Bug Summary

File:tools/clang/lib/Sema/SemaExceptionSpec.cpp
Warning:line 157, column 9
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExceptionSpec.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn373517/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn373517=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-02-234743-9763-1 -x c++ /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp

1//===--- SemaExceptionSpec.cpp - C++ Exception Specifications ---*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file provides Sema routines for C++ exception specification testing.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/Sema/SemaInternal.h"
14#include "clang/AST/ASTMutationListener.h"
15#include "clang/AST/CXXInheritance.h"
16#include "clang/AST/Expr.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/SourceManager.h"
21#include "llvm/ADT/SmallPtrSet.h"
22#include "llvm/ADT/SmallString.h"
23
24namespace clang {
25
26static const FunctionProtoType *GetUnderlyingFunction(QualType T)
27{
28 if (const PointerType *PtrTy = T->getAs<PointerType>())
29 T = PtrTy->getPointeeType();
30 else if (const ReferenceType *RefTy = T->getAs<ReferenceType>())
31 T = RefTy->getPointeeType();
32 else if (const MemberPointerType *MPTy = T->getAs<MemberPointerType>())
33 T = MPTy->getPointeeType();
34 return T->getAs<FunctionProtoType>();
35}
36
37/// HACK: libstdc++ has a bug where it shadows std::swap with a member
38/// swap function then tries to call std::swap unqualified from the exception
39/// specification of that function. This function detects whether we're in
40/// such a case and turns off delay-parsing of exception specifications.
41bool Sema::isLibstdcxxEagerExceptionSpecHack(const Declarator &D) {
42 auto *RD = dyn_cast<CXXRecordDecl>(CurContext);
43
44 // All the problem cases are member functions named "swap" within class
45 // templates declared directly within namespace std or std::__debug or
46 // std::__profile.
47 if (!RD || !RD->getIdentifier() || !RD->getDescribedClassTemplate() ||
48 !D.getIdentifier() || !D.getIdentifier()->isStr("swap"))
49 return false;
50
51 auto *ND = dyn_cast<NamespaceDecl>(RD->getDeclContext());
52 if (!ND)
53 return false;
54
55 bool IsInStd = ND->isStdNamespace();
56 if (!IsInStd) {
57 // This isn't a direct member of namespace std, but it might still be
58 // libstdc++'s std::__debug::array or std::__profile::array.
59 IdentifierInfo *II = ND->getIdentifier();
60 if (!II || !(II->isStr("__debug") || II->isStr("__profile")) ||
61 !ND->isInStdNamespace())
62 return false;
63 }
64
65 // Only apply this hack within a system header.
66 if (!Context.getSourceManager().isInSystemHeader(D.getBeginLoc()))
67 return false;
68
69 return llvm::StringSwitch<bool>(RD->getIdentifier()->getName())
70 .Case("array", true)
71 .Case("pair", IsInStd)
72 .Case("priority_queue", IsInStd)
73 .Case("stack", IsInStd)
74 .Case("queue", IsInStd)
75 .Default(false);
76}
77
78ExprResult Sema::ActOnNoexceptSpec(SourceLocation NoexceptLoc,
79 Expr *NoexceptExpr,
80 ExceptionSpecificationType &EST) {
81 // FIXME: This is bogus, a noexcept expression is not a condition.
82 ExprResult Converted = CheckBooleanCondition(NoexceptLoc, NoexceptExpr);
83 if (Converted.isInvalid())
84 return Converted;
85
86 if (Converted.get()->isValueDependent()) {
87 EST = EST_DependentNoexcept;
88 return Converted;
89 }
90
91 llvm::APSInt Result;
92 Converted = VerifyIntegerConstantExpression(
93 Converted.get(), &Result,
94 diag::err_noexcept_needs_constant_expression,
95 /*AllowFold*/ false);
96 if (!Converted.isInvalid())
97 EST = !Result ? EST_NoexceptFalse : EST_NoexceptTrue;
98 return Converted;
99}
100
101/// CheckSpecifiedExceptionType - Check if the given type is valid in an
102/// exception specification. Incomplete types, or pointers to incomplete types
103/// other than void are not allowed.
104///
105/// \param[in,out] T The exception type. This will be decayed to a pointer type
106/// when the input is an array or a function type.
107bool Sema::CheckSpecifiedExceptionType(QualType &T, SourceRange Range) {
108 // C++11 [except.spec]p2:
109 // A type cv T, "array of T", or "function returning T" denoted
110 // in an exception-specification is adjusted to type T, "pointer to T", or
111 // "pointer to function returning T", respectively.
112 //
113 // We also apply this rule in C++98.
114 if (T->isArrayType())
1
Taking true branch
115 T = Context.getArrayDecayedType(T);
116 else if (T->isFunctionType())
117 T = Context.getPointerType(T);
118
119 int Kind = 0;
120 QualType PointeeT = T;
121 if (const PointerType *PT
2.1
'PT' is null
2.1
'PT' is null
= T->getAs<PointerType>()) {
2
Assuming the object is not a 'PointerType'
3
Taking false branch
122 PointeeT = PT->getPointeeType();
123 Kind = 1;
124
125 // cv void* is explicitly permitted, despite being a pointer to an
126 // incomplete type.
127 if (PointeeT->isVoidType())
128 return false;
129 } else if (const ReferenceType *RT
4.1
'RT' is null
4.1
'RT' is null
= T->getAs<ReferenceType>()) {
4
Assuming the object is not a 'ReferenceType'
5
Taking false branch
130 PointeeT = RT->getPointeeType();
131 Kind = 2;
132
133 if (RT->isRValueReferenceType()) {
134 // C++11 [except.spec]p2:
135 // A type denoted in an exception-specification shall not denote [...]
136 // an rvalue reference type.
137 Diag(Range.getBegin(), diag::err_rref_in_exception_spec)
138 << T << Range;
139 return true;
140 }
141 }
142
143 // C++11 [except.spec]p2:
144 // A type denoted in an exception-specification shall not denote an
145 // incomplete type other than a class currently being defined [...].
146 // A type denoted in an exception-specification shall not denote a
147 // pointer or reference to an incomplete type, other than (cv) void* or a
148 // pointer or reference to a class currently being defined.
149 // In Microsoft mode, downgrade this to a warning.
150 unsigned DiagID = diag::err_incomplete_in_exception_spec;
151 bool ReturnValueOnError = true;
152 if (getLangOpts().MSVCCompat) {
6
Assuming field 'MSVCCompat' is 0
7
Taking false branch
153 DiagID = diag::ext_incomplete_in_exception_spec;
154 ReturnValueOnError = false;
155 }
156 if (!(PointeeT->isRecordType() &&
8
Calling 'Type::isRecordType'
11
Returning from 'Type::isRecordType'
157 PointeeT->getAs<RecordType>()->isBeingDefined()) &&
12
Assuming the object is not a 'RecordType'
13
Called C++ object pointer is null
158 RequireCompleteType(Range.getBegin(), PointeeT, DiagID, Kind, Range))
159 return ReturnValueOnError;
160
161 return false;
162}
163
164/// CheckDistantExceptionSpec - Check if the given type is a pointer or pointer
165/// to member to a function with an exception specification. This means that
166/// it is invalid to add another level of indirection.
167bool Sema::CheckDistantExceptionSpec(QualType T) {
168 // C++17 removes this rule in favor of putting exception specifications into
169 // the type system.
170 if (getLangOpts().CPlusPlus17)
171 return false;
172
173 if (const PointerType *PT = T->getAs<PointerType>())
174 T = PT->getPointeeType();
175 else if (const MemberPointerType *PT = T->getAs<MemberPointerType>())
176 T = PT->getPointeeType();
177 else
178 return false;
179
180 const FunctionProtoType *FnT = T->getAs<FunctionProtoType>();
181 if (!FnT)
182 return false;
183
184 return FnT->hasExceptionSpec();
185}
186
187const FunctionProtoType *
188Sema::ResolveExceptionSpec(SourceLocation Loc, const FunctionProtoType *FPT) {
189 if (FPT->getExceptionSpecType() == EST_Unparsed) {
190 Diag(Loc, diag::err_exception_spec_not_parsed);
191 return nullptr;
192 }
193
194 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
195 return FPT;
196
197 FunctionDecl *SourceDecl = FPT->getExceptionSpecDecl();
198 const FunctionProtoType *SourceFPT =
199 SourceDecl->getType()->castAs<FunctionProtoType>();
200
201 // If the exception specification has already been resolved, just return it.
202 if (!isUnresolvedExceptionSpec(SourceFPT->getExceptionSpecType()))
203 return SourceFPT;
204
205 // Compute or instantiate the exception specification now.
206 if (SourceFPT->getExceptionSpecType() == EST_Unevaluated)
207 EvaluateImplicitExceptionSpec(Loc, cast<CXXMethodDecl>(SourceDecl));
208 else
209 InstantiateExceptionSpec(Loc, SourceDecl);
210
211 const FunctionProtoType *Proto =
212 SourceDecl->getType()->castAs<FunctionProtoType>();
213 if (Proto->getExceptionSpecType() == clang::EST_Unparsed) {
214 Diag(Loc, diag::err_exception_spec_not_parsed);
215 Proto = nullptr;
216 }
217 return Proto;
218}
219
220void
221Sema::UpdateExceptionSpec(FunctionDecl *FD,
222 const FunctionProtoType::ExceptionSpecInfo &ESI) {
223 // If we've fully resolved the exception specification, notify listeners.
224 if (!isUnresolvedExceptionSpec(ESI.Type))
225 if (auto *Listener = getASTMutationListener())
226 Listener->ResolvedExceptionSpec(FD);
227
228 for (FunctionDecl *Redecl : FD->redecls())
229 Context.adjustExceptionSpec(Redecl, ESI);
230}
231
232static bool exceptionSpecNotKnownYet(const FunctionDecl *FD) {
233 auto *MD = dyn_cast<CXXMethodDecl>(FD);
234 if (!MD)
235 return false;
236
237 auto EST = MD->getType()->castAs<FunctionProtoType>()->getExceptionSpecType();
238 return EST == EST_Unparsed ||
239 (EST == EST_Unevaluated && MD->getParent()->isBeingDefined());
240}
241
242static bool CheckEquivalentExceptionSpecImpl(
243 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
244 const FunctionProtoType *Old, SourceLocation OldLoc,
245 const FunctionProtoType *New, SourceLocation NewLoc,
246 bool *MissingExceptionSpecification = nullptr,
247 bool *MissingEmptyExceptionSpecification = nullptr,
248 bool AllowNoexceptAllMatchWithNoSpec = false, bool IsOperatorNew = false);
249
250/// Determine whether a function has an implicitly-generated exception
251/// specification.
252static bool hasImplicitExceptionSpec(FunctionDecl *Decl) {
253 if (!isa<CXXDestructorDecl>(Decl) &&
254 Decl->getDeclName().getCXXOverloadedOperator() != OO_Delete &&
255 Decl->getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
256 return false;
257
258 // For a function that the user didn't declare:
259 // - if this is a destructor, its exception specification is implicit.
260 // - if this is 'operator delete' or 'operator delete[]', the exception
261 // specification is as-if an explicit exception specification was given
262 // (per [basic.stc.dynamic]p2).
263 if (!Decl->getTypeSourceInfo())
264 return isa<CXXDestructorDecl>(Decl);
265
266 const FunctionProtoType *Ty =
267 Decl->getTypeSourceInfo()->getType()->getAs<FunctionProtoType>();
268 return !Ty->hasExceptionSpec();
269}
270
271bool Sema::CheckEquivalentExceptionSpec(FunctionDecl *Old, FunctionDecl *New) {
272 // Just completely ignore this under -fno-exceptions prior to C++17.
273 // In C++17 onwards, the exception specification is part of the type and
274 // we will diagnose mismatches anyway, so it's better to check for them here.
275 if (!getLangOpts().CXXExceptions && !getLangOpts().CPlusPlus17)
276 return false;
277
278 OverloadedOperatorKind OO = New->getDeclName().getCXXOverloadedOperator();
279 bool IsOperatorNew = OO == OO_New || OO == OO_Array_New;
280 bool MissingExceptionSpecification = false;
281 bool MissingEmptyExceptionSpecification = false;
282
283 unsigned DiagID = diag::err_mismatched_exception_spec;
284 bool ReturnValueOnError = true;
285 if (getLangOpts().MSVCCompat) {
286 DiagID = diag::ext_mismatched_exception_spec;
287 ReturnValueOnError = false;
288 }
289
290 // If we're befriending a member function of a class that's currently being
291 // defined, we might not be able to work out its exception specification yet.
292 // If not, defer the check until later.
293 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
294 DelayedEquivalentExceptionSpecChecks.push_back({New, Old});
295 return false;
296 }
297
298 // Check the types as written: they must match before any exception
299 // specification adjustment is applied.
300 if (!CheckEquivalentExceptionSpecImpl(
301 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
302 Old->getType()->getAs<FunctionProtoType>(), Old->getLocation(),
303 New->getType()->getAs<FunctionProtoType>(), New->getLocation(),
304 &MissingExceptionSpecification, &MissingEmptyExceptionSpecification,
305 /*AllowNoexceptAllMatchWithNoSpec=*/true, IsOperatorNew)) {
306 // C++11 [except.spec]p4 [DR1492]:
307 // If a declaration of a function has an implicit
308 // exception-specification, other declarations of the function shall
309 // not specify an exception-specification.
310 if (getLangOpts().CPlusPlus11 && getLangOpts().CXXExceptions &&
311 hasImplicitExceptionSpec(Old) != hasImplicitExceptionSpec(New)) {
312 Diag(New->getLocation(), diag::ext_implicit_exception_spec_mismatch)
313 << hasImplicitExceptionSpec(Old);
314 if (Old->getLocation().isValid())
315 Diag(Old->getLocation(), diag::note_previous_declaration);
316 }
317 return false;
318 }
319
320 // The failure was something other than an missing exception
321 // specification; return an error, except in MS mode where this is a warning.
322 if (!MissingExceptionSpecification)
323 return ReturnValueOnError;
324
325 const FunctionProtoType *NewProto =
326 New->getType()->castAs<FunctionProtoType>();
327
328 // The new function declaration is only missing an empty exception
329 // specification "throw()". If the throw() specification came from a
330 // function in a system header that has C linkage, just add an empty
331 // exception specification to the "new" declaration. Note that C library
332 // implementations are permitted to add these nothrow exception
333 // specifications.
334 //
335 // Likewise if the old function is a builtin.
336 if (MissingEmptyExceptionSpecification && NewProto &&
337 (Old->getLocation().isInvalid() ||
338 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
339 Old->getBuiltinID()) &&
340 Old->isExternC()) {
341 New->setType(Context.getFunctionType(
342 NewProto->getReturnType(), NewProto->getParamTypes(),
343 NewProto->getExtProtoInfo().withExceptionSpec(EST_DynamicNone)));
344 return false;
345 }
346
347 const FunctionProtoType *OldProto =
348 Old->getType()->castAs<FunctionProtoType>();
349
350 FunctionProtoType::ExceptionSpecInfo ESI = OldProto->getExceptionSpecType();
351 if (ESI.Type == EST_Dynamic) {
352 // FIXME: What if the exceptions are described in terms of the old
353 // prototype's parameters?
354 ESI.Exceptions = OldProto->exceptions();
355 }
356
357 if (ESI.Type == EST_NoexceptFalse)
358 ESI.Type = EST_None;
359 if (ESI.Type == EST_NoexceptTrue)
360 ESI.Type = EST_BasicNoexcept;
361
362 // For dependent noexcept, we can't just take the expression from the old
363 // prototype. It likely contains references to the old prototype's parameters.
364 if (ESI.Type == EST_DependentNoexcept) {
365 New->setInvalidDecl();
366 } else {
367 // Update the type of the function with the appropriate exception
368 // specification.
369 New->setType(Context.getFunctionType(
370 NewProto->getReturnType(), NewProto->getParamTypes(),
371 NewProto->getExtProtoInfo().withExceptionSpec(ESI)));
372 }
373
374 if (getLangOpts().MSVCCompat && ESI.Type != EST_DependentNoexcept) {
375 // Allow missing exception specifications in redeclarations as an extension.
376 DiagID = diag::ext_ms_missing_exception_specification;
377 ReturnValueOnError = false;
378 } else if (New->isReplaceableGlobalAllocationFunction() &&
379 ESI.Type != EST_DependentNoexcept) {
380 // Allow missing exception specifications in redeclarations as an extension,
381 // when declaring a replaceable global allocation function.
382 DiagID = diag::ext_missing_exception_specification;
383 ReturnValueOnError = false;
384 } else if (ESI.Type == EST_NoThrow) {
385 // Allow missing attribute 'nothrow' in redeclarations, since this is a very
386 // common omission.
387 DiagID = diag::ext_missing_exception_specification;
388 ReturnValueOnError = false;
389 } else {
390 DiagID = diag::err_missing_exception_specification;
391 ReturnValueOnError = true;
392 }
393
394 // Warn about the lack of exception specification.
395 SmallString<128> ExceptionSpecString;
396 llvm::raw_svector_ostream OS(ExceptionSpecString);
397 switch (OldProto->getExceptionSpecType()) {
398 case EST_DynamicNone:
399 OS << "throw()";
400 break;
401
402 case EST_Dynamic: {
403 OS << "throw(";
404 bool OnFirstException = true;
405 for (const auto &E : OldProto->exceptions()) {
406 if (OnFirstException)
407 OnFirstException = false;
408 else
409 OS << ", ";
410
411 OS << E.getAsString(getPrintingPolicy());
412 }
413 OS << ")";
414 break;
415 }
416
417 case EST_BasicNoexcept:
418 OS << "noexcept";
419 break;
420
421 case EST_DependentNoexcept:
422 case EST_NoexceptFalse:
423 case EST_NoexceptTrue:
424 OS << "noexcept(";
425 assert(OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr")((OldProto->getNoexceptExpr() != nullptr && "Expected non-null Expr"
) ? static_cast<void> (0) : __assert_fail ("OldProto->getNoexceptExpr() != nullptr && \"Expected non-null Expr\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 425, __PRETTY_FUNCTION__))
;
426 OldProto->getNoexceptExpr()->printPretty(OS, nullptr, getPrintingPolicy());
427 OS << ")";
428 break;
429 case EST_NoThrow:
430 OS <<"__attribute__((nothrow))";
431 break;
432 case EST_None:
433 case EST_MSAny:
434 case EST_Unevaluated:
435 case EST_Uninstantiated:
436 case EST_Unparsed:
437 llvm_unreachable("This spec type is compatible with none.")::llvm::llvm_unreachable_internal("This spec type is compatible with none."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 437)
;
438 }
439
440 SourceLocation FixItLoc;
441 if (TypeSourceInfo *TSInfo = New->getTypeSourceInfo()) {
442 TypeLoc TL = TSInfo->getTypeLoc().IgnoreParens();
443 // FIXME: Preserve enough information so that we can produce a correct fixit
444 // location when there is a trailing return type.
445 if (auto FTLoc = TL.getAs<FunctionProtoTypeLoc>())
446 if (!FTLoc.getTypePtr()->hasTrailingReturn())
447 FixItLoc = getLocForEndOfToken(FTLoc.getLocalRangeEnd());
448 }
449
450 if (FixItLoc.isInvalid())
451 Diag(New->getLocation(), DiagID)
452 << New << OS.str();
453 else {
454 Diag(New->getLocation(), DiagID)
455 << New << OS.str()
456 << FixItHint::CreateInsertion(FixItLoc, " " + OS.str().str());
457 }
458
459 if (Old->getLocation().isValid())
460 Diag(Old->getLocation(), diag::note_previous_declaration);
461
462 return ReturnValueOnError;
463}
464
465/// CheckEquivalentExceptionSpec - Check if the two types have equivalent
466/// exception specifications. Exception specifications are equivalent if
467/// they allow exactly the same set of exception types. It does not matter how
468/// that is achieved. See C++ [except.spec]p2.
469bool Sema::CheckEquivalentExceptionSpec(
470 const FunctionProtoType *Old, SourceLocation OldLoc,
471 const FunctionProtoType *New, SourceLocation NewLoc) {
472 if (!getLangOpts().CXXExceptions)
473 return false;
474
475 unsigned DiagID = diag::err_mismatched_exception_spec;
476 if (getLangOpts().MSVCCompat)
477 DiagID = diag::ext_mismatched_exception_spec;
478 bool Result = CheckEquivalentExceptionSpecImpl(
479 *this, PDiag(DiagID), PDiag(diag::note_previous_declaration),
480 Old, OldLoc, New, NewLoc);
481
482 // In Microsoft mode, mismatching exception specifications just cause a warning.
483 if (getLangOpts().MSVCCompat)
484 return false;
485 return Result;
486}
487
488/// CheckEquivalentExceptionSpec - Check if the two types have compatible
489/// exception specifications. See C++ [except.spec]p3.
490///
491/// \return \c false if the exception specifications match, \c true if there is
492/// a problem. If \c true is returned, either a diagnostic has already been
493/// produced or \c *MissingExceptionSpecification is set to \c true.
494static bool CheckEquivalentExceptionSpecImpl(
495 Sema &S, const PartialDiagnostic &DiagID, const PartialDiagnostic &NoteID,
496 const FunctionProtoType *Old, SourceLocation OldLoc,
497 const FunctionProtoType *New, SourceLocation NewLoc,
498 bool *MissingExceptionSpecification,
499 bool *MissingEmptyExceptionSpecification,
500 bool AllowNoexceptAllMatchWithNoSpec, bool IsOperatorNew) {
501 if (MissingExceptionSpecification)
502 *MissingExceptionSpecification = false;
503
504 if (MissingEmptyExceptionSpecification)
505 *MissingEmptyExceptionSpecification = false;
506
507 Old = S.ResolveExceptionSpec(NewLoc, Old);
508 if (!Old)
509 return false;
510 New = S.ResolveExceptionSpec(NewLoc, New);
511 if (!New)
512 return false;
513
514 // C++0x [except.spec]p3: Two exception-specifications are compatible if:
515 // - both are non-throwing, regardless of their form,
516 // - both have the form noexcept(constant-expression) and the constant-
517 // expressions are equivalent,
518 // - both are dynamic-exception-specifications that have the same set of
519 // adjusted types.
520 //
521 // C++0x [except.spec]p12: An exception-specification is non-throwing if it is
522 // of the form throw(), noexcept, or noexcept(constant-expression) where the
523 // constant-expression yields true.
524 //
525 // C++0x [except.spec]p4: If any declaration of a function has an exception-
526 // specifier that is not a noexcept-specification allowing all exceptions,
527 // all declarations [...] of that function shall have a compatible
528 // exception-specification.
529 //
530 // That last point basically means that noexcept(false) matches no spec.
531 // It's considered when AllowNoexceptAllMatchWithNoSpec is true.
532
533 ExceptionSpecificationType OldEST = Old->getExceptionSpecType();
534 ExceptionSpecificationType NewEST = New->getExceptionSpecType();
535
536 assert(!isUnresolvedExceptionSpec(OldEST) &&((!isUnresolvedExceptionSpec(OldEST) && !isUnresolvedExceptionSpec
(NewEST) && "Shouldn't see unknown exception specifications here"
) ? static_cast<void> (0) : __assert_fail ("!isUnresolvedExceptionSpec(OldEST) && !isUnresolvedExceptionSpec(NewEST) && \"Shouldn't see unknown exception specifications here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 538, __PRETTY_FUNCTION__))
537 !isUnresolvedExceptionSpec(NewEST) &&((!isUnresolvedExceptionSpec(OldEST) && !isUnresolvedExceptionSpec
(NewEST) && "Shouldn't see unknown exception specifications here"
) ? static_cast<void> (0) : __assert_fail ("!isUnresolvedExceptionSpec(OldEST) && !isUnresolvedExceptionSpec(NewEST) && \"Shouldn't see unknown exception specifications here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 538, __PRETTY_FUNCTION__))
538 "Shouldn't see unknown exception specifications here")((!isUnresolvedExceptionSpec(OldEST) && !isUnresolvedExceptionSpec
(NewEST) && "Shouldn't see unknown exception specifications here"
) ? static_cast<void> (0) : __assert_fail ("!isUnresolvedExceptionSpec(OldEST) && !isUnresolvedExceptionSpec(NewEST) && \"Shouldn't see unknown exception specifications here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 538, __PRETTY_FUNCTION__))
;
539
540 CanThrowResult OldCanThrow = Old->canThrow();
541 CanThrowResult NewCanThrow = New->canThrow();
542
543 // Any non-throwing specifications are compatible.
544 if (OldCanThrow == CT_Cannot && NewCanThrow == CT_Cannot)
545 return false;
546
547 // Any throws-anything specifications are usually compatible.
548 if (OldCanThrow == CT_Can && OldEST != EST_Dynamic &&
549 NewCanThrow == CT_Can && NewEST != EST_Dynamic) {
550 // The exception is that the absence of an exception specification only
551 // matches noexcept(false) for functions, as described above.
552 if (!AllowNoexceptAllMatchWithNoSpec &&
553 ((OldEST == EST_None && NewEST == EST_NoexceptFalse) ||
554 (OldEST == EST_NoexceptFalse && NewEST == EST_None))) {
555 // This is the disallowed case.
556 } else {
557 return false;
558 }
559 }
560
561 // C++14 [except.spec]p3:
562 // Two exception-specifications are compatible if [...] both have the form
563 // noexcept(constant-expression) and the constant-expressions are equivalent
564 if (OldEST == EST_DependentNoexcept && NewEST == EST_DependentNoexcept) {
565 llvm::FoldingSetNodeID OldFSN, NewFSN;
566 Old->getNoexceptExpr()->Profile(OldFSN, S.Context, true);
567 New->getNoexceptExpr()->Profile(NewFSN, S.Context, true);
568 if (OldFSN == NewFSN)
569 return false;
570 }
571
572 // Dynamic exception specifications with the same set of adjusted types
573 // are compatible.
574 if (OldEST == EST_Dynamic && NewEST == EST_Dynamic) {
575 bool Success = true;
576 // Both have a dynamic exception spec. Collect the first set, then compare
577 // to the second.
578 llvm::SmallPtrSet<CanQualType, 8> OldTypes, NewTypes;
579 for (const auto &I : Old->exceptions())
580 OldTypes.insert(S.Context.getCanonicalType(I).getUnqualifiedType());
581
582 for (const auto &I : New->exceptions()) {
583 CanQualType TypePtr = S.Context.getCanonicalType(I).getUnqualifiedType();
584 if (OldTypes.count(TypePtr))
585 NewTypes.insert(TypePtr);
586 else {
587 Success = false;
588 break;
589 }
590 }
591
592 if (Success && OldTypes.size() == NewTypes.size())
593 return false;
594 }
595
596 // As a special compatibility feature, under C++0x we accept no spec and
597 // throw(std::bad_alloc) as equivalent for operator new and operator new[].
