Bug Summary

File:tools/clang/lib/Sema/SemaExpr.cpp
Warning:line 3581, column 13
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExpr.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374877/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374877/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374877=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-233810-7101-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp

/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp

1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/ExprOpenMP.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/FixedPoint.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/LiteralSupport.h"
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Sema/AnalysisBasedWarnings.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Designator.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/Overload.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/Scope.h"
43#include "clang/Sema/ScopeInfo.h"
44#include "clang/Sema/SemaFixItUtils.h"
45#include "clang/Sema/SemaInternal.h"
46#include "clang/Sema/Template.h"
47#include "llvm/Support/ConvertUTF.h"
48using namespace clang;
49using namespace sema;
50
51/// Determine whether the use of this declaration is valid, without
52/// emitting diagnostics.
53bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
54 // See if this is an auto-typed variable whose initializer we are parsing.
55 if (ParsingInitForAutoVars.count(D))
56 return false;
57
58 // See if this is a deleted function.
59 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
60 if (FD->isDeleted())
61 return false;
62
63 // If the function has a deduced return type, and we can't deduce it,
64 // then we can't use it either.
65 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
66 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
67 return false;
68
69 // See if this is an aligned allocation/deallocation function that is
70 // unavailable.
71 if (TreatUnavailableAsInvalid &&
72 isUnavailableAlignedAllocationFunction(*FD))
73 return false;
74 }
75
76 // See if this function is unavailable.
77 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
78 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
79 return false;
80
81 return true;
82}
83
84static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
85 // Warn if this is used but marked unused.
86 if (const auto *A = D->getAttr<UnusedAttr>()) {
87 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
88 // should diagnose them.
89 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
90 A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
91 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
92 if (DC && !DC->hasAttr<UnusedAttr>())
93 S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
94 }
95 }
96}
97
98/// Emit a note explaining that this function is deleted.
99void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
100 assert(Decl->isDeleted())((Decl->isDeleted()) ? static_cast<void> (0) : __assert_fail
("Decl->isDeleted()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 100, __PRETTY_FUNCTION__))
;
101
102 CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
103
104 if (Method && Method->isDeleted() && Method->isDefaulted()) {
105 // If the method was explicitly defaulted, point at that declaration.
106 if (!Method->isImplicit())
107 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
108
109 // Try to diagnose why this special member function was implicitly
110 // deleted. This might fail, if that reason no longer applies.
111 CXXSpecialMember CSM = getSpecialMember(Method);
112 if (CSM != CXXInvalid)
113 ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true);
114
115 return;
116 }
117
118 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
119 if (Ctor && Ctor->isInheritingConstructor())
120 return NoteDeletedInheritingConstructor(Ctor);
121
122 Diag(Decl->getLocation(), diag::note_availability_specified_here)
123 << Decl << 1;
124}
125
126/// Determine whether a FunctionDecl was ever declared with an
127/// explicit storage class.
128static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
129 for (auto I : D->redecls()) {
130 if (I->getStorageClass() != SC_None)
131 return true;
132 }
133 return false;
134}
135
136/// Check whether we're in an extern inline function and referring to a
137/// variable or function with internal linkage (C11 6.7.4p3).
138///
139/// This is only a warning because we used to silently accept this code, but
140/// in many cases it will not behave correctly. This is not enabled in C++ mode
141/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
142/// and so while there may still be user mistakes, most of the time we can't
143/// prove that there are errors.
144static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
145 const NamedDecl *D,
146 SourceLocation Loc) {
147 // This is disabled under C++; there are too many ways for this to fire in
148 // contexts where the warning is a false positive, or where it is technically
149 // correct but benign.
150 if (S.getLangOpts().CPlusPlus)
151 return;
152
153 // Check if this is an inlined function or method.
154 FunctionDecl *Current = S.getCurFunctionDecl();
155 if (!Current)
156 return;
157 if (!Current->isInlined())
158 return;
159 if (!Current->isExternallyVisible())
160 return;
161
162 // Check if the decl has internal linkage.
163 if (D->getFormalLinkage() != InternalLinkage)
164 return;
165
166 // Downgrade from ExtWarn to Extension if
167 // (1) the supposedly external inline function is in the main file,
168 // and probably won't be included anywhere else.
169 // (2) the thing we're referencing is a pure function.
170 // (3) the thing we're referencing is another inline function.
171 // This last can give us false negatives, but it's better than warning on
172 // wrappers for simple C library functions.
173 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
174 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
175 if (!DowngradeWarning && UsedFn)
176 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
177
178 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
179 : diag::ext_internal_in_extern_inline)
180 << /*IsVar=*/!UsedFn << D;
181
182 S.MaybeSuggestAddingStaticToDecl(Current);
183
184 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
185 << D;
186}
187
188void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
189 const FunctionDecl *First = Cur->getFirstDecl();
190
191 // Suggest "static" on the function, if possible.
192 if (!hasAnyExplicitStorageClass(First)) {
193 SourceLocation DeclBegin = First->getSourceRange().getBegin();
194 Diag(DeclBegin, diag::note_convert_inline_to_static)
195 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
196 }
197}
198
199/// Determine whether the use of this declaration is valid, and
200/// emit any corresponding diagnostics.
201///
202/// This routine diagnoses various problems with referencing
203/// declarations that can occur when using a declaration. For example,
204/// it might warn if a deprecated or unavailable declaration is being
205/// used, or produce an error (and return true) if a C++0x deleted
206/// function is being used.
207///
208/// \returns true if there was an error (this declaration cannot be
209/// referenced), false otherwise.
210///
211bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
212 const ObjCInterfaceDecl *UnknownObjCClass,
213 bool ObjCPropertyAccess,
214 bool AvoidPartialAvailabilityChecks,
215 ObjCInterfaceDecl *ClassReceiver) {
216 SourceLocation Loc = Locs.front();
217 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
218 // If there were any diagnostics suppressed by template argument deduction,
219 // emit them now.
220 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
221 if (Pos != SuppressedDiagnostics.end()) {
222 for (const PartialDiagnosticAt &Suppressed : Pos->second)
223 Diag(Suppressed.first, Suppressed.second);
224
225 // Clear out the list of suppressed diagnostics, so that we don't emit
226 // them again for this specialization. However, we don't obsolete this
227 // entry from the table, because we want to avoid ever emitting these
228 // diagnostics again.
229 Pos->second.clear();
230 }
231
232 // C++ [basic.start.main]p3:
233 // The function 'main' shall not be used within a program.
234 if (cast<FunctionDecl>(D)->isMain())
235 Diag(Loc, diag::ext_main_used);
236
237 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
238 }
239
240 // See if this is an auto-typed variable whose initializer we are parsing.
241 if (ParsingInitForAutoVars.count(D)) {
242 if (isa<BindingDecl>(D)) {
243 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
244 << D->getDeclName();
245 } else {
246 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
247 << D->getDeclName() << cast<VarDecl>(D)->getType();
248 }
249 return true;
250 }
251
252 // See if this is a deleted function.
253 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
254 if (FD->isDeleted()) {
255 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
256 if (Ctor && Ctor->isInheritingConstructor())
257 Diag(Loc, diag::err_deleted_inherited_ctor_use)
258 << Ctor->getParent()
259 << Ctor->getInheritedConstructor().getConstructor()->getParent();
260 else
261 Diag(Loc, diag::err_deleted_function_use);
262 NoteDeletedFunction(FD);
263 return true;
264 }
265
266 // If the function has a deduced return type, and we can't deduce it,
267 // then we can't use it either.
268 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
269 DeduceReturnType(FD, Loc))
270 return true;
271
272 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
273 return true;
274 }
275
276 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
277 // Lambdas are only default-constructible or assignable in C++2a onwards.
278 if (MD->getParent()->isLambda() &&
279 ((isa<CXXConstructorDecl>(MD) &&
280 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
281 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
282 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
283 << !isa<CXXConstructorDecl>(MD);
284 }
285 }
286
287 auto getReferencedObjCProp = [](const NamedDecl *D) ->
288 const ObjCPropertyDecl * {
289 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
290 return MD->findPropertyDecl();
291 return nullptr;
292 };
293 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
294 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
295 return true;
296 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
297 return true;
298 }
299
300 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
301 // Only the variables omp_in and omp_out are allowed in the combiner.
302 // Only the variables omp_priv and omp_orig are allowed in the
303 // initializer-clause.
304 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
305 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
306 isa<VarDecl>(D)) {
307 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
308 << getCurFunction()->HasOMPDeclareReductionCombiner;
309 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
310 return true;
311 }
312
313 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
314 // List-items in map clauses on this construct may only refer to the declared
315 // variable var and entities that could be referenced by a procedure defined
316 // at the same location
317 auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext);
318 if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) &&
319 isa<VarDecl>(D)) {
320 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
321 << DMD->getVarName().getAsString();
322 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
323 return true;
324 }
325
326 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
327 AvoidPartialAvailabilityChecks, ClassReceiver);
328
329 DiagnoseUnusedOfDecl(*this, D, Loc);
330
331 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
332
333 return false;
334}
335
336/// DiagnoseSentinelCalls - This routine checks whether a call or
337/// message-send is to a declaration with the sentinel attribute, and
338/// if so, it checks that the requirements of the sentinel are
339/// satisfied.
340void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
341 ArrayRef<Expr *> Args) {
342 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
343 if (!attr)
344 return;
345
346 // The number of formal parameters of the declaration.
347 unsigned numFormalParams;
348
349 // The kind of declaration. This is also an index into a %select in
350 // the diagnostic.
351 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
352
353 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
354 numFormalParams = MD->param_size();
355 calleeType = CT_Method;
356 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
357 numFormalParams = FD->param_size();
358 calleeType = CT_Function;
359 } else if (isa<VarDecl>(D)) {
360 QualType type = cast<ValueDecl>(D)->getType();
361 const FunctionType *fn = nullptr;
362 if (const PointerType *ptr = type->getAs<PointerType>()) {
363 fn = ptr->getPointeeType()->getAs<FunctionType>();
364 if (!fn) return;
365 calleeType = CT_Function;
366 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
367 fn = ptr->getPointeeType()->castAs<FunctionType>();
368 calleeType = CT_Block;
369 } else {
370 return;
371 }
372
373 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
374 numFormalParams = proto->getNumParams();
375 } else {
376 numFormalParams = 0;
377 }
378 } else {
379 return;
380 }
381
382 // "nullPos" is the number of formal parameters at the end which
383 // effectively count as part of the variadic arguments. This is
384 // useful if you would prefer to not have *any* formal parameters,
385 // but the language forces you to have at least one.
386 unsigned nullPos = attr->getNullPos();
387 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")(((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel"
) ? static_cast<void> (0) : __assert_fail ("(nullPos == 0 || nullPos == 1) && \"invalid null position on sentinel\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 387, __PRETTY_FUNCTION__))
;
388 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
389
390 // The number of arguments which should follow the sentinel.
391 unsigned numArgsAfterSentinel = attr->getSentinel();
392
393 // If there aren't enough arguments for all the formal parameters,
394 // the sentinel, and the args after the sentinel, complain.
395 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
396 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
397 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
398 return;
399 }
400
401 // Otherwise, find the sentinel expression.
402 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
403 if (!sentinelExpr) return;
404 if (sentinelExpr->isValueDependent()) return;
405 if (Context.isSentinelNullExpr(sentinelExpr)) return;
406
407 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
408 // or 'NULL' if those are actually defined in the context. Only use
409 // 'nil' for ObjC methods, where it's much more likely that the
410 // variadic arguments form a list of object pointers.
411 SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
412 std::string NullValue;
413 if (calleeType == CT_Method && PP.isMacroDefined("nil"))
414 NullValue = "nil";
415 else if (getLangOpts().CPlusPlus11)
416 NullValue = "nullptr";
417 else if (PP.isMacroDefined("NULL"))
418 NullValue = "NULL";
419 else
420 NullValue = "(void*) 0";
421
422 if (MissingNilLoc.isInvalid())
423 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
424 else
425 Diag(MissingNilLoc, diag::warn_missing_sentinel)
426 << int(calleeType)
427 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
428 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
429}
430
431SourceRange Sema::getExprRange(Expr *E) const {
432 return E ? E->getSourceRange() : SourceRange();
433}
434
435//===----------------------------------------------------------------------===//
436// Standard Promotions and Conversions
437//===----------------------------------------------------------------------===//
438
439/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
440ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
441 // Handle any placeholder expressions which made it here.
442 if (E->getType()->isPlaceholderType()) {
443 ExprResult result = CheckPlaceholderExpr(E);
444 if (result.isInvalid()) return ExprError();
445 E = result.get();
446 }
447
448 QualType Ty = E->getType();
449 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")((!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"
) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"DefaultFunctionArrayConversion - missing type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 449, __PRETTY_FUNCTION__))
;
450
451 if (Ty->isFunctionType()) {
452 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
453 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
454 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
455 return ExprError();
456
457 E = ImpCastExprToType(E, Context.getPointerType(Ty),
458 CK_FunctionToPointerDecay).get();
459 } else if (Ty->isArrayType()) {
460 // In C90 mode, arrays only promote to pointers if the array expression is
461 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
462 // type 'array of type' is converted to an expression that has type 'pointer
463 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
464 // that has type 'array of type' ...". The relevant change is "an lvalue"
465 // (C90) to "an expression" (C99).
466 //
467 // C++ 4.2p1:
468 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
469 // T" can be converted to an rvalue of type "pointer to T".
470 //
471 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
472 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
473 CK_ArrayToPointerDecay).get();
474 }
475 return E;
476}
477
478static void CheckForNullPointerDereference(Sema &S, Expr *E) {
479 // Check to see if we are dereferencing a null pointer. If so,
480 // and if not volatile-qualified, this is undefined behavior that the
481 // optimizer will delete, so warn about it. People sometimes try to use this
482 // to get a deterministic trap and are surprised by clang's behavior. This
483 // only handles the pattern "*null", which is a very syntactic check.
484 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
485 if (UO->getOpcode() == UO_Deref &&
486 UO->getSubExpr()->IgnoreParenCasts()->
487 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
488 !UO->getType().isVolatileQualified()) {
489 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
490 S.PDiag(diag::warn_indirection_through_null)
491 << UO->getSubExpr()->getSourceRange());
492 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
493 S.PDiag(diag::note_indirection_through_null));
494 }
495}
496
497static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
498 SourceLocation AssignLoc,
499 const Expr* RHS) {
500 const ObjCIvarDecl *IV = OIRE->getDecl();
501 if (!IV)
502 return;
503
504 DeclarationName MemberName = IV->getDeclName();
505 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
506 if (!Member || !Member->isStr("isa"))
507 return;
508
509 const Expr *Base = OIRE->getBase();
510 QualType BaseType = Base->getType();
511 if (OIRE->isArrow())
512 BaseType = BaseType->getPointeeType();
513 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
514 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
515 ObjCInterfaceDecl *ClassDeclared = nullptr;
516 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
517 if (!ClassDeclared->getSuperClass()
518 && (*ClassDeclared->ivar_begin()) == IV) {
519 if (RHS) {
520 NamedDecl *ObjectSetClass =
521 S.LookupSingleName(S.TUScope,
522 &S.Context.Idents.get("object_setClass"),
523 SourceLocation(), S.LookupOrdinaryName);
524 if (ObjectSetClass) {
525 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
526 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
527 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
528 "object_setClass(")
529 << FixItHint::CreateReplacement(
530 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
531 << FixItHint::CreateInsertion(RHSLocEnd, ")");
532 }
533 else
534 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
535 } else {
536 NamedDecl *ObjectGetClass =
537 S.LookupSingleName(S.TUScope,
538 &S.Context.Idents.get("object_getClass"),
539 SourceLocation(), S.LookupOrdinaryName);
540 if (ObjectGetClass)
541 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
542 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
543 "object_getClass(")
544 << FixItHint::CreateReplacement(
545 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
546 else
547 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
548 }
549 S.Diag(IV->getLocation(), diag::note_ivar_decl);
550 }
551 }
552}
553
554ExprResult Sema::DefaultLvalueConversion(Expr *E) {
555 // Handle any placeholder expressions which made it here.
556 if (E->getType()->isPlaceholderType()) {
557 ExprResult result = CheckPlaceholderExpr(E);
558 if (result.isInvalid()) return ExprError();
559 E = result.get();
560 }
561
562 // C++ [conv.lval]p1:
563 // A glvalue of a non-function, non-array type T can be
564 // converted to a prvalue.
565 if (!E->isGLValue()) return E;
566
567 QualType T = E->getType();
568 assert(!T.isNull() && "r-value conversion on typeless expression?")((!T.isNull() && "r-value conversion on typeless expression?"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"r-value conversion on typeless expression?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 568, __PRETTY_FUNCTION__))
;
569
570 // We don't want to throw lvalue-to-rvalue casts on top of
571 // expressions of certain types in C++.
572 if (getLangOpts().CPlusPlus &&
573 (E->getType() == Context.OverloadTy ||
574 T->isDependentType() ||
575 T->isRecordType()))
576 return E;
577
578 // The C standard is actually really unclear on this point, and
579 // DR106 tells us what the result should be but not why. It's
580 // generally best to say that void types just doesn't undergo
581 // lvalue-to-rvalue at all. Note that expressions of unqualified
582 // 'void' type are never l-values, but qualified void can be.
583 if (T->isVoidType())
584 return E;
585
586 // OpenCL usually rejects direct accesses to values of 'half' type.
587 if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
588 T->isHalfType()) {
589 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
590 << 0 << T;
591 return ExprError();
592 }
593
594 CheckForNullPointerDereference(*this, E);
595 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
596 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
597 &Context.Idents.get("object_getClass"),
598 SourceLocation(), LookupOrdinaryName);
599 if (ObjectGetClass)
600 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
601 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
602 << FixItHint::CreateReplacement(
603 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
604 else
605 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
606 }
607 else if (const ObjCIvarRefExpr *OIRE =
608 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
609 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
610
611 // C++ [conv.lval]p1:
612 // [...] If T is a non-class type, the type of the prvalue is the
613 // cv-unqualified version of T. Otherwise, the type of the
614 // rvalue is T.
615 //
616 // C99 6.3.2.1p2:
617 // If the lvalue has qualified type, the value has the unqualified
618 // version of the type of the lvalue; otherwise, the value has the
619 // type of the lvalue.
620 if (T.hasQualifiers())
621 T = T.getUnqualifiedType();
622
623 // Under the MS ABI, lock down the inheritance model now.
624 if (T->isMemberPointerType() &&
625 Context.getTargetInfo().getCXXABI().isMicrosoft())
626 (void)isCompleteType(E->getExprLoc(), T);
627
628 ExprResult Res = CheckLValueToRValueConversionOperand(E);
629 if (Res.isInvalid())
630 return Res;
631 E = Res.get();
632
633 // Loading a __weak object implicitly retains the value, so we need a cleanup to
634 // balance that.
635 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
636 Cleanup.setExprNeedsCleanups(true);
637
638 // C++ [conv.lval]p3:
639 // If T is cv std::nullptr_t, the result is a null pointer constant.
640 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
641 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue);
642
643 // C11 6.3.2.1p2:
644 // ... if the lvalue has atomic type, the value has the non-atomic version
645 // of the type of the lvalue ...
646 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
647 T = Atomic->getValueType().getUnqualifiedType();
648 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
649 nullptr, VK_RValue);
650 }
651
652 return Res;
653}
654
655ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
656 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
657 if (Res.isInvalid())
658 return ExprError();
659 Res = DefaultLvalueConversion(Res.get());
660 if (Res.isInvalid())
661 return ExprError();
662 return Res;
663}
664
665/// CallExprUnaryConversions - a special case of an unary conversion
666/// performed on a function designator of a call expression.
667ExprResult Sema::CallExprUnaryConversions(Expr *E) {
668 QualType Ty = E->getType();
669 ExprResult Res = E;
670 // Only do implicit cast for a function type, but not for a pointer
671 // to function type.
672 if (Ty->isFunctionType()) {
673 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
674 CK_FunctionToPointerDecay).get();
675 if (Res.isInvalid())
676 return ExprError();
677 }
678 Res = DefaultLvalueConversion(Res.get());
679 if (Res.isInvalid())
680 return ExprError();
681 return Res.get();
682}
683
684/// UsualUnaryConversions - Performs various conversions that are common to most
685/// operators (C99 6.3). The conversions of array and function types are
686/// sometimes suppressed. For example, the array->pointer conversion doesn't
687/// apply if the array is an argument to the sizeof or address (&) operators.
688/// In these instances, this routine should *not* be called.
689ExprResult Sema::UsualUnaryConversions(Expr *E) {
690 // First, convert to an r-value.
691 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
692 if (Res.isInvalid())
693 return ExprError();
694 E = Res.get();
695
696 QualType Ty = E->getType();
697 assert(!Ty.isNull() && "UsualUnaryConversions - missing type")((!Ty.isNull() && "UsualUnaryConversions - missing type"
) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"UsualUnaryConversions - missing type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 697, __PRETTY_FUNCTION__))
;
698
699 // Half FP have to be promoted to float unless it is natively supported
700 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
701 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
702
703 // Try to perform integral promotions if the object has a theoretically
704 // promotable type.
705 if (Ty->isIntegralOrUnscopedEnumerationType()) {
706 // C99 6.3.1.1p2:
707 //
708 // The following may be used in an expression wherever an int or
709 // unsigned int may be used:
710 // - an object or expression with an integer type whose integer
711 // conversion rank is less than or equal to the rank of int
712 // and unsigned int.
713 // - A bit-field of type _Bool, int, signed int, or unsigned int.
714 //
715 // If an int can represent all values of the original type, the
716 // value is converted to an int; otherwise, it is converted to an
717 // unsigned int. These are called the integer promotions. All
718 // other types are unchanged by the integer promotions.
719
720 QualType PTy = Context.isPromotableBitField(E);
721 if (!PTy.isNull()) {
722 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
723 return E;
724 }
725 if (Ty->isPromotableIntegerType()) {
726 QualType PT = Context.getPromotedIntegerType(Ty);
727 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
728 return E;
729 }
730 }
731 return E;
732}
733
734/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
735/// do not have a prototype. Arguments that have type float or __fp16
736/// are promoted to double. All other argument types are converted by
737/// UsualUnaryConversions().
738ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
739 QualType Ty = E->getType();
740 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")((!Ty.isNull() && "DefaultArgumentPromotion - missing type"
) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"DefaultArgumentPromotion - missing type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 740, __PRETTY_FUNCTION__))
;
741
742 ExprResult Res = UsualUnaryConversions(E);
743 if (Res.isInvalid())
744 return ExprError();
745 E = Res.get();
746
747 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
748 // promote to double.
749 // Note that default argument promotion applies only to float (and
750 // half/fp16); it does not apply to _Float16.
751 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
752 if (BTy && (BTy->getKind() == BuiltinType::Half ||
753 BTy->getKind() == BuiltinType::Float)) {
754 if (getLangOpts().OpenCL &&
755 !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
756 if (BTy->getKind() == BuiltinType::Half) {
757 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
758 }
759 } else {
760 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
761 }
762 }
763
764 // C++ performs lvalue-to-rvalue conversion as a default argument
765 // promotion, even on class types, but note:
766 // C++11 [conv.lval]p2:
767 // When an lvalue-to-rvalue conversion occurs in an unevaluated
768 // operand or a subexpression thereof the value contained in the
769 // referenced object is not accessed. Otherwise, if the glvalue
770 // has a class type, the conversion copy-initializes a temporary
771 // of type T from the glvalue and the result of the conversion
772 // is a prvalue for the temporary.
773 // FIXME: add some way to gate this entire thing for correctness in
774 // potentially potentially evaluated contexts.
775 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
776 ExprResult Temp = PerformCopyInitialization(
777 InitializedEntity::InitializeTemporary(E->getType()),
778 E->getExprLoc(), E);
779 if (Temp.isInvalid())
780 return ExprError();
781 E = Temp.get();
782 }
783
784 return E;
785}
786
787/// Determine the degree of POD-ness for an expression.
788/// Incomplete types are considered POD, since this check can be performed
789/// when we're in an unevaluated context.
790Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
791 if (Ty->isIncompleteType()) {
792 // C++11 [expr.call]p7:
793 // After these conversions, if the argument does not have arithmetic,
794 // enumeration, pointer, pointer to member, or class type, the program
795 // is ill-formed.
796 //
797 // Since we've already performed array-to-pointer and function-to-pointer
798 // decay, the only such type in C++ is cv void. This also handles
799 // initializer lists as variadic arguments.
800 if (Ty->isVoidType())
801 return VAK_Invalid;
802
803 if (Ty->isObjCObjectType())
804 return VAK_Invalid;
805 return VAK_Valid;
806 }
807
808 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
809 return VAK_Invalid;
810
811 if (Ty.isCXX98PODType(Context))
812 return VAK_Valid;
813
814 // C++11 [expr.call]p7:
815 // Passing a potentially-evaluated argument of class type (Clause 9)
816 // having a non-trivial copy constructor, a non-trivial move constructor,
817 // or a non-trivial destructor, with no corresponding parameter,
818 // is conditionally-supported with implementation-defined semantics.
