Bug Summary

File:clang/lib/Sema/SemaExpr.cpp
Warning:line 6680, column 12
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExpr.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/include -I /build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-03-03-000218-9188-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp

/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp

1//===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for expressions.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TreeTransform.h"
14#include "UsedDeclVisitor.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/Expr.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/ExprOpenMP.h"
27#include "clang/AST/OperationKinds.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Lex/LiteralSupport.h"
35#include "clang/Lex/Preprocessor.h"
36#include "clang/Sema/AnalysisBasedWarnings.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/DelayedDiagnostic.h"
39#include "clang/Sema/Designator.h"
40#include "clang/Sema/Initialization.h"
41#include "clang/Sema/Lookup.h"
42#include "clang/Sema/Overload.h"
43#include "clang/Sema/ParsedTemplate.h"
44#include "clang/Sema/Scope.h"
45#include "clang/Sema/ScopeInfo.h"
46#include "clang/Sema/SemaFixItUtils.h"
47#include "clang/Sema/SemaInternal.h"
48#include "clang/Sema/Template.h"
49#include "llvm/Support/ConvertUTF.h"
50#include "llvm/Support/SaveAndRestore.h"
51using namespace clang;
52using namespace sema;
53using llvm::RoundingMode;
54
55/// Determine whether the use of this declaration is valid, without
56/// emitting diagnostics.
57bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) {
58 // See if this is an auto-typed variable whose initializer we are parsing.
59 if (ParsingInitForAutoVars.count(D))
60 return false;
61
62 // See if this is a deleted function.
63 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
64 if (FD->isDeleted())
65 return false;
66
67 // If the function has a deduced return type, and we can't deduce it,
68 // then we can't use it either.
69 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
70 DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
71 return false;
72
73 // See if this is an aligned allocation/deallocation function that is
74 // unavailable.
75 if (TreatUnavailableAsInvalid &&
76 isUnavailableAlignedAllocationFunction(*FD))
77 return false;
78 }
79
80 // See if this function is unavailable.
81 if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable &&
82 cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
83 return false;
84
85 return true;
86}
87
88static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
89 // Warn if this is used but marked unused.
90 if (const auto *A = D->getAttr<UnusedAttr>()) {
91 // [[maybe_unused]] should not diagnose uses, but __attribute__((unused))
92 // should diagnose them.
93 if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused &&
94 A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) {
95 const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
96 if (DC && !DC->hasAttr<UnusedAttr>())
97 S.Diag(Loc, diag::warn_used_but_marked_unused) << D;
98 }
99 }
100}
101
102/// Emit a note explaining that this function is deleted.
103void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
104 assert(Decl && Decl->isDeleted())((Decl && Decl->isDeleted()) ? static_cast<void
> (0) : __assert_fail ("Decl && Decl->isDeleted()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 104, __PRETTY_FUNCTION__))
;
105
106 if (Decl->isDefaulted()) {
107 // If the method was explicitly defaulted, point at that declaration.
108 if (!Decl->isImplicit())
109 Diag(Decl->getLocation(), diag::note_implicitly_deleted);
110
111 // Try to diagnose why this special member function was implicitly
112 // deleted. This might fail, if that reason no longer applies.
113 DiagnoseDeletedDefaultedFunction(Decl);
114 return;
115 }
116
117 auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl);
118 if (Ctor && Ctor->isInheritingConstructor())
119 return NoteDeletedInheritingConstructor(Ctor);
120
121 Diag(Decl->getLocation(), diag::note_availability_specified_here)
122 << Decl << 1;
123}
124
125/// Determine whether a FunctionDecl was ever declared with an
126/// explicit storage class.
127static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
128 for (auto I : D->redecls()) {
129 if (I->getStorageClass() != SC_None)
130 return true;
131 }
132 return false;
133}
134
135/// Check whether we're in an extern inline function and referring to a
136/// variable or function with internal linkage (C11 6.7.4p3).
137///
138/// This is only a warning because we used to silently accept this code, but
139/// in many cases it will not behave correctly. This is not enabled in C++ mode
140/// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
141/// and so while there may still be user mistakes, most of the time we can't
142/// prove that there are errors.
143static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
144 const NamedDecl *D,
145 SourceLocation Loc) {
146 // This is disabled under C++; there are too many ways for this to fire in
147 // contexts where the warning is a false positive, or where it is technically
148 // correct but benign.
149 if (S.getLangOpts().CPlusPlus)
150 return;
151
152 // Check if this is an inlined function or method.
153 FunctionDecl *Current = S.getCurFunctionDecl();
154 if (!Current)
155 return;
156 if (!Current->isInlined())
157 return;
158 if (!Current->isExternallyVisible())
159 return;
160
161 // Check if the decl has internal linkage.
162 if (D->getFormalLinkage() != InternalLinkage)
163 return;
164
165 // Downgrade from ExtWarn to Extension if
166 // (1) the supposedly external inline function is in the main file,
167 // and probably won't be included anywhere else.
168 // (2) the thing we're referencing is a pure function.
169 // (3) the thing we're referencing is another inline function.
170 // This last can give us false negatives, but it's better than warning on
171 // wrappers for simple C library functions.
172 const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
173 bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
174 if (!DowngradeWarning && UsedFn)
175 DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
176
177 S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
178 : diag::ext_internal_in_extern_inline)
179 << /*IsVar=*/!UsedFn << D;
180
181 S.MaybeSuggestAddingStaticToDecl(Current);
182
183 S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
184 << D;
185}
186
187void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
188 const FunctionDecl *First = Cur->getFirstDecl();
189
190 // Suggest "static" on the function, if possible.
191 if (!hasAnyExplicitStorageClass(First)) {
192 SourceLocation DeclBegin = First->getSourceRange().getBegin();
193 Diag(DeclBegin, diag::note_convert_inline_to_static)
194 << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
195 }
196}
197
198/// Determine whether the use of this declaration is valid, and
199/// emit any corresponding diagnostics.
200///
201/// This routine diagnoses various problems with referencing
202/// declarations that can occur when using a declaration. For example,
203/// it might warn if a deprecated or unavailable declaration is being
204/// used, or produce an error (and return true) if a C++0x deleted
205/// function is being used.
206///
207/// \returns true if there was an error (this declaration cannot be
208/// referenced), false otherwise.
209///
210bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs,
211 const ObjCInterfaceDecl *UnknownObjCClass,
212 bool ObjCPropertyAccess,
213 bool AvoidPartialAvailabilityChecks,
214 ObjCInterfaceDecl *ClassReceiver) {
215 SourceLocation Loc = Locs.front();
216 if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
217 // If there were any diagnostics suppressed by template argument deduction,
218 // emit them now.
219 auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
220 if (Pos != SuppressedDiagnostics.end()) {
221 for (const PartialDiagnosticAt &Suppressed : Pos->second)
222 Diag(Suppressed.first, Suppressed.second);
223
224 // Clear out the list of suppressed diagnostics, so that we don't emit
225 // them again for this specialization. However, we don't obsolete this
226 // entry from the table, because we want to avoid ever emitting these
227 // diagnostics again.
228 Pos->second.clear();
229 }
230
231 // C++ [basic.start.main]p3:
232 // The function 'main' shall not be used within a program.
233 if (cast<FunctionDecl>(D)->isMain())
234 Diag(Loc, diag::ext_main_used);
235
236 diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc);
237 }
238
239 // See if this is an auto-typed variable whose initializer we are parsing.
240 if (ParsingInitForAutoVars.count(D)) {
241 if (isa<BindingDecl>(D)) {
242 Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer)
243 << D->getDeclName();
244 } else {
245 Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
246 << D->getDeclName() << cast<VarDecl>(D)->getType();
247 }
248 return true;
249 }
250
251 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
252 // See if this is a deleted function.
253 if (FD->isDeleted()) {
254 auto *Ctor = dyn_cast<CXXConstructorDecl>(FD);
255 if (Ctor && Ctor->isInheritingConstructor())
256 Diag(Loc, diag::err_deleted_inherited_ctor_use)
257 << Ctor->getParent()
258 << Ctor->getInheritedConstructor().getConstructor()->getParent();
259 else
260 Diag(Loc, diag::err_deleted_function_use);
261 NoteDeletedFunction(FD);
262 return true;
263 }
264
265 // [expr.prim.id]p4
266 // A program that refers explicitly or implicitly to a function with a
267 // trailing requires-clause whose constraint-expression is not satisfied,
268 // other than to declare it, is ill-formed. [...]
269 //
270 // See if this is a function with constraints that need to be satisfied.
271 // Check this before deducing the return type, as it might instantiate the
272 // definition.
273 if (FD->getTrailingRequiresClause()) {
274 ConstraintSatisfaction Satisfaction;
275 if (CheckFunctionConstraints(FD, Satisfaction, Loc))
276 // A diagnostic will have already been generated (non-constant
277 // constraint expression, for example)
278 return true;
279 if (!Satisfaction.IsSatisfied) {
280 Diag(Loc,
281 diag::err_reference_to_function_with_unsatisfied_constraints)
282 << D;
283 DiagnoseUnsatisfiedConstraint(Satisfaction);
284 return true;
285 }
286 }
287
288 // If the function has a deduced return type, and we can't deduce it,
289 // then we can't use it either.
290 if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
291 DeduceReturnType(FD, Loc))
292 return true;
293
294 if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD))
295 return true;
296
297 if (getLangOpts().SYCLIsDevice && !checkSYCLDeviceFunction(Loc, FD))
298 return true;
299 }
300
301 if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
302 // Lambdas are only default-constructible or assignable in C++2a onwards.
303 if (MD->getParent()->isLambda() &&
304 ((isa<CXXConstructorDecl>(MD) &&
305 cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) ||
306 MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) {
307 Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign)
308 << !isa<CXXConstructorDecl>(MD);
309 }
310 }
311
312 auto getReferencedObjCProp = [](const NamedDecl *D) ->
313 const ObjCPropertyDecl * {
314 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
315 return MD->findPropertyDecl();
316 return nullptr;
317 };
318 if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) {
319 if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc))
320 return true;
321 } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) {
322 return true;
323 }
324
325 // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions
326 // Only the variables omp_in and omp_out are allowed in the combiner.
327 // Only the variables omp_priv and omp_orig are allowed in the
328 // initializer-clause.
329 auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext);
330 if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) &&
331 isa<VarDecl>(D)) {
332 Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction)
333 << getCurFunction()->HasOMPDeclareReductionCombiner;
334 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
335 return true;
336 }
337
338 // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions
339 // List-items in map clauses on this construct may only refer to the declared
340 // variable var and entities that could be referenced by a procedure defined
341 // at the same location
342 if (LangOpts.OpenMP && isa<VarDecl>(D) &&
343 !isOpenMPDeclareMapperVarDeclAllowed(cast<VarDecl>(D))) {
344 Diag(Loc, diag::err_omp_declare_mapper_wrong_var)
345 << getOpenMPDeclareMapperVarName();
346 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
347 return true;
348 }
349
350 DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess,
351 AvoidPartialAvailabilityChecks, ClassReceiver);
352
353 DiagnoseUnusedOfDecl(*this, D, Loc);
354
355 diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
356
357 // CUDA/HIP: Diagnose invalid references of host global variables in device
358 // functions. Reference of device global variables in host functions is
359 // allowed through shadow variables therefore it is not diagnosed.
360 if (LangOpts.CUDAIsDevice) {
361 auto *FD = dyn_cast_or_null<FunctionDecl>(CurContext);
362 auto Target = IdentifyCUDATarget(FD);
363 if (FD && Target != CFT_Host) {
364 const auto *VD = dyn_cast<VarDecl>(D);
365 if (VD && VD->hasGlobalStorage() && !VD->hasAttr<CUDADeviceAttr>() &&
366 !VD->hasAttr<CUDAConstantAttr>() && !VD->hasAttr<CUDASharedAttr>() &&
367 !VD->getType()->isCUDADeviceBuiltinSurfaceType() &&
368 !VD->getType()->isCUDADeviceBuiltinTextureType() &&
369 !VD->isConstexpr() && !VD->getType().isConstQualified())
370 targetDiag(*Locs.begin(), diag::err_ref_bad_target)
371 << /*host*/ 2 << /*variable*/ 1 << VD << Target;
372 }
373 }
374
375 if (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)) {
376 if (auto *VD = dyn_cast<ValueDecl>(D))
377 checkDeviceDecl(VD, Loc);
378
379 if (!Context.getTargetInfo().isTLSSupported())
380 if (const auto *VD = dyn_cast<VarDecl>(D))
381 if (VD->getTLSKind() != VarDecl::TLS_None)
382 targetDiag(*Locs.begin(), diag::err_thread_unsupported);
383 }
384
385 if (isa<ParmVarDecl>(D) && isa<RequiresExprBodyDecl>(D->getDeclContext()) &&
386 !isUnevaluatedContext()) {
387 // C++ [expr.prim.req.nested] p3
388 // A local parameter shall only appear as an unevaluated operand
389 // (Clause 8) within the constraint-expression.
390 Diag(Loc, diag::err_requires_expr_parameter_referenced_in_evaluated_context)
391 << D;
392 Diag(D->getLocation(), diag::note_entity_declared_at) << D;
393 return true;
394 }
395
396 return false;
397}
398
399/// DiagnoseSentinelCalls - This routine checks whether a call or
400/// message-send is to a declaration with the sentinel attribute, and
401/// if so, it checks that the requirements of the sentinel are
402/// satisfied.
403void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
404 ArrayRef<Expr *> Args) {
405 const SentinelAttr *attr = D->getAttr<SentinelAttr>();
406 if (!attr)
407 return;
408
409 // The number of formal parameters of the declaration.
410 unsigned numFormalParams;
411
412 // The kind of declaration. This is also an index into a %select in
413 // the diagnostic.
414 enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
415
416 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
417 numFormalParams = MD->param_size();
418 calleeType = CT_Method;
419 } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
420 numFormalParams = FD->param_size();
421 calleeType = CT_Function;
422 } else if (isa<VarDecl>(D)) {
423 QualType type = cast<ValueDecl>(D)->getType();
424 const FunctionType *fn = nullptr;
425 if (const PointerType *ptr = type->getAs<PointerType>()) {
426 fn = ptr->getPointeeType()->getAs<FunctionType>();
427 if (!fn) return;
428 calleeType = CT_Function;
429 } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
430 fn = ptr->getPointeeType()->castAs<FunctionType>();
431 calleeType = CT_Block;
432 } else {
433 return;
434 }
435
436 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
437 numFormalParams = proto->getNumParams();
438 } else {
439 numFormalParams = 0;
440 }
441 } else {
442 return;
443 }
444
445 // "nullPos" is the number of formal parameters at the end which
446 // effectively count as part of the variadic arguments. This is
447 // useful if you would prefer to not have *any* formal parameters,
448 // but the language forces you to have at least one.
449 unsigned nullPos = attr->getNullPos();
450 assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")(((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel"
) ? static_cast<void> (0) : __assert_fail ("(nullPos == 0 || nullPos == 1) && \"invalid null position on sentinel\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 450, __PRETTY_FUNCTION__))
;
451 numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
452
453 // The number of arguments which should follow the sentinel.
454 unsigned numArgsAfterSentinel = attr->getSentinel();
455
456 // If there aren't enough arguments for all the formal parameters,
457 // the sentinel, and the args after the sentinel, complain.
458 if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
459 Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
460 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
461 return;
462 }
463
464 // Otherwise, find the sentinel expression.
465 Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
466 if (!sentinelExpr) return;
467 if (sentinelExpr->isValueDependent()) return;
468 if (Context.isSentinelNullExpr(sentinelExpr)) return;
469
470 // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr',
471 // or 'NULL' if those are actually defined in the context. Only use
472 // 'nil' for ObjC methods, where it's much more likely that the
473 // variadic arguments form a list of object pointers.
474 SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc());
475 std::string NullValue;
476 if (calleeType == CT_Method && PP.isMacroDefined("nil"))
477 NullValue = "nil";
478 else if (getLangOpts().CPlusPlus11)
479 NullValue = "nullptr";
480 else if (PP.isMacroDefined("NULL"))
481 NullValue = "NULL";
482 else
483 NullValue = "(void*) 0";
484
485 if (MissingNilLoc.isInvalid())
486 Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
487 else
488 Diag(MissingNilLoc, diag::warn_missing_sentinel)
489 << int(calleeType)
490 << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
491 Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
492}
493
494SourceRange Sema::getExprRange(Expr *E) const {
495 return E ? E->getSourceRange() : SourceRange();
496}
497
498//===----------------------------------------------------------------------===//
499// Standard Promotions and Conversions
500//===----------------------------------------------------------------------===//
501
502/// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
503ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
504 // Handle any placeholder expressions which made it here.
505 if (E->getType()->isPlaceholderType()) {
506 ExprResult result = CheckPlaceholderExpr(E);
507 if (result.isInvalid()) return ExprError();
508 E = result.get();
509 }
510
511 QualType Ty = E->getType();
512 assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")((!Ty.isNull() && "DefaultFunctionArrayConversion - missing type"
) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"DefaultFunctionArrayConversion - missing type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 512, __PRETTY_FUNCTION__))
;
513
514 if (Ty->isFunctionType()) {
515 if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
516 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
517 if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
518 return ExprError();
519
520 E = ImpCastExprToType(E, Context.getPointerType(Ty),
521 CK_FunctionToPointerDecay).get();
522 } else if (Ty->isArrayType()) {
523 // In C90 mode, arrays only promote to pointers if the array expression is
524 // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
525 // type 'array of type' is converted to an expression that has type 'pointer
526 // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression
527 // that has type 'array of type' ...". The relevant change is "an lvalue"
528 // (C90) to "an expression" (C99).
529 //
530 // C++ 4.2p1:
531 // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
532 // T" can be converted to an rvalue of type "pointer to T".
533 //
534 if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
535 E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
536 CK_ArrayToPointerDecay).get();
537 }
538 return E;
539}
540
541static void CheckForNullPointerDereference(Sema &S, Expr *E) {
542 // Check to see if we are dereferencing a null pointer. If so,
543 // and if not volatile-qualified, this is undefined behavior that the
544 // optimizer will delete, so warn about it. People sometimes try to use this
545 // to get a deterministic trap and are surprised by clang's behavior. This
546 // only handles the pattern "*null", which is a very syntactic check.
547 const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts());
548 if (UO && UO->getOpcode() == UO_Deref &&
549 UO->getSubExpr()->getType()->isPointerType()) {
550 const LangAS AS =
551 UO->getSubExpr()->getType()->getPointeeType().getAddressSpace();
552 if ((!isTargetAddressSpace(AS) ||
553 (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) &&
554 UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant(
555 S.Context, Expr::NPC_ValueDependentIsNotNull) &&
556 !UO->getType().isVolatileQualified()) {
557 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
558 S.PDiag(diag::warn_indirection_through_null)
559 << UO->getSubExpr()->getSourceRange());
560 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
561 S.PDiag(diag::note_indirection_through_null));
562 }
563 }
564}
565
566static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
567 SourceLocation AssignLoc,
568 const Expr* RHS) {
569 const ObjCIvarDecl *IV = OIRE->getDecl();
570 if (!IV)
571 return;
572
573 DeclarationName MemberName = IV->getDeclName();
574 IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
575 if (!Member || !Member->isStr("isa"))
576 return;
577
578 const Expr *Base = OIRE->getBase();
579 QualType BaseType = Base->getType();
580 if (OIRE->isArrow())
581 BaseType = BaseType->getPointeeType();
582 if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
583 if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
584 ObjCInterfaceDecl *ClassDeclared = nullptr;
585 ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
586 if (!ClassDeclared->getSuperClass()
587 && (*ClassDeclared->ivar_begin()) == IV) {
588 if (RHS) {
589 NamedDecl *ObjectSetClass =
590 S.LookupSingleName(S.TUScope,
591 &S.Context.Idents.get("object_setClass"),
592 SourceLocation(), S.LookupOrdinaryName);
593 if (ObjectSetClass) {
594 SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc());
595 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign)
596 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
597 "object_setClass(")
598 << FixItHint::CreateReplacement(
599 SourceRange(OIRE->getOpLoc(), AssignLoc), ",")
600 << FixItHint::CreateInsertion(RHSLocEnd, ")");
601 }
602 else
603 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
604 } else {
605 NamedDecl *ObjectGetClass =
606 S.LookupSingleName(S.TUScope,
607 &S.Context.Idents.get("object_getClass"),
608 SourceLocation(), S.LookupOrdinaryName);
609 if (ObjectGetClass)
610 S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use)
611 << FixItHint::CreateInsertion(OIRE->getBeginLoc(),
612 "object_getClass(")
613 << FixItHint::CreateReplacement(
614 SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")");
615 else
616 S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
617 }
618 S.Diag(IV->getLocation(), diag::note_ivar_decl);
619 }
620 }
621}
622
623ExprResult Sema::DefaultLvalueConversion(Expr *E) {
624 // Handle any placeholder expressions which made it here.
625 if (E->getType()->isPlaceholderType()) {
626 ExprResult result = CheckPlaceholderExpr(E);
627 if (result.isInvalid()) return ExprError();
628 E = result.get();
629 }
630
631 // C++ [conv.lval]p1:
632 // A glvalue of a non-function, non-array type T can be
633 // converted to a prvalue.
634 if (!E->isGLValue()) return E;
635
636 QualType T = E->getType();
637 assert(!T.isNull() && "r-value conversion on typeless expression?")((!T.isNull() && "r-value conversion on typeless expression?"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"r-value conversion on typeless expression?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 637, __PRETTY_FUNCTION__))
;
638
639 // lvalue-to-rvalue conversion cannot be applied to function or array types.
640 if (T->isFunctionType() || T->isArrayType())
641 return E;
642
643 // We don't want to throw lvalue-to-rvalue casts on top of
644 // expressions of certain types in C++.
645 if (getLangOpts().CPlusPlus &&
646 (E->getType() == Context.OverloadTy ||
647 T->isDependentType() ||
648 T->isRecordType()))
649 return E;
650
651 // The C standard is actually really unclear on this point, and
652 // DR106 tells us what the result should be but not why. It's
653 // generally best to say that void types just doesn't undergo
654 // lvalue-to-rvalue at all. Note that expressions of unqualified
655 // 'void' type are never l-values, but qualified void can be.
656 if (T->isVoidType())
657 return E;
658
659 // OpenCL usually rejects direct accesses to values of 'half' type.
660 if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
661 T->isHalfType()) {
662 Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
663 << 0 << T;
664 return ExprError();
665 }
666
667 CheckForNullPointerDereference(*this, E);
668 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
669 NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
670 &Context.Idents.get("object_getClass"),
671 SourceLocation(), LookupOrdinaryName);
672 if (ObjectGetClass)
673 Diag(E->getExprLoc(), diag::warn_objc_isa_use)
674 << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(")
675 << FixItHint::CreateReplacement(
676 SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
677 else
678 Diag(E->getExprLoc(), diag::warn_objc_isa_use);
679 }
680 else if (const ObjCIvarRefExpr *OIRE =
681 dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
682 DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
683
684 // C++ [conv.lval]p1:
685 // [...] If T is a non-class type, the type of the prvalue is the
686 // cv-unqualified version of T. Otherwise, the type of the
687 // rvalue is T.
688 //
689 // C99 6.3.2.1p2:
690 // If the lvalue has qualified type, the value has the unqualified
691 // version of the type of the lvalue; otherwise, the value has the
692 // type of the lvalue.
693 if (T.hasQualifiers())
694 T = T.getUnqualifiedType();
695
696 // Under the MS ABI, lock down the inheritance model now.
697 if (T->isMemberPointerType() &&
698 Context.getTargetInfo().getCXXABI().isMicrosoft())
699 (void)isCompleteType(E->getExprLoc(), T);
700
701 ExprResult Res = CheckLValueToRValueConversionOperand(E);
702 if (Res.isInvalid())
703 return Res;
704 E = Res.get();
705
706 // Loading a __weak object implicitly retains the value, so we need a cleanup to
707 // balance that.
708 if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
709 Cleanup.setExprNeedsCleanups(true);
710
711 if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
712 Cleanup.setExprNeedsCleanups(true);
713
714 // C++ [conv.lval]p3:
715 // If T is cv std::nullptr_t, the result is a null pointer constant.
716 CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue;
717 Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue,
718 CurFPFeatureOverrides());
719
720 // C11 6.3.2.1p2:
721 // ... if the lvalue has atomic type, the value has the non-atomic version
722 // of the type of the lvalue ...
723 if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
724 T = Atomic->getValueType().getUnqualifiedType();
725 Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
726 nullptr, VK_RValue, FPOptionsOverride());
727 }
728
729 return Res;
730}
731
732ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
733 ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
734 if (Res.isInvalid())
735 return ExprError();
736 Res = DefaultLvalueConversion(Res.get());
737 if (Res.isInvalid())
738 return ExprError();
739 return Res;
740}
741
742/// CallExprUnaryConversions - a special case of an unary conversion
743/// performed on a function designator of a call expression.
744ExprResult Sema::CallExprUnaryConversions(Expr *E) {
745 QualType Ty = E->getType();
746 ExprResult Res = E;
747 // Only do implicit cast for a function type, but not for a pointer
748 // to function type.
749 if (Ty->isFunctionType()) {
750 Res = ImpCastExprToType(E, Context.getPointerType(Ty),
751 CK_FunctionToPointerDecay);
752 if (Res.isInvalid())
753 return ExprError();
754 }
755 Res = DefaultLvalueConversion(Res.get());
756 if (Res.isInvalid())
757 return ExprError();
758 return Res.get();
759}
760
761/// UsualUnaryConversions - Performs various conversions that are common to most
762/// operators (C99 6.3). The conversions of array and function types are
763/// sometimes suppressed. For example, the array->pointer conversion doesn't
764/// apply if the array is an argument to the sizeof or address (&) operators.
765/// In these instances, this routine should *not* be called.
766ExprResult Sema::UsualUnaryConversions(Expr *E) {
767 // First, convert to an r-value.
768 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
769 if (Res.isInvalid())
770 return ExprError();
771 E = Res.get();
772
773 QualType Ty = E->getType();
774 assert(!Ty.isNull() && "UsualUnaryConversions - missing type")((!Ty.isNull() && "UsualUnaryConversions - missing type"
) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"UsualUnaryConversions - missing type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 774, __PRETTY_FUNCTION__))
;
775
776 // Half FP have to be promoted to float unless it is natively supported
777 if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
778 return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
779
780 // Try to perform integral promotions if the object has a theoretically
781 // promotable type.
782 if (Ty->isIntegralOrUnscopedEnumerationType()) {
783 // C99 6.3.1.1p2:
784 //
785 // The following may be used in an expression wherever an int or
786 // unsigned int may be used:
787 // - an object or expression with an integer type whose integer
788 // conversion rank is less than or equal to the rank of int
789 // and unsigned int.
790 // - A bit-field of type _Bool, int, signed int, or unsigned int.
791 //
792 // If an int can represent all values of the original type, the
793 // value is converted to an int; otherwise, it is converted to an
794 // unsigned int. These are called the integer promotions. All
795 // other types are unchanged by the integer promotions.
796
797 QualType PTy = Context.isPromotableBitField(E);
798 if (!PTy.isNull()) {
799 E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
800 return E;
801 }
802 if (Ty->isPromotableIntegerType()) {
803 QualType PT = Context.getPromotedIntegerType(Ty);
804 E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
805 return E;
806 }
807 }
808 return E;
809}
810
811/// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
812/// do not have a prototype. Arguments that have type float or __fp16
813/// are promoted to double. All other argument types are converted by
814/// UsualUnaryConversions().
815ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
816 QualType Ty = E->getType();
817 assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")((!Ty.isNull() && "DefaultArgumentPromotion - missing type"
) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"DefaultArgumentPromotion - missing type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 817, __PRETTY_FUNCTION__))
;
818
819 ExprResult Res = UsualUnaryConversions(E);
820 if (Res.isInvalid())
821 return ExprError();
822 E = Res.get();
823
824 // If this is a 'float' or '__fp16' (CVR qualified or typedef)
825 // promote to double.
826 // Note that default argument promotion applies only to float (and
827 // half/fp16); it does not apply to _Float16.
828 const BuiltinType *BTy = Ty->getAs<BuiltinType>();
829 if (BTy && (BTy->getKind() == BuiltinType::Half ||
830 BTy->getKind() == BuiltinType::Float)) {
831 if (getLangOpts().OpenCL &&
832 !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
833 if (BTy->getKind() == BuiltinType::Half) {
834 E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get();
835 }
836 } else {
837 E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
838 }
839 }
840
841 // C++ performs lvalue-to-rvalue conversion as a default argument
842 // promotion, even on class types, but note:
843 // C++11 [conv.lval]p2:
844 // When an lvalue-to-rvalue conversion occurs in an unevaluated
845 // operand or a subexpression thereof the value contained in the
846 // referenced object is not accessed. Otherwise, if the glvalue
847 // has a class type, the conversion copy-initializes a temporary
848 // of type T from the glvalue and the result of the conversion
849 // is a prvalue for the temporary.
850 // FIXME: add some way to gate this entire thing for correctness in
851 // potentially potentially evaluated contexts.
852 if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
853 ExprResult Temp = PerformCopyInitialization(
854 InitializedEntity::InitializeTemporary(E->getType()),
855 E->getExprLoc(), E);
856 if (Temp.isInvalid())
857 return ExprError();
858 E = Temp.get();
859 }
860
861 return E;
862}
863
864/// Determine the degree of POD-ness for an expression.
865/// Incomplete types are considered POD, since this check can be performed
866/// when we're in an unevaluated context.
867Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
868 if (Ty->isIncompleteType()) {
869 // C++11 [expr.call]p7:
870 // After these conversions, if the argument does not have arithmetic,
871 // enumeration, pointer, pointer to member, or class type, the program
872 // is ill-formed.
873 //
874 // Since we've already performed array-to-pointer and function-to-pointer
875 // decay, the only such type in C++ is cv void. This also handles
876 // initializer lists as variadic arguments.
877 if (Ty->isVoidType())
878 return VAK_Invalid;
879
880 if (Ty->isObjCObjectType())
881 return VAK_Invalid;
882 return VAK_Valid;
883 }
884
885 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
886 return VAK_Invalid;
887
888 if (Ty.isCXX98PODType(Context))
889 return VAK_Valid;
890
891 // C++11 [expr.call]p7:
892 // Passing a potentially-evaluated argument of class type (Clause 9)
893 // having a non-trivial copy constructor, a non-trivial move constructor,
894 // or a non-trivial destructor, with no corresponding parameter,
895 // is conditionally-supported with implementation-defined semantics.
896 if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
897 if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
898 if (!Record->hasNonTrivialCopyConstructor() &&
899 !Record->hasNonTrivialMoveConstructor() &&
900 !Record->hasNonTrivialDestructor())
901 return VAK_ValidInCXX11;
902
903 if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
904 return VAK_Valid;
905
906 if (Ty->isObjCObjectType())
907 return VAK_Invalid;
908
909 if (getLangOpts().MSVCCompat)
910 return VAK_MSVCUndefined;
911
912 // FIXME: In C++11, these cases are conditionally-supported, meaning we're
913 // permitted to reject them. We should consider doing so.
914 return VAK_Undefined;
915}
916
917void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
918 // Don't allow one to pass an Objective-C interface to a vararg.
919 const QualType &Ty = E->getType();
920 VarArgKind VAK = isValidVarArgType(Ty);
921
922 // Complain about passing non-POD types through varargs.
923 switch (VAK) {
924 case VAK_ValidInCXX11:
925 DiagRuntimeBehavior(
926 E->getBeginLoc(), nullptr,
927 PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT);
928 LLVM_FALLTHROUGH[[gnu::fallthrough]];
929 case VAK_Valid:
930 if (Ty->isRecordType()) {
931 // This is unlikely to be what the user intended. If the class has a
932 // 'c_str' member function, the user probably meant to call that.
933 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
934 PDiag(diag::warn_pass_class_arg_to_vararg)
935 << Ty << CT << hasCStrMethod(E) << ".c_str()");
936 }
937 break;
938
939 case VAK_Undefined:
940 case VAK_MSVCUndefined:
941 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
942 PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
943 << getLangOpts().CPlusPlus11 << Ty << CT);
944 break;
945
946 case VAK_Invalid:
947 if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct)
948 Diag(E->getBeginLoc(),
949 diag::err_cannot_pass_non_trivial_c_struct_to_vararg)
950 << Ty << CT;
951 else if (Ty->isObjCObjectType())
952 DiagRuntimeBehavior(E->getBeginLoc(), nullptr,
953 PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
954 << Ty << CT);
955 else
956 Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg)
957 << isa<InitListExpr>(E) << Ty << CT;
958 break;
959 }
960}
961
962/// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
963/// will create a trap if the resulting type is not a POD type.
964ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
965 FunctionDecl *FDecl) {
966 if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
967 // Strip the unbridged-cast placeholder expression off, if applicable.
968 if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
969 (CT == VariadicMethod ||
970 (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
971 E = stripARCUnbridgedCast(E);
972
973 // Otherwise, do normal placeholder checking.
974 } else {
975 ExprResult ExprRes = CheckPlaceholderExpr(E);
976 if (ExprRes.isInvalid())
977 return ExprError();
978 E = ExprRes.get();
979 }
980 }
981
982 ExprResult ExprRes = DefaultArgumentPromotion(E);
983 if (ExprRes.isInvalid())
984 return ExprError();
985
986 // Copy blocks to the heap.
987 if (ExprRes.get()->getType()->isBlockPointerType())
988 maybeExtendBlockObject(ExprRes);
989
990 E = ExprRes.get();
991
992 // Diagnostics regarding non-POD argument types are
993 // emitted along with format string checking in Sema::CheckFunctionCall().
994 if (isValidVarArgType(E->getType()) == VAK_Undefined) {
995 // Turn this into a trap.
996 CXXScopeSpec SS;
997 SourceLocation TemplateKWLoc;
998 UnqualifiedId Name;
999 Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
1000 E->getBeginLoc());
1001 ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name,
1002 /*HasTrailingLParen=*/true,
1003 /*IsAddressOfOperand=*/false);
1004 if (TrapFn.isInvalid())
1005 return ExprError();
1006
1007 ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(),
1008 None, E->getEndLoc());
1009 if (Call.isInvalid())
1010 return ExprError();
1011
1012 ExprResult Comma =
1013 ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E);
1014 if (Comma.isInvalid())
1015 return ExprError();
1016 return Comma.get();
1017 }
1018
1019 if (!getLangOpts().CPlusPlus &&
1020 RequireCompleteType(E->getExprLoc(), E->getType(),
1021 diag::err_call_incomplete_argument))
1022 return ExprError();
1023
1024 return E;
1025}
1026
1027/// Converts an integer to complex float type. Helper function of
1028/// UsualArithmeticConversions()
1029///
1030/// \return false if the integer expression is an integer type and is
1031/// successfully converted to the complex type.
1032static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
1033 ExprResult &ComplexExpr,
1034 QualType IntTy,
1035 QualType ComplexTy,
1036 bool SkipCast) {
1037 if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
1038 if (SkipCast) return false;
1039 if (IntTy->isIntegerType()) {
1040 QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
1041 IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
1042 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1043 CK_FloatingRealToComplex);
1044 } else {
1045 assert(IntTy->isComplexIntegerType())((IntTy->isComplexIntegerType()) ? static_cast<void>
(0) : __assert_fail ("IntTy->isComplexIntegerType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1045, __PRETTY_FUNCTION__))
;
1046 IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
1047 CK_IntegralComplexToFloatingComplex);
1048 }
1049 return false;
1050}
1051
1052/// Handle arithmetic conversion with complex types. Helper function of
1053/// UsualArithmeticConversions()
1054static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
1055 ExprResult &RHS, QualType LHSType,
1056 QualType RHSType,
1057 bool IsCompAssign) {
1058 // if we have an integer operand, the result is the complex type.
1059 if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
1060 /*skipCast*/false))
1061 return LHSType;
1062 if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
1063 /*skipCast*/IsCompAssign))
1064 return RHSType;
1065
1066 // This handles complex/complex, complex/float, or float/complex.
1067 // When both operands are complex, the shorter operand is converted to the
1068 // type of the longer, and that is the type of the result. This corresponds
1069 // to what is done when combining two real floating-point operands.
1070 // The fun begins when size promotion occur across type domains.
1071 // From H&S 6.3.4: When one operand is complex and the other is a real
1072 // floating-point type, the less precise type is converted, within it's
1073 // real or complex domain, to the precision of the other type. For example,
1074 // when combining a "long double" with a "double _Complex", the
1075 // "double _Complex" is promoted to "long double _Complex".
1076
1077 // Compute the rank of the two types, regardless of whether they are complex.
1078 int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1079
1080 auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
1081 auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
1082 QualType LHSElementType =
1083 LHSComplexType ? LHSComplexType->getElementType() : LHSType;
1084 QualType RHSElementType =
1085 RHSComplexType ? RHSComplexType->getElementType() : RHSType;
1086
1087 QualType ResultType = S.Context.getComplexType(LHSElementType);
1088 if (Order < 0) {
1089 // Promote the precision of the LHS if not an assignment.
1090 ResultType = S.Context.getComplexType(RHSElementType);
1091 if (!IsCompAssign) {
1092 if (LHSComplexType)
1093 LHS =
1094 S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
1095 else
1096 LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
1097 }
1098 } else if (Order > 0) {
1099 // Promote the precision of the RHS.
1100 if (RHSComplexType)
1101 RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
1102 else
1103 RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
1104 }
1105 return ResultType;
1106}
1107
1108/// Handle arithmetic conversion from integer to float. Helper function
1109/// of UsualArithmeticConversions()
1110static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
1111 ExprResult &IntExpr,
1112 QualType FloatTy, QualType IntTy,
1113 bool ConvertFloat, bool ConvertInt) {
1114 if (IntTy->isIntegerType()) {
1115 if (ConvertInt)
1116 // Convert intExpr to the lhs floating point type.
1117 IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
1118 CK_IntegralToFloating);
1119 return FloatTy;
1120 }
1121
1122 // Convert both sides to the appropriate complex float.
1123 assert(IntTy->isComplexIntegerType())((IntTy->isComplexIntegerType()) ? static_cast<void>
(0) : __assert_fail ("IntTy->isComplexIntegerType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1123, __PRETTY_FUNCTION__))
;
1124 QualType result = S.Context.getComplexType(FloatTy);
1125
1126 // _Complex int -> _Complex float
1127 if (ConvertInt)
1128 IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
1129 CK_IntegralComplexToFloatingComplex);
1130
1131 // float -> _Complex float
1132 if (ConvertFloat)
1133 FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
1134 CK_FloatingRealToComplex);
1135
1136 return result;
1137}
1138
1139/// Handle arithmethic conversion with floating point types. Helper
1140/// function of UsualArithmeticConversions()
1141static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
1142 ExprResult &RHS, QualType LHSType,
1143 QualType RHSType, bool IsCompAssign) {
1144 bool LHSFloat = LHSType->isRealFloatingType();
1145 bool RHSFloat = RHSType->isRealFloatingType();
1146
1147 // N1169 4.1.4: If one of the operands has a floating type and the other
1148 // operand has a fixed-point type, the fixed-point operand
1149 // is converted to the floating type [...]
1150 if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) {
1151 if (LHSFloat)
1152 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FixedPointToFloating);
1153 else if (!IsCompAssign)
1154 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FixedPointToFloating);
1155 return LHSFloat ? LHSType : RHSType;
1156 }
1157
1158 // If we have two real floating types, convert the smaller operand
1159 // to the bigger result.
1160 if (LHSFloat && RHSFloat) {
1161 int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
1162 if (order > 0) {
1163 RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
1164 return LHSType;
1165 }
1166
1167 assert(order < 0 && "illegal float comparison")((order < 0 && "illegal float comparison") ? static_cast
<void> (0) : __assert_fail ("order < 0 && \"illegal float comparison\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1167, __PRETTY_FUNCTION__))
;
1168 if (!IsCompAssign)
1169 LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
1170 return RHSType;
1171 }
1172
1173 if (LHSFloat) {
1174 // Half FP has to be promoted to float unless it is natively supported
1175 if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
1176 LHSType = S.Context.FloatTy;
1177
1178 return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
1179 /*ConvertFloat=*/!IsCompAssign,
1180 /*ConvertInt=*/ true);
1181 }
1182 assert(RHSFloat)((RHSFloat) ? static_cast<void> (0) : __assert_fail ("RHSFloat"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1182, __PRETTY_FUNCTION__))
;
1183 return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
1184 /*ConvertFloat=*/ true,
1185 /*ConvertInt=*/!IsCompAssign);
1186}
1187
1188/// Diagnose attempts to convert between __float128 and long double if
1189/// there is no support for such conversion. Helper function of
1190/// UsualArithmeticConversions().
1191static bool unsupportedTypeConversion(const Sema &S, QualType LHSType,
1192 QualType RHSType) {
1193 /* No issue converting if at least one of the types is not a floating point
1194 type or the two types have the same rank.
1195 */
1196 if (!LHSType->isFloatingType() || !RHSType->isFloatingType() ||
1197 S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0)
1198 return false;
1199
1200 assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&((LHSType->isFloatingType() && RHSType->isFloatingType
() && "The remaining types must be floating point types."
) ? static_cast<void> (0) : __assert_fail ("LHSType->isFloatingType() && RHSType->isFloatingType() && \"The remaining types must be floating point types.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1201, __PRETTY_FUNCTION__))
1201 "The remaining types must be floating point types.")((LHSType->isFloatingType() && RHSType->isFloatingType
() && "The remaining types must be floating point types."
) ? static_cast<void> (0) : __assert_fail ("LHSType->isFloatingType() && RHSType->isFloatingType() && \"The remaining types must be floating point types.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1201, __PRETTY_FUNCTION__))
;
1202
1203 auto *LHSComplex = LHSType->getAs<ComplexType>();
1204 auto *RHSComplex = RHSType->getAs<ComplexType>();
1205
1206 QualType LHSElemType = LHSComplex ?
1207 LHSComplex->getElementType() : LHSType;
1208 QualType RHSElemType = RHSComplex ?
1209 RHSComplex->getElementType() : RHSType;
1210
1211 // No issue if the two types have the same representation
1212 if (&S.Context.getFloatTypeSemantics(LHSElemType) ==
1213 &S.Context.getFloatTypeSemantics(RHSElemType))
1214 return false;
1215
1216 bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty &&
1217 RHSElemType == S.Context.LongDoubleTy);
1218 Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy &&
1219 RHSElemType == S.Context.Float128Ty);
1220
1221 // We've handled the situation where __float128 and long double have the same
1222 // representation. We allow all conversions for all possible long double types
1223 // except PPC's double double.
1224 return Float128AndLongDouble &&
1225 (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) ==
1226 &llvm::APFloat::PPCDoubleDouble());
1227}
1228
1229typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
1230
1231namespace {
1232/// These helper callbacks are placed in an anonymous namespace to
1233/// permit their use as function template parameters.
1234ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
1235 return S.ImpCastExprToType(op, toType, CK_IntegralCast);
1236}
1237
1238ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
1239 return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
1240 CK_IntegralComplexCast);
1241}
1242}
1243
1244/// Handle integer arithmetic conversions. Helper function of
1245/// UsualArithmeticConversions()
1246template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
1247static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
1248 ExprResult &RHS, QualType LHSType,
1249 QualType RHSType, bool IsCompAssign) {
1250 // The rules for this case are in C99 6.3.1.8
1251 int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
1252 bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
1253 bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
1254 if (LHSSigned == RHSSigned) {
1255 // Same signedness; use the higher-ranked type
1256 if (order >= 0) {
1257 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1258 return LHSType;
1259 } else if (!IsCompAssign)
1260 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1261 return RHSType;
1262 } else if (order != (LHSSigned ? 1 : -1)) {
1263 // The unsigned type has greater than or equal rank to the
1264 // signed type, so use the unsigned type
1265 if (RHSSigned) {
1266 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1267 return LHSType;
1268 } else if (!IsCompAssign)
1269 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1270 return RHSType;
1271 } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
1272 // The two types are different widths; if we are here, that
1273 // means the signed type is larger than the unsigned type, so
1274 // use the signed type.
1275 if (LHSSigned) {
1276 RHS = (*doRHSCast)(S, RHS.get(), LHSType);
1277 return LHSType;
1278 } else if (!IsCompAssign)
1279 LHS = (*doLHSCast)(S, LHS.get(), RHSType);
1280 return RHSType;
1281 } else {
1282 // The signed type is higher-ranked than the unsigned type,
1283 // but isn't actually any bigger (like unsigned int and long
1284 // on most 32-bit systems). Use the unsigned type corresponding
1285 // to the signed type.
1286 QualType result =
1287 S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
1288 RHS = (*doRHSCast)(S, RHS.get(), result);
1289 if (!IsCompAssign)
1290 LHS = (*doLHSCast)(S, LHS.get(), result);
1291 return result;
1292 }
1293}
1294
1295/// Handle conversions with GCC complex int extension. Helper function
1296/// of UsualArithmeticConversions()
1297static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
1298 ExprResult &RHS, QualType LHSType,
1299 QualType RHSType,
1300 bool IsCompAssign) {
1301 const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
1302 const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
1303
1304 if (LHSComplexInt && RHSComplexInt) {
1305 QualType LHSEltType = LHSComplexInt->getElementType();
1306 QualType RHSEltType = RHSComplexInt->getElementType();
1307 QualType ScalarType =
1308 handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
1309 (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
1310
1311 return S.Context.getComplexType(ScalarType);
1312 }
1313
1314 if (LHSComplexInt) {
1315 QualType LHSEltType = LHSComplexInt->getElementType();
1316 QualType ScalarType =
1317 handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
1318 (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
1319 QualType ComplexType = S.Context.getComplexType(ScalarType);
1320 RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
1321 CK_IntegralRealToComplex);
1322
1323 return ComplexType;
1324 }
1325
1326 assert(RHSComplexInt)((RHSComplexInt) ? static_cast<void> (0) : __assert_fail
("RHSComplexInt", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1326, __PRETTY_FUNCTION__))
;
1327
1328 QualType RHSEltType = RHSComplexInt->getElementType();
1329 QualType ScalarType =
1330 handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
1331 (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
1332 QualType ComplexType = S.Context.getComplexType(ScalarType);
1333
1334 if (!IsCompAssign)
1335 LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
1336 CK_IntegralRealToComplex);
1337 return ComplexType;
1338}
1339
1340/// Return the rank of a given fixed point or integer type. The value itself
1341/// doesn't matter, but the values must be increasing with proper increasing
1342/// rank as described in N1169 4.1.1.
1343static unsigned GetFixedPointRank(QualType Ty) {
1344 const auto *BTy = Ty->getAs<BuiltinType>();
1345 assert(BTy && "Expected a builtin type.")((BTy && "Expected a builtin type.") ? static_cast<
void> (0) : __assert_fail ("BTy && \"Expected a builtin type.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1345, __PRETTY_FUNCTION__))
;
1346
1347 switch (BTy->getKind()) {
1348 case BuiltinType::ShortFract:
1349 case BuiltinType::UShortFract:
1350 case BuiltinType::SatShortFract:
1351 case BuiltinType::SatUShortFract:
1352 return 1;
1353 case BuiltinType::Fract:
1354 case BuiltinType::UFract:
1355 case BuiltinType::SatFract:
1356 case BuiltinType::SatUFract:
1357 return 2;
1358 case BuiltinType::LongFract:
1359 case BuiltinType::ULongFract:
1360 case BuiltinType::SatLongFract:
1361 case BuiltinType::SatULongFract:
1362 return 3;
1363 case BuiltinType::ShortAccum:
1364 case BuiltinType::UShortAccum:
1365 case BuiltinType::SatShortAccum:
1366 case BuiltinType::SatUShortAccum:
1367 return 4;
1368 case BuiltinType::Accum:
1369 case BuiltinType::UAccum:
1370 case BuiltinType::SatAccum:
1371 case BuiltinType::SatUAccum:
1372 return 5;
1373 case BuiltinType::LongAccum:
1374 case BuiltinType::ULongAccum:
1375 case BuiltinType::SatLongAccum:
1376 case BuiltinType::SatULongAccum:
1377 return 6;
1378 default:
1379 if (BTy->isInteger())
1380 return 0;
1381 llvm_unreachable("Unexpected fixed point or integer type")::llvm::llvm_unreachable_internal("Unexpected fixed point or integer type"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1381)
;
1382 }
1383}
1384
1385/// handleFixedPointConversion - Fixed point operations between fixed
1386/// point types and integers or other fixed point types do not fall under
1387/// usual arithmetic conversion since these conversions could result in loss
1388/// of precsision (N1169 4.1.4). These operations should be calculated with
1389/// the full precision of their result type (N1169 4.1.6.2.1).
1390static QualType handleFixedPointConversion(Sema &S, QualType LHSTy,
1391 QualType RHSTy) {
1392 assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&(((LHSTy->isFixedPointType() || RHSTy->isFixedPointType
()) && "Expected at least one of the operands to be a fixed point type"
) ? static_cast<void> (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1393, __PRETTY_FUNCTION__))
1393 "Expected at least one of the operands to be a fixed point type")(((LHSTy->isFixedPointType() || RHSTy->isFixedPointType
()) && "Expected at least one of the operands to be a fixed point type"
) ? static_cast<void> (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1393, __PRETTY_FUNCTION__))
;
1394 assert((LHSTy->isFixedPointOrIntegerType() ||(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType
()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? static_cast<
void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1397, __PRETTY_FUNCTION__))
1395 RHSTy->isFixedPointOrIntegerType()) &&(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType
()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? static_cast<
void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1397, __PRETTY_FUNCTION__))
1396 "Special fixed point arithmetic operation conversions are only "(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType
()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? static_cast<
void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1397, __PRETTY_FUNCTION__))
1397 "applied to ints or other fixed point types")(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType
()) && "Special fixed point arithmetic operation conversions are only "
"applied to ints or other fixed point types") ? static_cast<
void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1397, __PRETTY_FUNCTION__))
;
1398
1399 // If one operand has signed fixed-point type and the other operand has
1400 // unsigned fixed-point type, then the unsigned fixed-point operand is
1401 // converted to its corresponding signed fixed-point type and the resulting
1402 // type is the type of the converted operand.
1403 if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType())
1404 LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy);
1405 else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType())
1406 RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy);
1407
1408 // The result type is the type with the highest rank, whereby a fixed-point
1409 // conversion rank is always greater than an integer conversion rank; if the
1410 // type of either of the operands is a saturating fixedpoint type, the result
1411 // type shall be the saturating fixed-point type corresponding to the type
1412 // with the highest rank; the resulting value is converted (taking into
1413 // account rounding and overflow) to the precision of the resulting type.
1414 // Same ranks between signed and unsigned types are resolved earlier, so both
1415 // types are either signed or both unsigned at this point.
1416 unsigned LHSTyRank = GetFixedPointRank(LHSTy);
1417 unsigned RHSTyRank = GetFixedPointRank(RHSTy);
1418
1419 QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy;
1420
1421 if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType())
1422 ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy);
1423
1424 return ResultTy;
1425}
1426
1427/// Check that the usual arithmetic conversions can be performed on this pair of
1428/// expressions that might be of enumeration type.
1429static void checkEnumArithmeticConversions(Sema &S, Expr *LHS, Expr *RHS,
1430 SourceLocation Loc,
1431 Sema::ArithConvKind ACK) {
1432 // C++2a [expr.arith.conv]p1:
1433 // If one operand is of enumeration type and the other operand is of a
1434 // different enumeration type or a floating-point type, this behavior is
1435 // deprecated ([depr.arith.conv.enum]).
1436 //
1437 // Warn on this in all language modes. Produce a deprecation warning in C++20.
1438 // Eventually we will presumably reject these cases (in C++23 onwards?).
1439 QualType L = LHS->getType(), R = RHS->getType();
1440 bool LEnum = L->isUnscopedEnumerationType(),
1441 REnum = R->isUnscopedEnumerationType();
1442 bool IsCompAssign = ACK == Sema::ACK_CompAssign;
1443 if ((!IsCompAssign && LEnum && R->isFloatingType()) ||
1444 (REnum && L->isFloatingType())) {
1445 S.Diag(Loc, S.getLangOpts().CPlusPlus20
1446 ? diag::warn_arith_conv_enum_float_cxx20
1447 : diag::warn_arith_conv_enum_float)
1448 << LHS->getSourceRange() << RHS->getSourceRange()
1449 << (int)ACK << LEnum << L << R;
1450 } else if (!IsCompAssign && LEnum && REnum &&
1451 !S.Context.hasSameUnqualifiedType(L, R)) {
1452 unsigned DiagID;
1453 if (!L->castAs<EnumType>()->getDecl()->hasNameForLinkage() ||
1454 !R->castAs<EnumType>()->getDecl()->hasNameForLinkage()) {
1455 // If either enumeration type is unnamed, it's less likely that the
1456 // user cares about this, but this situation is still deprecated in
1457 // C++2a. Use a different warning group.
1458 DiagID = S.getLangOpts().CPlusPlus20
1459 ? diag::warn_arith_conv_mixed_anon_enum_types_cxx20
1460 : diag::warn_arith_conv_mixed_anon_enum_types;
1461 } else if (ACK == Sema::ACK_Conditional) {
1462 // Conditional expressions are separated out because they have
1463 // historically had a different warning flag.
1464 DiagID = S.getLangOpts().CPlusPlus20
1465 ? diag::warn_conditional_mixed_enum_types_cxx20
1466 : diag::warn_conditional_mixed_enum_types;
1467 } else if (ACK == Sema::ACK_Comparison) {
1468 // Comparison expressions are separated out because they have
1469 // historically had a different warning flag.
1470 DiagID = S.getLangOpts().CPlusPlus20
1471 ? diag::warn_comparison_mixed_enum_types_cxx20
1472 : diag::warn_comparison_mixed_enum_types;
1473 } else {
1474 DiagID = S.getLangOpts().CPlusPlus20
1475 ? diag::warn_arith_conv_mixed_enum_types_cxx20
1476 : diag::warn_arith_conv_mixed_enum_types;
1477 }
1478 S.Diag(Loc, DiagID) << LHS->getSourceRange() << RHS->getSourceRange()
1479 << (int)ACK << L << R;
1480 }
1481}
1482
1483/// UsualArithmeticConversions - Performs various conversions that are common to
1484/// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
1485/// routine returns the first non-arithmetic type found. The client is
1486/// responsible for emitting appropriate error diagnostics.
1487QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
1488 SourceLocation Loc,
1489 ArithConvKind ACK) {
1490 checkEnumArithmeticConversions(*this, LHS.get(), RHS.get(), Loc, ACK);
1491
1492 if (ACK != ACK_CompAssign) {
1493 LHS = UsualUnaryConversions(LHS.get());
1494 if (LHS.isInvalid())
1495 return QualType();
1496 }
1497
1498 RHS = UsualUnaryConversions(RHS.get());
1499 if (RHS.isInvalid())
1500 return QualType();
1501
1502 // For conversion purposes, we ignore any qualifiers.
1503 // For example, "const float" and "float" are equivalent.
1504 QualType LHSType =
1505 Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
1506 QualType RHSType =
1507 Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
1508
1509 // For conversion purposes, we ignore any atomic qualifier on the LHS.
1510 if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
1511 LHSType = AtomicLHS->getValueType();
1512
1513 // If both types are identical, no conversion is needed.
1514 if (LHSType == RHSType)
1515 return LHSType;
1516
1517 // If either side is a non-arithmetic type (e.g. a pointer), we are done.
1518 // The caller can deal with this (e.g. pointer + int).
1519 if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
1520 return QualType();
1521
1522 // Apply unary and bitfield promotions to the LHS's type.
1523 QualType LHSUnpromotedType = LHSType;
1524 if (LHSType->isPromotableIntegerType())
1525 LHSType = Context.getPromotedIntegerType(LHSType);
1526 QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
1527 if (!LHSBitfieldPromoteTy.isNull())
1528 LHSType = LHSBitfieldPromoteTy;
1529 if (LHSType != LHSUnpromotedType && ACK != ACK_CompAssign)
1530 LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
1531
1532 // If both types are identical, no conversion is needed.
1533 if (LHSType == RHSType)
1534 return LHSType;
1535
1536 // ExtInt types aren't subject to conversions between them or normal integers,
1537 // so this fails.
1538 if(LHSType->isExtIntType() || RHSType->isExtIntType())
1539 return QualType();
1540
1541 // At this point, we have two different arithmetic types.
1542
1543 // Diagnose attempts to convert between __float128 and long double where
1544 // such conversions currently can't be handled.
1545 if (unsupportedTypeConversion(*this, LHSType, RHSType))
1546 return QualType();
1547
1548 // Handle complex types first (C99 6.3.1.8p1).
1549 if (LHSType->isComplexType() || RHSType->isComplexType())
1550 return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1551 ACK == ACK_CompAssign);
1552
1553 // Now handle "real" floating types (i.e. float, double, long double).
1554 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
1555 return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
1556 ACK == ACK_CompAssign);
1557
1558 // Handle GCC complex int extension.
1559 if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
1560 return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
1561 ACK == ACK_CompAssign);
1562
1563 if (LHSType->isFixedPointType() || RHSType->isFixedPointType())
1564 return handleFixedPointConversion(*this, LHSType, RHSType);
1565
1566 // Finally, we have two differing integer types.
1567 return handleIntegerConversion<doIntegralCast, doIntegralCast>
1568 (*this, LHS, RHS, LHSType, RHSType, ACK == ACK_CompAssign);
1569}
1570
1571//===----------------------------------------------------------------------===//
1572// Semantic Analysis for various Expression Types
1573//===----------------------------------------------------------------------===//
1574
1575
1576ExprResult
1577Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
1578 SourceLocation DefaultLoc,
1579 SourceLocation RParenLoc,
1580 Expr *ControllingExpr,
1581 ArrayRef<ParsedType> ArgTypes,
1582 ArrayRef<Expr *> ArgExprs) {
1583 unsigned NumAssocs = ArgTypes.size();
1584 assert(NumAssocs == ArgExprs.size())((NumAssocs == ArgExprs.size()) ? static_cast<void> (0)
: __assert_fail ("NumAssocs == ArgExprs.size()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1584, __PRETTY_FUNCTION__))
;
1585
1586 TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
1587 for (unsigned i = 0; i < NumAssocs; ++i) {
1588 if (ArgTypes[i])
1589 (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
1590 else
1591 Types[i] = nullptr;
1592 }
1593
1594 ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
1595 ControllingExpr,
1596 llvm::makeArrayRef(Types, NumAssocs),
1597 ArgExprs);
1598 delete [] Types;
1599 return ER;
1600}
1601
1602ExprResult
1603Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
1604 SourceLocation DefaultLoc,
1605 SourceLocation RParenLoc,
1606 Expr *ControllingExpr,
1607 ArrayRef<TypeSourceInfo *> Types,
1608 ArrayRef<Expr *> Exprs) {
1609 unsigned NumAssocs = Types.size();
1610 assert(NumAssocs == Exprs.size())((NumAssocs == Exprs.size()) ? static_cast<void> (0) : __assert_fail
("NumAssocs == Exprs.size()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1610, __PRETTY_FUNCTION__))
;
1611
1612 // Decay and strip qualifiers for the controlling expression type, and handle
1613 // placeholder type replacement. See committee discussion from WG14 DR423.
1614 {
1615 EnterExpressionEvaluationContext Unevaluated(
1616 *this, Sema::ExpressionEvaluationContext::Unevaluated);
1617 ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
1618 if (R.isInvalid())
1619 return ExprError();
1620 ControllingExpr = R.get();
1621 }
1622
1623 // The controlling expression is an unevaluated operand, so side effects are
1624 // likely unintended.
1625 if (!inTemplateInstantiation() &&
1626 ControllingExpr->HasSideEffects(Context, false))
1627 Diag(ControllingExpr->getExprLoc(),
1628 diag::warn_side_effects_unevaluated_context);
1629
1630 bool TypeErrorFound = false,
1631 IsResultDependent = ControllingExpr->isTypeDependent(),
1632 ContainsUnexpandedParameterPack
1633 = ControllingExpr->containsUnexpandedParameterPack();
1634
1635 for (unsigned i = 0; i < NumAssocs; ++i) {
1636 if (Exprs[i]->containsUnexpandedParameterPack())
1637 ContainsUnexpandedParameterPack = true;
1638
1639 if (Types[i]) {
1640 if (Types[i]->getType()->containsUnexpandedParameterPack())
1641 ContainsUnexpandedParameterPack = true;
1642
1643 if (Types[i]->getType()->isDependentType()) {
1644 IsResultDependent = true;
1645 } else {
1646 // C11 6.5.1.1p2 "The type name in a generic association shall specify a
1647 // complete object type other than a variably modified type."
1648 unsigned D = 0;
1649 if (Types[i]->getType()->isIncompleteType())
1650 D = diag::err_assoc_type_incomplete;
1651 else if (!Types[i]->getType()->isObjectType())
1652 D = diag::err_assoc_type_nonobject;
1653 else if (Types[i]->getType()->isVariablyModifiedType())
1654 D = diag::err_assoc_type_variably_modified;
1655
1656 if (D != 0) {
1657 Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
1658 << Types[i]->getTypeLoc().getSourceRange()
1659 << Types[i]->getType();
1660 TypeErrorFound = true;
1661 }
1662
1663 // C11 6.5.1.1p2 "No two generic associations in the same generic
1664 // selection shall specify compatible types."
1665 for (unsigned j = i+1; j < NumAssocs; ++j)
1666 if (Types[j] && !Types[j]->getType()->isDependentType() &&
1667 Context.typesAreCompatible(Types[i]->getType(),
1668 Types[j]->getType())) {
1669 Diag(Types[j]->getTypeLoc().getBeginLoc(),
1670 diag::err_assoc_compatible_types)
1671 << Types[j]->getTypeLoc().getSourceRange()
1672 << Types[j]->getType()
1673 << Types[i]->getType();
1674 Diag(Types[i]->getTypeLoc().getBeginLoc(),
1675 diag::note_compat_assoc)
1676 << Types[i]->getTypeLoc().getSourceRange()
1677 << Types[i]->getType();
1678 TypeErrorFound = true;
1679 }
1680 }
1681 }
1682 }
1683 if (TypeErrorFound)
1684 return ExprError();
1685
1686 // If we determined that the generic selection is result-dependent, don't
1687 // try to compute the result expression.
1688 if (IsResultDependent)
1689 return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types,
1690 Exprs, DefaultLoc, RParenLoc,
1691 ContainsUnexpandedParameterPack);
1692
1693 SmallVector<unsigned, 1> CompatIndices;
1694 unsigned DefaultIndex = -1U;
1695 for (unsigned i = 0; i < NumAssocs; ++i) {
1696 if (!Types[i])
1697 DefaultIndex = i;
1698 else if (Context.typesAreCompatible(ControllingExpr->getType(),
1699 Types[i]->getType()))
1700 CompatIndices.push_back(i);
1701 }
1702
1703 // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
1704 // type compatible with at most one of the types named in its generic
1705 // association list."
1706 if (CompatIndices.size() > 1) {
1707 // We strip parens here because the controlling expression is typically
1708 // parenthesized in macro definitions.
1709 ControllingExpr = ControllingExpr->IgnoreParens();
1710 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match)
1711 << ControllingExpr->getSourceRange() << ControllingExpr->getType()
1712 << (unsigned)CompatIndices.size();
1713 for (unsigned I : CompatIndices) {
1714 Diag(Types[I]->getTypeLoc().getBeginLoc(),
1715 diag::note_compat_assoc)
1716 << Types[I]->getTypeLoc().getSourceRange()
1717 << Types[I]->getType();
1718 }
1719 return ExprError();
1720 }
1721
1722 // C11 6.5.1.1p2 "If a generic selection has no default generic association,
1723 // its controlling expression shall have type compatible with exactly one of
1724 // the types named in its generic association list."
1725 if (DefaultIndex == -1U && CompatIndices.size() == 0) {
1726 // We strip parens here because the controlling expression is typically
1727 // parenthesized in macro definitions.
1728 ControllingExpr = ControllingExpr->IgnoreParens();
1729 Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match)
1730 << ControllingExpr->getSourceRange() << ControllingExpr->getType();
1731 return ExprError();
1732 }
1733
1734 // C11 6.5.1.1p3 "If a generic selection has a generic association with a
1735 // type name that is compatible with the type of the controlling expression,
1736 // then the result expression of the generic selection is the expression
1737 // in that generic association. Otherwise, the result expression of the
1738 // generic selection is the expression in the default generic association."
1739 unsigned ResultIndex =
1740 CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
1741
1742 return GenericSelectionExpr::Create(
1743 Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
1744 ContainsUnexpandedParameterPack, ResultIndex);
1745}
1746
1747/// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
1748/// location of the token and the offset of the ud-suffix within it.
1749static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
1750 unsigned Offset) {
1751 return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
1752 S.getLangOpts());
1753}
1754
1755/// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
1756/// the corresponding cooked (non-raw) literal operator, and build a call to it.
1757static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
1758 IdentifierInfo *UDSuffix,
1759 SourceLocation UDSuffixLoc,
1760 ArrayRef<Expr*> Args,
1761 SourceLocation LitEndLoc) {
1762 assert(Args.size() <= 2 && "too many arguments for literal operator")((Args.size() <= 2 && "too many arguments for literal operator"
) ? static_cast<void> (0) : __assert_fail ("Args.size() <= 2 && \"too many arguments for literal operator\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1762, __PRETTY_FUNCTION__))
;
1763
1764 QualType ArgTy[2];
1765 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
1766 ArgTy[ArgIdx] = Args[ArgIdx]->getType();
1767 if (ArgTy[ArgIdx]->isArrayType())
1768 ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
1769 }
1770
1771 DeclarationName OpName =
1772 S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1773 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1774 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1775
1776 LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
1777 if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
1778 /*AllowRaw*/ false, /*AllowTemplate*/ false,
1779 /*AllowStringTemplatePack*/ false,
1780 /*DiagnoseMissing*/ true) == Sema::LOLR_Error)
1781 return ExprError();
1782
1783 return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
1784}
1785
1786/// ActOnStringLiteral - The specified tokens were lexed as pasted string
1787/// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string
1788/// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
1789/// multiple tokens. However, the common case is that StringToks points to one
1790/// string.
1791///
1792ExprResult
1793Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
1794 assert(!StringToks.empty() && "Must have at least one string!")((!StringToks.empty() && "Must have at least one string!"
) ? static_cast<void> (0) : __assert_fail ("!StringToks.empty() && \"Must have at least one string!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1794, __PRETTY_FUNCTION__))
;
1795
1796 StringLiteralParser Literal(StringToks, PP);
1797 if (Literal.hadError)
1798 return ExprError();
1799
1800 SmallVector<SourceLocation, 4> StringTokLocs;
1801 for (const Token &Tok : StringToks)
1802 StringTokLocs.push_back(Tok.getLocation());
1803
1804 QualType CharTy = Context.CharTy;
1805 StringLiteral::StringKind Kind = StringLiteral::Ascii;
1806 if (Literal.isWide()) {
1807 CharTy = Context.getWideCharType();
1808 Kind = StringLiteral::Wide;
1809 } else if (Literal.isUTF8()) {
1810 if (getLangOpts().Char8)
1811 CharTy = Context.Char8Ty;
1812 Kind = StringLiteral::UTF8;
1813 } else if (Literal.isUTF16()) {
1814 CharTy = Context.Char16Ty;
1815 Kind = StringLiteral::UTF16;
1816 } else if (Literal.isUTF32()) {
1817 CharTy = Context.Char32Ty;
1818 Kind = StringLiteral::UTF32;
1819 } else if (Literal.isPascal()) {
1820 CharTy = Context.UnsignedCharTy;
1821 }
1822
1823 // Warn on initializing an array of char from a u8 string literal; this
1824 // becomes ill-formed in C++2a.
1825 if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus20 &&
1826 !getLangOpts().Char8 && Kind == StringLiteral::UTF8) {
1827 Diag(StringTokLocs.front(), diag::warn_cxx20_compat_utf8_string);
1828
1829 // Create removals for all 'u8' prefixes in the string literal(s). This
1830 // ensures C++2a compatibility (but may change the program behavior when
1831 // built by non-Clang compilers for which the execution character set is
1832 // not always UTF-8).
1833 auto RemovalDiag = PDiag(diag::note_cxx20_compat_utf8_string_remove_u8);
1834 SourceLocation RemovalDiagLoc;
1835 for (const Token &Tok : StringToks) {
1836 if (Tok.getKind() == tok::utf8_string_literal) {
1837 if (RemovalDiagLoc.isInvalid())
1838 RemovalDiagLoc = Tok.getLocation();
1839 RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange(
1840 Tok.getLocation(),
1841 Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2,
1842 getSourceManager(), getLangOpts())));
1843 }
1844 }
1845 Diag(RemovalDiagLoc, RemovalDiag);
1846 }
1847
1848 QualType StrTy =
1849 Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars());
1850
1851 // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
1852 StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
1853 Kind, Literal.Pascal, StrTy,
1854 &StringTokLocs[0],
1855 StringTokLocs.size());
1856 if (Literal.getUDSuffix().empty())
1857 return Lit;
1858
1859 // We're building a user-defined literal.
1860 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
1861 SourceLocation UDSuffixLoc =
1862 getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
1863 Literal.getUDSuffixOffset());
1864
1865 // Make sure we're allowed user-defined literals here.
1866 if (!UDLScope)
1867 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
1868
1869 // C++11 [lex.ext]p5: The literal L is treated as a call of the form
1870 // operator "" X (str, len)
1871 QualType SizeType = Context.getSizeType();
1872
1873 DeclarationName OpName =
1874 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
1875 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
1876 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
1877
1878 QualType ArgTy[] = {
1879 Context.getArrayDecayedType(StrTy), SizeType
1880 };
1881
1882 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
1883 switch (LookupLiteralOperator(UDLScope, R, ArgTy,
1884 /*AllowRaw*/ false, /*AllowTemplate*/ true,
1885 /*AllowStringTemplatePack*/ true,
1886 /*DiagnoseMissing*/ true, Lit)) {
1887
1888 case LOLR_Cooked: {
1889 llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
1890 IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
1891 StringTokLocs[0]);
1892 Expr *Args[] = { Lit, LenArg };
1893
1894 return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
1895 }
1896
1897 case LOLR_Template: {
1898 TemplateArgumentListInfo ExplicitArgs;
1899 TemplateArgument Arg(Lit);
1900 TemplateArgumentLocInfo ArgInfo(Lit);
1901 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1902 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1903 &ExplicitArgs);
1904 }
1905
1906 case LOLR_StringTemplatePack: {
1907 TemplateArgumentListInfo ExplicitArgs;
1908
1909 unsigned CharBits = Context.getIntWidth(CharTy);
1910 bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
1911 llvm::APSInt Value(CharBits, CharIsUnsigned);
1912
1913 TemplateArgument TypeArg(CharTy);
1914 TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
1915 ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
1916
1917 for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
1918 Value = Lit->getCodeUnit(I);
1919 TemplateArgument Arg(Context, Value, CharTy);
1920 TemplateArgumentLocInfo ArgInfo;
1921 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
1922 }
1923 return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
1924 &ExplicitArgs);
1925 }
1926 case LOLR_Raw:
1927 case LOLR_ErrorNoDiagnostic:
1928 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1928)
;
1929 case LOLR_Error:
1930 return ExprError();
1931 }
1932 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1932)
;
1933}
1934
1935DeclRefExpr *
1936Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1937 SourceLocation Loc,
1938 const CXXScopeSpec *SS) {
1939 DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
1940 return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
1941}
1942
1943DeclRefExpr *
1944Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
1945 const DeclarationNameInfo &NameInfo,
1946 const CXXScopeSpec *SS, NamedDecl *FoundD,
1947 SourceLocation TemplateKWLoc,
1948 const TemplateArgumentListInfo *TemplateArgs) {
1949 NestedNameSpecifierLoc NNS =
1950 SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
1951 return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc,
1952 TemplateArgs);
1953}
1954
1955// CUDA/HIP: Check whether a captured reference variable is referencing a
1956// host variable in a device or host device lambda.
1957static bool isCapturingReferenceToHostVarInCUDADeviceLambda(const Sema &S,
1958 VarDecl *VD) {
1959 if (!S.getLangOpts().CUDA || !VD->hasInit())
1960 return false;
1961 assert(VD->getType()->isReferenceType())((VD->getType()->isReferenceType()) ? static_cast<void
> (0) : __assert_fail ("VD->getType()->isReferenceType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 1961, __PRETTY_FUNCTION__))
;
1962
1963 // Check whether the reference variable is referencing a host variable.
1964 auto *DRE = dyn_cast<DeclRefExpr>(VD->getInit());
1965 if (!DRE)
1966 return false;
1967 auto *Referee = dyn_cast<VarDecl>(DRE->getDecl());
1968 if (!Referee || !Referee->hasGlobalStorage() ||
1969 Referee->hasAttr<CUDADeviceAttr>())
1970 return false;
1971
1972 // Check whether the current function is a device or host device lambda.
1973 // Check whether the reference variable is a capture by getDeclContext()
1974 // since refersToEnclosingVariableOrCapture() is not ready at this point.
1975 auto *MD = dyn_cast_or_null<CXXMethodDecl>(S.CurContext);
1976 if (MD && MD->getParent()->isLambda() &&
1977 MD->getOverloadedOperator() == OO_Call && MD->hasAttr<CUDADeviceAttr>() &&
1978 VD->getDeclContext() != MD)
1979 return true;
1980
1981 return false;
1982}
1983
1984NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) {
1985 // A declaration named in an unevaluated operand never constitutes an odr-use.
1986 if (isUnevaluatedContext())
1987 return NOUR_Unevaluated;
1988
1989 // C++2a [basic.def.odr]p4:
1990 // A variable x whose name appears as a potentially-evaluated expression e
1991 // is odr-used by e unless [...] x is a reference that is usable in
1992 // constant expressions.
1993 // CUDA/HIP:
1994 // If a reference variable referencing a host variable is captured in a
1995 // device or host device lambda, the value of the referee must be copied
1996 // to the capture and the reference variable must be treated as odr-use
1997 // since the value of the referee is not known at compile time and must
1998 // be loaded from the captured.
1999 if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
2000 if (VD->getType()->isReferenceType() &&
2001 !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) &&
2002 !isCapturingReferenceToHostVarInCUDADeviceLambda(*this, VD) &&
2003 VD->isUsableInConstantExpressions(Context))
2004 return NOUR_Constant;
2005 }
2006
2007 // All remaining non-variable cases constitute an odr-use. For variables, we
2008 // need to wait and see how the expression is used.
2009 return NOUR_None;
2010}
2011
2012/// BuildDeclRefExpr - Build an expression that references a
2013/// declaration that does not require a closure capture.
2014DeclRefExpr *
2015Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
2016 const DeclarationNameInfo &NameInfo,
2017 NestedNameSpecifierLoc NNS, NamedDecl *FoundD,
2018 SourceLocation TemplateKWLoc,
2019 const TemplateArgumentListInfo *TemplateArgs) {
2020 bool RefersToCapturedVariable =
2021 isa<VarDecl>(D) &&
2022 NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
2023
2024 DeclRefExpr *E = DeclRefExpr::Create(
2025 Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty,
2026 VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D));
2027 MarkDeclRefReferenced(E);
2028
2029 // C++ [except.spec]p17:
2030 // An exception-specification is considered to be needed when:
2031 // - in an expression, the function is the unique lookup result or
2032 // the selected member of a set of overloaded functions.
2033 //
2034 // We delay doing this until after we've built the function reference and
2035 // marked it as used so that:
2036 // a) if the function is defaulted, we get errors from defining it before /
2037 // instead of errors from computing its exception specification, and
2038 // b) if the function is a defaulted comparison, we can use the body we
2039 // build when defining it as input to the exception specification
2040 // computation rather than computing a new body.
2041 if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
2042 if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
2043 if (auto *NewFPT = ResolveExceptionSpec(NameInfo.getLoc(), FPT))
2044 E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
2045 }
2046 }
2047
2048 if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
2049 Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() &&
2050 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc()))
2051 getCurFunction()->recordUseOfWeak(E);
2052
2053 FieldDecl *FD = dyn_cast<FieldDecl>(D);
2054 if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
2055 FD = IFD->getAnonField();
2056 if (FD) {
2057 UnusedPrivateFields.remove(FD);
2058 // Just in case we're building an illegal pointer-to-member.
2059 if (FD->isBitField())
2060 E->setObjectKind(OK_BitField);
2061 }
2062
2063 // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier
2064 // designates a bit-field.
2065 if (auto *BD = dyn_cast<BindingDecl>(D))
2066 if (auto *BE = BD->getBinding())
2067 E->setObjectKind(BE->getObjectKind());
2068
2069 return E;
2070}
2071
2072/// Decomposes the given name into a DeclarationNameInfo, its location, and
2073/// possibly a list of template arguments.
2074///
2075/// If this produces template arguments, it is permitted to call
2076/// DecomposeTemplateName.
2077///
2078/// This actually loses a lot of source location information for
2079/// non-standard name kinds; we should consider preserving that in
2080/// some way.
2081void
2082Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
2083 TemplateArgumentListInfo &Buffer,
2084 DeclarationNameInfo &NameInfo,
2085 const TemplateArgumentListInfo *&TemplateArgs) {
2086 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) {
2087 Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
2088 Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
2089
2090 ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
2091 Id.TemplateId->NumArgs);
2092 translateTemplateArguments(TemplateArgsPtr, Buffer);
2093
2094 TemplateName TName = Id.TemplateId->Template.get();
2095 SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
2096 NameInfo = Context.getNameForTemplate(TName, TNameLoc);
2097 TemplateArgs = &Buffer;
2098 } else {
2099 NameInfo = GetNameFromUnqualifiedId(Id);
2100 TemplateArgs = nullptr;
2101 }
2102}
2103
2104static void emitEmptyLookupTypoDiagnostic(
2105 const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
2106 DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
2107 unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
2108 DeclContext *Ctx =
2109 SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
2110 if (!TC) {
2111 // Emit a special diagnostic for failed member lookups.
2112 // FIXME: computing the declaration context might fail here (?)
2113 if (Ctx)
2114 SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
2115 << SS.getRange();
2116 else
2117 SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
2118 return;
2119 }
2120
2121 std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
2122 bool DroppedSpecifier =
2123 TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
2124 unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>()
2125 ? diag::note_implicit_param_decl
2126 : diag::note_previous_decl;
2127 if (!Ctx)
2128 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
2129 SemaRef.PDiag(NoteID));
2130 else
2131 SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
2132 << Typo << Ctx << DroppedSpecifier
2133 << SS.getRange(),
2134 SemaRef.PDiag(NoteID));
2135}
2136
2137/// Diagnose a lookup that found results in an enclosing class during error
2138/// recovery. This usually indicates that the results were found in a dependent
2139/// base class that could not be searched as part of a template definition.
2140/// Always issues a diagnostic (though this may be only a warning in MS
2141/// compatibility mode).
2142///
2143/// Return \c true if the error is unrecoverable, or \c false if the caller
2144/// should attempt to recover using these lookup results.
2145bool Sema::DiagnoseDependentMemberLookup(LookupResult &R) {
2146 // During a default argument instantiation the CurContext points
2147 // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
2148 // function parameter list, hence add an explicit check.
2149 bool isDefaultArgument =
2150 !CodeSynthesisContexts.empty() &&
2151 CodeSynthesisContexts.back().Kind ==
2152 CodeSynthesisContext::DefaultFunctionArgumentInstantiation;
2153 CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
2154 bool isInstance = CurMethod && CurMethod->isInstance() &&
2155 R.getNamingClass() == CurMethod->getParent() &&
2156 !isDefaultArgument;
2157
2158 // There are two ways we can find a class-scope declaration during template
2159 // instantiation that we did not find in the template definition: if it is a
2160 // member of a dependent base class, or if it is declared after the point of
2161 // use in the same class. Distinguish these by comparing the class in which
2162 // the member was found to the naming class of the lookup.
2163 unsigned DiagID = diag::err_found_in_dependent_base;
2164 unsigned NoteID = diag::note_member_declared_at;
2165 if (R.getRepresentativeDecl()->getDeclContext()->Equals(R.getNamingClass())) {
2166 DiagID = getLangOpts().MSVCCompat ? diag::ext_found_later_in_class
2167 : diag::err_found_later_in_class;
2168 } else if (getLangOpts().MSVCCompat) {
2169 DiagID = diag::ext_found_in_dependent_base;
2170 NoteID = diag::note_dependent_member_use;
2171 }
2172
2173 if (isInstance) {
2174 // Give a code modification hint to insert 'this->'.
2175 Diag(R.getNameLoc(), DiagID)
2176 << R.getLookupName()
2177 << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
2178 CheckCXXThisCapture(R.getNameLoc());
2179 } else {
2180 // FIXME: Add a FixItHint to insert 'Base::' or 'Derived::' (assuming
2181 // they're not shadowed).
2182 Diag(R.getNameLoc(), DiagID) << R.getLookupName();
2183 }
2184
2185 for (NamedDecl *D : R)
2186 Diag(D->getLocation(), NoteID);
2187
2188 // Return true if we are inside a default argument instantiation
2189 // and the found name refers to an instance member function, otherwise
2190 // the caller will try to create an implicit member call and this is wrong
2191 // for default arguments.
2192 //
2193 // FIXME: Is this special case necessary? We could allow the caller to
2194 // diagnose this.
2195 if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
2196 Diag(R.getNameLoc(), diag::err_member_call_without_object);
2197 return true;
2198 }
2199
2200 // Tell the callee to try to recover.
2201 return false;
2202}
2203
2204/// Diagnose an empty lookup.
2205///
2206/// \return false if new lookup candidates were found
2207bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
2208 CorrectionCandidateCallback &CCC,
2209 TemplateArgumentListInfo *ExplicitTemplateArgs,
2210 ArrayRef<Expr *> Args, TypoExpr **Out) {
2211 DeclarationName Name = R.getLookupName();
2212
2213 unsigned diagnostic = diag::err_undeclared_var_use;
2214 unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
2215 if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
2216 Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
2217 Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2218 diagnostic = diag::err_undeclared_use;
2219 diagnostic_suggest = diag::err_undeclared_use_suggest;
2220 }
2221
2222 // If the original lookup was an unqualified lookup, fake an
2223 // unqualified lookup. This is useful when (for example) the
2224 // original lookup would not have found something because it was a
2225 // dependent name.
2226 DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
2227 while (DC) {
2228 if (isa<CXXRecordDecl>(DC)) {
2229 LookupQualifiedName(R, DC);
2230
2231 if (!R.empty()) {
2232 // Don't give errors about ambiguities in this lookup.
2233 R.suppressDiagnostics();
2234
2235 // If there's a best viable function among the results, only mention
2236 // that one in the notes.
2237 OverloadCandidateSet Candidates(R.getNameLoc(),
2238 OverloadCandidateSet::CSK_Normal);
2239 AddOverloadedCallCandidates(R, ExplicitTemplateArgs, Args, Candidates);
2240 OverloadCandidateSet::iterator Best;
2241 if (Candidates.BestViableFunction(*this, R.getNameLoc(), Best) ==
2242 OR_Success) {
2243 R.clear();
2244 R.addDecl(Best->FoundDecl.getDecl(), Best->FoundDecl.getAccess());
2245 R.resolveKind();
2246 }
2247
2248 return DiagnoseDependentMemberLookup(R);
2249 }
2250
2251 R.clear();
2252 }
2253
2254 DC = DC->getLookupParent();
2255 }
2256
2257 // We didn't find anything, so try to correct for a typo.
2258 TypoCorrection Corrected;
2259 if (S && Out) {
2260 SourceLocation TypoLoc = R.getNameLoc();
2261 assert(!ExplicitTemplateArgs &&((!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? static_cast<void> (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2262, __PRETTY_FUNCTION__))
2262 "Diagnosing an empty lookup with explicit template args!")((!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!"
) ? static_cast<void> (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2262, __PRETTY_FUNCTION__))
;
2263 *Out = CorrectTypoDelayed(
2264 R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC,
2265 [=](const TypoCorrection &TC) {
2266 emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
2267 diagnostic, diagnostic_suggest);
2268 },
2269 nullptr, CTK_ErrorRecovery);
2270 if (*Out)
2271 return true;
2272 } else if (S &&
2273 (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(),
2274 S, &SS, CCC, CTK_ErrorRecovery))) {
2275 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
2276 bool DroppedSpecifier =
2277 Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
2278 R.setLookupName(Corrected.getCorrection());
2279
2280 bool AcceptableWithRecovery = false;
2281 bool AcceptableWithoutRecovery = false;
2282 NamedDecl *ND = Corrected.getFoundDecl();
2283 if (ND) {
2284 if (Corrected.isOverloaded()) {
2285 OverloadCandidateSet OCS(R.getNameLoc(),
2286 OverloadCandidateSet::CSK_Normal);
2287 OverloadCandidateSet::iterator Best;
2288 for (NamedDecl *CD : Corrected) {
2289 if (FunctionTemplateDecl *FTD =
2290 dyn_cast<FunctionTemplateDecl>(CD))
2291 AddTemplateOverloadCandidate(
2292 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
2293 Args, OCS);
2294 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
2295 if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
2296 AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
2297 Args, OCS);
2298 }
2299 switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
2300 case OR_Success:
2301 ND = Best->FoundDecl;
2302 Corrected.setCorrectionDecl(ND);
2303 break;
2304 default:
2305 // FIXME: Arbitrarily pick the first declaration for the note.
2306 Corrected.setCorrectionDecl(ND);
2307 break;
2308 }
2309 }
2310 R.addDecl(ND);
2311 if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
2312 CXXRecordDecl *Record = nullptr;
2313 if (Corrected.getCorrectionSpecifier()) {
2314 const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
2315 Record = Ty->getAsCXXRecordDecl();
2316 }
2317 if (!Record)
2318 Record = cast<CXXRecordDecl>(
2319 ND->getDeclContext()->getRedeclContext());
2320 R.setNamingClass(Record);
2321 }
2322
2323 auto *UnderlyingND = ND->getUnderlyingDecl();
2324 AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) ||
2325 isa<FunctionTemplateDecl>(UnderlyingND);
2326 // FIXME: If we ended up with a typo for a type name or
2327 // Objective-C class name, we're in trouble because the parser
2328 // is in the wrong place to recover. Suggest the typo
2329 // correction, but don't make it a fix-it since we're not going
2330 // to recover well anyway.
2331 AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) ||
2332 getAsTypeTemplateDecl(UnderlyingND) ||
2333 isa<ObjCInterfaceDecl>(UnderlyingND);
2334 } else {
2335 // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
2336 // because we aren't able to recover.
2337 AcceptableWithoutRecovery = true;
2338 }
2339
2340 if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
2341 unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>()
2342 ? diag::note_implicit_param_decl
2343 : diag::note_previous_decl;
2344 if (SS.isEmpty())
2345 diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
2346 PDiag(NoteID), AcceptableWithRecovery);
2347 else
2348 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
2349 << Name << computeDeclContext(SS, false)
2350 << DroppedSpecifier << SS.getRange(),
2351 PDiag(NoteID), AcceptableWithRecovery);
2352
2353 // Tell the callee whether to try to recover.
2354 return !AcceptableWithRecovery;
2355 }
2356 }
2357 R.clear();
2358
2359 // Emit a special diagnostic for failed member lookups.
2360 // FIXME: computing the declaration context might fail here (?)
2361 if (!SS.isEmpty()) {
2362 Diag(R.getNameLoc(), diag::err_no_member)
2363 << Name << computeDeclContext(SS, false)
2364 << SS.getRange();
2365 return true;
2366 }
2367
2368 // Give up, we can't recover.
2369 Diag(R.getNameLoc(), diagnostic) << Name;
2370 return true;
2371}
2372
2373/// In Microsoft mode, if we are inside a template class whose parent class has
2374/// dependent base classes, and we can't resolve an unqualified identifier, then
2375/// assume the identifier is a member of a dependent base class. We can only
2376/// recover successfully in static methods, instance methods, and other contexts
2377/// where 'this' is available. This doesn't precisely match MSVC's
2378/// instantiation model, but it's close enough.
2379static Expr *
2380recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
2381 DeclarationNameInfo &NameInfo,
2382 SourceLocation TemplateKWLoc,
2383 const TemplateArgumentListInfo *TemplateArgs) {
2384 // Only try to recover from lookup into dependent bases in static methods or
2385 // contexts where 'this' is available.
2386 QualType ThisType = S.getCurrentThisType();
2387 const CXXRecordDecl *RD = nullptr;
2388 if (!ThisType.isNull())
2389 RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
2390 else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
2391 RD = MD->getParent();
2392 if (!RD || !RD->hasAnyDependentBases())
2393 return nullptr;
2394
2395 // Diagnose this as unqualified lookup into a dependent base class. If 'this'
2396 // is available, suggest inserting 'this->' as a fixit.
2397 SourceLocation Loc = NameInfo.getLoc();
2398 auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
2399 DB << NameInfo.getName() << RD;
2400
2401 if (!ThisType.isNull()) {
2402 DB << FixItHint::CreateInsertion(Loc, "this->");
2403 return CXXDependentScopeMemberExpr::Create(
2404 Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
2405 /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
2406 /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs);
2407 }
2408
2409 // Synthesize a fake NNS that points to the derived class. This will
2410 // perform name lookup during template instantiation.
2411 CXXScopeSpec SS;
2412 auto *NNS =
2413 NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
2414 SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
2415 return DependentScopeDeclRefExpr::Create(
2416 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
2417 TemplateArgs);
2418}
2419
2420ExprResult
2421Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
2422 SourceLocation TemplateKWLoc, UnqualifiedId &Id,
2423 bool HasTrailingLParen, bool IsAddressOfOperand,
2424 CorrectionCandidateCallback *CCC,
2425 bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
2426 assert(!(IsAddressOfOperand && HasTrailingLParen) &&((!(IsAddressOfOperand && HasTrailingLParen) &&
"cannot be direct & operand and have a trailing lparen")
? static_cast<void> (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2427, __PRETTY_FUNCTION__))
2427 "cannot be direct & operand and have a trailing lparen")((!(IsAddressOfOperand && HasTrailingLParen) &&
"cannot be direct & operand and have a trailing lparen")
? static_cast<void> (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2427, __PRETTY_FUNCTION__))
;
2428 if (SS.isInvalid())
2429 return ExprError();
2430
2431 TemplateArgumentListInfo TemplateArgsBuffer;
2432
2433 // Decompose the UnqualifiedId into the following data.
2434 DeclarationNameInfo NameInfo;
2435 const TemplateArgumentListInfo *TemplateArgs;
2436 DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
2437
2438 DeclarationName Name = NameInfo.getName();
2439 IdentifierInfo *II = Name.getAsIdentifierInfo();
2440 SourceLocation NameLoc = NameInfo.getLoc();
2441
2442 if (II && II->isEditorPlaceholder()) {
2443 // FIXME: When typed placeholders are supported we can create a typed
2444 // placeholder expression node.
2445 return ExprError();
2446 }
2447
2448 // C++ [temp.dep.expr]p3:
2449 // An id-expression is type-dependent if it contains:
2450 // -- an identifier that was declared with a dependent type,
2451 // (note: handled after lookup)
2452 // -- a template-id that is dependent,
2453 // (note: handled in BuildTemplateIdExpr)
2454 // -- a conversion-function-id that specifies a dependent type,
2455 // -- a nested-name-specifier that contains a class-name that
2456 // names a dependent type.
2457 // Determine whether this is a member of an unknown specialization;
2458 // we need to handle these differently.
2459 bool DependentID = false;
2460 if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
2461 Name.getCXXNameType()->isDependentType()) {
2462 DependentID = true;
2463 } else if (SS.isSet()) {
2464 if (DeclContext *DC = computeDeclContext(SS, false)) {
2465 if (RequireCompleteDeclContext(SS, DC))
2466 return ExprError();
2467 } else {
2468 DependentID = true;
2469 }
2470 }
2471
2472 if (DependentID)
2473 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2474 IsAddressOfOperand, TemplateArgs);
2475
2476 // Perform the required lookup.
2477 LookupResult R(*this, NameInfo,
2478 (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam)
2479 ? LookupObjCImplicitSelfParam
2480 : LookupOrdinaryName);
2481 if (TemplateKWLoc.isValid() || TemplateArgs) {
2482 // Lookup the template name again to correctly establish the context in
2483 // which it was found. This is really unfortunate as we already did the
2484 // lookup to determine that it was a template name in the first place. If
2485 // this becomes a performance hit, we can work harder to preserve those
2486 // results until we get here but it's likely not worth it.
2487 bool MemberOfUnknownSpecialization;
2488 AssumedTemplateKind AssumedTemplate;
2489 if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
2490 MemberOfUnknownSpecialization, TemplateKWLoc,
2491 &AssumedTemplate))
2492 return ExprError();
2493
2494 if (MemberOfUnknownSpecialization ||
2495 (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
2496 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2497 IsAddressOfOperand, TemplateArgs);
2498 } else {
2499 bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
2500 LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
2501
2502 // If the result might be in a dependent base class, this is a dependent
2503 // id-expression.
2504 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2505 return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
2506 IsAddressOfOperand, TemplateArgs);
2507
2508 // If this reference is in an Objective-C method, then we need to do
2509 // some special Objective-C lookup, too.
2510 if (IvarLookupFollowUp) {
2511 ExprResult E(LookupInObjCMethod(R, S, II, true));
2512 if (E.isInvalid())
2513 return ExprError();
2514
2515 if (Expr *Ex = E.getAs<Expr>())
2516 return Ex;
2517 }
2518 }
2519
2520 if (R.isAmbiguous())
2521 return ExprError();
2522
2523 // This could be an implicitly declared function reference (legal in C90,
2524 // extension in C99, forbidden in C++).
2525 if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
2526 NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
2527 if (D) R.addDecl(D);
2528 }
2529
2530 // Determine whether this name might be a candidate for
2531 // argument-dependent lookup.
2532 bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
2533
2534 if (R.empty() && !ADL) {
2535 if (SS.isEmpty() && getLangOpts().MSVCCompat) {
2536 if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
2537 TemplateKWLoc, TemplateArgs))
2538 return E;
2539 }
2540
2541 // Don't diagnose an empty lookup for inline assembly.
2542 if (IsInlineAsmIdentifier)
2543 return ExprError();
2544
2545 // If this name wasn't predeclared and if this is not a function
2546 // call, diagnose the problem.
2547 TypoExpr *TE = nullptr;
2548 DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep()
2549 : nullptr);
2550 DefaultValidator.IsAddressOfOperand = IsAddressOfOperand;
2551 assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&(((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
"Typo correction callback misconfigured") ? static_cast<void
> (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2552, __PRETTY_FUNCTION__))
2552 "Typo correction callback misconfigured")(((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
"Typo correction callback misconfigured") ? static_cast<void
> (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2552, __PRETTY_FUNCTION__))
;
2553 if (CCC) {
2554 // Make sure the callback knows what the typo being diagnosed is.
2555 CCC->setTypoName(II);
2556 if (SS.isValid())
2557 CCC->setTypoNNS(SS.getScopeRep());
2558 }
2559 // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for
2560 // a template name, but we happen to have always already looked up the name
2561 // before we get here if it must be a template name.
2562 if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr,
2563 None, &TE)) {
2564 if (TE && KeywordReplacement) {
2565 auto &State = getTypoExprState(TE);
2566 auto BestTC = State.Consumer->getNextCorrection();
2567 if (BestTC.isKeyword()) {
2568 auto *II = BestTC.getCorrectionAsIdentifierInfo();
2569 if (State.DiagHandler)
2570 State.DiagHandler(BestTC);
2571 KeywordReplacement->startToken();
2572 KeywordReplacement->setKind(II->getTokenID());
2573 KeywordReplacement->setIdentifierInfo(II);
2574 KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
2575 // Clean up the state associated with the TypoExpr, since it has
2576 // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
2577 clearDelayedTypo(TE);
2578 // Signal that a correction to a keyword was performed by returning a
2579 // valid-but-null ExprResult.
2580 return (Expr*)nullptr;
2581 }
2582 State.Consumer->resetCorrectionStream();
2583 }
2584 return TE ? TE : ExprError();
2585 }
2586
2587 assert(!R.empty() &&((!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2588, __PRETTY_FUNCTION__))
2588 "DiagnoseEmptyLookup returned false but added no results")((!R.empty() && "DiagnoseEmptyLookup returned false but added no results"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2588, __PRETTY_FUNCTION__))
;
2589
2590 // If we found an Objective-C instance variable, let
2591 // LookupInObjCMethod build the appropriate expression to
2592 // reference the ivar.
2593 if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
2594 R.clear();
2595 ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
2596 // In a hopelessly buggy code, Objective-C instance variable
2597 // lookup fails and no expression will be built to reference it.
2598 if (!E.isInvalid() && !E.get())
2599 return ExprError();
2600 return E;
2601 }
2602 }
2603
2604 // This is guaranteed from this point on.
2605 assert(!R.empty() || ADL)((!R.empty() || ADL) ? static_cast<void> (0) : __assert_fail
("!R.empty() || ADL", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2605, __PRETTY_FUNCTION__))
;
2606
2607 // Check whether this might be a C++ implicit instance member access.
2608 // C++ [class.mfct.non-static]p3:
2609 // When an id-expression that is not part of a class member access
2610 // syntax and not used to form a pointer to member is used in the
2611 // body of a non-static member function of class X, if name lookup
2612 // resolves the name in the id-expression to a non-static non-type
2613 // member of some class C, the id-expression is transformed into a
2614 // class member access expression using (*this) as the
2615 // postfix-expression to the left of the . operator.
2616 //
2617 // But we don't actually need to do this for '&' operands if R
2618 // resolved to a function or overloaded function set, because the
2619 // expression is ill-formed if it actually works out to be a
2620 // non-static member function:
2621 //
2622 // C++ [expr.ref]p4:
2623 // Otherwise, if E1.E2 refers to a non-static member function. . .
2624 // [t]he expression can be used only as the left-hand operand of a
2625 // member function call.
2626 //
2627 // There are other safeguards against such uses, but it's important
2628 // to get this right here so that we don't end up making a
2629 // spuriously dependent expression if we're inside a dependent
2630 // instance method.
2631 if (!R.empty() && (*R.begin())->isCXXClassMember()) {
2632 bool MightBeImplicitMember;
2633 if (!IsAddressOfOperand)
2634 MightBeImplicitMember = true;
2635 else if (!SS.isEmpty())
2636 MightBeImplicitMember = false;
2637 else if (R.isOverloadedResult())
2638 MightBeImplicitMember = false;
2639 else if (R.isUnresolvableResult())
2640 MightBeImplicitMember = true;
2641 else
2642 MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
2643 isa<IndirectFieldDecl>(R.getFoundDecl()) ||
2644 isa<MSPropertyDecl>(R.getFoundDecl());
2645
2646 if (MightBeImplicitMember)
2647 return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
2648 R, TemplateArgs, S);
2649 }
2650
2651 if (TemplateArgs || TemplateKWLoc.isValid()) {
2652
2653 // In C++1y, if this is a variable template id, then check it
2654 // in BuildTemplateIdExpr().
2655 // The single lookup result must be a variable template declaration.
2656 if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId &&
2657 Id.TemplateId->Kind == TNK_Var_template) {
2658 assert(R.getAsSingle<VarTemplateDecl>() &&((R.getAsSingle<VarTemplateDecl>() && "There should only be one declaration found."
) ? static_cast<void> (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2659, __PRETTY_FUNCTION__))
2659 "There should only be one declaration found.")((R.getAsSingle<VarTemplateDecl>() && "There should only be one declaration found."
) ? static_cast<void> (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2659, __PRETTY_FUNCTION__))
;
2660 }
2661
2662 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
2663 }
2664
2665 return BuildDeclarationNameExpr(SS, R, ADL);
2666}
2667
2668/// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
2669/// declaration name, generally during template instantiation.
2670/// There's a large number of things which don't need to be done along
2671/// this path.
2672ExprResult Sema::BuildQualifiedDeclarationNameExpr(
2673 CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
2674 bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
2675 DeclContext *DC = computeDeclContext(SS, false);
2676 if (!DC)
2677 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2678 NameInfo, /*TemplateArgs=*/nullptr);
2679
2680 if (RequireCompleteDeclContext(SS, DC))
2681 return ExprError();
2682
2683 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2684 LookupQualifiedName(R, DC);
2685
2686 if (R.isAmbiguous())
2687 return ExprError();
2688
2689 if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
2690 return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
2691 NameInfo, /*TemplateArgs=*/nullptr);
2692
2693 if (R.empty()) {
2694 // Don't diagnose problems with invalid record decl, the secondary no_member
2695 // diagnostic during template instantiation is likely bogus, e.g. if a class
2696 // is invalid because it's derived from an invalid base class, then missing
2697 // members were likely supposed to be inherited.
2698 if (const auto *CD = dyn_cast<CXXRecordDecl>(DC))
2699 if (CD->isInvalidDecl())
2700 return ExprError();
2701 Diag(NameInfo.getLoc(), diag::err_no_member)
2702 << NameInfo.getName() << DC << SS.getRange();
2703 return ExprError();
2704 }
2705
2706 if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
2707 // Diagnose a missing typename if this resolved unambiguously to a type in
2708 // a dependent context. If we can recover with a type, downgrade this to
2709 // a warning in Microsoft compatibility mode.
2710 unsigned DiagID = diag::err_typename_missing;
2711 if (RecoveryTSI && getLangOpts().MSVCCompat)
2712 DiagID = diag::ext_typename_missing;
2713 SourceLocation Loc = SS.getBeginLoc();
2714 auto D = Diag(Loc, DiagID);
2715 D << SS.getScopeRep() << NameInfo.getName().getAsString()
2716 << SourceRange(Loc, NameInfo.getEndLoc());
2717
2718 // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
2719 // context.
2720 if (!RecoveryTSI)
2721 return ExprError();
2722
2723 // Only issue the fixit if we're prepared to recover.
2724 D << FixItHint::CreateInsertion(Loc, "typename ");
2725
2726 // Recover by pretending this was an elaborated type.
2727 QualType Ty = Context.getTypeDeclType(TD);
2728 TypeLocBuilder TLB;
2729 TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
2730
2731 QualType ET = getElaboratedType(ETK_None, SS, Ty);
2732 ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
2733 QTL.setElaboratedKeywordLoc(SourceLocation());
2734 QTL.setQualifierLoc(SS.getWithLocInContext(Context));
2735
2736 *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
2737
2738 return ExprEmpty();
2739 }
2740
2741 // Defend against this resolving to an implicit member access. We usually
2742 // won't get here if this might be a legitimate a class member (we end up in
2743 // BuildMemberReferenceExpr instead), but this can be valid if we're forming
2744 // a pointer-to-member or in an unevaluated context in C++11.
2745 if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
2746 return BuildPossibleImplicitMemberExpr(SS,
2747 /*TemplateKWLoc=*/SourceLocation(),
2748 R, /*TemplateArgs=*/nullptr, S);
2749
2750 return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
2751}
2752
2753/// The parser has read a name in, and Sema has detected that we're currently
2754/// inside an ObjC method. Perform some additional checks and determine if we
2755/// should form a reference to an ivar.
2756///
2757/// Ideally, most of this would be done by lookup, but there's
2758/// actually quite a lot of extra work involved.
2759DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S,
2760 IdentifierInfo *II) {
2761 SourceLocation Loc = Lookup.getNameLoc();
2762 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2763
2764 // Check for error condition which is already reported.
2765 if (!CurMethod)
2766 return DeclResult(true);
2767
2768 // There are two cases to handle here. 1) scoped lookup could have failed,
2769 // in which case we should look for an ivar. 2) scoped lookup could have
2770 // found a decl, but that decl is outside the current instance method (i.e.
2771 // a global variable). In these two cases, we do a lookup for an ivar with
2772 // this name, if the lookup sucedes, we replace it our current decl.
2773
2774 // If we're in a class method, we don't normally want to look for
2775 // ivars. But if we don't find anything else, and there's an
2776 // ivar, that's an error.
2777 bool IsClassMethod = CurMethod->isClassMethod();
2778
2779 bool LookForIvars;
2780 if (Lookup.empty())
2781 LookForIvars = true;
2782 else if (IsClassMethod)
2783 LookForIvars = false;
2784 else
2785 LookForIvars = (Lookup.isSingleResult() &&
2786 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
2787 ObjCInterfaceDecl *IFace = nullptr;
2788 if (LookForIvars) {
2789 IFace = CurMethod->getClassInterface();
2790 ObjCInterfaceDecl *ClassDeclared;
2791 ObjCIvarDecl *IV = nullptr;
2792 if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
2793 // Diagnose using an ivar in a class method.
2794 if (IsClassMethod) {
2795 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2796 return DeclResult(true);
2797 }
2798
2799 // Diagnose the use of an ivar outside of the declaring class.
2800 if (IV->getAccessControl() == ObjCIvarDecl::Private &&
2801 !declaresSameEntity(ClassDeclared, IFace) &&
2802 !getLangOpts().DebuggerSupport)
2803 Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName();
2804
2805 // Success.
2806 return IV;
2807 }
2808 } else if (CurMethod->isInstanceMethod()) {
2809 // We should warn if a local variable hides an ivar.
2810 if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
2811 ObjCInterfaceDecl *ClassDeclared;
2812 if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
2813 if (IV->getAccessControl() != ObjCIvarDecl::Private ||
2814 declaresSameEntity(IFace, ClassDeclared))
2815 Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
2816 }
2817 }
2818 } else if (Lookup.isSingleResult() &&
2819 Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
2820 // If accessing a stand-alone ivar in a class method, this is an error.
2821 if (const ObjCIvarDecl *IV =
2822 dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) {
2823 Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName();
2824 return DeclResult(true);
2825 }
2826 }
2827
2828 // Didn't encounter an error, didn't find an ivar.
2829 return DeclResult(false);
2830}
2831
2832ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc,
2833 ObjCIvarDecl *IV) {
2834 ObjCMethodDecl *CurMethod = getCurMethodDecl();
2835 assert(CurMethod && CurMethod->isInstanceMethod() &&((CurMethod && CurMethod->isInstanceMethod() &&
"should not reference ivar from this context") ? static_cast
<void> (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2836, __PRETTY_FUNCTION__))
2836 "should not reference ivar from this context")((CurMethod && CurMethod->isInstanceMethod() &&
"should not reference ivar from this context") ? static_cast
<void> (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2836, __PRETTY_FUNCTION__))
;
2837
2838 ObjCInterfaceDecl *IFace = CurMethod->getClassInterface();
2839 assert(IFace && "should not reference ivar from this context")((IFace && "should not reference ivar from this context"
) ? static_cast<void> (0) : __assert_fail ("IFace && \"should not reference ivar from this context\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 2839, __PRETTY_FUNCTION__))
;
2840
2841 // If we're referencing an invalid decl, just return this as a silent
2842 // error node. The error diagnostic was already emitted on the decl.
2843 if (IV->isInvalidDecl())
2844 return ExprError();
2845
2846 // Check if referencing a field with __attribute__((deprecated)).
2847 if (DiagnoseUseOfDecl(IV, Loc))
2848 return ExprError();
2849
2850 // FIXME: This should use a new expr for a direct reference, don't
2851 // turn this into Self->ivar, just return a BareIVarExpr or something.
2852 IdentifierInfo &II = Context.Idents.get("self");
2853 UnqualifiedId SelfName;
2854 SelfName.setImplicitSelfParam(&II);
2855 CXXScopeSpec SelfScopeSpec;
2856 SourceLocation TemplateKWLoc;
2857 ExprResult SelfExpr =
2858 ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName,
2859 /*HasTrailingLParen=*/false,
2860 /*IsAddressOfOperand=*/false);
2861 if (SelfExpr.isInvalid())
2862 return ExprError();
2863
2864 SelfExpr = DefaultLvalueConversion(SelfExpr.get());
2865 if (SelfExpr.isInvalid())
2866 return ExprError();
2867
2868 MarkAnyDeclReferenced(Loc, IV, true);
2869
2870 ObjCMethodFamily MF = CurMethod->getMethodFamily();
2871 if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
2872 !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
2873 Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
2874
2875 ObjCIvarRefExpr *Result = new (Context)
2876 ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
2877 IV->getLocation(), SelfExpr.get(), true, true);
2878
2879 if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
2880 if (!isUnevaluatedContext() &&
2881 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
2882 getCurFunction()->recordUseOfWeak(Result);
2883 }
2884 if (getLangOpts().ObjCAutoRefCount)
2885 if (const BlockDecl *BD = CurContext->getInnermostBlockDecl())
2886 ImplicitlyRetainedSelfLocs.push_back({Loc, BD});
2887
2888 return Result;
2889}
2890
2891/// The parser has read a name in, and Sema has detected that we're currently
2892/// inside an ObjC method. Perform some additional checks and determine if we
2893/// should form a reference to an ivar. If so, build an expression referencing
2894/// that ivar.
2895ExprResult
2896Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
2897 IdentifierInfo *II, bool AllowBuiltinCreation) {
2898 // FIXME: Integrate this lookup step into LookupParsedName.
2899 DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II);
2900 if (Ivar.isInvalid())
2901 return ExprError();
2902 if (Ivar.isUsable())
2903 return BuildIvarRefExpr(S, Lookup.getNameLoc(),
2904 cast<ObjCIvarDecl>(Ivar.get()));
2905
2906 if (Lookup.empty() && II && AllowBuiltinCreation)
2907 LookupBuiltin(Lookup);
2908
2909 // Sentinel value saying that we didn't do anything special.
2910 return ExprResult(false);
2911}
2912
2913/// Cast a base object to a member's actual type.
2914///
2915/// There are two relevant checks:
2916///
2917/// C++ [class.access.base]p7:
2918///
2919/// If a class member access operator [...] is used to access a non-static
2920/// data member or non-static member function, the reference is ill-formed if
2921/// the left operand [...] cannot be implicitly converted to a pointer to the
2922/// naming class of the right operand.
2923///
2924/// C++ [expr.ref]p7:
2925///
2926/// If E2 is a non-static data member or a non-static member function, the
2927/// program is ill-formed if the class of which E2 is directly a member is an
2928/// ambiguous base (11.8) of the naming class (11.9.3) of E2.
2929///
2930/// Note that the latter check does not consider access; the access of the
2931/// "real" base class is checked as appropriate when checking the access of the
2932/// member name.
2933ExprResult
2934Sema::PerformObjectMemberConversion(Expr *From,
2935 NestedNameSpecifier *Qualifier,
2936 NamedDecl *FoundDecl,
2937 NamedDecl *Member) {
2938 CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
2939 if (!RD)
2940 return From;
2941
2942 QualType DestRecordType;
2943 QualType DestType;
2944 QualType FromRecordType;
2945 QualType FromType = From->getType();
2946 bool PointerConversions = false;
2947 if (isa<FieldDecl>(Member)) {
2948 DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
2949 auto FromPtrType = FromType->getAs<PointerType>();
2950 DestRecordType = Context.getAddrSpaceQualType(
2951 DestRecordType, FromPtrType
2952 ? FromType->getPointeeType().getAddressSpace()
2953 : FromType.getAddressSpace());
2954
2955 if (FromPtrType) {
2956 DestType = Context.getPointerType(DestRecordType);
2957 FromRecordType = FromPtrType->getPointeeType();
2958 PointerConversions = true;
2959 } else {
2960 DestType = DestRecordType;
2961 FromRecordType = FromType;
2962 }
2963 } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
2964 if (Method->isStatic())
2965 return From;
2966
2967 DestType = Method->getThisType();
2968 DestRecordType = DestType->getPointeeType();
2969
2970 if (FromType->getAs<PointerType>()) {
2971 FromRecordType = FromType->getPointeeType();
2972 PointerConversions = true;
2973 } else {
2974 FromRecordType = FromType;
2975 DestType = DestRecordType;
2976 }
2977
2978 LangAS FromAS = FromRecordType.getAddressSpace();
2979 LangAS DestAS = DestRecordType.getAddressSpace();
2980 if (FromAS != DestAS) {
2981 QualType FromRecordTypeWithoutAS =
2982 Context.removeAddrSpaceQualType(FromRecordType);
2983 QualType FromTypeWithDestAS =
2984 Context.getAddrSpaceQualType(FromRecordTypeWithoutAS, DestAS);
2985 if (PointerConversions)
2986 FromTypeWithDestAS = Context.getPointerType(FromTypeWithDestAS);
2987 From = ImpCastExprToType(From, FromTypeWithDestAS,
2988 CK_AddressSpaceConversion, From->getValueKind())
2989 .get();
2990 }
2991 } else {
2992 // No conversion necessary.
2993 return From;
2994 }
2995
2996 if (DestType->isDependentType() || FromType->isDependentType())
2997 return From;
2998
2999 // If the unqualified types are the same, no conversion is necessary.
3000 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3001 return From;
3002
3003 SourceRange FromRange = From->getSourceRange();
3004 SourceLocation FromLoc = FromRange.getBegin();
3005
3006 ExprValueKind VK = From->getValueKind();
3007
3008 // C++ [class.member.lookup]p8:
3009 // [...] Ambiguities can often be resolved by qualifying a name with its
3010 // class name.
3011 //
3012 // If the member was a qualified name and the qualified referred to a
3013 // specific base subobject type, we'll cast to that intermediate type
3014 // first and then to the object in which the member is declared. That allows
3015 // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
3016 //
3017 // class Base { public: int x; };
3018 // class Derived1 : public Base { };
3019 // class Derived2 : public Base { };
3020 // class VeryDerived : public Derived1, public Derived2 { void f(); };
3021 //
3022 // void VeryDerived::f() {
3023 // x = 17; // error: ambiguous base subobjects
3024 // Derived1::x = 17; // okay, pick the Base subobject of Derived1
3025 // }
3026 if (Qualifier && Qualifier->getAsType()) {
3027 QualType QType = QualType(Qualifier->getAsType(), 0);
3028 assert(QType->isRecordType() && "lookup done with non-record type")((QType->isRecordType() && "lookup done with non-record type"
) ? static_cast<void> (0) : __assert_fail ("QType->isRecordType() && \"lookup done with non-record type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3028, __PRETTY_FUNCTION__))
;
3029
3030 QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
3031
3032 // In C++98, the qualifier type doesn't actually have to be a base
3033 // type of the object type, in which case we just ignore it.
3034 // Otherwise build the appropriate casts.
3035 if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
3036 CXXCastPath BasePath;
3037 if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
3038 FromLoc, FromRange, &BasePath))
3039 return ExprError();
3040
3041 if (PointerConversions)
3042 QType = Context.getPointerType(QType);
3043 From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
3044 VK, &BasePath).get();
3045
3046 FromType = QType;
3047 FromRecordType = QRecordType;
3048
3049 // If the qualifier type was the same as the destination type,
3050 // we're done.
3051 if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
3052 return From;
3053 }
3054 }
3055
3056 CXXCastPath BasePath;
3057 if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
3058 FromLoc, FromRange, &BasePath,
3059 /*IgnoreAccess=*/true))
3060 return ExprError();
3061
3062 return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
3063 VK, &BasePath);
3064}
3065
3066bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
3067 const LookupResult &R,
3068 bool HasTrailingLParen) {
3069 // Only when used directly as the postfix-expression of a call.
