,
1377 SourceLocation &protocolRAngleLoc,
1378 bool warnOnIncompleteProtocols) {
1379 // Local function that updates the declaration specifiers with
1380 // protocol information.
1381 unsigned numProtocolsResolved = 0;
1382 auto resolvedAsProtocols = [&] {
1383 assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols")(static_cast <bool> (numProtocolsResolved == identifiers
.size() && "Unresolved protocols") ? void (0) : __assert_fail
("numProtocolsResolved == identifiers.size() && \"Unresolved protocols\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1383, __extension__ __PRETTY_FUNCTION__))
;
1384
1385 // Determine whether the base type is a parameterized class, in
1386 // which case we want to warn about typos such as
1387 // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1388 ObjCInterfaceDecl *baseClass = nullptr;
1389 QualType base = GetTypeFromParser(baseType, nullptr);
1390 bool allAreTypeNames = false;
1391 SourceLocation firstClassNameLoc;
1392 if (!base.isNull()) {
1393 if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1394 baseClass = objcObjectType->getInterface();
1395 if (baseClass) {
1396 if (auto typeParams = baseClass->getTypeParamList()) {
1397 if (typeParams->size() == numProtocolsResolved) {
1398 // Note that we should be looking for type names, too.
1399 allAreTypeNames = true;
1400 }
1401 }
1402 }
1403 }
1404 }
1405
1406 for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1407 ObjCProtocolDecl *&proto
1408 = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1409 // For an objc container, delay protocol reference checking until after we
1410 // can set the objc decl as the availability context, otherwise check now.
1411 if (!warnOnIncompleteProtocols) {
1412 (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1413 }
1414
1415 // If this is a forward protocol declaration, get its definition.
1416 if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1417 proto = proto->getDefinition();
1418
1419 // If this is a forward declaration and we are supposed to warn in this
1420 // case, do it.
1421 // FIXME: Recover nicely in the hidden case.
1422 ObjCProtocolDecl *forwardDecl = nullptr;
1423 if (warnOnIncompleteProtocols &&
1424 NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1425 Diag(identifierLocs[i], diag::warn_undef_protocolref)
1426 << proto->getDeclName();
1427 Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1428 << forwardDecl;
1429 }
1430
1431 // If everything this far has been a type name (and we care
1432 // about such things), check whether this name refers to a type
1433 // as well.
1434 if (allAreTypeNames) {
1435 if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1436 LookupOrdinaryName)) {
1437 if (isa<ObjCInterfaceDecl>(decl)) {
1438 if (firstClassNameLoc.isInvalid())
1439 firstClassNameLoc = identifierLocs[i];
1440 } else if (!isa<TypeDecl>(decl)) {
1441 // Not a type.
1442 allAreTypeNames = false;
1443 }
1444 } else {
1445 allAreTypeNames = false;
1446 }
1447 }
1448 }
1449
1450 // All of the protocols listed also have type names, and at least
1451 // one is an Objective-C class name. Check whether all of the
1452 // protocol conformances are declared by the base class itself, in
1453 // which case we warn.
1454 if (allAreTypeNames && firstClassNameLoc.isValid()) {
1455 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1456 Context.CollectInheritedProtocols(baseClass, knownProtocols);
1457 bool allProtocolsDeclared = true;
1458 for (auto proto : protocols) {
1459 if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1460 allProtocolsDeclared = false;
1461 break;
1462 }
1463 }
1464
1465 if (allProtocolsDeclared) {
1466 Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1467 << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1468 << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1469 " *");
1470 }
1471 }
1472
1473 protocolLAngleLoc = lAngleLoc;
1474 protocolRAngleLoc = rAngleLoc;
1475 assert(protocols.size() == identifierLocs.size())(static_cast <bool> (protocols.size() == identifierLocs
.size()) ? void (0) : __assert_fail ("protocols.size() == identifierLocs.size()"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1475, __extension__ __PRETTY_FUNCTION__))
;
1476 };
1477
1478 // Attempt to resolve all of the identifiers as protocols.
1479 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1480 ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1481 protocols.push_back(proto);
1482 if (proto)
1483 ++numProtocolsResolved;
1484 }
1485
1486 // If all of the names were protocols, these were protocol qualifiers.
1487 if (numProtocolsResolved == identifiers.size())
1488 return resolvedAsProtocols();
1489
1490 // Attempt to resolve all of the identifiers as type names or
1491 // Objective-C class names. The latter is technically ill-formed,
1492 // but is probably something like \c NSArray<NSView *> missing the
1493 // \c*.
1494 typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1495 SmallVector<TypeOrClassDecl, 4> typeDecls;
1496 unsigned numTypeDeclsResolved = 0;
1497 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1498 NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1499 LookupOrdinaryName);
1500 if (!decl) {
1501 typeDecls.push_back(TypeOrClassDecl());
1502 continue;
1503 }
1504
1505 if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1506 typeDecls.push_back(typeDecl);
1507 ++numTypeDeclsResolved;
1508 continue;
1509 }
1510
1511 if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1512 typeDecls.push_back(objcClass);
1513 ++numTypeDeclsResolved;
1514 continue;
1515 }
1516
1517 typeDecls.push_back(TypeOrClassDecl());
1518 }
1519
1520 AttributeFactory attrFactory;
1521
1522 // Local function that forms a reference to the given type or
1523 // Objective-C class declaration.
1524 auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1525 -> TypeResult {
1526 // Form declaration specifiers. They simply refer to the type.
1527 DeclSpec DS(attrFactory);
1528 const char* prevSpec; // unused
1529 unsigned diagID; // unused
1530 QualType type;
1531 if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1532 type = Context.getTypeDeclType(actualTypeDecl);
1533 else
1534 type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1535 TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1536 ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1537 DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1538 parsedType, Context.getPrintingPolicy());
1539 // Use the identifier location for the type source range.
1540 DS.SetRangeStart(loc);
1541 DS.SetRangeEnd(loc);
1542
1543 // Form the declarator.
1544 Declarator D(DS, DeclaratorContext::TypeNameContext);
1545
1546 // If we have a typedef of an Objective-C class type that is missing a '*',
1547 // add the '*'.
1548 if (type->getAs<ObjCInterfaceType>()) {
1549 SourceLocation starLoc = getLocForEndOfToken(loc);
1550 ParsedAttributes parsedAttrs(attrFactory);
1551 D.AddTypeInfo(DeclaratorChunk::getPointer(/*typeQuals=*/0, starLoc,
1552 SourceLocation(),
1553 SourceLocation(),
1554 SourceLocation(),
1555 SourceLocation(),
1556 SourceLocation()),
1557 parsedAttrs,
1558 starLoc);
1559
1560 // Diagnose the missing '*'.
1561 Diag(loc, diag::err_objc_type_arg_missing_star)
1562 << type
1563 << FixItHint::CreateInsertion(starLoc, " *");
1564 }
1565
1566 // Convert this to a type.
1567 return ActOnTypeName(S, D);
1568 };
1569
1570 // Local function that updates the declaration specifiers with
1571 // type argument information.
1572 auto resolvedAsTypeDecls = [&] {
1573 // We did not resolve these as protocols.
1574 protocols.clear();
1575
1576 assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl")(static_cast <bool> (numTypeDeclsResolved == identifiers
.size() && "Unresolved type decl") ? void (0) : __assert_fail
("numTypeDeclsResolved == identifiers.size() && \"Unresolved type decl\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1576, __extension__ __PRETTY_FUNCTION__))
;
1577 // Map type declarations to type arguments.
1578 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1579 // Map type reference to a type.
1580 TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1581 if (!type.isUsable()) {
1582 typeArgs.clear();
1583 return;
1584 }
1585
1586 typeArgs.push_back(type.get());
1587 }
1588
1589 typeArgsLAngleLoc = lAngleLoc;
1590 typeArgsRAngleLoc = rAngleLoc;
1591 };
1592
1593 // If all of the identifiers can be resolved as type names or
1594 // Objective-C class names, we have type arguments.
1595 if (numTypeDeclsResolved == identifiers.size())
1596 return resolvedAsTypeDecls();
1597
1598 // Error recovery: some names weren't found, or we have a mix of
1599 // type and protocol names. Go resolve all of the unresolved names
1600 // and complain if we can't find a consistent answer.
1601 LookupNameKind lookupKind = LookupAnyName;
1602 for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1603 // If we already have a protocol or type. Check whether it is the
1604 // right thing.
1605 if (protocols[i] || typeDecls[i]) {
1606 // If we haven't figured out whether we want types or protocols
1607 // yet, try to figure it out from this name.
1608 if (lookupKind == LookupAnyName) {
1609 // If this name refers to both a protocol and a type (e.g., \c
1610 // NSObject), don't conclude anything yet.
1611 if (protocols[i] && typeDecls[i])
1612 continue;
1613
1614 // Otherwise, let this name decide whether we'll be correcting
1615 // toward types or protocols.
1616 lookupKind = protocols[i] ? LookupObjCProtocolName
1617 : LookupOrdinaryName;
1618 continue;
1619 }
1620
1621 // If we want protocols and we have a protocol, there's nothing
1622 // more to do.
1623 if (lookupKind == LookupObjCProtocolName && protocols[i])
1624 continue;
1625
1626 // If we want types and we have a type declaration, there's
1627 // nothing more to do.
1628 if (lookupKind == LookupOrdinaryName && typeDecls[i])
1629 continue;
1630
1631 // We have a conflict: some names refer to protocols and others
1632 // refer to types.
1633 DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1634 identifiers[i], identifierLocs[i],
1635 protocols[i] != nullptr);
1636
1637 protocols.clear();
1638 typeArgs.clear();
1639 return;
1640 }
1641
1642 // Perform typo correction on the name.
1643 TypoCorrection corrected = CorrectTypo(
1644 DeclarationNameInfo(identifiers[i], identifierLocs[i]), lookupKind, S,
1645 nullptr,
1646 llvm::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(Context,
1647 lookupKind),
1648 CTK_ErrorRecovery);
1649 if (corrected) {
1650 // Did we find a protocol?
1651 if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1652 diagnoseTypo(corrected,
1653 PDiag(diag::err_undeclared_protocol_suggest)
1654 << identifiers[i]);
1655 lookupKind = LookupObjCProtocolName;
1656 protocols[i] = proto;
1657 ++numProtocolsResolved;
1658 continue;
1659 }
1660
1661 // Did we find a type?
1662 if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1663 diagnoseTypo(corrected,
1664 PDiag(diag::err_unknown_typename_suggest)
1665 << identifiers[i]);
1666 lookupKind = LookupOrdinaryName;
1667 typeDecls[i] = typeDecl;
1668 ++numTypeDeclsResolved;
1669 continue;
1670 }
1671
1672 // Did we find an Objective-C class?
1673 if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1674 diagnoseTypo(corrected,
1675 PDiag(diag::err_unknown_type_or_class_name_suggest)
1676 << identifiers[i] << true);
1677 lookupKind = LookupOrdinaryName;
1678 typeDecls[i] = objcClass;
1679 ++numTypeDeclsResolved;
1680 continue;
1681 }
1682 }
1683
1684 // We couldn't find anything.
1685 Diag(identifierLocs[i],
1686 (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1687 : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1688 : diag::err_unknown_typename))
1689 << identifiers[i];
1690 protocols.clear();
1691 typeArgs.clear();
1692 return;
1693 }
1694
1695 // If all of the names were (corrected to) protocols, these were
1696 // protocol qualifiers.
1697 if (numProtocolsResolved == identifiers.size())
1698 return resolvedAsProtocols();
1699
1700 // Otherwise, all of the names were (corrected to) types.
1701 assert(numTypeDeclsResolved == identifiers.size() && "Not all types?")(static_cast <bool> (numTypeDeclsResolved == identifiers
.size() && "Not all types?") ? void (0) : __assert_fail
("numTypeDeclsResolved == identifiers.size() && \"Not all types?\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 1701, __extension__ __PRETTY_FUNCTION__))
;
1702 return resolvedAsTypeDecls();
1703}
1704
1705/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1706/// a class method in its extension.
1707///
1708void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1709 ObjCInterfaceDecl *ID) {
1710 if (!ID)
1711 return; // Possibly due to previous error
1712
1713 llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1714 for (auto *MD : ID->methods())
1715 MethodMap[MD->getSelector()] = MD;
1716
1717 if (MethodMap.empty())
1718 return;
1719 for (const auto *Method : CAT->methods()) {
1720 const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1721 if (PrevMethod &&
1722 (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1723 !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1724 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1725 << Method->getDeclName();
1726 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1727 }
1728 }
1729}
1730
1731/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1732Sema::DeclGroupPtrTy
1733Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1734 ArrayRef<IdentifierLocPair> IdentList,
1735 AttributeList *attrList) {
1736 SmallVector<Decl *, 8> DeclsInGroup;
1737 for (const IdentifierLocPair &IdentPair : IdentList) {
1738 IdentifierInfo *Ident = IdentPair.first;
1739 ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1740 forRedeclarationInCurContext());
1741 ObjCProtocolDecl *PDecl
1742 = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1743 IdentPair.second, AtProtocolLoc,
1744 PrevDecl);
1745
1746 PushOnScopeChains(PDecl, TUScope);
1747 CheckObjCDeclScope(PDecl);
1748
1749 if (attrList)
1750 ProcessDeclAttributeList(TUScope, PDecl, attrList);
1751 AddPragmaAttributes(TUScope, PDecl);
1752
1753 if (PrevDecl)
1754 mergeDeclAttributes(PDecl, PrevDecl);
1755
1756 DeclsInGroup.push_back(PDecl);
1757 }
1758
1759 return BuildDeclaratorGroup(DeclsInGroup);
1760}
1761
1762Decl *Sema::
1763ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
1764 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1765 ObjCTypeParamList *typeParamList,
1766 IdentifierInfo *CategoryName,
1767 SourceLocation CategoryLoc,
1768 Decl * const *ProtoRefs,
1769 unsigned NumProtoRefs,
1770 const SourceLocation *ProtoLocs,
1771 SourceLocation EndProtoLoc,
1772 AttributeList *AttrList) {
1773 ObjCCategoryDecl *CDecl;
1774 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1775
1776 /// Check that class of this category is already completely declared.
1777
1778 if (!IDecl
1779 || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1780 diag::err_category_forward_interface,
1781 CategoryName == nullptr)) {
1782 // Create an invalid ObjCCategoryDecl to serve as context for
1783 // the enclosing method declarations. We mark the decl invalid
1784 // to make it clear that this isn't a valid AST.
1785 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1786 ClassLoc, CategoryLoc, CategoryName,
1787 IDecl, typeParamList);
1788 CDecl->setInvalidDecl();
1789 CurContext->addDecl(CDecl);
1790
1791 if (!IDecl)
1792 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1793 return ActOnObjCContainerStartDefinition(CDecl);
1794 }
1795
1796 if (!CategoryName && IDecl->getImplementation()) {
1797 Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1798 Diag(IDecl->getImplementation()->getLocation(),
1799 diag::note_implementation_declared);
1800 }
1801
1802 if (CategoryName) {
1803 /// Check for duplicate interface declaration for this category
1804 if (ObjCCategoryDecl *Previous
1805 = IDecl->FindCategoryDeclaration(CategoryName)) {
1806 // Class extensions can be declared multiple times, categories cannot.
1807 Diag(CategoryLoc, diag::warn_dup_category_def)
1808 << ClassName << CategoryName;
1809 Diag(Previous->getLocation(), diag::note_previous_definition);
1810 }
1811 }
1812
1813 // If we have a type parameter list, check it.
1814 if (typeParamList) {
1815 if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1816 if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1817 CategoryName
1818 ? TypeParamListContext::Category
1819 : TypeParamListContext::Extension))
1820 typeParamList = nullptr;
1821 } else {
1822 Diag(typeParamList->getLAngleLoc(),
1823 diag::err_objc_parameterized_category_nonclass)
1824 << (CategoryName != nullptr)
1825 << ClassName
1826 << typeParamList->getSourceRange();
1827
1828 typeParamList = nullptr;
1829 }
1830 }
1831
1832 CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1833 ClassLoc, CategoryLoc, CategoryName, IDecl,
1834 typeParamList);
1835 // FIXME: PushOnScopeChains?
1836 CurContext->addDecl(CDecl);
1837
1838 if (NumProtoRefs) {
1839 diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1840 NumProtoRefs, ProtoLocs);
1841 CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1842 ProtoLocs, Context);
1843 // Protocols in the class extension belong to the class.
1844 if (CDecl->IsClassExtension())
1845 IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1846 NumProtoRefs, Context);
1847 }
1848
1849 if (AttrList)
1850 ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1851 AddPragmaAttributes(TUScope, CDecl);
1852
1853 CheckObjCDeclScope(CDecl);
1854 return ActOnObjCContainerStartDefinition(CDecl);
1855}
1856
1857/// ActOnStartCategoryImplementation - Perform semantic checks on the
1858/// category implementation declaration and build an ObjCCategoryImplDecl
1859/// object.
1860Decl *Sema::ActOnStartCategoryImplementation(
1861 SourceLocation AtCatImplLoc,
1862 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1863 IdentifierInfo *CatName, SourceLocation CatLoc) {
1864 ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1865 ObjCCategoryDecl *CatIDecl = nullptr;
1866 if (IDecl && IDecl->hasDefinition()) {
1867 CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1868 if (!CatIDecl) {
1869 // Category @implementation with no corresponding @interface.
1870 // Create and install one.
1871 CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1872 ClassLoc, CatLoc,
1873 CatName, IDecl,
1874 /*typeParamList=*/nullptr);
1875 CatIDecl->setImplicit();
1876 }
1877 }
1878
1879 ObjCCategoryImplDecl *CDecl =
1880 ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1881 ClassLoc, AtCatImplLoc, CatLoc);
1882 /// Check that class of this category is already completely declared.
1883 if (!IDecl) {
1884 Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1885 CDecl->setInvalidDecl();
1886 } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1887 diag::err_undef_interface)) {
1888 CDecl->setInvalidDecl();
1889 }
1890
1891 // FIXME: PushOnScopeChains?
1892 CurContext->addDecl(CDecl);
1893
1894 // If the interface has the objc_runtime_visible attribute, we
1895 // cannot implement a category for it.
1896 if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1897 Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1898 << IDecl->getDeclName();
1899 }
1900
1901 /// Check that CatName, category name, is not used in another implementation.
1902 if (CatIDecl) {
1903 if (CatIDecl->getImplementation()) {
1904 Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1905 << CatName;
1906 Diag(CatIDecl->getImplementation()->getLocation(),
1907 diag::note_previous_definition);
1908 CDecl->setInvalidDecl();
1909 } else {
1910 CatIDecl->setImplementation(CDecl);
1911 // Warn on implementating category of deprecated class under
1912 // -Wdeprecated-implementations flag.
1913 DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1914 CDecl->getLocation());
1915 }
1916 }
1917
1918 CheckObjCDeclScope(CDecl);
1919 return ActOnObjCContainerStartDefinition(CDecl);
1920}
1921
1922Decl *Sema::ActOnStartClassImplementation(
1923 SourceLocation AtClassImplLoc,
1924 IdentifierInfo *ClassName, SourceLocation ClassLoc,
1925 IdentifierInfo *SuperClassname,
1926 SourceLocation SuperClassLoc) {
1927 ObjCInterfaceDecl *IDecl = nullptr;
1928 // Check for another declaration kind with the same name.
1929 NamedDecl *PrevDecl
1930 = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1931 forRedeclarationInCurContext());
1932 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1933 Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1934 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1935 } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1936 // FIXME: This will produce an error if the definition of the interface has
1937 // been imported from a module but is not visible.
1938 RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1939 diag::warn_undef_interface);
1940 } else {
1941 // We did not find anything with the name ClassName; try to correct for
1942 // typos in the class name.
1943 TypoCorrection Corrected = CorrectTypo(
1944 DeclarationNameInfo(ClassName, ClassLoc), LookupOrdinaryName, TUScope,
1945 nullptr, llvm::make_unique<ObjCInterfaceValidatorCCC>(), CTK_NonError);
1946 if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1947 // Suggest the (potentially) correct interface name. Don't provide a
1948 // code-modification hint or use the typo name for recovery, because
1949 // this is just a warning. The program may actually be correct.
1950 diagnoseTypo(Corrected,
1951 PDiag(diag::warn_undef_interface_suggest) << ClassName,
1952 /*ErrorRecovery*/false);
1953 } else {
1954 Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1955 }
1956 }
1957
1958 // Check that super class name is valid class name
1959 ObjCInterfaceDecl *SDecl = nullptr;
1960 if (SuperClassname) {
1961 // Check if a different kind of symbol declared in this scope.