819 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
820 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
821 if (!Record->hasNonTrivialCopyConstructor() &&
822 !Record->hasNonTrivialMoveConstructor() &&
823 !Record->hasNonTrivialDestructor())
824 return VAK_ValidInCXX11;
825
826 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
827 return VAK_Valid;
828
829 if (Ty->isObjCObjectType())
830 return VAK_Invalid;
831
832 if (getLangOpts().MSVCCompat)
833 return VAK_MSVCUndefined;
834
835 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
836 // permitted to reject them. We should consider doing so.
837 return VAK_Undefined;
838}
839
840void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
841 // Don't allow one to pass an Objective-C interface to a vararg.
842 const QualType &Ty = E->getType();
843 VarArgKind VAK = isValidVarArgType(Ty);
844
845 // Complain about passing non-POD types through varargs.
846 switch (VAK) {
847 case VAK_ValidInCXX11:
848 DiagRuntimeBehavior(
849 E->getBeginLoc(), nullptr,
850 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
851 LLVM_FALLTHROUGH[[gnu::fallthrough]];
852 case VAK_Valid:
853 if (Ty->isRecordType()) {
854 // This is unlikely to be what the user intended. If the class has a
855 // 'c_str' member function, the user probably meant to call that.
856 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
857 PDiag(diag::warn_pass_class_arg_to_vararg)
858 << Ty << CT << hasCStrMethod(E) << ".c_str()");
859 }
860 break;
861
862 case VAK_Undefined:
863 case VAK_MSVCUndefined:
864 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
865 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
866 << getLangOpts().CPlusPlus11 << Ty << CT);
867 break;
868
869 case VAK_Invalid:
870 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
871 Diag(E->getBeginLoc(),
872 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
873 << Ty << CT;
874 else if (Ty->isObjCObjectType())
875 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
876 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
877 << Ty << CT);
878 else
879 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
880 << isa<InitListExpr>(E) << Ty << CT;
881 break;
882 }
883}
884
885/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
886/// will create a trap if the resulting type is not a POD type.
887ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
888 FunctionDecl *FDecl) {
889 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
890 // Strip the unbridged-cast placeholder expression off, if applicable.
891 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
892 (CT == VariadicMethod ||
893 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
894 E = stripARCUnbridgedCast(E);
895
896 // Otherwise, do normal placeholder checking.
897 } else {
898 ExprResult ExprRes = CheckPlaceholderExpr(E);
899 if (ExprRes.isInvalid())
900 return ExprError();
901 E = ExprRes.get();
902 }
903 }
904
905 ExprResult ExprRes = DefaultArgumentPromotion(E);
906 if (ExprRes.isInvalid())
907 return ExprError();
908 E = ExprRes.get();
909
910 // Diagnostics regarding non-POD argument types are
911 // emitted along with format string checking in Sema::CheckFunctionCall().
912 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
913 // Turn this into a trap.
914 CXXScopeSpec SS;
915 SourceLocation TemplateKWLoc;
916 UnqualifiedId Name;
917 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
918 E->getBeginLoc());
919 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
920 /*HasTrailingLParen=*/true,
921 /*IsAddressOfOperand=*/false);
922 if (TrapFn.isInvalid())
923 return ExprError();
924
925 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
926 None, E->getEndLoc());
927 if (Call.isInvalid())
928 return ExprError();
929
930 ExprResult Comma =
931 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
932 if (Comma.isInvalid())
933 return ExprError();
934 return Comma.get();
935 }
936
937 if (!getLangOpts().CPlusPlus &&
938 RequireCompleteType(E->getExprLoc(), E->getType(),
939 diag::err_call_incomplete_argument))
940 return ExprError();
941
942 return E;
943}
944
945/// Converts an integer to complex float type. Helper function of
946/// UsualArithmeticConversions()
947///
948/// \return false if the integer expression is an integer type and is
949/// successfully converted to the complex type.
950static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
951 ExprResult &ComplexExpr,
952 QualType IntTy,
953 QualType ComplexTy,
954 bool SkipCast) {
955 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
956 if (SkipCast) return false;
957 if (IntTy->isIntegerType()) {
958 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
959 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
960 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
961 CK_FloatingRealToComplex);
962 } else {
963 assert(IntTy->isComplexIntegerType())((IntTy->isComplexIntegerType()) ? static_cast<void>
(0) : __assert_fail ("IntTy->isComplexIntegerType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 963, __PRETTY_FUNCTION__))
;
964 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
965 CK_IntegralComplexToFloatingComplex);
966 }
967 return false;
968}
969
970/// Handle arithmetic conversion with complex types. Helper function of
971/// UsualArithmeticConversions()
972static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
973 ExprResult &RHS, QualType LHSType,
974 QualType RHSType,
975 bool IsCompAssign) {
976 // if we have an integer operand, the result is the complex type.
977 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
978 /*skipCast*/false))
979 return LHSType;
980 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
981 /*skipCast*/IsCompAssign))
982 return RHSType;
983
984 // This handles complex/complex, complex/float, or float/complex.
985 // When both operands are complex, the shorter operand is converted to the
986 // type of the longer, and that is the type of the result. This corresponds
987 // to what is done when combining two real floating-point operands.
988 // The fun begins when size promotion occur across type domains.
989 // From H&S 6.3.4: When one operand is complex and the other is a real
990 // floating-point type, the less precise type is converted, within it's
991 // real or complex domain, to the precision of the other type. For example,
992 // when combining a "long double" with a "double _Complex", the
993 // "double _Complex" is promoted to "long double _Complex".
994
995 // Compute the rank of the two types, regardless of whether they are complex.
996 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
997
998 auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
999 auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1000 QualType LHSElementType =
1001 LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1002 QualType RHSElementType =
1003 RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1004
1005 QualType ResultType = S.Context.getComplexType(LHSElementType);
1006 if (Order < 0) {
1007 // Promote the precision of the LHS if not an assignment.
1008 ResultType = S.Context.getComplexType(RHSElementType);
1009 if (!IsCompAssign) {
1010 if (LHSComplexType)
1011 LHS =
1012 S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1013 else
1014 LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1015 }
1016 } else if (Order > 0) {
1017 // Promote the precision of the RHS.
1018 if (RHSComplexType)
1019 RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1020 else
1021 RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1022 }
1023 return ResultType;
1024}
1025
1026/// Handle arithmetic conversion from integer to float. Helper function
1027/// of UsualArithmeticConversions()
1028static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1029 ExprResult &IntExpr,
1030 QualType FloatTy, QualType IntTy,
1031 bool ConvertFloat, bool ConvertInt) {
1032 if (IntTy->isIntegerType()) {
1033 if (ConvertInt)
1034 // Convert intExpr to the lhs floating point type.
1035 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1036 CK_IntegralToFloating);
1037 return FloatTy;
1038 }
1039
1040 // Convert both sides to the appropriate complex float.
1041 assert(IntTy->isComplexIntegerType())((IntTy->isComplexIntegerType()) ? static_cast<void>
(0) : __assert_fail ("IntTy->isComplexIntegerType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1041, __PRETTY_FUNCTION__))
;
1042 QualType result = S.Context.getComplexType(FloatTy);
1043
1044 // _Complex int -> _Complex float
1045 if (ConvertInt)
1046 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1047 CK_IntegralComplexToFloatingComplex);
1048
1049 // float -> _Complex float
1050 if (ConvertFloat)
1051 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1052 CK_FloatingRealToComplex);
1053
1054 return result;
1055}
1056
1057/// Handle arithmethic conversion with floating point types. Helper
1058/// function of UsualArithmeticConversions()
1059static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1060 ExprResult &RHS, QualType LHSType,
1061 QualType RHSType, bool IsCompAssign) {
1062 bool LHSFloat = LHSType->isRealFloatingType();
1063 bool RHSFloat = RHSType->isRealFloatingType();
1064
1065 // If we have two real floating types, convert the smaller operand
1066 // to the bigger result.
1067 if (LHSFloat && RHSFloat) {
1068 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1069 if (order > 0) {
1070 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1071 return LHSType;
1072 }
1073
1074 assert(order < 0 && "illegal float comparison")((order < 0 && "illegal float comparison") ? static_cast
<void> (0) : __assert_fail ("order < 0 && \"illegal float comparison\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1074, __PRETTY_FUNCTION__))
;
1075 if (!IsCompAssign)
1076 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1077 return RHSType;
1078 }
1079
1080 if (LHSFloat) {
1081 // Half FP has to be promoted to float unless it is natively supported
1082 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1083 LHSType = S.Context.FloatTy;
1084
1085 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1086 /*ConvertFloat=*/!IsCompAssign,
1087 /*ConvertInt=*/ true);
1088 }
1089 assert(RHSFloat)((RHSFloat) ? static_cast<void> (0) : __assert_fail ("RHSFloat"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1089, __PRETTY_FUNCTION__))
;
1090 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1091 /*convertInt=*/ true,
1092 /*convertFloat=*/!IsCompAssign);
1093}
1094
1095/// Diagnose attempts to convert between __float128 and long double if
1096/// there is no support for such conversion. Helper function of
1097/// UsualArithmeticConversions().
1098static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1099 QualType RHSType) {
1100 /* No issue converting if at least one of the types is not a floating point
1101 type or the two types have the same rank.
1102 */
1103 if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1104 S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1105 return false;
1106
1107 assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&((LHSType->isFloatingType() && RHSType->isFloatingType
() && "The remaining types must be floating point types."
) ? static_cast<void> (0) : __assert_fail ("LHSType->isFloatingType() && RHSType->isFloatingType() && \"The remaining types must be floating point types.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1108, __PRETTY_FUNCTION__))
1108 "The remaining types must be floating point types.")((LHSType->isFloatingType() && RHSType->isFloatingType
() && "The remaining types must be floating point types."
) ? static_cast<void> (0) : __assert_fail ("LHSType->isFloatingType() && RHSType->isFloatingType() && \"The remaining types must be floating point types.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1108, __PRETTY_FUNCTION__))
;
1109
1110 auto *LHSComplex = LHSType->getAs<ComplexType>();
1111 auto *RHSComplex = RHSType->getAs<ComplexType>();
1112
1113 QualType LHSElemType = LHSComplex ?
1114 LHSComplex->getElementType() : LHSType;
1115 QualType RHSElemType = RHSComplex ?
1116 RHSComplex->getElementType() : RHSType;
1117
1118 // No issue if the two types have the same representation
1119 if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1120 &S.Context.getFloatTypeSemantics(RHSElemType))
1121 return false;
1122
1123 bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1124 RHSElemType == S.Context.LongDoubleTy);
1125 Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1126 RHSElemType == S.Context.Float128Ty);
1127
1128 // We've handled the situation where __float128 and long double have the same
1129 // representation. We allow all conversions for all possible long double types
1130 // except PPC's double double.
1131 return Float128AndLongDouble &&
1132 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1133 &llvm::APFloat::PPCDoubleDouble());
1134}
1135
1136typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1137
1138namespace {
1139/// These helper callbacks are placed in an anonymous namespace to
1140/// permit their use as function template parameters.
1141ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1142 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1143}
1144
1145ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1146 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1147 CK_IntegralComplexCast);
1148}
1149}
1150
1151/// Handle integer arithmetic conversions. Helper function of
1152/// UsualArithmeticConversions()
1153template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1154static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1155 ExprResult &RHS, QualType LHSType,
1156 QualType RHSType, bool IsCompAssign) {
1157 // The rules for this case are in C99 6.3.1.8
1158 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1159 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1160 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1161 if (LHSSigned == RHSSigned) {
1162 // Same signedness; use the higher-ranked type
1163 if (order >= 0) {
1164 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1165 return LHSType;
1166 } else if (!IsCompAssign)
1167 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1168 return RHSType;
1169 } else if (order != (LHSSigned ? 1 : -1)) {
1170 // The unsigned type has greater than or equal rank to the
1171 // signed type, so use the unsigned type
1172 if (RHSSigned) {
1173 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1174 return LHSType;
1175 } else if (!IsCompAssign)
1176 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1177 return RHSType;
1178 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1179 // The two types are different widths; if we are here, that
1180 // means the signed type is larger than the unsigned type, so
1181 // use the signed type.
1182 if (LHSSigned) {
1183 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1184 return LHSType;
1185 } else if (!IsCompAssign)
1186 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1187 return RHSType;
1188 } else {
1189 // The signed type is higher-ranked than the unsigned type,
1190 // but isn't actually any bigger (like unsigned int and long
1191 // on most 32-bit systems). Use the unsigned type corresponding
1192 // to the signed type.
1193 QualType result =
1194 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1195 RHS = (*doRHSCast)(S, RHS.get(), result);
1196 if (!IsCompAssign)
1197 LHS = (*doLHSCast)(S, LHS.get(), result);
1198 return result;
1199 }
1200}
1201
1202/// Handle conversions with GCC complex int extension. Helper function
1203/// of UsualArithmeticConversions()
1204static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1205 ExprResult &RHS, QualType LHSType,
1206 QualType RHSType,
1207 bool IsCompAssign) {
1208 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1209 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1210
1211 if (LHSComplexInt && RHSComplexInt) {
1212 QualType LHSEltType = LHSComplexInt->getElementType();
1213 QualType RHSEltType = RHSComplexInt->getElementType();
1214 QualType ScalarType =
1215 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1216 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1217
1218 return S.Context.getComplexType(ScalarType);
1219 }
1220
1221 if (LHSComplexInt) {
1222 QualType LHSEltType = LHSComplexInt->getElementType();
1223 QualType ScalarType =
1224 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1225 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1226 QualType ComplexType = S.Context.getComplexType(ScalarType);
1227 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1228 CK_IntegralRealToComplex);
1229
1230 return ComplexType;
1231 }
1232
1233 assert(RHSComplexInt)((RHSComplexInt) ? static_cast<void> (0) : __assert_fail
("RHSComplexInt", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1233, __PRETTY_FUNCTION__))
;
1234
1235 QualType RHSEltType = RHSComplexInt->getElementType();
1236 QualType ScalarType =
1237 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1238 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1239 QualType ComplexType = S.Context.getComplexType(ScalarType);
1240
1241 if (!IsCompAssign)
1242 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1243 CK_IntegralRealToComplex);
1244 return ComplexType;
1245}
1246
1247/// Return the rank of a given fixed point or integer type. The value itself
1248/// doesn't matter, but the values must be increasing with proper increasing
1249/// rank as described in N1169 4.1.1.
1250static unsigned GetFixedPointRank(QualType Ty) {
1251 const auto *BTy = Ty->getAs<BuiltinType>();
1252 assert(BTy && "Expected a builtin type.")((BTy && "Expected a builtin type.") ? static_cast<
void> (0) : __assert_fail ("BTy && \"Expected a builtin type.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1252, __PRETTY_FUNCTION__))
;
1253
1254 switch (BTy->getKind()) {
1255 case BuiltinType::ShortFract:
1256 case BuiltinType::UShortFract:
1257 case BuiltinType::SatShortFract:
1258 case BuiltinType::SatUShortFract:
1259 return 1;
1260 case BuiltinType::Fract:
1261 case BuiltinType::UFract:
1262 case BuiltinType::SatFract:
1263 case BuiltinType::SatUFract:
1264 return 2;
1265 case BuiltinType::LongFract:
1266 case BuiltinType::ULongFract:
1267 case BuiltinType::SatLongFract:
1268 case BuiltinType::SatULongFract:
1269 return 3;
1270 case BuiltinType::ShortAccum:
1271 case BuiltinType::UShortAccum:
1272 case BuiltinType::SatShortAccum:
1273 case BuiltinType::SatUShortAccum:
1274 return 4;
1275 case BuiltinType::Accum:
1276 case BuiltinType::UAccum:
1277 case BuiltinType::SatAccum:
1278 case BuiltinType::SatUAccum:
1279 return 5;
1280 case BuiltinType::LongAccum:
1281 case BuiltinType::ULongAccum:
1282 case BuiltinType::SatLongAccum:
1283 case BuiltinType::SatULongAccum:
1284 return 6;
1285 default:
1286 if (BTy->isInteger())
1287 return 0;
1288 llvm_unreachable("Unexpected fixed point or integer type")::llvm::llvm_unreachable_internal("Unexpected fixed point or integer type"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1288)
;
1289 }
1290}
1291
1292/// handleFixedPointConversion - Fixed point operations between fixed
1293/// point types and integers or other fixed point types do not fall under
1294/// usual arithmetic conversion since these conversions could result in loss
1295/// of precsision (N1169 4.1.4). These operations should be calculated with
1296/// the full precision of their result type (N1169 4.1.6.2.1).
1297static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1298 QualType RHSTy) {
1299 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&(((LHSTy->isFixedPointType() || RHSTy->isFixedPointType
()) && "Expected at least one of the operands to be a fixed point type"
) ? static_cast<void> (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1300, __PRETTY_FUNCTION__))
1300 "Expected at least one of the operands to be a fixed point type")(((LHSTy->isFixedPointType() || RHSTy->isFixedPointType
()) && "Expected at least one of the operands to be a fixed point type"
) ? static_cast<void> (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1300, __PRETTY_FUNCTION__))
;
1301 assert((LHSTy->isFixedPointOrIntegerType() ||(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType
()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? static_cast<
void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1304, __PRETTY_FUNCTION__))
1302 RHSTy->isFixedPointOrIntegerType()) &&(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType
()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? static_cast<
void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1304, __PRETTY_FUNCTION__))
1303 "Special fixed point arithmetic operation conversions are only "(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType
()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? static_cast<
void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1304, __PRETTY_FUNCTION__))
1304 "applied to ints or other fixed point types")(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType
()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? static_cast<
void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1304, __PRETTY_FUNCTION__))
;
1305
1306 // If one operand has signed fixed-point type and the other operand has
1307 // unsigned fixed-point type, then the unsigned fixed-point operand is
1308 // converted to its corresponding signed fixed-point type and the resulting
1309 // type is the type of the converted operand.
1310 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1311 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1312 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1313 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1314
1315 // The result type is the type with the highest rank, whereby a fixed-point
1316 // conversion rank is always greater than an integer conversion rank; if the
1317 // type of either of the operands is a saturating fixedpoint type, the result
1318 // type shall be the saturating fixed-point type corresponding to the type
1319 // with the highest rank; the resulting value is converted (taking into
1320 // account rounding and overflow) to the precision of the resulting type.
1321 // Same ranks between signed and unsigned types are resolved earlier, so both
1322 // types are either signed or both unsigned at this point.
1323 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1324 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1325
1326 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1327
1328 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1329 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1330
1331 return ResultTy;
1332}
1333
1334/// UsualArithmeticConversions - Performs various conversions that are common to
1335/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1336/// routine returns the first non-arithmetic type found. The client is
1337/// responsible for emitting appropriate error diagnostics.
1338QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1339 bool IsCompAssign) {
1340 if (!IsCompAssign) {
1341 LHS = UsualUnaryConversions(LHS.get());
1342 if (LHS.isInvalid())
1343 return QualType();
1344 }
1345
1346 RHS = UsualUnaryConversions(RHS.get());
1347 if (RHS.isInvalid())
1348 return QualType();
1349
1350 // For conversion purposes, we ignore any qualifiers.
1351 // For example, "const float" and "float" are equivalent.
1352 QualType LHSType =
1353 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1354 QualType RHSType =
1355 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1356
1357 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1358 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1359 LHSType = AtomicLHS->getValueType();
1360
1361 // If both types are identical, no conversion is needed.
1362 if (LHSType == RHSType)
1363 return LHSType;
1364
1365 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1366 // The caller can deal with this (e.g. pointer + int).
1367 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1368 return QualType();
1369
1370 // Apply unary and bitfield promotions to the LHS's type.
1371 QualType LHSUnpromotedType = LHSType;
1372 if (LHSType->isPromotableIntegerType())
1373 LHSType = Context.getPromotedIntegerType(LHSType);
1374 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1375 if (!LHSBitfieldPromoteTy.isNull())
1376 LHSType = LHSBitfieldPromoteTy;
1377 if (LHSType != LHSUnpromotedType && !IsCompAssign)
1378 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1379
1380 // If both types are identical, no conversion is needed.
1381 if (LHSType == RHSType)
1382 return LHSType;
1383
1384 // At this point, we have two different arithmetic types.
1385
1386 // Diagnose attempts to convert between __float128 and long double where
1387 // such conversions currently can't be handled.
1388 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1389 return QualType();
1390
1391 // Handle complex types first (C99 6.3.1.8p1).
1392 if (LHSType->isComplexType() || RHSType->isComplexType())
1393 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1394 IsCompAssign);
1395
1396 // Now handle "real" floating types (i.e. float, double, long double).
1397 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1398 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1399 IsCompAssign);
1400
1401 // Handle GCC complex int extension.
1402 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1403 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1404 IsCompAssign);
1405
1406 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1407 return handleFixedPointConversion(*this, LHSType, RHSType);
1408
1409 // Finally, we have two differing integer types.
1410 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1411 (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
1412}
1413
1414//===----------------------------------------------------------------------===//
1415// Semantic Analysis for various Expression Types
1416//===----------------------------------------------------------------------===//
1417
1418
1419ExprResult
1420Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1421 SourceLocation DefaultLoc,
1422 SourceLocation RParenLoc,
1423 Expr *ControllingExpr,
1424 ArrayRef<ParsedType> ArgTypes,
1425 ArrayRef<Expr *> ArgExprs) {
1426 unsigned NumAssocs = ArgTypes.size();
1427 assert(NumAssocs == ArgExprs.size())((NumAssocs == ArgExprs.size()) ? static_cast<void> (0)
: __assert_fail ("NumAssocs == ArgExprs.size()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1427, __PRETTY_FUNCTION__))
;
1428
1429 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1430 for (unsigned i = 0; i < NumAssocs; ++i) {
1431 if (ArgTypes[i])
1432 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1433 else
1434 Types[i] = nullptr;
1435 }
1436
1437 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1438 ControllingExpr,
1439 llvm::makeArrayRef(Types, NumAssocs),
1440 ArgExprs);
1441 delete [] Types;
1442 return ER;
1443}
1444
1445ExprResult
1446Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1447 SourceLocation DefaultLoc,
1448 SourceLocation RParenLoc,
1449 Expr *ControllingExpr,
1450 ArrayRef<TypeSourceInfo *> Types,
1451 ArrayRef<Expr *> Exprs) {
1452 unsigned NumAssocs = Types.size();
1453 assert(NumAssocs == Exprs.size())((NumAssocs == Exprs.size()) ? static_cast<void> (0) : __assert_fail
("NumAssocs == Exprs.size()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1453, __PRETTY_FUNCTION__))
;
1454
1455 // Decay and strip qualifiers for the controlling expression type, and handle
1456 // placeholder type replacement. See committee discussion from WG14 DR423.
1457 {
1458 EnterExpressionEvaluationContext Unevaluated(
1459 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1460 ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1461 if (R.isInvalid())
1462 return ExprError();
1463 ControllingExpr = R.get();
1464 }
1465
1466 // The controlling expression is an unevaluated operand, so side effects are
1467 // likely unintended.
1468 if (!inTemplateInstantiation() &&
1469 ControllingExpr->HasSideEffects(Context, false))
1470 Diag(ControllingExpr->getExprLoc(),
1471 diag::warn_side_effects_unevaluated_context);
1472
1473 bool TypeErrorFound = false,
1474 IsResultDependent = ControllingExpr->isTypeDependent(),
1475 ContainsUnexpandedParameterPack
1476 = ControllingExpr->containsUnexpandedParameterPack();
1477
1478 for (unsigned i = 0; i < NumAssocs; ++i) {
1479 if (Exprs[i]->containsUnexpandedParameterPack())
1480 ContainsUnexpandedParameterPack = true;
1481
1482 if (Types[i]) {
1483 if (Types[i]->getType()->containsUnexpandedParameterPack())
1484 ContainsUnexpandedParameterPack = true;
1485
1486 if (Types[i]->getType()->isDependentType()) {
1487 IsResultDependent = true;
1488 } else {
1489 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1490 // complete object type other than a variably modified type."
1491 unsigned D = 0;
1492 if (Types[i]->getType()->isIncompleteType())
1493 D = diag::err_assoc_type_incomplete;
1494 else if (!Types[i]->getType()->isObjectType())
1495 D = diag::err_assoc_type_nonobject;
1496 else if (Types[i]->getType()->isVariablyModifiedType())
1497 D = diag::err_assoc_type_variably_modified;
1498
1499 if (D != 0) {
1500 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1501 << Types[i]->getTypeLoc().getSourceRange()
1502 << Types[i]->getType();
1503 TypeErrorFound = true;
1504 }
1505
1506 // C11 6.5.1.1p2 "No two generic associations in the same generic
1507 // selection shall specify compatible types."
1508 for (unsigned j = i+1; j < NumAssocs; ++j)
1509 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1510 Context.typesAreCompatible(Types[i]->getType(),
1511 Types[j]->getType())) {
1512 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1513 diag::err_assoc_compatible_types)
1514 << Types[j]->getTypeLoc().getSourceRange()
1515 << Types[j]->getType()
1516 << Types[i]->getType();
1517 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1518 diag::note_compat_assoc)
1519 << Types[i]->getTypeLoc().getSourceRange()
1520 << Types[i]->getType();
1521 TypeErrorFound = true;
1522 }
1523 }
1524 }
1525 }
1526 if (TypeErrorFound)
1527 return ExprError();
1528
1529 // If we determined that the generic selection is result-dependent, don't
1530 // try to compute the result expression.