598 // This is because the implicit declaration changed, but old code would break.
599 if (S.getLangOpts().CPlusPlus11 && IsOperatorNew) {
600 const FunctionProtoType *WithExceptions = nullptr;
601 if (OldEST == EST_None && NewEST == EST_Dynamic)
602 WithExceptions = New;
603 else if (OldEST == EST_Dynamic && NewEST == EST_None)
604 WithExceptions = Old;
605 if (WithExceptions && WithExceptions->getNumExceptions() == 1) {
606 // One has no spec, the other throw(something). If that something is
607 // std::bad_alloc, all conditions are met.
608 QualType Exception = *WithExceptions->exception_begin();
609 if (CXXRecordDecl *ExRecord = Exception->getAsCXXRecordDecl()) {
610 IdentifierInfo* Name = ExRecord->getIdentifier();
611 if (Name && Name->getName() == "bad_alloc") {
612 // It's called bad_alloc, but is it in std?
613 if (ExRecord->isInStdNamespace()) {
614 return false;
615 }
616 }
617 }
618 }
619 }
620
621 // If the caller wants to handle the case that the new function is
622 // incompatible due to a missing exception specification, let it.
623 if (MissingExceptionSpecification && OldEST != EST_None &&
624 NewEST == EST_None) {
625 // The old type has an exception specification of some sort, but
626 // the new type does not.
627 *MissingExceptionSpecification = true;
628
629 if (MissingEmptyExceptionSpecification && OldCanThrow == CT_Cannot) {
630 // The old type has a throw() or noexcept(true) exception specification
631 // and the new type has no exception specification, and the caller asked
632 // to handle this itself.
633 *MissingEmptyExceptionSpecification = true;
634 }
635
636 return true;
637 }
638
639 S.Diag(NewLoc, DiagID);
640 if (NoteID.getDiagID() != 0 && OldLoc.isValid())
641 S.Diag(OldLoc, NoteID);
642 return true;
643}
644
645bool Sema::CheckEquivalentExceptionSpec(const PartialDiagnostic &DiagID,
646 const PartialDiagnostic &NoteID,
647 const FunctionProtoType *Old,
648 SourceLocation OldLoc,
649 const FunctionProtoType *New,
650 SourceLocation NewLoc) {
651 if (!getLangOpts().CXXExceptions)
652 return false;
653 return CheckEquivalentExceptionSpecImpl(*this, DiagID, NoteID, Old, OldLoc,
654 New, NewLoc);
655}
656
657bool Sema::handlerCanCatch(QualType HandlerType, QualType ExceptionType) {
658 // [except.handle]p3:
659 // A handler is a match for an exception object of type E if:
660
661 // HandlerType must be ExceptionType or derived from it, or pointer or
662 // reference to such types.
663 const ReferenceType *RefTy = HandlerType->getAs<ReferenceType>();
664 if (RefTy)
665 HandlerType = RefTy->getPointeeType();
666
667 // -- the handler is of type cv T or cv T& and E and T are the same type
668 if (Context.hasSameUnqualifiedType(ExceptionType, HandlerType))
669 return true;
670
671 // FIXME: ObjC pointer types?
672 if (HandlerType->isPointerType() || HandlerType->isMemberPointerType()) {
673 if (RefTy && (!HandlerType.isConstQualified() ||
674 HandlerType.isVolatileQualified()))
675 return false;
676
677 // -- the handler is of type cv T or const T& where T is a pointer or
678 // pointer to member type and E is std::nullptr_t
679 if (ExceptionType->isNullPtrType())
680 return true;
681
682 // -- the handler is of type cv T or const T& where T is a pointer or
683 // pointer to member type and E is a pointer or pointer to member type
684 // that can be converted to T by one or more of
685 // -- a qualification conversion
686 // -- a function pointer conversion
687 bool LifetimeConv;
688 QualType Result;
689 // FIXME: Should we treat the exception as catchable if a lifetime
690 // conversion is required?
691 if (IsQualificationConversion(ExceptionType, HandlerType, false,
692 LifetimeConv) ||
693 IsFunctionConversion(ExceptionType, HandlerType, Result))
694 return true;
695
696 // -- a standard pointer conversion [...]
697 if (!ExceptionType->isPointerType() || !HandlerType->isPointerType())
698 return false;
699
700 // Handle the "qualification conversion" portion.
701 Qualifiers EQuals, HQuals;
702 ExceptionType = Context.getUnqualifiedArrayType(
703 ExceptionType->getPointeeType(), EQuals);
704 HandlerType = Context.getUnqualifiedArrayType(
705 HandlerType->getPointeeType(), HQuals);
706 if (!HQuals.compatiblyIncludes(EQuals))
707 return false;
708
709 if (HandlerType->isVoidType() && ExceptionType->isObjectType())
710 return true;
711
712 // The only remaining case is a derived-to-base conversion.
713 }
714
715 // -- the handler is of type cg T or cv T& and T is an unambiguous public
716 // base class of E
717 if (!ExceptionType->isRecordType() || !HandlerType->isRecordType())
718 return false;
719 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
720 /*DetectVirtual=*/false);
721 if (!IsDerivedFrom(SourceLocation(), ExceptionType, HandlerType, Paths) ||
722 Paths.isAmbiguous(Context.getCanonicalType(HandlerType)))
723 return false;
724
725 // Do this check from a context without privileges.
726 switch (CheckBaseClassAccess(SourceLocation(), HandlerType, ExceptionType,
727 Paths.front(),
728 /*Diagnostic*/ 0,
729 /*ForceCheck*/ true,
730 /*ForceUnprivileged*/ true)) {
731 case AR_accessible: return true;
732 case AR_inaccessible: return false;
733 case AR_dependent:
734 llvm_unreachable("access check dependent for unprivileged context")::llvm::llvm_unreachable_internal("access check dependent for unprivileged context"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 734)
;
735 case AR_delayed:
736 llvm_unreachable("access check delayed in non-declaration")::llvm::llvm_unreachable_internal("access check delayed in non-declaration"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 736)
;
737 }
738 llvm_unreachable("unexpected access check result")::llvm::llvm_unreachable_internal("unexpected access check result"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 738)
;
739}
740
741/// CheckExceptionSpecSubset - Check whether the second function type's
742/// exception specification is a subset (or equivalent) of the first function
743/// type. This is used by override and pointer assignment checks.
744bool Sema::CheckExceptionSpecSubset(const PartialDiagnostic &DiagID,
745 const PartialDiagnostic &NestedDiagID,
746 const PartialDiagnostic &NoteID,
747 const PartialDiagnostic &NoThrowDiagID,
748 const FunctionProtoType *Superset,
749 SourceLocation SuperLoc,
750 const FunctionProtoType *Subset,
751 SourceLocation SubLoc) {
752
753 // Just auto-succeed under -fno-exceptions.
754 if (!getLangOpts().CXXExceptions)
755 return false;
756
757 // FIXME: As usual, we could be more specific in our error messages, but
758 // that better waits until we've got types with source locations.
759
760 if (!SubLoc.isValid())
761 SubLoc = SuperLoc;
762
763 // Resolve the exception specifications, if needed.
764 Superset = ResolveExceptionSpec(SuperLoc, Superset);
765 if (!Superset)
766 return false;
767 Subset = ResolveExceptionSpec(SubLoc, Subset);
768 if (!Subset)
769 return false;
770
771 ExceptionSpecificationType SuperEST = Superset->getExceptionSpecType();
772 ExceptionSpecificationType SubEST = Subset->getExceptionSpecType();
773 assert(!isUnresolvedExceptionSpec(SuperEST) &&((!isUnresolvedExceptionSpec(SuperEST) && !isUnresolvedExceptionSpec
(SubEST) && "Shouldn't see unknown exception specifications here"
) ? static_cast<void> (0) : __assert_fail ("!isUnresolvedExceptionSpec(SuperEST) && !isUnresolvedExceptionSpec(SubEST) && \"Shouldn't see unknown exception specifications here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 775, __PRETTY_FUNCTION__))
774 !isUnresolvedExceptionSpec(SubEST) &&((!isUnresolvedExceptionSpec(SuperEST) && !isUnresolvedExceptionSpec
(SubEST) && "Shouldn't see unknown exception specifications here"
) ? static_cast<void> (0) : __assert_fail ("!isUnresolvedExceptionSpec(SuperEST) && !isUnresolvedExceptionSpec(SubEST) && \"Shouldn't see unknown exception specifications here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 775, __PRETTY_FUNCTION__))
775 "Shouldn't see unknown exception specifications here")((!isUnresolvedExceptionSpec(SuperEST) && !isUnresolvedExceptionSpec
(SubEST) && "Shouldn't see unknown exception specifications here"
) ? static_cast<void> (0) : __assert_fail ("!isUnresolvedExceptionSpec(SuperEST) && !isUnresolvedExceptionSpec(SubEST) && \"Shouldn't see unknown exception specifications here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 775, __PRETTY_FUNCTION__))
;
776
777 // If there are dependent noexcept specs, assume everything is fine. Unlike
778 // with the equivalency check, this is safe in this case, because we don't
779 // want to merge declarations. Checks after instantiation will catch any
780 // omissions we make here.
781 if (SuperEST == EST_DependentNoexcept || SubEST == EST_DependentNoexcept)
782 return false;
783
784 CanThrowResult SuperCanThrow = Superset->canThrow();
785 CanThrowResult SubCanThrow = Subset->canThrow();
786
787 // If the superset contains everything or the subset contains nothing, we're
788 // done.
789 if ((SuperCanThrow == CT_Can && SuperEST != EST_Dynamic) ||
790 SubCanThrow == CT_Cannot)
791 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
792 Subset, SubLoc);
793
794 // Allow __declspec(nothrow) to be missing on redeclaration as an extension in
795 // some cases.
796 if (NoThrowDiagID.getDiagID() != 0 && SubCanThrow == CT_Can &&
797 SuperCanThrow == CT_Cannot && SuperEST == EST_NoThrow) {
798 Diag(SubLoc, NoThrowDiagID);
799 if (NoteID.getDiagID() != 0)
800 Diag(SuperLoc, NoteID);
801 return true;
802 }
803
804 // If the subset contains everything or the superset contains nothing, we've
805 // failed.
806 if ((SubCanThrow == CT_Can && SubEST != EST_Dynamic) ||
807 SuperCanThrow == CT_Cannot) {
808 Diag(SubLoc, DiagID);
809 if (NoteID.getDiagID() != 0)
810 Diag(SuperLoc, NoteID);
811 return true;
812 }
813
814 assert(SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&((SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
"Exception spec subset: non-dynamic case slipped through.") ?
static_cast<void> (0) : __assert_fail ("SuperEST == EST_Dynamic && SubEST == EST_Dynamic && \"Exception spec subset: non-dynamic case slipped through.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 815, __PRETTY_FUNCTION__))
815 "Exception spec subset: non-dynamic case slipped through.")((SuperEST == EST_Dynamic && SubEST == EST_Dynamic &&
"Exception spec subset: non-dynamic case slipped through.") ?
static_cast<void> (0) : __assert_fail ("SuperEST == EST_Dynamic && SubEST == EST_Dynamic && \"Exception spec subset: non-dynamic case slipped through.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 815, __PRETTY_FUNCTION__))
;
816
817 // Neither contains everything or nothing. Do a proper comparison.
818 for (QualType SubI : Subset->exceptions()) {
819 if (const ReferenceType *RefTy = SubI->getAs<ReferenceType>())
820 SubI = RefTy->getPointeeType();
821
822 // Make sure it's in the superset.
823 bool Contained = false;
824 for (QualType SuperI : Superset->exceptions()) {
825 // [except.spec]p5:
826 // the target entity shall allow at least the exceptions allowed by the
827 // source
828 //
829 // We interpret this as meaning that a handler for some target type would
830 // catch an exception of each source type.
831 if (handlerCanCatch(SuperI, SubI)) {
832 Contained = true;
833 break;
834 }
835 }
836 if (!Contained) {
837 Diag(SubLoc, DiagID);
838 if (NoteID.getDiagID() != 0)
839 Diag(SuperLoc, NoteID);
840 return true;
841 }
842 }
843 // We've run half the gauntlet.
844 return CheckParamExceptionSpec(NestedDiagID, NoteID, Superset, SuperLoc,
845 Subset, SubLoc);
846}
847
848static bool
849CheckSpecForTypesEquivalent(Sema &S, const PartialDiagnostic &DiagID,
850 const PartialDiagnostic &NoteID, QualType Target,
851 SourceLocation TargetLoc, QualType Source,
852 SourceLocation SourceLoc) {
853 const FunctionProtoType *TFunc = GetUnderlyingFunction(Target);
854 if (!TFunc)
855 return false;
856 const FunctionProtoType *SFunc = GetUnderlyingFunction(Source);
857 if (!SFunc)
858 return false;
859
860 return S.CheckEquivalentExceptionSpec(DiagID, NoteID, TFunc, TargetLoc,
861 SFunc, SourceLoc);
862}
863
864/// CheckParamExceptionSpec - Check if the parameter and return types of the
865/// two functions have equivalent exception specs. This is part of the
866/// assignment and override compatibility check. We do not check the parameters
867/// of parameter function pointers recursively, as no sane programmer would
868/// even be able to write such a function type.
869bool Sema::CheckParamExceptionSpec(const PartialDiagnostic &DiagID,
870 const PartialDiagnostic &NoteID,
871 const FunctionProtoType *Target,
872 SourceLocation TargetLoc,
873 const FunctionProtoType *Source,
874 SourceLocation SourceLoc) {
875 auto RetDiag = DiagID;
876 RetDiag << 0;
877 if (CheckSpecForTypesEquivalent(
878 *this, RetDiag, PDiag(),
879 Target->getReturnType(), TargetLoc, Source->getReturnType(),
880 SourceLoc))
881 return true;
882
883 // We shouldn't even be testing this unless the arguments are otherwise
884 // compatible.
885 assert(Target->getNumParams() == Source->getNumParams() &&((Target->getNumParams() == Source->getNumParams() &&
"Functions have different argument counts.") ? static_cast<
void> (0) : __assert_fail ("Target->getNumParams() == Source->getNumParams() && \"Functions have different argument counts.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 886, __PRETTY_FUNCTION__))
886 "Functions have different argument counts.")((Target->getNumParams() == Source->getNumParams() &&
"Functions have different argument counts.") ? static_cast<
void> (0) : __assert_fail ("Target->getNumParams() == Source->getNumParams() && \"Functions have different argument counts.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 886, __PRETTY_FUNCTION__))
;
887 for (unsigned i = 0, E = Target->getNumParams(); i != E; ++i) {
888 auto ParamDiag = DiagID;
889 ParamDiag << 1;
890 if (CheckSpecForTypesEquivalent(
891 *this, ParamDiag, PDiag(),
892 Target->getParamType(i), TargetLoc, Source->getParamType(i),
893 SourceLoc))
894 return true;
895 }
896 return false;
897}
898
899bool Sema::CheckExceptionSpecCompatibility(Expr *From, QualType ToType) {
900 // First we check for applicability.
901 // Target type must be a function, function pointer or function reference.
902 const FunctionProtoType *ToFunc = GetUnderlyingFunction(ToType);
903 if (!ToFunc || ToFunc->hasDependentExceptionSpec())
904 return false;
905
906 // SourceType must be a function or function pointer.
907 const FunctionProtoType *FromFunc = GetUnderlyingFunction(From->getType());
908 if (!FromFunc || FromFunc->hasDependentExceptionSpec())
909 return false;
910
911 unsigned DiagID = diag::err_incompatible_exception_specs;
912 unsigned NestedDiagID = diag::err_deep_exception_specs_differ;
913 // This is not an error in C++17 onwards, unless the noexceptness doesn't
914 // match, but in that case we have a full-on type mismatch, not just a
915 // type sugar mismatch.
916 if (getLangOpts().CPlusPlus17) {
917 DiagID = diag::warn_incompatible_exception_specs;
918 NestedDiagID = diag::warn_deep_exception_specs_differ;
919 }
920
921 // Now we've got the correct types on both sides, check their compatibility.
922 // This means that the source of the conversion can only throw a subset of
923 // the exceptions of the target, and any exception specs on arguments or
924 // return types must be equivalent.
925 //
926 // FIXME: If there is a nested dependent exception specification, we should
927 // not be checking it here. This is fine:
928 // template<typename T> void f() {
929 // void (*p)(void (*) throw(T));
930 // void (*q)(void (*) throw(int)) = p;
931 // }
932 // ... because it might be instantiated with T=int.
933 return CheckExceptionSpecSubset(
934 PDiag(DiagID), PDiag(NestedDiagID), PDiag(), PDiag(), ToFunc,
935 From->getSourceRange().getBegin(), FromFunc, SourceLocation()) &&
936 !getLangOpts().CPlusPlus17;
937}
938
939bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
940 const CXXMethodDecl *Old) {
941 // If the new exception specification hasn't been parsed yet, skip the check.
942 // We'll get called again once it's been parsed.
943 if (New->getType()->castAs<FunctionProtoType>()->getExceptionSpecType() ==
944 EST_Unparsed)
945 return false;
946
947 // Don't check uninstantiated template destructors at all. We can only
948 // synthesize correct specs after the template is instantiated.
949 if (isa<CXXDestructorDecl>(New) && New->getParent()->isDependentType())
950 return false;
951
952 // If the old exception specification hasn't been parsed yet, or the new
953 // exception specification can't be computed yet, remember that we need to
954 // perform this check when we get to the end of the outermost
955 // lexically-surrounding class.
956 if (exceptionSpecNotKnownYet(Old) || exceptionSpecNotKnownYet(New)) {
957 DelayedOverridingExceptionSpecChecks.push_back({New, Old});
958 return false;
959 }
960
961 unsigned DiagID = diag::err_override_exception_spec;
962 if (getLangOpts().MSVCCompat)
963 DiagID = diag::ext_override_exception_spec;
964 return CheckExceptionSpecSubset(PDiag(DiagID),
965 PDiag(diag::err_deep_exception_specs_differ),
966 PDiag(diag::note_overridden_virtual_function),
967 PDiag(diag::ext_override_exception_spec),
968 Old->getType()->getAs<FunctionProtoType>(),
969 Old->getLocation(),
970 New->getType()->getAs<FunctionProtoType>(),
971 New->getLocation());
972}
973
974static CanThrowResult canSubExprsThrow(Sema &S, const Expr *E) {
975 CanThrowResult R = CT_Cannot;
976 for (const Stmt *SubStmt : E->children()) {
977 R = mergeCanThrow(R, S.canThrow(cast<Expr>(SubStmt)));
978 if (R == CT_Can)
979 break;
980 }
981 return R;
982}
983
984static CanThrowResult canCalleeThrow(Sema &S, const Expr *E, const Decl *D) {
985 // As an extension, we assume that __attribute__((nothrow)) functions don't
986 // throw.
987 if (D && isa<FunctionDecl>(D) && D->hasAttr<NoThrowAttr>())
988 return CT_Cannot;
989
990 QualType T;
991
992 // In C++1z, just look at the function type of the callee.
993 if (S.getLangOpts().CPlusPlus17 && isa<CallExpr>(E)) {
994 E = cast<CallExpr>(E)->getCallee();
995 T = E->getType();
996 if (T->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
997 // Sadly we don't preserve the actual type as part of the "bound member"
998 // placeholder, so we need to reconstruct it.
999 E = E->IgnoreParenImpCasts();
1000
1001 // Could be a call to a pointer-to-member or a plain member access.
1002 if (auto *Op = dyn_cast<BinaryOperator>(E)) {
1003 assert(Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI)((Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI
) ? static_cast<void> (0) : __assert_fail ("Op->getOpcode() == BO_PtrMemD || Op->getOpcode() == BO_PtrMemI"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 1003, __PRETTY_FUNCTION__))
;
1004 T = Op->getRHS()->getType()
1005 ->castAs<MemberPointerType>()->getPointeeType();
1006 } else {
1007 T = cast<MemberExpr>(E)->getMemberDecl()->getType();
1008 }
1009 }
1010 } else if (const ValueDecl *VD = dyn_cast_or_null<ValueDecl>(D))
1011 T = VD->getType();
1012 else
1013 // If we have no clue what we're calling, assume the worst.
1014 return CT_Can;
1015
1016 const FunctionProtoType *FT;
1017 if ((FT = T->getAs<FunctionProtoType>())) {
1018 } else if (const PointerType *PT = T->getAs<PointerType>())
1019 FT = PT->getPointeeType()->getAs<FunctionProtoType>();
1020 else if (const ReferenceType *RT = T->getAs<ReferenceType>())
1021 FT = RT->getPointeeType()->getAs<FunctionProtoType>();
1022 else if (const MemberPointerType *MT = T->getAs<MemberPointerType>())
1023 FT = MT->getPointeeType()->getAs<FunctionProtoType>();
1024 else if (const BlockPointerType *BT = T->getAs<BlockPointerType>())
1025 FT = BT->getPointeeType()->getAs<FunctionProtoType>();
1026
1027 if (!FT)
1028 return CT_Can;
1029
1030 FT = S.ResolveExceptionSpec(E->getBeginLoc(), FT);
1031 if (!FT)
1032 return CT_Can;
1033
1034 return FT->canThrow();
1035}
1036
1037static CanThrowResult canDynamicCastThrow(const CXXDynamicCastExpr *DC) {
1038 if (DC->isTypeDependent())
1039 return CT_Dependent;
1040
1041 if (!DC->getTypeAsWritten()->isReferenceType())
1042 return CT_Cannot;
1043
1044 if (DC->getSubExpr()->isTypeDependent())
1045 return CT_Dependent;
1046
1047 return DC->getCastKind() == clang::CK_Dynamic? CT_Can : CT_Cannot;
1048}
1049
1050static CanThrowResult canTypeidThrow(Sema &S, const CXXTypeidExpr *DC) {
1051 if (DC->isTypeOperand())
1052 return CT_Cannot;
1053
1054 Expr *Op = DC->getExprOperand();
1055 if (Op->isTypeDependent())
1056 return CT_Dependent;
1057
1058 const RecordType *RT = Op->getType()->getAs<RecordType>();
1059 if (!RT)
1060 return CT_Cannot;
1061
1062 if (!cast<CXXRecordDecl>(RT->getDecl())->isPolymorphic())
1063 return CT_Cannot;
1064
1065 if (Op->Classify(S.Context).isPRValue())
1066 return CT_Cannot;
1067
1068 return CT_Can;
1069}
1070
1071CanThrowResult Sema::canThrow(const Expr *E) {
1072 // C++ [expr.unary.noexcept]p3:
1073 // [Can throw] if in a potentially-evaluated context the expression would
1074 // contain:
1075 switch (E->getStmtClass()) {
1076 case Expr::ConstantExprClass:
1077 return canThrow(cast<ConstantExpr>(E)->getSubExpr());
1078
1079 case Expr::CXXThrowExprClass:
1080 // - a potentially evaluated throw-expression
1081 return CT_Can;
1082
1083 case Expr::CXXDynamicCastExprClass: {
1084 // - a potentially evaluated dynamic_cast expression dynamic_cast<T>(v),
1085 // where T is a reference type, that requires a run-time check
1086 CanThrowResult CT = canDynamicCastThrow(cast<CXXDynamicCastExpr>(E));
1087 if (CT == CT_Can)
1088 return CT;
1089 return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1090 }
1091
1092 case Expr::CXXTypeidExprClass:
1093 // - a potentially evaluated typeid expression applied to a glvalue
1094 // expression whose type is a polymorphic class type
1095 return canTypeidThrow(*this, cast<CXXTypeidExpr>(E));
1096
1097 // - a potentially evaluated call to a function, member function, function
1098 // pointer, or member function pointer that does not have a non-throwing
1099 // exception-specification
1100 case Expr::CallExprClass:
1101 case Expr::CXXMemberCallExprClass:
1102 case Expr::CXXOperatorCallExprClass:
1103 case Expr::UserDefinedLiteralClass: {
1104 const CallExpr *CE = cast<CallExpr>(E);
1105 CanThrowResult CT;
1106 if (E->isTypeDependent())
1107 CT = CT_Dependent;
1108 else if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens()))
1109 CT = CT_Cannot;
1110 else
1111 CT = canCalleeThrow(*this, E, CE->getCalleeDecl());
1112 if (CT == CT_Can)
1113 return CT;
1114 return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1115 }
1116
1117 case Expr::CXXConstructExprClass:
1118 case Expr::CXXTemporaryObjectExprClass: {
1119 CanThrowResult CT = canCalleeThrow(*this, E,
1120 cast<CXXConstructExpr>(E)->getConstructor());
1121 if (CT == CT_Can)
1122 return CT;
1123 return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1124 }
1125
1126 case Expr::CXXInheritedCtorInitExprClass:
1127 return canCalleeThrow(*this, E,
1128 cast<CXXInheritedCtorInitExpr>(E)->getConstructor());
1129
1130 case Expr::LambdaExprClass: {
1131 const LambdaExpr *Lambda = cast<LambdaExpr>(E);
1132 CanThrowResult CT = CT_Cannot;
1133 for (LambdaExpr::const_capture_init_iterator
1134 Cap = Lambda->capture_init_begin(),
1135 CapEnd = Lambda->capture_init_end();
1136 Cap != CapEnd; ++Cap)
1137 CT = mergeCanThrow(CT, canThrow(*Cap));
1138 return CT;
1139 }
1140
1141 case Expr::CXXNewExprClass: {
1142 CanThrowResult CT;
1143 if (E->isTypeDependent())
1144 CT = CT_Dependent;
1145 else
1146 CT = canCalleeThrow(*this, E, cast<CXXNewExpr>(E)->getOperatorNew());
1147 if (CT == CT_Can)
1148 return CT;
1149 return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1150 }
1151
1152 case Expr::CXXDeleteExprClass: {
1153 CanThrowResult CT;
1154 QualType DTy = cast<CXXDeleteExpr>(E)->getDestroyedType();
1155 if (DTy.isNull() || DTy->isDependentType()) {
1156 CT = CT_Dependent;
1157 } else {
1158 CT = canCalleeThrow(*this, E,
1159 cast<CXXDeleteExpr>(E)->getOperatorDelete());
1160 if (const RecordType *RT = DTy->getAs<RecordType>()) {
1161 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1162 const CXXDestructorDecl *DD = RD->getDestructor();
1163 if (DD)
1164 CT = mergeCanThrow(CT, canCalleeThrow(*this, E, DD));
1165 }
1166 if (CT == CT_Can)
1167 return CT;
1168 }
1169 return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1170 }
1171
1172 case Expr::CXXBindTemporaryExprClass: {
1173 // The bound temporary has to be destroyed again, which might throw.