1962 PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1963 LookupOrdinaryName);
1964 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1965 Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1966 << SuperClassname;
1967 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1968 } else {
1969 SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1970 if (SDecl && !SDecl->hasDefinition())
1971 SDecl = nullptr;
1972 if (!SDecl)
1973 Diag(SuperClassLoc, diag::err_undef_superclass)
1974 << SuperClassname << ClassName;
1975 else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1976 // This implementation and its interface do not have the same
1977 // super class.
1978 Diag(SuperClassLoc, diag::err_conflicting_super_class)
1979 << SDecl->getDeclName();
1980 Diag(SDecl->getLocation(), diag::note_previous_definition);
1981 }
1982 }
1983 }
1984
1985 if (!IDecl) {
1986 // Legacy case of @implementation with no corresponding @interface.
1987 // Build, chain & install the interface decl into the identifier.
1988
1989 // FIXME: Do we support attributes on the @implementation? If so we should
1990 // copy them over.
1991 IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1992 ClassName, /*typeParamList=*/nullptr,
1993 /*PrevDecl=*/nullptr, ClassLoc,
1994 true);
1995 AddPragmaAttributes(TUScope, IDecl);
1996 IDecl->startDefinition();
1997 if (SDecl) {
1998 IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
1999 Context.getObjCInterfaceType(SDecl),
2000 SuperClassLoc));
2001 IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2002 } else {
2003 IDecl->setEndOfDefinitionLoc(ClassLoc);
2004 }
2005
2006 PushOnScopeChains(IDecl, TUScope);
2007 } else {
2008 // Mark the interface as being completed, even if it was just as
2009 // @class ....;
2010 // declaration; the user cannot reopen it.
2011 if (!IDecl->hasDefinition())
2012 IDecl->startDefinition();
2013 }
2014
2015 ObjCImplementationDecl* IMPDecl =
2016 ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2017 ClassLoc, AtClassImplLoc, SuperClassLoc);
2018
2019 if (CheckObjCDeclScope(IMPDecl))
2020 return ActOnObjCContainerStartDefinition(IMPDecl);
2021
2022 // Check that there is no duplicate implementation of this class.
2023 if (IDecl->getImplementation()) {
2024 // FIXME: Don't leak everything!
2025 Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2026 Diag(IDecl->getImplementation()->getLocation(),
2027 diag::note_previous_definition);
2028 IMPDecl->setInvalidDecl();
2029 } else { // add it to the list.
2030 IDecl->setImplementation(IMPDecl);
2031 PushOnScopeChains(IMPDecl, TUScope);
2032 // Warn on implementating deprecated class under
2033 // -Wdeprecated-implementations flag.
2034 DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2035 }
2036
2037 // If the superclass has the objc_runtime_visible attribute, we
2038 // cannot implement a subclass of it.
2039 if (IDecl->getSuperClass() &&
2040 IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2041 Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2042 << IDecl->getDeclName()
2043 << IDecl->getSuperClass()->getDeclName();
2044 }
2045
2046 return ActOnObjCContainerStartDefinition(IMPDecl);
2047}
2048
2049Sema::DeclGroupPtrTy
2050Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2051 SmallVector<Decl *, 64> DeclsInGroup;
2052 DeclsInGroup.reserve(Decls.size() + 1);
2053
2054 for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2055 Decl *Dcl = Decls[i];
2056 if (!Dcl)
2057 continue;
2058 if (Dcl->getDeclContext()->isFileContext())
2059 Dcl->setTopLevelDeclInObjCContainer();
2060 DeclsInGroup.push_back(Dcl);
2061 }
2062
2063 DeclsInGroup.push_back(ObjCImpDecl);
2064
2065 return BuildDeclaratorGroup(DeclsInGroup);
2066}
2067
2068void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2069 ObjCIvarDecl **ivars, unsigned numIvars,
2070 SourceLocation RBrace) {
2071 assert(ImpDecl && "missing implementation decl")(static_cast <bool> (ImpDecl && "missing implementation decl"
) ? void (0) : __assert_fail ("ImpDecl && \"missing implementation decl\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2071, __extension__ __PRETTY_FUNCTION__))
;
2072 ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2073 if (!IDecl)
2074 return;
2075 /// Check case of non-existing \@interface decl.
2076 /// (legacy objective-c \@implementation decl without an \@interface decl).
2077 /// Add implementations's ivar to the synthesize class's ivar list.
2078 if (IDecl->isImplicitInterfaceDecl()) {
2079 IDecl->setEndOfDefinitionLoc(RBrace);
2080 // Add ivar's to class's DeclContext.
2081 for (unsigned i = 0, e = numIvars; i != e; ++i) {
2082 ivars[i]->setLexicalDeclContext(ImpDecl);
2083 IDecl->makeDeclVisibleInContext(ivars[i]);
2084 ImpDecl->addDecl(ivars[i]);
2085 }
2086
2087 return;
2088 }
2089 // If implementation has empty ivar list, just return.
2090 if (numIvars == 0)
2091 return;
2092
2093 assert(ivars && "missing @implementation ivars")(static_cast <bool> (ivars && "missing @implementation ivars"
) ? void (0) : __assert_fail ("ivars && \"missing @implementation ivars\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2093, __extension__ __PRETTY_FUNCTION__))
;
2094 if (LangOpts.ObjCRuntime.isNonFragile()) {
2095 if (ImpDecl->getSuperClass())
2096 Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2097 for (unsigned i = 0; i < numIvars; i++) {
2098 ObjCIvarDecl* ImplIvar = ivars[i];
2099 if (const ObjCIvarDecl *ClsIvar =
2100 IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2101 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2102 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2103 continue;
2104 }
2105 // Check class extensions (unnamed categories) for duplicate ivars.
2106 for (const auto *CDecl : IDecl->visible_extensions()) {
2107 if (const ObjCIvarDecl *ClsExtIvar =
2108 CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2109 Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2110 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2111 continue;
2112 }
2113 }
2114 // Instance ivar to Implementation's DeclContext.
2115 ImplIvar->setLexicalDeclContext(ImpDecl);
2116 IDecl->makeDeclVisibleInContext(ImplIvar);
2117 ImpDecl->addDecl(ImplIvar);
2118 }
2119 return;
2120 }
2121 // Check interface's Ivar list against those in the implementation.
2122 // names and types must match.
2123 //
2124 unsigned j = 0;
2125 ObjCInterfaceDecl::ivar_iterator
2126 IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2127 for (; numIvars > 0 && IVI != IVE; ++IVI) {
2128 ObjCIvarDecl* ImplIvar = ivars[j++];
2129 ObjCIvarDecl* ClsIvar = *IVI;
2130 assert (ImplIvar && "missing implementation ivar")(static_cast <bool> (ImplIvar && "missing implementation ivar"
) ? void (0) : __assert_fail ("ImplIvar && \"missing implementation ivar\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2130, __extension__ __PRETTY_FUNCTION__))
;
2131 assert (ClsIvar && "missing class ivar")(static_cast <bool> (ClsIvar && "missing class ivar"
) ? void (0) : __assert_fail ("ClsIvar && \"missing class ivar\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2131, __extension__ __PRETTY_FUNCTION__))
;
2132
2133 // First, make sure the types match.
2134 if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2135 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2136 << ImplIvar->getIdentifier()
2137 << ImplIvar->getType() << ClsIvar->getType();
2138 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2139 } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2140 ImplIvar->getBitWidthValue(Context) !=
2141 ClsIvar->getBitWidthValue(Context)) {
2142 Diag(ImplIvar->getBitWidth()->getLocStart(),
2143 diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
2144 Diag(ClsIvar->getBitWidth()->getLocStart(),
2145 diag::note_previous_definition);
2146 }
2147 // Make sure the names are identical.
2148 if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2149 Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2150 << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2151 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2152 }
2153 --numIvars;
2154 }
2155
2156 if (numIvars > 0)
2157 Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2158 else if (IVI != IVE)
2159 Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2160}
2161
2162static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
2163 ObjCMethodDecl *method,
2164 bool &IncompleteImpl,
2165 unsigned DiagID,
2166 NamedDecl *NeededFor = nullptr) {
2167 // No point warning no definition of method which is 'unavailable'.
2168 switch (method->getAvailability()) {
2169 case AR_Available:
2170 case AR_Deprecated:
2171 break;
2172
2173 // Don't warn about unavailable or not-yet-introduced methods.
2174 case AR_NotYetIntroduced:
2175 case AR_Unavailable:
2176 return;
2177 }
2178
2179 // FIXME: For now ignore 'IncompleteImpl'.
2180 // Previously we grouped all unimplemented methods under a single
2181 // warning, but some users strongly voiced that they would prefer
2182 // separate warnings. We will give that approach a try, as that
2183 // matches what we do with protocols.
2184 {
2185 const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
2186 B << method;
2187 if (NeededFor)
2188 B << NeededFor;
2189 }
2190
2191 // Issue a note to the original declaration.
2192 SourceLocation MethodLoc = method->getLocStart();
2193 if (MethodLoc.isValid())
2194 S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2195}
2196
2197/// Determines if type B can be substituted for type A. Returns true if we can
2198/// guarantee that anything that the user will do to an object of type A can
2199/// also be done to an object of type B. This is trivially true if the two
2200/// types are the same, or if B is a subclass of A. It becomes more complex
2201/// in cases where protocols are involved.
2202///
2203/// Object types in Objective-C describe the minimum requirements for an
2204/// object, rather than providing a complete description of a type. For
2205/// example, if A is a subclass of B, then B* may refer to an instance of A.
2206/// The principle of substitutability means that we may use an instance of A
2207/// anywhere that we may use an instance of B - it will implement all of the
2208/// ivars of B and all of the methods of B.
2209///
2210/// This substitutability is important when type checking methods, because
2211/// the implementation may have stricter type definitions than the interface.
2212/// The interface specifies minimum requirements, but the implementation may
2213/// have more accurate ones. For example, a method may privately accept
2214/// instances of B, but only publish that it accepts instances of A. Any
2215/// object passed to it will be type checked against B, and so will implicitly
2216/// by a valid A*. Similarly, a method may return a subclass of the class that
2217/// it is declared as returning.
2218///
2219/// This is most important when considering subclassing. A method in a
2220/// subclass must accept any object as an argument that its superclass's
2221/// implementation accepts. It may, however, accept a more general type
2222/// without breaking substitutability (i.e. you can still use the subclass
2223/// anywhere that you can use the superclass, but not vice versa). The
2224/// converse requirement applies to return types: the return type for a
2225/// subclass method must be a valid object of the kind that the superclass
2226/// advertises, but it may be specified more accurately. This avoids the need
2227/// for explicit down-casting by callers.
2228///
2229/// Note: This is a stricter requirement than for assignment.
2230static bool isObjCTypeSubstitutable(ASTContext &Context,
2231 const ObjCObjectPointerType *A,
2232 const ObjCObjectPointerType *B,
2233 bool rejectId) {
2234 // Reject a protocol-unqualified id.
2235 if (rejectId && B->isObjCIdType()) return false;
2236
2237 // If B is a qualified id, then A must also be a qualified id and it must
2238 // implement all of the protocols in B. It may not be a qualified class.
2239 // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2240 // stricter definition so it is not substitutable for id<A>.
2241 if (B->isObjCQualifiedIdType()) {
2242 return A->isObjCQualifiedIdType() &&
2243 Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
2244 QualType(B,0),
2245 false);
2246 }
2247
2248 /*
2249 // id is a special type that bypasses type checking completely. We want a
2250 // warning when it is used in one place but not another.
2251 if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2252
2253
2254 // If B is a qualified id, then A must also be a qualified id (which it isn't
2255 // if we've got this far)
2256 if (B->isObjCQualifiedIdType()) return false;
2257 */
2258
2259 // Now we know that A and B are (potentially-qualified) class types. The
2260 // normal rules for assignment apply.
2261 return Context.canAssignObjCInterfaces(A, B);
2262}
2263
2264static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2265 return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2266}
2267
2268/// Determine whether two set of Objective-C declaration qualifiers conflict.
2269static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2270 Decl::ObjCDeclQualifier y) {
2271 return (x & ~Decl::OBJC_TQ_CSNullability) !=
2272 (y & ~Decl::OBJC_TQ_CSNullability);
2273}
2274
2275static bool CheckMethodOverrideReturn(Sema &S,
2276 ObjCMethodDecl *MethodImpl,
2277 ObjCMethodDecl *MethodDecl,
2278 bool IsProtocolMethodDecl,
2279 bool IsOverridingMode,
2280 bool Warn) {
2281 if (IsProtocolMethodDecl &&
2282 objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2283 MethodImpl->getObjCDeclQualifier())) {
2284 if (Warn) {
2285 S.Diag(MethodImpl->getLocation(),
2286 (IsOverridingMode
2287 ? diag::warn_conflicting_overriding_ret_type_modifiers
2288 : diag::warn_conflicting_ret_type_modifiers))
2289 << MethodImpl->getDeclName()
2290 << MethodImpl->getReturnTypeSourceRange();
2291 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2292 << MethodDecl->getReturnTypeSourceRange();
2293 }
2294 else
2295 return false;
2296 }
2297 if (Warn && IsOverridingMode &&
2298 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2299 !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2300 MethodDecl->getReturnType(),
2301 false)) {
2302 auto nullabilityMethodImpl =
2303 *MethodImpl->getReturnType()->getNullability(S.Context);
2304 auto nullabilityMethodDecl =
2305 *MethodDecl->getReturnType()->getNullability(S.Context);
2306 S.Diag(MethodImpl->getLocation(),
2307 diag::warn_conflicting_nullability_attr_overriding_ret_types)
2308 << DiagNullabilityKind(
2309 nullabilityMethodImpl,
2310 ((MethodImpl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2311 != 0))
2312 << DiagNullabilityKind(
2313 nullabilityMethodDecl,
2314 ((MethodDecl->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2315 != 0));
2316 S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2317 }
2318
2319 if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2320 MethodDecl->getReturnType()))
2321 return true;
2322 if (!Warn)
2323 return false;
2324
2325 unsigned DiagID =
2326 IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2327 : diag::warn_conflicting_ret_types;
2328
2329 // Mismatches between ObjC pointers go into a different warning
2330 // category, and sometimes they're even completely whitelisted.
2331 if (const ObjCObjectPointerType *ImplPtrTy =
2332 MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2333 if (const ObjCObjectPointerType *IfacePtrTy =
2334 MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2335 // Allow non-matching return types as long as they don't violate
2336 // the principle of substitutability. Specifically, we permit
2337 // return types that are subclasses of the declared return type,
2338 // or that are more-qualified versions of the declared type.
2339 if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2340 return false;
2341
2342 DiagID =
2343 IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2344 : diag::warn_non_covariant_ret_types;
2345 }
2346 }
2347
2348 S.Diag(MethodImpl->getLocation(), DiagID)
2349 << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2350 << MethodImpl->getReturnType()
2351 << MethodImpl->getReturnTypeSourceRange();
2352 S.Diag(MethodDecl->getLocation(), IsOverridingMode
2353 ? diag::note_previous_declaration
2354 : diag::note_previous_definition)
2355 << MethodDecl->getReturnTypeSourceRange();
2356 return false;
2357}
2358
2359static bool CheckMethodOverrideParam(Sema &S,
2360 ObjCMethodDecl *MethodImpl,
2361 ObjCMethodDecl *MethodDecl,
2362 ParmVarDecl *ImplVar,
2363 ParmVarDecl *IfaceVar,
2364 bool IsProtocolMethodDecl,
2365 bool IsOverridingMode,
2366 bool Warn) {
2367 if (IsProtocolMethodDecl &&
2368 objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2369 IfaceVar->getObjCDeclQualifier())) {
2370 if (Warn) {
2371 if (IsOverridingMode)
2372 S.Diag(ImplVar->getLocation(),
2373 diag::warn_conflicting_overriding_param_modifiers)
2374 << getTypeRange(ImplVar->getTypeSourceInfo())
2375 << MethodImpl->getDeclName();
2376 else S.Diag(ImplVar->getLocation(),
2377 diag::warn_conflicting_param_modifiers)
2378 << getTypeRange(ImplVar->getTypeSourceInfo())
2379 << MethodImpl->getDeclName();
2380 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2381 << getTypeRange(IfaceVar->getTypeSourceInfo());
2382 }
2383 else
2384 return false;
2385 }
2386
2387 QualType ImplTy = ImplVar->getType();
2388 QualType IfaceTy = IfaceVar->getType();
2389 if (Warn && IsOverridingMode &&
2390 !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2391 !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2392 S.Diag(ImplVar->getLocation(),
2393 diag::warn_conflicting_nullability_attr_overriding_param_types)
2394 << DiagNullabilityKind(
2395 *ImplTy->getNullability(S.Context),
2396 ((ImplVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2397 != 0))
2398 << DiagNullabilityKind(
2399 *IfaceTy->getNullability(S.Context),
2400 ((IfaceVar->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2401 != 0));
2402 S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2403 }
2404 if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2405 return true;
2406
2407 if (!Warn)
2408 return false;
2409 unsigned DiagID =
2410 IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2411 : diag::warn_conflicting_param_types;
2412
2413 // Mismatches between ObjC pointers go into a different warning
2414 // category, and sometimes they're even completely whitelisted.
2415 if (const ObjCObjectPointerType *ImplPtrTy =
2416 ImplTy->getAs<ObjCObjectPointerType>()) {
2417 if (const ObjCObjectPointerType *IfacePtrTy =
2418 IfaceTy->getAs<ObjCObjectPointerType>()) {
2419 // Allow non-matching argument types as long as they don't
2420 // violate the principle of substitutability. Specifically, the
2421 // implementation must accept any objects that the superclass
2422 // accepts, however it may also accept others.
2423 if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2424 return false;
2425
2426 DiagID =
2427 IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2428 : diag::warn_non_contravariant_param_types;
2429 }
2430 }
2431
2432 S.Diag(ImplVar->getLocation(), DiagID)
2433 << getTypeRange(ImplVar->getTypeSourceInfo())
2434 << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2435 S.Diag(IfaceVar->getLocation(),
2436 (IsOverridingMode ? diag::note_previous_declaration
2437 : diag::note_previous_definition))
2438 << getTypeRange(IfaceVar->getTypeSourceInfo());
2439 return false;
2440}
2441
2442/// In ARC, check whether the conventional meanings of the two methods
2443/// match. If they don't, it's a hard error.
2444static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2445 ObjCMethodDecl *decl) {
2446 ObjCMethodFamily implFamily = impl->getMethodFamily();
2447 ObjCMethodFamily declFamily = decl->getMethodFamily();
2448 if (implFamily == declFamily) return false;
2449
2450 // Since conventions are sorted by selector, the only possibility is
2451 // that the types differ enough to cause one selector or the other
2452 // to fall out of the family.
2453 assert(implFamily == OMF_None || declFamily == OMF_None)(static_cast <bool> (implFamily == OMF_None || declFamily
== OMF_None) ? void (0) : __assert_fail ("implFamily == OMF_None || declFamily == OMF_None"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2453, __extension__ __PRETTY_FUNCTION__))
;
2454
2455 // No further diagnostics required on invalid declarations.
2456 if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2457
2458 const ObjCMethodDecl *unmatched = impl;
2459 ObjCMethodFamily family = declFamily;
2460 unsigned errorID = diag::err_arc_lost_method_convention;
2461 unsigned noteID = diag::note_arc_lost_method_convention;
2462 if (declFamily == OMF_None) {
2463 unmatched = decl;
2464 family = implFamily;
2465 errorID = diag::err_arc_gained_method_convention;
2466 noteID = diag::note_arc_gained_method_convention;
2467 }
2468
2469 // Indexes into a %select clause in the diagnostic.
2470 enum FamilySelector {
2471 F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2472 };
2473 FamilySelector familySelector = FamilySelector();
2474
2475 switch (family) {
2476 case OMF_None: llvm_unreachable("logic error, no method convention")::llvm::llvm_unreachable_internal("logic error, no method convention"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2476)
;
2477 case OMF_retain:
2478 case OMF_release:
2479 case OMF_autorelease:
2480 case OMF_dealloc:
2481 case OMF_finalize:
2482 case OMF_retainCount:
2483 case OMF_self:
2484 case OMF_initialize:
2485 case OMF_performSelector:
2486 // Mismatches for these methods don't change ownership
2487 // conventions, so we don't care.
2488 return false;
2489
2490 case OMF_init: familySelector = F_init; break;
2491 case OMF_alloc: familySelector = F_alloc; break;
2492 case OMF_copy: familySelector = F_copy; break;
2493 case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2494 case OMF_new: familySelector = F_new; break;
2495 }
2496
2497 enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2498 ReasonSelector reasonSelector;
2499
2500 // The only reason these methods don't fall within their families is
2501 // due to unusual result types.