1531 if (IsResultDependent)
1532 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1533 Exprs, DefaultLoc, RParenLoc,
1534 ContainsUnexpandedParameterPack);
1535
1536 SmallVector<unsigned, 1> CompatIndices;
1537 unsigned DefaultIndex = -1U;
1538 for (unsigned i = 0; i < NumAssocs; ++i) {
1539 if (!Types[i])
1540 DefaultIndex = i;
1541 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1542 Types[i]->getType()))
1543 CompatIndices.push_back(i);
1544 }
1545
1546 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1547 // type compatible with at most one of the types named in its generic
1548 // association list."
1549 if (CompatIndices.size() > 1) {
1550 // We strip parens here because the controlling expression is typically
1551 // parenthesized in macro definitions.
1552 ControllingExpr = ControllingExpr->IgnoreParens();
1553 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1554 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1555 << (unsigned)CompatIndices.size();
1556 for (unsigned I : CompatIndices) {
1557 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1558 diag::note_compat_assoc)
1559 << Types[I]->getTypeLoc().getSourceRange()
1560 << Types[I]->getType();
1561 }
1562 return ExprError();
1563 }
1564
1565 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1566 // its controlling expression shall have type compatible with exactly one of
1567 // the types named in its generic association list."
1568 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1569 // We strip parens here because the controlling expression is typically
1570 // parenthesized in macro definitions.
1571 ControllingExpr = ControllingExpr->IgnoreParens();
1572 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1573 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1574 return ExprError();
1575 }
1576
1577 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1578 // type name that is compatible with the type of the controlling expression,
1579 // then the result expression of the generic selection is the expression
1580 // in that generic association. Otherwise, the result expression of the
1581 // generic selection is the expression in the default generic association."
1582 unsigned ResultIndex =
1583 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1584
1585 return GenericSelectionExpr::Create(
1586 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1587 ContainsUnexpandedParameterPack, ResultIndex);
1588}
1589
1590/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1591/// location of the token and the offset of the ud-suffix within it.
1592static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1593 unsigned Offset) {
1594 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1595 S.getLangOpts());
1596}
1597
1598/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1599/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1600static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1601 IdentifierInfo *UDSuffix,
1602 SourceLocation UDSuffixLoc,
1603 ArrayRef<Expr*> Args,
1604 SourceLocation LitEndLoc) {
1605 assert(Args.size() <= 2 && "too many arguments for literal operator")((Args.size() <= 2 && "too many arguments for literal operator"
) ? static_cast<void> (0) : __assert_fail ("Args.size() <= 2 && \"too many arguments for literal operator\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1605, __PRETTY_FUNCTION__))
;
1606
1607 QualType ArgTy[2];
1608 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1609 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1610 if (ArgTy[ArgIdx]->isArrayType())
1611 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1612 }
1613
1614 DeclarationName OpName =
1615 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1616 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1617 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1618
1619 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1620 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1621 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1622 /*AllowStringTemplate*/ false,
1623 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1624 return ExprError();
1625
1626 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1627}
1628
1629/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1630/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1631/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1632/// multiple tokens. However, the common case is that StringToks points to one
1633/// string.
1634///
1635ExprResult
1636Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1637 assert(!StringToks.empty() && "Must have at least one string!")((!StringToks.empty() && "Must have at least one string!"
) ? static_cast<void> (0) : __assert_fail ("!StringToks.empty() && \"Must have at least one string!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1637, __PRETTY_FUNCTION__))
;
1638
1639 StringLiteralParser Literal(StringToks, PP);
1640 if (Literal.hadError)
1641 return ExprError();
1642
1643 SmallVector<SourceLocation, 4> StringTokLocs;
1644 for (const Token &Tok : StringToks)
1645 StringTokLocs.push_back(Tok.getLocation());
1646
1647 QualType CharTy = Context.CharTy;
1648 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1649 if (Literal.isWide()) {
1650 CharTy = Context.getWideCharType();
1651 Kind = StringLiteral::Wide;
1652 } else if (Literal.isUTF8()) {
1653 if (getLangOpts().Char8)
1654 CharTy = Context.Char8Ty;
1655 Kind = StringLiteral::UTF8;
1656 } else if (Literal.isUTF16()) {
1657 CharTy = Context.Char16Ty;
1658 Kind = StringLiteral::UTF16;
1659 } else if (Literal.isUTF32()) {
1660 CharTy = Context.Char32Ty;
1661 Kind = StringLiteral::UTF32;
1662 } else if (Literal.isPascal()) {
1663 CharTy = Context.UnsignedCharTy;
1664 }
1665
1666 // Warn on initializing an array of char from a u8 string literal; this
1667 // becomes ill-formed in C++2a.
1668 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus2a &&
1669 !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1670 Diag(StringTokLocs.front(), diag::warn_cxx2a_compat_utf8_string);
1671
1672 // Create removals for all 'u8' prefixes in the string literal(s). This
1673 // ensures C++2a compatibility (but may change the program behavior when
1674 // built by non-Clang compilers for which the execution character set is
1675 // not always UTF-8).
1676 auto RemovalDiag = PDiag(diag::note_cxx2a_compat_utf8_string_remove_u8);
1677 SourceLocation RemovalDiagLoc;
1678 for (const Token &Tok : StringToks) {
1679 if (Tok.getKind() == tok::utf8_string_literal) {
1680 if (RemovalDiagLoc.isInvalid())
1681 RemovalDiagLoc = Tok.getLocation();
1682 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1683 Tok.getLocation(),
1684 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1685 getSourceManager(), getLangOpts())));
1686 }
1687 }
1688 Diag(RemovalDiagLoc, RemovalDiag);
1689 }
1690
1691 QualType StrTy =
1692 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1693
1694 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1695 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1696 Kind, Literal.Pascal, StrTy,
1697 &StringTokLocs[0],
1698 StringTokLocs.size());
1699 if (Literal.getUDSuffix().empty())
1700 return Lit;
1701
1702 // We're building a user-defined literal.
1703 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1704 SourceLocation UDSuffixLoc =
1705 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1706 Literal.getUDSuffixOffset());
1707
1708 // Make sure we're allowed user-defined literals here.
1709 if (!UDLScope)
1710 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1711
1712 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1713 // operator "" X (str, len)
1714 QualType SizeType = Context.getSizeType();
1715
1716 DeclarationName OpName =
1717 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1718 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1719 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1720
1721 QualType ArgTy[] = {
1722 Context.getArrayDecayedType(StrTy), SizeType
1723 };
1724
1725 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1726 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1727 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1728 /*AllowStringTemplate*/ true,
1729 /*DiagnoseMissing*/ true)) {
1730
1731 case LOLR_Cooked: {
1732 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1733 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1734 StringTokLocs[0]);
1735 Expr *Args[] = { Lit, LenArg };
1736
1737 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1738 }
1739
1740 case LOLR_StringTemplate: {
1741 TemplateArgumentListInfo ExplicitArgs;
1742
1743 unsigned CharBits = Context.getIntWidth(CharTy);
1744 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1745 llvm::APSInt Value(CharBits, CharIsUnsigned);
1746
1747 TemplateArgument TypeArg(CharTy);
1748 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1749 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1750
1751 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1752 Value = Lit->getCodeUnit(I);
1753 TemplateArgument Arg(Context, Value, CharTy);
1754 TemplateArgumentLocInfo ArgInfo;
1755 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1756 }
1757 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1758 &ExplicitArgs);
1759 }
1760 case LOLR_Raw:
1761 case LOLR_Template:
1762 case LOLR_ErrorNoDiagnostic:
1763 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1763)
;
1764 case LOLR_Error:
1765 return ExprError();
1766 }
1767 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 1767)
;
1768}
1769
1770DeclRefExpr *
1771Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1772 SourceLocation Loc,
1773 const CXXScopeSpec *SS) {
1774 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1775 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1776}
1777
1778DeclRefExpr *
1779Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1780 const DeclarationNameInfo &NameInfo,
1781 const CXXScopeSpec *SS, NamedDecl *FoundD,
1782 SourceLocation TemplateKWLoc,
1783 const TemplateArgumentListInfo *TemplateArgs) {
1784 NestedNameSpecifierLoc NNS =
1785 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1786 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1787 TemplateArgs);
1788}
1789
1790NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1791 // A declaration named in an unevaluated operand never constitutes an odr-use.
1792 if (isUnevaluatedContext())
1793 return NOUR_Unevaluated;
1794
1795 // C++2a [basic.def.odr]p4:
1796 // A variable x whose name appears as a potentially-evaluated expression e
1797 // is odr-used by e unless [...] x is a reference that is usable in
1798 // constant expressions.
1799 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
1800 if (VD->getType()->isReferenceType() &&
1801 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
1802 VD->isUsableInConstantExpressions(Context))
1803 return NOUR_Constant;
1804 }
1805
1806 // All remaining non-variable cases constitute an odr-use. For variables, we
1807 // need to wait and see how the expression is used.
1808 return NOUR_None;
1809}
1810
1811/// BuildDeclRefExpr - Build an expression that references a
1812/// declaration that does not require a closure capture.
1813DeclRefExpr *
1814Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1815 const DeclarationNameInfo &NameInfo,
1816 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
1817 SourceLocation TemplateKWLoc,
1818 const TemplateArgumentListInfo *TemplateArgs) {
1819 bool RefersToCapturedVariable =
1820 isa<VarDecl>(D) &&
1821 NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
1822
1823 DeclRefExpr *E = DeclRefExpr::Create(
1824 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
1825 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
1826 MarkDeclRefReferenced(E);
1827
1828 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
1829 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
1830 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
1831 getCurFunction()->recordUseOfWeak(E);
1832
1833 FieldDecl *FD = dyn_cast<FieldDecl>(D);
1834 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
1835 FD = IFD->getAnonField();
1836 if (FD) {
1837 UnusedPrivateFields.remove(FD);
1838 // Just in case we're building an illegal pointer-to-member.
1839 if (FD->isBitField())
1840 E->setObjectKind(OK_BitField);
1841 }
1842
1843 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
1844 // designates a bit-field.
1845 if (auto *BD = dyn_cast<BindingDecl>(D))
1846 if (auto *BE = BD->getBinding())
1847 E->setObjectKind(BE->getObjectKind());
1848
1849 return E;
1850}
1851
1852/// Decomposes the given name into a DeclarationNameInfo, its location, and
1853/// possibly a list of template arguments.
1854///
1855/// If this produces template arguments, it is permitted to call
1856/// DecomposeTemplateName.
1857///
1858/// This actually loses a lot of source location information for
1859/// non-standard name kinds; we should consider preserving that in
1860/// some way.
1861void
1862Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
1863 TemplateArgumentListInfo &Buffer,
1864 DeclarationNameInfo &NameInfo,
1865 const TemplateArgumentListInfo *&TemplateArgs) {
1866 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
1867 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
1868 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
1869
1870 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
1871 Id.TemplateId->NumArgs);
1872 translateTemplateArguments(TemplateArgsPtr, Buffer);
1873
1874 TemplateName TName = Id.TemplateId->Template.get();
1875 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
1876 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
1877 TemplateArgs = &Buffer;
1878 } else {
1879 NameInfo = GetNameFromUnqualifiedId(Id);
1880 TemplateArgs = nullptr;
1881 }
1882}
1883
1884static void emitEmptyLookupTypoDiagnostic(
1885 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
1886 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
1887 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
1888 DeclContext *Ctx =
1889 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
1890 if (!TC) {
1891 // Emit a special diagnostic for failed member lookups.
1892 // FIXME: computing the declaration context might fail here (?)
1893 if (Ctx)
1894 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
1895 << SS.getRange();
1896 else
1897 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
1898 return;
1899 }
1900
1901 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
1902 bool DroppedSpecifier =
1903 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
1904 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
1905 ? diag::note_implicit_param_decl
1906 : diag::note_previous_decl;
1907 if (!Ctx)
1908 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
1909 SemaRef.PDiag(NoteID));
1910 else
1911 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
1912 << Typo << Ctx << DroppedSpecifier
1913 << SS.getRange(),
1914 SemaRef.PDiag(NoteID));
1915}
1916
1917/// Diagnose an empty lookup.
1918///
1919/// \return false if new lookup candidates were found
1920bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
1921 CorrectionCandidateCallback &CCC,
1922 TemplateArgumentListInfo *ExplicitTemplateArgs,
1923 ArrayRef<Expr *> Args, TypoExpr **Out) {
1924 DeclarationName Name = R.getLookupName();
1925
1926 unsigned diagnostic = diag::err_undeclared_var_use;
1927 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
1928 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
1929 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
1930 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
1931 diagnostic = diag::err_undeclared_use;
1932 diagnostic_suggest = diag::err_undeclared_use_suggest;
1933 }
1934
1935 // If the original lookup was an unqualified lookup, fake an
1936 // unqualified lookup. This is useful when (for example) the
1937 // original lookup would not have found something because it was a
1938 // dependent name.
1939 DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
1940 while (DC) {
1941 if (isa<CXXRecordDecl>(DC)) {
1942 LookupQualifiedName(R, DC);
1943
1944 if (!R.empty()) {
1945 // Don't give errors about ambiguities in this lookup.
1946 R.suppressDiagnostics();
1947
1948 // During a default argument instantiation the CurContext points
1949 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
1950 // function parameter list, hence add an explicit check.
1951 bool isDefaultArgument =
1952 !CodeSynthesisContexts.empty() &&
1953 CodeSynthesisContexts.back().Kind ==
1954 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
1955 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1956 bool isInstance = CurMethod &&
1957 CurMethod->isInstance() &&
1958 DC == CurMethod->getParent() && !isDefaultArgument;
1959
1960 // Give a code modification hint to insert 'this->'.
1961 // TODO: fixit for inserting 'Base<T>::' in the other cases.
1962 // Actually quite difficult!
1963 if (getLangOpts().MSVCCompat)
1964 diagnostic = diag::ext_found_via_dependent_bases_lookup;
1965 if (isInstance) {
1966 Diag(R.getNameLoc(), diagnostic) << Name
1967 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
1968 CheckCXXThisCapture(R.getNameLoc());
1969 } else {
1970 Diag(R.getNameLoc(), diagnostic) << Name;
1971 }
1972
1973 // Do we really want to note all of these?
1974 for (NamedDecl *D : R)
1975 Diag(D->getLocation(), diag::note_dependent_var_use);
1976
1977 // Return true if we are inside a default argument instantiation
1978 // and the found name refers to an instance member function, otherwise
1979 // the function calling DiagnoseEmptyLookup will try to create an
1980 // implicit member call and this is wrong for default argument.
1981 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
1982 Diag(R.getNameLoc(), diag::err_member_call_without_object);
1983 return true;
1984 }
1985
1986 // Tell the callee to try to recover.
1987 return false;
1988 }
1989
1990 R.clear();
1991 }
1992
1993 DC = DC->getLookupParent();
1994 }
1995
1996 // We didn't find anything, so try to correct for a typo.
1997 TypoCorrection Corrected;
1998 if (S && Out) {
1999 SourceLocation TypoLoc = R.getNameLoc();
2000 assert(!ExplicitTemplateArgs &&((!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? static_cast<void> (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2001, __PRETTY_FUNCTION__))
2001 "Diagnosing an empty lookup with explicit template args!")((!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? static_cast<void> (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2001, __PRETTY_FUNCTION__))
;
2002 *Out = CorrectTypoDelayed(
2003 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2004 [=](const TypoCorrection &TC) {
2005 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2006 diagnostic, diagnostic_suggest);
2007 },
2008 nullptr, CTK_ErrorRecovery);
2009 if (*Out)
2010 return true;
2011 } else if (S &&
2012 (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2013 S, &SS, CCC, CTK_ErrorRecovery))) {
2014 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2015 bool DroppedSpecifier =
2016 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2017 R.setLookupName(Corrected.getCorrection());
2018
2019 bool AcceptableWithRecovery = false;
2020 bool AcceptableWithoutRecovery = false;
2021 NamedDecl *ND = Corrected.getFoundDecl();
2022 if (ND) {
2023 if (Corrected.isOverloaded()) {
2024 OverloadCandidateSet OCS(R.getNameLoc(),
2025 OverloadCandidateSet::CSK_Normal);
2026 OverloadCandidateSet::iterator Best;
2027 for (NamedDecl *CD : Corrected) {
2028 if (FunctionTemplateDecl *FTD =
2029 dyn_cast<FunctionTemplateDecl>(CD))
2030 AddTemplateOverloadCandidate(
2031 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2032 Args, OCS);
2033 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2034 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2035 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2036 Args, OCS);
2037 }
2038 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2039 case OR_Success:
2040 ND = Best->FoundDecl;
2041 Corrected.setCorrectionDecl(ND);
2042 break;
2043 default:
2044 // FIXME: Arbitrarily pick the first declaration for the note.
2045 Corrected.setCorrectionDecl(ND);
2046 break;
2047 }
2048 }
2049 R.addDecl(ND);
2050 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2051 CXXRecordDecl *Record = nullptr;
2052 if (Corrected.getCorrectionSpecifier()) {
2053 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2054 Record = Ty->getAsCXXRecordDecl();
2055 }
2056 if (!Record)
2057 Record = cast<CXXRecordDecl>(
2058 ND->getDeclContext()->getRedeclContext());
2059 R.setNamingClass(Record);
2060 }
2061
2062 auto *UnderlyingND = ND->getUnderlyingDecl();
2063 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2064 isa<FunctionTemplateDecl>(UnderlyingND);
2065 // FIXME: If we ended up with a typo for a type name or
2066 // Objective-C class name, we're in trouble because the parser
2067 // is in the wrong place to recover. Suggest the typo
2068 // correction, but don't make it a fix-it since we're not going
2069 // to recover well anyway.
2070 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2071 getAsTypeTemplateDecl(UnderlyingND) ||
2072 isa<ObjCInterfaceDecl>(UnderlyingND);
2073 } else {
2074 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2075 // because we aren't able to recover.
2076 AcceptableWithoutRecovery = true;
2077 }
2078
2079 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2080 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2081 ? diag::note_implicit_param_decl
2082 : diag::note_previous_decl;
2083 if (SS.isEmpty())
2084 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2085 PDiag(NoteID), AcceptableWithRecovery);
2086 else
2087 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2088 << Name << computeDeclContext(SS, false)
2089 << DroppedSpecifier << SS.getRange(),
2090 PDiag(NoteID), AcceptableWithRecovery);
2091
2092 // Tell the callee whether to try to recover.
2093 return !AcceptableWithRecovery;
2094 }
2095 }
2096 R.clear();
2097
2098 // Emit a special diagnostic for failed member lookups.
2099 // FIXME: computing the declaration context might fail here (?)
2100 if (!SS.isEmpty()) {
2101 Diag(R.getNameLoc(), diag::err_no_member)
2102 << Name << computeDeclContext(SS, false)
2103 << SS.getRange();
2104 return true;
2105 }
2106
2107 // Give up, we can't recover.
2108 Diag(R.getNameLoc(), diagnostic) << Name;
2109 return true;
2110}
2111
2112/// In Microsoft mode, if we are inside a template class whose parent class has
2113/// dependent base classes, and we can't resolve an unqualified identifier, then
2114/// assume the identifier is a member of a dependent base class. We can only
2115/// recover successfully in static methods, instance methods, and other contexts
2116/// where 'this' is available. This doesn't precisely match MSVC's
2117/// instantiation model, but it's close enough.
2118static Expr *
2119recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2120 DeclarationNameInfo &NameInfo,
2121 SourceLocation TemplateKWLoc,
2122 const TemplateArgumentListInfo *TemplateArgs) {
2123 // Only try to recover from lookup into dependent bases in static methods or
2124 // contexts where 'this' is available.
2125 QualType ThisType = S.getCurrentThisType();
2126 const CXXRecordDecl *RD = nullptr;
2127 if (!ThisType.isNull())
2128 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2129 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2130 RD = MD->getParent();
2131 if (!RD || !RD->hasAnyDependentBases())
2132 return nullptr;
2133
2134 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2135 // is available, suggest inserting 'this->' as a fixit.
2136 SourceLocation Loc = NameInfo.getLoc();
2137 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2138 DB << NameInfo.getName() << RD;
2139
2140 if (!ThisType.isNull()) {
2141 DB << FixItHint::CreateInsertion(Loc, "this->");
2142 return CXXDependentScopeMemberExpr::Create(
2143 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2144 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2145 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2146 }
2147
2148 // Synthesize a fake NNS that points to the derived class. This will
2149 // perform name lookup during template instantiation.
2150 CXXScopeSpec SS;
2151 auto *NNS =
2152 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2153 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2154 return DependentScopeDeclRefExpr::Create(
2155 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2156 TemplateArgs);
2157}
2158
2159ExprResult
2160Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2161 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2162 bool HasTrailingLParen, bool IsAddressOfOperand,
2163 CorrectionCandidateCallback *CCC,
2164 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2165 assert(!(IsAddressOfOperand && HasTrailingLParen) &&((!(IsAddressOfOperand && HasTrailingLParen) &&
"cannot be direct & operand and have a trailing lparen")
? static_cast<void> (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2166, __PRETTY_FUNCTION__))
2166 "cannot be direct & operand and have a trailing lparen")((!(IsAddressOfOperand && HasTrailingLParen) &&
"cannot be direct & operand and have a trailing lparen")
? static_cast<void> (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2166, __PRETTY_FUNCTION__))
;
2167 if (SS.isInvalid())
2168 return ExprError();
2169
2170 TemplateArgumentListInfo TemplateArgsBuffer;
2171
2172 // Decompose the UnqualifiedId into the following data.
2173 DeclarationNameInfo NameInfo;
2174 const TemplateArgumentListInfo *TemplateArgs;
2175 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2176
2177 DeclarationName Name = NameInfo.getName();
2178 IdentifierInfo *II = Name.getAsIdentifierInfo();
2179 SourceLocation NameLoc = NameInfo.getLoc();
2180
2181 if (II && II->isEditorPlaceholder()) {
2182 // FIXME: When typed placeholders are supported we can create a typed
2183 // placeholder expression node.
2184 return ExprError();
2185 }
2186
2187 // C++ [temp.dep.expr]p3:
2188 // An id-expression is type-dependent if it contains:
2189 // -- an identifier that was declared with a dependent type,
2190 // (note: handled after lookup)
2191 // -- a template-id that is dependent,
2192 // (note: handled in BuildTemplateIdExpr)
2193 // -- a conversion-function-id that specifies a dependent type,
2194 // -- a nested-name-specifier that contains a class-name that
2195 // names a dependent type.
2196 // Determine whether this is a member of an unknown specialization;
2197 // we need to handle these differently.
2198 bool DependentID = false;
2199 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2200 Name.getCXXNameType()->isDependentType()) {
2201 DependentID = true;
2202 } else if (SS.isSet()) {
2203 if (DeclContext *DC = computeDeclContext(SS, false)) {
2204 if (RequireCompleteDeclContext(SS, DC))
2205 return ExprError();
2206 } else {
2207 DependentID = true;
2208 }
2209 }
2210
2211 if (DependentID)
2212 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2213 IsAddressOfOperand, TemplateArgs);
2214
2215 // Perform the required lookup.
2216 LookupResult R(*this, NameInfo,
2217 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2218 ? LookupObjCImplicitSelfParam
2219 : LookupOrdinaryName);
2220 if (TemplateKWLoc.isValid() || TemplateArgs) {
2221 // Lookup the template name again to correctly establish the context in
2222 // which it was found. This is really unfortunate as we already did the
2223 // lookup to determine that it was a template name in the first place. If
2224 // this becomes a performance hit, we can work harder to preserve those
2225 // results until we get here but it's likely not worth it.
2226 bool MemberOfUnknownSpecialization;
2227 AssumedTemplateKind AssumedTemplate;
2228 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2229 MemberOfUnknownSpecialization, TemplateKWLoc,
2230 &AssumedTemplate))
2231 return ExprError();
2232
2233 if (MemberOfUnknownSpecialization ||
2234 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2235 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2236 IsAddressOfOperand, TemplateArgs);
2237 } else {
2238 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2239 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2240
2241 // If the result might be in a dependent base class, this is a dependent
2242 // id-expression.
2243 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2244 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2245 IsAddressOfOperand, TemplateArgs);
2246
2247 // If this reference is in an Objective-C method, then we need to do
2248 // some special Objective-C lookup, too.
2249 if (IvarLookupFollowUp) {
2250 ExprResult E(LookupInObjCMethod(R, S, II, true));
2251 if (E.isInvalid())
2252 return ExprError();
2253
2254 if (Expr *Ex = E.getAs<Expr>())
2255 return Ex;
2256 }
2257 }
2258
2259 if (R.isAmbiguous())
2260 return ExprError();
2261
2262 // This could be an implicitly declared function reference (legal in C90,
2263 // extension in C99, forbidden in C++).
2264 if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2265 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2266 if (D) R.addDecl(D);
2267 }
2268
2269 // Determine whether this name might be a candidate for
2270 // argument-dependent lookup.