1174 CanThrowResult CT = canCalleeThrow(*this, E,
1175 cast<CXXBindTemporaryExpr>(E)->getTemporary()->getDestructor());
1176 if (CT == CT_Can)
1177 return CT;
1178 return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1179 }
1180
1181 // ObjC message sends are like function calls, but never have exception
1182 // specs.
1183 case Expr::ObjCMessageExprClass:
1184 case Expr::ObjCPropertyRefExprClass:
1185 case Expr::ObjCSubscriptRefExprClass:
1186 return CT_Can;
1187
1188 // All the ObjC literals that are implemented as calls are
1189 // potentially throwing unless we decide to close off that
1190 // possibility.
1191 case Expr::ObjCArrayLiteralClass:
1192 case Expr::ObjCDictionaryLiteralClass:
1193 case Expr::ObjCBoxedExprClass:
1194 return CT_Can;
1195
1196 // Many other things have subexpressions, so we have to test those.
1197 // Some are simple:
1198 case Expr::CoawaitExprClass:
1199 case Expr::ConditionalOperatorClass:
1200 case Expr::CompoundLiteralExprClass:
1201 case Expr::CoyieldExprClass:
1202 case Expr::CXXConstCastExprClass:
1203 case Expr::CXXReinterpretCastExprClass:
1204 case Expr::BuiltinBitCastExprClass:
1205 case Expr::CXXStdInitializerListExprClass:
1206 case Expr::DesignatedInitExprClass:
1207 case Expr::DesignatedInitUpdateExprClass:
1208 case Expr::ExprWithCleanupsClass:
1209 case Expr::ExtVectorElementExprClass:
1210 case Expr::InitListExprClass:
1211 case Expr::ArrayInitLoopExprClass:
1212 case Expr::MemberExprClass:
1213 case Expr::ObjCIsaExprClass:
1214 case Expr::ObjCIvarRefExprClass:
1215 case Expr::ParenExprClass:
1216 case Expr::ParenListExprClass:
1217 case Expr::ShuffleVectorExprClass:
1218 case Expr::ConvertVectorExprClass:
1219 case Expr::VAArgExprClass:
1220 return canSubExprsThrow(*this, E);
1221
1222 // Some might be dependent for other reasons.
1223 case Expr::ArraySubscriptExprClass:
1224 case Expr::OMPArraySectionExprClass:
1225 case Expr::BinaryOperatorClass:
1226 case Expr::DependentCoawaitExprClass:
1227 case Expr::CompoundAssignOperatorClass:
1228 case Expr::CStyleCastExprClass:
1229 case Expr::CXXStaticCastExprClass:
1230 case Expr::CXXFunctionalCastExprClass:
1231 case Expr::ImplicitCastExprClass:
1232 case Expr::MaterializeTemporaryExprClass:
1233 case Expr::UnaryOperatorClass: {
1234 CanThrowResult CT = E->isTypeDependent() ? CT_Dependent : CT_Cannot;
1235 return mergeCanThrow(CT, canSubExprsThrow(*this, E));
1236 }
1237
1238 // FIXME: We should handle StmtExpr, but that opens a MASSIVE can of worms.
1239 case Expr::StmtExprClass:
1240 return CT_Can;
1241
1242 case Expr::CXXDefaultArgExprClass:
1243 return canThrow(cast<CXXDefaultArgExpr>(E)->getExpr());
1244
1245 case Expr::CXXDefaultInitExprClass:
1246 return canThrow(cast<CXXDefaultInitExpr>(E)->getExpr());
1247
1248 case Expr::ChooseExprClass:
1249 if (E->isTypeDependent() || E->isValueDependent())
1250 return CT_Dependent;
1251 return canThrow(cast<ChooseExpr>(E)->getChosenSubExpr());
1252
1253 case Expr::GenericSelectionExprClass:
1254 if (cast<GenericSelectionExpr>(E)->isResultDependent())
1255 return CT_Dependent;
1256 return canThrow(cast<GenericSelectionExpr>(E)->getResultExpr());
1257
1258 // Some expressions are always dependent.
1259 case Expr::CXXDependentScopeMemberExprClass:
1260 case Expr::CXXUnresolvedConstructExprClass:
1261 case Expr::DependentScopeDeclRefExprClass:
1262 case Expr::CXXFoldExprClass:
1263 return CT_Dependent;
1264
1265 case Expr::AsTypeExprClass:
1266 case Expr::BinaryConditionalOperatorClass:
1267 case Expr::BlockExprClass:
1268 case Expr::CUDAKernelCallExprClass:
1269 case Expr::DeclRefExprClass:
1270 case Expr::ObjCBridgedCastExprClass:
1271 case Expr::ObjCIndirectCopyRestoreExprClass:
1272 case Expr::ObjCProtocolExprClass:
1273 case Expr::ObjCSelectorExprClass:
1274 case Expr::ObjCAvailabilityCheckExprClass:
1275 case Expr::OffsetOfExprClass:
1276 case Expr::PackExpansionExprClass:
1277 case Expr::PseudoObjectExprClass:
1278 case Expr::SubstNonTypeTemplateParmExprClass:
1279 case Expr::SubstNonTypeTemplateParmPackExprClass:
1280 case Expr::FunctionParmPackExprClass:
1281 case Expr::UnaryExprOrTypeTraitExprClass:
1282 case Expr::UnresolvedLookupExprClass:
1283 case Expr::UnresolvedMemberExprClass:
1284 case Expr::TypoExprClass:
1285 // FIXME: Can any of the above throw? If so, when?
1286 return CT_Cannot;
1287
1288 case Expr::AddrLabelExprClass:
1289 case Expr::ArrayTypeTraitExprClass:
1290 case Expr::AtomicExprClass:
1291 case Expr::TypeTraitExprClass:
1292 case Expr::CXXBoolLiteralExprClass:
1293 case Expr::CXXNoexceptExprClass:
1294 case Expr::CXXNullPtrLiteralExprClass:
1295 case Expr::CXXPseudoDestructorExprClass:
1296 case Expr::CXXScalarValueInitExprClass:
1297 case Expr::CXXThisExprClass:
1298 case Expr::CXXUuidofExprClass:
1299 case Expr::CharacterLiteralClass:
1300 case Expr::ExpressionTraitExprClass:
1301 case Expr::FloatingLiteralClass:
1302 case Expr::GNUNullExprClass:
1303 case Expr::ImaginaryLiteralClass:
1304 case Expr::ImplicitValueInitExprClass:
1305 case Expr::IntegerLiteralClass:
1306 case Expr::FixedPointLiteralClass:
1307 case Expr::ArrayInitIndexExprClass:
1308 case Expr::NoInitExprClass:
1309 case Expr::ObjCEncodeExprClass:
1310 case Expr::ObjCStringLiteralClass:
1311 case Expr::ObjCBoolLiteralExprClass:
1312 case Expr::OpaqueValueExprClass:
1313 case Expr::PredefinedExprClass:
1314 case Expr::SizeOfPackExprClass:
1315 case Expr::StringLiteralClass:
1316 case Expr::SourceLocExprClass:
1317 // These expressions can never throw.
1318 return CT_Cannot;
1319
1320 case Expr::MSPropertyRefExprClass:
1321 case Expr::MSPropertySubscriptExprClass:
1322 llvm_unreachable("Invalid class for expression")::llvm::llvm_unreachable_internal("Invalid class for expression"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 1322)
;
1323
1324#define STMT(CLASS, PARENT) case Expr::CLASS##Class:
1325#define STMT_RANGE(Base, First, Last)
1326#define LAST_STMT_RANGE(BASE, FIRST, LAST)
1327#define EXPR(CLASS, PARENT)
1328#define ABSTRACT_STMT(STMT)
1329#include "clang/AST/StmtNodes.inc"
1330 case Expr::NoStmtClass:
1331 llvm_unreachable("Invalid class for expression")::llvm::llvm_unreachable_internal("Invalid class for expression"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 1331)
;
1332 }
1333 llvm_unreachable("Bogus StmtClass")::llvm::llvm_unreachable_internal("Bogus StmtClass", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaExceptionSpec.cpp"
, 1333)
;
1334}
1335
1336} // end namespace clang

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69} // namespace clang
70
71namespace llvm {
72
73 template <typename T>
74 struct PointerLikeTypeTraits;
75 template<>
76 struct PointerLikeTypeTraits< ::clang::Type*> {
77 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
78
79 static inline ::clang::Type *getFromVoidPointer(void *P) {
80 return static_cast< ::clang::Type*>(P);
81 }
82
83 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
84 };
85
86 template<>
87 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
88 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
89
90 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
91 return static_cast< ::clang::ExtQuals*>(P);
92 }
93
94 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
95 };
96
97} // namespace llvm
98
99namespace clang {
100
101class ASTContext;
102template <typename> class CanQual;
103class CXXRecordDecl;
104class DeclContext;
105class EnumDecl;
106class Expr;
107class ExtQualsTypeCommonBase;
108class FunctionDecl;
109class IdentifierInfo;
110class NamedDecl;
111class ObjCInterfaceDecl;
112class ObjCProtocolDecl;
113class ObjCTypeParamDecl;
114struct PrintingPolicy;
115class RecordDecl;
116class Stmt;
117class TagDecl;
118class TemplateArgument;
119class TemplateArgumentListInfo;
120class TemplateArgumentLoc;
121class TemplateTypeParmDecl;
122class TypedefNameDecl;
123class UnresolvedUsingTypenameDecl;
124
125using CanQualType = CanQual<Type>;
126
127// Provide forward declarations for all of the *Type classes.
128#define TYPE(Class, Base) class Class##Type;
129#include "clang/AST/TypeNodes.inc"
130
131/// The collection of all-type qualifiers we support.
132/// Clang supports five independent qualifiers:
133/// * C99: const, volatile, and restrict
134/// * MS: __unaligned
135/// * Embedded C (TR18037): address spaces
136/// * Objective C: the GC attributes (none, weak, or strong)
137class Qualifiers {
138public:
139 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
140 Const = 0x1,
141 Restrict = 0x2,
142 Volatile = 0x4,
143 CVRMask = Const | Volatile | Restrict
144 };
145
146 enum GC {
147 GCNone = 0,
148 Weak,
149 Strong
150 };
151
152 enum ObjCLifetime {
153 /// There is no lifetime qualification on this type.
154 OCL_None,
155
156 /// This object can be modified without requiring retains or
157 /// releases.
158 OCL_ExplicitNone,
159
160 /// Assigning into this object requires the old value to be
161 /// released and the new value to be retained. The timing of the
162 /// release of the old value is inexact: it may be moved to
163 /// immediately after the last known point where the value is
164 /// live.
165 OCL_Strong,
166
167 /// Reading or writing from this object requires a barrier call.
168 OCL_Weak,
169
170 /// Assigning into this object requires a lifetime extension.
171 OCL_Autoreleasing
172 };
173
174 enum {
175 /// The maximum supported address space number.
176 /// 23 bits should be enough for anyone.
177 MaxAddressSpace = 0x7fffffu,
178
179 /// The width of the "fast" qualifier mask.
180 FastWidth = 3,
181
182 /// The fast qualifier mask.
183 FastMask = (1 << FastWidth) - 1
184 };
185
186 /// Returns the common set of qualifiers while removing them from
187 /// the given sets.
188 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
189 // If both are only CVR-qualified, bit operations are sufficient.
190 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
191 Qualifiers Q;
192 Q.Mask = L.Mask & R.Mask;
193 L.Mask &= ~Q.Mask;
194 R.Mask &= ~Q.Mask;
195 return Q;
196 }
197
198 Qualifiers Q;
199 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
200 Q.addCVRQualifiers(CommonCRV);
201 L.removeCVRQualifiers(CommonCRV);
202 R.removeCVRQualifiers(CommonCRV);
203
204 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
205 Q.setObjCGCAttr(L.getObjCGCAttr());
206 L.removeObjCGCAttr();
207 R.removeObjCGCAttr();
208 }
209
210 if (L.getObjCLifetime() == R.getObjCLifetime()) {
211 Q.setObjCLifetime(L.getObjCLifetime());
212 L.removeObjCLifetime();
213 R.removeObjCLifetime();
214 }
215
216 if (L.getAddressSpace() == R.getAddressSpace()) {
217 Q.setAddressSpace(L.getAddressSpace());
218 L.removeAddressSpace();
219 R.removeAddressSpace();
220 }
221 return Q;
222 }
223
224 static Qualifiers fromFastMask(unsigned Mask) {
225 Qualifiers Qs;
226 Qs.addFastQualifiers(Mask);
227 return Qs;
228 }
229
230 static Qualifiers fromCVRMask(unsigned CVR) {
231 Qualifiers Qs;
232 Qs.addCVRQualifiers(CVR);
233 return Qs;
234 }
235
236 static Qualifiers fromCVRUMask(unsigned CVRU) {
237 Qualifiers Qs;
238 Qs.addCVRUQualifiers(CVRU);
239 return Qs;
240 }
241
242 // Deserialize qualifiers from an opaque representation.
243 static Qualifiers fromOpaqueValue(unsigned opaque) {
244 Qualifiers Qs;
245 Qs.Mask = opaque;
246 return Qs;
247 }
248
249 // Serialize these qualifiers into an opaque representation.
250 unsigned getAsOpaqueValue() const {
251 return Mask;
252 }
253
254 bool hasConst() const { return Mask & Const; }
255 bool hasOnlyConst() const { return Mask == Const; }
256 void removeConst() { Mask &= ~Const; }
257 void addConst() { Mask |= Const; }
258
259 bool hasVolatile() const { return Mask & Volatile; }
260 bool hasOnlyVolatile() const { return Mask == Volatile; }
261 void removeVolatile() { Mask &= ~Volatile; }
262 void addVolatile() { Mask |= Volatile; }
263
264 bool hasRestrict() const { return Mask & Restrict; }
265 bool hasOnlyRestrict() const { return Mask == Restrict; }
266 void removeRestrict() { Mask &= ~Restrict; }
267 void addRestrict() { Mask |= Restrict; }
268
269 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
270 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
271 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
272
273 void setCVRQualifiers(unsigned mask) {
274 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 274, __PRETTY_FUNCTION__))
;
275 Mask = (Mask & ~CVRMask) | mask;
276 }
277 void removeCVRQualifiers(unsigned mask) {
278 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 278, __PRETTY_FUNCTION__))
;
279 Mask &= ~mask;
280 }
281 void removeCVRQualifiers() {
282 removeCVRQualifiers(CVRMask);
283 }
284 void addCVRQualifiers(unsigned mask) {
285 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 285, __PRETTY_FUNCTION__))
;
286 Mask |= mask;
287 }
288 void addCVRUQualifiers(unsigned mask) {
289 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 289, __PRETTY_FUNCTION__))
;
290 Mask |= mask;
291 }
292
293 bool hasUnaligned() const { return Mask & UMask; }
294 void setUnaligned(bool flag) {
295 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
296 }
297 void removeUnaligned() { Mask &= ~UMask; }
298 void addUnaligned() { Mask |= UMask; }
299
300 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
301 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
302 void setObjCGCAttr(GC type) {
303 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
304 }
305 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
306 void addObjCGCAttr(GC type) {
307 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 307, __PRETTY_FUNCTION__))
;
308 setObjCGCAttr(type);
309 }
310 Qualifiers withoutObjCGCAttr() const {
311 Qualifiers qs = *this;
312 qs.removeObjCGCAttr();
313 return qs;
314 }
315 Qualifiers withoutObjCLifetime() const {
316 Qualifiers qs = *this;
317 qs.removeObjCLifetime();
318 return qs;
319 }
320 Qualifiers withoutAddressSpace() const {
321 Qualifiers qs = *this;
322 qs.removeAddressSpace();
323 return qs;
324 }
325
326 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
327 ObjCLifetime getObjCLifetime() const {
328 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
329 }
330 void setObjCLifetime(ObjCLifetime type) {
331 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
332 }
333 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
334 void addObjCLifetime(ObjCLifetime type) {
335 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 335, __PRETTY_FUNCTION__))
;
336 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 336, __PRETTY_FUNCTION__))
;
337 Mask |= (type << LifetimeShift);
338 }
339
340 /// True if the lifetime is neither None or ExplicitNone.
341 bool hasNonTrivialObjCLifetime() const {
342 ObjCLifetime lifetime = getObjCLifetime();
343 return (lifetime > OCL_ExplicitNone);
344 }
345
346 /// True if the lifetime is either strong or weak.
347 bool hasStrongOrWeakObjCLifetime() const {
348 ObjCLifetime lifetime = getObjCLifetime();
349 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
350 }
351
352 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
353 LangAS getAddressSpace() const {
354 return static_cast<LangAS>(Mask >> AddressSpaceShift);
355 }
356 bool hasTargetSpecificAddressSpace() const {
357 return isTargetAddressSpace(getAddressSpace());
358 }
359 /// Get the address space attribute value to be printed by diagnostics.
360 unsigned getAddressSpaceAttributePrintValue() const {
361 auto Addr = getAddressSpace();
362 // This function is not supposed to be used with language specific
363 // address spaces. If that happens, the diagnostic message should consider
364 // printing the QualType instead of the address space value.
365 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 365, __PRETTY_FUNCTION__))
;
366 if (Addr != LangAS::Default)
367 return toTargetAddressSpace(Addr);
368 // TODO: The diagnostic messages where Addr may be 0 should be fixed
369 // since it cannot differentiate the situation where 0 denotes the default
370 // address space or user specified __attribute__((address_space(0))).
371 return 0;
372 }
373 void setAddressSpace(LangAS space) {
374 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 374, __PRETTY_FUNCTION__))
;
375 Mask = (Mask & ~AddressSpaceMask)
376 | (((uint32_t) space) << AddressSpaceShift);
377 }
378 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
379 void addAddressSpace(LangAS space) {
380 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 380, __PRETTY_FUNCTION__))
;
381 setAddressSpace(space);
382 }
383
384 // Fast qualifiers are those that can be allocated directly
385 // on a QualType object.
386 bool hasFastQualifiers() const { return getFastQualifiers(); }
387 unsigned getFastQualifiers() const { return Mask & FastMask; }
388 void setFastQualifiers(unsigned mask) {
389 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 389, __PRETTY_FUNCTION__))
;
390 Mask = (Mask & ~FastMask) | mask;
391 }
392 void removeFastQualifiers(unsigned mask) {
393 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 393, __PRETTY_FUNCTION__))
;
394 Mask &= ~mask;
395 }
396 void removeFastQualifiers() {
397 removeFastQualifiers(FastMask);
398 }
399 void addFastQualifiers(unsigned mask) {
400 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 400, __PRETTY_FUNCTION__))
;
401 Mask |= mask;
402 }
403
404 /// Return true if the set contains any qualifiers which require an ExtQuals
405 /// node to be allocated.
406 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
407 Qualifiers getNonFastQualifiers() const {
408 Qualifiers Quals = *this;
409 Quals.setFastQualifiers(0);
410 return Quals;
411 }
412
413 /// Return true if the set contains any qualifiers.
414 bool hasQualifiers() const { return Mask; }
415 bool empty() const { return !Mask; }
416
417 /// Add the qualifiers from the given set to this set.
418 void addQualifiers(Qualifiers Q) {
419 // If the other set doesn't have any non-boolean qualifiers, just
420 // bit-or it in.
421 if (!(Q.Mask & ~CVRMask))
422 Mask |= Q.Mask;
423 else {
424 Mask |= (Q.Mask & CVRMask);
425 if (Q.hasAddressSpace())
426 addAddressSpace(Q.getAddressSpace());
427 if (Q.hasObjCGCAttr())
428 addObjCGCAttr(Q.getObjCGCAttr());
429 if (Q.hasObjCLifetime())
430 addObjCLifetime(Q.getObjCLifetime());
431 }
432 }
433
434 /// Remove the qualifiers from the given set from this set.
435 void removeQualifiers(Qualifiers Q) {
436 // If the other set doesn't have any non-boolean qualifiers, just
437 // bit-and the inverse in.
438 if (!(Q.Mask & ~CVRMask))
439 Mask &= ~Q.Mask;
440 else {
441 Mask &= ~(Q.Mask & CVRMask);
442 if (getObjCGCAttr() == Q.getObjCGCAttr())
443 removeObjCGCAttr();
444 if (getObjCLifetime() == Q.getObjCLifetime())
445 removeObjCLifetime();
446 if (getAddressSpace() == Q.getAddressSpace())
447 removeAddressSpace();
448 }
449 }
450
451 /// Add the qualifiers from the given set to this set, given that
452 /// they don't conflict.
453 void addConsistentQualifiers(Qualifiers qs) {
454 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
455 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
457 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
;
458 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
459 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
;
460 Mask |= qs.Mask;
461 }
462
463 /// Returns true if address space A is equal to or a superset of B.
464 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
465 /// overlapping address spaces.
466 /// CL1.1 or CL1.2:
467 /// every address space is a superset of itself.
468 /// CL2.0 adds:
469 /// __generic is a superset of any address space except for __constant.
470 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
471 // Address spaces must match exactly.
472 return A == B ||
473 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
474 // for __constant can be used as __generic.
475 (A == LangAS::opencl_generic && B != LangAS::opencl_constant);
476 }
477
478 /// Returns true if the address space in these qualifiers is equal to or
479 /// a superset of the address space in the argument qualifiers.
480 bool isAddressSpaceSupersetOf(Qualifiers other) const {
481 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
482 }
483
484 /// Determines if these qualifiers compatibly include another set.
485 /// Generally this answers the question of whether an object with the other
486 /// qualifiers can be safely used as an object with these qualifiers.
487 bool compatiblyIncludes(Qualifiers other) const {
488 return isAddressSpaceSupersetOf(other) &&
489 // ObjC GC qualifiers can match, be added, or be removed, but can't
490 // be changed.
491 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
492 !other.hasObjCGCAttr()) &&
493 // ObjC lifetime qualifiers must match exactly.
494 getObjCLifetime() == other.getObjCLifetime() &&
495 // CVR qualifiers may subset.
496 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
497 // U qualifier may superset.
498 (!other.hasUnaligned() || hasUnaligned());
499 }
500
501 /// Determines if these qualifiers compatibly include another set of
502 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
503 ///
504 /// One set of Objective-C lifetime qualifiers compatibly includes the other
505 /// if the lifetime qualifiers match, or if both are non-__weak and the
506 /// including set also contains the 'const' qualifier, or both are non-__weak
507 /// and one is None (which can only happen in non-ARC modes).
508 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
509 if (getObjCLifetime() == other.getObjCLifetime())
510 return true;
511
512 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
513 return false;
514
515 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
516 return true;
517
518 return hasConst();
519 }
520
521 /// Determine whether this set of qualifiers is a strict superset of
522 /// another set of qualifiers, not considering qualifier compatibility.
523 bool isStrictSupersetOf(Qualifiers Other) const;
524
525 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
526 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
527
528 explicit operator bool() const { return hasQualifiers(); }
529
530 Qualifiers &operator+=(Qualifiers R) {
531 addQualifiers(R);
532 return *this;
533 }
534
535 // Union two qualifier sets. If an enumerated qualifier appears
536 // in both sets, use the one from the right.
537 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
538 L += R;
539 return L;
540 }
541
542 Qualifiers &operator-=(Qualifiers R) {
543 removeQualifiers(R);
544 return *this;
545 }
546
547 /// Compute the difference between two qualifier sets.
548 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
549 L -= R;
550 return L;
551 }
552
553 std::string getAsString() const;
554 std::string getAsString(const PrintingPolicy &Policy) const;
555
556 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
557 void print(raw_ostream &OS, const PrintingPolicy &Policy,
558 bool appendSpaceIfNonEmpty = false) const;
559
560 void Profile(llvm::FoldingSetNodeID &ID) const {
561 ID.AddInteger(Mask);
562 }
563
564private:
565 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
566 // |C R V|U|GCAttr|Lifetime|AddressSpace|
567 uint32_t Mask = 0;
568
569 static const uint32_t UMask = 0x8;
570 static const uint32_t UShift = 3;
571 static const uint32_t GCAttrMask = 0x30;
572 static const uint32_t GCAttrShift = 4;
573 static const uint32_t LifetimeMask = 0x1C0;
574 static const uint32_t LifetimeShift = 6;
575 static const uint32_t AddressSpaceMask =
576 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
577 static const uint32_t AddressSpaceShift = 9;
578};
579
580/// A std::pair-like structure for storing a qualified type split
581/// into its local qualifiers and its locally-unqualified type.
582struct SplitQualType {
583 /// The locally-unqualified type.
584 const Type *Ty = nullptr;
585
586 /// The local qualifiers.
587 Qualifiers Quals;
588
589 SplitQualType() = default;
590 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
591
592 SplitQualType getSingleStepDesugaredType() const; // end of this file
593
594 // Make std::tie work.
595 std::pair<const Type *,Qualifiers> asPair() const {
596 return std::pair<const Type *, Qualifiers>(Ty, Quals);
597 }
598
599 friend bool operator==(SplitQualType a, SplitQualType b) {
600 return a.Ty == b.Ty && a.Quals == b.Quals;
601 }
602 friend bool operator!=(SplitQualType a, SplitQualType b) {
603 return a.Ty != b.Ty || a.Quals != b.Quals;
604 }
605};
606
607/// The kind of type we are substituting Objective-C type arguments into.
608///
609/// The kind of substitution affects the replacement of type parameters when
610/// no concrete type information is provided, e.g., when dealing with an
611/// unspecialized type.
612enum class ObjCSubstitutionContext {
613 /// An ordinary type.
614 Ordinary,
615
616 /// The result type of a method or function.
617 Result,
618
619 /// The parameter type of a method or function.
620 Parameter,
621
622 /// The type of a property.
623 Property,
624
625 /// The superclass of a type.
626 Superclass,
627};
628
629/// A (possibly-)qualified type.
630///
631/// For efficiency, we don't store CV-qualified types as nodes on their
632/// own: instead each reference to a type stores the qualifiers. This
633/// greatly reduces the number of nodes we need to allocate for types (for
634/// example we only need one for 'int', 'const int', 'volatile int',
635/// 'const volatile int', etc).