3070 if (!HasTrailingLParen)
3071 return false;
3072
3073 // Never if a scope specifier was provided.
3074 if (SS.isSet())
3075 return false;
3076
3077 // Only in C++ or ObjC++.
3078 if (!getLangOpts().CPlusPlus)
3079 return false;
3080
3081 // Turn off ADL when we find certain kinds of declarations during
3082 // normal lookup:
3083 for (NamedDecl *D : R) {
3084 // C++0x [basic.lookup.argdep]p3:
3085 // -- a declaration of a class member
3086 // Since using decls preserve this property, we check this on the
3087 // original decl.
3088 if (D->isCXXClassMember())
3089 return false;
3090
3091 // C++0x [basic.lookup.argdep]p3:
3092 // -- a block-scope function declaration that is not a
3093 // using-declaration
3094 // NOTE: we also trigger this for function templates (in fact, we
3095 // don't check the decl type at all, since all other decl types
3096 // turn off ADL anyway).
3097 if (isa<UsingShadowDecl>(D))
3098 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3099 else if (D->getLexicalDeclContext()->isFunctionOrMethod())
3100 return false;
3101
3102 // C++0x [basic.lookup.argdep]p3:
3103 // -- a declaration that is neither a function or a function
3104 // template
3105 // And also for builtin functions.
3106 if (isa<FunctionDecl>(D)) {
3107 FunctionDecl *FDecl = cast<FunctionDecl>(D);
3108
3109 // But also builtin functions.
3110 if (FDecl->getBuiltinID() && FDecl->isImplicit())
3111 return false;
3112 } else if (!isa<FunctionTemplateDecl>(D))
3113 return false;
3114 }
3115
3116 return true;
3117}
3118
3119
3120/// Diagnoses obvious problems with the use of the given declaration
3121/// as an expression. This is only actually called for lookups that
3122/// were not overloaded, and it doesn't promise that the declaration
3123/// will in fact be used.
3124static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
3125 if (D->isInvalidDecl())
3126 return true;
3127
3128 if (isa<TypedefNameDecl>(D)) {
3129 S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
3130 return true;
3131 }
3132
3133 if (isa<ObjCInterfaceDecl>(D)) {
3134 S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
3135 return true;
3136 }
3137
3138 if (isa<NamespaceDecl>(D)) {
3139 S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
3140 return true;
3141 }
3142
3143 return false;
3144}
3145
3146// Certain multiversion types should be treated as overloaded even when there is
3147// only one result.
3148static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) {
3149 assert(R.isSingleResult() && "Expected only a single result")((R.isSingleResult() && "Expected only a single result"
) ? static_cast<void> (0) : __assert_fail ("R.isSingleResult() && \"Expected only a single result\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3149, __PRETTY_FUNCTION__))
;
3150 const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
3151 return FD &&
3152 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion());
3153}
3154
3155ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
3156 LookupResult &R, bool NeedsADL,
3157 bool AcceptInvalidDecl) {
3158 // If this is a single, fully-resolved result and we don't need ADL,
3159 // just build an ordinary singleton decl ref.
3160 if (!NeedsADL && R.isSingleResult() &&
3161 !R.getAsSingle<FunctionTemplateDecl>() &&
3162 !ShouldLookupResultBeMultiVersionOverload(R))
3163 return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
3164 R.getRepresentativeDecl(), nullptr,
3165 AcceptInvalidDecl);
3166
3167 // We only need to check the declaration if there's exactly one
3168 // result, because in the overloaded case the results can only be
3169 // functions and function templates.
3170 if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) &&
3171 CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
3172 return ExprError();
3173
3174 // Otherwise, just build an unresolved lookup expression. Suppress
3175 // any lookup-related diagnostics; we'll hash these out later, when
3176 // we've picked a target.
3177 R.suppressDiagnostics();
3178
3179 UnresolvedLookupExpr *ULE
3180 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
3181 SS.getWithLocInContext(Context),
3182 R.getLookupNameInfo(),
3183 NeedsADL, R.isOverloadedResult(),
3184 R.begin(), R.end());
3185
3186 return ULE;
3187}
3188
3189static void
3190diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
3191 ValueDecl *var, DeclContext *DC);
3192
3193/// Complete semantic analysis for a reference to the given declaration.
3194ExprResult Sema::BuildDeclarationNameExpr(
3195 const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
3196 NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
3197 bool AcceptInvalidDecl) {
3198 assert(D && "Cannot refer to a NULL declaration")((D && "Cannot refer to a NULL declaration") ? static_cast
<void> (0) : __assert_fail ("D && \"Cannot refer to a NULL declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3198, __PRETTY_FUNCTION__))
;
3199 assert(!isa<FunctionTemplateDecl>(D) &&((!isa<FunctionTemplateDecl>(D) && "Cannot refer unambiguously to a function template"
) ? static_cast<void> (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3200, __PRETTY_FUNCTION__))
3200 "Cannot refer unambiguously to a function template")((!isa<FunctionTemplateDecl>(D) && "Cannot refer unambiguously to a function template"
) ? static_cast<void> (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3200, __PRETTY_FUNCTION__))
;
3201
3202 SourceLocation Loc = NameInfo.getLoc();
3203 if (CheckDeclInExpr(*this, Loc, D))
3204 return ExprError();
3205
3206 if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
3207 // Specifically diagnose references to class templates that are missing
3208 // a template argument list.
3209 diagnoseMissingTemplateArguments(TemplateName(Template), Loc);
3210 return ExprError();
3211 }
3212
3213 // Make sure that we're referring to a value.
3214 ValueDecl *VD = dyn_cast<ValueDecl>(D);
3215 if (!VD) {
3216 Diag(Loc, diag::err_ref_non_value)
3217 << D << SS.getRange();
3218 Diag(D->getLocation(), diag::note_declared_at);
3219 return ExprError();
3220 }
3221
3222 // Check whether this declaration can be used. Note that we suppress
3223 // this check when we're going to perform argument-dependent lookup
3224 // on this function name, because this might not be the function
3225 // that overload resolution actually selects.
3226 if (DiagnoseUseOfDecl(VD, Loc))
3227 return ExprError();
3228
3229 // Only create DeclRefExpr's for valid Decl's.
3230 if (VD->isInvalidDecl() && !AcceptInvalidDecl)
3231 return ExprError();
3232
3233 // Handle members of anonymous structs and unions. If we got here,
3234 // and the reference is to a class member indirect field, then this
3235 // must be the subject of a pointer-to-member expression.
3236 if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
3237 if (!indirectField->isCXXClassMember())
3238 return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
3239 indirectField);
3240
3241 {
3242 QualType type = VD->getType();
3243 if (type.isNull())
3244 return ExprError();
3245 ExprValueKind valueKind = VK_RValue;
3246
3247 // In 'T ...V;', the type of the declaration 'V' is 'T...', but the type of
3248 // a reference to 'V' is simply (unexpanded) 'T'. The type, like the value,
3249 // is expanded by some outer '...' in the context of the use.
3250 type = type.getNonPackExpansionType();
3251
3252 switch (D->getKind()) {
3253 // Ignore all the non-ValueDecl kinds.
3254#define ABSTRACT_DECL(kind)
3255#define VALUE(type, base)
3256#define DECL(type, base) \
3257 case Decl::type:
3258#include "clang/AST/DeclNodes.inc"
3259 llvm_unreachable("invalid value decl kind")::llvm::llvm_unreachable_internal("invalid value decl kind", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3259)
;
3260
3261 // These shouldn't make it here.
3262 case Decl::ObjCAtDefsField:
3263 llvm_unreachable("forming non-member reference to ivar?")::llvm::llvm_unreachable_internal("forming non-member reference to ivar?"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3263)
;
3264
3265 // Enum constants are always r-values and never references.
3266 // Unresolved using declarations are dependent.
3267 case Decl::EnumConstant:
3268 case Decl::UnresolvedUsingValue:
3269 case Decl::OMPDeclareReduction:
3270 case Decl::OMPDeclareMapper:
3271 valueKind = VK_RValue;
3272 break;
3273
3274 // Fields and indirect fields that got here must be for
3275 // pointer-to-member expressions; we just call them l-values for
3276 // internal consistency, because this subexpression doesn't really
3277 // exist in the high-level semantics.
3278 case Decl::Field:
3279 case Decl::IndirectField:
3280 case Decl::ObjCIvar:
3281 assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "building reference to field in C?"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"building reference to field in C?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3282, __PRETTY_FUNCTION__))
3282 "building reference to field in C?")((getLangOpts().CPlusPlus && "building reference to field in C?"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"building reference to field in C?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3282, __PRETTY_FUNCTION__))
;
3283
3284 // These can't have reference type in well-formed programs, but
3285 // for internal consistency we do this anyway.
3286 type = type.getNonReferenceType();
3287 valueKind = VK_LValue;
3288 break;
3289
3290 // Non-type template parameters are either l-values or r-values
3291 // depending on the type.
3292 case Decl::NonTypeTemplateParm: {
3293 if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
3294 type = reftype->getPointeeType();
3295 valueKind = VK_LValue; // even if the parameter is an r-value reference
3296 break;
3297 }
3298
3299 // [expr.prim.id.unqual]p2:
3300 // If the entity is a template parameter object for a template
3301 // parameter of type T, the type of the expression is const T.
3302 // [...] The expression is an lvalue if the entity is a [...] template
3303 // parameter object.
3304 if (type->isRecordType()) {
3305 type = type.getUnqualifiedType().withConst();
3306 valueKind = VK_LValue;
3307 break;
3308 }
3309
3310 // For non-references, we need to strip qualifiers just in case
3311 // the template parameter was declared as 'const int' or whatever.
3312 valueKind = VK_RValue;
3313 type = type.getUnqualifiedType();
3314 break;
3315 }
3316
3317 case Decl::Var:
3318 case Decl::VarTemplateSpecialization:
3319 case Decl::VarTemplatePartialSpecialization:
3320 case Decl::Decomposition:
3321 case Decl::OMPCapturedExpr:
3322 // In C, "extern void blah;" is valid and is an r-value.
3323 if (!getLangOpts().CPlusPlus &&
3324 !type.hasQualifiers() &&
3325 type->isVoidType()) {
3326 valueKind = VK_RValue;
3327 break;
3328 }
3329 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3330
3331 case Decl::ImplicitParam:
3332 case Decl::ParmVar: {
3333 // These are always l-values.
3334 valueKind = VK_LValue;
3335 type = type.getNonReferenceType();
3336
3337 // FIXME: Does the addition of const really only apply in
3338 // potentially-evaluated contexts? Since the variable isn't actually
3339 // captured in an unevaluated context, it seems that the answer is no.
3340 if (!isUnevaluatedContext()) {
3341 QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
3342 if (!CapturedType.isNull())
3343 type = CapturedType;
3344 }
3345
3346 break;
3347 }
3348
3349 case Decl::Binding: {
3350 // These are always lvalues.
3351 valueKind = VK_LValue;
3352 type = type.getNonReferenceType();
3353 // FIXME: Support lambda-capture of BindingDecls, once CWG actually
3354 // decides how that's supposed to work.
3355 auto *BD = cast<BindingDecl>(VD);
3356 if (BD->getDeclContext() != CurContext) {
3357 auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl());
3358 if (DD && DD->hasLocalStorage())
3359 diagnoseUncapturableValueReference(*this, Loc, BD, CurContext);
3360 }
3361 break;
3362 }
3363
3364 case Decl::Function: {
3365 if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
3366 if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
3367 type = Context.BuiltinFnTy;
3368 valueKind = VK_RValue;
3369 break;
3370 }
3371 }
3372
3373 const FunctionType *fty = type->castAs<FunctionType>();
3374
3375 // If we're referring to a function with an __unknown_anytype
3376 // result type, make the entire expression __unknown_anytype.
3377 if (fty->getReturnType() == Context.UnknownAnyTy) {
3378 type = Context.UnknownAnyTy;
3379 valueKind = VK_RValue;
3380 break;
3381 }
3382
3383 // Functions are l-values in C++.
3384 if (getLangOpts().CPlusPlus) {
3385 valueKind = VK_LValue;
3386 break;
3387 }
3388
3389 // C99 DR 316 says that, if a function type comes from a
3390 // function definition (without a prototype), that type is only
3391 // used for checking compatibility. Therefore, when referencing
3392 // the function, we pretend that we don't have the full function
3393 // type.
3394 if (!cast<FunctionDecl>(VD)->hasPrototype() &&
3395 isa<FunctionProtoType>(fty))
3396 type = Context.getFunctionNoProtoType(fty->getReturnType(),
3397 fty->getExtInfo());
3398
3399 // Functions are r-values in C.
3400 valueKind = VK_RValue;
3401 break;
3402 }
3403
3404 case Decl::CXXDeductionGuide:
3405 llvm_unreachable("building reference to deduction guide")::llvm::llvm_unreachable_internal("building reference to deduction guide"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3405)
;
3406
3407 case Decl::MSProperty:
3408 case Decl::MSGuid:
3409 case Decl::TemplateParamObject:
3410 // FIXME: Should MSGuidDecl and template parameter objects be subject to
3411 // capture in OpenMP, or duplicated between host and device?
3412 valueKind = VK_LValue;
3413 break;
3414
3415 case Decl::CXXMethod:
3416 // If we're referring to a method with an __unknown_anytype
3417 // result type, make the entire expression __unknown_anytype.
3418 // This should only be possible with a type written directly.
3419 if (const FunctionProtoType *proto
3420 = dyn_cast<FunctionProtoType>(VD->getType()))
3421 if (proto->getReturnType() == Context.UnknownAnyTy) {
3422 type = Context.UnknownAnyTy;
3423 valueKind = VK_RValue;
3424 break;
3425 }
3426
3427 // C++ methods are l-values if static, r-values if non-static.
3428 if (cast<CXXMethodDecl>(VD)->isStatic()) {
3429 valueKind = VK_LValue;
3430 break;
3431 }
3432 LLVM_FALLTHROUGH[[gnu::fallthrough]];
3433
3434 case Decl::CXXConversion:
3435 case Decl::CXXDestructor:
3436 case Decl::CXXConstructor:
3437 valueKind = VK_RValue;
3438 break;
3439 }
3440
3441 return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
3442 /*FIXME: TemplateKWLoc*/ SourceLocation(),
3443 TemplateArgs);
3444 }
3445}
3446
3447static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
3448 SmallString<32> &Target) {
3449 Target.resize(CharByteWidth * (Source.size() + 1));
3450 char *ResultPtr = &Target[0];
3451 const llvm::UTF8 *ErrorPtr;
3452 bool success =
3453 llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
3454 (void)success;
3455 assert(success)((success) ? static_cast<void> (0) : __assert_fail ("success"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3455, __PRETTY_FUNCTION__))
;
3456 Target.resize(ResultPtr - &Target[0]);
3457}
3458
3459ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
3460 PredefinedExpr::IdentKind IK) {
3461 // Pick the current block, lambda, captured statement or function.
3462 Decl *currentDecl = nullptr;
3463 if (const BlockScopeInfo *BSI = getCurBlock())
3464 currentDecl = BSI->TheDecl;
3465 else if (const LambdaScopeInfo *LSI = getCurLambda())
3466 currentDecl = LSI->CallOperator;
3467 else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
3468 currentDecl = CSI->TheCapturedDecl;
3469 else
3470 currentDecl = getCurFunctionOrMethodDecl();
3471
3472 if (!currentDecl) {
3473 Diag(Loc, diag::ext_predef_outside_function);
3474 currentDecl = Context.getTranslationUnitDecl();
3475 }
3476
3477 QualType ResTy;
3478 StringLiteral *SL = nullptr;
3479 if (cast<DeclContext>(currentDecl)->isDependentContext())
3480 ResTy = Context.DependentTy;
3481 else {
3482 // Pre-defined identifiers are of type char[x], where x is the length of
3483 // the string.
3484 auto Str = PredefinedExpr::ComputeName(IK, currentDecl);
3485 unsigned Length = Str.length();
3486
3487 llvm::APInt LengthI(32, Length + 1);
3488 if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) {
3489 ResTy =
3490 Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst());
3491 SmallString<32> RawChars;
3492 ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
3493 Str, RawChars);
3494 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3495 ArrayType::Normal,
3496 /*IndexTypeQuals*/ 0);
3497 SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
3498 /*Pascal*/ false, ResTy, Loc);
3499 } else {
3500 ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst());
3501 ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr,
3502 ArrayType::Normal,
3503 /*IndexTypeQuals*/ 0);
3504 SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
3505 /*Pascal*/ false, ResTy, Loc);
3506 }
3507 }
3508
3509 return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL);
3510}
3511
3512ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
3513 PredefinedExpr::IdentKind IK;
3514
3515 switch (Kind) {
3516 default: llvm_unreachable("Unknown simple primary expr!")::llvm::llvm_unreachable_internal("Unknown simple primary expr!"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3516)
;
3517 case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2]
3518 case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break;
3519 case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS]
3520 case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS]
3521 case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS]
3522 case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS]
3523 case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break;
3524 }
3525
3526 return BuildPredefinedExpr(Loc, IK);
3527}
3528
3529ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
3530 SmallString<16> CharBuffer;
3531 bool Invalid = false;
3532 StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
3533 if (Invalid)
3534 return ExprError();
3535
3536 CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
3537 PP, Tok.getKind());
3538 if (Literal.hadError())
3539 return ExprError();
3540
3541 QualType Ty;
3542 if (Literal.isWide())
3543 Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
3544 else if (Literal.isUTF8() && getLangOpts().Char8)
3545 Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists.
3546 else if (Literal.isUTF16())
3547 Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
3548 else if (Literal.isUTF32())
3549 Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
3550 else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
3551 Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++.
3552 else
3553 Ty = Context.CharTy; // 'x' -> char in C++
3554
3555 CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
3556 if (Literal.isWide())
3557 Kind = CharacterLiteral::Wide;
3558 else if (Literal.isUTF16())
3559 Kind = CharacterLiteral::UTF16;
3560 else if (Literal.isUTF32())
3561 Kind = CharacterLiteral::UTF32;
3562 else if (Literal.isUTF8())
3563 Kind = CharacterLiteral::UTF8;
3564
3565 Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
3566 Tok.getLocation());
3567
3568 if (Literal.getUDSuffix().empty())
3569 return Lit;
3570
3571 // We're building a user-defined literal.
3572 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3573 SourceLocation UDSuffixLoc =
3574 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3575
3576 // Make sure we're allowed user-defined literals here.
3577 if (!UDLScope)
3578 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
3579
3580 // C++11 [lex.ext]p6: The literal L is treated as a call of the form
3581 // operator "" X (ch)
3582 return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
3583 Lit, Tok.getLocation());
3584}
3585
3586ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
3587 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3588 return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
3589 Context.IntTy, Loc);
3590}
3591
3592static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
3593 QualType Ty, SourceLocation Loc) {
3594 const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
3595
3596 using llvm::APFloat;
3597 APFloat Val(Format);
3598
3599 APFloat::opStatus result = Literal.GetFloatValue(Val);
3600
3601 // Overflow is always an error, but underflow is only an error if
3602 // we underflowed to zero (APFloat reports denormals as underflow).
3603 if ((result & APFloat::opOverflow) ||
3604 ((result & APFloat::opUnderflow) && Val.isZero())) {
3605 unsigned diagnostic;
3606 SmallString<20> buffer;
3607 if (result & APFloat::opOverflow) {
3608 diagnostic = diag::warn_float_overflow;
3609 APFloat::getLargest(Format).toString(buffer);
3610 } else {
3611 diagnostic = diag::warn_float_underflow;
3612 APFloat::getSmallest(Format).toString(buffer);
3613 }
3614
3615 S.Diag(Loc, diagnostic)
3616 << Ty
3617 << StringRef(buffer.data(), buffer.size());
3618 }
3619
3620 bool isExact = (result == APFloat::opOK);
3621 return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
3622}
3623
3624bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
3625 assert(E && "Invalid expression")((E && "Invalid expression") ? static_cast<void>
(0) : __assert_fail ("E && \"Invalid expression\"", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3625, __PRETTY_FUNCTION__))
;
3626
3627 if (E->isValueDependent())
3628 return false;
3629
3630 QualType QT = E->getType();
3631 if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
3632 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
3633 return true;
3634 }
3635
3636 llvm::APSInt ValueAPS;
3637 ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
3638
3639 if (R.isInvalid())
3640 return true;
3641
3642 bool ValueIsPositive = ValueAPS.isStrictlyPositive();
3643 if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
3644 Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
3645 << ValueAPS.toString(10) << ValueIsPositive;
3646 return true;
3647 }
3648
3649 return false;
3650}
3651
3652ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
3653 // Fast path for a single digit (which is quite common). A single digit
3654 // cannot have a trigraph, escaped newline, radix prefix, or suffix.
3655 if (Tok.getLength() == 1) {
3656 const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
3657 return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
3658 }
3659
3660 SmallString<128> SpellingBuffer;
3661 // NumericLiteralParser wants to overread by one character. Add padding to
3662 // the buffer in case the token is copied to the buffer. If getSpelling()
3663 // returns a StringRef to the memory buffer, it should have a null char at
3664 // the EOF, so it is also safe.
3665 SpellingBuffer.resize(Tok.getLength() + 1);
3666
3667 // Get the spelling of the token, which eliminates trigraphs, etc.
3668 bool Invalid = false;
3669 StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
3670 if (Invalid)
3671 return ExprError();
3672
3673 NumericLiteralParser Literal(TokSpelling, Tok.getLocation(),
3674 PP.getSourceManager(), PP.getLangOpts(),
3675 PP.getTargetInfo(), PP.getDiagnostics());
3676 if (Literal.hadError)
3677 return ExprError();
3678
3679 if (Literal.hasUDSuffix()) {
3680 // We're building a user-defined literal.
3681 IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
3682 SourceLocation UDSuffixLoc =
3683 getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
3684
3685 // Make sure we're allowed user-defined literals here.
3686 if (!UDLScope)
3687 return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
3688
3689 QualType CookedTy;
3690 if (Literal.isFloatingLiteral()) {
3691 // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
3692 // long double, the literal is treated as a call of the form
3693 // operator "" X (f L)
3694 CookedTy = Context.LongDoubleTy;
3695 } else {
3696 // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
3697 // unsigned long long, the literal is treated as a call of the form
3698 // operator "" X (n ULL)
3699 CookedTy = Context.UnsignedLongLongTy;
3700 }
3701
3702 DeclarationName OpName =
3703 Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
3704 DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
3705 OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
3706
3707 SourceLocation TokLoc = Tok.getLocation();
3708
3709 // Perform literal operator lookup to determine if we're building a raw
3710 // literal or a cooked one.
3711 LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
3712 switch (LookupLiteralOperator(UDLScope, R, CookedTy,
3713 /*AllowRaw*/ true, /*AllowTemplate*/ true,
3714 /*AllowStringTemplatePack*/ false,
3715 /*DiagnoseMissing*/ !Literal.isImaginary)) {
3716 case LOLR_ErrorNoDiagnostic:
3717 // Lookup failure for imaginary constants isn't fatal, there's still the
3718 // GNU extension producing _Complex types.
3719 break;
3720 case LOLR_Error:
3721 return ExprError();
3722 case LOLR_Cooked: {
3723 Expr *Lit;
3724 if (Literal.isFloatingLiteral()) {
3725 Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
3726 } else {
3727 llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
3728 if (Literal.GetIntegerValue(ResultVal))
3729 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3730 << /* Unsigned */ 1;
3731 Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
3732 Tok.getLocation());
3733 }
3734 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3735 }
3736
3737 case LOLR_Raw: {
3738 // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
3739 // literal is treated as a call of the form
3740 // operator "" X ("n")
3741 unsigned Length = Literal.getUDSuffixOffset();
3742 QualType StrTy = Context.getConstantArrayType(
3743 Context.adjustStringLiteralBaseType(Context.CharTy.withConst()),
3744 llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0);
3745 Expr *Lit = StringLiteral::Create(
3746 Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
3747 /*Pascal*/false, StrTy, &TokLoc, 1);
3748 return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
3749 }
3750
3751 case LOLR_Template: {
3752 // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
3753 // template), L is treated as a call fo the form
3754 // operator "" X <'c1', 'c2', ... 'ck'>()
3755 // where n is the source character sequence c1 c2 ... ck.
3756 TemplateArgumentListInfo ExplicitArgs;
3757 unsigned CharBits = Context.getIntWidth(Context.CharTy);
3758 bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
3759 llvm::APSInt Value(CharBits, CharIsUnsigned);
3760 for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
3761 Value = TokSpelling[I];
3762 TemplateArgument Arg(Context, Value, Context.CharTy);
3763 TemplateArgumentLocInfo ArgInfo;
3764 ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
3765 }
3766 return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
3767 &ExplicitArgs);
3768 }
3769 case LOLR_StringTemplatePack:
3770 llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3770)
;
3771 }
3772 }
3773
3774 Expr *Res;
3775
3776 if (Literal.isFixedPointLiteral()) {
3777 QualType Ty;
3778
3779 if (Literal.isAccum) {
3780 if (Literal.isHalf) {
3781 Ty = Context.ShortAccumTy;
3782 } else if (Literal.isLong) {
3783 Ty = Context.LongAccumTy;
3784 } else {
3785 Ty = Context.AccumTy;
3786 }
3787 } else if (Literal.isFract) {
3788 if (Literal.isHalf) {
3789 Ty = Context.ShortFractTy;
3790 } else if (Literal.isLong) {
3791 Ty = Context.LongFractTy;
3792 } else {
3793 Ty = Context.FractTy;
3794 }
3795 }
3796
3797 if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty);
3798
3799 bool isSigned = !Literal.isUnsigned;
3800 unsigned scale = Context.getFixedPointScale(Ty);
3801 unsigned bit_width = Context.getTypeInfo(Ty).Width;
3802
3803 llvm::APInt Val(bit_width, 0, isSigned);
3804 bool Overflowed = Literal.GetFixedPointValue(Val, scale);
3805 bool ValIsZero = Val.isNullValue() && !Overflowed;
3806
3807 auto MaxVal = Context.getFixedPointMax(Ty).getValue();
3808 if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero)
3809 // Clause 6.4.4 - The value of a constant shall be in the range of
3810 // representable values for its type, with exception for constants of a
3811 // fract type with a value of exactly 1; such a constant shall denote
3812 // the maximal value for the type.
3813 --Val;
3814 else if (Val.ugt(MaxVal) || Overflowed)
3815 Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point);
3816
3817 Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty,
3818 Tok.getLocation(), scale);
3819 } else if (Literal.isFloatingLiteral()) {
3820 QualType Ty;
3821 if (Literal.isHalf){
3822 if (getOpenCLOptions().isEnabled("cl_khr_fp16"))
3823 Ty = Context.HalfTy;
3824 else {
3825 Diag(Tok.getLocation(), diag::err_half_const_requires_fp16);
3826 return ExprError();
3827 }
3828 } else if (Literal.isFloat)
3829 Ty = Context.FloatTy;
3830 else if (Literal.isLong)
3831 Ty = Context.LongDoubleTy;
3832 else if (Literal.isFloat16)
3833 Ty = Context.Float16Ty;
3834 else if (Literal.isFloat128)
3835 Ty = Context.Float128Ty;
3836 else
3837 Ty = Context.DoubleTy;
3838
3839 Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
3840
3841 if (Ty == Context.DoubleTy) {
3842 if (getLangOpts().SinglePrecisionConstants) {
3843 if (Ty->castAs<BuiltinType>()->getKind() != BuiltinType::Float) {
3844 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3845 }
3846 } else if (getLangOpts().OpenCL &&
3847 !getOpenCLOptions().isEnabled("cl_khr_fp64")) {
3848 // Impose single-precision float type when cl_khr_fp64 is not enabled.
3849 Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
3850 Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
3851 }
3852 }
3853 } else if (!Literal.isIntegerLiteral()) {
3854 return ExprError();
3855 } else {
3856 QualType Ty;
3857
3858 // 'long long' is a C99 or C++11 feature.
3859 if (!getLangOpts().C99 && Literal.isLongLong) {
3860 if (getLangOpts().CPlusPlus)
3861 Diag(Tok.getLocation(),
3862 getLangOpts().CPlusPlus11 ?
3863 diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
3864 else
3865 Diag(Tok.getLocation(), diag::ext_c99_longlong);
3866 }
3867
3868 // Get the value in the widest-possible width.
3869 unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
3870 llvm::APInt ResultVal(MaxWidth, 0);
3871
3872 if (Literal.GetIntegerValue(ResultVal)) {
3873 // If this value didn't fit into uintmax_t, error and force to ull.
3874 Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
3875 << /* Unsigned */ 1;
3876 Ty = Context.UnsignedLongLongTy;
3877 assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&((Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?") ? static_cast<void> (0) :
__assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3878, __PRETTY_FUNCTION__))
3878 "long long is not intmax_t?")((Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
"long long is not intmax_t?") ? static_cast<void> (0) :
__assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3878, __PRETTY_FUNCTION__))
;
3879 } else {
3880 // If this value fits into a ULL, try to figure out what else it fits into
3881 // according to the rules of C99 6.4.4.1p5.
3882
3883 // Octal, Hexadecimal, and integers with a U suffix are allowed to
3884 // be an unsigned int.
3885 bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
3886
3887 // Check from smallest to largest, picking the smallest type we can.
3888 unsigned Width = 0;
3889
3890 // Microsoft specific integer suffixes are explicitly sized.
3891 if (Literal.MicrosoftInteger) {
3892 if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
3893 Width = 8;
3894 Ty = Context.CharTy;
3895 } else {
3896 Width = Literal.MicrosoftInteger;
3897 Ty = Context.getIntTypeForBitwidth(Width,
3898 /*Signed=*/!Literal.isUnsigned);
3899 }
3900 }
3901
3902 if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
3903 // Are int/unsigned possibilities?
3904 unsigned IntSize = Context.getTargetInfo().getIntWidth();
3905
3906 // Does it fit in a unsigned int?
3907 if (ResultVal.isIntN(IntSize)) {
3908 // Does it fit in a signed int?
3909 if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
3910 Ty = Context.IntTy;
3911 else if (AllowUnsigned)
3912 Ty = Context.UnsignedIntTy;
3913 Width = IntSize;
3914 }
3915 }
3916
3917 // Are long/unsigned long possibilities?
3918 if (Ty.isNull() && !Literal.isLongLong) {
3919 unsigned LongSize = Context.getTargetInfo().getLongWidth();
3920
3921 // Does it fit in a unsigned long?
3922 if (ResultVal.isIntN(LongSize)) {
3923 // Does it fit in a signed long?
3924 if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
3925 Ty = Context.LongTy;
3926 else if (AllowUnsigned)
3927 Ty = Context.UnsignedLongTy;
3928 // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
3929 // is compatible.
3930 else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
3931 const unsigned LongLongSize =
3932 Context.getTargetInfo().getLongLongWidth();
3933 Diag(Tok.getLocation(),
3934 getLangOpts().CPlusPlus
3935 ? Literal.isLong
3936 ? diag::warn_old_implicitly_unsigned_long_cxx
3937 : /*C++98 UB*/ diag::
3938 ext_old_implicitly_unsigned_long_cxx
3939 : diag::warn_old_implicitly_unsigned_long)
3940 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
3941 : /*will be ill-formed*/ 1);
3942 Ty = Context.UnsignedLongTy;
3943 }
3944 Width = LongSize;
3945 }
3946 }
3947
3948 // Check long long if needed.
3949 if (Ty.isNull()) {
3950 unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
3951
3952 // Does it fit in a unsigned long long?
3953 if (ResultVal.isIntN(LongLongSize)) {
3954 // Does it fit in a signed long long?
3955 // To be compatible with MSVC, hex integer literals ending with the
3956 // LL or i64 suffix are always signed in Microsoft mode.
3957 if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
3958 (getLangOpts().MSVCCompat && Literal.isLongLong)))
3959 Ty = Context.LongLongTy;
3960 else if (AllowUnsigned)
3961 Ty = Context.UnsignedLongLongTy;
3962 Width = LongLongSize;
3963 }
3964 }
3965
3966 // If we still couldn't decide a type, we probably have something that
3967 // does not fit in a signed long long, but has no U suffix.
3968 if (Ty.isNull()) {
3969 Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
3970 Ty = Context.UnsignedLongLongTy;
3971 Width = Context.getTargetInfo().getLongLongWidth();
3972 }
3973
3974 if (ResultVal.getBitWidth() != Width)
3975 ResultVal = ResultVal.trunc(Width);
3976 }
3977 Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
3978 }
3979
3980 // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
3981 if (Literal.isImaginary) {
3982 Res = new (Context) ImaginaryLiteral(Res,
3983 Context.getComplexType(Res->getType()));
3984
3985 Diag(Tok.getLocation(), diag::ext_imaginary_constant);
3986 }
3987 return Res;
3988}
3989
3990ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
3991 assert(E && "ActOnParenExpr() missing expr")((E && "ActOnParenExpr() missing expr") ? static_cast
<void> (0) : __assert_fail ("E && \"ActOnParenExpr() missing expr\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 3991, __PRETTY_FUNCTION__))
;
3992 return new (Context) ParenExpr(L, R, E);
3993}
3994
3995static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
3996 SourceLocation Loc,
3997 SourceRange ArgRange) {
3998 // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
3999 // scalar or vector data type argument..."
4000 // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
4001 // type (C99 6.2.5p18) or void.
4002 if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
4003 S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
4004 << T << ArgRange;
4005 return true;
4006 }
4007
4008 assert((T->isVoidType() || !T->isIncompleteType()) &&(((T->isVoidType() || !T->isIncompleteType()) &&
"Scalar types should always be complete") ? static_cast<void
> (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4009, __PRETTY_FUNCTION__))
4009 "Scalar types should always be complete")(((T->isVoidType() || !T->isIncompleteType()) &&
"Scalar types should always be complete") ? static_cast<void
> (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4009, __PRETTY_FUNCTION__))
;
4010 return false;
4011}
4012
4013static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
4014 SourceLocation Loc,
4015 SourceRange ArgRange,
4016 UnaryExprOrTypeTrait TraitKind) {
4017 // Invalid types must be hard errors for SFINAE in C++.
4018 if (S.LangOpts.CPlusPlus)
4019 return true;
4020
4021 // C99 6.5.3.4p1:
4022 if (T->isFunctionType() &&
4023 (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf ||
4024 TraitKind == UETT_PreferredAlignOf)) {
4025 // sizeof(function)/alignof(function) is allowed as an extension.
4026 S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
4027 << getTraitSpelling(TraitKind) << ArgRange;
4028 return false;
4029 }
4030
4031 // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
4032 // this is an error (OpenCL v1.1 s6.3.k)
4033 if (T->isVoidType()) {
4034 unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
4035 : diag::ext_sizeof_alignof_void_type;
4036 S.Diag(Loc, DiagID) << getTraitSpelling(TraitKind) << ArgRange;
4037 return false;
4038 }
4039
4040 return true;
4041}
4042
4043static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
4044 SourceLocation Loc,
4045 SourceRange ArgRange,
4046 UnaryExprOrTypeTrait TraitKind) {
4047 // Reject sizeof(interface) and sizeof(interface<proto>) if the
4048 // runtime doesn't allow it.
4049 if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
4050 S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
4051 << T << (TraitKind == UETT_SizeOf)
4052 << ArgRange;
4053 return true;
4054 }
4055
4056 return false;
4057}
4058
4059/// Check whether E is a pointer from a decayed array type (the decayed
4060/// pointer type is equal to T) and emit a warning if it is.
4061static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
4062 Expr *E) {
4063 // Don't warn if the operation changed the type.
4064 if (T != E->getType())
4065 return;
4066
4067 // Now look for array decays.
4068 ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
4069 if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
4070 return;
4071
4072 S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
4073 << ICE->getType()
4074 << ICE->getSubExpr()->getType();
4075}
4076
4077/// Check the constraints on expression operands to unary type expression
4078/// and type traits.
4079///
4080/// Completes any types necessary and validates the constraints on the operand
4081/// expression. The logic mostly mirrors the type-based overload, but may modify
4082/// the expression as it completes the type for that expression through template
4083/// instantiation, etc.
4084bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
4085 UnaryExprOrTypeTrait ExprKind) {
4086 QualType ExprTy = E->getType();
4087 assert(!ExprTy->isReferenceType())((!ExprTy->isReferenceType()) ? static_cast<void> (0
) : __assert_fail ("!ExprTy->isReferenceType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4087, __PRETTY_FUNCTION__))
;
4088
4089 bool IsUnevaluatedOperand =
4090 (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf ||
4091 ExprKind == UETT_PreferredAlignOf || ExprKind == UETT_VecStep);
4092 if (IsUnevaluatedOperand) {
4093 ExprResult Result = CheckUnevaluatedOperand(E);
4094 if (Result.isInvalid())
4095 return true;
4096 E = Result.get();
4097 }
4098
4099 // The operand for sizeof and alignof is in an unevaluated expression context,
4100 // so side effects could result in unintended consequences.
4101 // Exclude instantiation-dependent expressions, because 'sizeof' is sometimes
4102 // used to build SFINAE gadgets.
4103 // FIXME: Should we consider instantiation-dependent operands to 'alignof'?
4104 if (IsUnevaluatedOperand && !inTemplateInstantiation() &&
4105 !E->isInstantiationDependent() &&
4106 E->HasSideEffects(Context, false))
4107 Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
4108
4109 if (ExprKind == UETT_VecStep)
4110 return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
4111 E->getSourceRange());
4112
4113 // Explicitly list some types as extensions.
4114 if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
4115 E->getSourceRange(), ExprKind))
4116 return false;
4117
4118 // 'alignof' applied to an expression only requires the base element type of
4119 // the expression to be complete. 'sizeof' requires the expression's type to
4120 // be complete (and will attempt to complete it if it's an array of unknown
4121 // bound).
4122 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4123 if (RequireCompleteSizedType(
4124 E->getExprLoc(), Context.getBaseElementType(E->getType()),
4125 diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4126 getTraitSpelling(ExprKind), E->getSourceRange()))
4127 return true;
4128 } else {
4129 if (RequireCompleteSizedExprType(
4130 E, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4131 getTraitSpelling(ExprKind), E->getSourceRange()))
4132 return true;
4133 }
4134
4135 // Completing the expression's type may have changed it.
4136 ExprTy = E->getType();
4137 assert(!ExprTy->isReferenceType())((!ExprTy->isReferenceType()) ? static_cast<void> (0
) : __assert_fail ("!ExprTy->isReferenceType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4137, __PRETTY_FUNCTION__))
;
4138
4139 if (ExprTy->isFunctionType()) {
4140 Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
4141 << getTraitSpelling(ExprKind) << E->getSourceRange();
4142 return true;
4143 }
4144
4145 if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
4146 E->getSourceRange(), ExprKind))
4147 return true;
4148
4149 if (ExprKind == UETT_SizeOf) {
4150 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
4151 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
4152 QualType OType = PVD->getOriginalType();
4153 QualType Type = PVD->getType();
4154 if (Type->isPointerType() && OType->isArrayType()) {
4155 Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
4156 << Type << OType;
4157 Diag(PVD->getLocation(), diag::note_declared_at);
4158 }
4159 }
4160 }
4161
4162 // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
4163 // decays into a pointer and returns an unintended result. This is most
4164 // likely a typo for "sizeof(array) op x".
4165 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
4166 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4167 BO->getLHS());
4168 warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
4169 BO->getRHS());
4170 }
4171 }
4172
4173 return false;
4174}
4175
4176/// Check the constraints on operands to unary expression and type
4177/// traits.
4178///
4179/// This will complete any types necessary, and validate the various constraints
4180/// on those operands.
4181///
4182/// The UsualUnaryConversions() function is *not* called by this routine.
4183/// C99 6.3.2.1p[2-4] all state:
4184/// Except when it is the operand of the sizeof operator ...
4185///
4186/// C++ [expr.sizeof]p4
4187/// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4188/// standard conversions are not applied to the operand of sizeof.
4189///
4190/// This policy is followed for all of the unary trait expressions.
4191bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
4192 SourceLocation OpLoc,
4193 SourceRange ExprRange,
4194 UnaryExprOrTypeTrait ExprKind) {
4195 if (ExprType->isDependentType())
4196 return false;
4197
4198 // C++ [expr.sizeof]p2:
4199 // When applied to a reference or a reference type, the result
4200 // is the size of the referenced type.
4201 // C++11 [expr.alignof]p3:
4202 // When alignof is applied to a reference type, the result
4203 // shall be the alignment of the referenced type.
4204 if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
4205 ExprType = Ref->getPointeeType();
4206
4207 // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
4208 // When alignof or _Alignof is applied to an array type, the result
4209 // is the alignment of the element type.
4210 if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf ||
4211 ExprKind == UETT_OpenMPRequiredSimdAlign)
4212 ExprType = Context.getBaseElementType(ExprType);
4213
4214 if (ExprKind == UETT_VecStep)
4215 return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
4216
4217 // Explicitly list some types as extensions.
4218 if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
4219 ExprKind))
4220 return false;
4221
4222 if (RequireCompleteSizedType(
4223 OpLoc, ExprType, diag::err_sizeof_alignof_incomplete_or_sizeless_type,
4224 getTraitSpelling(ExprKind), ExprRange))
4225 return true;
4226
4227 if (ExprType->isFunctionType()) {
4228 Diag(OpLoc, diag::err_sizeof_alignof_function_type)
4229 << getTraitSpelling(ExprKind) << ExprRange;
4230 return true;
4231 }
4232
4233 if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
4234 ExprKind))
4235 return true;
4236
4237 return false;
4238}
4239
4240static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) {
4241 // Cannot know anything else if the expression is dependent.
4242 if (E->isTypeDependent())
4243 return false;
4244
4245 if (E->getObjectKind() == OK_BitField) {
4246 S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
4247 << 1 << E->getSourceRange();
4248 return true;
4249 }
4250
4251 ValueDecl *D = nullptr;
4252 Expr *Inner = E->IgnoreParens();
4253 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) {
4254 D = DRE->getDecl();
4255 } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) {
4256 D = ME->getMemberDecl();
4257 }
4258
4259 // If it's a field, require the containing struct to have a
4260 // complete definition so that we can compute the layout.
4261 //
4262 // This can happen in C++11 onwards, either by naming the member
4263 // in a way that is not transformed into a member access expression
4264 // (in an unevaluated operand, for instance), or by naming the member
4265 // in a trailing-return-type.
4266 //
4267 // For the record, since __alignof__ on expressions is a GCC
4268 // extension, GCC seems to permit this but always gives the
4269 // nonsensical answer 0.
4270 //
4271 // We don't really need the layout here --- we could instead just
4272 // directly check for all the appropriate alignment-lowing
4273 // attributes --- but that would require duplicating a lot of
4274 // logic that just isn't worth duplicating for such a marginal
4275 // use-case.
4276 if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
4277 // Fast path this check, since we at least know the record has a
4278 // definition if we can find a member of it.
4279 if (!FD->getParent()->isCompleteDefinition()) {
4280 S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
4281 << E->getSourceRange();
4282 return true;
4283 }
4284
4285 // Otherwise, if it's a field, and the field doesn't have
4286 // reference type, then it must have a complete type (or be a
4287 // flexible array member, which we explicitly want to
4288 // white-list anyway), which makes the following checks trivial.
4289 if (!FD->getType()->isReferenceType())
4290 return false;
4291 }
4292
4293 return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind);
4294}
4295
4296bool Sema::CheckVecStepExpr(Expr *E) {
4297 E = E->IgnoreParens();
4298
4299 // Cannot know anything else if the expression is dependent.
4300 if (E->isTypeDependent())
4301 return false;
4302
4303 return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
4304}
4305
4306static void captureVariablyModifiedType(ASTContext &Context, QualType T,
4307 CapturingScopeInfo *CSI) {
4308 assert(T->isVariablyModifiedType())((T->isVariablyModifiedType()) ? static_cast<void> (
0) : __assert_fail ("T->isVariablyModifiedType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4308, __PRETTY_FUNCTION__))
;
4309 assert(CSI != nullptr)((CSI != nullptr) ? static_cast<void> (0) : __assert_fail
("CSI != nullptr", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4309, __PRETTY_FUNCTION__))
;
4310
4311 // We're going to walk down into the type and look for VLA expressions.
4312 do {
4313 const Type *Ty = T.getTypePtr();
4314 switch (Ty->getTypeClass()) {
4315#define TYPE(Class, Base)
4316#define ABSTRACT_TYPE(Class, Base)
4317#define NON_CANONICAL_TYPE(Class, Base)
4318#define DEPENDENT_TYPE(Class, Base) case Type::Class:
4319#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
4320#include "clang/AST/TypeNodes.inc"
4321 T = QualType();
4322 break;
4323 // These types are never variably-modified.
4324 case Type::Builtin:
4325 case Type::Complex:
4326 case Type::Vector:
4327 case Type::ExtVector:
4328 case Type::ConstantMatrix:
4329 case Type::Record:
4330 case Type::Enum:
4331 case Type::Elaborated:
4332 case Type::TemplateSpecialization:
4333 case Type::ObjCObject:
4334 case Type::ObjCInterface:
4335 case Type::ObjCObjectPointer:
4336 case Type::ObjCTypeParam:
4337 case Type::Pipe:
4338 case Type::ExtInt:
4339 llvm_unreachable("type class is never variably-modified!")::llvm::llvm_unreachable_internal("type class is never variably-modified!"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4339)
;
4340 case Type::Adjusted:
4341 T = cast<AdjustedType>(Ty)->getOriginalType();
4342 break;
4343 case Type::Decayed:
4344 T = cast<DecayedType>(Ty)->getPointeeType();
4345 break;
4346 case Type::Pointer:
4347 T = cast<PointerType>(Ty)->getPointeeType();
4348 break;
4349 case Type::BlockPointer:
4350 T = cast<BlockPointerType>(Ty)->getPointeeType();
4351 break;
4352 case Type::LValueReference:
4353 case Type::RValueReference:
4354 T = cast<ReferenceType>(Ty)->getPointeeType();
4355 break;
4356 case Type::MemberPointer:
4357 T = cast<MemberPointerType>(Ty)->getPointeeType();
4358 break;
4359 case Type::ConstantArray:
4360 case Type::IncompleteArray:
4361 // Losing element qualification here is fine.
4362 T = cast<ArrayType>(Ty)->getElementType();
4363 break;
4364 case Type::VariableArray: {
4365 // Losing element qualification here is fine.
4366 const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
4367
4368 // Unknown size indication requires no size computation.
4369 // Otherwise, evaluate and record it.
4370 auto Size = VAT->getSizeExpr();
4371 if (Size && !CSI->isVLATypeCaptured(VAT) &&
4372 (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI)))
4373 CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType());
4374
4375 T = VAT->getElementType();
4376 break;
4377 }
4378 case Type::FunctionProto:
4379 case Type::FunctionNoProto:
4380 T = cast<FunctionType>(Ty)->getReturnType();
4381 break;
4382 case Type::Paren:
4383 case Type::TypeOf:
4384 case Type::UnaryTransform:
4385 case Type::Attributed:
4386 case Type::SubstTemplateTypeParm:
4387 case Type::MacroQualified:
4388 // Keep walking after single level desugaring.
4389 T = T.getSingleStepDesugaredType(Context);
4390 break;
4391 case Type::Typedef:
4392 T = cast<TypedefType>(Ty)->desugar();
4393 break;
4394 case Type::Decltype:
4395 T = cast<DecltypeType>(Ty)->desugar();
4396 break;
4397 case Type::Auto:
4398 case Type::DeducedTemplateSpecialization:
4399 T = cast<DeducedType>(Ty)->getDeducedType();
4400 break;
4401 case Type::TypeOfExpr:
4402 T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
4403 break;
4404 case Type::Atomic:
4405 T = cast<AtomicType>(Ty)->getValueType();
4406 break;
4407 }
4408 } while (!T.isNull() && T->isVariablyModifiedType());
4409}
4410
4411/// Build a sizeof or alignof expression given a type operand.
4412ExprResult
4413Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
4414 SourceLocation OpLoc,
4415 UnaryExprOrTypeTrait ExprKind,
4416 SourceRange R) {
4417 if (!TInfo)
4418 return ExprError();
4419
4420 QualType T = TInfo->getType();
4421
4422 if (!T->isDependentType() &&
4423 CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
4424 return ExprError();
4425
4426 if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) {
4427 if (auto *TT = T->getAs<TypedefType>()) {
4428 for (auto I = FunctionScopes.rbegin(),
4429 E = std::prev(FunctionScopes.rend());
4430 I != E; ++I) {
4431 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
4432 if (CSI == nullptr)
4433 break;
4434 DeclContext *DC = nullptr;
4435 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
4436 DC = LSI->CallOperator;
4437 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
4438 DC = CRSI->TheCapturedDecl;
4439 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
4440 DC = BSI->TheDecl;
4441 if (DC) {
4442 if (DC->containsDecl(TT->getDecl()))
4443 break;
4444 captureVariablyModifiedType(Context, T, CSI);
4445 }
4446 }
4447 }
4448 }
4449
4450 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4451 return new (Context) UnaryExprOrTypeTraitExpr(
4452 ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
4453}
4454
4455/// Build a sizeof or alignof expression given an expression
4456/// operand.
4457ExprResult
4458Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
4459 UnaryExprOrTypeTrait ExprKind) {
4460 ExprResult PE = CheckPlaceholderExpr(E);
4461 if (PE.isInvalid())
4462 return ExprError();
4463
4464 E = PE.get();
4465
4466 // Verify that the operand is valid.
4467 bool isInvalid = false;
4468 if (E->isTypeDependent()) {
4469 // Delay type-checking for type-dependent expressions.
4470 } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) {
4471 isInvalid = CheckAlignOfExpr(*this, E, ExprKind);
4472 } else if (ExprKind == UETT_VecStep) {
4473 isInvalid = CheckVecStepExpr(E);
4474 } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
4475 Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
4476 isInvalid = true;
4477 } else if (E->refersToBitField()) { // C99 6.5.3.4p1.
4478 Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
4479 isInvalid = true;
4480 } else {
4481 isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
4482 }
4483
4484 if (isInvalid)
4485 return ExprError();
4486
4487 if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
4488 PE = TransformToPotentiallyEvaluated(E);
4489 if (PE.isInvalid()) return ExprError();
4490 E = PE.get();
4491 }
4492
4493 // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
4494 return new (Context) UnaryExprOrTypeTraitExpr(
4495 ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
4496}
4497
4498/// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
4499/// expr and the same for @c alignof and @c __alignof
4500/// Note that the ArgRange is invalid if isType is false.
4501ExprResult
4502Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
4503 UnaryExprOrTypeTrait ExprKind, bool IsType,
4504 void *TyOrEx, SourceRange ArgRange) {
4505 // If error parsing type, ignore.
4506 if (!TyOrEx) return ExprError();
4507
4508 if (IsType) {
4509 TypeSourceInfo *TInfo;
4510 (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
4511 return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
4512 }
4513
4514 Expr *ArgEx = (Expr *)TyOrEx;
4515 ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
4516 return Result;
4517}
4518
4519static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
4520 bool IsReal) {
4521 if (V.get()->isTypeDependent())
4522 return S.Context.DependentTy;
4523
4524 // _Real and _Imag are only l-values for normal l-values.
4525 if (V.get()->getObjectKind() != OK_Ordinary) {
4526 V = S.DefaultLvalueConversion(V.get());
4527 if (V.isInvalid())
4528 return QualType();
4529 }
4530
4531 // These operators return the element type of a complex type.
4532 if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
4533 return CT->getElementType();
4534
4535 // Otherwise they pass through real integer and floating point types here.
4536 if (V.get()->getType()->isArithmeticType())
4537 return V.get()->getType();
4538
4539 // Test for placeholders.
4540 ExprResult PR = S.CheckPlaceholderExpr(V.get());
4541 if (PR.isInvalid()) return QualType();
4542 if (PR.get() != V.get()) {
4543 V = PR;
4544 return CheckRealImagOperand(S, V, Loc, IsReal);
4545 }
4546
4547 // Reject anything else.
4548 S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
4549 << (IsReal ? "__real" : "__imag");
4550 return QualType();
4551}
4552
4553
4554
4555ExprResult
4556Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
4557 tok::TokenKind Kind, Expr *Input) {
4558 UnaryOperatorKind Opc;
4559 switch (Kind) {
4560 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4560)
;
4561 case tok::plusplus: Opc = UO_PostInc; break;
4562 case tok::minusminus: Opc = UO_PostDec; break;
4563 }
4564
4565 // Since this might is a postfix expression, get rid of ParenListExprs.
4566 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
4567 if (Result.isInvalid()) return ExprError();
4568 Input = Result.get();
4569
4570 return BuildUnaryOp(S, OpLoc, Opc, Input);
4571}
4572
4573/// Diagnose if arithmetic on the given ObjC pointer is illegal.
4574///
4575/// \return true on error
4576static bool checkArithmeticOnObjCPointer(Sema &S,
4577 SourceLocation opLoc,
4578 Expr *op) {
4579 assert(op->getType()->isObjCObjectPointerType())((op->getType()->isObjCObjectPointerType()) ? static_cast
<void> (0) : __assert_fail ("op->getType()->isObjCObjectPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4579, __PRETTY_FUNCTION__))
;
4580 if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
4581 !S.LangOpts.ObjCSubscriptingLegacyRuntime)
4582 return false;
4583
4584 S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
4585 << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
4586 << op->getSourceRange();
4587 return true;
4588}
4589
4590static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
4591 auto *BaseNoParens = Base->IgnoreParens();
4592 if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
4593 return MSProp->getPropertyDecl()->getType()->isArrayType();
4594 return isa<MSPropertySubscriptExpr>(BaseNoParens);
4595}
4596
4597ExprResult
4598Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
4599 Expr *idx, SourceLocation rbLoc) {
4600 if (base && !base->getType().isNull() &&
4601 base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
4602 return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
4603 SourceLocation(), /*Length*/ nullptr,
4604 /*Stride=*/nullptr, rbLoc);
4605
4606 // Since this might be a postfix expression, get rid of ParenListExprs.
4607 if (isa<ParenListExpr>(base)) {
4608 ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
4609 if (result.isInvalid()) return ExprError();
4610 base = result.get();
4611 }
4612
4613 // Check if base and idx form a MatrixSubscriptExpr.
4614 //
4615 // Helper to check for comma expressions, which are not allowed as indices for
4616 // matrix subscript expressions.
4617 auto CheckAndReportCommaError = [this, base, rbLoc](Expr *E) {
4618 if (isa<BinaryOperator>(E) && cast<BinaryOperator>(E)->isCommaOp()) {
4619 Diag(E->getExprLoc(), diag::err_matrix_subscript_comma)
4620 << SourceRange(base->getBeginLoc(), rbLoc);
4621 return true;
4622 }
4623 return false;
4624 };
4625 // The matrix subscript operator ([][])is considered a single operator.
4626 // Separating the index expressions by parenthesis is not allowed.
4627 if (base->getType()->isSpecificPlaceholderType(
4628 BuiltinType::IncompleteMatrixIdx) &&
4629 !isa<MatrixSubscriptExpr>(base)) {
4630 Diag(base->getExprLoc(), diag::err_matrix_separate_incomplete_index)
4631 << SourceRange(base->getBeginLoc(), rbLoc);
4632 return ExprError();
4633 }
4634 // If the base is a MatrixSubscriptExpr, try to create a new
4635 // MatrixSubscriptExpr.
4636 auto *matSubscriptE = dyn_cast<MatrixSubscriptExpr>(base);
4637 if (matSubscriptE) {
4638 if (CheckAndReportCommaError(idx))
4639 return ExprError();
4640
4641 assert(matSubscriptE->isIncomplete() &&((matSubscriptE->isIncomplete() && "base has to be an incomplete matrix subscript"
) ? static_cast<void> (0) : __assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4642, __PRETTY_FUNCTION__))
4642 "base has to be an incomplete matrix subscript")((matSubscriptE->isIncomplete() && "base has to be an incomplete matrix subscript"
) ? static_cast<void> (0) : __assert_fail ("matSubscriptE->isIncomplete() && \"base has to be an incomplete matrix subscript\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4642, __PRETTY_FUNCTION__))
;
4643 return CreateBuiltinMatrixSubscriptExpr(
4644 matSubscriptE->getBase(), matSubscriptE->getRowIdx(), idx, rbLoc);
4645 }
4646
4647 // Handle any non-overload placeholder types in the base and index
4648 // expressions. We can't handle overloads here because the other
4649 // operand might be an overloadable type, in which case the overload
4650 // resolution for the operator overload should get the first crack
4651 // at the overload.
4652 bool IsMSPropertySubscript = false;
4653 if (base->getType()->isNonOverloadPlaceholderType()) {
4654 IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
4655 if (!IsMSPropertySubscript) {
4656 ExprResult result = CheckPlaceholderExpr(base);
4657 if (result.isInvalid())
4658 return ExprError();
4659 base = result.get();
4660 }
4661 }
4662
4663 // If the base is a matrix type, try to create a new MatrixSubscriptExpr.
4664 if (base->getType()->isMatrixType()) {
4665 if (CheckAndReportCommaError(idx))
4666 return ExprError();
4667
4668 return CreateBuiltinMatrixSubscriptExpr(base, idx, nullptr, rbLoc);
4669 }
4670
4671 // A comma-expression as the index is deprecated in C++2a onwards.
4672 if (getLangOpts().CPlusPlus20 &&
4673 ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) ||
4674 (isa<CXXOperatorCallExpr>(idx) &&
4675 cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) {
4676 Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript)
4677 << SourceRange(base->getBeginLoc(), rbLoc);
4678 }
4679
4680 if (idx->getType()->isNonOverloadPlaceholderType()) {
4681 ExprResult result = CheckPlaceholderExpr(idx);
4682 if (result.isInvalid()) return ExprError();
4683 idx = result.get();
4684 }
4685
4686 // Build an unanalyzed expression if either operand is type-dependent.
4687 if (getLangOpts().CPlusPlus &&
4688 (base->isTypeDependent() || idx->isTypeDependent())) {
4689 return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
4690 VK_LValue, OK_Ordinary, rbLoc);
4691 }
4692
4693 // MSDN, property (C++)
4694 // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
4695 // This attribute can also be used in the declaration of an empty array in a
4696 // class or structure definition. For example:
4697 // __declspec(property(get=GetX, put=PutX)) int x[];
4698 // The above statement indicates that x[] can be used with one or more array
4699 // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
4700 // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
4701 if (IsMSPropertySubscript) {
4702 // Build MS property subscript expression if base is MS property reference
4703 // or MS property subscript.
4704 return new (Context) MSPropertySubscriptExpr(
4705 base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
4706 }
4707
4708 // Use C++ overloaded-operator rules if either operand has record
4709 // type. The spec says to do this if either type is *overloadable*,
4710 // but enum types can't declare subscript operators or conversion
4711 // operators, so there's nothing interesting for overload resolution
4712 // to do if there aren't any record types involved.
4713 //
4714 // ObjC pointers have their own subscripting logic that is not tied
4715 // to overload resolution and so should not take this path.
4716 if (getLangOpts().CPlusPlus &&
4717 (base->getType()->isRecordType() ||
4718 (!base->getType()->isObjCObjectPointerType() &&
4719 idx->getType()->isRecordType()))) {
4720 return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
4721 }
4722
4723 ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
4724
4725 if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get()))
4726 CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get()));
4727
4728 return Res;
4729}
4730
4731ExprResult Sema::tryConvertExprToType(Expr *E, QualType Ty) {
4732 InitializedEntity Entity = InitializedEntity::InitializeTemporary(Ty);
4733 InitializationKind Kind =
4734 InitializationKind::CreateCopy(E->getBeginLoc(), SourceLocation());
4735 InitializationSequence InitSeq(*this, Entity, Kind, E);
4736 return InitSeq.Perform(*this, Entity, Kind, E);
4737}
4738
4739ExprResult Sema::CreateBuiltinMatrixSubscriptExpr(Expr *Base, Expr *RowIdx,
4740 Expr *ColumnIdx,
4741 SourceLocation RBLoc) {
4742 ExprResult BaseR = CheckPlaceholderExpr(Base);
4743 if (BaseR.isInvalid())
4744 return BaseR;
4745 Base = BaseR.get();
4746
4747 ExprResult RowR = CheckPlaceholderExpr(RowIdx);
4748 if (RowR.isInvalid())
4749 return RowR;
4750 RowIdx = RowR.get();
4751
4752 if (!ColumnIdx)
4753 return new (Context) MatrixSubscriptExpr(
4754 Base, RowIdx, ColumnIdx, Context.IncompleteMatrixIdxTy, RBLoc);
4755
4756 // Build an unanalyzed expression if any of the operands is type-dependent.
4757 if (Base->isTypeDependent() || RowIdx->isTypeDependent() ||
4758 ColumnIdx->isTypeDependent())
4759 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4760 Context.DependentTy, RBLoc);
4761
4762 ExprResult ColumnR = CheckPlaceholderExpr(ColumnIdx);
4763 if (ColumnR.isInvalid())
4764 return ColumnR;
4765 ColumnIdx = ColumnR.get();
4766
4767 // Check that IndexExpr is an integer expression. If it is a constant
4768 // expression, check that it is less than Dim (= the number of elements in the
4769 // corresponding dimension).
4770 auto IsIndexValid = [&](Expr *IndexExpr, unsigned Dim,
4771 bool IsColumnIdx) -> Expr * {
4772 if (!IndexExpr->getType()->isIntegerType() &&
4773 !IndexExpr->isTypeDependent()) {
4774 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_not_integer)
4775 << IsColumnIdx;
4776 return nullptr;
4777 }
4778
4779 if (Optional<llvm::APSInt> Idx =
4780 IndexExpr->getIntegerConstantExpr(Context)) {
4781 if ((*Idx < 0 || *Idx >= Dim)) {
4782 Diag(IndexExpr->getBeginLoc(), diag::err_matrix_index_outside_range)
4783 << IsColumnIdx << Dim;
4784 return nullptr;
4785 }
4786 }
4787
4788 ExprResult ConvExpr =
4789 tryConvertExprToType(IndexExpr, Context.getSizeType());
4790 assert(!ConvExpr.isInvalid() &&((!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"
) ? static_cast<void> (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4791, __PRETTY_FUNCTION__))
4791 "should be able to convert any integer type to size type")((!ConvExpr.isInvalid() && "should be able to convert any integer type to size type"
) ? static_cast<void> (0) : __assert_fail ("!ConvExpr.isInvalid() && \"should be able to convert any integer type to size type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 4791, __PRETTY_FUNCTION__))
;
4792 return ConvExpr.get();
4793 };
4794
4795 auto *MTy = Base->getType()->getAs<ConstantMatrixType>();
4796 RowIdx = IsIndexValid(RowIdx, MTy->getNumRows(), false);
4797 ColumnIdx = IsIndexValid(ColumnIdx, MTy->getNumColumns(), true);
4798 if (!RowIdx || !ColumnIdx)
4799 return ExprError();
4800
4801 return new (Context) MatrixSubscriptExpr(Base, RowIdx, ColumnIdx,
4802 MTy->getElementType(), RBLoc);
4803}
4804
4805void Sema::CheckAddressOfNoDeref(const Expr *E) {
4806 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4807 const Expr *StrippedExpr = E->IgnoreParenImpCasts();
4808
4809 // For expressions like `&(*s).b`, the base is recorded and what should be
4810 // checked.
4811 const MemberExpr *Member = nullptr;
4812 while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow())
4813 StrippedExpr = Member->getBase()->IgnoreParenImpCasts();
4814
4815 LastRecord.PossibleDerefs.erase(StrippedExpr);
4816}
4817
4818void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) {
4819 if (isUnevaluatedContext())
4820 return;
4821
4822 QualType ResultTy = E->getType();
4823 ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back();
4824
4825 // Bail if the element is an array since it is not memory access.
4826 if (isa<ArrayType>(ResultTy))
4827 return;
4828
4829 if (ResultTy->hasAttr(attr::NoDeref)) {
4830 LastRecord.PossibleDerefs.insert(E);
4831 return;
4832 }
4833
4834 // Check if the base type is a pointer to a member access of a struct
4835 // marked with noderef.
4836 const Expr *Base = E->getBase();
4837 QualType BaseTy = Base->getType();
4838 if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy)))
4839 // Not a pointer access
4840 return;
4841
4842 const MemberExpr *Member = nullptr;
4843 while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) &&
4844 Member->isArrow())
4845 Base = Member->getBase();
4846
4847 if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) {
4848 if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
4849 LastRecord.PossibleDerefs.insert(E);
4850 }
4851}
4852
4853ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
4854 Expr *LowerBound,
4855 SourceLocation ColonLocFirst,
4856 SourceLocation ColonLocSecond,
4857 Expr *Length, Expr *Stride,
4858 SourceLocation RBLoc) {
4859 if (Base->getType()->isPlaceholderType() &&
4860 !Base->getType()->isSpecificPlaceholderType(
4861 BuiltinType::OMPArraySection)) {
4862 ExprResult Result = CheckPlaceholderExpr(Base);
4863 if (Result.isInvalid())
4864 return ExprError();
4865 Base = Result.get();
4866 }
4867 if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
4868 ExprResult Result = CheckPlaceholderExpr(LowerBound);
4869 if (Result.isInvalid())
4870 return ExprError();
4871 Result = DefaultLvalueConversion(Result.get());
4872 if (Result.isInvalid())
4873 return ExprError();
4874 LowerBound = Result.get();
4875 }
4876 if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
4877 ExprResult Result = CheckPlaceholderExpr(Length);
4878 if (Result.isInvalid())
4879 return ExprError();
4880 Result = DefaultLvalueConversion(Result.get());
4881 if (Result.isInvalid())
4882 return ExprError();
4883 Length = Result.get();
4884 }
4885 if (Stride && Stride->getType()->isNonOverloadPlaceholderType()) {
4886 ExprResult Result = CheckPlaceholderExpr(Stride);
4887 if (Result.isInvalid())
4888 return ExprError();
4889 Result = DefaultLvalueConversion(Result.get());
4890 if (Result.isInvalid())
4891 return ExprError();
4892 Stride = Result.get();
4893 }
4894
4895 // Build an unanalyzed expression if either operand is type-dependent.
4896 if (Base->isTypeDependent() ||
4897 (LowerBound &&
4898 (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
4899 (Length && (Length->isTypeDependent() || Length->isValueDependent())) ||
4900 (Stride && (Stride->isTypeDependent() || Stride->isValueDependent()))) {
4901 return new (Context) OMPArraySectionExpr(
4902 Base, LowerBound, Length, Stride, Context.DependentTy, VK_LValue,
4903 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
4904 }
4905
4906 // Perform default conversions.
4907 QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
4908 QualType ResultTy;
4909 if (OriginalTy->isAnyPointerType()) {
4910 ResultTy = OriginalTy->getPointeeType();
4911 } else if (OriginalTy->isArrayType()) {
4912 ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
4913 } else {
4914 return ExprError(
4915 Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
4916 << Base->getSourceRange());
4917 }
4918 // C99 6.5.2.1p1
4919 if (LowerBound) {
4920 auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
4921 LowerBound);
4922 if (Res.isInvalid())
4923 return ExprError(Diag(LowerBound->getExprLoc(),
4924 diag::err_omp_typecheck_section_not_integer)
4925 << 0 << LowerBound->getSourceRange());
4926 LowerBound = Res.get();
4927
4928 if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4929 LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4930 Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
4931 << 0 << LowerBound->getSourceRange();
4932 }
4933 if (Length) {
4934 auto Res =
4935 PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
4936 if (Res.isInvalid())
4937 return ExprError(Diag(Length->getExprLoc(),
4938 diag::err_omp_typecheck_section_not_integer)
4939 << 1 << Length->getSourceRange());
4940 Length = Res.get();
4941
4942 if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4943 Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4944 Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
4945 << 1 << Length->getSourceRange();
4946 }
4947 if (Stride) {
4948 ExprResult Res =
4949 PerformOpenMPImplicitIntegerConversion(Stride->getExprLoc(), Stride);
4950 if (Res.isInvalid())
4951 return ExprError(Diag(Stride->getExprLoc(),
4952 diag::err_omp_typecheck_section_not_integer)
4953 << 1 << Stride->getSourceRange());
4954 Stride = Res.get();
4955
4956 if (Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
4957 Stride->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
4958 Diag(Stride->getExprLoc(), diag::warn_omp_section_is_char)
4959 << 1 << Stride->getSourceRange();
4960 }
4961
4962 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
4963 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
4964 // type. Note that functions are not objects, and that (in C99 parlance)
4965 // incomplete types are not object types.
4966 if (ResultTy->isFunctionType()) {
4967 Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
4968 << ResultTy << Base->getSourceRange();
4969 return ExprError();
4970 }
4971
4972 if (RequireCompleteType(Base->getExprLoc(), ResultTy,
4973 diag::err_omp_section_incomplete_type, Base))
4974 return ExprError();
4975
4976 if (LowerBound && !OriginalTy->isAnyPointerType()) {
4977 Expr::EvalResult Result;
4978 if (LowerBound->EvaluateAsInt(Result, Context)) {
4979 // OpenMP 5.0, [2.1.5 Array Sections]
4980 // The array section must be a subset of the original array.
4981 llvm::APSInt LowerBoundValue = Result.Val.getInt();
4982 if (LowerBoundValue.isNegative()) {
4983 Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array)
4984 << LowerBound->getSourceRange();
4985 return ExprError();
4986 }
4987 }
4988 }
4989
4990 if (Length) {
4991 Expr::EvalResult Result;
4992 if (Length->EvaluateAsInt(Result, Context)) {
4993 // OpenMP 5.0, [2.1.5 Array Sections]
4994 // The length must evaluate to non-negative integers.
4995 llvm::APSInt LengthValue = Result.Val.getInt();
4996 if (LengthValue.isNegative()) {
4997 Diag(Length->getExprLoc(), diag::err_omp_section_length_negative)
4998 << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
4999 << Length->getSourceRange();
5000 return ExprError();
5001 }
5002 }
5003 } else if (ColonLocFirst.isValid() &&
5004 (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
5005 !OriginalTy->isVariableArrayType()))) {
5006 // OpenMP 5.0, [2.1.5 Array Sections]
5007 // When the size of the array dimension is not known, the length must be
5008 // specified explicitly.
5009 Diag(ColonLocFirst, diag::err_omp_section_length_undefined)
5010 << (!OriginalTy.isNull() && OriginalTy->isArrayType());
5011 return ExprError();
5012 }
5013
5014 if (Stride) {
5015 Expr::EvalResult Result;
5016 if (Stride->EvaluateAsInt(Result, Context)) {
5017 // OpenMP 5.0, [2.1.5 Array Sections]
5018 // The stride must evaluate to a positive integer.
5019 llvm::APSInt StrideValue = Result.Val.getInt();
5020 if (!StrideValue.isStrictlyPositive()) {
5021 Diag(Stride->getExprLoc(), diag::err_omp_section_stride_non_positive)
5022 << StrideValue.toString(/*Radix=*/10, /*Signed=*/true)
5023 << Stride->getSourceRange();
5024 return ExprError();
5025 }
5026 }
5027 }
5028
5029 if (!Base->getType()->isSpecificPlaceholderType(
5030 BuiltinType::OMPArraySection)) {
5031 ExprResult Result = DefaultFunctionArrayLvalueConversion(Base);
5032 if (Result.isInvalid())
5033 return ExprError();
5034 Base = Result.get();
5035 }
5036 return new (Context) OMPArraySectionExpr(
5037 Base, LowerBound, Length, Stride, Context.OMPArraySectionTy, VK_LValue,
5038 OK_Ordinary, ColonLocFirst, ColonLocSecond, RBLoc);
5039}
5040
5041ExprResult Sema::ActOnOMPArrayShapingExpr(Expr *Base, SourceLocation LParenLoc,
5042 SourceLocation RParenLoc,
5043 ArrayRef<Expr *> Dims,
5044 ArrayRef<SourceRange> Brackets) {
5045 if (Base->getType()->isPlaceholderType()) {
5046 ExprResult Result = CheckPlaceholderExpr(Base);
5047 if (Result.isInvalid())
5048 return ExprError();
5049 Result = DefaultLvalueConversion(Result.get());
5050 if (Result.isInvalid())
5051 return ExprError();
5052 Base = Result.get();
5053 }
5054 QualType BaseTy = Base->getType();
5055 // Delay analysis of the types/expressions if instantiation/specialization is
5056 // required.
5057 if (!BaseTy->isPointerType() && Base->isTypeDependent())
5058 return OMPArrayShapingExpr::Create(Context, Context.DependentTy, Base,
5059 LParenLoc, RParenLoc, Dims, Brackets);
5060 if (!BaseTy->isPointerType() ||
5061 (!Base->isTypeDependent() &&
5062 BaseTy->getPointeeType()->isIncompleteType()))
5063 return ExprError(Diag(Base->getExprLoc(),
5064 diag::err_omp_non_pointer_type_array_shaping_base)
5065 << Base->getSourceRange());
5066
5067 SmallVector<Expr *, 4> NewDims;
5068 bool ErrorFound = false;
5069 for (Expr *Dim : Dims) {
5070 if (Dim->getType()->isPlaceholderType()) {
5071 ExprResult Result = CheckPlaceholderExpr(Dim);
5072 if (Result.isInvalid()) {
5073 ErrorFound = true;
5074 continue;
5075 }
5076 Result = DefaultLvalueConversion(Result.get());
5077 if (Result.isInvalid()) {
5078 ErrorFound = true;
5079 continue;
5080 }
5081 Dim = Result.get();
5082 }
5083 if (!Dim->isTypeDependent()) {
5084 ExprResult Result =
5085 PerformOpenMPImplicitIntegerConversion(Dim->getExprLoc(), Dim);
5086 if (Result.isInvalid()) {
5087 ErrorFound = true;
5088 Diag(Dim->getExprLoc(), diag::err_omp_typecheck_shaping_not_integer)
5089 << Dim->getSourceRange();
5090 continue;
5091 }
5092 Dim = Result.get();
5093 Expr::EvalResult EvResult;
5094 if (!Dim->isValueDependent() && Dim->EvaluateAsInt(EvResult, Context)) {
5095 // OpenMP 5.0, [2.1.4 Array Shaping]
5096 // Each si is an integral type expression that must evaluate to a
5097 // positive integer.
5098 llvm::APSInt Value = EvResult.Val.getInt();
5099 if (!Value.isStrictlyPositive()) {
5100 Diag(Dim->getExprLoc(), diag::err_omp_shaping_dimension_not_positive)
5101 << Value.toString(/*Radix=*/10, /*Signed=*/true)
5102 << Dim->getSourceRange();
5103 ErrorFound = true;
5104 continue;
5105 }
5106 }
5107 }
5108 NewDims.push_back(Dim);
5109 }
5110 if (ErrorFound)
5111 return ExprError();
5112 return OMPArrayShapingExpr::Create(Context, Context.OMPArrayShapingTy, Base,
5113 LParenLoc, RParenLoc, NewDims, Brackets);
5114}
5115
5116ExprResult Sema::ActOnOMPIteratorExpr(Scope *S, SourceLocation IteratorKwLoc,
5117 SourceLocation LLoc, SourceLocation RLoc,
5118 ArrayRef<OMPIteratorData> Data) {
5119 SmallVector<OMPIteratorExpr::IteratorDefinition, 4> ID;
5120 bool IsCorrect = true;
5121 for (const OMPIteratorData &D : Data) {
5122 TypeSourceInfo *TInfo = nullptr;
5123 SourceLocation StartLoc;
5124 QualType DeclTy;
5125 if (!D.Type.getAsOpaquePtr()) {
5126 // OpenMP 5.0, 2.1.6 Iterators
5127 // In an iterator-specifier, if the iterator-type is not specified then
5128 // the type of that iterator is of int type.
5129 DeclTy = Context.IntTy;
5130 StartLoc = D.DeclIdentLoc;
5131 } else {
5132 DeclTy = GetTypeFromParser(D.Type, &TInfo);
5133 StartLoc = TInfo->getTypeLoc().getBeginLoc();
5134 }
5135
5136 bool IsDeclTyDependent = DeclTy->isDependentType() ||
5137 DeclTy->containsUnexpandedParameterPack() ||
5138 DeclTy->isInstantiationDependentType();
5139 if (!IsDeclTyDependent) {
5140 if (!DeclTy->isIntegralType(Context) && !DeclTy->isAnyPointerType()) {
5141 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5142 // The iterator-type must be an integral or pointer type.
5143 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5144 << DeclTy;
5145 IsCorrect = false;
5146 continue;
5147 }
5148 if (DeclTy.isConstant(Context)) {
5149 // OpenMP 5.0, 2.1.6 Iterators, Restrictions, C/C++
5150 // The iterator-type must not be const qualified.
5151 Diag(StartLoc, diag::err_omp_iterator_not_integral_or_pointer)
5152 << DeclTy;
5153 IsCorrect = false;
5154 continue;
5155 }
5156 }
5157
5158 // Iterator declaration.
5159 assert(D.DeclIdent && "Identifier expected.")((D.DeclIdent && "Identifier expected.") ? static_cast
<void> (0) : __assert_fail ("D.DeclIdent && \"Identifier expected.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5159, __PRETTY_FUNCTION__))
;
5160 // Always try to create iterator declarator to avoid extra error messages
5161 // about unknown declarations use.
5162 auto *VD = VarDecl::Create(Context, CurContext, StartLoc, D.DeclIdentLoc,
5163 D.DeclIdent, DeclTy, TInfo, SC_None);
5164 VD->setImplicit();
5165 if (S) {
5166 // Check for conflicting previous declaration.
5167 DeclarationNameInfo NameInfo(VD->getDeclName(), D.DeclIdentLoc);
5168 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5169 ForVisibleRedeclaration);
5170 Previous.suppressDiagnostics();
5171 LookupName(Previous, S);
5172
5173 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage=*/false,
5174 /*AllowInlineNamespace=*/false);
5175 if (!Previous.empty()) {
5176 NamedDecl *Old = Previous.getRepresentativeDecl();
5177 Diag(D.DeclIdentLoc, diag::err_redefinition) << VD->getDeclName();
5178 Diag(Old->getLocation(), diag::note_previous_definition);
5179 } else {
5180 PushOnScopeChains(VD, S);
5181 }
5182 } else {
5183 CurContext->addDecl(VD);
5184 }
5185 Expr *Begin = D.Range.Begin;
5186 if (!IsDeclTyDependent && Begin && !Begin->isTypeDependent()) {
5187 ExprResult BeginRes =
5188 PerformImplicitConversion(Begin, DeclTy, AA_Converting);
5189 Begin = BeginRes.get();
5190 }
5191 Expr *End = D.Range.End;
5192 if (!IsDeclTyDependent && End && !End->isTypeDependent()) {
5193 ExprResult EndRes = PerformImplicitConversion(End, DeclTy, AA_Converting);
5194 End = EndRes.get();
5195 }
5196 Expr *Step = D.Range.Step;
5197 if (!IsDeclTyDependent && Step && !Step->isTypeDependent()) {
5198 if (!Step->getType()->isIntegralType(Context)) {
5199 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_not_integral)
5200 << Step << Step->getSourceRange();
5201 IsCorrect = false;
5202 continue;
5203 }
5204 Optional<llvm::APSInt> Result = Step->getIntegerConstantExpr(Context);
5205 // OpenMP 5.0, 2.1.6 Iterators, Restrictions
5206 // If the step expression of a range-specification equals zero, the
5207 // behavior is unspecified.
5208 if (Result && Result->isNullValue()) {
5209 Diag(Step->getExprLoc(), diag::err_omp_iterator_step_constant_zero)
5210 << Step << Step->getSourceRange();
5211 IsCorrect = false;
5212 continue;
5213 }
5214 }
5215 if (!Begin || !End || !IsCorrect) {
5216 IsCorrect = false;
5217 continue;
5218 }
5219 OMPIteratorExpr::IteratorDefinition &IDElem = ID.emplace_back();
5220 IDElem.IteratorDecl = VD;
5221 IDElem.AssignmentLoc = D.AssignLoc;
5222 IDElem.Range.Begin = Begin;
5223 IDElem.Range.End = End;
5224 IDElem.Range.Step = Step;
5225 IDElem.ColonLoc = D.ColonLoc;
5226 IDElem.SecondColonLoc = D.SecColonLoc;
5227 }
5228 if (!IsCorrect) {
5229 // Invalidate all created iterator declarations if error is found.
5230 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5231 if (Decl *ID = D.IteratorDecl)
5232 ID->setInvalidDecl();
5233 }
5234 return ExprError();
5235 }
5236 SmallVector<OMPIteratorHelperData, 4> Helpers;
5237 if (!CurContext->isDependentContext()) {
5238 // Build number of ityeration for each iteration range.
5239 // Ni = ((Stepi > 0) ? ((Endi + Stepi -1 - Begini)/Stepi) :
5240 // ((Begini-Stepi-1-Endi) / -Stepi);
5241 for (OMPIteratorExpr::IteratorDefinition &D : ID) {
5242 // (Endi - Begini)
5243 ExprResult Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, D.Range.End,
5244 D.Range.Begin);
5245 if(!Res.isUsable()) {
5246 IsCorrect = false;
5247 continue;
5248 }
5249 ExprResult St, St1;
5250 if (D.Range.Step) {
5251 St = D.Range.Step;
5252 // (Endi - Begini) + Stepi
5253 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res.get(), St.get());
5254 if (!Res.isUsable()) {
5255 IsCorrect = false;
5256 continue;
5257 }
5258 // (Endi - Begini) + Stepi - 1
5259 Res =
5260 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res.get(),
5261 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5262 if (!Res.isUsable()) {
5263 IsCorrect = false;
5264 continue;
5265 }
5266 // ((Endi - Begini) + Stepi - 1) / Stepi
5267 Res = CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res.get(), St.get());
5268 if (!Res.isUsable()) {
5269 IsCorrect = false;
5270 continue;
5271 }
5272 St1 = CreateBuiltinUnaryOp(D.AssignmentLoc, UO_Minus, D.Range.Step);
5273 // (Begini - Endi)
5274 ExprResult Res1 = CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub,
5275 D.Range.Begin, D.Range.End);
5276 if (!Res1.isUsable()) {
5277 IsCorrect = false;
5278 continue;
5279 }
5280 // (Begini - Endi) - Stepi
5281 Res1 =
5282 CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, Res1.get(), St1.get());
5283 if (!Res1.isUsable()) {
5284 IsCorrect = false;
5285 continue;
5286 }
5287 // (Begini - Endi) - Stepi - 1
5288 Res1 =
5289 CreateBuiltinBinOp(D.AssignmentLoc, BO_Sub, Res1.get(),
5290 ActOnIntegerConstant(D.AssignmentLoc, 1).get());
5291 if (!Res1.isUsable()) {
5292 IsCorrect = false;
5293 continue;
5294 }
5295 // ((Begini - Endi) - Stepi - 1) / (-Stepi)
5296 Res1 =
5297 CreateBuiltinBinOp(D.AssignmentLoc, BO_Div, Res1.get(), St1.get());
5298 if (!Res1.isUsable()) {
5299 IsCorrect = false;
5300 continue;
5301 }
5302 // Stepi > 0.
5303 ExprResult CmpRes =
5304 CreateBuiltinBinOp(D.AssignmentLoc, BO_GT, D.Range.Step,
5305 ActOnIntegerConstant(D.AssignmentLoc, 0).get());
5306 if (!CmpRes.isUsable()) {
5307 IsCorrect = false;
5308 continue;
5309 }
5310 Res = ActOnConditionalOp(D.AssignmentLoc, D.AssignmentLoc, CmpRes.get(),
5311 Res.get(), Res1.get());
5312 if (!Res.isUsable()) {
5313 IsCorrect = false;
5314 continue;
5315 }
5316 }
5317 Res = ActOnFinishFullExpr(Res.get(), /*DiscardedValue=*/false);
5318 if (!Res.isUsable()) {
5319 IsCorrect = false;
5320 continue;
5321 }
5322
5323 // Build counter update.
5324 // Build counter.
5325 auto *CounterVD =
5326 VarDecl::Create(Context, CurContext, D.IteratorDecl->getBeginLoc(),
5327 D.IteratorDecl->getBeginLoc(), nullptr,
5328 Res.get()->getType(), nullptr, SC_None);
5329 CounterVD->setImplicit();
5330 ExprResult RefRes =
5331 BuildDeclRefExpr(CounterVD, CounterVD->getType(), VK_LValue,
5332 D.IteratorDecl->getBeginLoc());
5333 // Build counter update.
5334 // I = Begini + counter * Stepi;
5335 ExprResult UpdateRes;
5336 if (D.Range.Step) {
5337 UpdateRes = CreateBuiltinBinOp(
5338 D.AssignmentLoc, BO_Mul,
5339 DefaultLvalueConversion(RefRes.get()).get(), St.get());
5340 } else {
5341 UpdateRes = DefaultLvalueConversion(RefRes.get());
5342 }
5343 if (!UpdateRes.isUsable()) {
5344 IsCorrect = false;
5345 continue;
5346 }
5347 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Add, D.Range.Begin,
5348 UpdateRes.get());
5349 if (!UpdateRes.isUsable()) {
5350 IsCorrect = false;
5351 continue;
5352 }
5353 ExprResult VDRes =
5354 BuildDeclRefExpr(cast<VarDecl>(D.IteratorDecl),
5355 cast<VarDecl>(D.IteratorDecl)->getType(), VK_LValue,
5356 D.IteratorDecl->getBeginLoc());
5357 UpdateRes = CreateBuiltinBinOp(D.AssignmentLoc, BO_Assign, VDRes.get(),
5358 UpdateRes.get());
5359 if (!UpdateRes.isUsable()) {
5360 IsCorrect = false;
5361 continue;
5362 }
5363 UpdateRes =
5364 ActOnFinishFullExpr(UpdateRes.get(), /*DiscardedValue=*/true);
5365 if (!UpdateRes.isUsable()) {
5366 IsCorrect = false;
5367 continue;
5368 }
5369 ExprResult CounterUpdateRes =
5370 CreateBuiltinUnaryOp(D.AssignmentLoc, UO_PreInc, RefRes.get());
5371 if (!CounterUpdateRes.isUsable()) {
5372 IsCorrect = false;
5373 continue;
5374 }
5375 CounterUpdateRes =
5376 ActOnFinishFullExpr(CounterUpdateRes.get(), /*DiscardedValue=*/true);
5377 if (!CounterUpdateRes.isUsable()) {
5378 IsCorrect = false;
5379 continue;
5380 }
5381 OMPIteratorHelperData &HD = Helpers.emplace_back();
5382 HD.CounterVD = CounterVD;
5383 HD.Upper = Res.get();
5384 HD.Update = UpdateRes.get();
5385 HD.CounterUpdate = CounterUpdateRes.get();
5386 }
5387 } else {
5388 Helpers.assign(ID.size(), {});
5389 }
5390 if (!IsCorrect) {
5391 // Invalidate all created iterator declarations if error is found.
5392 for (const OMPIteratorExpr::IteratorDefinition &D : ID) {
5393 if (Decl *ID = D.IteratorDecl)
5394 ID->setInvalidDecl();
5395 }
5396 return ExprError();
5397 }
5398 return OMPIteratorExpr::Create(Context, Context.OMPIteratorTy, IteratorKwLoc,
5399 LLoc, RLoc, ID, Helpers);
5400}
5401
5402ExprResult
5403Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
5404 Expr *Idx, SourceLocation RLoc) {
5405 Expr *LHSExp = Base;
5406 Expr *RHSExp = Idx;
5407
5408 ExprValueKind VK = VK_LValue;
5409 ExprObjectKind OK = OK_Ordinary;
5410
5411 // Per C++ core issue 1213, the result is an xvalue if either operand is
5412 // a non-lvalue array, and an lvalue otherwise.
5413 if (getLangOpts().CPlusPlus11) {
5414 for (auto *Op : {LHSExp, RHSExp}) {
5415 Op = Op->IgnoreImplicit();
5416 if (Op->getType()->isArrayType() && !Op->isLValue())
5417 VK = VK_XValue;
5418 }
5419 }
5420
5421 // Perform default conversions.
5422 if (!LHSExp->getType()->getAs<VectorType>()) {
5423 ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
5424 if (Result.isInvalid())
5425 return ExprError();
5426 LHSExp = Result.get();
5427 }
5428 ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
5429 if (Result.isInvalid())
5430 return ExprError();
5431 RHSExp = Result.get();
5432
5433 QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
5434
5435 // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
5436 // to the expression *((e1)+(e2)). This means the array "Base" may actually be
5437 // in the subscript position. As a result, we need to derive the array base
5438 // and index from the expression types.
5439 Expr *BaseExpr, *IndexExpr;
5440 QualType ResultType;
5441 if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
5442 BaseExpr = LHSExp;
5443 IndexExpr = RHSExp;
5444 ResultType = Context.DependentTy;
5445 } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
5446 BaseExpr = LHSExp;
5447 IndexExpr = RHSExp;
5448 ResultType = PTy->getPointeeType();
5449 } else if (const ObjCObjectPointerType *PTy =
5450 LHSTy->getAs<ObjCObjectPointerType>()) {
5451 BaseExpr = LHSExp;
5452 IndexExpr = RHSExp;
5453
5454 // Use custom logic if this should be the pseudo-object subscript
5455 // expression.
5456 if (!LangOpts.isSubscriptPointerArithmetic())
5457 return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
5458 nullptr);
5459
5460 ResultType = PTy->getPointeeType();
5461 } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
5462 // Handle the uncommon case of "123[Ptr]".
5463 BaseExpr = RHSExp;
5464 IndexExpr = LHSExp;
5465 ResultType = PTy->getPointeeType();
5466 } else if (const ObjCObjectPointerType *PTy =
5467 RHSTy->getAs<ObjCObjectPointerType>()) {
5468 // Handle the uncommon case of "123[Ptr]".
5469 BaseExpr = RHSExp;
5470 IndexExpr = LHSExp;
5471 ResultType = PTy->getPointeeType();
5472 if (!LangOpts.isSubscriptPointerArithmetic()) {
5473 Diag(LLoc, diag::err_subscript_nonfragile_interface)
5474 << ResultType << BaseExpr->getSourceRange();
5475 return ExprError();
5476 }
5477 } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
5478 BaseExpr = LHSExp; // vectors: V[123]
5479 IndexExpr = RHSExp;
5480 // We apply C++ DR1213 to vector subscripting too.
5481 if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) {
5482 ExprResult Materialized = TemporaryMaterializationConversion(LHSExp);
5483 if (Materialized.isInvalid())
5484 return ExprError();
5485 LHSExp = Materialized.get();
5486 }
5487 VK = LHSExp->getValueKind();
5488 if (VK != VK_RValue)
5489 OK = OK_VectorComponent;
5490
5491 ResultType = VTy->getElementType();
5492 QualType BaseType = BaseExpr->getType();
5493 Qualifiers BaseQuals = BaseType.getQualifiers();
5494 Qualifiers MemberQuals = ResultType.getQualifiers();
5495 Qualifiers Combined = BaseQuals + MemberQuals;
5496 if (Combined != MemberQuals)
5497 ResultType = Context.getQualifiedType(ResultType, Combined);
5498 } else if (LHSTy->isArrayType()) {
5499 // If we see an array that wasn't promoted by
5500 // DefaultFunctionArrayLvalueConversion, it must be an array that
5501 // wasn't promoted because of the C90 rule that doesn't
5502 // allow promoting non-lvalue arrays. Warn, then
5503 // force the promotion here.
5504 Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5505 << LHSExp->getSourceRange();
5506 LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
5507 CK_ArrayToPointerDecay).get();
5508 LHSTy = LHSExp->getType();
5509
5510 BaseExpr = LHSExp;
5511 IndexExpr = RHSExp;
5512 ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
5513 } else if (RHSTy->isArrayType()) {
5514 // Same as previous, except for 123[f().a] case
5515 Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue)
5516 << RHSExp->getSourceRange();
5517 RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
5518 CK_ArrayToPointerDecay).get();
5519 RHSTy = RHSExp->getType();
5520
5521 BaseExpr = RHSExp;
5522 IndexExpr = LHSExp;
5523 ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
5524 } else {
5525 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
5526 << LHSExp->getSourceRange() << RHSExp->getSourceRange());
5527 }
5528 // C99 6.5.2.1p1
5529 if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
5530 return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
5531 << IndexExpr->getSourceRange());
5532
5533 if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
5534 IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
5535 && !IndexExpr->isTypeDependent())
5536 Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
5537
5538 // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
5539 // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
5540 // type. Note that Functions are not objects, and that (in C99 parlance)
5541 // incomplete types are not object types.
5542 if (ResultType->isFunctionType()) {
5543 Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type)
5544 << ResultType << BaseExpr->getSourceRange();
5545 return ExprError();
5546 }
5547
5548 if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
5549 // GNU extension: subscripting on pointer to void
5550 Diag(LLoc, diag::ext_gnu_subscript_void_type)
5551 << BaseExpr->getSourceRange();
5552
5553 // C forbids expressions of unqualified void type from being l-values.
5554 // See IsCForbiddenLValueType.
5555 if (!ResultType.hasQualifiers()) VK = VK_RValue;
5556 } else if (!ResultType->isDependentType() &&
5557 RequireCompleteSizedType(
5558 LLoc, ResultType,
5559 diag::err_subscript_incomplete_or_sizeless_type, BaseExpr))
5560 return ExprError();
5561
5562 assert(VK == VK_RValue || LangOpts.CPlusPlus ||((VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType
()) ? static_cast<void> (0) : __assert_fail ("VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5563, __PRETTY_FUNCTION__))
5563 !ResultType.isCForbiddenLValueType())((VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType
()) ? static_cast<void> (0) : __assert_fail ("VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5563, __PRETTY_FUNCTION__))
;
5564
5565 if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() &&
5566 FunctionScopes.size() > 1) {
5567 if (auto *TT =
5568 LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) {
5569 for (auto I = FunctionScopes.rbegin(),
5570 E = std::prev(FunctionScopes.rend());
5571 I != E; ++I) {
5572 auto *CSI = dyn_cast<CapturingScopeInfo>(*I);
5573 if (CSI == nullptr)
5574 break;
5575 DeclContext *DC = nullptr;
5576 if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI))
5577 DC = LSI->CallOperator;
5578 else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI))
5579 DC = CRSI->TheCapturedDecl;
5580 else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI))
5581 DC = BSI->TheDecl;
5582 if (DC) {
5583 if (DC->containsDecl(TT->getDecl()))
5584 break;
5585 captureVariablyModifiedType(
5586 Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI);
5587 }
5588 }
5589 }
5590 }
5591
5592 return new (Context)
5593 ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
5594}
5595
5596bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD,
5597 ParmVarDecl *Param) {
5598 if (Param->hasUnparsedDefaultArg()) {
5599 // If we've already cleared out the location for the default argument,
5600 // that means we're parsing it right now.
5601 if (!UnparsedDefaultArgLocs.count(Param)) {
5602 Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD;
5603 Diag(CallLoc, diag::note_recursive_default_argument_used_here);
5604 Param->setInvalidDecl();
5605 return true;
5606 }
5607
5608 Diag(CallLoc, diag::err_use_of_default_argument_to_function_declared_later)
5609 << FD << cast<CXXRecordDecl>(FD->getDeclContext());
5610 Diag(UnparsedDefaultArgLocs[Param],
5611 diag::note_default_argument_declared_here);
5612 return true;
5613 }
5614
5615 if (Param->hasUninstantiatedDefaultArg() &&
5616 InstantiateDefaultArgument(CallLoc, FD, Param))
5617 return true;
5618
5619 assert(Param->hasInit() && "default argument but no initializer?")((Param->hasInit() && "default argument but no initializer?"
) ? static_cast<void> (0) : __assert_fail ("Param->hasInit() && \"default argument but no initializer?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5619, __PRETTY_FUNCTION__))
;
5620
5621 // If the default expression creates temporaries, we need to
5622 // push them to the current stack of expression temporaries so they'll
5623 // be properly destroyed.
5624 // FIXME: We should really be rebuilding the default argument with new
5625 // bound temporaries; see the comment in PR5810.
5626 // We don't need to do that with block decls, though, because
5627 // blocks in default argument expression can never capture anything.
5628 if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) {
5629 // Set the "needs cleanups" bit regardless of whether there are
5630 // any explicit objects.
5631 Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects());
5632
5633 // Append all the objects to the cleanup list. Right now, this
5634 // should always be a no-op, because blocks in default argument
5635 // expressions should never be able to capture anything.
5636 assert(!Init->getNumObjects() &&((!Init->getNumObjects() && "default argument expression has capturing blocks?"
) ? static_cast<void> (0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5637, __PRETTY_FUNCTION__))
5637 "default argument expression has capturing blocks?")((!Init->getNumObjects() && "default argument expression has capturing blocks?"
) ? static_cast<void> (0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5637, __PRETTY_FUNCTION__))
;
5638 }
5639
5640 // We already type-checked the argument, so we know it works.
5641 // Just mark all of the declarations in this potentially-evaluated expression
5642 // as being "referenced".
5643 EnterExpressionEvaluationContext EvalContext(
5644 *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param);
5645 MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
5646 /*SkipLocalVariables=*/true);
5647 return false;
5648}
5649
5650ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
5651 FunctionDecl *FD, ParmVarDecl *Param) {
5652 assert(Param->hasDefaultArg() && "can't build nonexistent default arg")((Param->hasDefaultArg() && "can't build nonexistent default arg"
) ? static_cast<void> (0) : __assert_fail ("Param->hasDefaultArg() && \"can't build nonexistent default arg\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5652, __PRETTY_FUNCTION__))
;
5653 if (CheckCXXDefaultArgExpr(CallLoc, FD, Param))
5654 return ExprError();
5655 return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext);
5656}
5657
5658Sema::VariadicCallType
5659Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
5660 Expr *Fn) {
5661 if (Proto && Proto->isVariadic()) {
5662 if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
5663 return VariadicConstructor;
5664 else if (Fn && Fn->getType()->isBlockPointerType())
5665 return VariadicBlock;
5666 else if (FDecl) {
5667 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
5668 if (Method->isInstance())
5669 return VariadicMethod;
5670 } else if (Fn && Fn->getType() == Context.BoundMemberTy)
5671 return VariadicMethod;
5672 return VariadicFunction;
5673 }
5674 return VariadicDoesNotApply;
5675}
5676
5677namespace {
5678class FunctionCallCCC final : public FunctionCallFilterCCC {
5679public:
5680 FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
5681 unsigned NumArgs, MemberExpr *ME)
5682 : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
5683 FunctionName(FuncName) {}
5684
5685 bool ValidateCandidate(const TypoCorrection &candidate) override {
5686 if (!candidate.getCorrectionSpecifier() ||
5687 candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
5688 return false;
5689 }
5690
5691 return FunctionCallFilterCCC::ValidateCandidate(candidate);
5692 }
5693
5694 std::unique_ptr<CorrectionCandidateCallback> clone() override {
5695 return std::make_unique<FunctionCallCCC>(*this);
5696 }
5697
5698private:
5699 const IdentifierInfo *const FunctionName;
5700};
5701}
5702
5703static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
5704 FunctionDecl *FDecl,
5705 ArrayRef<Expr *> Args) {
5706 MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
5707 DeclarationName FuncName = FDecl->getDeclName();
5708 SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc();
5709
5710 FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME);
5711 if (TypoCorrection Corrected = S.CorrectTypo(
5712 DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
5713 S.getScopeForContext(S.CurContext), nullptr, CCC,
5714 Sema::CTK_ErrorRecovery)) {
5715 if (NamedDecl *ND = Corrected.getFoundDecl()) {
5716 if (Corrected.isOverloaded()) {
5717 OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
5718 OverloadCandidateSet::iterator Best;
5719 for (NamedDecl *CD : Corrected) {
5720 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
5721 S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
5722 OCS);
5723 }
5724 switch (OCS.BestViableFunction(S, NameLoc, Best)) {
5725 case OR_Success:
5726 ND = Best->FoundDecl;
5727 Corrected.setCorrectionDecl(ND);
5728 break;
5729 default:
5730 break;
5731 }
5732 }
5733 ND = ND->getUnderlyingDecl();
5734 if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND))
5735 return Corrected;
5736 }
5737 }
5738 return TypoCorrection();
5739}
5740
5741/// ConvertArgumentsForCall - Converts the arguments specified in
5742/// Args/NumArgs to the parameter types of the function FDecl with
5743/// function prototype Proto. Call is the call expression itself, and
5744/// Fn is the function expression. For a C++ member function, this
5745/// routine does not attempt to convert the object argument. Returns
5746/// true if the call is ill-formed.
5747bool
5748Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
5749 FunctionDecl *FDecl,
5750 const FunctionProtoType *Proto,
5751 ArrayRef<Expr *> Args,
5752 SourceLocation RParenLoc,
5753 bool IsExecConfig) {
5754 // Bail out early if calling a builtin with custom typechecking.
5755 if (FDecl)
5756 if (unsigned ID = FDecl->getBuiltinID())
5757 if (Context.BuiltinInfo.hasCustomTypechecking(ID))
5758 return false;
5759
5760 // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
5761 // assignment, to the types of the corresponding parameter, ...
5762 unsigned NumParams = Proto->getNumParams();
5763 bool Invalid = false;
5764 unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
5765 unsigned FnKind = Fn->getType()->isBlockPointerType()
5766 ? 1 /* block */
5767 : (IsExecConfig ? 3 /* kernel function (exec config) */
5768 : 0 /* function */);
5769
5770 // If too few arguments are available (and we don't have default
5771 // arguments for the remaining parameters), don't make the call.
5772 if (Args.size() < NumParams) {
5773 if (Args.size() < MinArgs) {
5774 TypoCorrection TC;
5775 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5776 unsigned diag_id =
5777 MinArgs == NumParams && !Proto->isVariadic()
5778 ? diag::err_typecheck_call_too_few_args_suggest
5779 : diag::err_typecheck_call_too_few_args_at_least_suggest;
5780 diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
5781 << static_cast<unsigned>(Args.size())
5782 << TC.getCorrectionRange());
5783 } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
5784 Diag(RParenLoc,
5785 MinArgs == NumParams && !Proto->isVariadic()
5786 ? diag::err_typecheck_call_too_few_args_one
5787 : diag::err_typecheck_call_too_few_args_at_least_one)
5788 << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
5789 else
5790 Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
5791 ? diag::err_typecheck_call_too_few_args
5792 : diag::err_typecheck_call_too_few_args_at_least)
5793 << FnKind << MinArgs << static_cast<unsigned>(Args.size())
5794 << Fn->getSourceRange();
5795
5796 // Emit the location of the prototype.
5797 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5798 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5799
5800 return true;
5801 }
5802 // We reserve space for the default arguments when we create
5803 // the call expression, before calling ConvertArgumentsForCall.
5804 assert((Call->getNumArgs() == NumParams) &&(((Call->getNumArgs() == NumParams) && "We should have reserved space for the default arguments before!"
) ? static_cast<void> (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5805, __PRETTY_FUNCTION__))
5805 "We should have reserved space for the default arguments before!")(((Call->getNumArgs() == NumParams) && "We should have reserved space for the default arguments before!"
) ? static_cast<void> (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5805, __PRETTY_FUNCTION__))
;
5806 }
5807
5808 // If too many are passed and not variadic, error on the extras and drop
5809 // them.
5810 if (Args.size() > NumParams) {
5811 if (!Proto->isVariadic()) {
5812 TypoCorrection TC;
5813 if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
5814 unsigned diag_id =
5815 MinArgs == NumParams && !Proto->isVariadic()
5816 ? diag::err_typecheck_call_too_many_args_suggest
5817 : diag::err_typecheck_call_too_many_args_at_most_suggest;
5818 diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
5819 << static_cast<unsigned>(Args.size())
5820 << TC.getCorrectionRange());
5821 } else if (NumParams == 1 && FDecl &&
5822 FDecl->getParamDecl(0)->getDeclName())
5823 Diag(Args[NumParams]->getBeginLoc(),
5824 MinArgs == NumParams
5825 ? diag::err_typecheck_call_too_many_args_one
5826 : diag::err_typecheck_call_too_many_args_at_most_one)
5827 << FnKind << FDecl->getParamDecl(0)
5828 << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
5829 << SourceRange(Args[NumParams]->getBeginLoc(),
5830 Args.back()->getEndLoc());
5831 else
5832 Diag(Args[NumParams]->getBeginLoc(),
5833 MinArgs == NumParams
5834 ? diag::err_typecheck_call_too_many_args
5835 : diag::err_typecheck_call_too_many_args_at_most)
5836 << FnKind << NumParams << static_cast<unsigned>(Args.size())
5837 << Fn->getSourceRange()
5838 << SourceRange(Args[NumParams]->getBeginLoc(),
5839 Args.back()->getEndLoc());
5840
5841 // Emit the location of the prototype.
5842 if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
5843 Diag(FDecl->getLocation(), diag::note_callee_decl) << FDecl;
5844
5845 // This deletes the extra arguments.
5846 Call->shrinkNumArgs(NumParams);
5847 return true;
5848 }
5849 }
5850 SmallVector<Expr *, 8> AllArgs;
5851 VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
5852
5853 Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args,
5854 AllArgs, CallType);
5855 if (Invalid)
5856 return true;
5857 unsigned TotalNumArgs = AllArgs.size();
5858 for (unsigned i = 0; i < TotalNumArgs; ++i)
5859 Call->setArg(i, AllArgs[i]);
5860
5861 return false;
5862}
5863
5864bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
5865 const FunctionProtoType *Proto,
5866 unsigned FirstParam, ArrayRef<Expr *> Args,
5867 SmallVectorImpl<Expr *> &AllArgs,
5868 VariadicCallType CallType, bool AllowExplicit,
5869 bool IsListInitialization) {
5870 unsigned NumParams = Proto->getNumParams();
5871 bool Invalid = false;
5872 size_t ArgIx = 0;
5873 // Continue to check argument types (even if we have too few/many args).
5874 for (unsigned i = FirstParam; i < NumParams; i++) {
5875 QualType ProtoArgType = Proto->getParamType(i);
5876
5877 Expr *Arg;
5878 ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
5879 if (ArgIx < Args.size()) {
5880 Arg = Args[ArgIx++];
5881
5882 if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType,
5883 diag::err_call_incomplete_argument, Arg))
5884 return true;
5885
5886 // Strip the unbridged-cast placeholder expression off, if applicable.
5887 bool CFAudited = false;
5888 if (Arg->getType() == Context.ARCUnbridgedCastTy &&
5889 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5890 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5891 Arg = stripARCUnbridgedCast(Arg);
5892 else if (getLangOpts().ObjCAutoRefCount &&
5893 FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
5894 (!Param || !Param->hasAttr<CFConsumedAttr>()))
5895 CFAudited = true;
5896
5897 if (Proto->getExtParameterInfo(i).isNoEscape())
5898 if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context)))
5899 BE->getBlockDecl()->setDoesNotEscape();
5900
5901 InitializedEntity Entity =
5902 Param ? InitializedEntity::InitializeParameter(Context, Param,
5903 ProtoArgType)
5904 : InitializedEntity::InitializeParameter(
5905 Context, ProtoArgType, Proto->isParamConsumed(i));
5906
5907 // Remember that parameter belongs to a CF audited API.
5908 if (CFAudited)
5909 Entity.setParameterCFAudited();
5910
5911 ExprResult ArgE = PerformCopyInitialization(
5912 Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
5913 if (ArgE.isInvalid())
5914 return true;
5915
5916 Arg = ArgE.getAs<Expr>();
5917 } else {
5918 assert(Param && "can't use default arguments without a known callee")((Param && "can't use default arguments without a known callee"
) ? static_cast<void> (0) : __assert_fail ("Param && \"can't use default arguments without a known callee\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 5918, __PRETTY_FUNCTION__))
;
5919
5920 ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
5921 if (ArgExpr.isInvalid())
5922 return true;
5923
5924 Arg = ArgExpr.getAs<Expr>();
5925 }
5926
5927 // Check for array bounds violations for each argument to the call. This
5928 // check only triggers warnings when the argument isn't a more complex Expr
5929 // with its own checking, such as a BinaryOperator.
5930 CheckArrayAccess(Arg);
5931
5932 // Check for violations of C99 static array rules (C99 6.7.5.3p7).
5933 CheckStaticArrayArgument(CallLoc, Param, Arg);
5934
5935 AllArgs.push_back(Arg);
5936 }
5937
5938 // If this is a variadic call, handle args passed through "...".
5939 if (CallType != VariadicDoesNotApply) {
5940 // Assume that extern "C" functions with variadic arguments that
5941 // return __unknown_anytype aren't *really* variadic.
5942 if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
5943 FDecl->isExternC()) {
5944 for (Expr *A : Args.slice(ArgIx)) {
5945 QualType paramType; // ignored
5946 ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
5947 Invalid |= arg.isInvalid();
5948 AllArgs.push_back(arg.get());
5949 }
5950
5951 // Otherwise do argument promotion, (C99 6.5.2.2p7).
5952 } else {
5953 for (Expr *A : Args.slice(ArgIx)) {
5954 ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
5955 Invalid |= Arg.isInvalid();
5956 AllArgs.push_back(Arg.get());
5957 }
5958 }
5959
5960 // Check for array bounds violations.
5961 for (Expr *A : Args.slice(ArgIx))
5962 CheckArrayAccess(A);
5963 }
5964 return Invalid;
5965}
5966
5967static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
5968 TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
5969 if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
5970 TL = DTL.getOriginalLoc();
5971 if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
5972 S.Diag(PVD->getLocation(), diag::note_callee_static_array)
5973 << ATL.getLocalSourceRange();
5974}
5975
5976/// CheckStaticArrayArgument - If the given argument corresponds to a static
5977/// array parameter, check that it is non-null, and that if it is formed by
5978/// array-to-pointer decay, the underlying array is sufficiently large.
5979///
5980/// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
5981/// array type derivation, then for each call to the function, the value of the
5982/// corresponding actual argument shall provide access to the first element of
5983/// an array with at least as many elements as specified by the size expression.
5984void
5985Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
5986 ParmVarDecl *Param,
5987 const Expr *ArgExpr) {
5988 // Static array parameters are not supported in C++.
5989 if (!Param || getLangOpts().CPlusPlus)
5990 return;
5991
5992 QualType OrigTy = Param->getOriginalType();
5993
5994 const ArrayType *AT = Context.getAsArrayType(OrigTy);
5995 if (!AT || AT->getSizeModifier() != ArrayType::Static)
5996 return;
5997
5998 if (ArgExpr->isNullPointerConstant(Context,
5999 Expr::NPC_NeverValueDependent)) {
6000 Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
6001 DiagnoseCalleeStaticArrayParam(*this, Param);
6002 return;
6003 }
6004
6005 const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
6006 if (!CAT)
6007 return;
6008
6009 const ConstantArrayType *ArgCAT =
6010 Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType());
6011 if (!ArgCAT)
6012 return;
6013
6014 if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(),
6015 ArgCAT->getElementType())) {
6016 if (ArgCAT->getSize().ult(CAT->getSize())) {
6017 Diag(CallLoc, diag::warn_static_array_too_small)
6018 << ArgExpr->getSourceRange()
6019 << (unsigned)ArgCAT->getSize().getZExtValue()
6020 << (unsigned)CAT->getSize().getZExtValue() << 0;
6021 DiagnoseCalleeStaticArrayParam(*this, Param);
6022 }
6023 return;
6024 }
6025
6026 Optional<CharUnits> ArgSize =
6027 getASTContext().getTypeSizeInCharsIfKnown(ArgCAT);
6028 Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT);
6029 if (ArgSize && ParmSize && *ArgSize < *ParmSize) {
6030 Diag(CallLoc, diag::warn_static_array_too_small)
6031 << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity()
6032 << (unsigned)ParmSize->getQuantity() << 1;
6033 DiagnoseCalleeStaticArrayParam(*this, Param);
6034 }
6035}
6036
6037/// Given a function expression of unknown-any type, try to rebuild it
6038/// to have a function type.
6039static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
6040
6041/// Is the given type a placeholder that we need to lower out
6042/// immediately during argument processing?
6043static bool isPlaceholderToRemoveAsArg(QualType type) {
6044 // Placeholders are never sugared.
6045 const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
6046 if (!placeholder) return false;
6047
6048 switch (placeholder->getKind()) {
6049 // Ignore all the non-placeholder types.
6050#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6051 case BuiltinType::Id:
6052#include "clang/Basic/OpenCLImageTypes.def"
6053#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6054 case BuiltinType::Id:
6055#include "clang/Basic/OpenCLExtensionTypes.def"
6056 // In practice we'll never use this, since all SVE types are sugared
6057 // via TypedefTypes rather than exposed directly as BuiltinTypes.
6058#define SVE_TYPE(Name, Id, SingletonId) \
6059 case BuiltinType::Id:
6060#include "clang/Basic/AArch64SVEACLETypes.def"
6061#define PPC_VECTOR_TYPE(Name, Id, Size) \
6062 case BuiltinType::Id:
6063#include "clang/Basic/PPCTypes.def"
6064#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
6065#include "clang/Basic/RISCVVTypes.def"
6066#define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
6067#define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
6068#include "clang/AST/BuiltinTypes.def"
6069 return false;
6070
6071 // We cannot lower out overload sets; they might validly be resolved
6072 // by the call machinery.
6073 case BuiltinType::Overload:
6074 return false;
6075
6076 // Unbridged casts in ARC can be handled in some call positions and
6077 // should be left in place.
6078 case BuiltinType::ARCUnbridgedCast:
6079 return false;
6080
6081 // Pseudo-objects should be converted as soon as possible.
6082 case BuiltinType::PseudoObject:
6083 return true;
6084
6085 // The debugger mode could theoretically but currently does not try
6086 // to resolve unknown-typed arguments based on known parameter types.
6087 case BuiltinType::UnknownAny:
6088 return true;
6089
6090 // These are always invalid as call arguments and should be reported.
6091 case BuiltinType::BoundMember:
6092 case BuiltinType::BuiltinFn:
6093 case BuiltinType::IncompleteMatrixIdx:
6094 case BuiltinType::OMPArraySection:
6095 case BuiltinType::OMPArrayShaping:
6096 case BuiltinType::OMPIterator:
6097 return true;
6098
6099 }
6100 llvm_unreachable("bad builtin type kind")::llvm::llvm_unreachable_internal("bad builtin type kind", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6100)
;
6101}
6102
6103/// Check an argument list for placeholders that we won't try to
6104/// handle later.
6105static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
6106 // Apply this processing to all the arguments at once instead of
6107 // dying at the first failure.
6108 bool hasInvalid = false;
6109 for (size_t i = 0, e = args.size(); i != e; i++) {
6110 if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
6111 ExprResult result = S.CheckPlaceholderExpr(args[i]);
6112 if (result.isInvalid()) hasInvalid = true;
6113 else args[i] = result.get();
6114 }
6115 }
6116 return hasInvalid;
6117}
6118
6119/// If a builtin function has a pointer argument with no explicit address
6120/// space, then it should be able to accept a pointer to any address
6121/// space as input. In order to do this, we need to replace the
6122/// standard builtin declaration with one that uses the same address space
6123/// as the call.