2271 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2272
2273 if (R.empty() && !ADL) {
2274 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2275 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2276 TemplateKWLoc, TemplateArgs))
2277 return E;
2278 }
2279
2280 // Don't diagnose an empty lookup for inline assembly.
2281 if (IsInlineAsmIdentifier)
2282 return ExprError();
2283
2284 // If this name wasn't predeclared and if this is not a function
2285 // call, diagnose the problem.
2286 TypoExpr *TE = nullptr;
2287 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2288 : nullptr);
2289 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2290 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&(((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
"Typo correction callback misconfigured") ? static_cast<void
> (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2291, __PRETTY_FUNCTION__))
2291 "Typo correction callback misconfigured")(((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
"Typo correction callback misconfigured") ? static_cast<void
> (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2291, __PRETTY_FUNCTION__))
;
2292 if (CCC) {
2293 // Make sure the callback knows what the typo being diagnosed is.
2294 CCC->setTypoName(II);
2295 if (SS.isValid())
2296 CCC->setTypoNNS(SS.getScopeRep());
2297 }
2298 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2299 // a template name, but we happen to have always already looked up the name
2300 // before we get here if it must be a template name.
2301 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2302 None, &TE)) {
2303 if (TE && KeywordReplacement) {
2304 auto &State = getTypoExprState(TE);
2305 auto BestTC = State.Consumer->getNextCorrection();
2306 if (BestTC.isKeyword()) {
2307 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2308 if (State.DiagHandler)
2309 State.DiagHandler(BestTC);
2310 KeywordReplacement->startToken();
2311 KeywordReplacement->setKind(II->getTokenID());
2312 KeywordReplacement->setIdentifierInfo(II);
2313 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2314 // Clean up the state associated with the TypoExpr, since it has
2315 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2316 clearDelayedTypo(TE);
2317 // Signal that a correction to a keyword was performed by returning a
2318 // valid-but-null ExprResult.
2319 return (Expr*)nullptr;
2320 }
2321 State.Consumer->resetCorrectionStream();
2322 }
2323 return TE ? TE : ExprError();
2324 }
2325
2326 assert(!R.empty() &&((!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2327, __PRETTY_FUNCTION__))
2327 "DiagnoseEmptyLookup returned false but added no results")((!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2327, __PRETTY_FUNCTION__))
;
2328
2329 // If we found an Objective-C instance variable, let
2330 // LookupInObjCMethod build the appropriate expression to
2331 // reference the ivar.
2332 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2333 R.clear();
2334 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2335 // In a hopelessly buggy code, Objective-C instance variable
2336 // lookup fails and no expression will be built to reference it.
2337 if (!E.isInvalid() && !E.get())
2338 return ExprError();
2339 return E;
2340 }
2341 }
2342
2343 // This is guaranteed from this point on.
2344 assert(!R.empty() || ADL)((!R.empty() || ADL) ? static_cast<void> (0) : __assert_fail
("!R.empty() || ADL", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2344, __PRETTY_FUNCTION__))
;
2345
2346 // Check whether this might be a C++ implicit instance member access.
2347 // C++ [class.mfct.non-static]p3:
2348 // When an id-expression that is not part of a class member access
2349 // syntax and not used to form a pointer to member is used in the
2350 // body of a non-static member function of class X, if name lookup
2351 // resolves the name in the id-expression to a non-static non-type
2352 // member of some class C, the id-expression is transformed into a
2353 // class member access expression using (*this) as the
2354 // postfix-expression to the left of the . operator.
2355 //
2356 // But we don't actually need to do this for '&' operands if R
2357 // resolved to a function or overloaded function set, because the
2358 // expression is ill-formed if it actually works out to be a
2359 // non-static member function:
2360 //
2361 // C++ [expr.ref]p4:
2362 // Otherwise, if E1.E2 refers to a non-static member function. . .
2363 // [t]he expression can be used only as the left-hand operand of a
2364 // member function call.
2365 //
2366 // There are other safeguards against such uses, but it's important
2367 // to get this right here so that we don't end up making a
2368 // spuriously dependent expression if we're inside a dependent
2369 // instance method.
2370 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2371 bool MightBeImplicitMember;
2372 if (!IsAddressOfOperand)
2373 MightBeImplicitMember = true;
2374 else if (!SS.isEmpty())
2375 MightBeImplicitMember = false;
2376 else if (R.isOverloadedResult())
2377 MightBeImplicitMember = false;
2378 else if (R.isUnresolvableResult())
2379 MightBeImplicitMember = true;
2380 else
2381 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2382 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2383 isa<MSPropertyDecl>(R.getFoundDecl());
2384
2385 if (MightBeImplicitMember)
2386 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2387 R, TemplateArgs, S);
2388 }
2389
2390 if (TemplateArgs || TemplateKWLoc.isValid()) {
2391
2392 // In C++1y, if this is a variable template id, then check it
2393 // in BuildTemplateIdExpr().
2394 // The single lookup result must be a variable template declaration.
2395 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2396 Id.TemplateId->Kind == TNK_Var_template) {
2397 assert(R.getAsSingle<VarTemplateDecl>() &&((R.getAsSingle<VarTemplateDecl>() && "There should only be one declaration found."
) ? static_cast<void> (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2398, __PRETTY_FUNCTION__))
2398 "There should only be one declaration found.")((R.getAsSingle<VarTemplateDecl>() && "There should only be one declaration found."
) ? static_cast<void> (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2398, __PRETTY_FUNCTION__))
;
2399 }
2400
2401 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2402 }
2403
2404 return BuildDeclarationNameExpr(SS, R, ADL);
2405}
2406
2407/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2408/// declaration name, generally during template instantiation.
2409/// There's a large number of things which don't need to be done along
2410/// this path.
2411ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2412 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2413 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2414 DeclContext *DC = computeDeclContext(SS, false);
2415 if (!DC)
2416 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2417 NameInfo, /*TemplateArgs=*/nullptr);
2418
2419 if (RequireCompleteDeclContext(SS, DC))
2420 return ExprError();
2421
2422 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2423 LookupQualifiedName(R, DC);
2424
2425 if (R.isAmbiguous())
2426 return ExprError();
2427
2428 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2429 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2430 NameInfo, /*TemplateArgs=*/nullptr);
2431
2432 if (R.empty()) {
2433 Diag(NameInfo.getLoc(), diag::err_no_member)
2434 << NameInfo.getName() << DC << SS.getRange();
2435 return ExprError();
2436 }
2437
2438 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2439 // Diagnose a missing typename if this resolved unambiguously to a type in
2440 // a dependent context. If we can recover with a type, downgrade this to
2441 // a warning in Microsoft compatibility mode.
2442 unsigned DiagID = diag::err_typename_missing;
2443 if (RecoveryTSI && getLangOpts().MSVCCompat)
2444 DiagID = diag::ext_typename_missing;
2445 SourceLocation Loc = SS.getBeginLoc();
2446 auto D = Diag(Loc, DiagID);
2447 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2448 << SourceRange(Loc, NameInfo.getEndLoc());
2449
2450 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2451 // context.
2452 if (!RecoveryTSI)
2453 return ExprError();
2454
2455 // Only issue the fixit if we're prepared to recover.
2456 D << FixItHint::CreateInsertion(Loc, "typename ");
2457
2458 // Recover by pretending this was an elaborated type.
2459 QualType Ty = Context.getTypeDeclType(TD);
2460 TypeLocBuilder TLB;
2461 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2462
2463 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2464 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2465 QTL.setElaboratedKeywordLoc(SourceLocation());
2466 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2467
2468 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2469
2470 return ExprEmpty();
2471 }
2472
2473 // Defend against this resolving to an implicit member access. We usually
2474 // won't get here if this might be a legitimate a class member (we end up in
2475 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2476 // a pointer-to-member or in an unevaluated context in C++11.
2477 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2478 return BuildPossibleImplicitMemberExpr(SS,
2479 /*TemplateKWLoc=*/SourceLocation(),
2480 R, /*TemplateArgs=*/nullptr, S);
2481
2482 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2483}
2484
2485/// The parser has read a name in, and Sema has detected that we're currently
2486/// inside an ObjC method. Perform some additional checks and determine if we
2487/// should form a reference to an ivar.
2488///
2489/// Ideally, most of this would be done by lookup, but there's
2490/// actually quite a lot of extra work involved.
2491DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2492 IdentifierInfo *II) {
2493 SourceLocation Loc = Lookup.getNameLoc();
2494 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2495
2496 // Check for error condition which is already reported.
2497 if (!CurMethod)
2498 return DeclResult(true);
2499
2500 // There are two cases to handle here. 1) scoped lookup could have failed,
2501 // in which case we should look for an ivar. 2) scoped lookup could have
2502 // found a decl, but that decl is outside the current instance method (i.e.
2503 // a global variable). In these two cases, we do a lookup for an ivar with
2504 // this name, if the lookup sucedes, we replace it our current decl.
2505
2506 // If we're in a class method, we don't normally want to look for
2507 // ivars. But if we don't find anything else, and there's an
2508 // ivar, that's an error.
2509 bool IsClassMethod = CurMethod->isClassMethod();
2510
2511 bool LookForIvars;
2512 if (Lookup.empty())
2513 LookForIvars = true;
2514 else if (IsClassMethod)
2515 LookForIvars = false;
2516 else
2517 LookForIvars = (Lookup.isSingleResult() &&
2518 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2519 ObjCInterfaceDecl *IFace = nullptr;
2520 if (LookForIvars) {
2521 IFace = CurMethod->getClassInterface();
2522 ObjCInterfaceDecl *ClassDeclared;
2523 ObjCIvarDecl *IV = nullptr;
2524 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2525 // Diagnose using an ivar in a class method.
2526 if (IsClassMethod) {
2527 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2528 return DeclResult(true);
2529 }
2530
2531 // Diagnose the use of an ivar outside of the declaring class.
2532 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2533 !declaresSameEntity(ClassDeclared, IFace) &&
2534 !getLangOpts().DebuggerSupport)
2535 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2536
2537 // Success.
2538 return IV;
2539 }
2540 } else if (CurMethod->isInstanceMethod()) {
2541 // We should warn if a local variable hides an ivar.
2542 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2543 ObjCInterfaceDecl *ClassDeclared;
2544 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2545 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2546 declaresSameEntity(IFace, ClassDeclared))
2547 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2548 }
2549 }
2550 } else if (Lookup.isSingleResult() &&
2551 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2552 // If accessing a stand-alone ivar in a class method, this is an error.
2553 if (const ObjCIvarDecl *IV =
2554 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2555 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2556 return DeclResult(true);
2557 }
2558 }
2559
2560 // Didn't encounter an error, didn't find an ivar.
2561 return DeclResult(false);
2562}
2563
2564ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2565 ObjCIvarDecl *IV) {
2566 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2567 assert(CurMethod && CurMethod->isInstanceMethod() &&((CurMethod && CurMethod->isInstanceMethod() &&
"should not reference ivar from this context") ? static_cast
<void> (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2568, __PRETTY_FUNCTION__))
2568 "should not reference ivar from this context")((CurMethod && CurMethod->isInstanceMethod() &&
"should not reference ivar from this context") ? static_cast
<void> (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2568, __PRETTY_FUNCTION__))
;
2569
2570 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2571 assert(IFace && "should not reference ivar from this context")((IFace && "should not reference ivar from this context"
) ? static_cast<void> (0) : __assert_fail ("IFace && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2571, __PRETTY_FUNCTION__))
;
2572
2573 // If we're referencing an invalid decl, just return this as a silent
2574 // error node. The error diagnostic was already emitted on the decl.
2575 if (IV->isInvalidDecl())
2576 return ExprError();
2577
2578 // Check if referencing a field with __attribute__((deprecated)).
2579 if (DiagnoseUseOfDecl(IV, Loc))
2580 return ExprError();
2581
2582 // FIXME: This should use a new expr for a direct reference, don't
2583 // turn this into Self->ivar, just return a BareIVarExpr or something.
2584 IdentifierInfo &II = Context.Idents.get("self");
2585 UnqualifiedId SelfName;
2586 SelfName.setIdentifier(&II, SourceLocation());
2587 SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam);
2588 CXXScopeSpec SelfScopeSpec;
2589 SourceLocation TemplateKWLoc;
2590 ExprResult SelfExpr =
2591 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2592 /*HasTrailingLParen=*/false,
2593 /*IsAddressOfOperand=*/false);
2594 if (SelfExpr.isInvalid())
2595 return ExprError();
2596
2597 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2598 if (SelfExpr.isInvalid())
2599 return ExprError();
2600
2601 MarkAnyDeclReferenced(Loc, IV, true);
2602
2603 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2604 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2605 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2606 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2607
2608 ObjCIvarRefExpr *Result = new (Context)
2609 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2610 IV->getLocation(), SelfExpr.get(), true, true);
2611
2612 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2613 if (!isUnevaluatedContext() &&
2614 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2615 getCurFunction()->recordUseOfWeak(Result);
2616 }
2617 if (getLangOpts().ObjCAutoRefCount)
2618 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2619 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2620
2621 return Result;
2622}
2623
2624/// The parser has read a name in, and Sema has detected that we're currently
2625/// inside an ObjC method. Perform some additional checks and determine if we
2626/// should form a reference to an ivar. If so, build an expression referencing
2627/// that ivar.
2628ExprResult
2629Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2630 IdentifierInfo *II, bool AllowBuiltinCreation) {
2631 // FIXME: Integrate this lookup step into LookupParsedName.
2632 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2633 if (Ivar.isInvalid())
2634 return ExprError();
2635 if (Ivar.isUsable())
2636 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2637 cast<ObjCIvarDecl>(Ivar.get()));
2638
2639 if (Lookup.empty() && II && AllowBuiltinCreation)
2640 LookupBuiltin(Lookup);
2641
2642 // Sentinel value saying that we didn't do anything special.
2643 return ExprResult(false);
2644}
2645
2646/// Cast a base object to a member's actual type.
2647///
2648/// Logically this happens in three phases:
2649///
2650/// * First we cast from the base type to the naming class.
2651/// The naming class is the class into which we were looking
2652/// when we found the member; it's the qualifier type if a
2653/// qualifier was provided, and otherwise it's the base type.
2654///
2655/// * Next we cast from the naming class to the declaring class.
2656/// If the member we found was brought into a class's scope by
2657/// a using declaration, this is that class; otherwise it's
2658/// the class declaring the member.
2659///
2660/// * Finally we cast from the declaring class to the "true"
2661/// declaring class of the member. This conversion does not
2662/// obey access control.
2663ExprResult
2664Sema::PerformObjectMemberConversion(Expr *From,
2665 NestedNameSpecifier *Qualifier,
2666 NamedDecl *FoundDecl,
2667 NamedDecl *Member) {
2668 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2669 if (!RD)
2670 return From;
2671
2672 QualType DestRecordType;
2673 QualType DestType;
2674 QualType FromRecordType;
2675 QualType FromType = From->getType();
2676 bool PointerConversions = false;
2677 if (isa<FieldDecl>(Member)) {
2678 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2679 auto FromPtrType = FromType->getAs<PointerType>();
2680 DestRecordType = Context.getAddrSpaceQualType(
2681 DestRecordType, FromPtrType
2682 ? FromType->getPointeeType().getAddressSpace()
2683 : FromType.getAddressSpace());
2684
2685 if (FromPtrType) {
2686 DestType = Context.getPointerType(DestRecordType);
2687 FromRecordType = FromPtrType->getPointeeType();
2688 PointerConversions = true;
2689 } else {
2690 DestType = DestRecordType;
2691 FromRecordType = FromType;
2692 }
2693 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2694 if (Method->isStatic())
2695 return From;
2696
2697 DestType = Method->getThisType();
2698 DestRecordType = DestType->getPointeeType();
2699
2700 if (FromType->getAs<PointerType>()) {
2701 FromRecordType = FromType->getPointeeType();
2702 PointerConversions = true;
2703 } else {
2704 FromRecordType = FromType;
2705 DestType = DestRecordType;
2706 }
2707 } else {
2708 // No conversion necessary.
2709 return From;
2710 }
2711
2712 if (DestType->isDependentType() || FromType->isDependentType())
2713 return From;
2714
2715 // If the unqualified types are the same, no conversion is necessary.
2716 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2717 return From;
2718
2719 SourceRange FromRange = From->getSourceRange();
2720 SourceLocation FromLoc = FromRange.getBegin();
2721
2722 ExprValueKind VK = From->getValueKind();
2723
2724 // C++ [class.member.lookup]p8:
2725 // [...] Ambiguities can often be resolved by qualifying a name with its
2726 // class name.
2727 //
2728 // If the member was a qualified name and the qualified referred to a
2729 // specific base subobject type, we'll cast to that intermediate type
2730 // first and then to the object in which the member is declared. That allows
2731 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
2732 //
2733 // class Base { public: int x; };
2734 // class Derived1 : public Base { };
2735 // class Derived2 : public Base { };
2736 // class VeryDerived : public Derived1, public Derived2 { void f(); };
2737 //
2738 // void VeryDerived::f() {
2739 // x = 17; // error: ambiguous base subobjects
2740 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
2741 // }
2742 if (Qualifier && Qualifier->getAsType()) {
2743 QualType QType = QualType(Qualifier->getAsType(), 0);
2744 assert(QType->isRecordType() && "lookup done with non-record type")((QType->isRecordType() && "lookup done with non-record type"
) ? static_cast<void> (0) : __assert_fail ("QType->isRecordType() && \"lookup done with non-record type\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2744, __PRETTY_FUNCTION__))
;
2745
2746 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
2747
2748 // In C++98, the qualifier type doesn't actually have to be a base
2749 // type of the object type, in which case we just ignore it.
2750 // Otherwise build the appropriate casts.
2751 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
2752 CXXCastPath BasePath;
2753 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
2754 FromLoc, FromRange, &BasePath))
2755 return ExprError();
2756
2757 if (PointerConversions)
2758 QType = Context.getPointerType(QType);
2759 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
2760 VK, &BasePath).get();
2761
2762 FromType = QType;
2763 FromRecordType = QRecordType;
2764
2765 // If the qualifier type was the same as the destination type,
2766 // we're done.
2767 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
2768 return From;
2769 }
2770 }
2771
2772 bool IgnoreAccess = false;
2773
2774 // If we actually found the member through a using declaration, cast
2775 // down to the using declaration's type.
2776 //
2777 // Pointer equality is fine here because only one declaration of a
2778 // class ever has member declarations.
2779 if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
2780 assert(isa<UsingShadowDecl>(FoundDecl))((isa<UsingShadowDecl>(FoundDecl)) ? static_cast<void
> (0) : __assert_fail ("isa<UsingShadowDecl>(FoundDecl)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2780, __PRETTY_FUNCTION__))
;
2781 QualType URecordType = Context.getTypeDeclType(
2782 cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
2783
2784 // We only need to do this if the naming-class to declaring-class
2785 // conversion is non-trivial.
2786 if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
2787 assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType))((IsDerivedFrom(FromLoc, FromRecordType, URecordType)) ? static_cast
<void> (0) : __assert_fail ("IsDerivedFrom(FromLoc, FromRecordType, URecordType)"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2787, __PRETTY_FUNCTION__))
;
2788 CXXCastPath BasePath;
2789 if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
2790 FromLoc, FromRange, &BasePath))
2791 return ExprError();
2792
2793 QualType UType = URecordType;
2794 if (PointerConversions)
2795 UType = Context.getPointerType(UType);
2796 From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
2797 VK, &BasePath).get();
2798 FromType = UType;
2799 FromRecordType = URecordType;
2800 }
2801
2802 // We don't do access control for the conversion from the
2803 // declaring class to the true declaring class.
2804 IgnoreAccess = true;
2805 }
2806
2807 CXXCastPath BasePath;
2808 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
2809 FromLoc, FromRange, &BasePath,
2810 IgnoreAccess))
2811 return ExprError();
2812
2813 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
2814 VK, &BasePath);
2815}
2816
2817bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
2818 const LookupResult &R,
2819 bool HasTrailingLParen) {
2820 // Only when used directly as the postfix-expression of a call.
2821 if (!HasTrailingLParen)
2822 return false;
2823
2824 // Never if a scope specifier was provided.
2825 if (SS.isSet())
2826 return false;
2827
2828 // Only in C++ or ObjC++.
2829 if (!getLangOpts().CPlusPlus)
2830 return false;
2831
2832 // Turn off ADL when we find certain kinds of declarations during
2833 // normal lookup:
2834 for (NamedDecl *D : R) {
2835 // C++0x [basic.lookup.argdep]p3:
2836 // -- a declaration of a class member
2837 // Since using decls preserve this property, we check this on the
2838 // original decl.
2839 if (D->isCXXClassMember())
2840 return false;
2841
2842 // C++0x [basic.lookup.argdep]p3:
2843 // -- a block-scope function declaration that is not a
2844 // using-declaration
2845 // NOTE: we also trigger this for function templates (in fact, we
2846 // don't check the decl type at all, since all other decl types
2847 // turn off ADL anyway).
2848 if (isa<UsingShadowDecl>(D))
2849 D = cast<UsingShadowDecl>(D)->getTargetDecl();
2850 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
2851 return false;
2852
2853 // C++0x [basic.lookup.argdep]p3:
2854 // -- a declaration that is neither a function or a function
2855 // template
2856 // And also for builtin functions.
2857 if (isa<FunctionDecl>(D)) {
2858 FunctionDecl *FDecl = cast<FunctionDecl>(D);
2859
2860 // But also builtin functions.
2861 if (FDecl->getBuiltinID() && FDecl->isImplicit())
2862 return false;
2863 } else if (!isa<FunctionTemplateDecl>(D))
2864 return false;
2865 }
2866
2867 return true;
2868}
2869
2870
2871/// Diagnoses obvious problems with the use of the given declaration
2872/// as an expression. This is only actually called for lookups that
2873/// were not overloaded, and it doesn't promise that the declaration
2874/// will in fact be used.
2875static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
2876 if (D->isInvalidDecl())
2877 return true;
2878
2879 if (isa<TypedefNameDecl>(D)) {
2880 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
2881 return true;
2882 }
2883
2884 if (isa<ObjCInterfaceDecl>(D)) {
2885 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
2886 return true;
2887 }
2888
2889 if (isa<NamespaceDecl>(D)) {
2890 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
2891 return true;
2892 }
2893
2894 return false;
2895}
2896
2897// Certain multiversion types should be treated as overloaded even when there is
2898// only one result.
2899static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
2900 assert(R.isSingleResult() && "Expected only a single result")((R.isSingleResult() && "Expected only a single result"
) ? static_cast<void> (0) : __assert_fail ("R.isSingleResult() && \"Expected only a single result\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2900, __PRETTY_FUNCTION__))
;
2901 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
2902 return FD &&
2903 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
2904}
2905
2906ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
2907 LookupResult &R, bool NeedsADL,
2908 bool AcceptInvalidDecl) {
2909 // If this is a single, fully-resolved result and we don't need ADL,
2910 // just build an ordinary singleton decl ref.
2911 if (!NeedsADL && R.isSingleResult() &&
2912 !R.getAsSingle<FunctionTemplateDecl>() &&
2913 !ShouldLookupResultBeMultiVersionOverload(R))
2914 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
2915 R.getRepresentativeDecl(), nullptr,
2916 AcceptInvalidDecl);
2917
2918 // We only need to check the declaration if there's exactly one
2919 // result, because in the overloaded case the results can only be
2920 // functions and function templates.
2921 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
2922 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
2923 return ExprError();
2924
2925 // Otherwise, just build an unresolved lookup expression. Suppress
2926 // any lookup-related diagnostics; we'll hash these out later, when
2927 // we've picked a target.
2928 R.suppressDiagnostics();
2929
2930 UnresolvedLookupExpr *ULE
2931 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2932 SS.getWithLocInContext(Context),
2933 R.getLookupNameInfo(),
2934 NeedsADL, R.isOverloadedResult(),
2935 R.begin(), R.end());
2936
2937 return ULE;
2938}
2939
2940static void
2941diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
2942 ValueDecl *var, DeclContext *DC);
2943
2944/// Complete semantic analysis for a reference to the given declaration.
2945ExprResult Sema::BuildDeclarationNameExpr(
2946 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
2947 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
2948 bool AcceptInvalidDecl) {
2949 assert(D && "Cannot refer to a NULL declaration")((D && "Cannot refer to a NULL declaration") ? static_cast
<void> (0) : __assert_fail ("D && \"Cannot refer to a NULL declaration\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2949, __PRETTY_FUNCTION__))
;
2950 assert(!isa<FunctionTemplateDecl>(D) &&((!isa<FunctionTemplateDecl>(D) && "Cannot refer unambiguously to a function template"
) ? static_cast<void> (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2951, __PRETTY_FUNCTION__))
2951 "Cannot refer unambiguously to a function template")((!isa<FunctionTemplateDecl>(D) && "Cannot refer unambiguously to a function template"
) ? static_cast<void> (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 2951, __PRETTY_FUNCTION__))
;
2952
2953 SourceLocation Loc = NameInfo.getLoc();
2954 if (CheckDeclInExpr(*this, Loc, D))
2955 return ExprError();
2956
2957 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
2958 // Specifically diagnose references to class templates that are missing
2959 // a template argument list.