636///
637/// As an added efficiency bonus, instead of making this a pair, we
638/// just store the two bits we care about in the low bits of the
639/// pointer. To handle the packing/unpacking, we make QualType be a
640/// simple wrapper class that acts like a smart pointer. A third bit
641/// indicates whether there are extended qualifiers present, in which
642/// case the pointer points to a special structure.
643class QualType {
644 friend class QualifierCollector;
645
646 // Thankfully, these are efficiently composable.
647 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
648 Qualifiers::FastWidth> Value;
649
650 const ExtQuals *getExtQualsUnsafe() const {
651 return Value.getPointer().get<const ExtQuals*>();
652 }
653
654 const Type *getTypePtrUnsafe() const {
655 return Value.getPointer().get<const Type*>();
656 }
657
658 const ExtQualsTypeCommonBase *getCommonPtr() const {
659 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 659, __PRETTY_FUNCTION__))
;
660 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
661 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
662 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
663 }
664
665public:
666 QualType() = default;
667 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
668 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
669
670 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
671 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
672
673 /// Retrieves a pointer to the underlying (unqualified) type.
674 ///
675 /// This function requires that the type not be NULL. If the type might be
676 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
677 const Type *getTypePtr() const;
678
679 const Type *getTypePtrOrNull() const;
680
681 /// Retrieves a pointer to the name of the base type.
682 const IdentifierInfo *getBaseTypeIdentifier() const;
683
684 /// Divides a QualType into its unqualified type and a set of local
685 /// qualifiers.
686 SplitQualType split() const;
687
688 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
689
690 static QualType getFromOpaquePtr(const void *Ptr) {
691 QualType T;
692 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
693 return T;
694 }
695
696 const Type &operator*() const {
697 return *getTypePtr();
698 }
699
700 const Type *operator->() const {
701 return getTypePtr();
702 }
703
704 bool isCanonical() const;
705 bool isCanonicalAsParam() const;
706
707 /// Return true if this QualType doesn't point to a type yet.
708 bool isNull() const {
709 return Value.getPointer().isNull();
710 }
711
712 /// Determine whether this particular QualType instance has the
713 /// "const" qualifier set, without looking through typedefs that may have
714 /// added "const" at a different level.
715 bool isLocalConstQualified() const {
716 return (getLocalFastQualifiers() & Qualifiers::Const);
717 }
718
719 /// Determine whether this type is const-qualified.
720 bool isConstQualified() const;
721
722 /// Determine whether this particular QualType instance has the
723 /// "restrict" qualifier set, without looking through typedefs that may have
724 /// added "restrict" at a different level.
725 bool isLocalRestrictQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Restrict);
727 }
728
729 /// Determine whether this type is restrict-qualified.
730 bool isRestrictQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "volatile" qualifier set, without looking through typedefs that may have
734 /// added "volatile" at a different level.
735 bool isLocalVolatileQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Volatile);
737 }
738
739 /// Determine whether this type is volatile-qualified.
740 bool isVolatileQualified() const;
741
742 /// Determine whether this particular QualType instance has any
743 /// qualifiers, without looking through any typedefs that might add
744 /// qualifiers at a different level.
745 bool hasLocalQualifiers() const {
746 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
747 }
748
749 /// Determine whether this type has any qualifiers.
750 bool hasQualifiers() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
754 /// instance.
755 bool hasLocalNonFastQualifiers() const {
756 return Value.getPointer().is<const ExtQuals*>();
757 }
758
759 /// Retrieve the set of qualifiers local to this particular QualType
760 /// instance, not including any qualifiers acquired through typedefs or
761 /// other sugar.
762 Qualifiers getLocalQualifiers() const;
763
764 /// Retrieve the set of qualifiers applied to this type.
765 Qualifiers getQualifiers() const;
766
767 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
768 /// local to this particular QualType instance, not including any qualifiers
769 /// acquired through typedefs or other sugar.
770 unsigned getLocalCVRQualifiers() const {
771 return getLocalFastQualifiers();
772 }
773
774 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
775 /// applied to this type.
776 unsigned getCVRQualifiers() const;
777
778 bool isConstant(const ASTContext& Ctx) const {
779 return QualType::isConstant(*this, Ctx);
780 }
781
782 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
783 bool isPODType(const ASTContext &Context) const;
784
785 /// Return true if this is a POD type according to the rules of the C++98
786 /// standard, regardless of the current compilation's language.
787 bool isCXX98PODType(const ASTContext &Context) const;
788
789 /// Return true if this is a POD type according to the more relaxed rules
790 /// of the C++11 standard, regardless of the current compilation's language.
791 /// (C++0x [basic.types]p9). Note that, unlike
792 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
793 bool isCXX11PODType(const ASTContext &Context) const;
794
795 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
796 bool isTrivialType(const ASTContext &Context) const;
797
798 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
799 bool isTriviallyCopyableType(const ASTContext &Context) const;
800
801
802 /// Returns true if it is a class and it might be dynamic.
803 bool mayBeDynamicClass() const;
804
805 /// Returns true if it is not a class or if the class might not be dynamic.
806 bool mayBeNotDynamicClass() const;
807
808 // Don't promise in the API that anything besides 'const' can be
809 // easily added.
810
811 /// Add the `const` type qualifier to this QualType.
812 void addConst() {
813 addFastQualifiers(Qualifiers::Const);
814 }
815 QualType withConst() const {
816 return withFastQualifiers(Qualifiers::Const);
817 }
818
819 /// Add the `volatile` type qualifier to this QualType.
820 void addVolatile() {
821 addFastQualifiers(Qualifiers::Volatile);
822 }
823 QualType withVolatile() const {
824 return withFastQualifiers(Qualifiers::Volatile);
825 }
826
827 /// Add the `restrict` qualifier to this QualType.
828 void addRestrict() {
829 addFastQualifiers(Qualifiers::Restrict);
830 }
831 QualType withRestrict() const {
832 return withFastQualifiers(Qualifiers::Restrict);
833 }
834
835 QualType withCVRQualifiers(unsigned CVR) const {
836 return withFastQualifiers(CVR);
837 }
838
839 void addFastQualifiers(unsigned TQs) {
840 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
841 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
;
842 Value.setInt(Value.getInt() | TQs);
843 }
844
845 void removeLocalConst();
846 void removeLocalVolatile();
847 void removeLocalRestrict();
848 void removeLocalCVRQualifiers(unsigned Mask);
849
850 void removeLocalFastQualifiers() { Value.setInt(0); }
851 void removeLocalFastQualifiers(unsigned Mask) {
852 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 852, __PRETTY_FUNCTION__))
;
853 Value.setInt(Value.getInt() & ~Mask);
854 }
855
856 // Creates a type with the given qualifiers in addition to any
857 // qualifiers already on this type.
858 QualType withFastQualifiers(unsigned TQs) const {
859 QualType T = *this;
860 T.addFastQualifiers(TQs);
861 return T;
862 }
863
864 // Creates a type with exactly the given fast qualifiers, removing
865 // any existing fast qualifiers.
866 QualType withExactLocalFastQualifiers(unsigned TQs) const {
867 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
868 }
869
870 // Removes fast qualifiers, but leaves any extended qualifiers in place.
871 QualType withoutLocalFastQualifiers() const {
872 QualType T = *this;
873 T.removeLocalFastQualifiers();
874 return T;
875 }
876
877 QualType getCanonicalType() const;
878
879 /// Return this type with all of the instance-specific qualifiers
880 /// removed, but without removing any qualifiers that may have been applied
881 /// through typedefs.
882 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
883
884 /// Retrieve the unqualified variant of the given type,
885 /// removing as little sugar as possible.
886 ///
887 /// This routine looks through various kinds of sugar to find the
888 /// least-desugared type that is unqualified. For example, given:
889 ///
890 /// \code
891 /// typedef int Integer;
892 /// typedef const Integer CInteger;
893 /// typedef CInteger DifferenceType;
894 /// \endcode
895 ///
896 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
897 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
898 ///
899 /// The resulting type might still be qualified if it's sugar for an array
900 /// type. To strip qualifiers even from within a sugared array type, use
901 /// ASTContext::getUnqualifiedArrayType.
902 inline QualType getUnqualifiedType() const;
903
904 /// Retrieve the unqualified variant of the given type, removing as little
905 /// sugar as possible.
906 ///
907 /// Like getUnqualifiedType(), but also returns the set of
908 /// qualifiers that were built up.
909 ///
910 /// The resulting type might still be qualified if it's sugar for an array
911 /// type. To strip qualifiers even from within a sugared array type, use
912 /// ASTContext::getUnqualifiedArrayType.
913 inline SplitQualType getSplitUnqualifiedType() const;
914
915 /// Determine whether this type is more qualified than the other
916 /// given type, requiring exact equality for non-CVR qualifiers.
917 bool isMoreQualifiedThan(QualType Other) const;
918
919 /// Determine whether this type is at least as qualified as the other
920 /// given type, requiring exact equality for non-CVR qualifiers.
921 bool isAtLeastAsQualifiedAs(QualType Other) const;
922
923 QualType getNonReferenceType() const;
924
925 /// Determine the type of a (typically non-lvalue) expression with the
926 /// specified result type.
927 ///
928 /// This routine should be used for expressions for which the return type is
929 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
930 /// an lvalue. It removes a top-level reference (since there are no
931 /// expressions of reference type) and deletes top-level cvr-qualifiers
932 /// from non-class types (in C++) or all types (in C).
933 QualType getNonLValueExprType(const ASTContext &Context) const;
934
935 /// Return the specified type with any "sugar" removed from
936 /// the type. This takes off typedefs, typeof's etc. If the outer level of
937 /// the type is already concrete, it returns it unmodified. This is similar
938 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
939 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
940 /// concrete.
941 ///
942 /// Qualifiers are left in place.
943 QualType getDesugaredType(const ASTContext &Context) const {
944 return getDesugaredType(*this, Context);
945 }
946
947 SplitQualType getSplitDesugaredType() const {
948 return getSplitDesugaredType(*this);
949 }
950
951 /// Return the specified type with one level of "sugar" removed from
952 /// the type.
953 ///
954 /// This routine takes off the first typedef, typeof, etc. If the outer level
955 /// of the type is already concrete, it returns it unmodified.
956 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
957 return getSingleStepDesugaredTypeImpl(*this, Context);
958 }
959
960 /// Returns the specified type after dropping any
961 /// outer-level parentheses.
962 QualType IgnoreParens() const {
963 if (isa<ParenType>(*this))
964 return QualType::IgnoreParens(*this);
965 return *this;
966 }
967
968 /// Indicate whether the specified types and qualifiers are identical.
969 friend bool operator==(const QualType &LHS, const QualType &RHS) {
970 return LHS.Value == RHS.Value;
971 }
972 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
973 return LHS.Value != RHS.Value;
974 }
975 friend bool operator<(const QualType &LHS, const QualType &RHS) {
976 return LHS.Value < RHS.Value;
977 }
978
979 static std::string getAsString(SplitQualType split,
980 const PrintingPolicy &Policy) {
981 return getAsString(split.Ty, split.Quals, Policy);
982 }
983 static std::string getAsString(const Type *ty, Qualifiers qs,
984 const PrintingPolicy &Policy);
985
986 std::string getAsString() const;
987 std::string getAsString(const PrintingPolicy &Policy) const;
988
989 void print(raw_ostream &OS, const PrintingPolicy &Policy,
990 const Twine &PlaceHolder = Twine(),
991 unsigned Indentation = 0) const;
992
993 static void print(SplitQualType split, raw_ostream &OS,
994 const PrintingPolicy &policy, const Twine &PlaceHolder,
995 unsigned Indentation = 0) {
996 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
997 }
998
999 static void print(const Type *ty, Qualifiers qs,
1000 raw_ostream &OS, const PrintingPolicy &policy,
1001 const Twine &PlaceHolder,
1002 unsigned Indentation = 0);
1003
1004 void getAsStringInternal(std::string &Str,
1005 const PrintingPolicy &Policy) const;
1006
1007 static void getAsStringInternal(SplitQualType split, std::string &out,
1008 const PrintingPolicy &policy) {
1009 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1010 }
1011
1012 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1013 std::string &out,
1014 const PrintingPolicy &policy);
1015
1016 class StreamedQualTypeHelper {
1017 const QualType &T;
1018 const PrintingPolicy &Policy;
1019 const Twine &PlaceHolder;
1020 unsigned Indentation;
1021
1022 public:
1023 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1024 const Twine &PlaceHolder, unsigned Indentation)
1025 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1026 Indentation(Indentation) {}
1027
1028 friend raw_ostream &operator<<(raw_ostream &OS,
1029 const StreamedQualTypeHelper &SQT) {
1030 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1031 return OS;
1032 }
1033 };
1034
1035 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1036 const Twine &PlaceHolder = Twine(),
1037 unsigned Indentation = 0) const {
1038 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1039 }
1040
1041 void dump(const char *s) const;
1042 void dump() const;
1043 void dump(llvm::raw_ostream &OS) const;
1044
1045 void Profile(llvm::FoldingSetNodeID &ID) const {
1046 ID.AddPointer(getAsOpaquePtr());
1047 }
1048
1049 /// Return the address space of this type.
1050 inline LangAS getAddressSpace() const;
1051
1052 /// Returns gc attribute of this type.
1053 inline Qualifiers::GC getObjCGCAttr() const;
1054
1055 /// true when Type is objc's weak.
1056 bool isObjCGCWeak() const {
1057 return getObjCGCAttr() == Qualifiers::Weak;
1058 }
1059
1060 /// true when Type is objc's strong.
1061 bool isObjCGCStrong() const {
1062 return getObjCGCAttr() == Qualifiers::Strong;
1063 }
1064
1065 /// Returns lifetime attribute of this type.
1066 Qualifiers::ObjCLifetime getObjCLifetime() const {
1067 return getQualifiers().getObjCLifetime();
1068 }
1069
1070 bool hasNonTrivialObjCLifetime() const {
1071 return getQualifiers().hasNonTrivialObjCLifetime();
1072 }
1073
1074 bool hasStrongOrWeakObjCLifetime() const {
1075 return getQualifiers().hasStrongOrWeakObjCLifetime();
1076 }
1077
1078 // true when Type is objc's weak and weak is enabled but ARC isn't.
1079 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1080
1081 enum PrimitiveDefaultInitializeKind {
1082 /// The type does not fall into any of the following categories. Note that
1083 /// this case is zero-valued so that values of this enum can be used as a
1084 /// boolean condition for non-triviality.
1085 PDIK_Trivial,
1086
1087 /// The type is an Objective-C retainable pointer type that is qualified
1088 /// with the ARC __strong qualifier.
1089 PDIK_ARCStrong,
1090
1091 /// The type is an Objective-C retainable pointer type that is qualified
1092 /// with the ARC __weak qualifier.
1093 PDIK_ARCWeak,
1094
1095 /// The type is a struct containing a field whose type is not PCK_Trivial.
1096 PDIK_Struct
1097 };
1098
1099 /// Functions to query basic properties of non-trivial C struct types.
1100
1101 /// Check if this is a non-trivial type that would cause a C struct
1102 /// transitively containing this type to be non-trivial to default initialize
1103 /// and return the kind.
1104 PrimitiveDefaultInitializeKind
1105 isNonTrivialToPrimitiveDefaultInitialize() const;
1106
1107 enum PrimitiveCopyKind {
1108 /// The type does not fall into any of the following categories. Note that
1109 /// this case is zero-valued so that values of this enum can be used as a
1110 /// boolean condition for non-triviality.
1111 PCK_Trivial,
1112
1113 /// The type would be trivial except that it is volatile-qualified. Types
1114 /// that fall into one of the other non-trivial cases may additionally be
1115 /// volatile-qualified.
1116 PCK_VolatileTrivial,
1117
1118 /// The type is an Objective-C retainable pointer type that is qualified
1119 /// with the ARC __strong qualifier.
1120 PCK_ARCStrong,
1121
1122 /// The type is an Objective-C retainable pointer type that is qualified
1123 /// with the ARC __weak qualifier.
1124 PCK_ARCWeak,
1125
1126 /// The type is a struct containing a field whose type is neither
1127 /// PCK_Trivial nor PCK_VolatileTrivial.
1128 /// Note that a C++ struct type does not necessarily match this; C++ copying
1129 /// semantics are too complex to express here, in part because they depend
1130 /// on the exact constructor or assignment operator that is chosen by
1131 /// overload resolution to do the copy.
1132 PCK_Struct
1133 };
1134
1135 /// Check if this is a non-trivial type that would cause a C struct
1136 /// transitively containing this type to be non-trivial to copy and return the
1137 /// kind.
1138 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1139
1140 /// Check if this is a non-trivial type that would cause a C struct
1141 /// transitively containing this type to be non-trivial to destructively
1142 /// move and return the kind. Destructive move in this context is a C++-style
1143 /// move in which the source object is placed in a valid but unspecified state
1144 /// after it is moved, as opposed to a truly destructive move in which the
1145 /// source object is placed in an uninitialized state.
1146 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1147
1148 enum DestructionKind {
1149 DK_none,
1150 DK_cxx_destructor,
1151 DK_objc_strong_lifetime,
1152 DK_objc_weak_lifetime,
1153 DK_nontrivial_c_struct
1154 };
1155
1156 /// Returns a nonzero value if objects of this type require
1157 /// non-trivial work to clean up after. Non-zero because it's
1158 /// conceivable that qualifiers (objc_gc(weak)?) could make
1159 /// something require destruction.
1160 DestructionKind isDestructedType() const {
1161 return isDestructedTypeImpl(*this);
1162 }
1163
1164 /// Check if this is or contains a C union that is non-trivial to
1165 /// default-initialize, which is a union that has a member that is non-trivial
1166 /// to default-initialize. If this returns true,
1167 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1168 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1169
1170 /// Check if this is or contains a C union that is non-trivial to destruct,
1171 /// which is a union that has a member that is non-trivial to destruct. If
1172 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1173 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1174
1175 /// Check if this is or contains a C union that is non-trivial to copy, which
1176 /// is a union that has a member that is non-trivial to copy. If this returns
1177 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1178 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1179
1180 /// Determine whether expressions of the given type are forbidden
1181 /// from being lvalues in C.
1182 ///
1183 /// The expression types that are forbidden to be lvalues are:
1184 /// - 'void', but not qualified void
1185 /// - function types
1186 ///
1187 /// The exact rule here is C99 6.3.2.1:
1188 /// An lvalue is an expression with an object type or an incomplete
1189 /// type other than void.
1190 bool isCForbiddenLValueType() const;
1191
1192 /// Substitute type arguments for the Objective-C type parameters used in the
1193 /// subject type.
1194 ///
1195 /// \param ctx ASTContext in which the type exists.
1196 ///
1197 /// \param typeArgs The type arguments that will be substituted for the
1198 /// Objective-C type parameters in the subject type, which are generally
1199 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1200 /// parameters will be replaced with their bounds or id/Class, as appropriate
1201 /// for the context.
1202 ///
1203 /// \param context The context in which the subject type was written.
1204 ///
1205 /// \returns the resulting type.
1206 QualType substObjCTypeArgs(ASTContext &ctx,
1207 ArrayRef<QualType> typeArgs,
1208 ObjCSubstitutionContext context) const;
1209
1210 /// Substitute type arguments from an object type for the Objective-C type
1211 /// parameters used in the subject type.
1212 ///
1213 /// This operation combines the computation of type arguments for
1214 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1215 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1216 /// callers that need to perform a single substitution in isolation.
1217 ///
1218 /// \param objectType The type of the object whose member type we're
1219 /// substituting into. For example, this might be the receiver of a message
1220 /// or the base of a property access.
1221 ///
1222 /// \param dc The declaration context from which the subject type was
1223 /// retrieved, which indicates (for example) which type parameters should
1224 /// be substituted.
1225 ///
1226 /// \param context The context in which the subject type was written.
1227 ///
1228 /// \returns the subject type after replacing all of the Objective-C type
1229 /// parameters with their corresponding arguments.
1230 QualType substObjCMemberType(QualType objectType,
1231 const DeclContext *dc,
1232 ObjCSubstitutionContext context) const;
1233
1234 /// Strip Objective-C "__kindof" types from the given type.
1235 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1236
1237 /// Remove all qualifiers including _Atomic.
1238 QualType getAtomicUnqualifiedType() const;
1239
1240private:
1241 // These methods are implemented in a separate translation unit;
1242 // "static"-ize them to avoid creating temporary QualTypes in the
1243 // caller.
1244 static bool isConstant(QualType T, const ASTContext& Ctx);
1245 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1246 static SplitQualType getSplitDesugaredType(QualType T);
1247 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1248 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1249 const ASTContext &C);
1250 static QualType IgnoreParens(QualType T);
1251 static DestructionKind isDestructedTypeImpl(QualType type);
1252
1253 /// Check if \param RD is or contains a non-trivial C union.
1254 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1255 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1256 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1257};
1258
1259} // namespace clang
1260
1261namespace llvm {
1262
1263/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1264/// to a specific Type class.
1265template<> struct simplify_type< ::clang::QualType> {
1266 using SimpleType = const ::clang::Type *;
1267
1268 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1269 return Val.getTypePtr();
1270 }
1271};
1272
1273// Teach SmallPtrSet that QualType is "basically a pointer".
1274template<>
1275struct PointerLikeTypeTraits<clang::QualType> {
1276 static inline void *getAsVoidPointer(clang::QualType P) {
1277 return P.getAsOpaquePtr();
1278 }
1279
1280 static inline clang::QualType getFromVoidPointer(void *P) {
1281 return clang::QualType::getFromOpaquePtr(P);
1282 }
1283
1284 // Various qualifiers go in low bits.
1285 enum { NumLowBitsAvailable = 0 };
1286};
1287
1288} // namespace llvm
1289
1290namespace clang {
1291
1292/// Base class that is common to both the \c ExtQuals and \c Type
1293/// classes, which allows \c QualType to access the common fields between the
1294/// two.
1295class ExtQualsTypeCommonBase {
1296 friend class ExtQuals;
1297 friend class QualType;
1298 friend class Type;
1299
1300 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1301 /// a self-referential pointer (for \c Type).
1302 ///
1303 /// This pointer allows an efficient mapping from a QualType to its
1304 /// underlying type pointer.
1305 const Type *const BaseType;
1306
1307 /// The canonical type of this type. A QualType.
1308 QualType CanonicalType;
1309
1310 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1311 : BaseType(baseType), CanonicalType(canon) {}
1312};
1313
1314/// We can encode up to four bits in the low bits of a
1315/// type pointer, but there are many more type qualifiers that we want
1316/// to be able to apply to an arbitrary type. Therefore we have this
1317/// struct, intended to be heap-allocated and used by QualType to
1318/// store qualifiers.
1319///
1320/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1321/// in three low bits on the QualType pointer; a fourth bit records whether
1322/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1323/// Objective-C GC attributes) are much more rare.
1324class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1325 // NOTE: changing the fast qualifiers should be straightforward as
1326 // long as you don't make 'const' non-fast.
1327 // 1. Qualifiers:
1328 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1329 // Fast qualifiers must occupy the low-order bits.
1330 // b) Update Qualifiers::FastWidth and FastMask.
1331 // 2. QualType:
1332 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1333 // b) Update remove{Volatile,Restrict}, defined near the end of
1334 // this header.
1335 // 3. ASTContext:
1336 // a) Update get{Volatile,Restrict}Type.
1337
1338 /// The immutable set of qualifiers applied by this node. Always contains
1339 /// extended qualifiers.
1340 Qualifiers Quals;
1341
1342 ExtQuals *this_() { return this; }
1343
1344public:
1345 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1346 : ExtQualsTypeCommonBase(baseType,
1347 canon.isNull() ? QualType(this_(), 0) : canon),
1348 Quals(quals) {
1349 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
1350 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
1352 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
;
1353 }
1354
1355 Qualifiers getQualifiers() const { return Quals; }
1356
1357 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1358 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1359
1360 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1361 Qualifiers::ObjCLifetime getObjCLifetime() const {
1362 return Quals.getObjCLifetime();
1363 }
1364
1365 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1366 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1367
1368 const Type *getBaseType() const { return BaseType; }
1369
1370public:
1371 void Profile(llvm::FoldingSetNodeID &ID) const {
1372 Profile(ID, getBaseType(), Quals);
1373 }
1374
1375 static void Profile(llvm::FoldingSetNodeID &ID,
1376 const Type *BaseType,
1377 Qualifiers Quals) {
1378 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1378, __PRETTY_FUNCTION__))
;
1379 ID.AddPointer(BaseType);
1380 Quals.Profile(ID);
1381 }
1382};
1383
1384/// The kind of C++11 ref-qualifier associated with a function type.
1385/// This determines whether a member function's "this" object can be an
1386/// lvalue, rvalue, or neither.
1387enum RefQualifierKind {
1388 /// No ref-qualifier was provided.
1389 RQ_None = 0,
1390
1391 /// An lvalue ref-qualifier was provided (\c &).
1392 RQ_LValue,
1393
1394 /// An rvalue ref-qualifier was provided (\c &&).
1395 RQ_RValue
1396};
1397
1398/// Which keyword(s) were used to create an AutoType.
1399enum class AutoTypeKeyword {
1400 /// auto
1401 Auto,
1402
1403 /// decltype(auto)
1404 DecltypeAuto,
1405
1406 /// __auto_type (GNU extension)
1407 GNUAutoType
1408};
1409
1410/// The base class of the type hierarchy.
1411///
1412/// A central concept with types is that each type always has a canonical
1413/// type. A canonical type is the type with any typedef names stripped out
1414/// of it or the types it references. For example, consider:
1415///
1416/// typedef int foo;
1417/// typedef foo* bar;
1418/// 'int *' 'foo *' 'bar'
1419///
1420/// There will be a Type object created for 'int'. Since int is canonical, its
1421/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1422/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1423/// there is a PointerType that represents 'int*', which, like 'int', is
1424/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1425/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1426/// is also 'int*'.
1427///
1428/// Non-canonical types are useful for emitting diagnostics, without losing
1429/// information about typedefs being used. Canonical types are useful for type
1430/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1431/// about whether something has a particular form (e.g. is a function type),
1432/// because they implicitly, recursively, strip all typedefs out of a type.
1433///
1434/// Types, once created, are immutable.
1435///
1436class alignas(8) Type : public ExtQualsTypeCommonBase {
1437public:
1438 enum TypeClass {
1439#define TYPE(Class, Base) Class,
1440#define LAST_TYPE(Class) TypeLast = Class
1441#define ABSTRACT_TYPE(Class, Base)
1442#include "clang/AST/TypeNodes.inc"
1443 };
1444
1445private:
1446 /// Bitfields required by the Type class.