6124///
6125/// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
6126/// it does not contain any pointer arguments without
6127/// an address space qualifer. Otherwise the rewritten
6128/// FunctionDecl is returned.
6129/// TODO: Handle pointer return types.
6130static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
6131 FunctionDecl *FDecl,
6132 MultiExprArg ArgExprs) {
6133
6134 QualType DeclType = FDecl->getType();
6135 const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
6136
6137 if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT ||
6138 ArgExprs.size() < FT->getNumParams())
6139 return nullptr;
6140
6141 bool NeedsNewDecl = false;
6142 unsigned i = 0;
6143 SmallVector<QualType, 8> OverloadParams;
6144
6145 for (QualType ParamType : FT->param_types()) {
6146
6147 // Convert array arguments to pointer to simplify type lookup.
6148 ExprResult ArgRes =
6149 Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]);
6150 if (ArgRes.isInvalid())
6151 return nullptr;
6152 Expr *Arg = ArgRes.get();
6153 QualType ArgType = Arg->getType();
6154 if (!ParamType->isPointerType() ||
6155 ParamType.hasAddressSpace() ||
6156 !ArgType->isPointerType() ||
6157 !ArgType->getPointeeType().hasAddressSpace()) {
6158 OverloadParams.push_back(ParamType);
6159 continue;
6160 }
6161
6162 QualType PointeeType = ParamType->getPointeeType();
6163 if (PointeeType.hasAddressSpace())
6164 continue;
6165
6166 NeedsNewDecl = true;
6167 LangAS AS = ArgType->getPointeeType().getAddressSpace();
6168
6169 PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
6170 OverloadParams.push_back(Context.getPointerType(PointeeType));
6171 }
6172
6173 if (!NeedsNewDecl)
6174 return nullptr;
6175
6176 FunctionProtoType::ExtProtoInfo EPI;
6177 EPI.Variadic = FT->isVariadic();
6178 QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
6179 OverloadParams, EPI);
6180 DeclContext *Parent = FDecl->getParent();
6181 FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
6182 FDecl->getLocation(),
6183 FDecl->getLocation(),
6184 FDecl->getIdentifier(),
6185 OverloadTy,
6186 /*TInfo=*/nullptr,
6187 SC_Extern, false,
6188 /*hasPrototype=*/true);
6189 SmallVector<ParmVarDecl*, 16> Params;
6190 FT = cast<FunctionProtoType>(OverloadTy);
6191 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
6192 QualType ParamType = FT->getParamType(i);
6193 ParmVarDecl *Parm =
6194 ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
6195 SourceLocation(), nullptr, ParamType,
6196 /*TInfo=*/nullptr, SC_None, nullptr);
6197 Parm->setScopeInfo(0, i);
6198 Params.push_back(Parm);
6199 }
6200 OverloadDecl->setParams(Params);
6201 Sema->mergeDeclAttributes(OverloadDecl, FDecl);
6202 return OverloadDecl;
6203}
6204
6205static void checkDirectCallValidity(Sema &S, const Expr *Fn,
6206 FunctionDecl *Callee,
6207 MultiExprArg ArgExprs) {
6208 // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and
6209 // similar attributes) really don't like it when functions are called with an
6210 // invalid number of args.
6211 if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(),
6212 /*PartialOverloading=*/false) &&
6213 !Callee->isVariadic())
6214 return;
6215 if (Callee->getMinRequiredArguments() > ArgExprs.size())
6216 return;
6217
6218 if (const EnableIfAttr *Attr =
6219 S.CheckEnableIf(Callee, Fn->getBeginLoc(), ArgExprs, true)) {
6220 S.Diag(Fn->getBeginLoc(),
6221 isa<CXXMethodDecl>(Callee)
6222 ? diag::err_ovl_no_viable_member_function_in_call
6223 : diag::err_ovl_no_viable_function_in_call)
6224 << Callee << Callee->getSourceRange();
6225 S.Diag(Callee->getLocation(),
6226 diag::note_ovl_candidate_disabled_by_function_cond_attr)
6227 << Attr->getCond()->getSourceRange() << Attr->getMessage();
6228 return;
6229 }
6230}
6231
6232static bool enclosingClassIsRelatedToClassInWhichMembersWereFound(
6233 const UnresolvedMemberExpr *const UME, Sema &S) {
6234
6235 const auto GetFunctionLevelDCIfCXXClass =
6236 [](Sema &S) -> const CXXRecordDecl * {
6237 const DeclContext *const DC = S.getFunctionLevelDeclContext();
6238 if (!DC || !DC->getParent())
6239 return nullptr;
6240
6241 // If the call to some member function was made from within a member
6242 // function body 'M' return return 'M's parent.
6243 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
6244 return MD->getParent()->getCanonicalDecl();
6245 // else the call was made from within a default member initializer of a
6246 // class, so return the class.
6247 if (const auto *RD = dyn_cast<CXXRecordDecl>(DC))
6248 return RD->getCanonicalDecl();
6249 return nullptr;
6250 };
6251 // If our DeclContext is neither a member function nor a class (in the
6252 // case of a lambda in a default member initializer), we can't have an
6253 // enclosing 'this'.
6254
6255 const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S);
6256 if (!CurParentClass)
6257 return false;
6258
6259 // The naming class for implicit member functions call is the class in which
6260 // name lookup starts.
6261 const CXXRecordDecl *const NamingClass =
6262 UME->getNamingClass()->getCanonicalDecl();
6263 assert(NamingClass && "Must have naming class even for implicit access")((NamingClass && "Must have naming class even for implicit access"
) ? static_cast<void> (0) : __assert_fail ("NamingClass && \"Must have naming class even for implicit access\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6263, __PRETTY_FUNCTION__))
;
6264
6265 // If the unresolved member functions were found in a 'naming class' that is
6266 // related (either the same or derived from) to the class that contains the
6267 // member function that itself contained the implicit member access.
6268
6269 return CurParentClass == NamingClass ||
6270 CurParentClass->isDerivedFrom(NamingClass);
6271}
6272
6273static void
6274tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6275 Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) {
6276
6277 if (!UME)
6278 return;
6279
6280 LambdaScopeInfo *const CurLSI = S.getCurLambda();
6281 // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't
6282 // already been captured, or if this is an implicit member function call (if
6283 // it isn't, an attempt to capture 'this' should already have been made).
6284 if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None ||
6285 !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured())
6286 return;
6287
6288 // Check if the naming class in which the unresolved members were found is
6289 // related (same as or is a base of) to the enclosing class.
6290
6291 if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S))
6292 return;
6293
6294
6295 DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent();
6296 // If the enclosing function is not dependent, then this lambda is
6297 // capture ready, so if we can capture this, do so.
6298 if (!EnclosingFunctionCtx->isDependentContext()) {
6299 // If the current lambda and all enclosing lambdas can capture 'this' -
6300 // then go ahead and capture 'this' (since our unresolved overload set
6301 // contains at least one non-static member function).
6302 if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false))
6303 S.CheckCXXThisCapture(CallLoc);
6304 } else if (S.CurContext->isDependentContext()) {
6305 // ... since this is an implicit member reference, that might potentially
6306 // involve a 'this' capture, mark 'this' for potential capture in
6307 // enclosing lambdas.
6308 if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None)
6309 CurLSI->addPotentialThisCapture(CallLoc);
6310 }
6311}
6312
6313ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6314 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6315 Expr *ExecConfig) {
6316 ExprResult Call =
6317 BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6318 /*IsExecConfig=*/false, /*AllowRecovery=*/true);
6319 if (Call.isInvalid())
6320 return Call;
6321
6322 // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier
6323 // language modes.
6324 if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) {
6325 if (ULE->hasExplicitTemplateArgs() &&
6326 ULE->decls_begin() == ULE->decls_end()) {
6327 Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus20
6328 ? diag::warn_cxx17_compat_adl_only_template_id
6329 : diag::ext_adl_only_template_id)
6330 << ULE->getName();
6331 }
6332 }
6333
6334 if (LangOpts.OpenMP)
6335 Call = ActOnOpenMPCall(Call, Scope, LParenLoc, ArgExprs, RParenLoc,
6336 ExecConfig);
6337
6338 return Call;
6339}
6340
6341/// BuildCallExpr - Handle a call to Fn with the specified array of arguments.
6342/// This provides the location of the left/right parens and a list of comma
6343/// locations.
6344ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc,
6345 MultiExprArg ArgExprs, SourceLocation RParenLoc,
6346 Expr *ExecConfig, bool IsExecConfig,
6347 bool AllowRecovery) {
6348 // Since this might be a postfix expression, get rid of ParenListExprs.
6349 ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn);
6350 if (Result.isInvalid()) return ExprError();
6351 Fn = Result.get();
6352
6353 if (checkArgsForPlaceholders(*this, ArgExprs))
6354 return ExprError();
6355
6356 if (getLangOpts().CPlusPlus) {
6357 // If this is a pseudo-destructor expression, build the call immediately.
6358 if (isa<CXXPseudoDestructorExpr>(Fn)) {
6359 if (!ArgExprs.empty()) {
6360 // Pseudo-destructor calls should not have any arguments.
6361 Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args)
6362 << FixItHint::CreateRemoval(
6363 SourceRange(ArgExprs.front()->getBeginLoc(),
6364 ArgExprs.back()->getEndLoc()));
6365 }
6366
6367 return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy,
6368 VK_RValue, RParenLoc, CurFPFeatureOverrides());
6369 }
6370 if (Fn->getType() == Context.PseudoObjectTy) {
6371 ExprResult result = CheckPlaceholderExpr(Fn);
6372 if (result.isInvalid()) return ExprError();
6373 Fn = result.get();
6374 }
6375
6376 // Determine whether this is a dependent call inside a C++ template,
6377 // in which case we won't do any semantic analysis now.
6378 if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) {
6379 if (ExecConfig) {
6380 return CUDAKernelCallExpr::Create(
6381 Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
6382 Context.DependentTy, VK_RValue, RParenLoc, CurFPFeatureOverrides());
6383 } else {
6384
6385 tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs(
6386 *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()),
6387 Fn->getBeginLoc());
6388
6389 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6390 VK_RValue, RParenLoc, CurFPFeatureOverrides());
6391 }
6392 }
6393
6394 // Determine whether this is a call to an object (C++ [over.call.object]).
6395 if (Fn->getType()->isRecordType())
6396 return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs,
6397 RParenLoc);
6398
6399 if (Fn->getType() == Context.UnknownAnyTy) {
6400 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6401 if (result.isInvalid()) return ExprError();
6402 Fn = result.get();
6403 }
6404
6405 if (Fn->getType() == Context.BoundMemberTy) {
6406 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6407 RParenLoc, AllowRecovery);
6408 }
6409 }
6410
6411 // Check for overloaded calls. This can happen even in C due to extensions.
6412 if (Fn->getType() == Context.OverloadTy) {
6413 OverloadExpr::FindResult find = OverloadExpr::find(Fn);
6414
6415 // We aren't supposed to apply this logic if there's an '&' involved.
6416 if (!find.HasFormOfMemberPointer) {
6417 if (Expr::hasAnyTypeDependentArguments(ArgExprs))
6418 return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy,
6419 VK_RValue, RParenLoc, CurFPFeatureOverrides());
6420 OverloadExpr *ovl = find.Expression;
6421 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl))
6422 return BuildOverloadedCallExpr(
6423 Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig,
6424 /*AllowTypoCorrection=*/true, find.IsAddressOfOperand);
6425 return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs,
6426 RParenLoc, AllowRecovery);
6427 }
6428 }
6429
6430 // If we're directly calling a function, get the appropriate declaration.
6431 if (Fn->getType() == Context.UnknownAnyTy) {
6432 ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
6433 if (result.isInvalid()) return ExprError();
6434 Fn = result.get();
6435 }
6436
6437 Expr *NakedFn = Fn->IgnoreParens();
6438
6439 bool CallingNDeclIndirectly = false;
6440 NamedDecl *NDecl = nullptr;
6441 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) {
6442 if (UnOp->getOpcode() == UO_AddrOf) {
6443 CallingNDeclIndirectly = true;
6444 NakedFn = UnOp->getSubExpr()->IgnoreParens();
6445 }
6446 }
6447
6448 if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) {
6449 NDecl = DRE->getDecl();
6450
6451 FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
6452 if (FDecl && FDecl->getBuiltinID()) {
6453 // Rewrite the function decl for this builtin by replacing parameters
6454 // with no explicit address space with the address space of the arguments
6455 // in ArgExprs.
6456 if ((FDecl =
6457 rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
6458 NDecl = FDecl;
6459 Fn = DeclRefExpr::Create(
6460 Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false,
6461 SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl,
6462 nullptr, DRE->isNonOdrUse());
6463 }
6464 }
6465 } else if (isa<MemberExpr>(NakedFn))
6466 NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
6467
6468 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
6469 if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable(
6470 FD, /*Complain=*/true, Fn->getBeginLoc()))
6471 return ExprError();
6472
6473 if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn))
6474 return ExprError();
6475
6476 checkDirectCallValidity(*this, Fn, FD, ArgExprs);
6477 }
6478
6479 if (Context.isDependenceAllowed() &&
6480 (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs))) {
6481 assert(!getLangOpts().CPlusPlus)((!getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("!getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6481, __PRETTY_FUNCTION__))
;
6482 assert((Fn->containsErrors() ||(((Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang
::Expr *E) { return E->containsErrors(); })) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6485, __PRETTY_FUNCTION__))
6483 llvm::any_of(ArgExprs,(((Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang
::Expr *E) { return E->containsErrors(); })) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6485, __PRETTY_FUNCTION__))
6484 [](clang::Expr *E) { return E->containsErrors(); })) &&(((Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang
::Expr *E) { return E->containsErrors(); })) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6485, __PRETTY_FUNCTION__))
6485 "should only occur in error-recovery path.")(((Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang
::Expr *E) { return E->containsErrors(); })) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(Fn->containsErrors() || llvm::any_of(ArgExprs, [](clang::Expr *E) { return E->containsErrors(); })) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6485, __PRETTY_FUNCTION__))
;
6486 QualType ReturnType =
6487 llvm::isa_and_nonnull<FunctionDecl>(NDecl)
6488 ? cast<FunctionDecl>(NDecl)->getCallResultType()
6489 : Context.DependentTy;
6490 return CallExpr::Create(Context, Fn, ArgExprs, ReturnType,
6491 Expr::getValueKindForType(ReturnType), RParenLoc,
6492 CurFPFeatureOverrides());
6493 }
6494 return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
6495 ExecConfig, IsExecConfig);
6496}
6497
6498/// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
6499///
6500/// __builtin_astype( value, dst type )
6501///
6502ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
6503 SourceLocation BuiltinLoc,
6504 SourceLocation RParenLoc) {
6505 ExprValueKind VK = VK_RValue;
6506 ExprObjectKind OK = OK_Ordinary;
6507 QualType DstTy = GetTypeFromParser(ParsedDestTy);
6508 QualType SrcTy = E->getType();
6509 if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
6510 return ExprError(Diag(BuiltinLoc,
6511 diag::err_invalid_astype_of_different_size)
6512 << DstTy
6513 << SrcTy
6514 << E->getSourceRange());
6515 return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6516}
6517
6518/// ActOnConvertVectorExpr - create a new convert-vector expression from the
6519/// provided arguments.
6520///
6521/// __builtin_convertvector( value, dst type )
6522///
6523ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
6524 SourceLocation BuiltinLoc,
6525 SourceLocation RParenLoc) {
6526 TypeSourceInfo *TInfo;
6527 GetTypeFromParser(ParsedDestTy, &TInfo);
6528 return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
6529}
6530
6531/// BuildResolvedCallExpr - Build a call to a resolved expression,
6532/// i.e. an expression not of \p OverloadTy. The expression should
6533/// unary-convert to an expression of function-pointer or
6534/// block-pointer type.
6535///
6536/// \param NDecl the declaration being called, if available
6537ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
6538 SourceLocation LParenLoc,
6539 ArrayRef<Expr *> Args,
6540 SourceLocation RParenLoc, Expr *Config,
6541 bool IsExecConfig, ADLCallKind UsesADL) {
6542 FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
1
Assuming null pointer is passed into cast
6543 unsigned BuiltinID = (FDecl
1.1
'FDecl' is null
1.1
'FDecl' is null
? FDecl->getBuiltinID() : 0);
2
'?' condition is false
6544
6545 // Functions with 'interrupt' attribute cannot be called directly.
6546 if (FDecl
2.1
'FDecl' is null
2.1
'FDecl' is null
&& FDecl->hasAttr<AnyX86InterruptAttr>()) {
6547 Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called);
6548 return ExprError();
6549 }
6550
6551 // Interrupt handlers don't save off the VFP regs automatically on ARM,
6552 // so there's some risk when calling out to non-interrupt handler functions
6553 // that the callee might not preserve them. This is easy to diagnose here,
6554 // but can be very challenging to debug.
6555 if (auto *Caller = getCurFunctionDecl())
3
Assuming 'Caller' is null
4
Taking false branch
6556 if (Caller->hasAttr<ARMInterruptAttr>()) {
6557 bool VFP = Context.getTargetInfo().hasFeature("vfp");
6558 if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>()))
6559 Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention);
6560 }
6561
6562 // Promote the function operand.
6563 // We special-case function promotion here because we only allow promoting
6564 // builtin functions to function pointers in the callee of a call.
6565 ExprResult Result;
6566 QualType ResultTy;
6567 if (BuiltinID
4.1
'BuiltinID' is 0
4.1
'BuiltinID' is 0
&&
5
Taking false branch
6568 Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
6569 // Extract the return type from the (builtin) function pointer type.
6570 // FIXME Several builtins still have setType in
6571 // Sema::CheckBuiltinFunctionCall. One should review their definitions in
6572 // Builtins.def to ensure they are correct before removing setType calls.
6573 QualType FnPtrTy = Context.getPointerType(FDecl->getType());
6574 Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get();
6575 ResultTy = FDecl->getCallResultType();
6576 } else {
6577 Result = CallExprUnaryConversions(Fn);
6578 ResultTy = Context.BoolTy;
6579 }
6580 if (Result.isInvalid())
6
Assuming the condition is false
7
Taking false branch
6581 return ExprError();
6582 Fn = Result.get();
6583
6584 // Check for a valid function type, but only if it is not a builtin which
6585 // requires custom type checking. These will be handled by
6586 // CheckBuiltinFunctionCall below just after creation of the call expression.
6587 const FunctionType *FuncT = nullptr;
6588 if (!BuiltinID
7.1
'BuiltinID' is 0
7.1
'BuiltinID' is 0
|| !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) {
6589 retry:
6590 if (const PointerType *PT
8.1
'PT' is null
8.1
'PT' is null
= Fn->getType()->getAs<PointerType>()) {
8
Assuming the object is not a 'PointerType'
9
Taking false branch
6591 // C99 6.5.2.2p1 - "The expression that denotes the called function shall
6592 // have type pointer to function".
6593 FuncT = PT->getPointeeType()->getAs<FunctionType>();
6594 if (!FuncT)
6595 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6596 << Fn->getType() << Fn->getSourceRange());
6597 } else if (const BlockPointerType *BPT =
11
Assuming 'BPT' is non-null
12
Taking true branch
6598 Fn->getType()->getAs<BlockPointerType>()) {
10
Assuming the object is a 'BlockPointerType'
6599 FuncT = BPT->getPointeeType()->castAs<FunctionType>();
13
The object is a 'FunctionType'
14
Value assigned to 'FuncT'
6600 } else {
6601 // Handle calls to expressions of unknown-any type.
6602 if (Fn->getType() == Context.UnknownAnyTy) {
6603 ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
6604 if (rewrite.isInvalid())
6605 return ExprError();
6606 Fn = rewrite.get();
6607 goto retry;
6608 }
6609
6610 return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
6611 << Fn->getType() << Fn->getSourceRange());
6612 }
6613 }
6614
6615 // Get the number of parameters in the function prototype, if any.
6616 // We will allocate space for max(Args.size(), NumParams) arguments
6617 // in the call expression.
6618 const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT);
15
Assuming null pointer is passed into cast
16
Assuming pointer value is null
6619 unsigned NumParams = Proto
16.1
'Proto' is null
16.1
'Proto' is null
? Proto->getNumParams() : 0;
17
'?' condition is false
6620
6621 CallExpr *TheCall;
6622 if (Config) {
18
Assuming 'Config' is non-null
19
Taking true branch
6623 assert(UsesADL == ADLCallKind::NotADL &&((UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL"
) ? static_cast<void> (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6624, __PRETTY_FUNCTION__))
20
Assuming 'UsesADL' is equal to NotADL
21
'?' condition is true
6624 "CUDAKernelCallExpr should not use ADL")((UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL"
) ? static_cast<void> (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6624, __PRETTY_FUNCTION__))
;
6625 TheCall = CUDAKernelCallExpr::Create(Context, Fn, cast<CallExpr>(Config),
22
'Config' is a 'CallExpr'
6626 Args, ResultTy, VK_RValue, RParenLoc,
6627 CurFPFeatureOverrides(), NumParams);
6628 } else {
6629 TheCall =
6630 CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
6631 CurFPFeatureOverrides(), NumParams, UsesADL);
6632 }
6633
6634 if (!Context.isDependenceAllowed()) {
23
Calling 'ASTContext::isDependenceAllowed'
26
Returning from 'ASTContext::isDependenceAllowed'
27
Taking false branch
6635 // Forget about the nulled arguments since typo correction
6636 // do not handle them well.
6637 TheCall->shrinkNumArgs(Args.size());
6638 // C cannot always handle TypoExpr nodes in builtin calls and direct
6639 // function calls as their argument checking don't necessarily handle
6640 // dependent types properly, so make sure any TypoExprs have been
6641 // dealt with.
6642 ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
6643 if (!Result.isUsable()) return ExprError();
6644 CallExpr *TheOldCall = TheCall;
6645 TheCall = dyn_cast<CallExpr>(Result.get());
6646 bool CorrectedTypos = TheCall != TheOldCall;
6647 if (!TheCall) return Result;
6648 Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
6649
6650 // A new call expression node was created if some typos were corrected.
6651 // However it may not have been constructed with enough storage. In this
6652 // case, rebuild the node with enough storage. The waste of space is
6653 // immaterial since this only happens when some typos were corrected.
6654 if (CorrectedTypos && Args.size() < NumParams) {
6655 if (Config)
6656 TheCall = CUDAKernelCallExpr::Create(
6657 Context, Fn, cast<CallExpr>(Config), Args, ResultTy, VK_RValue,
6658 RParenLoc, CurFPFeatureOverrides(), NumParams);
6659 else
6660 TheCall =
6661 CallExpr::Create(Context, Fn, Args, ResultTy, VK_RValue, RParenLoc,
6662 CurFPFeatureOverrides(), NumParams, UsesADL);
6663 }
6664 // We can now handle the nulled arguments for the default arguments.
6665 TheCall->setNumArgsUnsafe(std::max<unsigned>(Args.size(), NumParams));
6666 }
6667
6668 // Bail out early if calling a builtin with custom type checking.
6669 if (BuiltinID
27.1
'BuiltinID' is 0
27.1
'BuiltinID' is 0
&& Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
6670 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6671
6672 if (getLangOpts().CUDA) {
28
Assuming field 'CUDA' is not equal to 0
29
Taking true branch
6673 if (Config
29.1
'Config' is non-null
29.1
'Config' is non-null
) {
30
Taking true branch
6674 // CUDA: Kernel calls must be to global functions
6675 if (FDecl
30.1
'FDecl' is null
30.1
'FDecl' is null
&& !FDecl->hasAttr<CUDAGlobalAttr>())
6676 return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
6677 << FDecl << Fn->getSourceRange());
6678
6679 // CUDA: Kernel function must have 'void' return type
6680 if (!FuncT->getReturnType()->isVoidType() &&
31
Called C++ object pointer is null
6681 !FuncT->getReturnType()->getAs<AutoType>() &&
6682 !FuncT->getReturnType()->isInstantiationDependentType())
6683 return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
6684 << Fn->getType() << Fn->getSourceRange());
6685 } else {
6686 // CUDA: Calls to global functions must be configured
6687 if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
6688 return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
6689 << FDecl << Fn->getSourceRange());
6690 }
6691 }
6692
6693 // Check for a valid return type
6694 if (CheckCallReturnType(FuncT->getReturnType(), Fn->getBeginLoc(), TheCall,
6695 FDecl))
6696 return ExprError();
6697
6698 // We know the result type of the call, set it.
6699 TheCall->setType(FuncT->getCallResultType(Context));
6700 TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
6701
6702 if (Proto) {
6703 if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
6704 IsExecConfig))
6705 return ExprError();
6706 } else {
6707 assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!")((isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!"
) ? static_cast<void> (0) : __assert_fail ("isa<FunctionNoProtoType>(FuncT) && \"Unknown FunctionType!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6707, __PRETTY_FUNCTION__))
;
6708
6709 if (FDecl) {
6710 // Check if we have too few/too many template arguments, based
6711 // on our knowledge of the function definition.
6712 const FunctionDecl *Def = nullptr;
6713 if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
6714 Proto = Def->getType()->getAs<FunctionProtoType>();
6715 if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
6716 Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
6717 << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
6718 }
6719
6720 // If the function we're calling isn't a function prototype, but we have
6721 // a function prototype from a prior declaratiom, use that prototype.
6722 if (!FDecl->hasPrototype())
6723 Proto = FDecl->getType()->getAs<FunctionProtoType>();
6724 }
6725
6726 // Promote the arguments (C99 6.5.2.2p6).
6727 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6728 Expr *Arg = Args[i];
6729
6730 if (Proto && i < Proto->getNumParams()) {
6731 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6732 Context, Proto->getParamType(i), Proto->isParamConsumed(i));
6733 ExprResult ArgE =
6734 PerformCopyInitialization(Entity, SourceLocation(), Arg);
6735 if (ArgE.isInvalid())
6736 return true;
6737
6738 Arg = ArgE.getAs<Expr>();
6739
6740 } else {
6741 ExprResult ArgE = DefaultArgumentPromotion(Arg);
6742
6743 if (ArgE.isInvalid())
6744 return true;
6745
6746 Arg = ArgE.getAs<Expr>();
6747 }
6748
6749 if (RequireCompleteType(Arg->getBeginLoc(), Arg->getType(),
6750 diag::err_call_incomplete_argument, Arg))
6751 return ExprError();
6752
6753 TheCall->setArg(i, Arg);
6754 }
6755 }
6756
6757 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
6758 if (!Method->isStatic())
6759 return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
6760 << Fn->getSourceRange());
6761
6762 // Check for sentinels
6763 if (NDecl)
6764 DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
6765
6766 // Warn for unions passing across security boundary (CMSE).
6767 if (FuncT != nullptr && FuncT->getCmseNSCallAttr()) {
6768 for (unsigned i = 0, e = Args.size(); i != e; i++) {
6769 if (const auto *RT =
6770 dyn_cast<RecordType>(Args[i]->getType().getCanonicalType())) {
6771 if (RT->getDecl()->isOrContainsUnion())
6772 Diag(Args[i]->getBeginLoc(), diag::warn_cmse_nonsecure_union)
6773 << 0 << i;
6774 }
6775 }
6776 }
6777
6778 // Do special checking on direct calls to functions.
6779 if (FDecl) {
6780 if (CheckFunctionCall(FDecl, TheCall, Proto))
6781 return ExprError();
6782
6783 checkFortifiedBuiltinMemoryFunction(FDecl, TheCall);
6784
6785 if (BuiltinID)
6786 return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
6787 } else if (NDecl) {
6788 if (CheckPointerCall(NDecl, TheCall, Proto))
6789 return ExprError();
6790 } else {
6791 if (CheckOtherCall(TheCall, Proto))
6792 return ExprError();
6793 }
6794
6795 return CheckForImmediateInvocation(MaybeBindToTemporary(TheCall), FDecl);
6796}
6797
6798ExprResult
6799Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
6800 SourceLocation RParenLoc, Expr *InitExpr) {
6801 assert(Ty && "ActOnCompoundLiteral(): missing type")((Ty && "ActOnCompoundLiteral(): missing type") ? static_cast
<void> (0) : __assert_fail ("Ty && \"ActOnCompoundLiteral(): missing type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6801, __PRETTY_FUNCTION__))
;
6802 assert(InitExpr && "ActOnCompoundLiteral(): missing expression")((InitExpr && "ActOnCompoundLiteral(): missing expression"
) ? static_cast<void> (0) : __assert_fail ("InitExpr && \"ActOnCompoundLiteral(): missing expression\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 6802, __PRETTY_FUNCTION__))
;
6803
6804 TypeSourceInfo *TInfo;
6805 QualType literalType = GetTypeFromParser(Ty, &TInfo);
6806 if (!TInfo)
6807 TInfo = Context.getTrivialTypeSourceInfo(literalType);
6808
6809 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
6810}
6811
6812ExprResult
6813Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
6814 SourceLocation RParenLoc, Expr *LiteralExpr) {
6815 QualType literalType = TInfo->getType();
6816
6817 if (literalType->isArrayType()) {
6818 if (RequireCompleteSizedType(
6819 LParenLoc, Context.getBaseElementType(literalType),
6820 diag::err_array_incomplete_or_sizeless_type,
6821 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6822 return ExprError();
6823 if (literalType->isVariableArrayType())
6824 return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
6825 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
6826 } else if (!literalType->isDependentType() &&
6827 RequireCompleteType(LParenLoc, literalType,
6828 diag::err_typecheck_decl_incomplete_type,
6829 SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
6830 return ExprError();
6831
6832 InitializedEntity Entity
6833 = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
6834 InitializationKind Kind
6835 = InitializationKind::CreateCStyleCast(LParenLoc,
6836 SourceRange(LParenLoc, RParenLoc),
6837 /*InitList=*/true);
6838 InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
6839 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
6840 &literalType);
6841 if (Result.isInvalid())
6842 return ExprError();
6843 LiteralExpr = Result.get();
6844
6845 bool isFileScope = !CurContext->isFunctionOrMethod();
6846
6847 // In C, compound literals are l-values for some reason.
6848 // For GCC compatibility, in C++, file-scope array compound literals with
6849 // constant initializers are also l-values, and compound literals are
6850 // otherwise prvalues.
6851 //
6852 // (GCC also treats C++ list-initialized file-scope array prvalues with
6853 // constant initializers as l-values, but that's non-conforming, so we don't
6854 // follow it there.)
6855 //
6856 // FIXME: It would be better to handle the lvalue cases as materializing and
6857 // lifetime-extending a temporary object, but our materialized temporaries
6858 // representation only supports lifetime extension from a variable, not "out
6859 // of thin air".
6860 // FIXME: For C++, we might want to instead lifetime-extend only if a pointer
6861 // is bound to the result of applying array-to-pointer decay to the compound
6862 // literal.
6863 // FIXME: GCC supports compound literals of reference type, which should
6864 // obviously have a value kind derived from the kind of reference involved.
6865 ExprValueKind VK =
6866 (getLangOpts().CPlusPlus && !(isFileScope && literalType->isArrayType()))
6867 ? VK_RValue
6868 : VK_LValue;
6869
6870 if (isFileScope)
6871 if (auto ILE = dyn_cast<InitListExpr>(LiteralExpr))
6872 for (unsigned i = 0, j = ILE->getNumInits(); i != j; i++) {
6873 Expr *Init = ILE->getInit(i);
6874 ILE->setInit(i, ConstantExpr::Create(Context, Init));
6875 }
6876
6877 auto *E = new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
6878 VK, LiteralExpr, isFileScope);
6879 if (isFileScope) {
6880 if (!LiteralExpr->isTypeDependent() &&
6881 !LiteralExpr->isValueDependent() &&
6882 !literalType->isDependentType()) // C99 6.5.2.5p3
6883 if (CheckForConstantInitializer(LiteralExpr, literalType))
6884 return ExprError();
6885 } else if (literalType.getAddressSpace() != LangAS::opencl_private &&
6886 literalType.getAddressSpace() != LangAS::Default) {
6887 // Embedded-C extensions to C99 6.5.2.5:
6888 // "If the compound literal occurs inside the body of a function, the
6889 // type name shall not be qualified by an address-space qualifier."
6890 Diag(LParenLoc, diag::err_compound_literal_with_address_space)
6891 << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd());
6892 return ExprError();
6893 }
6894
6895 if (!isFileScope && !getLangOpts().CPlusPlus) {
6896 // Compound literals that have automatic storage duration are destroyed at
6897 // the end of the scope in C; in C++, they're just temporaries.
6898
6899 // Emit diagnostics if it is or contains a C union type that is non-trivial
6900 // to destruct.
6901 if (E->getType().hasNonTrivialToPrimitiveDestructCUnion())
6902 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
6903 NTCUC_CompoundLiteral, NTCUK_Destruct);
6904
6905 // Diagnose jumps that enter or exit the lifetime of the compound literal.
6906 if (literalType.isDestructedType()) {
6907 Cleanup.setExprNeedsCleanups(true);
6908 ExprCleanupObjects.push_back(E);
6909 getCurFunction()->setHasBranchProtectedScope();
6910 }
6911 }
6912
6913 if (E->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
6914 E->getType().hasNonTrivialToPrimitiveCopyCUnion())
6915 checkNonTrivialCUnionInInitializer(E->getInitializer(),
6916 E->getInitializer()->getExprLoc());
6917
6918 return MaybeBindToTemporary(E);
6919}
6920
6921ExprResult
6922Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6923 SourceLocation RBraceLoc) {
6924 // Only produce each kind of designated initialization diagnostic once.
6925 SourceLocation FirstDesignator;
6926 bool DiagnosedArrayDesignator = false;
6927 bool DiagnosedNestedDesignator = false;
6928 bool DiagnosedMixedDesignator = false;
6929
6930 // Check that any designated initializers are syntactically valid in the
6931 // current language mode.
6932 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6933 if (auto *DIE = dyn_cast<DesignatedInitExpr>(InitArgList[I])) {
6934 if (FirstDesignator.isInvalid())
6935 FirstDesignator = DIE->getBeginLoc();
6936
6937 if (!getLangOpts().CPlusPlus)
6938 break;
6939
6940 if (!DiagnosedNestedDesignator && DIE->size() > 1) {
6941 DiagnosedNestedDesignator = true;
6942 Diag(DIE->getBeginLoc(), diag::ext_designated_init_nested)
6943 << DIE->getDesignatorsSourceRange();
6944 }
6945
6946 for (auto &Desig : DIE->designators()) {
6947 if (!Desig.isFieldDesignator() && !DiagnosedArrayDesignator) {
6948 DiagnosedArrayDesignator = true;
6949 Diag(Desig.getBeginLoc(), diag::ext_designated_init_array)
6950 << Desig.getSourceRange();
6951 }
6952 }
6953
6954 if (!DiagnosedMixedDesignator &&
6955 !isa<DesignatedInitExpr>(InitArgList[0])) {
6956 DiagnosedMixedDesignator = true;
6957 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6958 << DIE->getSourceRange();
6959 Diag(InitArgList[0]->getBeginLoc(), diag::note_designated_init_mixed)
6960 << InitArgList[0]->getSourceRange();
6961 }
6962 } else if (getLangOpts().CPlusPlus && !DiagnosedMixedDesignator &&
6963 isa<DesignatedInitExpr>(InitArgList[0])) {
6964 DiagnosedMixedDesignator = true;
6965 auto *DIE = cast<DesignatedInitExpr>(InitArgList[0]);
6966 Diag(DIE->getBeginLoc(), diag::ext_designated_init_mixed)
6967 << DIE->getSourceRange();
6968 Diag(InitArgList[I]->getBeginLoc(), diag::note_designated_init_mixed)
6969 << InitArgList[I]->getSourceRange();
6970 }
6971 }
6972
6973 if (FirstDesignator.isValid()) {
6974 // Only diagnose designated initiaization as a C++20 extension if we didn't
6975 // already diagnose use of (non-C++20) C99 designator syntax.
6976 if (getLangOpts().CPlusPlus && !DiagnosedArrayDesignator &&
6977 !DiagnosedNestedDesignator && !DiagnosedMixedDesignator) {
6978 Diag(FirstDesignator, getLangOpts().CPlusPlus20
6979 ? diag::warn_cxx17_compat_designated_init
6980 : diag::ext_cxx_designated_init);
6981 } else if (!getLangOpts().CPlusPlus && !getLangOpts().C99) {
6982 Diag(FirstDesignator, diag::ext_designated_init);
6983 }
6984 }
6985
6986 return BuildInitList(LBraceLoc, InitArgList, RBraceLoc);
6987}
6988
6989ExprResult
6990Sema::BuildInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
6991 SourceLocation RBraceLoc) {
6992 // Semantic analysis for initializers is done by ActOnDeclarator() and
6993 // CheckInitializer() - it requires knowledge of the object being initialized.
6994
6995 // Immediately handle non-overload placeholders. Overloads can be
6996 // resolved contextually, but everything else here can't.
6997 for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
6998 if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
6999 ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
7000
7001 // Ignore failures; dropping the entire initializer list because
7002 // of one failure would be terrible for indexing/etc.
7003 if (result.isInvalid()) continue;
7004
7005 InitArgList[I] = result.get();
7006 }
7007 }
7008
7009 InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
7010 RBraceLoc);
7011 E->setType(Context.VoidTy); // FIXME: just a place holder for now.
7012 return E;
7013}
7014
7015/// Do an explicit extend of the given block pointer if we're in ARC.
7016void Sema::maybeExtendBlockObject(ExprResult &E) {
7017 assert(E.get()->getType()->isBlockPointerType())((E.get()->getType()->isBlockPointerType()) ? static_cast
<void> (0) : __assert_fail ("E.get()->getType()->isBlockPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7017, __PRETTY_FUNCTION__))
;
7018 assert(E.get()->isRValue())((E.get()->isRValue()) ? static_cast<void> (0) : __assert_fail
("E.get()->isRValue()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7018, __PRETTY_FUNCTION__))
;
7019
7020 // Only do this in an r-value context.
7021 if (!getLangOpts().ObjCAutoRefCount) return;
7022
7023 E = ImplicitCastExpr::Create(
7024 Context, E.get()->getType(), CK_ARCExtendBlockObject, E.get(),
7025 /*base path*/ nullptr, VK_RValue, FPOptionsOverride());
7026 Cleanup.setExprNeedsCleanups(true);
7027}
7028
7029/// Prepare a conversion of the given expression to an ObjC object
7030/// pointer type.
7031CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
7032 QualType type = E.get()->getType();
7033 if (type->isObjCObjectPointerType()) {
7034 return CK_BitCast;
7035 } else if (type->isBlockPointerType()) {
7036 maybeExtendBlockObject(E);
7037 return CK_BlockPointerToObjCPointerCast;
7038 } else {
7039 assert(type->isPointerType())((type->isPointerType()) ? static_cast<void> (0) : __assert_fail
("type->isPointerType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7039, __PRETTY_FUNCTION__))
;
7040 return CK_CPointerToObjCPointerCast;
7041 }
7042}
7043
7044/// Prepares for a scalar cast, performing all the necessary stages
7045/// except the final cast and returning the kind required.
7046CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
7047 // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
7048 // Also, callers should have filtered out the invalid cases with
7049 // pointers. Everything else should be possible.
7050
7051 QualType SrcTy = Src.get()->getType();
7052 if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
7053 return CK_NoOp;
7054
7055 switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
7056 case Type::STK_MemberPointer:
7057 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7057)
;
7058
7059 case Type::STK_CPointer:
7060 case Type::STK_BlockPointer:
7061 case Type::STK_ObjCObjectPointer:
7062 switch (DestTy->getScalarTypeKind()) {
7063 case Type::STK_CPointer: {
7064 LangAS SrcAS = SrcTy->getPointeeType().getAddressSpace();
7065 LangAS DestAS = DestTy->getPointeeType().getAddressSpace();
7066 if (SrcAS != DestAS)
7067 return CK_AddressSpaceConversion;
7068 if (Context.hasCvrSimilarType(SrcTy, DestTy))
7069 return CK_NoOp;
7070 return CK_BitCast;
7071 }
7072 case Type::STK_BlockPointer:
7073 return (SrcKind == Type::STK_BlockPointer
7074 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
7075 case Type::STK_ObjCObjectPointer:
7076 if (SrcKind == Type::STK_ObjCObjectPointer)
7077 return CK_BitCast;
7078 if (SrcKind == Type::STK_CPointer)
7079 return CK_CPointerToObjCPointerCast;
7080 maybeExtendBlockObject(Src);
7081 return CK_BlockPointerToObjCPointerCast;
7082 case Type::STK_Bool:
7083 return CK_PointerToBoolean;
7084 case Type::STK_Integral:
7085 return CK_PointerToIntegral;
7086 case Type::STK_Floating:
7087 case Type::STK_FloatingComplex:
7088 case Type::STK_IntegralComplex:
7089 case Type::STK_MemberPointer:
7090 case Type::STK_FixedPoint:
7091 llvm_unreachable("illegal cast from pointer")::llvm::llvm_unreachable_internal("illegal cast from pointer"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7091)
;
7092 }
7093 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7093)
;
7094
7095 case Type::STK_FixedPoint:
7096 switch (DestTy->getScalarTypeKind()) {
7097 case Type::STK_FixedPoint:
7098 return CK_FixedPointCast;
7099 case Type::STK_Bool:
7100 return CK_FixedPointToBoolean;
7101 case Type::STK_Integral:
7102 return CK_FixedPointToIntegral;
7103 case Type::STK_Floating:
7104 return CK_FixedPointToFloating;
7105 case Type::STK_IntegralComplex:
7106 case Type::STK_FloatingComplex:
7107 Diag(Src.get()->getExprLoc(),
7108 diag::err_unimplemented_conversion_with_fixed_point_type)
7109 << DestTy;
7110 return CK_IntegralCast;
7111 case Type::STK_CPointer:
7112 case Type::STK_ObjCObjectPointer:
7113 case Type::STK_BlockPointer:
7114 case Type::STK_MemberPointer:
7115 llvm_unreachable("illegal cast to pointer type")::llvm::llvm_unreachable_internal("illegal cast to pointer type"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7115)
;
7116 }
7117 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7117)
;
7118
7119 case Type::STK_Bool: // casting from bool is like casting from an integer
7120 case Type::STK_Integral:
7121 switch (DestTy->getScalarTypeKind()) {
7122 case Type::STK_CPointer:
7123 case Type::STK_ObjCObjectPointer:
7124 case Type::STK_BlockPointer:
7125 if (Src.get()->isNullPointerConstant(Context,
7126 Expr::NPC_ValueDependentIsNull))
7127 return CK_NullToPointer;
7128 return CK_IntegralToPointer;
7129 case Type::STK_Bool:
7130 return CK_IntegralToBoolean;
7131 case Type::STK_Integral:
7132 return CK_IntegralCast;
7133 case Type::STK_Floating:
7134 return CK_IntegralToFloating;
7135 case Type::STK_IntegralComplex:
7136 Src = ImpCastExprToType(Src.get(),
7137 DestTy->castAs<ComplexType>()->getElementType(),
7138 CK_IntegralCast);
7139 return CK_IntegralRealToComplex;
7140 case Type::STK_FloatingComplex:
7141 Src = ImpCastExprToType(Src.get(),
7142 DestTy->castAs<ComplexType>()->getElementType(),
7143 CK_IntegralToFloating);
7144 return CK_FloatingRealToComplex;
7145 case Type::STK_MemberPointer:
7146 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7146)
;
7147 case Type::STK_FixedPoint:
7148 return CK_IntegralToFixedPoint;
7149 }
7150 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7150)
;
7151
7152 case Type::STK_Floating:
7153 switch (DestTy->getScalarTypeKind()) {
7154 case Type::STK_Floating:
7155 return CK_FloatingCast;
7156 case Type::STK_Bool:
7157 return CK_FloatingToBoolean;
7158 case Type::STK_Integral:
7159 return CK_FloatingToIntegral;
7160 case Type::STK_FloatingComplex:
7161 Src = ImpCastExprToType(Src.get(),
7162 DestTy->castAs<ComplexType>()->getElementType(),
7163 CK_FloatingCast);
7164 return CK_FloatingRealToComplex;
7165 case Type::STK_IntegralComplex:
7166 Src = ImpCastExprToType(Src.get(),
7167 DestTy->castAs<ComplexType>()->getElementType(),
7168 CK_FloatingToIntegral);
7169 return CK_IntegralRealToComplex;
7170 case Type::STK_CPointer:
7171 case Type::STK_ObjCObjectPointer:
7172 case Type::STK_BlockPointer:
7173 llvm_unreachable("valid float->pointer cast?")::llvm::llvm_unreachable_internal("valid float->pointer cast?"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7173)
;
7174 case Type::STK_MemberPointer:
7175 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7175)
;
7176 case Type::STK_FixedPoint:
7177 return CK_FloatingToFixedPoint;
7178 }
7179 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7179)
;
7180
7181 case Type::STK_FloatingComplex:
7182 switch (DestTy->getScalarTypeKind()) {
7183 case Type::STK_FloatingComplex:
7184 return CK_FloatingComplexCast;
7185 case Type::STK_IntegralComplex:
7186 return CK_FloatingComplexToIntegralComplex;
7187 case Type::STK_Floating: {
7188 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7189 if (Context.hasSameType(ET, DestTy))
7190 return CK_FloatingComplexToReal;
7191 Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
7192 return CK_FloatingCast;
7193 }
7194 case Type::STK_Bool:
7195 return CK_FloatingComplexToBoolean;
7196 case Type::STK_Integral:
7197 Src = ImpCastExprToType(Src.get(),
7198 SrcTy->castAs<ComplexType>()->getElementType(),
7199 CK_FloatingComplexToReal);
7200 return CK_FloatingToIntegral;
7201 case Type::STK_CPointer:
7202 case Type::STK_ObjCObjectPointer:
7203 case Type::STK_BlockPointer:
7204 llvm_unreachable("valid complex float->pointer cast?")::llvm::llvm_unreachable_internal("valid complex float->pointer cast?"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7204)
;
7205 case Type::STK_MemberPointer:
7206 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7206)
;
7207 case Type::STK_FixedPoint:
7208 Diag(Src.get()->getExprLoc(),
7209 diag::err_unimplemented_conversion_with_fixed_point_type)
7210 << SrcTy;
7211 return CK_IntegralCast;
7212 }
7213 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7213)
;
7214
7215 case Type::STK_IntegralComplex:
7216 switch (DestTy->getScalarTypeKind()) {
7217 case Type::STK_FloatingComplex:
7218 return CK_IntegralComplexToFloatingComplex;
7219 case Type::STK_IntegralComplex:
7220 return CK_IntegralComplexCast;
7221 case Type::STK_Integral: {
7222 QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
7223 if (Context.hasSameType(ET, DestTy))
7224 return CK_IntegralComplexToReal;
7225 Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
7226 return CK_IntegralCast;
7227 }
7228 case Type::STK_Bool:
7229 return CK_IntegralComplexToBoolean;
7230 case Type::STK_Floating:
7231 Src = ImpCastExprToType(Src.get(),
7232 SrcTy->castAs<ComplexType>()->getElementType(),
7233 CK_IntegralComplexToReal);
7234 return CK_IntegralToFloating;
7235 case Type::STK_CPointer:
7236 case Type::STK_ObjCObjectPointer:
7237 case Type::STK_BlockPointer:
7238 llvm_unreachable("valid complex int->pointer cast?")::llvm::llvm_unreachable_internal("valid complex int->pointer cast?"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7238)
;
7239 case Type::STK_MemberPointer:
7240 llvm_unreachable("member pointer type in C")::llvm::llvm_unreachable_internal("member pointer type in C",
"/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7240)
;
7241 case Type::STK_FixedPoint:
7242 Diag(Src.get()->getExprLoc(),
7243 diag::err_unimplemented_conversion_with_fixed_point_type)
7244 << SrcTy;
7245 return CK_IntegralCast;
7246 }
7247 llvm_unreachable("Should have returned before this")::llvm::llvm_unreachable_internal("Should have returned before this"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7247)
;
7248 }
7249
7250 llvm_unreachable("Unhandled scalar cast")::llvm::llvm_unreachable_internal("Unhandled scalar cast", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7250)
;
7251}
7252
7253static bool breakDownVectorType(QualType type, uint64_t &len,
7254 QualType &eltType) {
7255 // Vectors are simple.
7256 if (const VectorType *vecType = type->getAs<VectorType>()) {
7257 len = vecType->getNumElements();
7258 eltType = vecType->getElementType();
7259 assert(eltType->isScalarType())((eltType->isScalarType()) ? static_cast<void> (0) :
__assert_fail ("eltType->isScalarType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7259, __PRETTY_FUNCTION__))
;
7260 return true;
7261 }
7262
7263 // We allow lax conversion to and from non-vector types, but only if
7264 // they're real types (i.e. non-complex, non-pointer scalar types).
7265 if (!type->isRealType()) return false;
7266
7267 len = 1;
7268 eltType = type;
7269 return true;
7270}
7271
7272/// Are the two types SVE-bitcast-compatible types? I.e. is bitcasting from the
7273/// first SVE type (e.g. an SVE VLAT) to the second type (e.g. an SVE VLST)
7274/// allowed?
7275///
7276/// This will also return false if the two given types do not make sense from
7277/// the perspective of SVE bitcasts.
7278bool Sema::isValidSveBitcast(QualType srcTy, QualType destTy) {
7279 assert(srcTy->isVectorType() || destTy->isVectorType())((srcTy->isVectorType() || destTy->isVectorType()) ? static_cast
<void> (0) : __assert_fail ("srcTy->isVectorType() || destTy->isVectorType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7279, __PRETTY_FUNCTION__))
;
7280
7281 auto ValidScalableConversion = [](QualType FirstType, QualType SecondType) {
7282 if (!FirstType->isSizelessBuiltinType())
7283 return false;
7284
7285 const auto *VecTy = SecondType->getAs<VectorType>();
7286 return VecTy &&
7287 VecTy->getVectorKind() == VectorType::SveFixedLengthDataVector;
7288 };
7289
7290 return ValidScalableConversion(srcTy, destTy) ||
7291 ValidScalableConversion(destTy, srcTy);
7292}
7293
7294/// Are the two types lax-compatible vector types? That is, given
7295/// that one of them is a vector, do they have equal storage sizes,
7296/// where the storage size is the number of elements times the element
7297/// size?
7298///
7299/// This will also return false if either of the types is neither a
7300/// vector nor a real type.
7301bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
7302 assert(destTy->isVectorType() || srcTy->isVectorType())((destTy->isVectorType() || srcTy->isVectorType()) ? static_cast
<void> (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7302, __PRETTY_FUNCTION__))
;
7303
7304 // Disallow lax conversions between scalars and ExtVectors (these
7305 // conversions are allowed for other vector types because common headers
7306 // depend on them). Most scalar OP ExtVector cases are handled by the
7307 // splat path anyway, which does what we want (convert, not bitcast).
7308 // What this rules out for ExtVectors is crazy things like char4*float.
7309 if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
7310 if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
7311
7312 uint64_t srcLen, destLen;
7313 QualType srcEltTy, destEltTy;
7314 if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
7315 if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
7316
7317 // ASTContext::getTypeSize will return the size rounded up to a
7318 // power of 2, so instead of using that, we need to use the raw
7319 // element size multiplied by the element count.
7320 uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
7321 uint64_t destEltSize = Context.getTypeSize(destEltTy);
7322
7323 return (srcLen * srcEltSize == destLen * destEltSize);
7324}
7325
7326/// Is this a legal conversion between two types, one of which is
7327/// known to be a vector type?
7328bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
7329 assert(destTy->isVectorType() || srcTy->isVectorType())((destTy->isVectorType() || srcTy->isVectorType()) ? static_cast
<void> (0) : __assert_fail ("destTy->isVectorType() || srcTy->isVectorType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7329, __PRETTY_FUNCTION__))
;
7330
7331 switch (Context.getLangOpts().getLaxVectorConversions()) {
7332 case LangOptions::LaxVectorConversionKind::None:
7333 return false;
7334
7335 case LangOptions::LaxVectorConversionKind::Integer:
7336 if (!srcTy->isIntegralOrEnumerationType()) {
7337 auto *Vec = srcTy->getAs<VectorType>();
7338 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7339 return false;
7340 }
7341 if (!destTy->isIntegralOrEnumerationType()) {
7342 auto *Vec = destTy->getAs<VectorType>();
7343 if (!Vec || !Vec->getElementType()->isIntegralOrEnumerationType())
7344 return false;
7345 }
7346 // OK, integer (vector) -> integer (vector) bitcast.
7347 break;
7348
7349 case LangOptions::LaxVectorConversionKind::All:
7350 break;
7351 }
7352
7353 return areLaxCompatibleVectorTypes(srcTy, destTy);
7354}
7355
7356bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
7357 CastKind &Kind) {
7358 assert(VectorTy->isVectorType() && "Not a vector type!")((VectorTy->isVectorType() && "Not a vector type!"
) ? static_cast<void> (0) : __assert_fail ("VectorTy->isVectorType() && \"Not a vector type!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7358, __PRETTY_FUNCTION__))
;
7359
7360 if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
7361 if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
7362 return Diag(R.getBegin(),
7363 Ty->isVectorType() ?
7364 diag::err_invalid_conversion_between_vectors :
7365 diag::err_invalid_conversion_between_vector_and_integer)
7366 << VectorTy << Ty << R;
7367 } else
7368 return Diag(R.getBegin(),
7369 diag::err_invalid_conversion_between_vector_and_scalar)
7370 << VectorTy << Ty << R;
7371
7372 Kind = CK_BitCast;
7373 return false;
7374}
7375
7376ExprResult Sema::prepareVectorSplat(QualType VectorTy, Expr *SplattedExpr) {
7377 QualType DestElemTy = VectorTy->castAs<VectorType>()->getElementType();
7378
7379 if (DestElemTy == SplattedExpr->getType())
7380 return SplattedExpr;
7381
7382 assert(DestElemTy->isFloatingType() ||((DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType
()) ? static_cast<void> (0) : __assert_fail ("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7383, __PRETTY_FUNCTION__))
7383 DestElemTy->isIntegralOrEnumerationType())((DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType
()) ? static_cast<void> (0) : __assert_fail ("DestElemTy->isFloatingType() || DestElemTy->isIntegralOrEnumerationType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7383, __PRETTY_FUNCTION__))
;
7384
7385 CastKind CK;
7386 if (VectorTy->isExtVectorType() && SplattedExpr->getType()->isBooleanType()) {
7387 // OpenCL requires that we convert `true` boolean expressions to -1, but
7388 // only when splatting vectors.
7389 if (DestElemTy->isFloatingType()) {
7390 // To avoid having to have a CK_BooleanToSignedFloating cast kind, we cast
7391 // in two steps: boolean to signed integral, then to floating.
7392 ExprResult CastExprRes = ImpCastExprToType(SplattedExpr, Context.IntTy,
7393 CK_BooleanToSignedIntegral);
7394 SplattedExpr = CastExprRes.get();
7395 CK = CK_IntegralToFloating;
7396 } else {
7397 CK = CK_BooleanToSignedIntegral;
7398 }
7399 } else {
7400 ExprResult CastExprRes = SplattedExpr;
7401 CK = PrepareScalarCast(CastExprRes, DestElemTy);
7402 if (CastExprRes.isInvalid())
7403 return ExprError();
7404 SplattedExpr = CastExprRes.get();
7405 }
7406 return ImpCastExprToType(SplattedExpr, DestElemTy, CK);
7407}
7408
7409ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
7410 Expr *CastExpr, CastKind &Kind) {
7411 assert(DestTy->isExtVectorType() && "Not an extended vector type!")((DestTy->isExtVectorType() && "Not an extended vector type!"
) ? static_cast<void> (0) : __assert_fail ("DestTy->isExtVectorType() && \"Not an extended vector type!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7411, __PRETTY_FUNCTION__))
;
7412
7413 QualType SrcTy = CastExpr->getType();
7414
7415 // If SrcTy is a VectorType, the total size must match to explicitly cast to
7416 // an ExtVectorType.
7417 // In OpenCL, casts between vectors of different types are not allowed.
7418 // (See OpenCL 6.2).
7419 if (SrcTy->isVectorType()) {
7420 if (!areLaxCompatibleVectorTypes(SrcTy, DestTy) ||
7421 (getLangOpts().OpenCL &&
7422 !Context.hasSameUnqualifiedType(DestTy, SrcTy))) {
7423 Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
7424 << DestTy << SrcTy << R;
7425 return ExprError();
7426 }
7427 Kind = CK_BitCast;
7428 return CastExpr;
7429 }
7430
7431 // All non-pointer scalars can be cast to ExtVector type. The appropriate
7432 // conversion will take place first from scalar to elt type, and then
7433 // splat from elt type to vector.
7434 if (SrcTy->isPointerType())
7435 return Diag(R.getBegin(),
7436 diag::err_invalid_conversion_between_vector_and_scalar)
7437 << DestTy << SrcTy << R;
7438
7439 Kind = CK_VectorSplat;
7440 return prepareVectorSplat(DestTy, CastExpr);
7441}
7442
7443ExprResult
7444Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
7445 Declarator &D, ParsedType &Ty,
7446 SourceLocation RParenLoc, Expr *CastExpr) {
7447 assert(!D.isInvalidType() && (CastExpr != nullptr) &&((!D.isInvalidType() && (CastExpr != nullptr) &&
"ActOnCastExpr(): missing type or expr") ? static_cast<void
> (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7448, __PRETTY_FUNCTION__))
7448 "ActOnCastExpr(): missing type or expr")((!D.isInvalidType() && (CastExpr != nullptr) &&
"ActOnCastExpr(): missing type or expr") ? static_cast<void
> (0) : __assert_fail ("!D.isInvalidType() && (CastExpr != nullptr) && \"ActOnCastExpr(): missing type or expr\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7448, __PRETTY_FUNCTION__))
;
7449
7450 TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
7451 if (D.isInvalidType())
7452 return ExprError();
7453
7454 if (getLangOpts().CPlusPlus) {
7455 // Check that there are no default arguments (C++ only).
7456 CheckExtraCXXDefaultArguments(D);
7457 } else {
7458 // Make sure any TypoExprs have been dealt with.
7459 ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
7460 if (!Res.isUsable())
7461 return ExprError();
7462 CastExpr = Res.get();
7463 }
7464
7465 checkUnusedDeclAttributes(D);
7466
7467 QualType castType = castTInfo->getType();
7468 Ty = CreateParsedType(castType, castTInfo);
7469
7470 bool isVectorLiteral = false;
7471
7472 // Check for an altivec or OpenCL literal,
7473 // i.e. all the elements are integer constants.
7474 ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
7475 ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
7476 if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
7477 && castType->isVectorType() && (PE || PLE)) {
7478 if (PLE && PLE->getNumExprs() == 0) {
7479 Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
7480 return ExprError();
7481 }
7482 if (PE || PLE->getNumExprs() == 1) {
7483 Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
7484 if (!E->isTypeDependent() && !E->getType()->isVectorType())
7485 isVectorLiteral = true;
7486 }
7487 else
7488 isVectorLiteral = true;
7489 }
7490
7491 // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
7492 // then handle it as such.
7493 if (isVectorLiteral)
7494 return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
7495
7496 // If the Expr being casted is a ParenListExpr, handle it specially.
7497 // This is not an AltiVec-style cast, so turn the ParenListExpr into a
7498 // sequence of BinOp comma operators.
7499 if (isa<ParenListExpr>(CastExpr)) {
7500 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
7501 if (Result.isInvalid()) return ExprError();
7502 CastExpr = Result.get();
7503 }
7504
7505 if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
7506 !getSourceManager().isInSystemMacro(LParenLoc))
7507 Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
7508
7509 CheckTollFreeBridgeCast(castType, CastExpr);
7510
7511 CheckObjCBridgeRelatedCast(castType, CastExpr);
7512
7513 DiscardMisalignedMemberAddress(castType.getTypePtr(), CastExpr);
7514
7515 return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
7516}
7517
7518ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
7519 SourceLocation RParenLoc, Expr *E,
7520 TypeSourceInfo *TInfo) {
7521 assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&(((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
"Expected paren or paren list expression") ? static_cast<
void> (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7522, __PRETTY_FUNCTION__))
7522 "Expected paren or paren list expression")(((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
"Expected paren or paren list expression") ? static_cast<
void> (0) : __assert_fail ("(isa<ParenListExpr>(E) || isa<ParenExpr>(E)) && \"Expected paren or paren list expression\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7522, __PRETTY_FUNCTION__))
;
7523
7524 Expr **exprs;
7525 unsigned numExprs;
7526 Expr *subExpr;
7527 SourceLocation LiteralLParenLoc, LiteralRParenLoc;
7528 if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
7529 LiteralLParenLoc = PE->getLParenLoc();
7530 LiteralRParenLoc = PE->getRParenLoc();
7531 exprs = PE->getExprs();
7532 numExprs = PE->getNumExprs();
7533 } else { // isa<ParenExpr> by assertion at function entrance
7534 LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
7535 LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
7536 subExpr = cast<ParenExpr>(E)->getSubExpr();
7537 exprs = &subExpr;
7538 numExprs = 1;
7539 }
7540
7541 QualType Ty = TInfo->getType();
7542 assert(Ty->isVectorType() && "Expected vector type")((Ty->isVectorType() && "Expected vector type") ? static_cast
<void> (0) : __assert_fail ("Ty->isVectorType() && \"Expected vector type\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 7542, __PRETTY_FUNCTION__))
;
7543
7544 SmallVector<Expr *, 8> initExprs;
7545 const VectorType *VTy = Ty->castAs<VectorType>();
7546 unsigned numElems = VTy->getNumElements();
7547
7548 // '(...)' form of vector initialization in AltiVec: the number of
7549 // initializers must be one or must match the size of the vector.
7550 // If a single value is specified in the initializer then it will be
7551 // replicated to all the components of the vector
7552 if (VTy->getVectorKind() == VectorType::AltiVecVector) {
7553 // The number of initializers must be one or must match the size of the
7554 // vector. If a single value is specified in the initializer then it will
7555 // be replicated to all the components of the vector
7556 if (numExprs == 1) {
7557 QualType ElemTy = VTy->getElementType();
7558 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7559 if (Literal.isInvalid())
7560 return ExprError();
7561 Literal = ImpCastExprToType(Literal.get(), ElemTy,
7562 PrepareScalarCast(Literal, ElemTy));
7563 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7564 }
7565 else if (numExprs < numElems) {
7566 Diag(E->getExprLoc(),
7567 diag::err_incorrect_number_of_vector_initializers);
7568 return ExprError();
7569 }
7570 else
7571 initExprs.append(exprs, exprs + numExprs);
7572 }
7573 else {
7574 // For OpenCL, when the number of initializers is a single value,
7575 // it will be replicated to all components of the vector.
7576 if (getLangOpts().OpenCL &&
7577 VTy->getVectorKind() == VectorType::GenericVector &&
7578 numExprs == 1) {
7579 QualType ElemTy = VTy->getElementType();
7580 ExprResult Literal = DefaultLvalueConversion(exprs[0]);
7581 if (Literal.isInvalid())
7582 return ExprError();
7583 Literal = ImpCastExprToType(Literal.get(), ElemTy,
7584 PrepareScalarCast(Literal, ElemTy));
7585 return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
7586 }
7587
7588 initExprs.append(exprs, exprs + numExprs);
7589 }
7590 // FIXME: This means that pretty-printing the final AST will produce curly
7591 // braces instead of the original commas.
7592 InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
7593 initExprs, LiteralRParenLoc);
7594 initE->setType(Ty);
7595 return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
7596}
7597
7598/// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
7599/// the ParenListExpr into a sequence of comma binary operators.
7600ExprResult
7601Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
7602 ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
7603 if (!E)
7604 return OrigExpr;
7605
7606 ExprResult Result(E->getExpr(0));
7607
7608 for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
7609 Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
7610 E->getExpr(i));
7611
7612 if (Result.isInvalid()) return ExprError();
7613
7614 return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
7615}
7616
7617ExprResult Sema::ActOnParenListExpr(SourceLocation L,
7618 SourceLocation R,
7619 MultiExprArg Val) {
7620 return ParenListExpr::Create(Context, L, Val, R);
7621}
7622
7623/// Emit a specialized diagnostic when one expression is a null pointer
7624/// constant and the other is not a pointer. Returns true if a diagnostic is
7625/// emitted.
7626bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
7627 SourceLocation QuestionLoc) {
7628 Expr *NullExpr = LHSExpr;
7629 Expr *NonPointerExpr = RHSExpr;
7630 Expr::NullPointerConstantKind NullKind =
7631 NullExpr->isNullPointerConstant(Context,
7632 Expr::NPC_ValueDependentIsNotNull);
7633
7634 if (NullKind == Expr::NPCK_NotNull) {
7635 NullExpr = RHSExpr;
7636 NonPointerExpr = LHSExpr;
7637 NullKind =
7638 NullExpr->isNullPointerConstant(Context,
7639 Expr::NPC_ValueDependentIsNotNull);
7640 }
7641
7642 if (NullKind == Expr::NPCK_NotNull)
7643 return false;
7644
7645 if (NullKind == Expr::NPCK_ZeroExpression)
7646 return false;
7647
7648 if (NullKind == Expr::NPCK_ZeroLiteral) {
7649 // In this case, check to make sure that we got here from a "NULL"
7650 // string in the source code.
7651 NullExpr = NullExpr->IgnoreParenImpCasts();
7652 SourceLocation loc = NullExpr->getExprLoc();
7653 if (!findMacroSpelling(loc, "NULL"))
7654 return false;
7655 }
7656
7657 int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
7658 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
7659 << NonPointerExpr->getType() << DiagType
7660 << NonPointerExpr->getSourceRange();
7661 return true;
7662}
7663
7664/// Return false if the condition expression is valid, true otherwise.
7665static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
7666 QualType CondTy = Cond->getType();
7667
7668 // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
7669 if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
7670 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
7671 << CondTy << Cond->getSourceRange();
7672 return true;
7673 }
7674
7675 // C99 6.5.15p2
7676 if (CondTy->isScalarType()) return false;
7677
7678 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
7679 << CondTy << Cond->getSourceRange();
7680 return true;
7681}
7682
7683/// Handle when one or both operands are void type.
7684static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
7685 ExprResult &RHS) {
7686 Expr *LHSExpr = LHS.get();
7687 Expr *RHSExpr = RHS.get();
7688
7689 if (!LHSExpr->getType()->isVoidType())
7690 S.Diag(RHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7691 << RHSExpr->getSourceRange();
7692 if (!RHSExpr->getType()->isVoidType())
7693 S.Diag(LHSExpr->getBeginLoc(), diag::ext_typecheck_cond_one_void)
7694 << LHSExpr->getSourceRange();
7695 LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
7696 RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
7697 return S.Context.VoidTy;
7698}
7699
7700/// Return false if the NullExpr can be promoted to PointerTy,
7701/// true otherwise.
7702static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
7703 QualType PointerTy) {
7704 if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
7705 !NullExpr.get()->isNullPointerConstant(S.Context,
7706 Expr::NPC_ValueDependentIsNull))
7707 return true;
7708
7709 NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
7710 return false;
7711}
7712
7713/// Checks compatibility between two pointers and return the resulting
7714/// type.
7715static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
7716 ExprResult &RHS,
7717 SourceLocation Loc) {
7718 QualType LHSTy = LHS.get()->getType();
7719 QualType RHSTy = RHS.get()->getType();
7720
7721 if (S.Context.hasSameType(LHSTy, RHSTy)) {
7722 // Two identical pointers types are always compatible.
7723 return LHSTy;
7724 }
7725
7726 QualType lhptee, rhptee;
7727
7728 // Get the pointee types.
7729 bool IsBlockPointer = false;
7730 if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
7731 lhptee = LHSBTy->getPointeeType();
7732 rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
7733 IsBlockPointer = true;
7734 } else {
7735 lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7736 rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7737 }
7738
7739 // C99 6.5.15p6: If both operands are pointers to compatible types or to
7740 // differently qualified versions of compatible types, the result type is
7741 // a pointer to an appropriately qualified version of the composite
7742 // type.
7743
7744 // Only CVR-qualifiers exist in the standard, and the differently-qualified
7745 // clause doesn't make sense for our extensions. E.g. address space 2 should
7746 // be incompatible with address space 3: they may live on different devices or
7747 // anything.
7748 Qualifiers lhQual = lhptee.getQualifiers();
7749 Qualifiers rhQual = rhptee.getQualifiers();
7750
7751 LangAS ResultAddrSpace = LangAS::Default;
7752 LangAS LAddrSpace = lhQual.getAddressSpace();
7753 LangAS RAddrSpace = rhQual.getAddressSpace();
7754
7755 // OpenCL v1.1 s6.5 - Conversion between pointers to distinct address
7756 // spaces is disallowed.
7757 if (lhQual.isAddressSpaceSupersetOf(rhQual))
7758 ResultAddrSpace = LAddrSpace;
7759 else if (rhQual.isAddressSpaceSupersetOf(lhQual))
7760 ResultAddrSpace = RAddrSpace;
7761 else {
7762 S.Diag(Loc, diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
7763 << LHSTy << RHSTy << 2 << LHS.get()->getSourceRange()
7764 << RHS.get()->getSourceRange();
7765 return QualType();
7766 }
7767
7768 unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
7769 auto LHSCastKind = CK_BitCast, RHSCastKind = CK_BitCast;
7770 lhQual.removeCVRQualifiers();
7771 rhQual.removeCVRQualifiers();
7772
7773 // OpenCL v2.0 specification doesn't extend compatibility of type qualifiers
7774 // (C99 6.7.3) for address spaces. We assume that the check should behave in
7775 // the same manner as it's defined for CVR qualifiers, so for OpenCL two
7776 // qual types are compatible iff
7777 // * corresponded types are compatible
7778 // * CVR qualifiers are equal
7779 // * address spaces are equal
7780 // Thus for conditional operator we merge CVR and address space unqualified
7781 // pointees and if there is a composite type we return a pointer to it with
7782 // merged qualifiers.
7783 LHSCastKind =
7784 LAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7785 RHSCastKind =
7786 RAddrSpace == ResultAddrSpace ? CK_BitCast : CK_AddressSpaceConversion;
7787 lhQual.removeAddressSpace();
7788 rhQual.removeAddressSpace();
7789
7790 lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
7791 rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
7792
7793 QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
7794
7795 if (CompositeTy.isNull()) {
7796 // In this situation, we assume void* type. No especially good
7797 // reason, but this is what gcc does, and we do have to pick
7798 // to get a consistent AST.
7799 QualType incompatTy;
7800 incompatTy = S.Context.getPointerType(
7801 S.Context.getAddrSpaceQualType(S.Context.VoidTy, ResultAddrSpace));
7802 LHS = S.ImpCastExprToType(LHS.get(), incompatTy, LHSCastKind);
7803 RHS = S.ImpCastExprToType(RHS.get(), incompatTy, RHSCastKind);
7804
7805 // FIXME: For OpenCL the warning emission and cast to void* leaves a room
7806 // for casts between types with incompatible address space qualifiers.
7807 // For the following code the compiler produces casts between global and
7808 // local address spaces of the corresponded innermost pointees:
7809 // local int *global *a;
7810 // global int *global *b;
7811 // a = (0 ? a : b); // see C99 6.5.16.1.p1.
7812 S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
7813 << LHSTy << RHSTy << LHS.get()->getSourceRange()
7814 << RHS.get()->getSourceRange();
7815
7816 return incompatTy;
7817 }
7818
7819 // The pointer types are compatible.
7820 // In case of OpenCL ResultTy should have the address space qualifier
7821 // which is a superset of address spaces of both the 2nd and the 3rd
7822 // operands of the conditional operator.
7823 QualType ResultTy = [&, ResultAddrSpace]() {
7824 if (S.getLangOpts().OpenCL) {
7825 Qualifiers CompositeQuals = CompositeTy.getQualifiers();
7826 CompositeQuals.setAddressSpace(ResultAddrSpace);
7827 return S.Context
7828 .getQualifiedType(CompositeTy.getUnqualifiedType(), CompositeQuals)
7829 .withCVRQualifiers(MergedCVRQual);
7830 }
7831 return CompositeTy.withCVRQualifiers(MergedCVRQual);
7832 }();
7833 if (IsBlockPointer)
7834 ResultTy = S.Context.getBlockPointerType(ResultTy);
7835 else
7836 ResultTy = S.Context.getPointerType(ResultTy);
7837
7838 LHS = S.ImpCastExprToType(LHS.get(), ResultTy, LHSCastKind);
7839 RHS = S.ImpCastExprToType(RHS.get(), ResultTy, RHSCastKind);
7840 return ResultTy;
7841}
7842
7843/// Return the resulting type when the operands are both block pointers.
7844static QualType checkConditionalBlockPointerCompatibility(Sema &S,
7845 ExprResult &LHS,
7846 ExprResult &RHS,
7847 SourceLocation Loc) {
7848 QualType LHSTy = LHS.get()->getType();
7849 QualType RHSTy = RHS.get()->getType();
7850
7851 if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
7852 if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
7853 QualType destType = S.Context.getPointerType(S.Context.VoidTy);
7854 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7855 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7856 return destType;
7857 }
7858 S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
7859 << LHSTy << RHSTy << LHS.get()->getSourceRange()
7860 << RHS.get()->getSourceRange();
7861 return QualType();
7862 }
7863
7864 // We have 2 block pointer types.
7865 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7866}
7867
7868/// Return the resulting type when the operands are both pointers.
7869static QualType
7870checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
7871 ExprResult &RHS,
7872 SourceLocation Loc) {
7873 // get the pointer types
7874 QualType LHSTy = LHS.get()->getType();
7875 QualType RHSTy = RHS.get()->getType();
7876
7877 // get the "pointed to" types
7878 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
7879 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
7880
7881 // ignore qualifiers on void (C99 6.5.15p3, clause 6)
7882 if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
7883 // Figure out necessary qualifiers (C99 6.5.15p6)
7884 QualType destPointee
7885 = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
7886 QualType destType = S.Context.getPointerType(destPointee);
7887 // Add qualifiers if necessary.
7888 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
7889 // Promote to void*.
7890 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
7891 return destType;
7892 }
7893 if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
7894 QualType destPointee
7895 = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
7896 QualType destType = S.Context.getPointerType(destPointee);
7897 // Add qualifiers if necessary.
7898 RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
7899 // Promote to void*.
7900 LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
7901 return destType;
7902 }
7903
7904 return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
7905}
7906
7907/// Return false if the first expression is not an integer and the second
7908/// expression is not a pointer, true otherwise.
7909static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
7910 Expr* PointerExpr, SourceLocation Loc,
7911 bool IsIntFirstExpr) {
7912 if (!PointerExpr->getType()->isPointerType() ||
7913 !Int.get()->getType()->isIntegerType())
7914 return false;
7915
7916 Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
7917 Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
7918
7919 S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
7920 << Expr1->getType() << Expr2->getType()
7921 << Expr1->getSourceRange() << Expr2->getSourceRange();
7922 Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
7923 CK_IntegralToPointer);
7924 return true;
7925}
7926
7927/// Simple conversion between integer and floating point types.
7928///
7929/// Used when handling the OpenCL conditional operator where the
7930/// condition is a vector while the other operands are scalar.
7931///
7932/// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
7933/// types are either integer or floating type. Between the two
7934/// operands, the type with the higher rank is defined as the "result
7935/// type". The other operand needs to be promoted to the same type. No
7936/// other type promotion is allowed. We cannot use
7937/// UsualArithmeticConversions() for this purpose, since it always
7938/// promotes promotable types.
7939static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
7940 ExprResult &RHS,
7941 SourceLocation QuestionLoc) {
7942 LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
7943 if (LHS.isInvalid())
7944 return QualType();
7945 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
7946 if (RHS.isInvalid())
7947 return QualType();
7948
7949 // For conversion purposes, we ignore any qualifiers.
7950 // For example, "const float" and "float" are equivalent.
7951 QualType LHSType =
7952 S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
7953 QualType RHSType =
7954 S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
7955
7956 if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
7957 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7958 << LHSType << LHS.get()->getSourceRange();
7959 return QualType();
7960 }
7961
7962 if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
7963 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
7964 << RHSType << RHS.get()->getSourceRange();
7965 return QualType();
7966 }
7967
7968 // If both types are identical, no conversion is needed.
7969 if (LHSType == RHSType)
7970 return LHSType;
7971
7972 // Now handle "real" floating types (i.e. float, double, long double).
7973 if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
7974 return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
7975 /*IsCompAssign = */ false);
7976
7977 // Finally, we have two differing integer types.
7978 return handleIntegerConversion<doIntegralCast, doIntegralCast>
7979 (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
7980}
7981
7982/// Convert scalar operands to a vector that matches the
7983/// condition in length.
7984///
7985/// Used when handling the OpenCL conditional operator where the
7986/// condition is a vector while the other operands are scalar.
7987///
7988/// We first compute the "result type" for the scalar operands
7989/// according to OpenCL v1.1 s6.3.i. Both operands are then converted
7990/// into a vector of that type where the length matches the condition
7991/// vector type. s6.11.6 requires that the element types of the result
7992/// and the condition must have the same number of bits.
7993static QualType
7994OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
7995 QualType CondTy, SourceLocation QuestionLoc) {
7996 QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
7997 if (ResTy.isNull()) return QualType();
7998
7999 const VectorType *CV = CondTy->getAs<VectorType>();
8000 assert(CV)((CV) ? static_cast<void> (0) : __assert_fail ("CV", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8000, __PRETTY_FUNCTION__))
;
8001
8002 // Determine the vector result type
8003 unsigned NumElements = CV->getNumElements();
8004 QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
8005
8006 // Ensure that all types have the same number of bits
8007 if (S.Context.getTypeSize(CV->getElementType())
8008 != S.Context.getTypeSize(ResTy)) {
8009 // Since VectorTy is created internally, it does not pretty print
8010 // with an OpenCL name. Instead, we just print a description.
8011 std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
8012 SmallString<64> Str;
8013 llvm::raw_svector_ostream OS(Str);
8014 OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
8015 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8016 << CondTy << OS.str();
8017 return QualType();
8018 }
8019
8020 // Convert operands to the vector result type
8021 LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
8022 RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
8023
8024 return VectorTy;
8025}
8026
8027/// Return false if this is a valid OpenCL condition vector
8028static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
8029 SourceLocation QuestionLoc) {
8030 // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
8031 // integral type.
8032 const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
8033 assert(CondTy)((CondTy) ? static_cast<void> (0) : __assert_fail ("CondTy"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8033, __PRETTY_FUNCTION__))
;
8034 QualType EleTy = CondTy->getElementType();
8035 if (EleTy->isIntegerType()) return false;
8036
8037 S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
8038 << Cond->getType() << Cond->getSourceRange();
8039 return true;
8040}
8041
8042/// Return false if the vector condition type and the vector
8043/// result type are compatible.
8044///
8045/// OpenCL v1.1 s6.11.6 requires that both vector types have the same
8046/// number of elements, and their element types have the same number
8047/// of bits.
8048static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
8049 SourceLocation QuestionLoc) {
8050 const VectorType *CV = CondTy->getAs<VectorType>();
8051 const VectorType *RV = VecResTy->getAs<VectorType>();
8052 assert(CV && RV)((CV && RV) ? static_cast<void> (0) : __assert_fail
("CV && RV", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8052, __PRETTY_FUNCTION__))
;
8053
8054 if (CV->getNumElements() != RV->getNumElements()) {
8055 S.Diag(QuestionLoc, diag::err_conditional_vector_size)
8056 << CondTy << VecResTy;
8057 return true;
8058 }
8059
8060 QualType CVE = CV->getElementType();
8061 QualType RVE = RV->getElementType();
8062
8063 if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
8064 S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
8065 << CondTy << VecResTy;
8066 return true;
8067 }
8068
8069 return false;
8070}
8071
8072/// Return the resulting type for the conditional operator in
8073/// OpenCL (aka "ternary selection operator", OpenCL v1.1
8074/// s6.3.i) when the condition is a vector type.
8075static QualType
8076OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
8077 ExprResult &LHS, ExprResult &RHS,
8078 SourceLocation QuestionLoc) {
8079 Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
8080 if (Cond.isInvalid())
8081 return QualType();
8082 QualType CondTy = Cond.get()->getType();
8083
8084 if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
8085 return QualType();
8086
8087 // If either operand is a vector then find the vector type of the
8088 // result as specified in OpenCL v1.1 s6.3.i.
8089 if (LHS.get()->getType()->isVectorType() ||
8090 RHS.get()->getType()->isVectorType()) {
8091 QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
8092 /*isCompAssign*/false,
8093 /*AllowBothBool*/true,
8094 /*AllowBoolConversions*/false);
8095 if (VecResTy.isNull()) return QualType();
8096 // The result type must match the condition type as specified in
8097 // OpenCL v1.1 s6.11.6.
8098 if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
8099 return QualType();
8100 return VecResTy;
8101 }
8102
8103 // Both operands are scalar.
8104 return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
8105}
8106
8107/// Return true if the Expr is block type
8108static bool checkBlockType(Sema &S, const Expr *E) {
8109 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
8110 QualType Ty = CE->getCallee()->getType();
8111 if (Ty->isBlockPointerType()) {
8112 S.Diag(E->getExprLoc(), diag::err_opencl_ternary_with_block);
8113 return true;
8114 }
8115 }
8116 return false;
8117}
8118
8119/// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
8120/// In that case, LHS = cond.
8121/// C99 6.5.15
8122QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
8123 ExprResult &RHS, ExprValueKind &VK,
8124 ExprObjectKind &OK,
8125 SourceLocation QuestionLoc) {
8126
8127 ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
8128 if (!LHSResult.isUsable()) return QualType();
8129 LHS = LHSResult;
8130
8131 ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
8132 if (!RHSResult.isUsable()) return QualType();
8133 RHS = RHSResult;
8134
8135 // C++ is sufficiently different to merit its own checker.
8136 if (getLangOpts().CPlusPlus)
8137 return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
8138
8139 VK = VK_RValue;
8140 OK = OK_Ordinary;
8141
8142 if (Context.isDependenceAllowed() &&
8143 (Cond.get()->isTypeDependent() || LHS.get()->isTypeDependent() ||
8144 RHS.get()->isTypeDependent())) {
8145 assert(!getLangOpts().CPlusPlus)((!getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("!getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8145, __PRETTY_FUNCTION__))
;
8146 assert((Cond.get()->containsErrors() || LHS.get()->containsErrors() ||(((Cond.get()->containsErrors() || LHS.get()->containsErrors
() || RHS.get()->containsErrors()) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8148, __PRETTY_FUNCTION__))
8147 RHS.get()->containsErrors()) &&(((Cond.get()->containsErrors() || LHS.get()->containsErrors
() || RHS.get()->containsErrors()) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8148, __PRETTY_FUNCTION__))
8148 "should only occur in error-recovery path.")(((Cond.get()->containsErrors() || LHS.get()->containsErrors
() || RHS.get()->containsErrors()) && "should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("(Cond.get()->containsErrors() || LHS.get()->containsErrors() || RHS.get()->containsErrors()) && \"should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8148, __PRETTY_FUNCTION__))
;
8149 return Context.DependentTy;
8150 }
8151
8152 // The OpenCL operator with a vector condition is sufficiently
8153 // different to merit its own checker.
8154 if ((getLangOpts().OpenCL && Cond.get()->getType()->isVectorType()) ||
8155 Cond.get()->getType()->isExtVectorType())
8156 return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
8157
8158 // First, check the condition.
8159 Cond = UsualUnaryConversions(Cond.get());
8160 if (Cond.isInvalid())
8161 return QualType();
8162 if (checkCondition(*this, Cond.get(), QuestionLoc))
8163 return QualType();
8164
8165 // Now check the two expressions.
8166 if (LHS.get()->getType()->isVectorType() ||
8167 RHS.get()->getType()->isVectorType())
8168 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
8169 /*AllowBothBool*/true,
8170 /*AllowBoolConversions*/false);
8171
8172 QualType ResTy =
8173 UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional);
8174 if (LHS.isInvalid() || RHS.isInvalid())
8175 return QualType();
8176
8177 QualType LHSTy = LHS.get()->getType();
8178 QualType RHSTy = RHS.get()->getType();
8179
8180 // Diagnose attempts to convert between __float128 and long double where
8181 // such conversions currently can't be handled.
8182 if (unsupportedTypeConversion(*this, LHSTy, RHSTy)) {
8183 Diag(QuestionLoc,
8184 diag::err_typecheck_cond_incompatible_operands) << LHSTy << RHSTy
8185 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8186 return QualType();
8187 }
8188
8189 // OpenCL v2.0 s6.12.5 - Blocks cannot be used as expressions of the ternary
8190 // selection operator (?:).
8191 if (getLangOpts().OpenCL &&
8192 (checkBlockType(*this, LHS.get()) | checkBlockType(*this, RHS.get()))) {
8193 return QualType();
8194 }
8195
8196 // If both operands have arithmetic type, do the usual arithmetic conversions
8197 // to find a common type: C99 6.5.15p3,5.
8198 if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
8199 // Disallow invalid arithmetic conversions, such as those between ExtInts of
8200 // different sizes, or between ExtInts and other types.
8201 if (ResTy.isNull() && (LHSTy->isExtIntType() || RHSTy->isExtIntType())) {
8202 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8203 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8204 << RHS.get()->getSourceRange();
8205 return QualType();
8206 }
8207
8208 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
8209 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
8210
8211 return ResTy;
8212 }
8213
8214 // And if they're both bfloat (which isn't arithmetic), that's fine too.
8215 if (LHSTy->isBFloat16Type() && RHSTy->isBFloat16Type()) {
8216 return LHSTy;
8217 }
8218
8219 // If both operands are the same structure or union type, the result is that
8220 // type.
8221 if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) { // C99 6.5.15p3
8222 if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
8223 if (LHSRT->getDecl() == RHSRT->getDecl())
8224 // "If both the operands have structure or union type, the result has
8225 // that type." This implies that CV qualifiers are dropped.
8226 return LHSTy.getUnqualifiedType();
8227 // FIXME: Type of conditional expression must be complete in C mode.
8228 }
8229
8230 // C99 6.5.15p5: "If both operands have void type, the result has void type."
8231 // The following || allows only one side to be void (a GCC-ism).
8232 if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
8233 return checkConditionalVoidType(*this, LHS, RHS);
8234 }
8235
8236 // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
8237 // the type of the other operand."
8238 if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
8239 if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
8240
8241 // All objective-c pointer type analysis is done here.
8242 QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
8243 QuestionLoc);
8244 if (LHS.isInvalid() || RHS.isInvalid())
8245 return QualType();
8246 if (!compositeType.isNull())
8247 return compositeType;
8248
8249
8250 // Handle block pointer types.
8251 if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
8252 return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
8253 QuestionLoc);
8254
8255 // Check constraints for C object pointers types (C99 6.5.15p3,6).
8256 if (LHSTy->isPointerType() && RHSTy->isPointerType())
8257 return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
8258 QuestionLoc);
8259
8260 // GCC compatibility: soften pointer/integer mismatch. Note that
8261 // null pointers have been filtered out by this point.
8262 if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
8263 /*IsIntFirstExpr=*/true))
8264 return RHSTy;
8265 if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
8266 /*IsIntFirstExpr=*/false))
8267 return LHSTy;
8268
8269 // Allow ?: operations in which both operands have the same
8270 // built-in sizeless type.
8271 if (LHSTy->isSizelessBuiltinType() && LHSTy == RHSTy)
8272 return LHSTy;
8273
8274 // Emit a better diagnostic if one of the expressions is a null pointer
8275 // constant and the other is not a pointer type. In this case, the user most
8276 // likely forgot to take the address of the other expression.
8277 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
8278 return QualType();
8279
8280 // Otherwise, the operands are not compatible.
8281 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
8282 << LHSTy << RHSTy << LHS.get()->getSourceRange()
8283 << RHS.get()->getSourceRange();
8284 return QualType();
8285}
8286
8287/// FindCompositeObjCPointerType - Helper method to find composite type of
8288/// two objective-c pointer types of the two input expressions.
8289QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
8290 SourceLocation QuestionLoc) {
8291 QualType LHSTy = LHS.get()->getType();
8292 QualType RHSTy = RHS.get()->getType();
8293
8294 // Handle things like Class and struct objc_class*. Here we case the result
8295 // to the pseudo-builtin, because that will be implicitly cast back to the
8296 // redefinition type if an attempt is made to access its fields.
8297 if (LHSTy->isObjCClassType() &&
8298 (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
8299 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8300 return LHSTy;
8301 }
8302 if (RHSTy->isObjCClassType() &&
8303 (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
8304 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8305 return RHSTy;
8306 }
8307 // And the same for struct objc_object* / id
8308 if (LHSTy->isObjCIdType() &&
8309 (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
8310 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
8311 return LHSTy;
8312 }
8313 if (RHSTy->isObjCIdType() &&
8314 (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
8315 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
8316 return RHSTy;
8317 }
8318 // And the same for struct objc_selector* / SEL
8319 if (Context.isObjCSelType(LHSTy) &&
8320 (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
8321 RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
8322 return LHSTy;
8323 }
8324 if (Context.isObjCSelType(RHSTy) &&
8325 (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
8326 LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
8327 return RHSTy;
8328 }
8329 // Check constraints for Objective-C object pointers types.
8330 if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
8331
8332 if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
8333 // Two identical object pointer types are always compatible.
8334 return LHSTy;
8335 }
8336 const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
8337 const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
8338 QualType compositeType = LHSTy;
8339
8340 // If both operands are interfaces and either operand can be
8341 // assigned to the other, use that type as the composite
8342 // type. This allows
8343 // xxx ? (A*) a : (B*) b
8344 // where B is a subclass of A.
8345 //
8346 // Additionally, as for assignment, if either type is 'id'
8347 // allow silent coercion. Finally, if the types are
8348 // incompatible then make sure to use 'id' as the composite
8349 // type so the result is acceptable for sending messages to.
8350
8351 // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
8352 // It could return the composite type.
8353 if (!(compositeType =
8354 Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
8355 // Nothing more to do.
8356 } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
8357 compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
8358 } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
8359 compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
8360 } else if ((LHSOPT->isObjCQualifiedIdType() ||
8361 RHSOPT->isObjCQualifiedIdType()) &&
8362 Context.ObjCQualifiedIdTypesAreCompatible(LHSOPT, RHSOPT,
8363 true)) {
8364 // Need to handle "id<xx>" explicitly.
8365 // GCC allows qualified id and any Objective-C type to devolve to
8366 // id. Currently localizing to here until clear this should be
8367 // part of ObjCQualifiedIdTypesAreCompatible.
8368 compositeType = Context.getObjCIdType();
8369 } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
8370 compositeType = Context.getObjCIdType();
8371 } else {
8372 Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
8373 << LHSTy << RHSTy
8374 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8375 QualType incompatTy = Context.getObjCIdType();
8376 LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
8377 RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
8378 return incompatTy;
8379 }
8380 // The object pointer types are compatible.
8381 LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
8382 RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
8383 return compositeType;
8384 }
8385 // Check Objective-C object pointer types and 'void *'
8386 if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
8387 if (getLangOpts().ObjCAutoRefCount) {
8388 // ARC forbids the implicit conversion of object pointers to 'void *',
8389 // so these types are not compatible.
8390 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8391 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8392 LHS = RHS = true;
8393 return QualType();
8394 }
8395 QualType lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
8396 QualType rhptee = RHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8397 QualType destPointee
8398 = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
8399 QualType destType = Context.getPointerType(destPointee);
8400 // Add qualifiers if necessary.
8401 LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
8402 // Promote to void*.
8403 RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
8404 return destType;
8405 }
8406 if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
8407 if (getLangOpts().ObjCAutoRefCount) {
8408 // ARC forbids the implicit conversion of object pointers to 'void *',
8409 // so these types are not compatible.
8410 Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
8411 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
8412 LHS = RHS = true;
8413 return QualType();
8414 }
8415 QualType lhptee = LHSTy->castAs<ObjCObjectPointerType>()->getPointeeType();
8416 QualType rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
8417 QualType destPointee
8418 = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
8419 QualType destType = Context.getPointerType(destPointee);
8420 // Add qualifiers if necessary.
8421 RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
8422 // Promote to void*.
8423 LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
8424 return destType;
8425 }
8426 return QualType();
8427}
8428
8429/// SuggestParentheses - Emit a note with a fixit hint that wraps
8430/// ParenRange in parentheses.
8431static void SuggestParentheses(Sema &Self, SourceLocation Loc,
8432 const PartialDiagnostic &Note,
8433 SourceRange ParenRange) {
8434 SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
8435 if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
8436 EndLoc.isValid()) {
8437 Self.Diag(Loc, Note)
8438 << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
8439 << FixItHint::CreateInsertion(EndLoc, ")");
8440 } else {
8441 // We can't display the parentheses, so just show the bare note.
8442 Self.Diag(Loc, Note) << ParenRange;
8443 }
8444}
8445
8446static bool IsArithmeticOp(BinaryOperatorKind Opc) {
8447 return BinaryOperator::isAdditiveOp(Opc) ||
8448 BinaryOperator::isMultiplicativeOp(Opc) ||
8449 BinaryOperator::isShiftOp(Opc) || Opc == BO_And || Opc == BO_Or;
8450 // This only checks for bitwise-or and bitwise-and, but not bitwise-xor and
8451 // not any of the logical operators. Bitwise-xor is commonly used as a
8452 // logical-xor because there is no logical-xor operator. The logical
8453 // operators, including uses of xor, have a high false positive rate for
8454 // precedence warnings.
8455}
8456
8457/// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
8458/// expression, either using a built-in or overloaded operator,
8459/// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
8460/// expression.
8461static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
8462 Expr **RHSExprs) {
8463 // Don't strip parenthesis: we should not warn if E is in parenthesis.
8464 E = E->IgnoreImpCasts();
8465 E = E->IgnoreConversionOperatorSingleStep();
8466 E = E->IgnoreImpCasts();
8467 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
8468 E = MTE->getSubExpr();
8469 E = E->IgnoreImpCasts();
8470 }
8471
8472 // Built-in binary operator.
8473 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
8474 if (IsArithmeticOp(OP->getOpcode())) {
8475 *Opcode = OP->getOpcode();
8476 *RHSExprs = OP->getRHS();
8477 return true;
8478 }
8479 }
8480
8481 // Overloaded operator.
8482 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
8483 if (Call->getNumArgs() != 2)
8484 return false;
8485
8486 // Make sure this is really a binary operator that is safe to pass into
8487 // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
8488 OverloadedOperatorKind OO = Call->getOperator();
8489 if (OO < OO_Plus || OO > OO_Arrow ||
8490 OO == OO_PlusPlus || OO == OO_MinusMinus)
8491 return false;
8492
8493 BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
8494 if (IsArithmeticOp(OpKind)) {
8495 *Opcode = OpKind;
8496 *RHSExprs = Call->getArg(1);
8497 return true;
8498 }
8499 }
8500
8501 return false;
8502}
8503
8504/// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
8505/// or is a logical expression such as (x==y) which has int type, but is
8506/// commonly interpreted as boolean.
8507static bool ExprLooksBoolean(Expr *E) {
8508 E = E->IgnoreParenImpCasts();
8509
8510 if (E->getType()->isBooleanType())
8511 return true;
8512 if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
8513 return OP->isComparisonOp() || OP->isLogicalOp();
8514 if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
8515 return OP->getOpcode() == UO_LNot;
8516 if (E->getType()->isPointerType())
8517 return true;
8518 // FIXME: What about overloaded operator calls returning "unspecified boolean
8519 // type"s (commonly pointer-to-members)?
8520
8521 return false;
8522}
8523
8524/// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
8525/// and binary operator are mixed in a way that suggests the programmer assumed
8526/// the conditional operator has higher precedence, for example:
8527/// "int x = a + someBinaryCondition ? 1 : 2".
8528static void DiagnoseConditionalPrecedence(Sema &Self,
8529 SourceLocation OpLoc,
8530 Expr *Condition,
8531 Expr *LHSExpr,
8532 Expr *RHSExpr) {
8533 BinaryOperatorKind CondOpcode;
8534 Expr *CondRHS;
8535
8536 if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
8537 return;
8538 if (!ExprLooksBoolean(CondRHS))
8539 return;
8540
8541 // The condition is an arithmetic binary expression, with a right-
8542 // hand side that looks boolean, so warn.
8543
8544 unsigned DiagID = BinaryOperator::isBitwiseOp(CondOpcode)
8545 ? diag::warn_precedence_bitwise_conditional
8546 : diag::warn_precedence_conditional;
8547
8548 Self.Diag(OpLoc, DiagID)
8549 << Condition->getSourceRange()
8550 << BinaryOperator::getOpcodeStr(CondOpcode);
8551
8552 SuggestParentheses(
8553 Self, OpLoc,
8554 Self.PDiag(diag::note_precedence_silence)
8555 << BinaryOperator::getOpcodeStr(CondOpcode),
8556 SourceRange(Condition->getBeginLoc(), Condition->getEndLoc()));
8557
8558 SuggestParentheses(Self, OpLoc,
8559 Self.PDiag(diag::note_precedence_conditional_first),
8560 SourceRange(CondRHS->getBeginLoc(), RHSExpr->getEndLoc()));
8561}
8562
8563/// Compute the nullability of a conditional expression.
8564static QualType computeConditionalNullability(QualType ResTy, bool IsBin,
8565 QualType LHSTy, QualType RHSTy,
8566 ASTContext &Ctx) {
8567 if (!ResTy->isAnyPointerType())
8568 return ResTy;
8569
8570 auto GetNullability = [&Ctx](QualType Ty) {
8571 Optional<NullabilityKind> Kind = Ty->getNullability(Ctx);
8572 if (Kind) {
8573 // For our purposes, treat _Nullable_result as _Nullable.
8574 if (*Kind == NullabilityKind::NullableResult)
8575 return NullabilityKind::Nullable;
8576 return *Kind;
8577 }
8578 return NullabilityKind::Unspecified;
8579 };
8580
8581 auto LHSKind = GetNullability(LHSTy), RHSKind = GetNullability(RHSTy);
8582 NullabilityKind MergedKind;
8583
8584 // Compute nullability of a binary conditional expression.
8585 if (IsBin) {
8586 if (LHSKind == NullabilityKind::NonNull)
8587 MergedKind = NullabilityKind::NonNull;
8588 else
8589 MergedKind = RHSKind;
8590 // Compute nullability of a normal conditional expression.
8591 } else {
8592 if (LHSKind == NullabilityKind::Nullable ||
8593 RHSKind == NullabilityKind::Nullable)
8594 MergedKind = NullabilityKind::Nullable;
8595 else if (LHSKind == NullabilityKind::NonNull)
8596 MergedKind = RHSKind;
8597 else if (RHSKind == NullabilityKind::NonNull)
8598 MergedKind = LHSKind;
8599 else
8600 MergedKind = NullabilityKind::Unspecified;
8601 }
8602
8603 // Return if ResTy already has the correct nullability.
8604 if (GetNullability(ResTy) == MergedKind)
8605 return ResTy;
8606
8607 // Strip all nullability from ResTy.
8608 while (ResTy->getNullability(Ctx))
8609 ResTy = ResTy.getSingleStepDesugaredType(Ctx);
8610
8611 // Create a new AttributedType with the new nullability kind.
8612 auto NewAttr = AttributedType::getNullabilityAttrKind(MergedKind);
8613 return Ctx.getAttributedType(NewAttr, ResTy, ResTy);
8614}
8615
8616/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
8617/// in the case of a the GNU conditional expr extension.
8618ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
8619 SourceLocation ColonLoc,
8620 Expr *CondExpr, Expr *LHSExpr,
8621 Expr *RHSExpr) {
8622 if (!Context.isDependenceAllowed()) {
8623 // C cannot handle TypoExpr nodes in the condition because it
8624 // doesn't handle dependent types properly, so make sure any TypoExprs have
8625 // been dealt with before checking the operands.
8626 ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
8627 ExprResult LHSResult = CorrectDelayedTyposInExpr(LHSExpr);
8628 ExprResult RHSResult = CorrectDelayedTyposInExpr(RHSExpr);
8629
8630 if (!CondResult.isUsable())
8631 return ExprError();
8632
8633 if (LHSExpr) {
8634 if (!LHSResult.isUsable())
8635 return ExprError();
8636 }
8637
8638 if (!RHSResult.isUsable())
8639 return ExprError();
8640
8641 CondExpr = CondResult.get();
8642 LHSExpr = LHSResult.get();
8643 RHSExpr = RHSResult.get();
8644 }
8645
8646 // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
8647 // was the condition.
8648 OpaqueValueExpr *opaqueValue = nullptr;
8649 Expr *commonExpr = nullptr;
8650 if (!LHSExpr) {
8651 commonExpr = CondExpr;
8652 // Lower out placeholder types first. This is important so that we don't
8653 // try to capture a placeholder. This happens in few cases in C++; such
8654 // as Objective-C++'s dictionary subscripting syntax.
8655 if (commonExpr->hasPlaceholderType()) {
8656 ExprResult result = CheckPlaceholderExpr(commonExpr);
8657 if (!result.isUsable()) return ExprError();
8658 commonExpr = result.get();
8659 }
8660 // We usually want to apply unary conversions *before* saving, except
8661 // in the special case of a C++ l-value conditional.
8662 if (!(getLangOpts().CPlusPlus
8663 && !commonExpr->isTypeDependent()
8664 && commonExpr->getValueKind() == RHSExpr->getValueKind()
8665 && commonExpr->isGLValue()
8666 && commonExpr->isOrdinaryOrBitFieldObject()
8667 && RHSExpr->isOrdinaryOrBitFieldObject()
8668 && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
8669 ExprResult commonRes = UsualUnaryConversions(commonExpr);
8670 if (commonRes.isInvalid())
8671 return ExprError();
8672 commonExpr = commonRes.get();
8673 }
8674
8675 // If the common expression is a class or array prvalue, materialize it
8676 // so that we can safely refer to it multiple times.
8677 if (commonExpr->isRValue() && (commonExpr->getType()->isRecordType() ||
8678 commonExpr->getType()->isArrayType())) {
8679 ExprResult MatExpr = TemporaryMaterializationConversion(commonExpr);
8680 if (MatExpr.isInvalid())
8681 return ExprError();
8682 commonExpr = MatExpr.get();
8683 }
8684
8685 opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
8686 commonExpr->getType(),
8687 commonExpr->getValueKind(),
8688 commonExpr->getObjectKind(),
8689 commonExpr);
8690 LHSExpr = CondExpr = opaqueValue;
8691 }
8692
8693 QualType LHSTy = LHSExpr->getType(), RHSTy = RHSExpr->getType();
8694 ExprValueKind VK = VK_RValue;
8695 ExprObjectKind OK = OK_Ordinary;
8696 ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
8697 QualType result = CheckConditionalOperands(Cond, LHS, RHS,
8698 VK, OK, QuestionLoc);
8699 if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
8700 RHS.isInvalid())
8701 return ExprError();
8702
8703 DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
8704 RHS.get());
8705
8706 CheckBoolLikeConversion(Cond.get(), QuestionLoc);
8707
8708 result = computeConditionalNullability(result, commonExpr, LHSTy, RHSTy,
8709 Context);
8710
8711 if (!commonExpr)
8712 return new (Context)
8713 ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
8714 RHS.get(), result, VK, OK);
8715
8716 return new (Context) BinaryConditionalOperator(
8717 commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
8718 ColonLoc, result, VK, OK);
8719}
8720
8721// Check if we have a conversion between incompatible cmse function pointer
8722// types, that is, a conversion between a function pointer with the
8723// cmse_nonsecure_call attribute and one without.
8724static bool IsInvalidCmseNSCallConversion(Sema &S, QualType FromType,
8725 QualType ToType) {
8726 if (const auto *ToFn =
8727 dyn_cast<FunctionType>(S.Context.getCanonicalType(ToType))) {
8728 if (const auto *FromFn =
8729 dyn_cast<FunctionType>(S.Context.getCanonicalType(FromType))) {
8730 FunctionType::ExtInfo ToEInfo = ToFn->getExtInfo();
8731 FunctionType::ExtInfo FromEInfo = FromFn->getExtInfo();
8732
8733 return ToEInfo.getCmseNSCall() != FromEInfo.getCmseNSCall();
8734 }
8735 }
8736 return false;
8737}
8738
8739// checkPointerTypesForAssignment - This is a very tricky routine (despite
8740// being closely modeled after the C99 spec:-). The odd characteristic of this
8741// routine is it effectively iqnores the qualifiers on the top level pointee.
8742// This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
8743// FIXME: add a couple examples in this comment.
8744static Sema::AssignConvertType
8745checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
8746 assert(LHSType.isCanonical() && "LHS not canonicalized!")((LHSType.isCanonical() && "LHS not canonicalized!") ?
static_cast<void> (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8746, __PRETTY_FUNCTION__))
;
8747 assert(RHSType.isCanonical() && "RHS not canonicalized!")((RHSType.isCanonical() && "RHS not canonicalized!") ?
static_cast<void> (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8747, __PRETTY_FUNCTION__))
;
8748
8749 // get the "pointed to" type (ignoring qualifiers at the top level)
8750 const Type *lhptee, *rhptee;
8751 Qualifiers lhq, rhq;
8752 std::tie(lhptee, lhq) =
8753 cast<PointerType>(LHSType)->getPointeeType().split().asPair();
8754 std::tie(rhptee, rhq) =
8755 cast<PointerType>(RHSType)->getPointeeType().split().asPair();
8756
8757 Sema::AssignConvertType ConvTy = Sema::Compatible;
8758
8759 // C99 6.5.16.1p1: This following citation is common to constraints
8760 // 3 & 4 (below). ...and the type *pointed to* by the left has all the
8761 // qualifiers of the type *pointed to* by the right;
8762
8763 // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
8764 if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
8765 lhq.compatiblyIncludesObjCLifetime(rhq)) {
8766 // Ignore lifetime for further calculation.
8767 lhq.removeObjCLifetime();
8768 rhq.removeObjCLifetime();
8769 }
8770
8771 if (!lhq.compatiblyIncludes(rhq)) {
8772 // Treat address-space mismatches as fatal.
8773 if (!lhq.isAddressSpaceSupersetOf(rhq))
8774 return Sema::IncompatiblePointerDiscardsQualifiers;
8775
8776 // It's okay to add or remove GC or lifetime qualifiers when converting to
8777 // and from void*.
8778 else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
8779 .compatiblyIncludes(
8780 rhq.withoutObjCGCAttr().withoutObjCLifetime())
8781 && (lhptee->isVoidType() || rhptee->isVoidType()))
8782 ; // keep old
8783
8784 // Treat lifetime mismatches as fatal.
8785 else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
8786 ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
8787
8788 // For GCC/MS compatibility, other qualifier mismatches are treated
8789 // as still compatible in C.
8790 else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8791 }
8792
8793 // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
8794 // incomplete type and the other is a pointer to a qualified or unqualified
8795 // version of void...
8796 if (lhptee->isVoidType()) {
8797 if (rhptee->isIncompleteOrObjectType())
8798 return ConvTy;
8799
8800 // As an extension, we allow cast to/from void* to function pointer.
8801 assert(rhptee->isFunctionType())((rhptee->isFunctionType()) ? static_cast<void> (0) :
__assert_fail ("rhptee->isFunctionType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8801, __PRETTY_FUNCTION__))
;
8802 return Sema::FunctionVoidPointer;
8803 }
8804
8805 if (rhptee->isVoidType()) {
8806 if (lhptee->isIncompleteOrObjectType())
8807 return ConvTy;
8808
8809 // As an extension, we allow cast to/from void* to function pointer.
8810 assert(lhptee->isFunctionType())((lhptee->isFunctionType()) ? static_cast<void> (0) :
__assert_fail ("lhptee->isFunctionType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8810, __PRETTY_FUNCTION__))
;
8811 return Sema::FunctionVoidPointer;
8812 }
8813
8814 // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
8815 // unqualified versions of compatible types, ...
8816 QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
8817 if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
8818 // Check if the pointee types are compatible ignoring the sign.
8819 // We explicitly check for char so that we catch "char" vs
8820 // "unsigned char" on systems where "char" is unsigned.
8821 if (lhptee->isCharType())
8822 ltrans = S.Context.UnsignedCharTy;
8823 else if (lhptee->hasSignedIntegerRepresentation())
8824 ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
8825
8826 if (rhptee->isCharType())
8827 rtrans = S.Context.UnsignedCharTy;
8828 else if (rhptee->hasSignedIntegerRepresentation())
8829 rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
8830
8831 if (ltrans == rtrans) {
8832 // Types are compatible ignoring the sign. Qualifier incompatibility
8833 // takes priority over sign incompatibility because the sign
8834 // warning can be disabled.
8835 if (ConvTy != Sema::Compatible)
8836 return ConvTy;
8837
8838 return Sema::IncompatiblePointerSign;
8839 }
8840
8841 // If we are a multi-level pointer, it's possible that our issue is simply
8842 // one of qualification - e.g. char ** -> const char ** is not allowed. If
8843 // the eventual target type is the same and the pointers have the same
8844 // level of indirection, this must be the issue.
8845 if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
8846 do {
8847 std::tie(lhptee, lhq) =
8848 cast<PointerType>(lhptee)->getPointeeType().split().asPair();
8849 std::tie(rhptee, rhq) =
8850 cast<PointerType>(rhptee)->getPointeeType().split().asPair();
8851
8852 // Inconsistent address spaces at this point is invalid, even if the
8853 // address spaces would be compatible.
8854 // FIXME: This doesn't catch address space mismatches for pointers of
8855 // different nesting levels, like:
8856 // __local int *** a;
8857 // int ** b = a;
8858 // It's not clear how to actually determine when such pointers are
8859 // invalidly incompatible.
8860 if (lhq.getAddressSpace() != rhq.getAddressSpace())
8861 return Sema::IncompatibleNestedPointerAddressSpaceMismatch;
8862
8863 } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
8864
8865 if (lhptee == rhptee)
8866 return Sema::IncompatibleNestedPointerQualifiers;
8867 }
8868
8869 // General pointer incompatibility takes priority over qualifiers.
8870 if (RHSType->isFunctionPointerType() && LHSType->isFunctionPointerType())
8871 return Sema::IncompatibleFunctionPointer;
8872 return Sema::IncompatiblePointer;
8873 }
8874 if (!S.getLangOpts().CPlusPlus &&
8875 S.IsFunctionConversion(ltrans, rtrans, ltrans))
8876 return Sema::IncompatibleFunctionPointer;
8877 if (IsInvalidCmseNSCallConversion(S, ltrans, rtrans))
8878 return Sema::IncompatibleFunctionPointer;
8879 return ConvTy;
8880}
8881
8882/// checkBlockPointerTypesForAssignment - This routine determines whether two
8883/// block pointer types are compatible or whether a block and normal pointer
8884/// are compatible. It is more restrict than comparing two function pointer
8885// types.
8886static Sema::AssignConvertType
8887checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
8888 QualType RHSType) {
8889 assert(LHSType.isCanonical() && "LHS not canonicalized!")((LHSType.isCanonical() && "LHS not canonicalized!") ?
static_cast<void> (0) : __assert_fail ("LHSType.isCanonical() && \"LHS not canonicalized!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8889, __PRETTY_FUNCTION__))
;
8890 assert(RHSType.isCanonical() && "RHS not canonicalized!")((RHSType.isCanonical() && "RHS not canonicalized!") ?
static_cast<void> (0) : __assert_fail ("RHSType.isCanonical() && \"RHS not canonicalized!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8890, __PRETTY_FUNCTION__))
;
8891
8892 QualType lhptee, rhptee;
8893
8894 // get the "pointed to" type (ignoring qualifiers at the top level)
8895 lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
8896 rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
8897
8898 // In C++, the types have to match exactly.
8899 if (S.getLangOpts().CPlusPlus)
8900 return Sema::IncompatibleBlockPointer;
8901
8902 Sema::AssignConvertType ConvTy = Sema::Compatible;
8903
8904 // For blocks we enforce that qualifiers are identical.
8905 Qualifiers LQuals = lhptee.getLocalQualifiers();
8906 Qualifiers RQuals = rhptee.getLocalQualifiers();
8907 if (S.getLangOpts().OpenCL) {
8908 LQuals.removeAddressSpace();
8909 RQuals.removeAddressSpace();
8910 }
8911 if (LQuals != RQuals)
8912 ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
8913
8914 // FIXME: OpenCL doesn't define the exact compile time semantics for a block
8915 // assignment.
8916 // The current behavior is similar to C++ lambdas. A block might be
8917 // assigned to a variable iff its return type and parameters are compatible
8918 // (C99 6.2.7) with the corresponding return type and parameters of the LHS of
8919 // an assignment. Presumably it should behave in way that a function pointer
8920 // assignment does in C, so for each parameter and return type:
8921 // * CVR and address space of LHS should be a superset of CVR and address
8922 // space of RHS.
8923 // * unqualified types should be compatible.
8924 if (S.getLangOpts().OpenCL) {
8925 if (!S.Context.typesAreBlockPointerCompatible(
8926 S.Context.getQualifiedType(LHSType.getUnqualifiedType(), LQuals),
8927 S.Context.getQualifiedType(RHSType.getUnqualifiedType(), RQuals)))
8928 return Sema::IncompatibleBlockPointer;
8929 } else if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
8930 return Sema::IncompatibleBlockPointer;
8931
8932 return ConvTy;
8933}
8934
8935/// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
8936/// for assignment compatibility.
8937static Sema::AssignConvertType
8938checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
8939 QualType RHSType) {
8940 assert(LHSType.isCanonical() && "LHS was not canonicalized!")((LHSType.isCanonical() && "LHS was not canonicalized!"
) ? static_cast<void> (0) : __assert_fail ("LHSType.isCanonical() && \"LHS was not canonicalized!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8940, __PRETTY_FUNCTION__))
;
8941 assert(RHSType.isCanonical() && "RHS was not canonicalized!")((RHSType.isCanonical() && "RHS was not canonicalized!"
) ? static_cast<void> (0) : __assert_fail ("RHSType.isCanonical() && \"RHS was not canonicalized!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 8941, __PRETTY_FUNCTION__))
;
8942
8943 if (LHSType->isObjCBuiltinType()) {
8944 // Class is not compatible with ObjC object pointers.
8945 if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
8946 !RHSType->isObjCQualifiedClassType())
8947 return Sema::IncompatiblePointer;
8948 return Sema::Compatible;
8949 }
8950 if (RHSType->isObjCBuiltinType()) {
8951 if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
8952 !LHSType->isObjCQualifiedClassType())
8953 return Sema::IncompatiblePointer;
8954 return Sema::Compatible;
8955 }
8956 QualType lhptee = LHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8957 QualType rhptee = RHSType->castAs<ObjCObjectPointerType>()->getPointeeType();
8958
8959 if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
8960 // make an exception for id<P>
8961 !LHSType->isObjCQualifiedIdType())
8962 return Sema::CompatiblePointerDiscardsQualifiers;
8963
8964 if (S.Context.typesAreCompatible(LHSType, RHSType))
8965 return Sema::Compatible;
8966 if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
8967 return Sema::IncompatibleObjCQualifiedId;
8968 return Sema::IncompatiblePointer;
8969}
8970
8971Sema::AssignConvertType
8972Sema::CheckAssignmentConstraints(SourceLocation Loc,
8973 QualType LHSType, QualType RHSType) {
8974 // Fake up an opaque expression. We don't actually care about what
8975 // cast operations are required, so if CheckAssignmentConstraints
8976 // adds casts to this they'll be wasted, but fortunately that doesn't
8977 // usually happen on valid code.
