File: | clang/lib/Sema/SemaExpr.cpp |
Warning: | line 4738, column 18 Called C++ object pointer is null |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===// | ||||
2 | // | ||||
3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||||
4 | // See https://llvm.org/LICENSE.txt for license information. | ||||
5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||||
6 | // | ||||
7 | //===----------------------------------------------------------------------===// | ||||
8 | // | ||||
9 | // This file implements semantic analysis for expressions. | ||||
10 | // | ||||
11 | //===----------------------------------------------------------------------===// | ||||
12 | |||||
13 | #include "TreeTransform.h" | ||||
14 | #include "clang/AST/ASTConsumer.h" | ||||
15 | #include "clang/AST/ASTContext.h" | ||||
16 | #include "clang/AST/ASTLambda.h" | ||||
17 | #include "clang/AST/ASTMutationListener.h" | ||||
18 | #include "clang/AST/CXXInheritance.h" | ||||
19 | #include "clang/AST/DeclObjC.h" | ||||
20 | #include "clang/AST/DeclTemplate.h" | ||||
21 | #include "clang/AST/EvaluatedExprVisitor.h" | ||||
22 | #include "clang/AST/Expr.h" | ||||
23 | #include "clang/AST/ExprCXX.h" | ||||
24 | #include "clang/AST/ExprObjC.h" | ||||
25 | #include "clang/AST/ExprOpenMP.h" | ||||
26 | #include "clang/AST/RecursiveASTVisitor.h" | ||||
27 | #include "clang/AST/TypeLoc.h" | ||||
28 | #include "clang/Basic/FixedPoint.h" | ||||
29 | #include "clang/Basic/PartialDiagnostic.h" | ||||
30 | #include "clang/Basic/SourceManager.h" | ||||
31 | #include "clang/Basic/TargetInfo.h" | ||||
32 | #include "clang/Lex/LiteralSupport.h" | ||||
33 | #include "clang/Lex/Preprocessor.h" | ||||
34 | #include "clang/Sema/AnalysisBasedWarnings.h" | ||||
35 | #include "clang/Sema/DeclSpec.h" | ||||
36 | #include "clang/Sema/DelayedDiagnostic.h" | ||||
37 | #include "clang/Sema/Designator.h" | ||||
38 | #include "clang/Sema/Initialization.h" | ||||
39 | #include "clang/Sema/Lookup.h" | ||||
40 | #include "clang/Sema/Overload.h" | ||||
41 | #include "clang/Sema/ParsedTemplate.h" | ||||
42 | #include "clang/Sema/Scope.h" | ||||
43 | #include "clang/Sema/ScopeInfo.h" | ||||
44 | #include "clang/Sema/SemaFixItUtils.h" | ||||
45 | #include "clang/Sema/SemaInternal.h" | ||||
46 | #include "clang/Sema/Template.h" | ||||
47 | #include "llvm/Support/ConvertUTF.h" | ||||
48 | using namespace clang; | ||||
49 | using namespace sema; | ||||
50 | |||||
51 | /// Determine whether the use of this declaration is valid, without | ||||
52 | /// emitting diagnostics. | ||||
53 | bool Sema::CanUseDecl(NamedDecl *D, bool TreatUnavailableAsInvalid) { | ||||
54 | // See if this is an auto-typed variable whose initializer we are parsing. | ||||
55 | if (ParsingInitForAutoVars.count(D)) | ||||
56 | return false; | ||||
57 | |||||
58 | // See if this is a deleted function. | ||||
59 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | ||||
60 | if (FD->isDeleted()) | ||||
61 | return false; | ||||
62 | |||||
63 | // If the function has a deduced return type, and we can't deduce it, | ||||
64 | // then we can't use it either. | ||||
65 | if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | ||||
66 | DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false)) | ||||
67 | return false; | ||||
68 | |||||
69 | // See if this is an aligned allocation/deallocation function that is | ||||
70 | // unavailable. | ||||
71 | if (TreatUnavailableAsInvalid && | ||||
72 | isUnavailableAlignedAllocationFunction(*FD)) | ||||
73 | return false; | ||||
74 | } | ||||
75 | |||||
76 | // See if this function is unavailable. | ||||
77 | if (TreatUnavailableAsInvalid && D->getAvailability() == AR_Unavailable && | ||||
78 | cast<Decl>(CurContext)->getAvailability() != AR_Unavailable) | ||||
79 | return false; | ||||
80 | |||||
81 | return true; | ||||
82 | } | ||||
83 | |||||
84 | static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) { | ||||
85 | // Warn if this is used but marked unused. | ||||
86 | if (const auto *A = D->getAttr<UnusedAttr>()) { | ||||
87 | // [[maybe_unused]] should not diagnose uses, but __attribute__((unused)) | ||||
88 | // should diagnose them. | ||||
89 | if (A->getSemanticSpelling() != UnusedAttr::CXX11_maybe_unused && | ||||
90 | A->getSemanticSpelling() != UnusedAttr::C2x_maybe_unused) { | ||||
91 | const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext()); | ||||
92 | if (DC && !DC->hasAttr<UnusedAttr>()) | ||||
93 | S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName(); | ||||
94 | } | ||||
95 | } | ||||
96 | } | ||||
97 | |||||
98 | /// Emit a note explaining that this function is deleted. | ||||
99 | void Sema::NoteDeletedFunction(FunctionDecl *Decl) { | ||||
100 | assert(Decl->isDeleted())((Decl->isDeleted()) ? static_cast<void> (0) : __assert_fail ("Decl->isDeleted()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 100, __PRETTY_FUNCTION__)); | ||||
101 | |||||
102 | CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl); | ||||
103 | |||||
104 | if (Method && Method->isDeleted() && Method->isDefaulted()) { | ||||
105 | // If the method was explicitly defaulted, point at that declaration. | ||||
106 | if (!Method->isImplicit()) | ||||
107 | Diag(Decl->getLocation(), diag::note_implicitly_deleted); | ||||
108 | |||||
109 | // Try to diagnose why this special member function was implicitly | ||||
110 | // deleted. This might fail, if that reason no longer applies. | ||||
111 | CXXSpecialMember CSM = getSpecialMember(Method); | ||||
112 | if (CSM != CXXInvalid) | ||||
113 | ShouldDeleteSpecialMember(Method, CSM, nullptr, /*Diagnose=*/true); | ||||
114 | |||||
115 | return; | ||||
116 | } | ||||
117 | |||||
118 | auto *Ctor = dyn_cast<CXXConstructorDecl>(Decl); | ||||
119 | if (Ctor && Ctor->isInheritingConstructor()) | ||||
120 | return NoteDeletedInheritingConstructor(Ctor); | ||||
121 | |||||
122 | Diag(Decl->getLocation(), diag::note_availability_specified_here) | ||||
123 | << Decl << 1; | ||||
124 | } | ||||
125 | |||||
126 | /// Determine whether a FunctionDecl was ever declared with an | ||||
127 | /// explicit storage class. | ||||
128 | static bool hasAnyExplicitStorageClass(const FunctionDecl *D) { | ||||
129 | for (auto I : D->redecls()) { | ||||
130 | if (I->getStorageClass() != SC_None) | ||||
131 | return true; | ||||
132 | } | ||||
133 | return false; | ||||
134 | } | ||||
135 | |||||
136 | /// Check whether we're in an extern inline function and referring to a | ||||
137 | /// variable or function with internal linkage (C11 6.7.4p3). | ||||
138 | /// | ||||
139 | /// This is only a warning because we used to silently accept this code, but | ||||
140 | /// in many cases it will not behave correctly. This is not enabled in C++ mode | ||||
141 | /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6) | ||||
142 | /// and so while there may still be user mistakes, most of the time we can't | ||||
143 | /// prove that there are errors. | ||||
144 | static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S, | ||||
145 | const NamedDecl *D, | ||||
146 | SourceLocation Loc) { | ||||
147 | // This is disabled under C++; there are too many ways for this to fire in | ||||
148 | // contexts where the warning is a false positive, or where it is technically | ||||
149 | // correct but benign. | ||||
150 | if (S.getLangOpts().CPlusPlus) | ||||
151 | return; | ||||
152 | |||||
153 | // Check if this is an inlined function or method. | ||||
154 | FunctionDecl *Current = S.getCurFunctionDecl(); | ||||
155 | if (!Current) | ||||
156 | return; | ||||
157 | if (!Current->isInlined()) | ||||
158 | return; | ||||
159 | if (!Current->isExternallyVisible()) | ||||
160 | return; | ||||
161 | |||||
162 | // Check if the decl has internal linkage. | ||||
163 | if (D->getFormalLinkage() != InternalLinkage) | ||||
164 | return; | ||||
165 | |||||
166 | // Downgrade from ExtWarn to Extension if | ||||
167 | // (1) the supposedly external inline function is in the main file, | ||||
168 | // and probably won't be included anywhere else. | ||||
169 | // (2) the thing we're referencing is a pure function. | ||||
170 | // (3) the thing we're referencing is another inline function. | ||||
171 | // This last can give us false negatives, but it's better than warning on | ||||
172 | // wrappers for simple C library functions. | ||||
173 | const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D); | ||||
174 | bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc); | ||||
175 | if (!DowngradeWarning && UsedFn) | ||||
176 | DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>(); | ||||
177 | |||||
178 | S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet | ||||
179 | : diag::ext_internal_in_extern_inline) | ||||
180 | << /*IsVar=*/!UsedFn << D; | ||||
181 | |||||
182 | S.MaybeSuggestAddingStaticToDecl(Current); | ||||
183 | |||||
184 | S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at) | ||||
185 | << D; | ||||
186 | } | ||||
187 | |||||
188 | void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) { | ||||
189 | const FunctionDecl *First = Cur->getFirstDecl(); | ||||
190 | |||||
191 | // Suggest "static" on the function, if possible. | ||||
192 | if (!hasAnyExplicitStorageClass(First)) { | ||||
193 | SourceLocation DeclBegin = First->getSourceRange().getBegin(); | ||||
194 | Diag(DeclBegin, diag::note_convert_inline_to_static) | ||||
195 | << Cur << FixItHint::CreateInsertion(DeclBegin, "static "); | ||||
196 | } | ||||
197 | } | ||||
198 | |||||
199 | /// Determine whether the use of this declaration is valid, and | ||||
200 | /// emit any corresponding diagnostics. | ||||
201 | /// | ||||
202 | /// This routine diagnoses various problems with referencing | ||||
203 | /// declarations that can occur when using a declaration. For example, | ||||
204 | /// it might warn if a deprecated or unavailable declaration is being | ||||
205 | /// used, or produce an error (and return true) if a C++0x deleted | ||||
206 | /// function is being used. | ||||
207 | /// | ||||
208 | /// \returns true if there was an error (this declaration cannot be | ||||
209 | /// referenced), false otherwise. | ||||
210 | /// | ||||
211 | bool Sema::DiagnoseUseOfDecl(NamedDecl *D, ArrayRef<SourceLocation> Locs, | ||||
212 | const ObjCInterfaceDecl *UnknownObjCClass, | ||||
213 | bool ObjCPropertyAccess, | ||||
214 | bool AvoidPartialAvailabilityChecks, | ||||
215 | ObjCInterfaceDecl *ClassReceiver) { | ||||
216 | SourceLocation Loc = Locs.front(); | ||||
217 | if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) { | ||||
218 | // If there were any diagnostics suppressed by template argument deduction, | ||||
219 | // emit them now. | ||||
220 | auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl()); | ||||
221 | if (Pos != SuppressedDiagnostics.end()) { | ||||
222 | for (const PartialDiagnosticAt &Suppressed : Pos->second) | ||||
223 | Diag(Suppressed.first, Suppressed.second); | ||||
224 | |||||
225 | // Clear out the list of suppressed diagnostics, so that we don't emit | ||||
226 | // them again for this specialization. However, we don't obsolete this | ||||
227 | // entry from the table, because we want to avoid ever emitting these | ||||
228 | // diagnostics again. | ||||
229 | Pos->second.clear(); | ||||
230 | } | ||||
231 | |||||
232 | // C++ [basic.start.main]p3: | ||||
233 | // The function 'main' shall not be used within a program. | ||||
234 | if (cast<FunctionDecl>(D)->isMain()) | ||||
235 | Diag(Loc, diag::ext_main_used); | ||||
236 | |||||
237 | diagnoseUnavailableAlignedAllocation(*cast<FunctionDecl>(D), Loc); | ||||
238 | } | ||||
239 | |||||
240 | // See if this is an auto-typed variable whose initializer we are parsing. | ||||
241 | if (ParsingInitForAutoVars.count(D)) { | ||||
242 | if (isa<BindingDecl>(D)) { | ||||
243 | Diag(Loc, diag::err_binding_cannot_appear_in_own_initializer) | ||||
244 | << D->getDeclName(); | ||||
245 | } else { | ||||
246 | Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer) | ||||
247 | << D->getDeclName() << cast<VarDecl>(D)->getType(); | ||||
248 | } | ||||
249 | return true; | ||||
250 | } | ||||
251 | |||||
252 | // See if this is a deleted function. | ||||
253 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | ||||
254 | if (FD->isDeleted()) { | ||||
255 | auto *Ctor = dyn_cast<CXXConstructorDecl>(FD); | ||||
256 | if (Ctor && Ctor->isInheritingConstructor()) | ||||
257 | Diag(Loc, diag::err_deleted_inherited_ctor_use) | ||||
258 | << Ctor->getParent() | ||||
259 | << Ctor->getInheritedConstructor().getConstructor()->getParent(); | ||||
260 | else | ||||
261 | Diag(Loc, diag::err_deleted_function_use); | ||||
262 | NoteDeletedFunction(FD); | ||||
263 | return true; | ||||
264 | } | ||||
265 | |||||
266 | // If the function has a deduced return type, and we can't deduce it, | ||||
267 | // then we can't use it either. | ||||
268 | if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() && | ||||
269 | DeduceReturnType(FD, Loc)) | ||||
270 | return true; | ||||
271 | |||||
272 | if (getLangOpts().CUDA && !CheckCUDACall(Loc, FD)) | ||||
273 | return true; | ||||
274 | } | ||||
275 | |||||
276 | if (auto *MD = dyn_cast<CXXMethodDecl>(D)) { | ||||
277 | // Lambdas are only default-constructible or assignable in C++2a onwards. | ||||
278 | if (MD->getParent()->isLambda() && | ||||
279 | ((isa<CXXConstructorDecl>(MD) && | ||||
280 | cast<CXXConstructorDecl>(MD)->isDefaultConstructor()) || | ||||
281 | MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())) { | ||||
282 | Diag(Loc, diag::warn_cxx17_compat_lambda_def_ctor_assign) | ||||
283 | << !isa<CXXConstructorDecl>(MD); | ||||
284 | } | ||||
285 | } | ||||
286 | |||||
287 | auto getReferencedObjCProp = [](const NamedDecl *D) -> | ||||
288 | const ObjCPropertyDecl * { | ||||
289 | if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) | ||||
290 | return MD->findPropertyDecl(); | ||||