2502 if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2503 reasonSelector = R_UnrelatedReturn;
2504 } else {
2505 reasonSelector = R_NonObjectReturn;
2506 }
2507
2508 S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2509 S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2510
2511 return true;
2512}
2513
2514void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2515 ObjCMethodDecl *MethodDecl,
2516 bool IsProtocolMethodDecl) {
2517 if (getLangOpts().ObjCAutoRefCount &&
2518 checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2519 return;
2520
2521 CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2522 IsProtocolMethodDecl, false,
2523 true);
2524
2525 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2526 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2527 EF = MethodDecl->param_end();
2528 IM != EM && IF != EF; ++IM, ++IF) {
2529 CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2530 IsProtocolMethodDecl, false, true);
2531 }
2532
2533 if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2534 Diag(ImpMethodDecl->getLocation(),
2535 diag::warn_conflicting_variadic);
2536 Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2537 }
2538}
2539
2540void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2541 ObjCMethodDecl *Overridden,
2542 bool IsProtocolMethodDecl) {
2543
2544 CheckMethodOverrideReturn(*this, Method, Overridden,
2545 IsProtocolMethodDecl, true,
2546 true);
2547
2548 for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2549 IF = Overridden->param_begin(), EM = Method->param_end(),
2550 EF = Overridden->param_end();
2551 IM != EM && IF != EF; ++IM, ++IF) {
2552 CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2553 IsProtocolMethodDecl, true, true);
2554 }
2555
2556 if (Method->isVariadic() != Overridden->isVariadic()) {
2557 Diag(Method->getLocation(),
2558 diag::warn_conflicting_overriding_variadic);
2559 Diag(Overridden->getLocation(), diag::note_previous_declaration);
2560 }
2561}
2562
2563/// WarnExactTypedMethods - This routine issues a warning if method
2564/// implementation declaration matches exactly that of its declaration.
2565void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2566 ObjCMethodDecl *MethodDecl,
2567 bool IsProtocolMethodDecl) {
2568 // don't issue warning when protocol method is optional because primary
2569 // class is not required to implement it and it is safe for protocol
2570 // to implement it.
2571 if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
2572 return;
2573 // don't issue warning when primary class's method is
2574 // depecated/unavailable.
2575 if (MethodDecl->hasAttr<UnavailableAttr>() ||
2576 MethodDecl->hasAttr<DeprecatedAttr>())
2577 return;
2578
2579 bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2580 IsProtocolMethodDecl, false, false);
2581 if (match)
2582 for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2583 IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2584 EF = MethodDecl->param_end();
2585 IM != EM && IF != EF; ++IM, ++IF) {
2586 match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2587 *IM, *IF,
2588 IsProtocolMethodDecl, false, false);
2589 if (!match)
2590 break;
2591 }
2592 if (match)
2593 match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2594 if (match)
2595 match = !(MethodDecl->isClassMethod() &&
2596 MethodDecl->getSelector() == GetNullarySelector("load", Context));
2597
2598 if (match) {
2599 Diag(ImpMethodDecl->getLocation(),
2600 diag::warn_category_method_impl_match);
2601 Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2602 << MethodDecl->getDeclName();
2603 }
2604}
2605
2606/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2607/// improve the efficiency of selector lookups and type checking by associating
2608/// with each protocol / interface / category the flattened instance tables. If
2609/// we used an immutable set to keep the table then it wouldn't add significant
2610/// memory cost and it would be handy for lookups.
2611
2612typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2613typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2614
2615static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2616 ProtocolNameSet &PNS) {
2617 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2618 PNS.insert(PDecl->getIdentifier());
2619 for (const auto *PI : PDecl->protocols())
2620 findProtocolsWithExplicitImpls(PI, PNS);
2621}
2622
2623/// Recursively populates a set with all conformed protocols in a class
2624/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2625/// attribute.
2626static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2627 ProtocolNameSet &PNS) {
2628 if (!Super)
2629 return;
2630
2631 for (const auto *I : Super->all_referenced_protocols())
2632 findProtocolsWithExplicitImpls(I, PNS);
2633
2634 findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2635}
2636
2637/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2638/// Declared in protocol, and those referenced by it.
2639static void CheckProtocolMethodDefs(Sema &S,
2640 SourceLocation ImpLoc,
2641 ObjCProtocolDecl *PDecl,
2642 bool& IncompleteImpl,
2643 const Sema::SelectorSet &InsMap,
2644 const Sema::SelectorSet &ClsMap,
2645 ObjCContainerDecl *CDecl,
2646 LazyProtocolNameSet &ProtocolsExplictImpl) {
2647 ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2648 ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2649 : dyn_cast<ObjCInterfaceDecl>(CDecl);
2650 assert (IDecl && "CheckProtocolMethodDefs - IDecl is null")(static_cast <bool> (IDecl && "CheckProtocolMethodDefs - IDecl is null"
) ? void (0) : __assert_fail ("IDecl && \"CheckProtocolMethodDefs - IDecl is null\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2650, __extension__ __PRETTY_FUNCTION__))
;
2651
2652 ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2653 ObjCInterfaceDecl *NSIDecl = nullptr;
2654
2655 // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2656 // then we should check if any class in the super class hierarchy also
2657 // conforms to this protocol, either directly or via protocol inheritance.
2658 // If so, we can skip checking this protocol completely because we
2659 // know that a parent class already satisfies this protocol.
2660 //
2661 // Note: we could generalize this logic for all protocols, and merely
2662 // add the limit on looking at the super class chain for just
2663 // specially marked protocols. This may be a good optimization. This
2664 // change is restricted to 'objc_protocol_requires_explicit_implementation'
2665 // protocols for now for controlled evaluation.
2666 if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2667 if (!ProtocolsExplictImpl) {
2668 ProtocolsExplictImpl.reset(new ProtocolNameSet);
2669 findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2670 }
2671 if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
2672 ProtocolsExplictImpl->end())
2673 return;
2674
2675 // If no super class conforms to the protocol, we should not search
2676 // for methods in the super class to implicitly satisfy the protocol.
2677 Super = nullptr;
2678 }
2679
2680 if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2681 // check to see if class implements forwardInvocation method and objects
2682 // of this class are derived from 'NSProxy' so that to forward requests
2683 // from one object to another.
2684 // Under such conditions, which means that every method possible is
2685 // implemented in the class, we should not issue "Method definition not
2686 // found" warnings.
2687 // FIXME: Use a general GetUnarySelector method for this.
2688 IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2689 Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2690 if (InsMap.count(fISelector))
2691 // Is IDecl derived from 'NSProxy'? If so, no instance methods
2692 // need be implemented in the implementation.
2693 NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2694 }
2695
2696 // If this is a forward protocol declaration, get its definition.
2697 if (!PDecl->isThisDeclarationADefinition() &&
2698 PDecl->getDefinition())
2699 PDecl = PDecl->getDefinition();
2700
2701 // If a method lookup fails locally we still need to look and see if
2702 // the method was implemented by a base class or an inherited
2703 // protocol. This lookup is slow, but occurs rarely in correct code
2704 // and otherwise would terminate in a warning.
2705
2706 // check unimplemented instance methods.
2707 if (!NSIDecl)
2708 for (auto *method : PDecl->instance_methods()) {
2709 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2710 !method->isPropertyAccessor() &&
2711 !InsMap.count(method->getSelector()) &&
2712 (!Super || !Super->lookupMethod(method->getSelector(),
2713 true /* instance */,
2714 false /* shallowCategory */,
2715 true /* followsSuper */,
2716 nullptr /* category */))) {
2717 // If a method is not implemented in the category implementation but
2718 // has been declared in its primary class, superclass,
2719 // or in one of their protocols, no need to issue the warning.
2720 // This is because method will be implemented in the primary class
2721 // or one of its super class implementation.
2722
2723 // Ugly, but necessary. Method declared in protcol might have
2724 // have been synthesized due to a property declared in the class which
2725 // uses the protocol.
2726 if (ObjCMethodDecl *MethodInClass =
2727 IDecl->lookupMethod(method->getSelector(),
2728 true /* instance */,
2729 true /* shallowCategoryLookup */,
2730 false /* followSuper */))
2731 if (C || MethodInClass->isPropertyAccessor())
2732 continue;
2733 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2734 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2735 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
2736 PDecl);
2737 }
2738 }
2739 }
2740 // check unimplemented class methods
2741 for (auto *method : PDecl->class_methods()) {
2742 if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
2743 !ClsMap.count(method->getSelector()) &&
2744 (!Super || !Super->lookupMethod(method->getSelector(),
2745 false /* class method */,
2746 false /* shallowCategoryLookup */,
2747 true /* followSuper */,
2748 nullptr /* category */))) {
2749 // See above comment for instance method lookups.
2750 if (C && IDecl->lookupMethod(method->getSelector(),
2751 false /* class */,
2752 true /* shallowCategoryLookup */,
2753 false /* followSuper */))
2754 continue;
2755
2756 unsigned DIAG = diag::warn_unimplemented_protocol_method;
2757 if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
2758 WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
2759 }
2760 }
2761 }
2762 // Check on this protocols's referenced protocols, recursively.
2763 for (auto *PI : PDecl->protocols())
2764 CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
2765 CDecl, ProtocolsExplictImpl);
2766}
2767
2768/// MatchAllMethodDeclarations - Check methods declared in interface
2769/// or protocol against those declared in their implementations.
2770///
2771void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2772 const SelectorSet &ClsMap,
2773 SelectorSet &InsMapSeen,
2774 SelectorSet &ClsMapSeen,
2775 ObjCImplDecl* IMPDecl,
2776 ObjCContainerDecl* CDecl,
2777 bool &IncompleteImpl,
2778 bool ImmediateClass,
2779 bool WarnCategoryMethodImpl) {
2780 // Check and see if instance methods in class interface have been
2781 // implemented in the implementation class. If so, their types match.
2782 for (auto *I : CDecl->instance_methods()) {
2783 if (!InsMapSeen.insert(I->getSelector()).second)
2784 continue;
2785 if (!I->isPropertyAccessor() &&
2786 !InsMap.count(I->getSelector())) {
2787 if (ImmediateClass)
2788 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2789 diag::warn_undef_method_impl);
2790 continue;
2791 } else {
2792 ObjCMethodDecl *ImpMethodDecl =
2793 IMPDecl->getInstanceMethod(I->getSelector());
2794 assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&(static_cast <bool> (CDecl->getInstanceMethod(I->
getSelector(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2795, __extension__ __PRETTY_FUNCTION__))
2795 "Expected to find the method through lookup as well")(static_cast <bool> (CDecl->getInstanceMethod(I->
getSelector(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getInstanceMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2795, __extension__ __PRETTY_FUNCTION__))
;
2796 // ImpMethodDecl may be null as in a @dynamic property.
2797 if (ImpMethodDecl) {
2798 if (!WarnCategoryMethodImpl)
2799 WarnConflictingTypedMethods(ImpMethodDecl, I,
2800 isa<ObjCProtocolDecl>(CDecl));
2801 else if (!I->isPropertyAccessor())
2802 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2803 }
2804 }
2805 }
2806
2807 // Check and see if class methods in class interface have been
2808 // implemented in the implementation class. If so, their types match.
2809 for (auto *I : CDecl->class_methods()) {
2810 if (!ClsMapSeen.insert(I->getSelector()).second)
2811 continue;
2812 if (!I->isPropertyAccessor() &&
2813 !ClsMap.count(I->getSelector())) {
2814 if (ImmediateClass)
2815 WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
2816 diag::warn_undef_method_impl);
2817 } else {
2818 ObjCMethodDecl *ImpMethodDecl =
2819 IMPDecl->getClassMethod(I->getSelector());
2820 assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&(static_cast <bool> (CDecl->getClassMethod(I->getSelector
(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2821, __extension__ __PRETTY_FUNCTION__))
2821 "Expected to find the method through lookup as well")(static_cast <bool> (CDecl->getClassMethod(I->getSelector
(), true ) && "Expected to find the method through lookup as well"
) ? void (0) : __assert_fail ("CDecl->getClassMethod(I->getSelector(), true ) && \"Expected to find the method through lookup as well\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2821, __extension__ __PRETTY_FUNCTION__))
;
2822 // ImpMethodDecl may be null as in a @dynamic property.
2823 if (ImpMethodDecl) {
2824 if (!WarnCategoryMethodImpl)
2825 WarnConflictingTypedMethods(ImpMethodDecl, I,
2826 isa<ObjCProtocolDecl>(CDecl));
2827 else if (!I->isPropertyAccessor())
2828 WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2829 }
2830 }
2831 }
2832
2833 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2834 // Also, check for methods declared in protocols inherited by
2835 // this protocol.
2836 for (auto *PI : PD->protocols())
2837 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2838 IMPDecl, PI, IncompleteImpl, false,
2839 WarnCategoryMethodImpl);
2840 }
2841
2842 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2843 // when checking that methods in implementation match their declaration,
2844 // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2845 // extension; as well as those in categories.
2846 if (!WarnCategoryMethodImpl) {
2847 for (auto *Cat : I->visible_categories())
2848 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2849 IMPDecl, Cat, IncompleteImpl,
2850 ImmediateClass && Cat->IsClassExtension(),
2851 WarnCategoryMethodImpl);
2852 } else {
2853 // Also methods in class extensions need be looked at next.
2854 for (auto *Ext : I->visible_extensions())
2855 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2856 IMPDecl, Ext, IncompleteImpl, false,
2857 WarnCategoryMethodImpl);
2858 }
2859
2860 // Check for any implementation of a methods declared in protocol.
2861 for (auto *PI : I->all_referenced_protocols())
2862 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2863 IMPDecl, PI, IncompleteImpl, false,
2864 WarnCategoryMethodImpl);
2865
2866 // FIXME. For now, we are not checking for extact match of methods
2867 // in category implementation and its primary class's super class.
2868 if (!WarnCategoryMethodImpl && I->getSuperClass())
2869 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2870 IMPDecl,
2871 I->getSuperClass(), IncompleteImpl, false);
2872 }
2873}
2874
2875/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2876/// category matches with those implemented in its primary class and
2877/// warns each time an exact match is found.
2878void Sema::CheckCategoryVsClassMethodMatches(
2879 ObjCCategoryImplDecl *CatIMPDecl) {
2880 // Get category's primary class.
2881 ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2882 if (!CatDecl)
2883 return;
2884 ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2885 if (!IDecl)
2886 return;
2887 ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2888 SelectorSet InsMap, ClsMap;
2889
2890 for (const auto *I : CatIMPDecl->instance_methods()) {
2891 Selector Sel = I->getSelector();
2892 // When checking for methods implemented in the category, skip over
2893 // those declared in category class's super class. This is because
2894 // the super class must implement the method.
2895 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2896 continue;
2897 InsMap.insert(Sel);
2898 }
2899
2900 for (const auto *I : CatIMPDecl->class_methods()) {
2901 Selector Sel = I->getSelector();
2902 if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2903 continue;
2904 ClsMap.insert(Sel);
2905 }
2906 if (InsMap.empty() && ClsMap.empty())
2907 return;
2908
2909 SelectorSet InsMapSeen, ClsMapSeen;
2910 bool IncompleteImpl = false;
2911 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912 CatIMPDecl, IDecl,
2913 IncompleteImpl, false,
2914 true /*WarnCategoryMethodImpl*/);
2915}
2916
2917void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2918 ObjCContainerDecl* CDecl,
2919 bool IncompleteImpl) {
2920 SelectorSet InsMap;
2921 // Check and see if instance methods in class interface have been
2922 // implemented in the implementation class.
2923 for (const auto *I : IMPDecl->instance_methods())
2924 InsMap.insert(I->getSelector());
2925
2926 // Add the selectors for getters/setters of @dynamic properties.
2927 for (const auto *PImpl : IMPDecl->property_impls()) {
2928 // We only care about @dynamic implementations.
2929 if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2930 continue;
2931
2932 const auto *P = PImpl->getPropertyDecl();
2933 if (!P) continue;
2934
2935 InsMap.insert(P->getGetterName());
2936 if (!P->getSetterName().isNull())
2937 InsMap.insert(P->getSetterName());
2938 }
2939
2940 // Check and see if properties declared in the interface have either 1)
2941 // an implementation or 2) there is a @synthesize/@dynamic implementation
2942 // of the property in the @implementation.
2943 if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
2944 bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
2945 LangOpts.ObjCRuntime.isNonFragile() &&
2946 !IDecl->isObjCRequiresPropertyDefs();
2947 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
2948 }
2949
2950 // Diagnose null-resettable synthesized setters.
2951 diagnoseNullResettableSynthesizedSetters(IMPDecl);
2952
2953 SelectorSet ClsMap;
2954 for (const auto *I : IMPDecl->class_methods())
2955 ClsMap.insert(I->getSelector());
2956
2957 // Check for type conflict of methods declared in a class/protocol and
2958 // its implementation; if any.
2959 SelectorSet InsMapSeen, ClsMapSeen;
2960 MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2961 IMPDecl, CDecl,
2962 IncompleteImpl, true);
2963
2964 // check all methods implemented in category against those declared
2965 // in its primary class.
2966 if (ObjCCategoryImplDecl *CatDecl =
2967 dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
2968 CheckCategoryVsClassMethodMatches(CatDecl);
2969
2970 // Check the protocol list for unimplemented methods in the @implementation
2971 // class.
2972 // Check and see if class methods in class interface have been
2973 // implemented in the implementation class.
2974
2975 LazyProtocolNameSet ExplicitImplProtocols;
2976
2977 if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2978 for (auto *PI : I->all_referenced_protocols())
2979 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
2980 InsMap, ClsMap, I, ExplicitImplProtocols);
2981 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2982 // For extended class, unimplemented methods in its protocols will
2983 // be reported in the primary class.
2984 if (!C->IsClassExtension()) {
2985 for (auto *P : C->protocols())
2986 CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2987 IncompleteImpl, InsMap, ClsMap, CDecl,
2988 ExplicitImplProtocols);
2989 DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2990 /*SynthesizeProperties=*/false);
2991 }
2992 } else
2993 llvm_unreachable("invalid ObjCContainerDecl type.")::llvm::llvm_unreachable_internal("invalid ObjCContainerDecl type."
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 2993)
;
2994}
2995
2996Sema::DeclGroupPtrTy
2997Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2998 IdentifierInfo **IdentList,
2999 SourceLocation *IdentLocs,
3000 ArrayRef<ObjCTypeParamList *> TypeParamLists,
3001 unsigned NumElts) {
3002 SmallVector<Decl *, 8> DeclsInGroup;
3003 for (unsigned i = 0; i != NumElts; ++i) {
3004 // Check for another declaration kind with the same name.
3005 NamedDecl *PrevDecl
3006 = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3007 LookupOrdinaryName, forRedeclarationInCurContext());
3008 if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3009 // GCC apparently allows the following idiom:
3010 //
3011 // typedef NSObject < XCElementTogglerP > XCElementToggler;
3012 // @class XCElementToggler;
3013 //
3014 // Here we have chosen to ignore the forward class declaration
3015 // with a warning. Since this is the implied behavior.
3016 TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3017 if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3018 Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3019 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3020 } else {
3021 // a forward class declaration matching a typedef name of a class refers
3022 // to the underlying class. Just ignore the forward class with a warning
3023 // as this will force the intended behavior which is to lookup the
3024 // typedef name.
3025 if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3026 Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3027 << IdentList[i];
3028 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3029 continue;
3030 }
3031 }
3032 }
3033
3034 // Create a declaration to describe this forward declaration.
3035 ObjCInterfaceDecl *PrevIDecl
3036 = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3037
3038 IdentifierInfo *ClassName = IdentList[i];
3039 if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3040 // A previous decl with a different name is because of
3041 // @compatibility_alias, for example:
3042 // \code
3043 // @class NewImage;
3044 // @compatibility_alias OldImage NewImage;
3045 // \endcode
3046 // A lookup for 'OldImage' will return the 'NewImage' decl.
3047 //
3048 // In such a case use the real declaration name, instead of the alias one,
3049 // otherwise we will break IdentifierResolver and redecls-chain invariants.
3050 // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3051 // has been aliased.
3052 ClassName = PrevIDecl->getIdentifier();
3053 }
3054
3055 // If this forward declaration has type parameters, compare them with the
3056 // type parameters of the previous declaration.
3057 ObjCTypeParamList *TypeParams = TypeParamLists[i];
3058 if (PrevIDecl && TypeParams) {
3059 if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3060 // Check for consistency with the previous declaration.
3061 if (checkTypeParamListConsistency(
3062 *this, PrevTypeParams, TypeParams,
3063 TypeParamListContext::ForwardDeclaration)) {
3064 TypeParams = nullptr;
3065 }
3066 } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3067 // The @interface does not have type parameters. Complain.