8978 OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
8979 ExprResult RHSPtr = &RHSExpr;
8980 CastKind K;
8981
8982 return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
8983}
8984
8985/// This helper function returns true if QT is a vector type that has element
8986/// type ElementType.
8987static bool isVector(QualType QT, QualType ElementType) {
8988 if (const VectorType *VT = QT->getAs<VectorType>())
8989 return VT->getElementType().getCanonicalType() == ElementType;
8990 return false;
8991}
8992
8993/// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
8994/// has code to accommodate several GCC extensions when type checking
8995/// pointers. Here are some objectionable examples that GCC considers warnings:
8996///
8997/// int a, *pint;
8998/// short *pshort;
8999/// struct foo *pfoo;
9000///
9001/// pint = pshort; // warning: assignment from incompatible pointer type
9002/// a = pint; // warning: assignment makes integer from pointer without a cast
9003/// pint = a; // warning: assignment makes pointer from integer without a cast
9004/// pint = pfoo; // warning: assignment from incompatible pointer type
9005///
9006/// As a result, the code for dealing with pointers is more complex than the
9007/// C99 spec dictates.
9008///
9009/// Sets 'Kind' for any result kind except Incompatible.
9010Sema::AssignConvertType
9011Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
9012 CastKind &Kind, bool ConvertRHS) {
9013 QualType RHSType = RHS.get()->getType();
9014 QualType OrigLHSType = LHSType;
9015
9016 // Get canonical types. We're not formatting these types, just comparing
9017 // them.
9018 LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
9019 RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
9020
9021 // Common case: no conversion required.
9022 if (LHSType == RHSType) {
9023 Kind = CK_NoOp;
9024 return Compatible;
9025 }
9026
9027 // If we have an atomic type, try a non-atomic assignment, then just add an
9028 // atomic qualification step.
9029 if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
9030 Sema::AssignConvertType result =
9031 CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
9032 if (result != Compatible)
9033 return result;
9034 if (Kind != CK_NoOp && ConvertRHS)
9035 RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
9036 Kind = CK_NonAtomicToAtomic;
9037 return Compatible;
9038 }
9039
9040 // If the left-hand side is a reference type, then we are in a
9041 // (rare!) case where we've allowed the use of references in C,
9042 // e.g., as a parameter type in a built-in function. In this case,
9043 // just make sure that the type referenced is compatible with the
9044 // right-hand side type. The caller is responsible for adjusting
9045 // LHSType so that the resulting expression does not have reference
9046 // type.
9047 if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
9048 if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
9049 Kind = CK_LValueBitCast;
9050 return Compatible;
9051 }
9052 return Incompatible;
9053 }
9054
9055 // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
9056 // to the same ExtVector type.
9057 if (LHSType->isExtVectorType()) {
9058 if (RHSType->isExtVectorType())
9059 return Incompatible;
9060 if (RHSType->isArithmeticType()) {
9061 // CK_VectorSplat does T -> vector T, so first cast to the element type.
9062 if (ConvertRHS)
9063 RHS = prepareVectorSplat(LHSType, RHS.get());
9064 Kind = CK_VectorSplat;
9065 return Compatible;
9066 }
9067 }
9068
9069 // Conversions to or from vector type.
9070 if (LHSType->isVectorType() || RHSType->isVectorType()) {
9071 if (LHSType->isVectorType() && RHSType->isVectorType()) {
9072 // Allow assignments of an AltiVec vector type to an equivalent GCC
9073 // vector type and vice versa
9074 if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9075 Kind = CK_BitCast;
9076 return Compatible;
9077 }
9078
9079 // If we are allowing lax vector conversions, and LHS and RHS are both
9080 // vectors, the total size only needs to be the same. This is a bitcast;
9081 // no bits are changed but the result type is different.
9082 if (isLaxVectorConversion(RHSType, LHSType)) {
9083 Kind = CK_BitCast;
9084 return IncompatibleVectors;
9085 }
9086 }
9087
9088 // When the RHS comes from another lax conversion (e.g. binops between
9089 // scalars and vectors) the result is canonicalized as a vector. When the
9090 // LHS is also a vector, the lax is allowed by the condition above. Handle
9091 // the case where LHS is a scalar.
9092 if (LHSType->isScalarType()) {
9093 const VectorType *VecType = RHSType->getAs<VectorType>();
9094 if (VecType && VecType->getNumElements() == 1 &&
9095 isLaxVectorConversion(RHSType, LHSType)) {
9096 ExprResult *VecExpr = &RHS;
9097 *VecExpr = ImpCastExprToType(VecExpr->get(), LHSType, CK_BitCast);
9098 Kind = CK_BitCast;
9099 return Compatible;
9100 }
9101 }
9102
9103 // Allow assignments between fixed-length and sizeless SVE vectors.
9104 if ((LHSType->isSizelessBuiltinType() && RHSType->isVectorType()) ||
9105 (LHSType->isVectorType() && RHSType->isSizelessBuiltinType()))
9106 if (Context.areCompatibleSveTypes(LHSType, RHSType) ||
9107 Context.areLaxCompatibleSveTypes(LHSType, RHSType)) {
9108 Kind = CK_BitCast;
9109 return Compatible;
9110 }
9111
9112 return Incompatible;
9113 }
9114
9115 // Diagnose attempts to convert between __float128 and long double where
9116 // such conversions currently can't be handled.
9117 if (unsupportedTypeConversion(*this, LHSType, RHSType))
9118 return Incompatible;
9119
9120 // Disallow assigning a _Complex to a real type in C++ mode since it simply
9121 // discards the imaginary part.
9122 if (getLangOpts().CPlusPlus && RHSType->getAs<ComplexType>() &&
9123 !LHSType->getAs<ComplexType>())
9124 return Incompatible;
9125
9126 // Arithmetic conversions.
9127 if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
9128 !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
9129 if (ConvertRHS)
9130 Kind = PrepareScalarCast(RHS, LHSType);
9131 return Compatible;
9132 }
9133
9134 // Conversions to normal pointers.
9135 if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
9136 // U* -> T*
9137 if (isa<PointerType>(RHSType)) {
9138 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9139 LangAS AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
9140 if (AddrSpaceL != AddrSpaceR)
9141 Kind = CK_AddressSpaceConversion;
9142 else if (Context.hasCvrSimilarType(RHSType, LHSType))
9143 Kind = CK_NoOp;
9144 else
9145 Kind = CK_BitCast;
9146 return checkPointerTypesForAssignment(*this, LHSType, RHSType);
9147 }
9148
9149 // int -> T*
9150 if (RHSType->isIntegerType()) {
9151 Kind = CK_IntegralToPointer; // FIXME: null?
9152 return IntToPointer;
9153 }
9154
9155 // C pointers are not compatible with ObjC object pointers,
9156 // with two exceptions:
9157 if (isa<ObjCObjectPointerType>(RHSType)) {
9158 // - conversions to void*
9159 if (LHSPointer->getPointeeType()->isVoidType()) {
9160 Kind = CK_BitCast;
9161 return Compatible;
9162 }
9163
9164 // - conversions from 'Class' to the redefinition type
9165 if (RHSType->isObjCClassType() &&
9166 Context.hasSameType(LHSType,
9167 Context.getObjCClassRedefinitionType())) {
9168 Kind = CK_BitCast;
9169 return Compatible;
9170 }
9171
9172 Kind = CK_BitCast;
9173 return IncompatiblePointer;
9174 }
9175
9176 // U^ -> void*
9177 if (RHSType->getAs<BlockPointerType>()) {
9178 if (LHSPointer->getPointeeType()->isVoidType()) {
9179 LangAS AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
9180 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9181 ->getPointeeType()
9182 .getAddressSpace();
9183 Kind =
9184 AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9185 return Compatible;
9186 }
9187 }
9188
9189 return Incompatible;
9190 }
9191
9192 // Conversions to block pointers.
9193 if (isa<BlockPointerType>(LHSType)) {
9194 // U^ -> T^
9195 if (RHSType->isBlockPointerType()) {
9196 LangAS AddrSpaceL = LHSType->getAs<BlockPointerType>()
9197 ->getPointeeType()
9198 .getAddressSpace();
9199 LangAS AddrSpaceR = RHSType->getAs<BlockPointerType>()
9200 ->getPointeeType()
9201 .getAddressSpace();
9202 Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
9203 return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
9204 }
9205
9206 // int or null -> T^
9207 if (RHSType->isIntegerType()) {
9208 Kind = CK_IntegralToPointer; // FIXME: null
9209 return IntToBlockPointer;
9210 }
9211
9212 // id -> T^
9213 if (getLangOpts().ObjC && RHSType->isObjCIdType()) {
9214 Kind = CK_AnyPointerToBlockPointerCast;
9215 return Compatible;
9216 }
9217
9218 // void* -> T^
9219 if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
9220 if (RHSPT->getPointeeType()->isVoidType()) {
9221 Kind = CK_AnyPointerToBlockPointerCast;
9222 return Compatible;
9223 }
9224
9225 return Incompatible;
9226 }
9227
9228 // Conversions to Objective-C pointers.
9229 if (isa<ObjCObjectPointerType>(LHSType)) {
9230 // A* -> B*
9231 if (RHSType->isObjCObjectPointerType()) {
9232 Kind = CK_BitCast;
9233 Sema::AssignConvertType result =
9234 checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
9235 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9236 result == Compatible &&
9237 !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
9238 result = IncompatibleObjCWeakRef;
9239 return result;
9240 }
9241
9242 // int or null -> A*
9243 if (RHSType->isIntegerType()) {
9244 Kind = CK_IntegralToPointer; // FIXME: null
9245 return IntToPointer;
9246 }
9247
9248 // In general, C pointers are not compatible with ObjC object pointers,
9249 // with two exceptions:
9250 if (isa<PointerType>(RHSType)) {
9251 Kind = CK_CPointerToObjCPointerCast;
9252
9253 // - conversions from 'void*'
9254 if (RHSType->isVoidPointerType()) {
9255 return Compatible;
9256 }
9257
9258 // - conversions to 'Class' from its redefinition type
9259 if (LHSType->isObjCClassType() &&
9260 Context.hasSameType(RHSType,
9261 Context.getObjCClassRedefinitionType())) {
9262 return Compatible;
9263 }
9264
9265 return IncompatiblePointer;
9266 }
9267
9268 // Only under strict condition T^ is compatible with an Objective-C pointer.
9269 if (RHSType->isBlockPointerType() &&
9270 LHSType->isBlockCompatibleObjCPointerType(Context)) {
9271 if (ConvertRHS)
9272 maybeExtendBlockObject(RHS);
9273 Kind = CK_BlockPointerToObjCPointerCast;
9274 return Compatible;
9275 }
9276
9277 return Incompatible;
9278 }
9279
9280 // Conversions from pointers that are not covered by the above.
9281 if (isa<PointerType>(RHSType)) {
9282 // T* -> _Bool
9283 if (LHSType == Context.BoolTy) {
9284 Kind = CK_PointerToBoolean;
9285 return Compatible;
9286 }
9287
9288 // T* -> int
9289 if (LHSType->isIntegerType()) {
9290 Kind = CK_PointerToIntegral;
9291 return PointerToInt;
9292 }
9293
9294 return Incompatible;
9295 }
9296
9297 // Conversions from Objective-C pointers that are not covered by the above.
9298 if (isa<ObjCObjectPointerType>(RHSType)) {
9299 // T* -> _Bool
9300 if (LHSType == Context.BoolTy) {
9301 Kind = CK_PointerToBoolean;
9302 return Compatible;
9303 }
9304
9305 // T* -> int
9306 if (LHSType->isIntegerType()) {
9307 Kind = CK_PointerToIntegral;
9308 return PointerToInt;
9309 }
9310
9311 return Incompatible;
9312 }
9313
9314 // struct A -> struct B
9315 if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
9316 if (Context.typesAreCompatible(LHSType, RHSType)) {
9317 Kind = CK_NoOp;
9318 return Compatible;
9319 }
9320 }
9321
9322 if (LHSType->isSamplerT() && RHSType->isIntegerType()) {
9323 Kind = CK_IntToOCLSampler;
9324 return Compatible;
9325 }
9326
9327 return Incompatible;
9328}
9329
9330/// Constructs a transparent union from an expression that is
9331/// used to initialize the transparent union.
9332static void ConstructTransparentUnion(Sema &S, ASTContext &C,
9333 ExprResult &EResult, QualType UnionType,
9334 FieldDecl *Field) {
9335 // Build an initializer list that designates the appropriate member
9336 // of the transparent union.
9337 Expr *E = EResult.get();
9338 InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
9339 E, SourceLocation());
9340 Initializer->setType(UnionType);
9341 Initializer->setInitializedFieldInUnion(Field);
9342
9343 // Build a compound literal constructing a value of the transparent
9344 // union type from this initializer list.
9345 TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
9346 EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
9347 VK_RValue, Initializer, false);
9348}
9349
9350Sema::AssignConvertType
9351Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
9352 ExprResult &RHS) {
9353 QualType RHSType = RHS.get()->getType();
9354
9355 // If the ArgType is a Union type, we want to handle a potential
9356 // transparent_union GCC extension.
9357 const RecordType *UT = ArgType->getAsUnionType();
9358 if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
9359 return Incompatible;
9360
9361 // The field to initialize within the transparent union.
9362 RecordDecl *UD = UT->getDecl();
9363 FieldDecl *InitField = nullptr;
9364 // It's compatible if the expression matches any of the fields.
9365 for (auto *it : UD->fields()) {
9366 if (it->getType()->isPointerType()) {
9367 // If the transparent union contains a pointer type, we allow:
9368 // 1) void pointer
9369 // 2) null pointer constant
9370 if (RHSType->isPointerType())
9371 if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
9372 RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
9373 InitField = it;
9374 break;
9375 }
9376
9377 if (RHS.get()->isNullPointerConstant(Context,
9378 Expr::NPC_ValueDependentIsNull)) {
9379 RHS = ImpCastExprToType(RHS.get(), it->getType(),
9380 CK_NullToPointer);
9381 InitField = it;
9382 break;
9383 }
9384 }
9385
9386 CastKind Kind;
9387 if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
9388 == Compatible) {
9389 RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
9390 InitField = it;
9391 break;
9392 }
9393 }
9394
9395 if (!InitField)
9396 return Incompatible;
9397
9398 ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
9399 return Compatible;
9400}
9401
9402Sema::AssignConvertType
9403Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
9404 bool Diagnose,
9405 bool DiagnoseCFAudited,
9406 bool ConvertRHS) {
9407 // We need to be able to tell the caller whether we diagnosed a problem, if
9408 // they ask us to issue diagnostics.
9409 assert((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed")(((ConvertRHS || !Diagnose) && "can't indicate whether we diagnosed"
) ? static_cast<void> (0) : __assert_fail ("(ConvertRHS || !Diagnose) && \"can't indicate whether we diagnosed\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 9409, __PRETTY_FUNCTION__))
;
9410
9411 // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
9412 // we can't avoid *all* modifications at the moment, so we need some somewhere
9413 // to put the updated value.
9414 ExprResult LocalRHS = CallerRHS;
9415 ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
9416
9417 if (const auto *LHSPtrType = LHSType->getAs<PointerType>()) {
9418 if (const auto *RHSPtrType = RHS.get()->getType()->getAs<PointerType>()) {
9419 if (RHSPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
9420 !LHSPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
9421 Diag(RHS.get()->getExprLoc(),
9422 diag::warn_noderef_to_dereferenceable_pointer)
9423 << RHS.get()->getSourceRange();
9424 }
9425 }
9426 }
9427
9428 if (getLangOpts().CPlusPlus) {
9429 if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
9430 // C++ 5.17p3: If the left operand is not of class type, the
9431 // expression is implicitly converted (C++ 4) to the
9432 // cv-unqualified type of the left operand.
9433 QualType RHSType = RHS.get()->getType();
9434 if (Diagnose) {
9435 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9436 AA_Assigning);
9437 } else {
9438 ImplicitConversionSequence ICS =
9439 TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9440 /*SuppressUserConversions=*/false,
9441 AllowedExplicit::None,
9442 /*InOverloadResolution=*/false,
9443 /*CStyle=*/false,
9444 /*AllowObjCWritebackConversion=*/false);
9445 if (ICS.isFailure())
9446 return Incompatible;
9447 RHS = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
9448 ICS, AA_Assigning);
9449 }
9450 if (RHS.isInvalid())
9451 return Incompatible;
9452 Sema::AssignConvertType result = Compatible;
9453 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9454 !CheckObjCARCUnavailableWeakConversion(LHSType, RHSType))
9455 result = IncompatibleObjCWeakRef;
9456 return result;
9457 }
9458
9459 // FIXME: Currently, we fall through and treat C++ classes like C
9460 // structures.
9461 // FIXME: We also fall through for atomics; not sure what should
9462 // happen there, though.
9463 } else if (RHS.get()->getType() == Context.OverloadTy) {
9464 // As a set of extensions to C, we support overloading on functions. These
9465 // functions need to be resolved here.
9466 DeclAccessPair DAP;
9467 if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
9468 RHS.get(), LHSType, /*Complain=*/false, DAP))
9469 RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
9470 else
9471 return Incompatible;
9472 }
9473
9474 // C99 6.5.16.1p1: the left operand is a pointer and the right is
9475 // a null pointer constant.
9476 if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
9477 LHSType->isBlockPointerType()) &&
9478 RHS.get()->isNullPointerConstant(Context,
9479 Expr::NPC_ValueDependentIsNull)) {
9480 if (Diagnose || ConvertRHS) {
9481 CastKind Kind;
9482 CXXCastPath Path;
9483 CheckPointerConversion(RHS.get(), LHSType, Kind, Path,
9484 /*IgnoreBaseAccess=*/false, Diagnose);
9485 if (ConvertRHS)
9486 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
9487 }
9488 return Compatible;
9489 }
9490
9491 // OpenCL queue_t type assignment.
9492 if (LHSType->isQueueT() && RHS.get()->isNullPointerConstant(
9493 Context, Expr::NPC_ValueDependentIsNull)) {
9494 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
9495 return Compatible;
9496 }
9497
9498 // This check seems unnatural, however it is necessary to ensure the proper
9499 // conversion of functions/arrays. If the conversion were done for all
9500 // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
9501 // expressions that suppress this implicit conversion (&, sizeof).
9502 //
9503 // Suppress this for references: C++ 8.5.3p5.
9504 if (!LHSType->isReferenceType()) {
9505 // FIXME: We potentially allocate here even if ConvertRHS is false.
9506 RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
9507 if (RHS.isInvalid())
9508 return Incompatible;
9509 }
9510 CastKind Kind;
9511 Sema::AssignConvertType result =
9512 CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
9513
9514 // C99 6.5.16.1p2: The value of the right operand is converted to the
9515 // type of the assignment expression.
9516 // CheckAssignmentConstraints allows the left-hand side to be a reference,
9517 // so that we can use references in built-in functions even in C.
9518 // The getNonReferenceType() call makes sure that the resulting expression
9519 // does not have reference type.
9520 if (result != Incompatible && RHS.get()->getType() != LHSType) {
9521 QualType Ty = LHSType.getNonLValueExprType(Context);
9522 Expr *E = RHS.get();
9523
9524 // Check for various Objective-C errors. If we are not reporting
9525 // diagnostics and just checking for errors, e.g., during overload
9526 // resolution, return Incompatible to indicate the failure.
9527 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
9528 CheckObjCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
9529 Diagnose, DiagnoseCFAudited) != ACR_okay) {
9530 if (!Diagnose)
9531 return Incompatible;
9532 }
9533 if (getLangOpts().ObjC &&
9534 (CheckObjCBridgeRelatedConversions(E->getBeginLoc(), LHSType,
9535 E->getType(), E, Diagnose) ||
9536 CheckConversionToObjCLiteral(LHSType, E, Diagnose))) {
9537 if (!Diagnose)
9538 return Incompatible;
9539 // Replace the expression with a corrected version and continue so we
9540 // can find further errors.
9541 RHS = E;
9542 return Compatible;
9543 }
9544
9545 if (ConvertRHS)
9546 RHS = ImpCastExprToType(E, Ty, Kind);
9547 }
9548
9549 return result;
9550}
9551
9552namespace {
9553/// The original operand to an operator, prior to the application of the usual
9554/// arithmetic conversions and converting the arguments of a builtin operator
9555/// candidate.
9556struct OriginalOperand {
9557 explicit OriginalOperand(Expr *Op) : Orig(Op), Conversion(nullptr) {
9558 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Op))
9559 Op = MTE->getSubExpr();
9560 if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(Op))
9561 Op = BTE->getSubExpr();
9562 if (auto *ICE = dyn_cast<ImplicitCastExpr>(Op)) {
9563 Orig = ICE->getSubExprAsWritten();
9564 Conversion = ICE->getConversionFunction();
9565 }
9566 }
9567
9568 QualType getType() const { return Orig->getType(); }
9569
9570 Expr *Orig;
9571 NamedDecl *Conversion;
9572};
9573}
9574
9575QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
9576 ExprResult &RHS) {
9577 OriginalOperand OrigLHS(LHS.get()), OrigRHS(RHS.get());
9578
9579 Diag(Loc, diag::err_typecheck_invalid_operands)
9580 << OrigLHS.getType() << OrigRHS.getType()
9581 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
9582
9583 // If a user-defined conversion was applied to either of the operands prior
9584 // to applying the built-in operator rules, tell the user about it.
9585 if (OrigLHS.Conversion) {
9586 Diag(OrigLHS.Conversion->getLocation(),
9587 diag::note_typecheck_invalid_operands_converted)
9588 << 0 << LHS.get()->getType();
9589 }
9590 if (OrigRHS.Conversion) {
9591 Diag(OrigRHS.Conversion->getLocation(),
9592 diag::note_typecheck_invalid_operands_converted)
9593 << 1 << RHS.get()->getType();
9594 }
9595
9596 return QualType();
9597}
9598
9599// Diagnose cases where a scalar was implicitly converted to a vector and
9600// diagnose the underlying types. Otherwise, diagnose the error
9601// as invalid vector logical operands for non-C++ cases.
9602QualType Sema::InvalidLogicalVectorOperands(SourceLocation Loc, ExprResult &LHS,
9603 ExprResult &RHS) {
9604 QualType LHSType = LHS.get()->IgnoreImpCasts()->getType();
9605 QualType RHSType = RHS.get()->IgnoreImpCasts()->getType();
9606
9607 bool LHSNatVec = LHSType->isVectorType();
9608 bool RHSNatVec = RHSType->isVectorType();
9609
9610 if (!(LHSNatVec && RHSNatVec)) {
9611 Expr *Vector = LHSNatVec ? LHS.get() : RHS.get();
9612 Expr *NonVector = !LHSNatVec ? LHS.get() : RHS.get();
9613 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9614 << 0 << Vector->getType() << NonVector->IgnoreImpCasts()->getType()
9615 << Vector->getSourceRange();
9616 return QualType();
9617 }
9618
9619 Diag(Loc, diag::err_typecheck_logical_vector_expr_gnu_cpp_restrict)
9620 << 1 << LHSType << RHSType << LHS.get()->getSourceRange()
9621 << RHS.get()->getSourceRange();
9622
9623 return QualType();
9624}
9625
9626/// Try to convert a value of non-vector type to a vector type by converting
9627/// the type to the element type of the vector and then performing a splat.
9628/// If the language is OpenCL, we only use conversions that promote scalar
9629/// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
9630/// for float->int.
9631///
9632/// OpenCL V2.0 6.2.6.p2:
9633/// An error shall occur if any scalar operand type has greater rank
9634/// than the type of the vector element.
9635///
9636/// \param scalar - if non-null, actually perform the conversions
9637/// \return true if the operation fails (but without diagnosing the failure)
9638static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
9639 QualType scalarTy,
9640 QualType vectorEltTy,
9641 QualType vectorTy,
9642 unsigned &DiagID) {
9643 // The conversion to apply to the scalar before splatting it,
9644 // if necessary.
9645 CastKind scalarCast = CK_NoOp;
9646
9647 if (vectorEltTy->isIntegralType(S.Context)) {
9648 if (S.getLangOpts().OpenCL && (scalarTy->isRealFloatingType() ||
9649 (scalarTy->isIntegerType() &&
9650 S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0))) {
9651 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9652 return true;
9653 }
9654 if (!scalarTy->isIntegralType(S.Context))
9655 return true;
9656 scalarCast = CK_IntegralCast;
9657 } else if (vectorEltTy->isRealFloatingType()) {
9658 if (scalarTy->isRealFloatingType()) {
9659 if (S.getLangOpts().OpenCL &&
9660 S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0) {
9661 DiagID = diag::err_opencl_scalar_type_rank_greater_than_vector_type;
9662 return true;
9663 }
9664 scalarCast = CK_FloatingCast;
9665 }
9666 else if (scalarTy->isIntegralType(S.Context))
9667 scalarCast = CK_IntegralToFloating;
9668 else
9669 return true;
9670 } else {
9671 return true;
9672 }
9673
9674 // Adjust scalar if desired.
9675 if (scalar) {
9676 if (scalarCast != CK_NoOp)
9677 *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
9678 *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
9679 }
9680 return false;
9681}
9682
9683/// Convert vector E to a vector with the same number of elements but different
9684/// element type.
9685static ExprResult convertVector(Expr *E, QualType ElementType, Sema &S) {
9686 const auto *VecTy = E->getType()->getAs<VectorType>();
9687 assert(VecTy && "Expression E must be a vector")((VecTy && "Expression E must be a vector") ? static_cast
<void> (0) : __assert_fail ("VecTy && \"Expression E must be a vector\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 9687, __PRETTY_FUNCTION__))
;
9688 QualType NewVecTy = S.Context.getVectorType(ElementType,
9689 VecTy->getNumElements(),
9690 VecTy->getVectorKind());
9691
9692 // Look through the implicit cast. Return the subexpression if its type is
9693 // NewVecTy.
9694 if (auto *ICE = dyn_cast<ImplicitCastExpr>(E))
9695 if (ICE->getSubExpr()->getType() == NewVecTy)
9696 return ICE->getSubExpr();
9697
9698 auto Cast = ElementType->isIntegerType() ? CK_IntegralCast : CK_FloatingCast;
9699 return S.ImpCastExprToType(E, NewVecTy, Cast);
9700}
9701
9702/// Test if a (constant) integer Int can be casted to another integer type
9703/// IntTy without losing precision.
9704static bool canConvertIntToOtherIntTy(Sema &S, ExprResult *Int,
9705 QualType OtherIntTy) {
9706 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9707
9708 // Reject cases where the value of the Int is unknown as that would
9709 // possibly cause truncation, but accept cases where the scalar can be
9710 // demoted without loss of precision.
9711 Expr::EvalResult EVResult;
9712 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9713 int Order = S.Context.getIntegerTypeOrder(OtherIntTy, IntTy);
9714 bool IntSigned = IntTy->hasSignedIntegerRepresentation();
9715 bool OtherIntSigned = OtherIntTy->hasSignedIntegerRepresentation();
9716
9717 if (CstInt) {
9718 // If the scalar is constant and is of a higher order and has more active
9719 // bits that the vector element type, reject it.
9720 llvm::APSInt Result = EVResult.Val.getInt();
9721 unsigned NumBits = IntSigned
9722 ? (Result.isNegative() ? Result.getMinSignedBits()
9723 : Result.getActiveBits())
9724 : Result.getActiveBits();
9725 if (Order < 0 && S.Context.getIntWidth(OtherIntTy) < NumBits)
9726 return true;
9727
9728 // If the signedness of the scalar type and the vector element type
9729 // differs and the number of bits is greater than that of the vector
9730 // element reject it.
9731 return (IntSigned != OtherIntSigned &&
9732 NumBits > S.Context.getIntWidth(OtherIntTy));
9733 }
9734
9735 // Reject cases where the value of the scalar is not constant and it's
9736 // order is greater than that of the vector element type.
9737 return (Order < 0);
9738}
9739
9740/// Test if a (constant) integer Int can be casted to floating point type
9741/// FloatTy without losing precision.
9742static bool canConvertIntTyToFloatTy(Sema &S, ExprResult *Int,
9743 QualType FloatTy) {
9744 QualType IntTy = Int->get()->getType().getUnqualifiedType();
9745
9746 // Determine if the integer constant can be expressed as a floating point
9747 // number of the appropriate type.
9748 Expr::EvalResult EVResult;
9749 bool CstInt = Int->get()->EvaluateAsInt(EVResult, S.Context);
9750
9751 uint64_t Bits = 0;
9752 if (CstInt) {
9753 // Reject constants that would be truncated if they were converted to
9754 // the floating point type. Test by simple to/from conversion.
9755 // FIXME: Ideally the conversion to an APFloat and from an APFloat
9756 // could be avoided if there was a convertFromAPInt method
9757 // which could signal back if implicit truncation occurred.
9758 llvm::APSInt Result = EVResult.Val.getInt();
9759 llvm::APFloat Float(S.Context.getFloatTypeSemantics(FloatTy));
9760 Float.convertFromAPInt(Result, IntTy->hasSignedIntegerRepresentation(),
9761 llvm::APFloat::rmTowardZero);
9762 llvm::APSInt ConvertBack(S.Context.getIntWidth(IntTy),
9763 !IntTy->hasSignedIntegerRepresentation());
9764 bool Ignored = false;
9765 Float.convertToInteger(ConvertBack, llvm::APFloat::rmNearestTiesToEven,
9766 &Ignored);
9767 if (Result != ConvertBack)
9768 return true;
9769 } else {
9770 // Reject types that cannot be fully encoded into the mantissa of
9771 // the float.
9772 Bits = S.Context.getTypeSize(IntTy);
9773 unsigned FloatPrec = llvm::APFloat::semanticsPrecision(
9774 S.Context.getFloatTypeSemantics(FloatTy));
9775 if (Bits > FloatPrec)
9776 return true;
9777 }
9778
9779 return false;
9780}
9781
9782/// Attempt to convert and splat Scalar into a vector whose types matches
9783/// Vector following GCC conversion rules. The rule is that implicit
9784/// conversion can occur when Scalar can be casted to match Vector's element
9785/// type without causing truncation of Scalar.
9786static bool tryGCCVectorConvertAndSplat(Sema &S, ExprResult *Scalar,
9787 ExprResult *Vector) {
9788 QualType ScalarTy = Scalar->get()->getType().getUnqualifiedType();
9789 QualType VectorTy = Vector->get()->getType().getUnqualifiedType();
9790 const VectorType *VT = VectorTy->getAs<VectorType>();
9791
9792 assert(!isa<ExtVectorType>(VT) &&((!isa<ExtVectorType>(VT) && "ExtVectorTypes should not be handled here!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 9793, __PRETTY_FUNCTION__))
9793 "ExtVectorTypes should not be handled here!")((!isa<ExtVectorType>(VT) && "ExtVectorTypes should not be handled here!"
) ? static_cast<void> (0) : __assert_fail ("!isa<ExtVectorType>(VT) && \"ExtVectorTypes should not be handled here!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 9793, __PRETTY_FUNCTION__))
;
9794
9795 QualType VectorEltTy = VT->getElementType();
9796
9797 // Reject cases where the vector element type or the scalar element type are
9798 // not integral or floating point types.
9799 if (!VectorEltTy->isArithmeticType() || !ScalarTy->isArithmeticType())
9800 return true;
9801
9802 // The conversion to apply to the scalar before splatting it,
9803 // if necessary.
9804 CastKind ScalarCast = CK_NoOp;
9805
9806 // Accept cases where the vector elements are integers and the scalar is
9807 // an integer.
9808 // FIXME: Notionally if the scalar was a floating point value with a precise
9809 // integral representation, we could cast it to an appropriate integer
9810 // type and then perform the rest of the checks here. GCC will perform
9811 // this conversion in some cases as determined by the input language.
9812 // We should accept it on a language independent basis.
9813 if (VectorEltTy->isIntegralType(S.Context) &&
9814 ScalarTy->isIntegralType(S.Context) &&
9815 S.Context.getIntegerTypeOrder(VectorEltTy, ScalarTy)) {
9816
9817 if (canConvertIntToOtherIntTy(S, Scalar, VectorEltTy))
9818 return true;
9819
9820 ScalarCast = CK_IntegralCast;
9821 } else if (VectorEltTy->isIntegralType(S.Context) &&
9822 ScalarTy->isRealFloatingType()) {
9823 if (S.Context.getTypeSize(VectorEltTy) == S.Context.getTypeSize(ScalarTy))
9824 ScalarCast = CK_FloatingToIntegral;
9825 else
9826 return true;
9827 } else if (VectorEltTy->isRealFloatingType()) {
9828 if (ScalarTy->isRealFloatingType()) {
9829
9830 // Reject cases where the scalar type is not a constant and has a higher
9831 // Order than the vector element type.
9832 llvm::APFloat Result(0.0);
9833
9834 // Determine whether this is a constant scalar. In the event that the
9835 // value is dependent (and thus cannot be evaluated by the constant
9836 // evaluator), skip the evaluation. This will then diagnose once the
9837 // expression is instantiated.
9838 bool CstScalar = Scalar->get()->isValueDependent() ||
9839 Scalar->get()->EvaluateAsFloat(Result, S.Context);
9840 int Order = S.Context.getFloatingTypeOrder(VectorEltTy, ScalarTy);
9841 if (!CstScalar && Order < 0)
9842 return true;
9843
9844 // If the scalar cannot be safely casted to the vector element type,
9845 // reject it.
9846 if (CstScalar) {
9847 bool Truncated = false;
9848 Result.convert(S.Context.getFloatTypeSemantics(VectorEltTy),
9849 llvm::APFloat::rmNearestTiesToEven, &Truncated);
9850 if (Truncated)
9851 return true;
9852 }
9853
9854 ScalarCast = CK_FloatingCast;
9855 } else if (ScalarTy->isIntegralType(S.Context)) {
9856 if (canConvertIntTyToFloatTy(S, Scalar, VectorEltTy))
9857 return true;
9858
9859 ScalarCast = CK_IntegralToFloating;
9860 } else
9861 return true;
9862 } else if (ScalarTy->isEnumeralType())
9863 return true;
9864
9865 // Adjust scalar if desired.
9866 if (Scalar) {
9867 if (ScalarCast != CK_NoOp)
9868 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorEltTy, ScalarCast);
9869 *Scalar = S.ImpCastExprToType(Scalar->get(), VectorTy, CK_VectorSplat);
9870 }
9871 return false;
9872}
9873
9874QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
9875 SourceLocation Loc, bool IsCompAssign,
9876 bool AllowBothBool,
9877 bool AllowBoolConversions) {
9878 if (!IsCompAssign) {
9879 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
9880 if (LHS.isInvalid())
9881 return QualType();
9882 }
9883 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
9884 if (RHS.isInvalid())
9885 return QualType();
9886
9887 // For conversion purposes, we ignore any qualifiers.
9888 // For example, "const float" and "float" are equivalent.
9889 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
9890 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
9891
9892 const VectorType *LHSVecType = LHSType->getAs<VectorType>();
9893 const VectorType *RHSVecType = RHSType->getAs<VectorType>();
9894 assert(LHSVecType || RHSVecType)((LHSVecType || RHSVecType) ? static_cast<void> (0) : __assert_fail
("LHSVecType || RHSVecType", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 9894, __PRETTY_FUNCTION__))
;
9895
9896 if ((LHSVecType && LHSVecType->getElementType()->isBFloat16Type()) ||
9897 (RHSVecType && RHSVecType->getElementType()->isBFloat16Type()))
9898 return InvalidOperands(Loc, LHS, RHS);
9899
9900 // AltiVec-style "vector bool op vector bool" combinations are allowed
9901 // for some operators but not others.
9902 if (!AllowBothBool &&
9903 LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9904 RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
9905 return InvalidOperands(Loc, LHS, RHS);
9906
9907 // If the vector types are identical, return.
9908 if (Context.hasSameType(LHSType, RHSType))
9909 return LHSType;
9910
9911 // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
9912 if (LHSVecType && RHSVecType &&
9913 Context.areCompatibleVectorTypes(LHSType, RHSType)) {
9914 if (isa<ExtVectorType>(LHSVecType)) {
9915 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9916 return LHSType;
9917 }
9918
9919 if (!IsCompAssign)
9920 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9921 return RHSType;
9922 }
9923
9924 // AllowBoolConversions says that bool and non-bool AltiVec vectors
9925 // can be mixed, with the result being the non-bool type. The non-bool
9926 // operand must have integer element type.
9927 if (AllowBoolConversions && LHSVecType && RHSVecType &&
9928 LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
9929 (Context.getTypeSize(LHSVecType->getElementType()) ==
9930 Context.getTypeSize(RHSVecType->getElementType()))) {
9931 if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9932 LHSVecType->getElementType()->isIntegerType() &&
9933 RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
9934 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
9935 return LHSType;
9936 }
9937 if (!IsCompAssign &&
9938 LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
9939 RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
9940 RHSVecType->getElementType()->isIntegerType()) {
9941 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
9942 return RHSType;
9943 }
9944 }
9945
9946 // Expressions containing fixed-length and sizeless SVE vectors are invalid
9947 // since the ambiguity can affect the ABI.
9948 auto IsSveConversion = [](QualType FirstType, QualType SecondType) {
9949 const VectorType *VecType = SecondType->getAs<VectorType>();
9950 return FirstType->isSizelessBuiltinType() && VecType &&
9951 (VecType->getVectorKind() == VectorType::SveFixedLengthDataVector ||
9952 VecType->getVectorKind() ==
9953 VectorType::SveFixedLengthPredicateVector);
9954 };
9955
9956 if (IsSveConversion(LHSType, RHSType) || IsSveConversion(RHSType, LHSType)) {
9957 Diag(Loc, diag::err_typecheck_sve_ambiguous) << LHSType << RHSType;
9958 return QualType();
9959 }
9960
9961 // Expressions containing GNU and SVE (fixed or sizeless) vectors are invalid
9962 // since the ambiguity can affect the ABI.
9963 auto IsSveGnuConversion = [](QualType FirstType, QualType SecondType) {
9964 const VectorType *FirstVecType = FirstType->getAs<VectorType>();
9965 const VectorType *SecondVecType = SecondType->getAs<VectorType>();
9966
9967 if (FirstVecType && SecondVecType)
9968 return FirstVecType->getVectorKind() == VectorType::GenericVector &&
9969 (SecondVecType->getVectorKind() ==
9970 VectorType::SveFixedLengthDataVector ||
9971 SecondVecType->getVectorKind() ==
9972 VectorType::SveFixedLengthPredicateVector);
9973
9974 return FirstType->isSizelessBuiltinType() && SecondVecType &&
9975 SecondVecType->getVectorKind() == VectorType::GenericVector;
9976 };
9977
9978 if (IsSveGnuConversion(LHSType, RHSType) ||
9979 IsSveGnuConversion(RHSType, LHSType)) {
9980 Diag(Loc, diag::err_typecheck_sve_gnu_ambiguous) << LHSType << RHSType;
9981 return QualType();
9982 }
9983
9984 // If there's a vector type and a scalar, try to convert the scalar to
9985 // the vector element type and splat.
9986 unsigned DiagID = diag::err_typecheck_vector_not_convertable;
9987 if (!RHSVecType) {
9988 if (isa<ExtVectorType>(LHSVecType)) {
9989 if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
9990 LHSVecType->getElementType(), LHSType,
9991 DiagID))
9992 return LHSType;
9993 } else {
9994 if (!tryGCCVectorConvertAndSplat(*this, &RHS, &LHS))
9995 return LHSType;
9996 }
9997 }
9998 if (!LHSVecType) {
9999 if (isa<ExtVectorType>(RHSVecType)) {
10000 if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
10001 LHSType, RHSVecType->getElementType(),
10002 RHSType, DiagID))
10003 return RHSType;
10004 } else {
10005 if (LHS.get()->getValueKind() == VK_LValue ||
10006 !tryGCCVectorConvertAndSplat(*this, &LHS, &RHS))
10007 return RHSType;
10008 }
10009 }
10010
10011 // FIXME: The code below also handles conversion between vectors and
10012 // non-scalars, we should break this down into fine grained specific checks
10013 // and emit proper diagnostics.
10014 QualType VecType = LHSVecType ? LHSType : RHSType;
10015 const VectorType *VT = LHSVecType ? LHSVecType : RHSVecType;
10016 QualType OtherType = LHSVecType ? RHSType : LHSType;
10017 ExprResult *OtherExpr = LHSVecType ? &RHS : &LHS;
10018 if (isLaxVectorConversion(OtherType, VecType)) {
10019 // If we're allowing lax vector conversions, only the total (data) size
10020 // needs to be the same. For non compound assignment, if one of the types is
10021 // scalar, the result is always the vector type.
10022 if (!IsCompAssign) {
10023 *OtherExpr = ImpCastExprToType(OtherExpr->get(), VecType, CK_BitCast);
10024 return VecType;
10025 // In a compound assignment, lhs += rhs, 'lhs' is a lvalue src, forbidding
10026 // any implicit cast. Here, the 'rhs' should be implicit casted to 'lhs'
10027 // type. Note that this is already done by non-compound assignments in
10028 // CheckAssignmentConstraints. If it's a scalar type, only bitcast for
10029 // <1 x T> -> T. The result is also a vector type.
10030 } else if (OtherType->isExtVectorType() || OtherType->isVectorType() ||
10031 (OtherType->isScalarType() && VT->getNumElements() == 1)) {
10032 ExprResult *RHSExpr = &RHS;
10033 *RHSExpr = ImpCastExprToType(RHSExpr->get(), LHSType, CK_BitCast);
10034 return VecType;
10035 }
10036 }
10037
10038 // Okay, the expression is invalid.
10039
10040 // If there's a non-vector, non-real operand, diagnose that.
10041 if ((!RHSVecType && !RHSType->isRealType()) ||
10042 (!LHSVecType && !LHSType->isRealType())) {
10043 Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
10044 << LHSType << RHSType
10045 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10046 return QualType();
10047 }
10048
10049 // OpenCL V1.1 6.2.6.p1:
10050 // If the operands are of more than one vector type, then an error shall
10051 // occur. Implicit conversions between vector types are not permitted, per
10052 // section 6.2.1.
10053 if (getLangOpts().OpenCL &&
10054 RHSVecType && isa<ExtVectorType>(RHSVecType) &&
10055 LHSVecType && isa<ExtVectorType>(LHSVecType)) {
10056 Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
10057 << RHSType;
10058 return QualType();
10059 }
10060
10061
10062 // If there is a vector type that is not a ExtVector and a scalar, we reach
10063 // this point if scalar could not be converted to the vector's element type
10064 // without truncation.
10065 if ((RHSVecType && !isa<ExtVectorType>(RHSVecType)) ||
10066 (LHSVecType && !isa<ExtVectorType>(LHSVecType))) {
10067 QualType Scalar = LHSVecType ? RHSType : LHSType;
10068 QualType Vector = LHSVecType ? LHSType : RHSType;
10069 unsigned ScalarOrVector = LHSVecType && RHSVecType ? 1 : 0;
10070 Diag(Loc,
10071 diag::err_typecheck_vector_not_convertable_implict_truncation)
10072 << ScalarOrVector << Scalar << Vector;
10073
10074 return QualType();
10075 }
10076
10077 // Otherwise, use the generic diagnostic.
10078 Diag(Loc, DiagID)
10079 << LHSType << RHSType
10080 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10081 return QualType();
10082}
10083
10084// checkArithmeticNull - Detect when a NULL constant is used improperly in an
10085// expression. These are mainly cases where the null pointer is used as an
10086// integer instead of a pointer.
10087static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
10088 SourceLocation Loc, bool IsCompare) {
10089 // The canonical way to check for a GNU null is with isNullPointerConstant,
10090 // but we use a bit of a hack here for speed; this is a relatively
10091 // hot path, and isNullPointerConstant is slow.
10092 bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
10093 bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
10094
10095 QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
10096
10097 // Avoid analyzing cases where the result will either be invalid (and
10098 // diagnosed as such) or entirely valid and not something to warn about.
10099 if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
10100 NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
10101 return;
10102
10103 // Comparison operations would not make sense with a null pointer no matter
10104 // what the other expression is.
10105 if (!IsCompare) {
10106 S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
10107 << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
10108 << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
10109 return;
10110 }
10111
10112 // The rest of the operations only make sense with a null pointer
10113 // if the other expression is a pointer.
10114 if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
10115 NonNullType->canDecayToPointerType())
10116 return;
10117
10118 S.Diag(Loc, diag::warn_null_in_comparison_operation)
10119 << LHSNull /* LHS is NULL */ << NonNullType
10120 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10121}
10122
10123static void DiagnoseDivisionSizeofPointerOrArray(Sema &S, Expr *LHS, Expr *RHS,
10124 SourceLocation Loc) {
10125 const auto *LUE = dyn_cast<UnaryExprOrTypeTraitExpr>(LHS);
10126 const auto *RUE = dyn_cast<UnaryExprOrTypeTraitExpr>(RHS);
10127 if (!LUE || !RUE)
10128 return;
10129 if (LUE->getKind() != UETT_SizeOf || LUE->isArgumentType() ||
10130 RUE->getKind() != UETT_SizeOf)
10131 return;
10132
10133 const Expr *LHSArg = LUE->getArgumentExpr()->IgnoreParens();
10134 QualType LHSTy = LHSArg->getType();
10135 QualType RHSTy;
10136
10137 if (RUE->isArgumentType())
10138 RHSTy = RUE->getArgumentType().getNonReferenceType();
10139 else
10140 RHSTy = RUE->getArgumentExpr()->IgnoreParens()->getType();
10141
10142 if (LHSTy->isPointerType() && !RHSTy->isPointerType()) {
10143 if (!S.Context.hasSameUnqualifiedType(LHSTy->getPointeeType(), RHSTy))
10144 return;
10145
10146 S.Diag(Loc, diag::warn_division_sizeof_ptr) << LHS << LHS->getSourceRange();
10147 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10148 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10149 S.Diag(LHSArgDecl->getLocation(), diag::note_pointer_declared_here)
10150 << LHSArgDecl;
10151 }
10152 } else if (const auto *ArrayTy = S.Context.getAsArrayType(LHSTy)) {
10153 QualType ArrayElemTy = ArrayTy->getElementType();
10154 if (ArrayElemTy != S.Context.getBaseElementType(ArrayTy) ||
10155 ArrayElemTy->isDependentType() || RHSTy->isDependentType() ||
10156 RHSTy->isReferenceType() || ArrayElemTy->isCharType() ||
10157 S.Context.getTypeSize(ArrayElemTy) == S.Context.getTypeSize(RHSTy))
10158 return;
10159 S.Diag(Loc, diag::warn_division_sizeof_array)
10160 << LHSArg->getSourceRange() << ArrayElemTy << RHSTy;
10161 if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSArg)) {
10162 if (const ValueDecl *LHSArgDecl = DRE->getDecl())
10163 S.Diag(LHSArgDecl->getLocation(), diag::note_array_declared_here)
10164 << LHSArgDecl;
10165 }
10166
10167 S.Diag(Loc, diag::note_precedence_silence) << RHS;
10168 }
10169}
10170
10171static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
10172 ExprResult &RHS,
10173 SourceLocation Loc, bool IsDiv) {
10174 // Check for division/remainder by zero.
10175 Expr::EvalResult RHSValue;
10176 if (!RHS.get()->isValueDependent() &&
10177 RHS.get()->EvaluateAsInt(RHSValue, S.Context) &&
10178 RHSValue.Val.getInt() == 0)
10179 S.DiagRuntimeBehavior(Loc, RHS.get(),
10180 S.PDiag(diag::warn_remainder_division_by_zero)
10181 << IsDiv << RHS.get()->getSourceRange());
10182}
10183
10184QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
10185 SourceLocation Loc,
10186 bool IsCompAssign, bool IsDiv) {
10187 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10188
10189 if (LHS.get()->getType()->isVectorType() ||
10190 RHS.get()->getType()->isVectorType())
10191 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10192 /*AllowBothBool*/getLangOpts().AltiVec,
10193 /*AllowBoolConversions*/false);
10194 if (!IsDiv && (LHS.get()->getType()->isConstantMatrixType() ||
10195 RHS.get()->getType()->isConstantMatrixType()))
10196 return CheckMatrixMultiplyOperands(LHS, RHS, Loc, IsCompAssign);
10197
10198 QualType compType = UsualArithmeticConversions(
10199 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10200 if (LHS.isInvalid() || RHS.isInvalid())
10201 return QualType();
10202
10203
10204 if (compType.isNull() || !compType->isArithmeticType())
10205 return InvalidOperands(Loc, LHS, RHS);
10206 if (IsDiv) {
10207 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
10208 DiagnoseDivisionSizeofPointerOrArray(*this, LHS.get(), RHS.get(), Loc);
10209 }
10210 return compType;
10211}
10212
10213QualType Sema::CheckRemainderOperands(
10214 ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
10215 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10216
10217 if (LHS.get()->getType()->isVectorType() ||
10218 RHS.get()->getType()->isVectorType()) {
10219 if (LHS.get()->getType()->hasIntegerRepresentation() &&
10220 RHS.get()->getType()->hasIntegerRepresentation())
10221 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
10222 /*AllowBothBool*/getLangOpts().AltiVec,
10223 /*AllowBoolConversions*/false);
10224 return InvalidOperands(Loc, LHS, RHS);
10225 }
10226
10227 QualType compType = UsualArithmeticConversions(
10228 LHS, RHS, Loc, IsCompAssign ? ACK_CompAssign : ACK_Arithmetic);
10229 if (LHS.isInvalid() || RHS.isInvalid())
10230 return QualType();
10231
10232 if (compType.isNull() || !compType->isIntegerType())
10233 return InvalidOperands(Loc, LHS, RHS);
10234 DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
10235 return compType;
10236}
10237
10238/// Diagnose invalid arithmetic on two void pointers.
10239static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
10240 Expr *LHSExpr, Expr *RHSExpr) {
10241 S.Diag(Loc, S.getLangOpts().CPlusPlus
10242 ? diag::err_typecheck_pointer_arith_void_type
10243 : diag::ext_gnu_void_ptr)
10244 << 1 /* two pointers */ << LHSExpr->getSourceRange()
10245 << RHSExpr->getSourceRange();
10246}
10247
10248/// Diagnose invalid arithmetic on a void pointer.
10249static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
10250 Expr *Pointer) {
10251 S.Diag(Loc, S.getLangOpts().CPlusPlus
10252 ? diag::err_typecheck_pointer_arith_void_type
10253 : diag::ext_gnu_void_ptr)
10254 << 0 /* one pointer */ << Pointer->getSourceRange();
10255}
10256
10257/// Diagnose invalid arithmetic on a null pointer.
10258///
10259/// If \p IsGNUIdiom is true, the operation is using the 'p = (i8*)nullptr + n'
10260/// idiom, which we recognize as a GNU extension.
10261///
10262static void diagnoseArithmeticOnNullPointer(Sema &S, SourceLocation Loc,
10263 Expr *Pointer, bool IsGNUIdiom) {
10264 if (IsGNUIdiom)
10265 S.Diag(Loc, diag::warn_gnu_null_ptr_arith)
10266 << Pointer->getSourceRange();
10267 else
10268 S.Diag(Loc, diag::warn_pointer_arith_null_ptr)
10269 << S.getLangOpts().CPlusPlus << Pointer->getSourceRange();
10270}
10271
10272/// Diagnose invalid arithmetic on two function pointers.
10273static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
10274 Expr *LHS, Expr *RHS) {
10275 assert(LHS->getType()->isAnyPointerType())((LHS->getType()->isAnyPointerType()) ? static_cast<
void> (0) : __assert_fail ("LHS->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10275, __PRETTY_FUNCTION__))
;
10276 assert(RHS->getType()->isAnyPointerType())((RHS->getType()->isAnyPointerType()) ? static_cast<
void> (0) : __assert_fail ("RHS->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10276, __PRETTY_FUNCTION__))
;
10277 S.Diag(Loc, S.getLangOpts().CPlusPlus
10278 ? diag::err_typecheck_pointer_arith_function_type
10279 : diag::ext_gnu_ptr_func_arith)
10280 << 1 /* two pointers */ << LHS->getType()->getPointeeType()
10281 // We only show the second type if it differs from the first.
10282 << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
10283 RHS->getType())
10284 << RHS->getType()->getPointeeType()
10285 << LHS->getSourceRange() << RHS->getSourceRange();
10286}
10287
10288/// Diagnose invalid arithmetic on a function pointer.
10289static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
10290 Expr *Pointer) {
10291 assert(Pointer->getType()->isAnyPointerType())((Pointer->getType()->isAnyPointerType()) ? static_cast
<void> (0) : __assert_fail ("Pointer->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10291, __PRETTY_FUNCTION__))
;
10292 S.Diag(Loc, S.getLangOpts().CPlusPlus
10293 ? diag::err_typecheck_pointer_arith_function_type
10294 : diag::ext_gnu_ptr_func_arith)
10295 << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
10296 << 0 /* one pointer, so only one type */
10297 << Pointer->getSourceRange();
10298}
10299
10300/// Emit error if Operand is incomplete pointer type
10301///
10302/// \returns True if pointer has incomplete type
10303static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
10304 Expr *Operand) {
10305 QualType ResType = Operand->getType();
10306 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10307 ResType = ResAtomicType->getValueType();
10308
10309 assert(ResType->isAnyPointerType() && !ResType->isDependentType())((ResType->isAnyPointerType() && !ResType->isDependentType
()) ? static_cast<void> (0) : __assert_fail ("ResType->isAnyPointerType() && !ResType->isDependentType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10309, __PRETTY_FUNCTION__))
;
10310 QualType PointeeTy = ResType->getPointeeType();
10311 return S.RequireCompleteSizedType(
10312 Loc, PointeeTy,
10313 diag::err_typecheck_arithmetic_incomplete_or_sizeless_type,
10314 Operand->getSourceRange());
10315}
10316
10317/// Check the validity of an arithmetic pointer operand.
10318///
10319/// If the operand has pointer type, this code will check for pointer types
10320/// which are invalid in arithmetic operations. These will be diagnosed
10321/// appropriately, including whether or not the use is supported as an
10322/// extension.
10323///
10324/// \returns True when the operand is valid to use (even if as an extension).
10325static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
10326 Expr *Operand) {
10327 QualType ResType = Operand->getType();
10328 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
10329 ResType = ResAtomicType->getValueType();
10330
10331 if (!ResType->isAnyPointerType()) return true;
10332
10333 QualType PointeeTy = ResType->getPointeeType();
10334 if (PointeeTy->isVoidType()) {
10335 diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
10336 return !S.getLangOpts().CPlusPlus;
10337 }
10338 if (PointeeTy->isFunctionType()) {
10339 diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
10340 return !S.getLangOpts().CPlusPlus;
10341 }
10342
10343 if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
10344
10345 return true;
10346}
10347
10348/// Check the validity of a binary arithmetic operation w.r.t. pointer
10349/// operands.
10350///
10351/// This routine will diagnose any invalid arithmetic on pointer operands much
10352/// like \see checkArithmeticOpPointerOperand. However, it has special logic
10353/// for emitting a single diagnostic even for operations where both LHS and RHS
10354/// are (potentially problematic) pointers.
10355///
10356/// \returns True when the operand is valid to use (even if as an extension).
10357static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
10358 Expr *LHSExpr, Expr *RHSExpr) {
10359 bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
10360 bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
10361 if (!isLHSPointer && !isRHSPointer) return true;
10362
10363 QualType LHSPointeeTy, RHSPointeeTy;
10364 if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
10365 if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
10366
10367 // if both are pointers check if operation is valid wrt address spaces
10368 if (isLHSPointer && isRHSPointer) {
10369 if (!LHSPointeeTy.isAddressSpaceOverlapping(RHSPointeeTy)) {
10370 S.Diag(Loc,
10371 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
10372 << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
10373 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
10374 return false;
10375 }
10376 }
10377
10378 // Check for arithmetic on pointers to incomplete types.
10379 bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
10380 bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
10381 if (isLHSVoidPtr || isRHSVoidPtr) {
10382 if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
10383 else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
10384 else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
10385
10386 return !S.getLangOpts().CPlusPlus;
10387 }
10388
10389 bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
10390 bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
10391 if (isLHSFuncPtr || isRHSFuncPtr) {
10392 if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
10393 else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
10394 RHSExpr);
10395 else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
10396
10397 return !S.getLangOpts().CPlusPlus;
10398 }
10399
10400 if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
10401 return false;
10402 if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
10403 return false;
10404
10405 return true;
10406}
10407
10408/// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
10409/// literal.
10410static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
10411 Expr *LHSExpr, Expr *RHSExpr) {
10412 StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
10413 Expr* IndexExpr = RHSExpr;
10414 if (!StrExpr) {
10415 StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
10416 IndexExpr = LHSExpr;
10417 }
10418
10419 bool IsStringPlusInt = StrExpr &&
10420 IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
10421 if (!IsStringPlusInt || IndexExpr->isValueDependent())
10422 return;
10423
10424 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10425 Self.Diag(OpLoc, diag::warn_string_plus_int)
10426 << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
10427
10428 // Only print a fixit for "str" + int, not for int + "str".
10429 if (IndexExpr == RHSExpr) {
10430 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10431 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10432 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10433 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10434 << FixItHint::CreateInsertion(EndLoc, "]");
10435 } else
10436 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10437}
10438
10439/// Emit a warning when adding a char literal to a string.
10440static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
10441 Expr *LHSExpr, Expr *RHSExpr) {
10442 const Expr *StringRefExpr = LHSExpr;
10443 const CharacterLiteral *CharExpr =
10444 dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
10445
10446 if (!CharExpr) {
10447 CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
10448 StringRefExpr = RHSExpr;
10449 }
10450
10451 if (!CharExpr || !StringRefExpr)
10452 return;
10453
10454 const QualType StringType = StringRefExpr->getType();
10455
10456 // Return if not a PointerType.
10457 if (!StringType->isAnyPointerType())
10458 return;
10459
10460 // Return if not a CharacterType.
10461 if (!StringType->getPointeeType()->isAnyCharacterType())
10462 return;
10463
10464 ASTContext &Ctx = Self.getASTContext();
10465 SourceRange DiagRange(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
10466
10467 const QualType CharType = CharExpr->getType();
10468 if (!CharType->isAnyCharacterType() &&
10469 CharType->isIntegerType() &&
10470 llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
10471 Self.Diag(OpLoc, diag::warn_string_plus_char)
10472 << DiagRange << Ctx.CharTy;
10473 } else {
10474 Self.Diag(OpLoc, diag::warn_string_plus_char)
10475 << DiagRange << CharExpr->getType();
10476 }
10477
10478 // Only print a fixit for str + char, not for char + str.
10479 if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
10480 SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getEndLoc());
10481 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
10482 << FixItHint::CreateInsertion(LHSExpr->getBeginLoc(), "&")
10483 << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
10484 << FixItHint::CreateInsertion(EndLoc, "]");
10485 } else {
10486 Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
10487 }
10488}
10489
10490/// Emit error when two pointers are incompatible.
10491static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
10492 Expr *LHSExpr, Expr *RHSExpr) {
10493 assert(LHSExpr->getType()->isAnyPointerType())((LHSExpr->getType()->isAnyPointerType()) ? static_cast
<void> (0) : __assert_fail ("LHSExpr->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10493, __PRETTY_FUNCTION__))
;
10494 assert(RHSExpr->getType()->isAnyPointerType())((RHSExpr->getType()->isAnyPointerType()) ? static_cast
<void> (0) : __assert_fail ("RHSExpr->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10494, __PRETTY_FUNCTION__))
;
10495 S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
10496 << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
10497 << RHSExpr->getSourceRange();
10498}
10499
10500// C99 6.5.6
10501QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
10502 SourceLocation Loc, BinaryOperatorKind Opc,
10503 QualType* CompLHSTy) {
10504 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10505
10506 if (LHS.get()->getType()->isVectorType() ||
10507 RHS.get()->getType()->isVectorType()) {
10508 QualType compType = CheckVectorOperands(
10509 LHS, RHS, Loc, CompLHSTy,
10510 /*AllowBothBool*/getLangOpts().AltiVec,
10511 /*AllowBoolConversions*/getLangOpts().ZVector);
10512 if (CompLHSTy) *CompLHSTy = compType;
10513 return compType;
10514 }
10515
10516 if (LHS.get()->getType()->isConstantMatrixType() ||
10517 RHS.get()->getType()->isConstantMatrixType()) {
10518 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10519 }
10520
10521 QualType compType = UsualArithmeticConversions(
10522 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10523 if (LHS.isInvalid() || RHS.isInvalid())
10524 return QualType();
10525
10526 // Diagnose "string literal" '+' int and string '+' "char literal".
10527 if (Opc == BO_Add) {
10528 diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
10529 diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
10530 }
10531
10532 // handle the common case first (both operands are arithmetic).
10533 if (!compType.isNull() && compType->isArithmeticType()) {
10534 if (CompLHSTy) *CompLHSTy = compType;
10535 return compType;
10536 }
10537
10538 // Type-checking. Ultimately the pointer's going to be in PExp;
10539 // note that we bias towards the LHS being the pointer.
10540 Expr *PExp = LHS.get(), *IExp = RHS.get();
10541
10542 bool isObjCPointer;
10543 if (PExp->getType()->isPointerType()) {
10544 isObjCPointer = false;
10545 } else if (PExp->getType()->isObjCObjectPointerType()) {
10546 isObjCPointer = true;
10547 } else {
10548 std::swap(PExp, IExp);
10549 if (PExp->getType()->isPointerType()) {
10550 isObjCPointer = false;
10551 } else if (PExp->getType()->isObjCObjectPointerType()) {
10552 isObjCPointer = true;
10553 } else {
10554 return InvalidOperands(Loc, LHS, RHS);
10555 }
10556 }
10557 assert(PExp->getType()->isAnyPointerType())((PExp->getType()->isAnyPointerType()) ? static_cast<
void> (0) : __assert_fail ("PExp->getType()->isAnyPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10557, __PRETTY_FUNCTION__))
;
10558
10559 if (!IExp->getType()->isIntegerType())
10560 return InvalidOperands(Loc, LHS, RHS);
10561
10562 // Adding to a null pointer results in undefined behavior.
10563 if (PExp->IgnoreParenCasts()->isNullPointerConstant(
10564 Context, Expr::NPC_ValueDependentIsNotNull)) {
10565 // In C++ adding zero to a null pointer is defined.
10566 Expr::EvalResult KnownVal;
10567 if (!getLangOpts().CPlusPlus ||
10568 (!IExp->isValueDependent() &&
10569 (!IExp->EvaluateAsInt(KnownVal, Context) ||
10570 KnownVal.Val.getInt() != 0))) {
10571 // Check the conditions to see if this is the 'p = nullptr + n' idiom.
10572 bool IsGNUIdiom = BinaryOperator::isNullPointerArithmeticExtension(
10573 Context, BO_Add, PExp, IExp);
10574 diagnoseArithmeticOnNullPointer(*this, Loc, PExp, IsGNUIdiom);
10575 }
10576 }
10577
10578 if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
10579 return QualType();
10580
10581 if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
10582 return QualType();
10583
10584 // Check array bounds for pointer arithemtic
10585 CheckArrayAccess(PExp, IExp);
10586
10587 if (CompLHSTy) {
10588 QualType LHSTy = Context.isPromotableBitField(LHS.get());
10589 if (LHSTy.isNull()) {
10590 LHSTy = LHS.get()->getType();
10591 if (LHSTy->isPromotableIntegerType())
10592 LHSTy = Context.getPromotedIntegerType(LHSTy);
10593 }
10594 *CompLHSTy = LHSTy;
10595 }
10596
10597 return PExp->getType();
10598}
10599
10600// C99 6.5.6
10601QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
10602 SourceLocation Loc,
10603 QualType* CompLHSTy) {
10604 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10605
10606 if (LHS.get()->getType()->isVectorType() ||
10607 RHS.get()->getType()->isVectorType()) {
10608 QualType compType = CheckVectorOperands(
10609 LHS, RHS, Loc, CompLHSTy,
10610 /*AllowBothBool*/getLangOpts().AltiVec,
10611 /*AllowBoolConversions*/getLangOpts().ZVector);
10612 if (CompLHSTy) *CompLHSTy = compType;
10613 return compType;
10614 }
10615
10616 if (LHS.get()->getType()->isConstantMatrixType() ||
10617 RHS.get()->getType()->isConstantMatrixType()) {
10618 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, CompLHSTy);
10619 }
10620
10621 QualType compType = UsualArithmeticConversions(
10622 LHS, RHS, Loc, CompLHSTy ? ACK_CompAssign : ACK_Arithmetic);
10623 if (LHS.isInvalid() || RHS.isInvalid())
10624 return QualType();
10625
10626 // Enforce type constraints: C99 6.5.6p3.
10627
10628 // Handle the common case first (both operands are arithmetic).
10629 if (!compType.isNull() && compType->isArithmeticType()) {
10630 if (CompLHSTy) *CompLHSTy = compType;
10631 return compType;
10632 }
10633
10634 // Either ptr - int or ptr - ptr.
10635 if (LHS.get()->getType()->isAnyPointerType()) {
10636 QualType lpointee = LHS.get()->getType()->getPointeeType();
10637
10638 // Diagnose bad cases where we step over interface counts.
10639 if (LHS.get()->getType()->isObjCObjectPointerType() &&
10640 checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
10641 return QualType();
10642
10643 // The result type of a pointer-int computation is the pointer type.
10644 if (RHS.get()->getType()->isIntegerType()) {
10645 // Subtracting from a null pointer should produce a warning.
10646 // The last argument to the diagnose call says this doesn't match the
10647 // GNU int-to-pointer idiom.
10648 if (LHS.get()->IgnoreParenCasts()->isNullPointerConstant(Context,
10649 Expr::NPC_ValueDependentIsNotNull)) {
10650 // In C++ adding zero to a null pointer is defined.
10651 Expr::EvalResult KnownVal;
10652 if (!getLangOpts().CPlusPlus ||
10653 (!RHS.get()->isValueDependent() &&
10654 (!RHS.get()->EvaluateAsInt(KnownVal, Context) ||
10655 KnownVal.Val.getInt() != 0))) {
10656 diagnoseArithmeticOnNullPointer(*this, Loc, LHS.get(), false);
10657 }
10658 }
10659
10660 if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
10661 return QualType();
10662
10663 // Check array bounds for pointer arithemtic
10664 CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
10665 /*AllowOnePastEnd*/true, /*IndexNegated*/true);
10666
10667 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10668 return LHS.get()->getType();
10669 }
10670
10671 // Handle pointer-pointer subtractions.
10672 if (const PointerType *RHSPTy
10673 = RHS.get()->getType()->getAs<PointerType>()) {
10674 QualType rpointee = RHSPTy->getPointeeType();
10675
10676 if (getLangOpts().CPlusPlus) {
10677 // Pointee types must be the same: C++ [expr.add]
10678 if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
10679 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10680 }
10681 } else {
10682 // Pointee types must be compatible C99 6.5.6p3
10683 if (!Context.typesAreCompatible(
10684 Context.getCanonicalType(lpointee).getUnqualifiedType(),
10685 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
10686 diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
10687 return QualType();
10688 }
10689 }
10690
10691 if (!checkArithmeticBinOpPointerOperands(*this, Loc,
10692 LHS.get(), RHS.get()))
10693 return QualType();
10694
10695 // FIXME: Add warnings for nullptr - ptr.
10696
10697 // The pointee type may have zero size. As an extension, a structure or
10698 // union may have zero size or an array may have zero length. In this
10699 // case subtraction does not make sense.
10700 if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
10701 CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
10702 if (ElementSize.isZero()) {
10703 Diag(Loc,diag::warn_sub_ptr_zero_size_types)
10704 << rpointee.getUnqualifiedType()
10705 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10706 }
10707 }
10708
10709 if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
10710 return Context.getPointerDiffType();
10711 }
10712 }
10713
10714 return InvalidOperands(Loc, LHS, RHS);
10715}
10716
10717static bool isScopedEnumerationType(QualType T) {
10718 if (const EnumType *ET = T->getAs<EnumType>())
10719 return ET->getDecl()->isScoped();
10720 return false;
10721}
10722
10723static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
10724 SourceLocation Loc, BinaryOperatorKind Opc,
10725 QualType LHSType) {
10726 // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
10727 // so skip remaining warnings as we don't want to modify values within Sema.
10728 if (S.getLangOpts().OpenCL)
10729 return;
10730
10731 // Check right/shifter operand
10732 Expr::EvalResult RHSResult;
10733 if (RHS.get()->isValueDependent() ||
10734 !RHS.get()->EvaluateAsInt(RHSResult, S.Context))
10735 return;
10736 llvm::APSInt Right = RHSResult.Val.getInt();
10737
10738 if (Right.isNegative()) {
10739 S.DiagRuntimeBehavior(Loc, RHS.get(),
10740 S.PDiag(diag::warn_shift_negative)
10741 << RHS.get()->getSourceRange());
10742 return;
10743 }
10744
10745 QualType LHSExprType = LHS.get()->getType();
10746 uint64_t LeftSize = S.Context.getTypeSize(LHSExprType);
10747 if (LHSExprType->isExtIntType())
10748 LeftSize = S.Context.getIntWidth(LHSExprType);
10749 else if (LHSExprType->isFixedPointType()) {
10750 auto FXSema = S.Context.getFixedPointSemantics(LHSExprType);
10751 LeftSize = FXSema.getWidth() - (unsigned)FXSema.hasUnsignedPadding();
10752 }
10753 llvm::APInt LeftBits(Right.getBitWidth(), LeftSize);
10754 if (Right.uge(LeftBits)) {
10755 S.DiagRuntimeBehavior(Loc, RHS.get(),
10756 S.PDiag(diag::warn_shift_gt_typewidth)
10757 << RHS.get()->getSourceRange());
10758 return;
10759 }
10760
10761 // FIXME: We probably need to handle fixed point types specially here.
10762 if (Opc != BO_Shl || LHSExprType->isFixedPointType())
10763 return;
10764
10765 // When left shifting an ICE which is signed, we can check for overflow which
10766 // according to C++ standards prior to C++2a has undefined behavior
10767 // ([expr.shift] 5.8/2). Unsigned integers have defined behavior modulo one
10768 // more than the maximum value representable in the result type, so never
10769 // warn for those. (FIXME: Unsigned left-shift overflow in a constant
10770 // expression is still probably a bug.)
10771 Expr::EvalResult LHSResult;
10772 if (LHS.get()->isValueDependent() ||
10773 LHSType->hasUnsignedIntegerRepresentation() ||
10774 !LHS.get()->EvaluateAsInt(LHSResult, S.Context))
10775 return;
10776 llvm::APSInt Left = LHSResult.Val.getInt();
10777
10778 // If LHS does not have a signed type and non-negative value
10779 // then, the behavior is undefined before C++2a. Warn about it.
10780 if (Left.isNegative() && !S.getLangOpts().isSignedOverflowDefined() &&
10781 !S.getLangOpts().CPlusPlus20) {
10782 S.DiagRuntimeBehavior(Loc, LHS.get(),
10783 S.PDiag(diag::warn_shift_lhs_negative)
10784 << LHS.get()->getSourceRange());
10785 return;
10786 }
10787
10788 llvm::APInt ResultBits =
10789 static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
10790 if (LeftBits.uge(ResultBits))
10791 return;
10792 llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
10793 Result = Result.shl(Right);
10794
10795 // Print the bit representation of the signed integer as an unsigned
10796 // hexadecimal number.
10797 SmallString<40> HexResult;
10798 Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
10799
10800 // If we are only missing a sign bit, this is less likely to result in actual
10801 // bugs -- if the result is cast back to an unsigned type, it will have the
10802 // expected value. Thus we place this behind a different warning that can be
10803 // turned off separately if needed.
10804 if (LeftBits == ResultBits - 1) {
10805 S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
10806 << HexResult << LHSType
10807 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10808 return;
10809 }
10810
10811 S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
10812 << HexResult.str() << Result.getMinSignedBits() << LHSType
10813 << Left.getBitWidth() << LHS.get()->getSourceRange()
10814 << RHS.get()->getSourceRange();
10815}
10816
10817/// Return the resulting type when a vector is shifted
10818/// by a scalar or vector shift amount.
10819static QualType checkVectorShift(Sema &S, ExprResult &LHS, ExprResult &RHS,
10820 SourceLocation Loc, bool IsCompAssign) {
10821 // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
10822 if ((S.LangOpts.OpenCL || S.LangOpts.ZVector) &&
10823 !LHS.get()->getType()->isVectorType()) {
10824 S.Diag(Loc, diag::err_shift_rhs_only_vector)
10825 << RHS.get()->getType() << LHS.get()->getType()
10826 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10827 return QualType();
10828 }
10829
10830 if (!IsCompAssign) {
10831 LHS = S.UsualUnaryConversions(LHS.get());
10832 if (LHS.isInvalid()) return QualType();
10833 }
10834
10835 RHS = S.UsualUnaryConversions(RHS.get());
10836 if (RHS.isInvalid()) return QualType();
10837
10838 QualType LHSType = LHS.get()->getType();
10839 // Note that LHS might be a scalar because the routine calls not only in
10840 // OpenCL case.
10841 const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
10842 QualType LHSEleType = LHSVecTy ? LHSVecTy->getElementType() : LHSType;
10843
10844 // Note that RHS might not be a vector.
10845 QualType RHSType = RHS.get()->getType();
10846 const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
10847 QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
10848
10849 // The operands need to be integers.
10850 if (!LHSEleType->isIntegerType()) {
10851 S.Diag(Loc, diag::err_typecheck_expect_int)
10852 << LHS.get()->getType() << LHS.get()->getSourceRange();
10853 return QualType();
10854 }
10855
10856 if (!RHSEleType->isIntegerType()) {
10857 S.Diag(Loc, diag::err_typecheck_expect_int)
10858 << RHS.get()->getType() << RHS.get()->getSourceRange();
10859 return QualType();
10860 }
10861
10862 if (!LHSVecTy) {
10863 assert(RHSVecTy)((RHSVecTy) ? static_cast<void> (0) : __assert_fail ("RHSVecTy"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10863, __PRETTY_FUNCTION__))
;
10864 if (IsCompAssign)
10865 return RHSType;
10866 if (LHSEleType != RHSEleType) {
10867 LHS = S.ImpCastExprToType(LHS.get(),RHSEleType, CK_IntegralCast);
10868 LHSEleType = RHSEleType;
10869 }
10870 QualType VecTy =
10871 S.Context.getExtVectorType(LHSEleType, RHSVecTy->getNumElements());
10872 LHS = S.ImpCastExprToType(LHS.get(), VecTy, CK_VectorSplat);
10873 LHSType = VecTy;
10874 } else if (RHSVecTy) {
10875 // OpenCL v1.1 s6.3.j says that for vector types, the operators
10876 // are applied component-wise. So if RHS is a vector, then ensure
10877 // that the number of elements is the same as LHS...
10878 if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
10879 S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
10880 << LHS.get()->getType() << RHS.get()->getType()
10881 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10882 return QualType();
10883 }
10884 if (!S.LangOpts.OpenCL && !S.LangOpts.ZVector) {
10885 const BuiltinType *LHSBT = LHSEleType->getAs<clang::BuiltinType>();
10886 const BuiltinType *RHSBT = RHSEleType->getAs<clang::BuiltinType>();
10887 if (LHSBT != RHSBT &&
10888 S.Context.getTypeSize(LHSBT) != S.Context.getTypeSize(RHSBT)) {
10889 S.Diag(Loc, diag::warn_typecheck_vector_element_sizes_not_equal)
10890 << LHS.get()->getType() << RHS.get()->getType()
10891 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10892 }
10893 }
10894 } else {
10895 // ...else expand RHS to match the number of elements in LHS.
10896 QualType VecTy =
10897 S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
10898 RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
10899 }
10900
10901 return LHSType;
10902}
10903
10904// C99 6.5.7
10905QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
10906 SourceLocation Loc, BinaryOperatorKind Opc,
10907 bool IsCompAssign) {
10908 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
10909
10910 // Vector shifts promote their scalar inputs to vector type.
10911 if (LHS.get()->getType()->isVectorType() ||
10912 RHS.get()->getType()->isVectorType()) {
10913 if (LangOpts.ZVector) {
10914 // The shift operators for the z vector extensions work basically
10915 // like general shifts, except that neither the LHS nor the RHS is
10916 // allowed to be a "vector bool".
10917 if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
10918 if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
10919 return InvalidOperands(Loc, LHS, RHS);
10920 if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
10921 if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
10922 return InvalidOperands(Loc, LHS, RHS);
10923 }
10924 return checkVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
10925 }
10926
10927 // Shifts don't perform usual arithmetic conversions, they just do integer
10928 // promotions on each operand. C99 6.5.7p3
10929
10930 // For the LHS, do usual unary conversions, but then reset them away
10931 // if this is a compound assignment.
10932 ExprResult OldLHS = LHS;
10933 LHS = UsualUnaryConversions(LHS.get());
10934 if (LHS.isInvalid())
10935 return QualType();
10936 QualType LHSType = LHS.get()->getType();
10937 if (IsCompAssign) LHS = OldLHS;
10938
10939 // The RHS is simpler.
10940 RHS = UsualUnaryConversions(RHS.get());
10941 if (RHS.isInvalid())
10942 return QualType();
10943 QualType RHSType = RHS.get()->getType();
10944
10945 // C99 6.5.7p2: Each of the operands shall have integer type.
10946 // Embedded-C 4.1.6.2.2: The LHS may also be fixed-point.
10947 if ((!LHSType->isFixedPointOrIntegerType() &&
10948 !LHSType->hasIntegerRepresentation()) ||
10949 !RHSType->hasIntegerRepresentation())
10950 return InvalidOperands(Loc, LHS, RHS);
10951
10952 // C++0x: Don't allow scoped enums. FIXME: Use something better than
10953 // hasIntegerRepresentation() above instead of this.
10954 if (isScopedEnumerationType(LHSType) ||
10955 isScopedEnumerationType(RHSType)) {
10956 return InvalidOperands(Loc, LHS, RHS);
10957 }
10958 // Sanity-check shift operands
10959 DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
10960
10961 // "The type of the result is that of the promoted left operand."
10962 return LHSType;
10963}
10964
10965/// Diagnose bad pointer comparisons.
10966static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
10967 ExprResult &LHS, ExprResult &RHS,
10968 bool IsError) {
10969 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
10970 : diag::ext_typecheck_comparison_of_distinct_pointers)
10971 << LHS.get()->getType() << RHS.get()->getType()
10972 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
10973}
10974
10975/// Returns false if the pointers are converted to a composite type,
10976/// true otherwise.
10977static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
10978 ExprResult &LHS, ExprResult &RHS) {
10979 // C++ [expr.rel]p2:
10980 // [...] Pointer conversions (4.10) and qualification
10981 // conversions (4.4) are performed on pointer operands (or on
10982 // a pointer operand and a null pointer constant) to bring
10983 // them to their composite pointer type. [...]
10984 //
10985 // C++ [expr.eq]p1 uses the same notion for (in)equality
10986 // comparisons of pointers.
10987
10988 QualType LHSType = LHS.get()->getType();
10989 QualType RHSType = RHS.get()->getType();
10990 assert(LHSType->isPointerType() || RHSType->isPointerType() ||((LHSType->isPointerType() || RHSType->isPointerType() ||
LHSType->isMemberPointerType() || RHSType->isMemberPointerType
()) ? static_cast<void> (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10991, __PRETTY_FUNCTION__))
10991 LHSType->isMemberPointerType() || RHSType->isMemberPointerType())((LHSType->isPointerType() || RHSType->isPointerType() ||
LHSType->isMemberPointerType() || RHSType->isMemberPointerType
()) ? static_cast<void> (0) : __assert_fail ("LHSType->isPointerType() || RHSType->isPointerType() || LHSType->isMemberPointerType() || RHSType->isMemberPointerType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 10991, __PRETTY_FUNCTION__))
;
10992
10993 QualType T = S.FindCompositePointerType(Loc, LHS, RHS);
10994 if (T.isNull()) {
10995 if ((LHSType->isAnyPointerType() || LHSType->isMemberPointerType()) &&
10996 (RHSType->isAnyPointerType() || RHSType->isMemberPointerType()))
10997 diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
10998 else
10999 S.InvalidOperands(Loc, LHS, RHS);
11000 return true;
11001 }
11002
11003 return false;
11004}
11005
11006static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
11007 ExprResult &LHS,
11008 ExprResult &RHS,
11009 bool IsError) {
11010 S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
11011 : diag::ext_typecheck_comparison_of_fptr_to_void)
11012 << LHS.get()->getType() << RHS.get()->getType()
11013 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11014}
11015
11016static bool isObjCObjectLiteral(ExprResult &E) {
11017 switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
11018 case Stmt::ObjCArrayLiteralClass:
11019 case Stmt::ObjCDictionaryLiteralClass:
11020 case Stmt::ObjCStringLiteralClass:
11021 case Stmt::ObjCBoxedExprClass:
11022 return true;
11023 default:
11024 // Note that ObjCBoolLiteral is NOT an object literal!
11025 return false;
11026 }
11027}
11028
11029static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
11030 const ObjCObjectPointerType *Type =
11031 LHS->getType()->getAs<ObjCObjectPointerType>();
11032
11033 // If this is not actually an Objective-C object, bail out.
11034 if (!Type)
11035 return false;
11036
11037 // Get the LHS object's interface type.
11038 QualType InterfaceType = Type->getPointeeType();
11039
11040 // If the RHS isn't an Objective-C object, bail out.
11041 if (!RHS->getType()->isObjCObjectPointerType())
11042 return false;
11043
11044 // Try to find the -isEqual: method.
11045 Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
11046 ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
11047 InterfaceType,
11048 /*IsInstance=*/true);
11049 if (!Method) {
11050 if (Type->isObjCIdType()) {
11051 // For 'id', just check the global pool.
11052 Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
11053 /*receiverId=*/true);
11054 } else {
11055 // Check protocols.
11056 Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
11057 /*IsInstance=*/true);
11058 }
11059 }
11060
11061 if (!Method)
11062 return false;
11063
11064 QualType T = Method->parameters()[0]->getType();
11065 if (!T->isObjCObjectPointerType())
11066 return false;
11067
11068 QualType R = Method->getReturnType();
11069 if (!R->isScalarType())
11070 return false;
11071
11072 return true;
11073}
11074
11075Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
11076 FromE = FromE->IgnoreParenImpCasts();
11077 switch (FromE->getStmtClass()) {
11078 default:
11079 break;
11080 case Stmt::ObjCStringLiteralClass:
11081 // "string literal"
11082 return LK_String;
11083 case Stmt::ObjCArrayLiteralClass:
11084 // "array literal"
11085 return LK_Array;
11086 case Stmt::ObjCDictionaryLiteralClass:
11087 // "dictionary literal"
11088 return LK_Dictionary;
11089 case Stmt::BlockExprClass:
11090 return LK_Block;
11091 case Stmt::ObjCBoxedExprClass: {
11092 Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
11093 switch (Inner->getStmtClass()) {
11094 case Stmt::IntegerLiteralClass:
11095 case Stmt::FloatingLiteralClass:
11096 case Stmt::CharacterLiteralClass:
11097 case Stmt::ObjCBoolLiteralExprClass:
11098 case Stmt::CXXBoolLiteralExprClass:
11099 // "numeric literal"
11100 return LK_Numeric;
11101 case Stmt::ImplicitCastExprClass: {
11102 CastKind CK = cast<CastExpr>(Inner)->getCastKind();
11103 // Boolean literals can be represented by implicit casts.
11104 if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
11105 return LK_Numeric;
11106 break;
11107 }
11108 default:
11109 break;
11110 }
11111 return LK_Boxed;
11112 }
11113 }
11114 return LK_None;
11115}
11116
11117static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
11118 ExprResult &LHS, ExprResult &RHS,
11119 BinaryOperator::Opcode Opc){
11120 Expr *Literal;
11121 Expr *Other;
11122 if (isObjCObjectLiteral(LHS)) {
11123 Literal = LHS.get();
11124 Other = RHS.get();
11125 } else {
11126 Literal = RHS.get();
11127 Other = LHS.get();
11128 }
11129
11130 // Don't warn on comparisons against nil.
11131 Other = Other->IgnoreParenCasts();
11132 if (Other->isNullPointerConstant(S.getASTContext(),
11133 Expr::NPC_ValueDependentIsNotNull))
11134 return;
11135
11136 // This should be kept in sync with warn_objc_literal_comparison.
11137 // LK_String should always be after the other literals, since it has its own
11138 // warning flag.
11139 Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
11140 assert(LiteralKind != Sema::LK_Block)((LiteralKind != Sema::LK_Block) ? static_cast<void> (0
) : __assert_fail ("LiteralKind != Sema::LK_Block", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11140, __PRETTY_FUNCTION__))
;
11141 if (LiteralKind == Sema::LK_None) {
11142 llvm_unreachable("Unknown Objective-C object literal kind")::llvm::llvm_unreachable_internal("Unknown Objective-C object literal kind"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11142)
;
11143 }
11144
11145 if (LiteralKind == Sema::LK_String)
11146 S.Diag(Loc, diag::warn_objc_string_literal_comparison)
11147 << Literal->getSourceRange();
11148 else
11149 S.Diag(Loc, diag::warn_objc_literal_comparison)
11150 << LiteralKind << Literal->getSourceRange();
11151
11152 if (BinaryOperator::isEqualityOp(Opc) &&
11153 hasIsEqualMethod(S, LHS.get(), RHS.get())) {
11154 SourceLocation Start = LHS.get()->getBeginLoc();
11155 SourceLocation End = S.getLocForEndOfToken(RHS.get()->getEndLoc());
11156 CharSourceRange OpRange =
11157 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
11158
11159 S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
11160 << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
11161 << FixItHint::CreateReplacement(OpRange, " isEqual:")
11162 << FixItHint::CreateInsertion(End, "]");
11163 }
11164}
11165
11166/// Warns on !x < y, !x & y where !(x < y), !(x & y) was probably intended.
11167static void diagnoseLogicalNotOnLHSofCheck(Sema &S, ExprResult &LHS,
11168 ExprResult &RHS, SourceLocation Loc,
11169 BinaryOperatorKind Opc) {
11170 // Check that left hand side is !something.
11171 UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
11172 if (!UO || UO->getOpcode() != UO_LNot) return;
11173
11174 // Only check if the right hand side is non-bool arithmetic type.
11175 if (RHS.get()->isKnownToHaveBooleanValue()) return;
11176
11177 // Make sure that the something in !something is not bool.
11178 Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
11179 if (SubExpr->isKnownToHaveBooleanValue()) return;
11180
11181 // Emit warning.
11182 bool IsBitwiseOp = Opc == BO_And || Opc == BO_Or || Opc == BO_Xor;
11183 S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_check)
11184 << Loc << IsBitwiseOp;
11185
11186 // First note suggest !(x < y)
11187 SourceLocation FirstOpen = SubExpr->getBeginLoc();
11188 SourceLocation FirstClose = RHS.get()->getEndLoc();
11189 FirstClose = S.getLocForEndOfToken(FirstClose);
11190 if (FirstClose.isInvalid())
11191 FirstOpen = SourceLocation();
11192 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
11193 << IsBitwiseOp
11194 << FixItHint::CreateInsertion(FirstOpen, "(")
11195 << FixItHint::CreateInsertion(FirstClose, ")");
11196
11197 // Second note suggests (!x) < y
11198 SourceLocation SecondOpen = LHS.get()->getBeginLoc();
11199 SourceLocation SecondClose = LHS.get()->getEndLoc();
11200 SecondClose = S.getLocForEndOfToken(SecondClose);
11201 if (SecondClose.isInvalid())
11202 SecondOpen = SourceLocation();
11203 S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
11204 << FixItHint::CreateInsertion(SecondOpen, "(")
11205 << FixItHint::CreateInsertion(SecondClose, ")");
11206}
11207
11208// Returns true if E refers to a non-weak array.
11209static bool checkForArray(const Expr *E) {
11210 const ValueDecl *D = nullptr;
11211 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E)) {
11212 D = DR->getDecl();
11213 } else if (const MemberExpr *Mem = dyn_cast<MemberExpr>(E)) {
11214 if (Mem->isImplicitAccess())
11215 D = Mem->getMemberDecl();
11216 }
11217 if (!D)
11218 return false;
11219 return D->getType()->isArrayType() && !D->isWeak();
11220}
11221
11222/// Diagnose some forms of syntactically-obvious tautological comparison.
11223static void diagnoseTautologicalComparison(Sema &S, SourceLocation Loc,
11224 Expr *LHS, Expr *RHS,
11225 BinaryOperatorKind Opc) {
11226 Expr *LHSStripped = LHS->IgnoreParenImpCasts();
11227 Expr *RHSStripped = RHS->IgnoreParenImpCasts();
11228
11229 QualType LHSType = LHS->getType();
11230 QualType RHSType = RHS->getType();
11231 if (LHSType->hasFloatingRepresentation() ||
11232 (LHSType->isBlockPointerType() && !BinaryOperator::isEqualityOp(Opc)) ||
11233 S.inTemplateInstantiation())
11234 return;
11235
11236 // Comparisons between two array types are ill-formed for operator<=>, so
11237 // we shouldn't emit any additional warnings about it.
11238 if (Opc == BO_Cmp && LHSType->isArrayType() && RHSType->isArrayType())
11239 return;
11240
11241 // For non-floating point types, check for self-comparisons of the form
11242 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
11243 // often indicate logic errors in the program.
11244 //
11245 // NOTE: Don't warn about comparison expressions resulting from macro
11246 // expansion. Also don't warn about comparisons which are only self
11247 // comparisons within a template instantiation. The warnings should catch
11248 // obvious cases in the definition of the template anyways. The idea is to
11249 // warn when the typed comparison operator will always evaluate to the same
11250 // result.
11251
11252 // Used for indexing into %select in warn_comparison_always
11253 enum {
11254 AlwaysConstant,
11255 AlwaysTrue,
11256 AlwaysFalse,
11257 AlwaysEqual, // std::strong_ordering::equal from operator<=>
11258 };
11259
11260 // C++2a [depr.array.comp]:
11261 // Equality and relational comparisons ([expr.eq], [expr.rel]) between two
11262 // operands of array type are deprecated.
11263 if (S.getLangOpts().CPlusPlus20 && LHSStripped->getType()->isArrayType() &&
11264 RHSStripped->getType()->isArrayType()) {
11265 S.Diag(Loc, diag::warn_depr_array_comparison)
11266 << LHS->getSourceRange() << RHS->getSourceRange()
11267 << LHSStripped->getType() << RHSStripped->getType();
11268 // Carry on to produce the tautological comparison warning, if this
11269 // expression is potentially-evaluated, we can resolve the array to a
11270 // non-weak declaration, and so on.
11271 }
11272
11273 if (!LHS->getBeginLoc().isMacroID() && !RHS->getBeginLoc().isMacroID()) {
11274 if (Expr::isSameComparisonOperand(LHS, RHS)) {
11275 unsigned Result;
11276 switch (Opc) {
11277 case BO_EQ:
11278 case BO_LE:
11279 case BO_GE:
11280 Result = AlwaysTrue;
11281 break;
11282 case BO_NE:
11283 case BO_LT:
11284 case BO_GT:
11285 Result = AlwaysFalse;
11286 break;
11287 case BO_Cmp:
11288 Result = AlwaysEqual;
11289 break;
11290 default:
11291 Result = AlwaysConstant;
11292 break;
11293 }
11294 S.DiagRuntimeBehavior(Loc, nullptr,
11295 S.PDiag(diag::warn_comparison_always)
11296 << 0 /*self-comparison*/
11297 << Result);
11298 } else if (checkForArray(LHSStripped) && checkForArray(RHSStripped)) {
11299 // What is it always going to evaluate to?
11300 unsigned Result;
11301 switch (Opc) {
11302 case BO_EQ: // e.g. array1 == array2
11303 Result = AlwaysFalse;
11304 break;
11305 case BO_NE: // e.g. array1 != array2
11306 Result = AlwaysTrue;
11307 break;
11308 default: // e.g. array1 <= array2
11309 // The best we can say is 'a constant'
11310 Result = AlwaysConstant;
11311 break;
11312 }
11313 S.DiagRuntimeBehavior(Loc, nullptr,
11314 S.PDiag(diag::warn_comparison_always)
11315 << 1 /*array comparison*/
11316 << Result);
11317 }
11318 }
11319
11320 if (isa<CastExpr>(LHSStripped))
11321 LHSStripped = LHSStripped->IgnoreParenCasts();
11322 if (isa<CastExpr>(RHSStripped))
11323 RHSStripped = RHSStripped->IgnoreParenCasts();
11324
11325 // Warn about comparisons against a string constant (unless the other
11326 // operand is null); the user probably wants string comparison function.
11327 Expr *LiteralString = nullptr;
11328 Expr *LiteralStringStripped = nullptr;
11329 if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
11330 !RHSStripped->isNullPointerConstant(S.Context,
11331 Expr::NPC_ValueDependentIsNull)) {
11332 LiteralString = LHS;
11333 LiteralStringStripped = LHSStripped;
11334 } else if ((isa<StringLiteral>(RHSStripped) ||
11335 isa<ObjCEncodeExpr>(RHSStripped)) &&
11336 !LHSStripped->isNullPointerConstant(S.Context,
11337 Expr::NPC_ValueDependentIsNull)) {
11338 LiteralString = RHS;
11339 LiteralStringStripped = RHSStripped;
11340 }
11341
11342 if (LiteralString) {
11343 S.DiagRuntimeBehavior(Loc, nullptr,
11344 S.PDiag(diag::warn_stringcompare)
11345 << isa<ObjCEncodeExpr>(LiteralStringStripped)
11346 << LiteralString->getSourceRange());
11347 }
11348}
11349
11350static ImplicitConversionKind castKindToImplicitConversionKind(CastKind CK) {
11351 switch (CK) {
11352 default: {
11353#ifndef NDEBUG
11354 llvm::errs() << "unhandled cast kind: " << CastExpr::getCastKindName(CK)
11355 << "\n";
11356#endif
11357 llvm_unreachable("unhandled cast kind")::llvm::llvm_unreachable_internal("unhandled cast kind", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11357)
;
11358 }
11359 case CK_UserDefinedConversion:
11360 return ICK_Identity;
11361 case CK_LValueToRValue:
11362 return ICK_Lvalue_To_Rvalue;
11363 case CK_ArrayToPointerDecay:
11364 return ICK_Array_To_Pointer;
11365 case CK_FunctionToPointerDecay:
11366 return ICK_Function_To_Pointer;
11367 case CK_IntegralCast:
11368 return ICK_Integral_Conversion;
11369 case CK_FloatingCast:
11370 return ICK_Floating_Conversion;
11371 case CK_IntegralToFloating:
11372 case CK_FloatingToIntegral:
11373 return ICK_Floating_Integral;
11374 case CK_IntegralComplexCast:
11375 case CK_FloatingComplexCast:
11376 case CK_FloatingComplexToIntegralComplex:
11377 case CK_IntegralComplexToFloatingComplex:
11378 return ICK_Complex_Conversion;
11379 case CK_FloatingComplexToReal:
11380 case CK_FloatingRealToComplex:
11381 case CK_IntegralComplexToReal:
11382 case CK_IntegralRealToComplex:
11383 return ICK_Complex_Real;
11384 }
11385}
11386
11387static bool checkThreeWayNarrowingConversion(Sema &S, QualType ToType, Expr *E,
11388 QualType FromType,
11389 SourceLocation Loc) {
11390 // Check for a narrowing implicit conversion.
11391 StandardConversionSequence SCS;
11392 SCS.setAsIdentityConversion();
11393 SCS.setToType(0, FromType);
11394 SCS.setToType(1, ToType);
11395 if (const auto *ICE = dyn_cast<ImplicitCastExpr>(E))
11396 SCS.Second = castKindToImplicitConversionKind(ICE->getCastKind());
11397
11398 APValue PreNarrowingValue;
11399 QualType PreNarrowingType;
11400 switch (SCS.getNarrowingKind(S.Context, E, PreNarrowingValue,
11401 PreNarrowingType,
11402 /*IgnoreFloatToIntegralConversion*/ true)) {
11403 case NK_Dependent_Narrowing:
11404 // Implicit conversion to a narrower type, but the expression is
11405 // value-dependent so we can't tell whether it's actually narrowing.
11406 case NK_Not_Narrowing:
11407 return false;
11408
11409 case NK_Constant_Narrowing:
11410 // Implicit conversion to a narrower type, and the value is not a constant
11411 // expression.
11412 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11413 << /*Constant*/ 1
11414 << PreNarrowingValue.getAsString(S.Context, PreNarrowingType) << ToType;
11415 return true;
11416
11417 case NK_Variable_Narrowing:
11418 // Implicit conversion to a narrower type, and the value is not a constant
11419 // expression.
11420 case NK_Type_Narrowing:
11421 S.Diag(E->getBeginLoc(), diag::err_spaceship_argument_narrowing)
11422 << /*Constant*/ 0 << FromType << ToType;
11423 // TODO: It's not a constant expression, but what if the user intended it
11424 // to be? Can we produce notes to help them figure out why it isn't?
11425 return true;
11426 }
11427 llvm_unreachable("unhandled case in switch")::llvm::llvm_unreachable_internal("unhandled case in switch",
"/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11427)
;
11428}
11429
11430static QualType checkArithmeticOrEnumeralThreeWayCompare(Sema &S,
11431 ExprResult &LHS,
11432 ExprResult &RHS,
11433 SourceLocation Loc) {
11434 QualType LHSType = LHS.get()->getType();
11435 QualType RHSType = RHS.get()->getType();
11436 // Dig out the original argument type and expression before implicit casts
11437 // were applied. These are the types/expressions we need to check the
11438 // [expr.spaceship] requirements against.
11439 ExprResult LHSStripped = LHS.get()->IgnoreParenImpCasts();
11440 ExprResult RHSStripped = RHS.get()->IgnoreParenImpCasts();
11441 QualType LHSStrippedType = LHSStripped.get()->getType();
11442 QualType RHSStrippedType = RHSStripped.get()->getType();
11443
11444 // C++2a [expr.spaceship]p3: If one of the operands is of type bool and the
11445 // other is not, the program is ill-formed.
11446 if (LHSStrippedType->isBooleanType() != RHSStrippedType->isBooleanType()) {
11447 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11448 return QualType();
11449 }
11450
11451 // FIXME: Consider combining this with checkEnumArithmeticConversions.
11452 int NumEnumArgs = (int)LHSStrippedType->isEnumeralType() +
11453 RHSStrippedType->isEnumeralType();
11454 if (NumEnumArgs == 1) {
11455 bool LHSIsEnum = LHSStrippedType->isEnumeralType();
11456 QualType OtherTy = LHSIsEnum ? RHSStrippedType : LHSStrippedType;
11457 if (OtherTy->hasFloatingRepresentation()) {
11458 S.InvalidOperands(Loc, LHSStripped, RHSStripped);
11459 return QualType();
11460 }
11461 }
11462 if (NumEnumArgs == 2) {
11463 // C++2a [expr.spaceship]p5: If both operands have the same enumeration
11464 // type E, the operator yields the result of converting the operands
11465 // to the underlying type of E and applying <=> to the converted operands.
11466 if (!S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType)) {
11467 S.InvalidOperands(Loc, LHS, RHS);
11468 return QualType();
11469 }
11470 QualType IntType =
11471 LHSStrippedType->castAs<EnumType>()->getDecl()->getIntegerType();
11472 assert(IntType->isArithmeticType())((IntType->isArithmeticType()) ? static_cast<void> (
0) : __assert_fail ("IntType->isArithmeticType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11472, __PRETTY_FUNCTION__))
;
11473
11474 // We can't use `CK_IntegralCast` when the underlying type is 'bool', so we
11475 // promote the boolean type, and all other promotable integer types, to
11476 // avoid this.
11477 if (IntType->isPromotableIntegerType())
11478 IntType = S.Context.getPromotedIntegerType(IntType);
11479
11480 LHS = S.ImpCastExprToType(LHS.get(), IntType, CK_IntegralCast);
11481 RHS = S.ImpCastExprToType(RHS.get(), IntType, CK_IntegralCast);
11482 LHSType = RHSType = IntType;
11483 }
11484
11485 // C++2a [expr.spaceship]p4: If both operands have arithmetic types, the
11486 // usual arithmetic conversions are applied to the operands.
11487 QualType Type =
11488 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11489 if (LHS.isInvalid() || RHS.isInvalid())
11490 return QualType();
11491 if (Type.isNull())
11492 return S.InvalidOperands(Loc, LHS, RHS);
11493
11494 Optional<ComparisonCategoryType> CCT =
11495 getComparisonCategoryForBuiltinCmp(Type);
11496 if (!CCT)
11497 return S.InvalidOperands(Loc, LHS, RHS);
11498
11499 bool HasNarrowing = checkThreeWayNarrowingConversion(
11500 S, Type, LHS.get(), LHSType, LHS.get()->getBeginLoc());
11501 HasNarrowing |= checkThreeWayNarrowingConversion(S, Type, RHS.get(), RHSType,
11502 RHS.get()->getBeginLoc());
11503 if (HasNarrowing)
11504 return QualType();
11505
11506 assert(!Type.isNull() && "composite type for <=> has not been set")((!Type.isNull() && "composite type for <=> has not been set"
) ? static_cast<void> (0) : __assert_fail ("!Type.isNull() && \"composite type for <=> has not been set\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11506, __PRETTY_FUNCTION__))
;
11507
11508 return S.CheckComparisonCategoryType(
11509 *CCT, Loc, Sema::ComparisonCategoryUsage::OperatorInExpression);
11510}
11511
11512static QualType checkArithmeticOrEnumeralCompare(Sema &S, ExprResult &LHS,
11513 ExprResult &RHS,
11514 SourceLocation Loc,
11515 BinaryOperatorKind Opc) {
11516 if (Opc == BO_Cmp)
11517 return checkArithmeticOrEnumeralThreeWayCompare(S, LHS, RHS, Loc);
11518
11519 // C99 6.5.8p3 / C99 6.5.9p4
11520 QualType Type =
11521 S.UsualArithmeticConversions(LHS, RHS, Loc, Sema::ACK_Comparison);
11522 if (LHS.isInvalid() || RHS.isInvalid())
11523 return QualType();
11524 if (Type.isNull())
11525 return S.InvalidOperands(Loc, LHS, RHS);
11526 assert(Type->isArithmeticType() || Type->isEnumeralType())((Type->isArithmeticType() || Type->isEnumeralType()) ?
static_cast<void> (0) : __assert_fail ("Type->isArithmeticType() || Type->isEnumeralType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11526, __PRETTY_FUNCTION__))
;
11527
11528 if (Type->isAnyComplexType() && BinaryOperator::isRelationalOp(Opc))
11529 return S.InvalidOperands(Loc, LHS, RHS);
11530
11531 // Check for comparisons of floating point operands using != and ==.
11532 if (Type->hasFloatingRepresentation() && BinaryOperator::isEqualityOp(Opc))
11533 S.CheckFloatComparison(Loc, LHS.get(), RHS.get());
11534
11535 // The result of comparisons is 'bool' in C++, 'int' in C.
11536 return S.Context.getLogicalOperationType();
11537}
11538
11539void Sema::CheckPtrComparisonWithNullChar(ExprResult &E, ExprResult &NullE) {
11540 if (!NullE.get()->getType()->isAnyPointerType())
11541 return;
11542 int NullValue = PP.isMacroDefined("NULL") ? 0 : 1;
11543 if (!E.get()->getType()->isAnyPointerType() &&
11544 E.get()->isNullPointerConstant(Context,
11545 Expr::NPC_ValueDependentIsNotNull) ==
11546 Expr::NPCK_ZeroExpression) {
11547 if (const auto *CL = dyn_cast<CharacterLiteral>(E.get())) {
11548 if (CL->getValue() == 0)
11549 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11550 << NullValue
11551 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11552 NullValue ? "NULL" : "(void *)0");
11553 } else if (const auto *CE = dyn_cast<CStyleCastExpr>(E.get())) {
11554 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
11555 QualType T = Context.getCanonicalType(TI->getType()).getUnqualifiedType();
11556 if (T == Context.CharTy)
11557 Diag(E.get()->getExprLoc(), diag::warn_pointer_compare)
11558 << NullValue
11559 << FixItHint::CreateReplacement(E.get()->getExprLoc(),
11560 NullValue ? "NULL" : "(void *)0");
11561 }
11562 }
11563}
11564
11565// C99 6.5.8, C++ [expr.rel]
11566QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
11567 SourceLocation Loc,
11568 BinaryOperatorKind Opc) {
11569 bool IsRelational = BinaryOperator::isRelationalOp(Opc);
11570 bool IsThreeWay = Opc == BO_Cmp;
11571 bool IsOrdered = IsRelational || IsThreeWay;
11572 auto IsAnyPointerType = [](ExprResult E) {
11573 QualType Ty = E.get()->getType();
11574 return Ty->isPointerType() || Ty->isMemberPointerType();
11575 };
11576
11577 // C++2a [expr.spaceship]p6: If at least one of the operands is of pointer
11578 // type, array-to-pointer, ..., conversions are performed on both operands to
11579 // bring them to their composite type.
11580 // Otherwise, all comparisons expect an rvalue, so convert to rvalue before
11581 // any type-related checks.
11582 if (!IsThreeWay || IsAnyPointerType(LHS) || IsAnyPointerType(RHS)) {
11583 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
11584 if (LHS.isInvalid())
11585 return QualType();
11586 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
11587 if (RHS.isInvalid())
11588 return QualType();
11589 } else {
11590 LHS = DefaultLvalueConversion(LHS.get());
11591 if (LHS.isInvalid())
11592 return QualType();
11593 RHS = DefaultLvalueConversion(RHS.get());
11594 if (RHS.isInvalid())
11595 return QualType();
11596 }
11597
11598 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/true);
11599 if (!getLangOpts().CPlusPlus && BinaryOperator::isEqualityOp(Opc)) {
11600 CheckPtrComparisonWithNullChar(LHS, RHS);
11601 CheckPtrComparisonWithNullChar(RHS, LHS);
11602 }
11603
11604 // Handle vector comparisons separately.
11605 if (LHS.get()->getType()->isVectorType() ||
11606 RHS.get()->getType()->isVectorType())
11607 return CheckVectorCompareOperands(LHS, RHS, Loc, Opc);
11608
11609 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
11610 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
11611
11612 QualType LHSType = LHS.get()->getType();
11613 QualType RHSType = RHS.get()->getType();
11614 if ((LHSType->isArithmeticType() || LHSType->isEnumeralType()) &&
11615 (RHSType->isArithmeticType() || RHSType->isEnumeralType()))
11616 return checkArithmeticOrEnumeralCompare(*this, LHS, RHS, Loc, Opc);
11617
11618 const Expr::NullPointerConstantKind LHSNullKind =
11619 LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11620 const Expr::NullPointerConstantKind RHSNullKind =
11621 RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
11622 bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
11623 bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
11624
11625 auto computeResultTy = [&]() {
11626 if (Opc != BO_Cmp)
11627 return Context.getLogicalOperationType();
11628 assert(getLangOpts().CPlusPlus)((getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11628, __PRETTY_FUNCTION__))
;
11629 assert(Context.hasSameType(LHS.get()->getType(), RHS.get()->getType()))((Context.hasSameType(LHS.get()->getType(), RHS.get()->
getType())) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(LHS.get()->getType(), RHS.get()->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11629, __PRETTY_FUNCTION__))
;
11630
11631 QualType CompositeTy = LHS.get()->getType();
11632 assert(!CompositeTy->isReferenceType())((!CompositeTy->isReferenceType()) ? static_cast<void>
(0) : __assert_fail ("!CompositeTy->isReferenceType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 11632, __PRETTY_FUNCTION__))
;
11633
11634 Optional<ComparisonCategoryType> CCT =
11635 getComparisonCategoryForBuiltinCmp(CompositeTy);
11636 if (!CCT)
11637 return InvalidOperands(Loc, LHS, RHS);
11638
11639 if (CompositeTy->isPointerType() && LHSIsNull != RHSIsNull) {
11640 // P0946R0: Comparisons between a null pointer constant and an object
11641 // pointer result in std::strong_equality, which is ill-formed under
11642 // P1959R0.
11643 Diag(Loc, diag::err_typecheck_three_way_comparison_of_pointer_and_zero)
11644 << (LHSIsNull ? LHS.get()->getSourceRange()
11645 : RHS.get()->getSourceRange());
11646 return QualType();
11647 }
11648
11649 return CheckComparisonCategoryType(
11650 *CCT, Loc, ComparisonCategoryUsage::OperatorInExpression);
11651 };
11652
11653 if (!IsOrdered && LHSIsNull != RHSIsNull) {
11654 bool IsEquality = Opc == BO_EQ;
11655 if (RHSIsNull)
11656 DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
11657 RHS.get()->getSourceRange());
11658 else
11659 DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
11660 LHS.get()->getSourceRange());
11661 }
11662
11663 if ((LHSType->isIntegerType() && !LHSIsNull) ||
11664 (RHSType->isIntegerType() && !RHSIsNull)) {
11665 // Skip normal pointer conversion checks in this case; we have better
11666 // diagnostics for this below.
11667 } else if (getLangOpts().CPlusPlus) {
11668 // Equality comparison of a function pointer to a void pointer is invalid,
11669 // but we allow it as an extension.
11670 // FIXME: If we really want to allow this, should it be part of composite
11671 // pointer type computation so it works in conditionals too?
11672 if (!IsOrdered &&
11673 ((LHSType->isFunctionPointerType() && RHSType->isVoidPointerType()) ||
11674 (RHSType->isFunctionPointerType() && LHSType->isVoidPointerType()))) {
11675 // This is a gcc extension compatibility comparison.
11676 // In a SFINAE context, we treat this as a hard error to maintain
11677 // conformance with the C++ standard.
11678 diagnoseFunctionPointerToVoidComparison(
11679 *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
11680
11681 if (isSFINAEContext())
11682 return QualType();
11683
11684 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11685 return computeResultTy();
11686 }
11687
11688 // C++ [expr.eq]p2:
11689 // If at least one operand is a pointer [...] bring them to their
11690 // composite pointer type.
11691 // C++ [expr.spaceship]p6
11692 // If at least one of the operands is of pointer type, [...] bring them
11693 // to their composite pointer type.
11694 // C++ [expr.rel]p2:
11695 // If both operands are pointers, [...] bring them to their composite
11696 // pointer type.
11697 // For <=>, the only valid non-pointer types are arrays and functions, and
11698 // we already decayed those, so this is really the same as the relational
11699 // comparison rule.
11700 if ((int)LHSType->isPointerType() + (int)RHSType->isPointerType() >=
11701 (IsOrdered ? 2 : 1) &&
11702 (!LangOpts.ObjCAutoRefCount || !(LHSType->isObjCObjectPointerType() ||
11703 RHSType->isObjCObjectPointerType()))) {
11704 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11705 return QualType();
11706 return computeResultTy();
11707 }
11708 } else if (LHSType->isPointerType() &&
11709 RHSType->isPointerType()) { // C99 6.5.8p2
11710 // All of the following pointer-related warnings are GCC extensions, except
11711 // when handling null pointer constants.
11712 QualType LCanPointeeTy =
11713 LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11714 QualType RCanPointeeTy =
11715 RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
11716
11717 // C99 6.5.9p2 and C99 6.5.8p2
11718 if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
11719 RCanPointeeTy.getUnqualifiedType())) {
11720 if (IsRelational) {
11721 // Pointers both need to point to complete or incomplete types
11722 if ((LCanPointeeTy->isIncompleteType() !=
11723 RCanPointeeTy->isIncompleteType()) &&
11724 !getLangOpts().C11) {
11725 Diag(Loc, diag::ext_typecheck_compare_complete_incomplete_pointers)
11726 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange()
11727 << LHSType << RHSType << LCanPointeeTy->isIncompleteType()
11728 << RCanPointeeTy->isIncompleteType();
11729 }
11730 if (LCanPointeeTy->isFunctionType()) {
11731 // Valid unless a relational comparison of function pointers
11732 Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
11733 << LHSType << RHSType << LHS.get()->getSourceRange()
11734 << RHS.get()->getSourceRange();
11735 }
11736 }
11737 } else if (!IsRelational &&
11738 (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
11739 // Valid unless comparison between non-null pointer and function pointer
11740 if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
11741 && !LHSIsNull && !RHSIsNull)
11742 diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
11743 /*isError*/false);
11744 } else {
11745 // Invalid
11746 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
11747 }
11748 if (LCanPointeeTy != RCanPointeeTy) {
11749 // Treat NULL constant as a special case in OpenCL.
11750 if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
11751 if (!LCanPointeeTy.isAddressSpaceOverlapping(RCanPointeeTy)) {
11752 Diag(Loc,
11753 diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
11754 << LHSType << RHSType << 0 /* comparison */
11755 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
11756 }
11757 }
11758 LangAS AddrSpaceL = LCanPointeeTy.getAddressSpace();
11759 LangAS AddrSpaceR = RCanPointeeTy.getAddressSpace();
11760 CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
11761 : CK_BitCast;
11762 if (LHSIsNull && !RHSIsNull)
11763 LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
11764 else
11765 RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
11766 }
11767 return computeResultTy();
11768 }
11769
11770 if (getLangOpts().CPlusPlus) {
11771 // C++ [expr.eq]p4:
11772 // Two operands of type std::nullptr_t or one operand of type
11773 // std::nullptr_t and the other a null pointer constant compare equal.
11774 if (!IsOrdered && LHSIsNull && RHSIsNull) {
11775 if (LHSType->isNullPtrType()) {
11776 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11777 return computeResultTy();
11778 }
11779 if (RHSType->isNullPtrType()) {
11780 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11781 return computeResultTy();
11782 }
11783 }
11784
11785 // Comparison of Objective-C pointers and block pointers against nullptr_t.
11786 // These aren't covered by the composite pointer type rules.
11787 if (!IsOrdered && RHSType->isNullPtrType() &&
11788 (LHSType->isObjCObjectPointerType() || LHSType->isBlockPointerType())) {
11789 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11790 return computeResultTy();
11791 }
11792 if (!IsOrdered && LHSType->isNullPtrType() &&
11793 (RHSType->isObjCObjectPointerType() || RHSType->isBlockPointerType())) {
11794 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11795 return computeResultTy();
11796 }
11797
11798 if (IsRelational &&
11799 ((LHSType->isNullPtrType() && RHSType->isPointerType()) ||
11800 (RHSType->isNullPtrType() && LHSType->isPointerType()))) {
11801 // HACK: Relational comparison of nullptr_t against a pointer type is
11802 // invalid per DR583, but we allow it within std::less<> and friends,
11803 // since otherwise common uses of it break.