2960 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
2961 return ExprError();
2962 }
2963
2964 // Make sure that we're referring to a value.
2965 ValueDecl *VD = dyn_cast<ValueDecl>(D);
2966 if (!VD) {
2967 Diag(Loc, diag::err_ref_non_value)
2968 << D << SS.getRange();
2969 Diag(D->getLocation(), diag::note_declared_at);
2970 return ExprError();
2971 }
2972
2973 // Check whether this declaration can be used. Note that we suppress
2974 // this check when we're going to perform argument-dependent lookup
2975 // on this function name, because this might not be the function
2976 // that overload resolution actually selects.
2977 if (DiagnoseUseOfDecl(VD, Loc))
2978 return ExprError();
2979
2980 // Only create DeclRefExpr's for valid Decl's.
2981 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
2982 return ExprError();
2983
2984 // Handle members of anonymous structs and unions. If we got here,
2985 // and the reference is to a class member indirect field, then this
2986 // must be the subject of a pointer-to-member expression.
2987 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
2988 if (!indirectField->isCXXClassMember())
2989 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
2990 indirectField);
2991
2992 {
2993 QualType type = VD->getType();
2994 if (type.isNull())
2995 return ExprError();
2996 if (auto *FPT = type->getAs<FunctionProtoType>()) {
2997 // C++ [except.spec]p17:
2998 // An exception-specification is considered to be needed when:
2999 // - in an expression, the function is the unique lookup result or
3000 // the selected member of a set of overloaded functions.
3001 ResolveExceptionSpec(Loc, FPT);
3002 type = VD->getType();
3003 }
3004 ExprValueKind valueKind = VK_RValue;
3005
3006 switch (D->getKind()) {
3007 // Ignore all the non-ValueDecl kinds.
3008#define ABSTRACT_DECL(kind)
3009#define VALUE(type, base)
3010#define DECL(type, base) \
3011 case Decl::type:
3012#include "clang/AST/DeclNodes.inc"
3013 llvm_unreachable("invalid value decl kind")::llvm::llvm_unreachable_internal("invalid value decl kind", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3013)
;
3014
3015 // These shouldn't make it here.
3016 case Decl::ObjCAtDefsField:
3017 llvm_unreachable("forming non-member reference to ivar?")::llvm::llvm_unreachable_internal("forming non-member reference to ivar?"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3017)
;
3018
3019 // Enum constants are always r-values and never references.
3020 // Unresolved using declarations are dependent.
3021 case Decl::EnumConstant:
3022 case Decl::UnresolvedUsingValue:
3023 case Decl::OMPDeclareReduction:
3024 case Decl::OMPDeclareMapper:
3025 valueKind = VK_RValue;
3026 break;
3027
3028 // Fields and indirect fields that got here must be for
3029 // pointer-to-member expressions; we just call them l-values for
3030 // internal consistency, because this subexpression doesn't really
3031 // exist in the high-level semantics.
3032 case Decl::Field:
3033 case Decl::IndirectField:
3034 case Decl::ObjCIvar:
3035 assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "building reference to field in C?"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"building reference to field in C?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3036, __PRETTY_FUNCTION__))
3036 "building reference to field in C?")((getLangOpts().CPlusPlus && "building reference to field in C?"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"building reference to field in C?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3036, __PRETTY_FUNCTION__))
;
3037
3038 // These can't have reference type in well-formed programs, but
3039 // for internal consistency we do this anyway.
3040 type = type.getNonReferenceType();
3041 valueKind = VK_LValue;
3042 break;
3043
3044 // Non-type template parameters are either l-values or r-values
3045 // depending on the type.
3046 case Decl::NonTypeTemplateParm: {
3047 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3048 type = reftype->getPointeeType();
3049 valueKind = VK_LValue; // even if the parameter is an r-value reference
3050 break;
3051 }
3052
3053 // For non-references, we need to strip qualifiers just in case
3054 // the template parameter was declared as 'const int' or whatever.
3055 valueKind = VK_RValue;
3056 type = type.getUnqualifiedType();
3057 break;
3058 }
3059
3060 case Decl::Var:
3061 case Decl::VarTemplateSpecialization:
3062 case Decl::VarTemplatePartialSpecialization:
3063 case Decl::Decomposition:
3064 case Decl::OMPCapturedExpr:
3065 // In C, "extern void blah;" is valid and is an r-value.
3066 if (!getLangOpts().CPlusPlus &&
3067 !type.hasQualifiers() &&
3068 type->isVoidType()) {
3069 valueKind = VK_RValue;
3070 break;
3071 }
3072 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3073
3074 case Decl::ImplicitParam:
3075 case Decl::ParmVar: {
3076 // These are always l-values.
3077 valueKind = VK_LValue;
3078 type = type.getNonReferenceType();
3079
3080 // FIXME: Does the addition of const really only apply in
3081 // potentially-evaluated contexts? Since the variable isn't actually
3082 // captured in an unevaluated context, it seems that the answer is no.
3083 if (!isUnevaluatedContext()) {
3084 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3085 if (!CapturedType.isNull())
3086 type = CapturedType;
3087 }
3088
3089 break;
3090 }
3091
3092 case Decl::Binding: {
3093 // These are always lvalues.
3094 valueKind = VK_LValue;
3095 type = type.getNonReferenceType();
3096 // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3097 // decides how that's supposed to work.
3098 auto *BD = cast<BindingDecl>(VD);
3099 if (BD->getDeclContext() != CurContext) {
3100 auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3101 if (DD && DD->hasLocalStorage())
3102 diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3103 }
3104 break;
3105 }
3106
3107 case Decl::Function: {
3108 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3109 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3110 type = Context.BuiltinFnTy;
3111 valueKind = VK_RValue;
3112 break;
3113 }
3114 }
3115
3116 const FunctionType *fty = type->castAs<FunctionType>();
3117
3118 // If we're referring to a function with an __unknown_anytype
3119 // result type, make the entire expression __unknown_anytype.
3120 if (fty->getReturnType() == Context.UnknownAnyTy) {
3121 type = Context.UnknownAnyTy;
3122 valueKind = VK_RValue;
3123 break;
3124 }
3125
3126 // Functions are l-values in C++.
3127 if (getLangOpts().CPlusPlus) {
3128 valueKind = VK_LValue;
3129 break;
3130 }
3131
3132 // C99 DR 316 says that, if a function type comes from a
3133 // function definition (without a prototype), that type is only
3134 // used for checking compatibility. Therefore, when referencing
3135 // the function, we pretend that we don't have the full function
3136 // type.
3137 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3138 isa<FunctionProtoType>(fty))
3139 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3140 fty->getExtInfo());
3141
3142 // Functions are r-values in C.
3143 valueKind = VK_RValue;
3144 break;
3145 }
3146
3147 case Decl::CXXDeductionGuide:
3148 llvm_unreachable("building reference to deduction guide")::llvm::llvm_unreachable_internal("building reference to deduction guide"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3148)
;
3149
3150 case Decl::MSProperty:
3151 valueKind = VK_LValue;
3152 break;
3153
3154 case Decl::CXXMethod:
3155 // If we're referring to a method with an __unknown_anytype
3156 // result type, make the entire expression __unknown_anytype.
3157 // This should only be possible with a type written directly.
3158 if (const FunctionProtoType *proto
3159 = dyn_cast<FunctionProtoType>(VD->getType()))
3160 if (proto->getReturnType() == Context.UnknownAnyTy) {
3161 type = Context.UnknownAnyTy;
3162 valueKind = VK_RValue;
3163 break;
3164 }
3165
3166 // C++ methods are l-values if static, r-values if non-static.
3167 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3168 valueKind = VK_LValue;
3169 break;
3170 }
3171 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3172
3173 case Decl::CXXConversion:
3174 case Decl::CXXDestructor:
3175 case Decl::CXXConstructor:
3176 valueKind = VK_RValue;
3177 break;
3178 }
3179
3180 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3181 /*FIXME: TemplateKWLoc*/ SourceLocation(),
3182 TemplateArgs);
3183 }
3184}
3185
3186static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3187 SmallString<32> &Target) {
3188 Target.resize(CharByteWidth * (Source.size() + 1));
3189 char *ResultPtr = &Target[0];
3190 const llvm::UTF8 *ErrorPtr;
3191 bool success =
3192 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3193 (void)success;
3194 assert(success)((success) ? static_cast<void> (0) : __assert_fail ("success"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3194, __PRETTY_FUNCTION__))
;
3195 Target.resize(ResultPtr - &Target[0]);
3196}
3197
3198ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3199 PredefinedExpr::IdentKind IK) {
3200 // Pick the current block, lambda, captured statement or function.
3201 Decl *currentDecl = nullptr;
3202 if (const BlockScopeInfo *BSI = getCurBlock())
3203 currentDecl = BSI->TheDecl;
3204 else if (const LambdaScopeInfo *LSI = getCurLambda())
3205 currentDecl = LSI->CallOperator;
3206 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3207 currentDecl = CSI->TheCapturedDecl;
3208 else
3209 currentDecl = getCurFunctionOrMethodDecl();
3210
3211 if (!currentDecl) {
3212 Diag(Loc, diag::ext_predef_outside_function);
3213 currentDecl = Context.getTranslationUnitDecl();
3214 }
3215
3216 QualType ResTy;
3217 StringLiteral *SL = nullptr;
3218 if (cast<DeclContext>(currentDecl)->isDependentContext())
3219 ResTy = Context.DependentTy;
3220 else {
3221 // Pre-defined identifiers are of type char[x], where x is the length of
3222 // the string.
3223 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3224 unsigned Length = Str.length();
3225
3226 llvm::APInt LengthI(32, Length + 1);
3227 if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3228 ResTy =
3229 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3230 SmallString<32> RawChars;
3231 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3232 Str, RawChars);
3233 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3234 ArrayType::Normal,
3235 /*IndexTypeQuals*/ 0);
3236 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3237 /*Pascal*/ false, ResTy, Loc);
3238 } else {
3239 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3240 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3241 ArrayType::Normal,
3242 /*IndexTypeQuals*/ 0);
3243 SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3244 /*Pascal*/ false, ResTy, Loc);
3245 }
3246 }
3247
3248 return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3249}
3250
3251ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3252 PredefinedExpr::IdentKind IK;
3253
3254 switch (Kind) {
3255 default: llvm_unreachable("Unknown simple primary expr!")::llvm::llvm_unreachable_internal("Unknown simple primary expr!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3255)
;
3256 case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3257 case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3258 case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3259 case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3260 case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3261 case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3262 case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3263 }
3264
3265 return BuildPredefinedExpr(Loc, IK);
3266}
3267
3268ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3269 SmallString<16> CharBuffer;
3270 bool Invalid = false;
3271 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3272 if (Invalid)
3273 return ExprError();
3274
3275 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3276 PP, Tok.getKind());
3277 if (Literal.hadError())
3278 return ExprError();
3279
3280 QualType Ty;
3281 if (Literal.isWide())
3282 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3283 else if (Literal.isUTF8() && getLangOpts().Char8)
3284 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3285 else if (Literal.isUTF16())
3286 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3287 else if (Literal.isUTF32())
3288 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3289 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3290 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3291 else
3292 Ty = Context.CharTy; // 'x' -> char in C++
3293
3294 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3295 if (Literal.isWide())
3296 Kind = CharacterLiteral::Wide;
3297 else if (Literal.isUTF16())
3298 Kind = CharacterLiteral::UTF16;
3299 else if (Literal.isUTF32())
3300 Kind = CharacterLiteral::UTF32;
3301 else if (Literal.isUTF8())
3302 Kind = CharacterLiteral::UTF8;
3303
3304 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3305 Tok.getLocation());
3306
3307 if (Literal.getUDSuffix().empty())
3308 return Lit;
3309
3310 // We're building a user-defined literal.
3311 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3312 SourceLocation UDSuffixLoc =
3313 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3314
3315 // Make sure we're allowed user-defined literals here.
3316 if (!UDLScope)
3317 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3318
3319 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3320 // operator "" X (ch)
3321 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3322 Lit, Tok.getLocation());
3323}
3324
3325ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3326 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3327 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3328 Context.IntTy, Loc);
3329}
3330
3331static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3332 QualType Ty, SourceLocation Loc) {
3333 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3334
3335 using llvm::APFloat;
3336 APFloat Val(Format);
3337
3338 APFloat::opStatus result = Literal.GetFloatValue(Val);
3339
3340 // Overflow is always an error, but underflow is only an error if
3341 // we underflowed to zero (APFloat reports denormals as underflow).
3342 if ((result & APFloat::opOverflow) ||
3343 ((result & APFloat::opUnderflow) && Val.isZero())) {
3344 unsigned diagnostic;
3345 SmallString<20> buffer;
3346 if (result & APFloat::opOverflow) {
3347 diagnostic = diag::warn_float_overflow;
3348 APFloat::getLargest(Format).toString(buffer);
3349 } else {
3350 diagnostic = diag::warn_float_underflow;
3351 APFloat::getSmallest(Format).toString(buffer);
3352 }
3353
3354 S.Diag(Loc, diagnostic)
3355 << Ty
3356 << StringRef(buffer.data(), buffer.size());
3357 }
3358
3359 bool isExact = (result == APFloat::opOK);
3360 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3361}
3362
3363bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3364 assert(E && "Invalid expression")((E && "Invalid expression") ? static_cast<void>
(0) : __assert_fail ("E && \"Invalid expression\"", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3364, __PRETTY_FUNCTION__))
;
3365
3366 if (E->isValueDependent())
3367 return false;
3368
3369 QualType QT = E->getType();
3370 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3371 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3372 return true;
3373 }
3374
3375 llvm::APSInt ValueAPS;
3376 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3377
3378 if (R.isInvalid())
3379 return true;
3380
3381 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3382 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3383 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3384 << ValueAPS.toString(10) << ValueIsPositive;
3385 return true;
3386 }
3387
3388 return false;
3389}
3390
3391ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3392 // Fast path for a single digit (which is quite common). A single digit
3393 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3394 if (Tok.getLength() == 1) {
1
Assuming the condition is false
2
Taking false branch
3395 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3396 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3397 }
3398
3399 SmallString<128> SpellingBuffer;
3400 // NumericLiteralParser wants to overread by one character. Add padding to
3401 // the buffer in case the token is copied to the buffer. If getSpelling()
3402 // returns a StringRef to the memory buffer, it should have a null char at
3403 // the EOF, so it is also safe.
3404 SpellingBuffer.resize(Tok.getLength() + 1);
3405
3406 // Get the spelling of the token, which eliminates trigraphs, etc.
3407 bool Invalid = false;
3408 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3409 if (Invalid)
3
Assuming 'Invalid' is false
4
Taking false branch
3410 return ExprError();
3411
3412 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
3413 if (Literal.hadError)
5
Assuming field 'hadError' is false
6
Taking false branch
3414 return ExprError();
3415
3416 if (Literal.hasUDSuffix()) {
7
Assuming the condition is false
8
Taking false branch
3417 // We're building a user-defined literal.
3418 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3419 SourceLocation UDSuffixLoc =
3420 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3421
3422 // Make sure we're allowed user-defined literals here.
3423 if (!UDLScope)
3424 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3425
3426 QualType CookedTy;
3427 if (Literal.isFloatingLiteral()) {
3428 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3429 // long double, the literal is treated as a call of the form
3430 // operator "" X (f L)
3431 CookedTy = Context.LongDoubleTy;
3432 } else {
3433 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3434 // unsigned long long, the literal is treated as a call of the form
3435 // operator "" X (n ULL)
3436 CookedTy = Context.UnsignedLongLongTy;
3437 }
3438
3439 DeclarationName OpName =
3440 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3441 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3442 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3443
3444 SourceLocation TokLoc = Tok.getLocation();
3445
3446 // Perform literal operator lookup to determine if we're building a raw
3447 // literal or a cooked one.
3448 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3449 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3450 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3451 /*AllowStringTemplate*/ false,
3452 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3453 case LOLR_ErrorNoDiagnostic:
3454 // Lookup failure for imaginary constants isn't fatal, there's still the
3455 // GNU extension producing _Complex types.
3456 break;
3457 case LOLR_Error:
3458 return ExprError();
3459 case LOLR_Cooked: {
3460 Expr *Lit;
3461 if (Literal.isFloatingLiteral()) {
3462 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3463 } else {
3464 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3465 if (Literal.GetIntegerValue(ResultVal))
3466 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3467 << /* Unsigned */ 1;
3468 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3469 Tok.getLocation());
3470 }
3471 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3472 }
3473
3474 case LOLR_Raw: {
3475 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3476 // literal is treated as a call of the form
3477 // operator "" X ("n")
3478 unsigned Length = Literal.getUDSuffixOffset();
3479 QualType StrTy = Context.getConstantArrayType(
3480 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3481 llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3482 Expr *Lit = StringLiteral::Create(
3483 Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3484 /*Pascal*/false, StrTy, &TokLoc, 1);
3485 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3486 }
3487
3488 case LOLR_Template: {
3489 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3490 // template), L is treated as a call fo the form
3491 // operator "" X <'c1', 'c2', ... 'ck'>()
3492 // where n is the source character sequence c1 c2 ... ck.
3493 TemplateArgumentListInfo ExplicitArgs;
3494 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3495 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3496 llvm::APSInt Value(CharBits, CharIsUnsigned);
3497 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3498 Value = TokSpelling[I];
3499 TemplateArgument Arg(Context, Value, Context.CharTy);
3500 TemplateArgumentLocInfo ArgInfo;
3501 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3502 }
3503 return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3504 &ExplicitArgs);
3505 }
3506 case LOLR_StringTemplate:
3507 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3507)
;
3508 }
3509 }
3510
3511 Expr *Res;
3512
3513 if (Literal.isFixedPointLiteral()) {
9
Assuming the condition is false
10
Taking false branch
3514 QualType Ty;
3515
3516 if (Literal.isAccum) {
3517 if (Literal.isHalf) {
3518 Ty = Context.ShortAccumTy;
3519 } else if (Literal.isLong) {
3520 Ty = Context.LongAccumTy;
3521 } else {
3522 Ty = Context.AccumTy;
3523 }
3524 } else if (Literal.isFract) {
3525 if (Literal.isHalf) {
3526 Ty = Context.ShortFractTy;
3527 } else if (Literal.isLong) {
3528 Ty = Context.LongFractTy;
3529 } else {
3530 Ty = Context.FractTy;
3531 }
3532 }
3533
3534 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3535
3536 bool isSigned = !Literal.isUnsigned;
3537 unsigned scale = Context.getFixedPointScale(Ty);
3538 unsigned bit_width = Context.getTypeInfo(Ty).Width;
3539
3540 llvm::APInt Val(bit_width, 0, isSigned);
3541 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3542 bool ValIsZero = Val.isNullValue() && !Overflowed;
3543
3544 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3545 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3546 // Clause 6.4.4 - The value of a constant shall be in the range of
3547 // representable values for its type, with exception for constants of a
3548 // fract type with a value of exactly 1; such a constant shall denote
3549 // the maximal value for the type.
3550 --Val;
3551 else if (Val.ugt(MaxVal) || Overflowed)
3552 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3553
3554 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3555 Tok.getLocation(), scale);
3556 } else if (Literal.isFloatingLiteral()) {
11
Calling 'NumericLiteralParser::isFloatingLiteral'
14
Returning from 'NumericLiteralParser::isFloatingLiteral'
15
Taking true branch
3557 QualType Ty;
3558 if (Literal.isHalf){
16
Assuming field 'isHalf' is false
17
Taking false branch
3559 if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
3560 Ty = Context.HalfTy;
3561 else {
3562 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3563 return ExprError();
3564 }
3565 } else if (Literal.isFloat)
18
Assuming field 'isFloat' is false
19
Taking false branch
3566 Ty = Context.FloatTy;
3567 else if (Literal.isLong)
20
Assuming field 'isLong' is false
21
Taking false branch
3568 Ty = Context.LongDoubleTy;
3569 else if (Literal.isFloat16)
22
Assuming field 'isFloat16' is true
23
Taking true branch
3570 Ty = Context.Float16Ty;
3571 else if (Literal.isFloat128)
3572 Ty = Context.Float128Ty;
3573 else
3574 Ty = Context.DoubleTy;
3575
3576 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3577
3578 if (Ty == Context.DoubleTy) {
24
Calling 'operator=='
30
Returning from 'operator=='
31
Taking true branch
3579 if (getLangOpts().SinglePrecisionConstants) {
32
Assuming field 'SinglePrecisionConstants' is not equal to 0
33
Taking true branch
3580 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
34
Assuming the object is not a 'BuiltinType'
35
'BTy' initialized to a null pointer value
3581 if (BTy->getKind() != BuiltinType::Float) {
36
Called C++ object pointer is null
3582 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3583 }
3584 } else if (getLangOpts().OpenCL &&
3585 !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
3586 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3587 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3588 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3589 }
3590 }
3591 } else if (!Literal.isIntegerLiteral()) {
3592 return ExprError();
3593 } else {
3594 QualType Ty;
3595
3596 // 'long long' is a C99 or C++11 feature.
3597 if (!getLangOpts().C99 && Literal.isLongLong) {
3598 if (getLangOpts().CPlusPlus)
3599 Diag(Tok.getLocation(),
3600 getLangOpts().CPlusPlus11 ?
3601 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3602 else
3603 Diag(Tok.getLocation(), diag::ext_c99_longlong);
3604 }
3605
3606 // Get the value in the widest-possible width.
3607 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3608 llvm::APInt ResultVal(MaxWidth, 0);
3609
3610 if (Literal.GetIntegerValue(ResultVal)) {
3611 // If this value didn't fit into uintmax_t, error and force to ull.
3612 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3613 << /* Unsigned */ 1;
3614 Ty = Context.UnsignedLongLongTy;
3615 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&((Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?") ? static_cast<void> (0) :
__assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3616, __PRETTY_FUNCTION__))
3616 "long long is not intmax_t?")((Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?") ? static_cast<void> (0) :
__assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3616, __PRETTY_FUNCTION__))
;
3617 } else {
3618 // If this value fits into a ULL, try to figure out what else it fits into
3619 // according to the rules of C99 6.4.4.1p5.
3620
3621 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3622 // be an unsigned int.
3623 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3624
3625 // Check from smallest to largest, picking the smallest type we can.
3626 unsigned Width = 0;
3627
3628 // Microsoft specific integer suffixes are explicitly sized.
3629 if (Literal.MicrosoftInteger) {
3630 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3631 Width = 8;
3632 Ty = Context.CharTy;
3633 } else {
3634 Width = Literal.MicrosoftInteger;
3635 Ty = Context.getIntTypeForBitwidth(Width,
3636 /*Signed=*/!Literal.isUnsigned);
3637 }
3638 }
3639
3640 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3641 // Are int/unsigned possibilities?
3642 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3643
3644 // Does it fit in a unsigned int?
3645 if (ResultVal.isIntN(IntSize)) {
3646 // Does it fit in a signed int?
3647 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3648 Ty = Context.IntTy;
3649 else if (AllowUnsigned)
3650 Ty = Context.UnsignedIntTy;
3651 Width = IntSize;
3652 }
3653 }
3654
3655 // Are long/unsigned long possibilities?
3656 if (Ty.isNull() && !Literal.isLongLong) {
3657 unsigned LongSize = Context.getTargetInfo().getLongWidth();
3658
3659 // Does it fit in a unsigned long?
3660 if (ResultVal.isIntN(LongSize)) {
3661 // Does it fit in a signed long?
3662 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3663 Ty = Context.LongTy;
3664 else if (AllowUnsigned)
3665 Ty = Context.UnsignedLongTy;
3666 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3667 // is compatible.
3668 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3669 const unsigned LongLongSize =
3670 Context.getTargetInfo().getLongLongWidth();
3671 Diag(Tok.getLocation(),
3672 getLangOpts().CPlusPlus
3673 ? Literal.isLong
3674 ? diag::warn_old_implicitly_unsigned_long_cxx
3675 : /*C++98 UB*/ diag::
3676 ext_old_implicitly_unsigned_long_cxx
3677 : diag::warn_old_implicitly_unsigned_long)
3678 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3679 : /*will be ill-formed*/ 1);
3680 Ty = Context.UnsignedLongTy;
3681 }
3682 Width = LongSize;
3683 }
3684 }
3685
3686 // Check long long if needed.
3687 if (Ty.isNull()) {
3688 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3689
3690 // Does it fit in a unsigned long long?
3691 if (ResultVal.isIntN(LongLongSize)) {
3692 // Does it fit in a signed long long?
3693 // To be compatible with MSVC, hex integer literals ending with the
3694 // LL or i64 suffix are always signed in Microsoft mode.
3695 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3696 (getLangOpts().MSVCCompat && Literal.isLongLong)))
3697 Ty = Context.LongLongTy;
3698 else if (AllowUnsigned)
3699 Ty = Context.UnsignedLongLongTy;
3700 Width = LongLongSize;
3701 }
3702 }
3703
3704 // If we still couldn't decide a type, we probably have something that
3705 // does not fit in a signed long long, but has no U suffix.