3068 Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3069 << ClassName
3070 << TypeParams->getSourceRange();
3071 Diag(Def->getLocation(), diag::note_defined_here)
3072 << ClassName;
3073
3074 TypeParams = nullptr;
3075 }
3076 }
3077
3078 ObjCInterfaceDecl *IDecl
3079 = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3080 ClassName, TypeParams, PrevIDecl,
3081 IdentLocs[i]);
3082 IDecl->setAtEndRange(IdentLocs[i]);
3083
3084 PushOnScopeChains(IDecl, TUScope);
3085 CheckObjCDeclScope(IDecl);
3086 DeclsInGroup.push_back(IDecl);
3087 }
3088
3089 return BuildDeclaratorGroup(DeclsInGroup);
3090}
3091
3092static bool tryMatchRecordTypes(ASTContext &Context,
3093 Sema::MethodMatchStrategy strategy,
3094 const Type *left, const Type *right);
3095
3096static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3097 QualType leftQT, QualType rightQT) {
3098 const Type *left =
3099 Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3100 const Type *right =
3101 Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3102
3103 if (left == right) return true;
3104
3105 // If we're doing a strict match, the types have to match exactly.
3106 if (strategy == Sema::MMS_strict) return false;
3107
3108 if (left->isIncompleteType() || right->isIncompleteType()) return false;
3109
3110 // Otherwise, use this absurdly complicated algorithm to try to
3111 // validate the basic, low-level compatibility of the two types.
3112
3113 // As a minimum, require the sizes and alignments to match.
3114 TypeInfo LeftTI = Context.getTypeInfo(left);
3115 TypeInfo RightTI = Context.getTypeInfo(right);
3116 if (LeftTI.Width != RightTI.Width)
3117 return false;
3118
3119 if (LeftTI.Align != RightTI.Align)
3120 return false;
3121
3122 // Consider all the kinds of non-dependent canonical types:
3123 // - functions and arrays aren't possible as return and parameter types
3124
3125 // - vector types of equal size can be arbitrarily mixed
3126 if (isa<VectorType>(left)) return isa<VectorType>(right);
3127 if (isa<VectorType>(right)) return false;
3128
3129 // - references should only match references of identical type
3130 // - structs, unions, and Objective-C objects must match more-or-less
3131 // exactly
3132 // - everything else should be a scalar
3133 if (!left->isScalarType() || !right->isScalarType())
3134 return tryMatchRecordTypes(Context, strategy, left, right);
3135
3136 // Make scalars agree in kind, except count bools as chars, and group
3137 // all non-member pointers together.
3138 Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3139 Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3140 if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3141 if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3142 if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3143 leftSK = Type::STK_ObjCObjectPointer;
3144 if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3145 rightSK = Type::STK_ObjCObjectPointer;
3146
3147 // Note that data member pointers and function member pointers don't
3148 // intermix because of the size differences.
3149
3150 return (leftSK == rightSK);
3151}
3152
3153static bool tryMatchRecordTypes(ASTContext &Context,
3154 Sema::MethodMatchStrategy strategy,
3155 const Type *lt, const Type *rt) {
3156 assert(lt && rt && lt != rt)(static_cast <bool> (lt && rt && lt != rt
) ? void (0) : __assert_fail ("lt && rt && lt != rt"
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3156, __extension__ __PRETTY_FUNCTION__))
;
3157
3158 if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3159 RecordDecl *left = cast<RecordType>(lt)->getDecl();
3160 RecordDecl *right = cast<RecordType>(rt)->getDecl();
3161
3162 // Require union-hood to match.
3163 if (left->isUnion() != right->isUnion()) return false;
3164
3165 // Require an exact match if either is non-POD.
3166 if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3167 (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3168 return false;
3169
3170 // Require size and alignment to match.
3171 TypeInfo LeftTI = Context.getTypeInfo(lt);
3172 TypeInfo RightTI = Context.getTypeInfo(rt);
3173 if (LeftTI.Width != RightTI.Width)
3174 return false;
3175
3176 if (LeftTI.Align != RightTI.Align)
3177 return false;
3178
3179 // Require fields to match.
3180 RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3181 RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3182 for (; li != le && ri != re; ++li, ++ri) {
3183 if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3184 return false;
3185 }
3186 return (li == le && ri == re);
3187}
3188
3189/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3190/// returns true, or false, accordingly.
3191/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3192bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3193 const ObjCMethodDecl *right,
3194 MethodMatchStrategy strategy) {
3195 if (!matchTypes(Context, strategy, left->getReturnType(),
3196 right->getReturnType()))
3197 return false;
3198
3199 // If either is hidden, it is not considered to match.
3200 if (left->isHidden() || right->isHidden())
3201 return false;
3202
3203 if (getLangOpts().ObjCAutoRefCount &&
3204 (left->hasAttr<NSReturnsRetainedAttr>()
3205 != right->hasAttr<NSReturnsRetainedAttr>() ||
3206 left->hasAttr<NSConsumesSelfAttr>()
3207 != right->hasAttr<NSConsumesSelfAttr>()))
3208 return false;
3209
3210 ObjCMethodDecl::param_const_iterator
3211 li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3212 re = right->param_end();
3213
3214 for (; li != le && ri != re; ++li, ++ri) {
3215 assert(ri != right->param_end() && "Param mismatch")(static_cast <bool> (ri != right->param_end() &&
"Param mismatch") ? void (0) : __assert_fail ("ri != right->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3215, __extension__ __PRETTY_FUNCTION__))
;
3216 const ParmVarDecl *lparm = *li, *rparm = *ri;
3217
3218 if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3219 return false;
3220
3221 if (getLangOpts().ObjCAutoRefCount &&
3222 lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3223 return false;
3224 }
3225 return true;
3226}
3227
3228static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3229 ObjCMethodDecl *MethodInList) {
3230 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3231 auto *MethodInListProtocol =
3232 dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3233 // If this method belongs to a protocol but the method in list does not, or
3234 // vice versa, we say the context is not the same.
3235 if ((MethodProtocol && !MethodInListProtocol) ||
3236 (!MethodProtocol && MethodInListProtocol))
3237 return false;
3238
3239 if (MethodProtocol && MethodInListProtocol)
3240 return true;
3241
3242 ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3243 ObjCInterfaceDecl *MethodInListInterface =
3244 MethodInList->getClassInterface();
3245 return MethodInterface == MethodInListInterface;
3246}
3247
3248void Sema::addMethodToGlobalList(ObjCMethodList *List,
3249 ObjCMethodDecl *Method) {
3250 // Record at the head of the list whether there were 0, 1, or >= 2 methods
3251 // inside categories.
3252 if (ObjCCategoryDecl *CD =
3253 dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3254 if (!CD->IsClassExtension() && List->getBits() < 2)
3255 List->setBits(List->getBits() + 1);
3256
3257 // If the list is empty, make it a singleton list.
3258 if (List->getMethod() == nullptr) {
3259 List->setMethod(Method);
3260 List->setNext(nullptr);
3261 return;
3262 }
3263
3264 // We've seen a method with this name, see if we have already seen this type
3265 // signature.
3266 ObjCMethodList *Previous = List;
3267 ObjCMethodList *ListWithSameDeclaration = nullptr;
3268 for (; List; Previous = List, List = List->getNext()) {
3269 // If we are building a module, keep all of the methods.
3270 if (getLangOpts().isCompilingModule())
3271 continue;
3272
3273 bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3274 List->getMethod());
3275 // Looking for method with a type bound requires the correct context exists.
3276 // We need to insert a method into the list if the context is different.
3277 // If the method's declaration matches the list
3278 // a> the method belongs to a different context: we need to insert it, in
3279 // order to emit the availability message, we need to prioritize over
3280 // availability among the methods with the same declaration.
3281 // b> the method belongs to the same context: there is no need to insert a
3282 // new entry.
3283 // If the method's declaration does not match the list, we insert it to the
3284 // end.
3285 if (!SameDeclaration ||
3286 !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3287 // Even if two method types do not match, we would like to say
3288 // there is more than one declaration so unavailability/deprecated
3289 // warning is not too noisy.
3290 if (!Method->isDefined())
3291 List->setHasMoreThanOneDecl(true);
3292
3293 // For methods with the same declaration, the one that is deprecated
3294 // should be put in the front for better diagnostics.
3295 if (Method->isDeprecated() && SameDeclaration &&
3296 !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3297 ListWithSameDeclaration = List;
3298
3299 if (Method->isUnavailable() && SameDeclaration &&
3300 !ListWithSameDeclaration &&
3301 List->getMethod()->getAvailability() < AR_Deprecated)
3302 ListWithSameDeclaration = List;
3303 continue;
3304 }
3305
3306 ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3307
3308 // Propagate the 'defined' bit.
3309 if (Method->isDefined())
3310 PrevObjCMethod->setDefined(true);
3311 else {
3312 // Objective-C doesn't allow an @interface for a class after its
3313 // @implementation. So if Method is not defined and there already is
3314 // an entry for this type signature, Method has to be for a different
3315 // class than PrevObjCMethod.
3316 List->setHasMoreThanOneDecl(true);
3317 }
3318
3319 // If a method is deprecated, push it in the global pool.
3320 // This is used for better diagnostics.
3321 if (Method->isDeprecated()) {
3322 if (!PrevObjCMethod->isDeprecated())
3323 List->setMethod(Method);
3324 }
3325 // If the new method is unavailable, push it into global pool
3326 // unless previous one is deprecated.
3327 if (Method->isUnavailable()) {
3328 if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3329 List->setMethod(Method);
3330 }
3331
3332 return;
3333 }
3334
3335 // We have a new signature for an existing method - add it.
3336 // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3337 ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3338
3339 // We insert it right before ListWithSameDeclaration.
3340 if (ListWithSameDeclaration) {
3341 auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3342 // FIXME: should we clear the other bits in ListWithSameDeclaration?
3343 ListWithSameDeclaration->setMethod(Method);
3344 ListWithSameDeclaration->setNext(List);
3345 return;
3346 }
3347
3348 Previous->setNext(new (Mem) ObjCMethodList(Method));
3349}
3350
3351/// \brief Read the contents of the method pool for a given selector from
3352/// external storage.
3353void Sema::ReadMethodPool(Selector Sel) {
3354 assert(ExternalSource && "We need an external AST source")(static_cast <bool> (ExternalSource && "We need an external AST source"
) ? void (0) : __assert_fail ("ExternalSource && \"We need an external AST source\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3354, __extension__ __PRETTY_FUNCTION__))
;
3355 ExternalSource->ReadMethodPool(Sel);
3356}
3357
3358void Sema::updateOutOfDateSelector(Selector Sel) {
3359 if (!ExternalSource)
3360 return;
3361 ExternalSource->updateOutOfDateSelector(Sel);
3362}
3363
3364void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3365 bool instance) {
3366 // Ignore methods of invalid containers.
3367 if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3368 return;
3369
3370 if (ExternalSource)
3371 ReadMethodPool(Method->getSelector());
3372
3373 GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3374 if (Pos == MethodPool.end())
3375 Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
3376 GlobalMethods())).first;
3377
3378 Method->setDefined(impl);
3379
3380 ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3381 addMethodToGlobalList(&Entry, Method);
3382}
3383
3384/// Determines if this is an "acceptable" loose mismatch in the global
3385/// method pool. This exists mostly as a hack to get around certain
3386/// global mismatches which we can't afford to make warnings / errors.
3387/// Really, what we want is a way to take a method out of the global
3388/// method pool.
3389static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3390 ObjCMethodDecl *other) {
3391 if (!chosen->isInstanceMethod())
3392 return false;
3393
3394 Selector sel = chosen->getSelector();
3395 if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3396 return false;
3397
3398 // Don't complain about mismatches for -length if the method we
3399 // chose has an integral result type.
3400 return (chosen->getReturnType()->isIntegerType());
3401}
3402
3403/// Return true if the given method is wthin the type bound.
3404static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3405 const ObjCObjectType *TypeBound) {
3406 if (!TypeBound)
3407 return true;
3408
3409 if (TypeBound->isObjCId())
3410 // FIXME: should we handle the case of bounding to id<A, B> differently?
3411 return true;
3412
3413 auto *BoundInterface = TypeBound->getInterface();
3414 assert(BoundInterface && "unexpected object type!")(static_cast <bool> (BoundInterface && "unexpected object type!"
) ? void (0) : __assert_fail ("BoundInterface && \"unexpected object type!\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3414, __extension__ __PRETTY_FUNCTION__))
;
3415
3416 // Check if the Method belongs to a protocol. We should allow any method
3417 // defined in any protocol, because any subclass could adopt the protocol.
3418 auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3419 if (MethodProtocol) {
3420 return true;
3421 }
3422
3423 // If the Method belongs to a class, check if it belongs to the class
3424 // hierarchy of the class bound.
3425 if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3426 // We allow methods declared within classes that are part of the hierarchy
3427 // of the class bound (superclass of, subclass of, or the same as the class
3428 // bound).
3429 return MethodInterface == BoundInterface ||
3430 MethodInterface->isSuperClassOf(BoundInterface) ||
3431 BoundInterface->isSuperClassOf(MethodInterface);
3432 }
3433 llvm_unreachable("unknow method context")::llvm::llvm_unreachable_internal("unknow method context", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3433)
;
3434}
3435
3436/// We first select the type of the method: Instance or Factory, then collect
3437/// all methods with that type.
3438bool Sema::CollectMultipleMethodsInGlobalPool(
3439 Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3440 bool InstanceFirst, bool CheckTheOther,
3441 const ObjCObjectType *TypeBound) {
3442 if (ExternalSource)
3443 ReadMethodPool(Sel);
3444
3445 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3446 if (Pos == MethodPool.end())
3447 return false;
3448
3449 // Gather the non-hidden methods.
3450 ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3451 Pos->second.second;
3452 for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3453 if (M->getMethod() && !M->getMethod()->isHidden()) {
3454 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3455 Methods.push_back(M->getMethod());
3456 }
3457
3458 // Return if we find any method with the desired kind.
3459 if (!Methods.empty())
3460 return Methods.size() > 1;
3461
3462 if (!CheckTheOther)
3463 return false;
3464
3465 // Gather the other kind.
3466 ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3467 Pos->second.first;
3468 for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3469 if (M->getMethod() && !M->getMethod()->isHidden()) {
3470 if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3471 Methods.push_back(M->getMethod());
3472 }
3473
3474 return Methods.size() > 1;
3475}
3476
3477bool Sema::AreMultipleMethodsInGlobalPool(
3478 Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3479 bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3480 // Diagnose finding more than one method in global pool.
3481 SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3482 FilteredMethods.push_back(BestMethod);
3483
3484 for (auto *M : Methods)
3485 if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3486 FilteredMethods.push_back(M);
3487
3488 if (FilteredMethods.size() > 1)
3489 DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3490 receiverIdOrClass);
3491
3492 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3493 // Test for no method in the pool which should not trigger any warning by
3494 // caller.
3495 if (Pos == MethodPool.end())
3496 return true;
3497 ObjCMethodList &MethList =
3498 BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3499 return MethList.hasMoreThanOneDecl();
3500}
3501
3502ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3503 bool receiverIdOrClass,
3504 bool instance) {
3505 if (ExternalSource)
3506 ReadMethodPool(Sel);
3507
3508 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3509 if (Pos == MethodPool.end())
3510 return nullptr;
3511
3512 // Gather the non-hidden methods.
3513 ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3514 SmallVector<ObjCMethodDecl *, 4> Methods;
3515 for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3516 if (M->getMethod() && !M->getMethod()->isHidden())
3517 return M->getMethod();
3518 }
3519 return nullptr;
3520}
3521
3522void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3523 Selector Sel, SourceRange R,
3524 bool receiverIdOrClass) {
3525 // We found multiple methods, so we may have to complain.
3526 bool issueDiagnostic = false, issueError = false;
3527
3528 // We support a warning which complains about *any* difference in
3529 // method signature.
3530 bool strictSelectorMatch =
3531 receiverIdOrClass &&
3532 !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3533 if (strictSelectorMatch) {
3534 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3535 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3536 issueDiagnostic = true;
3537 break;
3538 }
3539 }
3540 }
3541
3542 // If we didn't see any strict differences, we won't see any loose
3543 // differences. In ARC, however, we also need to check for loose
3544 // mismatches, because most of them are errors.
3545 if (!strictSelectorMatch ||
3546 (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3547 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3548 // This checks if the methods differ in type mismatch.
3549 if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3550 !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3551 issueDiagnostic = true;
3552 if (getLangOpts().ObjCAutoRefCount)
3553 issueError = true;
3554 break;
3555 }
3556 }
3557
3558 if (issueDiagnostic) {
3559 if (issueError)
3560 Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3561 else if (strictSelectorMatch)
3562 Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3563 else
3564 Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3565
3566 Diag(Methods[0]->getLocStart(),
3567 issueError ? diag::note_possibility : diag::note_using)
3568 << Methods[0]->getSourceRange();
3569 for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3570 Diag(Methods[I]->getLocStart(), diag::note_also_found)
3571 << Methods[I]->getSourceRange();
3572 }
3573 }
3574}
3575
3576ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3577 GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3578 if (Pos == MethodPool.end())
3579 return nullptr;
3580
3581 GlobalMethods &Methods = Pos->second;
3582 for (const ObjCMethodList *Method = &Methods.first; Method;
3583 Method = Method->getNext())
3584 if (Method->getMethod() &&
3585 (Method->getMethod()->isDefined() ||
3586 Method->getMethod()->isPropertyAccessor()))
3587 return Method->getMethod();
3588
3589 for (const ObjCMethodList *Method = &Methods.second; Method;
3590 Method = Method->getNext())
3591 if (Method->getMethod() &&
3592 (Method->getMethod()->isDefined() ||
3593 Method->getMethod()->isPropertyAccessor()))
3594 return Method->getMethod();
3595 return nullptr;
3596}
3597
3598static void
3599HelperSelectorsForTypoCorrection(
3600 SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3601 StringRef Typo, const ObjCMethodDecl * Method) {
3602 const unsigned MaxEditDistance = 1;
3603 unsigned BestEditDistance = MaxEditDistance + 1;
3604 std::string MethodName = Method->getSelector().getAsString();
3605
3606 unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3607 if (MinPossibleEditDistance > 0 &&
3608 Typo.size() / MinPossibleEditDistance < 1)
3609 return;
3610 unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3611 if (EditDistance > MaxEditDistance)
3612 return;
3613 if (EditDistance == BestEditDistance)
3614 BestMethod.push_back(Method);
3615 else if (EditDistance < BestEditDistance) {
3616 BestMethod.clear();
3617 BestMethod.push_back(Method);
3618 }
3619}
3620
3621static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3622 QualType ObjectType) {
3623 if (ObjectType.isNull())
3624 return true;
3625 if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3626 return true;
3627 return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3628 nullptr;
3629}
3630
3631const ObjCMethodDecl *
3632Sema::SelectorsForTypoCorrection(Selector Sel,
3633 QualType ObjectType) {
3634 unsigned NumArgs = Sel.getNumArgs();
3635 SmallVector<const ObjCMethodDecl *, 8> Methods;
3636 bool ObjectIsId = true, ObjectIsClass = true;
3637 if (ObjectType.isNull())
3638 ObjectIsId = ObjectIsClass = false;
3639 else if (!ObjectType->isObjCObjectPointerType())
3640 return nullptr;
3641 else if (const ObjCObjectPointerType *ObjCPtr =
3642 ObjectType->getAsObjCInterfacePointerType()) {
3643 ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3644 ObjectIsId = ObjectIsClass = false;
3645 }
3646 else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3647 ObjectIsClass = false;
3648 else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3649 ObjectIsId = false;
3650 else
3651 return nullptr;
3652
3653 for (GlobalMethodPool::iterator b = MethodPool.begin(),
3654 e = MethodPool.end(); b != e; b++) {
3655 // instance methods
3656 for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3657 if (M->getMethod() &&
3658 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3659 (M->getMethod()->getSelector() != Sel)) {
3660 if (ObjectIsId)
3661 Methods.push_back(M->getMethod());
3662 else if (!ObjectIsClass &&
3663 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3664 ObjectType))
3665 Methods.push_back(M->getMethod());
3666 }
3667 // class methods
3668 for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3669 if (M->getMethod() &&
3670 (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3671 (M->getMethod()->getSelector() != Sel)) {
3672 if (ObjectIsClass)
3673 Methods.push_back(M->getMethod());
3674 else if (!ObjectIsId &&
3675 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3676 ObjectType))
3677 Methods.push_back(M->getMethod());
3678 }
3679 }
3680
3681 SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3682 for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3683 HelperSelectorsForTypoCorrection(SelectedMethods,
3684 Sel.getAsString(), Methods[i]);
3685 }
3686 return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3687}
3688
3689/// DiagnoseDuplicateIvars -
3690/// Check for duplicate ivars in the entire class at the start of
3691/// \@implementation. This becomes necesssary because class extension can
3692/// add ivars to a class in random order which will not be known until
3693/// class's \@implementation is seen.