11804 // FIXME: Consider removing this hack once LWG fixes std::less<> and
11805 // friends to have std::nullptr_t overload candidates.
11806 DeclContext *DC = CurContext;
11807 if (isa<FunctionDecl>(DC))
11808 DC = DC->getParent();
11809 if (auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
11810 if (CTSD->isInStdNamespace() &&
11811 llvm::StringSwitch<bool>(CTSD->getName())
11812 .Cases("less", "less_equal", "greater", "greater_equal", true)
11813 .Default(false)) {
11814 if (RHSType->isNullPtrType())
11815 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11816 else
11817 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11818 return computeResultTy();
11819 }
11820 }
11821 }
11822
11823 // C++ [expr.eq]p2:
11824 // If at least one operand is a pointer to member, [...] bring them to
11825 // their composite pointer type.
11826 if (!IsOrdered &&
11827 (LHSType->isMemberPointerType() || RHSType->isMemberPointerType())) {
11828 if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
11829 return QualType();
11830 else
11831 return computeResultTy();
11832 }
11833 }
11834
11835 // Handle block pointer types.
11836 if (!IsOrdered && LHSType->isBlockPointerType() &&
11837 RHSType->isBlockPointerType()) {
11838 QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
11839 QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
11840
11841 if (!LHSIsNull && !RHSIsNull &&
11842 !Context.typesAreCompatible(lpointee, rpointee)) {
11843 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11844 << LHSType << RHSType << LHS.get()->getSourceRange()
11845 << RHS.get()->getSourceRange();
11846 }
11847 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11848 return computeResultTy();
11849 }
11850
11851 // Allow block pointers to be compared with null pointer constants.
11852 if (!IsOrdered
11853 && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
11854 || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
11855 if (!LHSIsNull && !RHSIsNull) {
11856 if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
11857 ->getPointeeType()->isVoidType())
11858 || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
11859 ->getPointeeType()->isVoidType())))
11860 Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
11861 << LHSType << RHSType << LHS.get()->getSourceRange()
11862 << RHS.get()->getSourceRange();
11863 }
11864 if (LHSIsNull && !RHSIsNull)
11865 LHS = ImpCastExprToType(LHS.get(), RHSType,
11866 RHSType->isPointerType() ? CK_BitCast
11867 : CK_AnyPointerToBlockPointerCast);
11868 else
11869 RHS = ImpCastExprToType(RHS.get(), LHSType,
11870 LHSType->isPointerType() ? CK_BitCast
11871 : CK_AnyPointerToBlockPointerCast);
11872 return computeResultTy();
11873 }
11874
11875 if (LHSType->isObjCObjectPointerType() ||
11876 RHSType->isObjCObjectPointerType()) {
11877 const PointerType *LPT = LHSType->getAs<PointerType>();
11878 const PointerType *RPT = RHSType->getAs<PointerType>();
11879 if (LPT || RPT) {
11880 bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
11881 bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
11882
11883 if (!LPtrToVoid && !RPtrToVoid &&
11884 !Context.typesAreCompatible(LHSType, RHSType)) {
11885 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11886 /*isError*/false);
11887 }
11888 // FIXME: If LPtrToVoid, we should presumably convert the LHS rather than
11889 // the RHS, but we have test coverage for this behavior.
11890 // FIXME: Consider using convertPointersToCompositeType in C++.
11891 if (LHSIsNull && !RHSIsNull) {
11892 Expr *E = LHS.get();
11893 if (getLangOpts().ObjCAutoRefCount)
11894 CheckObjCConversion(SourceRange(), RHSType, E,
11895 CCK_ImplicitConversion);
11896 LHS = ImpCastExprToType(E, RHSType,
11897 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11898 }
11899 else {
11900 Expr *E = RHS.get();
11901 if (getLangOpts().ObjCAutoRefCount)
11902 CheckObjCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion,
11903 /*Diagnose=*/true,
11904 /*DiagnoseCFAudited=*/false, Opc);
11905 RHS = ImpCastExprToType(E, LHSType,
11906 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
11907 }
11908 return computeResultTy();
11909 }
11910 if (LHSType->isObjCObjectPointerType() &&
11911 RHSType->isObjCObjectPointerType()) {
11912 if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
11913 diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
11914 /*isError*/false);
11915 if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
11916 diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
11917
11918 if (LHSIsNull && !RHSIsNull)
11919 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
11920 else
11921 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
11922 return computeResultTy();
11923 }
11924
11925 if (!IsOrdered && LHSType->isBlockPointerType() &&
11926 RHSType->isBlockCompatibleObjCPointerType(Context)) {
11927 LHS = ImpCastExprToType(LHS.get(), RHSType,
11928 CK_BlockPointerToObjCPointerCast);
11929 return computeResultTy();
11930 } else if (!IsOrdered &&
11931 LHSType->isBlockCompatibleObjCPointerType(Context) &&
11932 RHSType->isBlockPointerType()) {
11933 RHS = ImpCastExprToType(RHS.get(), LHSType,
11934 CK_BlockPointerToObjCPointerCast);
11935 return computeResultTy();
11936 }
11937 }
11938 if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
11939 (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
11940 unsigned DiagID = 0;
11941 bool isError = false;
11942 if (LangOpts.DebuggerSupport) {
11943 // Under a debugger, allow the comparison of pointers to integers,
11944 // since users tend to want to compare addresses.
11945 } else if ((LHSIsNull && LHSType->isIntegerType()) ||
11946 (RHSIsNull && RHSType->isIntegerType())) {
11947 if (IsOrdered) {
11948 isError = getLangOpts().CPlusPlus;
11949 DiagID =
11950 isError ? diag::err_typecheck_ordered_comparison_of_pointer_and_zero
11951 : diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
11952 }
11953 } else if (getLangOpts().CPlusPlus) {
11954 DiagID = diag::err_typecheck_comparison_of_pointer_integer;
11955 isError = true;
11956 } else if (IsOrdered)
11957 DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
11958 else
11959 DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
11960
11961 if (DiagID) {
11962 Diag(Loc, DiagID)
11963 << LHSType << RHSType << LHS.get()->getSourceRange()
11964 << RHS.get()->getSourceRange();
11965 if (isError)
11966 return QualType();
11967 }
11968
11969 if (LHSType->isIntegerType())
11970 LHS = ImpCastExprToType(LHS.get(), RHSType,
11971 LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11972 else
11973 RHS = ImpCastExprToType(RHS.get(), LHSType,
11974 RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
11975 return computeResultTy();
11976 }
11977
11978 // Handle block pointers.
11979 if (!IsOrdered && RHSIsNull
11980 && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
11981 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
11982 return computeResultTy();
11983 }
11984 if (!IsOrdered && LHSIsNull
11985 && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
11986 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
11987 return computeResultTy();
11988 }
11989
11990 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
11991 if (LHSType->isClkEventT() && RHSType->isClkEventT()) {
11992 return computeResultTy();
11993 }
11994
11995 if (LHSType->isQueueT() && RHSType->isQueueT()) {
11996 return computeResultTy();
11997 }
11998
11999 if (LHSIsNull && RHSType->isQueueT()) {
12000 LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
12001 return computeResultTy();
12002 }
12003
12004 if (LHSType->isQueueT() && RHSIsNull) {
12005 RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
12006 return computeResultTy();
12007 }
12008 }
12009
12010 return InvalidOperands(Loc, LHS, RHS);
12011}
12012
12013// Return a signed ext_vector_type that is of identical size and number of
12014// elements. For floating point vectors, return an integer type of identical
12015// size and number of elements. In the non ext_vector_type case, search from
12016// the largest type to the smallest type to avoid cases where long long == long,
12017// where long gets picked over long long.
12018QualType Sema::GetSignedVectorType(QualType V) {
12019 const VectorType *VTy = V->castAs<VectorType>();
12020 unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
12021
12022 if (isa<ExtVectorType>(VTy)) {
12023 if (TypeSize == Context.getTypeSize(Context.CharTy))
12024 return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
12025 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12026 return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
12027 else if (TypeSize == Context.getTypeSize(Context.IntTy))
12028 return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
12029 else if (TypeSize == Context.getTypeSize(Context.LongTy))
12030 return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
12031 assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&((TypeSize == Context.getTypeSize(Context.LongLongTy) &&
"Unhandled vector element size in vector compare") ? static_cast
<void> (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12032, __PRETTY_FUNCTION__))
12032 "Unhandled vector element size in vector compare")((TypeSize == Context.getTypeSize(Context.LongLongTy) &&
"Unhandled vector element size in vector compare") ? static_cast
<void> (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.LongLongTy) && \"Unhandled vector element size in vector compare\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12032, __PRETTY_FUNCTION__))
;
12033 return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
12034 }
12035
12036 if (TypeSize == Context.getTypeSize(Context.LongLongTy))
12037 return Context.getVectorType(Context.LongLongTy, VTy->getNumElements(),
12038 VectorType::GenericVector);
12039 else if (TypeSize == Context.getTypeSize(Context.LongTy))
12040 return Context.getVectorType(Context.LongTy, VTy->getNumElements(),
12041 VectorType::GenericVector);
12042 else if (TypeSize == Context.getTypeSize(Context.IntTy))
12043 return Context.getVectorType(Context.IntTy, VTy->getNumElements(),
12044 VectorType::GenericVector);
12045 else if (TypeSize == Context.getTypeSize(Context.ShortTy))
12046 return Context.getVectorType(Context.ShortTy, VTy->getNumElements(),
12047 VectorType::GenericVector);
12048 assert(TypeSize == Context.getTypeSize(Context.CharTy) &&((TypeSize == Context.getTypeSize(Context.CharTy) && "Unhandled vector element size in vector compare"
) ? static_cast<void> (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12049, __PRETTY_FUNCTION__))
12049 "Unhandled vector element size in vector compare")((TypeSize == Context.getTypeSize(Context.CharTy) && "Unhandled vector element size in vector compare"
) ? static_cast<void> (0) : __assert_fail ("TypeSize == Context.getTypeSize(Context.CharTy) && \"Unhandled vector element size in vector compare\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12049, __PRETTY_FUNCTION__))
;
12050 return Context.getVectorType(Context.CharTy, VTy->getNumElements(),
12051 VectorType::GenericVector);
12052}
12053
12054/// CheckVectorCompareOperands - vector comparisons are a clang extension that
12055/// operates on extended vector types. Instead of producing an IntTy result,
12056/// like a scalar comparison, a vector comparison produces a vector of integer
12057/// types.
12058QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
12059 SourceLocation Loc,
12060 BinaryOperatorKind Opc) {
12061 if (Opc == BO_Cmp) {
12062 Diag(Loc, diag::err_three_way_vector_comparison);
12063 return QualType();
12064 }
12065
12066 // Check to make sure we're operating on vectors of the same type and width,
12067 // Allowing one side to be a scalar of element type.
12068 QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
12069 /*AllowBothBool*/true,
12070 /*AllowBoolConversions*/getLangOpts().ZVector);
12071 if (vType.isNull())
12072 return vType;
12073
12074 QualType LHSType = LHS.get()->getType();
12075
12076 // If AltiVec, the comparison results in a numeric type, i.e.
12077 // bool for C++, int for C
12078 if (getLangOpts().AltiVec &&
12079 vType->castAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
12080 return Context.getLogicalOperationType();
12081
12082 // For non-floating point types, check for self-comparisons of the form
12083 // x == x, x != x, x < x, etc. These always evaluate to a constant, and
12084 // often indicate logic errors in the program.
12085 diagnoseTautologicalComparison(*this, Loc, LHS.get(), RHS.get(), Opc);
12086
12087 // Check for comparisons of floating point operands using != and ==.
12088 if (BinaryOperator::isEqualityOp(Opc) &&
12089 LHSType->hasFloatingRepresentation()) {
12090 assert(RHS.get()->getType()->hasFloatingRepresentation())((RHS.get()->getType()->hasFloatingRepresentation()) ? static_cast
<void> (0) : __assert_fail ("RHS.get()->getType()->hasFloatingRepresentation()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12090, __PRETTY_FUNCTION__))
;
12091 CheckFloatComparison(Loc, LHS.get(), RHS.get());
12092 }
12093
12094 // Return a signed type for the vector.
12095 return GetSignedVectorType(vType);
12096}
12097
12098static void diagnoseXorMisusedAsPow(Sema &S, const ExprResult &XorLHS,
12099 const ExprResult &XorRHS,
12100 const SourceLocation Loc) {
12101 // Do not diagnose macros.
12102 if (Loc.isMacroID())
12103 return;
12104
12105 // Do not diagnose if both LHS and RHS are macros.
12106 if (XorLHS.get()->getExprLoc().isMacroID() &&
12107 XorRHS.get()->getExprLoc().isMacroID())
12108 return;
12109
12110 bool Negative = false;
12111 bool ExplicitPlus = false;
12112 const auto *LHSInt = dyn_cast<IntegerLiteral>(XorLHS.get());
12113 const auto *RHSInt = dyn_cast<IntegerLiteral>(XorRHS.get());
12114
12115 if (!LHSInt)
12116 return;
12117 if (!RHSInt) {
12118 // Check negative literals.
12119 if (const auto *UO = dyn_cast<UnaryOperator>(XorRHS.get())) {
12120 UnaryOperatorKind Opc = UO->getOpcode();
12121 if (Opc != UO_Minus && Opc != UO_Plus)
12122 return;
12123 RHSInt = dyn_cast<IntegerLiteral>(UO->getSubExpr());
12124 if (!RHSInt)
12125 return;
12126 Negative = (Opc == UO_Minus);
12127 ExplicitPlus = !Negative;
12128 } else {
12129 return;
12130 }
12131 }
12132
12133 const llvm::APInt &LeftSideValue = LHSInt->getValue();
12134 llvm::APInt RightSideValue = RHSInt->getValue();
12135 if (LeftSideValue != 2 && LeftSideValue != 10)
12136 return;
12137
12138 if (LeftSideValue.getBitWidth() != RightSideValue.getBitWidth())
12139 return;
12140
12141 CharSourceRange ExprRange = CharSourceRange::getCharRange(
12142 LHSInt->getBeginLoc(), S.getLocForEndOfToken(RHSInt->getLocation()));
12143 llvm::StringRef ExprStr =
12144 Lexer::getSourceText(ExprRange, S.getSourceManager(), S.getLangOpts());
12145
12146 CharSourceRange XorRange =
12147 CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
12148 llvm::StringRef XorStr =
12149 Lexer::getSourceText(XorRange, S.getSourceManager(), S.getLangOpts());
12150 // Do not diagnose if xor keyword/macro is used.
12151 if (XorStr == "xor")
12152 return;
12153
12154 std::string LHSStr = std::string(Lexer::getSourceText(
12155 CharSourceRange::getTokenRange(LHSInt->getSourceRange()),
12156 S.getSourceManager(), S.getLangOpts()));
12157 std::string RHSStr = std::string(Lexer::getSourceText(
12158 CharSourceRange::getTokenRange(RHSInt->getSourceRange()),
12159 S.getSourceManager(), S.getLangOpts()));
12160
12161 if (Negative) {
12162 RightSideValue = -RightSideValue;
12163 RHSStr = "-" + RHSStr;
12164 } else if (ExplicitPlus) {
12165 RHSStr = "+" + RHSStr;
12166 }
12167
12168 StringRef LHSStrRef = LHSStr;
12169 StringRef RHSStrRef = RHSStr;
12170 // Do not diagnose literals with digit separators, binary, hexadecimal, octal
12171 // literals.
12172 if (LHSStrRef.startswith("0b") || LHSStrRef.startswith("0B") ||
12173 RHSStrRef.startswith("0b") || RHSStrRef.startswith("0B") ||
12174 LHSStrRef.startswith("0x") || LHSStrRef.startswith("0X") ||
12175 RHSStrRef.startswith("0x") || RHSStrRef.startswith("0X") ||
12176 (LHSStrRef.size() > 1 && LHSStrRef.startswith("0")) ||
12177 (RHSStrRef.size() > 1 && RHSStrRef.startswith("0")) ||
12178 LHSStrRef.find('\'') != StringRef::npos ||
12179 RHSStrRef.find('\'') != StringRef::npos)
12180 return;
12181
12182 bool SuggestXor = S.getLangOpts().CPlusPlus || S.getPreprocessor().isMacroDefined("xor");
12183 const llvm::APInt XorValue = LeftSideValue ^ RightSideValue;
12184 int64_t RightSideIntValue = RightSideValue.getSExtValue();
12185 if (LeftSideValue == 2 && RightSideIntValue >= 0) {
12186 std::string SuggestedExpr = "1 << " + RHSStr;
12187 bool Overflow = false;
12188 llvm::APInt One = (LeftSideValue - 1);
12189 llvm::APInt PowValue = One.sshl_ov(RightSideValue, Overflow);
12190 if (Overflow) {
12191 if (RightSideIntValue < 64)
12192 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12193 << ExprStr << XorValue.toString(10, true) << ("1LL << " + RHSStr)
12194 << FixItHint::CreateReplacement(ExprRange, "1LL << " + RHSStr);
12195 else if (RightSideIntValue == 64)
12196 S.Diag(Loc, diag::warn_xor_used_as_pow) << ExprStr << XorValue.toString(10, true);
12197 else
12198 return;
12199 } else {
12200 S.Diag(Loc, diag::warn_xor_used_as_pow_base_extra)
12201 << ExprStr << XorValue.toString(10, true) << SuggestedExpr
12202 << PowValue.toString(10, true)
12203 << FixItHint::CreateReplacement(
12204 ExprRange, (RightSideIntValue == 0) ? "1" : SuggestedExpr);
12205 }
12206
12207 S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0x2 ^ " + RHSStr) << SuggestXor;
12208 } else if (LeftSideValue == 10) {
12209 std::string SuggestedValue = "1e" + std::to_string(RightSideIntValue);
12210 S.Diag(Loc, diag::warn_xor_used_as_pow_base)
12211 << ExprStr << XorValue.toString(10, true) << SuggestedValue
12212 << FixItHint::CreateReplacement(ExprRange, SuggestedValue);
12213 S.Diag(Loc, diag::note_xor_used_as_pow_silence) << ("0xA ^ " + RHSStr) << SuggestXor;
12214 }
12215}
12216
12217QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12218 SourceLocation Loc) {
12219 // Ensure that either both operands are of the same vector type, or
12220 // one operand is of a vector type and the other is of its element type.
12221 QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
12222 /*AllowBothBool*/true,
12223 /*AllowBoolConversions*/false);
12224 if (vType.isNull())
12225 return InvalidOperands(Loc, LHS, RHS);
12226 if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
12227 !getLangOpts().OpenCLCPlusPlus && vType->hasFloatingRepresentation())
12228 return InvalidOperands(Loc, LHS, RHS);
12229 // FIXME: The check for C++ here is for GCC compatibility. GCC rejects the
12230 // usage of the logical operators && and || with vectors in C. This
12231 // check could be notionally dropped.
12232 if (!getLangOpts().CPlusPlus &&
12233 !(isa<ExtVectorType>(vType->getAs<VectorType>())))
12234 return InvalidLogicalVectorOperands(Loc, LHS, RHS);
12235
12236 return GetSignedVectorType(LHS.get()->getType());
12237}
12238
12239QualType Sema::CheckMatrixElementwiseOperands(ExprResult &LHS, ExprResult &RHS,
12240 SourceLocation Loc,
12241 bool IsCompAssign) {
12242 if (!IsCompAssign) {
12243 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12244 if (LHS.isInvalid())
12245 return QualType();
12246 }
12247 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12248 if (RHS.isInvalid())
12249 return QualType();
12250
12251 // For conversion purposes, we ignore any qualifiers.
12252 // For example, "const float" and "float" are equivalent.
12253 QualType LHSType = LHS.get()->getType().getUnqualifiedType();
12254 QualType RHSType = RHS.get()->getType().getUnqualifiedType();
12255
12256 const MatrixType *LHSMatType = LHSType->getAs<MatrixType>();
12257 const MatrixType *RHSMatType = RHSType->getAs<MatrixType>();
12258 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(((LHSMatType || RHSMatType) && "At least one operand must be a matrix"
) ? static_cast<void> (0) : __assert_fail ("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12258, __PRETTY_FUNCTION__))
;
12259
12260 if (Context.hasSameType(LHSType, RHSType))
12261 return LHSType;
12262
12263 // Type conversion may change LHS/RHS. Keep copies to the original results, in
12264 // case we have to return InvalidOperands.
12265 ExprResult OriginalLHS = LHS;
12266 ExprResult OriginalRHS = RHS;
12267 if (LHSMatType && !RHSMatType) {
12268 RHS = tryConvertExprToType(RHS.get(), LHSMatType->getElementType());
12269 if (!RHS.isInvalid())
12270 return LHSType;
12271
12272 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12273 }
12274
12275 if (!LHSMatType && RHSMatType) {
12276 LHS = tryConvertExprToType(LHS.get(), RHSMatType->getElementType());
12277 if (!LHS.isInvalid())
12278 return RHSType;
12279 return InvalidOperands(Loc, OriginalLHS, OriginalRHS);
12280 }
12281
12282 return InvalidOperands(Loc, LHS, RHS);
12283}
12284
12285QualType Sema::CheckMatrixMultiplyOperands(ExprResult &LHS, ExprResult &RHS,
12286 SourceLocation Loc,
12287 bool IsCompAssign) {
12288 if (!IsCompAssign) {
12289 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
12290 if (LHS.isInvalid())
12291 return QualType();
12292 }
12293 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
12294 if (RHS.isInvalid())
12295 return QualType();
12296
12297 auto *LHSMatType = LHS.get()->getType()->getAs<ConstantMatrixType>();
12298 auto *RHSMatType = RHS.get()->getType()->getAs<ConstantMatrixType>();
12299 assert((LHSMatType || RHSMatType) && "At least one operand must be a matrix")(((LHSMatType || RHSMatType) && "At least one operand must be a matrix"
) ? static_cast<void> (0) : __assert_fail ("(LHSMatType || RHSMatType) && \"At least one operand must be a matrix\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12299, __PRETTY_FUNCTION__))
;
12300
12301 if (LHSMatType && RHSMatType) {
12302 if (LHSMatType->getNumColumns() != RHSMatType->getNumRows())
12303 return InvalidOperands(Loc, LHS, RHS);
12304
12305 if (!Context.hasSameType(LHSMatType->getElementType(),
12306 RHSMatType->getElementType()))
12307 return InvalidOperands(Loc, LHS, RHS);
12308
12309 return Context.getConstantMatrixType(LHSMatType->getElementType(),
12310 LHSMatType->getNumRows(),
12311 RHSMatType->getNumColumns());
12312 }
12313 return CheckMatrixElementwiseOperands(LHS, RHS, Loc, IsCompAssign);
12314}
12315
12316inline QualType Sema::CheckBitwiseOperands(ExprResult &LHS, ExprResult &RHS,
12317 SourceLocation Loc,
12318 BinaryOperatorKind Opc) {
12319 checkArithmeticNull(*this, LHS, RHS, Loc, /*IsCompare=*/false);
12320
12321 bool IsCompAssign =
12322 Opc == BO_AndAssign || Opc == BO_OrAssign || Opc == BO_XorAssign;
12323
12324 if (LHS.get()->getType()->isVectorType() ||
12325 RHS.get()->getType()->isVectorType()) {
12326 if (LHS.get()->getType()->hasIntegerRepresentation() &&
12327 RHS.get()->getType()->hasIntegerRepresentation())
12328 return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
12329 /*AllowBothBool*/true,
12330 /*AllowBoolConversions*/getLangOpts().ZVector);
12331 return InvalidOperands(Loc, LHS, RHS);
12332 }
12333
12334 if (Opc == BO_And)
12335 diagnoseLogicalNotOnLHSofCheck(*this, LHS, RHS, Loc, Opc);
12336
12337 if (LHS.get()->getType()->hasFloatingRepresentation() ||
12338 RHS.get()->getType()->hasFloatingRepresentation())
12339 return InvalidOperands(Loc, LHS, RHS);
12340
12341 ExprResult LHSResult = LHS, RHSResult = RHS;
12342 QualType compType = UsualArithmeticConversions(
12343 LHSResult, RHSResult, Loc, IsCompAssign ? ACK_CompAssign : ACK_BitwiseOp);
12344 if (LHSResult.isInvalid() || RHSResult.isInvalid())
12345 return QualType();
12346 LHS = LHSResult.get();
12347 RHS = RHSResult.get();
12348
12349 if (Opc == BO_Xor)
12350 diagnoseXorMisusedAsPow(*this, LHS, RHS, Loc);
12351
12352 if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
12353 return compType;
12354 return InvalidOperands(Loc, LHS, RHS);
12355}
12356
12357// C99 6.5.[13,14]
12358inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
12359 SourceLocation Loc,
12360 BinaryOperatorKind Opc) {
12361 // Check vector operands differently.
12362 if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
12363 return CheckVectorLogicalOperands(LHS, RHS, Loc);
12364
12365 bool EnumConstantInBoolContext = false;
12366 for (const ExprResult &HS : {LHS, RHS}) {
12367 if (const auto *DREHS = dyn_cast<DeclRefExpr>(HS.get())) {
12368 const auto *ECDHS = dyn_cast<EnumConstantDecl>(DREHS->getDecl());
12369 if (ECDHS && ECDHS->getInitVal() != 0 && ECDHS->getInitVal() != 1)
12370 EnumConstantInBoolContext = true;
12371 }
12372 }
12373
12374 if (EnumConstantInBoolContext)
12375 Diag(Loc, diag::warn_enum_constant_in_bool_context);
12376
12377 // Diagnose cases where the user write a logical and/or but probably meant a
12378 // bitwise one. We do this when the LHS is a non-bool integer and the RHS
12379 // is a constant.
12380 if (!EnumConstantInBoolContext && LHS.get()->getType()->isIntegerType() &&
12381 !LHS.get()->getType()->isBooleanType() &&
12382 RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
12383 // Don't warn in macros or template instantiations.
12384 !Loc.isMacroID() && !inTemplateInstantiation()) {
12385 // If the RHS can be constant folded, and if it constant folds to something
12386 // that isn't 0 or 1 (which indicate a potential logical operation that
12387 // happened to fold to true/false) then warn.
12388 // Parens on the RHS are ignored.
12389 Expr::EvalResult EVResult;
12390 if (RHS.get()->EvaluateAsInt(EVResult, Context)) {
12391 llvm::APSInt Result = EVResult.Val.getInt();
12392 if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
12393 !RHS.get()->getExprLoc().isMacroID()) ||
12394 (Result != 0 && Result != 1)) {
12395 Diag(Loc, diag::warn_logical_instead_of_bitwise)
12396 << RHS.get()->getSourceRange()
12397 << (Opc == BO_LAnd ? "&&" : "||");
12398 // Suggest replacing the logical operator with the bitwise version
12399 Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
12400 << (Opc == BO_LAnd ? "&" : "|")
12401 << FixItHint::CreateReplacement(SourceRange(
12402 Loc, getLocForEndOfToken(Loc)),
12403 Opc == BO_LAnd ? "&" : "|");
12404 if (Opc == BO_LAnd)
12405 // Suggest replacing "Foo() && kNonZero" with "Foo()"
12406 Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
12407 << FixItHint::CreateRemoval(
12408 SourceRange(getLocForEndOfToken(LHS.get()->getEndLoc()),
12409 RHS.get()->getEndLoc()));
12410 }
12411 }
12412 }
12413
12414 if (!Context.getLangOpts().CPlusPlus) {
12415 // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
12416 // not operate on the built-in scalar and vector float types.
12417 if (Context.getLangOpts().OpenCL &&
12418 Context.getLangOpts().OpenCLVersion < 120) {
12419 if (LHS.get()->getType()->isFloatingType() ||
12420 RHS.get()->getType()->isFloatingType())
12421 return InvalidOperands(Loc, LHS, RHS);
12422 }
12423
12424 LHS = UsualUnaryConversions(LHS.get());
12425 if (LHS.isInvalid())
12426 return QualType();
12427
12428 RHS = UsualUnaryConversions(RHS.get());
12429 if (RHS.isInvalid())
12430 return QualType();
12431
12432 if (!LHS.get()->getType()->isScalarType() ||
12433 !RHS.get()->getType()->isScalarType())
12434 return InvalidOperands(Loc, LHS, RHS);
12435
12436 return Context.IntTy;
12437 }
12438
12439 // The following is safe because we only use this method for
12440 // non-overloadable operands.
12441
12442 // C++ [expr.log.and]p1
12443 // C++ [expr.log.or]p1
12444 // The operands are both contextually converted to type bool.
12445 ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
12446 if (LHSRes.isInvalid())
12447 return InvalidOperands(Loc, LHS, RHS);
12448 LHS = LHSRes;
12449
12450 ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
12451 if (RHSRes.isInvalid())
12452 return InvalidOperands(Loc, LHS, RHS);
12453 RHS = RHSRes;
12454
12455 // C++ [expr.log.and]p2
12456 // C++ [expr.log.or]p2
12457 // The result is a bool.
12458 return Context.BoolTy;
12459}
12460
12461static bool IsReadonlyMessage(Expr *E, Sema &S) {
12462 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
12463 if (!ME) return false;
12464 if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
12465 ObjCMessageExpr *Base = dyn_cast<ObjCMessageExpr>(
12466 ME->getBase()->IgnoreImplicit()->IgnoreParenImpCasts());
12467 if (!Base) return false;
12468 return Base->getMethodDecl() != nullptr;
12469}
12470
12471/// Is the given expression (which must be 'const') a reference to a
12472/// variable which was originally non-const, but which has become
12473/// 'const' due to being captured within a block?
12474enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
12475static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
12476 assert(E->isLValue() && E->getType().isConstQualified())((E->isLValue() && E->getType().isConstQualified
()) ? static_cast<void> (0) : __assert_fail ("E->isLValue() && E->getType().isConstQualified()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12476, __PRETTY_FUNCTION__))
;
12477 E = E->IgnoreParens();
12478
12479 // Must be a reference to a declaration from an enclosing scope.
12480 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
12481 if (!DRE) return NCCK_None;
12482 if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
12483
12484 // The declaration must be a variable which is not declared 'const'.
12485 VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
12486 if (!var) return NCCK_None;
12487 if (var->getType().isConstQualified()) return NCCK_None;
12488 assert(var->hasLocalStorage() && "capture added 'const' to non-local?")((var->hasLocalStorage() && "capture added 'const' to non-local?"
) ? static_cast<void> (0) : __assert_fail ("var->hasLocalStorage() && \"capture added 'const' to non-local?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12488, __PRETTY_FUNCTION__))
;
12489
12490 // Decide whether the first capture was for a block or a lambda.
12491 DeclContext *DC = S.CurContext, *Prev = nullptr;
12492 // Decide whether the first capture was for a block or a lambda.
12493 while (DC) {
12494 // For init-capture, it is possible that the variable belongs to the
12495 // template pattern of the current context.
12496 if (auto *FD = dyn_cast<FunctionDecl>(DC))
12497 if (var->isInitCapture() &&
12498 FD->getTemplateInstantiationPattern() == var->getDeclContext())
12499 break;
12500 if (DC == var->getDeclContext())
12501 break;
12502 Prev = DC;
12503 DC = DC->getParent();
12504 }
12505 // Unless we have an init-capture, we've gone one step too far.
12506 if (!var->isInitCapture())
12507 DC = Prev;
12508 return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
12509}
12510
12511static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
12512 Ty = Ty.getNonReferenceType();
12513 if (IsDereference && Ty->isPointerType())
12514 Ty = Ty->getPointeeType();
12515 return !Ty.isConstQualified();
12516}
12517
12518// Update err_typecheck_assign_const and note_typecheck_assign_const
12519// when this enum is changed.
12520enum {
12521 ConstFunction,
12522 ConstVariable,
12523 ConstMember,
12524 ConstMethod,
12525 NestedConstMember,
12526 ConstUnknown, // Keep as last element
12527};
12528
12529/// Emit the "read-only variable not assignable" error and print notes to give
12530/// more information about why the variable is not assignable, such as pointing
12531/// to the declaration of a const variable, showing that a method is const, or
12532/// that the function is returning a const reference.
12533static void DiagnoseConstAssignment(Sema &S, const Expr *E,
12534 SourceLocation Loc) {
12535 SourceRange ExprRange = E->getSourceRange();
12536
12537 // Only emit one error on the first const found. All other consts will emit
12538 // a note to the error.
12539 bool DiagnosticEmitted = false;
12540
12541 // Track if the current expression is the result of a dereference, and if the
12542 // next checked expression is the result of a dereference.
12543 bool IsDereference = false;
12544 bool NextIsDereference = false;
12545
12546 // Loop to process MemberExpr chains.
12547 while (true) {
12548 IsDereference = NextIsDereference;
12549
12550 E = E->IgnoreImplicit()->IgnoreParenImpCasts();
12551 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
12552 NextIsDereference = ME->isArrow();
12553 const ValueDecl *VD = ME->getMemberDecl();
12554 if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
12555 // Mutable fields can be modified even if the class is const.
12556 if (Field->isMutable()) {
12557 assert(DiagnosticEmitted && "Expected diagnostic not emitted.")((DiagnosticEmitted && "Expected diagnostic not emitted."
) ? static_cast<void> (0) : __assert_fail ("DiagnosticEmitted && \"Expected diagnostic not emitted.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12557, __PRETTY_FUNCTION__))
;
12558 break;
12559 }
12560
12561 if (!IsTypeModifiable(Field->getType(), IsDereference)) {
12562 if (!DiagnosticEmitted) {
12563 S.Diag(Loc, diag::err_typecheck_assign_const)
12564 << ExprRange << ConstMember << false /*static*/ << Field
12565 << Field->getType();
12566 DiagnosticEmitted = true;
12567 }
12568 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12569 << ConstMember << false /*static*/ << Field << Field->getType()
12570 << Field->getSourceRange();
12571 }
12572 E = ME->getBase();
12573 continue;
12574 } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
12575 if (VDecl->getType().isConstQualified()) {
12576 if (!DiagnosticEmitted) {
12577 S.Diag(Loc, diag::err_typecheck_assign_const)
12578 << ExprRange << ConstMember << true /*static*/ << VDecl
12579 << VDecl->getType();
12580 DiagnosticEmitted = true;
12581 }
12582 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12583 << ConstMember << true /*static*/ << VDecl << VDecl->getType()
12584 << VDecl->getSourceRange();
12585 }
12586 // Static fields do not inherit constness from parents.
12587 break;
12588 }
12589 break; // End MemberExpr
12590 } else if (const ArraySubscriptExpr *ASE =
12591 dyn_cast<ArraySubscriptExpr>(E)) {
12592 E = ASE->getBase()->IgnoreParenImpCasts();
12593 continue;
12594 } else if (const ExtVectorElementExpr *EVE =
12595 dyn_cast<ExtVectorElementExpr>(E)) {
12596 E = EVE->getBase()->IgnoreParenImpCasts();
12597 continue;
12598 }
12599 break;
12600 }
12601
12602 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
12603 // Function calls
12604 const FunctionDecl *FD = CE->getDirectCallee();
12605 if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
12606 if (!DiagnosticEmitted) {
12607 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12608 << ConstFunction << FD;
12609 DiagnosticEmitted = true;
12610 }
12611 S.Diag(FD->getReturnTypeSourceRange().getBegin(),
12612 diag::note_typecheck_assign_const)
12613 << ConstFunction << FD << FD->getReturnType()
12614 << FD->getReturnTypeSourceRange();
12615 }
12616 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12617 // Point to variable declaration.
12618 if (const ValueDecl *VD = DRE->getDecl()) {
12619 if (!IsTypeModifiable(VD->getType(), IsDereference)) {
12620 if (!DiagnosticEmitted) {
12621 S.Diag(Loc, diag::err_typecheck_assign_const)
12622 << ExprRange << ConstVariable << VD << VD->getType();
12623 DiagnosticEmitted = true;
12624 }
12625 S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
12626 << ConstVariable << VD << VD->getType() << VD->getSourceRange();
12627 }
12628 }
12629 } else if (isa<CXXThisExpr>(E)) {
12630 if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
12631 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
12632 if (MD->isConst()) {
12633 if (!DiagnosticEmitted) {
12634 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
12635 << ConstMethod << MD;
12636 DiagnosticEmitted = true;
12637 }
12638 S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
12639 << ConstMethod << MD << MD->getSourceRange();
12640 }
12641 }
12642 }
12643 }
12644
12645 if (DiagnosticEmitted)
12646 return;
12647
12648 // Can't determine a more specific message, so display the generic error.
12649 S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
12650}
12651
12652enum OriginalExprKind {
12653 OEK_Variable,
12654 OEK_Member,
12655 OEK_LValue
12656};
12657
12658static void DiagnoseRecursiveConstFields(Sema &S, const ValueDecl *VD,
12659 const RecordType *Ty,
12660 SourceLocation Loc, SourceRange Range,
12661 OriginalExprKind OEK,
12662 bool &DiagnosticEmitted) {
12663 std::vector<const RecordType *> RecordTypeList;
12664 RecordTypeList.push_back(Ty);
12665 unsigned NextToCheckIndex = 0;
12666 // We walk the record hierarchy breadth-first to ensure that we print
12667 // diagnostics in field nesting order.
12668 while (RecordTypeList.size() > NextToCheckIndex) {
12669 bool IsNested = NextToCheckIndex > 0;
12670 for (const FieldDecl *Field :
12671 RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
12672 // First, check every field for constness.
12673 QualType FieldTy = Field->getType();
12674 if (FieldTy.isConstQualified()) {
12675 if (!DiagnosticEmitted) {
12676 S.Diag(Loc, diag::err_typecheck_assign_const)
12677 << Range << NestedConstMember << OEK << VD
12678 << IsNested << Field;
12679 DiagnosticEmitted = true;
12680 }
12681 S.Diag(Field->getLocation(), diag::note_typecheck_assign_const)
12682 << NestedConstMember << IsNested << Field
12683 << FieldTy << Field->getSourceRange();
12684 }
12685
12686 // Then we append it to the list to check next in order.
12687 FieldTy = FieldTy.getCanonicalType();
12688 if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
12689 if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
12690 RecordTypeList.push_back(FieldRecTy);
12691 }
12692 }
12693 ++NextToCheckIndex;
12694 }
12695}
12696
12697/// Emit an error for the case where a record we are trying to assign to has a
12698/// const-qualified field somewhere in its hierarchy.
12699static void DiagnoseRecursiveConstFields(Sema &S, const Expr *E,
12700 SourceLocation Loc) {
12701 QualType Ty = E->getType();
12702 assert(Ty->isRecordType() && "lvalue was not record?")((Ty->isRecordType() && "lvalue was not record?") ?
static_cast<void> (0) : __assert_fail ("Ty->isRecordType() && \"lvalue was not record?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12702, __PRETTY_FUNCTION__))
;
12703 SourceRange Range = E->getSourceRange();
12704 const RecordType *RTy = Ty.getCanonicalType()->getAs<RecordType>();
12705 bool DiagEmitted = false;
12706
12707 if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
12708 DiagnoseRecursiveConstFields(S, ME->getMemberDecl(), RTy, Loc,
12709 Range, OEK_Member, DiagEmitted);
12710 else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12711 DiagnoseRecursiveConstFields(S, DRE->getDecl(), RTy, Loc,
12712 Range, OEK_Variable, DiagEmitted);
12713 else
12714 DiagnoseRecursiveConstFields(S, nullptr, RTy, Loc,
12715 Range, OEK_LValue, DiagEmitted);
12716 if (!DiagEmitted)
12717 DiagnoseConstAssignment(S, E, Loc);
12718}
12719
12720/// CheckForModifiableLvalue - Verify that E is a modifiable lvalue. If not,
12721/// emit an error and return true. If so, return false.
12722static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
12723 assert(!E->hasPlaceholderType(BuiltinType::PseudoObject))((!E->hasPlaceholderType(BuiltinType::PseudoObject)) ? static_cast
<void> (0) : __assert_fail ("!E->hasPlaceholderType(BuiltinType::PseudoObject)"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12723, __PRETTY_FUNCTION__))
;
12724
12725 S.CheckShadowingDeclModification(E, Loc);
12726
12727 SourceLocation OrigLoc = Loc;
12728 Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
12729 &Loc);
12730 if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
12731 IsLV = Expr::MLV_InvalidMessageExpression;
12732 if (IsLV == Expr::MLV_Valid)
12733 return false;
12734
12735 unsigned DiagID = 0;
12736 bool NeedType = false;
12737 switch (IsLV) { // C99 6.5.16p2
12738 case Expr::MLV_ConstQualified:
12739 // Use a specialized diagnostic when we're assigning to an object
12740 // from an enclosing function or block.
12741 if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
12742 if (NCCK == NCCK_Block)
12743 DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
12744 else
12745 DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
12746 break;
12747 }
12748
12749 // In ARC, use some specialized diagnostics for occasions where we
12750 // infer 'const'. These are always pseudo-strong variables.
12751 if (S.getLangOpts().ObjCAutoRefCount) {
12752 DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
12753 if (declRef && isa<VarDecl>(declRef->getDecl())) {
12754 VarDecl *var = cast<VarDecl>(declRef->getDecl());
12755
12756 // Use the normal diagnostic if it's pseudo-__strong but the
12757 // user actually wrote 'const'.
12758 if (var->isARCPseudoStrong() &&
12759 (!var->getTypeSourceInfo() ||
12760 !var->getTypeSourceInfo()->getType().isConstQualified())) {
12761 // There are three pseudo-strong cases:
12762 // - self
12763 ObjCMethodDecl *method = S.getCurMethodDecl();
12764 if (method && var == method->getSelfDecl()) {
12765 DiagID = method->isClassMethod()
12766 ? diag::err_typecheck_arc_assign_self_class_method
12767 : diag::err_typecheck_arc_assign_self;
12768
12769 // - Objective-C externally_retained attribute.
12770 } else if (var->hasAttr<ObjCExternallyRetainedAttr>() ||
12771 isa<ParmVarDecl>(var)) {
12772 DiagID = diag::err_typecheck_arc_assign_externally_retained;
12773
12774 // - fast enumeration variables
12775 } else {
12776 DiagID = diag::err_typecheck_arr_assign_enumeration;
12777 }
12778
12779 SourceRange Assign;
12780 if (Loc != OrigLoc)
12781 Assign = SourceRange(OrigLoc, OrigLoc);
12782 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
12783 // We need to preserve the AST regardless, so migration tool
12784 // can do its job.
12785 return false;
12786 }
12787 }
12788 }
12789
12790 // If none of the special cases above are triggered, then this is a
12791 // simple const assignment.
12792 if (DiagID == 0) {
12793 DiagnoseConstAssignment(S, E, Loc);
12794 return true;
12795 }
12796
12797 break;
12798 case Expr::MLV_ConstAddrSpace:
12799 DiagnoseConstAssignment(S, E, Loc);
12800 return true;
12801 case Expr::MLV_ConstQualifiedField:
12802 DiagnoseRecursiveConstFields(S, E, Loc);
12803 return true;
12804 case Expr::MLV_ArrayType:
12805 case Expr::MLV_ArrayTemporary:
12806 DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
12807 NeedType = true;
12808 break;
12809 case Expr::MLV_NotObjectType:
12810 DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
12811 NeedType = true;
12812 break;
12813 case Expr::MLV_LValueCast:
12814 DiagID = diag::err_typecheck_lvalue_casts_not_supported;
12815 break;
12816 case Expr::MLV_Valid:
12817 llvm_unreachable("did not take early return for MLV_Valid")::llvm::llvm_unreachable_internal("did not take early return for MLV_Valid"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12817)
;
12818 case Expr::MLV_InvalidExpression:
12819 case Expr::MLV_MemberFunction:
12820 case Expr::MLV_ClassTemporary:
12821 DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
12822 break;
12823 case Expr::MLV_IncompleteType:
12824 case Expr::MLV_IncompleteVoidType:
12825 return S.RequireCompleteType(Loc, E->getType(),
12826 diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
12827 case Expr::MLV_DuplicateVectorComponents:
12828 DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
12829 break;
12830 case Expr::MLV_NoSetterProperty:
12831 llvm_unreachable("readonly properties should be processed differently")::llvm::llvm_unreachable_internal("readonly properties should be processed differently"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12831)
;
12832 case Expr::MLV_InvalidMessageExpression:
12833 DiagID = diag::err_readonly_message_assignment;
12834 break;
12835 case Expr::MLV_SubObjCPropertySetting:
12836 DiagID = diag::err_no_subobject_property_setting;
12837 break;
12838 }
12839
12840 SourceRange Assign;
12841 if (Loc != OrigLoc)
12842 Assign = SourceRange(OrigLoc, OrigLoc);
12843 if (NeedType)
12844 S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
12845 else
12846 S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
12847 return true;
12848}
12849
12850static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
12851 SourceLocation Loc,
12852 Sema &Sema) {
12853 if (Sema.inTemplateInstantiation())
12854 return;
12855 if (Sema.isUnevaluatedContext())
12856 return;
12857 if (Loc.isInvalid() || Loc.isMacroID())
12858 return;
12859 if (LHSExpr->getExprLoc().isMacroID() || RHSExpr->getExprLoc().isMacroID())
12860 return;
12861
12862 // C / C++ fields
12863 MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
12864 MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
12865 if (ML && MR) {
12866 if (!(isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase())))
12867 return;
12868 const ValueDecl *LHSDecl =
12869 cast<ValueDecl>(ML->getMemberDecl()->getCanonicalDecl());
12870 const ValueDecl *RHSDecl =
12871 cast<ValueDecl>(MR->getMemberDecl()->getCanonicalDecl());
12872 if (LHSDecl != RHSDecl)
12873 return;
12874 if (LHSDecl->getType().isVolatileQualified())
12875 return;
12876 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
12877 if (RefTy->getPointeeType().isVolatileQualified())
12878 return;
12879
12880 Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
12881 }
12882
12883 // Objective-C instance variables
12884 ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
12885 ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
12886 if (OL && OR && OL->getDecl() == OR->getDecl()) {
12887 DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
12888 DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
12889 if (RL && RR && RL->getDecl() == RR->getDecl())
12890 Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
12891 }
12892}
12893
12894// C99 6.5.16.1
12895QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
12896 SourceLocation Loc,
12897 QualType CompoundType) {
12898 assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject))((!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject))
? static_cast<void> (0) : __assert_fail ("!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject)"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 12898, __PRETTY_FUNCTION__))
;
12899
12900 // Verify that LHS is a modifiable lvalue, and emit error if not.
12901 if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
12902 return QualType();
12903
12904 QualType LHSType = LHSExpr->getType();
12905 QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
12906 CompoundType;
12907 // OpenCL v1.2 s6.1.1.1 p2:
12908 // The half data type can only be used to declare a pointer to a buffer that
12909 // contains half values
12910 if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") &&
12911 LHSType->isHalfType()) {
12912 Diag(Loc, diag::err_opencl_half_load_store) << 1
12913 << LHSType.getUnqualifiedType();
12914 return QualType();
12915 }
12916
12917 AssignConvertType ConvTy;
12918 if (CompoundType.isNull()) {
12919 Expr *RHSCheck = RHS.get();
12920
12921 CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
12922
12923 QualType LHSTy(LHSType);
12924 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
12925 if (RHS.isInvalid())
12926 return QualType();
12927 // Special case of NSObject attributes on c-style pointer types.
12928 if (ConvTy == IncompatiblePointer &&
12929 ((Context.isObjCNSObjectType(LHSType) &&
12930 RHSType->isObjCObjectPointerType()) ||
12931 (Context.isObjCNSObjectType(RHSType) &&
12932 LHSType->isObjCObjectPointerType())))
12933 ConvTy = Compatible;
12934
12935 if (ConvTy == Compatible &&
12936 LHSType->isObjCObjectType())
12937 Diag(Loc, diag::err_objc_object_assignment)
12938 << LHSType;
12939
12940 // If the RHS is a unary plus or minus, check to see if they = and + are
12941 // right next to each other. If so, the user may have typo'd "x =+ 4"
12942 // instead of "x += 4".
12943 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
12944 RHSCheck = ICE->getSubExpr();
12945 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
12946 if ((UO->getOpcode() == UO_Plus || UO->getOpcode() == UO_Minus) &&
12947 Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
12948 // Only if the two operators are exactly adjacent.
12949 Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
12950 // And there is a space or other character before the subexpr of the
12951 // unary +/-. We don't want to warn on "x=-1".
12952 Loc.getLocWithOffset(2) != UO->getSubExpr()->getBeginLoc() &&
12953 UO->getSubExpr()->getBeginLoc().isFileID()) {
12954 Diag(Loc, diag::warn_not_compound_assign)
12955 << (UO->getOpcode() == UO_Plus ? "+" : "-")
12956 << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
12957 }
12958 }
12959
12960 if (ConvTy == Compatible) {
12961 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
12962 // Warn about retain cycles where a block captures the LHS, but
12963 // not if the LHS is a simple variable into which the block is
12964 // being stored...unless that variable can be captured by reference!
12965 const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
12966 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
12967 if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
12968 checkRetainCycles(LHSExpr, RHS.get());
12969 }
12970
12971 if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong ||
12972 LHSType.isNonWeakInMRRWithObjCWeak(Context)) {
12973 // It is safe to assign a weak reference into a strong variable.
12974 // Although this code can still have problems:
12975 // id x = self.weakProp;
12976 // id y = self.weakProp;
12977 // we do not warn to warn spuriously when 'x' and 'y' are on separate
12978 // paths through the function. This should be revisited if
12979 // -Wrepeated-use-of-weak is made flow-sensitive.
12980 // For ObjCWeak only, we do not warn if the assign is to a non-weak
12981 // variable, which will be valid for the current autorelease scope.
12982 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12983 RHS.get()->getBeginLoc()))
12984 getCurFunction()->markSafeWeakUse(RHS.get());
12985
12986 } else if (getLangOpts().ObjCAutoRefCount || getLangOpts().ObjCWeak) {
12987 checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
12988 }
12989 }
12990 } else {
12991 // Compound assignment "x += y"
12992 ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
12993 }
12994
12995 if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
12996 RHS.get(), AA_Assigning))
12997 return QualType();
12998
12999 CheckForNullPointerDereference(*this, LHSExpr);
13000
13001 if (getLangOpts().CPlusPlus20 && LHSType.isVolatileQualified()) {
13002 if (CompoundType.isNull()) {
13003 // C++2a [expr.ass]p5:
13004 // A simple-assignment whose left operand is of a volatile-qualified
13005 // type is deprecated unless the assignment is either a discarded-value
13006 // expression or an unevaluated operand
13007 ExprEvalContexts.back().VolatileAssignmentLHSs.push_back(LHSExpr);
13008 } else {
13009 // C++2a [expr.ass]p6:
13010 // [Compound-assignment] expressions are deprecated if E1 has
13011 // volatile-qualified type
13012 Diag(Loc, diag::warn_deprecated_compound_assign_volatile) << LHSType;
13013 }
13014 }
13015
13016 // C99 6.5.16p3: The type of an assignment expression is the type of the
13017 // left operand unless the left operand has qualified type, in which case
13018 // it is the unqualified version of the type of the left operand.
13019 // C99 6.5.16.1p2: In simple assignment, the value of the right operand
13020 // is converted to the type of the assignment expression (above).
13021 // C++ 5.17p1: the type of the assignment expression is that of its left
13022 // operand.
13023 return (getLangOpts().CPlusPlus
13024 ? LHSType : LHSType.getUnqualifiedType());
13025}
13026
13027// Only ignore explicit casts to void.
13028static bool IgnoreCommaOperand(const Expr *E) {
13029 E = E->IgnoreParens();
13030
13031 if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
13032 if (CE->getCastKind() == CK_ToVoid) {
13033 return true;
13034 }
13035
13036 // static_cast<void> on a dependent type will not show up as CK_ToVoid.
13037 if (CE->getCastKind() == CK_Dependent && E->getType()->isVoidType() &&
13038 CE->getSubExpr()->getType()->isDependentType()) {
13039 return true;
13040 }
13041 }
13042
13043 return false;
13044}
13045
13046// Look for instances where it is likely the comma operator is confused with
13047// another operator. There is an explicit list of acceptable expressions for
13048// the left hand side of the comma operator, otherwise emit a warning.
13049void Sema::DiagnoseCommaOperator(const Expr *LHS, SourceLocation Loc) {
13050 // No warnings in macros
13051 if (Loc.isMacroID())
13052 return;
13053
13054 // Don't warn in template instantiations.
13055 if (inTemplateInstantiation())
13056 return;
13057
13058 // Scope isn't fine-grained enough to explicitly list the specific cases, so
13059 // instead, skip more than needed, then call back into here with the
13060 // CommaVisitor in SemaStmt.cpp.
13061 // The listed locations are the initialization and increment portions
13062 // of a for loop. The additional checks are on the condition of
13063 // if statements, do/while loops, and for loops.
13064 // Differences in scope flags for C89 mode requires the extra logic.
13065 const unsigned ForIncrementFlags =
13066 getLangOpts().C99 || getLangOpts().CPlusPlus
13067 ? Scope::ControlScope | Scope::ContinueScope | Scope::BreakScope
13068 : Scope::ContinueScope | Scope::BreakScope;
13069 const unsigned ForInitFlags = Scope::ControlScope | Scope::DeclScope;
13070 const unsigned ScopeFlags = getCurScope()->getFlags();
13071 if ((ScopeFlags & ForIncrementFlags) == ForIncrementFlags ||
13072 (ScopeFlags & ForInitFlags) == ForInitFlags)
13073 return;
13074
13075 // If there are multiple comma operators used together, get the RHS of the
13076 // of the comma operator as the LHS.
13077 while (const BinaryOperator *BO = dyn_cast<BinaryOperator>(LHS)) {
13078 if (BO->getOpcode() != BO_Comma)
13079 break;
13080 LHS = BO->getRHS();
13081 }
13082
13083 // Only allow some expressions on LHS to not warn.
13084 if (IgnoreCommaOperand(LHS))
13085 return;
13086
13087 Diag(Loc, diag::warn_comma_operator);
13088 Diag(LHS->getBeginLoc(), diag::note_cast_to_void)
13089 << LHS->getSourceRange()
13090 << FixItHint::CreateInsertion(LHS->getBeginLoc(),
13091 LangOpts.CPlusPlus ? "static_cast<void>("
13092 : "(void)(")
13093 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(LHS->getEndLoc()),
13094 ")");
13095}
13096
13097// C99 6.5.17
13098static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
13099 SourceLocation Loc) {
13100 LHS = S.CheckPlaceholderExpr(LHS.get());
13101 RHS = S.CheckPlaceholderExpr(RHS.get());
13102 if (LHS.isInvalid() || RHS.isInvalid())
13103 return QualType();
13104
13105 // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
13106 // operands, but not unary promotions.
13107 // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
13108
13109 // So we treat the LHS as a ignored value, and in C++ we allow the
13110 // containing site to determine what should be done with the RHS.
13111 LHS = S.IgnoredValueConversions(LHS.get());
13112 if (LHS.isInvalid())
13113 return QualType();
13114
13115 S.DiagnoseUnusedExprResult(LHS.get());
13116
13117 if (!S.getLangOpts().CPlusPlus) {
13118 RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
13119 if (RHS.isInvalid())
13120 return QualType();
13121 if (!RHS.get()->getType()->isVoidType())
13122 S.RequireCompleteType(Loc, RHS.get()->getType(),
13123 diag::err_incomplete_type);
13124 }
13125
13126 if (!S.getDiagnostics().isIgnored(diag::warn_comma_operator, Loc))
13127 S.DiagnoseCommaOperator(LHS.get(), Loc);
13128
13129 return RHS.get()->getType();
13130}
13131
13132/// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
13133/// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
13134static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
13135 ExprValueKind &VK,
13136 ExprObjectKind &OK,
13137 SourceLocation OpLoc,
13138 bool IsInc, bool IsPrefix) {
13139 if (Op->isTypeDependent())
13140 return S.Context.DependentTy;
13141
13142 QualType ResType = Op->getType();
13143 // Atomic types can be used for increment / decrement where the non-atomic
13144 // versions can, so ignore the _Atomic() specifier for the purpose of
13145 // checking.
13146 if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
13147 ResType = ResAtomicType->getValueType();
13148
13149 assert(!ResType.isNull() && "no type for increment/decrement expression")((!ResType.isNull() && "no type for increment/decrement expression"
) ? static_cast<void> (0) : __assert_fail ("!ResType.isNull() && \"no type for increment/decrement expression\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13149, __PRETTY_FUNCTION__))
;
13150
13151 if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
13152 // Decrement of bool is not allowed.
13153 if (!IsInc) {
13154 S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
13155 return QualType();
13156 }
13157 // Increment of bool sets it to true, but is deprecated.
13158 S.Diag(OpLoc, S.getLangOpts().CPlusPlus17 ? diag::ext_increment_bool
13159 : diag::warn_increment_bool)
13160 << Op->getSourceRange();
13161 } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
13162 // Error on enum increments and decrements in C++ mode
13163 S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
13164 return QualType();
13165 } else if (ResType->isRealType()) {
13166 // OK!
13167 } else if (ResType->isPointerType()) {
13168 // C99 6.5.2.4p2, 6.5.6p2
13169 if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
13170 return QualType();
13171 } else if (ResType->isObjCObjectPointerType()) {
13172 // On modern runtimes, ObjC pointer arithmetic is forbidden.
13173 // Otherwise, we just need a complete type.
13174 if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
13175 checkArithmeticOnObjCPointer(S, OpLoc, Op))
13176 return QualType();
13177 } else if (ResType->isAnyComplexType()) {
13178 // C99 does not support ++/-- on complex types, we allow as an extension.
13179 S.Diag(OpLoc, diag::ext_integer_increment_complex)
13180 << ResType << Op->getSourceRange();
13181 } else if (ResType->isPlaceholderType()) {
13182 ExprResult PR = S.CheckPlaceholderExpr(Op);
13183 if (PR.isInvalid()) return QualType();
13184 return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
13185 IsInc, IsPrefix);
13186 } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
13187 // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
13188 } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
13189 (ResType->castAs<VectorType>()->getVectorKind() !=
13190 VectorType::AltiVecBool)) {
13191 // The z vector extensions allow ++ and -- for non-bool vectors.
13192 } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
13193 ResType->castAs<VectorType>()->getElementType()->isIntegerType()) {
13194 // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
13195 } else {
13196 S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
13197 << ResType << int(IsInc) << Op->getSourceRange();
13198 return QualType();
13199 }
13200 // At this point, we know we have a real, complex or pointer type.
13201 // Now make sure the operand is a modifiable lvalue.
13202 if (CheckForModifiableLvalue(Op, OpLoc, S))
13203 return QualType();
13204 if (S.getLangOpts().CPlusPlus20 && ResType.isVolatileQualified()) {
13205 // C++2a [expr.pre.inc]p1, [expr.post.inc]p1:
13206 // An operand with volatile-qualified type is deprecated
13207 S.Diag(OpLoc, diag::warn_deprecated_increment_decrement_volatile)
13208 << IsInc << ResType;
13209 }
13210 // In C++, a prefix increment is the same type as the operand. Otherwise
13211 // (in C or with postfix), the increment is the unqualified type of the
13212 // operand.
13213 if (IsPrefix && S.getLangOpts().CPlusPlus) {
13214 VK = VK_LValue;
13215 OK = Op->getObjectKind();
13216 return ResType;
13217 } else {
13218 VK = VK_RValue;
13219 return ResType.getUnqualifiedType();
13220 }
13221}
13222
13223
13224/// getPrimaryDecl - Helper function for CheckAddressOfOperand().
13225/// This routine allows us to typecheck complex/recursive expressions
13226/// where the declaration is needed for type checking. We only need to
13227/// handle cases when the expression references a function designator
13228/// or is an lvalue. Here are some examples:
13229/// - &(x) => x
13230/// - &*****f => f for f a function designator.
13231/// - &s.xx => s
13232/// - &s.zz[1].yy -> s, if zz is an array
13233/// - *(x + 1) -> x, if x is an array
13234/// - &"123"[2] -> 0
13235/// - & __real__ x -> x
13236///
13237/// FIXME: We don't recurse to the RHS of a comma, nor handle pointers to
13238/// members.
13239static ValueDecl *getPrimaryDecl(Expr *E) {
13240 switch (E->getStmtClass()) {
13241 case Stmt::DeclRefExprClass:
13242 return cast<DeclRefExpr>(E)->getDecl();
13243 case Stmt::MemberExprClass:
13244 // If this is an arrow operator, the address is an offset from
13245 // the base's value, so the object the base refers to is
13246 // irrelevant.
13247 if (cast<MemberExpr>(E)->isArrow())
13248 return nullptr;
13249 // Otherwise, the expression refers to a part of the base
13250 return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
13251 case Stmt::ArraySubscriptExprClass: {
13252 // FIXME: This code shouldn't be necessary! We should catch the implicit
13253 // promotion of register arrays earlier.
13254 Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
13255 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
13256 if (ICE->getSubExpr()->getType()->isArrayType())
13257 return getPrimaryDecl(ICE->getSubExpr());
13258 }
13259 return nullptr;
13260 }
13261 case Stmt::UnaryOperatorClass: {
13262 UnaryOperator *UO = cast<UnaryOperator>(E);
13263
13264 switch(UO->getOpcode()) {
13265 case UO_Real:
13266 case UO_Imag:
13267 case UO_Extension:
13268 return getPrimaryDecl(UO->getSubExpr());
13269 default:
13270 return nullptr;
13271 }
13272 }
13273 case Stmt::ParenExprClass:
13274 return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
13275 case Stmt::ImplicitCastExprClass:
13276 // If the result of an implicit cast is an l-value, we care about
13277 // the sub-expression; otherwise, the result here doesn't matter.
13278 return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
13279 case Stmt::CXXUuidofExprClass:
13280 return cast<CXXUuidofExpr>(E)->getGuidDecl();
13281 default:
13282 return nullptr;
13283 }
13284}
13285
13286namespace {
13287enum {
13288 AO_Bit_Field = 0,
13289 AO_Vector_Element = 1,
13290 AO_Property_Expansion = 2,
13291 AO_Register_Variable = 3,
13292 AO_Matrix_Element = 4,
13293 AO_No_Error = 5
13294};
13295}
13296/// Diagnose invalid operand for address of operations.
13297///
13298/// \param Type The type of operand which cannot have its address taken.
13299static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
13300 Expr *E, unsigned Type) {
13301 S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
13302}
13303
13304/// CheckAddressOfOperand - The operand of & must be either a function
13305/// designator or an lvalue designating an object. If it is an lvalue, the
13306/// object cannot be declared with storage class register or be a bit field.
13307/// Note: The usual conversions are *not* applied to the operand of the &
13308/// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
13309/// In C++, the operand might be an overloaded function name, in which case
13310/// we allow the '&' but retain the overloaded-function type.
13311QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
13312 if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
13313 if (PTy->getKind() == BuiltinType::Overload) {
13314 Expr *E = OrigOp.get()->IgnoreParens();
13315 if (!isa<OverloadExpr>(E)) {
13316 assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf)((cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) ?
static_cast<void> (0) : __assert_fail ("cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13316, __PRETTY_FUNCTION__))
;
13317 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
13318 << OrigOp.get()->getSourceRange();
13319 return QualType();
13320 }
13321
13322 OverloadExpr *Ovl = cast<OverloadExpr>(E);
13323 if (isa<UnresolvedMemberExpr>(Ovl))
13324 if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
13325 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13326 << OrigOp.get()->getSourceRange();
13327 return QualType();
13328 }
13329
13330 return Context.OverloadTy;
13331 }
13332
13333 if (PTy->getKind() == BuiltinType::UnknownAny)
13334 return Context.UnknownAnyTy;
13335
13336 if (PTy->getKind() == BuiltinType::BoundMember) {
13337 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13338 << OrigOp.get()->getSourceRange();
13339 return QualType();
13340 }
13341
13342 OrigOp = CheckPlaceholderExpr(OrigOp.get());
13343 if (OrigOp.isInvalid()) return QualType();
13344 }
13345
13346 if (OrigOp.get()->isTypeDependent())
13347 return Context.DependentTy;
13348
13349 assert(!OrigOp.get()->getType()->isPlaceholderType())((!OrigOp.get()->getType()->isPlaceholderType()) ? static_cast
<void> (0) : __assert_fail ("!OrigOp.get()->getType()->isPlaceholderType()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13349, __PRETTY_FUNCTION__))
;
13350
13351 // Make sure to ignore parentheses in subsequent checks
13352 Expr *op = OrigOp.get()->IgnoreParens();
13353
13354 // In OpenCL captures for blocks called as lambda functions
13355 // are located in the private address space. Blocks used in
13356 // enqueue_kernel can be located in a different address space
13357 // depending on a vendor implementation. Thus preventing
13358 // taking an address of the capture to avoid invalid AS casts.
13359 if (LangOpts.OpenCL) {
13360 auto* VarRef = dyn_cast<DeclRefExpr>(op);
13361 if (VarRef && VarRef->refersToEnclosingVariableOrCapture()) {
13362 Diag(op->getExprLoc(), diag::err_opencl_taking_address_capture);
13363 return QualType();
13364 }
13365 }
13366
13367 if (getLangOpts().C99) {
13368 // Implement C99-only parts of addressof rules.
13369 if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
13370 if (uOp->getOpcode() == UO_Deref)
13371 // Per C99 6.5.3.2, the address of a deref always returns a valid result
13372 // (assuming the deref expression is valid).
13373 return uOp->getSubExpr()->getType();
13374 }
13375 // Technically, there should be a check for array subscript
13376 // expressions here, but the result of one is always an lvalue anyway.
13377 }
13378 ValueDecl *dcl = getPrimaryDecl(op);
13379
13380 if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
13381 if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
13382 op->getBeginLoc()))
13383 return QualType();
13384
13385 Expr::LValueClassification lval = op->ClassifyLValue(Context);
13386 unsigned AddressOfError = AO_No_Error;
13387
13388 if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
13389 bool sfinae = (bool)isSFINAEContext();
13390 Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
13391 : diag::ext_typecheck_addrof_temporary)
13392 << op->getType() << op->getSourceRange();
13393 if (sfinae)
13394 return QualType();
13395 // Materialize the temporary as an lvalue so that we can take its address.
13396 OrigOp = op =
13397 CreateMaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
13398 } else if (isa<ObjCSelectorExpr>(op)) {
13399 return Context.getPointerType(op->getType());
13400 } else if (lval == Expr::LV_MemberFunction) {
13401 // If it's an instance method, make a member pointer.
13402 // The expression must have exactly the form &A::foo.
13403
13404 // If the underlying expression isn't a decl ref, give up.
13405 if (!isa<DeclRefExpr>(op)) {
13406 Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
13407 << OrigOp.get()->getSourceRange();
13408 return QualType();
13409 }
13410 DeclRefExpr *DRE = cast<DeclRefExpr>(op);
13411 CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
13412
13413 // The id-expression was parenthesized.
13414 if (OrigOp.get() != DRE) {
13415 Diag(OpLoc, diag::err_parens_pointer_member_function)
13416 << OrigOp.get()->getSourceRange();
13417
13418 // The method was named without a qualifier.
13419 } else if (!DRE->getQualifier()) {
13420 if (MD->getParent()->getName().empty())
13421 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13422 << op->getSourceRange();
13423 else {
13424 SmallString<32> Str;
13425 StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
13426 Diag(OpLoc, diag::err_unqualified_pointer_member_function)
13427 << op->getSourceRange()
13428 << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
13429 }
13430 }
13431
13432 // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
13433 if (isa<CXXDestructorDecl>(MD))
13434 Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
13435
13436 QualType MPTy = Context.getMemberPointerType(
13437 op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
13438 // Under the MS ABI, lock down the inheritance model now.
13439 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13440 (void)isCompleteType(OpLoc, MPTy);
13441 return MPTy;
13442 } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
13443 // C99 6.5.3.2p1
13444 // The operand must be either an l-value or a function designator
13445 if (!op->getType()->isFunctionType()) {
13446 // Use a special diagnostic for loads from property references.
13447 if (isa<PseudoObjectExpr>(op)) {
13448 AddressOfError = AO_Property_Expansion;
13449 } else {
13450 Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
13451 << op->getType() << op->getSourceRange();
13452 return QualType();
13453 }
13454 }
13455 } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
13456 // The operand cannot be a bit-field
13457 AddressOfError = AO_Bit_Field;
13458 } else if (op->getObjectKind() == OK_VectorComponent) {
13459 // The operand cannot be an element of a vector
13460 AddressOfError = AO_Vector_Element;
13461 } else if (op->getObjectKind() == OK_MatrixComponent) {
13462 // The operand cannot be an element of a matrix.
13463 AddressOfError = AO_Matrix_Element;
13464 } else if (dcl) { // C99 6.5.3.2p1
13465 // We have an lvalue with a decl. Make sure the decl is not declared
13466 // with the register storage-class specifier.
13467 if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
13468 // in C++ it is not error to take address of a register
13469 // variable (c++03 7.1.1P3)
13470 if (vd->getStorageClass() == SC_Register &&
13471 !getLangOpts().CPlusPlus) {
13472 AddressOfError = AO_Register_Variable;
13473 }
13474 } else if (isa<MSPropertyDecl>(dcl)) {
13475 AddressOfError = AO_Property_Expansion;
13476 } else if (isa<FunctionTemplateDecl>(dcl)) {
13477 return Context.OverloadTy;
13478 } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
13479 // Okay: we can take the address of a field.
13480 // Could be a pointer to member, though, if there is an explicit
13481 // scope qualifier for the class.
13482 if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
13483 DeclContext *Ctx = dcl->getDeclContext();
13484 if (Ctx && Ctx->isRecord()) {
13485 if (dcl->getType()->isReferenceType()) {
13486 Diag(OpLoc,
13487 diag::err_cannot_form_pointer_to_member_of_reference_type)
13488 << dcl->getDeclName() << dcl->getType();
13489 return QualType();
13490 }
13491
13492 while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
13493 Ctx = Ctx->getParent();
13494
13495 QualType MPTy = Context.getMemberPointerType(
13496 op->getType(),
13497 Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
13498 // Under the MS ABI, lock down the inheritance model now.
13499 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
13500 (void)isCompleteType(OpLoc, MPTy);
13501 return MPTy;
13502 }
13503 }
13504 } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl) &&
13505 !isa<BindingDecl>(dcl) && !isa<MSGuidDecl>(dcl))
13506 llvm_unreachable("Unknown/unexpected decl type")::llvm::llvm_unreachable_internal("Unknown/unexpected decl type"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13506)
;
13507 }
13508
13509 if (AddressOfError != AO_No_Error) {
13510 diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
13511 return QualType();
13512 }
13513
13514 if (lval == Expr::LV_IncompleteVoidType) {
13515 // Taking the address of a void variable is technically illegal, but we
13516 // allow it in cases which are otherwise valid.
13517 // Example: "extern void x; void* y = &x;".
13518 Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
13519 }
13520
13521 // If the operand has type "type", the result has type "pointer to type".
13522 if (op->getType()->isObjCObjectType())
13523 return Context.getObjCObjectPointerType(op->getType());
13524
13525 CheckAddressOfPackedMember(op);
13526
13527 return Context.getPointerType(op->getType());
13528}
13529
13530static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
13531 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
13532 if (!DRE)
13533 return;
13534 const Decl *D = DRE->getDecl();
13535 if (!D)
13536 return;
13537 const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
13538 if (!Param)
13539 return;
13540 if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
13541 if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
13542 return;
13543 if (FunctionScopeInfo *FD = S.getCurFunction())
13544 if (!FD->ModifiedNonNullParams.count(Param))
13545 FD->ModifiedNonNullParams.insert(Param);
13546}
13547
13548/// CheckIndirectionOperand - Type check unary indirection (prefix '*').
13549static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
13550 SourceLocation OpLoc) {
13551 if (Op->isTypeDependent())
13552 return S.Context.DependentTy;
13553
13554 ExprResult ConvResult = S.UsualUnaryConversions(Op);
13555 if (ConvResult.isInvalid())
13556 return QualType();
13557 Op = ConvResult.get();
13558 QualType OpTy = Op->getType();
13559 QualType Result;
13560
13561 if (isa<CXXReinterpretCastExpr>(Op)) {
13562 QualType OpOrigType = Op->IgnoreParenCasts()->getType();
13563 S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
13564 Op->getSourceRange());
13565 }
13566
13567 if (const PointerType *PT = OpTy->getAs<PointerType>())
13568 {
13569 Result = PT->getPointeeType();
13570 }
13571 else if (const ObjCObjectPointerType *OPT =
13572 OpTy->getAs<ObjCObjectPointerType>())
13573 Result = OPT->getPointeeType();
13574 else {
13575 ExprResult PR = S.CheckPlaceholderExpr(Op);
13576 if (PR.isInvalid()) return QualType();
13577 if (PR.get() != Op)
13578 return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
13579 }
13580
13581 if (Result.isNull()) {
13582 S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
13583 << OpTy << Op->getSourceRange();
13584 return QualType();
13585 }
13586
13587 // Note that per both C89 and C99, indirection is always legal, even if Result
13588 // is an incomplete type or void. It would be possible to warn about
13589 // dereferencing a void pointer, but it's completely well-defined, and such a
13590 // warning is unlikely to catch any mistakes. In C++, indirection is not valid
13591 // for pointers to 'void' but is fine for any other pointer type:
13592 //
13593 // C++ [expr.unary.op]p1:
13594 // [...] the expression to which [the unary * operator] is applied shall
13595 // be a pointer to an object type, or a pointer to a function type
13596 if (S.getLangOpts().CPlusPlus && Result->isVoidType())
13597 S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
13598 << OpTy << Op->getSourceRange();
13599
13600 // Dereferences are usually l-values...
13601 VK = VK_LValue;
13602
13603 // ...except that certain expressions are never l-values in C.
13604 if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
13605 VK = VK_RValue;
13606
13607 return Result;
13608}
13609
13610BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
13611 BinaryOperatorKind Opc;
13612 switch (Kind) {
13613 default: llvm_unreachable("Unknown binop!")::llvm::llvm_unreachable_internal("Unknown binop!", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13613)
;
13614 case tok::periodstar: Opc = BO_PtrMemD; break;
13615 case tok::arrowstar: Opc = BO_PtrMemI; break;
13616 case tok::star: Opc = BO_Mul; break;
13617 case tok::slash: Opc = BO_Div; break;
13618 case tok::percent: Opc = BO_Rem; break;
13619 case tok::plus: Opc = BO_Add; break;
13620 case tok::minus: Opc = BO_Sub; break;
13621 case tok::lessless: Opc = BO_Shl; break;
13622 case tok::greatergreater: Opc = BO_Shr; break;
13623 case tok::lessequal: Opc = BO_LE; break;
13624 case tok::less: Opc = BO_LT; break;
13625 case tok::greaterequal: Opc = BO_GE; break;
13626 case tok::greater: Opc = BO_GT; break;
13627 case tok::exclaimequal: Opc = BO_NE; break;
13628 case tok::equalequal: Opc = BO_EQ; break;
13629 case tok::spaceship: Opc = BO_Cmp; break;
13630 case tok::amp: Opc = BO_And; break;
13631 case tok::caret: Opc = BO_Xor; break;
13632 case tok::pipe: Opc = BO_Or; break;
13633 case tok::ampamp: Opc = BO_LAnd; break;
13634 case tok::pipepipe: Opc = BO_LOr; break;
13635 case tok::equal: Opc = BO_Assign; break;
13636 case tok::starequal: Opc = BO_MulAssign; break;
13637 case tok::slashequal: Opc = BO_DivAssign; break;
13638 case tok::percentequal: Opc = BO_RemAssign; break;
13639 case tok::plusequal: Opc = BO_AddAssign; break;
13640 case tok::minusequal: Opc = BO_SubAssign; break;
13641 case tok::lesslessequal: Opc = BO_ShlAssign; break;
13642 case tok::greatergreaterequal: Opc = BO_ShrAssign; break;
13643 case tok::ampequal: Opc = BO_AndAssign; break;
13644 case tok::caretequal: Opc = BO_XorAssign; break;
13645 case tok::pipeequal: Opc = BO_OrAssign; break;
13646 case tok::comma: Opc = BO_Comma; break;
13647 }
13648 return Opc;
13649}
13650
13651static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
13652 tok::TokenKind Kind) {
13653 UnaryOperatorKind Opc;
13654 switch (Kind) {
13655 default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13655)
;
13656 case tok::plusplus: Opc = UO_PreInc; break;
13657 case tok::minusminus: Opc = UO_PreDec; break;
13658 case tok::amp: Opc = UO_AddrOf; break;
13659 case tok::star: Opc = UO_Deref; break;
13660 case tok::plus: Opc = UO_Plus; break;
13661 case tok::minus: Opc = UO_Minus; break;
13662 case tok::tilde: Opc = UO_Not; break;
13663 case tok::exclaim: Opc = UO_LNot; break;
13664 case tok::kw___real: Opc = UO_Real; break;
13665 case tok::kw___imag: Opc = UO_Imag; break;
13666 case tok::kw___extension__: Opc = UO_Extension; break;
13667 }
13668 return Opc;
13669}
13670
13671/// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
13672/// This warning suppressed in the event of macro expansions.
13673static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
13674 SourceLocation OpLoc, bool IsBuiltin) {
13675 if (S.inTemplateInstantiation())
13676 return;
13677 if (S.isUnevaluatedContext())
13678 return;
13679 if (OpLoc.isInvalid() || OpLoc.isMacroID())
13680 return;
13681 LHSExpr = LHSExpr->IgnoreParenImpCasts();
13682 RHSExpr = RHSExpr->IgnoreParenImpCasts();
13683 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
13684 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
13685 if (!LHSDeclRef || !RHSDeclRef ||
13686 LHSDeclRef->getLocation().isMacroID() ||
13687 RHSDeclRef->getLocation().isMacroID())
13688 return;
13689 const ValueDecl *LHSDecl =
13690 cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
13691 const ValueDecl *RHSDecl =
13692 cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
13693 if (LHSDecl != RHSDecl)
13694 return;
13695 if (LHSDecl->getType().isVolatileQualified())
13696 return;
13697 if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
13698 if (RefTy->getPointeeType().isVolatileQualified())
13699 return;
13700
13701 S.Diag(OpLoc, IsBuiltin ? diag::warn_self_assignment_builtin
13702 : diag::warn_self_assignment_overloaded)
13703 << LHSDeclRef->getType() << LHSExpr->getSourceRange()
13704 << RHSExpr->getSourceRange();
13705}
13706
13707/// Check if a bitwise-& is performed on an Objective-C pointer. This
13708/// is usually indicative of introspection within the Objective-C pointer.
13709static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
13710 SourceLocation OpLoc) {
13711 if (!S.getLangOpts().ObjC)
13712 return;
13713
13714 const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
13715 const Expr *LHS = L.get();
13716 const Expr *RHS = R.get();
13717
13718 if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13719 ObjCPointerExpr = LHS;
13720 OtherExpr = RHS;
13721 }
13722 else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
13723 ObjCPointerExpr = RHS;
13724 OtherExpr = LHS;
13725 }
13726
13727 // This warning is deliberately made very specific to reduce false
13728 // positives with logic that uses '&' for hashing. This logic mainly
13729 // looks for code trying to introspect into tagged pointers, which
13730 // code should generally never do.
13731 if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
13732 unsigned Diag = diag::warn_objc_pointer_masking;
13733 // Determine if we are introspecting the result of performSelectorXXX.
13734 const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
13735 // Special case messages to -performSelector and friends, which
13736 // can return non-pointer values boxed in a pointer value.
13737 // Some clients may wish to silence warnings in this subcase.
13738 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
13739 Selector S = ME->getSelector();
13740 StringRef SelArg0 = S.getNameForSlot(0);
13741 if (SelArg0.startswith("performSelector"))
13742 Diag = diag::warn_objc_pointer_masking_performSelector;
13743 }
13744
13745 S.Diag(OpLoc, Diag)
13746 << ObjCPointerExpr->getSourceRange();
13747 }
13748}
13749
13750static NamedDecl *getDeclFromExpr(Expr *E) {
13751 if (!E)
13752 return nullptr;
13753 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
13754 return DRE->getDecl();
13755 if (auto *ME = dyn_cast<MemberExpr>(E))
13756 return ME->getMemberDecl();
13757 if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
13758 return IRE->getDecl();
13759 return nullptr;
13760}
13761
13762// This helper function promotes a binary operator's operands (which are of a
13763// half vector type) to a vector of floats and then truncates the result to
13764// a vector of either half or short.
13765static ExprResult convertHalfVecBinOp(Sema &S, ExprResult LHS, ExprResult RHS,
13766 BinaryOperatorKind Opc, QualType ResultTy,
13767 ExprValueKind VK, ExprObjectKind OK,
13768 bool IsCompAssign, SourceLocation OpLoc,
13769 FPOptionsOverride FPFeatures) {
13770 auto &Context = S.getASTContext();
13771 assert((isVector(ResultTy, Context.HalfTy) ||(((isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context
.ShortTy)) && "Result must be a vector of half or short"
) ? static_cast<void> (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13773, __PRETTY_FUNCTION__))
13772 isVector(ResultTy, Context.ShortTy)) &&(((isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context
.ShortTy)) && "Result must be a vector of half or short"
) ? static_cast<void> (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13773, __PRETTY_FUNCTION__))
13773 "Result must be a vector of half or short")(((isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context
.ShortTy)) && "Result must be a vector of half or short"
) ? static_cast<void> (0) : __assert_fail ("(isVector(ResultTy, Context.HalfTy) || isVector(ResultTy, Context.ShortTy)) && \"Result must be a vector of half or short\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13773, __PRETTY_FUNCTION__))
;
13774 assert(isVector(LHS.get()->getType(), Context.HalfTy) &&((isVector(LHS.get()->getType(), Context.HalfTy) &&
isVector(RHS.get()->getType(), Context.HalfTy) &&
"both operands expected to be a half vector") ? static_cast<
void> (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13776, __PRETTY_FUNCTION__))
13775 isVector(RHS.get()->getType(), Context.HalfTy) &&((isVector(LHS.get()->getType(), Context.HalfTy) &&
isVector(RHS.get()->getType(), Context.HalfTy) &&
"both operands expected to be a half vector") ? static_cast<
void> (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13776, __PRETTY_FUNCTION__))
13776 "both operands expected to be a half vector")((isVector(LHS.get()->getType(), Context.HalfTy) &&
isVector(RHS.get()->getType(), Context.HalfTy) &&
"both operands expected to be a half vector") ? static_cast<
void> (0) : __assert_fail ("isVector(LHS.get()->getType(), Context.HalfTy) && isVector(RHS.get()->getType(), Context.HalfTy) && \"both operands expected to be a half vector\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13776, __PRETTY_FUNCTION__))
;
13777
13778 RHS = convertVector(RHS.get(), Context.FloatTy, S);
13779 QualType BinOpResTy = RHS.get()->getType();
13780
13781 // If Opc is a comparison, ResultType is a vector of shorts. In that case,
13782 // change BinOpResTy to a vector of ints.
13783 if (isVector(ResultTy, Context.ShortTy))
13784 BinOpResTy = S.GetSignedVectorType(BinOpResTy);
13785
13786 if (IsCompAssign)
13787 return CompoundAssignOperator::Create(Context, LHS.get(), RHS.get(), Opc,
13788 ResultTy, VK, OK, OpLoc, FPFeatures,
13789 BinOpResTy, BinOpResTy);
13790
13791 LHS = convertVector(LHS.get(), Context.FloatTy, S);
13792 auto *BO = BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc,
13793 BinOpResTy, VK, OK, OpLoc, FPFeatures);
13794 return convertVector(BO, ResultTy->castAs<VectorType>()->getElementType(), S);
13795}
13796
13797static std::pair<ExprResult, ExprResult>
13798CorrectDelayedTyposInBinOp(Sema &S, BinaryOperatorKind Opc, Expr *LHSExpr,
13799 Expr *RHSExpr) {
13800 ExprResult LHS = LHSExpr, RHS = RHSExpr;
13801 if (!S.Context.isDependenceAllowed()) {
13802 // C cannot handle TypoExpr nodes on either side of a binop because it
13803 // doesn't handle dependent types properly, so make sure any TypoExprs have
13804 // been dealt with before checking the operands.
13805 LHS = S.CorrectDelayedTyposInExpr(LHS);
13806 RHS = S.CorrectDelayedTyposInExpr(
13807 RHS, /*InitDecl=*/nullptr, /*RecoverUncorrectedTypos=*/false,
13808 [Opc, LHS](Expr *E) {
13809 if (Opc != BO_Assign)
13810 return ExprResult(E);
13811 // Avoid correcting the RHS to the same Expr as the LHS.
13812 Decl *D = getDeclFromExpr(E);
13813 return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
13814 });
13815 }
13816 return std::make_pair(LHS, RHS);
13817}
13818
13819/// Returns true if conversion between vectors of halfs and vectors of floats
13820/// is needed.
13821static bool needsConversionOfHalfVec(bool OpRequiresConversion, ASTContext &Ctx,
13822 Expr *E0, Expr *E1 = nullptr) {
13823 if (!OpRequiresConversion || Ctx.getLangOpts().NativeHalfType ||
13824 Ctx.getTargetInfo().useFP16ConversionIntrinsics())
13825 return false;
13826
13827 auto HasVectorOfHalfType = [&Ctx](Expr *E) {
13828 QualType Ty = E->IgnoreImplicit()->getType();
13829
13830 // Don't promote half precision neon vectors like float16x4_t in arm_neon.h
13831 // to vectors of floats. Although the element type of the vectors is __fp16,
13832 // the vectors shouldn't be treated as storage-only types. See the
13833 // discussion here: https://reviews.llvm.org/rG825235c140e7
13834 if (const VectorType *VT = Ty->getAs<VectorType>()) {
13835 if (VT->getVectorKind() == VectorType::NeonVector)
13836 return false;
13837 return VT->getElementType().getCanonicalType() == Ctx.HalfTy;
13838 }
13839 return false;
13840 };
13841
13842 return HasVectorOfHalfType(E0) && (!E1 || HasVectorOfHalfType(E1));
13843}
13844
13845/// CreateBuiltinBinOp - Creates a new built-in binary operation with
13846/// operator @p Opc at location @c TokLoc. This routine only supports
13847/// built-in operations; ActOnBinOp handles overloaded operators.
13848ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
13849 BinaryOperatorKind Opc,
13850 Expr *LHSExpr, Expr *RHSExpr) {
13851 if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
13852 // The syntax only allows initializer lists on the RHS of assignment,
13853 // so we don't need to worry about accepting invalid code for
13854 // non-assignment operators.
13855 // C++11 5.17p9:
13856 // The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
13857 // of x = {} is x = T().
13858 InitializationKind Kind = InitializationKind::CreateDirectList(
13859 RHSExpr->getBeginLoc(), RHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
13860 InitializedEntity Entity =
13861 InitializedEntity::InitializeTemporary(LHSExpr->getType());
13862 InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
13863 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
13864 if (Init.isInvalid())
13865 return Init;
13866 RHSExpr = Init.get();
13867 }
13868
13869 ExprResult LHS = LHSExpr, RHS = RHSExpr;
13870 QualType ResultTy; // Result type of the binary operator.
13871 // The following two variables are used for compound assignment operators
13872 QualType CompLHSTy; // Type of LHS after promotions for computation
13873 QualType CompResultTy; // Type of computation result
13874 ExprValueKind VK = VK_RValue;
13875 ExprObjectKind OK = OK_Ordinary;
13876 bool ConvertHalfVec = false;
13877
13878 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
13879 if (!LHS.isUsable() || !RHS.isUsable())
13880 return ExprError();
13881
13882 if (getLangOpts().OpenCL) {
13883 QualType LHSTy = LHSExpr->getType();
13884 QualType RHSTy = RHSExpr->getType();
13885 // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
13886 // the ATOMIC_VAR_INIT macro.
13887 if (LHSTy->isAtomicType() || RHSTy->isAtomicType()) {
13888 SourceRange SR(LHSExpr->getBeginLoc(), RHSExpr->getEndLoc());
13889 if (BO_Assign == Opc)
13890 Diag(OpLoc, diag::err_opencl_atomic_init) << 0 << SR;
13891 else
13892 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
13893 return ExprError();
13894 }
13895
13896 // OpenCL special types - image, sampler, pipe, and blocks are to be used
13897 // only with a builtin functions and therefore should be disallowed here.
13898 if (LHSTy->isImageType() || RHSTy->isImageType() ||
13899 LHSTy->isSamplerT() || RHSTy->isSamplerT() ||
13900 LHSTy->isPipeType() || RHSTy->isPipeType() ||
13901 LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType()) {
13902 ResultTy = InvalidOperands(OpLoc, LHS, RHS);
13903 return ExprError();
13904 }
13905 }
13906
13907 switch (Opc) {
13908 case BO_Assign:
13909 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
13910 if (getLangOpts().CPlusPlus &&
13911 LHS.get()->getObjectKind() != OK_ObjCProperty) {
13912 VK = LHS.get()->getValueKind();
13913 OK = LHS.get()->getObjectKind();
13914 }
13915 if (!ResultTy.isNull()) {
13916 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
13917 DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
13918
13919 // Avoid copying a block to the heap if the block is assigned to a local
13920 // auto variable that is declared in the same scope as the block. This
13921 // optimization is unsafe if the local variable is declared in an outer
13922 // scope. For example:
13923 //
13924 // BlockTy b;
13925 // {
13926 // b = ^{...};
13927 // }
13928 // // It is unsafe to invoke the block here if it wasn't copied to the
13929 // // heap.
13930 // b();
13931
13932 if (auto *BE = dyn_cast<BlockExpr>(RHS.get()->IgnoreParens()))
13933 if (auto *DRE = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParens()))
13934 if (auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
13935 if (VD->hasLocalStorage() && getCurScope()->isDeclScope(VD))
13936 BE->getBlockDecl()->setCanAvoidCopyToHeap();
13937
13938 if (LHS.get()->getType().hasNonTrivialToPrimitiveCopyCUnion())
13939 checkNonTrivialCUnion(LHS.get()->getType(), LHS.get()->getExprLoc(),
13940 NTCUC_Assignment, NTCUK_Copy);
13941 }
13942 RecordModifiableNonNullParam(*this, LHS.get());
13943 break;
13944 case BO_PtrMemD:
13945 case BO_PtrMemI:
13946 ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
13947 Opc == BO_PtrMemI);
13948 break;
13949 case BO_Mul:
13950 case BO_Div:
13951 ConvertHalfVec = true;
13952 ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
13953 Opc == BO_Div);
13954 break;
13955 case BO_Rem:
13956 ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
13957 break;
13958 case BO_Add:
13959 ConvertHalfVec = true;
13960 ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
13961 break;
13962 case BO_Sub:
13963 ConvertHalfVec = true;
13964 ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
13965 break;
13966 case BO_Shl:
13967 case BO_Shr:
13968 ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
13969 break;
13970 case BO_LE:
13971 case BO_LT:
13972 case BO_GE:
13973 case BO_GT:
13974 ConvertHalfVec = true;
13975 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13976 break;
13977 case BO_EQ:
13978 case BO_NE:
13979 ConvertHalfVec = true;
13980 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13981 break;
13982 case BO_Cmp:
13983 ConvertHalfVec = true;
13984 ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc);
13985 assert(ResultTy.isNull() || ResultTy->getAsCXXRecordDecl())((ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()) ? static_cast
<void> (0) : __assert_fail ("ResultTy.isNull() || ResultTy->getAsCXXRecordDecl()"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 13985, __PRETTY_FUNCTION__))
;
13986 break;
13987 case BO_And:
13988 checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
13989 LLVM_FALLTHROUGH[[gnu::fallthrough]];
13990 case BO_Xor:
13991 case BO_Or:
13992 ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
13993 break;
13994 case BO_LAnd:
13995 case BO_LOr:
13996 ConvertHalfVec = true;
13997 ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
13998 break;
13999 case BO_MulAssign:
14000 case BO_DivAssign:
14001 ConvertHalfVec = true;
14002 CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
14003 Opc == BO_DivAssign);
14004 CompLHSTy = CompResultTy;
14005 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14006 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14007 break;
14008 case BO_RemAssign:
14009 CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
14010 CompLHSTy = CompResultTy;
14011 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14012 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14013 break;
14014 case BO_AddAssign:
14015 ConvertHalfVec = true;
14016 CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
14017 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14018 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14019 break;
14020 case BO_SubAssign:
14021 ConvertHalfVec = true;
14022 CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
14023 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14024 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14025 break;
14026 case BO_ShlAssign:
14027 case BO_ShrAssign:
14028 CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
14029 CompLHSTy = CompResultTy;
14030 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14031 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14032 break;
14033 case BO_AndAssign:
14034 case BO_OrAssign: // fallthrough
14035 DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc, true);
14036 LLVM_FALLTHROUGH[[gnu::fallthrough]];
14037 case BO_XorAssign:
14038 CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, Opc);
14039 CompLHSTy = CompResultTy;
14040 if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
14041 ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
14042 break;
14043 case BO_Comma:
14044 ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
14045 if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
14046 VK = RHS.get()->getValueKind();
14047 OK = RHS.get()->getObjectKind();
14048 }
14049 break;
14050 }
14051 if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
14052 return ExprError();
14053
14054 // Some of the binary operations require promoting operands of half vector to
14055 // float vectors and truncating the result back to half vector. For now, we do
14056 // this only when HalfArgsAndReturn is set (that is, when the target is arm or
14057 // arm64).
14058 assert((((Opc == BO_Comma || isVector(RHS.get()->getType(), Context
.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)
) && "both sides are half vectors or neither sides are"
) ? static_cast<void> (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14061, __PRETTY_FUNCTION__))
14059 (Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) ==(((Opc == BO_Comma || isVector(RHS.get()->getType(), Context
.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)
) && "both sides are half vectors or neither sides are"
) ? static_cast<void> (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14061, __PRETTY_FUNCTION__))
14060 isVector(LHS.get()->getType(), Context.HalfTy)) &&(((Opc == BO_Comma || isVector(RHS.get()->getType(), Context
.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)
) && "both sides are half vectors or neither sides are"
) ? static_cast<void> (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14061, __PRETTY_FUNCTION__))
14061 "both sides are half vectors or neither sides are")(((Opc == BO_Comma || isVector(RHS.get()->getType(), Context
.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)
) && "both sides are half vectors or neither sides are"
) ? static_cast<void> (0) : __assert_fail ("(Opc == BO_Comma || isVector(RHS.get()->getType(), Context.HalfTy) == isVector(LHS.get()->getType(), Context.HalfTy)) && \"both sides are half vectors or neither sides are\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14061, __PRETTY_FUNCTION__))
;
14062 ConvertHalfVec =
14063 needsConversionOfHalfVec(ConvertHalfVec, Context, LHS.get(), RHS.get());
14064
14065 // Check for array bounds violations for both sides of the BinaryOperator
14066 CheckArrayAccess(LHS.get());
14067 CheckArrayAccess(RHS.get());
14068
14069 if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
14070 NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
14071 &Context.Idents.get("object_setClass"),
14072 SourceLocation(), LookupOrdinaryName);
14073 if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
14074 SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getEndLoc());
14075 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign)
14076 << FixItHint::CreateInsertion(LHS.get()->getBeginLoc(),
14077 "object_setClass(")
14078 << FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc),
14079 ",")
14080 << FixItHint::CreateInsertion(RHSLocEnd, ")");
14081 }
14082 else
14083 Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
14084 }
14085 else if (const ObjCIvarRefExpr *OIRE =
14086 dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
14087 DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
14088
14089 // Opc is not a compound assignment if CompResultTy is null.
14090 if (CompResultTy.isNull()) {
14091 if (ConvertHalfVec)
14092 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, false,
14093 OpLoc, CurFPFeatureOverrides());
14094 return BinaryOperator::Create(Context, LHS.get(), RHS.get(), Opc, ResultTy,
14095 VK, OK, OpLoc, CurFPFeatureOverrides());
14096 }
14097
14098 // Handle compound assignments.
14099 if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
14100 OK_ObjCProperty) {
14101 VK = VK_LValue;
14102 OK = LHS.get()->getObjectKind();
14103 }
14104
14105 // The LHS is not converted to the result type for fixed-point compound
14106 // assignment as the common type is computed on demand. Reset the CompLHSTy
14107 // to the LHS type we would have gotten after unary conversions.
14108 if (CompResultTy->isFixedPointType())
14109 CompLHSTy = UsualUnaryConversions(LHS.get()).get()->getType();
14110
14111 if (ConvertHalfVec)
14112 return convertHalfVecBinOp(*this, LHS, RHS, Opc, ResultTy, VK, OK, true,
14113 OpLoc, CurFPFeatureOverrides());
14114
14115 return CompoundAssignOperator::Create(
14116 Context, LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, OpLoc,
14117 CurFPFeatureOverrides(), CompLHSTy, CompResultTy);
14118}
14119
14120/// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
14121/// operators are mixed in a way that suggests that the programmer forgot that
14122/// comparison operators have higher precedence. The most typical example of
14123/// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
14124static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
14125 SourceLocation OpLoc, Expr *LHSExpr,
14126 Expr *RHSExpr) {
14127 BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
14128 BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
14129
14130 // Check that one of the sides is a comparison operator and the other isn't.
14131 bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
14132 bool isRightComp = RHSBO && RHSBO->isComparisonOp();
14133 if (isLeftComp == isRightComp)
14134 return;
14135
14136 // Bitwise operations are sometimes used as eager logical ops.
14137 // Don't diagnose this.
14138 bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
14139 bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
14140 if (isLeftBitwise || isRightBitwise)
14141 return;
14142
14143 SourceRange DiagRange = isLeftComp
14144 ? SourceRange(LHSExpr->getBeginLoc(), OpLoc)
14145 : SourceRange(OpLoc, RHSExpr->getEndLoc());
14146 StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
14147 SourceRange ParensRange =
14148 isLeftComp
14149 ? SourceRange(LHSBO->getRHS()->getBeginLoc(), RHSExpr->getEndLoc())
14150 : SourceRange(LHSExpr->getBeginLoc(), RHSBO->getLHS()->getEndLoc());
14151
14152 Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
14153 << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
14154 SuggestParentheses(Self, OpLoc,
14155 Self.PDiag(diag::note_precedence_silence) << OpStr,
14156 (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
14157 SuggestParentheses(Self, OpLoc,
14158 Self.PDiag(diag::note_precedence_bitwise_first)
14159 << BinaryOperator::getOpcodeStr(Opc),
14160 ParensRange);
14161}
14162
14163/// It accepts a '&&' expr that is inside a '||' one.
14164/// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
14165/// in parentheses.
14166static void
14167EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
14168 BinaryOperator *Bop) {
14169 assert(Bop->getOpcode() == BO_LAnd)((Bop->getOpcode() == BO_LAnd) ? static_cast<void> (
0) : __assert_fail ("Bop->getOpcode() == BO_LAnd", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14169, __PRETTY_FUNCTION__))
;
14170 Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
14171 << Bop->getSourceRange() << OpLoc;
14172 SuggestParentheses(Self, Bop->getOperatorLoc(),
14173 Self.PDiag(diag::note_precedence_silence)
14174 << Bop->getOpcodeStr(),
14175 Bop->getSourceRange());
14176}
14177
14178/// Returns true if the given expression can be evaluated as a constant
14179/// 'true'.
14180static bool EvaluatesAsTrue(Sema &S, Expr *E) {
14181 bool Res;
14182 return !E->isValueDependent() &&
14183 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
14184}
14185
14186/// Returns true if the given expression can be evaluated as a constant
14187/// 'false'.
14188static bool EvaluatesAsFalse(Sema &S, Expr *E) {
14189 bool Res;
14190 return !E->isValueDependent() &&
14191 E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
14192}
14193
14194/// Look for '&&' in the left hand of a '||' expr.
14195static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
14196 Expr *LHSExpr, Expr *RHSExpr) {
14197 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
14198 if (Bop->getOpcode() == BO_LAnd) {
14199 // If it's "a && b || 0" don't warn since the precedence doesn't matter.
14200 if (EvaluatesAsFalse(S, RHSExpr))
14201 return;
14202 // If it's "1 && a || b" don't warn since the precedence doesn't matter.
14203 if (!EvaluatesAsTrue(S, Bop->getLHS()))
14204 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14205 } else if (Bop->getOpcode() == BO_LOr) {
14206 if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
14207 // If it's "a || b && 1 || c" we didn't warn earlier for
14208 // "a || b && 1", but warn now.
14209 if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
14210 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
14211 }
14212 }
14213 }
14214}
14215
14216/// Look for '&&' in the right hand of a '||' expr.
14217static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
14218 Expr *LHSExpr, Expr *RHSExpr) {
14219 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
14220 if (Bop->getOpcode() == BO_LAnd) {
14221 // If it's "0 || a && b" don't warn since the precedence doesn't matter.
14222 if (EvaluatesAsFalse(S, LHSExpr))
14223 return;
14224 // If it's "a || b && 1" don't warn since the precedence doesn't matter.
14225 if (!EvaluatesAsTrue(S, Bop->getRHS()))
14226 return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
14227 }
14228 }
14229}
14230
14231/// Look for bitwise op in the left or right hand of a bitwise op with
14232/// lower precedence and emit a diagnostic together with a fixit hint that wraps
14233/// the '&' expression in parentheses.
14234static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
14235 SourceLocation OpLoc, Expr *SubExpr) {
14236 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14237 if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
14238 S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
14239 << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
14240 << Bop->getSourceRange() << OpLoc;
14241 SuggestParentheses(S, Bop->getOperatorLoc(),
14242 S.PDiag(diag::note_precedence_silence)
14243 << Bop->getOpcodeStr(),
14244 Bop->getSourceRange());
14245 }
14246 }
14247}
14248
14249static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
14250 Expr *SubExpr, StringRef Shift) {
14251 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
14252 if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
14253 StringRef Op = Bop->getOpcodeStr();
14254 S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
14255 << Bop->getSourceRange() << OpLoc << Shift << Op;
14256 SuggestParentheses(S, Bop->getOperatorLoc(),
14257 S.PDiag(diag::note_precedence_silence) << Op,
14258 Bop->getSourceRange());
14259 }
14260 }
14261}
14262
14263static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
14264 Expr *LHSExpr, Expr *RHSExpr) {
14265 CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
14266 if (!OCE)
14267 return;
14268
14269 FunctionDecl *FD = OCE->getDirectCallee();
14270 if (!FD || !FD->isOverloadedOperator())
14271 return;
14272
14273 OverloadedOperatorKind Kind = FD->getOverloadedOperator();
14274 if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
14275 return;
14276
14277 S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
14278 << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
14279 << (Kind == OO_LessLess);
14280 SuggestParentheses(S, OCE->getOperatorLoc(),
14281 S.PDiag(diag::note_precedence_silence)
14282 << (Kind == OO_LessLess ? "<<" : ">>"),
14283 OCE->getSourceRange());
14284 SuggestParentheses(
14285 S, OpLoc, S.PDiag(diag::note_evaluate_comparison_first),
14286 SourceRange(OCE->getArg(1)->getBeginLoc(), RHSExpr->getEndLoc()));
14287}
14288
14289/// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
14290/// precedence.
14291static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
14292 SourceLocation OpLoc, Expr *LHSExpr,
14293 Expr *RHSExpr){
14294 // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
14295 if (BinaryOperator::isBitwiseOp(Opc))
14296 DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
14297
14298 // Diagnose "arg1 & arg2 | arg3"
14299 if ((Opc == BO_Or || Opc == BO_Xor) &&
14300 !OpLoc.isMacroID()/* Don't warn in macros. */) {
14301 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
14302 DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
14303 }
14304
14305 // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
14306 // We don't warn for 'assert(a || b && "bad")' since this is safe.
14307 if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
14308 DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
14309 DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
14310 }
14311
14312 if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
14313 || Opc == BO_Shr) {
14314 StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
14315 DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
14316 DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
14317 }
14318
14319 // Warn on overloaded shift operators and comparisons, such as:
14320 // cout << 5 == 4;
14321 if (BinaryOperator::isComparisonOp(Opc))
14322 DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
14323}
14324
14325// Binary Operators. 'Tok' is the token for the operator.
14326ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
14327 tok::TokenKind Kind,
14328 Expr *LHSExpr, Expr *RHSExpr) {
14329 BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
14330 assert(LHSExpr && "ActOnBinOp(): missing left expression")((LHSExpr && "ActOnBinOp(): missing left expression")
? static_cast<void> (0) : __assert_fail ("LHSExpr && \"ActOnBinOp(): missing left expression\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14330, __PRETTY_FUNCTION__))
;
14331 assert(RHSExpr && "ActOnBinOp(): missing right expression")((RHSExpr && "ActOnBinOp(): missing right expression"
) ? static_cast<void> (0) : __assert_fail ("RHSExpr && \"ActOnBinOp(): missing right expression\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14331, __PRETTY_FUNCTION__))
;
14332
14333 // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
14334 DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
14335
14336 return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
14337}
14338
14339void Sema::LookupBinOp(Scope *S, SourceLocation OpLoc, BinaryOperatorKind Opc,
14340 UnresolvedSetImpl &Functions) {
14341 OverloadedOperatorKind OverOp = BinaryOperator::getOverloadedOperator(Opc);
14342 if (OverOp != OO_None && OverOp != OO_Equal)
14343 LookupOverloadedOperatorName(OverOp, S, Functions);
14344
14345 // In C++20 onwards, we may have a second operator to look up.
14346 if (getLangOpts().CPlusPlus20) {
14347 if (OverloadedOperatorKind ExtraOp = getRewrittenOverloadedOperator(OverOp))
14348 LookupOverloadedOperatorName(ExtraOp, S, Functions);
14349 }
14350}
14351
14352/// Build an overloaded binary operator expression in the given scope.
14353static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
14354 BinaryOperatorKind Opc,
14355 Expr *LHS, Expr *RHS) {
14356 switch (Opc) {
14357 case BO_Assign:
14358 case BO_DivAssign:
14359 case BO_RemAssign:
14360 case BO_SubAssign:
14361 case BO_AndAssign:
14362 case BO_OrAssign:
14363 case BO_XorAssign:
14364 DiagnoseSelfAssignment(S, LHS, RHS, OpLoc, false);
14365 CheckIdentityFieldAssignment(LHS, RHS, OpLoc, S);
14366 break;
14367 default:
14368 break;
14369 }
14370
14371 // Find all of the overloaded operators visible from this point.
14372 UnresolvedSet<16> Functions;
14373 S.LookupBinOp(Sc, OpLoc, Opc, Functions);
14374
14375 // Build the (potentially-overloaded, potentially-dependent)
14376 // binary operation.
14377 return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
14378}
14379
14380ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
14381 BinaryOperatorKind Opc,
14382 Expr *LHSExpr, Expr *RHSExpr) {
14383 ExprResult LHS, RHS;
14384 std::tie(LHS, RHS) = CorrectDelayedTyposInBinOp(*this, Opc, LHSExpr, RHSExpr);
14385 if (!LHS.isUsable() || !RHS.isUsable())
14386 return ExprError();
14387 LHSExpr = LHS.get();
14388 RHSExpr = RHS.get();
14389
14390 // We want to end up calling one of checkPseudoObjectAssignment
14391 // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
14392 // both expressions are overloadable or either is type-dependent),
14393 // or CreateBuiltinBinOp (in any other case). We also want to get
14394 // any placeholder types out of the way.
14395
14396 // Handle pseudo-objects in the LHS.
14397 if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
14398 // Assignments with a pseudo-object l-value need special analysis.
14399 if (pty->getKind() == BuiltinType::PseudoObject &&
14400 BinaryOperator::isAssignmentOp(Opc))
14401 return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
14402
14403 // Don't resolve overloads if the other type is overloadable.
14404 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload) {
14405 // We can't actually test that if we still have a placeholder,
14406 // though. Fortunately, none of the exceptions we see in that
14407 // code below are valid when the LHS is an overload set. Note
14408 // that an overload set can be dependently-typed, but it never
14409 // instantiates to having an overloadable type.
14410 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14411 if (resolvedRHS.isInvalid()) return ExprError();
14412 RHSExpr = resolvedRHS.get();
14413
14414 if (RHSExpr->isTypeDependent() ||
14415 RHSExpr->getType()->isOverloadableType())
14416 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14417 }
14418
14419 // If we're instantiating "a.x < b" or "A::x < b" and 'x' names a function
14420 // template, diagnose the missing 'template' keyword instead of diagnosing
14421 // an invalid use of a bound member function.
14422 //
14423 // Note that "A::x < b" might be valid if 'b' has an overloadable type due
14424 // to C++1z [over.over]/1.4, but we already checked for that case above.
14425 if (Opc == BO_LT && inTemplateInstantiation() &&
14426 (pty->getKind() == BuiltinType::BoundMember ||
14427 pty->getKind() == BuiltinType::Overload)) {
14428 auto *OE = dyn_cast<OverloadExpr>(LHSExpr);
14429 if (OE && !OE->hasTemplateKeyword() && !OE->hasExplicitTemplateArgs() &&
14430 std::any_of(OE->decls_begin(), OE->decls_end(), [](NamedDecl *ND) {
14431 return isa<FunctionTemplateDecl>(ND);
14432 })) {
14433 Diag(OE->getQualifier() ? OE->getQualifierLoc().getBeginLoc()
14434 : OE->getNameLoc(),
14435 diag::err_template_kw_missing)
14436 << OE->getName().getAsString() << "";
14437 return ExprError();
14438 }
14439 }
14440
14441 ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
14442 if (LHS.isInvalid()) return ExprError();
14443 LHSExpr = LHS.get();
14444 }
14445
14446 // Handle pseudo-objects in the RHS.
14447 if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
14448 // An overload in the RHS can potentially be resolved by the type
14449 // being assigned to.
14450 if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
14451 if (getLangOpts().CPlusPlus &&
14452 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent() ||
14453 LHSExpr->getType()->isOverloadableType()))
14454 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14455
14456 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14457 }
14458
14459 // Don't resolve overloads if the other type is overloadable.
14460 if (getLangOpts().CPlusPlus && pty->getKind() == BuiltinType::Overload &&
14461 LHSExpr->getType()->isOverloadableType())
14462 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14463
14464 ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
14465 if (!resolvedRHS.isUsable()) return ExprError();
14466 RHSExpr = resolvedRHS.get();
14467 }
14468
14469 if (getLangOpts().CPlusPlus) {
14470 // If either expression is type-dependent, always build an
14471 // overloaded op.
14472 if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
14473 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14474
14475 // Otherwise, build an overloaded op if either expression has an
14476 // overloadable type.
14477 if (LHSExpr->getType()->isOverloadableType() ||
14478 RHSExpr->getType()->isOverloadableType())
14479 return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
14480 }
14481
14482 if (getLangOpts().RecoveryAST &&
14483 (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())) {
14484 assert(!getLangOpts().CPlusPlus)((!getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("!getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14484, __PRETTY_FUNCTION__))
;
14485 assert((LHSExpr->containsErrors() || RHSExpr->containsErrors()) &&(((LHSExpr->containsErrors() || RHSExpr->containsErrors
()) && "Should only occur in error-recovery path.") ?
static_cast<void> (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14486, __PRETTY_FUNCTION__))
14486 "Should only occur in error-recovery path.")(((LHSExpr->containsErrors() || RHSExpr->containsErrors
()) && "Should only occur in error-recovery path.") ?
static_cast<void> (0) : __assert_fail ("(LHSExpr->containsErrors() || RHSExpr->containsErrors()) && \"Should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14486, __PRETTY_FUNCTION__))
;
14487 if (BinaryOperator::isCompoundAssignmentOp(Opc))
14488 // C [6.15.16] p3:
14489 // An assignment expression has the value of the left operand after the
14490 // assignment, but is not an lvalue.
14491 return CompoundAssignOperator::Create(
14492 Context, LHSExpr, RHSExpr, Opc,
14493 LHSExpr->getType().getUnqualifiedType(), VK_RValue, OK_Ordinary,
14494 OpLoc, CurFPFeatureOverrides());
14495 QualType ResultType;
14496 switch (Opc) {
14497 case BO_Assign:
14498 ResultType = LHSExpr->getType().getUnqualifiedType();
14499 break;
14500 case BO_LT:
14501 case BO_GT:
14502 case BO_LE:
14503 case BO_GE:
14504 case BO_EQ:
14505 case BO_NE:
14506 case BO_LAnd:
14507 case BO_LOr:
14508 // These operators have a fixed result type regardless of operands.
14509 ResultType = Context.IntTy;
14510 break;
14511 case BO_Comma:
14512 ResultType = RHSExpr->getType();
14513 break;
14514 default:
14515 ResultType = Context.DependentTy;
14516 break;
14517 }
14518 return BinaryOperator::Create(Context, LHSExpr, RHSExpr, Opc, ResultType,
14519 VK_RValue, OK_Ordinary, OpLoc,
14520 CurFPFeatureOverrides());
14521 }
14522
14523 // Build a built-in binary operation.
14524 return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
14525}
14526
14527static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
14528 if (T.isNull() || T->isDependentType())
14529 return false;
14530
14531 if (!T->isPromotableIntegerType())
14532 return true;
14533
14534 return Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
14535}
14536
14537ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
14538 UnaryOperatorKind Opc,
14539 Expr *InputExpr) {
14540 ExprResult Input = InputExpr;
14541 ExprValueKind VK = VK_RValue;
14542 ExprObjectKind OK = OK_Ordinary;
14543 QualType resultType;
14544 bool CanOverflow = false;
14545
14546 bool ConvertHalfVec = false;
14547 if (getLangOpts().OpenCL) {
14548 QualType Ty = InputExpr->getType();
14549 // The only legal unary operation for atomics is '&'.
14550 if ((Opc != UO_AddrOf && Ty->isAtomicType()) ||
14551 // OpenCL special types - image, sampler, pipe, and blocks are to be used
14552 // only with a builtin functions and therefore should be disallowed here.
14553 (Ty->isImageType() || Ty->isSamplerT() || Ty->isPipeType()
14554 || Ty->isBlockPointerType())) {
14555 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14556 << InputExpr->getType()
14557 << Input.get()->getSourceRange());
14558 }
14559 }
14560
14561 switch (Opc) {
14562 case UO_PreInc:
14563 case UO_PreDec:
14564 case UO_PostInc:
14565 case UO_PostDec:
14566 resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
14567 OpLoc,
14568 Opc == UO_PreInc ||
14569 Opc == UO_PostInc,
14570 Opc == UO_PreInc ||
14571 Opc == UO_PreDec);
14572 CanOverflow = isOverflowingIntegerType(Context, resultType);
14573 break;
14574 case UO_AddrOf:
14575 resultType = CheckAddressOfOperand(Input, OpLoc);
14576 CheckAddressOfNoDeref(InputExpr);
14577 RecordModifiableNonNullParam(*this, InputExpr);
14578 break;
14579 case UO_Deref: {
14580 Input = DefaultFunctionArrayLvalueConversion(Input.get());
14581 if (Input.isInvalid()) return ExprError();
14582 resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
14583 break;
14584 }
14585 case UO_Plus:
14586 case UO_Minus:
14587 CanOverflow = Opc == UO_Minus &&
14588 isOverflowingIntegerType(Context, Input.get()->getType());
14589 Input = UsualUnaryConversions(Input.get());
14590 if (Input.isInvalid()) return ExprError();
14591 // Unary plus and minus require promoting an operand of half vector to a
14592 // float vector and truncating the result back to a half vector. For now, we
14593 // do this only when HalfArgsAndReturns is set (that is, when the target is
14594 // arm or arm64).