3706 if (Ty.isNull()) {
3707 Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3708 Ty = Context.UnsignedLongLongTy;
3709 Width = Context.getTargetInfo().getLongLongWidth();
3710 }
3711
3712 if (ResultVal.getBitWidth() != Width)
3713 ResultVal = ResultVal.trunc(Width);
3714 }
3715 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3716 }
3717
3718 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3719 if (Literal.isImaginary) {
3720 Res = new (Context) ImaginaryLiteral(Res,
3721 Context.getComplexType(Res->getType()));
3722
3723 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
3724 }
3725 return Res;
3726}
3727
3728ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3729 assert(E && "ActOnParenExpr() missing expr")((E && "ActOnParenExpr() missing expr") ? static_cast
<void> (0) : __assert_fail ("E && \"ActOnParenExpr() missing expr\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3729, __PRETTY_FUNCTION__))
;
3730 return new (Context) ParenExpr(L, R, E);
3731}
3732
3733static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3734 SourceLocation Loc,
3735 SourceRange ArgRange) {
3736 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3737 // scalar or vector data type argument..."
3738 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
3739 // type (C99 6.2.5p18) or void.
3740 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
3741 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
3742 << T << ArgRange;
3743 return true;
3744 }
3745
3746 assert((T->isVoidType() || !T->isIncompleteType()) &&(((T->isVoidType() || !T->isIncompleteType()) &&
"Scalar types should always be complete") ? static_cast<void
> (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3747, __PRETTY_FUNCTION__))
3747 "Scalar types should always be complete")(((T->isVoidType() || !T->isIncompleteType()) &&
"Scalar types should always be complete") ? static_cast<void
> (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3747, __PRETTY_FUNCTION__))
;
3748 return false;
3749}
3750
3751static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
3752 SourceLocation Loc,
3753 SourceRange ArgRange,
3754 UnaryExprOrTypeTrait TraitKind) {
3755 // Invalid types must be hard errors for SFINAE in C++.
3756 if (S.LangOpts.CPlusPlus)
3757 return true;
3758
3759 // C99 6.5.3.4p1:
3760 if (T->isFunctionType() &&
3761 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
3762 TraitKind == UETT_PreferredAlignOf)) {
3763 // sizeof(function)/alignof(function) is allowed as an extension.
3764 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
3765 << TraitKind << ArgRange;
3766 return false;
3767 }
3768
3769 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
3770 // this is an error (OpenCL v1.1 s6.3.k)
3771 if (T->isVoidType()) {
3772 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
3773 : diag::ext_sizeof_alignof_void_type;
3774 S.Diag(Loc, DiagID) << TraitKind << ArgRange;
3775 return false;
3776 }
3777
3778 return true;
3779}
3780
3781static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
3782 SourceLocation Loc,
3783 SourceRange ArgRange,
3784 UnaryExprOrTypeTrait TraitKind) {
3785 // Reject sizeof(interface) and sizeof(interface<proto>) if the
3786 // runtime doesn't allow it.
3787 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
3788 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
3789 << T << (TraitKind == UETT_SizeOf)
3790 << ArgRange;
3791 return true;
3792 }
3793
3794 return false;
3795}
3796
3797/// Check whether E is a pointer from a decayed array type (the decayed
3798/// pointer type is equal to T) and emit a warning if it is.
3799static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
3800 Expr *E) {
3801 // Don't warn if the operation changed the type.
3802 if (T != E->getType())
3803 return;
3804
3805 // Now look for array decays.
3806 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
3807 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
3808 return;
3809
3810 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
3811 << ICE->getType()
3812 << ICE->getSubExpr()->getType();
3813}
3814
3815/// Check the constraints on expression operands to unary type expression
3816/// and type traits.
3817///
3818/// Completes any types necessary and validates the constraints on the operand
3819/// expression. The logic mostly mirrors the type-based overload, but may modify
3820/// the expression as it completes the type for that expression through template
3821/// instantiation, etc.
3822bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
3823 UnaryExprOrTypeTrait ExprKind) {
3824 QualType ExprTy = E->getType();
3825 assert(!ExprTy->isReferenceType())((!ExprTy->isReferenceType()) ? static_cast<void> (0
) : __assert_fail ("!ExprTy->isReferenceType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3825, __PRETTY_FUNCTION__))
;
3826
3827 bool IsUnevaluatedOperand =
3828 (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
3829 ExprKind == UETT_PreferredAlignOf);
3830 if (IsUnevaluatedOperand) {
3831 ExprResult Result = CheckUnevaluatedOperand(E);
3832 if (Result.isInvalid())
3833 return true;
3834 E = Result.get();
3835 }
3836
3837 if (ExprKind == UETT_VecStep)
3838 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
3839 E->getSourceRange());
3840
3841 // Whitelist some types as extensions
3842 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
3843 E->getSourceRange(), ExprKind))
3844 return false;
3845
3846 // 'alignof' applied to an expression only requires the base element type of
3847 // the expression to be complete. 'sizeof' requires the expression's type to
3848 // be complete (and will attempt to complete it if it's an array of unknown
3849 // bound).
3850 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
3851 if (RequireCompleteType(E->getExprLoc(),
3852 Context.getBaseElementType(E->getType()),
3853 diag::err_sizeof_alignof_incomplete_type, ExprKind,
3854 E->getSourceRange()))
3855 return true;
3856 } else {
3857 if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
3858 ExprKind, E->getSourceRange()))
3859 return true;
3860 }
3861
3862 // Completing the expression's type may have changed it.
3863 ExprTy = E->getType();
3864 assert(!ExprTy->isReferenceType())((!ExprTy->isReferenceType()) ? static_cast<void> (0
) : __assert_fail ("!ExprTy->isReferenceType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 3864, __PRETTY_FUNCTION__))
;
3865
3866 if (ExprTy->isFunctionType()) {
3867 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
3868 << ExprKind << E->getSourceRange();
3869 return true;
3870 }
3871
3872 // The operand for sizeof and alignof is in an unevaluated expression context,
3873 // so side effects could result in unintended consequences.
3874 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
3875 E->HasSideEffects(Context, false))
3876 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
3877
3878 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
3879 E->getSourceRange(), ExprKind))
3880 return true;
3881
3882 if (ExprKind == UETT_SizeOf) {
3883 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
3884 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
3885 QualType OType = PVD->getOriginalType();
3886 QualType Type = PVD->getType();
3887 if (Type->isPointerType() && OType->isArrayType()) {
3888 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
3889 << Type << OType;
3890 Diag(PVD->getLocation(), diag::note_declared_at);
3891 }
3892 }
3893 }
3894
3895 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
3896 // decays into a pointer and returns an unintended result. This is most
3897 // likely a typo for "sizeof(array) op x".
3898 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
3899 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3900 BO->getLHS());
3901 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
3902 BO->getRHS());
3903 }
3904 }
3905
3906 return false;
3907}
3908
3909/// Check the constraints on operands to unary expression and type
3910/// traits.
3911///
3912/// This will complete any types necessary, and validate the various constraints
3913/// on those operands.
3914///
3915/// The UsualUnaryConversions() function is *not* called by this routine.
3916/// C99 6.3.2.1p[2-4] all state:
3917/// Except when it is the operand of the sizeof operator ...
3918///
3919/// C++ [expr.sizeof]p4
3920/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
3921/// standard conversions are not applied to the operand of sizeof.
3922///
3923/// This policy is followed for all of the unary trait expressions.
3924bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
3925 SourceLocation OpLoc,
3926 SourceRange ExprRange,
3927 UnaryExprOrTypeTrait ExprKind) {
3928 if (ExprType->isDependentType())
3929 return false;
3930
3931 // C++ [expr.sizeof]p2:
3932 // When applied to a reference or a reference type, the result
3933 // is the size of the referenced type.
3934 // C++11 [expr.alignof]p3:
3935 // When alignof is applied to a reference type, the result
3936 // shall be the alignment of the referenced type.
3937 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
3938 ExprType = Ref->getPointeeType();
3939
3940 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
3941 // When alignof or _Alignof is applied to an array type, the result
3942 // is the alignment of the element type.
3943 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
3944 ExprKind == UETT_OpenMPRequiredSimdAlign)
3945 ExprType = Context.getBaseElementType(ExprType);
3946
3947 if (ExprKind == UETT_VecStep)
3948 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
3949
3950 // Whitelist some types as extensions
3951 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
3952 ExprKind))
3953 return false;
3954
3955 if (RequireCompleteType(OpLoc, ExprType,
3956 diag::err_sizeof_alignof_incomplete_type,
3957 ExprKind, ExprRange))
3958 return true;
3959
3960 if (ExprType->isFunctionType()) {
3961 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
3962 << ExprKind << ExprRange;
3963 return true;
3964 }
3965
3966 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
3967 ExprKind))
3968 return true;
3969
3970 return false;
3971}
3972
3973static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
3974 // Cannot know anything else if the expression is dependent.
3975 if (E->isTypeDependent())
3976 return false;
3977
3978 if (E->getObjectKind() == OK_BitField) {
3979 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
3980 << 1 << E->getSourceRange();
3981 return true;
3982 }
3983
3984 ValueDecl *D = nullptr;
3985 Expr *Inner = E->IgnoreParens();
3986 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
3987 D = DRE->getDecl();
3988 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
3989 D = ME->getMemberDecl();
3990 }
3991
3992 // If it's a field, require the containing struct to have a
3993 // complete definition so that we can compute the layout.
3994 //
3995 // This can happen in C++11 onwards, either by naming the member
3996 // in a way that is not transformed into a member access expression
3997 // (in an unevaluated operand, for instance), or by naming the member
3998 // in a trailing-return-type.
3999 //
4000 // For the record, since __alignof__ on expressions is a GCC
4001 // extension, GCC seems to permit this but always gives the
4002 // nonsensical answer 0.
4003 //
4004 // We don't really need the layout here --- we could instead just
4005 // directly check for all the appropriate alignment-lowing
4006 // attributes --- but that would require duplicating a lot of
4007 // logic that just isn't worth duplicating for such a marginal
4008 // use-case.
4009 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4010 // Fast path this check, since we at least know the record has a
4011 // definition if we can find a member of it.
4012 if (!FD->getParent()->isCompleteDefinition()) {
4013 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4014 << E->getSourceRange();
4015 return true;
4016 }
4017
4018 // Otherwise, if it's a field, and the field doesn't have
4019 // reference type, then it must have a complete type (or be a
4020 // flexible array member, which we explicitly want to
4021 // white-list anyway), which makes the following checks trivial.
4022 if (!FD->getType()->isReferenceType())
4023 return false;
4024 }
4025
4026 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4027}
4028
4029bool Sema::CheckVecStepExpr(Expr *E) {
4030 E = E->IgnoreParens();
4031
4032 // Cannot know anything else if the expression is dependent.
4033 if (E->isTypeDependent())
4034 return false;
4035
4036 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4037}
4038
4039static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4040 CapturingScopeInfo *CSI) {
4041 assert(T->isVariablyModifiedType())((T->isVariablyModifiedType()) ? static_cast<void> (
0) : __assert_fail ("T->isVariablyModifiedType()", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4041, __PRETTY_FUNCTION__))
;
4042 assert(CSI != nullptr)((CSI != nullptr) ? static_cast<void> (0) : __assert_fail
("CSI != nullptr", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4042, __PRETTY_FUNCTION__))
;
4043
4044 // We're going to walk down into the type and look for VLA expressions.
4045 do {
4046 const Type *Ty = T.getTypePtr();
4047 switch (Ty->getTypeClass()) {
4048#define TYPE(Class, Base)
4049#define ABSTRACT_TYPE(Class, Base)
4050#define NON_CANONICAL_TYPE(Class, Base)
4051#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4052#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4053#include "clang/AST/TypeNodes.inc"
4054 T = QualType();
4055 break;
4056 // These types are never variably-modified.
4057 case Type::Builtin:
4058 case Type::Complex:
4059 case Type::Vector:
4060 case Type::ExtVector:
4061 case Type::Record:
4062 case Type::Enum:
4063 case Type::Elaborated:
4064 case Type::TemplateSpecialization:
4065 case Type::ObjCObject:
4066 case Type::ObjCInterface:
4067 case Type::ObjCObjectPointer:
4068 case Type::ObjCTypeParam:
4069 case Type::Pipe:
4070 llvm_unreachable("type class is never variably-modified!")::llvm::llvm_unreachable_internal("type class is never variably-modified!"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4070)
;
4071 case Type::Adjusted:
4072 T = cast<AdjustedType>(Ty)->getOriginalType();
4073 break;
4074 case Type::Decayed:
4075 T = cast<DecayedType>(Ty)->getPointeeType();
4076 break;
4077 case Type::Pointer:
4078 T = cast<PointerType>(Ty)->getPointeeType();
4079 break;
4080 case Type::BlockPointer:
4081 T = cast<BlockPointerType>(Ty)->getPointeeType();
4082 break;
4083 case Type::LValueReference:
4084 case Type::RValueReference:
4085 T = cast<ReferenceType>(Ty)->getPointeeType();
4086 break;
4087 case Type::MemberPointer:
4088 T = cast<MemberPointerType>(Ty)->getPointeeType();
4089 break;
4090 case Type::ConstantArray:
4091 case Type::IncompleteArray:
4092 // Losing element qualification here is fine.
4093 T = cast<ArrayType>(Ty)->getElementType();
4094 break;
4095 case Type::VariableArray: {
4096 // Losing element qualification here is fine.
4097 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4098
4099 // Unknown size indication requires no size computation.
4100 // Otherwise, evaluate and record it.
4101 auto Size = VAT->getSizeExpr();
4102 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4103 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4104 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4105
4106 T = VAT->getElementType();
4107 break;
4108 }
4109 case Type::FunctionProto:
4110 case Type::FunctionNoProto:
4111 T = cast<FunctionType>(Ty)->getReturnType();
4112 break;
4113 case Type::Paren:
4114 case Type::TypeOf:
4115 case Type::UnaryTransform:
4116 case Type::Attributed:
4117 case Type::SubstTemplateTypeParm:
4118 case Type::PackExpansion:
4119 case Type::MacroQualified:
4120 // Keep walking after single level desugaring.
4121 T = T.getSingleStepDesugaredType(Context);
4122 break;
4123 case Type::Typedef:
4124 T = cast<TypedefType>(Ty)->desugar();
4125 break;
4126 case Type::Decltype:
4127 T = cast<DecltypeType>(Ty)->desugar();
4128 break;
4129 case Type::Auto:
4130 case Type::DeducedTemplateSpecialization:
4131 T = cast<DeducedType>(Ty)->getDeducedType();
4132 break;
4133 case Type::TypeOfExpr:
4134 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4135 break;
4136 case Type::Atomic:
4137 T = cast<AtomicType>(Ty)->getValueType();
4138 break;
4139 }
4140 } while (!T.isNull() && T->isVariablyModifiedType());
4141}
4142
4143/// Build a sizeof or alignof expression given a type operand.
4144ExprResult
4145Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4146 SourceLocation OpLoc,
4147 UnaryExprOrTypeTrait ExprKind,
4148 SourceRange R) {
4149 if (!TInfo)
4150 return ExprError();
4151
4152 QualType T = TInfo->getType();
4153
4154 if (!T->isDependentType() &&
4155 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4156 return ExprError();
4157
4158 if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4159 if (auto *TT = T->getAs<TypedefType>()) {
4160 for (auto I = FunctionScopes.rbegin(),
4161 E = std::prev(FunctionScopes.rend());
4162 I != E; ++I) {
4163 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4164 if (CSI == nullptr)
4165 break;
4166 DeclContext *DC = nullptr;
4167 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4168 DC = LSI->CallOperator;
4169 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4170 DC = CRSI->TheCapturedDecl;
4171 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4172 DC = BSI->TheDecl;
4173 if (DC) {
4174 if (DC->containsDecl(TT->getDecl()))
4175 break;
4176 captureVariablyModifiedType(Context, T, CSI);
4177 }
4178 }
4179 }
4180 }
4181
4182 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4183 return new (Context) UnaryExprOrTypeTraitExpr(
4184 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4185}
4186
4187/// Build a sizeof or alignof expression given an expression
4188/// operand.
4189ExprResult
4190Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4191 UnaryExprOrTypeTrait ExprKind) {
4192 ExprResult PE = CheckPlaceholderExpr(E);
4193 if (PE.isInvalid())
4194 return ExprError();
4195
4196 E = PE.get();
4197
4198 // Verify that the operand is valid.
4199 bool isInvalid = false;
4200 if (E->isTypeDependent()) {
4201 // Delay type-checking for type-dependent expressions.
4202 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4203 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4204 } else if (ExprKind == UETT_VecStep) {
4205 isInvalid = CheckVecStepExpr(E);
4206 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4207 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4208 isInvalid = true;
4209 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4210 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4211 isInvalid = true;
4212 } else {
4213 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4214 }
4215
4216 if (isInvalid)
4217 return ExprError();
4218
4219 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4220 PE = TransformToPotentiallyEvaluated(E);
4221 if (PE.isInvalid()) return ExprError();
4222 E = PE.get();
4223 }
4224
4225 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4226 return new (Context) UnaryExprOrTypeTraitExpr(
4227 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4228}
4229
4230/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4231/// expr and the same for @c alignof and @c __alignof
4232/// Note that the ArgRange is invalid if isType is false.
4233ExprResult
4234Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4235 UnaryExprOrTypeTrait ExprKind, bool IsType,
4236 void *TyOrEx, SourceRange ArgRange) {
4237 // If error parsing type, ignore.
4238 if (!TyOrEx) return ExprError();
4239
4240 if (IsType) {
4241 TypeSourceInfo *TInfo;
4242 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4243 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4244 }
4245
4246 Expr *ArgEx = (Expr *)TyOrEx;
4247 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4248 return Result;
4249}
4250
4251static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4252 bool IsReal) {
4253 if (V.get()->isTypeDependent())
4254 return S.Context.DependentTy;
4255
4256 // _Real and _Imag are only l-values for normal l-values.
4257 if (V.get()->getObjectKind() != OK_Ordinary) {
4258 V = S.DefaultLvalueConversion(V.get());
4259 if (V.isInvalid())
4260 return QualType();
4261 }
4262
4263 // These operators return the element type of a complex type.
4264 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4265 return CT->getElementType();
4266
4267 // Otherwise they pass through real integer and floating point types here.
4268 if (V.get()->getType()->isArithmeticType())
4269 return V.get()->getType();
4270
4271 // Test for placeholders.
4272 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4273 if (PR.isInvalid()) return QualType();
4274 if (PR.get() != V.get()) {
4275 V = PR;
4276 return CheckRealImagOperand(S, V, Loc, IsReal);
4277 }
4278
4279 // Reject anything else.
4280 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4281 << (IsReal ? "__real" : "__imag");
4282 return QualType();
4283}
4284
4285
4286
4287ExprResult
4288Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4289 tok::TokenKind Kind, Expr *Input) {
4290 UnaryOperatorKind Opc;
4291 switch (Kind) {
4292 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4292)
;
4293 case tok::plusplus: Opc = UO_PostInc; break;
4294 case tok::minusminus: Opc = UO_PostDec; break;
4295 }
4296
4297 // Since this might is a postfix expression, get rid of ParenListExprs.
4298 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4299 if (Result.isInvalid()) return ExprError();
4300 Input = Result.get();
4301
4302 return BuildUnaryOp(S, OpLoc, Opc, Input);
4303}
4304
4305/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4306///
4307/// \return true on error
4308static bool checkArithmeticOnObjCPointer(Sema &S,
4309 SourceLocation opLoc,
4310 Expr *op) {
4311 assert(op->getType()->isObjCObjectPointerType())((op->getType()->isObjCObjectPointerType()) ? static_cast
<void> (0) : __assert_fail ("op->getType()->isObjCObjectPointerType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4311, __PRETTY_FUNCTION__))
;
4312 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4313 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4314 return false;
4315
4316 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4317 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4318 << op->getSourceRange();
4319 return true;
4320}
4321
4322static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4323 auto *BaseNoParens = Base->IgnoreParens();
4324 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4325 return MSProp->getPropertyDecl()->getType()->isArrayType();
4326 return isa<MSPropertySubscriptExpr>(BaseNoParens);
4327}
4328
4329ExprResult
4330Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4331 Expr *idx, SourceLocation rbLoc) {
4332 if (base && !base->getType().isNull() &&
4333 base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4334 return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4335 /*Length=*/nullptr, rbLoc);
4336
4337 // Since this might be a postfix expression, get rid of ParenListExprs.
4338 if (isa<ParenListExpr>(base)) {
4339 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4340 if (result.isInvalid()) return ExprError();
4341 base = result.get();
4342 }
4343
4344 // A comma-expression as the index is deprecated in C++2a onwards.
4345 if (getLangOpts().CPlusPlus2a &&
4346 ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4347 (isa<CXXOperatorCallExpr>(idx) &&
4348 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4349 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4350 << SourceRange(base->getBeginLoc(), rbLoc);
4351 }
4352
4353 // Handle any non-overload placeholder types in the base and index
4354 // expressions. We can't handle overloads here because the other
4355 // operand might be an overloadable type, in which case the overload
4356 // resolution for the operator overload should get the first crack
4357 // at the overload.
4358 bool IsMSPropertySubscript = false;
4359 if (base->getType()->isNonOverloadPlaceholderType()) {
4360 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4361 if (!IsMSPropertySubscript) {
4362 ExprResult result = CheckPlaceholderExpr(base);
4363 if (result.isInvalid())
4364 return ExprError();
4365 base = result.get();
4366 }
4367 }
4368 if (idx->getType()->isNonOverloadPlaceholderType()) {
4369 ExprResult result = CheckPlaceholderExpr(idx);
4370 if (result.isInvalid()) return ExprError();
4371 idx = result.get();
4372 }
4373
4374 // Build an unanalyzed expression if either operand is type-dependent.
4375 if (getLangOpts().CPlusPlus &&
4376 (base->isTypeDependent() || idx->isTypeDependent())) {
4377 return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4378 VK_LValue, OK_Ordinary, rbLoc);
4379 }
4380
4381 // MSDN, property (C++)
4382 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4383 // This attribute can also be used in the declaration of an empty array in a
4384 // class or structure definition. For example:
4385 // __declspec(property(get=GetX, put=PutX)) int x[];
4386 // The above statement indicates that x[] can be used with one or more array
4387 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4388 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4389 if (IsMSPropertySubscript) {
4390 // Build MS property subscript expression if base is MS property reference
4391 // or MS property subscript.
4392 return new (Context) MSPropertySubscriptExpr(
4393 base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4394 }
4395
4396 // Use C++ overloaded-operator rules if either operand has record
4397 // type. The spec says to do this if either type is *overloadable*,
4398 // but enum types can't declare subscript operators or conversion
4399 // operators, so there's nothing interesting for overload resolution
4400 // to do if there aren't any record types involved.
4401 //
4402 // ObjC pointers have their own subscripting logic that is not tied
4403 // to overload resolution and so should not take this path.
4404 if (getLangOpts().CPlusPlus &&
4405 (base->getType()->isRecordType() ||
4406 (!base->getType()->isObjCObjectPointerType() &&
4407 idx->getType()->isRecordType()))) {
4408 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4409 }
4410
4411 ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4412
4413 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4414 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4415
4416 return Res;
4417}
4418
4419void Sema::CheckAddressOfNoDeref(const Expr *E) {
4420 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4421 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4422
4423 // For expressions like `&(*s).b`, the base is recorded and what should be
4424 // checked.
4425 const MemberExpr *Member = nullptr;
4426 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4427 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4428
4429 LastRecord.PossibleDerefs.erase(StrippedExpr);
4430}
4431
4432void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4433 QualType ResultTy = E->getType();
4434 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4435
4436 // Bail if the element is an array since it is not memory access.
4437 if (isa<ArrayType>(ResultTy))
4438 return;
4439
4440 if (ResultTy->hasAttr(attr::NoDeref)) {
4441 LastRecord.PossibleDerefs.insert(E);
4442 return;
4443 }
4444
4445 // Check if the base type is a pointer to a member access of a struct
4446 // marked with noderef.
4447 const Expr *Base = E->getBase();
4448 QualType BaseTy = Base->getType();
4449 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4450 // Not a pointer access
4451 return;
4452
4453 const MemberExpr *Member = nullptr;
4454 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4455 Member->isArrow())
4456 Base = Member->getBase();
4457
4458 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4459 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4460 LastRecord.PossibleDerefs.insert(E);
4461 }
4462}
4463
4464ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4465 Expr *LowerBound,
4466 SourceLocation ColonLoc, Expr *Length,
4467 SourceLocation RBLoc) {
4468 if (Base->getType()->isPlaceholderType() &&
4469 !Base->getType()->isSpecificPlaceholderType(
4470 BuiltinType::OMPArraySection)) {
4471 ExprResult Result = CheckPlaceholderExpr(Base);
4472 if (Result.isInvalid())
4473 return ExprError();
4474 Base = Result.get();
4475 }
4476 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4477 ExprResult Result = CheckPlaceholderExpr(LowerBound);
4478 if (Result.isInvalid())
4479 return ExprError();
4480 Result = DefaultLvalueConversion(Result.get());
4481 if (Result.isInvalid())
4482 return ExprError();
4483 LowerBound = Result.get();
4484 }
4485 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4486 ExprResult Result = CheckPlaceholderExpr(Length);
4487 if (Result.isInvalid())
4488 return ExprError();
4489 Result = DefaultLvalueConversion(Result.get());
4490 if (Result.isInvalid())
4491 return ExprError();
4492 Length = Result.get();
4493 }
4494
4495 // Build an unanalyzed expression if either operand is type-dependent.