1447 class TypeBitfields {
1448 friend class Type;
1449 template <class T> friend class TypePropertyCache;
1450
1451 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1452 unsigned TC : 8;
1453
1454 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1455 unsigned Dependent : 1;
1456
1457 /// Whether this type somehow involves a template parameter, even
1458 /// if the resolution of the type does not depend on a template parameter.
1459 unsigned InstantiationDependent : 1;
1460
1461 /// Whether this type is a variably-modified type (C99 6.7.5).
1462 unsigned VariablyModified : 1;
1463
1464 /// Whether this type contains an unexpanded parameter pack
1465 /// (for C++11 variadic templates).
1466 unsigned ContainsUnexpandedParameterPack : 1;
1467
1468 /// True if the cache (i.e. the bitfields here starting with
1469 /// 'Cache') is valid.
1470 mutable unsigned CacheValid : 1;
1471
1472 /// Linkage of this type.
1473 mutable unsigned CachedLinkage : 3;
1474
1475 /// Whether this type involves and local or unnamed types.
1476 mutable unsigned CachedLocalOrUnnamed : 1;
1477
1478 /// Whether this type comes from an AST file.
1479 mutable unsigned FromAST : 1;
1480
1481 bool isCacheValid() const {
1482 return CacheValid;
1483 }
1484
1485 Linkage getLinkage() const {
1486 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1486, __PRETTY_FUNCTION__))
;
1487 return static_cast<Linkage>(CachedLinkage);
1488 }
1489
1490 bool hasLocalOrUnnamedType() const {
1491 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1491, __PRETTY_FUNCTION__))
;
1492 return CachedLocalOrUnnamed;
1493 }
1494 };
1495 enum { NumTypeBits = 18 };
1496
1497protected:
1498 // These classes allow subclasses to somewhat cleanly pack bitfields
1499 // into Type.
1500
1501 class ArrayTypeBitfields {
1502 friend class ArrayType;
1503
1504 unsigned : NumTypeBits;
1505
1506 /// CVR qualifiers from declarations like
1507 /// 'int X[static restrict 4]'. For function parameters only.
1508 unsigned IndexTypeQuals : 3;
1509
1510 /// Storage class qualifiers from declarations like
1511 /// 'int X[static restrict 4]'. For function parameters only.
1512 /// Actually an ArrayType::ArraySizeModifier.
1513 unsigned SizeModifier : 3;
1514 };
1515
1516 class BuiltinTypeBitfields {
1517 friend class BuiltinType;
1518
1519 unsigned : NumTypeBits;
1520
1521 /// The kind (BuiltinType::Kind) of builtin type this is.
1522 unsigned Kind : 8;
1523 };
1524
1525 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1526 /// Only common bits are stored here. Additional uncommon bits are stored
1527 /// in a trailing object after FunctionProtoType.
1528 class FunctionTypeBitfields {
1529 friend class FunctionProtoType;
1530 friend class FunctionType;
1531
1532 unsigned : NumTypeBits;
1533
1534 /// Extra information which affects how the function is called, like
1535 /// regparm and the calling convention.
1536 unsigned ExtInfo : 12;
1537
1538 /// The ref-qualifier associated with a \c FunctionProtoType.
1539 ///
1540 /// This is a value of type \c RefQualifierKind.
1541 unsigned RefQualifier : 2;
1542
1543 /// Used only by FunctionProtoType, put here to pack with the
1544 /// other bitfields.
1545 /// The qualifiers are part of FunctionProtoType because...
1546 ///
1547 /// C++ 8.3.5p4: The return type, the parameter type list and the
1548 /// cv-qualifier-seq, [...], are part of the function type.
1549 unsigned FastTypeQuals : Qualifiers::FastWidth;
1550 /// Whether this function has extended Qualifiers.
1551 unsigned HasExtQuals : 1;
1552
1553 /// The number of parameters this function has, not counting '...'.
1554 /// According to [implimits] 8 bits should be enough here but this is
1555 /// somewhat easy to exceed with metaprogramming and so we would like to
1556 /// keep NumParams as wide as reasonably possible.
1557 unsigned NumParams : 16;
1558
1559 /// The type of exception specification this function has.
1560 unsigned ExceptionSpecType : 4;
1561
1562 /// Whether this function has extended parameter information.
1563 unsigned HasExtParameterInfos : 1;
1564
1565 /// Whether the function is variadic.
1566 unsigned Variadic : 1;
1567
1568 /// Whether this function has a trailing return type.
1569 unsigned HasTrailingReturn : 1;
1570 };
1571
1572 class ObjCObjectTypeBitfields {
1573 friend class ObjCObjectType;
1574
1575 unsigned : NumTypeBits;
1576
1577 /// The number of type arguments stored directly on this object type.
1578 unsigned NumTypeArgs : 7;
1579
1580 /// The number of protocols stored directly on this object type.
1581 unsigned NumProtocols : 6;
1582
1583 /// Whether this is a "kindof" type.
1584 unsigned IsKindOf : 1;
1585 };
1586
1587 class ReferenceTypeBitfields {
1588 friend class ReferenceType;
1589
1590 unsigned : NumTypeBits;
1591
1592 /// True if the type was originally spelled with an lvalue sigil.
1593 /// This is never true of rvalue references but can also be false
1594 /// on lvalue references because of C++0x [dcl.typedef]p9,
1595 /// as follows:
1596 ///
1597 /// typedef int &ref; // lvalue, spelled lvalue
1598 /// typedef int &&rvref; // rvalue
1599 /// ref &a; // lvalue, inner ref, spelled lvalue
1600 /// ref &&a; // lvalue, inner ref
1601 /// rvref &a; // lvalue, inner ref, spelled lvalue
1602 /// rvref &&a; // rvalue, inner ref
1603 unsigned SpelledAsLValue : 1;
1604
1605 /// True if the inner type is a reference type. This only happens
1606 /// in non-canonical forms.
1607 unsigned InnerRef : 1;
1608 };
1609
1610 class TypeWithKeywordBitfields {
1611 friend class TypeWithKeyword;
1612
1613 unsigned : NumTypeBits;
1614
1615 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1616 unsigned Keyword : 8;
1617 };
1618
1619 enum { NumTypeWithKeywordBits = 8 };
1620
1621 class ElaboratedTypeBitfields {
1622 friend class ElaboratedType;
1623
1624 unsigned : NumTypeBits;
1625 unsigned : NumTypeWithKeywordBits;
1626
1627 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1628 unsigned HasOwnedTagDecl : 1;
1629 };
1630
1631 class VectorTypeBitfields {
1632 friend class VectorType;
1633 friend class DependentVectorType;
1634
1635 unsigned : NumTypeBits;
1636
1637 /// The kind of vector, either a generic vector type or some
1638 /// target-specific vector type such as for AltiVec or Neon.
1639 unsigned VecKind : 3;
1640
1641 /// The number of elements in the vector.
1642 unsigned NumElements : 29 - NumTypeBits;
1643
1644 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1645 };
1646
1647 class AttributedTypeBitfields {
1648 friend class AttributedType;
1649
1650 unsigned : NumTypeBits;
1651
1652 /// An AttributedType::Kind
1653 unsigned AttrKind : 32 - NumTypeBits;
1654 };
1655
1656 class AutoTypeBitfields {
1657 friend class AutoType;
1658
1659 unsigned : NumTypeBits;
1660
1661 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1662 /// or '__auto_type'? AutoTypeKeyword value.
1663 unsigned Keyword : 2;
1664 };
1665
1666 class SubstTemplateTypeParmPackTypeBitfields {
1667 friend class SubstTemplateTypeParmPackType;
1668
1669 unsigned : NumTypeBits;
1670
1671 /// The number of template arguments in \c Arguments, which is
1672 /// expected to be able to hold at least 1024 according to [implimits].
1673 /// However as this limit is somewhat easy to hit with template
1674 /// metaprogramming we'd prefer to keep it as large as possible.
1675 /// At the moment it has been left as a non-bitfield since this type
1676 /// safely fits in 64 bits as an unsigned, so there is no reason to
1677 /// introduce the performance impact of a bitfield.
1678 unsigned NumArgs;
1679 };
1680
1681 class TemplateSpecializationTypeBitfields {
1682 friend class TemplateSpecializationType;
1683
1684 unsigned : NumTypeBits;
1685
1686 /// Whether this template specialization type is a substituted type alias.
1687 unsigned TypeAlias : 1;
1688
1689 /// The number of template arguments named in this class template
1690 /// specialization, which is expected to be able to hold at least 1024
1691 /// according to [implimits]. However, as this limit is somewhat easy to
1692 /// hit with template metaprogramming we'd prefer to keep it as large
1693 /// as possible. At the moment it has been left as a non-bitfield since
1694 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1695 /// to introduce the performance impact of a bitfield.
1696 unsigned NumArgs;
1697 };
1698
1699 class DependentTemplateSpecializationTypeBitfields {
1700 friend class DependentTemplateSpecializationType;
1701
1702 unsigned : NumTypeBits;
1703 unsigned : NumTypeWithKeywordBits;
1704
1705 /// The number of template arguments named in this class template
1706 /// specialization, which is expected to be able to hold at least 1024
1707 /// according to [implimits]. However, as this limit is somewhat easy to
1708 /// hit with template metaprogramming we'd prefer to keep it as large
1709 /// as possible. At the moment it has been left as a non-bitfield since
1710 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1711 /// to introduce the performance impact of a bitfield.
1712 unsigned NumArgs;
1713 };
1714
1715 class PackExpansionTypeBitfields {
1716 friend class PackExpansionType;
1717
1718 unsigned : NumTypeBits;
1719
1720 /// The number of expansions that this pack expansion will
1721 /// generate when substituted (+1), which is expected to be able to
1722 /// hold at least 1024 according to [implimits]. However, as this limit
1723 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1724 /// keep it as large as possible. At the moment it has been left as a
1725 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1726 /// there is no reason to introduce the performance impact of a bitfield.
1727 ///
1728 /// This field will only have a non-zero value when some of the parameter
1729 /// packs that occur within the pattern have been substituted but others
1730 /// have not.
1731 unsigned NumExpansions;
1732 };
1733
1734 union {
1735 TypeBitfields TypeBits;
1736 ArrayTypeBitfields ArrayTypeBits;
1737 AttributedTypeBitfields AttributedTypeBits;
1738 AutoTypeBitfields AutoTypeBits;
1739 BuiltinTypeBitfields BuiltinTypeBits;
1740 FunctionTypeBitfields FunctionTypeBits;
1741 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1742 ReferenceTypeBitfields ReferenceTypeBits;
1743 TypeWithKeywordBitfields TypeWithKeywordBits;
1744 ElaboratedTypeBitfields ElaboratedTypeBits;
1745 VectorTypeBitfields VectorTypeBits;
1746 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1747 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1748 DependentTemplateSpecializationTypeBitfields
1749 DependentTemplateSpecializationTypeBits;
1750 PackExpansionTypeBitfields PackExpansionTypeBits;
1751
1752 static_assert(sizeof(TypeBitfields) <= 8,
1753 "TypeBitfields is larger than 8 bytes!");
1754 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1755 "ArrayTypeBitfields is larger than 8 bytes!");
1756 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1757 "AttributedTypeBitfields is larger than 8 bytes!");
1758 static_assert(sizeof(AutoTypeBitfields) <= 8,
1759 "AutoTypeBitfields is larger than 8 bytes!");
1760 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1761 "BuiltinTypeBitfields is larger than 8 bytes!");
1762 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1763 "FunctionTypeBitfields is larger than 8 bytes!");
1764 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1765 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1766 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1767 "ReferenceTypeBitfields is larger than 8 bytes!");
1768 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1769 "TypeWithKeywordBitfields is larger than 8 bytes!");
1770 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1771 "ElaboratedTypeBitfields is larger than 8 bytes!");
1772 static_assert(sizeof(VectorTypeBitfields) <= 8,
1773 "VectorTypeBitfields is larger than 8 bytes!");
1774 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1775 "SubstTemplateTypeParmPackTypeBitfields is larger"
1776 " than 8 bytes!");
1777 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1778 "TemplateSpecializationTypeBitfields is larger"
1779 " than 8 bytes!");
1780 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1781 "DependentTemplateSpecializationTypeBitfields is larger"
1782 " than 8 bytes!");
1783 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1784 "PackExpansionTypeBitfields is larger than 8 bytes");
1785 };
1786
1787private:
1788 template <class T> friend class TypePropertyCache;
1789
1790 /// Set whether this type comes from an AST file.
1791 void setFromAST(bool V = true) const {
1792 TypeBits.FromAST = V;
1793 }
1794
1795protected:
1796 friend class ASTContext;
1797
1798 Type(TypeClass tc, QualType canon, bool Dependent,
1799 bool InstantiationDependent, bool VariablyModified,
1800 bool ContainsUnexpandedParameterPack)
1801 : ExtQualsTypeCommonBase(this,
1802 canon.isNull() ? QualType(this_(), 0) : canon) {
1803 TypeBits.TC = tc;
1804 TypeBits.Dependent = Dependent;
1805 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1806 TypeBits.VariablyModified = VariablyModified;
1807 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1808 TypeBits.CacheValid = false;
1809 TypeBits.CachedLocalOrUnnamed = false;
1810 TypeBits.CachedLinkage = NoLinkage;
1811 TypeBits.FromAST = false;
1812 }
1813
1814 // silence VC++ warning C4355: 'this' : used in base member initializer list
1815 Type *this_() { return this; }
1816
1817 void setDependent(bool D = true) {
1818 TypeBits.Dependent = D;
1819 if (D)
1820 TypeBits.InstantiationDependent = true;
1821 }
1822
1823 void setInstantiationDependent(bool D = true) {
1824 TypeBits.InstantiationDependent = D; }
1825
1826 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1827
1828 void setContainsUnexpandedParameterPack(bool PP = true) {
1829 TypeBits.ContainsUnexpandedParameterPack = PP;
1830 }
1831
1832public:
1833 friend class ASTReader;
1834 friend class ASTWriter;
1835
1836 Type(const Type &) = delete;
1837 Type(Type &&) = delete;
1838 Type &operator=(const Type &) = delete;
1839 Type &operator=(Type &&) = delete;
1840
1841 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1842
1843 /// Whether this type comes from an AST file.
1844 bool isFromAST() const { return TypeBits.FromAST; }
1845
1846 /// Whether this type is or contains an unexpanded parameter
1847 /// pack, used to support C++0x variadic templates.
1848 ///
1849 /// A type that contains a parameter pack shall be expanded by the
1850 /// ellipsis operator at some point. For example, the typedef in the
1851 /// following example contains an unexpanded parameter pack 'T':
1852 ///
1853 /// \code
1854 /// template<typename ...T>
1855 /// struct X {
1856 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1857 /// };
1858 /// \endcode
1859 ///
1860 /// Note that this routine does not specify which
1861 bool containsUnexpandedParameterPack() const {
1862 return TypeBits.ContainsUnexpandedParameterPack;
1863 }
1864
1865 /// Determines if this type would be canonical if it had no further
1866 /// qualification.
1867 bool isCanonicalUnqualified() const {
1868 return CanonicalType == QualType(this, 0);
1869 }
1870
1871 /// Pull a single level of sugar off of this locally-unqualified type.
1872 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1873 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1874 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1875
1876 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1877 /// object types, function types, and incomplete types.
1878
1879 /// Return true if this is an incomplete type.
1880 /// A type that can describe objects, but which lacks information needed to
1881 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1882 /// routine will need to determine if the size is actually required.
1883 ///
1884 /// Def If non-null, and the type refers to some kind of declaration
1885 /// that can be completed (such as a C struct, C++ class, or Objective-C
1886 /// class), will be set to the declaration.
1887 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1888
1889 /// Return true if this is an incomplete or object
1890 /// type, in other words, not a function type.
1891 bool isIncompleteOrObjectType() const {
1892 return !isFunctionType();
1893 }
1894
1895 /// Determine whether this type is an object type.
1896 bool isObjectType() const {
1897 // C++ [basic.types]p8:
1898 // An object type is a (possibly cv-qualified) type that is not a
1899 // function type, not a reference type, and not a void type.
1900 return !isReferenceType() && !isFunctionType() && !isVoidType();
1901 }
1902
1903 /// Return true if this is a literal type
1904 /// (C++11 [basic.types]p10)
1905 bool isLiteralType(const ASTContext &Ctx) const;
1906
1907 /// Test if this type is a standard-layout type.
1908 /// (C++0x [basic.type]p9)
1909 bool isStandardLayoutType() const;
1910
1911 /// Helper methods to distinguish type categories. All type predicates
1912 /// operate on the canonical type, ignoring typedefs and qualifiers.
1913
1914 /// Returns true if the type is a builtin type.
1915 bool isBuiltinType() const;
1916
1917 /// Test for a particular builtin type.
1918 bool isSpecificBuiltinType(unsigned K) const;
1919
1920 /// Test for a type which does not represent an actual type-system type but
1921 /// is instead used as a placeholder for various convenient purposes within
1922 /// Clang. All such types are BuiltinTypes.
1923 bool isPlaceholderType() const;
1924 const BuiltinType *getAsPlaceholderType() const;
1925
1926 /// Test for a specific placeholder type.
1927 bool isSpecificPlaceholderType(unsigned K) const;
1928
1929 /// Test for a placeholder type other than Overload; see
1930 /// BuiltinType::isNonOverloadPlaceholderType.
1931 bool isNonOverloadPlaceholderType() const;
1932
1933 /// isIntegerType() does *not* include complex integers (a GCC extension).
1934 /// isComplexIntegerType() can be used to test for complex integers.
1935 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1936 bool isEnumeralType() const;
1937
1938 /// Determine whether this type is a scoped enumeration type.
1939 bool isScopedEnumeralType() const;
1940 bool isBooleanType() const;
1941 bool isCharType() const;
1942 bool isWideCharType() const;
1943 bool isChar8Type() const;
1944 bool isChar16Type() const;
1945 bool isChar32Type() const;
1946 bool isAnyCharacterType() const;
1947 bool isIntegralType(const ASTContext &Ctx) const;
1948
1949 /// Determine whether this type is an integral or enumeration type.
1950 bool isIntegralOrEnumerationType() const;
1951
1952 /// Determine whether this type is an integral or unscoped enumeration type.
1953 bool isIntegralOrUnscopedEnumerationType() const;
1954
1955 /// Floating point categories.
1956 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1957 /// isComplexType() does *not* include complex integers (a GCC extension).
1958 /// isComplexIntegerType() can be used to test for complex integers.
1959 bool isComplexType() const; // C99 6.2.5p11 (complex)
1960 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1961 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1962 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1963 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1964 bool isFloat128Type() const;
1965 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1966 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1967 bool isVoidType() const; // C99 6.2.5p19
1968 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1969 bool isAggregateType() const;
1970 bool isFundamentalType() const;
1971 bool isCompoundType() const;
1972
1973 // Type Predicates: Check to see if this type is structurally the specified
1974 // type, ignoring typedefs and qualifiers.
1975 bool isFunctionType() const;
1976 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1977 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1978 bool isPointerType() const;
1979 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
1980 bool isBlockPointerType() const;
1981 bool isVoidPointerType() const;
1982 bool isReferenceType() const;
1983 bool isLValueReferenceType() const;
1984 bool isRValueReferenceType() const;
1985 bool isFunctionPointerType() const;
1986 bool isFunctionReferenceType() const;
1987 bool isMemberPointerType() const;
1988 bool isMemberFunctionPointerType() const;
1989 bool isMemberDataPointerType() const;
1990 bool isArrayType() const;
1991 bool isConstantArrayType() const;
1992 bool isIncompleteArrayType() const;
1993 bool isVariableArrayType() const;
1994 bool isDependentSizedArrayType() const;
1995 bool isRecordType() const;
1996 bool isClassType() const;
1997 bool isStructureType() const;
1998 bool isObjCBoxableRecordType() const;
1999 bool isInterfaceType() const;
2000 bool isStructureOrClassType() const;
2001 bool isUnionType() const;
2002 bool isComplexIntegerType() const; // GCC _Complex integer type.
2003 bool isVectorType() const; // GCC vector type.
2004 bool isExtVectorType() const; // Extended vector type.
2005 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2006 bool isObjCObjectPointerType() const; // pointer to ObjC object
2007 bool isObjCRetainableType() const; // ObjC object or block pointer
2008 bool isObjCLifetimeType() const; // (array of)* retainable type
2009 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2010 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2011 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2012 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2013 // for the common case.
2014 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2015 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2016 bool isObjCQualifiedIdType() const; // id<foo>
2017 bool isObjCQualifiedClassType() const; // Class<foo>
2018 bool isObjCObjectOrInterfaceType() const;
2019 bool isObjCIdType() const; // id
2020 bool isDecltypeType() const;
2021 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2022 /// qualifier?
2023 ///
2024 /// This approximates the answer to the following question: if this
2025 /// translation unit were compiled in ARC, would this type be qualified
2026 /// with __unsafe_unretained?
2027 bool isObjCInertUnsafeUnretainedType() const {
2028 return hasAttr(attr::ObjCInertUnsafeUnretained);
2029 }
2030
2031 /// Whether the type is Objective-C 'id' or a __kindof type of an
2032 /// object type, e.g., __kindof NSView * or __kindof id
2033 /// <NSCopying>.
2034 ///
2035 /// \param bound Will be set to the bound on non-id subtype types,
2036 /// which will be (possibly specialized) Objective-C class type, or
2037 /// null for 'id.
2038 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2039 const ObjCObjectType *&bound) const;
2040
2041 bool isObjCClassType() const; // Class
2042
2043 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2044 /// Class type, e.g., __kindof Class <NSCopying>.
2045 ///
2046 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2047 /// here because Objective-C's type system cannot express "a class
2048 /// object for a subclass of NSFoo".
2049 bool isObjCClassOrClassKindOfType() const;
2050
2051 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2052 bool isObjCSelType() const; // Class
2053 bool isObjCBuiltinType() const; // 'id' or 'Class'
2054 bool isObjCARCBridgableType() const;
2055 bool isCARCBridgableType() const;
2056 bool isTemplateTypeParmType() const; // C++ template type parameter
2057 bool isNullPtrType() const; // C++11 std::nullptr_t
2058 bool isNothrowT() const; // C++ std::nothrow_t
2059 bool isAlignValT() const; // C++17 std::align_val_t
2060 bool isStdByteType() const; // C++17 std::byte
2061 bool isAtomicType() const; // C11 _Atomic()
2062
2063#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2064 bool is##Id##Type() const;
2065#include "clang/Basic/OpenCLImageTypes.def"
2066
2067 bool isImageType() const; // Any OpenCL image type
2068
2069 bool isSamplerT() const; // OpenCL sampler_t
2070 bool isEventT() const; // OpenCL event_t
2071 bool isClkEventT() const; // OpenCL clk_event_t
2072 bool isQueueT() const; // OpenCL queue_t
2073 bool isReserveIDT() const; // OpenCL reserve_id_t
2074
2075#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2076 bool is##Id##Type() const;
2077#include "clang/Basic/OpenCLExtensionTypes.def"
2078 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2079 bool isOCLIntelSubgroupAVCType() const;
2080 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2081
2082 bool isPipeType() const; // OpenCL pipe type
2083 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2084
2085 /// Determines if this type, which must satisfy
2086 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2087 /// than implicitly __strong.
2088 bool isObjCARCImplicitlyUnretainedType() const;
2089
2090 /// Return the implicit lifetime for this type, which must not be dependent.
2091 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2092
2093 enum ScalarTypeKind {
2094 STK_CPointer,
2095 STK_BlockPointer,
2096 STK_ObjCObjectPointer,
2097 STK_MemberPointer,
2098 STK_Bool,
2099 STK_Integral,
2100 STK_Floating,
2101 STK_IntegralComplex,
2102 STK_FloatingComplex,
2103 STK_FixedPoint
2104 };
2105
2106 /// Given that this is a scalar type, classify it.
2107 ScalarTypeKind getScalarTypeKind() const;
2108
2109 /// Whether this type is a dependent type, meaning that its definition
2110 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2111 bool isDependentType() const { return TypeBits.Dependent; }
2112
2113 /// Determine whether this type is an instantiation-dependent type,
2114 /// meaning that the type involves a template parameter (even if the
2115 /// definition does not actually depend on the type substituted for that
2116 /// template parameter).
2117 bool isInstantiationDependentType() const {
2118 return TypeBits.InstantiationDependent;
2119 }
2120
2121 /// Determine whether this type is an undeduced type, meaning that
2122 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2123 /// deduced.
2124 bool isUndeducedType() const;
2125
2126 /// Whether this type is a variably-modified type (C99 6.7.5).
2127 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2128
2129 /// Whether this type involves a variable-length array type
2130 /// with a definite size.
2131 bool hasSizedVLAType() const;
2132
2133 /// Whether this type is or contains a local or unnamed type.
2134 bool hasUnnamedOrLocalType() const;
2135
2136 bool isOverloadableType() const;
2137
2138 /// Determine wither this type is a C++ elaborated-type-specifier.
2139 bool isElaboratedTypeSpecifier() const;
2140
2141 bool canDecayToPointerType() const;
2142
2143 /// Whether this type is represented natively as a pointer. This includes
2144 /// pointers, references, block pointers, and Objective-C interface,
2145 /// qualified id, and qualified interface types, as well as nullptr_t.
2146 bool hasPointerRepresentation() const;
2147
2148 /// Whether this type can represent an objective pointer type for the
2149 /// purpose of GC'ability
2150 bool hasObjCPointerRepresentation() const;
2151
2152 /// Determine whether this type has an integer representation
2153 /// of some sort, e.g., it is an integer type or a vector.
2154 bool hasIntegerRepresentation() const;
2155
2156 /// Determine whether this type has an signed integer representation
2157 /// of some sort, e.g., it is an signed integer type or a vector.
2158 bool hasSignedIntegerRepresentation() const;
2159
2160 /// Determine whether this type has an unsigned integer representation
2161 /// of some sort, e.g., it is an unsigned integer type or a vector.
2162 bool hasUnsignedIntegerRepresentation() const;
2163
2164 /// Determine whether this type has a floating-point representation
2165 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2166 bool hasFloatingRepresentation() const;
2167
2168 // Type Checking Functions: Check to see if this type is structurally the
2169 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2170 // the best type we can.
2171 const RecordType *getAsStructureType() const;
2172 /// NOTE: getAs*ArrayType are methods on ASTContext.