3694void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3695 ObjCInterfaceDecl *SID) {
3696 for (auto *Ivar : ID->ivars()) {
3697 if (Ivar->isInvalidDecl())
3698 continue;
3699 if (IdentifierInfo *II = Ivar->getIdentifier()) {
3700 ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3701 if (prevIvar) {
3702 Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3703 Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3704 Ivar->setInvalidDecl();
3705 }
3706 }
3707 }
3708}
3709
3710/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3711static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3712 if (S.getLangOpts().ObjCWeak) return;
3713
3714 for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3715 ivar; ivar = ivar->getNextIvar()) {
3716 if (ivar->isInvalidDecl()) continue;
3717 if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3718 if (S.getLangOpts().ObjCWeakRuntime) {
3719 S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3720 } else {
3721 S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3722 }
3723 }
3724 }
3725}
3726
3727/// Diagnose attempts to use flexible array member with retainable object type.
3728static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3729 ObjCInterfaceDecl *ID) {
3730 if (!S.getLangOpts().ObjCAutoRefCount)
3731 return;
3732
3733 for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3734 ivar = ivar->getNextIvar()) {
3735 if (ivar->isInvalidDecl())
3736 continue;
3737 QualType IvarTy = ivar->getType();
3738 if (IvarTy->isIncompleteArrayType() &&
3739 (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3740 IvarTy->isObjCLifetimeType()) {
3741 S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3742 ivar->setInvalidDecl();
3743 }
3744 }
3745}
3746
3747Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3748 switch (CurContext->getDeclKind()) {
3749 case Decl::ObjCInterface:
3750 return Sema::OCK_Interface;
3751 case Decl::ObjCProtocol:
3752 return Sema::OCK_Protocol;
3753 case Decl::ObjCCategory:
3754 if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3755 return Sema::OCK_ClassExtension;
3756 return Sema::OCK_Category;
3757 case Decl::ObjCImplementation:
3758 return Sema::OCK_Implementation;
3759 case Decl::ObjCCategoryImpl:
3760 return Sema::OCK_CategoryImplementation;
3761
3762 default:
3763 return Sema::OCK_None;
3764 }
3765}
3766
3767static bool IsVariableSizedType(QualType T) {
3768 if (T->isIncompleteArrayType())
3769 return true;
3770 const auto *RecordTy = T->getAs<RecordType>();
3771 return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3772}
3773
3774static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3775 ObjCInterfaceDecl *IntfDecl = nullptr;
3776 ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3777 ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3778 if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3779 Ivars = IntfDecl->ivars();
3780 } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3781 IntfDecl = ImplDecl->getClassInterface();
3782 Ivars = ImplDecl->ivars();
3783 } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3784 if (CategoryDecl->IsClassExtension()) {
3785 IntfDecl = CategoryDecl->getClassInterface();
3786 Ivars = CategoryDecl->ivars();
3787 }
3788 }
3789
3790 // Check if variable sized ivar is in interface and visible to subclasses.
3791 if (!isa<ObjCInterfaceDecl>(OCD)) {
3792 for (auto ivar : Ivars) {
3793 if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3794 S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3795 << ivar->getDeclName() << ivar->getType();
3796 }
3797 }
3798 }
3799
3800 // Subsequent checks require interface decl.
3801 if (!IntfDecl)
3802 return;
3803
3804 // Check if variable sized ivar is followed by another ivar.
3805 for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3806 ivar = ivar->getNextIvar()) {
3807 if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3808 continue;
3809 QualType IvarTy = ivar->getType();
3810 bool IsInvalidIvar = false;
3811 if (IvarTy->isIncompleteArrayType()) {
3812 S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3813 << ivar->getDeclName() << IvarTy
3814 << TTK_Class; // Use "class" for Obj-C.
3815 IsInvalidIvar = true;
3816 } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3817 if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3818 S.Diag(ivar->getLocation(),
3819 diag::err_objc_variable_sized_type_not_at_end)
3820 << ivar->getDeclName() << IvarTy;
3821 IsInvalidIvar = true;
3822 }
3823 }
3824 if (IsInvalidIvar) {
3825 S.Diag(ivar->getNextIvar()->getLocation(),
3826 diag::note_next_ivar_declaration)
3827 << ivar->getNextIvar()->getSynthesize();
3828 ivar->setInvalidDecl();
3829 }
3830 }
3831
3832 // Check if ObjC container adds ivars after variable sized ivar in superclass.
3833 // Perform the check only if OCD is the first container to declare ivars to
3834 // avoid multiple warnings for the same ivar.
3835 ObjCIvarDecl *FirstIvar =
3836 (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3837 if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3838 const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3839 while (SuperClass && SuperClass->ivar_empty())
3840 SuperClass = SuperClass->getSuperClass();
3841 if (SuperClass) {
3842 auto IvarIter = SuperClass->ivar_begin();
3843 std::advance(IvarIter, SuperClass->ivar_size() - 1);
3844 const ObjCIvarDecl *LastIvar = *IvarIter;
3845 if (IsVariableSizedType(LastIvar->getType())) {
3846 S.Diag(FirstIvar->getLocation(),
3847 diag::warn_superclass_variable_sized_type_not_at_end)
3848 << FirstIvar->getDeclName() << LastIvar->getDeclName()
3849 << LastIvar->getType() << SuperClass->getDeclName();
3850 S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3851 << LastIvar->getDeclName();
3852 }
3853 }
3854 }
3855}
3856
3857// Note: For class/category implementations, allMethods is always null.
3858Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3859 ArrayRef<DeclGroupPtrTy> allTUVars) {
3860 if (getObjCContainerKind() == Sema::OCK_None)
3861 return nullptr;
3862
3863 assert(AtEnd.isValid() && "Invalid location for '@end'")(static_cast <bool> (AtEnd.isValid() && "Invalid location for '@end'"
) ? void (0) : __assert_fail ("AtEnd.isValid() && \"Invalid location for '@end'\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 3863, __extension__ __PRETTY_FUNCTION__))
;
3864
3865 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3866 Decl *ClassDecl = cast<Decl>(OCD);
3867
3868 bool isInterfaceDeclKind =
3869 isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3870 || isa<ObjCProtocolDecl>(ClassDecl);
3871 bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3872
3873 // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
3874 llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
3875 llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
3876
3877 for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
3878 ObjCMethodDecl *Method =
3879 cast_or_null<ObjCMethodDecl>(allMethods[i]);
3880
3881 if (!Method) continue; // Already issued a diagnostic.
3882 if (Method->isInstanceMethod()) {
3883 /// Check for instance method of the same name with incompatible types
3884 const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
3885 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3886 : false;
3887 if ((isInterfaceDeclKind && PrevMethod && !match)
3888 || (checkIdenticalMethods && match)) {
3889 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3890 << Method->getDeclName();
3891 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3892 Method->setInvalidDecl();
3893 } else {
3894 if (PrevMethod) {
3895 Method->setAsRedeclaration(PrevMethod);
3896 if (!Context.getSourceManager().isInSystemHeader(
3897 Method->getLocation()))
3898 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3899 << Method->getDeclName();
3900 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3901 }
3902 InsMap[Method->getSelector()] = Method;
3903 /// The following allows us to typecheck messages to "id".
3904 AddInstanceMethodToGlobalPool(Method);
3905 }
3906 } else {
3907 /// Check for class method of the same name with incompatible types
3908 const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
3909 bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
3910 : false;
3911 if ((isInterfaceDeclKind && PrevMethod && !match)
3912 || (checkIdenticalMethods && match)) {
3913 Diag(Method->getLocation(), diag::err_duplicate_method_decl)
3914 << Method->getDeclName();
3915 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3916 Method->setInvalidDecl();
3917 } else {
3918 if (PrevMethod) {
3919 Method->setAsRedeclaration(PrevMethod);
3920 if (!Context.getSourceManager().isInSystemHeader(
3921 Method->getLocation()))
3922 Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
3923 << Method->getDeclName();
3924 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3925 }
3926 ClsMap[Method->getSelector()] = Method;
3927 AddFactoryMethodToGlobalPool(Method);
3928 }
3929 }
3930 }
3931 if (isa<ObjCInterfaceDecl>(ClassDecl)) {
3932 // Nothing to do here.
3933 } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
3934 // Categories are used to extend the class by declaring new methods.
3935 // By the same token, they are also used to add new properties. No
3936 // need to compare the added property to those in the class.
3937
3938 if (C->IsClassExtension()) {
3939 ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
3940 DiagnoseClassExtensionDupMethods(C, CCPrimary);
3941 }
3942 }
3943 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
3944 if (CDecl->getIdentifier())
3945 // ProcessPropertyDecl is responsible for diagnosing conflicts with any
3946 // user-defined setter/getter. It also synthesizes setter/getter methods
3947 // and adds them to the DeclContext and global method pools.
3948 for (auto *I : CDecl->properties())
3949 ProcessPropertyDecl(I);
3950 CDecl->setAtEndRange(AtEnd);
3951 }
3952 if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
3953 IC->setAtEndRange(AtEnd);
3954 if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
3955 // Any property declared in a class extension might have user
3956 // declared setter or getter in current class extension or one
3957 // of the other class extensions. Mark them as synthesized as
3958 // property will be synthesized when property with same name is
3959 // seen in the @implementation.
3960 for (const auto *Ext : IDecl->visible_extensions()) {
3961 for (const auto *Property : Ext->instance_properties()) {
3962 // Skip over properties declared @dynamic
3963 if (const ObjCPropertyImplDecl *PIDecl
3964 = IC->FindPropertyImplDecl(Property->getIdentifier(),
3965 Property->getQueryKind()))
3966 if (PIDecl->getPropertyImplementation()
3967 == ObjCPropertyImplDecl::Dynamic)
3968 continue;
3969
3970 for (const auto *Ext : IDecl->visible_extensions()) {
3971 if (ObjCMethodDecl *GetterMethod
3972 = Ext->getInstanceMethod(Property->getGetterName()))
3973 GetterMethod->setPropertyAccessor(true);
3974 if (!Property->isReadOnly())
3975 if (ObjCMethodDecl *SetterMethod
3976 = Ext->getInstanceMethod(Property->getSetterName()))
3977 SetterMethod->setPropertyAccessor(true);
3978 }
3979 }
3980 }
3981 ImplMethodsVsClassMethods(S, IC, IDecl);
3982 AtomicPropertySetterGetterRules(IC, IDecl);
3983 DiagnoseOwningPropertyGetterSynthesis(IC);
3984 DiagnoseUnusedBackingIvarInAccessor(S, IC);
3985 if (IDecl->hasDesignatedInitializers())
3986 DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
3987 DiagnoseWeakIvars(*this, IC);
3988 DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
3989
3990 bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
3991 if (IDecl->getSuperClass() == nullptr) {
3992 // This class has no superclass, so check that it has been marked with
3993 // __attribute((objc_root_class)).
3994 if (!HasRootClassAttr) {
3995 SourceLocation DeclLoc(IDecl->getLocation());
3996 SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
3997 Diag(DeclLoc, diag::warn_objc_root_class_missing)
3998 << IDecl->getIdentifier();
3999 // See if NSObject is in the current scope, and if it is, suggest
4000 // adding " : NSObject " to the class declaration.
4001 NamedDecl *IF = LookupSingleName(TUScope,
4002 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4003 DeclLoc, LookupOrdinaryName);
4004 ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4005 if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4006 Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4007 << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4008 } else {
4009 Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4010 }
4011 }
4012 } else if (HasRootClassAttr) {
4013 // Complain that only root classes may have this attribute.
4014 Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4015 }
4016
4017 if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4018 // An interface can subclass another interface with a
4019 // objc_subclassing_restricted attribute when it has that attribute as
4020 // well (because of interfaces imported from Swift). Therefore we have
4021 // to check if we can subclass in the implementation as well.
4022 if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4023 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4024 Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4025 Diag(Super->getLocation(), diag::note_class_declared);
4026 }
4027 }
4028
4029 if (LangOpts.ObjCRuntime.isNonFragile()) {
4030 while (IDecl->getSuperClass()) {
4031 DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4032 IDecl = IDecl->getSuperClass();
4033 }
4034 }
4035 }
4036 SetIvarInitializers(IC);
4037 } else if (ObjCCategoryImplDecl* CatImplClass =
4038 dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4039 CatImplClass->setAtEndRange(AtEnd);
4040
4041 // Find category interface decl and then check that all methods declared
4042 // in this interface are implemented in the category @implementation.
4043 if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4044 if (ObjCCategoryDecl *Cat
4045 = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4046 ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4047 }
4048 }
4049 } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4050 if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4051 if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4052 Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4053 Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4054 Diag(Super->getLocation(), diag::note_class_declared);
4055 }
4056 }
4057 }
4058 DiagnoseVariableSizedIvars(*this, OCD);
4059 if (isInterfaceDeclKind) {
4060 // Reject invalid vardecls.
4061 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4062 DeclGroupRef DG = allTUVars[i].get();
4063 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4064 if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4065 if (!VDecl->hasExternalStorage())
4066 Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4067 }
4068 }
4069 }
4070 ActOnObjCContainerFinishDefinition();
4071
4072 for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4073 DeclGroupRef DG = allTUVars[i].get();
4074 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4075 (*I)->setTopLevelDeclInObjCContainer();
4076 Consumer.HandleTopLevelDeclInObjCContainer(DG);
4077 }
4078
4079 ActOnDocumentableDecl(ClassDecl);
4080 return ClassDecl;
4081}
4082
4083/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4084/// objective-c's type qualifier from the parser version of the same info.
4085static Decl::ObjCDeclQualifier
4086CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4087 return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4088}
4089
4090/// \brief Check whether the declared result type of the given Objective-C
4091/// method declaration is compatible with the method's class.
4092///
4093static Sema::ResultTypeCompatibilityKind
4094CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4095 ObjCInterfaceDecl *CurrentClass) {
4096 QualType ResultType = Method->getReturnType();
4097
4098 // If an Objective-C method inherits its related result type, then its
4099 // declared result type must be compatible with its own class type. The
4100 // declared result type is compatible if:
4101 if (const ObjCObjectPointerType *ResultObjectType
4102 = ResultType->getAs<ObjCObjectPointerType>()) {
4103 // - it is id or qualified id, or
4104 if (ResultObjectType->isObjCIdType() ||
4105 ResultObjectType->isObjCQualifiedIdType())
4106 return Sema::RTC_Compatible;
4107
4108 if (CurrentClass) {
4109 if (ObjCInterfaceDecl *ResultClass
4110 = ResultObjectType->getInterfaceDecl()) {
4111 // - it is the same as the method's class type, or
4112 if (declaresSameEntity(CurrentClass, ResultClass))
4113 return Sema::RTC_Compatible;
4114
4115 // - it is a superclass of the method's class type
4116 if (ResultClass->isSuperClassOf(CurrentClass))
4117 return Sema::RTC_Compatible;
4118 }
4119 } else {
4120 // Any Objective-C pointer type might be acceptable for a protocol
4121 // method; we just don't know.
4122 return Sema::RTC_Unknown;
4123 }
4124 }
4125
4126 return Sema::RTC_Incompatible;
4127}
4128
4129namespace {
4130/// A helper class for searching for methods which a particular method
4131/// overrides.
4132class OverrideSearch {
4133public:
4134 Sema &S;
4135 ObjCMethodDecl *Method;
4136 llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4137 bool Recursive;
4138
4139public:
4140 OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
4141 Selector selector = method->getSelector();
4142
4143 // Bypass this search if we've never seen an instance/class method
4144 // with this selector before.
4145 Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4146 if (it == S.MethodPool.end()) {
4147 if (!S.getExternalSource()) return;
4148 S.ReadMethodPool(selector);
4149
4150 it = S.MethodPool.find(selector);
4151 if (it == S.MethodPool.end())
4152 return;
4153 }
4154 ObjCMethodList &list =
4155 method->isInstanceMethod() ? it->second.first : it->second.second;
4156 if (!list.getMethod()) return;
4157
4158 ObjCContainerDecl *container
4159 = cast<ObjCContainerDecl>(method->getDeclContext());
4160
4161 // Prevent the search from reaching this container again. This is
4162 // important with categories, which override methods from the
4163 // interface and each other.
4164 if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
4165 searchFromContainer(container);
4166 if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
4167 searchFromContainer(Interface);
4168 } else {
4169 searchFromContainer(container);
4170 }
4171 }
4172
4173 typedef decltype(Overridden)::iterator iterator;
4174 iterator begin() const { return Overridden.begin(); }
4175 iterator end() const { return Overridden.end(); }
4176
4177private:
4178 void searchFromContainer(ObjCContainerDecl *container) {
4179 if (container->isInvalidDecl()) return;
4180
4181 switch (container->getDeclKind()) {
4182#define OBJCCONTAINER(type, base) \
4183 case Decl::type: \
4184 searchFrom(cast<type##Decl>(container)); \
4185 break;
4186#define ABSTRACT_DECL(expansion)
4187#define DECL(type, base) \
4188 case Decl::type:
4189#include "clang/AST/DeclNodes.inc"
4190 llvm_unreachable("not an ObjC container!")::llvm::llvm_unreachable_internal("not an ObjC container!", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4190)
;
4191 }
4192 }
4193
4194 void searchFrom(ObjCProtocolDecl *protocol) {
4195 if (!protocol->hasDefinition())
4196 return;
4197
4198 // A method in a protocol declaration overrides declarations from
4199 // referenced ("parent") protocols.
4200 search(protocol->getReferencedProtocols());
4201 }
4202
4203 void searchFrom(ObjCCategoryDecl *category) {
4204 // A method in a category declaration overrides declarations from
4205 // the main class and from protocols the category references.
4206 // The main class is handled in the constructor.
4207 search(category->getReferencedProtocols());
4208 }
4209
4210 void searchFrom(ObjCCategoryImplDecl *impl) {
4211 // A method in a category definition that has a category
4212 // declaration overrides declarations from the category
4213 // declaration.
4214 if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4215 search(category);
4216 if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4217 search(Interface);
4218
4219 // Otherwise it overrides declarations from the class.
4220 } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
4221 search(Interface);
4222 }
4223 }
4224
4225 void searchFrom(ObjCInterfaceDecl *iface) {
4226 // A method in a class declaration overrides declarations from
4227 if (!iface->hasDefinition())
4228 return;
4229
4230 // - categories,
4231 for (auto *Cat : iface->known_categories())
4232 search(Cat);
4233
4234 // - the super class, and
4235 if (ObjCInterfaceDecl *super = iface->getSuperClass())
4236 search(super);
4237
4238 // - any referenced protocols.
4239 search(iface->getReferencedProtocols());
4240 }
4241
4242 void searchFrom(ObjCImplementationDecl *impl) {
4243 // A method in a class implementation overrides declarations from
4244 // the class interface.
4245 if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
4246 search(Interface);
4247 }
4248
4249 void search(const ObjCProtocolList &protocols) {
4250 for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
4251 i != e; ++i)
4252 search(*i);
4253 }
4254
4255 void search(ObjCContainerDecl *container) {
4256 // Check for a method in this container which matches this selector.
4257 ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4258 Method->isInstanceMethod(),
4259 /*AllowHidden=*/true);
4260
4261 // If we find one, record it and bail out.
4262 if (meth) {
4263 Overridden.insert(meth);
4264 return;
4265 }
4266
4267 // Otherwise, search for methods that a hypothetical method here
4268 // would have overridden.
4269
4270 // Note that we're now in a recursive case.
4271 Recursive = true;
4272
4273 searchFromContainer(container);
4274 }
4275};
4276} // end anonymous namespace
4277
4278void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4279 ObjCInterfaceDecl *CurrentClass,
4280 ResultTypeCompatibilityKind RTC) {
4281 // Search for overridden methods and merge information down from them.
4282 OverrideSearch overrides(*this, ObjCMethod);
4283 // Keep track if the method overrides any method in the class's base classes,
4284 // its protocols, or its categories' protocols; we will keep that info
4285 // in the ObjCMethodDecl.
4286 // For this info, a method in an implementation is not considered as
4287 // overriding the same method in the interface or its categories.
4288 bool hasOverriddenMethodsInBaseOrProtocol = false;
4289 for (OverrideSearch::iterator
4290 i = overrides.begin(), e = overrides.end(); i != e; ++i) {
4291 ObjCMethodDecl *overridden = *i;
4292
4293 if (!hasOverriddenMethodsInBaseOrProtocol) {
4294 if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4295 CurrentClass != overridden->getClassInterface() ||
4296 overridden->isOverriding()) {
4297 hasOverriddenMethodsInBaseOrProtocol = true;
4298
4299 } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4300 // OverrideSearch will return as "overridden" the same method in the
4301 // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4302 // check whether a category of a base class introduced a method with the
4303 // same selector, after the interface method declaration.
4304 // To avoid unnecessary lookups in the majority of cases, we use the
4305 // extra info bits in GlobalMethodPool to check whether there were any
4306 // category methods with this selector.