291 | return nullptr; | ||||
292 | }; | ||||
293 | if (const ObjCPropertyDecl *ObjCPDecl = getReferencedObjCProp(D)) { | ||||
294 | if (diagnoseArgIndependentDiagnoseIfAttrs(ObjCPDecl, Loc)) | ||||
295 | return true; | ||||
296 | } else if (diagnoseArgIndependentDiagnoseIfAttrs(D, Loc)) { | ||||
297 | return true; | ||||
298 | } | ||||
299 | |||||
300 | // [OpenMP 4.0], 2.15 declare reduction Directive, Restrictions | ||||
301 | // Only the variables omp_in and omp_out are allowed in the combiner. | ||||
302 | // Only the variables omp_priv and omp_orig are allowed in the | ||||
303 | // initializer-clause. | ||||
304 | auto *DRD = dyn_cast<OMPDeclareReductionDecl>(CurContext); | ||||
305 | if (LangOpts.OpenMP && DRD && !CurContext->containsDecl(D) && | ||||
306 | isa<VarDecl>(D)) { | ||||
307 | Diag(Loc, diag::err_omp_wrong_var_in_declare_reduction) | ||||
308 | << getCurFunction()->HasOMPDeclareReductionCombiner; | ||||
309 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; | ||||
310 | return true; | ||||
311 | } | ||||
312 | |||||
313 | // [OpenMP 5.0], 2.19.7.3. declare mapper Directive, Restrictions | ||||
314 | // List-items in map clauses on this construct may only refer to the declared | ||||
315 | // variable var and entities that could be referenced by a procedure defined | ||||
316 | // at the same location | ||||
317 | auto *DMD = dyn_cast<OMPDeclareMapperDecl>(CurContext); | ||||
318 | if (LangOpts.OpenMP && DMD && !CurContext->containsDecl(D) && | ||||
319 | isa<VarDecl>(D)) { | ||||
320 | Diag(Loc, diag::err_omp_declare_mapper_wrong_var) | ||||
321 | << DMD->getVarName().getAsString(); | ||||
322 | Diag(D->getLocation(), diag::note_entity_declared_at) << D; | ||||
323 | return true; | ||||
324 | } | ||||
325 | |||||
326 | DiagnoseAvailabilityOfDecl(D, Locs, UnknownObjCClass, ObjCPropertyAccess, | ||||
327 | AvoidPartialAvailabilityChecks, ClassReceiver); | ||||
328 | |||||
329 | DiagnoseUnusedOfDecl(*this, D, Loc); | ||||
330 | |||||
331 | diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc); | ||||
332 | |||||
333 | return false; | ||||
334 | } | ||||
335 | |||||
336 | /// DiagnoseSentinelCalls - This routine checks whether a call or | ||||
337 | /// message-send is to a declaration with the sentinel attribute, and | ||||
338 | /// if so, it checks that the requirements of the sentinel are | ||||
339 | /// satisfied. | ||||
340 | void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc, | ||||
341 | ArrayRef<Expr *> Args) { | ||||
342 | const SentinelAttr *attr = D->getAttr<SentinelAttr>(); | ||||
343 | if (!attr) | ||||
344 | return; | ||||
345 | |||||
346 | // The number of formal parameters of the declaration. | ||||
347 | unsigned numFormalParams; | ||||
348 | |||||
349 | // The kind of declaration. This is also an index into a %select in | ||||
350 | // the diagnostic. | ||||
351 | enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType; | ||||
352 | |||||
353 | if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { | ||||
354 | numFormalParams = MD->param_size(); | ||||
355 | calleeType = CT_Method; | ||||
356 | } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { | ||||
357 | numFormalParams = FD->param_size(); | ||||
358 | calleeType = CT_Function; | ||||
359 | } else if (isa<VarDecl>(D)) { | ||||
360 | QualType type = cast<ValueDecl>(D)->getType(); | ||||
361 | const FunctionType *fn = nullptr; | ||||
362 | if (const PointerType *ptr = type->getAs<PointerType>()) { | ||||
363 | fn = ptr->getPointeeType()->getAs<FunctionType>(); | ||||
364 | if (!fn) return; | ||||
365 | calleeType = CT_Function; | ||||
366 | } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) { | ||||
367 | fn = ptr->getPointeeType()->castAs<FunctionType>(); | ||||
368 | calleeType = CT_Block; | ||||
369 | } else { | ||||
370 | return; | ||||
371 | } | ||||
372 | |||||
373 | if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) { | ||||
374 | numFormalParams = proto->getNumParams(); | ||||
375 | } else { | ||||
376 | numFormalParams = 0; | ||||
377 | } | ||||
378 | } else { | ||||
379 | return; | ||||
380 | } | ||||
381 | |||||
382 | // "nullPos" is the number of formal parameters at the end which | ||||
383 | // effectively count as part of the variadic arguments. This is | ||||
384 | // useful if you would prefer to not have *any* formal parameters, | ||||
385 | // but the language forces you to have at least one. | ||||
386 | unsigned nullPos = attr->getNullPos(); | ||||
387 | assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel")(((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel" ) ? static_cast<void> (0) : __assert_fail ("(nullPos == 0 || nullPos == 1) && \"invalid null position on sentinel\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 387, __PRETTY_FUNCTION__)); | ||||
388 | numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos); | ||||
389 | |||||
390 | // The number of arguments which should follow the sentinel. | ||||
391 | unsigned numArgsAfterSentinel = attr->getSentinel(); | ||||
392 | |||||
393 | // If there aren't enough arguments for all the formal parameters, | ||||
394 | // the sentinel, and the args after the sentinel, complain. | ||||
395 | if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) { | ||||
396 | Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName(); | ||||
397 | Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); | ||||
398 | return; | ||||
399 | } | ||||
400 | |||||
401 | // Otherwise, find the sentinel expression. | ||||
402 | Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1]; | ||||
403 | if (!sentinelExpr) return; | ||||
404 | if (sentinelExpr->isValueDependent()) return; | ||||
405 | if (Context.isSentinelNullExpr(sentinelExpr)) return; | ||||
406 | |||||
407 | // Pick a reasonable string to insert. Optimistically use 'nil', 'nullptr', | ||||
408 | // or 'NULL' if those are actually defined in the context. Only use | ||||
409 | // 'nil' for ObjC methods, where it's much more likely that the | ||||
410 | // variadic arguments form a list of object pointers. | ||||
411 | SourceLocation MissingNilLoc = getLocForEndOfToken(sentinelExpr->getEndLoc()); | ||||
412 | std::string NullValue; | ||||
413 | if (calleeType == CT_Method && PP.isMacroDefined("nil")) | ||||
414 | NullValue = "nil"; | ||||
415 | else if (getLangOpts().CPlusPlus11) | ||||
416 | NullValue = "nullptr"; | ||||
417 | else if (PP.isMacroDefined("NULL")) | ||||
418 | NullValue = "NULL"; | ||||
419 | else | ||||
420 | NullValue = "(void*) 0"; | ||||
421 | |||||
422 | if (MissingNilLoc.isInvalid()) | ||||
423 | Diag(Loc, diag::warn_missing_sentinel) << int(calleeType); | ||||
424 | else | ||||
425 | Diag(MissingNilLoc, diag::warn_missing_sentinel) | ||||
426 | << int(calleeType) | ||||
427 | << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue); | ||||
428 | Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType); | ||||
429 | } | ||||
430 | |||||
431 | SourceRange Sema::getExprRange(Expr *E) const { | ||||
432 | return E ? E->getSourceRange() : SourceRange(); | ||||
433 | } | ||||
434 | |||||
435 | //===----------------------------------------------------------------------===// | ||||
436 | // Standard Promotions and Conversions | ||||
437 | //===----------------------------------------------------------------------===// | ||||
438 | |||||
439 | /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4). | ||||
440 | ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) { | ||||
441 | // Handle any placeholder expressions which made it here. | ||||
442 | if (E->getType()->isPlaceholderType()) { | ||||
443 | ExprResult result = CheckPlaceholderExpr(E); | ||||
444 | if (result.isInvalid()) return ExprError(); | ||||
445 | E = result.get(); | ||||
446 | } | ||||
447 | |||||
448 | QualType Ty = E->getType(); | ||||
449 | assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type")((!Ty.isNull() && "DefaultFunctionArrayConversion - missing type" ) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"DefaultFunctionArrayConversion - missing type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 449, __PRETTY_FUNCTION__)); | ||||
450 | |||||
451 | if (Ty->isFunctionType()) { | ||||
452 | if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts())) | ||||
453 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) | ||||
454 | if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc())) | ||||
455 | return ExprError(); | ||||
456 | |||||
457 | E = ImpCastExprToType(E, Context.getPointerType(Ty), | ||||
458 | CK_FunctionToPointerDecay).get(); | ||||
459 | } else if (Ty->isArrayType()) { | ||||
460 | // In C90 mode, arrays only promote to pointers if the array expression is | ||||
461 | // an lvalue. The relevant legalese is C90 6.2.2.1p3: "an lvalue that has | ||||
462 | // type 'array of type' is converted to an expression that has type 'pointer | ||||
463 | // to type'...". In C99 this was changed to: C99 6.3.2.1p3: "an expression | ||||
464 | // that has type 'array of type' ...". The relevant change is "an lvalue" | ||||
465 | // (C90) to "an expression" (C99). | ||||
466 | // | ||||
467 | // C++ 4.2p1: | ||||
468 | // An lvalue or rvalue of type "array of N T" or "array of unknown bound of | ||||
469 | // T" can be converted to an rvalue of type "pointer to T". | ||||
470 | // | ||||
471 | if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue()) | ||||
472 | E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty), | ||||
473 | CK_ArrayToPointerDecay).get(); | ||||
474 | } | ||||
475 | return E; | ||||
476 | } | ||||
477 | |||||
478 | static void CheckForNullPointerDereference(Sema &S, Expr *E) { | ||||
479 | // Check to see if we are dereferencing a null pointer. If so, | ||||
480 | // and if not volatile-qualified, this is undefined behavior that the | ||||
481 | // optimizer will delete, so warn about it. People sometimes try to use this | ||||
482 | // to get a deterministic trap and are surprised by clang's behavior. This | ||||
483 | // only handles the pattern "*null", which is a very syntactic check. | ||||
484 | const auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()); | ||||
485 | if (UO && UO->getOpcode() == UO_Deref && | ||||
486 | UO->getSubExpr()->getType()->isPointerType()) { | ||||
487 | const LangAS AS = | ||||
488 | UO->getSubExpr()->getType()->getPointeeType().getAddressSpace(); | ||||
489 | if ((!isTargetAddressSpace(AS) || | ||||
490 | (isTargetAddressSpace(AS) && toTargetAddressSpace(AS) == 0)) && | ||||
491 | UO->getSubExpr()->IgnoreParenCasts()->isNullPointerConstant( | ||||
492 | S.Context, Expr::NPC_ValueDependentIsNotNull) && | ||||
493 | !UO->getType().isVolatileQualified()) { | ||||
494 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, | ||||
495 | S.PDiag(diag::warn_indirection_through_null) | ||||
496 | << UO->getSubExpr()->getSourceRange()); | ||||
497 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, | ||||
498 | S.PDiag(diag::note_indirection_through_null)); | ||||
499 | } | ||||
500 | } | ||||
501 | } | ||||
502 | |||||
503 | static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE, | ||||
504 | SourceLocation AssignLoc, | ||||
505 | const Expr* RHS) { | ||||
506 | const ObjCIvarDecl *IV = OIRE->getDecl(); | ||||
507 | if (!IV) | ||||
508 | return; | ||||
509 | |||||
510 | DeclarationName MemberName = IV->getDeclName(); | ||||
511 | IdentifierInfo *Member = MemberName.getAsIdentifierInfo(); | ||||
512 | if (!Member || !Member->isStr("isa")) | ||||
513 | return; | ||||
514 | |||||
515 | const Expr *Base = OIRE->getBase(); | ||||
516 | QualType BaseType = Base->getType(); | ||||
517 | if (OIRE->isArrow()) | ||||
518 | BaseType = BaseType->getPointeeType(); | ||||
519 | if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) | ||||
520 | if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) { | ||||
521 | ObjCInterfaceDecl *ClassDeclared = nullptr; | ||||
522 | ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared); | ||||
523 | if (!ClassDeclared->getSuperClass() | ||||
524 | && (*ClassDeclared->ivar_begin()) == IV) { | ||||
525 | if (RHS) { | ||||
526 | NamedDecl *ObjectSetClass = | ||||
527 | S.LookupSingleName(S.TUScope, | ||||
528 | &S.Context.Idents.get("object_setClass"), | ||||
529 | SourceLocation(), S.LookupOrdinaryName); | ||||
530 | if (ObjectSetClass) { | ||||
531 | SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getEndLoc()); | ||||
532 | S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) | ||||
533 | << FixItHint::CreateInsertion(OIRE->getBeginLoc(), | ||||
534 | "object_setClass(") | ||||
535 | << FixItHint::CreateReplacement( | ||||
536 | SourceRange(OIRE->getOpLoc(), AssignLoc), ",") | ||||
537 | << FixItHint::CreateInsertion(RHSLocEnd, ")"); | ||||
538 | } | ||||
539 | else | ||||
540 | S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign); | ||||
541 | } else { | ||||
542 | NamedDecl *ObjectGetClass = | ||||
543 | S.LookupSingleName(S.TUScope, | ||||
544 | &S.Context.Idents.get("object_getClass"), | ||||
545 | SourceLocation(), S.LookupOrdinaryName); | ||||
546 | if (ObjectGetClass) | ||||
547 | S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) | ||||
548 | << FixItHint::CreateInsertion(OIRE->getBeginLoc(), | ||||
549 | "object_getClass(") | ||||
550 | << FixItHint::CreateReplacement( | ||||
551 | SourceRange(OIRE->getOpLoc(), OIRE->getEndLoc()), ")"); | ||||
552 | else | ||||
553 | S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use); | ||||
554 | } | ||||
555 | S.Diag(IV->getLocation(), diag::note_ivar_decl); | ||||
556 | } | ||||
557 | } | ||||
558 | } | ||||
559 | |||||
560 | ExprResult Sema::DefaultLvalueConversion(Expr *E) { | ||||
561 | // Handle any placeholder expressions which made it here. | ||||
562 | if (E->getType()->isPlaceholderType()) { | ||||
563 | ExprResult result = CheckPlaceholderExpr(E); | ||||