14595 ConvertHalfVec = needsConversionOfHalfVec(true, Context, Input.get());
14596
14597 // If the operand is a half vector, promote it to a float vector.
14598 if (ConvertHalfVec)
14599 Input = convertVector(Input.get(), Context.FloatTy, *this);
14600 resultType = Input.get()->getType();
14601 if (resultType->isDependentType())
14602 break;
14603 if (resultType->isArithmeticType()) // C99 6.5.3.3p1
14604 break;
14605 else if (resultType->isVectorType() &&
14606 // The z vector extensions don't allow + or - with bool vectors.
14607 (!Context.getLangOpts().ZVector ||
14608 resultType->castAs<VectorType>()->getVectorKind() !=
14609 VectorType::AltiVecBool))
14610 break;
14611 else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
14612 Opc == UO_Plus &&
14613 resultType->isPointerType())
14614 break;
14615
14616 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14617 << resultType << Input.get()->getSourceRange());
14618
14619 case UO_Not: // bitwise complement
14620 Input = UsualUnaryConversions(Input.get());
14621 if (Input.isInvalid())
14622 return ExprError();
14623 resultType = Input.get()->getType();
14624 if (resultType->isDependentType())
14625 break;
14626 // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
14627 if (resultType->isComplexType() || resultType->isComplexIntegerType())
14628 // C99 does not support '~' for complex conjugation.
14629 Diag(OpLoc, diag::ext_integer_complement_complex)
14630 << resultType << Input.get()->getSourceRange();
14631 else if (resultType->hasIntegerRepresentation())
14632 break;
14633 else if (resultType->isExtVectorType() && Context.getLangOpts().OpenCL) {
14634 // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
14635 // on vector float types.
14636 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14637 if (!T->isIntegerType())
14638 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14639 << resultType << Input.get()->getSourceRange());
14640 } else {
14641 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14642 << resultType << Input.get()->getSourceRange());
14643 }
14644 break;
14645
14646 case UO_LNot: // logical negation
14647 // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
14648 Input = DefaultFunctionArrayLvalueConversion(Input.get());
14649 if (Input.isInvalid()) return ExprError();
14650 resultType = Input.get()->getType();
14651
14652 // Though we still have to promote half FP to float...
14653 if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
14654 Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
14655 resultType = Context.FloatTy;
14656 }
14657
14658 if (resultType->isDependentType())
14659 break;
14660 if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
14661 // C99 6.5.3.3p1: ok, fallthrough;
14662 if (Context.getLangOpts().CPlusPlus) {
14663 // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
14664 // operand contextually converted to bool.
14665 Input = ImpCastExprToType(Input.get(), Context.BoolTy,
14666 ScalarTypeToBooleanCastKind(resultType));
14667 } else if (Context.getLangOpts().OpenCL &&
14668 Context.getLangOpts().OpenCLVersion < 120) {
14669 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14670 // operate on scalar float types.
14671 if (!resultType->isIntegerType() && !resultType->isPointerType())
14672 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14673 << resultType << Input.get()->getSourceRange());
14674 }
14675 } else if (resultType->isExtVectorType()) {
14676 if (Context.getLangOpts().OpenCL &&
14677 Context.getLangOpts().OpenCLVersion < 120 &&
14678 !Context.getLangOpts().OpenCLCPlusPlus) {
14679 // OpenCL v1.1 6.3.h: The logical operator not (!) does not
14680 // operate on vector float types.
14681 QualType T = resultType->castAs<ExtVectorType>()->getElementType();
14682 if (!T->isIntegerType())
14683 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14684 << resultType << Input.get()->getSourceRange());
14685 }
14686 // Vector logical not returns the signed variant of the operand type.
14687 resultType = GetSignedVectorType(resultType);
14688 break;
14689 } else if (Context.getLangOpts().CPlusPlus && resultType->isVectorType()) {
14690 const VectorType *VTy = resultType->castAs<VectorType>();
14691 if (VTy->getVectorKind() != VectorType::GenericVector)
14692 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14693 << resultType << Input.get()->getSourceRange());
14694
14695 // Vector logical not returns the signed variant of the operand type.
14696 resultType = GetSignedVectorType(resultType);
14697 break;
14698 } else {
14699 return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
14700 << resultType << Input.get()->getSourceRange());
14701 }
14702
14703 // LNot always has type int. C99 6.5.3.3p5.
14704 // In C++, it's bool. C++ 5.3.1p8
14705 resultType = Context.getLogicalOperationType();
14706 break;
14707 case UO_Real:
14708 case UO_Imag:
14709 resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
14710 // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
14711 // complex l-values to ordinary l-values and all other values to r-values.
14712 if (Input.isInvalid()) return ExprError();
14713 if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
14714 if (Input.get()->getValueKind() != VK_RValue &&
14715 Input.get()->getObjectKind() == OK_Ordinary)
14716 VK = Input.get()->getValueKind();
14717 } else if (!getLangOpts().CPlusPlus) {
14718 // In C, a volatile scalar is read by __imag. In C++, it is not.
14719 Input = DefaultLvalueConversion(Input.get());
14720 }
14721 break;
14722 case UO_Extension:
14723 resultType = Input.get()->getType();
14724 VK = Input.get()->getValueKind();
14725 OK = Input.get()->getObjectKind();
14726 break;
14727 case UO_Coawait:
14728 // It's unnecessary to represent the pass-through operator co_await in the
14729 // AST; just return the input expression instead.
14730 assert(!Input.get()->getType()->isDependentType() &&((!Input.get()->getType()->isDependentType() &&
"the co_await expression must be non-dependant before " "building operator co_await"
) ? static_cast<void> (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14732, __PRETTY_FUNCTION__))
14731 "the co_await expression must be non-dependant before "((!Input.get()->getType()->isDependentType() &&
"the co_await expression must be non-dependant before " "building operator co_await"
) ? static_cast<void> (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14732, __PRETTY_FUNCTION__))
14732 "building operator co_await")((!Input.get()->getType()->isDependentType() &&
"the co_await expression must be non-dependant before " "building operator co_await"
) ? static_cast<void> (0) : __assert_fail ("!Input.get()->getType()->isDependentType() && \"the co_await expression must be non-dependant before \" \"building operator co_await\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14732, __PRETTY_FUNCTION__))
;
14733 return Input;
14734 }
14735 if (resultType.isNull() || Input.isInvalid())
14736 return ExprError();
14737
14738 // Check for array bounds violations in the operand of the UnaryOperator,
14739 // except for the '*' and '&' operators that have to be handled specially
14740 // by CheckArrayAccess (as there are special cases like &array[arraysize]
14741 // that are explicitly defined as valid by the standard).
14742 if (Opc != UO_AddrOf && Opc != UO_Deref)
14743 CheckArrayAccess(Input.get());
14744
14745 auto *UO =
14746 UnaryOperator::Create(Context, Input.get(), Opc, resultType, VK, OK,
14747 OpLoc, CanOverflow, CurFPFeatureOverrides());
14748
14749 if (Opc == UO_Deref && UO->getType()->hasAttr(attr::NoDeref) &&
14750 !isa<ArrayType>(UO->getType().getDesugaredType(Context)) &&
14751 !isUnevaluatedContext())
14752 ExprEvalContexts.back().PossibleDerefs.insert(UO);
14753
14754 // Convert the result back to a half vector.
14755 if (ConvertHalfVec)
14756 return convertVector(UO, Context.HalfTy, *this);
14757 return UO;
14758}
14759
14760/// Determine whether the given expression is a qualified member
14761/// access expression, of a form that could be turned into a pointer to member
14762/// with the address-of operator.
14763bool Sema::isQualifiedMemberAccess(Expr *E) {
14764 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
14765 if (!DRE->getQualifier())
14766 return false;
14767
14768 ValueDecl *VD = DRE->getDecl();
14769 if (!VD->isCXXClassMember())
14770 return false;
14771
14772 if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
14773 return true;
14774 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
14775 return Method->isInstance();
14776
14777 return false;
14778 }
14779
14780 if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
14781 if (!ULE->getQualifier())
14782 return false;
14783
14784 for (NamedDecl *D : ULE->decls()) {
14785 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
14786 if (Method->isInstance())
14787 return true;
14788 } else {
14789 // Overload set does not contain methods.
14790 break;
14791 }
14792 }
14793
14794 return false;
14795 }
14796
14797 return false;
14798}
14799
14800ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
14801 UnaryOperatorKind Opc, Expr *Input) {
14802 // First things first: handle placeholders so that the
14803 // overloaded-operator check considers the right type.
14804 if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
14805 // Increment and decrement of pseudo-object references.
14806 if (pty->getKind() == BuiltinType::PseudoObject &&
14807 UnaryOperator::isIncrementDecrementOp(Opc))
14808 return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
14809
14810 // extension is always a builtin operator.
14811 if (Opc == UO_Extension)
14812 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14813
14814 // & gets special logic for several kinds of placeholder.
14815 // The builtin code knows what to do.
14816 if (Opc == UO_AddrOf &&
14817 (pty->getKind() == BuiltinType::Overload ||
14818 pty->getKind() == BuiltinType::UnknownAny ||
14819 pty->getKind() == BuiltinType::BoundMember))
14820 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14821
14822 // Anything else needs to be handled now.
14823 ExprResult Result = CheckPlaceholderExpr(Input);
14824 if (Result.isInvalid()) return ExprError();
14825 Input = Result.get();
14826 }
14827
14828 if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
14829 UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
14830 !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
14831 // Find all of the overloaded operators visible from this point.
14832 UnresolvedSet<16> Functions;
14833 OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
14834 if (S && OverOp != OO_None)
14835 LookupOverloadedOperatorName(OverOp, S, Functions);
14836
14837 return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
14838 }
14839
14840 return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
14841}
14842
14843// Unary Operators. 'Tok' is the token for the operator.
14844ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
14845 tok::TokenKind Op, Expr *Input) {
14846 return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
14847}
14848
14849/// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
14850ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
14851 LabelDecl *TheDecl) {
14852 TheDecl->markUsed(Context);
14853 // Create the AST node. The address of a label always has type 'void*'.
14854 return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
14855 Context.getPointerType(Context.VoidTy));
14856}
14857
14858void Sema::ActOnStartStmtExpr() {
14859 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14860}
14861
14862void Sema::ActOnStmtExprError() {
14863 // Note that function is also called by TreeTransform when leaving a
14864 // StmtExpr scope without rebuilding anything.
14865
14866 DiscardCleanupsInEvaluationContext();
14867 PopExpressionEvaluationContext();
14868}
14869
14870ExprResult Sema::ActOnStmtExpr(Scope *S, SourceLocation LPLoc, Stmt *SubStmt,
14871 SourceLocation RPLoc) {
14872 return BuildStmtExpr(LPLoc, SubStmt, RPLoc, getTemplateDepth(S));
14873}
14874
14875ExprResult Sema::BuildStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
14876 SourceLocation RPLoc, unsigned TemplateDepth) {
14877 assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!")((SubStmt && isa<CompoundStmt>(SubStmt) &&
"Invalid action invocation!") ? static_cast<void> (0) :
__assert_fail ("SubStmt && isa<CompoundStmt>(SubStmt) && \"Invalid action invocation!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14877, __PRETTY_FUNCTION__))
;
14878 CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
14879
14880 if (hasAnyUnrecoverableErrorsInThisFunction())
14881 DiscardCleanupsInEvaluationContext();
14882 assert(!Cleanup.exprNeedsCleanups() &&((!Cleanup.exprNeedsCleanups() && "cleanups within StmtExpr not correctly bound!"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14883, __PRETTY_FUNCTION__))
14883 "cleanups within StmtExpr not correctly bound!")((!Cleanup.exprNeedsCleanups() && "cleanups within StmtExpr not correctly bound!"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within StmtExpr not correctly bound!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 14883, __PRETTY_FUNCTION__))
;
14884 PopExpressionEvaluationContext();
14885
14886 // FIXME: there are a variety of strange constraints to enforce here, for
14887 // example, it is not possible to goto into a stmt expression apparently.
14888 // More semantic analysis is needed.
14889
14890 // If there are sub-stmts in the compound stmt, take the type of the last one
14891 // as the type of the stmtexpr.
14892 QualType Ty = Context.VoidTy;
14893 bool StmtExprMayBindToTemp = false;
14894 if (!Compound->body_empty()) {
14895 // For GCC compatibility we get the last Stmt excluding trailing NullStmts.
14896 if (const auto *LastStmt =
14897 dyn_cast<ValueStmt>(Compound->getStmtExprResult())) {
14898 if (const Expr *Value = LastStmt->getExprStmt()) {
14899 StmtExprMayBindToTemp = true;
14900 Ty = Value->getType();
14901 }
14902 }
14903 }
14904
14905 // FIXME: Check that expression type is complete/non-abstract; statement
14906 // expressions are not lvalues.
14907 Expr *ResStmtExpr =
14908 new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc, TemplateDepth);
14909 if (StmtExprMayBindToTemp)
14910 return MaybeBindToTemporary(ResStmtExpr);
14911 return ResStmtExpr;
14912}
14913
14914ExprResult Sema::ActOnStmtExprResult(ExprResult ER) {
14915 if (ER.isInvalid())
14916 return ExprError();
14917
14918 // Do function/array conversion on the last expression, but not
14919 // lvalue-to-rvalue. However, initialize an unqualified type.
14920 ER = DefaultFunctionArrayConversion(ER.get());
14921 if (ER.isInvalid())
14922 return ExprError();
14923 Expr *E = ER.get();
14924
14925 if (E->isTypeDependent())
14926 return E;
14927
14928 // In ARC, if the final expression ends in a consume, splice
14929 // the consume out and bind it later. In the alternate case
14930 // (when dealing with a retainable type), the result
14931 // initialization will create a produce. In both cases the
14932 // result will be +1, and we'll need to balance that out with
14933 // a bind.
14934 auto *Cast = dyn_cast<ImplicitCastExpr>(E);
14935 if (Cast && Cast->getCastKind() == CK_ARCConsumeObject)
14936 return Cast->getSubExpr();
14937
14938 // FIXME: Provide a better location for the initialization.
14939 return PerformCopyInitialization(
14940 InitializedEntity::InitializeStmtExprResult(
14941 E->getBeginLoc(), E->getType().getUnqualifiedType()),
14942 SourceLocation(), E);
14943}
14944
14945ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
14946 TypeSourceInfo *TInfo,
14947 ArrayRef<OffsetOfComponent> Components,
14948 SourceLocation RParenLoc) {
14949 QualType ArgTy = TInfo->getType();
14950 bool Dependent = ArgTy->isDependentType();
14951 SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
14952
14953 // We must have at least one component that refers to the type, and the first
14954 // one is known to be a field designator. Verify that the ArgTy represents
14955 // a struct/union/class.
14956 if (!Dependent && !ArgTy->isRecordType())
14957 return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
14958 << ArgTy << TypeRange);
14959
14960 // Type must be complete per C99 7.17p3 because a declaring a variable
14961 // with an incomplete type would be ill-formed.
14962 if (!Dependent
14963 && RequireCompleteType(BuiltinLoc, ArgTy,
14964 diag::err_offsetof_incomplete_type, TypeRange))
14965 return ExprError();
14966
14967 bool DidWarnAboutNonPOD = false;
14968 QualType CurrentType = ArgTy;
14969 SmallVector<OffsetOfNode, 4> Comps;
14970 SmallVector<Expr*, 4> Exprs;
14971 for (const OffsetOfComponent &OC : Components) {
14972 if (OC.isBrackets) {
14973 // Offset of an array sub-field. TODO: Should we allow vector elements?
14974 if (!CurrentType->isDependentType()) {
14975 const ArrayType *AT = Context.getAsArrayType(CurrentType);
14976 if(!AT)
14977 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
14978 << CurrentType);
14979 CurrentType = AT->getElementType();
14980 } else
14981 CurrentType = Context.DependentTy;
14982
14983 ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
14984 if (IdxRval.isInvalid())
14985 return ExprError();
14986 Expr *Idx = IdxRval.get();
14987
14988 // The expression must be an integral expression.
14989 // FIXME: An integral constant expression?
14990 if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
14991 !Idx->getType()->isIntegerType())
14992 return ExprError(
14993 Diag(Idx->getBeginLoc(), diag::err_typecheck_subscript_not_integer)
14994 << Idx->getSourceRange());
14995
14996 // Record this array index.
14997 Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
14998 Exprs.push_back(Idx);
14999 continue;
15000 }
15001
15002 // Offset of a field.
15003 if (CurrentType->isDependentType()) {
15004 // We have the offset of a field, but we can't look into the dependent
15005 // type. Just record the identifier of the field.
15006 Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
15007 CurrentType = Context.DependentTy;
15008 continue;
15009 }
15010
15011 // We need to have a complete type to look into.
15012 if (RequireCompleteType(OC.LocStart, CurrentType,
15013 diag::err_offsetof_incomplete_type))
15014 return ExprError();
15015
15016 // Look for the designated field.
15017 const RecordType *RC = CurrentType->getAs<RecordType>();
15018 if (!RC)
15019 return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
15020 << CurrentType);
15021 RecordDecl *RD = RC->getDecl();
15022
15023 // C++ [lib.support.types]p5:
15024 // The macro offsetof accepts a restricted set of type arguments in this
15025 // International Standard. type shall be a POD structure or a POD union
15026 // (clause 9).
15027 // C++11 [support.types]p4:
15028 // If type is not a standard-layout class (Clause 9), the results are
15029 // undefined.
15030 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
15031 bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
15032 unsigned DiagID =
15033 LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
15034 : diag::ext_offsetof_non_pod_type;
15035
15036 if (!IsSafe && !DidWarnAboutNonPOD &&
15037 DiagRuntimeBehavior(BuiltinLoc, nullptr,
15038 PDiag(DiagID)
15039 << SourceRange(Components[0].LocStart, OC.LocEnd)
15040 << CurrentType))
15041 DidWarnAboutNonPOD = true;
15042 }
15043
15044 // Look for the field.
15045 LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
15046 LookupQualifiedName(R, RD);
15047 FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
15048 IndirectFieldDecl *IndirectMemberDecl = nullptr;
15049 if (!MemberDecl) {
15050 if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
15051 MemberDecl = IndirectMemberDecl->getAnonField();
15052 }
15053
15054 if (!MemberDecl)
15055 return ExprError(Diag(BuiltinLoc, diag::err_no_member)
15056 << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
15057 OC.LocEnd));
15058
15059 // C99 7.17p3:
15060 // (If the specified member is a bit-field, the behavior is undefined.)
15061 //
15062 // We diagnose this as an error.
15063 if (MemberDecl->isBitField()) {
15064 Diag(OC.LocEnd, diag::err_offsetof_bitfield)
15065 << MemberDecl->getDeclName()
15066 << SourceRange(BuiltinLoc, RParenLoc);
15067 Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
15068 return ExprError();
15069 }
15070
15071 RecordDecl *Parent = MemberDecl->getParent();
15072 if (IndirectMemberDecl)
15073 Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
15074
15075 // If the member was found in a base class, introduce OffsetOfNodes for
15076 // the base class indirections.
15077 CXXBasePaths Paths;
15078 if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
15079 Paths)) {
15080 if (Paths.getDetectedVirtual()) {
15081 Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
15082 << MemberDecl->getDeclName()
15083 << SourceRange(BuiltinLoc, RParenLoc);
15084 return ExprError();
15085 }
15086
15087 CXXBasePath &Path = Paths.front();
15088 for (const CXXBasePathElement &B : Path)
15089 Comps.push_back(OffsetOfNode(B.Base));
15090 }
15091
15092 if (IndirectMemberDecl) {
15093 for (auto *FI : IndirectMemberDecl->chain()) {
15094 assert(isa<FieldDecl>(FI))((isa<FieldDecl>(FI)) ? static_cast<void> (0) : __assert_fail
("isa<FieldDecl>(FI)", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15094, __PRETTY_FUNCTION__))
;
15095 Comps.push_back(OffsetOfNode(OC.LocStart,
15096 cast<FieldDecl>(FI), OC.LocEnd));
15097 }
15098 } else
15099 Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
15100
15101 CurrentType = MemberDecl->getType().getNonReferenceType();
15102 }
15103
15104 return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
15105 Comps, Exprs, RParenLoc);
15106}
15107
15108ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
15109 SourceLocation BuiltinLoc,
15110 SourceLocation TypeLoc,
15111 ParsedType ParsedArgTy,
15112 ArrayRef<OffsetOfComponent> Components,
15113 SourceLocation RParenLoc) {
15114
15115 TypeSourceInfo *ArgTInfo;
15116 QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
15117 if (ArgTy.isNull())
15118 return ExprError();
15119
15120 if (!ArgTInfo)
15121 ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
15122
15123 return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
15124}
15125
15126
15127ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
15128 Expr *CondExpr,
15129 Expr *LHSExpr, Expr *RHSExpr,
15130 SourceLocation RPLoc) {
15131 assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)")(((CondExpr && LHSExpr && RHSExpr) &&
"Missing type argument(s)") ? static_cast<void> (0) : __assert_fail
("(CondExpr && LHSExpr && RHSExpr) && \"Missing type argument(s)\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15131, __PRETTY_FUNCTION__))
;
15132
15133 ExprValueKind VK = VK_RValue;
15134 ExprObjectKind OK = OK_Ordinary;
15135 QualType resType;
15136 bool CondIsTrue = false;
15137 if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
15138 resType = Context.DependentTy;
15139 } else {
15140 // The conditional expression is required to be a constant expression.
15141 llvm::APSInt condEval(32);
15142 ExprResult CondICE = VerifyIntegerConstantExpression(
15143 CondExpr, &condEval, diag::err_typecheck_choose_expr_requires_constant);
15144 if (CondICE.isInvalid())
15145 return ExprError();
15146 CondExpr = CondICE.get();
15147 CondIsTrue = condEval.getZExtValue();
15148
15149 // If the condition is > zero, then the AST type is the same as the LHSExpr.
15150 Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
15151
15152 resType = ActiveExpr->getType();
15153 VK = ActiveExpr->getValueKind();
15154 OK = ActiveExpr->getObjectKind();
15155 }
15156
15157 return new (Context) ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr,
15158 resType, VK, OK, RPLoc, CondIsTrue);
15159}
15160
15161//===----------------------------------------------------------------------===//
15162// Clang Extensions.
15163//===----------------------------------------------------------------------===//
15164
15165/// ActOnBlockStart - This callback is invoked when a block literal is started.
15166void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
15167 BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
15168
15169 if (LangOpts.CPlusPlus) {
15170 MangleNumberingContext *MCtx;
15171 Decl *ManglingContextDecl;
15172 std::tie(MCtx, ManglingContextDecl) =
15173 getCurrentMangleNumberContext(Block->getDeclContext());
15174 if (MCtx) {
15175 unsigned ManglingNumber = MCtx->getManglingNumber(Block);
15176 Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
15177 }
15178 }
15179
15180 PushBlockScope(CurScope, Block);
15181 CurContext->addDecl(Block);
15182 if (CurScope)
15183 PushDeclContext(CurScope, Block);
15184 else
15185 CurContext = Block;
15186
15187 getCurBlock()->HasImplicitReturnType = true;
15188
15189 // Enter a new evaluation context to insulate the block from any
15190 // cleanups from the enclosing full-expression.
15191 PushExpressionEvaluationContext(
15192 ExpressionEvaluationContext::PotentiallyEvaluated);
15193}
15194
15195void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
15196 Scope *CurScope) {
15197 assert(ParamInfo.getIdentifier() == nullptr &&((ParamInfo.getIdentifier() == nullptr && "block-id should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15198, __PRETTY_FUNCTION__))
15198 "block-id should have no identifier!")((ParamInfo.getIdentifier() == nullptr && "block-id should have no identifier!"
) ? static_cast<void> (0) : __assert_fail ("ParamInfo.getIdentifier() == nullptr && \"block-id should have no identifier!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15198, __PRETTY_FUNCTION__))
;
15199 assert(ParamInfo.getContext() == DeclaratorContext::BlockLiteral)((ParamInfo.getContext() == DeclaratorContext::BlockLiteral) ?
static_cast<void> (0) : __assert_fail ("ParamInfo.getContext() == DeclaratorContext::BlockLiteral"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15199, __PRETTY_FUNCTION__))
;
15200 BlockScopeInfo *CurBlock = getCurBlock();
15201
15202 TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
15203 QualType T = Sig->getType();
15204
15205 // FIXME: We should allow unexpanded parameter packs here, but that would,
15206 // in turn, make the block expression contain unexpanded parameter packs.
15207 if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
15208 // Drop the parameters.
15209 FunctionProtoType::ExtProtoInfo EPI;
15210 EPI.HasTrailingReturn = false;
15211 EPI.TypeQuals.addConst();
15212 T = Context.getFunctionType(Context.DependentTy, None, EPI);
15213 Sig = Context.getTrivialTypeSourceInfo(T);
15214 }
15215
15216 // GetTypeForDeclarator always produces a function type for a block
15217 // literal signature. Furthermore, it is always a FunctionProtoType
15218 // unless the function was written with a typedef.
15219 assert(T->isFunctionType() &&((T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15220, __PRETTY_FUNCTION__))
15220 "GetTypeForDeclarator made a non-function block signature")((T->isFunctionType() && "GetTypeForDeclarator made a non-function block signature"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"GetTypeForDeclarator made a non-function block signature\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15220, __PRETTY_FUNCTION__))
;
15221
15222 // Look for an explicit signature in that function type.
15223 FunctionProtoTypeLoc ExplicitSignature;
15224
15225 if ((ExplicitSignature = Sig->getTypeLoc()
15226 .getAsAdjusted<FunctionProtoTypeLoc>())) {
15227
15228 // Check whether that explicit signature was synthesized by
15229 // GetTypeForDeclarator. If so, don't save that as part of the
15230 // written signature.
15231 if (ExplicitSignature.getLocalRangeBegin() ==
15232 ExplicitSignature.getLocalRangeEnd()) {
15233 // This would be much cheaper if we stored TypeLocs instead of
15234 // TypeSourceInfos.
15235 TypeLoc Result = ExplicitSignature.getReturnLoc();
15236 unsigned Size = Result.getFullDataSize();
15237 Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
15238 Sig->getTypeLoc().initializeFullCopy(Result, Size);
15239
15240 ExplicitSignature = FunctionProtoTypeLoc();
15241 }
15242 }
15243
15244 CurBlock->TheDecl->setSignatureAsWritten(Sig);
15245 CurBlock->FunctionType = T;
15246
15247 const auto *Fn = T->castAs<FunctionType>();
15248 QualType RetTy = Fn->getReturnType();
15249 bool isVariadic =
15250 (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
15251
15252 CurBlock->TheDecl->setIsVariadic(isVariadic);
15253
15254 // Context.DependentTy is used as a placeholder for a missing block
15255 // return type. TODO: what should we do with declarators like:
15256 // ^ * { ... }
15257 // If the answer is "apply template argument deduction"....
15258 if (RetTy != Context.DependentTy) {
15259 CurBlock->ReturnType = RetTy;
15260 CurBlock->TheDecl->setBlockMissingReturnType(false);
15261 CurBlock->HasImplicitReturnType = false;
15262 }
15263
15264 // Push block parameters from the declarator if we had them.
15265 SmallVector<ParmVarDecl*, 8> Params;
15266 if (ExplicitSignature) {
15267 for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
15268 ParmVarDecl *Param = ExplicitSignature.getParam(I);
15269 if (Param->getIdentifier() == nullptr && !Param->isImplicit() &&
15270 !Param->isInvalidDecl() && !getLangOpts().CPlusPlus) {
15271 // Diagnose this as an extension in C17 and earlier.
15272 if (!getLangOpts().C2x)
15273 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
15274 }
15275 Params.push_back(Param);
15276 }
15277
15278 // Fake up parameter variables if we have a typedef, like
15279 // ^ fntype { ... }
15280 } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
15281 for (const auto &I : Fn->param_types()) {
15282 ParmVarDecl *Param = BuildParmVarDeclForTypedef(
15283 CurBlock->TheDecl, ParamInfo.getBeginLoc(), I);
15284 Params.push_back(Param);
15285 }
15286 }
15287
15288 // Set the parameters on the block decl.
15289 if (!Params.empty()) {
15290 CurBlock->TheDecl->setParams(Params);
15291 CheckParmsForFunctionDef(CurBlock->TheDecl->parameters(),
15292 /*CheckParameterNames=*/false);
15293 }
15294
15295 // Finally we can process decl attributes.
15296 ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
15297
15298 // Put the parameter variables in scope.
15299 for (auto AI : CurBlock->TheDecl->parameters()) {
15300 AI->setOwningFunction(CurBlock->TheDecl);
15301
15302 // If this has an identifier, add it to the scope stack.
15303 if (AI->getIdentifier()) {
15304 CheckShadow(CurBlock->TheScope, AI);
15305
15306 PushOnScopeChains(AI, CurBlock->TheScope);
15307 }
15308 }
15309}
15310
15311/// ActOnBlockError - If there is an error parsing a block, this callback
15312/// is invoked to pop the information about the block from the action impl.
15313void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
15314 // Leave the expression-evaluation context.
15315 DiscardCleanupsInEvaluationContext();
15316 PopExpressionEvaluationContext();
15317
15318 // Pop off CurBlock, handle nested blocks.
15319 PopDeclContext();
15320 PopFunctionScopeInfo();
15321}
15322
15323/// ActOnBlockStmtExpr - This is called when the body of a block statement
15324/// literal was successfully completed. ^(int x){...}
15325ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
15326 Stmt *Body, Scope *CurScope) {
15327 // If blocks are disabled, emit an error.
15328 if (!LangOpts.Blocks)
15329 Diag(CaretLoc, diag::err_blocks_disable) << LangOpts.OpenCL;
15330
15331 // Leave the expression-evaluation context.
15332 if (hasAnyUnrecoverableErrorsInThisFunction())
15333 DiscardCleanupsInEvaluationContext();
15334 assert(!Cleanup.exprNeedsCleanups() &&((!Cleanup.exprNeedsCleanups() && "cleanups within block not correctly bound!"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15335, __PRETTY_FUNCTION__))
15335 "cleanups within block not correctly bound!")((!Cleanup.exprNeedsCleanups() && "cleanups within block not correctly bound!"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"cleanups within block not correctly bound!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15335, __PRETTY_FUNCTION__))
;
15336 PopExpressionEvaluationContext();
15337
15338 BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
15339 BlockDecl *BD = BSI->TheDecl;
15340
15341 if (BSI->HasImplicitReturnType)
15342 deduceClosureReturnType(*BSI);
15343
15344 QualType RetTy = Context.VoidTy;
15345 if (!BSI->ReturnType.isNull())
15346 RetTy = BSI->ReturnType;
15347
15348 bool NoReturn = BD->hasAttr<NoReturnAttr>();
15349 QualType BlockTy;
15350
15351 // If the user wrote a function type in some form, try to use that.
15352 if (!BSI->FunctionType.isNull()) {
15353 const FunctionType *FTy = BSI->FunctionType->castAs<FunctionType>();
15354
15355 FunctionType::ExtInfo Ext = FTy->getExtInfo();
15356 if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
15357
15358 // Turn protoless block types into nullary block types.
15359 if (isa<FunctionNoProtoType>(FTy)) {
15360 FunctionProtoType::ExtProtoInfo EPI;
15361 EPI.ExtInfo = Ext;
15362 BlockTy = Context.getFunctionType(RetTy, None, EPI);
15363
15364 // Otherwise, if we don't need to change anything about the function type,
15365 // preserve its sugar structure.
15366 } else if (FTy->getReturnType() == RetTy &&
15367 (!NoReturn || FTy->getNoReturnAttr())) {
15368 BlockTy = BSI->FunctionType;
15369
15370 // Otherwise, make the minimal modifications to the function type.
15371 } else {
15372 const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
15373 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
15374 EPI.TypeQuals = Qualifiers();
15375 EPI.ExtInfo = Ext;
15376 BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
15377 }
15378
15379 // If we don't have a function type, just build one from nothing.
15380 } else {
15381 FunctionProtoType::ExtProtoInfo EPI;
15382 EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
15383 BlockTy = Context.getFunctionType(RetTy, None, EPI);
15384 }
15385
15386 DiagnoseUnusedParameters(BD->parameters());
15387 BlockTy = Context.getBlockPointerType(BlockTy);
15388
15389 // If needed, diagnose invalid gotos and switches in the block.
15390 if (getCurFunction()->NeedsScopeChecking() &&
15391 !PP.isCodeCompletionEnabled())
15392 DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
15393
15394 BD->setBody(cast<CompoundStmt>(Body));
15395
15396 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
15397 DiagnoseUnguardedAvailabilityViolations(BD);
15398
15399 // Try to apply the named return value optimization. We have to check again
15400 // if we can do this, though, because blocks keep return statements around
15401 // to deduce an implicit return type.
15402 if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
15403 !BD->isDependentContext())
15404 computeNRVO(Body, BSI);
15405
15406 if (RetTy.hasNonTrivialToPrimitiveDestructCUnion() ||
15407 RetTy.hasNonTrivialToPrimitiveCopyCUnion())
15408 checkNonTrivialCUnion(RetTy, BD->getCaretLocation(), NTCUC_FunctionReturn,
15409 NTCUK_Destruct|NTCUK_Copy);
15410
15411 PopDeclContext();
15412
15413 // Set the captured variables on the block.
15414 SmallVector<BlockDecl::Capture, 4> Captures;
15415 for (Capture &Cap : BSI->Captures) {
15416 if (Cap.isInvalid() || Cap.isThisCapture())
15417 continue;
15418
15419 VarDecl *Var = Cap.getVariable();
15420 Expr *CopyExpr = nullptr;
15421 if (getLangOpts().CPlusPlus && Cap.isCopyCapture()) {
15422 if (const RecordType *Record =
15423 Cap.getCaptureType()->getAs<RecordType>()) {
15424 // The capture logic needs the destructor, so make sure we mark it.
15425 // Usually this is unnecessary because most local variables have
15426 // their destructors marked at declaration time, but parameters are
15427 // an exception because it's technically only the call site that
15428 // actually requires the destructor.
15429 if (isa<ParmVarDecl>(Var))
15430 FinalizeVarWithDestructor(Var, Record);
15431
15432 // Enter a separate potentially-evaluated context while building block
15433 // initializers to isolate their cleanups from those of the block
15434 // itself.
15435 // FIXME: Is this appropriate even when the block itself occurs in an
15436 // unevaluated operand?
15437 EnterExpressionEvaluationContext EvalContext(
15438 *this, ExpressionEvaluationContext::PotentiallyEvaluated);
15439
15440 SourceLocation Loc = Cap.getLocation();
15441
15442 ExprResult Result = BuildDeclarationNameExpr(
15443 CXXScopeSpec(), DeclarationNameInfo(Var->getDeclName(), Loc), Var);
15444
15445 // According to the blocks spec, the capture of a variable from
15446 // the stack requires a const copy constructor. This is not true
15447 // of the copy/move done to move a __block variable to the heap.
15448 if (!Result.isInvalid() &&
15449 !Result.get()->getType().isConstQualified()) {
15450 Result = ImpCastExprToType(Result.get(),
15451 Result.get()->getType().withConst(),
15452 CK_NoOp, VK_LValue);
15453 }
15454
15455 if (!Result.isInvalid()) {
15456 Result = PerformCopyInitialization(
15457 InitializedEntity::InitializeBlock(Var->getLocation(),
15458 Cap.getCaptureType(), false),
15459 Loc, Result.get());
15460 }
15461
15462 // Build a full-expression copy expression if initialization
15463 // succeeded and used a non-trivial constructor. Recover from
15464 // errors by pretending that the copy isn't necessary.
15465 if (!Result.isInvalid() &&
15466 !cast<CXXConstructExpr>(Result.get())->getConstructor()
15467 ->isTrivial()) {
15468 Result = MaybeCreateExprWithCleanups(Result);
15469 CopyExpr = Result.get();
15470 }
15471 }
15472 }
15473
15474 BlockDecl::Capture NewCap(Var, Cap.isBlockCapture(), Cap.isNested(),
15475 CopyExpr);
15476 Captures.push_back(NewCap);
15477 }
15478 BD->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
15479
15480 // Pop the block scope now but keep it alive to the end of this function.
15481 AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
15482 PoppedFunctionScopePtr ScopeRAII = PopFunctionScopeInfo(&WP, BD, BlockTy);
15483
15484 BlockExpr *Result = new (Context) BlockExpr(BD, BlockTy);
15485
15486 // If the block isn't obviously global, i.e. it captures anything at
15487 // all, then we need to do a few things in the surrounding context:
15488 if (Result->getBlockDecl()->hasCaptures()) {
15489 // First, this expression has a new cleanup object.
15490 ExprCleanupObjects.push_back(Result->getBlockDecl());
15491 Cleanup.setExprNeedsCleanups(true);
15492
15493 // It also gets a branch-protected scope if any of the captured
15494 // variables needs destruction.
15495 for (const auto &CI : Result->getBlockDecl()->captures()) {
15496 const VarDecl *var = CI.getVariable();
15497 if (var->getType().isDestructedType() != QualType::DK_none) {
15498 setFunctionHasBranchProtectedScope();
15499 break;
15500 }
15501 }
15502 }
15503
15504 if (getCurFunction())
15505 getCurFunction()->addBlock(BD);
15506
15507 return Result;
15508}
15509
15510ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc, Expr *E, ParsedType Ty,
15511 SourceLocation RPLoc) {
15512 TypeSourceInfo *TInfo;
15513 GetTypeFromParser(Ty, &TInfo);
15514 return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
15515}
15516
15517ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
15518 Expr *E, TypeSourceInfo *TInfo,
15519 SourceLocation RPLoc) {
15520 Expr *OrigExpr = E;
15521 bool IsMS = false;
15522
15523 // CUDA device code does not support varargs.
15524 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
15525 if (const FunctionDecl *F = dyn_cast<FunctionDecl>(CurContext)) {
15526 CUDAFunctionTarget T = IdentifyCUDATarget(F);
15527 if (T == CFT_Global || T == CFT_Device || T == CFT_HostDevice)
15528 return ExprError(Diag(E->getBeginLoc(), diag::err_va_arg_in_device));
15529 }
15530 }
15531
15532 // NVPTX does not support va_arg expression.
15533 if (getLangOpts().OpenMP && getLangOpts().OpenMPIsDevice &&
15534 Context.getTargetInfo().getTriple().isNVPTX())
15535 targetDiag(E->getBeginLoc(), diag::err_va_arg_in_device);
15536
15537 // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
15538 // as Microsoft ABI on an actual Microsoft platform, where
15539 // __builtin_ms_va_list and __builtin_va_list are the same.)
15540 if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
15541 Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
15542 QualType MSVaListType = Context.getBuiltinMSVaListType();
15543 if (Context.hasSameType(MSVaListType, E->getType())) {
15544 if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
15545 return ExprError();
15546 IsMS = true;
15547 }
15548 }
15549
15550 // Get the va_list type
15551 QualType VaListType = Context.getBuiltinVaListType();
15552 if (!IsMS) {
15553 if (VaListType->isArrayType()) {
15554 // Deal with implicit array decay; for example, on x86-64,
15555 // va_list is an array, but it's supposed to decay to
15556 // a pointer for va_arg.
15557 VaListType = Context.getArrayDecayedType(VaListType);
15558 // Make sure the input expression also decays appropriately.
15559 ExprResult Result = UsualUnaryConversions(E);
15560 if (Result.isInvalid())
15561 return ExprError();
15562 E = Result.get();
15563 } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
15564 // If va_list is a record type and we are compiling in C++ mode,
15565 // check the argument using reference binding.
15566 InitializedEntity Entity = InitializedEntity::InitializeParameter(
15567 Context, Context.getLValueReferenceType(VaListType), false);
15568 ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
15569 if (Init.isInvalid())
15570 return ExprError();
15571 E = Init.getAs<Expr>();
15572 } else {
15573 // Otherwise, the va_list argument must be an l-value because
15574 // it is modified by va_arg.
15575 if (!E->isTypeDependent() &&
15576 CheckForModifiableLvalue(E, BuiltinLoc, *this))
15577 return ExprError();
15578 }
15579 }
15580
15581 if (!IsMS && !E->isTypeDependent() &&
15582 !Context.hasSameType(VaListType, E->getType()))
15583 return ExprError(
15584 Diag(E->getBeginLoc(),
15585 diag::err_first_argument_to_va_arg_not_of_type_va_list)
15586 << OrigExpr->getType() << E->getSourceRange());
15587
15588 if (!TInfo->getType()->isDependentType()) {
15589 if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
15590 diag::err_second_parameter_to_va_arg_incomplete,
15591 TInfo->getTypeLoc()))
15592 return ExprError();
15593
15594 if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
15595 TInfo->getType(),
15596 diag::err_second_parameter_to_va_arg_abstract,
15597 TInfo->getTypeLoc()))
15598 return ExprError();
15599
15600 if (!TInfo->getType().isPODType(Context)) {
15601 Diag(TInfo->getTypeLoc().getBeginLoc(),
15602 TInfo->getType()->isObjCLifetimeType()
15603 ? diag::warn_second_parameter_to_va_arg_ownership_qualified
15604 : diag::warn_second_parameter_to_va_arg_not_pod)
15605 << TInfo->getType()
15606 << TInfo->getTypeLoc().getSourceRange();
15607 }
15608
15609 // Check for va_arg where arguments of the given type will be promoted
15610 // (i.e. this va_arg is guaranteed to have undefined behavior).
15611 QualType PromoteType;
15612 if (TInfo->getType()->isPromotableIntegerType()) {
15613 PromoteType = Context.getPromotedIntegerType(TInfo->getType());
15614 if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
15615 PromoteType = QualType();
15616 }
15617 if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
15618 PromoteType = Context.DoubleTy;
15619 if (!PromoteType.isNull())
15620 DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
15621 PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
15622 << TInfo->getType()
15623 << PromoteType
15624 << TInfo->getTypeLoc().getSourceRange());
15625 }
15626
15627 QualType T = TInfo->getType().getNonLValueExprType(Context);
15628 return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
15629}
15630
15631ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
15632 // The type of __null will be int or long, depending on the size of
15633 // pointers on the target.
15634 QualType Ty;
15635 unsigned pw = Context.getTargetInfo().getPointerWidth(0);
15636 if (pw == Context.getTargetInfo().getIntWidth())
15637 Ty = Context.IntTy;
15638 else if (pw == Context.getTargetInfo().getLongWidth())
15639 Ty = Context.LongTy;
15640 else if (pw == Context.getTargetInfo().getLongLongWidth())
15641 Ty = Context.LongLongTy;
15642 else {
15643 llvm_unreachable("I don't know size of pointer!")::llvm::llvm_unreachable_internal("I don't know size of pointer!"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15643)
;
15644 }
15645
15646 return new (Context) GNUNullExpr(Ty, TokenLoc);
15647}
15648
15649ExprResult Sema::ActOnSourceLocExpr(SourceLocExpr::IdentKind Kind,
15650 SourceLocation BuiltinLoc,
15651 SourceLocation RPLoc) {
15652 return BuildSourceLocExpr(Kind, BuiltinLoc, RPLoc, CurContext);
15653}
15654
15655ExprResult Sema::BuildSourceLocExpr(SourceLocExpr::IdentKind Kind,
15656 SourceLocation BuiltinLoc,
15657 SourceLocation RPLoc,
15658 DeclContext *ParentContext) {
15659 return new (Context)
15660 SourceLocExpr(Context, Kind, BuiltinLoc, RPLoc, ParentContext);
15661}
15662
15663bool Sema::CheckConversionToObjCLiteral(QualType DstType, Expr *&Exp,
15664 bool Diagnose) {
15665 if (!getLangOpts().ObjC)
15666 return false;
15667
15668 const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
15669 if (!PT)
15670 return false;
15671 const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
15672
15673 // Ignore any parens, implicit casts (should only be
15674 // array-to-pointer decays), and not-so-opaque values. The last is
15675 // important for making this trigger for property assignments.
15676 Expr *SrcExpr = Exp->IgnoreParenImpCasts();
15677 if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
15678 if (OV->getSourceExpr())
15679 SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
15680
15681 if (auto *SL = dyn_cast<StringLiteral>(SrcExpr)) {
15682 if (!PT->isObjCIdType() &&
15683 !(ID && ID->getIdentifier()->isStr("NSString")))
15684 return false;
15685 if (!SL->isAscii())
15686 return false;
15687
15688 if (Diagnose) {
15689 Diag(SL->getBeginLoc(), diag::err_missing_atsign_prefix)
15690 << /*string*/0 << FixItHint::CreateInsertion(SL->getBeginLoc(), "@");
15691 Exp = BuildObjCStringLiteral(SL->getBeginLoc(), SL).get();
15692 }
15693 return true;
15694 }
15695
15696 if ((isa<IntegerLiteral>(SrcExpr) || isa<CharacterLiteral>(SrcExpr) ||
15697 isa<FloatingLiteral>(SrcExpr) || isa<ObjCBoolLiteralExpr>(SrcExpr) ||
15698 isa<CXXBoolLiteralExpr>(SrcExpr)) &&
15699 !SrcExpr->isNullPointerConstant(
15700 getASTContext(), Expr::NPC_NeverValueDependent)) {
15701 if (!ID || !ID->getIdentifier()->isStr("NSNumber"))
15702 return false;
15703 if (Diagnose) {
15704 Diag(SrcExpr->getBeginLoc(), diag::err_missing_atsign_prefix)
15705 << /*number*/1
15706 << FixItHint::CreateInsertion(SrcExpr->getBeginLoc(), "@");
15707 Expr *NumLit =
15708 BuildObjCNumericLiteral(SrcExpr->getBeginLoc(), SrcExpr).get();
15709 if (NumLit)
15710 Exp = NumLit;
15711 }
15712 return true;
15713 }
15714
15715 return false;
15716}
15717
15718static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
15719 const Expr *SrcExpr) {
15720 if (!DstType->isFunctionPointerType() ||
15721 !SrcExpr->getType()->isFunctionType())
15722 return false;
15723
15724 auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
15725 if (!DRE)
15726 return false;
15727
15728 auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
15729 if (!FD)
15730 return false;
15731
15732 return !S.checkAddressOfFunctionIsAvailable(FD,
15733 /*Complain=*/true,
15734 SrcExpr->getBeginLoc());
15735}
15736
15737bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
15738 SourceLocation Loc,
15739 QualType DstType, QualType SrcType,
15740 Expr *SrcExpr, AssignmentAction Action,
15741 bool *Complained) {
15742 if (Complained)
15743 *Complained = false;
15744
15745 // Decode the result (notice that AST's are still created for extensions).
15746 bool CheckInferredResultType = false;
15747 bool isInvalid = false;
15748 unsigned DiagKind = 0;
15749 ConversionFixItGenerator ConvHints;
15750 bool MayHaveConvFixit = false;
15751 bool MayHaveFunctionDiff = false;
15752 const ObjCInterfaceDecl *IFace = nullptr;
15753 const ObjCProtocolDecl *PDecl = nullptr;
15754
15755 switch (ConvTy) {
15756 case Compatible:
15757 DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
15758 return false;
15759
15760 case PointerToInt:
15761 if (getLangOpts().CPlusPlus) {
15762 DiagKind = diag::err_typecheck_convert_pointer_int;
15763 isInvalid = true;
15764 } else {
15765 DiagKind = diag::ext_typecheck_convert_pointer_int;
15766 }
15767 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15768 MayHaveConvFixit = true;
15769 break;
15770 case IntToPointer:
15771 if (getLangOpts().CPlusPlus) {
15772 DiagKind = diag::err_typecheck_convert_int_pointer;
15773 isInvalid = true;
15774 } else {
15775 DiagKind = diag::ext_typecheck_convert_int_pointer;
15776 }
15777 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15778 MayHaveConvFixit = true;
15779 break;
15780 case IncompatibleFunctionPointer:
15781 if (getLangOpts().CPlusPlus) {
15782 DiagKind = diag::err_typecheck_convert_incompatible_function_pointer;
15783 isInvalid = true;
15784 } else {
15785 DiagKind = diag::ext_typecheck_convert_incompatible_function_pointer;
15786 }
15787 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15788 MayHaveConvFixit = true;
15789 break;
15790 case IncompatiblePointer:
15791 if (Action == AA_Passing_CFAudited) {
15792 DiagKind = diag::err_arc_typecheck_convert_incompatible_pointer;
15793 } else if (getLangOpts().CPlusPlus) {
15794 DiagKind = diag::err_typecheck_convert_incompatible_pointer;
15795 isInvalid = true;
15796 } else {
15797 DiagKind = diag::ext_typecheck_convert_incompatible_pointer;
15798 }
15799 CheckInferredResultType = DstType->isObjCObjectPointerType() &&
15800 SrcType->isObjCObjectPointerType();
15801 if (!CheckInferredResultType) {
15802 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15803 } else if (CheckInferredResultType) {
15804 SrcType = SrcType.getUnqualifiedType();
15805 DstType = DstType.getUnqualifiedType();
15806 }
15807 MayHaveConvFixit = true;
15808 break;
15809 case IncompatiblePointerSign:
15810 if (getLangOpts().CPlusPlus) {
15811 DiagKind = diag::err_typecheck_convert_incompatible_pointer_sign;
15812 isInvalid = true;
15813 } else {
15814 DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
15815 }
15816 break;
15817 case FunctionVoidPointer:
15818 if (getLangOpts().CPlusPlus) {
15819 DiagKind = diag::err_typecheck_convert_pointer_void_func;
15820 isInvalid = true;
15821 } else {
15822 DiagKind = diag::ext_typecheck_convert_pointer_void_func;
15823 }
15824 break;
15825 case IncompatiblePointerDiscardsQualifiers: {
15826 // Perform array-to-pointer decay if necessary.
15827 if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
15828
15829 isInvalid = true;
15830
15831 Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
15832 Qualifiers rhq = DstType->getPointeeType().getQualifiers();
15833 if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
15834 DiagKind = diag::err_typecheck_incompatible_address_space;
15835 break;
15836
15837 } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
15838 DiagKind = diag::err_typecheck_incompatible_ownership;
15839 break;
15840 }
15841
15842 llvm_unreachable("unknown error case for discarding qualifiers!")::llvm::llvm_unreachable_internal("unknown error case for discarding qualifiers!"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 15842)
;
15843 // fallthrough
15844 }
15845 case CompatiblePointerDiscardsQualifiers:
15846 // If the qualifiers lost were because we were applying the
15847 // (deprecated) C++ conversion from a string literal to a char*
15848 // (or wchar_t*), then there was no error (C++ 4.2p2). FIXME:
15849 // Ideally, this check would be performed in
15850 // checkPointerTypesForAssignment. However, that would require a
15851 // bit of refactoring (so that the second argument is an
15852 // expression, rather than a type), which should be done as part
15853 // of a larger effort to fix checkPointerTypesForAssignment for
15854 // C++ semantics.
15855 if (getLangOpts().CPlusPlus &&
15856 IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
15857 return false;
15858 if (getLangOpts().CPlusPlus) {
15859 DiagKind = diag::err_typecheck_convert_discards_qualifiers;
15860 isInvalid = true;
15861 } else {
15862 DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
15863 }
15864
15865 break;
15866 case IncompatibleNestedPointerQualifiers:
15867 if (getLangOpts().CPlusPlus) {
15868 isInvalid = true;
15869 DiagKind = diag::err_nested_pointer_qualifier_mismatch;
15870 } else {
15871 DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
15872 }
15873 break;
15874 case IncompatibleNestedPointerAddressSpaceMismatch:
15875 DiagKind = diag::err_typecheck_incompatible_nested_address_space;
15876 isInvalid = true;
15877 break;
15878 case IntToBlockPointer:
15879 DiagKind = diag::err_int_to_block_pointer;
15880 isInvalid = true;
15881 break;
15882 case IncompatibleBlockPointer:
15883 DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
15884 isInvalid = true;
15885 break;
15886 case IncompatibleObjCQualifiedId: {
15887 if (SrcType->isObjCQualifiedIdType()) {
15888 const ObjCObjectPointerType *srcOPT =
15889 SrcType->castAs<ObjCObjectPointerType>();
15890 for (auto *srcProto : srcOPT->quals()) {
15891 PDecl = srcProto;
15892 break;
15893 }
15894 if (const ObjCInterfaceType *IFaceT =
15895 DstType->castAs<ObjCObjectPointerType>()->getInterfaceType())
15896 IFace = IFaceT->getDecl();
15897 }
15898 else if (DstType->isObjCQualifiedIdType()) {
15899 const ObjCObjectPointerType *dstOPT =
15900 DstType->castAs<ObjCObjectPointerType>();
15901 for (auto *dstProto : dstOPT->quals()) {
15902 PDecl = dstProto;
15903 break;
15904 }
15905 if (const ObjCInterfaceType *IFaceT =
15906 SrcType->castAs<ObjCObjectPointerType>()->getInterfaceType())
15907 IFace = IFaceT->getDecl();
15908 }
15909 if (getLangOpts().CPlusPlus) {
15910 DiagKind = diag::err_incompatible_qualified_id;
15911 isInvalid = true;
15912 } else {
15913 DiagKind = diag::warn_incompatible_qualified_id;
15914 }
15915 break;
15916 }
15917 case IncompatibleVectors:
15918 if (getLangOpts().CPlusPlus) {
15919 DiagKind = diag::err_incompatible_vectors;
15920 isInvalid = true;
15921 } else {
15922 DiagKind = diag::warn_incompatible_vectors;
15923 }
15924 break;
15925 case IncompatibleObjCWeakRef:
15926 DiagKind = diag::err_arc_weak_unavailable_assign;
15927 isInvalid = true;
15928 break;
15929 case Incompatible:
15930 if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
15931 if (Complained)
15932 *Complained = true;
15933 return true;
15934 }
15935
15936 DiagKind = diag::err_typecheck_convert_incompatible;
15937 ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
15938 MayHaveConvFixit = true;
15939 isInvalid = true;
15940 MayHaveFunctionDiff = true;
15941 break;
15942 }
15943
15944 QualType FirstType, SecondType;
15945 switch (Action) {
15946 case AA_Assigning:
15947 case AA_Initializing:
15948 // The destination type comes first.
15949 FirstType = DstType;
15950 SecondType = SrcType;
15951 break;
15952
15953 case AA_Returning:
15954 case AA_Passing:
15955 case AA_Passing_CFAudited:
15956 case AA_Converting:
15957 case AA_Sending:
15958 case AA_Casting:
15959 // The source type comes first.
15960 FirstType = SrcType;
15961 SecondType = DstType;
15962 break;
15963 }
15964
15965 PartialDiagnostic FDiag = PDiag(DiagKind);
15966 if (Action == AA_Passing_CFAudited)
15967 FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
15968 else
15969 FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
15970
15971 if (DiagKind == diag::ext_typecheck_convert_incompatible_pointer_sign ||
15972 DiagKind == diag::err_typecheck_convert_incompatible_pointer_sign) {
15973 auto isPlainChar = [](const clang::Type *Type) {
15974 return Type->isSpecificBuiltinType(BuiltinType::Char_S) ||
15975 Type->isSpecificBuiltinType(BuiltinType::Char_U);
15976 };
15977 FDiag << (isPlainChar(FirstType->getPointeeOrArrayElementType()) ||
15978 isPlainChar(SecondType->getPointeeOrArrayElementType()));
15979 }
15980
15981 // If we can fix the conversion, suggest the FixIts.
15982 if (!ConvHints.isNull()) {
15983 for (FixItHint &H : ConvHints.Hints)
15984 FDiag << H;
15985 }
15986
15987 if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
15988
15989 if (MayHaveFunctionDiff)
15990 HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
15991
15992 Diag(Loc, FDiag);
15993 if ((DiagKind == diag::warn_incompatible_qualified_id ||
15994 DiagKind == diag::err_incompatible_qualified_id) &&
15995 PDecl && IFace && !IFace->hasDefinition())
15996 Diag(IFace->getLocation(), diag::note_incomplete_class_and_qualified_id)
15997 << IFace << PDecl;
15998
15999 if (SecondType == Context.OverloadTy)
16000 NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
16001 FirstType, /*TakingAddress=*/true);
16002
16003 if (CheckInferredResultType)
16004 EmitRelatedResultTypeNote(SrcExpr);
16005
16006 if (Action == AA_Returning && ConvTy == IncompatiblePointer)
16007 EmitRelatedResultTypeNoteForReturn(DstType);
16008
16009 if (Complained)
16010 *Complained = true;
16011 return isInvalid;
16012}
16013
16014ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16015 llvm::APSInt *Result,
16016 AllowFoldKind CanFold) {
16017 class SimpleICEDiagnoser : public VerifyICEDiagnoser {
16018 public:
16019 SemaDiagnosticBuilder diagnoseNotICEType(Sema &S, SourceLocation Loc,
16020 QualType T) override {
16021 return S.Diag(Loc, diag::err_ice_not_integral)
16022 << T << S.LangOpts.CPlusPlus;
16023 }
16024 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16025 return S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus;
16026 }
16027 } Diagnoser;
16028
16029 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16030}
16031
16032ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
16033 llvm::APSInt *Result,
16034 unsigned DiagID,
16035 AllowFoldKind CanFold) {
16036 class IDDiagnoser : public VerifyICEDiagnoser {
16037 unsigned DiagID;
16038
16039 public:
16040 IDDiagnoser(unsigned DiagID)
16041 : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
16042
16043 SemaDiagnosticBuilder diagnoseNotICE(Sema &S, SourceLocation Loc) override {
16044 return S.Diag(Loc, DiagID);
16045 }
16046 } Diagnoser(DiagID);
16047
16048 return VerifyIntegerConstantExpression(E, Result, Diagnoser, CanFold);
16049}
16050
16051Sema::SemaDiagnosticBuilder
16052Sema::VerifyICEDiagnoser::diagnoseNotICEType(Sema &S, SourceLocation Loc,
16053 QualType T) {
16054 return diagnoseNotICE(S, Loc);
16055}
16056
16057Sema::SemaDiagnosticBuilder
16058Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc) {
16059 return S.Diag(Loc, diag::ext_expr_not_ice) << S.LangOpts.CPlusPlus;
16060}
16061
16062ExprResult
16063Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
16064 VerifyICEDiagnoser &Diagnoser,
16065 AllowFoldKind CanFold) {
16066 SourceLocation DiagLoc = E->getBeginLoc();
16067
16068 if (getLangOpts().CPlusPlus11) {
16069 // C++11 [expr.const]p5:
16070 // If an expression of literal class type is used in a context where an
16071 // integral constant expression is required, then that class type shall
16072 // have a single non-explicit conversion function to an integral or
16073 // unscoped enumeration type
16074 ExprResult Converted;
16075 class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
16076 VerifyICEDiagnoser &BaseDiagnoser;
16077 public:
16078 CXX11ConvertDiagnoser(VerifyICEDiagnoser &BaseDiagnoser)
16079 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/ false,
16080 BaseDiagnoser.Suppress, true),
16081 BaseDiagnoser(BaseDiagnoser) {}
16082
16083 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
16084 QualType T) override {
16085 return BaseDiagnoser.diagnoseNotICEType(S, Loc, T);
16086 }
16087
16088 SemaDiagnosticBuilder diagnoseIncomplete(
16089 Sema &S, SourceLocation Loc, QualType T) override {
16090 return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
16091 }
16092
16093 SemaDiagnosticBuilder diagnoseExplicitConv(
16094 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16095 return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
16096 }
16097
16098 SemaDiagnosticBuilder noteExplicitConv(
16099 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16100 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16101 << ConvTy->isEnumeralType() << ConvTy;
16102 }
16103
16104 SemaDiagnosticBuilder diagnoseAmbiguous(
16105 Sema &S, SourceLocation Loc, QualType T) override {
16106 return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
16107 }
16108
16109 SemaDiagnosticBuilder noteAmbiguous(
16110 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
16111 return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
16112 << ConvTy->isEnumeralType() << ConvTy;
16113 }
16114
16115 SemaDiagnosticBuilder diagnoseConversion(
16116 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
16117 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16117)
;
16118 }
16119 } ConvertDiagnoser(Diagnoser);
16120
16121 Converted = PerformContextualImplicitConversion(DiagLoc, E,
16122 ConvertDiagnoser);
16123 if (Converted.isInvalid())
16124 return Converted;
16125 E = Converted.get();
16126 if (!E->getType()->isIntegralOrUnscopedEnumerationType())
16127 return ExprError();
16128 } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
16129 // An ICE must be of integral or unscoped enumeration type.
16130 if (!Diagnoser.Suppress)
16131 Diagnoser.diagnoseNotICEType(*this, DiagLoc, E->getType())
16132 << E->getSourceRange();
16133 return ExprError();
16134 }
16135
16136 ExprResult RValueExpr = DefaultLvalueConversion(E);
16137 if (RValueExpr.isInvalid())
16138 return ExprError();
16139
16140 E = RValueExpr.get();
16141
16142 // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
16143 // in the non-ICE case.
16144 if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
16145 if (Result)
16146 *Result = E->EvaluateKnownConstIntCheckOverflow(Context);
16147 if (!isa<ConstantExpr>(E))
16148 E = Result ? ConstantExpr::Create(Context, E, APValue(*Result))
16149 : ConstantExpr::Create(Context, E);
16150 return E;
16151 }
16152
16153 Expr::EvalResult EvalResult;
16154 SmallVector<PartialDiagnosticAt, 8> Notes;
16155 EvalResult.Diag = &Notes;
16156
16157 // Try to evaluate the expression, and produce diagnostics explaining why it's
16158 // not a constant expression as a side-effect.
16159 bool Folded =
16160 E->EvaluateAsRValue(EvalResult, Context, /*isConstantContext*/ true) &&
16161 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
16162
16163 if (!isa<ConstantExpr>(E))
16164 E = ConstantExpr::Create(Context, E, EvalResult.Val);
16165
16166 // In C++11, we can rely on diagnostics being produced for any expression
16167 // which is not a constant expression. If no diagnostics were produced, then
16168 // this is a constant expression.
16169 if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
16170 if (Result)
16171 *Result = EvalResult.Val.getInt();
16172 return E;
16173 }
16174
16175 // If our only note is the usual "invalid subexpression" note, just point
16176 // the caret at its location rather than producing an essentially
16177 // redundant note.
16178 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
16179 diag::note_invalid_subexpr_in_const_expr) {
16180 DiagLoc = Notes[0].first;
16181 Notes.clear();
16182 }
16183
16184 if (!Folded || !CanFold) {
16185 if (!Diagnoser.Suppress) {
16186 Diagnoser.diagnoseNotICE(*this, DiagLoc) << E->getSourceRange();
16187 for (const PartialDiagnosticAt &Note : Notes)
16188 Diag(Note.first, Note.second);
16189 }
16190
16191 return ExprError();
16192 }
16193
16194 Diagnoser.diagnoseFold(*this, DiagLoc) << E->getSourceRange();
16195 for (const PartialDiagnosticAt &Note : Notes)
16196 Diag(Note.first, Note.second);
16197
16198 if (Result)
16199 *Result = EvalResult.Val.getInt();
16200 return E;
16201}
16202
16203namespace {
16204 // Handle the case where we conclude a expression which we speculatively
16205 // considered to be unevaluated is actually evaluated.
16206 class TransformToPE : public TreeTransform<TransformToPE> {
16207 typedef TreeTransform<TransformToPE> BaseTransform;
16208
16209 public:
16210 TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
16211
16212 // Make sure we redo semantic analysis
16213 bool AlwaysRebuild() { return true; }
16214 bool ReplacingOriginal() { return true; }
16215
16216 // We need to special-case DeclRefExprs referring to FieldDecls which
16217 // are not part of a member pointer formation; normal TreeTransforming
16218 // doesn't catch this case because of the way we represent them in the AST.
16219 // FIXME: This is a bit ugly; is it really the best way to handle this
16220 // case?
16221 //
16222 // Error on DeclRefExprs referring to FieldDecls.
16223 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16224 if (isa<FieldDecl>(E->getDecl()) &&
16225 !SemaRef.isUnevaluatedContext())
16226 return SemaRef.Diag(E->getLocation(),
16227 diag::err_invalid_non_static_member_use)
16228 << E->getDecl() << E->getSourceRange();
16229
16230 return BaseTransform::TransformDeclRefExpr(E);
16231 }
16232
16233 // Exception: filter out member pointer formation
16234 ExprResult TransformUnaryOperator(UnaryOperator *E) {
16235 if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
16236 return E;
16237
16238 return BaseTransform::TransformUnaryOperator(E);
16239 }
16240
16241 // The body of a lambda-expression is in a separate expression evaluation
16242 // context so never needs to be transformed.
16243 // FIXME: Ideally we wouldn't transform the closure type either, and would
16244 // just recreate the capture expressions and lambda expression.
16245 StmtResult TransformLambdaBody(LambdaExpr *E, Stmt *Body) {
16246 return SkipLambdaBody(E, Body);
16247 }
16248 };
16249}
16250
16251ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
16252 assert(isUnevaluatedContext() &&((isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? static_cast<void> (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16253, __PRETTY_FUNCTION__))
16253 "Should only transform unevaluated expressions")((isUnevaluatedContext() && "Should only transform unevaluated expressions"
) ? static_cast<void> (0) : __assert_fail ("isUnevaluatedContext() && \"Should only transform unevaluated expressions\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16253, __PRETTY_FUNCTION__))
;
16254 ExprEvalContexts.back().Context =
16255 ExprEvalContexts[ExprEvalContexts.size()-2].Context;
16256 if (isUnevaluatedContext())
16257 return E;
16258 return TransformToPE(*this).TransformExpr(E);
16259}
16260
16261void
16262Sema::PushExpressionEvaluationContext(
16263 ExpressionEvaluationContext NewContext, Decl *LambdaContextDecl,
16264 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16265 ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(), Cleanup,
16266 LambdaContextDecl, ExprContext);
16267 Cleanup.reset();
16268 if (!MaybeODRUseExprs.empty())
16269 std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
16270}
16271
16272void
16273Sema::PushExpressionEvaluationContext(
16274 ExpressionEvaluationContext NewContext, ReuseLambdaContextDecl_t,
16275 ExpressionEvaluationContextRecord::ExpressionKind ExprContext) {
16276 Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
16277 PushExpressionEvaluationContext(NewContext, ClosureContextDecl, ExprContext);
16278}
16279
16280namespace {
16281
16282const DeclRefExpr *CheckPossibleDeref(Sema &S, const Expr *PossibleDeref) {
16283 PossibleDeref = PossibleDeref->IgnoreParenImpCasts();
16284 if (const auto *E = dyn_cast<UnaryOperator>(PossibleDeref)) {
16285 if (E->getOpcode() == UO_Deref)
16286 return CheckPossibleDeref(S, E->getSubExpr());
16287 } else if (const auto *E = dyn_cast<ArraySubscriptExpr>(PossibleDeref)) {
16288 return CheckPossibleDeref(S, E->getBase());
16289 } else if (const auto *E = dyn_cast<MemberExpr>(PossibleDeref)) {
16290 return CheckPossibleDeref(S, E->getBase());
16291 } else if (const auto E = dyn_cast<DeclRefExpr>(PossibleDeref)) {
16292 QualType Inner;
16293 QualType Ty = E->getType();
16294 if (const auto *Ptr = Ty->getAs<PointerType>())
16295 Inner = Ptr->getPointeeType();
16296 else if (const auto *Arr = S.Context.getAsArrayType(Ty))
16297 Inner = Arr->getElementType();
16298 else
16299 return nullptr;
16300
16301 if (Inner->hasAttr(attr::NoDeref))
16302 return E;
16303 }
16304 return nullptr;
16305}
16306
16307} // namespace
16308
16309void Sema::WarnOnPendingNoDerefs(ExpressionEvaluationContextRecord &Rec) {
16310 for (const Expr *E : Rec.PossibleDerefs) {
16311 const DeclRefExpr *DeclRef = CheckPossibleDeref(*this, E);
16312 if (DeclRef) {
16313 const ValueDecl *Decl = DeclRef->getDecl();
16314 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type)
16315 << Decl->getName() << E->getSourceRange();
16316 Diag(Decl->getLocation(), diag::note_previous_decl) << Decl->getName();
16317 } else {
16318 Diag(E->getExprLoc(), diag::warn_dereference_of_noderef_type_no_decl)
16319 << E->getSourceRange();
16320 }
16321 }
16322 Rec.PossibleDerefs.clear();
16323}
16324
16325/// Check whether E, which is either a discarded-value expression or an
16326/// unevaluated operand, is a simple-assignment to a volatlie-qualified lvalue,
16327/// and if so, remove it from the list of volatile-qualified assignments that
16328/// we are going to warn are deprecated.
16329void Sema::CheckUnusedVolatileAssignment(Expr *E) {
16330 if (!E->getType().isVolatileQualified() || !getLangOpts().CPlusPlus20)
16331 return;
16332
16333 // Note: ignoring parens here is not justified by the standard rules, but
16334 // ignoring parentheses seems like a more reasonable approach, and this only
16335 // drives a deprecation warning so doesn't affect conformance.
16336 if (auto *BO = dyn_cast<BinaryOperator>(E->IgnoreParenImpCasts())) {
16337 if (BO->getOpcode() == BO_Assign) {
16338 auto &LHSs = ExprEvalContexts.back().VolatileAssignmentLHSs;
16339 LHSs.erase(std::remove(LHSs.begin(), LHSs.end(), BO->getLHS()),
16340 LHSs.end());
16341 }
16342 }
16343}
16344
16345ExprResult Sema::CheckForImmediateInvocation(ExprResult E, FunctionDecl *Decl) {
16346 if (!E.isUsable() || !Decl || !Decl->isConsteval() || isConstantEvaluated() ||
16347 RebuildingImmediateInvocation)
16348 return E;
16349
16350 /// Opportunistically remove the callee from ReferencesToConsteval if we can.
16351 /// It's OK if this fails; we'll also remove this in
16352 /// HandleImmediateInvocations, but catching it here allows us to avoid
16353 /// walking the AST looking for it in simple cases.
16354 if (auto *Call = dyn_cast<CallExpr>(E.get()->IgnoreImplicit()))
16355 if (auto *DeclRef =
16356 dyn_cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit()))
16357 ExprEvalContexts.back().ReferenceToConsteval.erase(DeclRef);
16358
16359 E = MaybeCreateExprWithCleanups(E);
16360
16361 ConstantExpr *Res = ConstantExpr::Create(
16362 getASTContext(), E.get(),
16363 ConstantExpr::getStorageKind(Decl->getReturnType().getTypePtr(),
16364 getASTContext()),
16365 /*IsImmediateInvocation*/ true);
16366 ExprEvalContexts.back().ImmediateInvocationCandidates.emplace_back(Res, 0);
16367 return Res;
16368}
16369
16370static void EvaluateAndDiagnoseImmediateInvocation(
16371 Sema &SemaRef, Sema::ImmediateInvocationCandidate Candidate) {
16372 llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
16373 Expr::EvalResult Eval;
16374 Eval.Diag = &Notes;
16375 ConstantExpr *CE = Candidate.getPointer();
16376 bool Result = CE->EvaluateAsConstantExpr(
16377 Eval, SemaRef.getASTContext(), ConstantExprKind::ImmediateInvocation);
16378 if (!Result || !Notes.empty()) {
16379 Expr *InnerExpr = CE->getSubExpr()->IgnoreImplicit();
16380 if (auto *FunctionalCast = dyn_cast<CXXFunctionalCastExpr>(InnerExpr))
16381 InnerExpr = FunctionalCast->getSubExpr();
16382 FunctionDecl *FD = nullptr;
16383 if (auto *Call = dyn_cast<CallExpr>(InnerExpr))
16384 FD = cast<FunctionDecl>(Call->getCalleeDecl());
16385 else if (auto *Call = dyn_cast<CXXConstructExpr>(InnerExpr))
16386 FD = Call->getConstructor();
16387 else
16388 llvm_unreachable("unhandled decl kind")::llvm::llvm_unreachable_internal("unhandled decl kind", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16388)
;
16389 assert(FD->isConsteval())((FD->isConsteval()) ? static_cast<void> (0) : __assert_fail
("FD->isConsteval()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16389, __PRETTY_FUNCTION__))
;
16390 SemaRef.Diag(CE->getBeginLoc(), diag::err_invalid_consteval_call) << FD;
16391 for (auto &Note : Notes)
16392 SemaRef.Diag(Note.first, Note.second);
16393 return;
16394 }
16395 CE->MoveIntoResult(Eval.Val, SemaRef.getASTContext());
16396}
16397
16398static void RemoveNestedImmediateInvocation(
16399 Sema &SemaRef, Sema::ExpressionEvaluationContextRecord &Rec,
16400 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator It) {
16401 struct ComplexRemove : TreeTransform<ComplexRemove> {
16402 using Base = TreeTransform<ComplexRemove>;
16403 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16404 SmallVector<Sema::ImmediateInvocationCandidate, 4> &IISet;
16405 SmallVector<Sema::ImmediateInvocationCandidate, 4>::reverse_iterator
16406 CurrentII;
16407 ComplexRemove(Sema &SemaRef, llvm::SmallPtrSetImpl<DeclRefExpr *> &DR,
16408 SmallVector<Sema::ImmediateInvocationCandidate, 4> &II,
16409 SmallVector<Sema::ImmediateInvocationCandidate,
16410 4>::reverse_iterator Current)
16411 : Base(SemaRef), DRSet(DR), IISet(II), CurrentII(Current) {}
16412 void RemoveImmediateInvocation(ConstantExpr* E) {
16413 auto It = std::find_if(CurrentII, IISet.rend(),
16414 [E](Sema::ImmediateInvocationCandidate Elem) {
16415 return Elem.getPointer() == E;
16416 });
16417 assert(It != IISet.rend() &&((It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? static_cast<void> (0) : __assert_fail (
"It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16419, __PRETTY_FUNCTION__))
16418 "ConstantExpr marked IsImmediateInvocation should "((It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? static_cast<void> (0) : __assert_fail (
"It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16419, __PRETTY_FUNCTION__))
16419 "be present")((It != IISet.rend() && "ConstantExpr marked IsImmediateInvocation should "
"be present") ? static_cast<void> (0) : __assert_fail (
"It != IISet.rend() && \"ConstantExpr marked IsImmediateInvocation should \" \"be present\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16419, __PRETTY_FUNCTION__))
;
16420 It->setInt(1); // Mark as deleted
16421 }
16422 ExprResult TransformConstantExpr(ConstantExpr *E) {
16423 if (!E->isImmediateInvocation())
16424 return Base::TransformConstantExpr(E);
16425 RemoveImmediateInvocation(E);
16426 return Base::TransformExpr(E->getSubExpr());
16427 }
16428 /// Base::TransfromCXXOperatorCallExpr doesn't traverse the callee so
16429 /// we need to remove its DeclRefExpr from the DRSet.
16430 ExprResult TransformCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
16431 DRSet.erase(cast<DeclRefExpr>(E->getCallee()->IgnoreImplicit()));
16432 return Base::TransformCXXOperatorCallExpr(E);
16433 }
16434 /// Base::TransformInitializer skip ConstantExpr so we need to visit them
16435 /// here.
16436 ExprResult TransformInitializer(Expr *Init, bool NotCopyInit) {
16437 if (!Init)
16438 return Init;
16439 /// ConstantExpr are the first layer of implicit node to be removed so if
16440 /// Init isn't a ConstantExpr, no ConstantExpr will be skipped.
16441 if (auto *CE = dyn_cast<ConstantExpr>(Init))
16442 if (CE->isImmediateInvocation())
16443 RemoveImmediateInvocation(CE);
16444 return Base::TransformInitializer(Init, NotCopyInit);
16445 }
16446 ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
16447 DRSet.erase(E);
16448 return E;
16449 }
16450 bool AlwaysRebuild() { return false; }
16451 bool ReplacingOriginal() { return true; }
16452 bool AllowSkippingCXXConstructExpr() {
16453 bool Res = AllowSkippingFirstCXXConstructExpr;
16454 AllowSkippingFirstCXXConstructExpr = true;
16455 return Res;
16456 }
16457 bool AllowSkippingFirstCXXConstructExpr = true;
16458 } Transformer(SemaRef, Rec.ReferenceToConsteval,
16459 Rec.ImmediateInvocationCandidates, It);
16460
16461 /// CXXConstructExpr with a single argument are getting skipped by
16462 /// TreeTransform in some situtation because they could be implicit. This
16463 /// can only occur for the top-level CXXConstructExpr because it is used
16464 /// nowhere in the expression being transformed therefore will not be rebuilt.
16465 /// Setting AllowSkippingFirstCXXConstructExpr to false will prevent from
16466 /// skipping the first CXXConstructExpr.
16467 if (isa<CXXConstructExpr>(It->getPointer()->IgnoreImplicit()))
16468 Transformer.AllowSkippingFirstCXXConstructExpr = false;
16469
16470 ExprResult Res = Transformer.TransformExpr(It->getPointer()->getSubExpr());
16471 assert(Res.isUsable())((Res.isUsable()) ? static_cast<void> (0) : __assert_fail
("Res.isUsable()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16471, __PRETTY_FUNCTION__))
;
16472 Res = SemaRef.MaybeCreateExprWithCleanups(Res);
16473 It->getPointer()->setSubExpr(Res.get());
16474}
16475
16476static void
16477HandleImmediateInvocations(Sema &SemaRef,
16478 Sema::ExpressionEvaluationContextRecord &Rec) {
16479 if ((Rec.ImmediateInvocationCandidates.size() == 0 &&
16480 Rec.ReferenceToConsteval.size() == 0) ||
16481 SemaRef.RebuildingImmediateInvocation)
16482 return;
16483
16484 /// When we have more then 1 ImmediateInvocationCandidates we need to check
16485 /// for nested ImmediateInvocationCandidates. when we have only 1 we only
16486 /// need to remove ReferenceToConsteval in the immediate invocation.
16487 if (Rec.ImmediateInvocationCandidates.size() > 1) {
16488
16489 /// Prevent sema calls during the tree transform from adding pointers that
16490 /// are already in the sets.
16491 llvm::SaveAndRestore<bool> DisableIITracking(
16492 SemaRef.RebuildingImmediateInvocation, true);
16493
16494 /// Prevent diagnostic during tree transfrom as they are duplicates
16495 Sema::TentativeAnalysisScope DisableDiag(SemaRef);
16496
16497 for (auto It = Rec.ImmediateInvocationCandidates.rbegin();
16498 It != Rec.ImmediateInvocationCandidates.rend(); It++)
16499 if (!It->getInt())
16500 RemoveNestedImmediateInvocation(SemaRef, Rec, It);
16501 } else if (Rec.ImmediateInvocationCandidates.size() == 1 &&
16502 Rec.ReferenceToConsteval.size()) {
16503 struct SimpleRemove : RecursiveASTVisitor<SimpleRemove> {
16504 llvm::SmallPtrSetImpl<DeclRefExpr *> &DRSet;
16505 SimpleRemove(llvm::SmallPtrSetImpl<DeclRefExpr *> &S) : DRSet(S) {}
16506 bool VisitDeclRefExpr(DeclRefExpr *E) {
16507 DRSet.erase(E);
16508 return DRSet.size();
16509 }
16510 } Visitor(Rec.ReferenceToConsteval);
16511 Visitor.TraverseStmt(
16512 Rec.ImmediateInvocationCandidates.front().getPointer()->getSubExpr());
16513 }
16514 for (auto CE : Rec.ImmediateInvocationCandidates)
16515 if (!CE.getInt())
16516 EvaluateAndDiagnoseImmediateInvocation(SemaRef, CE);
16517 for (auto DR : Rec.ReferenceToConsteval) {
16518 auto *FD = cast<FunctionDecl>(DR->getDecl());
16519 SemaRef.Diag(DR->getBeginLoc(), diag::err_invalid_consteval_take_address)
16520 << FD;
16521 SemaRef.Diag(FD->getLocation(), diag::note_declared_at);
16522 }
16523}
16524
16525void Sema::PopExpressionEvaluationContext() {
16526 ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
16527 unsigned NumTypos = Rec.NumTypos;
16528
16529 if (!Rec.Lambdas.empty()) {
16530 using ExpressionKind = ExpressionEvaluationContextRecord::ExpressionKind;
16531 if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument || Rec.isUnevaluated() ||
16532 (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17)) {
16533 unsigned D;
16534 if (Rec.isUnevaluated()) {
16535 // C++11 [expr.prim.lambda]p2:
16536 // A lambda-expression shall not appear in an unevaluated operand
16537 // (Clause 5).
16538 D = diag::err_lambda_unevaluated_operand;
16539 } else if (Rec.isConstantEvaluated() && !getLangOpts().CPlusPlus17) {
16540 // C++1y [expr.const]p2:
16541 // A conditional-expression e is a core constant expression unless the
16542 // evaluation of e, following the rules of the abstract machine, would
16543 // evaluate [...] a lambda-expression.
16544 D = diag::err_lambda_in_constant_expression;
16545 } else if (Rec.ExprContext == ExpressionKind::EK_TemplateArgument) {
16546 // C++17 [expr.prim.lamda]p2:
16547 // A lambda-expression shall not appear [...] in a template-argument.
16548 D = diag::err_lambda_in_invalid_context;
16549 } else
16550 llvm_unreachable("Couldn't infer lambda error message.")::llvm::llvm_unreachable_internal("Couldn't infer lambda error message."
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16550)
;
16551
16552 for (const auto *L : Rec.Lambdas)
16553 Diag(L->getBeginLoc(), D);
16554 }
16555 }
16556
16557 WarnOnPendingNoDerefs(Rec);
16558 HandleImmediateInvocations(*this, Rec);
16559
16560 // Warn on any volatile-qualified simple-assignments that are not discarded-
16561 // value expressions nor unevaluated operands (those cases get removed from
16562 // this list by CheckUnusedVolatileAssignment).
16563 for (auto *BO : Rec.VolatileAssignmentLHSs)
16564 Diag(BO->getBeginLoc(), diag::warn_deprecated_simple_assign_volatile)
16565 << BO->getType();
16566
16567 // When are coming out of an unevaluated context, clear out any
16568 // temporaries that we may have created as part of the evaluation of
16569 // the expression in that context: they aren't relevant because they
16570 // will never be constructed.
16571 if (Rec.isUnevaluated() || Rec.isConstantEvaluated()) {
16572 ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
16573 ExprCleanupObjects.end());
16574 Cleanup = Rec.ParentCleanup;
16575 CleanupVarDeclMarking();
16576 std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
16577 // Otherwise, merge the contexts together.
16578 } else {
16579 Cleanup.mergeFrom(Rec.ParentCleanup);
16580 MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
16581 Rec.SavedMaybeODRUseExprs.end());
16582 }
16583
16584 // Pop the current expression evaluation context off the stack.
16585 ExprEvalContexts.pop_back();
16586
16587 // The global expression evaluation context record is never popped.
16588 ExprEvalContexts.back().NumTypos += NumTypos;
16589}
16590
16591void Sema::DiscardCleanupsInEvaluationContext() {
16592 ExprCleanupObjects.erase(
16593 ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
16594 ExprCleanupObjects.end());
16595 Cleanup.reset();
16596 MaybeODRUseExprs.clear();
16597}
16598
16599ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
16600 ExprResult Result = CheckPlaceholderExpr(E);
16601 if (Result.isInvalid())
16602 return ExprError();
16603 E = Result.get();
16604 if (!E->getType()->isVariablyModifiedType())
16605 return E;
16606 return TransformToPotentiallyEvaluated(E);
16607}
16608
16609/// Are we in a context that is potentially constant evaluated per C++20
16610/// [expr.const]p12?
16611static bool isPotentiallyConstantEvaluatedContext(Sema &SemaRef) {
16612 /// C++2a [expr.const]p12:
16613 // An expression or conversion is potentially constant evaluated if it is
16614 switch (SemaRef.ExprEvalContexts.back().Context) {
16615 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16616 // -- a manifestly constant-evaluated expression,
16617 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16618 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16619 case Sema::ExpressionEvaluationContext::DiscardedStatement:
16620 // -- a potentially-evaluated expression,
16621 case Sema::ExpressionEvaluationContext::UnevaluatedList:
16622 // -- an immediate subexpression of a braced-init-list,
16623
16624 // -- [FIXME] an expression of the form & cast-expression that occurs
16625 // within a templated entity
16626 // -- a subexpression of one of the above that is not a subexpression of
16627 // a nested unevaluated operand.
16628 return true;
16629
16630 case Sema::ExpressionEvaluationContext::Unevaluated:
16631 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16632 // Expressions in this context are never evaluated.
16633 return false;
16634 }
16635 llvm_unreachable("Invalid context")::llvm::llvm_unreachable_internal("Invalid context", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16635)
;
16636}
16637
16638/// Return true if this function has a calling convention that requires mangling
16639/// in the size of the parameter pack.
16640static bool funcHasParameterSizeMangling(Sema &S, FunctionDecl *FD) {
16641 // These manglings don't do anything on non-Windows or non-x86 platforms, so
16642 // we don't need parameter type sizes.
16643 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
16644 if (!TT.isOSWindows() || !TT.isX86())
16645 return false;
16646
16647 // If this is C++ and this isn't an extern "C" function, parameters do not
16648 // need to be complete. In this case, C++ mangling will apply, which doesn't
16649 // use the size of the parameters.
16650 if (S.getLangOpts().CPlusPlus && !FD->isExternC())
16651 return false;
16652
16653 // Stdcall, fastcall, and vectorcall need this special treatment.
16654 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16655 switch (CC) {
16656 case CC_X86StdCall:
16657 case CC_X86FastCall:
16658 case CC_X86VectorCall:
16659 return true;
16660 default:
16661 break;
16662 }
16663 return false;
16664}
16665
16666/// Require that all of the parameter types of function be complete. Normally,
16667/// parameter types are only required to be complete when a function is called
16668/// or defined, but to mangle functions with certain calling conventions, the
16669/// mangler needs to know the size of the parameter list. In this situation,
16670/// MSVC doesn't emit an error or instantiate templates. Instead, MSVC mangles
16671/// the function as _foo@0, i.e. zero bytes of parameters, which will usually
16672/// result in a linker error. Clang doesn't implement this behavior, and instead
16673/// attempts to error at compile time.
16674static void CheckCompleteParameterTypesForMangler(Sema &S, FunctionDecl *FD,
16675 SourceLocation Loc) {
16676 class ParamIncompleteTypeDiagnoser : public Sema::TypeDiagnoser {
16677 FunctionDecl *FD;
16678 ParmVarDecl *Param;
16679
16680 public:
16681 ParamIncompleteTypeDiagnoser(FunctionDecl *FD, ParmVarDecl *Param)
16682 : FD(FD), Param(Param) {}
16683
16684 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
16685 CallingConv CC = FD->getType()->castAs<FunctionType>()->getCallConv();
16686 StringRef CCName;
16687 switch (CC) {
16688 case CC_X86StdCall:
16689 CCName = "stdcall";
16690 break;
16691 case CC_X86FastCall:
16692 CCName = "fastcall";
16693 break;
16694 case CC_X86VectorCall:
16695 CCName = "vectorcall";
16696 break;
16697 default:
16698 llvm_unreachable("CC does not need mangling")::llvm::llvm_unreachable_internal("CC does not need mangling"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16698)
;
16699 }
16700
16701 S.Diag(Loc, diag::err_cconv_incomplete_param_type)
16702 << Param->getDeclName() << FD->getDeclName() << CCName;
16703 }
16704 };
16705
16706 for (ParmVarDecl *Param : FD->parameters()) {
16707 ParamIncompleteTypeDiagnoser Diagnoser(FD, Param);
16708 S.RequireCompleteType(Loc, Param->getType(), Diagnoser);
16709 }
16710}
16711
16712namespace {
16713enum class OdrUseContext {
16714 /// Declarations in this context are not odr-used.
16715 None,
16716 /// Declarations in this context are formally odr-used, but this is a
16717 /// dependent context.
16718 Dependent,
16719 /// Declarations in this context are odr-used but not actually used (yet).
16720 FormallyOdrUsed,
16721 /// Declarations in this context are used.
16722 Used
16723};
16724}
16725
16726/// Are we within a context in which references to resolved functions or to
16727/// variables result in odr-use?
16728static OdrUseContext isOdrUseContext(Sema &SemaRef) {
16729 OdrUseContext Result;
16730
16731 switch (SemaRef.ExprEvalContexts.back().Context) {
16732 case Sema::ExpressionEvaluationContext::Unevaluated:
16733 case Sema::ExpressionEvaluationContext::UnevaluatedList:
16734 case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
16735 return OdrUseContext::None;
16736
16737 case Sema::ExpressionEvaluationContext::ConstantEvaluated:
16738 case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
16739 Result = OdrUseContext::Used;
16740 break;
16741
16742 case Sema::ExpressionEvaluationContext::DiscardedStatement:
16743 Result = OdrUseContext::FormallyOdrUsed;
16744 break;
16745
16746 case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
16747 // A default argument formally results in odr-use, but doesn't actually
16748 // result in a use in any real sense until it itself is used.
16749 Result = OdrUseContext::FormallyOdrUsed;
16750 break;
16751 }
16752
16753 if (SemaRef.CurContext->isDependentContext())
16754 return OdrUseContext::Dependent;
16755
16756 return Result;
16757}
16758
16759static bool isImplicitlyDefinableConstexprFunction(FunctionDecl *Func) {
16760 if (!Func->isConstexpr())
16761 return false;
16762
16763 if (Func->isImplicitlyInstantiable() || !Func->isUserProvided())
16764 return true;
16765 auto *CCD = dyn_cast<CXXConstructorDecl>(Func);
16766 return CCD && CCD->getInheritedConstructor();
16767}
16768
16769/// Mark a function referenced, and check whether it is odr-used
16770/// (C++ [basic.def.odr]p2, C99 6.9p3)
16771void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
16772 bool MightBeOdrUse) {
16773 assert(Func && "No function?")((Func && "No function?") ? static_cast<void> (
0) : __assert_fail ("Func && \"No function?\"", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 16773, __PRETTY_FUNCTION__))
;
16774
16775 Func->setReferenced();
16776
16777 // Recursive functions aren't really used until they're used from some other
16778 // context.
16779 bool IsRecursiveCall = CurContext == Func;
16780
16781 // C++11 [basic.def.odr]p3:
16782 // A function whose name appears as a potentially-evaluated expression is
16783 // odr-used if it is the unique lookup result or the selected member of a
16784 // set of overloaded functions [...].
16785 //
16786 // We (incorrectly) mark overload resolution as an unevaluated context, so we
16787 // can just check that here.
16788 OdrUseContext OdrUse =
16789 MightBeOdrUse ? isOdrUseContext(*this) : OdrUseContext::None;
16790 if (IsRecursiveCall && OdrUse == OdrUseContext::Used)
16791 OdrUse = OdrUseContext::FormallyOdrUsed;
16792
16793 // Trivial default constructors and destructors are never actually used.
16794 // FIXME: What about other special members?
16795 if (Func->isTrivial() && !Func->hasAttr<DLLExportAttr>() &&
16796 OdrUse == OdrUseContext::Used) {
16797 if (auto *Constructor = dyn_cast<CXXConstructorDecl>(Func))
16798 if (Constructor->isDefaultConstructor())
16799 OdrUse = OdrUseContext::FormallyOdrUsed;
16800 if (isa<CXXDestructorDecl>(Func))
16801 OdrUse = OdrUseContext::FormallyOdrUsed;
16802 }
16803
16804 // C++20 [expr.const]p12:
16805 // A function [...] is needed for constant evaluation if it is [...] a
16806 // constexpr function that is named by an expression that is potentially
16807 // constant evaluated
16808 bool NeededForConstantEvaluation =
16809 isPotentiallyConstantEvaluatedContext(*this) &&
16810 isImplicitlyDefinableConstexprFunction(Func);
16811
16812 // Determine whether we require a function definition to exist, per
16813 // C++11 [temp.inst]p3:
16814 // Unless a function template specialization has been explicitly
16815 // instantiated or explicitly specialized, the function template
16816 // specialization is implicitly instantiated when the specialization is
16817 // referenced in a context that requires a function definition to exist.
16818 // C++20 [temp.inst]p7:
16819 // The existence of a definition of a [...] function is considered to
16820 // affect the semantics of the program if the [...] function is needed for
16821 // constant evaluation by an expression
16822 // C++20 [basic.def.odr]p10:
16823 // Every program shall contain exactly one definition of every non-inline
16824 // function or variable that is odr-used in that program outside of a
16825 // discarded statement
16826 // C++20 [special]p1:
16827 // The implementation will implicitly define [defaulted special members]
16828 // if they are odr-used or needed for constant evaluation.
16829 //
16830 // Note that we skip the implicit instantiation of templates that are only
16831 // used in unused default arguments or by recursive calls to themselves.
16832 // This is formally non-conforming, but seems reasonable in practice.
16833 bool NeedDefinition = !IsRecursiveCall && (OdrUse == OdrUseContext::Used ||
16834 NeededForConstantEvaluation);
16835
16836 // C++14 [temp.expl.spec]p6:
16837 // If a template [...] is explicitly specialized then that specialization
16838 // shall be declared before the first use of that specialization that would
16839 // cause an implicit instantiation to take place, in every translation unit
16840 // in which such a use occurs
16841 if (NeedDefinition &&
16842 (Func->getTemplateSpecializationKind() != TSK_Undeclared ||
16843 Func->getMemberSpecializationInfo()))
16844 checkSpecializationVisibility(Loc, Func);
16845
16846 if (getLangOpts().CUDA)
16847 CheckCUDACall(Loc, Func);
16848
16849 if (getLangOpts().SYCLIsDevice)
16850 checkSYCLDeviceFunction(Loc, Func);
16851
16852 // If we need a definition, try to create one.
16853 if (NeedDefinition && !Func->getBody()) {
16854 runWithSufficientStackSpace(Loc, [&] {
16855 if (CXXConstructorDecl *Constructor =
16856 dyn_cast<CXXConstructorDecl>(Func)) {
16857 Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
16858 if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
16859 if (Constructor->isDefaultConstructor()) {
16860 if (Constructor->isTrivial() &&
16861 !Constructor->hasAttr<DLLExportAttr>())
16862 return;
16863 DefineImplicitDefaultConstructor(Loc, Constructor);
16864 } else if (Constructor->isCopyConstructor()) {
16865 DefineImplicitCopyConstructor(Loc, Constructor);
16866 } else if (Constructor->isMoveConstructor()) {
16867 DefineImplicitMoveConstructor(Loc, Constructor);
16868 }
16869 } else if (Constructor->getInheritedConstructor()) {
16870 DefineInheritingConstructor(Loc, Constructor);
16871 }
16872 } else if (CXXDestructorDecl *Destructor =
16873 dyn_cast<CXXDestructorDecl>(Func)) {
16874 Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
16875 if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
16876 if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
16877 return;
16878 DefineImplicitDestructor(Loc, Destructor);
16879 }
16880 if (Destructor->isVirtual() && getLangOpts().AppleKext)
16881 MarkVTableUsed(Loc, Destructor->getParent());
16882 } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
16883 if (MethodDecl->isOverloadedOperator() &&
16884 MethodDecl->getOverloadedOperator() == OO_Equal) {
16885 MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
16886 if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
16887 if (MethodDecl->isCopyAssignmentOperator())
16888 DefineImplicitCopyAssignment(Loc, MethodDecl);
16889 else if (MethodDecl->isMoveAssignmentOperator())
16890 DefineImplicitMoveAssignment(Loc, MethodDecl);
16891 }
16892 } else if (isa<CXXConversionDecl>(MethodDecl) &&
16893 MethodDecl->getParent()->isLambda()) {
16894 CXXConversionDecl *Conversion =
16895 cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
16896 if (Conversion->isLambdaToBlockPointerConversion())
16897 DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
16898 else
16899 DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
16900 } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
16901 MarkVTableUsed(Loc, MethodDecl->getParent());
16902 }
16903
16904 if (Func->isDefaulted() && !Func->isDeleted()) {
16905 DefaultedComparisonKind DCK = getDefaultedComparisonKind(Func);
16906 if (DCK != DefaultedComparisonKind::None)
16907 DefineDefaultedComparison(Loc, Func, DCK);
16908 }
16909
16910 // Implicit instantiation of function templates and member functions of
16911 // class templates.
16912 if (Func->isImplicitlyInstantiable()) {
16913 TemplateSpecializationKind TSK =
16914 Func->getTemplateSpecializationKindForInstantiation();
16915 SourceLocation PointOfInstantiation = Func->getPointOfInstantiation();
16916 bool FirstInstantiation = PointOfInstantiation.isInvalid();
16917 if (FirstInstantiation) {
16918 PointOfInstantiation = Loc;
16919 if (auto *MSI = Func->getMemberSpecializationInfo())
16920 MSI->setPointOfInstantiation(Loc);
16921 // FIXME: Notify listener.
16922 else
16923 Func->setTemplateSpecializationKind(TSK, PointOfInstantiation);
16924 } else if (TSK != TSK_ImplicitInstantiation) {
16925 // Use the point of use as the point of instantiation, instead of the
16926 // point of explicit instantiation (which we track as the actual point
16927 // of instantiation). This gives better backtraces in diagnostics.
16928 PointOfInstantiation = Loc;
16929 }
16930
16931 if (FirstInstantiation || TSK != TSK_ImplicitInstantiation ||
16932 Func->isConstexpr()) {
16933 if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
16934 cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
16935 CodeSynthesisContexts.size())
16936 PendingLocalImplicitInstantiations.push_back(
16937 std::make_pair(Func, PointOfInstantiation));
16938 else if (Func->isConstexpr())
16939 // Do not defer instantiations of constexpr functions, to avoid the
16940 // expression evaluator needing to call back into Sema if it sees a
16941 // call to such a function.
16942 InstantiateFunctionDefinition(PointOfInstantiation, Func);
16943 else {
16944 Func->setInstantiationIsPending(true);
16945 PendingInstantiations.push_back(
16946 std::make_pair(Func, PointOfInstantiation));
16947 // Notify the consumer that a function was implicitly instantiated.
16948 Consumer.HandleCXXImplicitFunctionInstantiation(Func);
16949 }
16950 }
16951 } else {
16952 // Walk redefinitions, as some of them may be instantiable.
16953 for (auto i : Func->redecls()) {
16954 if (!i->isUsed(false) && i->isImplicitlyInstantiable())
16955 MarkFunctionReferenced(Loc, i, MightBeOdrUse);
16956 }
16957 }
16958 });
16959 }
16960
16961 // C++14 [except.spec]p17:
16962 // An exception-specification is considered to be needed when:
16963 // - the function is odr-used or, if it appears in an unevaluated operand,
16964 // would be odr-used if the expression were potentially-evaluated;
16965 //
16966 // Note, we do this even if MightBeOdrUse is false. That indicates that the
16967 // function is a pure virtual function we're calling, and in that case the
16968 // function was selected by overload resolution and we need to resolve its
16969 // exception specification for a different reason.
16970 const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
16971 if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
16972 ResolveExceptionSpec(Loc, FPT);
16973
16974 // If this is the first "real" use, act on that.
16975 if (OdrUse == OdrUseContext::Used && !Func->isUsed(/*CheckUsedAttr=*/false)) {
16976 // Keep track of used but undefined functions.
16977 if (!Func->isDefined()) {
16978 if (mightHaveNonExternalLinkage(Func))
16979 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16980 else if (Func->getMostRecentDecl()->isInlined() &&
16981 !LangOpts.GNUInline &&
16982 !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
16983 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16984 else if (isExternalWithNoLinkageType(Func))
16985 UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
16986 }
16987
16988 // Some x86 Windows calling conventions mangle the size of the parameter
16989 // pack into the name. Computing the size of the parameters requires the
16990 // parameter types to be complete. Check that now.
16991 if (funcHasParameterSizeMangling(*this, Func))
16992 CheckCompleteParameterTypesForMangler(*this, Func, Loc);
16993
16994 // In the MS C++ ABI, the compiler emits destructor variants where they are
16995 // used. If the destructor is used here but defined elsewhere, mark the
16996 // virtual base destructors referenced. If those virtual base destructors
16997 // are inline, this will ensure they are defined when emitting the complete
16998 // destructor variant. This checking may be redundant if the destructor is
16999 // provided later in this TU.
17000 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
17001 if (auto *Dtor = dyn_cast<CXXDestructorDecl>(Func)) {
17002 CXXRecordDecl *Parent = Dtor->getParent();
17003 if (Parent->getNumVBases() > 0 && !Dtor->getBody())
17004 CheckCompleteDestructorVariant(Loc, Dtor);
17005 }
17006 }
17007
17008 Func->markUsed(Context);
17009 }
17010}
17011
17012/// Directly mark a variable odr-used. Given a choice, prefer to use
17013/// MarkVariableReferenced since it does additional checks and then
17014/// calls MarkVarDeclODRUsed.
17015/// If the variable must be captured:
17016/// - if FunctionScopeIndexToStopAt is null, capture it in the CurContext
17017/// - else capture it in the DeclContext that maps to the
17018/// *FunctionScopeIndexToStopAt on the FunctionScopeInfo stack.
17019static void
17020MarkVarDeclODRUsed(VarDecl *Var, SourceLocation Loc, Sema &SemaRef,
17021 const unsigned *const FunctionScopeIndexToStopAt = nullptr) {
17022 // Keep track of used but undefined variables.
17023 // FIXME: We shouldn't suppress this warning for static data members.
17024 if (Var->hasDefinition(SemaRef.Context) == VarDecl::DeclarationOnly &&
17025 (!Var->isExternallyVisible() || Var->isInline() ||
17026 SemaRef.isExternalWithNoLinkageType(Var)) &&
17027 !(Var->isStaticDataMember() && Var->hasInit())) {
17028 SourceLocation &old = SemaRef.UndefinedButUsed[Var->getCanonicalDecl()];
17029 if (old.isInvalid())
17030 old = Loc;
17031 }
17032 QualType CaptureType, DeclRefType;
17033 if (SemaRef.LangOpts.OpenMP)
17034 SemaRef.tryCaptureOpenMPLambdas(Var);
17035 SemaRef.tryCaptureVariable(Var, Loc, Sema::TryCapture_Implicit,
17036 /*EllipsisLoc*/ SourceLocation(),
17037 /*BuildAndDiagnose*/ true,
17038 CaptureType, DeclRefType,
17039 FunctionScopeIndexToStopAt);
17040
17041 Var->markUsed(SemaRef.Context);
17042}
17043
17044void Sema::MarkCaptureUsedInEnclosingContext(VarDecl *Capture,
17045 SourceLocation Loc,
17046 unsigned CapturingScopeIndex) {
17047 MarkVarDeclODRUsed(Capture, Loc, *this, &CapturingScopeIndex);
17048}
17049
17050static void
17051diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
17052 ValueDecl *var, DeclContext *DC) {
17053 DeclContext *VarDC = var->getDeclContext();
17054
17055 // If the parameter still belongs to the translation unit, then
17056 // we're actually just using one parameter in the declaration of
17057 // the next.
17058 if (isa<ParmVarDecl>(var) &&
17059 isa<TranslationUnitDecl>(VarDC))
17060 return;
17061
17062 // For C code, don't diagnose about capture if we're not actually in code
17063 // right now; it's impossible to write a non-constant expression outside of
17064 // function context, so we'll get other (more useful) diagnostics later.
17065 //
17066 // For C++, things get a bit more nasty... it would be nice to suppress this
17067 // diagnostic for certain cases like using a local variable in an array bound
17068 // for a member of a local class, but the correct predicate is not obvious.
17069 if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
17070 return;
17071
17072 unsigned ValueKind = isa<BindingDecl>(var) ? 1 : 0;
17073 unsigned ContextKind = 3; // unknown
17074 if (isa<CXXMethodDecl>(VarDC) &&
17075 cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
17076 ContextKind = 2;
17077 } else if (isa<FunctionDecl>(VarDC)) {
17078 ContextKind = 0;
17079 } else if (isa<BlockDecl>(VarDC)) {
17080 ContextKind = 1;
17081 }
17082
17083 S.Diag(loc, diag::err_reference_to_local_in_enclosing_context)
17084 << var << ValueKind << ContextKind << VarDC;
17085 S.Diag(var->getLocation(), diag::note_entity_declared_at)
17086 << var;
17087
17088 // FIXME: Add additional diagnostic info about class etc. which prevents
17089 // capture.
17090}
17091
17092
17093static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
17094 bool &SubCapturesAreNested,
17095 QualType &CaptureType,
17096 QualType &DeclRefType) {
17097 // Check whether we've already captured it.
17098 if (CSI->CaptureMap.count(Var)) {
17099 // If we found a capture, any subcaptures are nested.
17100 SubCapturesAreNested = true;
17101
17102 // Retrieve the capture type for this variable.
17103 CaptureType = CSI->getCapture(Var).getCaptureType();
17104
17105 // Compute the type of an expression that refers to this variable.
17106 DeclRefType = CaptureType.getNonReferenceType();
17107
17108 // Similarly to mutable captures in lambda, all the OpenMP captures by copy
17109 // are mutable in the sense that user can change their value - they are
17110 // private instances of the captured declarations.
17111 const Capture &Cap = CSI->getCapture(Var);
17112 if (Cap.isCopyCapture() &&
17113 !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
17114 !(isa<CapturedRegionScopeInfo>(CSI) &&
17115 cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
17116 DeclRefType.addConst();
17117 return true;
17118 }
17119 return false;
17120}
17121
17122// Only block literals, captured statements, and lambda expressions can
17123// capture; other scopes don't work.
17124static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
17125 SourceLocation Loc,
17126 const bool Diagnose, Sema &S) {
17127 if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
17128 return getLambdaAwareParentOfDeclContext(DC);
17129 else if (Var->hasLocalStorage()) {
17130 if (Diagnose)
17131 diagnoseUncapturableValueReference(S, Loc, Var, DC);
17132 }
17133 return nullptr;
17134}
17135
17136// Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17137// certain types of variables (unnamed, variably modified types etc.)
17138// so check for eligibility.
17139static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
17140 SourceLocation Loc,
17141 const bool Diagnose, Sema &S) {
17142
17143 bool IsBlock = isa<BlockScopeInfo>(CSI);
17144 bool IsLambda = isa<LambdaScopeInfo>(CSI);
17145
17146 // Lambdas are not allowed to capture unnamed variables
17147 // (e.g. anonymous unions).
17148 // FIXME: The C++11 rule don't actually state this explicitly, but I'm
17149 // assuming that's the intent.
17150 if (IsLambda && !Var->getDeclName()) {
17151 if (Diagnose) {
17152 S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
17153 S.Diag(Var->getLocation(), diag::note_declared_at);
17154 }
17155 return false;
17156 }
17157
17158 // Prohibit variably-modified types in blocks; they're difficult to deal with.
17159 if (Var->getType()->isVariablyModifiedType() && IsBlock) {
17160 if (Diagnose) {
17161 S.Diag(Loc, diag::err_ref_vm_type);
17162 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17163 }
17164 return false;
17165 }
17166 // Prohibit structs with flexible array members too.
17167 // We cannot capture what is in the tail end of the struct.
17168 if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
17169 if (VTTy->getDecl()->hasFlexibleArrayMember()) {
17170 if (Diagnose) {
17171 if (IsBlock)
17172 S.Diag(Loc, diag::err_ref_flexarray_type);
17173 else
17174 S.Diag(Loc, diag::err_lambda_capture_flexarray_type) << Var;
17175 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17176 }
17177 return false;
17178 }
17179 }
17180 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17181 // Lambdas and captured statements are not allowed to capture __block
17182 // variables; they don't support the expected semantics.
17183 if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
17184 if (Diagnose) {
17185 S.Diag(Loc, diag::err_capture_block_variable) << Var << !IsLambda;
17186 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17187 }
17188 return false;
17189 }
17190 // OpenCL v2.0 s6.12.5: Blocks cannot reference/capture other blocks
17191 if (S.getLangOpts().OpenCL && IsBlock &&
17192 Var->getType()->isBlockPointerType()) {
17193 if (Diagnose)
17194 S.Diag(Loc, diag::err_opencl_block_ref_block);
17195 return false;
17196 }
17197
17198 return true;
17199}
17200
17201// Returns true if the capture by block was successful.
17202static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
17203 SourceLocation Loc,
17204 const bool BuildAndDiagnose,
17205 QualType &CaptureType,
17206 QualType &DeclRefType,
17207 const bool Nested,
17208 Sema &S, bool Invalid) {
17209 bool ByRef = false;
17210
17211 // Blocks are not allowed to capture arrays, excepting OpenCL.
17212 // OpenCL v2.0 s1.12.5 (revision 40): arrays are captured by reference
17213 // (decayed to pointers).
17214 if (!Invalid && !S.getLangOpts().OpenCL && CaptureType->isArrayType()) {
17215 if (BuildAndDiagnose) {
17216 S.Diag(Loc, diag::err_ref_array_type);
17217 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17218 Invalid = true;
17219 } else {
17220 return false;
17221 }
17222 }
17223
17224 // Forbid the block-capture of autoreleasing variables.
17225 if (!Invalid &&
17226 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17227 if (BuildAndDiagnose) {
17228 S.Diag(Loc, diag::err_arc_autoreleasing_capture)
17229 << /*block*/ 0;
17230 S.Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17231 Invalid = true;
17232 } else {
17233 return false;
17234 }
17235 }
17236
17237 // Warn about implicitly autoreleasing indirect parameters captured by blocks.
17238 if (const auto *PT = CaptureType->getAs<PointerType>()) {
17239 QualType PointeeTy = PT->getPointeeType();
17240
17241 if (!Invalid && PointeeTy->getAs<ObjCObjectPointerType>() &&
17242 PointeeTy.getObjCLifetime() == Qualifiers::OCL_Autoreleasing &&
17243 !S.Context.hasDirectOwnershipQualifier(PointeeTy)) {
17244 if (BuildAndDiagnose) {
17245 SourceLocation VarLoc = Var->getLocation();
17246 S.Diag(Loc, diag::warn_block_capture_autoreleasing);
17247 S.Diag(VarLoc, diag::note_declare_parameter_strong);
17248 }
17249 }
17250 }
17251
17252 const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
17253 if (HasBlocksAttr || CaptureType->isReferenceType() ||
17254 (S.getLangOpts().OpenMP && S.isOpenMPCapturedDecl(Var))) {
17255 // Block capture by reference does not change the capture or
17256 // declaration reference types.
17257 ByRef = true;
17258 } else {
17259 // Block capture by copy introduces 'const'.
17260 CaptureType = CaptureType.getNonReferenceType().withConst();
17261 DeclRefType = CaptureType;
17262 }
17263
17264 // Actually capture the variable.
17265 if (BuildAndDiagnose)
17266 BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc, SourceLocation(),
17267 CaptureType, Invalid);
17268
17269 return !Invalid;
17270}
17271
17272
17273/// Capture the given variable in the captured region.
17274static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
17275 VarDecl *Var,
17276 SourceLocation Loc,
17277 const bool BuildAndDiagnose,
17278 QualType &CaptureType,
17279 QualType &DeclRefType,
17280 const bool RefersToCapturedVariable,
17281 Sema &S, bool Invalid) {
17282 // By default, capture variables by reference.
17283 bool ByRef = true;
17284 // Using an LValue reference type is consistent with Lambdas (see below).
17285 if (S.getLangOpts().OpenMP && RSI->CapRegionKind == CR_OpenMP) {
17286 if (S.isOpenMPCapturedDecl(Var)) {
17287 bool HasConst = DeclRefType.isConstQualified();
17288 DeclRefType = DeclRefType.getUnqualifiedType();
17289 // Don't lose diagnostics about assignments to const.
17290 if (HasConst)
17291 DeclRefType.addConst();
17292 }
17293 // Do not capture firstprivates in tasks.
17294 if (S.isOpenMPPrivateDecl(Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel) !=
17295 OMPC_unknown)
17296 return true;
17297 ByRef = S.isOpenMPCapturedByRef(Var, RSI->OpenMPLevel,
17298 RSI->OpenMPCaptureLevel);
17299 }
17300
17301 if (ByRef)
17302 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17303 else
17304 CaptureType = DeclRefType;
17305
17306 // Actually capture the variable.
17307 if (BuildAndDiagnose)
17308 RSI->addCapture(Var, /*isBlock*/ false, ByRef, RefersToCapturedVariable,
17309 Loc, SourceLocation(), CaptureType, Invalid);
17310
17311 return !Invalid;
17312}
17313
17314/// Capture the given variable in the lambda.
17315static bool captureInLambda(LambdaScopeInfo *LSI,
17316 VarDecl *Var,
17317 SourceLocation Loc,
17318 const bool BuildAndDiagnose,
17319 QualType &CaptureType,
17320 QualType &DeclRefType,
17321 const bool RefersToCapturedVariable,
17322 const Sema::TryCaptureKind Kind,
17323 SourceLocation EllipsisLoc,
17324 const bool IsTopScope,
17325 Sema &S, bool Invalid) {
17326 // Determine whether we are capturing by reference or by value.
17327 bool ByRef = false;
17328 if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
17329 ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
17330 } else {
17331 ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
17332 }
17333
17334 // Compute the type of the field that will capture this variable.
17335 if (ByRef) {
17336 // C++11 [expr.prim.lambda]p15:
17337 // An entity is captured by reference if it is implicitly or
17338 // explicitly captured but not captured by copy. It is
17339 // unspecified whether additional unnamed non-static data
17340 // members are declared in the closure type for entities
17341 // captured by reference.
17342 //
17343 // FIXME: It is not clear whether we want to build an lvalue reference
17344 // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
17345 // to do the former, while EDG does the latter. Core issue 1249 will
17346 // clarify, but for now we follow GCC because it's a more permissive and
17347 // easily defensible position.
17348 CaptureType = S.Context.getLValueReferenceType(DeclRefType);
17349 } else {
17350 // C++11 [expr.prim.lambda]p14:
17351 // For each entity captured by copy, an unnamed non-static
17352 // data member is declared in the closure type. The
17353 // declaration order of these members is unspecified. The type
17354 // of such a data member is the type of the corresponding
17355 // captured entity if the entity is not a reference to an
17356 // object, or the referenced type otherwise. [Note: If the
17357 // captured entity is a reference to a function, the
17358 // corresponding data member is also a reference to a
17359 // function. - end note ]
17360 if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
17361 if (!RefType->getPointeeType()->isFunctionType())
17362 CaptureType = RefType->getPointeeType();
17363 }
17364
17365 // Forbid the lambda copy-capture of autoreleasing variables.
17366 if (!Invalid &&
17367 CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
17368 if (BuildAndDiagnose) {
17369 S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
17370 S.Diag(Var->getLocation(), diag::note_previous_decl)
17371 << Var->getDeclName();
17372 Invalid = true;
17373 } else {
17374 return false;
17375 }
17376 }
17377
17378 // Make sure that by-copy captures are of a complete and non-abstract type.