4307 GlobalMethodPool::iterator It =
4308 MethodPool.find(ObjCMethod->getSelector());
4309 if (It != MethodPool.end()) {
4310 ObjCMethodList &List =
4311 ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4312 unsigned CategCount = List.getBits();
4313 if (CategCount > 0) {
4314 // If the method is in a category we'll do lookup if there were at
4315 // least 2 category methods recorded, otherwise only one will do.
4316 if (CategCount > 1 ||
4317 !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4318 OverrideSearch overrides(*this, overridden);
4319 for (OverrideSearch::iterator
4320 OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
4321 ObjCMethodDecl *SuperOverridden = *OI;
4322 if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4323 CurrentClass != SuperOverridden->getClassInterface()) {
4324 hasOverriddenMethodsInBaseOrProtocol = true;
4325 overridden->setOverriding(true);
4326 break;
4327 }
4328 }
4329 }
4330 }
4331 }
4332 }
4333 }
4334
4335 // Propagate down the 'related result type' bit from overridden methods.
4336 if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4337 ObjCMethod->SetRelatedResultType();
4338
4339 // Then merge the declarations.
4340 mergeObjCMethodDecls(ObjCMethod, overridden);
4341
4342 if (ObjCMethod->isImplicit() && overridden->isImplicit())
4343 continue; // Conflicting properties are detected elsewhere.
4344
4345 // Check for overriding methods
4346 if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4347 isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4348 CheckConflictingOverridingMethod(ObjCMethod, overridden,
4349 isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4350
4351 if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4352 isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4353 !overridden->isImplicit() /* not meant for properties */) {
4354 ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4355 E = ObjCMethod->param_end();
4356 ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4357 PrevE = overridden->param_end();
4358 for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4359 assert(PrevI != overridden->param_end() && "Param mismatch")(static_cast <bool> (PrevI != overridden->param_end(
) && "Param mismatch") ? void (0) : __assert_fail ("PrevI != overridden->param_end() && \"Param mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4359, __extension__ __PRETTY_FUNCTION__))
;
4360 QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4361 QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4362 // If type of argument of method in this class does not match its
4363 // respective argument type in the super class method, issue warning;
4364 if (!Context.typesAreCompatible(T1, T2)) {
4365 Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4366 << T1 << T2;
4367 Diag(overridden->getLocation(), diag::note_previous_declaration);
4368 break;
4369 }
4370 }
4371 }
4372 }
4373
4374 ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4375}
4376
4377/// Merge type nullability from for a redeclaration of the same entity,
4378/// producing the updated type of the redeclared entity.
4379static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4380 QualType type,
4381 bool usesCSKeyword,
4382 SourceLocation prevLoc,
4383 QualType prevType,
4384 bool prevUsesCSKeyword) {
4385 // Determine the nullability of both types.
4386 auto nullability = type->getNullability(S.Context);
4387 auto prevNullability = prevType->getNullability(S.Context);
4388
4389 // Easy case: both have nullability.
4390 if (nullability.hasValue() == prevNullability.hasValue()) {
4391 // Neither has nullability; continue.
4392 if (!nullability)
4393 return type;
4394
4395 // The nullabilities are equivalent; do nothing.
4396 if (*nullability == *prevNullability)
4397 return type;
4398
4399 // Complain about mismatched nullability.
4400 S.Diag(loc, diag::err_nullability_conflicting)
4401 << DiagNullabilityKind(*nullability, usesCSKeyword)
4402 << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4403 return type;
4404 }
4405
4406 // If it's the redeclaration that has nullability, don't change anything.
4407 if (nullability)
4408 return type;
4409
4410 // Otherwise, provide the result with the same nullability.
4411 return S.Context.getAttributedType(
4412 AttributedType::getNullabilityAttrKind(*prevNullability),
4413 type, type);
4414}
4415
4416/// Merge information from the declaration of a method in the \@interface
4417/// (or a category/extension) into the corresponding method in the
4418/// @implementation (for a class or category).
4419static void mergeInterfaceMethodToImpl(Sema &S,
4420 ObjCMethodDecl *method,
4421 ObjCMethodDecl *prevMethod) {
4422 // Merge the objc_requires_super attribute.
4423 if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4424 !method->hasAttr<ObjCRequiresSuperAttr>()) {
4425 // merge the attribute into implementation.
4426 method->addAttr(
4427 ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4428 method->getLocation()));
4429 }
4430
4431 // Merge nullability of the result type.
4432 QualType newReturnType
4433 = mergeTypeNullabilityForRedecl(
4434 S, method->getReturnTypeSourceRange().getBegin(),
4435 method->getReturnType(),
4436 method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4437 prevMethod->getReturnTypeSourceRange().getBegin(),
4438 prevMethod->getReturnType(),
4439 prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4440 method->setReturnType(newReturnType);
4441
4442 // Handle each of the parameters.
4443 unsigned numParams = method->param_size();
4444 unsigned numPrevParams = prevMethod->param_size();
4445 for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4446 ParmVarDecl *param = method->param_begin()[i];
4447 ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4448
4449 // Merge nullability.
4450 QualType newParamType
4451 = mergeTypeNullabilityForRedecl(
4452 S, param->getLocation(), param->getType(),
4453 param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4454 prevParam->getLocation(), prevParam->getType(),
4455 prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4456 param->setType(newParamType);
4457 }
4458}
4459
4460/// Verify that the method parameters/return value have types that are supported
4461/// by the x86 target.
4462static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4463 const ObjCMethodDecl *Method) {
4464 assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4466, __extension__ __PRETTY_FUNCTION__))
4465 llvm::Triple::x86 &&(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4466, __extension__ __PRETTY_FUNCTION__))
4466 "x86-specific check invoked for a different target")(static_cast <bool> (SemaRef.getASTContext().getTargetInfo
().getTriple().getArch() == llvm::Triple::x86 && "x86-specific check invoked for a different target"
) ? void (0) : __assert_fail ("SemaRef.getASTContext().getTargetInfo().getTriple().getArch() == llvm::Triple::x86 && \"x86-specific check invoked for a different target\""
, "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4466, __extension__ __PRETTY_FUNCTION__))
;
4467 SourceLocation Loc;
4468 QualType T;
4469 for (const ParmVarDecl *P : Method->parameters()) {
4470 if (P->getType()->isVectorType()) {
4471 Loc = P->getLocStart();
4472 T = P->getType();
4473 break;
4474 }
4475 }
4476 if (Loc.isInvalid()) {
4477 if (Method->getReturnType()->isVectorType()) {
4478 Loc = Method->getReturnTypeSourceRange().getBegin();
4479 T = Method->getReturnType();
4480 } else
4481 return;
4482 }
4483
4484 // Vector parameters/return values are not supported by objc_msgSend on x86 in
4485 // iOS < 9 and macOS < 10.11.
4486 const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4487 VersionTuple AcceptedInVersion;
4488 if (Triple.getOS() == llvm::Triple::IOS)
4489 AcceptedInVersion = VersionTuple(/*Major=*/9);
4490 else if (Triple.isMacOSX())
4491 AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4492 else
4493 return;
4494 if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4495 AcceptedInVersion)
4496 return;
4497 SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4498 << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4499 : /*parameter*/ 0)
4500 << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4501}
4502
4503Decl *Sema::ActOnMethodDeclaration(
4504 Scope *S,
4505 SourceLocation MethodLoc, SourceLocation EndLoc,
4506 tok::TokenKind MethodType,
4507 ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4508 ArrayRef<SourceLocation> SelectorLocs,
4509 Selector Sel,
4510 // optional arguments. The number of types/arguments is obtained
4511 // from the Sel.getNumArgs().
4512 ObjCArgInfo *ArgInfo,
4513 DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
4514 AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
4515 bool isVariadic, bool MethodDefinition) {
4516 // Make sure we can establish a context for the method.
4517 if (!CurContext->isObjCContainer()) {
1
Taking false branch
4518 Diag(MethodLoc, diag::err_missing_method_context);
4519 return nullptr;
4520 }
4521 ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
4522 Decl *ClassDecl = cast<Decl>(OCD);
4523 QualType resultDeclType;
4524
4525 bool HasRelatedResultType = false;
4526 TypeSourceInfo *ReturnTInfo = nullptr;
4527 if (ReturnType) {
2
Taking false branch
4528 resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4529
4530 if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4531 return nullptr;
4532
4533 QualType bareResultType = resultDeclType;
4534 (void)AttributedType::stripOuterNullability(bareResultType);
4535 HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4536 } else { // get the type for "id".
4537 resultDeclType = Context.getObjCIdType();
4538 Diag(MethodLoc, diag::warn_missing_method_return_type)
4539 << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4540 }
4541
4542 ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4543 Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4544 MethodType == tok::minus, isVariadic,
3
Assuming 'MethodType' is not equal to minus
4545 /*isPropertyAccessor=*/false,
4546 /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4547 MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
4
Assuming 'MethodDeclKind' is not equal to objc_optional
5
'?' condition is false
4548 : ObjCMethodDecl::Required,
4549 HasRelatedResultType);
4550
4551 SmallVector<ParmVarDecl*, 16> Params;
4552
4553 for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
6
Assuming 'i' is equal to 'e'
7
Loop condition is false. Execution continues on line 4606
4554 QualType ArgType;
4555 TypeSourceInfo *DI;
4556
4557 if (!ArgInfo[i].Type) {
4558 ArgType = Context.getObjCIdType();
4559 DI = nullptr;
4560 } else {
4561 ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4562 }
4563
4564 LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4565 LookupOrdinaryName, forRedeclarationInCurContext());
4566 LookupName(R, S);
4567 if (R.isSingleResult()) {
4568 NamedDecl *PrevDecl = R.getFoundDecl();
4569 if (S->isDeclScope(PrevDecl)) {
4570 Diag(ArgInfo[i].NameLoc,
4571 (MethodDefinition ? diag::warn_method_param_redefinition
4572 : diag::warn_method_param_declaration))
4573 << ArgInfo[i].Name;
4574 Diag(PrevDecl->getLocation(),
4575 diag::note_previous_declaration);
4576 }
4577 }
4578
4579 SourceLocation StartLoc = DI
4580 ? DI->getTypeLoc().getBeginLoc()
4581 : ArgInfo[i].NameLoc;
4582
4583 ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4584 ArgInfo[i].NameLoc, ArgInfo[i].Name,
4585 ArgType, DI, SC_None);
4586
4587 Param->setObjCMethodScopeInfo(i);
4588
4589 Param->setObjCDeclQualifier(
4590 CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4591
4592 // Apply the attributes to the parameter.
4593 ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4594 AddPragmaAttributes(TUScope, Param);
4595
4596 if (Param->hasAttr<BlocksAttr>()) {
4597 Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4598 Param->setInvalidDecl();
4599 }
4600 S->AddDecl(Param);
4601 IdResolver.AddDecl(Param);
4602
4603 Params.push_back(Param);
4604 }
4605
4606 for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
8
Assuming 'i' is equal to 'e'
9
Loop condition is false. Execution continues on line 4619
4607 ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4608 QualType ArgType = Param->getType();
4609 if (ArgType.isNull())
4610 ArgType = Context.getObjCIdType();
4611 else
4612 // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4613 ArgType = Context.getAdjustedParameterType(ArgType);
4614
4615 Param->setDeclContext(ObjCMethod);
4616 Params.push_back(Param);
4617 }
4618
4619 ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4620 ObjCMethod->setObjCDeclQualifier(
4621 CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4622
4623 if (AttrList)
10
Assuming 'AttrList' is null
11
Taking false branch
4624 ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4625 AddPragmaAttributes(TUScope, ObjCMethod);
4626
4627 // Add the method now.
4628 const ObjCMethodDecl *PrevMethod = nullptr;
4629 if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
12
Taking false branch
4630 if (MethodType == tok::minus) {
4631 PrevMethod = ImpDecl->getInstanceMethod(Sel);
4632 ImpDecl->addInstanceMethod(ObjCMethod);
4633 } else {
4634 PrevMethod = ImpDecl->getClassMethod(Sel);
4635 ImpDecl->addClassMethod(ObjCMethod);
4636 }
4637
4638 // Merge information from the @interface declaration into the
4639 // @implementation.
4640 if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4641 if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4642 ObjCMethod->isInstanceMethod())) {
4643 mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4644
4645 // Warn about defining -dealloc in a category.
4646 if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4647 ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4648 Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4649 << ObjCMethod->getDeclName();
4650 }
4651 }
4652 }
4653 } else {
4654 cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4655 }
4656
4657 if (PrevMethod) {
13
Taking false branch
4658 // You can never have two method definitions with the same name.
4659 Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4660 << ObjCMethod->getDeclName();
4661 Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4662 ObjCMethod->setInvalidDecl();
4663 return ObjCMethod;
4664 }
4665
4666 // If this Objective-C method does not have a related result type, but we
4667 // are allowed to infer related result types, try to do so based on the
4668 // method family.
4669 ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4670 if (!CurrentClass) {
14
Taking true branch
4671 if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
15
Taking false branch
4672 CurrentClass = Cat->getClassInterface();
4673 else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
16
Taking false branch
4674 CurrentClass = Impl->getClassInterface();
4675 else if (ObjCCategoryImplDecl *CatImpl
17
Taking false branch
4676 = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
4677 CurrentClass = CatImpl->getClassInterface();
4678 }
4679
4680 ResultTypeCompatibilityKind RTC
4681 = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
4682
4683 CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
4684
4685 bool ARCError = false;
4686 if (getLangOpts().ObjCAutoRefCount)
18
Assuming the condition is true
19
Taking true branch
4687 ARCError = CheckARCMethodDecl(ObjCMethod);
20
Calling 'Sema::CheckARCMethodDecl'
4688
4689 // Infer the related result type when possible.
4690 if (!ARCError && RTC == Sema::RTC_Compatible &&
4691 !ObjCMethod->hasRelatedResultType() &&
4692 LangOpts.ObjCInferRelatedResultType) {
4693 bool InferRelatedResultType = false;
4694 switch (ObjCMethod->getMethodFamily()) {
4695 case OMF_None:
4696 case OMF_copy:
4697 case OMF_dealloc:
4698 case OMF_finalize:
4699 case OMF_mutableCopy:
4700 case OMF_release:
4701 case OMF_retainCount:
4702 case OMF_initialize:
4703 case OMF_performSelector:
4704 break;
4705
4706 case OMF_alloc:
4707 case OMF_new:
4708 InferRelatedResultType = ObjCMethod->isClassMethod();
4709 break;
4710
4711 case OMF_init:
4712 case OMF_autorelease:
4713 case OMF_retain:
4714 case OMF_self:
4715 InferRelatedResultType = ObjCMethod->isInstanceMethod();
4716 break;
4717 }
4718
4719 if (InferRelatedResultType &&
4720 !ObjCMethod->getReturnType()->isObjCIndependentClassType())
4721 ObjCMethod->SetRelatedResultType();
4722 }
4723
4724 if (MethodDefinition &&
4725 Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
4726 checkObjCMethodX86VectorTypes(*this, ObjCMethod);
4727
4728 ActOnDocumentableDecl(ObjCMethod);
4729
4730 return ObjCMethod;
4731}
4732
4733bool Sema::CheckObjCDeclScope(Decl *D) {
4734 // Following is also an error. But it is caused by a missing @end
4735 // and diagnostic is issued elsewhere.
4736 if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
4737 return false;
4738
4739 // If we switched context to translation unit while we are still lexically in
4740 // an objc container, it means the parser missed emitting an error.
4741 if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
4742 return false;
4743
4744 Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
4745 D->setInvalidDecl();
4746
4747 return true;
4748}
4749
4750/// Called whenever \@defs(ClassName) is encountered in the source. Inserts the
4751/// instance variables of ClassName into Decls.
4752void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
4753 IdentifierInfo *ClassName,
4754 SmallVectorImpl<Decl*> &Decls) {
4755 // Check that ClassName is a valid class
4756 ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
4757 if (!Class) {
4758 Diag(DeclStart, diag::err_undef_interface) << ClassName;
4759 return;
4760 }
4761 if (LangOpts.ObjCRuntime.isNonFragile()) {
4762 Diag(DeclStart, diag::err_atdef_nonfragile_interface);
4763 return;
4764 }
4765
4766 // Collect the instance variables
4767 SmallVector<const ObjCIvarDecl*, 32> Ivars;
4768 Context.DeepCollectObjCIvars(Class, true, Ivars);
4769 // For each ivar, create a fresh ObjCAtDefsFieldDecl.
4770 for (unsigned i = 0; i < Ivars.size(); i++) {
4771 const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
4772 RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
4773 Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
4774 /*FIXME: StartL=*/ID->getLocation(),
4775 ID->getLocation(),
4776 ID->getIdentifier(), ID->getType(),
4777 ID->getBitWidth());
4778 Decls.push_back(FD);
4779 }
4780
4781 // Introduce all of these fields into the appropriate scope.
4782 for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
4783 D != Decls.end(); ++D) {
4784 FieldDecl *FD = cast<FieldDecl>(*D);
4785 if (getLangOpts().CPlusPlus)
4786 PushOnScopeChains(cast<FieldDecl>(FD), S);
4787 else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
4788 Record->addDecl(FD);
4789 }
4790}
4791
4792/// \brief Build a type-check a new Objective-C exception variable declaration.
4793VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
4794 SourceLocation StartLoc,
4795 SourceLocation IdLoc,
4796 IdentifierInfo *Id,
4797 bool Invalid) {
4798 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4799 // duration shall not be qualified by an address-space qualifier."
4800 // Since all parameters have automatic store duration, they can not have
4801 // an address space.
4802 if (T.getAddressSpace() != LangAS::Default) {
4803 Diag(IdLoc, diag::err_arg_with_address_space);
4804 Invalid = true;
4805 }
4806
4807 // An @catch parameter must be an unqualified object pointer type;
4808 // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
4809 if (Invalid) {
4810 // Don't do any further checking.
4811 } else if (T->isDependentType()) {
4812 // Okay: we don't know what this type will instantiate to.
4813 } else if (!T->isObjCObjectPointerType()) {
4814 Invalid = true;
4815 Diag(IdLoc ,diag::err_catch_param_not_objc_type);
4816 } else if (T->isObjCQualifiedIdType()) {
4817 Invalid = true;
4818 Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
4819 }
4820
4821 VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
4822 T, TInfo, SC_None);
4823 New->setExceptionVariable(true);
4824
4825 // In ARC, infer 'retaining' for variables of retainable type.
4826 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
4827 Invalid = true;
4828
4829 if (Invalid)
4830 New->setInvalidDecl();
4831 return New;
4832}
4833
4834Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
4835 const DeclSpec &DS = D.getDeclSpec();
4836
4837 // We allow the "register" storage class on exception variables because
4838 // GCC did, but we drop it completely. Any other storage class is an error.
4839 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4840 Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
4841 << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
4842 } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4843 Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
4844 << DeclSpec::getSpecifierName(SCS);
4845 }
4846 if (DS.isInlineSpecified())
4847 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4848 << getLangOpts().CPlusPlus17;
4849 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
4850 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4851 diag::err_invalid_thread)
4852 << DeclSpec::getSpecifierName(TSCS);
4853 D.getMutableDeclSpec().ClearStorageClassSpecs();
4854
4855 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4856
4857 // Check that there are no default arguments inside the type of this
4858 // exception object (C++ only).
4859 if (getLangOpts().CPlusPlus)
4860 CheckExtraCXXDefaultArguments(D);
4861
4862 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4863 QualType ExceptionType = TInfo->getType();
4864
4865 VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
4866 D.getSourceRange().getBegin(),
4867 D.getIdentifierLoc(),
4868 D.getIdentifier(),
4869 D.isInvalidType());
4870
4871 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4872 if (D.getCXXScopeSpec().isSet()) {
4873 Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
4874 << D.getCXXScopeSpec().getRange();
4875 New->setInvalidDecl();
4876 }
4877
4878 // Add the parameter declaration into this scope.
4879 S->AddDecl(New);
4880 if (D.getIdentifier())
4881 IdResolver.AddDecl(New);
4882
4883 ProcessDeclAttributes(S, New, D);
4884
4885 if (New->hasAttr<BlocksAttr>())
4886 Diag(New->getLocation(), diag::err_block_on_nonlocal);
4887 return New;
4888}
4889
4890/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
4891/// initialization.
4892void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
4893 SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
4894 for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
4895 Iv= Iv->getNextIvar()) {
4896 QualType QT = Context.getBaseElementType(Iv->getType());
4897 if (QT->isRecordType())
4898 Ivars.push_back(Iv);
4899 }
4900}
4901
4902void Sema::DiagnoseUseOfUnimplementedSelectors() {
4903 // Load referenced selectors from the external source.