4496 if (Base->isTypeDependent() ||
4497 (LowerBound &&
4498 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4499 (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
4500 return new (Context)
4501 OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
4502 VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4503 }
4504
4505 // Perform default conversions.
4506 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4507 QualType ResultTy;
4508 if (OriginalTy->isAnyPointerType()) {
4509 ResultTy = OriginalTy->getPointeeType();
4510 } else if (OriginalTy->isArrayType()) {
4511 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4512 } else {
4513 return ExprError(
4514 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4515 << Base->getSourceRange());
4516 }
4517 // C99 6.5.2.1p1
4518 if (LowerBound) {
4519 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4520 LowerBound);
4521 if (Res.isInvalid())
4522 return ExprError(Diag(LowerBound->getExprLoc(),
4523 diag::err_omp_typecheck_section_not_integer)
4524 << 0 << LowerBound->getSourceRange());
4525 LowerBound = Res.get();
4526
4527 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4528 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4529 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4530 << 0 << LowerBound->getSourceRange();
4531 }
4532 if (Length) {
4533 auto Res =
4534 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4535 if (Res.isInvalid())
4536 return ExprError(Diag(Length->getExprLoc(),
4537 diag::err_omp_typecheck_section_not_integer)
4538 << 1 << Length->getSourceRange());
4539 Length = Res.get();
4540
4541 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4542 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4543 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4544 << 1 << Length->getSourceRange();
4545 }
4546
4547 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4548 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4549 // type. Note that functions are not objects, and that (in C99 parlance)
4550 // incomplete types are not object types.
4551 if (ResultTy->isFunctionType()) {
4552 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4553 << ResultTy << Base->getSourceRange();
4554 return ExprError();
4555 }
4556
4557 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4558 diag::err_omp_section_incomplete_type, Base))
4559 return ExprError();
4560
4561 if (LowerBound && !OriginalTy->isAnyPointerType()) {
4562 Expr::EvalResult Result;
4563 if (LowerBound->EvaluateAsInt(Result, Context)) {
4564 // OpenMP 4.5, [2.4 Array Sections]
4565 // The array section must be a subset of the original array.
4566 llvm::APSInt LowerBoundValue = Result.Val.getInt();
4567 if (LowerBoundValue.isNegative()) {
4568 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4569 << LowerBound->getSourceRange();
4570 return ExprError();
4571 }
4572 }
4573 }
4574
4575 if (Length) {
4576 Expr::EvalResult Result;
4577 if (Length->EvaluateAsInt(Result, Context)) {
4578 // OpenMP 4.5, [2.4 Array Sections]
4579 // The length must evaluate to non-negative integers.
4580 llvm::APSInt LengthValue = Result.Val.getInt();
4581 if (LengthValue.isNegative()) {
4582 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4583 << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4584 << Length->getSourceRange();
4585 return ExprError();
4586 }
4587 }
4588 } else if (ColonLoc.isValid() &&
4589 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
4590 !OriginalTy->isVariableArrayType()))) {
4591 // OpenMP 4.5, [2.4 Array Sections]
4592 // When the size of the array dimension is not known, the length must be
4593 // specified explicitly.
4594 Diag(ColonLoc, diag::err_omp_section_length_undefined)
4595 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
4596 return ExprError();
4597 }
4598
4599 if (!Base->getType()->isSpecificPlaceholderType(
4600 BuiltinType::OMPArraySection)) {
4601 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
4602 if (Result.isInvalid())
4603 return ExprError();
4604 Base = Result.get();
4605 }
4606 return new (Context)
4607 OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
4608 VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
4609}
4610
4611ExprResult
4612Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
4613 Expr *Idx, SourceLocation RLoc) {
4614 Expr *LHSExp = Base;
4615 Expr *RHSExp = Idx;
4616
4617 ExprValueKind VK = VK_LValue;
4618 ExprObjectKind OK = OK_Ordinary;
4619
4620 // Per C++ core issue 1213, the result is an xvalue if either operand is
4621 // a non-lvalue array, and an lvalue otherwise.
4622 if (getLangOpts().CPlusPlus11) {
4623 for (auto *Op : {LHSExp, RHSExp}) {
4624 Op = Op->IgnoreImplicit();
4625 if (Op->getType()->isArrayType() && !Op->isLValue())
4626 VK = VK_XValue;
4627 }
4628 }
4629
4630 // Perform default conversions.
4631 if (!LHSExp->getType()->getAs<VectorType>()) {
4632 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
4633 if (Result.isInvalid())
4634 return ExprError();
4635 LHSExp = Result.get();
4636 }
4637 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
4638 if (Result.isInvalid())
4639 return ExprError();
4640 RHSExp = Result.get();
4641
4642 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
4643
4644 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
4645 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
4646 // in the subscript position. As a result, we need to derive the array base
4647 // and index from the expression types.
4648 Expr *BaseExpr, *IndexExpr;
4649 QualType ResultType;
4650 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
4651 BaseExpr = LHSExp;
4652 IndexExpr = RHSExp;
4653 ResultType = Context.DependentTy;
4654 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
4655 BaseExpr = LHSExp;
4656 IndexExpr = RHSExp;
4657 ResultType = PTy->getPointeeType();
4658 } else if (const ObjCObjectPointerType *PTy =
4659 LHSTy->getAs<ObjCObjectPointerType>()) {
4660 BaseExpr = LHSExp;
4661 IndexExpr = RHSExp;
4662
4663 // Use custom logic if this should be the pseudo-object subscript
4664 // expression.
4665 if (!LangOpts.isSubscriptPointerArithmetic())
4666 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
4667 nullptr);
4668
4669 ResultType = PTy->getPointeeType();
4670 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
4671 // Handle the uncommon case of "123[Ptr]".
4672 BaseExpr = RHSExp;
4673 IndexExpr = LHSExp;
4674 ResultType = PTy->getPointeeType();
4675 } else if (const ObjCObjectPointerType *PTy =
4676 RHSTy->getAs<ObjCObjectPointerType>()) {
4677 // Handle the uncommon case of "123[Ptr]".
4678 BaseExpr = RHSExp;
4679 IndexExpr = LHSExp;
4680 ResultType = PTy->getPointeeType();
4681 if (!LangOpts.isSubscriptPointerArithmetic()) {
4682 Diag(LLoc, diag::err_subscript_nonfragile_interface)
4683 << ResultType << BaseExpr->getSourceRange();
4684 return ExprError();
4685 }
4686 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
4687 BaseExpr = LHSExp; // vectors: V[123]
4688 IndexExpr = RHSExp;
4689 // We apply C++ DR1213 to vector subscripting too.
4690 if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
4691 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
4692 if (Materialized.isInvalid())
4693 return ExprError();
4694 LHSExp = Materialized.get();
4695 }
4696 VK = LHSExp->getValueKind();
4697 if (VK != VK_RValue)
4698 OK = OK_VectorComponent;
4699
4700 ResultType = VTy->getElementType();
4701 QualType BaseType = BaseExpr->getType();
4702 Qualifiers BaseQuals = BaseType.getQualifiers();
4703 Qualifiers MemberQuals = ResultType.getQualifiers();
4704 Qualifiers Combined = BaseQuals + MemberQuals;
4705 if (Combined != MemberQuals)
4706 ResultType = Context.getQualifiedType(ResultType, Combined);
4707 } else if (LHSTy->isArrayType()) {
4708 // If we see an array that wasn't promoted by
4709 // DefaultFunctionArrayLvalueConversion, it must be an array that
4710 // wasn't promoted because of the C90 rule that doesn't
4711 // allow promoting non-lvalue arrays. Warn, then
4712 // force the promotion here.
4713 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
4714 << LHSExp->getSourceRange();
4715 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
4716 CK_ArrayToPointerDecay).get();
4717 LHSTy = LHSExp->getType();
4718
4719 BaseExpr = LHSExp;
4720 IndexExpr = RHSExp;
4721 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
4722 } else if (RHSTy->isArrayType()) {
4723 // Same as previous, except for 123[f().a] case
4724 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
4725 << RHSExp->getSourceRange();
4726 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
4727 CK_ArrayToPointerDecay).get();
4728 RHSTy = RHSExp->getType();
4729
4730 BaseExpr = RHSExp;
4731 IndexExpr = LHSExp;
4732 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
4733 } else {
4734 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
4735 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
4736 }
4737 // C99 6.5.2.1p1
4738 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
4739 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
4740 << IndexExpr->getSourceRange());
4741
4742 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4743 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4744 && !IndexExpr->isTypeDependent())
4745 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
4746
4747 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4748 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4749 // type. Note that Functions are not objects, and that (in C99 parlance)
4750 // incomplete types are not object types.
4751 if (ResultType->isFunctionType()) {
4752 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
4753 << ResultType << BaseExpr->getSourceRange();
4754 return ExprError();
4755 }
4756
4757 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
4758 // GNU extension: subscripting on pointer to void
4759 Diag(LLoc, diag::ext_gnu_subscript_void_type)
4760 << BaseExpr->getSourceRange();
4761
4762 // C forbids expressions of unqualified void type from being l-values.
4763 // See IsCForbiddenLValueType.
4764 if (!ResultType.hasQualifiers()) VK = VK_RValue;
4765 } else if (!ResultType->isDependentType() &&
4766 RequireCompleteType(LLoc, ResultType,
4767 diag::err_subscript_incomplete_type, BaseExpr))
4768 return ExprError();
4769
4770 assert(VK == VK_RValue || LangOpts.CPlusPlus ||((VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType
()) ? static_cast<void> (0) : __assert_fail ("VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4771, __PRETTY_FUNCTION__))
4771 !ResultType.isCForbiddenLValueType())((VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType
()) ? static_cast<void> (0) : __assert_fail ("VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4771, __PRETTY_FUNCTION__))
;
4772
4773 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
4774 FunctionScopes.size() > 1) {
4775 if (auto *TT =
4776 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
4777 for (auto I = FunctionScopes.rbegin(),
4778 E = std::prev(FunctionScopes.rend());
4779 I != E; ++I) {
4780 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4781 if (CSI == nullptr)
4782 break;
4783 DeclContext *DC = nullptr;
4784 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4785 DC = LSI->CallOperator;
4786 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4787 DC = CRSI->TheCapturedDecl;
4788 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4789 DC = BSI->TheDecl;
4790 if (DC) {
4791 if (DC->containsDecl(TT->getDecl()))
4792 break;
4793 captureVariablyModifiedType(
4794 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
4795 }
4796 }
4797 }
4798 }
4799
4800 return new (Context)
4801 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
4802}
4803
4804bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
4805 ParmVarDecl *Param) {
4806 if (Param->hasUnparsedDefaultArg()) {
4807 Diag(CallLoc,
4808 diag::err_use_of_default_argument_to_function_declared_later) <<
4809 FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
4810 Diag(UnparsedDefaultArgLocs[Param],
4811 diag::note_default_argument_declared_here);
4812 return true;
4813 }
4814
4815 if (Param->hasUninstantiatedDefaultArg()) {
4816 Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
4817
4818 EnterExpressionEvaluationContext EvalContext(
4819 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
4820
4821 // Instantiate the expression.
4822 //
4823 // FIXME: Pass in a correct Pattern argument, otherwise
4824 // getTemplateInstantiationArgs uses the lexical context of FD, e.g.
4825 //
4826 // template<typename T>
4827 // struct A {
4828 // static int FooImpl();
4829 //
4830 // template<typename Tp>
4831 // // bug: default argument A<T>::FooImpl() is evaluated with 2-level
4832 // // template argument list [[T], [Tp]], should be [[Tp]].
4833 // friend A<Tp> Foo(int a);
4834 // };
4835 //
4836 // template<typename T>
4837 // A<T> Foo(int a = A<T>::FooImpl());
4838 MultiLevelTemplateArgumentList MutiLevelArgList
4839 = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
4840
4841 InstantiatingTemplate Inst(*this, CallLoc, Param,
4842 MutiLevelArgList.getInnermost());
4843 if (Inst.isInvalid())
4844 return true;
4845 if (Inst.isAlreadyInstantiating()) {
4846 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
4847 Param->setInvalidDecl();
4848 return true;
4849 }
4850
4851 ExprResult Result;
4852 {
4853 // C++ [dcl.fct.default]p5:
4854 // The names in the [default argument] expression are bound, and
4855 // the semantic constraints are checked, at the point where the
4856 // default argument expression appears.
4857 ContextRAII SavedContext(*this, FD);
4858 LocalInstantiationScope Local(*this);
4859 runWithSufficientStackSpace(CallLoc, [&] {
4860 Result = SubstInitializer(UninstExpr, MutiLevelArgList,
4861 /*DirectInit*/false);
4862 });
4863 }
4864 if (Result.isInvalid())
4865 return true;
4866
4867 // Check the expression as an initializer for the parameter.
4868 InitializedEntity Entity
4869 = InitializedEntity::InitializeParameter(Context, Param);
4870 InitializationKind Kind = InitializationKind::CreateCopy(
4871 Param->getLocation(),
4872 /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc());
4873 Expr *ResultE = Result.getAs<Expr>();
4874
4875 InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
4876 Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
4877 if (Result.isInvalid())
4878 return true;
4879
4880 Result =
4881 ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(),
4882 /*DiscardedValue*/ false);
4883 if (Result.isInvalid())
4884 return true;
4885
4886 // Remember the instantiated default argument.
4887 Param->setDefaultArg(Result.getAs<Expr>());
4888 if (ASTMutationListener *L = getASTMutationListener()) {
4889 L->DefaultArgumentInstantiated(Param);
4890 }
4891 }
4892
4893 // If the default argument expression is not set yet, we are building it now.
4894 if (!Param->hasInit()) {
4895 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
4896 Param->setInvalidDecl();
4897 return true;
4898 }
4899
4900 // If the default expression creates temporaries, we need to
4901 // push them to the current stack of expression temporaries so they'll
4902 // be properly destroyed.
4903 // FIXME: We should really be rebuilding the default argument with new
4904 // bound temporaries; see the comment in PR5810.
4905 // We don't need to do that with block decls, though, because
4906 // blocks in default argument expression can never capture anything.
4907 if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
4908 // Set the "needs cleanups" bit regardless of whether there are
4909 // any explicit objects.
4910 Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
4911
4912 // Append all the objects to the cleanup list. Right now, this
4913 // should always be a no-op, because blocks in default argument
4914 // expressions should never be able to capture anything.
4915 assert(!Init->getNumObjects() &&((!Init->getNumObjects() && "default argument expression has capturing blocks?"
) ? static_cast<void> (0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4916, __PRETTY_FUNCTION__))
4916 "default argument expression has capturing blocks?")((!Init->getNumObjects() && "default argument expression has capturing blocks?"
) ? static_cast<void> (0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 4916, __PRETTY_FUNCTION__))
;
4917 }
4918
4919 // We already type-checked the argument, so we know it works.
4920 // Just mark all of the declarations in this potentially-evaluated expression
4921 // as being "referenced".
4922 EnterExpressionEvaluationContext EvalContext(
4923 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
4924 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
4925 /*SkipLocalVariables=*/true);
4926 return false;
4927}
4928
4929ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
4930 FunctionDecl *FD, ParmVarDecl *Param) {
4931 if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
4932 return ExprError();
4933 return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
4934}
4935
4936Sema::VariadicCallType
4937Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
4938 Expr *Fn) {
4939 if (Proto && Proto->isVariadic()) {
4940 if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
4941 return VariadicConstructor;
4942 else if (Fn && Fn->getType()->isBlockPointerType())
4943 return VariadicBlock;
4944 else if (FDecl) {
4945 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
4946 if (Method->isInstance())
4947 return VariadicMethod;
4948 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
4949 return VariadicMethod;
4950 return VariadicFunction;
4951 }
4952 return VariadicDoesNotApply;
4953}
4954
4955namespace {
4956class FunctionCallCCC final : public FunctionCallFilterCCC {
4957public:
4958 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
4959 unsigned NumArgs, MemberExpr *ME)
4960 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
4961 FunctionName(FuncName) {}
4962
4963 bool ValidateCandidate(const TypoCorrection &candidate) override {
4964 if (!candidate.getCorrectionSpecifier() ||
4965 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
4966 return false;
4967 }
4968
4969 return FunctionCallFilterCCC::ValidateCandidate(candidate);
4970 }
4971
4972 std::unique_ptr<CorrectionCandidateCallback> clone() override {
4973 return std::make_unique<FunctionCallCCC>(*this);
4974 }
4975
4976private:
4977 const IdentifierInfo *const FunctionName;
4978};
4979}
4980
4981static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
4982 FunctionDecl *FDecl,
4983 ArrayRef<Expr *> Args) {
4984 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
4985 DeclarationName FuncName = FDecl->getDeclName();
4986 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
4987
4988 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
4989 if (TypoCorrection Corrected = S.CorrectTypo(
4990 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
4991 S.getScopeForContext(S.CurContext), nullptr, CCC,
4992 Sema::CTK_ErrorRecovery)) {
4993 if (NamedDecl *ND = Corrected.getFoundDecl()) {
4994 if (Corrected.isOverloaded()) {
4995 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
4996 OverloadCandidateSet::iterator Best;
4997 for (NamedDecl *CD : Corrected) {
4998 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
4999 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5000 OCS);
5001 }
5002 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5003 case OR_Success:
5004 ND = Best->FoundDecl;
5005 Corrected.setCorrectionDecl(ND);
5006 break;
5007 default:
5008 break;
5009 }
5010 }
5011 ND = ND->getUnderlyingDecl();
5012 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5013 return Corrected;
5014 }
5015 }
5016 return TypoCorrection();
5017}
5018
5019/// ConvertArgumentsForCall - Converts the arguments specified in
5020/// Args/NumArgs to the parameter types of the function FDecl with
5021/// function prototype Proto. Call is the call expression itself, and
5022/// Fn is the function expression. For a C++ member function, this
5023/// routine does not attempt to convert the object argument. Returns
5024/// true if the call is ill-formed.
5025bool
5026Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5027 FunctionDecl *FDecl,
5028 const FunctionProtoType *Proto,
5029 ArrayRef<Expr *> Args,
5030 SourceLocation RParenLoc,
5031 bool IsExecConfig) {
5032 // Bail out early if calling a builtin with custom typechecking.
5033 if (FDecl)
5034 if (unsigned ID = FDecl->getBuiltinID())
5035 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5036 return false;
5037
5038 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5039 // assignment, to the types of the corresponding parameter, ...
5040 unsigned NumParams = Proto->getNumParams();
5041 bool Invalid = false;
5042 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5043 unsigned FnKind = Fn->getType()->isBlockPointerType()
5044 ? 1 /* block */
5045 : (IsExecConfig ? 3 /* kernel function (exec config) */
5046 : 0 /* function */);
5047
5048 // If too few arguments are available (and we don't have default
5049 // arguments for the remaining parameters), don't make the call.
5050 if (Args.size() < NumParams) {
5051 if (Args.size() < MinArgs) {
5052 TypoCorrection TC;
5053 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5054 unsigned diag_id =
5055 MinArgs == NumParams && !Proto->isVariadic()
5056 ? diag::err_typecheck_call_too_few_args_suggest
5057 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5058 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5059 << static_cast<unsigned>(Args.size())
5060 << TC.getCorrectionRange());
5061 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5062 Diag(RParenLoc,
5063 MinArgs == NumParams && !Proto->isVariadic()
5064 ? diag::err_typecheck_call_too_few_args_one
5065 : diag::err_typecheck_call_too_few_args_at_least_one)
5066 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5067 else
5068 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5069 ? diag::err_typecheck_call_too_few_args
5070 : diag::err_typecheck_call_too_few_args_at_least)
5071 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5072 << Fn->getSourceRange();
5073
5074 // Emit the location of the prototype.
5075 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5076 Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
5077
5078 return true;
5079 }
5080 // We reserve space for the default arguments when we create
5081 // the call expression, before calling ConvertArgumentsForCall.
5082 assert((Call->getNumArgs() == NumParams) &&(((Call->getNumArgs() == NumParams) && "We should have reserved space for the default arguments before!"
) ? static_cast<void> (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 5083, __PRETTY_FUNCTION__))
5083 "We should have reserved space for the default arguments before!")(((Call->getNumArgs() == NumParams) && "We should have reserved space for the default arguments before!"
) ? static_cast<void> (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 5083, __PRETTY_FUNCTION__))
;
5084 }
5085
5086 // If too many are passed and not variadic, error on the extras and drop
5087 // them.
5088 if (Args.size() > NumParams) {
5089 if (!Proto->isVariadic()) {
5090 TypoCorrection TC;
5091 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5092 unsigned diag_id =
5093 MinArgs == NumParams && !Proto->isVariadic()
5094 ? diag::err_typecheck_call_too_many_args_suggest
5095 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5096 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5097 << static_cast<unsigned>(Args.size())
5098 << TC.getCorrectionRange());
5099 } else if (NumParams == 1 && FDecl &&
5100 FDecl->getParamDecl(0)->getDeclName())
5101 Diag(Args[NumParams]->getBeginLoc(),
5102 MinArgs == NumParams
5103 ? diag::err_typecheck_call_too_many_args_one
5104 : diag::err_typecheck_call_too_many_args_at_most_one)
5105 << FnKind << FDecl->getParamDecl(0)
5106 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5107 << SourceRange(Args[NumParams]->getBeginLoc(),
5108 Args.back()->getEndLoc());
5109 else
5110 Diag(Args[NumParams]->getBeginLoc(),
5111 MinArgs == NumParams
5112 ? diag::err_typecheck_call_too_many_args
5113 : diag::err_typecheck_call_too_many_args_at_most)
5114 << FnKind << NumParams << static_cast<unsigned>(Args.size())
5115 << Fn->getSourceRange()
5116 << SourceRange(Args[NumParams]->getBeginLoc(),
5117 Args.back()->getEndLoc());
5118
5119 // Emit the location of the prototype.
5120 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5121 Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl;
5122
5123 // This deletes the extra arguments.
5124 Call->shrinkNumArgs(NumParams);
5125 return true;
5126 }
5127 }
5128 SmallVector<Expr *, 8> AllArgs;
5129 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5130
5131 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5132 AllArgs, CallType);
5133 if (Invalid)
5134 return true;
5135 unsigned TotalNumArgs = AllArgs.size();
5136 for (unsigned i = 0; i < TotalNumArgs; ++i)
5137 Call->setArg(i, AllArgs[i]);
5138
5139 return false;
5140}
5141
5142bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5143 const FunctionProtoType *Proto,
5144 unsigned FirstParam, ArrayRef<Expr *> Args,
5145 SmallVectorImpl<Expr *> &AllArgs,
5146 VariadicCallType CallType, bool AllowExplicit,
5147 bool IsListInitialization) {
5148 unsigned NumParams = Proto->getNumParams();
5149 bool Invalid = false;
5150 size_t ArgIx = 0;
5151 // Continue to check argument types (even if we have too few/many args).
5152 for (unsigned i = FirstParam; i < NumParams; i++) {
5153 QualType ProtoArgType = Proto->getParamType(i);
5154
5155 Expr *Arg;
5156 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5157 if (ArgIx < Args.size()) {
5158 Arg = Args[ArgIx++];
5159
5160 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5161 diag::err_call_incomplete_argument, Arg))
5162 return true;
5163
5164 // Strip the unbridged-cast placeholder expression off, if applicable.
5165 bool CFAudited = false;
5166 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5167 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5168 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5169 Arg = stripARCUnbridgedCast(Arg);
5170 else if (getLangOpts().ObjCAutoRefCount &&
5171 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5172 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5173 CFAudited = true;
5174
5175 if (Proto->getExtParameterInfo(i).isNoEscape())
5176 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5177 BE->getBlockDecl()->setDoesNotEscape();
5178
5179 InitializedEntity Entity =
5180 Param ? InitializedEntity::InitializeParameter(Context, Param,
5181 ProtoArgType)
5182 : InitializedEntity::InitializeParameter(
5183 Context, ProtoArgType, Proto->isParamConsumed(i));
5184
5185 // Remember that parameter belongs to a CF audited API.
5186 if (CFAudited)
5187 Entity.setParameterCFAudited();
5188
5189 ExprResult ArgE = PerformCopyInitialization(
5190 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5191 if (ArgE.isInvalid())
5192 return true;
5193
5194 Arg = ArgE.getAs<Expr>();
5195 } else {
5196 assert(Param && "can't use default arguments without a known callee")((Param && "can't use default arguments without a known callee"
) ? static_cast<void> (0) : __assert_fail ("Param && \"can't use default arguments without a known callee\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 5196, __PRETTY_FUNCTION__))
;
5197
5198 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5199 if (ArgExpr.isInvalid())
5200 return true;
5201
5202 Arg = ArgExpr.getAs<Expr>();
5203 }
5204
5205 // Check for array bounds violations for each argument to the call. This
5206 // check only triggers warnings when the argument isn't a more complex Expr
5207 // with its own checking, such as a BinaryOperator.