17379 if (!Invalid && BuildAndDiagnose) {
17380 if (!CaptureType->isDependentType() &&
17381 S.RequireCompleteSizedType(
17382 Loc, CaptureType,
17383 diag::err_capture_of_incomplete_or_sizeless_type,
17384 Var->getDeclName()))
17385 Invalid = true;
17386 else if (S.RequireNonAbstractType(Loc, CaptureType,
17387 diag::err_capture_of_abstract_type))
17388 Invalid = true;
17389 }
17390 }
17391
17392 // Compute the type of a reference to this captured variable.
17393 if (ByRef)
17394 DeclRefType = CaptureType.getNonReferenceType();
17395 else {
17396 // C++ [expr.prim.lambda]p5:
17397 // The closure type for a lambda-expression has a public inline
17398 // function call operator [...]. This function call operator is
17399 // declared const (9.3.1) if and only if the lambda-expression's
17400 // parameter-declaration-clause is not followed by mutable.
17401 DeclRefType = CaptureType.getNonReferenceType();
17402 if (!LSI->Mutable && !CaptureType->isReferenceType())
17403 DeclRefType.addConst();
17404 }
17405
17406 // Add the capture.
17407 if (BuildAndDiagnose)
17408 LSI->addCapture(Var, /*isBlock=*/false, ByRef, RefersToCapturedVariable,
17409 Loc, EllipsisLoc, CaptureType, Invalid);
17410
17411 return !Invalid;
17412}
17413
17414bool Sema::tryCaptureVariable(
17415 VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
17416 SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
17417 QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
17418 // An init-capture is notionally from the context surrounding its
17419 // declaration, but its parent DC is the lambda class.
17420 DeclContext *VarDC = Var->getDeclContext();
17421 if (Var->isInitCapture())
17422 VarDC = VarDC->getParent();
17423
17424 DeclContext *DC = CurContext;
17425 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
17426 ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
17427 // We need to sync up the Declaration Context with the
17428 // FunctionScopeIndexToStopAt
17429 if (FunctionScopeIndexToStopAt) {
17430 unsigned FSIndex = FunctionScopes.size() - 1;
17431 while (FSIndex != MaxFunctionScopesIndex) {
17432 DC = getLambdaAwareParentOfDeclContext(DC);
17433 --FSIndex;
17434 }
17435 }
17436
17437
17438 // If the variable is declared in the current context, there is no need to
17439 // capture it.
17440 if (VarDC == DC) return true;
17441
17442 // Capture global variables if it is required to use private copy of this
17443 // variable.
17444 bool IsGlobal = !Var->hasLocalStorage();
17445 if (IsGlobal &&
17446 !(LangOpts.OpenMP && isOpenMPCapturedDecl(Var, /*CheckScopeInfo=*/true,
17447 MaxFunctionScopesIndex)))
17448 return true;
17449 Var = Var->getCanonicalDecl();
17450
17451 // Walk up the stack to determine whether we can capture the variable,
17452 // performing the "simple" checks that don't depend on type. We stop when
17453 // we've either hit the declared scope of the variable or find an existing
17454 // capture of that variable. We start from the innermost capturing-entity
17455 // (the DC) and ensure that all intervening capturing-entities
17456 // (blocks/lambdas etc.) between the innermost capturer and the variable`s
17457 // declcontext can either capture the variable or have already captured
17458 // the variable.
17459 CaptureType = Var->getType();
17460 DeclRefType = CaptureType.getNonReferenceType();
17461 bool Nested = false;
17462 bool Explicit = (Kind != TryCapture_Implicit);
17463 unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
17464 do {
17465 // Only block literals, captured statements, and lambda expressions can
17466 // capture; other scopes don't work.
17467 DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
17468 ExprLoc,
17469 BuildAndDiagnose,
17470 *this);
17471 // We need to check for the parent *first* because, if we *have*
17472 // private-captured a global variable, we need to recursively capture it in
17473 // intermediate blocks, lambdas, etc.
17474 if (!ParentDC) {
17475 if (IsGlobal) {
17476 FunctionScopesIndex = MaxFunctionScopesIndex - 1;
17477 break;
17478 }
17479 return true;
17480 }
17481
17482 FunctionScopeInfo *FSI = FunctionScopes[FunctionScopesIndex];
17483 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
17484
17485
17486 // Check whether we've already captured it.
17487 if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
17488 DeclRefType)) {
17489 CSI->getCapture(Var).markUsed(BuildAndDiagnose);
17490 break;
17491 }
17492 // If we are instantiating a generic lambda call operator body,
17493 // we do not want to capture new variables. What was captured
17494 // during either a lambdas transformation or initial parsing
17495 // should be used.
17496 if (isGenericLambdaCallOperatorSpecialization(DC)) {
17497 if (BuildAndDiagnose) {
17498 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17499 if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
17500 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
17501 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17502 Diag(LSI->Lambda->getBeginLoc(), diag::note_lambda_decl);
17503 } else
17504 diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
17505 }
17506 return true;
17507 }
17508
17509 // Try to capture variable-length arrays types.
17510 if (Var->getType()->isVariablyModifiedType()) {
17511 // We're going to walk down into the type and look for VLA
17512 // expressions.
17513 QualType QTy = Var->getType();
17514 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17515 QTy = PVD->getOriginalType();
17516 captureVariablyModifiedType(Context, QTy, CSI);
17517 }
17518
17519 if (getLangOpts().OpenMP) {
17520 if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17521 // OpenMP private variables should not be captured in outer scope, so
17522 // just break here. Similarly, global variables that are captured in a
17523 // target region should not be captured outside the scope of the region.
17524 if (RSI->CapRegionKind == CR_OpenMP) {
17525 OpenMPClauseKind IsOpenMPPrivateDecl = isOpenMPPrivateDecl(
17526 Var, RSI->OpenMPLevel, RSI->OpenMPCaptureLevel);
17527 // If the variable is private (i.e. not captured) and has variably
17528 // modified type, we still need to capture the type for correct
17529 // codegen in all regions, associated with the construct. Currently,
17530 // it is captured in the innermost captured region only.
17531 if (IsOpenMPPrivateDecl != OMPC_unknown &&
17532 Var->getType()->isVariablyModifiedType()) {
17533 QualType QTy = Var->getType();
17534 if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
17535 QTy = PVD->getOriginalType();
17536 for (int I = 1, E = getNumberOfConstructScopes(RSI->OpenMPLevel);
17537 I < E; ++I) {
17538 auto *OuterRSI = cast<CapturedRegionScopeInfo>(
17539 FunctionScopes[FunctionScopesIndex - I]);
17540 assert(RSI->OpenMPLevel == OuterRSI->OpenMPLevel &&((RSI->OpenMPLevel == OuterRSI->OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? static_cast<void> (0) : __assert_fail
("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 17542, __PRETTY_FUNCTION__))
17541 "Wrong number of captured regions associated with the "((RSI->OpenMPLevel == OuterRSI->OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? static_cast<void> (0) : __assert_fail
("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 17542, __PRETTY_FUNCTION__))
17542 "OpenMP construct.")((RSI->OpenMPLevel == OuterRSI->OpenMPLevel && "Wrong number of captured regions associated with the "
"OpenMP construct.") ? static_cast<void> (0) : __assert_fail
("RSI->OpenMPLevel == OuterRSI->OpenMPLevel && \"Wrong number of captured regions associated with the \" \"OpenMP construct.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 17542, __PRETTY_FUNCTION__))
;
17543 captureVariablyModifiedType(Context, QTy, OuterRSI);
17544 }
17545 }
17546 bool IsTargetCap =
17547 IsOpenMPPrivateDecl != OMPC_private &&
17548 isOpenMPTargetCapturedDecl(Var, RSI->OpenMPLevel,
17549 RSI->OpenMPCaptureLevel);
17550 // Do not capture global if it is not privatized in outer regions.
17551 bool IsGlobalCap =
17552 IsGlobal && isOpenMPGlobalCapturedDecl(Var, RSI->OpenMPLevel,
17553 RSI->OpenMPCaptureLevel);
17554
17555 // When we detect target captures we are looking from inside the
17556 // target region, therefore we need to propagate the capture from the
17557 // enclosing region. Therefore, the capture is not initially nested.
17558 if (IsTargetCap)
17559 adjustOpenMPTargetScopeIndex(FunctionScopesIndex, RSI->OpenMPLevel);
17560
17561 if (IsTargetCap || IsOpenMPPrivateDecl == OMPC_private ||
17562 (IsGlobal && !IsGlobalCap)) {
17563 Nested = !IsTargetCap;
17564 bool HasConst = DeclRefType.isConstQualified();
17565 DeclRefType = DeclRefType.getUnqualifiedType();
17566 // Don't lose diagnostics about assignments to const.
17567 if (HasConst)
17568 DeclRefType.addConst();
17569 CaptureType = Context.getLValueReferenceType(DeclRefType);
17570 break;
17571 }
17572 }
17573 }
17574 }
17575 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
17576 // No capture-default, and this is not an explicit capture
17577 // so cannot capture this variable.
17578 if (BuildAndDiagnose) {
17579 Diag(ExprLoc, diag::err_lambda_impcap) << Var;
17580 Diag(Var->getLocation(), diag::note_previous_decl) << Var;
17581 if (cast<LambdaScopeInfo>(CSI)->Lambda)
17582 Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getBeginLoc(),
17583 diag::note_lambda_decl);
17584 // FIXME: If we error out because an outer lambda can not implicitly
17585 // capture a variable that an inner lambda explicitly captures, we
17586 // should have the inner lambda do the explicit capture - because
17587 // it makes for cleaner diagnostics later. This would purely be done
17588 // so that the diagnostic does not misleadingly claim that a variable
17589 // can not be captured by a lambda implicitly even though it is captured
17590 // explicitly. Suggestion:
17591 // - create const bool VariableCaptureWasInitiallyExplicit = Explicit
17592 // at the function head
17593 // - cache the StartingDeclContext - this must be a lambda
17594 // - captureInLambda in the innermost lambda the variable.
17595 }
17596 return true;
17597 }
17598
17599 FunctionScopesIndex--;
17600 DC = ParentDC;
17601 Explicit = false;
17602 } while (!VarDC->Equals(DC));
17603
17604 // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
17605 // computing the type of the capture at each step, checking type-specific
17606 // requirements, and adding captures if requested.
17607 // If the variable had already been captured previously, we start capturing
17608 // at the lambda nested within that one.
17609 bool Invalid = false;
17610 for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
17611 ++I) {
17612 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
17613
17614 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
17615 // certain types of variables (unnamed, variably modified types etc.)
17616 // so check for eligibility.
17617 if (!Invalid)
17618 Invalid =
17619 !isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this);
17620
17621 // After encountering an error, if we're actually supposed to capture, keep
17622 // capturing in nested contexts to suppress any follow-on diagnostics.
17623 if (Invalid && !BuildAndDiagnose)
17624 return true;
17625
17626 if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
17627 Invalid = !captureInBlock(BSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
17628 DeclRefType, Nested, *this, Invalid);
17629 Nested = true;
17630 } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
17631 Invalid = !captureInCapturedRegion(RSI, Var, ExprLoc, BuildAndDiagnose,
17632 CaptureType, DeclRefType, Nested,
17633 *this, Invalid);
17634 Nested = true;
17635 } else {
17636 LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
17637 Invalid =
17638 !captureInLambda(LSI, Var, ExprLoc, BuildAndDiagnose, CaptureType,
17639 DeclRefType, Nested, Kind, EllipsisLoc,
17640 /*IsTopScope*/ I == N - 1, *this, Invalid);
17641 Nested = true;
17642 }
17643
17644 if (Invalid && !BuildAndDiagnose)
17645 return true;
17646 }
17647 return Invalid;
17648}
17649
17650bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
17651 TryCaptureKind Kind, SourceLocation EllipsisLoc) {
17652 QualType CaptureType;
17653 QualType DeclRefType;
17654 return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
17655 /*BuildAndDiagnose=*/true, CaptureType,
17656 DeclRefType, nullptr);
17657}
17658
17659bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
17660 QualType CaptureType;
17661 QualType DeclRefType;
17662 return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
17663 /*BuildAndDiagnose=*/false, CaptureType,
17664 DeclRefType, nullptr);
17665}
17666
17667QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
17668 QualType CaptureType;
17669 QualType DeclRefType;
17670
17671 // Determine whether we can capture this variable.
17672 if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
17673 /*BuildAndDiagnose=*/false, CaptureType,
17674 DeclRefType, nullptr))
17675 return QualType();
17676
17677 return DeclRefType;
17678}
17679
17680namespace {
17681// Helper to copy the template arguments from a DeclRefExpr or MemberExpr.
17682// The produced TemplateArgumentListInfo* points to data stored within this
17683// object, so should only be used in contexts where the pointer will not be
17684// used after the CopiedTemplateArgs object is destroyed.
17685class CopiedTemplateArgs {
17686 bool HasArgs;
17687 TemplateArgumentListInfo TemplateArgStorage;
17688public:
17689 template<typename RefExpr>
17690 CopiedTemplateArgs(RefExpr *E) : HasArgs(E->hasExplicitTemplateArgs()) {
17691 if (HasArgs)
17692 E->copyTemplateArgumentsInto(TemplateArgStorage);
17693 }
17694 operator TemplateArgumentListInfo*()
17695#ifdef __has_cpp_attribute
17696#if0 __has_cpp_attribute(clang::lifetimebound)1
17697 [[clang::lifetimebound]]
17698#endif
17699#endif
17700 {
17701 return HasArgs ? &TemplateArgStorage : nullptr;
17702 }
17703};
17704}
17705
17706/// Walk the set of potential results of an expression and mark them all as
17707/// non-odr-uses if they satisfy the side-conditions of the NonOdrUseReason.
17708///
17709/// \return A new expression if we found any potential results, ExprEmpty() if
17710/// not, and ExprError() if we diagnosed an error.
17711static ExprResult rebuildPotentialResultsAsNonOdrUsed(Sema &S, Expr *E,
17712 NonOdrUseReason NOUR) {
17713 // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
17714 // an object that satisfies the requirements for appearing in a
17715 // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
17716 // is immediately applied." This function handles the lvalue-to-rvalue
17717 // conversion part.
17718 //
17719 // If we encounter a node that claims to be an odr-use but shouldn't be, we
17720 // transform it into the relevant kind of non-odr-use node and rebuild the
17721 // tree of nodes leading to it.
17722 //
17723 // This is a mini-TreeTransform that only transforms a restricted subset of
17724 // nodes (and only certain operands of them).
17725
17726 // Rebuild a subexpression.
17727 auto Rebuild = [&](Expr *Sub) {
17728 return rebuildPotentialResultsAsNonOdrUsed(S, Sub, NOUR);
17729 };
17730
17731 // Check whether a potential result satisfies the requirements of NOUR.
17732 auto IsPotentialResultOdrUsed = [&](NamedDecl *D) {
17733 // Any entity other than a VarDecl is always odr-used whenever it's named
17734 // in a potentially-evaluated expression.
17735 auto *VD = dyn_cast<VarDecl>(D);
17736 if (!VD)
17737 return true;
17738
17739 // C++2a [basic.def.odr]p4:
17740 // A variable x whose name appears as a potentially-evalauted expression
17741 // e is odr-used by e unless
17742 // -- x is a reference that is usable in constant expressions, or
17743 // -- x is a variable of non-reference type that is usable in constant
17744 // expressions and has no mutable subobjects, and e is an element of
17745 // the set of potential results of an expression of
17746 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
17747 // conversion is applied, or
17748 // -- x is a variable of non-reference type, and e is an element of the
17749 // set of potential results of a discarded-value expression to which
17750 // the lvalue-to-rvalue conversion is not applied
17751 //
17752 // We check the first bullet and the "potentially-evaluated" condition in
17753 // BuildDeclRefExpr. We check the type requirements in the second bullet
17754 // in CheckLValueToRValueConversionOperand below.
17755 switch (NOUR) {
17756 case NOUR_None:
17757 case NOUR_Unevaluated:
17758 llvm_unreachable("unexpected non-odr-use-reason")::llvm::llvm_unreachable_internal("unexpected non-odr-use-reason"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 17758)
;
17759
17760 case NOUR_Constant:
17761 // Constant references were handled when they were built.
17762 if (VD->getType()->isReferenceType())
17763 return true;
17764 if (auto *RD = VD->getType()->getAsCXXRecordDecl())
17765 if (RD->hasMutableFields())
17766 return true;
17767 if (!VD->isUsableInConstantExpressions(S.Context))
17768 return true;
17769 break;
17770
17771 case NOUR_Discarded:
17772 if (VD->getType()->isReferenceType())
17773 return true;
17774 break;
17775 }
17776 return false;
17777 };
17778
17779 // Mark that this expression does not constitute an odr-use.
17780 auto MarkNotOdrUsed = [&] {
17781 S.MaybeODRUseExprs.remove(E);
17782 if (LambdaScopeInfo *LSI = S.getCurLambda())
17783 LSI->markVariableExprAsNonODRUsed(E);
17784 };
17785
17786 // C++2a [basic.def.odr]p2:
17787 // The set of potential results of an expression e is defined as follows:
17788 switch (E->getStmtClass()) {
17789 // -- If e is an id-expression, ...
17790 case Expr::DeclRefExprClass: {
17791 auto *DRE = cast<DeclRefExpr>(E);
17792 if (DRE->isNonOdrUse() || IsPotentialResultOdrUsed(DRE->getDecl()))
17793 break;
17794
17795 // Rebuild as a non-odr-use DeclRefExpr.
17796 MarkNotOdrUsed();
17797 return DeclRefExpr::Create(
17798 S.Context, DRE->getQualifierLoc(), DRE->getTemplateKeywordLoc(),
17799 DRE->getDecl(), DRE->refersToEnclosingVariableOrCapture(),
17800 DRE->getNameInfo(), DRE->getType(), DRE->getValueKind(),
17801 DRE->getFoundDecl(), CopiedTemplateArgs(DRE), NOUR);
17802 }
17803
17804 case Expr::FunctionParmPackExprClass: {
17805 auto *FPPE = cast<FunctionParmPackExpr>(E);
17806 // If any of the declarations in the pack is odr-used, then the expression
17807 // as a whole constitutes an odr-use.
17808 for (VarDecl *D : *FPPE)
17809 if (IsPotentialResultOdrUsed(D))
17810 return ExprEmpty();
17811
17812 // FIXME: Rebuild as a non-odr-use FunctionParmPackExpr? In practice,
17813 // nothing cares about whether we marked this as an odr-use, but it might
17814 // be useful for non-compiler tools.
17815 MarkNotOdrUsed();
17816 break;
17817 }
17818
17819 // -- If e is a subscripting operation with an array operand...
17820 case Expr::ArraySubscriptExprClass: {
17821 auto *ASE = cast<ArraySubscriptExpr>(E);
17822 Expr *OldBase = ASE->getBase()->IgnoreImplicit();
17823 if (!OldBase->getType()->isArrayType())
17824 break;
17825 ExprResult Base = Rebuild(OldBase);
17826 if (!Base.isUsable())
17827 return Base;
17828 Expr *LHS = ASE->getBase() == ASE->getLHS() ? Base.get() : ASE->getLHS();
17829 Expr *RHS = ASE->getBase() == ASE->getRHS() ? Base.get() : ASE->getRHS();
17830 SourceLocation LBracketLoc = ASE->getBeginLoc(); // FIXME: Not stored.
17831 return S.ActOnArraySubscriptExpr(nullptr, LHS, LBracketLoc, RHS,
17832 ASE->getRBracketLoc());
17833 }
17834
17835 case Expr::MemberExprClass: {
17836 auto *ME = cast<MemberExpr>(E);
17837 // -- If e is a class member access expression [...] naming a non-static
17838 // data member...
17839 if (isa<FieldDecl>(ME->getMemberDecl())) {
17840 ExprResult Base = Rebuild(ME->getBase());
17841 if (!Base.isUsable())
17842 return Base;
17843 return MemberExpr::Create(
17844 S.Context, Base.get(), ME->isArrow(), ME->getOperatorLoc(),
17845 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(),
17846 ME->getMemberDecl(), ME->getFoundDecl(), ME->getMemberNameInfo(),
17847 CopiedTemplateArgs(ME), ME->getType(), ME->getValueKind(),
17848 ME->getObjectKind(), ME->isNonOdrUse());
17849 }
17850
17851 if (ME->getMemberDecl()->isCXXInstanceMember())
17852 break;
17853
17854 // -- If e is a class member access expression naming a static data member,
17855 // ...
17856 if (ME->isNonOdrUse() || IsPotentialResultOdrUsed(ME->getMemberDecl()))
17857 break;
17858
17859 // Rebuild as a non-odr-use MemberExpr.
17860 MarkNotOdrUsed();
17861 return MemberExpr::Create(
17862 S.Context, ME->getBase(), ME->isArrow(), ME->getOperatorLoc(),
17863 ME->getQualifierLoc(), ME->getTemplateKeywordLoc(), ME->getMemberDecl(),
17864 ME->getFoundDecl(), ME->getMemberNameInfo(), CopiedTemplateArgs(ME),
17865 ME->getType(), ME->getValueKind(), ME->getObjectKind(), NOUR);
17866 return ExprEmpty();
17867 }
17868
17869 case Expr::BinaryOperatorClass: {
17870 auto *BO = cast<BinaryOperator>(E);
17871 Expr *LHS = BO->getLHS();
17872 Expr *RHS = BO->getRHS();
17873 // -- If e is a pointer-to-member expression of the form e1 .* e2 ...
17874 if (BO->getOpcode() == BO_PtrMemD) {
17875 ExprResult Sub = Rebuild(LHS);
17876 if (!Sub.isUsable())
17877 return Sub;
17878 LHS = Sub.get();
17879 // -- If e is a comma expression, ...
17880 } else if (BO->getOpcode() == BO_Comma) {
17881 ExprResult Sub = Rebuild(RHS);
17882 if (!Sub.isUsable())
17883 return Sub;
17884 RHS = Sub.get();
17885 } else {
17886 break;
17887 }
17888 return S.BuildBinOp(nullptr, BO->getOperatorLoc(), BO->getOpcode(),
17889 LHS, RHS);
17890 }
17891
17892 // -- If e has the form (e1)...
17893 case Expr::ParenExprClass: {
17894 auto *PE = cast<ParenExpr>(E);
17895 ExprResult Sub = Rebuild(PE->getSubExpr());
17896 if (!Sub.isUsable())
17897 return Sub;
17898 return S.ActOnParenExpr(PE->getLParen(), PE->getRParen(), Sub.get());
17899 }
17900
17901 // -- If e is a glvalue conditional expression, ...
17902 // We don't apply this to a binary conditional operator. FIXME: Should we?
17903 case Expr::ConditionalOperatorClass: {
17904 auto *CO = cast<ConditionalOperator>(E);
17905 ExprResult LHS = Rebuild(CO->getLHS());
17906 if (LHS.isInvalid())
17907 return ExprError();
17908 ExprResult RHS = Rebuild(CO->getRHS());
17909 if (RHS.isInvalid())
17910 return ExprError();
17911 if (!LHS.isUsable() && !RHS.isUsable())
17912 return ExprEmpty();
17913 if (!LHS.isUsable())
17914 LHS = CO->getLHS();
17915 if (!RHS.isUsable())
17916 RHS = CO->getRHS();
17917 return S.ActOnConditionalOp(CO->getQuestionLoc(), CO->getColonLoc(),
17918 CO->getCond(), LHS.get(), RHS.get());
17919 }
17920
17921 // [Clang extension]
17922 // -- If e has the form __extension__ e1...
17923 case Expr::UnaryOperatorClass: {
17924 auto *UO = cast<UnaryOperator>(E);
17925 if (UO->getOpcode() != UO_Extension)
17926 break;
17927 ExprResult Sub = Rebuild(UO->getSubExpr());
17928 if (!Sub.isUsable())
17929 return Sub;
17930 return S.BuildUnaryOp(nullptr, UO->getOperatorLoc(), UO_Extension,
17931 Sub.get());
17932 }
17933
17934 // [Clang extension]
17935 // -- If e has the form _Generic(...), the set of potential results is the
17936 // union of the sets of potential results of the associated expressions.
17937 case Expr::GenericSelectionExprClass: {
17938 auto *GSE = cast<GenericSelectionExpr>(E);
17939
17940 SmallVector<Expr *, 4> AssocExprs;
17941 bool AnyChanged = false;
17942 for (Expr *OrigAssocExpr : GSE->getAssocExprs()) {
17943 ExprResult AssocExpr = Rebuild(OrigAssocExpr);
17944 if (AssocExpr.isInvalid())
17945 return ExprError();
17946 if (AssocExpr.isUsable()) {
17947 AssocExprs.push_back(AssocExpr.get());
17948 AnyChanged = true;
17949 } else {
17950 AssocExprs.push_back(OrigAssocExpr);
17951 }
17952 }
17953
17954 return AnyChanged ? S.CreateGenericSelectionExpr(
17955 GSE->getGenericLoc(), GSE->getDefaultLoc(),
17956 GSE->getRParenLoc(), GSE->getControllingExpr(),
17957 GSE->getAssocTypeSourceInfos(), AssocExprs)
17958 : ExprEmpty();
17959 }
17960
17961 // [Clang extension]
17962 // -- If e has the form __builtin_choose_expr(...), the set of potential
17963 // results is the union of the sets of potential results of the
17964 // second and third subexpressions.
17965 case Expr::ChooseExprClass: {
17966 auto *CE = cast<ChooseExpr>(E);
17967
17968 ExprResult LHS = Rebuild(CE->getLHS());
17969 if (LHS.isInvalid())
17970 return ExprError();
17971
17972 ExprResult RHS = Rebuild(CE->getLHS());
17973 if (RHS.isInvalid())
17974 return ExprError();
17975
17976 if (!LHS.get() && !RHS.get())
17977 return ExprEmpty();
17978 if (!LHS.isUsable())
17979 LHS = CE->getLHS();
17980 if (!RHS.isUsable())
17981 RHS = CE->getRHS();
17982
17983 return S.ActOnChooseExpr(CE->getBuiltinLoc(), CE->getCond(), LHS.get(),
17984 RHS.get(), CE->getRParenLoc());
17985 }
17986
17987 // Step through non-syntactic nodes.
17988 case Expr::ConstantExprClass: {
17989 auto *CE = cast<ConstantExpr>(E);
17990 ExprResult Sub = Rebuild(CE->getSubExpr());
17991 if (!Sub.isUsable())
17992 return Sub;
17993 return ConstantExpr::Create(S.Context, Sub.get());
17994 }
17995
17996 // We could mostly rely on the recursive rebuilding to rebuild implicit
17997 // casts, but not at the top level, so rebuild them here.
17998 case Expr::ImplicitCastExprClass: {
17999 auto *ICE = cast<ImplicitCastExpr>(E);
18000 // Only step through the narrow set of cast kinds we expect to encounter.
18001 // Anything else suggests we've left the region in which potential results
18002 // can be found.
18003 switch (ICE->getCastKind()) {
18004 case CK_NoOp:
18005 case CK_DerivedToBase:
18006 case CK_UncheckedDerivedToBase: {
18007 ExprResult Sub = Rebuild(ICE->getSubExpr());
18008 if (!Sub.isUsable())
18009 return Sub;
18010 CXXCastPath Path(ICE->path());
18011 return S.ImpCastExprToType(Sub.get(), ICE->getType(), ICE->getCastKind(),
18012 ICE->getValueKind(), &Path);
18013 }
18014
18015 default:
18016 break;
18017 }
18018 break;
18019 }
18020
18021 default:
18022 break;
18023 }
18024
18025 // Can't traverse through this node. Nothing to do.
18026 return ExprEmpty();
18027}
18028
18029ExprResult Sema::CheckLValueToRValueConversionOperand(Expr *E) {
18030 // Check whether the operand is or contains an object of non-trivial C union
18031 // type.
18032 if (E->getType().isVolatileQualified() &&
18033 (E->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
18034 E->getType().hasNonTrivialToPrimitiveCopyCUnion()))
18035 checkNonTrivialCUnion(E->getType(), E->getExprLoc(),
18036 Sema::NTCUC_LValueToRValueVolatile,
18037 NTCUK_Destruct|NTCUK_Copy);
18038
18039 // C++2a [basic.def.odr]p4:
18040 // [...] an expression of non-volatile-qualified non-class type to which
18041 // the lvalue-to-rvalue conversion is applied [...]
18042 if (E->getType().isVolatileQualified() || E->getType()->getAs<RecordType>())
18043 return E;
18044
18045 ExprResult Result =
18046 rebuildPotentialResultsAsNonOdrUsed(*this, E, NOUR_Constant);
18047 if (Result.isInvalid())
18048 return ExprError();
18049 return Result.get() ? Result : E;
18050}
18051
18052ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
18053 Res = CorrectDelayedTyposInExpr(Res);
18054
18055 if (!Res.isUsable())
18056 return Res;
18057
18058 // If a constant-expression is a reference to a variable where we delay
18059 // deciding whether it is an odr-use, just assume we will apply the
18060 // lvalue-to-rvalue conversion. In the one case where this doesn't happen
18061 // (a non-type template argument), we have special handling anyway.
18062 return CheckLValueToRValueConversionOperand(Res.get());
18063}
18064
18065void Sema::CleanupVarDeclMarking() {
18066 // Iterate through a local copy in case MarkVarDeclODRUsed makes a recursive
18067 // call.
18068 MaybeODRUseExprSet LocalMaybeODRUseExprs;
18069 std::swap(LocalMaybeODRUseExprs, MaybeODRUseExprs);
18070
18071 for (Expr *E : LocalMaybeODRUseExprs) {
18072 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
18073 MarkVarDeclODRUsed(cast<VarDecl>(DRE->getDecl()),
18074 DRE->getLocation(), *this);
18075 } else if (auto *ME = dyn_cast<MemberExpr>(E)) {
18076 MarkVarDeclODRUsed(cast<VarDecl>(ME->getMemberDecl()), ME->getMemberLoc(),
18077 *this);
18078 } else if (auto *FP = dyn_cast<FunctionParmPackExpr>(E)) {
18079 for (VarDecl *VD : *FP)
18080 MarkVarDeclODRUsed(VD, FP->getParameterPackLocation(), *this);
18081 } else {
18082 llvm_unreachable("Unexpected expression")::llvm::llvm_unreachable_internal("Unexpected expression", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18082)
;
18083 }
18084 }
18085
18086 assert(MaybeODRUseExprs.empty() &&((MaybeODRUseExprs.empty() && "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18087, __PRETTY_FUNCTION__))
18087 "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?")((MaybeODRUseExprs.empty() && "MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"MarkVarDeclODRUsed failed to cleanup MaybeODRUseExprs?\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18087, __PRETTY_FUNCTION__))
;
18088}
18089
18090static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
18091 VarDecl *Var, Expr *E) {
18092 assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) ||(((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E
) || isa<FunctionParmPackExpr>(E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? static_cast<void> (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18094, __PRETTY_FUNCTION__))
18093 isa<FunctionParmPackExpr>(E)) &&(((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E
) || isa<FunctionParmPackExpr>(E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? static_cast<void> (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18094, __PRETTY_FUNCTION__))
18094 "Invalid Expr argument to DoMarkVarDeclReferenced")(((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E
) || isa<FunctionParmPackExpr>(E)) && "Invalid Expr argument to DoMarkVarDeclReferenced"
) ? static_cast<void> (0) : __assert_fail ("(!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E) || isa<FunctionParmPackExpr>(E)) && \"Invalid Expr argument to DoMarkVarDeclReferenced\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18094, __PRETTY_FUNCTION__))
;
18095 Var->setReferenced();
18096
18097 if (Var->isInvalidDecl())
18098 return;
18099
18100 // Record a CUDA/HIP static device/constant variable if it is referenced
18101 // by host code. This is done conservatively, when the variable is referenced
18102 // in any of the following contexts:
18103 // - a non-function context
18104 // - a host function
18105 // - a host device function
18106 // This also requires the reference of the static device/constant variable by
18107 // host code to be visible in the device compilation for the compiler to be
18108 // able to externalize the static device/constant variable.
18109 if (SemaRef.getASTContext().mayExternalizeStaticVar(Var)) {
18110 auto *CurContext = SemaRef.CurContext;
18111 if (!CurContext || !isa<FunctionDecl>(CurContext) ||
18112 cast<FunctionDecl>(CurContext)->hasAttr<CUDAHostAttr>() ||
18113 (!cast<FunctionDecl>(CurContext)->hasAttr<CUDADeviceAttr>() &&
18114 !cast<FunctionDecl>(CurContext)->hasAttr<CUDAGlobalAttr>()))
18115 SemaRef.getASTContext().CUDAStaticDeviceVarReferencedByHost.insert(Var);
18116 }
18117
18118 auto *MSI = Var->getMemberSpecializationInfo();
18119 TemplateSpecializationKind TSK = MSI ? MSI->getTemplateSpecializationKind()
18120 : Var->getTemplateSpecializationKind();
18121
18122 OdrUseContext OdrUse = isOdrUseContext(SemaRef);
18123 bool UsableInConstantExpr =
18124 Var->mightBeUsableInConstantExpressions(SemaRef.Context);
18125
18126 // C++20 [expr.const]p12:
18127 // A variable [...] is needed for constant evaluation if it is [...] a
18128 // variable whose name appears as a potentially constant evaluated
18129 // expression that is either a contexpr variable or is of non-volatile
18130 // const-qualified integral type or of reference type
18131 bool NeededForConstantEvaluation =
18132 isPotentiallyConstantEvaluatedContext(SemaRef) && UsableInConstantExpr;
18133
18134 bool NeedDefinition =
18135 OdrUse == OdrUseContext::Used || NeededForConstantEvaluation;
18136
18137 assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&((!isa<VarTemplatePartialSpecializationDecl>(Var) &&
"Can't instantiate a partial template specialization.") ? static_cast
<void> (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18138, __PRETTY_FUNCTION__))
18138 "Can't instantiate a partial template specialization.")((!isa<VarTemplatePartialSpecializationDecl>(Var) &&
"Can't instantiate a partial template specialization.") ? static_cast
<void> (0) : __assert_fail ("!isa<VarTemplatePartialSpecializationDecl>(Var) && \"Can't instantiate a partial template specialization.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18138, __PRETTY_FUNCTION__))
;
18139
18140 // If this might be a member specialization of a static data member, check
18141 // the specialization is visible. We already did the checks for variable
18142 // template specializations when we created them.
18143 if (NeedDefinition && TSK != TSK_Undeclared &&
18144 !isa<VarTemplateSpecializationDecl>(Var))
18145 SemaRef.checkSpecializationVisibility(Loc, Var);
18146
18147 // Perform implicit instantiation of static data members, static data member
18148 // templates of class templates, and variable template specializations. Delay
18149 // instantiations of variable templates, except for those that could be used
18150 // in a constant expression.
18151 if (NeedDefinition && isTemplateInstantiation(TSK)) {
18152 // Per C++17 [temp.explicit]p10, we may instantiate despite an explicit
18153 // instantiation declaration if a variable is usable in a constant
18154 // expression (among other cases).
18155 bool TryInstantiating =
18156 TSK == TSK_ImplicitInstantiation ||
18157 (TSK == TSK_ExplicitInstantiationDeclaration && UsableInConstantExpr);
18158
18159 if (TryInstantiating) {
18160 SourceLocation PointOfInstantiation =
18161 MSI ? MSI->getPointOfInstantiation() : Var->getPointOfInstantiation();
18162 bool FirstInstantiation = PointOfInstantiation.isInvalid();
18163 if (FirstInstantiation) {
18164 PointOfInstantiation = Loc;
18165 if (MSI)
18166 MSI->setPointOfInstantiation(PointOfInstantiation);
18167 // FIXME: Notify listener.
18168 else
18169 Var->setTemplateSpecializationKind(TSK, PointOfInstantiation);
18170 }
18171
18172 if (UsableInConstantExpr) {
18173 // Do not defer instantiations of variables that could be used in a
18174 // constant expression.
18175 SemaRef.runWithSufficientStackSpace(PointOfInstantiation, [&] {
18176 SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
18177 });
18178
18179 // Re-set the member to trigger a recomputation of the dependence bits
18180 // for the expression.
18181 if (auto *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18182 DRE->setDecl(DRE->getDecl());
18183 else if (auto *ME = dyn_cast_or_null<MemberExpr>(E))
18184 ME->setMemberDecl(ME->getMemberDecl());
18185 } else if (FirstInstantiation ||
18186 isa<VarTemplateSpecializationDecl>(Var)) {
18187 // FIXME: For a specialization of a variable template, we don't
18188 // distinguish between "declaration and type implicitly instantiated"
18189 // and "implicit instantiation of definition requested", so we have
18190 // no direct way to avoid enqueueing the pending instantiation
18191 // multiple times.
18192 SemaRef.PendingInstantiations
18193 .push_back(std::make_pair(Var, PointOfInstantiation));
18194 }
18195 }
18196 }
18197
18198 // C++2a [basic.def.odr]p4:
18199 // A variable x whose name appears as a potentially-evaluated expression e
18200 // is odr-used by e unless
18201 // -- x is a reference that is usable in constant expressions
18202 // -- x is a variable of non-reference type that is usable in constant
18203 // expressions and has no mutable subobjects [FIXME], and e is an
18204 // element of the set of potential results of an expression of
18205 // non-volatile-qualified non-class type to which the lvalue-to-rvalue
18206 // conversion is applied
18207 // -- x is a variable of non-reference type, and e is an element of the set
18208 // of potential results of a discarded-value expression to which the
18209 // lvalue-to-rvalue conversion is not applied [FIXME]
18210 //
18211 // We check the first part of the second bullet here, and
18212 // Sema::CheckLValueToRValueConversionOperand deals with the second part.
18213 // FIXME: To get the third bullet right, we need to delay this even for
18214 // variables that are not usable in constant expressions.
18215
18216 // If we already know this isn't an odr-use, there's nothing more to do.
18217 if (DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(E))
18218 if (DRE->isNonOdrUse())
18219 return;
18220 if (MemberExpr *ME = dyn_cast_or_null<MemberExpr>(E))
18221 if (ME->isNonOdrUse())
18222 return;
18223
18224 switch (OdrUse) {
18225 case OdrUseContext::None:
18226 assert((!E || isa<FunctionParmPackExpr>(E)) &&(((!E || isa<FunctionParmPackExpr>(E)) && "missing non-odr-use marking for unevaluated decl ref"
) ? static_cast<void> (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E)) && \"missing non-odr-use marking for unevaluated decl ref\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18227, __PRETTY_FUNCTION__))
18227 "missing non-odr-use marking for unevaluated decl ref")(((!E || isa<FunctionParmPackExpr>(E)) && "missing non-odr-use marking for unevaluated decl ref"
) ? static_cast<void> (0) : __assert_fail ("(!E || isa<FunctionParmPackExpr>(E)) && \"missing non-odr-use marking for unevaluated decl ref\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18227, __PRETTY_FUNCTION__))
;
18228 break;
18229
18230 case OdrUseContext::FormallyOdrUsed:
18231 // FIXME: Ignoring formal odr-uses results in incorrect lambda capture
18232 // behavior.
18233 break;
18234
18235 case OdrUseContext::Used:
18236 // If we might later find that this expression isn't actually an odr-use,
18237 // delay the marking.
18238 if (E && Var->isUsableInConstantExpressions(SemaRef.Context))
18239 SemaRef.MaybeODRUseExprs.insert(E);
18240 else
18241 MarkVarDeclODRUsed(Var, Loc, SemaRef);
18242 break;
18243
18244 case OdrUseContext::Dependent:
18245 // If this is a dependent context, we don't need to mark variables as
18246 // odr-used, but we may still need to track them for lambda capture.
18247 // FIXME: Do we also need to do this inside dependent typeid expressions
18248 // (which are modeled as unevaluated at this point)?
18249 const bool RefersToEnclosingScope =
18250 (SemaRef.CurContext != Var->getDeclContext() &&
18251 Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
18252 if (RefersToEnclosingScope) {
18253 LambdaScopeInfo *const LSI =
18254 SemaRef.getCurLambda(/*IgnoreNonLambdaCapturingScope=*/true);
18255 if (LSI && (!LSI->CallOperator ||
18256 !LSI->CallOperator->Encloses(Var->getDeclContext()))) {
18257 // If a variable could potentially be odr-used, defer marking it so
18258 // until we finish analyzing the full expression for any
18259 // lvalue-to-rvalue
18260 // or discarded value conversions that would obviate odr-use.
18261 // Add it to the list of potential captures that will be analyzed
18262 // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
18263 // unless the variable is a reference that was initialized by a constant
18264 // expression (this will never need to be captured or odr-used).
18265 //
18266 // FIXME: We can simplify this a lot after implementing P0588R1.
18267 assert(E && "Capture variable should be used in an expression.")((E && "Capture variable should be used in an expression."
) ? static_cast<void> (0) : __assert_fail ("E && \"Capture variable should be used in an expression.\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18267, __PRETTY_FUNCTION__))
;
18268 if (!Var->getType()->isReferenceType() ||
18269 !Var->isUsableInConstantExpressions(SemaRef.Context))
18270 LSI->addPotentialCapture(E->IgnoreParens());
18271 }
18272 }
18273 break;
18274 }
18275}
18276
18277/// Mark a variable referenced, and check whether it is odr-used
18278/// (C++ [basic.def.odr]p2, C99 6.9p3). Note that this should not be
18279/// used directly for normal expressions referring to VarDecl.
18280void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
18281 DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
18282}
18283
18284static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
18285 Decl *D, Expr *E, bool MightBeOdrUse) {
18286 if (SemaRef.isInOpenMPDeclareTargetContext())
18287 SemaRef.checkDeclIsAllowedInOpenMPTarget(E, D);
18288
18289 if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
18290 DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
18291 return;
18292 }
18293
18294 SemaRef.MarkAnyDeclReferenced(Loc, D, MightBeOdrUse);
18295
18296 // If this is a call to a method via a cast, also mark the method in the
18297 // derived class used in case codegen can devirtualize the call.
18298 const MemberExpr *ME = dyn_cast<MemberExpr>(E);
18299 if (!ME)
18300 return;
18301 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
18302 if (!MD)
18303 return;
18304 // Only attempt to devirtualize if this is truly a virtual call.
18305 bool IsVirtualCall = MD->isVirtual() &&
18306 ME->performsVirtualDispatch(SemaRef.getLangOpts());
18307 if (!IsVirtualCall)
18308 return;
18309
18310 // If it's possible to devirtualize the call, mark the called function
18311 // referenced.
18312 CXXMethodDecl *DM = MD->getDevirtualizedMethod(
18313 ME->getBase(), SemaRef.getLangOpts().AppleKext);
18314 if (DM)
18315 SemaRef.MarkAnyDeclReferenced(Loc, DM, MightBeOdrUse);
18316}
18317
18318/// Perform reference-marking and odr-use handling for a DeclRefExpr.
18319///
18320/// Note, this may change the dependence of the DeclRefExpr, and so needs to be
18321/// handled with care if the DeclRefExpr is not newly-created.
18322void Sema::MarkDeclRefReferenced(DeclRefExpr *E, const Expr *Base) {
18323 // TODO: update this with DR# once a defect report is filed.
18324 // C++11 defect. The address of a pure member should not be an ODR use, even
18325 // if it's a qualified reference.
18326 bool OdrUse = true;
18327 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
18328 if (Method->isVirtual() &&
18329 !Method->getDevirtualizedMethod(Base, getLangOpts().AppleKext))
18330 OdrUse = false;
18331
18332 if (auto *FD = dyn_cast<FunctionDecl>(E->getDecl()))
18333 if (!isConstantEvaluated() && FD->isConsteval() &&
18334 !RebuildingImmediateInvocation)
18335 ExprEvalContexts.back().ReferenceToConsteval.insert(E);
18336 MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
18337}
18338
18339/// Perform reference-marking and odr-use handling for a MemberExpr.
18340void Sema::MarkMemberReferenced(MemberExpr *E) {
18341 // C++11 [basic.def.odr]p2:
18342 // A non-overloaded function whose name appears as a potentially-evaluated
18343 // expression or a member of a set of candidate functions, if selected by
18344 // overload resolution when referred to from a potentially-evaluated
18345 // expression, is odr-used, unless it is a pure virtual function and its
18346 // name is not explicitly qualified.
18347 bool MightBeOdrUse = true;
18348 if (E->performsVirtualDispatch(getLangOpts())) {
18349 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
18350 if (Method->isPure())
18351 MightBeOdrUse = false;
18352 }
18353 SourceLocation Loc =
18354 E->getMemberLoc().isValid() ? E->getMemberLoc() : E->getBeginLoc();
18355 MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, MightBeOdrUse);
18356}
18357
18358/// Perform reference-marking and odr-use handling for a FunctionParmPackExpr.
18359void Sema::MarkFunctionParmPackReferenced(FunctionParmPackExpr *E) {
18360 for (VarDecl *VD : *E)
18361 MarkExprReferenced(*this, E->getParameterPackLocation(), VD, E, true);
18362}
18363
18364/// Perform marking for a reference to an arbitrary declaration. It
18365/// marks the declaration referenced, and performs odr-use checking for
18366/// functions and variables. This method should not be used when building a
18367/// normal expression which refers to a variable.
18368void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D,
18369 bool MightBeOdrUse) {
18370 if (MightBeOdrUse) {
18371 if (auto *VD = dyn_cast<VarDecl>(D)) {
18372 MarkVariableReferenced(Loc, VD);
18373 return;
18374 }
18375 }
18376 if (auto *FD = dyn_cast<FunctionDecl>(D)) {
18377 MarkFunctionReferenced(Loc, FD, MightBeOdrUse);
18378 return;
18379 }
18380 D->setReferenced();
18381}
18382
18383namespace {
18384 // Mark all of the declarations used by a type as referenced.
18385 // FIXME: Not fully implemented yet! We need to have a better understanding
18386 // of when we're entering a context we should not recurse into.
18387 // FIXME: This is and EvaluatedExprMarker are more-or-less equivalent to
18388 // TreeTransforms rebuilding the type in a new context. Rather than
18389 // duplicating the TreeTransform logic, we should consider reusing it here.
18390 // Currently that causes problems when rebuilding LambdaExprs.
18391 class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
18392 Sema &S;
18393 SourceLocation Loc;
18394
18395 public:
18396 typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
18397
18398 MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
18399
18400 bool TraverseTemplateArgument(const TemplateArgument &Arg);
18401 };
18402}
18403
18404bool MarkReferencedDecls::TraverseTemplateArgument(
18405 const TemplateArgument &Arg) {
18406 {
18407 // A non-type template argument is a constant-evaluated context.
18408 EnterExpressionEvaluationContext Evaluated(
18409 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
18410 if (Arg.getKind() == TemplateArgument::Declaration) {
18411 if (Decl *D = Arg.getAsDecl())
18412 S.MarkAnyDeclReferenced(Loc, D, true);
18413 } else if (Arg.getKind() == TemplateArgument::Expression) {
18414 S.MarkDeclarationsReferencedInExpr(Arg.getAsExpr(), false);
18415 }
18416 }
18417
18418 return Inherited::TraverseTemplateArgument(Arg);
18419}
18420
18421void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
18422 MarkReferencedDecls Marker(*this, Loc);
18423 Marker.TraverseType(T);
18424}
18425
18426namespace {
18427/// Helper class that marks all of the declarations referenced by
18428/// potentially-evaluated subexpressions as "referenced".
18429class EvaluatedExprMarker : public UsedDeclVisitor<EvaluatedExprMarker> {
18430public:
18431 typedef UsedDeclVisitor<EvaluatedExprMarker> Inherited;
18432 bool SkipLocalVariables;
18433
18434 EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
18435 : Inherited(S), SkipLocalVariables(SkipLocalVariables) {}
18436
18437 void visitUsedDecl(SourceLocation Loc, Decl *D) {
18438 S.MarkFunctionReferenced(Loc, cast<FunctionDecl>(D));
18439 }
18440
18441 void VisitDeclRefExpr(DeclRefExpr *E) {
18442 // If we were asked not to visit local variables, don't.
18443 if (SkipLocalVariables) {
18444 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
18445 if (VD->hasLocalStorage())
18446 return;
18447 }
18448
18449 // FIXME: This can trigger the instantiation of the initializer of a
18450 // variable, which can cause the expression to become value-dependent
18451 // or error-dependent. Do we need to propagate the new dependence bits?
18452 S.MarkDeclRefReferenced(E);
18453 }
18454
18455 void VisitMemberExpr(MemberExpr *E) {
18456 S.MarkMemberReferenced(E);
18457 Visit(E->getBase());
18458 }
18459};
18460} // namespace
18461
18462/// Mark any declarations that appear within this expression or any
18463/// potentially-evaluated subexpressions as "referenced".
18464///
18465/// \param SkipLocalVariables If true, don't mark local variables as
18466/// 'referenced'.
18467void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
18468 bool SkipLocalVariables) {
18469 EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
18470}
18471
18472/// Emit a diagnostic that describes an effect on the run-time behavior
18473/// of the program being compiled.
18474///
18475/// This routine emits the given diagnostic when the code currently being
18476/// type-checked is "potentially evaluated", meaning that there is a
18477/// possibility that the code will actually be executable. Code in sizeof()
18478/// expressions, code used only during overload resolution, etc., are not
18479/// potentially evaluated. This routine will suppress such diagnostics or,
18480/// in the absolutely nutty case of potentially potentially evaluated
18481/// expressions (C++ typeid), queue the diagnostic to potentially emit it
18482/// later.
18483///
18484/// This routine should be used for all diagnostics that describe the run-time
18485/// behavior of a program, such as passing a non-POD value through an ellipsis.
18486/// Failure to do so will likely result in spurious diagnostics or failures
18487/// during overload resolution or within sizeof/alignof/typeof/typeid.
18488bool Sema::DiagRuntimeBehavior(SourceLocation Loc, ArrayRef<const Stmt*> Stmts,
18489 const PartialDiagnostic &PD) {
18490 switch (ExprEvalContexts.back().Context) {
18491 case ExpressionEvaluationContext::Unevaluated:
18492 case ExpressionEvaluationContext::UnevaluatedList:
18493 case ExpressionEvaluationContext::UnevaluatedAbstract:
18494 case ExpressionEvaluationContext::DiscardedStatement:
18495 // The argument will never be evaluated, so don't complain.
18496 break;
18497
18498 case ExpressionEvaluationContext::ConstantEvaluated:
18499 // Relevant diagnostics should be produced by constant evaluation.
18500 break;
18501
18502 case ExpressionEvaluationContext::PotentiallyEvaluated:
18503 case ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
18504 if (!Stmts.empty() && getCurFunctionOrMethodDecl()) {
18505 FunctionScopes.back()->PossiblyUnreachableDiags.
18506 push_back(sema::PossiblyUnreachableDiag(PD, Loc, Stmts));
18507 return true;
18508 }
18509
18510 // The initializer of a constexpr variable or of the first declaration of a
18511 // static data member is not syntactically a constant evaluated constant,
18512 // but nonetheless is always required to be a constant expression, so we
18513 // can skip diagnosing.
18514 // FIXME: Using the mangling context here is a hack.
18515 if (auto *VD = dyn_cast_or_null<VarDecl>(
18516 ExprEvalContexts.back().ManglingContextDecl)) {
18517 if (VD->isConstexpr() ||
18518 (VD->isStaticDataMember() && VD->isFirstDecl() && !VD->isInline()))
18519 break;
18520 // FIXME: For any other kind of variable, we should build a CFG for its
18521 // initializer and check whether the context in question is reachable.
18522 }
18523
18524 Diag(Loc, PD);
18525 return true;
18526 }
18527
18528 return false;
18529}
18530
18531bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
18532 const PartialDiagnostic &PD) {
18533 return DiagRuntimeBehavior(
18534 Loc, Statement ? llvm::makeArrayRef(Statement) : llvm::None, PD);
18535}
18536
18537bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
18538 CallExpr *CE, FunctionDecl *FD) {
18539 if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
18540 return false;
18541
18542 // If we're inside a decltype's expression, don't check for a valid return
18543 // type or construct temporaries until we know whether this is the last call.
18544 if (ExprEvalContexts.back().ExprContext ==
18545 ExpressionEvaluationContextRecord::EK_Decltype) {
18546 ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
18547 return false;
18548 }
18549
18550 class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
18551 FunctionDecl *FD;
18552 CallExpr *CE;
18553
18554 public:
18555 CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
18556 : FD(FD), CE(CE) { }
18557
18558 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
18559 if (!FD) {
18560 S.Diag(Loc, diag::err_call_incomplete_return)
18561 << T << CE->getSourceRange();
18562 return;
18563 }
18564
18565 S.Diag(Loc, diag::err_call_function_incomplete_return)
18566 << CE->getSourceRange() << FD << T;
18567 S.Diag(FD->getLocation(), diag::note_entity_declared_at)
18568 << FD->getDeclName();
18569 }
18570 } Diagnoser(FD, CE);
18571
18572 if (RequireCompleteType(Loc, ReturnType, Diagnoser))
18573 return true;
18574
18575 return false;
18576}
18577
18578// Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
18579// will prevent this condition from triggering, which is what we want.
18580void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
18581 SourceLocation Loc;
18582
18583 unsigned diagnostic = diag::warn_condition_is_assignment;
18584 bool IsOrAssign = false;
18585
18586 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
18587 if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
18588 return;
18589
18590 IsOrAssign = Op->getOpcode() == BO_OrAssign;
18591
18592 // Greylist some idioms by putting them into a warning subcategory.
18593 if (ObjCMessageExpr *ME
18594 = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
18595 Selector Sel = ME->getSelector();
18596
18597 // self = [<foo> init...]
18598 if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
18599 diagnostic = diag::warn_condition_is_idiomatic_assignment;
18600
18601 // <foo> = [<bar> nextObject]
18602 else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
18603 diagnostic = diag::warn_condition_is_idiomatic_assignment;
18604 }
18605
18606 Loc = Op->getOperatorLoc();
18607 } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
18608 if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
18609 return;
18610
18611 IsOrAssign = Op->getOperator() == OO_PipeEqual;
18612 Loc = Op->getOperatorLoc();
18613 } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
18614 return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
18615 else {
18616 // Not an assignment.
18617 return;
18618 }
18619
18620 Diag(Loc, diagnostic) << E->getSourceRange();
18621
18622 SourceLocation Open = E->getBeginLoc();
18623 SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
18624 Diag(Loc, diag::note_condition_assign_silence)
18625 << FixItHint::CreateInsertion(Open, "(")
18626 << FixItHint::CreateInsertion(Close, ")");
18627
18628 if (IsOrAssign)
18629 Diag(Loc, diag::note_condition_or_assign_to_comparison)
18630 << FixItHint::CreateReplacement(Loc, "!=");
18631 else
18632 Diag(Loc, diag::note_condition_assign_to_comparison)
18633 << FixItHint::CreateReplacement(Loc, "==");
18634}
18635
18636/// Redundant parentheses over an equality comparison can indicate
18637/// that the user intended an assignment used as condition.
18638void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
18639 // Don't warn if the parens came from a macro.
18640 SourceLocation parenLoc = ParenE->getBeginLoc();
18641 if (parenLoc.isInvalid() || parenLoc.isMacroID())
18642 return;
18643 // Don't warn for dependent expressions.
18644 if (ParenE->isTypeDependent())
18645 return;
18646
18647 Expr *E = ParenE->IgnoreParens();
18648
18649 if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
18650 if (opE->getOpcode() == BO_EQ &&
18651 opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
18652 == Expr::MLV_Valid) {
18653 SourceLocation Loc = opE->getOperatorLoc();
18654
18655 Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
18656 SourceRange ParenERange = ParenE->getSourceRange();
18657 Diag(Loc, diag::note_equality_comparison_silence)
18658 << FixItHint::CreateRemoval(ParenERange.getBegin())
18659 << FixItHint::CreateRemoval(ParenERange.getEnd());
18660 Diag(Loc, diag::note_equality_comparison_to_assign)
18661 << FixItHint::CreateReplacement(Loc, "=");
18662 }
18663}
18664
18665ExprResult Sema::CheckBooleanCondition(SourceLocation Loc, Expr *E,
18666 bool IsConstexpr) {
18667 DiagnoseAssignmentAsCondition(E);
18668 if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
18669 DiagnoseEqualityWithExtraParens(parenE);
18670
18671 ExprResult result = CheckPlaceholderExpr(E);
18672 if (result.isInvalid()) return ExprError();
18673 E = result.get();
18674
18675 if (!E->isTypeDependent()) {
18676 if (getLangOpts().CPlusPlus)
18677 return CheckCXXBooleanCondition(E, IsConstexpr); // C++ 6.4p4
18678
18679 ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
18680 if (ERes.isInvalid())
18681 return ExprError();
18682 E = ERes.get();
18683
18684 QualType T = E->getType();
18685 if (!T->isScalarType()) { // C99 6.8.4.1p1
18686 Diag(Loc, diag::err_typecheck_statement_requires_scalar)
18687 << T << E->getSourceRange();
18688 return ExprError();
18689 }
18690 CheckBoolLikeConversion(E, Loc);
18691 }
18692
18693 return E;
18694}
18695
18696Sema::ConditionResult Sema::ActOnCondition(Scope *S, SourceLocation Loc,
18697 Expr *SubExpr, ConditionKind CK) {
18698 // Empty conditions are valid in for-statements.
18699 if (!SubExpr)
18700 return ConditionResult();
18701
18702 ExprResult Cond;
18703 switch (CK) {
18704 case ConditionKind::Boolean:
18705 Cond = CheckBooleanCondition(Loc, SubExpr);
18706 break;
18707
18708 case ConditionKind::ConstexprIf:
18709 Cond = CheckBooleanCondition(Loc, SubExpr, true);
18710 break;
18711
18712 case ConditionKind::Switch:
18713 Cond = CheckSwitchCondition(Loc, SubExpr);
18714 break;
18715 }
18716 if (Cond.isInvalid()) {
18717 Cond = CreateRecoveryExpr(SubExpr->getBeginLoc(), SubExpr->getEndLoc(),
18718 {SubExpr});
18719 if (!Cond.get())
18720 return ConditionError();
18721 }
18722 // FIXME: FullExprArg doesn't have an invalid bit, so check nullness instead.
18723 FullExprArg FullExpr = MakeFullExpr(Cond.get(), Loc);
18724 if (!FullExpr.get())
18725 return ConditionError();
18726
18727 return ConditionResult(*this, nullptr, FullExpr,
18728 CK == ConditionKind::ConstexprIf);
18729}
18730
18731namespace {
18732 /// A visitor for rebuilding a call to an __unknown_any expression
18733 /// to have an appropriate type.
18734 struct RebuildUnknownAnyFunction
18735 : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
18736
18737 Sema &S;
18738
18739 RebuildUnknownAnyFunction(Sema &S) : S(S) {}
18740
18741 ExprResult VisitStmt(Stmt *S) {
18742 llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18742)
;
18743 }
18744
18745 ExprResult VisitExpr(Expr *E) {
18746 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
18747 << E->getSourceRange();
18748 return ExprError();
18749 }
18750
18751 /// Rebuild an expression which simply semantically wraps another
18752 /// expression which it shares the type and value kind of.
18753 template <class T> ExprResult rebuildSugarExpr(T *E) {
18754 ExprResult SubResult = Visit(E->getSubExpr());
18755 if (SubResult.isInvalid()) return ExprError();
18756
18757 Expr *SubExpr = SubResult.get();
18758 E->setSubExpr(SubExpr);
18759 E->setType(SubExpr->getType());
18760 E->setValueKind(SubExpr->getValueKind());
18761 assert(E->getObjectKind() == OK_Ordinary)((E->getObjectKind() == OK_Ordinary) ? static_cast<void
> (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18761, __PRETTY_FUNCTION__))
;
18762 return E;
18763 }
18764
18765 ExprResult VisitParenExpr(ParenExpr *E) {
18766 return rebuildSugarExpr(E);
18767 }
18768
18769 ExprResult VisitUnaryExtension(UnaryOperator *E) {
18770 return rebuildSugarExpr(E);
18771 }
18772
18773 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
18774 ExprResult SubResult = Visit(E->getSubExpr());
18775 if (SubResult.isInvalid()) return ExprError();
18776
18777 Expr *SubExpr = SubResult.get();
18778 E->setSubExpr(SubExpr);
18779 E->setType(S.Context.getPointerType(SubExpr->getType()));
18780 assert(E->getValueKind() == VK_RValue)((E->getValueKind() == VK_RValue) ? static_cast<void>
(0) : __assert_fail ("E->getValueKind() == VK_RValue", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18780, __PRETTY_FUNCTION__))
;
18781 assert(E->getObjectKind() == OK_Ordinary)((E->getObjectKind() == OK_Ordinary) ? static_cast<void
> (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18781, __PRETTY_FUNCTION__))
;
18782 return E;
18783 }
18784
18785 ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
18786 if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
18787
18788 E->setType(VD->getType());
18789
18790 assert(E->getValueKind() == VK_RValue)((E->getValueKind() == VK_RValue) ? static_cast<void>
(0) : __assert_fail ("E->getValueKind() == VK_RValue", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18790, __PRETTY_FUNCTION__))
;
18791 if (S.getLangOpts().CPlusPlus &&
18792 !(isa<CXXMethodDecl>(VD) &&
18793 cast<CXXMethodDecl>(VD)->isInstance()))
18794 E->setValueKind(VK_LValue);
18795
18796 return E;
18797 }
18798
18799 ExprResult VisitMemberExpr(MemberExpr *E) {
18800 return resolveDecl(E, E->getMemberDecl());
18801 }
18802
18803 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
18804 return resolveDecl(E, E->getDecl());
18805 }
18806 };
18807}
18808
18809/// Given a function expression of unknown-any type, try to rebuild it
18810/// to have a function type.
18811static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
18812 ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
18813 if (Result.isInvalid()) return ExprError();
18814 return S.DefaultFunctionArrayConversion(Result.get());
18815}
18816
18817namespace {
18818 /// A visitor for rebuilding an expression of type __unknown_anytype
18819 /// into one which resolves the type directly on the referring
18820 /// expression. Strict preservation of the original source
18821 /// structure is not a goal.
18822 struct RebuildUnknownAnyExpr
18823 : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
18824
18825 Sema &S;
18826
18827 /// The current destination type.
18828 QualType DestType;
18829
18830 RebuildUnknownAnyExpr(Sema &S, QualType CastType)
18831 : S(S), DestType(CastType) {}
18832
18833 ExprResult VisitStmt(Stmt *S) {
18834 llvm_unreachable("unexpected statement!")::llvm::llvm_unreachable_internal("unexpected statement!", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18834)
;
18835 }
18836
18837 ExprResult VisitExpr(Expr *E) {
18838 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
18839 << E->getSourceRange();
18840 return ExprError();
18841 }
18842
18843 ExprResult VisitCallExpr(CallExpr *E);
18844 ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
18845
18846 /// Rebuild an expression which simply semantically wraps another
18847 /// expression which it shares the type and value kind of.
18848 template <class T> ExprResult rebuildSugarExpr(T *E) {
18849 ExprResult SubResult = Visit(E->getSubExpr());
18850 if (SubResult.isInvalid()) return ExprError();
18851 Expr *SubExpr = SubResult.get();
18852 E->setSubExpr(SubExpr);
18853 E->setType(SubExpr->getType());
18854 E->setValueKind(SubExpr->getValueKind());
18855 assert(E->getObjectKind() == OK_Ordinary)((E->getObjectKind() == OK_Ordinary) ? static_cast<void
> (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18855, __PRETTY_FUNCTION__))
;
18856 return E;
18857 }
18858
18859 ExprResult VisitParenExpr(ParenExpr *E) {
18860 return rebuildSugarExpr(E);
18861 }
18862
18863 ExprResult VisitUnaryExtension(UnaryOperator *E) {
18864 return rebuildSugarExpr(E);
18865 }
18866
18867 ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
18868 const PointerType *Ptr = DestType->getAs<PointerType>();
18869 if (!Ptr) {
18870 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
18871 << E->getSourceRange();
18872 return ExprError();
18873 }
18874
18875 if (isa<CallExpr>(E->getSubExpr())) {
18876 S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof_call)
18877 << E->getSourceRange();
18878 return ExprError();
18879 }
18880
18881 assert(E->getValueKind() == VK_RValue)((E->getValueKind() == VK_RValue) ? static_cast<void>
(0) : __assert_fail ("E->getValueKind() == VK_RValue", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18881, __PRETTY_FUNCTION__))
;
18882 assert(E->getObjectKind() == OK_Ordinary)((E->getObjectKind() == OK_Ordinary) ? static_cast<void
> (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18882, __PRETTY_FUNCTION__))
;
18883 E->setType(DestType);
18884
18885 // Build the sub-expression as if it were an object of the pointee type.
18886 DestType = Ptr->getPointeeType();
18887 ExprResult SubResult = Visit(E->getSubExpr());
18888 if (SubResult.isInvalid()) return ExprError();
18889 E->setSubExpr(SubResult.get());
18890 return E;
18891 }
18892
18893 ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
18894
18895 ExprResult resolveDecl(Expr *E, ValueDecl *VD);
18896
18897 ExprResult VisitMemberExpr(MemberExpr *E) {
18898 return resolveDecl(E, E->getMemberDecl());
18899 }
18900
18901 ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
18902 return resolveDecl(E, E->getDecl());
18903 }
18904 };
18905}
18906
18907/// Rebuilds a call expression which yielded __unknown_anytype.
18908ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
18909 Expr *CalleeExpr = E->getCallee();
18910
18911 enum FnKind {
18912 FK_MemberFunction,
18913 FK_FunctionPointer,
18914 FK_BlockPointer
18915 };
18916
18917 FnKind Kind;
18918 QualType CalleeType = CalleeExpr->getType();
18919 if (CalleeType == S.Context.BoundMemberTy) {
18920 assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E))((isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr
>(E)) ? static_cast<void> (0) : __assert_fail ("isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E)"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18920, __PRETTY_FUNCTION__))
;
18921 Kind = FK_MemberFunction;
18922 CalleeType = Expr::findBoundMemberType(CalleeExpr);
18923 } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
18924 CalleeType = Ptr->getPointeeType();
18925 Kind = FK_FunctionPointer;
18926 } else {
18927 CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
18928 Kind = FK_BlockPointer;
18929 }
18930 const FunctionType *FnType = CalleeType->castAs<FunctionType>();
18931
18932 // Verify that this is a legal result type of a function.
18933 if (DestType->isArrayType() || DestType->isFunctionType()) {
18934 unsigned diagID = diag::err_func_returning_array_function;
18935 if (Kind == FK_BlockPointer)
18936 diagID = diag::err_block_returning_array_function;
18937
18938 S.Diag(E->getExprLoc(), diagID)
18939 << DestType->isFunctionType() << DestType;
18940 return ExprError();
18941 }
18942
18943 // Otherwise, go ahead and set DestType as the call's result.
18944 E->setType(DestType.getNonLValueExprType(S.Context));
18945 E->setValueKind(Expr::getValueKindForType(DestType));
18946 assert(E->getObjectKind() == OK_Ordinary)((E->getObjectKind() == OK_Ordinary) ? static_cast<void
> (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 18946, __PRETTY_FUNCTION__))
;
18947
18948 // Rebuild the function type, replacing the result type with DestType.
18949 const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
18950 if (Proto) {
18951 // __unknown_anytype(...) is a special case used by the debugger when
18952 // it has no idea what a function's signature is.
18953 //
18954 // We want to build this call essentially under the K&R
18955 // unprototyped rules, but making a FunctionNoProtoType in C++
18956 // would foul up all sorts of assumptions. However, we cannot
18957 // simply pass all arguments as variadic arguments, nor can we
18958 // portably just call the function under a non-variadic type; see
18959 // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
18960 // However, it turns out that in practice it is generally safe to
18961 // call a function declared as "A foo(B,C,D);" under the prototype
18962 // "A foo(B,C,D,...);". The only known exception is with the
18963 // Windows ABI, where any variadic function is implicitly cdecl
18964 // regardless of its normal CC. Therefore we change the parameter
18965 // types to match the types of the arguments.
18966 //
18967 // This is a hack, but it is far superior to moving the
18968 // corresponding target-specific code from IR-gen to Sema/AST.
18969
18970 ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
18971 SmallVector<QualType, 8> ArgTypes;
18972 if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
18973 ArgTypes.reserve(E->getNumArgs());
18974 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
18975 Expr *Arg = E->getArg(i);
18976 QualType ArgType = Arg->getType();
18977 if (E->isLValue()) {
18978 ArgType = S.Context.getLValueReferenceType(ArgType);
18979 } else if (E->isXValue()) {
18980 ArgType = S.Context.getRValueReferenceType(ArgType);
18981 }
18982 ArgTypes.push_back(ArgType);
18983 }
18984 ParamTypes = ArgTypes;
18985 }
18986 DestType = S.Context.getFunctionType(DestType, ParamTypes,
18987 Proto->getExtProtoInfo());
18988 } else {
18989 DestType = S.Context.getFunctionNoProtoType(DestType,
18990 FnType->getExtInfo());
18991 }
18992
18993 // Rebuild the appropriate pointer-to-function type.
18994 switch (Kind) {
18995 case FK_MemberFunction:
18996 // Nothing to do.
18997 break;
18998
18999 case FK_FunctionPointer:
19000 DestType = S.Context.getPointerType(DestType);
19001 break;
19002
19003 case FK_BlockPointer:
19004 DestType = S.Context.getBlockPointerType(DestType);
19005 break;
19006 }
19007
19008 // Finally, we can recurse.
19009 ExprResult CalleeResult = Visit(CalleeExpr);
19010 if (!CalleeResult.isUsable()) return ExprError();
19011 E->setCallee(CalleeResult.get());
19012
19013 // Bind a temporary if necessary.
19014 return S.MaybeBindToTemporary(E);
19015}
19016
19017ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
19018 // Verify that this is a legal result type of a call.
19019 if (DestType->isArrayType() || DestType->isFunctionType()) {
19020 S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
19021 << DestType->isFunctionType() << DestType;
19022 return ExprError();
19023 }
19024
19025 // Rewrite the method result type if available.
19026 if (ObjCMethodDecl *Method = E->getMethodDecl()) {
19027 assert(Method->getReturnType() == S.Context.UnknownAnyTy)((Method->getReturnType() == S.Context.UnknownAnyTy) ? static_cast
<void> (0) : __assert_fail ("Method->getReturnType() == S.Context.UnknownAnyTy"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19027, __PRETTY_FUNCTION__))
;
19028 Method->setReturnType(DestType);
19029 }
19030
19031 // Change the type of the message.
19032 E->setType(DestType.getNonReferenceType());
19033 E->setValueKind(Expr::getValueKindForType(DestType));
19034
19035 return S.MaybeBindToTemporary(E);
19036}
19037
19038ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
19039 // The only case we should ever see here is a function-to-pointer decay.
19040 if (E->getCastKind() == CK_FunctionToPointerDecay) {
19041 assert(E->getValueKind() == VK_RValue)((E->getValueKind() == VK_RValue) ? static_cast<void>
(0) : __assert_fail ("E->getValueKind() == VK_RValue", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19041, __PRETTY_FUNCTION__))
;
19042 assert(E->getObjectKind() == OK_Ordinary)((E->getObjectKind() == OK_Ordinary) ? static_cast<void
> (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19042, __PRETTY_FUNCTION__))
;
19043
19044 E->setType(DestType);
19045
19046 // Rebuild the sub-expression as the pointee (function) type.
19047 DestType = DestType->castAs<PointerType>()->getPointeeType();
19048
19049 ExprResult Result = Visit(E->getSubExpr());
19050 if (!Result.isUsable()) return ExprError();
19051
19052 E->setSubExpr(Result.get());
19053 return E;
19054 } else if (E->getCastKind() == CK_LValueToRValue) {
19055 assert(E->getValueKind() == VK_RValue)((E->getValueKind() == VK_RValue) ? static_cast<void>
(0) : __assert_fail ("E->getValueKind() == VK_RValue", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19055, __PRETTY_FUNCTION__))
;
19056 assert(E->getObjectKind() == OK_Ordinary)((E->getObjectKind() == OK_Ordinary) ? static_cast<void
> (0) : __assert_fail ("E->getObjectKind() == OK_Ordinary"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19056, __PRETTY_FUNCTION__))
;
19057
19058 assert(isa<BlockPointerType>(E->getType()))((isa<BlockPointerType>(E->getType())) ? static_cast
<void> (0) : __assert_fail ("isa<BlockPointerType>(E->getType())"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19058, __PRETTY_FUNCTION__))
;
19059
19060 E->setType(DestType);
19061
19062 // The sub-expression has to be a lvalue reference, so rebuild it as such.
19063 DestType = S.Context.getLValueReferenceType(DestType);
19064
19065 ExprResult Result = Visit(E->getSubExpr());
19066 if (!Result.isUsable()) return ExprError();
19067
19068 E->setSubExpr(Result.get());
19069 return E;
19070 } else {
19071 llvm_unreachable("Unhandled cast type!")::llvm::llvm_unreachable_internal("Unhandled cast type!", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19071)
;
19072 }
19073}
19074
19075ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
19076 ExprValueKind ValueKind = VK_LValue;
19077 QualType Type = DestType;
19078
19079 // We know how to make this work for certain kinds of decls:
19080
19081 // - functions
19082 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
19083 if (const PointerType *Ptr = Type->getAs<PointerType>()) {
19084 DestType = Ptr->getPointeeType();
19085 ExprResult Result = resolveDecl(E, VD);
19086 if (Result.isInvalid()) return ExprError();
19087 return S.ImpCastExprToType(Result.get(), Type,
19088 CK_FunctionToPointerDecay, VK_RValue);
19089 }
19090
19091 if (!Type->isFunctionType()) {
19092 S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
19093 << VD << E->getSourceRange();
19094 return ExprError();
19095 }
19096 if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
19097 // We must match the FunctionDecl's type to the hack introduced in
19098 // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
19099 // type. See the lengthy commentary in that routine.
19100 QualType FDT = FD->getType();
19101 const FunctionType *FnType = FDT->castAs<FunctionType>();
19102 const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
19103 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
19104 if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
19105 SourceLocation Loc = FD->getLocation();
19106 FunctionDecl *NewFD = FunctionDecl::Create(
19107 S.Context, FD->getDeclContext(), Loc, Loc,
19108 FD->getNameInfo().getName(), DestType, FD->getTypeSourceInfo(),
19109 SC_None, false /*isInlineSpecified*/, FD->hasPrototype(),
19110 /*ConstexprKind*/ ConstexprSpecKind::Unspecified);
19111
19112 if (FD->getQualifier())
19113 NewFD->setQualifierInfo(FD->getQualifierLoc());
19114
19115 SmallVector<ParmVarDecl*, 16> Params;
19116 for (const auto &AI : FT->param_types()) {
19117 ParmVarDecl *Param =
19118 S.BuildParmVarDeclForTypedef(FD, Loc, AI);
19119 Param->setScopeInfo(0, Params.size());
19120 Params.push_back(Param);
19121 }
19122 NewFD->setParams(Params);
19123 DRE->setDecl(NewFD);
19124 VD = DRE->getDecl();
19125 }
19126 }
19127
19128 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
19129 if (MD->isInstance()) {
19130 ValueKind = VK_RValue;
19131 Type = S.Context.BoundMemberTy;
19132 }
19133
19134 // Function references aren't l-values in C.
19135 if (!S.getLangOpts().CPlusPlus)
19136 ValueKind = VK_RValue;
19137
19138 // - variables
19139 } else if (isa<VarDecl>(VD)) {
19140 if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
19141 Type = RefTy->getPointeeType();
19142 } else if (Type->isFunctionType()) {
19143 S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
19144 << VD << E->getSourceRange();
19145 return ExprError();
19146 }
19147
19148 // - nothing else
19149 } else {
19150 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
19151 << VD << E->getSourceRange();
19152 return ExprError();
19153 }
19154
19155 // Modifying the declaration like this is friendly to IR-gen but
19156 // also really dangerous.
19157 VD->setType(DestType);
19158 E->setType(Type);
19159 E->setValueKind(ValueKind);
19160 return E;
19161}
19162
19163/// Check a cast of an unknown-any type. We intentionally only
19164/// trigger this for C-style casts.
19165ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
19166 Expr *CastExpr, CastKind &CastKind,
19167 ExprValueKind &VK, CXXCastPath &Path) {
19168 // The type we're casting to must be either void or complete.
19169 if (!CastType->isVoidType() &&
19170 RequireCompleteType(TypeRange.getBegin(), CastType,
19171 diag::err_typecheck_cast_to_incomplete))
19172 return ExprError();
19173
19174 // Rewrite the casted expression from scratch.
19175 ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
19176 if (!result.isUsable()) return ExprError();
19177
19178 CastExpr = result.get();
19179 VK = CastExpr->getValueKind();
19180 CastKind = CK_NoOp;
19181
19182 return CastExpr;
19183}
19184
19185ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
19186 return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
19187}
19188
19189ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
19190 Expr *arg, QualType &paramType) {
19191 // If the syntactic form of the argument is not an explicit cast of
19192 // any sort, just do default argument promotion.
19193 ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
19194 if (!castArg) {
19195 ExprResult result = DefaultArgumentPromotion(arg);
19196 if (result.isInvalid()) return ExprError();
19197 paramType = result.get()->getType();
19198 return result;
19199 }
19200
19201 // Otherwise, use the type that was written in the explicit cast.
19202 assert(!arg->hasPlaceholderType())((!arg->hasPlaceholderType()) ? static_cast<void> (0
) : __assert_fail ("!arg->hasPlaceholderType()", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19202, __PRETTY_FUNCTION__))
;
19203 paramType = castArg->getTypeAsWritten();
19204
19205 // Copy-initialize a parameter of that type.
19206 InitializedEntity entity =
19207 InitializedEntity::InitializeParameter(Context, paramType,
19208 /*consumed*/ false);
19209 return PerformCopyInitialization(entity, callLoc, arg);
19210}
19211
19212static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
19213 Expr *orig = E;
19214 unsigned diagID = diag::err_uncasted_use_of_unknown_any;
19215 while (true) {
19216 E = E->IgnoreParenImpCasts();
19217 if (CallExpr *call = dyn_cast<CallExpr>(E)) {
19218 E = call->getCallee();
19219 diagID = diag::err_uncasted_call_of_unknown_any;
19220 } else {
19221 break;
19222 }
19223 }
19224
19225 SourceLocation loc;
19226 NamedDecl *d;
19227 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
19228 loc = ref->getLocation();
19229 d = ref->getDecl();
19230 } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
19231 loc = mem->getMemberLoc();
19232 d = mem->getMemberDecl();
19233 } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
19234 diagID = diag::err_uncasted_call_of_unknown_any;
19235 loc = msg->getSelectorStartLoc();
19236 d = msg->getMethodDecl();
19237 if (!d) {
19238 S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
19239 << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
19240 << orig->getSourceRange();
19241 return ExprError();
19242 }
19243 } else {
19244 S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
19245 << E->getSourceRange();
19246 return ExprError();
19247 }
19248
19249 S.Diag(loc, diagID) << d << orig->getSourceRange();
19250
19251 // Never recoverable.
19252 return ExprError();
19253}
19254
19255/// Check for operands with placeholder types and complain if found.
19256/// Returns ExprError() if there was an error and no recovery was possible.
19257ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
19258 if (!Context.isDependenceAllowed()) {
19259 // C cannot handle TypoExpr nodes on either side of a binop because it
19260 // doesn't handle dependent types properly, so make sure any TypoExprs have
19261 // been dealt with before checking the operands.
19262 ExprResult Result = CorrectDelayedTyposInExpr(E);
19263 if (!Result.isUsable()) return ExprError();
19264 E = Result.get();
19265 }
19266
19267 const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
19268 if (!placeholderType) return E;
19269
19270 switch (placeholderType->getKind()) {
19271
19272 // Overloaded expressions.
19273 case BuiltinType::Overload: {
19274 // Try to resolve a single function template specialization.
19275 // This is obligatory.
19276 ExprResult Result = E;
19277 if (ResolveAndFixSingleFunctionTemplateSpecialization(Result, false))
19278 return Result;
19279
19280 // No guarantees that ResolveAndFixSingleFunctionTemplateSpecialization
19281 // leaves Result unchanged on failure.
19282 Result = E;
19283 if (resolveAndFixAddressOfSingleOverloadCandidate(Result))
19284 return Result;
19285
19286 // If that failed, try to recover with a call.
19287 tryToRecoverWithCall(Result, PDiag(diag::err_ovl_unresolvable),
19288 /*complain*/ true);
19289 return Result;
19290 }
19291
19292 // Bound member functions.
19293 case BuiltinType::BoundMember: {
19294 ExprResult result = E;
19295 const Expr *BME = E->IgnoreParens();
19296 PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
19297 // Try to give a nicer diagnostic if it is a bound member that we recognize.
19298 if (isa<CXXPseudoDestructorExpr>(BME)) {
19299 PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
19300 } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
19301 if (ME->getMemberNameInfo().getName().getNameKind() ==
19302 DeclarationName::CXXDestructorName)
19303 PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
19304 }
19305 tryToRecoverWithCall(result, PD,
19306 /*complain*/ true);
19307 return result;
19308 }
19309
19310 // ARC unbridged casts.
19311 case BuiltinType::ARCUnbridgedCast: {
19312 Expr *realCast = stripARCUnbridgedCast(E);
19313 diagnoseARCUnbridgedCast(realCast);
19314 return realCast;
19315 }
19316
19317 // Expressions of unknown type.
19318 case BuiltinType::UnknownAny:
19319 return diagnoseUnknownAnyExpr(*this, E);
19320
19321 // Pseudo-objects.
19322 case BuiltinType::PseudoObject:
19323 return checkPseudoObjectRValue(E);
19324
19325 case BuiltinType::BuiltinFn: {
19326 // Accept __noop without parens by implicitly converting it to a call expr.
19327 auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
19328 if (DRE) {
19329 auto *FD = cast<FunctionDecl>(DRE->getDecl());
19330 if (FD->getBuiltinID() == Builtin::BI__noop) {
19331 E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
19332 CK_BuiltinFnToFnPtr)
19333 .get();
19334 return CallExpr::Create(Context, E, /*Args=*/{}, Context.IntTy,
19335 VK_RValue, SourceLocation(),
19336 FPOptionsOverride());
19337 }
19338 }
19339
19340 Diag(E->getBeginLoc(), diag::err_builtin_fn_use);
19341 return ExprError();
19342 }
19343
19344 case BuiltinType::IncompleteMatrixIdx:
19345 Diag(cast<MatrixSubscriptExpr>(E->IgnoreParens())
19346 ->getRowIdx()
19347 ->getBeginLoc(),
19348 diag::err_matrix_incomplete_index);
19349 return ExprError();
19350
19351 // Expressions of unknown type.
19352 case BuiltinType::OMPArraySection:
19353 Diag(E->getBeginLoc(), diag::err_omp_array_section_use);
19354 return ExprError();
19355
19356 // Expressions of unknown type.
19357 case BuiltinType::OMPArrayShaping:
19358 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_array_shaping_use));
19359
19360 case BuiltinType::OMPIterator:
19361 return ExprError(Diag(E->getBeginLoc(), diag::err_omp_iterator_use));
19362
19363 // Everything else should be impossible.
19364#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
19365 case BuiltinType::Id:
19366#include "clang/Basic/OpenCLImageTypes.def"
19367#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
19368 case BuiltinType::Id:
19369#include "clang/Basic/OpenCLExtensionTypes.def"
19370#define SVE_TYPE(Name, Id, SingletonId) \
19371 case BuiltinType::Id:
19372#include "clang/Basic/AArch64SVEACLETypes.def"
19373#define PPC_VECTOR_TYPE(Name, Id, Size) \
19374 case BuiltinType::Id:
19375#include "clang/Basic/PPCTypes.def"
19376#define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
19377#include "clang/Basic/RISCVVTypes.def"
19378#define BUILTIN_TYPE(Id, SingletonId) case BuiltinType::Id:
19379#define PLACEHOLDER_TYPE(Id, SingletonId)
19380#include "clang/AST/BuiltinTypes.def"
19381 break;
19382 }
19383
19384 llvm_unreachable("invalid placeholder type!")::llvm::llvm_unreachable_internal("invalid placeholder type!"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19384)
;
19385}
19386
19387bool Sema::CheckCaseExpression(Expr *E) {
19388 if (E->isTypeDependent())
19389 return true;
19390 if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
19391 return E->getType()->isIntegralOrEnumerationType();
19392 return false;
19393}
19394
19395/// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
19396ExprResult
19397Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
19398 assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&(((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
"Unknown Objective-C Boolean value!") ? static_cast<void>
(0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19399, __PRETTY_FUNCTION__))
19399 "Unknown Objective-C Boolean value!")(((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
"Unknown Objective-C Boolean value!") ? static_cast<void>
(0) : __assert_fail ("(Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) && \"Unknown Objective-C Boolean value!\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/lib/Sema/SemaExpr.cpp"
, 19399, __PRETTY_FUNCTION__))
;
19400 QualType BoolT = Context.ObjCBuiltinBoolTy;
19401 if (!Context.getBOOLDecl()) {
19402 LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
19403 Sema::LookupOrdinaryName);
19404 if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
19405 NamedDecl *ND = Result.getFoundDecl();
19406 if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
19407 Context.setBOOLDecl(TD);
19408 }
19409 }
19410 if (Context.getBOOLDecl())
19411 BoolT = Context.getBOOLType();
19412 return new (Context)
19413 ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
19414}
19415
19416ExprResult Sema::ActOnObjCAvailabilityCheckExpr(
19417 llvm::ArrayRef<AvailabilitySpec> AvailSpecs, SourceLocation AtLoc,
19418 SourceLocation RParen) {
19419
19420 StringRef Platform = getASTContext().getTargetInfo().getPlatformName();
19421
19422 auto Spec = llvm::find_if(AvailSpecs, [&](const AvailabilitySpec &Spec) {
19423 return Spec.getPlatform() == Platform;
19424 });
19425
19426 VersionTuple Version;
19427 if (Spec != AvailSpecs.end())
19428 Version = Spec->getVersion();
19429
19430 // The use of `@available` in the enclosing function should be analyzed to
19431 // warn when it's used inappropriately (i.e. not if(@available)).
19432 if (getCurFunctionOrMethodDecl())
19433 getEnclosingFunction()->HasPotentialAvailabilityViolations = true;
19434 else if (getCurBlock() || getCurLambda())
19435 getCurFunction()->HasPotentialAvailabilityViolations = true;
19436
19437 return new (Context)
19438 ObjCAvailabilityCheckExpr(Version, AtLoc, RParen, Context.BoolTy);
19439}
19440
19441ExprResult Sema::CreateRecoveryExpr(SourceLocation Begin, SourceLocation End,
19442 ArrayRef<Expr *> SubExprs, QualType T) {
19443 if (!Context.getLangOpts().RecoveryAST)
19444 return ExprError();
19445
19446 if (isSFINAEContext())
19447 return ExprError();
19448
19449 if (T.isNull() || !Context.getLangOpts().RecoveryASTType)
19450 // We don't know the concrete type, fallback to dependent type.
19451 T = Context.DependentTy;
19452 return RecoveryExpr::Create(Context, T, Begin, End, SubExprs);
19453}

/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/include/clang/AST/ASTContext.h

1//===- ASTContext.h - Context to hold long-lived AST nodes ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Defines the clang::ASTContext interface.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_CLANG_AST_ASTCONTEXT_H
15#define LLVM_CLANG_AST_ASTCONTEXT_H
16
17#include "clang/AST/ASTContextAllocate.h"
18#include "clang/AST/ASTFwd.h"
19#include "clang/AST/CanonicalType.h"
20#include "clang/AST/CommentCommandTraits.h"
21#include "clang/AST/ComparisonCategories.h"
22#include "clang/AST/Decl.h"
23#include "clang/AST/DeclBase.h"
24#include "clang/AST/DeclarationName.h"
25#include "clang/AST/ExternalASTSource.h"
26#include "clang/AST/NestedNameSpecifier.h"
27#include "clang/AST/PrettyPrinter.h"
28#include "clang/AST/RawCommentList.h"
29#include "clang/AST/TemplateName.h"
30#include "clang/AST/Type.h"
31#include "clang/Basic/AddressSpaces.h"
32#include "clang/Basic/AttrKinds.h"
33#include "clang/Basic/IdentifierTable.h"
34#include "clang/Basic/LLVM.h"
35#include "clang/Basic/LangOptions.h"
36#include "clang/Basic/Linkage.h"
37#include "clang/Basic/NoSanitizeList.h"
38#include "clang/Basic/OperatorKinds.h"
39#include "clang/Basic/PartialDiagnostic.h"
40#include "clang/Basic/ProfileList.h"
41#include "clang/Basic/SourceLocation.h"
42#include "clang/Basic/Specifiers.h"
43#include "clang/Basic/XRayLists.h"
44#include "llvm/ADT/APSInt.h"
45#include "llvm/ADT/ArrayRef.h"
46#include "llvm/ADT/DenseMap.h"
47#include "llvm/ADT/DenseSet.h"
48#include "llvm/ADT/FoldingSet.h"
49#include "llvm/ADT/IntrusiveRefCntPtr.h"
50#include "llvm/ADT/MapVector.h"
51#include "llvm/ADT/None.h"
52#include "llvm/ADT/Optional.h"
53#include "llvm/ADT/PointerIntPair.h"
54#include "llvm/ADT/PointerUnion.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/StringMap.h"
57#include "llvm/ADT/StringRef.h"
58#include "llvm/ADT/TinyPtrVector.h"
59#include "llvm/ADT/Triple.h"
60#include "llvm/ADT/iterator_range.h"
61#include "llvm/Support/AlignOf.h"
62#include "llvm/Support/Allocator.h"
63#include "llvm/Support/Casting.h"
64#include "llvm/Support/Compiler.h"
65#include "llvm/Support/TypeSize.h"
66#include <cassert>
67#include <cstddef>
68#include <cstdint>
69#include <iterator>
70#include <memory>
71#include <string>
72#include <type_traits>
73#include <utility>
74#include <vector>
75
76namespace llvm {
77
78class APFixedPoint;
79class FixedPointSemantics;
80struct fltSemantics;
81template <typename T, unsigned N> class SmallPtrSet;
82
83} // namespace llvm
84
85namespace clang {
86
87class APValue;
88class ASTMutationListener;
89class ASTRecordLayout;
90class AtomicExpr;
91class BlockExpr;
92class BuiltinTemplateDecl;
93class CharUnits;
94class ConceptDecl;
95class CXXABI;
96class CXXConstructorDecl;
97class CXXMethodDecl;
98class CXXRecordDecl;
99class DiagnosticsEngine;
100class ParentMapContext;
101class DynTypedNode;
102class DynTypedNodeList;
103class Expr;
104class GlobalDecl;
105class MangleContext;
106class MangleNumberingContext;
107class MaterializeTemporaryExpr;
108class MemberSpecializationInfo;
109class Module;
110struct MSGuidDeclParts;
111class ObjCCategoryDecl;
112class ObjCCategoryImplDecl;
113class ObjCContainerDecl;
114class ObjCImplDecl;
115class ObjCImplementationDecl;
116class ObjCInterfaceDecl;
117class ObjCIvarDecl;
118class ObjCMethodDecl;
119class ObjCPropertyDecl;
120class ObjCPropertyImplDecl;
121class ObjCProtocolDecl;
122class ObjCTypeParamDecl;
123class OMPTraitInfo;
124struct ParsedTargetAttr;
125class Preprocessor;
126class Stmt;
127class StoredDeclsMap;
128class TargetAttr;
129class TargetInfo;
130class TemplateDecl;
131class TemplateParameterList;
132class TemplateTemplateParmDecl;
133class TemplateTypeParmDecl;
134class UnresolvedSetIterator;
135class UsingShadowDecl;
136class VarTemplateDecl;
137class VTableContextBase;
138struct BlockVarCopyInit;
139
140namespace Builtin {
141
142class Context;
143
144} // namespace Builtin
145
146enum BuiltinTemplateKind : int;
147enum OpenCLTypeKind : uint8_t;
148
149namespace comments {
150
151class FullComment;
152
153} // namespace comments
154
155namespace interp {
156
157class Context;
158
159} // namespace interp
160
161namespace serialization {
162template <class> class AbstractTypeReader;
163} // namespace serialization
164
165struct TypeInfo {
166 uint64_t Width = 0;
167 unsigned Align = 0;
168 bool AlignIsRequired : 1;
169
170 TypeInfo() : AlignIsRequired(false) {}
171 TypeInfo(uint64_t Width, unsigned Align, bool AlignIsRequired)
172 : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
173};
174
175struct TypeInfoChars {
176 CharUnits Width;
177 CharUnits Align;
178 bool AlignIsRequired : 1;
179
180 TypeInfoChars() : AlignIsRequired(false) {}
181 TypeInfoChars(CharUnits Width, CharUnits Align, bool AlignIsRequired)
182 : Width(Width), Align(Align), AlignIsRequired(AlignIsRequired) {}
183};
184
185/// Holds long-lived AST nodes (such as types and decls) that can be
186/// referred to throughout the semantic analysis of a file.
187class ASTContext : public RefCountedBase<ASTContext> {
188 friend class NestedNameSpecifier;
189
190 mutable SmallVector<Type *, 0> Types;
191 mutable llvm::FoldingSet<ExtQuals> ExtQualNodes;
192 mutable llvm::FoldingSet<ComplexType> ComplexTypes;
193 mutable llvm::FoldingSet<PointerType> PointerTypes;
194 mutable llvm::FoldingSet<AdjustedType> AdjustedTypes;
195 mutable llvm::FoldingSet<BlockPointerType> BlockPointerTypes;
196 mutable llvm::FoldingSet<LValueReferenceType> LValueReferenceTypes;
197 mutable llvm::FoldingSet<RValueReferenceType> RValueReferenceTypes;
198 mutable llvm::FoldingSet<MemberPointerType> MemberPointerTypes;
199 mutable llvm::ContextualFoldingSet<ConstantArrayType, ASTContext &>
200 ConstantArrayTypes;
201 mutable llvm::FoldingSet<IncompleteArrayType> IncompleteArrayTypes;
202 mutable std::vector<VariableArrayType*> VariableArrayTypes;
203 mutable llvm::FoldingSet<DependentSizedArrayType> DependentSizedArrayTypes;
204 mutable llvm::FoldingSet<DependentSizedExtVectorType>
205 DependentSizedExtVectorTypes;
206 mutable llvm::FoldingSet<DependentAddressSpaceType>
207 DependentAddressSpaceTypes;
208 mutable llvm::FoldingSet<VectorType> VectorTypes;
209 mutable llvm::FoldingSet<DependentVectorType> DependentVectorTypes;
210 mutable llvm::FoldingSet<ConstantMatrixType> MatrixTypes;
211 mutable llvm::FoldingSet<DependentSizedMatrixType> DependentSizedMatrixTypes;
212 mutable llvm::FoldingSet<FunctionNoProtoType> FunctionNoProtoTypes;
213 mutable llvm::ContextualFoldingSet<FunctionProtoType, ASTContext&>
214 FunctionProtoTypes;
215 mutable llvm::FoldingSet<DependentTypeOfExprType> DependentTypeOfExprTypes;
216 mutable llvm::FoldingSet<DependentDecltypeType> DependentDecltypeTypes;
217 mutable llvm::FoldingSet<TemplateTypeParmType> TemplateTypeParmTypes;
218 mutable llvm::FoldingSet<ObjCTypeParamType> ObjCTypeParamTypes;
219 mutable llvm::FoldingSet<SubstTemplateTypeParmType>
220 SubstTemplateTypeParmTypes;
221 mutable llvm::FoldingSet<SubstTemplateTypeParmPackType>
222 SubstTemplateTypeParmPackTypes;
223 mutable llvm::ContextualFoldingSet<TemplateSpecializationType, ASTContext&>
224 TemplateSpecializationTypes;
225 mutable llvm::FoldingSet<ParenType> ParenTypes;
226 mutable llvm::FoldingSet<ElaboratedType> ElaboratedTypes;
227 mutable llvm::FoldingSet<DependentNameType> DependentNameTypes;
228 mutable llvm::ContextualFoldingSet<DependentTemplateSpecializationType,
229 ASTContext&>
230 DependentTemplateSpecializationTypes;
231 llvm::FoldingSet<PackExpansionType> PackExpansionTypes;
232 mutable llvm::FoldingSet<ObjCObjectTypeImpl> ObjCObjectTypes;
233 mutable llvm::FoldingSet<ObjCObjectPointerType> ObjCObjectPointerTypes;
234 mutable llvm::FoldingSet<DependentUnaryTransformType>
235 DependentUnaryTransformTypes;
236 mutable llvm::ContextualFoldingSet<AutoType, ASTContext&> AutoTypes;
237 mutable llvm::FoldingSet<DeducedTemplateSpecializationType>
238 DeducedTemplateSpecializationTypes;
239 mutable llvm::FoldingSet<AtomicType> AtomicTypes;
240 llvm::FoldingSet<AttributedType> AttributedTypes;
241 mutable llvm::FoldingSet<PipeType> PipeTypes;
242 mutable llvm::FoldingSet<ExtIntType> ExtIntTypes;
243 mutable llvm::FoldingSet<DependentExtIntType> DependentExtIntTypes;
244
245 mutable llvm::FoldingSet<QualifiedTemplateName> QualifiedTemplateNames;
246 mutable llvm::FoldingSet<DependentTemplateName> DependentTemplateNames;
247 mutable llvm::FoldingSet<SubstTemplateTemplateParmStorage>
248 SubstTemplateTemplateParms;
249 mutable llvm::ContextualFoldingSet<SubstTemplateTemplateParmPackStorage,
250 ASTContext&>
251 SubstTemplateTemplateParmPacks;
252
253 /// The set of nested name specifiers.
254 ///
255 /// This set is managed by the NestedNameSpecifier class.
256 mutable llvm::FoldingSet<NestedNameSpecifier> NestedNameSpecifiers;
257 mutable NestedNameSpecifier *GlobalNestedNameSpecifier = nullptr;
258
259 /// A cache mapping from RecordDecls to ASTRecordLayouts.
260 ///
261 /// This is lazily created. This is intentionally not serialized.
262 mutable llvm::DenseMap<const RecordDecl*, const ASTRecordLayout*>
263 ASTRecordLayouts;
264 mutable llvm::DenseMap<const ObjCContainerDecl*, const ASTRecordLayout*>
265 ObjCLayouts;
266
267 /// A cache from types to size and alignment information.
268 using TypeInfoMap = llvm::DenseMap<const Type *, struct TypeInfo>;
269 mutable TypeInfoMap MemoizedTypeInfo;
270
271 /// A cache from types to unadjusted alignment information. Only ARM and
272 /// AArch64 targets need this information, keeping it separate prevents
273 /// imposing overhead on TypeInfo size.
274 using UnadjustedAlignMap = llvm::DenseMap<const Type *, unsigned>;
275 mutable UnadjustedAlignMap MemoizedUnadjustedAlign;
276
277 /// A cache mapping from CXXRecordDecls to key functions.
278 llvm::DenseMap<const CXXRecordDecl*, LazyDeclPtr> KeyFunctions;
279
280 /// Mapping from ObjCContainers to their ObjCImplementations.
281 llvm::DenseMap<ObjCContainerDecl*, ObjCImplDecl*> ObjCImpls;
282
283 /// Mapping from ObjCMethod to its duplicate declaration in the same
284 /// interface.
285 llvm::DenseMap<const ObjCMethodDecl*,const ObjCMethodDecl*> ObjCMethodRedecls;
286
287 /// Mapping from __block VarDecls to BlockVarCopyInit.
288 llvm::DenseMap<const VarDecl *, BlockVarCopyInit> BlockVarCopyInits;
289
290 /// Mapping from GUIDs to the corresponding MSGuidDecl.
291 mutable llvm::FoldingSet<MSGuidDecl> MSGuidDecls;
292
293 /// Mapping from APValues to the corresponding TemplateParamObjects.
294 mutable llvm::FoldingSet<TemplateParamObjectDecl> TemplateParamObjectDecls;
295
296 /// A cache mapping a string value to a StringLiteral object with the same
297 /// value.
298 ///
299 /// This is lazily created. This is intentionally not serialized.
300 mutable llvm::StringMap<StringLiteral *> StringLiteralCache;
301
302 /// MD5 hash of CUID. It is calculated when first used and cached by this
303 /// data member.
304 mutable std::string CUIDHash;
305
306 /// Representation of a "canonical" template template parameter that
307 /// is used in canonical template names.
308 class CanonicalTemplateTemplateParm : public llvm::FoldingSetNode {
309 TemplateTemplateParmDecl *Parm;
310
311 public:
312 CanonicalTemplateTemplateParm(TemplateTemplateParmDecl *Parm)
313 : Parm(Parm) {}
314
315 TemplateTemplateParmDecl *getParam() const { return Parm; }
316
317 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &C) {
318 Profile(ID, C, Parm);
319 }
320
321 static void Profile(llvm::FoldingSetNodeID &ID,
322 const ASTContext &C,
323 TemplateTemplateParmDecl *Parm);
324 };
325 mutable llvm::ContextualFoldingSet<CanonicalTemplateTemplateParm,
326 const ASTContext&>
327 CanonTemplateTemplateParms;
328
329 TemplateTemplateParmDecl *
330 getCanonicalTemplateTemplateParmDecl(TemplateTemplateParmDecl *TTP) const;
331
332 /// The typedef for the __int128_t type.
333 mutable TypedefDecl *Int128Decl = nullptr;
334
335 /// The typedef for the __uint128_t type.
336 mutable TypedefDecl *UInt128Decl = nullptr;
337
338 /// The typedef for the target specific predefined
339 /// __builtin_va_list type.
340 mutable TypedefDecl *BuiltinVaListDecl = nullptr;
341
342 /// The typedef for the predefined \c __builtin_ms_va_list type.
343 mutable TypedefDecl *BuiltinMSVaListDecl = nullptr;
344
345 /// The typedef for the predefined \c id type.
346 mutable TypedefDecl *ObjCIdDecl = nullptr;
347
348 /// The typedef for the predefined \c SEL type.
349 mutable TypedefDecl *ObjCSelDecl = nullptr;
350
351 /// The typedef for the predefined \c Class type.
352 mutable TypedefDecl *ObjCClassDecl = nullptr;
353
354 /// The typedef for the predefined \c Protocol class in Objective-C.
355 mutable ObjCInterfaceDecl *ObjCProtocolClassDecl = nullptr;
356
357 /// The typedef for the predefined 'BOOL' type.
358 mutable TypedefDecl *BOOLDecl = nullptr;
359
360 // Typedefs which may be provided defining the structure of Objective-C
361 // pseudo-builtins
362 QualType ObjCIdRedefinitionType;
363 QualType ObjCClassRedefinitionType;
364 QualType ObjCSelRedefinitionType;
365
366 /// The identifier 'bool'.
367 mutable IdentifierInfo *BoolName = nullptr;
368
369 /// The identifier 'NSObject'.
370 mutable IdentifierInfo *NSObjectName = nullptr;
371
372 /// The identifier 'NSCopying'.
373 IdentifierInfo *NSCopyingName = nullptr;
374
375 /// The identifier '__make_integer_seq'.
376 mutable IdentifierInfo *MakeIntegerSeqName = nullptr;
377
378 /// The identifier '__type_pack_element'.
379 mutable IdentifierInfo *TypePackElementName = nullptr;
380
381 QualType ObjCConstantStringType;
382 mutable RecordDecl *CFConstantStringTagDecl = nullptr;
383 mutable TypedefDecl *CFConstantStringTypeDecl = nullptr;
384
385 mutable QualType ObjCSuperType;
386
387 QualType ObjCNSStringType;
388
389 /// The typedef declaration for the Objective-C "instancetype" type.
390 TypedefDecl *ObjCInstanceTypeDecl = nullptr;
391
392 /// The type for the C FILE type.
393 TypeDecl *FILEDecl = nullptr;
394
395 /// The type for the C jmp_buf type.
396 TypeDecl *jmp_bufDecl = nullptr;
397
398 /// The type for the C sigjmp_buf type.
399 TypeDecl *sigjmp_bufDecl = nullptr;
400
401 /// The type for the C ucontext_t type.
402 TypeDecl *ucontext_tDecl = nullptr;
403
404 /// Type for the Block descriptor for Blocks CodeGen.
405 ///
406 /// Since this is only used for generation of debug info, it is not
407 /// serialized.
408 mutable RecordDecl *BlockDescriptorType = nullptr;
409
410 /// Type for the Block descriptor for Blocks CodeGen.
411 ///
412 /// Since this is only used for generation of debug info, it is not
413 /// serialized.
414 mutable RecordDecl *BlockDescriptorExtendedType = nullptr;
415
416 /// Declaration for the CUDA cudaConfigureCall function.
417 FunctionDecl *cudaConfigureCallDecl = nullptr;
418
419 /// Keeps track of all declaration attributes.
420 ///
421 /// Since so few decls have attrs, we keep them in a hash map instead of
422 /// wasting space in the Decl class.
423 llvm::DenseMap<const Decl*, AttrVec*> DeclAttrs;
424
425 /// A mapping from non-redeclarable declarations in modules that were
426 /// merged with other declarations to the canonical declaration that they were
427 /// merged into.
428 llvm::DenseMap<Decl*, Decl*> MergedDecls;
429
430 /// A mapping from a defining declaration to a list of modules (other
431 /// than the owning module of the declaration) that contain merged
432 /// definitions of that entity.
433 llvm::DenseMap<NamedDecl*, llvm::TinyPtrVector<Module*>> MergedDefModules;
434
435 /// Initializers for a module, in order. Each Decl will be either
436 /// something that has a semantic effect on startup (such as a variable with
437 /// a non-constant initializer), or an ImportDecl (which recursively triggers
438 /// initialization of another module).
439 struct PerModuleInitializers {
440 llvm::SmallVector<Decl*, 4> Initializers;
441 llvm::SmallVector<uint32_t, 4> LazyInitializers;
442
443 void resolve(ASTContext &Ctx);
444 };
445 llvm::DenseMap<Module*, PerModuleInitializers*> ModuleInitializers;
446
447 ASTContext &this_() { return *this; }
448
449public:
450 /// A type synonym for the TemplateOrInstantiation mapping.
451 using TemplateOrSpecializationInfo =
452 llvm::PointerUnion<VarTemplateDecl *, MemberSpecializationInfo *>;
453
454private:
455 friend class ASTDeclReader;
456 friend class ASTReader;
457 friend class ASTWriter;
458 template <class> friend class serialization::AbstractTypeReader;
459 friend class CXXRecordDecl;
460
461 /// A mapping to contain the template or declaration that
462 /// a variable declaration describes or was instantiated from,
463 /// respectively.
464 ///
465 /// For non-templates, this value will be NULL. For variable
466 /// declarations that describe a variable template, this will be a
467 /// pointer to a VarTemplateDecl. For static data members
468 /// of class template specializations, this will be the
469 /// MemberSpecializationInfo referring to the member variable that was
470 /// instantiated or specialized. Thus, the mapping will keep track of
471 /// the static data member templates from which static data members of
472 /// class template specializations were instantiated.
473 ///
474 /// Given the following example:
475 ///
476 /// \code
477 /// template<typename T>
478 /// struct X {
479 /// static T value;
480 /// };
481 ///
482 /// template<typename T>
483 /// T X<T>::value = T(17);
484 ///
485 /// int *x = &X<int>::value;
486 /// \endcode
487 ///
488 /// This mapping will contain an entry that maps from the VarDecl for
489 /// X<int>::value to the corresponding VarDecl for X<T>::value (within the
490 /// class template X) and will be marked TSK_ImplicitInstantiation.
491 llvm::DenseMap<const VarDecl *, TemplateOrSpecializationInfo>
492 TemplateOrInstantiation;
493
494 /// Keeps track of the declaration from which a using declaration was
495 /// created during instantiation.
496 ///
497 /// The source and target declarations are always a UsingDecl, an
498 /// UnresolvedUsingValueDecl, or an UnresolvedUsingTypenameDecl.
499 ///
500 /// For example:
501 /// \code
502 /// template<typename T>
503 /// struct A {
504 /// void f();
505 /// };
506 ///
507 /// template<typename T>
508 /// struct B : A<T> {
509 /// using A<T>::f;
510 /// };
511 ///
512 /// template struct B<int>;
513 /// \endcode
514 ///
515 /// This mapping will contain an entry that maps from the UsingDecl in
516 /// B<int> to the UnresolvedUsingDecl in B<T>.
517 llvm::DenseMap<NamedDecl *, NamedDecl *> InstantiatedFromUsingDecl;
518
519 llvm::DenseMap<UsingShadowDecl*, UsingShadowDecl*>
520 InstantiatedFromUsingShadowDecl;
521
522 llvm::DenseMap<FieldDecl *, FieldDecl *> InstantiatedFromUnnamedFieldDecl;
523
524 /// Mapping that stores the methods overridden by a given C++
525 /// member function.
526 ///
527 /// Since most C++ member functions aren't virtual and therefore
528 /// don't override anything, we store the overridden functions in
529 /// this map on the side rather than within the CXXMethodDecl structure.
530 using CXXMethodVector = llvm::TinyPtrVector<const CXXMethodDecl *>;
531 llvm::DenseMap<const CXXMethodDecl *, CXXMethodVector> OverriddenMethods;
532
533 /// Mapping from each declaration context to its corresponding
534 /// mangling numbering context (used for constructs like lambdas which
535 /// need to be consistently numbered for the mangler).
536 llvm::DenseMap<const DeclContext *, std::unique_ptr<MangleNumberingContext>>
537 MangleNumberingContexts;
538 llvm::DenseMap<const Decl *, std::unique_ptr<MangleNumberingContext>>
539 ExtraMangleNumberingContexts;
540
541 /// Side-table of mangling numbers for declarations which rarely
542 /// need them (like static local vars).
543 llvm::MapVector<const NamedDecl *, unsigned> MangleNumbers;
544 llvm::MapVector<const VarDecl *, unsigned> StaticLocalNumbers;
545 /// Mapping the associated device lambda mangling number if present.
546 mutable llvm::DenseMap<const CXXRecordDecl *, unsigned>
547 DeviceLambdaManglingNumbers;
548
549 /// Mapping that stores parameterIndex values for ParmVarDecls when
550 /// that value exceeds the bitfield size of ParmVarDeclBits.ParameterIndex.
551 using ParameterIndexTable = llvm::DenseMap<const VarDecl *, unsigned>;
552 ParameterIndexTable ParamIndices;
553
554 ImportDecl *FirstLocalImport = nullptr;
555 ImportDecl *LastLocalImport = nullptr;
556
557 TranslationUnitDecl *TUDecl;
558 mutable ExternCContextDecl *ExternCContext = nullptr;
559 mutable BuiltinTemplateDecl *MakeIntegerSeqDecl = nullptr;
560 mutable BuiltinTemplateDecl *TypePackElementDecl = nullptr;
561
562 /// The associated SourceManager object.
563 SourceManager &SourceMgr;
564
565 /// The language options used to create the AST associated with
566 /// this ASTContext object.
567 LangOptions &LangOpts;
568
569 /// NoSanitizeList object that is used by sanitizers to decide which
570 /// entities should not be instrumented.
571 std::unique_ptr<NoSanitizeList> NoSanitizeL;
572
573 /// Function filtering mechanism to determine whether a given function
574 /// should be imbued with the XRay "always" or "never" attributes.
575 std::unique_ptr<XRayFunctionFilter> XRayFilter;
576
577 /// ProfileList object that is used by the profile instrumentation
578 /// to decide which entities should be instrumented.
579 std::unique_ptr<ProfileList> ProfList;
580
581 /// The allocator used to create AST objects.
582 ///
583 /// AST objects are never destructed; rather, all memory associated with the
584 /// AST objects will be released when the ASTContext itself is destroyed.
585 mutable llvm::BumpPtrAllocator BumpAlloc;
586
587 /// Allocator for partial diagnostics.
588 PartialDiagnostic::DiagStorageAllocator DiagAllocator;
589
590 /// The current C++ ABI.
591 std::unique_ptr<CXXABI> ABI;
592 CXXABI *createCXXABI(const TargetInfo &T);
593
594 /// The logical -> physical address space map.
595 const LangASMap *AddrSpaceMap = nullptr;
596
597 /// Address space map mangling must be used with language specific
598 /// address spaces (e.g. OpenCL/CUDA)
599 bool AddrSpaceMapMangling;
600
601 const TargetInfo *Target = nullptr;
602 const TargetInfo *AuxTarget = nullptr;
603 clang::PrintingPolicy PrintingPolicy;
604 std::unique_ptr<interp::Context> InterpContext;
605 std::unique_ptr<ParentMapContext> ParentMapCtx;
606
607public:
608 IdentifierTable &Idents;
609 SelectorTable &Selectors;
610 Builtin::Context &BuiltinInfo;
611 mutable DeclarationNameTable DeclarationNames;
612 IntrusiveRefCntPtr<ExternalASTSource> ExternalSource;
613 ASTMutationListener *Listener = nullptr;
614
615 /// Returns the clang bytecode interpreter context.
616 interp::Context &getInterpContext();
617
618 /// Returns the dynamic AST node parent map context.
619 ParentMapContext &getParentMapContext();
620
621 // A traversal scope limits the parts of the AST visible to certain analyses.
622 // RecursiveASTVisitor::TraverseAST will only visit reachable nodes, and
623 // getParents() will only observe reachable parent edges.
624 //
625 // The scope is defined by a set of "top-level" declarations.
626 // Initially, it is the entire TU: {getTranslationUnitDecl()}.
627 // Changing the scope clears the parent cache, which is expensive to rebuild.
628 std::vector<Decl *> getTraversalScope() const { return TraversalScope; }
629 void setTraversalScope(const std::vector<Decl *> &);
630
631 /// Forwards to get node parents from the ParentMapContext. New callers should
632 /// use ParentMapContext::getParents() directly.
633 template <typename NodeT> DynTypedNodeList getParents(const NodeT &Node);
634
635 const clang::PrintingPolicy &getPrintingPolicy() const {
636 return PrintingPolicy;
637 }
638
639 void setPrintingPolicy(const clang::PrintingPolicy &Policy) {
640 PrintingPolicy = Policy;
641 }
642
643 SourceManager& getSourceManager() { return SourceMgr; }
644 const SourceManager& getSourceManager() const { return SourceMgr; }
645
646 llvm::BumpPtrAllocator &getAllocator() const {
647 return BumpAlloc;
648 }
649
650 void *Allocate(size_t Size, unsigned Align = 8) const {
651 return BumpAlloc.Allocate(Size, Align);
652 }
653 template <typename T> T *Allocate(size_t Num = 1) const {
654 return static_cast<T *>(Allocate(Num * sizeof(T), alignof(T)));
655 }
656 void Deallocate(void *Ptr) const {}
657
658 /// Return the total amount of physical memory allocated for representing
659 /// AST nodes and type information.
660 size_t getASTAllocatedMemory() const {
661 return BumpAlloc.getTotalMemory();
662 }
663
664 /// Return the total memory used for various side tables.