564 | if (result.isInvalid()) return ExprError(); | ||||
565 | E = result.get(); | ||||
566 | } | ||||
567 | |||||
568 | // C++ [conv.lval]p1: | ||||
569 | // A glvalue of a non-function, non-array type T can be | ||||
570 | // converted to a prvalue. | ||||
571 | if (!E->isGLValue()) return E; | ||||
572 | |||||
573 | QualType T = E->getType(); | ||||
574 | assert(!T.isNull() && "r-value conversion on typeless expression?")((!T.isNull() && "r-value conversion on typeless expression?" ) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"r-value conversion on typeless expression?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 574, __PRETTY_FUNCTION__)); | ||||
575 | |||||
576 | // We don't want to throw lvalue-to-rvalue casts on top of | ||||
577 | // expressions of certain types in C++. | ||||
578 | if (getLangOpts().CPlusPlus && | ||||
579 | (E->getType() == Context.OverloadTy || | ||||
580 | T->isDependentType() || | ||||
581 | T->isRecordType())) | ||||
582 | return E; | ||||
583 | |||||
584 | // The C standard is actually really unclear on this point, and | ||||
585 | // DR106 tells us what the result should be but not why. It's | ||||
586 | // generally best to say that void types just doesn't undergo | ||||
587 | // lvalue-to-rvalue at all. Note that expressions of unqualified | ||||
588 | // 'void' type are never l-values, but qualified void can be. | ||||
589 | if (T->isVoidType()) | ||||
590 | return E; | ||||
591 | |||||
592 | // OpenCL usually rejects direct accesses to values of 'half' type. | ||||
593 | if (getLangOpts().OpenCL && !getOpenCLOptions().isEnabled("cl_khr_fp16") && | ||||
594 | T->isHalfType()) { | ||||
595 | Diag(E->getExprLoc(), diag::err_opencl_half_load_store) | ||||
596 | << 0 << T; | ||||
597 | return ExprError(); | ||||
598 | } | ||||
599 | |||||
600 | CheckForNullPointerDereference(*this, E); | ||||
601 | if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) { | ||||
602 | NamedDecl *ObjectGetClass = LookupSingleName(TUScope, | ||||
603 | &Context.Idents.get("object_getClass"), | ||||
604 | SourceLocation(), LookupOrdinaryName); | ||||
605 | if (ObjectGetClass) | ||||
606 | Diag(E->getExprLoc(), diag::warn_objc_isa_use) | ||||
607 | << FixItHint::CreateInsertion(OISA->getBeginLoc(), "object_getClass(") | ||||
608 | << FixItHint::CreateReplacement( | ||||
609 | SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")"); | ||||
610 | else | ||||
611 | Diag(E->getExprLoc(), diag::warn_objc_isa_use); | ||||
612 | } | ||||
613 | else if (const ObjCIvarRefExpr *OIRE = | ||||
614 | dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts())) | ||||
615 | DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr); | ||||
616 | |||||
617 | // C++ [conv.lval]p1: | ||||
618 | // [...] If T is a non-class type, the type of the prvalue is the | ||||
619 | // cv-unqualified version of T. Otherwise, the type of the | ||||
620 | // rvalue is T. | ||||
621 | // | ||||
622 | // C99 6.3.2.1p2: | ||||
623 | // If the lvalue has qualified type, the value has the unqualified | ||||
624 | // version of the type of the lvalue; otherwise, the value has the | ||||
625 | // type of the lvalue. | ||||
626 | if (T.hasQualifiers()) | ||||
627 | T = T.getUnqualifiedType(); | ||||
628 | |||||
629 | // Under the MS ABI, lock down the inheritance model now. | ||||
630 | if (T->isMemberPointerType() && | ||||
631 | Context.getTargetInfo().getCXXABI().isMicrosoft()) | ||||
632 | (void)isCompleteType(E->getExprLoc(), T); | ||||
633 | |||||
634 | ExprResult Res = CheckLValueToRValueConversionOperand(E); | ||||
635 | if (Res.isInvalid()) | ||||
636 | return Res; | ||||
637 | E = Res.get(); | ||||
638 | |||||
639 | // Loading a __weak object implicitly retains the value, so we need a cleanup to | ||||
640 | // balance that. | ||||
641 | if (E->getType().getObjCLifetime() == Qualifiers::OCL_Weak) | ||||
642 | Cleanup.setExprNeedsCleanups(true); | ||||
643 | |||||
644 | // C++ [conv.lval]p3: | ||||
645 | // If T is cv std::nullptr_t, the result is a null pointer constant. | ||||
646 | CastKind CK = T->isNullPtrType() ? CK_NullToPointer : CK_LValueToRValue; | ||||
647 | Res = ImplicitCastExpr::Create(Context, T, CK, E, nullptr, VK_RValue); | ||||
648 | |||||
649 | // C11 6.3.2.1p2: | ||||
650 | // ... if the lvalue has atomic type, the value has the non-atomic version | ||||
651 | // of the type of the lvalue ... | ||||
652 | if (const AtomicType *Atomic = T->getAs<AtomicType>()) { | ||||
653 | T = Atomic->getValueType().getUnqualifiedType(); | ||||
654 | Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(), | ||||
655 | nullptr, VK_RValue); | ||||
656 | } | ||||
657 | |||||
658 | return Res; | ||||
659 | } | ||||
660 | |||||
661 | ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) { | ||||
662 | ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose); | ||||
663 | if (Res.isInvalid()) | ||||
664 | return ExprError(); | ||||
665 | Res = DefaultLvalueConversion(Res.get()); | ||||
666 | if (Res.isInvalid()) | ||||
667 | return ExprError(); | ||||
668 | return Res; | ||||
669 | } | ||||
670 | |||||
671 | /// CallExprUnaryConversions - a special case of an unary conversion | ||||
672 | /// performed on a function designator of a call expression. | ||||
673 | ExprResult Sema::CallExprUnaryConversions(Expr *E) { | ||||
674 | QualType Ty = E->getType(); | ||||
675 | ExprResult Res = E; | ||||
676 | // Only do implicit cast for a function type, but not for a pointer | ||||
677 | // to function type. | ||||
678 | if (Ty->isFunctionType()) { | ||||
679 | Res = ImpCastExprToType(E, Context.getPointerType(Ty), | ||||
680 | CK_FunctionToPointerDecay).get(); | ||||
681 | if (Res.isInvalid()) | ||||
682 | return ExprError(); | ||||
683 | } | ||||
684 | Res = DefaultLvalueConversion(Res.get()); | ||||
685 | if (Res.isInvalid()) | ||||
686 | return ExprError(); | ||||
687 | return Res.get(); | ||||
688 | } | ||||
689 | |||||
690 | /// UsualUnaryConversions - Performs various conversions that are common to most | ||||
691 | /// operators (C99 6.3). The conversions of array and function types are | ||||
692 | /// sometimes suppressed. For example, the array->pointer conversion doesn't | ||||
693 | /// apply if the array is an argument to the sizeof or address (&) operators. | ||||
694 | /// In these instances, this routine should *not* be called. | ||||
695 | ExprResult Sema::UsualUnaryConversions(Expr *E) { | ||||
696 | // First, convert to an r-value. | ||||
697 | ExprResult Res = DefaultFunctionArrayLvalueConversion(E); | ||||
698 | if (Res.isInvalid()) | ||||
699 | return ExprError(); | ||||
700 | E = Res.get(); | ||||
701 | |||||
702 | QualType Ty = E->getType(); | ||||
703 | assert(!Ty.isNull() && "UsualUnaryConversions - missing type")((!Ty.isNull() && "UsualUnaryConversions - missing type" ) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"UsualUnaryConversions - missing type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 703, __PRETTY_FUNCTION__)); | ||||
704 | |||||
705 | // Half FP have to be promoted to float unless it is natively supported | ||||
706 | if (Ty->isHalfType() && !getLangOpts().NativeHalfType) | ||||
707 | return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast); | ||||
708 | |||||
709 | // Try to perform integral promotions if the object has a theoretically | ||||
710 | // promotable type. | ||||
711 | if (Ty->isIntegralOrUnscopedEnumerationType()) { | ||||
712 | // C99 6.3.1.1p2: | ||||
713 | // | ||||
714 | // The following may be used in an expression wherever an int or | ||||
715 | // unsigned int may be used: | ||||
716 | // - an object or expression with an integer type whose integer | ||||
717 | // conversion rank is less than or equal to the rank of int | ||||
718 | // and unsigned int. | ||||
719 | // - A bit-field of type _Bool, int, signed int, or unsigned int. | ||||
720 | // | ||||
721 | // If an int can represent all values of the original type, the | ||||
722 | // value is converted to an int; otherwise, it is converted to an | ||||
723 | // unsigned int. These are called the integer promotions. All | ||||
724 | // other types are unchanged by the integer promotions. | ||||
725 | |||||
726 | QualType PTy = Context.isPromotableBitField(E); | ||||
727 | if (!PTy.isNull()) { | ||||
728 | E = ImpCastExprToType(E, PTy, CK_IntegralCast).get(); | ||||
729 | return E; | ||||
730 | } | ||||
731 | if (Ty->isPromotableIntegerType()) { | ||||
732 | QualType PT = Context.getPromotedIntegerType(Ty); | ||||
733 | E = ImpCastExprToType(E, PT, CK_IntegralCast).get(); | ||||
734 | return E; | ||||
735 | } | ||||
736 | } | ||||
737 | return E; | ||||
738 | } | ||||
739 | |||||
740 | /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that | ||||
741 | /// do not have a prototype. Arguments that have type float or __fp16 | ||||
742 | /// are promoted to double. All other argument types are converted by | ||||
743 | /// UsualUnaryConversions(). | ||||
744 | ExprResult Sema::DefaultArgumentPromotion(Expr *E) { | ||||
745 | QualType Ty = E->getType(); | ||||
746 | assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type")((!Ty.isNull() && "DefaultArgumentPromotion - missing type" ) ? static_cast<void> (0) : __assert_fail ("!Ty.isNull() && \"DefaultArgumentPromotion - missing type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 746, __PRETTY_FUNCTION__)); | ||||
747 | |||||
748 | ExprResult Res = UsualUnaryConversions(E); | ||||
749 | if (Res.isInvalid()) | ||||
750 | return ExprError(); | ||||
751 | E = Res.get(); | ||||
752 | |||||
753 | // If this is a 'float' or '__fp16' (CVR qualified or typedef) | ||||
754 | // promote to double. | ||||
755 | // Note that default argument promotion applies only to float (and | ||||
756 | // half/fp16); it does not apply to _Float16. | ||||
757 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | ||||
758 | if (BTy && (BTy->getKind() == BuiltinType::Half || | ||||
759 | BTy->getKind() == BuiltinType::Float)) { | ||||
760 | if (getLangOpts().OpenCL && | ||||
761 | !getOpenCLOptions().isEnabled("cl_khr_fp64")) { | ||||
762 | if (BTy->getKind() == BuiltinType::Half) { | ||||
763 | E = ImpCastExprToType(E, Context.FloatTy, CK_FloatingCast).get(); | ||||
764 | } | ||||
765 | } else { | ||||
766 | E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get(); | ||||
767 | } | ||||
768 | } | ||||
769 | |||||
770 | // C++ performs lvalue-to-rvalue conversion as a default argument | ||||
771 | // promotion, even on class types, but note: | ||||
772 | // C++11 [conv.lval]p2: | ||||
773 | // When an lvalue-to-rvalue conversion occurs in an unevaluated | ||||
774 | // operand or a subexpression thereof the value contained in the | ||||
775 | // referenced object is not accessed. Otherwise, if the glvalue | ||||
776 | // has a class type, the conversion copy-initializes a temporary | ||||
777 | // of type T from the glvalue and the result of the conversion | ||||
778 | // is a prvalue for the temporary. | ||||
779 | // FIXME: add some way to gate this entire thing for correctness in | ||||
780 | // potentially potentially evaluated contexts. | ||||
781 | if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) { | ||||
782 | ExprResult Temp = PerformCopyInitialization( | ||||
783 | InitializedEntity::InitializeTemporary(E->getType()), | ||||
784 | E->getExprLoc(), E); | ||||
785 | if (Temp.isInvalid()) | ||||
786 | return ExprError(); | ||||
787 | E = Temp.get(); | ||||
788 | } | ||||
789 | |||||
790 | return E; | ||||
791 | } | ||||
792 | |||||
793 | /// Determine the degree of POD-ness for an expression. | ||||
794 | /// Incomplete types are considered POD, since this check can be performed | ||||
795 | /// when we're in an unevaluated context. | ||||
796 | Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) { | ||||
797 | if (Ty->isIncompleteType()) { | ||||
798 | // C++11 [expr.call]p7: | ||||
799 | // After these conversions, if the argument does not have arithmetic, | ||||
800 | // enumeration, pointer, pointer to member, or class type, the program | ||||
801 | // is ill-formed. | ||||
802 | // | ||||
803 | // Since we've already performed array-to-pointer and function-to-pointer | ||||
804 | // decay, the only such type in C++ is cv void. This also handles | ||||
805 | // initializer lists as variadic arguments. | ||||
806 | if (Ty->isVoidType()) | ||||
807 | return VAK_Invalid; | ||||
808 | |||||
809 | if (Ty->isObjCObjectType()) | ||||
810 | return VAK_Invalid; | ||||
811 | return VAK_Valid; | ||||
812 | } | ||||
813 | |||||
814 | if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) | ||||
815 | return VAK_Invalid; | ||||
816 | |||||
817 | if (Ty.isCXX98PODType(Context)) | ||||
818 | return VAK_Valid; | ||||
819 | |||||
820 | // C++11 [expr.call]p7: | ||||
821 | // Passing a potentially-evaluated argument of class type (Clause 9) | ||||
822 | // having a non-trivial copy constructor, a non-trivial move constructor, | ||||
823 | // or a non-trivial destructor, with no corresponding parameter, | ||||
824 | // is conditionally-supported with implementation-defined semantics. | ||||
825 | if (getLangOpts().CPlusPlus11 && !Ty->isDependentType()) | ||||
826 | if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl()) | ||||
827 | if (!Record->hasNonTrivialCopyConstructor() && | ||||
828 | !Record->hasNonTrivialMoveConstructor() && | ||||
829 | !Record->hasNonTrivialDestructor()) | ||||
830 | return VAK_ValidInCXX11; | ||||
831 | |||||
832 | if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType()) | ||||
833 | return VAK_Valid; | ||||
834 | |||||
835 | if (Ty->isObjCObjectType()) | ||||
836 | return VAK_Invalid; | ||||
837 | |||||
838 | if (getLangOpts().MSVCCompat) | ||||
839 | return VAK_MSVCUndefined; | ||||
840 | |||||
841 | // FIXME: In C++11, these cases are conditionally-supported, meaning we're | ||||
842 | // permitted to reject them. We should consider doing so. | ||||