4904 if (ExternalSource) {
4905 SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
4906 ExternalSource->ReadReferencedSelectors(Sels);
4907 for (unsigned I = 0, N = Sels.size(); I != N; ++I)
4908 ReferencedSelectors[Sels[I].first] = Sels[I].second;
4909 }
4910
4911 // Warning will be issued only when selector table is
4912 // generated (which means there is at lease one implementation
4913 // in the TU). This is to match gcc's behavior.
4914 if (ReferencedSelectors.empty() ||
4915 !Context.AnyObjCImplementation())
4916 return;
4917 for (auto &SelectorAndLocation : ReferencedSelectors) {
4918 Selector Sel = SelectorAndLocation.first;
4919 SourceLocation Loc = SelectorAndLocation.second;
4920 if (!LookupImplementedMethodInGlobalPool(Sel))
4921 Diag(Loc, diag::warn_unimplemented_selector) << Sel;
4922 }
4923}
4924
4925ObjCIvarDecl *
4926Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
4927 const ObjCPropertyDecl *&PDecl) const {
4928 if (Method->isClassMethod())
4929 return nullptr;
4930 const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
4931 if (!IDecl)
4932 return nullptr;
4933 Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
4934 /*shallowCategoryLookup=*/false,
4935 /*followSuper=*/false);
4936 if (!Method || !Method->isPropertyAccessor())
4937 return nullptr;
4938 if ((PDecl = Method->findPropertyDecl()))
4939 if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
4940 // property backing ivar must belong to property's class
4941 // or be a private ivar in class's implementation.
4942 // FIXME. fix the const-ness issue.
4943 IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
4944 IV->getIdentifier());
4945 return IV;
4946 }
4947 return nullptr;
4948}
4949
4950namespace {
4951 /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
4952 /// accessor references the backing ivar.
4953 class UnusedBackingIvarChecker :
4954 public RecursiveASTVisitor<UnusedBackingIvarChecker> {
4955 public:
4956 Sema &S;
4957 const ObjCMethodDecl *Method;
4958 const ObjCIvarDecl *IvarD;
4959 bool AccessedIvar;
4960 bool InvokedSelfMethod;
4961
4962 UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
4963 const ObjCIvarDecl *IvarD)
4964 : S(S), Method(Method), IvarD(IvarD),
4965 AccessedIvar(false), InvokedSelfMethod(false) {
4966 assert(IvarD)(static_cast <bool> (IvarD) ? void (0) : __assert_fail (
"IvarD", "/build/llvm-toolchain-snapshot-7~svn325874/tools/clang/lib/Sema/SemaDeclObjC.cpp"
, 4966, __extension__ __PRETTY_FUNCTION__))
;
4967 }
4968
4969 bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
4970 if (E->getDecl() == IvarD) {
4971 AccessedIvar = true;
4972 return false;
4973 }
4974 return true;
4975 }
4976
4977 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
4978 if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
4979 S.isSelfExpr(E->getInstanceReceiver(), Method)) {
4980 InvokedSelfMethod = true;
4981 }
4982 return true;
4983 }
4984 };
4985} // end anonymous namespace
4986
4987void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
4988 const ObjCImplementationDecl *ImplD) {
4989 if (S->hasUnrecoverableErrorOccurred())
4990 return;
4991
4992 for (const auto *CurMethod : ImplD->instance_methods()) {
4993 unsigned DIAG = diag::warn_unused_property_backing_ivar;
4994 SourceLocation Loc = CurMethod->getLocation();
4995 if (Diags.isIgnored(DIAG, Loc))
4996 continue;
4997
4998 const ObjCPropertyDecl *PDecl;
4999 const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5000 if (!IV)
5001 continue;
5002
5003 UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5004 Checker.TraverseStmt(CurMethod->getBody());
5005 if (Checker.AccessedIvar)
5006 continue;
5007
5008 // Do not issue this warning if backing ivar is used somewhere and accessor
5009 // implementation makes a self call. This is to prevent false positive in
5010 // cases where the ivar is accessed by another method that the accessor
5011 // delegates to.
5012 if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5013 Diag(Loc, DIAG) << IV;
5014 Diag(PDecl->getLocation(), diag::note_property_declare);
5015 }
5016 }
5017}

/build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include/clang/AST/Attrs.inc

1/*===- TableGen'erated file -------------------------------------*- C++ -*-===*\
2|* *|
3|* Attribute classes' definitions *|
4|* *|
5|* Automatically generated file, do not edit! *|
6|* *|
7\*===----------------------------------------------------------------------===*/
8
9#ifndef LLVM_CLANG_ATTR_CLASSES_INC
10#define LLVM_CLANG_ATTR_CLASSES_INC
11
12class AMDGPUFlatWorkGroupSizeAttr : public InheritableAttr {
13unsigned min;
14
15unsigned max;
16
17public:
18 static AMDGPUFlatWorkGroupSizeAttr *CreateImplicit(ASTContext &Ctx, unsigned Min, unsigned Max, SourceRange Loc = SourceRange()) {
19 auto *A = new (Ctx) AMDGPUFlatWorkGroupSizeAttr(Loc, Ctx, Min, Max, 0);
20 A->setImplicit(true);
21 return A;
22 }
23
24 AMDGPUFlatWorkGroupSizeAttr(SourceRange R, ASTContext &Ctx
25 , unsigned Min
26 , unsigned Max
27 , unsigned SI
28 )
29 : InheritableAttr(attr::AMDGPUFlatWorkGroupSize, R, SI, false, false)
30 , min(Min)
31 , max(Max)
32 {
33 }
34
35 AMDGPUFlatWorkGroupSizeAttr *clone(ASTContext &C) const;
36 void printPretty(raw_ostream &OS,
37 const PrintingPolicy &Policy) const;
38 const char *getSpelling() const;
39 unsigned getMin() const {
40 return min;
41 }
42
43 unsigned getMax() const {
44 return max;
45 }
46
47
48
49 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUFlatWorkGroupSize; }
50};
51
52class AMDGPUNumSGPRAttr : public InheritableAttr {
53unsigned numSGPR;
54
55public:
56 static AMDGPUNumSGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumSGPR, SourceRange Loc = SourceRange()) {
57 auto *A = new (Ctx) AMDGPUNumSGPRAttr(Loc, Ctx, NumSGPR, 0);
58 A->setImplicit(true);
59 return A;
60 }
61
62 AMDGPUNumSGPRAttr(SourceRange R, ASTContext &Ctx
63 , unsigned NumSGPR
64 , unsigned SI
65 )
66 : InheritableAttr(attr::AMDGPUNumSGPR, R, SI, false, false)
67 , numSGPR(NumSGPR)
68 {
69 }
70
71 AMDGPUNumSGPRAttr *clone(ASTContext &C) const;
72 void printPretty(raw_ostream &OS,
73 const PrintingPolicy &Policy) const;
74 const char *getSpelling() const;
75 unsigned getNumSGPR() const {
76 return numSGPR;
77 }
78
79
80
81 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumSGPR; }
82};
83
84class AMDGPUNumVGPRAttr : public InheritableAttr {
85unsigned numVGPR;
86
87public:
88 static AMDGPUNumVGPRAttr *CreateImplicit(ASTContext &Ctx, unsigned NumVGPR, SourceRange Loc = SourceRange()) {
89 auto *A = new (Ctx) AMDGPUNumVGPRAttr(Loc, Ctx, NumVGPR, 0);
90 A->setImplicit(true);
91 return A;
92 }
93
94 AMDGPUNumVGPRAttr(SourceRange R, ASTContext &Ctx
95 , unsigned NumVGPR
96 , unsigned SI
97 )
98 : InheritableAttr(attr::AMDGPUNumVGPR, R, SI, false, false)
99 , numVGPR(NumVGPR)
100 {
101 }
102
103 AMDGPUNumVGPRAttr *clone(ASTContext &C) const;
104 void printPretty(raw_ostream &OS,
105 const PrintingPolicy &Policy) const;
106 const char *getSpelling() const;
107 unsigned getNumVGPR() const {
108 return numVGPR;
109 }
110
111
112
113 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUNumVGPR; }
114};
115
116class AMDGPUWavesPerEUAttr : public InheritableAttr {
117unsigned min;
118
119unsigned max;
120
121public:
122 static AMDGPUWavesPerEUAttr *CreateImplicit(ASTContext &Ctx, unsigned Min, unsigned Max, SourceRange Loc = SourceRange()) {
123 auto *A = new (Ctx) AMDGPUWavesPerEUAttr(Loc, Ctx, Min, Max, 0);
124 A->setImplicit(true);
125 return A;
126 }
127
128 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
129 , unsigned Min
130 , unsigned Max
131 , unsigned SI
132 )
133 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
134 , min(Min)
135 , max(Max)
136 {
137 }
138
139 AMDGPUWavesPerEUAttr(SourceRange R, ASTContext &Ctx
140 , unsigned Min
141 , unsigned SI
142 )
143 : InheritableAttr(attr::AMDGPUWavesPerEU, R, SI, false, false)
144 , min(Min)
145 , max()
146 {
147 }
148
149 AMDGPUWavesPerEUAttr *clone(ASTContext &C) const;
150 void printPretty(raw_ostream &OS,
151 const PrintingPolicy &Policy) const;
152 const char *getSpelling() const;
153 unsigned getMin() const {
154 return min;
155 }
156
157 unsigned getMax() const {
158 return max;
159 }
160
161
162
163 static bool classof(const Attr *A) { return A->getKind() == attr::AMDGPUWavesPerEU; }
164};
165
166class ARMInterruptAttr : public InheritableAttr {
167public:
168 enum InterruptType {
169 IRQ,
170 FIQ,
171 SWI,
172 ABORT,
173 UNDEF,
174 Generic
175 };
176private:
177 InterruptType interrupt;
178
179public:
180 static ARMInterruptAttr *CreateImplicit(ASTContext &Ctx, InterruptType Interrupt, SourceRange Loc = SourceRange()) {
181 auto *A = new (Ctx) ARMInterruptAttr(Loc, Ctx, Interrupt, 0);
182 A->setImplicit(true);
183 return A;
184 }
185
186 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
187 , InterruptType Interrupt
188 , unsigned SI
189 )
190 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
191 , interrupt(Interrupt)
192 {
193 }
194
195 ARMInterruptAttr(SourceRange R, ASTContext &Ctx
196 , unsigned SI
197 )
198 : InheritableAttr(attr::ARMInterrupt, R, SI, false, false)
199 , interrupt(InterruptType(0))
200 {
201 }
202
203 ARMInterruptAttr *clone(ASTContext &C) const;
204 void printPretty(raw_ostream &OS,
205 const PrintingPolicy &Policy) const;
206 const char *getSpelling() const;
207 InterruptType getInterrupt() const {
208 return interrupt;
209 }
210
211 static bool ConvertStrToInterruptType(StringRef Val, InterruptType &Out) {
212 Optional<InterruptType> R = llvm::StringSwitch<Optional<InterruptType>>(Val)
213 .Case("IRQ", ARMInterruptAttr::IRQ)
214 .Case("FIQ", ARMInterruptAttr::FIQ)
215 .Case("SWI", ARMInterruptAttr::SWI)
216 .Case("ABORT", ARMInterruptAttr::ABORT)
217 .Case("UNDEF", ARMInterruptAttr::UNDEF)
218 .Case("", ARMInterruptAttr::Generic)
219 .Default(Optional<InterruptType>());
220 if (R) {
221 Out = *R;
222 return true;
223 }
224 return false;
225 }
226
227 static const char *ConvertInterruptTypeToStr(InterruptType Val) {
228 switch(Val) {
229 case ARMInterruptAttr::IRQ: return "IRQ";
230 case ARMInterruptAttr::FIQ: return "FIQ";
231 case ARMInterruptAttr::SWI: return "SWI";
232 case ARMInterruptAttr::ABORT: return "ABORT";
233 case ARMInterruptAttr::UNDEF: return "UNDEF";
234 case ARMInterruptAttr::Generic: return "";
235 }
236 llvm_unreachable("No enumerator with that value")::llvm::llvm_unreachable_internal("No enumerator with that value"
, "/build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 236)
;
237 }
238
239
240 static bool classof(const Attr *A) { return A->getKind() == attr::ARMInterrupt; }
241};
242
243class AVRInterruptAttr : public InheritableAttr {
244public:
245 static AVRInterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
246 auto *A = new (Ctx) AVRInterruptAttr(Loc, Ctx, 0);
247 A->setImplicit(true);
248 return A;
249 }
250
251 AVRInterruptAttr(SourceRange R, ASTContext &Ctx
252 , unsigned SI
253 )
254 : InheritableAttr(attr::AVRInterrupt, R, SI, false, false)
255 {
256 }
257
258 AVRInterruptAttr *clone(ASTContext &C) const;
259 void printPretty(raw_ostream &OS,
260 const PrintingPolicy &Policy) const;
261 const char *getSpelling() const;
262
263
264 static bool classof(const Attr *A) { return A->getKind() == attr::AVRInterrupt; }
265};
266
267class AVRSignalAttr : public InheritableAttr {
268public:
269 static AVRSignalAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
270 auto *A = new (Ctx) AVRSignalAttr(Loc, Ctx, 0);
271 A->setImplicit(true);
272 return A;
273 }
274
275 AVRSignalAttr(SourceRange R, ASTContext &Ctx
276 , unsigned SI
277 )
278 : InheritableAttr(attr::AVRSignal, R, SI, false, false)
279 {
280 }
281
282 AVRSignalAttr *clone(ASTContext &C) const;
283 void printPretty(raw_ostream &OS,
284 const PrintingPolicy &Policy) const;
285 const char *getSpelling() const;
286
287
288 static bool classof(const Attr *A) { return A->getKind() == attr::AVRSignal; }
289};
290
291class AbiTagAttr : public Attr {
292 unsigned tags_Size;
293 StringRef *tags_;
294
295public:
296 static AbiTagAttr *CreateImplicit(ASTContext &Ctx, StringRef *Tags, unsigned TagsSize, SourceRange Loc = SourceRange()) {
297 auto *A = new (Ctx) AbiTagAttr(Loc, Ctx, Tags, TagsSize, 0);
298 A->setImplicit(true);
299 return A;
300 }
301
302 AbiTagAttr(SourceRange R, ASTContext &Ctx
303 , StringRef *Tags, unsigned TagsSize
304 , unsigned SI
305 )
306 : Attr(attr::AbiTag, R, SI, false)
307 , tags_Size(TagsSize), tags_(new (Ctx, 16) StringRef[tags_Size])
308 {
309 for (size_t I = 0, E = tags_Size; I != E;
310 ++I) {
311 StringRef Ref = Tags[I];
312 if (!Ref.empty()) {
313 char *Mem = new (Ctx, 1) char[Ref.size()];
314 std::memcpy(Mem, Ref.data(), Ref.size());
315 tags_[I] = StringRef(Mem, Ref.size());
316 }
317 }
318 }
319
320 AbiTagAttr(SourceRange R, ASTContext &Ctx
321 , unsigned SI
322 )
323 : Attr(attr::AbiTag, R, SI, false)
324 , tags_Size(0), tags_(nullptr)
325 {
326 }
327
328 AbiTagAttr *clone(ASTContext &C) const;
329 void printPretty(raw_ostream &OS,
330 const PrintingPolicy &Policy) const;
331 const char *getSpelling() const;
332 typedef StringRef* tags_iterator;
333 tags_iterator tags_begin() const { return tags_; }
334 tags_iterator tags_end() const { return tags_ + tags_Size; }
335 unsigned tags_size() const { return tags_Size; }
336 llvm::iterator_range<tags_iterator> tags() const { return llvm::make_range(tags_begin(), tags_end()); }
337
338
339
340
341 static bool classof(const Attr *A) { return A->getKind() == attr::AbiTag; }
342};
343
344class AcquireCapabilityAttr : public InheritableAttr {
345 unsigned args_Size;
346 Expr * *args_;
347
348public:
349 enum Spelling {
350 GNU_acquire_capability = 0,
351 CXX11_clang_acquire_capability = 1,
352 GNU_acquire_shared_capability = 2,
353 CXX11_clang_acquire_shared_capability = 3,
354 GNU_exclusive_lock_function = 4,
355 GNU_shared_lock_function = 5
356 };
357
358 static AcquireCapabilityAttr *CreateImplicit(ASTContext &Ctx, Spelling S, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
359 auto *A = new (Ctx) AcquireCapabilityAttr(Loc, Ctx, Args, ArgsSize, S);
360 A->setImplicit(true);
361 return A;
362 }
363
364 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
365 , Expr * *Args, unsigned ArgsSize
366 , unsigned SI
367 )
368 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
369 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
370 {
371 std::copy(Args, Args + args_Size, args_);
372 }
373
374 AcquireCapabilityAttr(SourceRange R, ASTContext &Ctx
375 , unsigned SI
376 )
377 : InheritableAttr(attr::AcquireCapability, R, SI, true, true)
378 , args_Size(0), args_(nullptr)
379 {
380 }
381
382 AcquireCapabilityAttr *clone(ASTContext &C) const;
383 void printPretty(raw_ostream &OS,
384 const PrintingPolicy &Policy) const;
385 const char *getSpelling() const;
386 Spelling getSemanticSpelling() const {
387 switch (SpellingListIndex) {
388 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 388)
;
389 case 0: return GNU_acquire_capability;
390 case 1: return CXX11_clang_acquire_capability;
391 case 2: return GNU_acquire_shared_capability;
392 case 3: return CXX11_clang_acquire_shared_capability;
393 case 4: return GNU_exclusive_lock_function;
394 case 5: return GNU_shared_lock_function;
395 }
396 }
397 bool isShared() const { return SpellingListIndex == 2 ||
398 SpellingListIndex == 3 ||
399 SpellingListIndex == 5; }
400 typedef Expr ** args_iterator;
401 args_iterator args_begin() const { return args_; }
402 args_iterator args_end() const { return args_ + args_Size; }
403 unsigned args_size() const { return args_Size; }
404 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
405
406
407
408
409 static bool classof(const Attr *A) { return A->getKind() == attr::AcquireCapability; }
410};
411
412class AcquiredAfterAttr : public InheritableAttr {
413 unsigned args_Size;
414 Expr * *args_;
415
416public:
417 static AcquiredAfterAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
418 auto *A = new (Ctx) AcquiredAfterAttr(Loc, Ctx, Args, ArgsSize, 0);
419 A->setImplicit(true);
420 return A;
421 }
422
423 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
424 , Expr * *Args, unsigned ArgsSize
425 , unsigned SI
426 )
427 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
428 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
429 {
430 std::copy(Args, Args + args_Size, args_);
431 }
432
433 AcquiredAfterAttr(SourceRange R, ASTContext &Ctx
434 , unsigned SI
435 )
436 : InheritableAttr(attr::AcquiredAfter, R, SI, true, true)
437 , args_Size(0), args_(nullptr)
438 {
439 }
440
441 AcquiredAfterAttr *clone(ASTContext &C) const;
442 void printPretty(raw_ostream &OS,
443 const PrintingPolicy &Policy) const;
444 const char *getSpelling() const;
445 typedef Expr ** args_iterator;
446 args_iterator args_begin() const { return args_; }
447 args_iterator args_end() const { return args_ + args_Size; }
448 unsigned args_size() const { return args_Size; }
449 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
450
451
452
453
454 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredAfter; }
455};
456
457class AcquiredBeforeAttr : public InheritableAttr {
458 unsigned args_Size;
459 Expr * *args_;
460
461public:
462 static AcquiredBeforeAttr *CreateImplicit(ASTContext &Ctx, Expr * *Args, unsigned ArgsSize, SourceRange Loc = SourceRange()) {
463 auto *A = new (Ctx) AcquiredBeforeAttr(Loc, Ctx, Args, ArgsSize, 0);
464 A->setImplicit(true);
465 return A;
466 }
467
468 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
469 , Expr * *Args, unsigned ArgsSize
470 , unsigned SI
471 )
472 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
473 , args_Size(ArgsSize), args_(new (Ctx, 16) Expr *[args_Size])
474 {
475 std::copy(Args, Args + args_Size, args_);
476 }
477
478 AcquiredBeforeAttr(SourceRange R, ASTContext &Ctx
479 , unsigned SI
480 )