665 size_t getSideTableAllocatedMemory() const;
666
667 PartialDiagnostic::DiagStorageAllocator &getDiagAllocator() {
668 return DiagAllocator;
669 }
670
671 const TargetInfo &getTargetInfo() const { return *Target; }
672 const TargetInfo *getAuxTargetInfo() const { return AuxTarget; }
673
674 /// getIntTypeForBitwidth -
675 /// sets integer QualTy according to specified details:
676 /// bitwidth, signed/unsigned.
677 /// Returns empty type if there is no appropriate target types.
678 QualType getIntTypeForBitwidth(unsigned DestWidth,
679 unsigned Signed) const;
680
681 /// getRealTypeForBitwidth -
682 /// sets floating point QualTy according to specified bitwidth.
683 /// Returns empty type if there is no appropriate target types.
684 QualType getRealTypeForBitwidth(unsigned DestWidth, bool ExplicitIEEE) const;
685
686 bool AtomicUsesUnsupportedLibcall(const AtomicExpr *E) const;
687
688 const LangOptions& getLangOpts() const { return LangOpts; }
689
690 // If this condition is false, typo correction must be performed eagerly
691 // rather than delayed in many places, as it makes use of dependent types.
692 // the condition is false for clang's C-only codepath, as it doesn't support
693 // dependent types yet.
694 bool isDependenceAllowed() const {
695 return LangOpts.CPlusPlus || LangOpts.RecoveryAST;
24
Assuming field 'CPlusPlus' is not equal to 0
25
Returning the value 1, which participates in a condition later
696 }
697
698 const NoSanitizeList &getNoSanitizeList() const { return *NoSanitizeL; }
699
700 const XRayFunctionFilter &getXRayFilter() const {
701 return *XRayFilter;
702 }
703
704 const ProfileList &getProfileList() const { return *ProfList; }
705
706 DiagnosticsEngine &getDiagnostics() const;
707
708 FullSourceLoc getFullLoc(SourceLocation Loc) const {
709 return FullSourceLoc(Loc,SourceMgr);
710 }
711
712 /// All comments in this translation unit.
713 RawCommentList Comments;
714
715 /// True if comments are already loaded from ExternalASTSource.
716 mutable bool CommentsLoaded = false;
717
718 /// Mapping from declaration to directly attached comment.
719 ///
720 /// Raw comments are owned by Comments list. This mapping is populated
721 /// lazily.
722 mutable llvm::DenseMap<const Decl *, const RawComment *> DeclRawComments;
723
724 /// Mapping from canonical declaration to the first redeclaration in chain
725 /// that has a comment attached.
726 ///
727 /// Raw comments are owned by Comments list. This mapping is populated
728 /// lazily.
729 mutable llvm::DenseMap<const Decl *, const Decl *> RedeclChainComments;
730
731 /// Keeps track of redeclaration chains that don't have any comment attached.
732 /// Mapping from canonical declaration to redeclaration chain that has no
733 /// comments attached to any redeclaration. Specifically it's mapping to
734 /// the last redeclaration we've checked.
735 ///
736 /// Shall not contain declarations that have comments attached to any
737 /// redeclaration in their chain.
738 mutable llvm::DenseMap<const Decl *, const Decl *> CommentlessRedeclChains;
739
740 /// Mapping from declarations to parsed comments attached to any
741 /// redeclaration.
742 mutable llvm::DenseMap<const Decl *, comments::FullComment *> ParsedComments;
743
744 /// Attaches \p Comment to \p OriginalD and to its redeclaration chain
745 /// and removes the redeclaration chain from the set of commentless chains.
746 ///
747 /// Don't do anything if a comment has already been attached to \p OriginalD
748 /// or its redeclaration chain.
749 void cacheRawCommentForDecl(const Decl &OriginalD,
750 const RawComment &Comment) const;
751
752 /// \returns searches \p CommentsInFile for doc comment for \p D.
753 ///
754 /// \p RepresentativeLocForDecl is used as a location for searching doc
755 /// comments. \p CommentsInFile is a mapping offset -> comment of files in the
756 /// same file where \p RepresentativeLocForDecl is.
757 RawComment *getRawCommentForDeclNoCacheImpl(
758 const Decl *D, const SourceLocation RepresentativeLocForDecl,
759 const std::map<unsigned, RawComment *> &CommentsInFile) const;
760
761 /// Return the documentation comment attached to a given declaration,
762 /// without looking into cache.
763 RawComment *getRawCommentForDeclNoCache(const Decl *D) const;
764
765public:
766 void addComment(const RawComment &RC);
767
768 /// Return the documentation comment attached to a given declaration.
769 /// Returns nullptr if no comment is attached.
770 ///
771 /// \param OriginalDecl if not nullptr, is set to declaration AST node that
772 /// had the comment, if the comment we found comes from a redeclaration.
773 const RawComment *
774 getRawCommentForAnyRedecl(const Decl *D,
775 const Decl **OriginalDecl = nullptr) const;
776
777 /// Searches existing comments for doc comments that should be attached to \p
778 /// Decls. If any doc comment is found, it is parsed.
779 ///
780 /// Requirement: All \p Decls are in the same file.
781 ///
782 /// If the last comment in the file is already attached we assume
783 /// there are not comments left to be attached to \p Decls.
784 void attachCommentsToJustParsedDecls(ArrayRef<Decl *> Decls,
785 const Preprocessor *PP);
786
787 /// Return parsed documentation comment attached to a given declaration.
788 /// Returns nullptr if no comment is attached.
789 ///
790 /// \param PP the Preprocessor used with this TU. Could be nullptr if
791 /// preprocessor is not available.
792 comments::FullComment *getCommentForDecl(const Decl *D,
793 const Preprocessor *PP) const;
794
795 /// Return parsed documentation comment attached to a given declaration.
796 /// Returns nullptr if no comment is attached. Does not look at any
797 /// redeclarations of the declaration.
798 comments::FullComment *getLocalCommentForDeclUncached(const Decl *D) const;
799
800 comments::FullComment *cloneFullComment(comments::FullComment *FC,
801 const Decl *D) const;
802
803private:
804 mutable comments::CommandTraits CommentCommandTraits;
805
806 /// Iterator that visits import declarations.
807 class import_iterator {
808 ImportDecl *Import = nullptr;
809
810 public:
811 using value_type = ImportDecl *;
812 using reference = ImportDecl *;
813 using pointer = ImportDecl *;
814 using difference_type = int;
815 using iterator_category = std::forward_iterator_tag;
816
817 import_iterator() = default;
818 explicit import_iterator(ImportDecl *Import) : Import(Import) {}
819
820 reference operator*() const { return Import; }
821 pointer operator->() const { return Import; }
822
823 import_iterator &operator++() {
824 Import = ASTContext::getNextLocalImport(Import);
825 return *this;
826 }
827
828 import_iterator operator++(int) {
829 import_iterator Other(*this);
830 ++(*this);
831 return Other;
832 }
833
834 friend bool operator==(import_iterator X, import_iterator Y) {
835 return X.Import == Y.Import;
836 }
837
838 friend bool operator!=(import_iterator X, import_iterator Y) {
839 return X.Import != Y.Import;
840 }
841 };
842
843public:
844 comments::CommandTraits &getCommentCommandTraits() const {
845 return CommentCommandTraits;
846 }
847
848 /// Retrieve the attributes for the given declaration.
849 AttrVec& getDeclAttrs(const Decl *D);
850
851 /// Erase the attributes corresponding to the given declaration.
852 void eraseDeclAttrs(const Decl *D);
853
854 /// If this variable is an instantiated static data member of a
855 /// class template specialization, returns the templated static data member
856 /// from which it was instantiated.
857 // FIXME: Remove ?
858 MemberSpecializationInfo *getInstantiatedFromStaticDataMember(
859 const VarDecl *Var);
860
861 TemplateOrSpecializationInfo
862 getTemplateOrSpecializationInfo(const VarDecl *Var);
863
864 /// Note that the static data member \p Inst is an instantiation of
865 /// the static data member template \p Tmpl of a class template.
866 void setInstantiatedFromStaticDataMember(VarDecl *Inst, VarDecl *Tmpl,
867 TemplateSpecializationKind TSK,
868 SourceLocation PointOfInstantiation = SourceLocation());
869
870 void setTemplateOrSpecializationInfo(VarDecl *Inst,
871 TemplateOrSpecializationInfo TSI);
872
873 /// If the given using decl \p Inst is an instantiation of a
874 /// (possibly unresolved) using decl from a template instantiation,
875 /// return it.
876 NamedDecl *getInstantiatedFromUsingDecl(NamedDecl *Inst);
877
878 /// Remember that the using decl \p Inst is an instantiation
879 /// of the using decl \p Pattern of a class template.
880 void setInstantiatedFromUsingDecl(NamedDecl *Inst, NamedDecl *Pattern);
881
882 void setInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst,
883 UsingShadowDecl *Pattern);
884 UsingShadowDecl *getInstantiatedFromUsingShadowDecl(UsingShadowDecl *Inst);
885
886 FieldDecl *getInstantiatedFromUnnamedFieldDecl(FieldDecl *Field);
887
888 void setInstantiatedFromUnnamedFieldDecl(FieldDecl *Inst, FieldDecl *Tmpl);
889
890 // Access to the set of methods overridden by the given C++ method.
891 using overridden_cxx_method_iterator = CXXMethodVector::const_iterator;
892 overridden_cxx_method_iterator
893 overridden_methods_begin(const CXXMethodDecl *Method) const;
894
895 overridden_cxx_method_iterator
896 overridden_methods_end(const CXXMethodDecl *Method) const;
897
898 unsigned overridden_methods_size(const CXXMethodDecl *Method) const;
899
900 using overridden_method_range =
901 llvm::iterator_range<overridden_cxx_method_iterator>;
902
903 overridden_method_range overridden_methods(const CXXMethodDecl *Method) const;
904
905 /// Note that the given C++ \p Method overrides the given \p
906 /// Overridden method.
907 void addOverriddenMethod(const CXXMethodDecl *Method,
908 const CXXMethodDecl *Overridden);
909
910 /// Return C++ or ObjC overridden methods for the given \p Method.
911 ///
912 /// An ObjC method is considered to override any method in the class's
913 /// base classes, its protocols, or its categories' protocols, that has
914 /// the same selector and is of the same kind (class or instance).
915 /// A method in an implementation is not considered as overriding the same
916 /// method in the interface or its categories.
917 void getOverriddenMethods(
918 const NamedDecl *Method,
919 SmallVectorImpl<const NamedDecl *> &Overridden) const;
920
921 /// Notify the AST context that a new import declaration has been
922 /// parsed or implicitly created within this translation unit.
923 void addedLocalImportDecl(ImportDecl *Import);
924
925 static ImportDecl *getNextLocalImport(ImportDecl *Import) {
926 return Import->getNextLocalImport();
927 }
928
929 using import_range = llvm::iterator_range<import_iterator>;
930
931 import_range local_imports() const {
932 return import_range(import_iterator(FirstLocalImport), import_iterator());
933 }
934
935 Decl *getPrimaryMergedDecl(Decl *D) {
936 Decl *Result = MergedDecls.lookup(D);
937 return Result ? Result : D;
938 }
939 void setPrimaryMergedDecl(Decl *D, Decl *Primary) {
940 MergedDecls[D] = Primary;
941 }
942
943 /// Note that the definition \p ND has been merged into module \p M,
944 /// and should be visible whenever \p M is visible.
945 void mergeDefinitionIntoModule(NamedDecl *ND, Module *M,
946 bool NotifyListeners = true);
947
948 /// Clean up the merged definition list. Call this if you might have
949 /// added duplicates into the list.
950 void deduplicateMergedDefinitonsFor(NamedDecl *ND);
951
952 /// Get the additional modules in which the definition \p Def has
953 /// been merged.
954 ArrayRef<Module*> getModulesWithMergedDefinition(const NamedDecl *Def);
955
956 /// Add a declaration to the list of declarations that are initialized
957 /// for a module. This will typically be a global variable (with internal
958 /// linkage) that runs module initializers, such as the iostream initializer,
959 /// or an ImportDecl nominating another module that has initializers.
960 void addModuleInitializer(Module *M, Decl *Init);
961
962 void addLazyModuleInitializers(Module *M, ArrayRef<uint32_t> IDs);
963
964 /// Get the initializations to perform when importing a module, if any.
965 ArrayRef<Decl*> getModuleInitializers(Module *M);
966
967 TranslationUnitDecl *getTranslationUnitDecl() const { return TUDecl; }
968
969 ExternCContextDecl *getExternCContextDecl() const;
970 BuiltinTemplateDecl *getMakeIntegerSeqDecl() const;
971 BuiltinTemplateDecl *getTypePackElementDecl() const;
972
973 // Builtin Types.
974 CanQualType VoidTy;
975 CanQualType BoolTy;
976 CanQualType CharTy;
977 CanQualType WCharTy; // [C++ 3.9.1p5].
978 CanQualType WideCharTy; // Same as WCharTy in C++, integer type in C99.
979 CanQualType WIntTy; // [C99 7.24.1], integer type unchanged by default promotions.
980 CanQualType Char8Ty; // [C++20 proposal]
981 CanQualType Char16Ty; // [C++0x 3.9.1p5], integer type in C99.
982 CanQualType Char32Ty; // [C++0x 3.9.1p5], integer type in C99.
983 CanQualType SignedCharTy, ShortTy, IntTy, LongTy, LongLongTy, Int128Ty;
984 CanQualType UnsignedCharTy, UnsignedShortTy, UnsignedIntTy, UnsignedLongTy;
985 CanQualType UnsignedLongLongTy, UnsignedInt128Ty;
986 CanQualType FloatTy, DoubleTy, LongDoubleTy, Float128Ty;
987 CanQualType ShortAccumTy, AccumTy,
988 LongAccumTy; // ISO/IEC JTC1 SC22 WG14 N1169 Extension
989 CanQualType UnsignedShortAccumTy, UnsignedAccumTy, UnsignedLongAccumTy;
990 CanQualType ShortFractTy, FractTy, LongFractTy;
991 CanQualType UnsignedShortFractTy, UnsignedFractTy, UnsignedLongFractTy;
992 CanQualType SatShortAccumTy, SatAccumTy, SatLongAccumTy;
993 CanQualType SatUnsignedShortAccumTy, SatUnsignedAccumTy,
994 SatUnsignedLongAccumTy;
995 CanQualType SatShortFractTy, SatFractTy, SatLongFractTy;
996 CanQualType SatUnsignedShortFractTy, SatUnsignedFractTy,
997 SatUnsignedLongFractTy;
998 CanQualType HalfTy; // [OpenCL 6.1.1.1], ARM NEON
999 CanQualType BFloat16Ty;
1000 CanQualType Float16Ty; // C11 extension ISO/IEC TS 18661-3
1001 CanQualType FloatComplexTy, DoubleComplexTy, LongDoubleComplexTy;
1002 CanQualType Float128ComplexTy;
1003 CanQualType VoidPtrTy, NullPtrTy;
1004 CanQualType DependentTy, OverloadTy, BoundMemberTy, UnknownAnyTy;
1005 CanQualType BuiltinFnTy;
1006 CanQualType PseudoObjectTy, ARCUnbridgedCastTy;
1007 CanQualType ObjCBuiltinIdTy, ObjCBuiltinClassTy, ObjCBuiltinSelTy;
1008 CanQualType ObjCBuiltinBoolTy;
1009#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
1010 CanQualType SingletonId;
1011#include "clang/Basic/OpenCLImageTypes.def"
1012 CanQualType OCLSamplerTy, OCLEventTy, OCLClkEventTy;
1013 CanQualType OCLQueueTy, OCLReserveIDTy;
1014 CanQualType IncompleteMatrixIdxTy;
1015 CanQualType OMPArraySectionTy, OMPArrayShapingTy, OMPIteratorTy;
1016#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
1017 CanQualType Id##Ty;
1018#include "clang/Basic/OpenCLExtensionTypes.def"
1019#define SVE_TYPE(Name, Id, SingletonId) \
1020 CanQualType SingletonId;
1021#include "clang/Basic/AArch64SVEACLETypes.def"
1022#define PPC_VECTOR_TYPE(Name, Id, Size) \
1023 CanQualType Id##Ty;
1024#include "clang/Basic/PPCTypes.def"
1025#define RVV_TYPE(Name, Id, SingletonId) \
1026 CanQualType SingletonId;
1027#include "clang/Basic/RISCVVTypes.def"
1028
1029 // Types for deductions in C++0x [stmt.ranged]'s desugaring. Built on demand.
1030 mutable QualType AutoDeductTy; // Deduction against 'auto'.
1031 mutable QualType AutoRRefDeductTy; // Deduction against 'auto &&'.
1032
1033 // Decl used to help define __builtin_va_list for some targets.
1034 // The decl is built when constructing 'BuiltinVaListDecl'.
1035 mutable Decl *VaListTagDecl = nullptr;
1036
1037 // Implicitly-declared type 'struct _GUID'.
1038 mutable TagDecl *MSGuidTagDecl = nullptr;
1039
1040 /// Keep track of CUDA/HIP static device variables referenced by host code.
1041 llvm::DenseSet<const VarDecl *> CUDAStaticDeviceVarReferencedByHost;
1042
1043 ASTContext(LangOptions &LOpts, SourceManager &SM, IdentifierTable &idents,
1044 SelectorTable &sels, Builtin::Context &builtins);
1045 ASTContext(const ASTContext &) = delete;
1046 ASTContext &operator=(const ASTContext &) = delete;
1047 ~ASTContext();
1048
1049 /// Attach an external AST source to the AST context.
1050 ///
1051 /// The external AST source provides the ability to load parts of
1052 /// the abstract syntax tree as needed from some external storage,
1053 /// e.g., a precompiled header.
1054 void setExternalSource(IntrusiveRefCntPtr<ExternalASTSource> Source);
1055
1056 /// Retrieve a pointer to the external AST source associated
1057 /// with this AST context, if any.
1058 ExternalASTSource *getExternalSource() const {
1059 return ExternalSource.get();
1060 }
1061
1062 /// Attach an AST mutation listener to the AST context.
1063 ///
1064 /// The AST mutation listener provides the ability to track modifications to
1065 /// the abstract syntax tree entities committed after they were initially
1066 /// created.
1067 void setASTMutationListener(ASTMutationListener *Listener) {
1068 this->Listener = Listener;
1069 }
1070
1071 /// Retrieve a pointer to the AST mutation listener associated
1072 /// with this AST context, if any.
1073 ASTMutationListener *getASTMutationListener() const { return Listener; }
1074
1075 void PrintStats() const;
1076 const SmallVectorImpl<Type *>& getTypes() const { return Types; }
1077
1078 BuiltinTemplateDecl *buildBuiltinTemplateDecl(BuiltinTemplateKind BTK,
1079 const IdentifierInfo *II) const;
1080
1081 /// Create a new implicit TU-level CXXRecordDecl or RecordDecl
1082 /// declaration.
1083 RecordDecl *buildImplicitRecord(StringRef Name,
1084 RecordDecl::TagKind TK = TTK_Struct) const;
1085
1086 /// Create a new implicit TU-level typedef declaration.
1087 TypedefDecl *buildImplicitTypedef(QualType T, StringRef Name) const;
1088
1089 /// Retrieve the declaration for the 128-bit signed integer type.
1090 TypedefDecl *getInt128Decl() const;
1091
1092 /// Retrieve the declaration for the 128-bit unsigned integer type.
1093 TypedefDecl *getUInt128Decl() const;
1094
1095 //===--------------------------------------------------------------------===//
1096 // Type Constructors
1097 //===--------------------------------------------------------------------===//
1098
1099private:
1100 /// Return a type with extended qualifiers.
1101 QualType getExtQualType(const Type *Base, Qualifiers Quals) const;
1102
1103 QualType getTypeDeclTypeSlow(const TypeDecl *Decl) const;
1104
1105 QualType getPipeType(QualType T, bool ReadOnly) const;
1106
1107public:
1108 /// Return the uniqued reference to the type for an address space
1109 /// qualified type with the specified type and address space.
1110 ///
1111 /// The resulting type has a union of the qualifiers from T and the address
1112 /// space. If T already has an address space specifier, it is silently
1113 /// replaced.
1114 QualType getAddrSpaceQualType(QualType T, LangAS AddressSpace) const;
1115
1116 /// Remove any existing address space on the type and returns the type
1117 /// with qualifiers intact (or that's the idea anyway)
1118 ///
1119 /// The return type should be T with all prior qualifiers minus the address
1120 /// space.
1121 QualType removeAddrSpaceQualType(QualType T) const;
1122
1123 /// Apply Objective-C protocol qualifiers to the given type.
1124 /// \param allowOnPointerType specifies if we can apply protocol
1125 /// qualifiers on ObjCObjectPointerType. It can be set to true when
1126 /// constructing the canonical type of a Objective-C type parameter.
1127 QualType applyObjCProtocolQualifiers(QualType type,
1128 ArrayRef<ObjCProtocolDecl *> protocols, bool &hasError,
1129 bool allowOnPointerType = false) const;
1130
1131 /// Return the uniqued reference to the type for an Objective-C
1132 /// gc-qualified type.
1133 ///
1134 /// The resulting type has a union of the qualifiers from T and the gc
1135 /// attribute.
1136 QualType getObjCGCQualType(QualType T, Qualifiers::GC gcAttr) const;
1137
1138 /// Remove the existing address space on the type if it is a pointer size
1139 /// address space and return the type with qualifiers intact.
1140 QualType removePtrSizeAddrSpace(QualType T) const;
1141
1142 /// Return the uniqued reference to the type for a \c restrict
1143 /// qualified type.
1144 ///
1145 /// The resulting type has a union of the qualifiers from \p T and
1146 /// \c restrict.
1147 QualType getRestrictType(QualType T) const {
1148 return T.withFastQualifiers(Qualifiers::Restrict);
1149 }
1150
1151 /// Return the uniqued reference to the type for a \c volatile
1152 /// qualified type.
1153 ///
1154 /// The resulting type has a union of the qualifiers from \p T and
1155 /// \c volatile.
1156 QualType getVolatileType(QualType T) const {
1157 return T.withFastQualifiers(Qualifiers::Volatile);
1158 }
1159
1160 /// Return the uniqued reference to the type for a \c const
1161 /// qualified type.
1162 ///
1163 /// The resulting type has a union of the qualifiers from \p T and \c const.
1164 ///
1165 /// It can be reasonably expected that this will always be equivalent to
1166 /// calling T.withConst().
1167 QualType getConstType(QualType T) const { return T.withConst(); }
1168
1169 /// Change the ExtInfo on a function type.
1170 const FunctionType *adjustFunctionType(const FunctionType *Fn,
1171 FunctionType::ExtInfo EInfo);
1172
1173 /// Adjust the given function result type.
1174 CanQualType getCanonicalFunctionResultType(QualType ResultType) const;
1175
1176 /// Change the result type of a function type once it is deduced.
1177 void adjustDeducedFunctionResultType(FunctionDecl *FD, QualType ResultType);
1178
1179 /// Get a function type and produce the equivalent function type with the
1180 /// specified exception specification. Type sugar that can be present on a
1181 /// declaration of a function with an exception specification is permitted
1182 /// and preserved. Other type sugar (for instance, typedefs) is not.
1183 QualType getFunctionTypeWithExceptionSpec(
1184 QualType Orig, const FunctionProtoType::ExceptionSpecInfo &ESI);
1185
1186 /// Determine whether two function types are the same, ignoring
1187 /// exception specifications in cases where they're part of the type.
1188 bool hasSameFunctionTypeIgnoringExceptionSpec(QualType T, QualType U);
1189
1190 /// Change the exception specification on a function once it is
1191 /// delay-parsed, instantiated, or computed.
1192 void adjustExceptionSpec(FunctionDecl *FD,
1193 const FunctionProtoType::ExceptionSpecInfo &ESI,
1194 bool AsWritten = false);
1195
1196 /// Get a function type and produce the equivalent function type where
1197 /// pointer size address spaces in the return type and parameter tyeps are
1198 /// replaced with the default address space.
1199 QualType getFunctionTypeWithoutPtrSizes(QualType T);
1200
1201 /// Determine whether two function types are the same, ignoring pointer sizes
1202 /// in the return type and parameter types.
1203 bool hasSameFunctionTypeIgnoringPtrSizes(QualType T, QualType U);
1204
1205 /// Return the uniqued reference to the type for a complex
1206 /// number with the specified element type.
1207 QualType getComplexType(QualType T) const;
1208 CanQualType getComplexType(CanQualType T) const {
1209 return CanQualType::CreateUnsafe(getComplexType((QualType) T));
1210 }
1211
1212 /// Return the uniqued reference to the type for a pointer to
1213 /// the specified type.
1214 QualType getPointerType(QualType T) const;
1215 CanQualType getPointerType(CanQualType T) const {
1216 return CanQualType::CreateUnsafe(getPointerType((QualType) T));
1217 }
1218
1219 /// Return the uniqued reference to a type adjusted from the original
1220 /// type to a new type.
1221 QualType getAdjustedType(QualType Orig, QualType New) const;
1222 CanQualType getAdjustedType(CanQualType Orig, CanQualType New) const {
1223 return CanQualType::CreateUnsafe(
1224 getAdjustedType((QualType)Orig, (QualType)New));
1225 }
1226
1227 /// Return the uniqued reference to the decayed version of the given
1228 /// type. Can only be called on array and function types which decay to
1229 /// pointer types.
1230 QualType getDecayedType(QualType T) const;
1231 CanQualType getDecayedType(CanQualType T) const {
1232 return CanQualType::CreateUnsafe(getDecayedType((QualType) T));
1233 }
1234
1235 /// Return the uniqued reference to the atomic type for the specified
1236 /// type.
1237 QualType getAtomicType(QualType T) const;
1238
1239 /// Return the uniqued reference to the type for a block of the
1240 /// specified type.
1241 QualType getBlockPointerType(QualType T) const;
1242
1243 /// Gets the struct used to keep track of the descriptor for pointer to
1244 /// blocks.
1245 QualType getBlockDescriptorType() const;
1246
1247 /// Return a read_only pipe type for the specified type.
1248 QualType getReadPipeType(QualType T) const;
1249
1250 /// Return a write_only pipe type for the specified type.
1251 QualType getWritePipeType(QualType T) const;
1252
1253 /// Return an extended integer type with the specified signedness and bit
1254 /// count.
1255 QualType getExtIntType(bool Unsigned, unsigned NumBits) const;
1256
1257 /// Return a dependent extended integer type with the specified signedness and
1258 /// bit count.
1259 QualType getDependentExtIntType(bool Unsigned, Expr *BitsExpr) const;
1260
1261 /// Gets the struct used to keep track of the extended descriptor for
1262 /// pointer to blocks.
1263 QualType getBlockDescriptorExtendedType() const;
1264
1265 /// Map an AST Type to an OpenCLTypeKind enum value.
1266 OpenCLTypeKind getOpenCLTypeKind(const Type *T) const;
1267
1268 /// Get address space for OpenCL type.
1269 LangAS getOpenCLTypeAddrSpace(const Type *T) const;
1270
1271 void setcudaConfigureCallDecl(FunctionDecl *FD) {
1272 cudaConfigureCallDecl = FD;
1273 }
1274
1275 FunctionDecl *getcudaConfigureCallDecl() {
1276 return cudaConfigureCallDecl;
1277 }
1278
1279 /// Returns true iff we need copy/dispose helpers for the given type.
1280 bool BlockRequiresCopying(QualType Ty, const VarDecl *D);
1281
1282 /// Returns true, if given type has a known lifetime. HasByrefExtendedLayout
1283 /// is set to false in this case. If HasByrefExtendedLayout returns true,
1284 /// byref variable has extended lifetime.
1285 bool getByrefLifetime(QualType Ty,
1286 Qualifiers::ObjCLifetime &Lifetime,
1287 bool &HasByrefExtendedLayout) const;
1288
1289 /// Return the uniqued reference to the type for an lvalue reference
1290 /// to the specified type.
1291 QualType getLValueReferenceType(QualType T, bool SpelledAsLValue = true)
1292 const;
1293
1294 /// Return the uniqued reference to the type for an rvalue reference
1295 /// to the specified type.
1296 QualType getRValueReferenceType(QualType T) const;
1297
1298 /// Return the uniqued reference to the type for a member pointer to
1299 /// the specified type in the specified class.
1300 ///
1301 /// The class \p Cls is a \c Type because it could be a dependent name.
1302 QualType getMemberPointerType(QualType T, const Type *Cls) const;
1303
1304 /// Return a non-unique reference to the type for a variable array of
1305 /// the specified element type.
1306 QualType getVariableArrayType(QualType EltTy, Expr *NumElts,
1307 ArrayType::ArraySizeModifier ASM,
1308 unsigned IndexTypeQuals,
1309 SourceRange Brackets) const;
1310
1311 /// Return a non-unique reference to the type for a dependently-sized
1312 /// array of the specified element type.
1313 ///
1314 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1315 /// point.
1316 QualType getDependentSizedArrayType(QualType EltTy, Expr *NumElts,
1317 ArrayType::ArraySizeModifier ASM,
1318 unsigned IndexTypeQuals,
1319 SourceRange Brackets) const;
1320
1321 /// Return a unique reference to the type for an incomplete array of
1322 /// the specified element type.
1323 QualType getIncompleteArrayType(QualType EltTy,
1324 ArrayType::ArraySizeModifier ASM,
1325 unsigned IndexTypeQuals) const;
1326
1327 /// Return the unique reference to the type for a constant array of
1328 /// the specified element type.
1329 QualType getConstantArrayType(QualType EltTy, const llvm::APInt &ArySize,
1330 const Expr *SizeExpr,
1331 ArrayType::ArraySizeModifier ASM,
1332 unsigned IndexTypeQuals) const;
1333
1334 /// Return a type for a constant array for a string literal of the
1335 /// specified element type and length.
1336 QualType getStringLiteralArrayType(QualType EltTy, unsigned Length) const;
1337
1338 /// Returns a vla type where known sizes are replaced with [*].
1339 QualType getVariableArrayDecayedType(QualType Ty) const;
1340
1341 // Convenience struct to return information about a builtin vector type.
1342 struct BuiltinVectorTypeInfo {
1343 QualType ElementType;
1344 llvm::ElementCount EC;
1345 unsigned NumVectors;
1346 BuiltinVectorTypeInfo(QualType ElementType, llvm::ElementCount EC,
1347 unsigned NumVectors)
1348 : ElementType(ElementType), EC(EC), NumVectors(NumVectors) {}
1349 };
1350
1351 /// Returns the element type, element count and number of vectors
1352 /// (in case of tuple) for a builtin vector type.
1353 BuiltinVectorTypeInfo
1354 getBuiltinVectorTypeInfo(const BuiltinType *VecTy) const;
1355
1356 /// Return the unique reference to a scalable vector type of the specified
1357 /// element type and scalable number of elements.
1358 ///
1359 /// \pre \p EltTy must be a built-in type.
1360 QualType getScalableVectorType(QualType EltTy, unsigned NumElts) const;
1361
1362 /// Return the unique reference to a vector type of the specified
1363 /// element type and size.
1364 ///
1365 /// \pre \p VectorType must be a built-in type.
1366 QualType getVectorType(QualType VectorType, unsigned NumElts,
1367 VectorType::VectorKind VecKind) const;
1368 /// Return the unique reference to the type for a dependently sized vector of
1369 /// the specified element type.
1370 QualType getDependentVectorType(QualType VectorType, Expr *SizeExpr,
1371 SourceLocation AttrLoc,
1372 VectorType::VectorKind VecKind) const;
1373
1374 /// Return the unique reference to an extended vector type
1375 /// of the specified element type and size.
1376 ///
1377 /// \pre \p VectorType must be a built-in type.
1378 QualType getExtVectorType(QualType VectorType, unsigned NumElts) const;
1379
1380 /// \pre Return a non-unique reference to the type for a dependently-sized
1381 /// vector of the specified element type.
1382 ///
1383 /// FIXME: We will need these to be uniqued, or at least comparable, at some
1384 /// point.
1385 QualType getDependentSizedExtVectorType(QualType VectorType,
1386 Expr *SizeExpr,
1387 SourceLocation AttrLoc) const;
1388
1389 /// Return the unique reference to the matrix type of the specified element
1390 /// type and size
1391 ///
1392 /// \pre \p ElementType must be a valid matrix element type (see
1393 /// MatrixType::isValidElementType).
1394 QualType getConstantMatrixType(QualType ElementType, unsigned NumRows,
1395 unsigned NumColumns) const;
1396
1397 /// Return the unique reference to the matrix type of the specified element
1398 /// type and size
1399 QualType getDependentSizedMatrixType(QualType ElementType, Expr *RowExpr,
1400 Expr *ColumnExpr,
1401 SourceLocation AttrLoc) const;
1402
1403 QualType getDependentAddressSpaceType(QualType PointeeType,
1404 Expr *AddrSpaceExpr,
1405 SourceLocation AttrLoc) const;
1406
1407 /// Return a K&R style C function type like 'int()'.
1408 QualType getFunctionNoProtoType(QualType ResultTy,
1409 const FunctionType::ExtInfo &Info) const;
1410
1411 QualType getFunctionNoProtoType(QualType ResultTy) const {
1412 return getFunctionNoProtoType(ResultTy, FunctionType::ExtInfo());
1413 }
1414
1415 /// Return a normal function type with a typed argument list.
1416 QualType getFunctionType(QualType ResultTy, ArrayRef<QualType> Args,
1417 const FunctionProtoType::ExtProtoInfo &EPI) const {
1418 return getFunctionTypeInternal(ResultTy, Args, EPI, false);
1419 }
1420
1421 QualType adjustStringLiteralBaseType(QualType StrLTy) const;
1422
1423private:
1424 /// Return a normal function type with a typed argument list.
1425 QualType getFunctionTypeInternal(QualType ResultTy, ArrayRef<QualType> Args,
1426 const FunctionProtoType::ExtProtoInfo &EPI,
1427 bool OnlyWantCanonical) const;
1428
1429public:
1430 /// Return the unique reference to the type for the specified type
1431 /// declaration.
1432 QualType getTypeDeclType(const TypeDecl *Decl,
1433 const TypeDecl *PrevDecl = nullptr) const {
1434 assert(Decl && "Passed null for Decl param")((Decl && "Passed null for Decl param") ? static_cast
<void> (0) : __assert_fail ("Decl && \"Passed null for Decl param\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/include/clang/AST/ASTContext.h"
, 1434, __PRETTY_FUNCTION__))
;
1435 if (Decl->TypeForDecl) return QualType(Decl->TypeForDecl, 0);
1436
1437 if (PrevDecl) {
1438 assert(PrevDecl->TypeForDecl && "previous decl has no TypeForDecl")((PrevDecl->TypeForDecl && "previous decl has no TypeForDecl"
) ? static_cast<void> (0) : __assert_fail ("PrevDecl->TypeForDecl && \"previous decl has no TypeForDecl\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/include/clang/AST/ASTContext.h"
, 1438, __PRETTY_FUNCTION__))
;
1439 Decl->TypeForDecl = PrevDecl->TypeForDecl;
1440 return QualType(PrevDecl->TypeForDecl, 0);
1441 }
1442
1443 return getTypeDeclTypeSlow(Decl);
1444 }
1445
1446 /// Return the unique reference to the type for the specified
1447 /// typedef-name decl.
1448 QualType getTypedefType(const TypedefNameDecl *Decl,
1449 QualType Underlying = QualType()) const;
1450
1451 QualType getRecordType(const RecordDecl *Decl) const;
1452
1453 QualType getEnumType(const EnumDecl *Decl) const;
1454
1455 QualType getInjectedClassNameType(CXXRecordDecl *Decl, QualType TST) const;
1456
1457 QualType getAttributedType(attr::Kind attrKind,
1458 QualType modifiedType,
1459 QualType equivalentType);
1460
1461 QualType getSubstTemplateTypeParmType(const TemplateTypeParmType *Replaced,
1462 QualType Replacement) const;
1463 QualType getSubstTemplateTypeParmPackType(
1464 const TemplateTypeParmType *Replaced,
1465 const TemplateArgument &ArgPack);
1466
1467 QualType
1468 getTemplateTypeParmType(unsigned Depth, unsigned Index,
1469 bool ParameterPack,
1470 TemplateTypeParmDecl *ParmDecl = nullptr) const;
1471
1472 QualType getTemplateSpecializationType(TemplateName T,
1473 ArrayRef<TemplateArgument> Args,
1474 QualType Canon = QualType()) const;
1475
1476 QualType
1477 getCanonicalTemplateSpecializationType(TemplateName T,
1478 ArrayRef<TemplateArgument> Args) const;
1479
1480 QualType getTemplateSpecializationType(TemplateName T,
1481 const TemplateArgumentListInfo &Args,
1482 QualType Canon = QualType()) const;
1483
1484 TypeSourceInfo *
1485 getTemplateSpecializationTypeInfo(TemplateName T, SourceLocation TLoc,
1486 const TemplateArgumentListInfo &Args,
1487 QualType Canon = QualType()) const;
1488
1489 QualType getParenType(QualType NamedType) const;
1490
1491 QualType getMacroQualifiedType(QualType UnderlyingTy,
1492 const IdentifierInfo *MacroII) const;
1493
1494 QualType getElaboratedType(ElaboratedTypeKeyword Keyword,
1495 NestedNameSpecifier *NNS, QualType NamedType,
1496 TagDecl *OwnedTagDecl = nullptr) const;
1497 QualType getDependentNameType(ElaboratedTypeKeyword Keyword,
1498 NestedNameSpecifier *NNS,
1499 const IdentifierInfo *Name,
1500 QualType Canon = QualType()) const;
1501
1502 QualType getDependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
1503 NestedNameSpecifier *NNS,
1504 const IdentifierInfo *Name,
1505 const TemplateArgumentListInfo &Args) const;
1506 QualType getDependentTemplateSpecializationType(
1507 ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
1508 const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args) const;
1509
1510 TemplateArgument getInjectedTemplateArg(NamedDecl *ParamDecl);
1511
1512 /// Get a template argument list with one argument per template parameter
1513 /// in a template parameter list, such as for the injected class name of
1514 /// a class template.
1515 void getInjectedTemplateArgs(const TemplateParameterList *Params,
1516 SmallVectorImpl<TemplateArgument> &Args);
1517
1518 /// Form a pack expansion type with the given pattern.
1519 /// \param NumExpansions The number of expansions for the pack, if known.
1520 /// \param ExpectPackInType If \c false, we should not expect \p Pattern to
1521 /// contain an unexpanded pack. This only makes sense if the pack
1522 /// expansion is used in a context where the arity is inferred from
1523 /// elsewhere, such as if the pattern contains a placeholder type or
1524 /// if this is the canonical type of another pack expansion type.
1525 QualType getPackExpansionType(QualType Pattern,
1526 Optional<unsigned> NumExpansions,
1527 bool ExpectPackInType = true);
1528
1529 QualType getObjCInterfaceType(const ObjCInterfaceDecl *Decl,
1530 ObjCInterfaceDecl *PrevDecl = nullptr) const;
1531
1532 /// Legacy interface: cannot provide type arguments or __kindof.
1533 QualType getObjCObjectType(QualType Base,
1534 ObjCProtocolDecl * const *Protocols,
1535 unsigned NumProtocols) const;
1536
1537 QualType getObjCObjectType(QualType Base,
1538 ArrayRef<QualType> typeArgs,
1539 ArrayRef<ObjCProtocolDecl *> protocols,
1540 bool isKindOf) const;
1541
1542 QualType getObjCTypeParamType(const ObjCTypeParamDecl *Decl,
1543 ArrayRef<ObjCProtocolDecl *> protocols) const;
1544 void adjustObjCTypeParamBoundType(const ObjCTypeParamDecl *Orig,
1545 ObjCTypeParamDecl *New) const;
1546
1547 bool ObjCObjectAdoptsQTypeProtocols(QualType QT, ObjCInterfaceDecl *Decl);
1548
1549 /// QIdProtocolsAdoptObjCObjectProtocols - Checks that protocols in
1550 /// QT's qualified-id protocol list adopt all protocols in IDecl's list
1551 /// of protocols.
1552 bool QIdProtocolsAdoptObjCObjectProtocols(QualType QT,
1553 ObjCInterfaceDecl *IDecl);
1554
1555 /// Return a ObjCObjectPointerType type for the given ObjCObjectType.
1556 QualType getObjCObjectPointerType(QualType OIT) const;
1557
1558 /// GCC extension.
1559 QualType getTypeOfExprType(Expr *e) const;
1560 QualType getTypeOfType(QualType t) const;
1561
1562 /// C++11 decltype.
1563 QualType getDecltypeType(Expr *e, QualType UnderlyingType) const;
1564
1565 /// Unary type transforms
1566 QualType getUnaryTransformType(QualType BaseType, QualType UnderlyingType,
1567 UnaryTransformType::UTTKind UKind) const;
1568
1569 /// C++11 deduced auto type.
1570 QualType getAutoType(QualType DeducedType, AutoTypeKeyword Keyword,
1571 bool IsDependent, bool IsPack = false,
1572 ConceptDecl *TypeConstraintConcept = nullptr,
1573 ArrayRef<TemplateArgument> TypeConstraintArgs ={}) const;
1574
1575 /// C++11 deduction pattern for 'auto' type.
1576 QualType getAutoDeductType() const;
1577
1578 /// C++11 deduction pattern for 'auto &&' type.
1579 QualType getAutoRRefDeductType() const;
1580
1581 /// C++17 deduced class template specialization type.
1582 QualType getDeducedTemplateSpecializationType(TemplateName Template,
1583 QualType DeducedType,
1584 bool IsDependent) const;
1585
1586 /// Return the unique reference to the type for the specified TagDecl
1587 /// (struct/union/class/enum) decl.
1588 QualType getTagDeclType(const TagDecl *Decl) const;
1589
1590 /// Return the unique type for "size_t" (C99 7.17), defined in
1591 /// <stddef.h>.
1592 ///
1593 /// The sizeof operator requires this (C99 6.5.3.4p4).
1594 CanQualType getSizeType() const;
1595
1596 /// Return the unique signed counterpart of
1597 /// the integer type corresponding to size_t.
1598 CanQualType getSignedSizeType() const;
1599
1600 /// Return the unique type for "intmax_t" (C99 7.18.1.5), defined in
1601 /// <stdint.h>.
1602 CanQualType getIntMaxType() const;
1603
1604 /// Return the unique type for "uintmax_t" (C99 7.18.1.5), defined in
1605 /// <stdint.h>.
1606 CanQualType getUIntMaxType() const;
1607
1608 /// Return the unique wchar_t type available in C++ (and available as
1609 /// __wchar_t as a Microsoft extension).
1610 QualType getWCharType() const { return WCharTy; }
1611
1612 /// Return the type of wide characters. In C++, this returns the
1613 /// unique wchar_t type. In C99, this returns a type compatible with the type
1614 /// defined in <stddef.h> as defined by the target.
1615 QualType getWideCharType() const { return WideCharTy; }
1616
1617 /// Return the type of "signed wchar_t".
1618 ///
1619 /// Used when in C++, as a GCC extension.
1620 QualType getSignedWCharType() const;
1621
1622 /// Return the type of "unsigned wchar_t".
1623 ///
1624 /// Used when in C++, as a GCC extension.
1625 QualType getUnsignedWCharType() const;
1626
1627 /// In C99, this returns a type compatible with the type
1628 /// defined in <stddef.h> as defined by the target.
1629 QualType getWIntType() const { return WIntTy; }
1630
1631 /// Return a type compatible with "intptr_t" (C99 7.18.1.4),
1632 /// as defined by the target.
1633 QualType getIntPtrType() const;
1634
1635 /// Return a type compatible with "uintptr_t" (C99 7.18.1.4),
1636 /// as defined by the target.
1637 QualType getUIntPtrType() const;
1638
1639 /// Return the unique type for "ptrdiff_t" (C99 7.17) defined in
1640 /// <stddef.h>. Pointer - pointer requires this (C99 6.5.6p9).
1641 QualType getPointerDiffType() const;
1642
1643 /// Return the unique unsigned counterpart of "ptrdiff_t"
1644 /// integer type. The standard (C11 7.21.6.1p7) refers to this type
1645 /// in the definition of %tu format specifier.
1646 QualType getUnsignedPointerDiffType() const;
1647
1648 /// Return the unique type for "pid_t" defined in
1649 /// <sys/types.h>. We need this to compute the correct type for vfork().
1650 QualType getProcessIDType() const;
1651
1652 /// Return the C structure type used to represent constant CFStrings.
1653 QualType getCFConstantStringType() const;
1654
1655 /// Returns the C struct type for objc_super
1656 QualType getObjCSuperType() const;
1657 void setObjCSuperType(QualType ST) { ObjCSuperType = ST; }
1658
1659 /// Get the structure type used to representation CFStrings, or NULL
1660 /// if it hasn't yet been built.
1661 QualType getRawCFConstantStringType() const {
1662 if (CFConstantStringTypeDecl)
1663 return getTypedefType(CFConstantStringTypeDecl);
1664 return QualType();
1665 }
1666 void setCFConstantStringType(QualType T);
1667 TypedefDecl *getCFConstantStringDecl() const;
1668 RecordDecl *getCFConstantStringTagDecl() const;
1669
1670 // This setter/getter represents the ObjC type for an NSConstantString.
1671 void setObjCConstantStringInterface(ObjCInterfaceDecl *Decl);
1672 QualType getObjCConstantStringInterface() const {
1673 return ObjCConstantStringType;
1674 }
1675
1676 QualType getObjCNSStringType() const {
1677 return ObjCNSStringType;
1678 }
1679
1680 void setObjCNSStringType(QualType T) {
1681 ObjCNSStringType = T;
1682 }
1683
1684 /// Retrieve the type that \c id has been defined to, which may be
1685 /// different from the built-in \c id if \c id has been typedef'd.
1686 QualType getObjCIdRedefinitionType() const {
1687 if (ObjCIdRedefinitionType.isNull())
1688 return getObjCIdType();
1689 return ObjCIdRedefinitionType;
1690 }
1691
1692 /// Set the user-written type that redefines \c id.
1693 void setObjCIdRedefinitionType(QualType RedefType) {
1694 ObjCIdRedefinitionType = RedefType;
1695 }
1696
1697 /// Retrieve the type that \c Class has been defined to, which may be
1698 /// different from the built-in \c Class if \c Class has been typedef'd.
1699 QualType getObjCClassRedefinitionType() const {
1700 if (ObjCClassRedefinitionType.isNull())
1701 return getObjCClassType();
1702 return ObjCClassRedefinitionType;
1703 }
1704
1705 /// Set the user-written type that redefines 'SEL'.
1706 void setObjCClassRedefinitionType(QualType RedefType) {
1707 ObjCClassRedefinitionType = RedefType;
1708 }
1709
1710 /// Retrieve the type that 'SEL' has been defined to, which may be
1711 /// different from the built-in 'SEL' if 'SEL' has been typedef'd.
1712 QualType getObjCSelRedefinitionType() const {
1713 if (ObjCSelRedefinitionType.isNull())
1714 return getObjCSelType();
1715 return ObjCSelRedefinitionType;
1716 }
1717
1718 /// Set the user-written type that redefines 'SEL'.
1719 void setObjCSelRedefinitionType(QualType RedefType) {
1720 ObjCSelRedefinitionType = RedefType;
1721 }
1722
1723 /// Retrieve the identifier 'NSObject'.
1724 IdentifierInfo *getNSObjectName() const {
1725 if (!NSObjectName) {
1726 NSObjectName = &Idents.get("NSObject");
1727 }
1728
1729 return NSObjectName;
1730 }
1731
1732 /// Retrieve the identifier 'NSCopying'.
1733 IdentifierInfo *getNSCopyingName() {
1734 if (!NSCopyingName) {
1735 NSCopyingName = &Idents.get("NSCopying");
1736 }
1737
1738 return NSCopyingName;
1739 }
1740
1741 CanQualType getNSUIntegerType() const;
1742
1743 CanQualType getNSIntegerType() const;
1744
1745 /// Retrieve the identifier 'bool'.
1746 IdentifierInfo *getBoolName() const {
1747 if (!BoolName)
1748 BoolName = &Idents.get("bool");
1749 return BoolName;
1750 }
1751
1752 IdentifierInfo *getMakeIntegerSeqName() const {
1753 if (!MakeIntegerSeqName)
1754 MakeIntegerSeqName = &Idents.get("__make_integer_seq");
1755 return MakeIntegerSeqName;
1756 }
1757
1758 IdentifierInfo *getTypePackElementName() const {
1759 if (!TypePackElementName)
1760 TypePackElementName = &Idents.get("__type_pack_element");
1761 return TypePackElementName;
1762 }
1763
1764 /// Retrieve the Objective-C "instancetype" type, if already known;
1765 /// otherwise, returns a NULL type;
1766 QualType getObjCInstanceType() {
1767 return getTypeDeclType(getObjCInstanceTypeDecl());
1768 }
1769
1770 /// Retrieve the typedef declaration corresponding to the Objective-C
1771 /// "instancetype" type.
1772 TypedefDecl *getObjCInstanceTypeDecl();
1773
1774 /// Set the type for the C FILE type.
1775 void setFILEDecl(TypeDecl *FILEDecl) { this->FILEDecl = FILEDecl; }
1776
1777 /// Retrieve the C FILE type.
1778 QualType getFILEType() const {
1779 if (FILEDecl)
1780 return getTypeDeclType(FILEDecl);
1781 return QualType();
1782 }
1783
1784 /// Set the type for the C jmp_buf type.
1785 void setjmp_bufDecl(TypeDecl *jmp_bufDecl) {
1786 this->jmp_bufDecl = jmp_bufDecl;
1787 }
1788
1789 /// Retrieve the C jmp_buf type.
1790 QualType getjmp_bufType() const {
1791 if (jmp_bufDecl)
1792 return getTypeDeclType(jmp_bufDecl);
1793 return QualType();
1794 }
1795
1796 /// Set the type for the C sigjmp_buf type.
1797 void setsigjmp_bufDecl(TypeDecl *sigjmp_bufDecl) {
1798 this->sigjmp_bufDecl = sigjmp_bufDecl;
1799 }
1800
1801 /// Retrieve the C sigjmp_buf type.
1802 QualType getsigjmp_bufType() const {
1803 if (sigjmp_bufDecl)
1804 return getTypeDeclType(sigjmp_bufDecl);
1805 return QualType();
1806 }
1807
1808 /// Set the type for the C ucontext_t type.
1809 void setucontext_tDecl(TypeDecl *ucontext_tDecl) {
1810 this->ucontext_tDecl = ucontext_tDecl;
1811 }
1812
1813 /// Retrieve the C ucontext_t type.
1814 QualType getucontext_tType() const {
1815 if (ucontext_tDecl)
1816 return getTypeDeclType(ucontext_tDecl);
1817 return QualType();
1818 }
1819
1820 /// The result type of logical operations, '<', '>', '!=', etc.
1821 QualType getLogicalOperationType() const {
1822 return getLangOpts().CPlusPlus ? BoolTy : IntTy;
1823 }
1824
1825 /// Emit the Objective-CC type encoding for the given type \p T into
1826 /// \p S.
1827 ///
1828 /// If \p Field is specified then record field names are also encoded.
1829 void getObjCEncodingForType(QualType T, std::string &S,
1830 const FieldDecl *Field=nullptr,
1831 QualType *NotEncodedT=nullptr) const;
1832
1833 /// Emit the Objective-C property type encoding for the given
1834 /// type \p T into \p S.
1835 void getObjCEncodingForPropertyType(QualType T, std::string &S) const;
1836
1837 void getLegacyIntegralTypeEncoding(QualType &t) const;
1838
1839 /// Put the string version of the type qualifiers \p QT into \p S.
1840 void getObjCEncodingForTypeQualifier(Decl::ObjCDeclQualifier QT,
1841 std::string &S) const;
1842
1843 /// Emit the encoded type for the function \p Decl into \p S.
1844 ///
1845 /// This is in the same format as Objective-C method encodings.
1846 ///
1847 /// \returns true if an error occurred (e.g., because one of the parameter
1848 /// types is incomplete), false otherwise.
1849 std::string getObjCEncodingForFunctionDecl(const FunctionDecl *Decl) const;
1850
1851 /// Emit the encoded type for the method declaration \p Decl into
1852 /// \p S.
1853 std::string getObjCEncodingForMethodDecl(const ObjCMethodDecl *Decl,
1854 bool Extended = false) const;
1855
1856 /// Return the encoded type for this block declaration.
1857 std::string getObjCEncodingForBlock(const BlockExpr *blockExpr) const;
1858
1859 /// getObjCEncodingForPropertyDecl - Return the encoded type for
1860 /// this method declaration. If non-NULL, Container must be either
1861 /// an ObjCCategoryImplDecl or ObjCImplementationDecl; it should
1862 /// only be NULL when getting encodings for protocol properties.
1863 std::string getObjCEncodingForPropertyDecl(const ObjCPropertyDecl *PD,
1864 const Decl *Container) const;
1865
1866 bool ProtocolCompatibleWithProtocol(ObjCProtocolDecl *lProto,
1867 ObjCProtocolDecl *rProto) const;
1868
1869 ObjCPropertyImplDecl *getObjCPropertyImplDeclForPropertyDecl(
1870 const ObjCPropertyDecl *PD,
1871 const Decl *Container) const;
1872
1873 /// Return the size of type \p T for Objective-C encoding purpose,
1874 /// in characters.
1875 CharUnits getObjCEncodingTypeSize(QualType T) const;
1876
1877 /// Retrieve the typedef corresponding to the predefined \c id type
1878 /// in Objective-C.
1879 TypedefDecl *getObjCIdDecl() const;
1880
1881 /// Represents the Objective-CC \c id type.
1882 ///
1883 /// This is set up lazily, by Sema. \c id is always a (typedef for a)
1884 /// pointer type, a pointer to a struct.
1885 QualType getObjCIdType() const {
1886 return getTypeDeclType(getObjCIdDecl());
1887 }
1888
1889 /// Retrieve the typedef corresponding to the predefined 'SEL' type
1890 /// in Objective-C.
1891 TypedefDecl *getObjCSelDecl() const;
1892
1893 /// Retrieve the type that corresponds to the predefined Objective-C
1894 /// 'SEL' type.
1895 QualType getObjCSelType() const {
1896 return getTypeDeclType(getObjCSelDecl());
1897 }
1898
1899 /// Retrieve the typedef declaration corresponding to the predefined
1900 /// Objective-C 'Class' type.
1901 TypedefDecl *getObjCClassDecl() const;
1902
1903 /// Represents the Objective-C \c Class type.
1904 ///
1905 /// This is set up lazily, by Sema. \c Class is always a (typedef for a)
1906 /// pointer type, a pointer to a struct.
1907 QualType getObjCClassType() const {
1908 return getTypeDeclType(getObjCClassDecl());
1909 }
1910
1911 /// Retrieve the Objective-C class declaration corresponding to
1912 /// the predefined \c Protocol class.
1913 ObjCInterfaceDecl *getObjCProtocolDecl() const;
1914
1915 /// Retrieve declaration of 'BOOL' typedef
1916 TypedefDecl *getBOOLDecl() const {
1917 return BOOLDecl;
1918 }
1919
1920 /// Save declaration of 'BOOL' typedef
1921 void setBOOLDecl(TypedefDecl *TD) {
1922 BOOLDecl = TD;
1923 }
1924
1925 /// type of 'BOOL' type.
1926 QualType getBOOLType() const {
1927 return getTypeDeclType(getBOOLDecl());
1928 }
1929
1930 /// Retrieve the type of the Objective-C \c Protocol class.
1931 QualType getObjCProtoType() const {
1932 return getObjCInterfaceType(getObjCProtocolDecl());
1933 }
1934
1935 /// Retrieve the C type declaration corresponding to the predefined
1936 /// \c __builtin_va_list type.
1937 TypedefDecl *getBuiltinVaListDecl() const;
1938
1939 /// Retrieve the type of the \c __builtin_va_list type.
1940 QualType getBuiltinVaListType() const {
1941 return getTypeDeclType(getBuiltinVaListDecl());
1942 }
1943
1944 /// Retrieve the C type declaration corresponding to the predefined
1945 /// \c __va_list_tag type used to help define the \c __builtin_va_list type
1946 /// for some targets.
1947 Decl *getVaListTagDecl() const;
1948
1949 /// Retrieve the C type declaration corresponding to the predefined
1950 /// \c __builtin_ms_va_list type.
1951 TypedefDecl *getBuiltinMSVaListDecl() const;
1952
1953 /// Retrieve the type of the \c __builtin_ms_va_list type.
1954 QualType getBuiltinMSVaListType() const {
1955 return getTypeDeclType(getBuiltinMSVaListDecl());
1956 }
1957
1958 /// Retrieve the implicitly-predeclared 'struct _GUID' declaration.
1959 TagDecl *getMSGuidTagDecl() const { return MSGuidTagDecl; }
1960
1961 /// Retrieve the implicitly-predeclared 'struct _GUID' type.
1962 QualType getMSGuidType() const {
1963 assert(MSGuidTagDecl && "asked for GUID type but MS extensions disabled")((MSGuidTagDecl && "asked for GUID type but MS extensions disabled"
) ? static_cast<void> (0) : __assert_fail ("MSGuidTagDecl && \"asked for GUID type but MS extensions disabled\""
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/include/clang/AST/ASTContext.h"
, 1963, __PRETTY_FUNCTION__))
;
1964 return getTagDeclType(MSGuidTagDecl);
1965 }
1966
1967 /// Return whether a declaration to a builtin is allowed to be
1968 /// overloaded/redeclared.
1969 bool canBuiltinBeRedeclared(const FunctionDecl *) const;
1970
1971 /// Return a type with additional \c const, \c volatile, or
1972 /// \c restrict qualifiers.
1973 QualType getCVRQualifiedType(QualType T, unsigned CVR) const {
1974 return getQualifiedType(T, Qualifiers::fromCVRMask(CVR));
1975 }
1976
1977 /// Un-split a SplitQualType.
1978 QualType getQualifiedType(SplitQualType split) const {
1979 return getQualifiedType(split.Ty, split.Quals);
1980 }
1981
1982 /// Return a type with additional qualifiers.
1983 QualType getQualifiedType(QualType T, Qualifiers Qs) const {
1984 if (!Qs.hasNonFastQualifiers())
1985 return T.withFastQualifiers(Qs.getFastQualifiers());
1986 QualifierCollector Qc(Qs);
1987 const Type *Ptr = Qc.strip(T);
1988 return getExtQualType(Ptr, Qc);
1989 }
1990
1991 /// Return a type with additional qualifiers.
1992 QualType getQualifiedType(const Type *T, Qualifiers Qs) const {
1993 if (!Qs.hasNonFastQualifiers())
1994 return QualType(T, Qs.getFastQualifiers());
1995 return getExtQualType(T, Qs);
1996 }
1997
1998 /// Return a type with the given lifetime qualifier.
1999 ///
2000 /// \pre Neither type.ObjCLifetime() nor \p lifetime may be \c OCL_None.
2001 QualType getLifetimeQualifiedType(QualType type,
2002 Qualifiers::ObjCLifetime lifetime) {
2003 assert(type.getObjCLifetime() == Qualifiers::OCL_None)((type.getObjCLifetime() == Qualifiers::OCL_None) ? static_cast
<void> (0) : __assert_fail ("type.getObjCLifetime() == Qualifiers::OCL_None"
, "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/include/clang/AST/ASTContext.h"
, 2003, __PRETTY_FUNCTION__))
;
2004 assert(lifetime != Qualifiers::OCL_None)((lifetime != Qualifiers::OCL_None) ? static_cast<void>
(0) : __assert_fail ("lifetime != Qualifiers::OCL_None", "/build/llvm-toolchain-snapshot-13~++20210302100634+51cdb780db3b/clang/include/clang/AST/ASTContext.h"
, 2004, __PRETTY_FUNCTION__))
;
2005
2006 Qualifiers qs;
2007 qs.addObjCLifetime(lifetime);
2008 return getQualifiedType(type, qs);
2009 }
2010
2011 /// getUnqualifiedObjCPointerType - Returns version of
2012 /// Objective-C pointer type with lifetime qualifier removed.
2013 QualType getUnqualifiedObjCPointerType(QualType type) const {
2014 if (!type.getTypePtr()->isObjCObjectPointerType() ||
2015 !type.getQualifiers().hasObjCLifetime())
2016 return type;
2017 Qualifiers Qs = type.getQualifiers();
2018 Qs.removeObjCLifetime();
2019 return getQualifiedType(type.getUnqualifiedType(), Qs);
2020 }
2021
2022 unsigned char getFixedPointScale(QualType Ty) const;
2023 unsigned char getFixedPointIBits(QualType Ty) const;
2024 llvm::FixedPointSemantics getFixedPointSemantics(QualType Ty) const;
2025 llvm::APFixedPoint getFixedPointMax(QualType Ty) const;
2026 llvm::APFixedPoint getFixedPointMin(QualType Ty) const;
2027
2028 DeclarationNameInfo getNameForTemplate(TemplateName Name,
2029 SourceLocation NameLoc) const;
2030
2031 TemplateName getOverloadedTemplateName(UnresolvedSetIterator Begin,
2032 UnresolvedSetIterator End) const;
2033 TemplateName getAssumedTemplateName(DeclarationName Name) const;
2034
2035 TemplateName getQualifiedTemplateName(NestedNameSpecifier *NNS,
2036 bool TemplateKeyword,
2037 TemplateDecl *Template) const;
2038
2039 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2040 const IdentifierInfo *Name) const;
2041 TemplateName getDependentTemplateName(NestedNameSpecifier *NNS,
2042 OverloadedOperatorKind Operator) const;
2043 TemplateName getSubstTemplateTemplateParm(TemplateTemplateParmDecl *param,
2044 TemplateName replacement) const;
2045 TemplateName getSubstTemplateTemplateParmPack(TemplateTemplateParmDecl *Param,
2046 const TemplateArgument &ArgPack) const;
2047
2048 enum GetBuiltinTypeError {
2049 /// No error
2050 GE_None,
2051
2052 /// Missing a type
2053 GE_Missing_type,
2054
2055 /// Missing a type from <stdio.h>
2056 GE_Missing_stdio,
2057
2058 /// Missing a type from <setjmp.h>
2059 GE_Missing_setjmp,
2060
2061 /// Missing a type from <ucontext.h>
2062 GE_Missing_ucontext
2063 };
2064
2065 QualType DecodeTypeStr(const char *&Str, const ASTContext &Context,
2066 ASTContext::GetBuiltinTypeError &Error,
2067 bool &RequireICE, bool AllowTypeModifiers) const;
2068
2069 /// Return the type for the specified builtin.
2070 ///
2071 /// If \p IntegerConstantArgs is non-null, it is filled in with a bitmask of
2072 /// arguments to the builtin that are required to be integer constant
2073 /// expressions.
2074 QualType GetBuiltinType(unsigned ID, GetBuiltinTypeError &Error,
2075 unsigned *IntegerConstantArgs = nullptr) const;
2076
2077 /// Types and expressions required to build C++2a three-way comparisons
2078 /// using operator<=>, including the values return by builtin <=> operators.
2079 ComparisonCategories CompCategories;
2080
2081private:
2082 CanQualType getFromTargetType(unsigned Type) const;
2083 TypeInfo getTypeInfoImpl(const Type *T) const;
2084
2085 //===--------------------------------------------------------------------===//
2086 // Type Predicates.
2087 //===--------------------------------------------------------------------===//
2088
2089public:
2090 /// Return one of the GCNone, Weak or Strong Objective-C garbage
2091 /// collection attributes.
2092 Qualifiers::GC getObjCGCAttrKind(QualType Ty) const;
2093
2094 /// Return true if the given vector types are of the same unqualified
2095 /// type or if they are equivalent to the same GCC vector type.
2096 ///
2097 /// \note This ignores whether they are target-specific (AltiVec or Neon)
2098 /// types.
2099 bool areCompatibleVectorTypes(QualType FirstVec, QualType SecondVec);
2100
2101 /// Return true if the given types are an SVE builtin and a VectorType that
2102 /// is a fixed-length representation of the SVE builtin for a specific
2103 /// vector-length.
2104 bool areCompatibleSveTypes(QualType FirstType, QualType SecondType);
2105
2106 /// Return true if the given vector types are lax-compatible SVE vector types,
2107 /// false otherwise.
2108 bool areLaxCompatibleSveTypes(QualType FirstType, QualType SecondType);
2109
2110 /// Return true if the type has been explicitly qualified with ObjC ownership.
2111 /// A type may be implicitly qualified with ownership under ObjC ARC, and in
2112 /// some cases the compiler treats these differently.
2113 bool hasDirectOwnershipQualifier(QualType Ty) const;
2114
2115 /// Return true if this is an \c NSObject object with its \c NSObject
2116 /// attribute set.
2117 static bool isObjCNSObjectType(QualType Ty) {
2118 return Ty->isObjCNSObjectType();
2119 }
2120
2121 //===--------------------------------------------------------------------===//
2122 // Type Sizing and Analysis
2123 //===--------------------------------------------------------------------===//
2124
2125 /// Return the APFloat 'semantics' for the specified scalar floating
2126 /// point type.
2127 const llvm::fltSemantics &getFloatTypeSemantics(QualType T) const;
2128
2129 /// Get the size and alignment of the specified complete type in bits.
2130 TypeInfo getTypeInfo(const Type *T) const;
2131 TypeInfo getTypeInfo(QualType T) const { return getTypeInfo(T.getTypePtr()); }
2132
2133 /// Get default simd alignment of the specified complete type in bits.
2134 unsigned getOpenMPDefaultSimdAlign(QualType T) const;
2135
2136 /// Return the size of the specified (complete) type \p T, in bits.
2137 uint64_t getTypeSize(QualType T) const { return getTypeInfo(T).Width; }
2138 uint64_t getTypeSize(const Type *T) const { return getTypeInfo(T).Width; }
2139
2140 /// Return the size of the character type, in bits.
2141 uint64_t getCharWidth() const {
2142 return getTypeSize(CharTy);
2143 }
2144
2145 /// Convert a size in bits to a size in characters.
2146 CharUnits toCharUnitsFromBits(int64_t BitSize) const;
2147
2148 /// Convert a size in characters to a size in bits.
2149 int64_t toBits(CharUnits CharSize) const;
2150
2151 /// Return the size of the specified (complete) type \p T, in
2152 /// characters.
2153 CharUnits getTypeSizeInChars(QualType T) const;
2154 CharUnits getTypeSizeInChars(const Type *T) const;
2155
2156 Optional<CharUnits> getTypeSizeInCharsIfKnown(QualType Ty) const {
2157 if (Ty->isIncompleteType() || Ty->isDependentType())
2158 return None;
2159 return getTypeSizeInChars(Ty);
2160 }
2161
2162 Optional<CharUnits> getTypeSizeInCharsIfKnown(const Type *Ty) const {
2163 return getTypeSizeInCharsIfKnown(QualType(Ty, 0));
2164 }
2165
2166 /// Return the ABI-specified alignment of a (complete) type \p T, in
2167 /// bits.
2168 unsigned getTypeAlign(QualType T) const { return getTypeInfo(T).Align; }
2169 unsigned getTypeAlign(const Type *T) const { return getTypeInfo(T).Align; }
2170
2171 /// Return the ABI-specified natural alignment of a (complete) type \p T,
2172 /// before alignment adjustments, in bits.
2173 ///
2174 /// This alignment is curently used only by ARM and AArch64 when passing
2175 /// arguments of a composite type.
2176 unsigned getTypeUnadjustedAlign(QualType T) const {
2177 return getTypeUnadjustedAlign(T.getTypePtr());
2178 }
2179 unsigned getTypeUnadjustedAlign(const Type *T) const;
2180
2181 /// Return the alignment of a type, in bits, or 0 if
2182 /// the type is incomplete and we cannot determine the alignment (for
2183 /// example, from alignment attributes). The returned alignment is the
2184 /// Preferred alignment if NeedsPreferredAlignment is true, otherwise is the
2185 /// ABI alignment.
2186 unsigned getTypeAlignIfKnown(QualType T,
2187 bool NeedsPreferredAlignment = false) const;
2188
2189 /// Return the ABI-specified alignment of a (complete) type \p T, in
2190 /// characters.
2191 CharUnits getTypeAlignInChars(QualType T) const;
2192 CharUnits getTypeAlignInChars(const Type *T) const;
2193
2194 /// Return the PreferredAlignment of a (complete) type \p T, in
2195 /// characters.
2196 CharUnits getPreferredTypeAlignInChars(QualType T) const {
2197 return toCharUnitsFromBits(getPreferredTypeAlign(T));
2198 }
2199
2200 /// getTypeUnadjustedAlignInChars - Return the ABI-specified alignment of a type,
2201 /// in characters, before alignment adjustments. This method does not work on
2202 /// incomplete types.
2203 CharUnits getTypeUnadjustedAlignInChars(QualType T) const;
2204 CharUnits getTypeUnadjustedAlignInChars(const Type *T) const;
2205
2206 // getTypeInfoDataSizeInChars - Return the size of a type, in chars. If the
2207 // type is a record, its data size is returned.
2208 TypeInfoChars getTypeInfoDataSizeInChars(QualType T) const;
2209
2210 TypeInfoChars getTypeInfoInChars(const Type *T) const;
2211 TypeInfoChars getTypeInfoInChars(QualType T) const;
2212
2213 /// Determine if the alignment the type has was required using an
2214 /// alignment attribute.
2215 bool isAlignmentRequired(const Type *T) const;
2216 bool isAlignmentRequired(QualType T) const;
2217
2218 /// Return the "preferred" alignment of the specified type \p T for
2219 /// the current target, in bits.
2220 ///
2221 /// This can be different than the ABI alignment in cases where it is
2222 /// beneficial for performance or backwards compatibility preserving to
2223 /// overalign a data type. (Note: despite the name, the preferred alignment
2224 /// is ABI-impacting, and not an optimization.)
2225 unsigned getPreferredTypeAlign(QualType T) const {
2226 return getPreferredTypeAlign(T.getTypePtr());
2227 }
2228 unsigned getPreferredTypeAlign(const Type *T) const;
2229
2230 /// Return the default alignment for __attribute__((aligned)) on
2231 /// this target, to be used if no alignment value is specified.
2232 unsigned getTargetDefaultAlignForAttributeAligned() const;
2233
2234 /// Return the alignment in bits that should be given to a
2235 /// global variable with type \p T.
2236 unsigned getAlignOfGlobalVar(QualType T) const;
2237
2238 /// Return the alignment in characters that should be given to a
2239 /// global variable with type \p T.
2240 CharUnits getAlignOfGlobalVarInChars(QualType T) const;
2241
2242 /// Return a conservative estimate of the alignment of the specified
2243 /// decl \p D.
2244 ///
2245 /// \pre \p D must not be a bitfield type, as bitfields do not have a valid
2246 /// alignment.
2247 ///
2248 /// If \p ForAlignof, references are treated like their underlying type
2249 /// and large arrays don't get any special treatment. If not \p ForAlignof
2250 /// it computes the value expected by CodeGen: references are treated like
2251 /// pointers and large arrays get extra alignment.
2252 CharUnits getDeclAlign(const Decl *D, bool ForAlignof = false) const;
2253
2254 /// Return the alignment (in bytes) of the thrown exception object. This is
2255 /// only meaningful for targets that allocate C++ exceptions in a system
2256 /// runtime, such as those using the Itanium C++ ABI.
2257 CharUnits getExnObjectAlignment() const;
2258
2259 /// Get or compute information about the layout of the specified
2260 /// record (struct/union/class) \p D, which indicates its size and field
2261 /// position information.
2262 const ASTRecordLayout &getASTRecordLayout(const RecordDecl *D) const;
2263
2264 /// Get or compute information about the layout of the specified
2265 /// Objective-C interface.
2266 const ASTRecordLayout &getASTObjCInterfaceLayout(const ObjCInterfaceDecl *D)
2267 const;
2268
2269 void DumpRecordLayout(const RecordDecl *RD, raw_ostream &OS,
2270 bool Simple = false) const;
2271
2272 /// Get or compute information about the layout of the specified
2273 /// Objective-C implementation.
2274 ///
2275 /// This may differ from the interface if synthesized ivars are present.
2276 const ASTRecordLayout &
2277 getASTObjCImplementationLayout(const ObjCImplementationDecl *D) const;
2278
2279 /// Get our current best idea for the key function of the
2280 /// given record decl, or nullptr if there isn't one.
2281 ///
2282 /// The key function is, according to the Itanium C++ ABI section 5.2.3:
2283 /// ...the first non-pure virtual function that is not inline at the
2284 /// point of class definition.
2285 ///
2286 /// Other ABIs use the same idea. However, the ARM C++ ABI ignores
2287 /// virtual functions that are defined 'inline', which means that
2288 /// the result of this computation can change.
2289 const CXXMethodDecl *getCurrentKeyFunction(const CXXRecordDecl *RD);
2290
2291 /// Observe that the given method cannot be a key function.
2292 /// Checks the key-function cache for the method's class and clears it
2293 /// if matches the given declaration.
2294 ///
2295 /// This is used in ABIs where out-of-line definitions marked
2296 /// inline are not considered to be key functions.
2297 ///
2298 /// \param method should be the declaration from the class definition
2299 void setNonKeyFunction(const CXXMethodDecl *method);
2300
2301 /// Loading virtual member pointers using the virtual inheritance model
2302 /// always results in an adjustment using the vbtable even if the index is
2303 /// zero.
2304 ///
2305 /// This is usually OK because the first slot in the vbtable points
2306 /// backwards to the top of the MDC. However, the MDC might be reusing a
2307 /// vbptr from an nv-base. In this case, the first slot in the vbtable
2308 /// points to the start of the nv-base which introduced the vbptr and *not*
2309 /// the MDC. Modify the NonVirtualBaseAdjustment to account for this.
2310 CharUnits getOffsetOfBaseWithVBPtr(const CXXRecordDecl *RD) const;
2311
2312 /// Get the offset of a FieldDecl or IndirectFieldDecl, in bits.
2313 uint64_t getFieldOffset(const ValueDecl *FD) const;
2314
2315 /// Get the offset of an ObjCIvarDecl in bits.
2316 uint64_t lookupFieldBitOffset(const ObjCInterfaceDecl *OID,
2317 const ObjCImplementationDecl *ID,
2318 const ObjCIvarDecl *Ivar) const;
2319
2320 /// Find the 'this' offset for the member path in a pointer-to-member
2321 /// APValue.
2322 CharUnits getMemberPointerPathAdjustment(const APValue &MP) const;
2323
2324 bool isNearlyEmpty(const CXXRecordDecl *RD) const;
2325
2326 VTableContextBase *getVTableContext();
2327
2328 /// If \p T is null pointer, assume the target in ASTContext.
2329 MangleContext *createMangleContext(const TargetInfo *T = nullptr);
2330
2331 void DeepCollectObjCIvars(const ObjCInterfaceDecl *OI, bool leafClass,
2332 SmallVectorImpl<const ObjCIvarDecl*> &Ivars) const;
2333
2334 unsigned CountNonClassIvars(const ObjCInterfaceDecl *OI) const;
2335 void CollectInheritedProtocols(const Decl *CDecl,
2336 llvm::SmallPtrSet<ObjCProtocolDecl*, 8> &Protocols);
2337
2338 /// Return true if the specified type has unique object representations
2339 /// according to (C++17 [meta.unary.prop]p9)
2340 bool hasUniqueObjectRepresentations(QualType Ty) const;
2341
2342 //===--------------------------------------------------------------------===//
2343 // Type Operators
2344 //===--------------------------------------------------------------------===//
2345
2346 /// Return the canonical (structural) type corresponding to the
2347 /// specified potentially non-canonical type \p T.
2348 ///
2349 /// The non-canonical version of a type may have many "decorated" versions of
2350 /// types. Decorators can include typedefs, 'typeof' operators, etc. The
2351 /// returned type is guaranteed to be free of any of these, allowing two
2352 /// canonical types to be compared for exact equality with a simple pointer
2353 /// comparison.
2354 CanQualType getCanonicalType(QualType T) const {
2355 return CanQualType::CreateUnsafe(T.getCanonicalType());
2356 }
2357
2358 const Type *getCanonicalType(const Type *T) const {
2359 return T->getCanonicalTypeInternal().getTypePtr();
2360 }
2361
2362 /// Return the canonical parameter type corresponding to the specific
2363 /// potentially non-canonical one.
2364 ///
2365 /// Qualifiers are stripped off, functions are turned into function
2366 /// pointers, and arrays decay one level into pointers.
2367 CanQualType getCanonicalParamType(QualType T) const;
2368
2369 /// Determine whether the given types \p T1 and \p T2 are equivalent.
2370 bool hasSameType(QualType T1, QualType T2) const {
2371 return getCanonicalType(T1) == getCanonicalType(T2);
2372 }
2373 bool hasSameType(const Type *T1, const Type *T2) const {
2374 return getCanonicalType(T1) == getCanonicalType(T2);
2375 }
2376
2377 /// Return this type as a completely-unqualified array type,
2378 /// capturing the qualifiers in \p Quals.
2379 ///
2380 /// This will remove the minimal amount of sugaring from the types, similar
2381 /// to the behavior of QualType::getUnqualifiedType().
2382 ///
2383 /// \param T is the qualified type, which may be an ArrayType
2384 ///
2385 /// \param Quals will receive the full set of qualifiers that were
2386 /// applied to the array.
2387 ///
2388 /// \returns if this is an array type, the completely unqualified array type
2389 /// that corresponds to it. Otherwise, returns T.getUnqualifiedType().
2390 QualType getUnqualifiedArrayType(QualType T, Qualifiers &Quals);
2391
2392 /// Determine whether the given types are equivalent after
2393 /// cvr-qualifiers have been removed.
2394 bool hasSameUnqualifiedType(QualType T1, QualType T2) const {
2395 return getCanonicalType(T1).getTypePtr() ==
2396 getCanonicalType(T2).getTypePtr();
2397 }
2398
2399 bool hasSameNullabilityTypeQualifier(QualType SubT, QualType SuperT,
2400 bool IsParam) const {
2401 auto SubTnullability = SubT->getNullability(*this);
2402 auto SuperTnullability = SuperT->getNullability(*this);
2403 if (SubTnullability.hasValue() == SuperTnullability.hasValue()) {
2404 // Neither has nullability; return true
2405 if (!SubTnullability)
2406 return true;
2407 // Both have nullability qualifier.
2408 if (*SubTnullability == *SuperTnullability ||
2409 *SubTnullability == NullabilityKind::Unspecified ||
2410 *SuperTnullability == NullabilityKind::Unspecified)
2411 return true;
2412
2413 if (IsParam) {
2414 // Ok for the superclass method parameter to be "nonnull" and the subclass
2415 // method parameter to be "nullable"
2416 return (*SuperTnullability == NullabilityKind::NonNull &&
2417 *SubTnullability == NullabilityKind::Nullable);
2418 }
2419 // For the return type, it's okay for the superclass method to specify
2420 // "nullable" and the subclass method specify "nonnull"
2421 return (*SuperTnullability == NullabilityKind::Nullable &&
2422 *SubTnullability == NullabilityKind::NonNull);
2423 }
2424 return true;
2425 }
2426
2427 bool ObjCMethodsAreEqual(const ObjCMethodDecl *MethodDecl,
2428 const ObjCMethodDecl *MethodImp);
2429
2430 bool UnwrapSimilarTypes(QualType &T1, QualType &T2);
2431 bool UnwrapSimilarArrayTypes(QualType &T1, QualType &T2);
2432
2433 /// Determine if two types are similar, according to the C++ rules. That is,
2434 /// determine if they are the same other than qualifiers on the initial
2435 /// sequence of pointer / pointer-to-member / array (and in Clang, object
2436 /// pointer) types and their element types.
2437 ///
2438 /// Clang offers a number of qualifiers in addition to the C++ qualifiers;
2439 /// those qualifiers are also ignored in the 'similarity' check.
2440 bool hasSimilarType(QualType T1, QualType T2);
2441
2442 /// Determine if two types are similar, ignoring only CVR qualifiers.
2443 bool hasCvrSimilarType(QualType T1, QualType T2);
2444
2445 /// Retrieves the "canonical" nested name specifier for a
2446 /// given nested name specifier.
2447 ///
2448 /// The canonical nested name specifier is a nested name specifier
2449 /// that uniquely identifies a type or namespace within the type
2450 /// system. For example, given:
2451 ///
2452 /// \code
2453 /// namespace N {
2454 /// struct S {
2455 /// template<typename T> struct X { typename T* type; };
2456 /// };
2457 /// }
2458 ///
2459 /// template<typename T> struct Y {
2460 /// typename N::S::X<T>::type member;
2461 /// };
2462 /// \endcode
2463 ///
2464 /// Here, the nested-name-specifier for N::S::X<T>:: will be
2465 /// S::X<template-param-0-0>, since 'S' and 'X' are uniquely defined
2466 /// by declarations in the type system and the canonical type for
2467 /// the template type parameter 'T' is template-param-0-0.
2468 NestedNameSpecifier *
2469 getCanonicalNestedNameSpecifier(NestedNameSpecifier *NNS) const;
2470
2471 /// Retrieves the default calling convention for the current target.
2472 CallingConv getDefaultCallingConvention(bool IsVariadic,
2473 bool IsCXXMethod,
2474 bool IsBuiltin = false) const;
2475
2476 /// Retrieves the "canonical" template name that refers to a
2477 /// given template.
2478 ///
2479 /// The canonical template name is the simplest expression that can
2480 /// be used to refer to a given template. For most templates, this
2481 /// expression is just the template declaration itself. For example,
2482 /// the template std::vector can be referred to via a variety of
2483 /// names---std::vector, \::std::vector, vector (if vector is in
2484 /// scope), etc.---but all of these names map down to the same
2485 /// TemplateDecl, which is used to form the canonical template name.
2486 ///
2487 /// Dependent template names are more interesting. Here, the
2488 /// template name could be something like T::template apply or
2489 /// std::allocator<T>::template rebind, where the nested name
2490 /// specifier itself is dependent. In this case, the canonical
2491 /// template name uses the shortest form of the dependent
2492 /// nested-name-specifier, which itself contains all canonical
2493 /// types, values, and templates.
2494 TemplateName getCanonicalTemplateName(TemplateName Name) const;
2495
2496 /// Determine whether the given template names refer to the same
2497 /// template.
2498 bool hasSameTemplateName(TemplateName X, TemplateName Y);
2499
2500 /// Retrieve the "canonical" template argument.
2501 ///
2502 /// The canonical template argument is the simplest template argument
2503 /// (which may be a type, value, expression, or declaration) that
2504 /// expresses the value of the argument.
2505 TemplateArgument getCanonicalTemplateArgument(const TemplateArgument &Arg)
2506 const;
2507
2508 /// Type Query functions. If the type is an instance of the specified class,
2509 /// return the Type pointer for the underlying maximally pretty type. This
2510 /// is a member of ASTContext because this may need to do some amount of
2511 /// canonicalization, e.g. to move type qualifiers into the element type.
2512 const ArrayType *getAsArrayType(QualType T) const;
2513 const ConstantArrayType *getAsConstantArrayType(QualType T) const {
2514 return dyn_cast_or_null<ConstantArrayType>(getAsArrayType(T));
2515 }
2516 const VariableArrayType *getAsVariableArrayType(QualType T) const {
2517 return dyn_cast_or_null<VariableArrayType>(getAsArrayType(T));
2518 }
2519 const IncompleteArrayType *getAsIncompleteArrayType(QualType T) const {
2520 return dyn_cast_or_null<IncompleteArrayType>(getAsArrayType(T));
2521 }
2522 const DependentSizedArrayType *getAsDependentSizedArrayType(QualType T)
2523 const {
2524 return dyn_cast_or_null<DependentSizedArrayType>(getAsArrayType(T));
2525 }
2526
2527 /// Return the innermost element type of an array type.
2528 ///
2529 /// For example, will return "int" for int[m][n]
2530 QualType getBaseElementType(const ArrayType *VAT) const;
2531
2532 /// Return the innermost element type of a type (which needn't
2533 /// actually be an array type).
2534 QualType getBaseElementType(QualType QT) const;
2535
2536 /// Return number of constant array elements.
2537 uint64_t getConstantArrayElementCount(const ConstantArrayType *CA) const;
2538
2539 /// Perform adjustment on the parameter type of a function.
2540 ///
2541 /// This routine adjusts the given parameter type @p T to the actual
2542 /// parameter type used by semantic analysis (C99 6.7.5.3p[7,8],
2543 /// C++ [dcl.fct]p3). The adjusted parameter type is returned.
2544 QualType getAdjustedParameterType(QualType T) const;
2545
2546 /// Retrieve the parameter type as adjusted for use in the signature
2547 /// of a function, decaying array and function types and removing top-level
2548 /// cv-qualifiers.
2549 QualType getSignatureParameterType(QualType T) const;
2550
2551 QualType getExceptionObjectType(QualType T) const;
2552
2553 /// Return the properly qualified result of decaying the specified
2554 /// array type to a pointer.
2555 ///
2556 /// This operation is non-trivial when handling typedefs etc. The canonical
2557 /// type of \p T must be an array type, this returns a pointer to a properly
2558 /// qualified element of the array.
2559 ///
2560 /// See C99 6.7.5.3p7 and C99 6.3.2.1p3.
2561 QualType getArrayDecayedType(QualType T) const;
2562
2563 /// Return the type that \p PromotableType will promote to: C99
2564 /// 6.3.1.1p2, assuming that \p PromotableType is a promotable integer type.
2565 QualType getPromotedIntegerType(QualType PromotableType) const;
2566
2567 /// Recurses in pointer/array types until it finds an Objective-C
2568 /// retainable type and returns its ownership.
2569 Qualifiers::ObjCLifetime getInnerObjCOwnership(QualType T) const;
2570
2571 /// Whether this is a promotable bitfield reference according
2572 /// to C99 6.3.1.1p2, bullet 2 (and GCC extensions).
2573 ///
2574 /// \returns the type this bit-field will promote to, or NULL if no
2575 /// promotion occurs.
2576 QualType isPromotableBitField(Expr *E) const;
2577
2578 /// Return the highest ranked integer type, see C99 6.3.1.8p1.
2579 ///
2580 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2581 /// \p LHS < \p RHS, return -1.
2582 int getIntegerTypeOrder(QualType LHS, QualType RHS) const;
2583
2584 /// Compare the rank of the two specified floating point types,
2585 /// ignoring the domain of the type (i.e. 'double' == '_Complex double').
2586 ///
2587 /// If \p LHS > \p RHS, returns 1. If \p LHS == \p RHS, returns 0. If
2588 /// \p LHS < \p RHS, return -1.
2589 int getFloatingTypeOrder(QualType LHS, QualType RHS) const;
2590
2591 /// Compare the rank of two floating point types as above, but compare equal
2592 /// if both types have the same floating-point semantics on the target (i.e.
2593 /// long double and double on AArch64 will return 0).
2594 int getFloatingTypeSemanticOrder(QualType LHS, QualType RHS) const;
2595
2596 /// Return a real floating point or a complex type (based on
2597 /// \p typeDomain/\p typeSize).
2598 ///
2599 /// \param typeDomain a real floating point or complex type.
2600 /// \param typeSize a real floating point or complex type.
2601 QualType getFloatingTypeOfSizeWithinDomain(QualType typeSize,
2602 QualType typeDomain) const;
2603
2604 unsigned getTargetAddressSpace(QualType T) const {
2605 return getTargetAddressSpace(T.getQualifiers());
2606 }
2607
2608 unsigned getTargetAddressSpace(Qualifiers Q) const {
2609 return getTargetAddressSpace(Q.getAddressSpace());
2610 }
2611
2612 unsigned getTargetAddressSpace(LangAS AS) const;
2613
2614 LangAS getLangASForBuiltinAddressSpace(unsigned AS) const;
2615
2616 /// Get target-dependent integer value for null pointer which is used for
2617 /// constant folding.
2618 uint64_t getTargetNullPointerValue(QualType QT) const;
2619
2620 bool addressSpaceMapManglingFor(LangAS AS) const {
2621 return AddrSpaceMapMangling || isTargetAddressSpace(AS);
2622 }
2623
2624private:
2625 // Helper for integer ordering
2626 unsigned getIntegerRank(const Type *T) const;
2627
2628public:
2629 //===--------------------------------------------------------------------===//
2630 // Type Compatibility Predicates
2631 //===--------------------------------------------------------------------===//
2632
2633 /// Compatibility predicates used to check assignment expressions.
2634 bool typesAreCompatible(QualType T1, QualType T2,
2635 bool CompareUnqualified = false); // C99 6.2.7p1
2636
2637 bool propertyTypesAreCompatible(QualType, QualType);
2638 bool typesAreBlockPointerCompatible(QualType, QualType);
2639
2640 bool isObjCIdType(QualType T) const {
2641 return T == getObjCIdType();
2642 }
2643
2644 bool isObjCClassType(QualType T) const {
2645 return T == getObjCClassType();
2646 }
2647
2648 bool isObjCSelType(QualType T) const {
2649 return T == getObjCSelType();
2650 }
2651
2652 bool ObjCQualifiedIdTypesAreCompatible(const ObjCObjectPointerType *LHS,
2653 const ObjCObjectPointerType *RHS,
2654 bool ForCompare);
2655
2656 bool ObjCQualifiedClassTypesAreCompatible(const ObjCObjectPointerType *LHS,
2657 const ObjCObjectPointerType *RHS);
2658
2659 // Check the safety of assignment from LHS to RHS
2660 bool canAssignObjCInterfaces(const ObjCObjectPointerType *LHSOPT,
2661 const ObjCObjectPointerType *RHSOPT);
2662 bool canAssignObjCInterfaces(const ObjCObjectType *LHS,
2663 const ObjCObjectType *RHS);
2664 bool canAssignObjCInterfacesInBlockPointer(
2665 const ObjCObjectPointerType *LHSOPT,
2666 const ObjCObjectPointerType *RHSOPT,
2667 bool BlockReturnType);
2668 bool areComparableObjCPointerTypes(QualType LHS, QualType RHS);
2669 QualType areCommonBaseCompatible(const ObjCObjectPointerType *LHSOPT,
2670 const ObjCObjectPointerType *RHSOPT);
2671 bool canBindObjCObjectType(QualType To, QualType From);
2672
2673 // Functions for calculating composite types
2674 QualType mergeTypes(QualType, QualType, bool OfBlockPointer=false,
2675 bool Unqualified = false, bool BlockReturnType = false);
2676 QualType mergeFunctionTypes(QualType, QualType, bool OfBlockPointer=false,
2677 bool Unqualified = false, bool AllowCXX = false);
2678 QualType mergeFunctionParameterTypes(QualType, QualType,
2679 bool OfBlockPointer = false,
2680 bool Unqualified = false);
2681 QualType mergeTransparentUnionType(QualType, QualType,
2682 bool OfBlockPointer=false,
2683 bool Unqualified = false);
2684
2685 QualType mergeObjCGCQualifiers(QualType, QualType);
2686
2687 /// This function merges the ExtParameterInfo lists of two functions. It
2688 /// returns true if the lists are compatible. The merged list is returned in
2689 /// NewParamInfos.
2690 ///
2691 /// \param FirstFnType The type of the first function.
2692 ///
2693 /// \param SecondFnType The type of the second function.
2694 ///
2695 /// \param CanUseFirst This flag is set to true if the first function's
2696 /// ExtParameterInfo list can be used as the composite list of
2697 /// ExtParameterInfo.
2698 ///
2699 /// \param CanUseSecond This flag is set to true if the second function's
2700 /// ExtParameterInfo list can be used as the composite list of
2701 /// ExtParameterInfo.
2702 ///
2703 /// \param NewParamInfos The composite list of ExtParameterInfo. The list is
2704 /// empty if none of the flags are set.
2705 ///
2706 bool mergeExtParameterInfo(
2707 const FunctionProtoType *FirstFnType,
2708 const FunctionProtoType *SecondFnType,
2709 bool &CanUseFirst, bool &CanUseSecond,
2710 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &NewParamInfos);
2711
2712 void ResetObjCLayout(const ObjCContainerDecl *CD);
2713
2714 //===--------------------------------------------------------------------===//
2715 // Integer Predicates
2716 //===--------------------------------------------------------------------===//
2717
2718 // The width of an integer, as defined in C99 6.2.6.2. This is the number
2719 // of bits in an integer type excluding any padding bits.
2720 unsigned getIntWidth(QualType T) const;
2721
2722 // Per C99 6.2.5p6, for every signed integer type, there is a corresponding
2723 // unsigned integer type. This method takes a signed type, and returns the
2724 // corresponding unsigned integer type.
2725 // With the introduction of fixed point types in ISO N1169, this method also
2726 // accepts fixed point types and returns the corresponding unsigned type for
2727 // a given fixed point type.
2728 QualType getCorrespondingUnsignedType(QualType T) const;
2729
2730 // Per ISO N1169, this method accepts fixed point types and returns the
2731 // corresponding saturated type for a given fixed point type.
2732 QualType getCorrespondingSaturatedType(QualType Ty) const;
2733
2734 // This method accepts fixed point types and returns the corresponding signed
2735 // type. Unlike getCorrespondingUnsignedType(), this only accepts unsigned
2736 // fixed point types because there are unsigned integer types like bool and
2737 // char8_t that don't have signed equivalents.
2738 QualType getCorrespondingSignedFixedPointType(QualType Ty) const;
2739
2740 //===--------------------------------------------------------------------===//
2741 // Integer Values
2742 //===--------------------------------------------------------------------===//
2743
2744 /// Make an APSInt of the appropriate width and signedness for the
2745 /// given \p Value and integer \p Type.
2746 llvm::APSInt MakeIntValue(uint64_t Value, QualType Type) const {
2747 // If Type is a signed integer type larger than 64 bits, we need to be sure
2748 // to sign extend Res appropriately.
2749 llvm::APSInt Res(64, !Type->isSignedIntegerOrEnumerationType());
2750 Res = Value;
2751 unsigned Width = getIntWidth(Type);
2752 if (Width != Res.getBitWidth())
2753 return Res.extOrTrunc(Width);
2754 return Res;
2755 }
2756
2757 bool isSentinelNullExpr(const Expr *E);
2758
2759 /// Get the implementation of the ObjCInterfaceDecl \p D, or nullptr if
2760 /// none exists.
2761 ObjCImplementationDecl *getObjCImplementation(ObjCInterfaceDecl *D);
2762
2763 /// Get the implementation of the ObjCCategoryDecl \p D, or nullptr if
2764 /// none exists.
2765 ObjCCategoryImplDecl *getObjCImplementation(ObjCCategoryDecl *D);
2766
2767 /// Return true if there is at least one \@implementation in the TU.
2768 bool AnyObjCImplementation() {
2769 return !ObjCImpls.empty();
2770 }
2771
2772 /// Set the implementation of ObjCInterfaceDecl.
2773 void setObjCImplementation(ObjCInterfaceDecl *IFaceD,
2774 ObjCImplementationDecl *ImplD);
2775
2776 /// Set the implementation of ObjCCategoryDecl.
2777 void setObjCImplementation(ObjCCategoryDecl *CatD,
2778 ObjCCategoryImplDecl *ImplD);
2779
2780 /// Get the duplicate declaration of a ObjCMethod in the same
2781 /// interface, or null if none exists.
2782 const ObjCMethodDecl *
2783 getObjCMethodRedeclaration(const ObjCMethodDecl *MD) const;
2784
2785 void setObjCMethodRedeclaration(const ObjCMethodDecl *MD,
2786 const ObjCMethodDecl *Redecl);
2787
2788 /// Returns the Objective-C interface that \p ND belongs to if it is
2789 /// an Objective-C method/property/ivar etc. that is part of an interface,
2790 /// otherwise returns null.
2791 const ObjCInterfaceDecl *getObjContainingInterface(const NamedDecl *ND) const;
2792
2793 /// Set the copy initialization expression of a block var decl. \p CanThrow
2794 /// indicates whether the copy expression can throw or not.
2795 void setBlockVarCopyInit(const VarDecl* VD, Expr *CopyExpr, bool CanThrow);
2796
2797 /// Get the copy initialization expression of the VarDecl \p VD, or
2798 /// nullptr if none exists.
2799 BlockVarCopyInit getBlockVarCopyInit(const VarDecl* VD) const;
2800
2801 /// Allocate an uninitialized TypeSourceInfo.
2802 ///
2803 /// The caller should initialize the memory held by TypeSourceInfo using
2804 /// the TypeLoc wrappers.
2805 ///
2806 /// \param T the type that will be the basis for type source info. This type
2807 /// should refer to how the declarator was written in source code, not to
2808 /// what type semantic analysis resolved the declarator to.
2809 ///
2810 /// \param Size the size of the type info to create, or 0 if the size
2811 /// should be calculated based on the type.
2812 TypeSourceInfo *CreateTypeSourceInfo(QualType T, unsigned Size = 0) const;
2813
2814 /// Allocate a TypeSourceInfo where all locations have been
2815 /// initialized to a given location, which defaults to the empty
2816 /// location.
2817 TypeSourceInfo *
2818 getTrivialTypeSourceInfo(QualType T,
2819 SourceLocation Loc = SourceLocation()) const;
2820
2821 /// Add a deallocation callback that will be invoked when the
2822 /// ASTContext is destroyed.
2823 ///
2824 /// \param Callback A callback function that will be invoked on destruction.
2825 ///
2826 /// \param Data Pointer data that will be provided to the callback function
2827 /// when it is called.
2828 void AddDeallocation(void (*Callback)(void *), void *Data) const;
2829
2830 /// If T isn't trivially destructible, calls AddDeallocation to register it
2831 /// for destruction.
2832 template <typename T> void addDestruction(T *Ptr) const {
2833 if (!std::is_trivially_destructible<T>::value) {
2834 auto DestroyPtr = [](void *V) { static_cast<T *>(V)->~T(); };
2835 AddDeallocation(DestroyPtr, Ptr);
2836 }
2837 }
2838
2839 GVALinkage GetGVALinkageForFunction(const FunctionDecl *FD) const;
2840 GVALinkage GetGVALinkageForVariable(const VarDecl *VD);
2841
2842 /// Determines if the decl can be CodeGen'ed or deserialized from PCH
2843 /// lazily, only when used; this is only relevant for function or file scoped
2844 /// var definitions.
2845 ///
2846 /// \returns true if the function/var must be CodeGen'ed/deserialized even if
2847 /// it is not used.
2848 bool DeclMustBeEmitted(const Decl *D);
2849
2850 /// Visits all versions of a multiversioned function with the passed
2851 /// predicate.
2852 void forEachMultiversionedFunctionVersion(
2853 const FunctionDecl *FD,
2854 llvm::function_ref<void(FunctionDecl *)> Pred) const;
2855
2856 const CXXConstructorDecl *
2857 getCopyConstructorForExceptionObject(CXXRecordDecl *RD);
2858
2859 void addCopyConstructorForExceptionObject(CXXRecordDecl *RD,
2860 CXXConstructorDecl *CD);
2861
2862 void addTypedefNameForUnnamedTagDecl(TagDecl *TD, TypedefNameDecl *TND);
2863
2864 TypedefNameDecl *getTypedefNameForUnnamedTagDecl(const TagDecl *TD);
2865
2866 void addDeclaratorForUnnamedTagDecl(TagDecl *TD, DeclaratorDecl *DD);
2867
2868 DeclaratorDecl *getDeclaratorForUnnamedTagDecl(const TagDecl *TD);
2869
2870 void setManglingNumber(const NamedDecl *ND, unsigned Number);
2871 unsigned getManglingNumber(const NamedDecl *ND) const;
2872
2873 void setStaticLocalNumber(const VarDecl *VD, unsigned Number);
2874 unsigned getStaticLocalNumber(const VarDecl *VD) const;
2875
2876 /// Retrieve the context for computing mangling numbers in the given
2877 /// DeclContext.
2878 MangleNumberingContext &getManglingNumberContext(const DeclContext *DC);
2879 enum NeedExtraManglingDecl_t { NeedExtraManglingDecl };
2880 MangleNumberingContext &getManglingNumberContext(NeedExtraManglingDecl_t,
2881 const Decl *D);
2882
2883 std::unique_ptr<MangleNumberingContext> createMangleNumberingContext() const;
2884
2885 /// Used by ParmVarDecl to store on the side the
2886 /// index of the parameter when it exceeds the size of the normal bitfield.
2887 void setParameterIndex(const ParmVarDecl *D, unsigned index);
2888
2889 /// Used by ParmVarDecl to retrieve on the side the
2890 /// index of the parameter when it exceeds the size of the normal bitfield.
2891 unsigned getParameterIndex(const ParmVarDecl *D) const;
2892
2893 /// Return a string representing the human readable name for the specified
2894 /// function declaration or file name. Used by SourceLocExpr and
2895 /// PredefinedExpr to cache evaluated results.
2896 StringLiteral *getPredefinedStringLiteralFromCache(StringRef Key) const;
2897
2898 /// Return a declaration for the global GUID object representing the given
2899 /// GUID value.
2900 MSGuidDecl *getMSGuidDecl(MSGuidDeclParts Parts) const;
2901
2902 /// Return the template parameter object of the given type with the given
2903 /// value.
2904 TemplateParamObjectDecl *getTemplateParamObjectDecl(QualType T,
2905 const APValue &V) const;
2906
2907 /// Parses the target attributes passed in, and returns only the ones that are
2908 /// valid feature names.
2909 ParsedTargetAttr filterFunctionTargetAttrs(const TargetAttr *TD) const;
2910
2911 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2912 const FunctionDecl *) const;
2913 void getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap,
2914 GlobalDecl GD) const;
2915
2916 //===--------------------------------------------------------------------===//
2917 // Statistics
2918 //===--------------------------------------------------------------------===//
2919
2920 /// The number of implicitly-declared default constructors.
2921 unsigned NumImplicitDefaultConstructors = 0;
2922
2923 /// The number of implicitly-declared default constructors for
2924 /// which declarations were built.
2925 unsigned NumImplicitDefaultConstructorsDeclared = 0;
2926
2927 /// The number of implicitly-declared copy constructors.
2928 unsigned NumImplicitCopyConstructors = 0;
2929
2930 /// The number of implicitly-declared copy constructors for
2931 /// which declarations were built.
2932 unsigned NumImplicitCopyConstructorsDeclared = 0;
2933
2934 /// The number of implicitly-declared move constructors.
2935 unsigned NumImplicitMoveConstructors = 0;
2936
2937 /// The number of implicitly-declared move constructors for
2938 /// which declarations were built.
2939 unsigned NumImplicitMoveConstructorsDeclared = 0;
2940
2941 /// The number of implicitly-declared copy assignment operators.
2942 unsigned NumImplicitCopyAssignmentOperators = 0;
2943
2944 /// The number of implicitly-declared copy assignment operators for
2945 /// which declarations were built.
2946 unsigned NumImplicitCopyAssignmentOperatorsDeclared = 0;
2947
2948 /// The number of implicitly-declared move assignment operators.
2949 unsigned NumImplicitMoveAssignmentOperators = 0;
2950
2951 /// The number of implicitly-declared move assignment operators for
2952 /// which declarations were built.
2953 unsigned NumImplicitMoveAssignmentOperatorsDeclared = 0;
2954
2955 /// The number of implicitly-declared destructors.
2956 unsigned NumImplicitDestructors = 0;
2957
2958 /// The number of implicitly-declared destructors for which
2959 /// declarations were built.
2960 unsigned NumImplicitDestructorsDeclared = 0;
2961
2962public:
2963 /// Initialize built-in types.
2964 ///
2965 /// This routine may only be invoked once for a given ASTContext object.
2966 /// It is normally invoked after ASTContext construction.
2967 ///
2968 /// \param Target The target
2969 void InitBuiltinTypes(const TargetInfo &Target,
2970 const TargetInfo *AuxTarget = nullptr);
2971
2972private:
2973 void InitBuiltinType(CanQualType &R, BuiltinType::Kind K);
2974
2975 class ObjCEncOptions {
2976 unsigned Bits;
2977
2978 ObjCEncOptions(unsigned Bits) : Bits(Bits) {}
2979
2980 public:
2981 ObjCEncOptions() : Bits(0) {}
2982 ObjCEncOptions(const ObjCEncOptions &RHS) : Bits(RHS.Bits) {}
2983
2984#define OPT_LIST(V) \
2985 V(ExpandPointedToStructures, 0) \
2986 V(ExpandStructures, 1) \
2987 V(IsOutermostType, 2) \
2988 V(EncodingProperty, 3) \
2989 V(IsStructField, 4) \
2990 V(EncodeBlockParameters, 5) \
2991 V(EncodeClassNames, 6) \
2992
2993#define V(N,I) ObjCEncOptions& set##N() { Bits |= 1 << I; return *this; }
2994OPT_LIST(V)
2995#undef V
2996
2997#define V(N,I) bool N() const { return Bits & 1 << I; }
2998OPT_LIST(V)
2999#undef V
3000
3001#undef OPT_LIST
3002
3003 LLVM_NODISCARD[[clang::warn_unused_result]] ObjCEncOptions keepingOnly(ObjCEncOptions Mask) const {
3004 return Bits & Mask.Bits;
3005 }
3006
3007 LLVM_NODISCARD[[clang::warn_unused_result]] ObjCEncOptions forComponentType() const {
3008 ObjCEncOptions Mask = ObjCEncOptions()
3009 .setIsOutermostType()
3010 .setIsStructField();
3011 return Bits & ~Mask.Bits;
3012 }
3013 };
3014
3015 // Return the Objective-C type encoding for a given type.
3016 void getObjCEncodingForTypeImpl(QualType t, std::string &S,
3017 ObjCEncOptions Options,
3018 const FieldDecl *Field,
3019 QualType *NotEncodedT = nullptr) const;
3020
3021 // Adds the encoding of the structure's members.
3022 void getObjCEncodingForStructureImpl(RecordDecl *RD, std::string &S,
3023 const FieldDecl *Field,
3024 bool includeVBases = true,
3025 QualType *NotEncodedT=nullptr) const;
3026
3027public:
3028 // Adds the encoding of a method parameter or return type.
3029 void getObjCEncodingForMethodParameter(Decl::ObjCDeclQualifier QT,
3030 QualType T, std::string& S,
3031 bool Extended) const;
3032
3033 /// Returns true if this is an inline-initialized static data member
3034 /// which is treated as a definition for MSVC compatibility.
3035 bool isMSStaticDataMemberInlineDefinition(const VarDecl *VD) const;
3036
3037 enum class InlineVariableDefinitionKind {
3038 /// Not an inline variable.
3039 None,
3040
3041 /// Weak definition of inline variable.
3042 Weak,
3043
3044 /// Weak for now, might become strong later in this TU.
3045 WeakUnknown,
3046
3047 /// Strong definition.
3048 Strong
3049 };
3050
3051 /// Determine whether a definition of this inline variable should
3052 /// be treated as a weak or strong definition. For compatibility with
3053 /// C++14 and before, for a constexpr static data member, if there is an
3054 /// out-of-line declaration of the member, we may promote it from weak to
3055 /// strong.
3056 InlineVariableDefinitionKind
3057 getInlineVariableDefinitionKind(const VarDecl *VD) const;
3058
3059private:
3060 friend class DeclarationNameTable;
3061 friend class DeclContext;
3062
3063 const ASTRecordLayout &
3064 getObjCLayout(const ObjCInterfaceDecl *D,
3065 const ObjCImplementationDecl *Impl) const;
3066
3067 /// A set of deallocations that should be performed when the
3068 /// ASTContext is destroyed.
3069 // FIXME: We really should have a better mechanism in the ASTContext to
3070 // manage running destructors for types which do variable sized allocation
3071 // within the AST. In some places we thread the AST bump pointer allocator
3072 // into the datastructures which avoids this mess during deallocation but is
3073 // wasteful of memory, and here we require a lot of error prone book keeping
3074 // in order to track and run destructors while we're tearing things down.
3075 using DeallocationFunctionsAndArguments =
3076 llvm::SmallVector<std::pair<void (*)(void *), void *>, 16>;
3077 mutable DeallocationFunctionsAndArguments Deallocations;
3078
3079 // FIXME: This currently contains the set of StoredDeclMaps used
3080 // by DeclContext objects. This probably should not be in ASTContext,
3081 // but we include it here so that ASTContext can quickly deallocate them.
3082 llvm::PointerIntPair<StoredDeclsMap *, 1> LastSDM;
3083
3084 std::vector<Decl *> TraversalScope;
3085
3086 std::unique_ptr<VTableContextBase> VTContext;
3087
3088 void ReleaseDeclContextMaps();
3089
3090public:
3091 enum PragmaSectionFlag : unsigned {
3092 PSF_None = 0,
3093 PSF_Read = 0x1,
3094 PSF_Write = 0x2,
3095 PSF_Execute = 0x4,
3096 PSF_Implicit = 0x8,
3097 PSF_ZeroInit = 0x10,
3098 PSF_Invalid = 0x80000000U,
3099 };
3100
3101 struct SectionInfo {
3102 NamedDecl *Decl;
3103 SourceLocation PragmaSectionLocation;
3104 int SectionFlags;
3105
3106 SectionInfo() = default;
3107 SectionInfo(NamedDecl *Decl, SourceLocation PragmaSectionLocation,
3108 int SectionFlags)
3109 : Decl(Decl), PragmaSectionLocation(PragmaSectionLocation),
3110 SectionFlags(SectionFlags) {}
3111 };
3112
3113 llvm::StringMap<SectionInfo> SectionInfos;
3114
3115 /// Return a new OMPTraitInfo object owned by this context.
3116 OMPTraitInfo &getNewOMPTraitInfo();
3117
3118 /// Whether a C++ static variable may be externalized.
3119 bool mayExternalizeStaticVar(const Decl *D) const;
3120
3121 /// Whether a C++ static variable should be externalized.
3122 bool shouldExternalizeStaticVar(const Decl *D) const;
3123
3124 StringRef getCUIDHash() const;
3125
3126private:
3127 /// All OMPTraitInfo objects live in this collection, one per
3128 /// `pragma omp [begin] declare variant` directive.
3129 SmallVector<std::unique_ptr<OMPTraitInfo>, 4> OMPTraitInfoVector;
3130};
3131
3132/// Insertion operator for diagnostics.
3133const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
3134 const ASTContext::SectionInfo &Section);
3135
3136/// Utility function for constructing a nullary selector.
3137inline Selector GetNullarySelector(StringRef name, ASTContext &Ctx) {
3138 IdentifierInfo* II = &Ctx.Idents.get(name);
3139 return Ctx.Selectors.getSelector(0, &II);
3140}
3141
3142/// Utility function for constructing an unary selector.
3143inline Selector GetUnarySelector(StringRef name, ASTContext &Ctx) {
3144 IdentifierInfo* II = &Ctx.Idents.get(name);
3145 return Ctx.Selectors.getSelector(1, &II);
3146}
3147
3148} // namespace clang
3149
3150// operator new and delete aren't allowed inside namespaces.
3151
3152/// Placement new for using the ASTContext's allocator.
3153///
3154/// This placement form of operator new uses the ASTContext's allocator for
3155/// obtaining memory.
3156///
3157/// IMPORTANT: These are also declared in clang/AST/ASTContextAllocate.h!
3158/// Any changes here need to also be made there.
3159///
3160/// We intentionally avoid using a nothrow specification here so that the calls
3161/// to this operator will not perform a null check on the result -- the
3162/// underlying allocator never returns null pointers.
3163///
3164/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3165/// @code
3166/// // Default alignment (8)
3167/// IntegerLiteral *Ex = new (Context) IntegerLiteral(arguments);
3168/// // Specific alignment
3169/// IntegerLiteral *Ex2 = new (Context, 4) IntegerLiteral(arguments);
3170/// @endcode
3171/// Memory allocated through this placement new operator does not need to be
3172/// explicitly freed, as ASTContext will free all of this memory when it gets
3173/// destroyed. Please note that you cannot use delete on the pointer.
3174///
3175/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3176/// @param C The ASTContext that provides the allocator.
3177/// @param Alignment The alignment of the allocated memory (if the underlying
3178/// allocator supports it).
3179/// @return The allocated memory. Could be nullptr.
3180inline void *operator new(size_t Bytes, const clang::ASTContext &C,
3181 size_t Alignment /* = 8 */) {
3182 return C.Allocate(Bytes, Alignment);
3183}
3184
3185/// Placement delete companion to the new above.
3186///
3187/// This operator is just a companion to the new above. There is no way of
3188/// invoking it directly; see the new operator for more details. This operator
3189/// is called implicitly by the compiler if a placement new expression using
3190/// the ASTContext throws in the object constructor.
3191inline void operator delete(void *Ptr, const clang::ASTContext &C, size_t) {
3192 C.Deallocate(Ptr);
3193}
3194
3195/// This placement form of operator new[] uses the ASTContext's allocator for
3196/// obtaining memory.
3197///
3198/// We intentionally avoid using a nothrow specification here so that the calls
3199/// to this operator will not perform a null check on the result -- the
3200/// underlying allocator never returns null pointers.
3201///
3202/// Usage looks like this (assuming there's an ASTContext 'Context' in scope):
3203/// @code
3204/// // Default alignment (8)
3205/// char *data = new (Context) char[10];
3206/// // Specific alignment
3207/// char *data = new (Context, 4) char[10];
3208/// @endcode
3209/// Memory allocated through this placement new[] operator does not need to be
3210/// explicitly freed, as ASTContext will free all of this memory when it gets
3211/// destroyed. Please note that you cannot use delete on the pointer.
3212///
3213/// @param Bytes The number of bytes to allocate. Calculated by the compiler.
3214/// @param C The ASTContext that provides the allocator.
3215/// @param Alignment The alignment of the allocated memory (if the underlying
3216/// allocator supports it).
3217/// @return The allocated memory. Could be nullptr.
3218inline void *operator new[](size_t Bytes, const clang::ASTContext& C,
3219 size_t Alignment /* = 8 */) {
3220 return C.Allocate(Bytes, Alignment);
3221}
3222
3223/// Placement delete[] companion to the new[] above.
3224///
3225/// This operator is just a companion to the new[] above. There is no way of
3226/// invoking it directly; see the new[] operator for more details. This operator
3227/// is called implicitly by the compiler if a placement new[] expression using
3228/// the ASTContext throws in the object constructor.
3229inline void operator delete[](void *Ptr, const clang::ASTContext &C, size_t) {
3230 C.Deallocate(Ptr);
3231}
3232
3233/// Create the representation of a LazyGenerationalUpdatePtr.
3234template <typename Owner, typename T,
3235 void (clang::ExternalASTSource::*Update)(Owner)>
3236typename clang::LazyGenerationalUpdatePtr<Owner, T, Update>::ValueType
3237 clang::LazyGenerationalUpdatePtr<Owner, T, Update>::makeValue(
3238 const clang::ASTContext &Ctx, T Value) {
3239 // Note, this is implemented here so that ExternalASTSource.h doesn't need to
3240 // include ASTContext.h. We explicitly instantiate it for all relevant types
3241 // in ASTContext.cpp.
3242 if (auto *Source = Ctx.getExternalSource())
3243 return new (Ctx) LazyData(Source, Value);
3244 return Value;
3245}
3246
3247#endif // LLVM_CLANG_AST_ASTCONTEXT_H