843 | return VAK_Undefined; | ||||
844 | } | ||||
845 | |||||
846 | void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) { | ||||
847 | // Don't allow one to pass an Objective-C interface to a vararg. | ||||
848 | const QualType &Ty = E->getType(); | ||||
849 | VarArgKind VAK = isValidVarArgType(Ty); | ||||
850 | |||||
851 | // Complain about passing non-POD types through varargs. | ||||
852 | switch (VAK) { | ||||
853 | case VAK_ValidInCXX11: | ||||
854 | DiagRuntimeBehavior( | ||||
855 | E->getBeginLoc(), nullptr, | ||||
856 | PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg) << Ty << CT); | ||||
857 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
858 | case VAK_Valid: | ||||
859 | if (Ty->isRecordType()) { | ||||
860 | // This is unlikely to be what the user intended. If the class has a | ||||
861 | // 'c_str' member function, the user probably meant to call that. | ||||
862 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | ||||
863 | PDiag(diag::warn_pass_class_arg_to_vararg) | ||||
864 | << Ty << CT << hasCStrMethod(E) << ".c_str()"); | ||||
865 | } | ||||
866 | break; | ||||
867 | |||||
868 | case VAK_Undefined: | ||||
869 | case VAK_MSVCUndefined: | ||||
870 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | ||||
871 | PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg) | ||||
872 | << getLangOpts().CPlusPlus11 << Ty << CT); | ||||
873 | break; | ||||
874 | |||||
875 | case VAK_Invalid: | ||||
876 | if (Ty.isDestructedType() == QualType::DK_nontrivial_c_struct) | ||||
877 | Diag(E->getBeginLoc(), | ||||
878 | diag::err_cannot_pass_non_trivial_c_struct_to_vararg) | ||||
879 | << Ty << CT; | ||||
880 | else if (Ty->isObjCObjectType()) | ||||
881 | DiagRuntimeBehavior(E->getBeginLoc(), nullptr, | ||||
882 | PDiag(diag::err_cannot_pass_objc_interface_to_vararg) | ||||
883 | << Ty << CT); | ||||
884 | else | ||||
885 | Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg) | ||||
886 | << isa<InitListExpr>(E) << Ty << CT; | ||||
887 | break; | ||||
888 | } | ||||
889 | } | ||||
890 | |||||
891 | /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but | ||||
892 | /// will create a trap if the resulting type is not a POD type. | ||||
893 | ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT, | ||||
894 | FunctionDecl *FDecl) { | ||||
895 | if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) { | ||||
896 | // Strip the unbridged-cast placeholder expression off, if applicable. | ||||
897 | if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast && | ||||
898 | (CT == VariadicMethod || | ||||
899 | (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) { | ||||
900 | E = stripARCUnbridgedCast(E); | ||||
901 | |||||
902 | // Otherwise, do normal placeholder checking. | ||||
903 | } else { | ||||
904 | ExprResult ExprRes = CheckPlaceholderExpr(E); | ||||
905 | if (ExprRes.isInvalid()) | ||||
906 | return ExprError(); | ||||
907 | E = ExprRes.get(); | ||||
908 | } | ||||
909 | } | ||||
910 | |||||
911 | ExprResult ExprRes = DefaultArgumentPromotion(E); | ||||
912 | if (ExprRes.isInvalid()) | ||||
913 | return ExprError(); | ||||
914 | E = ExprRes.get(); | ||||
915 | |||||
916 | // Diagnostics regarding non-POD argument types are | ||||
917 | // emitted along with format string checking in Sema::CheckFunctionCall(). | ||||
918 | if (isValidVarArgType(E->getType()) == VAK_Undefined) { | ||||
919 | // Turn this into a trap. | ||||
920 | CXXScopeSpec SS; | ||||
921 | SourceLocation TemplateKWLoc; | ||||
922 | UnqualifiedId Name; | ||||
923 | Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"), | ||||
924 | E->getBeginLoc()); | ||||
925 | ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc, Name, | ||||
926 | /*HasTrailingLParen=*/true, | ||||
927 | /*IsAddressOfOperand=*/false); | ||||
928 | if (TrapFn.isInvalid()) | ||||
929 | return ExprError(); | ||||
930 | |||||
931 | ExprResult Call = BuildCallExpr(TUScope, TrapFn.get(), E->getBeginLoc(), | ||||
932 | None, E->getEndLoc()); | ||||
933 | if (Call.isInvalid()) | ||||
934 | return ExprError(); | ||||
935 | |||||
936 | ExprResult Comma = | ||||
937 | ActOnBinOp(TUScope, E->getBeginLoc(), tok::comma, Call.get(), E); | ||||
938 | if (Comma.isInvalid()) | ||||
939 | return ExprError(); | ||||
940 | return Comma.get(); | ||||
941 | } | ||||
942 | |||||
943 | if (!getLangOpts().CPlusPlus && | ||||
944 | RequireCompleteType(E->getExprLoc(), E->getType(), | ||||
945 | diag::err_call_incomplete_argument)) | ||||
946 | return ExprError(); | ||||
947 | |||||
948 | return E; | ||||
949 | } | ||||
950 | |||||
951 | /// Converts an integer to complex float type. Helper function of | ||||
952 | /// UsualArithmeticConversions() | ||||
953 | /// | ||||
954 | /// \return false if the integer expression is an integer type and is | ||||
955 | /// successfully converted to the complex type. | ||||
956 | static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr, | ||||
957 | ExprResult &ComplexExpr, | ||||
958 | QualType IntTy, | ||||
959 | QualType ComplexTy, | ||||
960 | bool SkipCast) { | ||||
961 | if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true; | ||||
962 | if (SkipCast) return false; | ||||
963 | if (IntTy->isIntegerType()) { | ||||
964 | QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType(); | ||||
965 | IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating); | ||||
966 | IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, | ||||
967 | CK_FloatingRealToComplex); | ||||
968 | } else { | ||||
969 | assert(IntTy->isComplexIntegerType())((IntTy->isComplexIntegerType()) ? static_cast<void> (0) : __assert_fail ("IntTy->isComplexIntegerType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 969, __PRETTY_FUNCTION__)); | ||||
970 | IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy, | ||||
971 | CK_IntegralComplexToFloatingComplex); | ||||
972 | } | ||||
973 | return false; | ||||
974 | } | ||||
975 | |||||
976 | /// Handle arithmetic conversion with complex types. Helper function of | ||||
977 | /// UsualArithmeticConversions() | ||||
978 | static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS, | ||||
979 | ExprResult &RHS, QualType LHSType, | ||||
980 | QualType RHSType, | ||||
981 | bool IsCompAssign) { | ||||
982 | // if we have an integer operand, the result is the complex type. | ||||
983 | if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType, | ||||
984 | /*skipCast*/false)) | ||||
985 | return LHSType; | ||||
986 | if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType, | ||||
987 | /*skipCast*/IsCompAssign)) | ||||
988 | return RHSType; | ||||
989 | |||||
990 | // This handles complex/complex, complex/float, or float/complex. | ||||
991 | // When both operands are complex, the shorter operand is converted to the | ||||
992 | // type of the longer, and that is the type of the result. This corresponds | ||||
993 | // to what is done when combining two real floating-point operands. | ||||
994 | // The fun begins when size promotion occur across type domains. | ||||
995 | // From H&S 6.3.4: When one operand is complex and the other is a real | ||||
996 | // floating-point type, the less precise type is converted, within it's | ||||
997 | // real or complex domain, to the precision of the other type. For example, | ||||
998 | // when combining a "long double" with a "double _Complex", the | ||||
999 | // "double _Complex" is promoted to "long double _Complex". | ||||
1000 | |||||
1001 | // Compute the rank of the two types, regardless of whether they are complex. | ||||
1002 | int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType); | ||||
1003 | |||||
1004 | auto *LHSComplexType = dyn_cast<ComplexType>(LHSType); | ||||
1005 | auto *RHSComplexType = dyn_cast<ComplexType>(RHSType); | ||||
1006 | QualType LHSElementType = | ||||
1007 | LHSComplexType ? LHSComplexType->getElementType() : LHSType; | ||||
1008 | QualType RHSElementType = | ||||
1009 | RHSComplexType ? RHSComplexType->getElementType() : RHSType; | ||||
1010 | |||||
1011 | QualType ResultType = S.Context.getComplexType(LHSElementType); | ||||
1012 | if (Order < 0) { | ||||
1013 | // Promote the precision of the LHS if not an assignment. | ||||
1014 | ResultType = S.Context.getComplexType(RHSElementType); | ||||
1015 | if (!IsCompAssign) { | ||||
1016 | if (LHSComplexType) | ||||
1017 | LHS = | ||||
1018 | S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast); | ||||
1019 | else | ||||
1020 | LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast); | ||||
1021 | } | ||||
1022 | } else if (Order > 0) { | ||||
1023 | // Promote the precision of the RHS. | ||||
1024 | if (RHSComplexType) | ||||
1025 | RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast); | ||||
1026 | else | ||||
1027 | RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast); | ||||
1028 | } | ||||
1029 | return ResultType; | ||||
1030 | } | ||||
1031 | |||||
1032 | /// Handle arithmetic conversion from integer to float. Helper function | ||||
1033 | /// of UsualArithmeticConversions() | ||||
1034 | static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr, | ||||
1035 | ExprResult &IntExpr, | ||||
1036 | QualType FloatTy, QualType IntTy, | ||||
1037 | bool ConvertFloat, bool ConvertInt) { | ||||
1038 | if (IntTy->isIntegerType()) { | ||||
1039 | if (ConvertInt) | ||||
1040 | // Convert intExpr to the lhs floating point type. | ||||
1041 | IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy, | ||||
1042 | CK_IntegralToFloating); | ||||
1043 | return FloatTy; | ||||
1044 | } | ||||
1045 | |||||
1046 | // Convert both sides to the appropriate complex float. | ||||
1047 | assert(IntTy->isComplexIntegerType())((IntTy->isComplexIntegerType()) ? static_cast<void> (0) : __assert_fail ("IntTy->isComplexIntegerType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1047, __PRETTY_FUNCTION__)); | ||||
1048 | QualType result = S.Context.getComplexType(FloatTy); | ||||
1049 | |||||
1050 | // _Complex int -> _Complex float | ||||
1051 | if (ConvertInt) | ||||
1052 | IntExpr = S.ImpCastExprToType(IntExpr.get(), result, | ||||
1053 | CK_IntegralComplexToFloatingComplex); | ||||
1054 | |||||
1055 | // float -> _Complex float | ||||
1056 | if (ConvertFloat) | ||||
1057 | FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result, | ||||
1058 | CK_FloatingRealToComplex); | ||||
1059 | |||||
1060 | return result; | ||||
1061 | } | ||||
1062 | |||||
1063 | /// Handle arithmethic conversion with floating point types. Helper | ||||
1064 | /// function of UsualArithmeticConversions() | ||||
1065 | static QualType handleFloatConversion(Sema &S, ExprResult &LHS, | ||||
1066 | ExprResult &RHS, QualType LHSType, | ||||
1067 | QualType RHSType, bool IsCompAssign) { | ||||
1068 | bool LHSFloat = LHSType->isRealFloatingType(); | ||||
1069 | bool RHSFloat = RHSType->isRealFloatingType(); | ||||
1070 | |||||
1071 | // If we have two real floating types, convert the smaller operand | ||||
1072 | // to the bigger result. | ||||
1073 | if (LHSFloat && RHSFloat) { | ||||
1074 | int order = S.Context.getFloatingTypeOrder(LHSType, RHSType); | ||||
1075 | if (order > 0) { | ||||
1076 | RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast); | ||||
1077 | return LHSType; | ||||
1078 | } | ||||
1079 | |||||
1080 | assert(order < 0 && "illegal float comparison")((order < 0 && "illegal float comparison") ? static_cast <void> (0) : __assert_fail ("order < 0 && \"illegal float comparison\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1080, __PRETTY_FUNCTION__)); | ||||
1081 | if (!IsCompAssign) | ||||
1082 | LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast); | ||||
1083 | return RHSType; | ||||
1084 | } | ||||
1085 | |||||
1086 | if (LHSFloat) { | ||||
1087 | // Half FP has to be promoted to float unless it is natively supported | ||||
1088 | if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType) | ||||
1089 | LHSType = S.Context.FloatTy; | ||||
1090 | |||||
1091 | return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType, | ||||
1092 | /*ConvertFloat=*/!IsCompAssign, | ||||
1093 | /*ConvertInt=*/ true); | ||||
1094 | } | ||||
1095 | assert(RHSFloat)((RHSFloat) ? static_cast<void> (0) : __assert_fail ("RHSFloat" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1095, __PRETTY_FUNCTION__)); | ||||
1096 | return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType, | ||||
1097 | /*convertInt=*/ true, | ||||
1098 | /*convertFloat=*/!IsCompAssign); | ||||
1099 | } | ||||
1100 | |||||
1101 | /// Diagnose attempts to convert between __float128 and long double if | ||||
1102 | /// there is no support for such conversion. Helper function of | ||||
1103 | /// UsualArithmeticConversions(). | ||||
1104 | static bool unsupportedTypeConversion(const Sema &S, QualType LHSType, | ||||
1105 | QualType RHSType) { | ||||
1106 | /* No issue converting if at least one of the types is not a floating point | ||||
1107 | type or the two types have the same rank. | ||||
1108 | */ | ||||
1109 | if (!LHSType->isFloatingType() || !RHSType->isFloatingType() || | ||||
1110 | S.Context.getFloatingTypeOrder(LHSType, RHSType) == 0) | ||||
1111 | return false; | ||||
1112 | |||||
1113 | assert(LHSType->isFloatingType() && RHSType->isFloatingType() &&((LHSType->isFloatingType() && RHSType->isFloatingType () && "The remaining types must be floating point types." ) ? static_cast<void> (0) : __assert_fail ("LHSType->isFloatingType() && RHSType->isFloatingType() && \"The remaining types must be floating point types.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1114, __PRETTY_FUNCTION__)) | ||||
1114 | "The remaining types must be floating point types.")((LHSType->isFloatingType() && RHSType->isFloatingType () && "The remaining types must be floating point types." ) ? static_cast<void> (0) : __assert_fail ("LHSType->isFloatingType() && RHSType->isFloatingType() && \"The remaining types must be floating point types.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1114, __PRETTY_FUNCTION__)); | ||||