5208 CheckArrayAccess(Arg);
5209
5210 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5211 CheckStaticArrayArgument(CallLoc, Param, Arg);
5212
5213 AllArgs.push_back(Arg);
5214 }
5215
5216 // If this is a variadic call, handle args passed through "...".
5217 if (CallType != VariadicDoesNotApply) {
5218 // Assume that extern "C" functions with variadic arguments that
5219 // return __unknown_anytype aren't *really* variadic.
5220 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5221 FDecl->isExternC()) {
5222 for (Expr *A : Args.slice(ArgIx)) {
5223 QualType paramType; // ignored
5224 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5225 Invalid |= arg.isInvalid();
5226 AllArgs.push_back(arg.get());
5227 }
5228
5229 // Otherwise do argument promotion, (C99 6.5.2.2p7).
5230 } else {
5231 for (Expr *A : Args.slice(ArgIx)) {
5232 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5233 Invalid |= Arg.isInvalid();
5234 AllArgs.push_back(Arg.get());
5235 }
5236 }
5237
5238 // Check for array bounds violations.
5239 for (Expr *A : Args.slice(ArgIx))
5240 CheckArrayAccess(A);
5241 }
5242 return Invalid;
5243}
5244
5245static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5246 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
5247 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
5248 TL = DTL.getOriginalLoc();
5249 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
5250 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
5251 << ATL.getLocalSourceRange();
5252}
5253
5254/// CheckStaticArrayArgument - If the given argument corresponds to a static
5255/// array parameter, check that it is non-null, and that if it is formed by
5256/// array-to-pointer decay, the underlying array is sufficiently large.
5257///
5258/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
5259/// array type derivation, then for each call to the function, the value of the
5260/// corresponding actual argument shall provide access to the first element of
5261/// an array with at least as many elements as specified by the size expression.
5262void
5263Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
5264 ParmVarDecl *Param,
5265 const Expr *ArgExpr) {
5266 // Static array parameters are not supported in C++.
5267 if (!Param || getLangOpts().CPlusPlus)
5268 return;
5269
5270 QualType OrigTy = Param->getOriginalType();
5271
5272 const ArrayType *AT = Context.getAsArrayType(OrigTy);
5273 if (!AT || AT->getSizeModifier() != ArrayType::Static)
5274 return;
5275
5276 if (ArgExpr->isNullPointerConstant(Context,
5277 Expr::NPC_NeverValueDependent)) {
5278 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
5279 DiagnoseCalleeStaticArrayParam(*this, Param);
5280 return;
5281 }
5282
5283 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
5284 if (!CAT)
5285 return;
5286
5287 const ConstantArrayType *ArgCAT =
5288 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
5289 if (!ArgCAT)
5290 return;
5291
5292 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
5293 ArgCAT->getElementType())) {
5294 if (ArgCAT->getSize().ult(CAT->getSize())) {
5295 Diag(CallLoc, diag::warn_static_array_too_small)
5296 << ArgExpr->getSourceRange()
5297 << (unsigned)ArgCAT->getSize().getZExtValue()
5298 << (unsigned)CAT->getSize().getZExtValue() << 0;
5299 DiagnoseCalleeStaticArrayParam(*this, Param);
5300 }
5301 return;
5302 }
5303
5304 Optional<CharUnits> ArgSize =
5305 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
5306 Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
5307 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
5308 Diag(CallLoc, diag::warn_static_array_too_small)
5309 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
5310 << (unsigned)ParmSize->getQuantity() << 1;
5311 DiagnoseCalleeStaticArrayParam(*this, Param);
5312 }
5313}
5314
5315/// Given a function expression of unknown-any type, try to rebuild it
5316/// to have a function type.
5317static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
5318
5319/// Is the given type a placeholder that we need to lower out
5320/// immediately during argument processing?
5321static bool isPlaceholderToRemoveAsArg(QualType type) {
5322 // Placeholders are never sugared.
5323 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
5324 if (!placeholder) return false;
5325
5326 switch (placeholder->getKind()) {
5327 // Ignore all the non-placeholder types.
5328#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
5329 case BuiltinType::Id:
5330#include "clang/Basic/OpenCLImageTypes.def"
5331#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
5332 case BuiltinType::Id:
5333#include "clang/Basic/OpenCLExtensionTypes.def"
5334 // In practice we'll never use this, since all SVE types are sugared
5335 // via TypedefTypes rather than exposed directly as BuiltinTypes.
5336#define SVE_TYPE(Name, Id, SingletonId) \
5337 case BuiltinType::Id:
5338#include "clang/Basic/AArch64SVEACLETypes.def"
5339#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
5340#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
5341#include "clang/AST/BuiltinTypes.def"
5342 return false;
5343
5344 // We cannot lower out overload sets; they might validly be resolved
5345 // by the call machinery.
5346 case BuiltinType::Overload:
5347 return false;
5348
5349 // Unbridged casts in ARC can be handled in some call positions and
5350 // should be left in place.
5351 case BuiltinType::ARCUnbridgedCast:
5352 return false;
5353
5354 // Pseudo-objects should be converted as soon as possible.
5355 case BuiltinType::PseudoObject:
5356 return true;
5357
5358 // The debugger mode could theoretically but currently does not try
5359 // to resolve unknown-typed arguments based on known parameter types.
5360 case BuiltinType::UnknownAny:
5361 return true;
5362
5363 // These are always invalid as call arguments and should be reported.
5364 case BuiltinType::BoundMember:
5365 case BuiltinType::BuiltinFn:
5366 case BuiltinType::OMPArraySection:
5367 return true;
5368
5369 }
5370 llvm_unreachable("bad builtin type kind")::llvm::llvm_unreachable_internal("bad builtin type kind", "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 5370)
;
5371}
5372
5373/// Check an argument list for placeholders that we won't try to
5374/// handle later.
5375static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
5376 // Apply this processing to all the arguments at once instead of
5377 // dying at the first failure.
5378 bool hasInvalid = false;
5379 for (size_t i = 0, e = args.size(); i != e; i++) {
5380 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
5381 ExprResult result = S.CheckPlaceholderExpr(args[i]);
5382 if (result.isInvalid()) hasInvalid = true;
5383 else args[i] = result.get();
5384 } else if (hasInvalid) {
5385 (void)S.CorrectDelayedTyposInExpr(args[i]);
5386 }
5387 }
5388 return hasInvalid;
5389}
5390
5391/// If a builtin function has a pointer argument with no explicit address
5392/// space, then it should be able to accept a pointer to any address
5393/// space as input. In order to do this, we need to replace the
5394/// standard builtin declaration with one that uses the same address space
5395/// as the call.
5396///
5397/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
5398/// it does not contain any pointer arguments without
5399/// an address space qualifer. Otherwise the rewritten
5400/// FunctionDecl is returned.
5401/// TODO: Handle pointer return types.
5402static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
5403 FunctionDecl *FDecl,
5404 MultiExprArg ArgExprs) {
5405
5406 QualType DeclType = FDecl->getType();
5407 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
5408
5409 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
5410 ArgExprs.size() < FT->getNumParams())
5411 return nullptr;
5412
5413 bool NeedsNewDecl = false;
5414 unsigned i = 0;
5415 SmallVector<QualType, 8> OverloadParams;
5416
5417 for (QualType ParamType : FT->param_types()) {
5418
5419 // Convert array arguments to pointer to simplify type lookup.
5420 ExprResult ArgRes =
5421 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
5422 if (ArgRes.isInvalid())
5423 return nullptr;
5424 Expr *Arg = ArgRes.get();
5425 QualType ArgType = Arg->getType();
5426 if (!ParamType->isPointerType() ||
5427 ParamType.getQualifiers().hasAddressSpace() ||
5428 !ArgType->isPointerType() ||
5429 !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
5430 OverloadParams.push_back(ParamType);
5431 continue;
5432 }
5433
5434 QualType PointeeType = ParamType->getPointeeType();
5435 if (PointeeType.getQualifiers().hasAddressSpace())
5436 continue;
5437
5438 NeedsNewDecl = true;
5439 LangAS AS = ArgType->getPointeeType().getAddressSpace();
5440
5441 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
5442 OverloadParams.push_back(Context.getPointerType(PointeeType));
5443 }
5444
5445 if (!NeedsNewDecl)
5446 return nullptr;
5447
5448 FunctionProtoType::ExtProtoInfo EPI;
5449 EPI.Variadic = FT->isVariadic();
5450 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
5451 OverloadParams, EPI);
5452 DeclContext *Parent = FDecl->getParent();
5453 FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
5454 FDecl->getLocation(),
5455 FDecl->getLocation(),
5456 FDecl->getIdentifier(),
5457 OverloadTy,
5458 /*TInfo=*/nullptr,
5459 SC_Extern, false,
5460 /*hasPrototype=*/true);
5461 SmallVector<ParmVarDecl*, 16> Params;
5462 FT = cast<FunctionProtoType>(OverloadTy);
5463 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
5464 QualType ParamType = FT->getParamType(i);
5465 ParmVarDecl *Parm =
5466 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
5467 SourceLocation(), nullptr, ParamType,
5468 /*TInfo=*/nullptr, SC_None, nullptr);
5469 Parm->setScopeInfo(0, i);
5470 Params.push_back(Parm);
5471 }
5472 OverloadDecl->setParams(Params);
5473 return OverloadDecl;
5474}
5475
5476static void checkDirectCallValidity(Sema &S, const Expr *Fn,
5477 FunctionDecl *Callee,
5478 MultiExprArg ArgExprs) {
5479 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
5480 // similar attributes) really don't like it when functions are called with an
5481 // invalid number of args.
5482 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
5483 /*PartialOverloading=*/false) &&
5484 !Callee->isVariadic())
5485 return;
5486 if (Callee->getMinRequiredArguments() > ArgExprs.size())
5487 return;
5488
5489 if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) {
5490 S.Diag(Fn->getBeginLoc(),
5491 isa<CXXMethodDecl>(Callee)
5492 ? diag::err_ovl_no_viable_member_function_in_call
5493 : diag::err_ovl_no_viable_function_in_call)
5494 << Callee << Callee->getSourceRange();
5495 S.Diag(Callee->getLocation(),
5496 diag::note_ovl_candidate_disabled_by_function_cond_attr)
5497 << Attr->getCond()->getSourceRange() << Attr->getMessage();
5498 return;
5499 }
5500}
5501
5502static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
5503 const UnresolvedMemberExpr *const UME, Sema &S) {
5504
5505 const auto GetFunctionLevelDCIfCXXClass =
5506 [](Sema &S) -> const CXXRecordDecl * {
5507 const DeclContext *const DC = S.getFunctionLevelDeclContext();
5508 if (!DC || !DC->getParent())
5509 return nullptr;
5510
5511 // If the call to some member function was made from within a member
5512 // function body 'M' return return 'M's parent.
5513 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
5514 return MD->getParent()->getCanonicalDecl();
5515 // else the call was made from within a default member initializer of a
5516 // class, so return the class.
5517 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
5518 return RD->getCanonicalDecl();
5519 return nullptr;
5520 };
5521 // If our DeclContext is neither a member function nor a class (in the
5522 // case of a lambda in a default member initializer), we can't have an
5523 // enclosing 'this'.
5524
5525 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
5526 if (!CurParentClass)
5527 return false;
5528
5529 // The naming class for implicit member functions call is the class in which
5530 // name lookup starts.
5531 const CXXRecordDecl *const NamingClass =
5532 UME->getNamingClass()->getCanonicalDecl();
5533 assert(NamingClass && "Must have naming class even for implicit access")((NamingClass && "Must have naming class even for implicit access"
) ? static_cast<void> (0) : __assert_fail ("NamingClass && \"Must have naming class even for implicit access\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 5533, __PRETTY_FUNCTION__))
;
5534
5535 // If the unresolved member functions were found in a 'naming class' that is
5536 // related (either the same or derived from) to the class that contains the
5537 // member function that itself contained the implicit member access.
5538
5539 return CurParentClass == NamingClass ||
5540 CurParentClass->isDerivedFrom(NamingClass);
5541}
5542
5543static void
5544tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
5545 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
5546
5547 if (!UME)
5548 return;
5549
5550 LambdaScopeInfo *const CurLSI = S.getCurLambda();
5551 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
5552 // already been captured, or if this is an implicit member function call (if
5553 // it isn't, an attempt to capture 'this' should already have been made).
5554 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
5555 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
5556 return;
5557
5558 // Check if the naming class in which the unresolved members were found is
5559 // related (same as or is a base of) to the enclosing class.
5560
5561 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
5562 return;
5563
5564
5565 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
5566 // If the enclosing function is not dependent, then this lambda is
5567 // capture ready, so if we can capture this, do so.
5568 if (!EnclosingFunctionCtx->isDependentContext()) {
5569 // If the current lambda and all enclosing lambdas can capture 'this' -
5570 // then go ahead and capture 'this' (since our unresolved overload set
5571 // contains at least one non-static member function).
5572 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
5573 S.CheckCXXThisCapture(CallLoc);
5574 } else if (S.CurContext->isDependentContext()) {
5575 // ... since this is an implicit member reference, that might potentially
5576 // involve a 'this' capture, mark 'this' for potential capture in
5577 // enclosing lambdas.
5578 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
5579 CurLSI->addPotentialThisCapture(CallLoc);
5580 }
5581}
5582
5583ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5584 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5585 Expr *ExecConfig) {
5586 ExprResult Call =
5587 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig);
5588 if (Call.isInvalid())
5589 return Call;
5590
5591 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
5592 // language modes.
5593 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
5594 if (ULE->hasExplicitTemplateArgs() &&
5595 ULE->decls_begin() == ULE->decls_end()) {
5596 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus2a
5597 ? diag::warn_cxx17_compat_adl_only_template_id
5598 : diag::ext_adl_only_template_id)
5599 << ULE->getName();
5600 }
5601 }
5602
5603 return Call;
5604}
5605
5606/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
5607/// This provides the location of the left/right parens and a list of comma
5608/// locations.
5609ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
5610 MultiExprArg ArgExprs, SourceLocation RParenLoc,
5611 Expr *ExecConfig, bool IsExecConfig) {
5612 // Since this might be a postfix expression, get rid of ParenListExprs.
5613 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
5614 if (Result.isInvalid()) return ExprError();
5615 Fn = Result.get();
5616
5617 if (checkArgsForPlaceholders(*this, ArgExprs))
5618 return ExprError();
5619
5620 if (getLangOpts().CPlusPlus) {
5621 // If this is a pseudo-destructor expression, build the call immediately.
5622 if (isa<CXXPseudoDestructorExpr>(Fn)) {
5623 if (!ArgExprs.empty()) {
5624 // Pseudo-destructor calls should not have any arguments.
5625 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
5626 << FixItHint::CreateRemoval(
5627 SourceRange(ArgExprs.front()->getBeginLoc(),
5628 ArgExprs.back()->getEndLoc()));
5629 }
5630
5631 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
5632 VK_RValue, RParenLoc);
5633 }
5634 if (Fn->getType() == Context.PseudoObjectTy) {
5635 ExprResult result = CheckPlaceholderExpr(Fn);
5636 if (result.isInvalid()) return ExprError();
5637 Fn = result.get();
5638 }
5639
5640 // Determine whether this is a dependent call inside a C++ template,
5641 // in which case we won't do any semantic analysis now.
5642 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
5643 if (ExecConfig) {
5644 return CUDAKernelCallExpr::Create(
5645 Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
5646 Context.DependentTy, VK_RValue, RParenLoc);
5647 } else {
5648
5649 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
5650 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
5651 Fn->getBeginLoc());
5652
5653 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
5654 VK_RValue, RParenLoc);
5655 }
5656 }
5657
5658 // Determine whether this is a call to an object (C++ [over.call.object]).
5659 if (Fn->getType()->isRecordType())
5660 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
5661 RParenLoc);
5662
5663 if (Fn->getType() == Context.UnknownAnyTy) {
5664 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5665 if (result.isInvalid()) return ExprError();
5666 Fn = result.get();
5667 }
5668
5669 if (Fn->getType() == Context.BoundMemberTy) {
5670 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5671 RParenLoc);
5672 }
5673 }
5674
5675 // Check for overloaded calls. This can happen even in C due to extensions.
5676 if (Fn->getType() == Context.OverloadTy) {
5677 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
5678
5679 // We aren't supposed to apply this logic if there's an '&' involved.
5680 if (!find.HasFormOfMemberPointer) {
5681 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
5682 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
5683 VK_RValue, RParenLoc);
5684 OverloadExpr *ovl = find.Expression;
5685 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
5686 return BuildOverloadedCallExpr(
5687 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
5688 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
5689 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
5690 RParenLoc);
5691 }
5692 }
5693
5694 // If we're directly calling a function, get the appropriate declaration.
5695 if (Fn->getType() == Context.UnknownAnyTy) {
5696 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
5697 if (result.isInvalid()) return ExprError();
5698 Fn = result.get();
5699 }
5700
5701 Expr *NakedFn = Fn->IgnoreParens();
5702
5703 bool CallingNDeclIndirectly = false;
5704 NamedDecl *NDecl = nullptr;
5705 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
5706 if (UnOp->getOpcode() == UO_AddrOf) {
5707 CallingNDeclIndirectly = true;
5708 NakedFn = UnOp->getSubExpr()->IgnoreParens();
5709 }
5710 }
5711
5712 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
5713 NDecl = DRE->getDecl();
5714
5715 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
5716 if (FDecl && FDecl->getBuiltinID()) {
5717 // Rewrite the function decl for this builtin by replacing parameters
5718 // with no explicit address space with the address space of the arguments
5719 // in ArgExprs.
5720 if ((FDecl =
5721 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
5722 NDecl = FDecl;
5723 Fn = DeclRefExpr::Create(
5724 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
5725 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
5726 nullptr, DRE->isNonOdrUse());
5727 }
5728 }
5729 } else if (isa<MemberExpr>(NakedFn))
5730 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
5731
5732 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
5733 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
5734 FD, /*Complain=*/true, Fn->getBeginLoc()))
5735 return ExprError();
5736
5737 if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
5738 return ExprError();
5739
5740 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
5741 }
5742
5743 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
5744 ExecConfig, IsExecConfig);
5745}
5746
5747/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
5748///
5749/// __builtin_astype( value, dst type )
5750///
5751ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
5752 SourceLocation BuiltinLoc,
5753 SourceLocation RParenLoc) {
5754 ExprValueKind VK = VK_RValue;
5755 ExprObjectKind OK = OK_Ordinary;
5756 QualType DstTy = GetTypeFromParser(ParsedDestTy);
5757 QualType SrcTy = E->getType();
5758 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
5759 return ExprError(Diag(BuiltinLoc,
5760 diag::err_invalid_astype_of_different_size)
5761 << DstTy
5762 << SrcTy
5763 << E->getSourceRange());
5764 return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
5765}
5766
5767/// ActOnConvertVectorExpr - create a new convert-vector expression from the
5768/// provided arguments.
5769///
5770/// __builtin_convertvector( value, dst type )
5771///
5772ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
5773 SourceLocation BuiltinLoc,
5774 SourceLocation RParenLoc) {
5775 TypeSourceInfo *TInfo;
5776 GetTypeFromParser(ParsedDestTy, &TInfo);
5777 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
5778}
5779
5780/// BuildResolvedCallExpr - Build a call to a resolved expression,
5781/// i.e. an expression not of \p OverloadTy. The expression should
5782/// unary-convert to an expression of function-pointer or
5783/// block-pointer type.
5784///
5785/// \param NDecl the declaration being called, if available
5786ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
5787 SourceLocation LParenLoc,
5788 ArrayRef<Expr *> Args,
5789 SourceLocation RParenLoc, Expr *Config,
5790 bool IsExecConfig, ADLCallKind UsesADL) {
5791 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
5792 unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
5793
5794 // Functions with 'interrupt' attribute cannot be called directly.
5795 if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) {
5796 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
5797 return ExprError();
5798 }
5799
5800 // Interrupt handlers don't save off the VFP regs automatically on ARM,
5801 // so there's some risk when calling out to non-interrupt handler functions
5802 // that the callee might not preserve them. This is easy to diagnose here,
5803 // but can be very challenging to debug.
5804 if (auto *Caller = getCurFunctionDecl())
5805 if (Caller->hasAttr<ARMInterruptAttr>()) {
5806 bool VFP = Context.getTargetInfo().hasFeature("vfp");
5807 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
5808 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
5809 }
5810
5811 // Promote the function operand.
5812 // We special-case function promotion here because we only allow promoting
5813 // builtin functions to function pointers in the callee of a call.
5814 ExprResult Result;
5815 QualType ResultTy;
5816 if (BuiltinID &&
5817 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
5818 // Extract the return type from the (builtin) function pointer type.
5819 // FIXME Several builtins still have setType in
5820 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
5821 // Builtins.def to ensure they are correct before removing setType calls.
5822 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
5823 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
5824 ResultTy = FDecl->getCallResultType();
5825 } else {
5826 Result = CallExprUnaryConversions(Fn);
5827 ResultTy = Context.BoolTy;
5828 }
5829 if (Result.isInvalid())
5830 return ExprError();
5831 Fn = Result.get();
5832
5833 // Check for a valid function type, but only if it is not a builtin which
5834 // requires custom type checking. These will be handled by
5835 // CheckBuiltinFunctionCall below just after creation of the call expression.
5836 const FunctionType *FuncT = nullptr;
5837 if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
5838 retry:
5839 if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
5840 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
5841 // have type pointer to function".
5842 FuncT = PT->getPointeeType()->getAs<FunctionType>();
5843 if (!FuncT)
5844 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5845 << Fn->getType() << Fn->getSourceRange());
5846 } else if (const BlockPointerType *BPT =
5847 Fn->getType()->getAs<BlockPointerType>()) {
5848 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
5849 } else {
5850 // Handle calls to expressions of unknown-any type.
5851 if (Fn->getType() == Context.UnknownAnyTy) {
5852 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
5853 if (rewrite.isInvalid())
5854 return ExprError();
5855 Fn = rewrite.get();
5856 goto retry;
5857 }
5858
5859 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
5860 << Fn->getType() << Fn->getSourceRange());
5861 }
5862 }
5863
5864 // Get the number of parameters in the function prototype, if any.
5865 // We will allocate space for max(Args.size(), NumParams) arguments
5866 // in the call expression.
5867 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
5868 unsigned NumParams = Proto ? Proto->getNumParams() : 0;
5869
5870 CallExpr *TheCall;
5871 if (Config) {
5872 assert(UsesADL == ADLCallKind::NotADL &&((UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL"
) ? static_cast<void> (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 5873, __PRETTY_FUNCTION__))
5873 "CUDAKernelCallExpr should not use ADL")((UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL"
) ? static_cast<void> (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "/build/llvm-toolchain-snapshot-10~svn374877/tools/clang/lib/Sema/SemaExpr.cpp"
, 5873, __PRETTY_FUNCTION__))
;
5874 TheCall =
5875 CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config), Args,
5876 ResultTy, VK_RValue, RParenLoc, NumParams);
5877 } else {
5878 TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
5879 RParenLoc, NumParams, UsesADL);
5880 }
5881
5882 if (!getLangOpts().CPlusPlus) {
5883 // Forget about the nulled arguments since typo correction
5884 // do not handle them well.
5885 TheCall->shrinkNumArgs(Args.size());
5886 // C cannot always handle TypoExpr nodes in builtin calls and direct
5887 // function calls as their argument checking don't necessarily handle
5888 // dependent types properly, so make sure any TypoExprs have been
5889 // dealt with.
5890 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
5891 if (!Result.isUsable()) return ExprError();
5892 CallExpr *TheOldCall = TheCall;
5893 TheCall = dyn_cast<CallExpr>(Result.get());
5894 bool CorrectedTypos = TheCall != TheOldCall;
5895 if (!TheCall) return Result;
5896 Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
5897
5898 // A new call expression node was created if some typos were corrected.
5899 // However it may not have been constructed with enough storage. In this
5900 // case, rebuild the node with enough storage. The waste of space is
5901 // immaterial since this only happens when some typos were corrected.
5902 if (CorrectedTypos && Args.size() < NumParams) {
5903 if (Config)
5904 TheCall = CUDAKernelCallExpr::Create(
5905 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
5906 RParenLoc, NumParams);
5907 else
5908 TheCall = CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue,
5909 RParenLoc, NumParams, UsesADL);
5910 }
5911 // We can now handle the nulled arguments for the default arguments.
5912 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
5913 }
5914
5915 // Bail out early if calling a builtin with custom type checking.
5916 if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
5917 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
5918
5919 if (getLangOpts().CUDA) {
5920 if (Config) {
5921 // CUDA: Kernel calls must be to global functions
5922 if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
5923 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
5924 << FDecl << Fn->getSourceRange());
5925
5926 // CUDA: Kernel function must have 'void' return type
5927 if (!FuncT->getReturnType()->isVoidType() &&
5928 !FuncT->getReturnType()->getAs<AutoType>() &&
5929 !FuncT->getReturnType()->isInstantiationDependentType())
5930 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
5931 << Fn->getType() << Fn->getSourceRange());
5932 } else {
5933 // CUDA: Calls to global functions must be configured