2173 const RecordType *getAsUnionType() const;
2174 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2175 const ObjCObjectType *getAsObjCInterfaceType() const;
2176
2177 // The following is a convenience method that returns an ObjCObjectPointerType
2178 // for object declared using an interface.
2179 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2180 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2181 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2182 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2183
2184 /// Retrieves the CXXRecordDecl that this type refers to, either
2185 /// because the type is a RecordType or because it is the injected-class-name
2186 /// type of a class template or class template partial specialization.
2187 CXXRecordDecl *getAsCXXRecordDecl() const;
2188
2189 /// Retrieves the RecordDecl this type refers to.
2190 RecordDecl *getAsRecordDecl() const;
2191
2192 /// Retrieves the TagDecl that this type refers to, either
2193 /// because the type is a TagType or because it is the injected-class-name
2194 /// type of a class template or class template partial specialization.
2195 TagDecl *getAsTagDecl() const;
2196
2197 /// If this is a pointer or reference to a RecordType, return the
2198 /// CXXRecordDecl that the type refers to.
2199 ///
2200 /// If this is not a pointer or reference, or the type being pointed to does
2201 /// not refer to a CXXRecordDecl, returns NULL.
2202 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2203
2204 /// Get the DeducedType whose type will be deduced for a variable with
2205 /// an initializer of this type. This looks through declarators like pointer
2206 /// types, but not through decltype or typedefs.
2207 DeducedType *getContainedDeducedType() const;
2208
2209 /// Get the AutoType whose type will be deduced for a variable with
2210 /// an initializer of this type. This looks through declarators like pointer
2211 /// types, but not through decltype or typedefs.
2212 AutoType *getContainedAutoType() const {
2213 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2214 }
2215
2216 /// Determine whether this type was written with a leading 'auto'
2217 /// corresponding to a trailing return type (possibly for a nested
2218 /// function type within a pointer to function type or similar).
2219 bool hasAutoForTrailingReturnType() const;
2220
2221 /// Member-template getAs<specific type>'. Look through sugar for
2222 /// an instance of \<specific type>. This scheme will eventually
2223 /// replace the specific getAsXXXX methods above.
2224 ///
2225 /// There are some specializations of this member template listed
2226 /// immediately following this class.
2227 template <typename T> const T *getAs() const;
2228
2229 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2230 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2231 /// This is used when you need to walk over sugar nodes that represent some
2232 /// kind of type adjustment from a type that was written as a \<specific type>
2233 /// to another type that is still canonically a \<specific type>.
2234 template <typename T> const T *getAsAdjusted() const;
2235
2236 /// A variant of getAs<> for array types which silently discards
2237 /// qualifiers from the outermost type.
2238 const ArrayType *getAsArrayTypeUnsafe() const;
2239
2240 /// Member-template castAs<specific type>. Look through sugar for
2241 /// the underlying instance of \<specific type>.
2242 ///
2243 /// This method has the same relationship to getAs<T> as cast<T> has
2244 /// to dyn_cast<T>; which is to say, the underlying type *must*
2245 /// have the intended type, and this method will never return null.
2246 template <typename T> const T *castAs() const;
2247
2248 /// A variant of castAs<> for array type which silently discards
2249 /// qualifiers from the outermost type.
2250 const ArrayType *castAsArrayTypeUnsafe() const;
2251
2252 /// Determine whether this type had the specified attribute applied to it
2253 /// (looking through top-level type sugar).
2254 bool hasAttr(attr::Kind AK) const;
2255
2256 /// Get the base element type of this type, potentially discarding type
2257 /// qualifiers. This should never be used when type qualifiers
2258 /// are meaningful.
2259 const Type *getBaseElementTypeUnsafe() const;
2260
2261 /// If this is an array type, return the element type of the array,
2262 /// potentially with type qualifiers missing.
2263 /// This should never be used when type qualifiers are meaningful.
2264 const Type *getArrayElementTypeNoTypeQual() const;
2265
2266 /// If this is a pointer type, return the pointee type.
2267 /// If this is an array type, return the array element type.
2268 /// This should never be used when type qualifiers are meaningful.
2269 const Type *getPointeeOrArrayElementType() const;
2270
2271 /// If this is a pointer, ObjC object pointer, or block
2272 /// pointer, this returns the respective pointee.
2273 QualType getPointeeType() const;
2274
2275 /// Return the specified type with any "sugar" removed from the type,
2276 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2277 const Type *getUnqualifiedDesugaredType() const;
2278
2279 /// More type predicates useful for type checking/promotion
2280 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2281
2282 /// Return true if this is an integer type that is
2283 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2284 /// or an enum decl which has a signed representation.
2285 bool isSignedIntegerType() const;
2286
2287 /// Return true if this is an integer type that is
2288 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2289 /// or an enum decl which has an unsigned representation.
2290 bool isUnsignedIntegerType() const;
2291
2292 /// Determines whether this is an integer type that is signed or an
2293 /// enumeration types whose underlying type is a signed integer type.
2294 bool isSignedIntegerOrEnumerationType() const;
2295
2296 /// Determines whether this is an integer type that is unsigned or an
2297 /// enumeration types whose underlying type is a unsigned integer type.
2298 bool isUnsignedIntegerOrEnumerationType() const;
2299
2300 /// Return true if this is a fixed point type according to
2301 /// ISO/IEC JTC1 SC22 WG14 N1169.
2302 bool isFixedPointType() const;
2303
2304 /// Return true if this is a fixed point or integer type.
2305 bool isFixedPointOrIntegerType() const;
2306
2307 /// Return true if this is a saturated fixed point type according to
2308 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2309 bool isSaturatedFixedPointType() const;
2310
2311 /// Return true if this is a saturated fixed point type according to
2312 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2313 bool isUnsaturatedFixedPointType() const;
2314
2315 /// Return true if this is a fixed point type that is signed according
2316 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2317 bool isSignedFixedPointType() const;
2318
2319 /// Return true if this is a fixed point type that is unsigned according
2320 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2321 bool isUnsignedFixedPointType() const;
2322
2323 /// Return true if this is not a variable sized type,
2324 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2325 /// incomplete types.
2326 bool isConstantSizeType() const;
2327
2328 /// Returns true if this type can be represented by some
2329 /// set of type specifiers.
2330 bool isSpecifierType() const;
2331
2332 /// Determine the linkage of this type.
2333 Linkage getLinkage() const;
2334
2335 /// Determine the visibility of this type.
2336 Visibility getVisibility() const {
2337 return getLinkageAndVisibility().getVisibility();
2338 }
2339
2340 /// Return true if the visibility was explicitly set is the code.
2341 bool isVisibilityExplicit() const {
2342 return getLinkageAndVisibility().isVisibilityExplicit();
2343 }
2344
2345 /// Determine the linkage and visibility of this type.
2346 LinkageInfo getLinkageAndVisibility() const;
2347
2348 /// True if the computed linkage is valid. Used for consistency
2349 /// checking. Should always return true.
2350 bool isLinkageValid() const;
2351
2352 /// Determine the nullability of the given type.
2353 ///
2354 /// Note that nullability is only captured as sugar within the type
2355 /// system, not as part of the canonical type, so nullability will
2356 /// be lost by canonicalization and desugaring.
2357 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2358
2359 /// Determine whether the given type can have a nullability
2360 /// specifier applied to it, i.e., if it is any kind of pointer type.
2361 ///
2362 /// \param ResultIfUnknown The value to return if we don't yet know whether
2363 /// this type can have nullability because it is dependent.
2364 bool canHaveNullability(bool ResultIfUnknown = true) const;
2365
2366 /// Retrieve the set of substitutions required when accessing a member
2367 /// of the Objective-C receiver type that is declared in the given context.
2368 ///
2369 /// \c *this is the type of the object we're operating on, e.g., the
2370 /// receiver for a message send or the base of a property access, and is
2371 /// expected to be of some object or object pointer type.
2372 ///
2373 /// \param dc The declaration context for which we are building up a
2374 /// substitution mapping, which should be an Objective-C class, extension,
2375 /// category, or method within.
2376 ///
2377 /// \returns an array of type arguments that can be substituted for
2378 /// the type parameters of the given declaration context in any type described
2379 /// within that context, or an empty optional to indicate that no
2380 /// substitution is required.
2381 Optional<ArrayRef<QualType>>
2382 getObjCSubstitutions(const DeclContext *dc) const;
2383
2384 /// Determines if this is an ObjC interface type that may accept type
2385 /// parameters.
2386 bool acceptsObjCTypeParams() const;
2387
2388 const char *getTypeClassName() const;
2389
2390 QualType getCanonicalTypeInternal() const {
2391 return CanonicalType;
2392 }
2393
2394 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2395 void dump() const;
2396 void dump(llvm::raw_ostream &OS) const;
2397};
2398
2399/// This will check for a TypedefType by removing any existing sugar
2400/// until it reaches a TypedefType or a non-sugared type.
2401template <> const TypedefType *Type::getAs() const;
2402
2403/// This will check for a TemplateSpecializationType by removing any
2404/// existing sugar until it reaches a TemplateSpecializationType or a
2405/// non-sugared type.
2406template <> const TemplateSpecializationType *Type::getAs() const;
2407
2408/// This will check for an AttributedType by removing any existing sugar
2409/// until it reaches an AttributedType or a non-sugared type.
2410template <> const AttributedType *Type::getAs() const;
2411
2412// We can do canonical leaf types faster, because we don't have to
2413// worry about preserving child type decoration.
2414#define TYPE(Class, Base)
2415#define LEAF_TYPE(Class) \
2416template <> inline const Class##Type *Type::getAs() const { \
2417 return dyn_cast<Class##Type>(CanonicalType); \
2418} \
2419template <> inline const Class##Type *Type::castAs() const { \
2420 return cast<Class##Type>(CanonicalType); \
2421}
2422#include "clang/AST/TypeNodes.inc"
2423
2424/// This class is used for builtin types like 'int'. Builtin
2425/// types are always canonical and have a literal name field.
2426class BuiltinType : public Type {
2427public:
2428 enum Kind {
2429// OpenCL image types
2430#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2431#include "clang/Basic/OpenCLImageTypes.def"
2432// OpenCL extension types
2433#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2434#include "clang/Basic/OpenCLExtensionTypes.def"
2435// SVE Types
2436#define SVE_TYPE(Name, Id, SingletonId) Id,
2437#include "clang/Basic/AArch64SVEACLETypes.def"
2438// All other builtin types
2439#define BUILTIN_TYPE(Id, SingletonId) Id,
2440#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2441#include "clang/AST/BuiltinTypes.def"
2442 };
2443
2444private:
2445 friend class ASTContext; // ASTContext creates these.
2446
2447 BuiltinType(Kind K)
2448 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2449 /*InstantiationDependent=*/(K == Dependent),
2450 /*VariablyModified=*/false,
2451 /*Unexpanded parameter pack=*/false) {
2452 BuiltinTypeBits.Kind = K;
2453 }
2454
2455public:
2456 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2457 StringRef getName(const PrintingPolicy &Policy) const;
2458
2459 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2460 // The StringRef is null-terminated.
2461 StringRef str = getName(Policy);
2462 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 2462, __PRETTY_FUNCTION__))
;
2463 return str.data();
2464 }
2465
2466 bool isSugared() const { return false; }
2467 QualType desugar() const { return QualType(this, 0); }
2468
2469 bool isInteger() const {
2470 return getKind() >= Bool && getKind() <= Int128;
2471 }
2472
2473 bool isSignedInteger() const {
2474 return getKind() >= Char_S && getKind() <= Int128;
2475 }
2476
2477 bool isUnsignedInteger() const {
2478 return getKind() >= Bool && getKind() <= UInt128;
2479 }
2480
2481 bool isFloatingPoint() const {
2482 return getKind() >= Half && getKind() <= Float128;
2483 }
2484
2485 /// Determines whether the given kind corresponds to a placeholder type.
2486 static bool isPlaceholderTypeKind(Kind K) {
2487 return K >= Overload;
2488 }
2489
2490 /// Determines whether this type is a placeholder type, i.e. a type
2491 /// which cannot appear in arbitrary positions in a fully-formed
2492 /// expression.
2493 bool isPlaceholderType() const {
2494 return isPlaceholderTypeKind(getKind());
2495 }
2496
2497 /// Determines whether this type is a placeholder type other than
2498 /// Overload. Most placeholder types require only syntactic
2499 /// information about their context in order to be resolved (e.g.
2500 /// whether it is a call expression), which means they can (and
2501 /// should) be resolved in an earlier "phase" of analysis.
2502 /// Overload expressions sometimes pick up further information
2503 /// from their context, like whether the context expects a
2504 /// specific function-pointer type, and so frequently need
2505 /// special treatment.
2506 bool isNonOverloadPlaceholderType() const {
2507 return getKind() > Overload;
2508 }
2509
2510 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2511};
2512
2513/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2514/// types (_Complex float etc) as well as the GCC integer complex extensions.
2515class ComplexType : public Type, public llvm::FoldingSetNode {
2516 friend class ASTContext; // ASTContext creates these.
2517
2518 QualType ElementType;
2519
2520 ComplexType(QualType Element, QualType CanonicalPtr)
2521 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2522 Element->isInstantiationDependentType(),
2523 Element->isVariablyModifiedType(),
2524 Element->containsUnexpandedParameterPack()),
2525 ElementType(Element) {}
2526
2527public:
2528 QualType getElementType() const { return ElementType; }
2529
2530 bool isSugared() const { return false; }
2531 QualType desugar() const { return QualType(this, 0); }
2532
2533 void Profile(llvm::FoldingSetNodeID &ID) {
2534 Profile(ID, getElementType());
2535 }
2536
2537 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2538 ID.AddPointer(Element.getAsOpaquePtr());
2539 }
2540
2541 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2542};
2543
2544/// Sugar for parentheses used when specifying types.
2545class ParenType : public Type, public llvm::FoldingSetNode {
2546 friend class ASTContext; // ASTContext creates these.
2547
2548 QualType Inner;
2549
2550 ParenType(QualType InnerType, QualType CanonType)
2551 : Type(Paren, CanonType, InnerType->isDependentType(),
2552 InnerType->isInstantiationDependentType(),
2553 InnerType->isVariablyModifiedType(),
2554 InnerType->containsUnexpandedParameterPack()),
2555 Inner(InnerType) {}
2556
2557public:
2558 QualType getInnerType() const { return Inner; }
2559
2560 bool isSugared() const { return true; }
2561 QualType desugar() const { return getInnerType(); }
2562
2563 void Profile(llvm::FoldingSetNodeID &ID) {
2564 Profile(ID, getInnerType());
2565 }
2566
2567 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2568 Inner.Profile(ID);
2569 }
2570
2571 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2572};
2573
2574/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2575class PointerType : public Type, public llvm::FoldingSetNode {
2576 friend class ASTContext; // ASTContext creates these.
2577
2578 QualType PointeeType;
2579
2580 PointerType(QualType Pointee, QualType CanonicalPtr)
2581 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2582 Pointee->isInstantiationDependentType(),
2583 Pointee->isVariablyModifiedType(),
2584 Pointee->containsUnexpandedParameterPack()),
2585 PointeeType(Pointee) {}
2586
2587public:
2588 QualType getPointeeType() const { return PointeeType; }
2589
2590 /// Returns true if address spaces of pointers overlap.
2591 /// OpenCL v2.0 defines conversion rules for pointers to different
2592 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2593 /// address spaces.
2594 /// CL1.1 or CL1.2:
2595 /// address spaces overlap iff they are they same.
2596 /// CL2.0 adds:
2597 /// __generic overlaps with any address space except for __constant.
2598 bool isAddressSpaceOverlapping(const PointerType &other) const {
2599 Qualifiers thisQuals = PointeeType.getQualifiers();
2600 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2601 // Address spaces overlap if at least one of them is a superset of another
2602 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2603 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2604 }
2605
2606 bool isSugared() const { return false; }
2607 QualType desugar() const { return QualType(this, 0); }
2608
2609 void Profile(llvm::FoldingSetNodeID &ID) {
2610 Profile(ID, getPointeeType());
2611 }
2612
2613 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2614 ID.AddPointer(Pointee.getAsOpaquePtr());
2615 }
2616
2617 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2618};
2619
2620/// Represents a type which was implicitly adjusted by the semantic
2621/// engine for arbitrary reasons. For example, array and function types can
2622/// decay, and function types can have their calling conventions adjusted.
2623class AdjustedType : public Type, public llvm::FoldingSetNode {
2624 QualType OriginalTy;
2625 QualType AdjustedTy;
2626
2627protected:
2628 friend class ASTContext; // ASTContext creates these.
2629
2630 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2631 QualType CanonicalPtr)
2632 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2633 OriginalTy->isInstantiationDependentType(),
2634 OriginalTy->isVariablyModifiedType(),
2635 OriginalTy->containsUnexpandedParameterPack()),
2636 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2637
2638public:
2639 QualType getOriginalType() const { return OriginalTy; }
2640 QualType getAdjustedType() const { return AdjustedTy; }
2641
2642 bool isSugared() const { return true; }
2643 QualType desugar() const { return AdjustedTy; }
2644
2645 void Profile(llvm::FoldingSetNodeID &ID) {
2646 Profile(ID, OriginalTy, AdjustedTy);
2647 }
2648
2649 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2650 ID.AddPointer(Orig.getAsOpaquePtr());
2651 ID.AddPointer(New.getAsOpaquePtr());
2652 }
2653
2654 static bool classof(const Type *T) {
2655 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2656 }
2657};
2658
2659/// Represents a pointer type decayed from an array or function type.
2660class DecayedType : public AdjustedType {
2661 friend class ASTContext; // ASTContext creates these.
2662
2663 inline
2664 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2665
2666public:
2667 QualType getDecayedType() const { return getAdjustedType(); }
2668
2669 inline QualType getPointeeType() const;
2670
2671 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2672};
2673
2674/// Pointer to a block type.
2675/// This type is to represent types syntactically represented as
2676/// "void (^)(int)", etc. Pointee is required to always be a function type.
2677class BlockPointerType : public Type, public llvm::FoldingSetNode {
2678 friend class ASTContext; // ASTContext creates these.
2679
2680 // Block is some kind of pointer type
2681 QualType PointeeType;
2682
2683 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2684 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2685 Pointee->isInstantiationDependentType(),
2686 Pointee->isVariablyModifiedType(),
2687 Pointee->containsUnexpandedParameterPack()),
2688 PointeeType(Pointee) {}
2689
2690public:
2691 // Get the pointee type. Pointee is required to always be a function type.
2692 QualType getPointeeType() const { return PointeeType; }
2693
2694 bool isSugared() const { return false; }
2695 QualType desugar() const { return QualType(this, 0); }
2696
2697 void Profile(llvm::FoldingSetNodeID &ID) {
2698 Profile(ID, getPointeeType());
2699 }
2700
2701 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2702 ID.AddPointer(Pointee.getAsOpaquePtr());
2703 }
2704
2705 static bool classof(const Type *T) {
2706 return T->getTypeClass() == BlockPointer;
2707 }
2708};
2709
2710/// Base for LValueReferenceType and RValueReferenceType
2711class ReferenceType : public Type, public llvm::FoldingSetNode {
2712 QualType PointeeType;
2713
2714protected:
2715 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2716 bool SpelledAsLValue)
2717 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2718 Referencee->isInstantiationDependentType(),
2719 Referencee->isVariablyModifiedType(),
2720 Referencee->containsUnexpandedParameterPack()),
2721 PointeeType(Referencee) {
2722 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2723 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2724 }
2725
2726public:
2727 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2728 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2729
2730 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2731
2732 QualType getPointeeType() const {
2733 // FIXME: this might strip inner qualifiers; okay?
2734 const ReferenceType *T = this;
2735 while (T->isInnerRef())
2736 T = T->PointeeType->castAs<ReferenceType>();
2737 return T->PointeeType;
2738 }
2739
2740 void Profile(llvm::FoldingSetNodeID &ID) {
2741 Profile(ID, PointeeType, isSpelledAsLValue());
2742 }
2743
2744 static void Profile(llvm::FoldingSetNodeID &ID,
2745 QualType Referencee,
2746 bool SpelledAsLValue) {
2747 ID.AddPointer(Referencee.getAsOpaquePtr());
2748 ID.AddBoolean(SpelledAsLValue);
2749 }
2750
2751 static bool classof(const Type *T) {
2752 return T->getTypeClass() == LValueReference ||
2753 T->getTypeClass() == RValueReference;
2754 }
2755};
2756
2757/// An lvalue reference type, per C++11 [dcl.ref].
2758class LValueReferenceType : public ReferenceType {
2759 friend class ASTContext; // ASTContext creates these
2760
2761 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2762 bool SpelledAsLValue)
2763 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2764 SpelledAsLValue) {}
2765
2766public:
2767 bool isSugared() const { return false; }
2768 QualType desugar() const { return QualType(this, 0); }
2769
2770 static bool classof(const Type *T) {
2771 return T->getTypeClass() == LValueReference;
2772 }
2773};
2774
2775/// An rvalue reference type, per C++11 [dcl.ref].
2776class RValueReferenceType : public ReferenceType {
2777 friend class ASTContext; // ASTContext creates these
2778
2779 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2780 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2781
2782public:
2783 bool isSugared() const { return false; }
2784 QualType desugar() const { return QualType(this, 0); }
2785
2786 static bool classof(const Type *T) {
2787 return T->getTypeClass() == RValueReference;
2788 }
2789};
2790
2791/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2792///
2793/// This includes both pointers to data members and pointer to member functions.
2794class MemberPointerType : public Type, public llvm::FoldingSetNode {
2795 friend class ASTContext; // ASTContext creates these.
2796
2797 QualType PointeeType;
2798
2799 /// The class of which the pointee is a member. Must ultimately be a
2800 /// RecordType, but could be a typedef or a template parameter too.
2801 const Type *Class;
2802
2803 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2804 : Type(MemberPointer, CanonicalPtr,
2805 Cls->isDependentType() || Pointee->isDependentType(),
2806 (Cls->isInstantiationDependentType() ||
2807 Pointee->isInstantiationDependentType()),
2808 Pointee->isVariablyModifiedType(),
2809 (Cls->containsUnexpandedParameterPack() ||
2810 Pointee->containsUnexpandedParameterPack())),
2811 PointeeType(Pointee), Class(Cls) {}
2812
2813public:
2814 QualType getPointeeType() const { return PointeeType; }
2815
2816 /// Returns true if the member type (i.e. the pointee type) is a
2817 /// function type rather than a data-member type.
2818 bool isMemberFunctionPointer() const {
2819 return PointeeType->isFunctionProtoType();
2820 }
2821
2822 /// Returns true if the member type (i.e. the pointee type) is a
2823 /// data type rather than a function type.
2824 bool isMemberDataPointer() const {
2825 return !PointeeType->isFunctionProtoType();
2826 }
2827
2828 const Type *getClass() const { return Class; }
2829 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2830
2831 bool isSugared() const { return false; }
2832 QualType desugar() const { return QualType(this, 0); }
2833
2834 void Profile(llvm::FoldingSetNodeID &ID) {
2835 Profile(ID, getPointeeType(), getClass());
2836 }
2837
2838 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2839 const Type *Class) {
2840 ID.AddPointer(Pointee.getAsOpaquePtr());
2841 ID.AddPointer(Class);
2842 }
2843
2844 static bool classof(const Type *T) {
2845 return T->getTypeClass() == MemberPointer;
2846 }
2847};
2848
2849/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2850class ArrayType : public Type, public llvm::FoldingSetNode {
2851public:
2852 /// Capture whether this is a normal array (e.g. int X[4])
2853 /// an array with a static size (e.g. int X[static 4]), or an array
2854 /// with a star size (e.g. int X[*]).
2855 /// 'static' is only allowed on function parameters.
2856 enum ArraySizeModifier {
2857 Normal, Static, Star
2858 };
2859
2860private:
2861 /// The element type of the array.
2862 QualType ElementType;
2863
2864protected:
2865 friend class ASTContext; // ASTContext creates these.
2866
2867 // C++ [temp.dep.type]p1:
2868 // A type is dependent if it is...
2869 // - an array type constructed from any dependent type or whose
2870 // size is specified by a constant expression that is
2871 // value-dependent,
2872 ArrayType(TypeClass tc, QualType et, QualType can,
2873 ArraySizeModifier sm, unsigned tq,
2874 bool ContainsUnexpandedParameterPack)
2875 : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2876 et->isInstantiationDependentType() || tc == DependentSizedArray,
2877 (tc == VariableArray || et->isVariablyModifiedType()),
2878 ContainsUnexpandedParameterPack),
2879 ElementType(et) {
2880 ArrayTypeBits.IndexTypeQuals = tq;
2881 ArrayTypeBits.SizeModifier = sm;
2882 }
2883
2884public:
2885 QualType getElementType() const { return ElementType; }
2886
2887 ArraySizeModifier getSizeModifier() const {
2888 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2889 }
2890
2891 Qualifiers getIndexTypeQualifiers() const {
2892 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2893 }
2894
2895 unsigned getIndexTypeCVRQualifiers() const {
2896 return ArrayTypeBits.IndexTypeQuals;
2897 }
2898
2899 static bool classof(const Type *T) {
2900 return T->getTypeClass() == ConstantArray ||
2901 T->getTypeClass() == VariableArray ||
2902 T->getTypeClass() == IncompleteArray ||
2903 T->getTypeClass() == DependentSizedArray;
2904 }
2905};
2906
2907/// Represents the canonical version of C arrays with a specified constant size.
2908/// For example, the canonical type for 'int A[4 + 4*100]' is a
2909/// ConstantArrayType where the element type is 'int' and the size is 404.
2910class ConstantArrayType : public ArrayType {
2911 llvm::APInt Size; // Allows us to unique the type.
2912
2913 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2914 ArraySizeModifier sm, unsigned tq)
2915 : ArrayType(ConstantArray, et, can, sm, tq,
2916 et->containsUnexpandedParameterPack()),
2917 Size(size) {}
2918
2919protected:
2920 friend class ASTContext; // ASTContext creates these.
2921
2922 ConstantArrayType(TypeClass tc, QualType et, QualType can,
2923 const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2924 : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2925 Size(size) {}
2926
2927public:
2928 const llvm::APInt &getSize() const { return Size; }
2929 bool isSugared() const { return false; }
2930 QualType desugar() const { return QualType(this, 0); }
2931
2932 /// Determine the number of bits required to address a member of
2933 // an array with the given element type and number of elements.