1115 | |||||
1116 | auto *LHSComplex = LHSType->getAs<ComplexType>(); | ||||
1117 | auto *RHSComplex = RHSType->getAs<ComplexType>(); | ||||
1118 | |||||
1119 | QualType LHSElemType = LHSComplex ? | ||||
1120 | LHSComplex->getElementType() : LHSType; | ||||
1121 | QualType RHSElemType = RHSComplex ? | ||||
1122 | RHSComplex->getElementType() : RHSType; | ||||
1123 | |||||
1124 | // No issue if the two types have the same representation | ||||
1125 | if (&S.Context.getFloatTypeSemantics(LHSElemType) == | ||||
1126 | &S.Context.getFloatTypeSemantics(RHSElemType)) | ||||
1127 | return false; | ||||
1128 | |||||
1129 | bool Float128AndLongDouble = (LHSElemType == S.Context.Float128Ty && | ||||
1130 | RHSElemType == S.Context.LongDoubleTy); | ||||
1131 | Float128AndLongDouble |= (LHSElemType == S.Context.LongDoubleTy && | ||||
1132 | RHSElemType == S.Context.Float128Ty); | ||||
1133 | |||||
1134 | // We've handled the situation where __float128 and long double have the same | ||||
1135 | // representation. We allow all conversions for all possible long double types | ||||
1136 | // except PPC's double double. | ||||
1137 | return Float128AndLongDouble && | ||||
1138 | (&S.Context.getFloatTypeSemantics(S.Context.LongDoubleTy) == | ||||
1139 | &llvm::APFloat::PPCDoubleDouble()); | ||||
1140 | } | ||||
1141 | |||||
1142 | typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType); | ||||
1143 | |||||
1144 | namespace { | ||||
1145 | /// These helper callbacks are placed in an anonymous namespace to | ||||
1146 | /// permit their use as function template parameters. | ||||
1147 | ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) { | ||||
1148 | return S.ImpCastExprToType(op, toType, CK_IntegralCast); | ||||
1149 | } | ||||
1150 | |||||
1151 | ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) { | ||||
1152 | return S.ImpCastExprToType(op, S.Context.getComplexType(toType), | ||||
1153 | CK_IntegralComplexCast); | ||||
1154 | } | ||||
1155 | } | ||||
1156 | |||||
1157 | /// Handle integer arithmetic conversions. Helper function of | ||||
1158 | /// UsualArithmeticConversions() | ||||
1159 | template <PerformCastFn doLHSCast, PerformCastFn doRHSCast> | ||||
1160 | static QualType handleIntegerConversion(Sema &S, ExprResult &LHS, | ||||
1161 | ExprResult &RHS, QualType LHSType, | ||||
1162 | QualType RHSType, bool IsCompAssign) { | ||||
1163 | // The rules for this case are in C99 6.3.1.8 | ||||
1164 | int order = S.Context.getIntegerTypeOrder(LHSType, RHSType); | ||||
1165 | bool LHSSigned = LHSType->hasSignedIntegerRepresentation(); | ||||
1166 | bool RHSSigned = RHSType->hasSignedIntegerRepresentation(); | ||||
1167 | if (LHSSigned == RHSSigned) { | ||||
1168 | // Same signedness; use the higher-ranked type | ||||
1169 | if (order >= 0) { | ||||
1170 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | ||||
1171 | return LHSType; | ||||
1172 | } else if (!IsCompAssign) | ||||
1173 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | ||||
1174 | return RHSType; | ||||
1175 | } else if (order != (LHSSigned ? 1 : -1)) { | ||||
1176 | // The unsigned type has greater than or equal rank to the | ||||
1177 | // signed type, so use the unsigned type | ||||
1178 | if (RHSSigned) { | ||||
1179 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | ||||
1180 | return LHSType; | ||||
1181 | } else if (!IsCompAssign) | ||||
1182 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | ||||
1183 | return RHSType; | ||||
1184 | } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) { | ||||
1185 | // The two types are different widths; if we are here, that | ||||
1186 | // means the signed type is larger than the unsigned type, so | ||||
1187 | // use the signed type. | ||||
1188 | if (LHSSigned) { | ||||
1189 | RHS = (*doRHSCast)(S, RHS.get(), LHSType); | ||||
1190 | return LHSType; | ||||
1191 | } else if (!IsCompAssign) | ||||
1192 | LHS = (*doLHSCast)(S, LHS.get(), RHSType); | ||||
1193 | return RHSType; | ||||
1194 | } else { | ||||
1195 | // The signed type is higher-ranked than the unsigned type, | ||||
1196 | // but isn't actually any bigger (like unsigned int and long | ||||
1197 | // on most 32-bit systems). Use the unsigned type corresponding | ||||
1198 | // to the signed type. | ||||
1199 | QualType result = | ||||
1200 | S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType); | ||||
1201 | RHS = (*doRHSCast)(S, RHS.get(), result); | ||||
1202 | if (!IsCompAssign) | ||||
1203 | LHS = (*doLHSCast)(S, LHS.get(), result); | ||||
1204 | return result; | ||||
1205 | } | ||||
1206 | } | ||||
1207 | |||||
1208 | /// Handle conversions with GCC complex int extension. Helper function | ||||
1209 | /// of UsualArithmeticConversions() | ||||
1210 | static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS, | ||||
1211 | ExprResult &RHS, QualType LHSType, | ||||
1212 | QualType RHSType, | ||||
1213 | bool IsCompAssign) { | ||||
1214 | const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType(); | ||||
1215 | const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType(); | ||||
1216 | |||||
1217 | if (LHSComplexInt && RHSComplexInt) { | ||||
1218 | QualType LHSEltType = LHSComplexInt->getElementType(); | ||||
1219 | QualType RHSEltType = RHSComplexInt->getElementType(); | ||||
1220 | QualType ScalarType = | ||||
1221 | handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast> | ||||
1222 | (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign); | ||||
1223 | |||||
1224 | return S.Context.getComplexType(ScalarType); | ||||
1225 | } | ||||
1226 | |||||
1227 | if (LHSComplexInt) { | ||||
1228 | QualType LHSEltType = LHSComplexInt->getElementType(); | ||||
1229 | QualType ScalarType = | ||||
1230 | handleIntegerConversion<doComplexIntegralCast, doIntegralCast> | ||||
1231 | (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign); | ||||
1232 | QualType ComplexType = S.Context.getComplexType(ScalarType); | ||||
1233 | RHS = S.ImpCastExprToType(RHS.get(), ComplexType, | ||||
1234 | CK_IntegralRealToComplex); | ||||
1235 | |||||
1236 | return ComplexType; | ||||
1237 | } | ||||
1238 | |||||
1239 | assert(RHSComplexInt)((RHSComplexInt) ? static_cast<void> (0) : __assert_fail ("RHSComplexInt", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1239, __PRETTY_FUNCTION__)); | ||||
1240 | |||||
1241 | QualType RHSEltType = RHSComplexInt->getElementType(); | ||||
1242 | QualType ScalarType = | ||||
1243 | handleIntegerConversion<doIntegralCast, doComplexIntegralCast> | ||||
1244 | (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign); | ||||
1245 | QualType ComplexType = S.Context.getComplexType(ScalarType); | ||||
1246 | |||||
1247 | if (!IsCompAssign) | ||||
1248 | LHS = S.ImpCastExprToType(LHS.get(), ComplexType, | ||||
1249 | CK_IntegralRealToComplex); | ||||
1250 | return ComplexType; | ||||
1251 | } | ||||
1252 | |||||
1253 | /// Return the rank of a given fixed point or integer type. The value itself | ||||
1254 | /// doesn't matter, but the values must be increasing with proper increasing | ||||
1255 | /// rank as described in N1169 4.1.1. | ||||
1256 | static unsigned GetFixedPointRank(QualType Ty) { | ||||
1257 | const auto *BTy = Ty->getAs<BuiltinType>(); | ||||
1258 | assert(BTy && "Expected a builtin type.")((BTy && "Expected a builtin type.") ? static_cast< void> (0) : __assert_fail ("BTy && \"Expected a builtin type.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1258, __PRETTY_FUNCTION__)); | ||||
1259 | |||||
1260 | switch (BTy->getKind()) { | ||||
1261 | case BuiltinType::ShortFract: | ||||
1262 | case BuiltinType::UShortFract: | ||||
1263 | case BuiltinType::SatShortFract: | ||||
1264 | case BuiltinType::SatUShortFract: | ||||
1265 | return 1; | ||||
1266 | case BuiltinType::Fract: | ||||
1267 | case BuiltinType::UFract: | ||||
1268 | case BuiltinType::SatFract: | ||||
1269 | case BuiltinType::SatUFract: | ||||
1270 | return 2; | ||||
1271 | case BuiltinType::LongFract: | ||||
1272 | case BuiltinType::ULongFract: | ||||
1273 | case BuiltinType::SatLongFract: | ||||
1274 | case BuiltinType::SatULongFract: | ||||
1275 | return 3; | ||||
1276 | case BuiltinType::ShortAccum: | ||||
1277 | case BuiltinType::UShortAccum: | ||||
1278 | case BuiltinType::SatShortAccum: | ||||
1279 | case BuiltinType::SatUShortAccum: | ||||
1280 | return 4; | ||||
1281 | case BuiltinType::Accum: | ||||
1282 | case BuiltinType::UAccum: | ||||
1283 | case BuiltinType::SatAccum: | ||||
1284 | case BuiltinType::SatUAccum: | ||||
1285 | return 5; | ||||
1286 | case BuiltinType::LongAccum: | ||||
1287 | case BuiltinType::ULongAccum: | ||||
1288 | case BuiltinType::SatLongAccum: | ||||
1289 | case BuiltinType::SatULongAccum: | ||||
1290 | return 6; | ||||
1291 | default: | ||||
1292 | if (BTy->isInteger()) | ||||
1293 | return 0; | ||||
1294 | llvm_unreachable("Unexpected fixed point or integer type")::llvm::llvm_unreachable_internal("Unexpected fixed point or integer type" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1294); | ||||
1295 | } | ||||
1296 | } | ||||
1297 | |||||
1298 | /// handleFixedPointConversion - Fixed point operations between fixed | ||||
1299 | /// point types and integers or other fixed point types do not fall under | ||||
1300 | /// usual arithmetic conversion since these conversions could result in loss | ||||
1301 | /// of precsision (N1169 4.1.4). These operations should be calculated with | ||||
1302 | /// the full precision of their result type (N1169 4.1.6.2.1). | ||||
1303 | static QualType handleFixedPointConversion(Sema &S, QualType LHSTy, | ||||
1304 | QualType RHSTy) { | ||||
1305 | assert((LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) &&(((LHSTy->isFixedPointType() || RHSTy->isFixedPointType ()) && "Expected at least one of the operands to be a fixed point type" ) ? static_cast<void> (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1306, __PRETTY_FUNCTION__)) | ||||
1306 | "Expected at least one of the operands to be a fixed point type")(((LHSTy->isFixedPointType() || RHSTy->isFixedPointType ()) && "Expected at least one of the operands to be a fixed point type" ) ? static_cast<void> (0) : __assert_fail ("(LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) && \"Expected at least one of the operands to be a fixed point type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1306, __PRETTY_FUNCTION__)); | ||||
1307 | assert((LHSTy->isFixedPointOrIntegerType() ||(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType ()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? static_cast< void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1310, __PRETTY_FUNCTION__)) | ||||
1308 | RHSTy->isFixedPointOrIntegerType()) &&(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType ()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? static_cast< void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1310, __PRETTY_FUNCTION__)) | ||||
1309 | "Special fixed point arithmetic operation conversions are only "(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType ()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? static_cast< void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1310, __PRETTY_FUNCTION__)) | ||||
1310 | "applied to ints or other fixed point types")(((LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType ()) && "Special fixed point arithmetic operation conversions are only " "applied to ints or other fixed point types") ? static_cast< void> (0) : __assert_fail ("(LHSTy->isFixedPointOrIntegerType() || RHSTy->isFixedPointOrIntegerType()) && \"Special fixed point arithmetic operation conversions are only \" \"applied to ints or other fixed point types\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1310, __PRETTY_FUNCTION__)); | ||||
1311 | |||||
1312 | // If one operand has signed fixed-point type and the other operand has | ||||
1313 | // unsigned fixed-point type, then the unsigned fixed-point operand is | ||||
1314 | // converted to its corresponding signed fixed-point type and the resulting | ||||
1315 | // type is the type of the converted operand. | ||||
1316 | if (RHSTy->isSignedFixedPointType() && LHSTy->isUnsignedFixedPointType()) | ||||
1317 | LHSTy = S.Context.getCorrespondingSignedFixedPointType(LHSTy); | ||||
1318 | else if (RHSTy->isUnsignedFixedPointType() && LHSTy->isSignedFixedPointType()) | ||||
1319 | RHSTy = S.Context.getCorrespondingSignedFixedPointType(RHSTy); | ||||
1320 | |||||
1321 | // The result type is the type with the highest rank, whereby a fixed-point | ||||
1322 | // conversion rank is always greater than an integer conversion rank; if the | ||||
1323 | // type of either of the operands is a saturating fixedpoint type, the result | ||||
1324 | // type shall be the saturating fixed-point type corresponding to the type | ||||
1325 | // with the highest rank; the resulting value is converted (taking into | ||||
1326 | // account rounding and overflow) to the precision of the resulting type. | ||||
1327 | // Same ranks between signed and unsigned types are resolved earlier, so both | ||||
1328 | // types are either signed or both unsigned at this point. | ||||
1329 | unsigned LHSTyRank = GetFixedPointRank(LHSTy); | ||||
1330 | unsigned RHSTyRank = GetFixedPointRank(RHSTy); | ||||
1331 | |||||
1332 | QualType ResultTy = LHSTyRank > RHSTyRank ? LHSTy : RHSTy; | ||||
1333 | |||||
1334 | if (LHSTy->isSaturatedFixedPointType() || RHSTy->isSaturatedFixedPointType()) | ||||
1335 | ResultTy = S.Context.getCorrespondingSaturatedType(ResultTy); | ||||
1336 | |||||
1337 | return ResultTy; | ||||
1338 | } | ||||
1339 | |||||
1340 | /// UsualArithmeticConversions - Performs various conversions that are common to | ||||
1341 | /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this | ||||