481 : InheritableAttr(attr::AcquiredBefore, R, SI, true, true)
482 , args_Size(0), args_(nullptr)
483 {
484 }
485
486 AcquiredBeforeAttr *clone(ASTContext &C) const;
487 void printPretty(raw_ostream &OS,
488 const PrintingPolicy &Policy) const;
489 const char *getSpelling() const;
490 typedef Expr ** args_iterator;
491 args_iterator args_begin() const { return args_; }
492 args_iterator args_end() const { return args_ + args_Size; }
493 unsigned args_size() const { return args_Size; }
494 llvm::iterator_range<args_iterator> args() const { return llvm::make_range(args_begin(), args_end()); }
495
496
497
498
499 static bool classof(const Attr *A) { return A->getKind() == attr::AcquiredBefore; }
500};
501
502class AliasAttr : public Attr {
503unsigned aliaseeLength;
504char *aliasee;
505
506public:
507 static AliasAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Aliasee, SourceRange Loc = SourceRange()) {
508 auto *A = new (Ctx) AliasAttr(Loc, Ctx, Aliasee, 0);
509 A->setImplicit(true);
510 return A;
511 }
512
513 AliasAttr(SourceRange R, ASTContext &Ctx
514 , llvm::StringRef Aliasee
515 , unsigned SI
516 )
517 : Attr(attr::Alias, R, SI, false)
518 , aliaseeLength(Aliasee.size()),aliasee(new (Ctx, 1) char[aliaseeLength])
519 {
520 if (!Aliasee.empty())
521 std::memcpy(aliasee, Aliasee.data(), aliaseeLength);
522 }
523
524 AliasAttr *clone(ASTContext &C) const;
525 void printPretty(raw_ostream &OS,
526 const PrintingPolicy &Policy) const;
527 const char *getSpelling() const;
528 llvm::StringRef getAliasee() const {
529 return llvm::StringRef(aliasee, aliaseeLength);
530 }
531 unsigned getAliaseeLength() const {
532 return aliaseeLength;
533 }
534 void setAliasee(ASTContext &C, llvm::StringRef S) {
535 aliaseeLength = S.size();
536 this->aliasee = new (C, 1) char [aliaseeLength];
537 if (!S.empty())
538 std::memcpy(this->aliasee, S.data(), aliaseeLength);
539 }
540
541
542
543 static bool classof(const Attr *A) { return A->getKind() == attr::Alias; }
544};
545
546class AlignMac68kAttr : public InheritableAttr {
547public:
548 static AlignMac68kAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
549 auto *A = new (Ctx) AlignMac68kAttr(Loc, Ctx, 0);
550 A->setImplicit(true);
551 return A;
552 }
553
554 AlignMac68kAttr(SourceRange R, ASTContext &Ctx
555 , unsigned SI
556 )
557 : InheritableAttr(attr::AlignMac68k, R, SI, false, false)
558 {
559 }
560
561 AlignMac68kAttr *clone(ASTContext &C) const;
562 void printPretty(raw_ostream &OS,
563 const PrintingPolicy &Policy) const;
564 const char *getSpelling() const;
565
566
567 static bool classof(const Attr *A) { return A->getKind() == attr::AlignMac68k; }
568};
569
570class AlignValueAttr : public Attr {
571Expr * alignment;
572
573public:
574 static AlignValueAttr *CreateImplicit(ASTContext &Ctx, Expr * Alignment, SourceRange Loc = SourceRange()) {
575 auto *A = new (Ctx) AlignValueAttr(Loc, Ctx, Alignment, 0);
576 A->setImplicit(true);
577 return A;
578 }
579
580 AlignValueAttr(SourceRange R, ASTContext &Ctx
581 , Expr * Alignment
582 , unsigned SI
583 )
584 : Attr(attr::AlignValue, R, SI, false)
585 , alignment(Alignment)
586 {
587 }
588
589 AlignValueAttr *clone(ASTContext &C) const;
590 void printPretty(raw_ostream &OS,
591 const PrintingPolicy &Policy) const;
592 const char *getSpelling() const;
593 Expr * getAlignment() const {
594 return alignment;
595 }
596
597
598
599 static bool classof(const Attr *A) { return A->getKind() == attr::AlignValue; }
600};
601
602class AlignedAttr : public InheritableAttr {
603bool isalignmentExpr;
604union {
605Expr *alignmentExpr;
606TypeSourceInfo *alignmentType;
607};
608
609public:
610 enum Spelling {
611 GNU_aligned = 0,
612 CXX11_gnu_aligned = 1,
613 Declspec_align = 2,
614 Keyword_alignas = 3,
615 Keyword_Alignas = 4
616 };
617
618 static AlignedAttr *CreateImplicit(ASTContext &Ctx, Spelling S, bool IsAlignmentExpr, void *Alignment, SourceRange Loc = SourceRange()) {
619 auto *A = new (Ctx) AlignedAttr(Loc, Ctx, IsAlignmentExpr, Alignment, S);
620 A->setImplicit(true);
621 return A;
622 }
623
624 AlignedAttr(SourceRange R, ASTContext &Ctx
625 , bool IsAlignmentExpr, void *Alignment
626 , unsigned SI
627 )
628 : InheritableAttr(attr::Aligned, R, SI, false, false)
629 , isalignmentExpr(IsAlignmentExpr)
630 {
631 if (isalignmentExpr)
632 alignmentExpr = reinterpret_cast<Expr *>(Alignment);
633 else
634 alignmentType = reinterpret_cast<TypeSourceInfo *>(Alignment);
635 }
636
637 AlignedAttr(SourceRange R, ASTContext &Ctx
638 , unsigned SI
639 )
640 : InheritableAttr(attr::Aligned, R, SI, false, false)
641 , isalignmentExpr(false)
642 {
643 }
644
645 AlignedAttr *clone(ASTContext &C) const;
646 void printPretty(raw_ostream &OS,
647 const PrintingPolicy &Policy) const;
648 const char *getSpelling() const;
649 Spelling getSemanticSpelling() const {
650 switch (SpellingListIndex) {
651 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 651)
;
652 case 0: return GNU_aligned;
653 case 1: return CXX11_gnu_aligned;
654 case 2: return Declspec_align;
655 case 3: return Keyword_alignas;
656 case 4: return Keyword_Alignas;
657 }
658 }
659 bool isGNU() const { return SpellingListIndex == 0 ||
660 SpellingListIndex == 1; }
661 bool isC11() const { return SpellingListIndex == 4; }
662 bool isAlignas() const { return SpellingListIndex == 3 ||
663 SpellingListIndex == 4; }
664 bool isDeclspec() const { return SpellingListIndex == 2; }
665 bool isAlignmentDependent() const;
666 unsigned getAlignment(ASTContext &Ctx) const;
667 bool isAlignmentExpr() const {
668 return isalignmentExpr;
669 }
670 Expr *getAlignmentExpr() const {
671 assert(isalignmentExpr)(static_cast <bool> (isalignmentExpr) ? void (0) : __assert_fail
("isalignmentExpr", "/build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 671, __extension__ __PRETTY_FUNCTION__))
;
672 return alignmentExpr;
673 }
674 TypeSourceInfo *getAlignmentType() const {
675 assert(!isalignmentExpr)(static_cast <bool> (!isalignmentExpr) ? void (0) : __assert_fail
("!isalignmentExpr", "/build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 675, __extension__ __PRETTY_FUNCTION__))
;
676 return alignmentType;
677 }
678
679
680
681 static bool classof(const Attr *A) { return A->getKind() == attr::Aligned; }
682};
683
684class AllocAlignAttr : public InheritableAttr {
685int paramIndex;
686
687public:
688 static AllocAlignAttr *CreateImplicit(ASTContext &Ctx, int ParamIndex, SourceRange Loc = SourceRange()) {
689 auto *A = new (Ctx) AllocAlignAttr(Loc, Ctx, ParamIndex, 0);
690 A->setImplicit(true);
691 return A;
692 }
693
694 AllocAlignAttr(SourceRange R, ASTContext &Ctx
695 , int ParamIndex
696 , unsigned SI
697 )
698 : InheritableAttr(attr::AllocAlign, R, SI, false, false)
699 , paramIndex(ParamIndex)
700 {
701 }
702
703 AllocAlignAttr *clone(ASTContext &C) const;
704 void printPretty(raw_ostream &OS,
705 const PrintingPolicy &Policy) const;
706 const char *getSpelling() const;
707 int getParamIndex() const {
708 return paramIndex;
709 }
710
711
712
713 static bool classof(const Attr *A) { return A->getKind() == attr::AllocAlign; }
714};
715
716class AllocSizeAttr : public InheritableAttr {
717int elemSizeParam;
718
719int numElemsParam;
720
721public:
722 static AllocSizeAttr *CreateImplicit(ASTContext &Ctx, int ElemSizeParam, int NumElemsParam, SourceRange Loc = SourceRange()) {
723 auto *A = new (Ctx) AllocSizeAttr(Loc, Ctx, ElemSizeParam, NumElemsParam, 0);
724 A->setImplicit(true);
725 return A;
726 }
727
728 AllocSizeAttr(SourceRange R, ASTContext &Ctx
729 , int ElemSizeParam
730 , int NumElemsParam
731 , unsigned SI
732 )
733 : InheritableAttr(attr::AllocSize, R, SI, false, false)
734 , elemSizeParam(ElemSizeParam)
735 , numElemsParam(NumElemsParam)
736 {
737 }
738
739 AllocSizeAttr(SourceRange R, ASTContext &Ctx
740 , int ElemSizeParam
741 , unsigned SI
742 )
743 : InheritableAttr(attr::AllocSize, R, SI, false, false)
744 , elemSizeParam(ElemSizeParam)
745 , numElemsParam()
746 {
747 }
748
749 AllocSizeAttr *clone(ASTContext &C) const;
750 void printPretty(raw_ostream &OS,
751 const PrintingPolicy &Policy) const;
752 const char *getSpelling() const;
753 int getElemSizeParam() const {
754 return elemSizeParam;
755 }
756
757 int getNumElemsParam() const {
758 return numElemsParam;
759 }
760
761
762
763 static bool classof(const Attr *A) { return A->getKind() == attr::AllocSize; }
764};
765
766class AlwaysInlineAttr : public InheritableAttr {
767public:
768 enum Spelling {
769 GNU_always_inline = 0,
770 CXX11_gnu_always_inline = 1,
771 Keyword_forceinline = 2
772 };
773
774 static AlwaysInlineAttr *CreateImplicit(ASTContext &Ctx, Spelling S, SourceRange Loc = SourceRange()) {
775 auto *A = new (Ctx) AlwaysInlineAttr(Loc, Ctx, S);
776 A->setImplicit(true);
777 return A;
778 }
779
780 AlwaysInlineAttr(SourceRange R, ASTContext &Ctx
781 , unsigned SI
782 )
783 : InheritableAttr(attr::AlwaysInline, R, SI, false, false)
784 {
785 }
786
787 AlwaysInlineAttr *clone(ASTContext &C) const;
788 void printPretty(raw_ostream &OS,
789 const PrintingPolicy &Policy) const;
790 const char *getSpelling() const;
791 Spelling getSemanticSpelling() const {
792 switch (SpellingListIndex) {
793 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 793)
;
794 case 0: return GNU_always_inline;
795 case 1: return CXX11_gnu_always_inline;
796 case 2: return Keyword_forceinline;
797 }
798 }
799
800
801 static bool classof(const Attr *A) { return A->getKind() == attr::AlwaysInline; }
802};
803
804class AnalyzerNoReturnAttr : public InheritableAttr {
805public:
806 static AnalyzerNoReturnAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
807 auto *A = new (Ctx) AnalyzerNoReturnAttr(Loc, Ctx, 0);
808 A->setImplicit(true);
809 return A;
810 }
811
812 AnalyzerNoReturnAttr(SourceRange R, ASTContext &Ctx
813 , unsigned SI
814 )
815 : InheritableAttr(attr::AnalyzerNoReturn, R, SI, false, false)
816 {
817 }
818
819 AnalyzerNoReturnAttr *clone(ASTContext &C) const;
820 void printPretty(raw_ostream &OS,
821 const PrintingPolicy &Policy) const;
822 const char *getSpelling() const;
823
824
825 static bool classof(const Attr *A) { return A->getKind() == attr::AnalyzerNoReturn; }
826};
827
828class AnnotateAttr : public InheritableParamAttr {
829unsigned annotationLength;
830char *annotation;
831
832public:
833 static AnnotateAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Annotation, SourceRange Loc = SourceRange()) {
834 auto *A = new (Ctx) AnnotateAttr(Loc, Ctx, Annotation, 0);
835 A->setImplicit(true);
836 return A;
837 }
838
839 AnnotateAttr(SourceRange R, ASTContext &Ctx
840 , llvm::StringRef Annotation
841 , unsigned SI
842 )
843 : InheritableParamAttr(attr::Annotate, R, SI, false, false)
844 , annotationLength(Annotation.size()),annotation(new (Ctx, 1) char[annotationLength])
845 {
846 if (!Annotation.empty())
847 std::memcpy(annotation, Annotation.data(), annotationLength);
848 }
849
850 AnnotateAttr *clone(ASTContext &C) const;
851 void printPretty(raw_ostream &OS,
852 const PrintingPolicy &Policy) const;
853 const char *getSpelling() const;
854 llvm::StringRef getAnnotation() const {
855 return llvm::StringRef(annotation, annotationLength);
856 }
857 unsigned getAnnotationLength() const {
858 return annotationLength;
859 }
860 void setAnnotation(ASTContext &C, llvm::StringRef S) {
861 annotationLength = S.size();
862 this->annotation = new (C, 1) char [annotationLength];
863 if (!S.empty())
864 std::memcpy(this->annotation, S.data(), annotationLength);
865 }
866
867
868
869 static bool classof(const Attr *A) { return A->getKind() == attr::Annotate; }
870};
871
872class AnyX86InterruptAttr : public InheritableAttr {
873public:
874 static AnyX86InterruptAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
875 auto *A = new (Ctx) AnyX86InterruptAttr(Loc, Ctx, 0);
876 A->setImplicit(true);
877 return A;
878 }
879
880 AnyX86InterruptAttr(SourceRange R, ASTContext &Ctx
881 , unsigned SI
882 )
883 : InheritableAttr(attr::AnyX86Interrupt, R, SI, false, false)
884 {
885 }
886
887 AnyX86InterruptAttr *clone(ASTContext &C) const;
888 void printPretty(raw_ostream &OS,
889 const PrintingPolicy &Policy) const;
890 const char *getSpelling() const;
891
892
893 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86Interrupt; }
894};
895
896class AnyX86NoCallerSavedRegistersAttr : public InheritableAttr {
897public:
898 static AnyX86NoCallerSavedRegistersAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
899 auto *A = new (Ctx) AnyX86NoCallerSavedRegistersAttr(Loc, Ctx, 0);
900 A->setImplicit(true);
901 return A;
902 }
903
904 AnyX86NoCallerSavedRegistersAttr(SourceRange R, ASTContext &Ctx
905 , unsigned SI
906 )
907 : InheritableAttr(attr::AnyX86NoCallerSavedRegisters, R, SI, false, false)
908 {
909 }
910
911 AnyX86NoCallerSavedRegistersAttr *clone(ASTContext &C) const;
912 void printPretty(raw_ostream &OS,
913 const PrintingPolicy &Policy) const;
914 const char *getSpelling() const;
915
916
917 static bool classof(const Attr *A) { return A->getKind() == attr::AnyX86NoCallerSavedRegisters; }
918};
919
920class ArcWeakrefUnavailableAttr : public InheritableAttr {
921public:
922 static ArcWeakrefUnavailableAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
923 auto *A = new (Ctx) ArcWeakrefUnavailableAttr(Loc, Ctx, 0);
924 A->setImplicit(true);
925 return A;
926 }
927
928 ArcWeakrefUnavailableAttr(SourceRange R, ASTContext &Ctx
929 , unsigned SI
930 )
931 : InheritableAttr(attr::ArcWeakrefUnavailable, R, SI, false, false)
932 {
933 }
934
935 ArcWeakrefUnavailableAttr *clone(ASTContext &C) const;
936 void printPretty(raw_ostream &OS,
937 const PrintingPolicy &Policy) const;
938 const char *getSpelling() const;
939
940
941 static bool classof(const Attr *A) { return A->getKind() == attr::ArcWeakrefUnavailable; }
942};
943
944class ArgumentWithTypeTagAttr : public InheritableAttr {
945IdentifierInfo * argumentKind;
946
947unsigned argumentIdx;
948
949unsigned typeTagIdx;
950
951bool isPointer;
952
953public:
954 enum Spelling {
955 GNU_argument_with_type_tag = 0,
956 GNU_pointer_with_type_tag = 1
957 };
958
959 static ArgumentWithTypeTagAttr *CreateImplicit(ASTContext &Ctx, Spelling S, IdentifierInfo * ArgumentKind, unsigned ArgumentIdx, unsigned TypeTagIdx, bool IsPointer, SourceRange Loc = SourceRange()) {
960 auto *A = new (Ctx) ArgumentWithTypeTagAttr(Loc, Ctx, ArgumentKind, ArgumentIdx, TypeTagIdx, IsPointer, S);
961 A->setImplicit(true);
962 return A;
963 }
964
965 ArgumentWithTypeTagAttr(SourceRange R, ASTContext &Ctx
966 , IdentifierInfo * ArgumentKind
967 , unsigned ArgumentIdx
968 , unsigned TypeTagIdx
969 , bool IsPointer
970 , unsigned SI
971 )
972 : InheritableAttr(attr::ArgumentWithTypeTag, R, SI, false, false)
973 , argumentKind(ArgumentKind)
974 , argumentIdx(ArgumentIdx)
975 , typeTagIdx(TypeTagIdx)
976 , isPointer(IsPointer)
977 {
978 }
979
980 ArgumentWithTypeTagAttr *clone(ASTContext &C) const;
981 void printPretty(raw_ostream &OS,
982 const PrintingPolicy &Policy) const;
983 const char *getSpelling() const;
984 Spelling getSemanticSpelling() const {
985 switch (SpellingListIndex) {
986 default: llvm_unreachable("Unknown spelling list index")::llvm::llvm_unreachable_internal("Unknown spelling list index"
, "/build/llvm-toolchain-snapshot-7~svn325874/build-llvm/tools/clang/include/clang/AST/Attrs.inc"
, 986)
;
987 case 0: return GNU_argument_with_type_tag;
988 case 1: return GNU_pointer_with_type_tag;
989 }
990 }
991 IdentifierInfo * getArgumentKind() const {
992 return argumentKind;
993 }
994
995 unsigned getArgumentIdx() const {
996 return argumentIdx;
997 }
998
999 unsigned getTypeTagIdx() const {
1000 return typeTagIdx;
1001 }
1002
1003 bool getIsPointer() const {
1004 return isPointer;
1005 }
1006
1007
1008
1009 static bool classof(const Attr *A) { return A->getKind() == attr::ArgumentWithTypeTag; }
1010};
1011
1012class ArtificialAttr : public InheritableAttr {
1013public:
1014 static ArtificialAttr *CreateImplicit(ASTContext &Ctx, SourceRange Loc = SourceRange()) {
1015 auto *A = new (Ctx) ArtificialAttr(Loc, Ctx, 0);
1016 A->setImplicit(true);
1017 return A;
1018 }
1019
1020 ArtificialAttr(SourceRange R, ASTContext &Ctx
1021 , unsigned SI
1022 )
1023 : InheritableAttr(attr::Artificial, R, SI, false, false)
1024 {
1025 }
1026
1027 ArtificialAttr *clone(ASTContext &C) const;
1028 void printPretty(raw_ostream &OS,
1029 const PrintingPolicy &Policy) const;
1030 const char *getSpelling() const;
1031
1032
1033 static bool classof(const Attr *A) { return A->getKind() == attr::Artificial; }
1034};
1035
1036class AsmLabelAttr : public InheritableAttr {
1037unsigned labelLength;
1038char *label;
1039
1040public:
1041 static AsmLabelAttr *CreateImplicit(ASTContext &Ctx, llvm::StringRef Label, SourceRange Loc = SourceRange()) {
1042 auto *A = new (Ctx) AsmLabelAttr(Loc, Ctx, Label, 0);
1043 A->setImplicit(true);
1044 return A;
1045 }
1046
1047 AsmLabelAttr(SourceRange R, ASTContext &Ctx
1048 , llvm::StringRef Label
1049 , unsigned SI
1050 )
1051 : InheritableAttr(attr::AsmLabel, R, SI, false, false)
1052 , labelLength(Label.size()),label(new (Ctx, 1) char[labelLength])
1053 {
1054 if (!Label.empty())
1055 std::memcpy(label, Label.data(), labelLength);
1056 }
1057
1058 AsmLabelAttr *clone(ASTContext &C) const;
1059 void printPretty(raw_ostream &OS,
1060 const PrintingPolicy &Policy) const;
1061 const char *getSpelling() const;
1062 llvm::StringRef getLabel() const {
1063 return llvm::StringRef(label, labelLength);
1064 }
1065 unsigned getLabelLength() const {
1066 return labelLength;
1067 }
1068 void setLabel(ASTContext &C, llvm::StringRef S) {
1069 labelLength = S.size();
1070 this->label = new (C, 1) char [labelLength];
1071 if (!S.empty())
1072 std::memcpy(this->label, S.data(), labelLength);
1073 }
1074
1075
1076
1077 static bool classof(const Attr *A) { return A->getKind() == attr::AsmLabel; }
1078};
1079