2934 static unsigned getNumAddressingBits(const ASTContext &Context,
2935 QualType ElementType,
2936 const llvm::APInt &NumElements);
2937
2938 /// Determine the maximum number of active bits that an array's size
2939 /// can require, which limits the maximum size of the array.
2940 static unsigned getMaxSizeBits(const ASTContext &Context);
2941
2942 void Profile(llvm::FoldingSetNodeID &ID) {
2943 Profile(ID, getElementType(), getSize(),
2944 getSizeModifier(), getIndexTypeCVRQualifiers());
2945 }
2946
2947 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2948 const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2949 unsigned TypeQuals) {
2950 ID.AddPointer(ET.getAsOpaquePtr());
2951 ID.AddInteger(ArraySize.getZExtValue());
2952 ID.AddInteger(SizeMod);
2953 ID.AddInteger(TypeQuals);
2954 }
2955
2956 static bool classof(const Type *T) {
2957 return T->getTypeClass() == ConstantArray;
2958 }
2959};
2960
2961/// Represents a C array with an unspecified size. For example 'int A[]' has
2962/// an IncompleteArrayType where the element type is 'int' and the size is
2963/// unspecified.
2964class IncompleteArrayType : public ArrayType {
2965 friend class ASTContext; // ASTContext creates these.
2966
2967 IncompleteArrayType(QualType et, QualType can,
2968 ArraySizeModifier sm, unsigned tq)
2969 : ArrayType(IncompleteArray, et, can, sm, tq,
2970 et->containsUnexpandedParameterPack()) {}
2971
2972public:
2973 friend class StmtIteratorBase;
2974
2975 bool isSugared() const { return false; }
2976 QualType desugar() const { return QualType(this, 0); }
2977
2978 static bool classof(const Type *T) {
2979 return T->getTypeClass() == IncompleteArray;
2980 }
2981
2982 void Profile(llvm::FoldingSetNodeID &ID) {
2983 Profile(ID, getElementType(), getSizeModifier(),
2984 getIndexTypeCVRQualifiers());
2985 }
2986
2987 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2988 ArraySizeModifier SizeMod, unsigned TypeQuals) {
2989 ID.AddPointer(ET.getAsOpaquePtr());
2990 ID.AddInteger(SizeMod);
2991 ID.AddInteger(TypeQuals);
2992 }
2993};
2994
2995/// Represents a C array with a specified size that is not an
2996/// integer-constant-expression. For example, 'int s[x+foo()]'.
2997/// Since the size expression is an arbitrary expression, we store it as such.
2998///
2999/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3000/// should not be: two lexically equivalent variable array types could mean
3001/// different things, for example, these variables do not have the same type
3002/// dynamically:
3003///
3004/// void foo(int x) {
3005/// int Y[x];
3006/// ++x;
3007/// int Z[x];
3008/// }
3009class VariableArrayType : public ArrayType {
3010 friend class ASTContext; // ASTContext creates these.
3011
3012 /// An assignment-expression. VLA's are only permitted within
3013 /// a function block.
3014 Stmt *SizeExpr;
3015
3016 /// The range spanned by the left and right array brackets.
3017 SourceRange Brackets;
3018
3019 VariableArrayType(QualType et, QualType can, Expr *e,
3020 ArraySizeModifier sm, unsigned tq,
3021 SourceRange brackets)
3022 : ArrayType(VariableArray, et, can, sm, tq,
3023 et->containsUnexpandedParameterPack()),
3024 SizeExpr((Stmt*) e), Brackets(brackets) {}
3025
3026public:
3027 friend class StmtIteratorBase;
3028
3029 Expr *getSizeExpr() const {
3030 // We use C-style casts instead of cast<> here because we do not wish
3031 // to have a dependency of Type.h on Stmt.h/Expr.h.
3032 return (Expr*) SizeExpr;
3033 }
3034
3035 SourceRange getBracketsRange() const { return Brackets; }
3036 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3037 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3038
3039 bool isSugared() const { return false; }
3040 QualType desugar() const { return QualType(this, 0); }
3041
3042 static bool classof(const Type *T) {
3043 return T->getTypeClass() == VariableArray;
3044 }
3045
3046 void Profile(llvm::FoldingSetNodeID &ID) {
3047 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3047)
;
3048 }
3049};
3050
3051/// Represents an array type in C++ whose size is a value-dependent expression.
3052///
3053/// For example:
3054/// \code
3055/// template<typename T, int Size>
3056/// class array {
3057/// T data[Size];
3058/// };
3059/// \endcode
3060///
3061/// For these types, we won't actually know what the array bound is
3062/// until template instantiation occurs, at which point this will
3063/// become either a ConstantArrayType or a VariableArrayType.
3064class DependentSizedArrayType : public ArrayType {
3065 friend class ASTContext; // ASTContext creates these.
3066
3067 const ASTContext &Context;
3068
3069 /// An assignment expression that will instantiate to the
3070 /// size of the array.
3071 ///
3072 /// The expression itself might be null, in which case the array
3073 /// type will have its size deduced from an initializer.
3074 Stmt *SizeExpr;
3075
3076 /// The range spanned by the left and right array brackets.
3077 SourceRange Brackets;
3078
3079 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3080 Expr *e, ArraySizeModifier sm, unsigned tq,
3081 SourceRange brackets);
3082
3083public:
3084 friend class StmtIteratorBase;
3085
3086 Expr *getSizeExpr() const {
3087 // We use C-style casts instead of cast<> here because we do not wish
3088 // to have a dependency of Type.h on Stmt.h/Expr.h.
3089 return (Expr*) SizeExpr;
3090 }
3091
3092 SourceRange getBracketsRange() const { return Brackets; }
3093 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3094 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3095
3096 bool isSugared() const { return false; }
3097 QualType desugar() const { return QualType(this, 0); }
3098
3099 static bool classof(const Type *T) {
3100 return T->getTypeClass() == DependentSizedArray;
3101 }
3102
3103 void Profile(llvm::FoldingSetNodeID &ID) {
3104 Profile(ID, Context, getElementType(),
3105 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3106 }
3107
3108 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3109 QualType ET, ArraySizeModifier SizeMod,
3110 unsigned TypeQuals, Expr *E);
3111};
3112
3113/// Represents an extended address space qualifier where the input address space
3114/// value is dependent. Non-dependent address spaces are not represented with a
3115/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3116///
3117/// For example:
3118/// \code
3119/// template<typename T, int AddrSpace>
3120/// class AddressSpace {
3121/// typedef T __attribute__((address_space(AddrSpace))) type;
3122/// }
3123/// \endcode
3124class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3125 friend class ASTContext;
3126
3127 const ASTContext &Context;
3128 Expr *AddrSpaceExpr;
3129 QualType PointeeType;
3130 SourceLocation loc;
3131
3132 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3133 QualType can, Expr *AddrSpaceExpr,
3134 SourceLocation loc);
3135
3136public:
3137 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3138 QualType getPointeeType() const { return PointeeType; }
3139 SourceLocation getAttributeLoc() const { return loc; }
3140
3141 bool isSugared() const { return false; }
3142 QualType desugar() const { return QualType(this, 0); }
3143
3144 static bool classof(const Type *T) {
3145 return T->getTypeClass() == DependentAddressSpace;
3146 }
3147
3148 void Profile(llvm::FoldingSetNodeID &ID) {
3149 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3150 }
3151
3152 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3153 QualType PointeeType, Expr *AddrSpaceExpr);
3154};
3155
3156/// Represents an extended vector type where either the type or size is
3157/// dependent.
3158///
3159/// For example:
3160/// \code
3161/// template<typename T, int Size>
3162/// class vector {
3163/// typedef T __attribute__((ext_vector_type(Size))) type;
3164/// }
3165/// \endcode
3166class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3167 friend class ASTContext;
3168
3169 const ASTContext &Context;
3170 Expr *SizeExpr;
3171
3172 /// The element type of the array.
3173 QualType ElementType;
3174
3175 SourceLocation loc;
3176
3177 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3178 QualType can, Expr *SizeExpr, SourceLocation loc);
3179
3180public:
3181 Expr *getSizeExpr() const { return SizeExpr; }
3182 QualType getElementType() const { return ElementType; }
3183 SourceLocation getAttributeLoc() const { return loc; }
3184
3185 bool isSugared() const { return false; }
3186 QualType desugar() const { return QualType(this, 0); }
3187
3188 static bool classof(const Type *T) {
3189 return T->getTypeClass() == DependentSizedExtVector;
3190 }
3191
3192 void Profile(llvm::FoldingSetNodeID &ID) {
3193 Profile(ID, Context, getElementType(), getSizeExpr());
3194 }
3195
3196 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3197 QualType ElementType, Expr *SizeExpr);
3198};
3199
3200
3201/// Represents a GCC generic vector type. This type is created using
3202/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3203/// bytes; or from an Altivec __vector or vector declaration.
3204/// Since the constructor takes the number of vector elements, the
3205/// client is responsible for converting the size into the number of elements.
3206class VectorType : public Type, public llvm::FoldingSetNode {
3207public:
3208 enum VectorKind {
3209 /// not a target-specific vector type
3210 GenericVector,
3211
3212 /// is AltiVec vector
3213 AltiVecVector,
3214
3215 /// is AltiVec 'vector Pixel'
3216 AltiVecPixel,
3217
3218 /// is AltiVec 'vector bool ...'
3219 AltiVecBool,
3220
3221 /// is ARM Neon vector
3222 NeonVector,
3223
3224 /// is ARM Neon polynomial vector
3225 NeonPolyVector
3226 };
3227
3228protected:
3229 friend class ASTContext; // ASTContext creates these.
3230
3231 /// The element type of the vector.
3232 QualType ElementType;
3233
3234 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3235 VectorKind vecKind);
3236
3237 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3238 QualType canonType, VectorKind vecKind);
3239
3240public:
3241 QualType getElementType() const { return ElementType; }
3242 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3243
3244 static bool isVectorSizeTooLarge(unsigned NumElements) {
3245 return NumElements > VectorTypeBitfields::MaxNumElements;
3246 }
3247
3248 bool isSugared() const { return false; }
3249 QualType desugar() const { return QualType(this, 0); }
3250
3251 VectorKind getVectorKind() const {
3252 return VectorKind(VectorTypeBits.VecKind);
3253 }
3254
3255 void Profile(llvm::FoldingSetNodeID &ID) {
3256 Profile(ID, getElementType(), getNumElements(),
3257 getTypeClass(), getVectorKind());
3258 }
3259
3260 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3261 unsigned NumElements, TypeClass TypeClass,
3262 VectorKind VecKind) {
3263 ID.AddPointer(ElementType.getAsOpaquePtr());
3264 ID.AddInteger(NumElements);
3265 ID.AddInteger(TypeClass);
3266 ID.AddInteger(VecKind);
3267 }
3268
3269 static bool classof(const Type *T) {
3270 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3271 }
3272};
3273
3274/// Represents a vector type where either the type or size is dependent.
3275////
3276/// For example:
3277/// \code
3278/// template<typename T, int Size>
3279/// class vector {
3280/// typedef T __attribute__((vector_size(Size))) type;
3281/// }
3282/// \endcode
3283class DependentVectorType : public Type, public llvm::FoldingSetNode {
3284 friend class ASTContext;
3285
3286 const ASTContext &Context;
3287 QualType ElementType;
3288 Expr *SizeExpr;
3289 SourceLocation Loc;
3290
3291 DependentVectorType(const ASTContext &Context, QualType ElementType,
3292 QualType CanonType, Expr *SizeExpr,
3293 SourceLocation Loc, VectorType::VectorKind vecKind);
3294
3295public:
3296 Expr *getSizeExpr() const { return SizeExpr; }
3297 QualType getElementType() const { return ElementType; }
3298 SourceLocation getAttributeLoc() const { return Loc; }
3299 VectorType::VectorKind getVectorKind() const {
3300 return VectorType::VectorKind(VectorTypeBits.VecKind);
3301 }
3302
3303 bool isSugared() const { return false; }
3304 QualType desugar() const { return QualType(this, 0); }
3305
3306 static bool classof(const Type *T) {
3307 return T->getTypeClass() == DependentVector;
3308 }
3309
3310 void Profile(llvm::FoldingSetNodeID &ID) {
3311 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3312 }
3313
3314 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3315 QualType ElementType, const Expr *SizeExpr,
3316 VectorType::VectorKind VecKind);
3317};
3318
3319/// ExtVectorType - Extended vector type. This type is created using
3320/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3321/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3322/// class enables syntactic extensions, like Vector Components for accessing
3323/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3324/// Shading Language).
3325class ExtVectorType : public VectorType {
3326 friend class ASTContext; // ASTContext creates these.
3327
3328 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3329 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3330
3331public:
3332 static int getPointAccessorIdx(char c) {
3333 switch (c) {
3334 default: return -1;
3335 case 'x': case 'r': return 0;
3336 case 'y': case 'g': return 1;
3337 case 'z': case 'b': return 2;
3338 case 'w': case 'a': return 3;
3339 }
3340 }
3341
3342 static int getNumericAccessorIdx(char c) {
3343 switch (c) {
3344 default: return -1;
3345 case '0': return 0;
3346 case '1': return 1;
3347 case '2': return 2;
3348 case '3': return 3;
3349 case '4': return 4;
3350 case '5': return 5;
3351 case '6': return 6;
3352 case '7': return 7;
3353 case '8': return 8;
3354 case '9': return 9;
3355 case 'A':
3356 case 'a': return 10;
3357 case 'B':
3358 case 'b': return 11;
3359 case 'C':
3360 case 'c': return 12;
3361 case 'D':
3362 case 'd': return 13;
3363 case 'E':
3364 case 'e': return 14;
3365 case 'F':
3366 case 'f': return 15;
3367 }
3368 }
3369
3370 static int getAccessorIdx(char c, bool isNumericAccessor) {
3371 if (isNumericAccessor)
3372 return getNumericAccessorIdx(c);
3373 else
3374 return getPointAccessorIdx(c);
3375 }
3376
3377 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3378 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3379 return unsigned(idx-1) < getNumElements();
3380 return false;
3381 }
3382
3383 bool isSugared() const { return false; }
3384 QualType desugar() const { return QualType(this, 0); }
3385
3386 static bool classof(const Type *T) {
3387 return T->getTypeClass() == ExtVector;
3388 }
3389};
3390
3391/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3392/// class of FunctionNoProtoType and FunctionProtoType.
3393class FunctionType : public Type {
3394 // The type returned by the function.
3395 QualType ResultType;
3396
3397public:
3398 /// Interesting information about a specific parameter that can't simply
3399 /// be reflected in parameter's type. This is only used by FunctionProtoType
3400 /// but is in FunctionType to make this class available during the
3401 /// specification of the bases of FunctionProtoType.
3402 ///
3403 /// It makes sense to model language features this way when there's some
3404 /// sort of parameter-specific override (such as an attribute) that
3405 /// affects how the function is called. For example, the ARC ns_consumed
3406 /// attribute changes whether a parameter is passed at +0 (the default)
3407 /// or +1 (ns_consumed). This must be reflected in the function type,
3408 /// but isn't really a change to the parameter type.
3409 ///
3410 /// One serious disadvantage of modelling language features this way is
3411 /// that they generally do not work with language features that attempt
3412 /// to destructure types. For example, template argument deduction will
3413 /// not be able to match a parameter declared as
3414 /// T (*)(U)
3415 /// against an argument of type
3416 /// void (*)(__attribute__((ns_consumed)) id)
3417 /// because the substitution of T=void, U=id into the former will
3418 /// not produce the latter.
3419 class ExtParameterInfo {
3420 enum {
3421 ABIMask = 0x0F,
3422 IsConsumed = 0x10,
3423 HasPassObjSize = 0x20,
3424 IsNoEscape = 0x40,
3425 };
3426 unsigned char Data = 0;
3427
3428 public:
3429 ExtParameterInfo() = default;
3430
3431 /// Return the ABI treatment of this parameter.
3432 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3433 ExtParameterInfo withABI(ParameterABI kind) const {
3434 ExtParameterInfo copy = *this;
3435 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3436 return copy;
3437 }
3438
3439 /// Is this parameter considered "consumed" by Objective-C ARC?
3440 /// Consumed parameters must have retainable object type.
3441 bool isConsumed() const { return (Data & IsConsumed); }
3442 ExtParameterInfo withIsConsumed(bool consumed) const {
3443 ExtParameterInfo copy = *this;
3444 if (consumed)
3445 copy.Data |= IsConsumed;
3446 else
3447 copy.Data &= ~IsConsumed;
3448 return copy;
3449 }
3450
3451 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3452 ExtParameterInfo withHasPassObjectSize() const {
3453 ExtParameterInfo Copy = *this;
3454 Copy.Data |= HasPassObjSize;
3455 return Copy;
3456 }
3457
3458 bool isNoEscape() const { return Data & IsNoEscape; }
3459 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3460 ExtParameterInfo Copy = *this;
3461 if (NoEscape)
3462 Copy.Data |= IsNoEscape;
3463 else
3464 Copy.Data &= ~IsNoEscape;
3465 return Copy;
3466 }
3467
3468 unsigned char getOpaqueValue() const { return Data; }
3469 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3470 ExtParameterInfo result;
3471 result.Data = data;
3472 return result;
3473 }
3474
3475 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3476 return lhs.Data == rhs.Data;
3477 }
3478
3479 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3480 return lhs.Data != rhs.Data;
3481 }
3482 };
3483
3484 /// A class which abstracts out some details necessary for
3485 /// making a call.
3486 ///
3487 /// It is not actually used directly for storing this information in
3488 /// a FunctionType, although FunctionType does currently use the
3489 /// same bit-pattern.
3490 ///
3491 // If you add a field (say Foo), other than the obvious places (both,
3492 // constructors, compile failures), what you need to update is
3493 // * Operator==
3494 // * getFoo
3495 // * withFoo
3496 // * functionType. Add Foo, getFoo.
3497 // * ASTContext::getFooType
3498 // * ASTContext::mergeFunctionTypes
3499 // * FunctionNoProtoType::Profile
3500 // * FunctionProtoType::Profile
3501 // * TypePrinter::PrintFunctionProto
3502 // * AST read and write
3503 // * Codegen
3504 class ExtInfo {
3505 friend class FunctionType;
3506
3507 // Feel free to rearrange or add bits, but if you go over 12,
3508 // you'll need to adjust both the Bits field below and
3509 // Type::FunctionTypeBitfields.
3510
3511 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3512 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3513 //
3514 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3515 enum { CallConvMask = 0x1F };
3516 enum { NoReturnMask = 0x20 };
3517 enum { ProducesResultMask = 0x40 };
3518 enum { NoCallerSavedRegsMask = 0x80 };
3519 enum { NoCfCheckMask = 0x800 };
3520 enum {
3521 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3522 NoCallerSavedRegsMask | NoCfCheckMask),
3523 RegParmOffset = 8
3524 }; // Assumed to be the last field
3525 uint16_t Bits = CC_C;
3526
3527 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3528
3529 public:
3530 // Constructor with no defaults. Use this when you know that you
3531 // have all the elements (when reading an AST file for example).
3532 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3533 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3534 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3534, __PRETTY_FUNCTION__))
;
3535 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3536 (producesResult ? ProducesResultMask : 0) |
3537 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3538 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3539 (NoCfCheck ? NoCfCheckMask : 0);
3540 }
3541
3542 // Constructor with all defaults. Use when for example creating a
3543 // function known to use defaults.
3544 ExtInfo() = default;
3545
3546 // Constructor with just the calling convention, which is an important part
3547 // of the canonical type.
3548 ExtInfo(CallingConv CC) : Bits(CC) {}
3549
3550 bool getNoReturn() const { return Bits & NoReturnMask; }
3551 bool getProducesResult() const { return Bits & ProducesResultMask; }
3552 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3553 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3554 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3555
3556 unsigned getRegParm() const {
3557 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3558 if (RegParm > 0)
3559 --RegParm;
3560 return RegParm;
3561 }
3562
3563 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3564
3565 bool operator==(ExtInfo Other) const {
3566 return Bits == Other.Bits;
3567 }
3568 bool operator!=(ExtInfo Other) const {
3569 return Bits != Other.Bits;
3570 }
3571
3572 // Note that we don't have setters. That is by design, use
3573 // the following with methods instead of mutating these objects.
3574
3575 ExtInfo withNoReturn(bool noReturn) const {
3576 if (noReturn)
3577 return ExtInfo(Bits | NoReturnMask);
3578 else
3579 return ExtInfo(Bits & ~NoReturnMask);
3580 }
3581
3582 ExtInfo withProducesResult(bool producesResult) const {
3583 if (producesResult)
3584 return ExtInfo(Bits | ProducesResultMask);
3585 else
3586 return ExtInfo(Bits & ~ProducesResultMask);
3587 }
3588
3589 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3590 if (noCallerSavedRegs)
3591 return ExtInfo(Bits | NoCallerSavedRegsMask);
3592 else
3593 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3594 }
3595
3596 ExtInfo withNoCfCheck(bool noCfCheck) const {
3597 if (noCfCheck)
3598 return ExtInfo(Bits | NoCfCheckMask);
3599 else
3600 return ExtInfo(Bits & ~NoCfCheckMask);
3601 }
3602
3603 ExtInfo withRegParm(unsigned RegParm) const {
3604 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3604, __PRETTY_FUNCTION__))
;
3605 return ExtInfo((Bits & ~RegParmMask) |
3606 ((RegParm + 1) << RegParmOffset));
3607 }
3608
3609 ExtInfo withCallingConv(CallingConv cc) const {
3610 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3611 }
3612
3613 void Profile(llvm::FoldingSetNodeID &ID) const {
3614 ID.AddInteger(Bits);
3615 }
3616 };
3617
3618 /// A simple holder for a QualType representing a type in an
3619 /// exception specification. Unfortunately needed by FunctionProtoType
3620 /// because TrailingObjects cannot handle repeated types.
3621 struct ExceptionType { QualType Type; };
3622
3623 /// A simple holder for various uncommon bits which do not fit in
3624 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3625 /// alignment of subsequent objects in TrailingObjects. You must update
3626 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3627 struct alignas(void *) FunctionTypeExtraBitfields {
3628 /// The number of types in the exception specification.
3629 /// A whole unsigned is not needed here and according to
3630 /// [implimits] 8 bits would be enough here.
3631 unsigned NumExceptionType;
3632 };
3633
3634protected:
3635 FunctionType(TypeClass tc, QualType res,
3636 QualType Canonical, bool Dependent,
3637 bool InstantiationDependent,
3638 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3639 ExtInfo Info)
3640 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3641 ContainsUnexpandedParameterPack),
3642 ResultType(res) {
3643 FunctionTypeBits.ExtInfo = Info.Bits;
3644 }
3645
3646 Qualifiers getFastTypeQuals() const {
3647 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3648 }
3649
3650public:
3651 QualType getReturnType() const { return ResultType; }
3652
3653 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3654 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3655
3656 /// Determine whether this function type includes the GNU noreturn
3657 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3658 /// type.
3659 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3660
3661 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3662 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3663
3664 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3665 "Const, volatile and restrict are assumed to be a subset of "
3666 "the fast qualifiers.");
3667
3668 bool isConst() const { return getFastTypeQuals().hasConst(); }
3669 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3670 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3671
3672 /// Determine the type of an expression that calls a function of
3673 /// this type.
3674 QualType getCallResultType(const ASTContext &Context) const {
3675 return getReturnType().getNonLValueExprType(Context);
3676 }
3677
3678 static StringRef getNameForCallConv(CallingConv CC);
3679
3680 static bool classof(const Type *T) {
3681 return T->getTypeClass() == FunctionNoProto ||
3682 T->getTypeClass() == FunctionProto;
3683 }
3684};
3685
3686/// Represents a K&R-style 'int foo()' function, which has
3687/// no information available about its arguments.
3688class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3689 friend class ASTContext; // ASTContext creates these.
3690
3691 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3692 : FunctionType(FunctionNoProto, Result, Canonical,
3693 /*Dependent=*/false, /*InstantiationDependent=*/false,
3694 Result->isVariablyModifiedType(),
3695 /*ContainsUnexpandedParameterPack=*/false, Info) {}
3696
3697public:
3698 // No additional state past what FunctionType provides.
3699
3700 bool isSugared() const { return false; }
3701 QualType desugar() const { return QualType(this, 0); }
3702
3703 void Profile(llvm::FoldingSetNodeID &ID) {
3704 Profile(ID, getReturnType(), getExtInfo());
3705 }
3706
3707 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3708 ExtInfo Info) {
3709 Info.Profile(ID);
3710 ID.AddPointer(ResultType.getAsOpaquePtr());
3711 }
3712
3713 static bool classof(const Type *T) {
3714 return T->getTypeClass() == FunctionNoProto;
3715 }
3716};
3717
3718/// Represents a prototype with parameter type info, e.g.
3719/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3720/// parameters, not as having a single void parameter. Such a type can have
3721/// an exception specification, but this specification is not part of the
3722/// canonical type. FunctionProtoType has several trailing objects, some of
3723/// which optional. For more information about the trailing objects see
3724/// the first comment inside FunctionProtoType.
3725class FunctionProtoType final
3726 : public FunctionType,
3727 public llvm::FoldingSetNode,
3728 private llvm::TrailingObjects<
3729 FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields,
3730 FunctionType::ExceptionType, Expr *, FunctionDecl *,
3731 FunctionType::ExtParameterInfo, Qualifiers> {
3732 friend class ASTContext; // ASTContext creates these.
3733 friend TrailingObjects;
3734
3735 // FunctionProtoType is followed by several trailing objects, some of
3736 // which optional. They are in order:
3737 //
3738 // * An array of getNumParams() QualType holding the parameter types.
3739 // Always present. Note that for the vast majority of FunctionProtoType,
3740 // these will be the only trailing objects.
3741 //
3742 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3743 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3744 // a single FunctionTypeExtraBitfields. Present if and only if
3745 // hasExtraBitfields() is true.
3746 //
3747 // * Optionally exactly one of:
3748 // * an array of getNumExceptions() ExceptionType,
3749 // * a single Expr *,
3750 // * a pair of FunctionDecl *,
3751 // * a single FunctionDecl *
3752 // used to store information about the various types of exception
3753 // specification. See getExceptionSpecSize for the details.
3754 //
3755 // * Optionally an array of getNumParams() ExtParameterInfo holding
3756 // an ExtParameterInfo for each of the parameters. Present if and
3757 // only if hasExtParameterInfos() is true.
3758 //
3759 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3760 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3761 // if hasExtQualifiers() is true.
3762 //
3763 // The optional FunctionTypeExtraBitfields has to be before the data
3764 // related to the exception specification since it contains the number
3765 // of exception types.