1342 | /// routine returns the first non-arithmetic type found. The client is | ||||
1343 | /// responsible for emitting appropriate error diagnostics. | ||||
1344 | QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS, | ||||
1345 | bool IsCompAssign) { | ||||
1346 | if (!IsCompAssign) { | ||||
1347 | LHS = UsualUnaryConversions(LHS.get()); | ||||
1348 | if (LHS.isInvalid()) | ||||
1349 | return QualType(); | ||||
1350 | } | ||||
1351 | |||||
1352 | RHS = UsualUnaryConversions(RHS.get()); | ||||
1353 | if (RHS.isInvalid()) | ||||
1354 | return QualType(); | ||||
1355 | |||||
1356 | // For conversion purposes, we ignore any qualifiers. | ||||
1357 | // For example, "const float" and "float" are equivalent. | ||||
1358 | QualType LHSType = | ||||
1359 | Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType(); | ||||
1360 | QualType RHSType = | ||||
1361 | Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType(); | ||||
1362 | |||||
1363 | // For conversion purposes, we ignore any atomic qualifier on the LHS. | ||||
1364 | if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>()) | ||||
1365 | LHSType = AtomicLHS->getValueType(); | ||||
1366 | |||||
1367 | // If both types are identical, no conversion is needed. | ||||
1368 | if (LHSType == RHSType) | ||||
1369 | return LHSType; | ||||
1370 | |||||
1371 | // If either side is a non-arithmetic type (e.g. a pointer), we are done. | ||||
1372 | // The caller can deal with this (e.g. pointer + int). | ||||
1373 | if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType()) | ||||
1374 | return QualType(); | ||||
1375 | |||||
1376 | // Apply unary and bitfield promotions to the LHS's type. | ||||
1377 | QualType LHSUnpromotedType = LHSType; | ||||
1378 | if (LHSType->isPromotableIntegerType()) | ||||
1379 | LHSType = Context.getPromotedIntegerType(LHSType); | ||||
1380 | QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get()); | ||||
1381 | if (!LHSBitfieldPromoteTy.isNull()) | ||||
1382 | LHSType = LHSBitfieldPromoteTy; | ||||
1383 | if (LHSType != LHSUnpromotedType && !IsCompAssign) | ||||
1384 | LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast); | ||||
1385 | |||||
1386 | // If both types are identical, no conversion is needed. | ||||
1387 | if (LHSType == RHSType) | ||||
1388 | return LHSType; | ||||
1389 | |||||
1390 | // At this point, we have two different arithmetic types. | ||||
1391 | |||||
1392 | // Diagnose attempts to convert between __float128 and long double where | ||||
1393 | // such conversions currently can't be handled. | ||||
1394 | if (unsupportedTypeConversion(*this, LHSType, RHSType)) | ||||
1395 | return QualType(); | ||||
1396 | |||||
1397 | // Handle complex types first (C99 6.3.1.8p1). | ||||
1398 | if (LHSType->isComplexType() || RHSType->isComplexType()) | ||||
1399 | return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType, | ||||
1400 | IsCompAssign); | ||||
1401 | |||||
1402 | // Now handle "real" floating types (i.e. float, double, long double). | ||||
1403 | if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType()) | ||||
1404 | return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType, | ||||
1405 | IsCompAssign); | ||||
1406 | |||||
1407 | // Handle GCC complex int extension. | ||||
1408 | if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType()) | ||||
1409 | return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType, | ||||
1410 | IsCompAssign); | ||||
1411 | |||||
1412 | if (LHSType->isFixedPointType() || RHSType->isFixedPointType()) | ||||
1413 | return handleFixedPointConversion(*this, LHSType, RHSType); | ||||
1414 | |||||
1415 | // Finally, we have two differing integer types. | ||||
1416 | return handleIntegerConversion<doIntegralCast, doIntegralCast> | ||||
1417 | (*this, LHS, RHS, LHSType, RHSType, IsCompAssign); | ||||
1418 | } | ||||
1419 | |||||
1420 | //===----------------------------------------------------------------------===// | ||||
1421 | // Semantic Analysis for various Expression Types | ||||
1422 | //===----------------------------------------------------------------------===// | ||||
1423 | |||||
1424 | |||||
1425 | ExprResult | ||||
1426 | Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc, | ||||
1427 | SourceLocation DefaultLoc, | ||||
1428 | SourceLocation RParenLoc, | ||||
1429 | Expr *ControllingExpr, | ||||
1430 | ArrayRef<ParsedType> ArgTypes, | ||||
1431 | ArrayRef<Expr *> ArgExprs) { | ||||
1432 | unsigned NumAssocs = ArgTypes.size(); | ||||
1433 | assert(NumAssocs == ArgExprs.size())((NumAssocs == ArgExprs.size()) ? static_cast<void> (0) : __assert_fail ("NumAssocs == ArgExprs.size()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1433, __PRETTY_FUNCTION__)); | ||||
1434 | |||||
1435 | TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs]; | ||||
1436 | for (unsigned i = 0; i < NumAssocs; ++i) { | ||||
1437 | if (ArgTypes[i]) | ||||
1438 | (void) GetTypeFromParser(ArgTypes[i], &Types[i]); | ||||
1439 | else | ||||
1440 | Types[i] = nullptr; | ||||
1441 | } | ||||
1442 | |||||
1443 | ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc, | ||||
1444 | ControllingExpr, | ||||
1445 | llvm::makeArrayRef(Types, NumAssocs), | ||||
1446 | ArgExprs); | ||||
1447 | delete [] Types; | ||||
1448 | return ER; | ||||
1449 | } | ||||
1450 | |||||
1451 | ExprResult | ||||
1452 | Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc, | ||||
1453 | SourceLocation DefaultLoc, | ||||
1454 | SourceLocation RParenLoc, | ||||
1455 | Expr *ControllingExpr, | ||||
1456 | ArrayRef<TypeSourceInfo *> Types, | ||||
1457 | ArrayRef<Expr *> Exprs) { | ||||
1458 | unsigned NumAssocs = Types.size(); | ||||
1459 | assert(NumAssocs == Exprs.size())((NumAssocs == Exprs.size()) ? static_cast<void> (0) : __assert_fail ("NumAssocs == Exprs.size()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1459, __PRETTY_FUNCTION__)); | ||||
1460 | |||||
1461 | // Decay and strip qualifiers for the controlling expression type, and handle | ||||
1462 | // placeholder type replacement. See committee discussion from WG14 DR423. | ||||
1463 | { | ||||
1464 | EnterExpressionEvaluationContext Unevaluated( | ||||
1465 | *this, Sema::ExpressionEvaluationContext::Unevaluated); | ||||
1466 | ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr); | ||||
1467 | if (R.isInvalid()) | ||||
1468 | return ExprError(); | ||||
1469 | ControllingExpr = R.get(); | ||||
1470 | } | ||||
1471 | |||||
1472 | // The controlling expression is an unevaluated operand, so side effects are | ||||
1473 | // likely unintended. | ||||
1474 | if (!inTemplateInstantiation() && | ||||
1475 | ControllingExpr->HasSideEffects(Context, false)) | ||||
1476 | Diag(ControllingExpr->getExprLoc(), | ||||
1477 | diag::warn_side_effects_unevaluated_context); | ||||
1478 | |||||
1479 | bool TypeErrorFound = false, | ||||
1480 | IsResultDependent = ControllingExpr->isTypeDependent(), | ||||
1481 | ContainsUnexpandedParameterPack | ||||
1482 | = ControllingExpr->containsUnexpandedParameterPack(); | ||||
1483 | |||||
1484 | for (unsigned i = 0; i < NumAssocs; ++i) { | ||||
1485 | if (Exprs[i]->containsUnexpandedParameterPack()) | ||||
1486 | ContainsUnexpandedParameterPack = true; | ||||
1487 | |||||
1488 | if (Types[i]) { | ||||
1489 | if (Types[i]->getType()->containsUnexpandedParameterPack()) | ||||
1490 | ContainsUnexpandedParameterPack = true; | ||||
1491 | |||||
1492 | if (Types[i]->getType()->isDependentType()) { | ||||
1493 | IsResultDependent = true; | ||||
1494 | } else { | ||||
1495 | // C11 6.5.1.1p2 "The type name in a generic association shall specify a | ||||
1496 | // complete object type other than a variably modified type." | ||||
1497 | unsigned D = 0; | ||||
1498 | if (Types[i]->getType()->isIncompleteType()) | ||||
1499 | D = diag::err_assoc_type_incomplete; | ||||
1500 | else if (!Types[i]->getType()->isObjectType()) | ||||
1501 | D = diag::err_assoc_type_nonobject; | ||||
1502 | else if (Types[i]->getType()->isVariablyModifiedType()) | ||||
1503 | D = diag::err_assoc_type_variably_modified; | ||||
1504 | |||||
1505 | if (D != 0) { | ||||
1506 | Diag(Types[i]->getTypeLoc().getBeginLoc(), D) | ||||
1507 | << Types[i]->getTypeLoc().getSourceRange() | ||||
1508 | << Types[i]->getType(); | ||||
1509 | TypeErrorFound = true; | ||||
1510 | } | ||||
1511 | |||||
1512 | // C11 6.5.1.1p2 "No two generic associations in the same generic | ||||
1513 | // selection shall specify compatible types." | ||||
1514 | for (unsigned j = i+1; j < NumAssocs; ++j) | ||||
1515 | if (Types[j] && !Types[j]->getType()->isDependentType() && | ||||
1516 | Context.typesAreCompatible(Types[i]->getType(), | ||||
1517 | Types[j]->getType())) { | ||||
1518 | Diag(Types[j]->getTypeLoc().getBeginLoc(), | ||||
1519 | diag::err_assoc_compatible_types) | ||||
1520 | << Types[j]->getTypeLoc().getSourceRange() | ||||
1521 | << Types[j]->getType() | ||||
1522 | << Types[i]->getType(); | ||||
1523 | Diag(Types[i]->getTypeLoc().getBeginLoc(), | ||||
1524 | diag::note_compat_assoc) | ||||
1525 | << Types[i]->getTypeLoc().getSourceRange() | ||||
1526 | << Types[i]->getType(); | ||||
1527 | TypeErrorFound = true; | ||||
1528 | } | ||||
1529 | } | ||||
1530 | } | ||||
1531 | } | ||||
1532 | if (TypeErrorFound) | ||||
1533 | return ExprError(); | ||||
1534 | |||||
1535 | // If we determined that the generic selection is result-dependent, don't | ||||
1536 | // try to compute the result expression. | ||||
1537 | if (IsResultDependent) | ||||
1538 | return GenericSelectionExpr::Create(Context, KeyLoc, ControllingExpr, Types, | ||||
1539 | Exprs, DefaultLoc, RParenLoc, | ||||
1540 | ContainsUnexpandedParameterPack); | ||||
1541 | |||||
1542 | SmallVector<unsigned, 1> CompatIndices; | ||||
1543 | unsigned DefaultIndex = -1U; | ||||
1544 | for (unsigned i = 0; i < NumAssocs; ++i) { | ||||
1545 | if (!Types[i]) | ||||
1546 | DefaultIndex = i; | ||||
1547 | else if (Context.typesAreCompatible(ControllingExpr->getType(), | ||||
1548 | Types[i]->getType())) | ||||
1549 | CompatIndices.push_back(i); | ||||
1550 | } | ||||
1551 | |||||
1552 | // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have | ||||
1553 | // type compatible with at most one of the types named in its generic | ||||
1554 | // association list." | ||||
1555 | if (CompatIndices.size() > 1) { | ||||
1556 | // We strip parens here because the controlling expression is typically | ||||
1557 | // parenthesized in macro definitions. | ||||
1558 | ControllingExpr = ControllingExpr->IgnoreParens(); | ||||
1559 | Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_multi_match) | ||||
1560 | << ControllingExpr->getSourceRange() << ControllingExpr->getType() | ||||
1561 | << (unsigned)CompatIndices.size(); | ||||
1562 | for (unsigned I : CompatIndices) { | ||||
1563 | Diag(Types[I]->getTypeLoc().getBeginLoc(), | ||||
1564 | diag::note_compat_assoc) | ||||
1565 | << Types[I]->getTypeLoc().getSourceRange() | ||||
1566 | << Types[I]->getType(); | ||||
1567 | } | ||||
1568 | return ExprError(); | ||||
1569 | } | ||||
1570 | |||||
1571 | // C11 6.5.1.1p2 "If a generic selection has no default generic association, | ||||
1572 | // its controlling expression shall have type compatible with exactly one of | ||||
1573 | // the types named in its generic association list." | ||||
1574 | if (DefaultIndex == -1U && CompatIndices.size() == 0) { | ||||
1575 | // We strip parens here because the controlling expression is typically | ||||
1576 | // parenthesized in macro definitions. | ||||
1577 | ControllingExpr = ControllingExpr->IgnoreParens(); | ||||
1578 | Diag(ControllingExpr->getBeginLoc(), diag::err_generic_sel_no_match) | ||||
1579 | << ControllingExpr->getSourceRange() << ControllingExpr->getType(); | ||||
1580 | return ExprError(); | ||||
1581 | } | ||||
1582 | |||||
1583 | // C11 6.5.1.1p3 "If a generic selection has a generic association with a | ||||
1584 | // type name that is compatible with the type of the controlling expression, | ||||
1585 | // then the result expression of the generic selection is the expression | ||||
1586 | // in that generic association. Otherwise, the result expression of the | ||||
1587 | // generic selection is the expression in the default generic association." | ||||
1588 | unsigned ResultIndex = | ||||
1589 | CompatIndices.size() ? CompatIndices[0] : DefaultIndex; | ||||
1590 | |||||
1591 | return GenericSelectionExpr::Create( | ||||
1592 | Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc, | ||||
1593 | ContainsUnexpandedParameterPack, ResultIndex); | ||||
1594 | } | ||||
1595 | |||||
1596 | /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the | ||||
1597 | /// location of the token and the offset of the ud-suffix within it. | ||||
1598 | static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc, | ||||
1599 | unsigned Offset) { | ||||
1600 | return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(), | ||||
1601 | S.getLangOpts()); | ||||
1602 | } | ||||
1603 | |||||
1604 | /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up | ||||
1605 | /// the corresponding cooked (non-raw) literal operator, and build a call to it. | ||||
1606 | static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope, | ||||
1607 | IdentifierInfo *UDSuffix, | ||||
1608 | SourceLocation UDSuffixLoc, | ||||
1609 | ArrayRef<Expr*> Args, | ||||
1610 | SourceLocation LitEndLoc) { | ||||
1611 | assert(Args.size() <= 2 && "too many arguments for literal operator")((Args.size() <= 2 && "too many arguments for literal operator" ) ? static_cast<void> (0) : __assert_fail ("Args.size() <= 2 && \"too many arguments for literal operator\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1611, __PRETTY_FUNCTION__)); | ||||
1612 | |||||
1613 | QualType ArgTy[2]; | ||||
1614 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { | ||||
1615 | ArgTy[ArgIdx] = Args[ArgIdx]->getType(); | ||||
1616 | if (ArgTy[ArgIdx]->isArrayType()) | ||||
1617 | ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]); | ||||
1618 | } | ||||
1619 | |||||
1620 | DeclarationName OpName = | ||||
1621 | S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | ||||
1622 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | ||||
1623 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | ||||
1624 | |||||
1625 | LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName); | ||||
1626 | if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()), | ||||
1627 | /*AllowRaw*/ false, /*AllowTemplate*/ false, | ||||
1628 | /*AllowStringTemplate*/ false, | ||||
1629 | /*DiagnoseMissing*/ true) == Sema::LOLR_Error) | ||||
1630 | return ExprError(); | ||||
1631 | |||||
1632 | return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc); | ||||
1633 | } | ||||
1634 | |||||
1635 | /// ActOnStringLiteral - The specified tokens were lexed as pasted string | ||||
1636 | /// fragments (e.g. "foo" "bar" L"baz"). The result string has to handle string | ||||
1637 | /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from | ||||
1638 | /// multiple tokens. However, the common case is that StringToks points to one | ||||
1639 | /// string. | ||||
1640 | /// | ||||
1641 | ExprResult | ||||
1642 | Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) { | ||||
1643 | assert(!StringToks.empty() && "Must have at least one string!")((!StringToks.empty() && "Must have at least one string!" ) ? static_cast<void> (0) : __assert_fail ("!StringToks.empty() && \"Must have at least one string!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1643, __PRETTY_FUNCTION__)); | ||||
1644 | |||||
1645 | StringLiteralParser Literal(StringToks, PP); | ||||
1646 | if (Literal.hadError) | ||||
1647 | return ExprError(); | ||||
1648 | |||||
1649 | SmallVector<SourceLocation, 4> StringTokLocs; | ||||
1650 | for (const Token &Tok : StringToks) | ||||
1651 | StringTokLocs.push_back(Tok.getLocation()); | ||||
1652 | |||||
1653 | QualType CharTy = Context.CharTy; | ||||
1654 | StringLiteral::StringKind Kind = StringLiteral::Ascii; | ||||
1655 | if (Literal.isWide()) { | ||||
1656 | CharTy = Context.getWideCharType(); | ||||
1657 | Kind = StringLiteral::Wide; | ||||
1658 | } else if (Literal.isUTF8()) { | ||||
1659 | if (getLangOpts().Char8) | ||||
1660 | CharTy = Context.Char8Ty; | ||||
1661 | Kind = StringLiteral::UTF8; | ||||
1662 | } else if (Literal.isUTF16()) { | ||||
1663 | CharTy = Context.Char16Ty; | ||||
1664 | Kind = StringLiteral::UTF16; | ||||
1665 | } else if (Literal.isUTF32()) { | ||||
1666 | CharTy = Context.Char32Ty; | ||||
1667 | Kind = StringLiteral::UTF32; | ||||
1668 | } else if (Literal.isPascal()) { | ||||
1669 | CharTy = Context.UnsignedCharTy; | ||||
1670 | } | ||||
1671 | |||||
1672 | // Warn on initializing an array of char from a u8 string literal; this | ||||
1673 | // becomes ill-formed in C++2a. | ||||
1674 | if (getLangOpts().CPlusPlus && !getLangOpts().CPlusPlus2a && | ||||
1675 | !getLangOpts().Char8 && Kind == StringLiteral::UTF8) { | ||||
1676 | Diag(StringTokLocs.front(), diag::warn_cxx2a_compat_utf8_string); | ||||
1677 | |||||
1678 | // Create removals for all 'u8' prefixes in the string literal(s). This | ||||
1679 | // ensures C++2a compatibility (but may change the program behavior when | ||||
1680 | // built by non-Clang compilers for which the execution character set is | ||||
1681 | // not always UTF-8). | ||||
1682 | auto RemovalDiag = PDiag(diag::note_cxx2a_compat_utf8_string_remove_u8); | ||||
1683 | SourceLocation RemovalDiagLoc; | ||||
1684 | for (const Token &Tok : StringToks) { | ||||
1685 | if (Tok.getKind() == tok::utf8_string_literal) { | ||||
1686 | if (RemovalDiagLoc.isInvalid()) | ||||
1687 | RemovalDiagLoc = Tok.getLocation(); | ||||
1688 | RemovalDiag << FixItHint::CreateRemoval(CharSourceRange::getCharRange( | ||||
1689 | Tok.getLocation(), | ||||
1690 | Lexer::AdvanceToTokenCharacter(Tok.getLocation(), 2, | ||||
1691 | getSourceManager(), getLangOpts()))); | ||||
1692 | } | ||||
1693 | } | ||||
1694 | Diag(RemovalDiagLoc, RemovalDiag); | ||||
1695 | } | ||||
1696 | |||||
1697 | QualType StrTy = | ||||
1698 | Context.getStringLiteralArrayType(CharTy, Literal.GetNumStringChars()); | ||||
1699 | |||||
1700 | // Pass &StringTokLocs[0], StringTokLocs.size() to factory! | ||||
1701 | StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(), | ||||
1702 | Kind, Literal.Pascal, StrTy, | ||||
1703 | &StringTokLocs[0], | ||||
1704 | StringTokLocs.size()); | ||||
1705 | if (Literal.getUDSuffix().empty()) | ||||
1706 | return Lit; | ||||
1707 | |||||
1708 | // We're building a user-defined literal. | ||||
1709 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | ||||
1710 | SourceLocation UDSuffixLoc = | ||||
1711 | getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()], | ||||
1712 | Literal.getUDSuffixOffset()); | ||||
1713 | |||||
1714 | // Make sure we're allowed user-defined literals here. | ||||
1715 | if (!UDLScope) | ||||
1716 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl)); | ||||
1717 | |||||
1718 | // C++11 [lex.ext]p5: The literal L is treated as a call of the form | ||||
1719 | // operator "" X (str, len) | ||||
1720 | QualType SizeType = Context.getSizeType(); | ||||
1721 | |||||
1722 | DeclarationName OpName = | ||||
1723 | Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | ||||
1724 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | ||||
1725 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | ||||
1726 | |||||
1727 | QualType ArgTy[] = { | ||||
1728 | Context.getArrayDecayedType(StrTy), SizeType | ||||
1729 | }; | ||||
1730 | |||||
1731 | LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); | ||||
1732 | switch (LookupLiteralOperator(UDLScope, R, ArgTy, | ||||
1733 | /*AllowRaw*/ false, /*AllowTemplate*/ false, | ||||
1734 | /*AllowStringTemplate*/ true, | ||||
1735 | /*DiagnoseMissing*/ true)) { | ||||
1736 | |||||
1737 | case LOLR_Cooked: { | ||||
1738 | llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars()); | ||||
1739 | IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType, | ||||
1740 | StringTokLocs[0]); | ||||
1741 | Expr *Args[] = { Lit, LenArg }; | ||||
1742 | |||||
1743 | return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back()); | ||||
1744 | } | ||||
1745 | |||||
1746 | case LOLR_StringTemplate: { | ||||
1747 | TemplateArgumentListInfo ExplicitArgs; | ||||
1748 | |||||
1749 | unsigned CharBits = Context.getIntWidth(CharTy); | ||||
1750 | bool CharIsUnsigned = CharTy->isUnsignedIntegerType(); | ||||
1751 | llvm::APSInt Value(CharBits, CharIsUnsigned); | ||||
1752 | |||||
1753 | TemplateArgument TypeArg(CharTy); | ||||
1754 | TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy)); | ||||
1755 | ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo)); | ||||
1756 | |||||
1757 | for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) { | ||||
1758 | Value = Lit->getCodeUnit(I); | ||||
1759 | TemplateArgument Arg(Context, Value, CharTy); | ||||
1760 | TemplateArgumentLocInfo ArgInfo; | ||||
1761 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | ||||
1762 | } | ||||
1763 | return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(), | ||||
1764 | &ExplicitArgs); | ||||
1765 | } | ||||
1766 | case LOLR_Raw: | ||||
1767 | case LOLR_Template: | ||||
1768 | case LOLR_ErrorNoDiagnostic: | ||||
1769 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1769); | ||||
1770 | case LOLR_Error: | ||||
1771 | return ExprError(); | ||||
1772 | } | ||||
1773 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 1773); | ||||
1774 | } | ||||
1775 | |||||
1776 | DeclRefExpr * | ||||
1777 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | ||||
1778 | SourceLocation Loc, | ||||
1779 | const CXXScopeSpec *SS) { | ||||
1780 | DeclarationNameInfo NameInfo(D->getDeclName(), Loc); | ||||
1781 | return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS); | ||||
1782 | } | ||||
1783 | |||||
1784 | DeclRefExpr * | ||||
1785 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | ||||
1786 | const DeclarationNameInfo &NameInfo, | ||||
1787 | const CXXScopeSpec *SS, NamedDecl *FoundD, | ||||
1788 | SourceLocation TemplateKWLoc, | ||||
1789 | const TemplateArgumentListInfo *TemplateArgs) { | ||||
1790 | NestedNameSpecifierLoc NNS = | ||||
1791 | SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc(); | ||||
1792 | return BuildDeclRefExpr(D, Ty, VK, NameInfo, NNS, FoundD, TemplateKWLoc, | ||||
1793 | TemplateArgs); | ||||
1794 | } | ||||
1795 | |||||
1796 | NonOdrUseReason Sema::getNonOdrUseReasonInCurrentContext(ValueDecl *D) { | ||||
1797 | // A declaration named in an unevaluated operand never constitutes an odr-use. | ||||
1798 | if (isUnevaluatedContext()) | ||||
1799 | return NOUR_Unevaluated; | ||||
1800 | |||||
1801 | // C++2a [basic.def.odr]p4: | ||||
1802 | // A variable x whose name appears as a potentially-evaluated expression e | ||||
1803 | // is odr-used by e unless [...] x is a reference that is usable in | ||||
1804 | // constant expressions. | ||||
1805 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) { | ||||
1806 | if (VD->getType()->isReferenceType() && | ||||
1807 | !(getLangOpts().OpenMP && isOpenMPCapturedDecl(D)) && | ||||
1808 | VD->isUsableInConstantExpressions(Context)) | ||||
1809 | return NOUR_Constant; | ||||
1810 | } | ||||
1811 | |||||
1812 | // All remaining non-variable cases constitute an odr-use. For variables, we | ||||
1813 | // need to wait and see how the expression is used. | ||||
1814 | return NOUR_None; | ||||
1815 | } | ||||
1816 | |||||
1817 | /// BuildDeclRefExpr - Build an expression that references a | ||||
1818 | /// declaration that does not require a closure capture. | ||||
1819 | DeclRefExpr * | ||||
1820 | Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK, | ||||
1821 | const DeclarationNameInfo &NameInfo, | ||||
1822 | NestedNameSpecifierLoc NNS, NamedDecl *FoundD, | ||||
1823 | SourceLocation TemplateKWLoc, | ||||
1824 | const TemplateArgumentListInfo *TemplateArgs) { | ||||
1825 | bool RefersToCapturedVariable = | ||||
1826 | isa<VarDecl>(D) && | ||||
1827 | NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc()); | ||||
1828 | |||||
1829 | DeclRefExpr *E = DeclRefExpr::Create( | ||||
1830 | Context, NNS, TemplateKWLoc, D, RefersToCapturedVariable, NameInfo, Ty, | ||||
1831 | VK, FoundD, TemplateArgs, getNonOdrUseReasonInCurrentContext(D)); | ||||
1832 | MarkDeclRefReferenced(E); | ||||
1833 | |||||
1834 | if (getLangOpts().ObjCWeak && isa<VarDecl>(D) && | ||||
1835 | Ty.getObjCLifetime() == Qualifiers::OCL_Weak && !isUnevaluatedContext() && | ||||
1836 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getBeginLoc())) | ||||
1837 | getCurFunction()->recordUseOfWeak(E); | ||||
1838 | |||||
1839 | FieldDecl *FD = dyn_cast<FieldDecl>(D); | ||||
1840 | if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D)) | ||||
1841 | FD = IFD->getAnonField(); | ||||
1842 | if (FD) { | ||||
1843 | UnusedPrivateFields.remove(FD); | ||||
1844 | // Just in case we're building an illegal pointer-to-member. | ||||
1845 | if (FD->isBitField()) | ||||
1846 | E->setObjectKind(OK_BitField); | ||||
1847 | } | ||||
1848 | |||||
1849 | // C++ [expr.prim]/8: The expression [...] is a bit-field if the identifier | ||||
1850 | // designates a bit-field. | ||||
1851 | if (auto *BD = dyn_cast<BindingDecl>(D)) | ||||
1852 | if (auto *BE = BD->getBinding()) | ||||
1853 | E->setObjectKind(BE->getObjectKind()); | ||||
1854 | |||||
1855 | return E; | ||||
1856 | } | ||||
1857 | |||||
1858 | /// Decomposes the given name into a DeclarationNameInfo, its location, and | ||||
1859 | /// possibly a list of template arguments. | ||||
1860 | /// | ||||
1861 | /// If this produces template arguments, it is permitted to call | ||||
1862 | /// DecomposeTemplateName. | ||||
1863 | /// | ||||
1864 | /// This actually loses a lot of source location information for | ||||
1865 | /// non-standard name kinds; we should consider preserving that in | ||||
1866 | /// some way. | ||||
1867 | void | ||||
1868 | Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id, | ||||
1869 | TemplateArgumentListInfo &Buffer, | ||||
1870 | DeclarationNameInfo &NameInfo, | ||||
1871 | const TemplateArgumentListInfo *&TemplateArgs) { | ||||
1872 | if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId) { | ||||
1873 | Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc); | ||||
1874 | Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc); | ||||
1875 | |||||
1876 | ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(), | ||||
1877 | Id.TemplateId->NumArgs); | ||||
1878 | translateTemplateArguments(TemplateArgsPtr, Buffer); | ||||
1879 | |||||
1880 | TemplateName TName = Id.TemplateId->Template.get(); | ||||
1881 | SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc; | ||||
1882 | NameInfo = Context.getNameForTemplate(TName, TNameLoc); | ||||
1883 | TemplateArgs = &Buffer; | ||||
1884 | } else { | ||||
1885 | NameInfo = GetNameFromUnqualifiedId(Id); | ||||
1886 | TemplateArgs = nullptr; | ||||
1887 | } | ||||
1888 | } | ||||
1889 | |||||
1890 | static void emitEmptyLookupTypoDiagnostic( | ||||
1891 | const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS, | ||||
1892 | DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args, | ||||
1893 | unsigned DiagnosticID, unsigned DiagnosticSuggestID) { | ||||
1894 | DeclContext *Ctx = | ||||
1895 | SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false); | ||||
1896 | if (!TC) { | ||||
1897 | // Emit a special diagnostic for failed member lookups. | ||||
1898 | // FIXME: computing the declaration context might fail here (?) | ||||
1899 | if (Ctx) | ||||
1900 | SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx | ||||
1901 | << SS.getRange(); | ||||
1902 | else | ||||
1903 | SemaRef.Diag(TypoLoc, DiagnosticID) << Typo; | ||||