3766 //
3767 // We put the ExtParameterInfos last. If all were equal, it would make
3768 // more sense to put these before the exception specification, because
3769 // it's much easier to skip past them compared to the elaborate switch
3770 // required to skip the exception specification. However, all is not
3771 // equal; ExtParameterInfos are used to model very uncommon features,
3772 // and it's better not to burden the more common paths.
3773
3774public:
3775 /// Holds information about the various types of exception specification.
3776 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3777 /// used to group together the various bits of information about the
3778 /// exception specification.
3779 struct ExceptionSpecInfo {
3780 /// The kind of exception specification this is.
3781 ExceptionSpecificationType Type = EST_None;
3782
3783 /// Explicitly-specified list of exception types.
3784 ArrayRef<QualType> Exceptions;
3785
3786 /// Noexcept expression, if this is a computed noexcept specification.
3787 Expr *NoexceptExpr = nullptr;
3788
3789 /// The function whose exception specification this is, for
3790 /// EST_Unevaluated and EST_Uninstantiated.
3791 FunctionDecl *SourceDecl = nullptr;
3792
3793 /// The function template whose exception specification this is instantiated
3794 /// from, for EST_Uninstantiated.
3795 FunctionDecl *SourceTemplate = nullptr;
3796
3797 ExceptionSpecInfo() = default;
3798
3799 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3800 };
3801
3802 /// Extra information about a function prototype. ExtProtoInfo is not
3803 /// stored as such in FunctionProtoType but is used to group together
3804 /// the various bits of extra information about a function prototype.
3805 struct ExtProtoInfo {
3806 FunctionType::ExtInfo ExtInfo;
3807 bool Variadic : 1;
3808 bool HasTrailingReturn : 1;
3809 Qualifiers TypeQuals;
3810 RefQualifierKind RefQualifier = RQ_None;
3811 ExceptionSpecInfo ExceptionSpec;
3812 const ExtParameterInfo *ExtParameterInfos = nullptr;
3813
3814 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3815
3816 ExtProtoInfo(CallingConv CC)
3817 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3818
3819 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3820 ExtProtoInfo Result(*this);
3821 Result.ExceptionSpec = ESI;
3822 return Result;
3823 }
3824 };
3825
3826private:
3827 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3828 return getNumParams();
3829 }
3830
3831 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3832 return hasExtraBitfields();
3833 }
3834
3835 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3836 return getExceptionSpecSize().NumExceptionType;
3837 }
3838
3839 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
3840 return getExceptionSpecSize().NumExprPtr;
3841 }
3842
3843 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
3844 return getExceptionSpecSize().NumFunctionDeclPtr;
3845 }
3846
3847 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
3848 return hasExtParameterInfos() ? getNumParams() : 0;
3849 }
3850
3851 /// Determine whether there are any argument types that
3852 /// contain an unexpanded parameter pack.
3853 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3854 unsigned numArgs) {
3855 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3856 if (ArgArray[Idx]->containsUnexpandedParameterPack())
3857 return true;
3858
3859 return false;
3860 }
3861
3862 FunctionProtoType(QualType result, ArrayRef<QualType> params,
3863 QualType canonical, const ExtProtoInfo &epi);
3864
3865 /// This struct is returned by getExceptionSpecSize and is used to
3866 /// translate an ExceptionSpecificationType to the number and kind
3867 /// of trailing objects related to the exception specification.
3868 struct ExceptionSpecSizeHolder {
3869 unsigned NumExceptionType;
3870 unsigned NumExprPtr;
3871 unsigned NumFunctionDeclPtr;
3872 };
3873
3874 /// Return the number and kind of trailing objects
3875 /// related to the exception specification.
3876 static ExceptionSpecSizeHolder
3877 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
3878 switch (EST) {
3879 case EST_None:
3880 case EST_DynamicNone:
3881 case EST_MSAny:
3882 case EST_BasicNoexcept:
3883 case EST_Unparsed:
3884 case EST_NoThrow:
3885 return {0, 0, 0};
3886
3887 case EST_Dynamic:
3888 return {NumExceptions, 0, 0};
3889
3890 case EST_DependentNoexcept:
3891 case EST_NoexceptFalse:
3892 case EST_NoexceptTrue:
3893 return {0, 1, 0};
3894
3895 case EST_Uninstantiated:
3896 return {0, 0, 2};
3897
3898 case EST_Unevaluated:
3899 return {0, 0, 1};
3900 }
3901 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3901)
;
3902 }
3903
3904 /// Return the number and kind of trailing objects
3905 /// related to the exception specification.
3906 ExceptionSpecSizeHolder getExceptionSpecSize() const {
3907 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
3908 }
3909
3910 /// Whether the trailing FunctionTypeExtraBitfields is present.
3911 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
3912 // If the exception spec type is EST_Dynamic then we have > 0 exception
3913 // types and the exact number is stored in FunctionTypeExtraBitfields.
3914 return EST == EST_Dynamic;
3915 }
3916
3917 /// Whether the trailing FunctionTypeExtraBitfields is present.
3918 bool hasExtraBitfields() const {
3919 return hasExtraBitfields(getExceptionSpecType());
3920 }
3921
3922 bool hasExtQualifiers() const {
3923 return FunctionTypeBits.HasExtQuals;
3924 }
3925
3926public:
3927 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
3928
3929 QualType getParamType(unsigned i) const {
3930 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3930, __PRETTY_FUNCTION__))
;
3931 return param_type_begin()[i];
3932 }
3933
3934 ArrayRef<QualType> getParamTypes() const {
3935 return llvm::makeArrayRef(param_type_begin(), param_type_end());
3936 }
3937
3938 ExtProtoInfo getExtProtoInfo() const {
3939 ExtProtoInfo EPI;
3940 EPI.ExtInfo = getExtInfo();
3941 EPI.Variadic = isVariadic();
3942 EPI.HasTrailingReturn = hasTrailingReturn();
3943 EPI.ExceptionSpec.Type = getExceptionSpecType();
3944 EPI.TypeQuals = getMethodQuals();
3945 EPI.RefQualifier = getRefQualifier();
3946 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3947 EPI.ExceptionSpec.Exceptions = exceptions();
3948 } else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) {
3949 EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
3950 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3951 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3952 EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
3953 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3954 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3955 }
3956 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
3957 return EPI;
3958 }
3959
3960 /// Get the kind of exception specification on this function.
3961 ExceptionSpecificationType getExceptionSpecType() const {
3962 return static_cast<ExceptionSpecificationType>(
3963 FunctionTypeBits.ExceptionSpecType);
3964 }
3965
3966 /// Return whether this function has any kind of exception spec.
3967 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
3968
3969 /// Return whether this function has a dynamic (throw) exception spec.
3970 bool hasDynamicExceptionSpec() const {
3971 return isDynamicExceptionSpec(getExceptionSpecType());
3972 }
3973
3974 /// Return whether this function has a noexcept exception spec.
3975 bool hasNoexceptExceptionSpec() const {
3976 return isNoexceptExceptionSpec(getExceptionSpecType());
3977 }
3978
3979 /// Return whether this function has a dependent exception spec.
3980 bool hasDependentExceptionSpec() const;
3981
3982 /// Return whether this function has an instantiation-dependent exception
3983 /// spec.
3984 bool hasInstantiationDependentExceptionSpec() const;
3985
3986 /// Return the number of types in the exception specification.
3987 unsigned getNumExceptions() const {
3988 return getExceptionSpecType() == EST_Dynamic
3989 ? getTrailingObjects<FunctionTypeExtraBitfields>()
3990 ->NumExceptionType
3991 : 0;
3992 }
3993
3994 /// Return the ith exception type, where 0 <= i < getNumExceptions().
3995 QualType getExceptionType(unsigned i) const {
3996 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3996, __PRETTY_FUNCTION__))
;
3997 return exception_begin()[i];
3998 }
3999
4000 /// Return the expression inside noexcept(expression), or a null pointer
4001 /// if there is none (because the exception spec is not of this form).
4002 Expr *getNoexceptExpr() const {
4003 if (!isComputedNoexcept(getExceptionSpecType()))
4004 return nullptr;
4005 return *getTrailingObjects<Expr *>();
4006 }
4007
4008 /// If this function type has an exception specification which hasn't
4009 /// been determined yet (either because it has not been evaluated or because
4010 /// it has not been instantiated), this is the function whose exception
4011 /// specification is represented by this type.
4012 FunctionDecl *getExceptionSpecDecl() const {
4013 if (getExceptionSpecType() != EST_Uninstantiated &&
4014 getExceptionSpecType() != EST_Unevaluated)
4015 return nullptr;
4016 return getTrailingObjects<FunctionDecl *>()[0];
4017 }
4018
4019 /// If this function type has an uninstantiated exception
4020 /// specification, this is the function whose exception specification
4021 /// should be instantiated to find the exception specification for
4022 /// this type.
4023 FunctionDecl *getExceptionSpecTemplate() const {
4024 if (getExceptionSpecType() != EST_Uninstantiated)
4025 return nullptr;
4026 return getTrailingObjects<FunctionDecl *>()[1];
4027 }
4028
4029 /// Determine whether this function type has a non-throwing exception
4030 /// specification.
4031 CanThrowResult canThrow() const;
4032
4033 /// Determine whether this function type has a non-throwing exception
4034 /// specification. If this depends on template arguments, returns
4035 /// \c ResultIfDependent.
4036 bool isNothrow(bool ResultIfDependent = false) const {
4037 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4038 }
4039
4040 /// Whether this function prototype is variadic.
4041 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4042
4043 /// Determines whether this function prototype contains a
4044 /// parameter pack at the end.
4045 ///
4046 /// A function template whose last parameter is a parameter pack can be
4047 /// called with an arbitrary number of arguments, much like a variadic
4048 /// function.
4049 bool isTemplateVariadic() const;
4050
4051 /// Whether this function prototype has a trailing return type.
4052 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4053
4054 Qualifiers getMethodQuals() const {
4055 if (hasExtQualifiers())
4056 return *getTrailingObjects<Qualifiers>();
4057 else
4058 return getFastTypeQuals();
4059 }
4060
4061 /// Retrieve the ref-qualifier associated with this function type.
4062 RefQualifierKind getRefQualifier() const {
4063 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4064 }
4065
4066 using param_type_iterator = const QualType *;
4067 using param_type_range = llvm::iterator_range<param_type_iterator>;
4068
4069 param_type_range param_types() const {
4070 return param_type_range(param_type_begin(), param_type_end());
4071 }
4072
4073 param_type_iterator param_type_begin() const {
4074 return getTrailingObjects<QualType>();
4075 }
4076
4077 param_type_iterator param_type_end() const {
4078 return param_type_begin() + getNumParams();
4079 }
4080
4081 using exception_iterator = const QualType *;
4082
4083 ArrayRef<QualType> exceptions() const {
4084 return llvm::makeArrayRef(exception_begin(), exception_end());
4085 }
4086
4087 exception_iterator exception_begin() const {
4088 return reinterpret_cast<exception_iterator>(
4089 getTrailingObjects<ExceptionType>());
4090 }
4091
4092 exception_iterator exception_end() const {
4093 return exception_begin() + getNumExceptions();
4094 }
4095
4096 /// Is there any interesting extra information for any of the parameters
4097 /// of this function type?
4098 bool hasExtParameterInfos() const {
4099 return FunctionTypeBits.HasExtParameterInfos;
4100 }
4101
4102 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4103 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4103, __PRETTY_FUNCTION__))
;
4104 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4105 getNumParams());
4106 }
4107
4108 /// Return a pointer to the beginning of the array of extra parameter
4109 /// information, if present, or else null if none of the parameters
4110 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4111 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4112 if (!hasExtParameterInfos())
4113 return nullptr;
4114 return getTrailingObjects<ExtParameterInfo>();
4115 }
4116
4117 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4118 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4118, __PRETTY_FUNCTION__))
;
4119 if (hasExtParameterInfos())
4120 return getTrailingObjects<ExtParameterInfo>()[I];
4121 return ExtParameterInfo();
4122 }
4123
4124 ParameterABI getParameterABI(unsigned I) const {
4125 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4125, __PRETTY_FUNCTION__))
;
4126 if (hasExtParameterInfos())
4127 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4128 return ParameterABI::Ordinary;
4129 }
4130
4131 bool isParamConsumed(unsigned I) const {
4132 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4132, __PRETTY_FUNCTION__))
;
4133 if (hasExtParameterInfos())
4134 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4135 return false;
4136 }
4137
4138 bool isSugared() const { return false; }
4139 QualType desugar() const { return QualType(this, 0); }
4140
4141 void printExceptionSpecification(raw_ostream &OS,
4142 const PrintingPolicy &Policy) const;
4143
4144 static bool classof(const Type *T) {
4145 return T->getTypeClass() == FunctionProto;
4146 }
4147
4148 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4149 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4150 param_type_iterator ArgTys, unsigned NumArgs,
4151 const ExtProtoInfo &EPI, const ASTContext &Context,
4152 bool Canonical);
4153};
4154
4155/// Represents the dependent type named by a dependently-scoped
4156/// typename using declaration, e.g.
4157/// using typename Base<T>::foo;
4158///
4159/// Template instantiation turns these into the underlying type.
4160class UnresolvedUsingType : public Type {
4161 friend class ASTContext; // ASTContext creates these.
4162
4163 UnresolvedUsingTypenameDecl *Decl;
4164
4165 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4166 : Type(UnresolvedUsing, QualType(), true, true, false,
4167 /*ContainsUnexpandedParameterPack=*/false),
4168 Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
4169
4170public:
4171 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4172
4173 bool isSugared() const { return false; }
4174 QualType desugar() const { return QualType(this, 0); }
4175
4176 static bool classof(const Type *T) {
4177 return T->getTypeClass() == UnresolvedUsing;
4178 }
4179
4180 void Profile(llvm::FoldingSetNodeID &ID) {
4181 return Profile(ID, Decl);
4182 }
4183
4184 static void Profile(llvm::FoldingSetNodeID &ID,
4185 UnresolvedUsingTypenameDecl *D) {
4186 ID.AddPointer(D);
4187 }
4188};
4189
4190class TypedefType : public Type {
4191 TypedefNameDecl *Decl;
4192
4193protected:
4194 friend class ASTContext; // ASTContext creates these.
4195
4196 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
4197 : Type(tc, can, can->isDependentType(),
4198 can->isInstantiationDependentType(),
4199 can->isVariablyModifiedType(),
4200 /*ContainsUnexpandedParameterPack=*/false),
4201 Decl(const_cast<TypedefNameDecl*>(D)) {
4202 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4202, __PRETTY_FUNCTION__))
;
4203 }
4204
4205public:
4206 TypedefNameDecl *getDecl() const { return Decl; }
4207
4208 bool isSugared() const { return true; }
4209 QualType desugar() const;
4210
4211 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4212};
4213
4214/// Sugar type that represents a type that was qualified by a qualifier written
4215/// as a macro invocation.
4216class MacroQualifiedType : public Type {
4217 friend class ASTContext; // ASTContext creates these.
4218
4219 QualType UnderlyingTy;
4220 const IdentifierInfo *MacroII;
4221
4222 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4223 const IdentifierInfo *MacroII)
4224 : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
4225 UnderlyingTy->isInstantiationDependentType(),
4226 UnderlyingTy->isVariablyModifiedType(),
4227 UnderlyingTy->containsUnexpandedParameterPack()),
4228 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4229 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
4230 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
;
4231 }
4232
4233public:
4234 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4235 QualType getUnderlyingType() const { return UnderlyingTy; }
4236
4237 /// Return this attributed type's modified type with no qualifiers attached to
4238 /// it.
4239 QualType getModifiedType() const;
4240
4241 bool isSugared() const { return true; }
4242 QualType desugar() const;
4243
4244 static bool classof(const Type *T) {
4245 return T->getTypeClass() == MacroQualified;
4246 }
4247};
4248
4249/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4250class TypeOfExprType : public Type {
4251 Expr *TOExpr;
4252
4253protected:
4254 friend class ASTContext; // ASTContext creates these.
4255
4256 TypeOfExprType(Expr *E, QualType can = QualType());
4257
4258public:
4259 Expr *getUnderlyingExpr() const { return TOExpr; }
4260
4261 /// Remove a single level of sugar.
4262 QualType desugar() const;
4263
4264 /// Returns whether this type directly provides sugar.
4265 bool isSugared() const;
4266
4267 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4268};
4269
4270/// Internal representation of canonical, dependent
4271/// `typeof(expr)` types.
4272///
4273/// This class is used internally by the ASTContext to manage
4274/// canonical, dependent types, only. Clients will only see instances
4275/// of this class via TypeOfExprType nodes.
4276class DependentTypeOfExprType
4277 : public TypeOfExprType, public llvm::FoldingSetNode {
4278 const ASTContext &Context;
4279
4280public:
4281 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4282 : TypeOfExprType(E), Context(Context) {}
4283
4284 void Profile(llvm::FoldingSetNodeID &ID) {
4285 Profile(ID, Context, getUnderlyingExpr());
4286 }
4287
4288 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4289 Expr *E);
4290};
4291
4292/// Represents `typeof(type)`, a GCC extension.
4293class TypeOfType : public Type {
4294 friend class ASTContext; // ASTContext creates these.
4295
4296 QualType TOType;
4297
4298 TypeOfType(QualType T, QualType can)
4299 : Type(TypeOf, can, T->isDependentType(),
4300 T->isInstantiationDependentType(),
4301 T->isVariablyModifiedType(),
4302 T->containsUnexpandedParameterPack()),
4303 TOType(T) {
4304 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4304, __PRETTY_FUNCTION__))
;
4305 }
4306
4307public:
4308 QualType getUnderlyingType() const { return TOType; }
4309
4310 /// Remove a single level of sugar.
4311 QualType desugar() const { return getUnderlyingType(); }
4312
4313 /// Returns whether this type directly provides sugar.
4314 bool isSugared() const { return true; }
4315
4316 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4317};
4318
4319/// Represents the type `decltype(expr)` (C++11).
4320class DecltypeType : public Type {
4321 Expr *E;
4322 QualType UnderlyingType;
4323
4324protected:
4325 friend class ASTContext; // ASTContext creates these.
4326
4327 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4328
4329public:
4330 Expr *getUnderlyingExpr() const { return E; }
4331 QualType getUnderlyingType() const { return UnderlyingType; }
4332
4333 /// Remove a single level of sugar.
4334 QualType desugar() const;
4335
4336 /// Returns whether this type directly provides sugar.
4337 bool isSugared() const;
4338
4339 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4340};
4341
4342/// Internal representation of canonical, dependent
4343/// decltype(expr) types.
4344///
4345/// This class is used internally by the ASTContext to manage
4346/// canonical, dependent types, only. Clients will only see instances
4347/// of this class via DecltypeType nodes.
4348class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4349 const ASTContext &Context;
4350
4351public:
4352 DependentDecltypeType(const ASTContext &Context, Expr *E);
4353
4354 void Profile(llvm::FoldingSetNodeID &ID) {
4355 Profile(ID, Context, getUnderlyingExpr());
4356 }
4357
4358 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4359 Expr *E);
4360};
4361
4362/// A unary type transform, which is a type constructed from another.
4363class UnaryTransformType : public Type {
4364public:
4365 enum UTTKind {
4366 EnumUnderlyingType
4367 };
4368
4369private:
4370 /// The untransformed type.
4371 QualType BaseType;
4372
4373 /// The transformed type if not dependent, otherwise the same as BaseType.
4374 QualType UnderlyingType;
4375
4376 UTTKind UKind;
4377
4378protected:
4379 friend class ASTContext;
4380
4381 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4382 QualType CanonicalTy);
4383
4384public:
4385 bool isSugared() const { return !isDependentType(); }
4386 QualType desugar() const { return UnderlyingType; }
4387
4388 QualType getUnderlyingType() const { return UnderlyingType; }
4389 QualType getBaseType() const { return BaseType; }
4390
4391 UTTKind getUTTKind() const { return UKind; }
4392
4393 static bool classof(const Type *T) {
4394 return T->getTypeClass() == UnaryTransform;
4395 }
4396};
4397
4398/// Internal representation of canonical, dependent
4399/// __underlying_type(type) types.
4400///
4401/// This class is used internally by the ASTContext to manage
4402/// canonical, dependent types, only. Clients will only see instances
4403/// of this class via UnaryTransformType nodes.
4404class DependentUnaryTransformType : public UnaryTransformType,
4405 public llvm::FoldingSetNode {
4406public:
4407 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4408 UTTKind UKind);
4409
4410 void Profile(llvm::FoldingSetNodeID &ID) {
4411 Profile(ID, getBaseType(), getUTTKind());
4412 }
4413
4414 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4415 UTTKind UKind) {
4416 ID.AddPointer(BaseType.getAsOpaquePtr());
4417 ID.AddInteger((unsigned)UKind);
4418 }
4419};
4420
4421class TagType : public Type {
4422 friend class ASTReader;
4423
4424 /// Stores the TagDecl associated with this type. The decl may point to any
4425 /// TagDecl that declares the entity.
4426 TagDecl *decl;
4427
4428protected:
4429 TagType(TypeClass TC, const TagDecl *D, QualType can);
4430
4431public:
4432 TagDecl *getDecl() const;
4433
4434 /// Determines whether this type is in the process of being defined.
4435 bool isBeingDefined() const;
4436
4437 static bool classof(const Type *T) {
4438 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4439 }
4440};
4441
4442/// A helper class that allows the use of isa/cast/dyncast
4443/// to detect TagType objects of structs/unions/classes.
4444class RecordType : public TagType {
4445protected:
4446 friend class ASTContext; // ASTContext creates these.
4447
4448 explicit RecordType(const RecordDecl *D)
4449 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4450 explicit RecordType(TypeClass TC, RecordDecl *D)
4451 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4452
4453public:
4454 RecordDecl *getDecl() const {
4455 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4456 }
4457
4458 /// Recursively check all fields in the record for const-ness. If any field
4459 /// is declared const, return true. Otherwise, return false.
4460 bool hasConstFields() const;
4461
4462 bool isSugared() const { return false; }
4463 QualType desugar() const { return QualType(this, 0); }
4464
4465 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4466};
4467
4468/// A helper class that allows the use of isa/cast/dyncast
4469/// to detect TagType objects of enums.
4470class EnumType : public TagType {
4471 friend class ASTContext; // ASTContext creates these.
4472
4473 explicit EnumType(const EnumDecl *D)
4474 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4475
4476public:
4477 EnumDecl *getDecl() const {
4478 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4479 }
4480
4481 bool isSugared() const { return false; }
4482 QualType desugar() const { return QualType(this, 0); }
4483
4484 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4485};
4486
4487/// An attributed type is a type to which a type attribute has been applied.
4488///
4489/// The "modified type" is the fully-sugared type to which the attributed
4490/// type was applied; generally it is not canonically equivalent to the
4491/// attributed type. The "equivalent type" is the minimally-desugared type
4492/// which the type is canonically equivalent to.
4493///
4494/// For example, in the following attributed type:
4495/// int32_t __attribute__((vector_size(16)))
4496/// - the modified type is the TypedefType for int32_t
4497/// - the equivalent type is VectorType(16, int32_t)
4498/// - the canonical type is VectorType(16, int)
4499class AttributedType : public Type, public llvm::FoldingSetNode {
4500public:
4501 using Kind = attr::Kind;
4502
4503private:
4504 friend class ASTContext; // ASTContext creates these
4505
4506 QualType ModifiedType;
4507 QualType EquivalentType;
4508
4509 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4510 QualType equivalent)
4511 : Type(Attributed, canon, equivalent->isDependentType(),
4512 equivalent->isInstantiationDependentType(),
4513 equivalent->isVariablyModifiedType(),
4514 equivalent->containsUnexpandedParameterPack()),
4515 ModifiedType(modified), EquivalentType(equivalent) {
4516 AttributedTypeBits.AttrKind = attrKind;
4517 }
4518
4519public:
4520 Kind getAttrKind() const {
4521 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4522 }
4523
4524 QualType getModifiedType() const { return ModifiedType; }
4525 QualType getEquivalentType() const { return EquivalentType; }
4526
4527 bool isSugared() const { return true; }
4528 QualType desugar() const { return getEquivalentType(); }
4529
4530 /// Does this attribute behave like a type qualifier?
4531 ///
4532 /// A type qualifier adjusts a type to provide specialized rules for
4533 /// a specific object, like the standard const and volatile qualifiers.
4534 /// This includes attributes controlling things like nullability,
4535 /// address spaces, and ARC ownership. The value of the object is still
4536 /// largely described by the modified type.
4537 ///
4538 /// In contrast, many type attributes "rewrite" their modified type to
4539 /// produce a fundamentally different type, not necessarily related in any
4540 /// formalizable way to the original type. For example, calling convention
4541 /// and vector attributes are not simple type qualifiers.
4542 ///
4543 /// Type qualifiers are often, but not always, reflected in the canonical
4544 /// type.
4545 bool isQualifier() const;
4546
4547 bool isMSTypeSpec() const;
4548
4549 bool isCallingConv() const;
4550
4551 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4552
4553 /// Retrieve the attribute kind corresponding to the given
4554 /// nullability kind.
4555 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4556 switch (kind) {
4557 case NullabilityKind::NonNull:
4558 return attr::TypeNonNull;
4559
4560 case NullabilityKind::Nullable:
4561 return attr::TypeNullable;
4562
4563 case NullabilityKind::Unspecified:
4564 return attr::TypeNullUnspecified;
4565 }
4566 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4566)
;
4567 }
4568
4569 /// Strip off the top-level nullability annotation on the given
4570 /// type, if it's there.
4571 ///
4572 /// \param T The type to strip. If the type is exactly an
4573 /// AttributedType specifying nullability (without looking through
4574 /// type sugar), the nullability is returned and this type changed
4575 /// to the underlying modified type.
4576 ///
4577 /// \returns the top-level nullability, if present.
4578 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4579
4580 void Profile(llvm::FoldingSetNodeID &ID) {
4581 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4582 }
4583
4584 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4585 QualType modified, QualType equivalent) {
4586 ID.AddInteger(attrKind);
4587 ID.AddPointer(modified.getAsOpaquePtr());
4588 ID.AddPointer(equivalent.getAsOpaquePtr());
4589 }
4590
4591 static bool classof(const Type *T) {
4592 return T->getTypeClass() == Attributed;
4593 }
4594};
4595
4596class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4597 friend class ASTContext; // ASTContext creates these
4598
4599 // Helper data collector for canonical types.
4600