1904 | return; | ||||
1905 | } | ||||
1906 | |||||
1907 | std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts()); | ||||
1908 | bool DroppedSpecifier = | ||||
1909 | TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr; | ||||
1910 | unsigned NoteID = TC.getCorrectionDeclAs<ImplicitParamDecl>() | ||||
1911 | ? diag::note_implicit_param_decl | ||||
1912 | : diag::note_previous_decl; | ||||
1913 | if (!Ctx) | ||||
1914 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo, | ||||
1915 | SemaRef.PDiag(NoteID)); | ||||
1916 | else | ||||
1917 | SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest) | ||||
1918 | << Typo << Ctx << DroppedSpecifier | ||||
1919 | << SS.getRange(), | ||||
1920 | SemaRef.PDiag(NoteID)); | ||||
1921 | } | ||||
1922 | |||||
1923 | /// Diagnose an empty lookup. | ||||
1924 | /// | ||||
1925 | /// \return false if new lookup candidates were found | ||||
1926 | bool Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R, | ||||
1927 | CorrectionCandidateCallback &CCC, | ||||
1928 | TemplateArgumentListInfo *ExplicitTemplateArgs, | ||||
1929 | ArrayRef<Expr *> Args, TypoExpr **Out) { | ||||
1930 | DeclarationName Name = R.getLookupName(); | ||||
1931 | |||||
1932 | unsigned diagnostic = diag::err_undeclared_var_use; | ||||
1933 | unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest; | ||||
1934 | if (Name.getNameKind() == DeclarationName::CXXOperatorName || | ||||
1935 | Name.getNameKind() == DeclarationName::CXXLiteralOperatorName || | ||||
1936 | Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { | ||||
1937 | diagnostic = diag::err_undeclared_use; | ||||
1938 | diagnostic_suggest = diag::err_undeclared_use_suggest; | ||||
1939 | } | ||||
1940 | |||||
1941 | // If the original lookup was an unqualified lookup, fake an | ||||
1942 | // unqualified lookup. This is useful when (for example) the | ||||
1943 | // original lookup would not have found something because it was a | ||||
1944 | // dependent name. | ||||
1945 | DeclContext *DC = SS.isEmpty() ? CurContext : nullptr; | ||||
1946 | while (DC) { | ||||
1947 | if (isa<CXXRecordDecl>(DC)) { | ||||
1948 | LookupQualifiedName(R, DC); | ||||
1949 | |||||
1950 | if (!R.empty()) { | ||||
1951 | // Don't give errors about ambiguities in this lookup. | ||||
1952 | R.suppressDiagnostics(); | ||||
1953 | |||||
1954 | // During a default argument instantiation the CurContext points | ||||
1955 | // to a CXXMethodDecl; but we can't apply a this-> fixit inside a | ||||
1956 | // function parameter list, hence add an explicit check. | ||||
1957 | bool isDefaultArgument = | ||||
1958 | !CodeSynthesisContexts.empty() && | ||||
1959 | CodeSynthesisContexts.back().Kind == | ||||
1960 | CodeSynthesisContext::DefaultFunctionArgumentInstantiation; | ||||
1961 | CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext); | ||||
1962 | bool isInstance = CurMethod && | ||||
1963 | CurMethod->isInstance() && | ||||
1964 | DC == CurMethod->getParent() && !isDefaultArgument; | ||||
1965 | |||||
1966 | // Give a code modification hint to insert 'this->'. | ||||
1967 | // TODO: fixit for inserting 'Base<T>::' in the other cases. | ||||
1968 | // Actually quite difficult! | ||||
1969 | if (getLangOpts().MSVCCompat) | ||||
1970 | diagnostic = diag::ext_found_via_dependent_bases_lookup; | ||||
1971 | if (isInstance) { | ||||
1972 | Diag(R.getNameLoc(), diagnostic) << Name | ||||
1973 | << FixItHint::CreateInsertion(R.getNameLoc(), "this->"); | ||||
1974 | CheckCXXThisCapture(R.getNameLoc()); | ||||
1975 | } else { | ||||
1976 | Diag(R.getNameLoc(), diagnostic) << Name; | ||||
1977 | } | ||||
1978 | |||||
1979 | // Do we really want to note all of these? | ||||
1980 | for (NamedDecl *D : R) | ||||
1981 | Diag(D->getLocation(), diag::note_dependent_var_use); | ||||
1982 | |||||
1983 | // Return true if we are inside a default argument instantiation | ||||
1984 | // and the found name refers to an instance member function, otherwise | ||||
1985 | // the function calling DiagnoseEmptyLookup will try to create an | ||||
1986 | // implicit member call and this is wrong for default argument. | ||||
1987 | if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) { | ||||
1988 | Diag(R.getNameLoc(), diag::err_member_call_without_object); | ||||
1989 | return true; | ||||
1990 | } | ||||
1991 | |||||
1992 | // Tell the callee to try to recover. | ||||
1993 | return false; | ||||
1994 | } | ||||
1995 | |||||
1996 | R.clear(); | ||||
1997 | } | ||||
1998 | |||||
1999 | DC = DC->getLookupParent(); | ||||
2000 | } | ||||
2001 | |||||
2002 | // We didn't find anything, so try to correct for a typo. | ||||
2003 | TypoCorrection Corrected; | ||||
2004 | if (S && Out) { | ||||
2005 | SourceLocation TypoLoc = R.getNameLoc(); | ||||
2006 | assert(!ExplicitTemplateArgs &&((!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!" ) ? static_cast<void> (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2007, __PRETTY_FUNCTION__)) | ||||
2007 | "Diagnosing an empty lookup with explicit template args!")((!ExplicitTemplateArgs && "Diagnosing an empty lookup with explicit template args!" ) ? static_cast<void> (0) : __assert_fail ("!ExplicitTemplateArgs && \"Diagnosing an empty lookup with explicit template args!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2007, __PRETTY_FUNCTION__)); | ||||
2008 | *Out = CorrectTypoDelayed( | ||||
2009 | R.getLookupNameInfo(), R.getLookupKind(), S, &SS, CCC, | ||||
2010 | [=](const TypoCorrection &TC) { | ||||
2011 | emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args, | ||||
2012 | diagnostic, diagnostic_suggest); | ||||
2013 | }, | ||||
2014 | nullptr, CTK_ErrorRecovery); | ||||
2015 | if (*Out) | ||||
2016 | return true; | ||||
2017 | } else if (S && | ||||
2018 | (Corrected = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), | ||||
2019 | S, &SS, CCC, CTK_ErrorRecovery))) { | ||||
2020 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); | ||||
2021 | bool DroppedSpecifier = | ||||
2022 | Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr; | ||||
2023 | R.setLookupName(Corrected.getCorrection()); | ||||
2024 | |||||
2025 | bool AcceptableWithRecovery = false; | ||||
2026 | bool AcceptableWithoutRecovery = false; | ||||
2027 | NamedDecl *ND = Corrected.getFoundDecl(); | ||||
2028 | if (ND) { | ||||
2029 | if (Corrected.isOverloaded()) { | ||||
2030 | OverloadCandidateSet OCS(R.getNameLoc(), | ||||
2031 | OverloadCandidateSet::CSK_Normal); | ||||
2032 | OverloadCandidateSet::iterator Best; | ||||
2033 | for (NamedDecl *CD : Corrected) { | ||||
2034 | if (FunctionTemplateDecl *FTD = | ||||
2035 | dyn_cast<FunctionTemplateDecl>(CD)) | ||||
2036 | AddTemplateOverloadCandidate( | ||||
2037 | FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs, | ||||
2038 | Args, OCS); | ||||
2039 | else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) | ||||
2040 | if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0) | ||||
2041 | AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), | ||||
2042 | Args, OCS); | ||||
2043 | } | ||||
2044 | switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) { | ||||
2045 | case OR_Success: | ||||
2046 | ND = Best->FoundDecl; | ||||
2047 | Corrected.setCorrectionDecl(ND); | ||||
2048 | break; | ||||
2049 | default: | ||||
2050 | // FIXME: Arbitrarily pick the first declaration for the note. | ||||
2051 | Corrected.setCorrectionDecl(ND); | ||||
2052 | break; | ||||
2053 | } | ||||
2054 | } | ||||
2055 | R.addDecl(ND); | ||||
2056 | if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) { | ||||
2057 | CXXRecordDecl *Record = nullptr; | ||||
2058 | if (Corrected.getCorrectionSpecifier()) { | ||||
2059 | const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType(); | ||||
2060 | Record = Ty->getAsCXXRecordDecl(); | ||||
2061 | } | ||||
2062 | if (!Record) | ||||
2063 | Record = cast<CXXRecordDecl>( | ||||
2064 | ND->getDeclContext()->getRedeclContext()); | ||||
2065 | R.setNamingClass(Record); | ||||
2066 | } | ||||
2067 | |||||
2068 | auto *UnderlyingND = ND->getUnderlyingDecl(); | ||||
2069 | AcceptableWithRecovery = isa<ValueDecl>(UnderlyingND) || | ||||
2070 | isa<FunctionTemplateDecl>(UnderlyingND); | ||||
2071 | // FIXME: If we ended up with a typo for a type name or | ||||
2072 | // Objective-C class name, we're in trouble because the parser | ||||
2073 | // is in the wrong place to recover. Suggest the typo | ||||
2074 | // correction, but don't make it a fix-it since we're not going | ||||
2075 | // to recover well anyway. | ||||
2076 | AcceptableWithoutRecovery = isa<TypeDecl>(UnderlyingND) || | ||||
2077 | getAsTypeTemplateDecl(UnderlyingND) || | ||||
2078 | isa<ObjCInterfaceDecl>(UnderlyingND); | ||||
2079 | } else { | ||||
2080 | // FIXME: We found a keyword. Suggest it, but don't provide a fix-it | ||||
2081 | // because we aren't able to recover. | ||||
2082 | AcceptableWithoutRecovery = true; | ||||
2083 | } | ||||
2084 | |||||
2085 | if (AcceptableWithRecovery || AcceptableWithoutRecovery) { | ||||
2086 | unsigned NoteID = Corrected.getCorrectionDeclAs<ImplicitParamDecl>() | ||||
2087 | ? diag::note_implicit_param_decl | ||||
2088 | : diag::note_previous_decl; | ||||
2089 | if (SS.isEmpty()) | ||||
2090 | diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name, | ||||
2091 | PDiag(NoteID), AcceptableWithRecovery); | ||||
2092 | else | ||||
2093 | diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest) | ||||
2094 | << Name << computeDeclContext(SS, false) | ||||
2095 | << DroppedSpecifier << SS.getRange(), | ||||
2096 | PDiag(NoteID), AcceptableWithRecovery); | ||||
2097 | |||||
2098 | // Tell the callee whether to try to recover. | ||||
2099 | return !AcceptableWithRecovery; | ||||
2100 | } | ||||
2101 | } | ||||
2102 | R.clear(); | ||||
2103 | |||||
2104 | // Emit a special diagnostic for failed member lookups. | ||||
2105 | // FIXME: computing the declaration context might fail here (?) | ||||
2106 | if (!SS.isEmpty()) { | ||||
2107 | Diag(R.getNameLoc(), diag::err_no_member) | ||||
2108 | << Name << computeDeclContext(SS, false) | ||||
2109 | << SS.getRange(); | ||||
2110 | return true; | ||||
2111 | } | ||||
2112 | |||||
2113 | // Give up, we can't recover. | ||||
2114 | Diag(R.getNameLoc(), diagnostic) << Name; | ||||
2115 | return true; | ||||
2116 | } | ||||
2117 | |||||
2118 | /// In Microsoft mode, if we are inside a template class whose parent class has | ||||
2119 | /// dependent base classes, and we can't resolve an unqualified identifier, then | ||||
2120 | /// assume the identifier is a member of a dependent base class. We can only | ||||
2121 | /// recover successfully in static methods, instance methods, and other contexts | ||||
2122 | /// where 'this' is available. This doesn't precisely match MSVC's | ||||
2123 | /// instantiation model, but it's close enough. | ||||
2124 | static Expr * | ||||
2125 | recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context, | ||||
2126 | DeclarationNameInfo &NameInfo, | ||||
2127 | SourceLocation TemplateKWLoc, | ||||
2128 | const TemplateArgumentListInfo *TemplateArgs) { | ||||
2129 | // Only try to recover from lookup into dependent bases in static methods or | ||||
2130 | // contexts where 'this' is available. | ||||
2131 | QualType ThisType = S.getCurrentThisType(); | ||||
2132 | const CXXRecordDecl *RD = nullptr; | ||||
2133 | if (!ThisType.isNull()) | ||||
2134 | RD = ThisType->getPointeeType()->getAsCXXRecordDecl(); | ||||
2135 | else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext)) | ||||
2136 | RD = MD->getParent(); | ||||
2137 | if (!RD || !RD->hasAnyDependentBases()) | ||||
2138 | return nullptr; | ||||
2139 | |||||
2140 | // Diagnose this as unqualified lookup into a dependent base class. If 'this' | ||||
2141 | // is available, suggest inserting 'this->' as a fixit. | ||||
2142 | SourceLocation Loc = NameInfo.getLoc(); | ||||
2143 | auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base); | ||||
2144 | DB << NameInfo.getName() << RD; | ||||
2145 | |||||
2146 | if (!ThisType.isNull()) { | ||||
2147 | DB << FixItHint::CreateInsertion(Loc, "this->"); | ||||
2148 | return CXXDependentScopeMemberExpr::Create( | ||||
2149 | Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true, | ||||
2150 | /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc, | ||||
2151 | /*FirstQualifierFoundInScope=*/nullptr, NameInfo, TemplateArgs); | ||||
2152 | } | ||||
2153 | |||||
2154 | // Synthesize a fake NNS that points to the derived class. This will | ||||
2155 | // perform name lookup during template instantiation. | ||||
2156 | CXXScopeSpec SS; | ||||
2157 | auto *NNS = | ||||
2158 | NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl()); | ||||
2159 | SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc)); | ||||
2160 | return DependentScopeDeclRefExpr::Create( | ||||
2161 | Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo, | ||||
2162 | TemplateArgs); | ||||
2163 | } | ||||
2164 | |||||
2165 | ExprResult | ||||
2166 | Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS, | ||||
2167 | SourceLocation TemplateKWLoc, UnqualifiedId &Id, | ||||
2168 | bool HasTrailingLParen, bool IsAddressOfOperand, | ||||
2169 | CorrectionCandidateCallback *CCC, | ||||
2170 | bool IsInlineAsmIdentifier, Token *KeywordReplacement) { | ||||
2171 | assert(!(IsAddressOfOperand && HasTrailingLParen) &&((!(IsAddressOfOperand && HasTrailingLParen) && "cannot be direct & operand and have a trailing lparen") ? static_cast<void> (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2172, __PRETTY_FUNCTION__)) | ||||
2172 | "cannot be direct & operand and have a trailing lparen")((!(IsAddressOfOperand && HasTrailingLParen) && "cannot be direct & operand and have a trailing lparen") ? static_cast<void> (0) : __assert_fail ("!(IsAddressOfOperand && HasTrailingLParen) && \"cannot be direct & operand and have a trailing lparen\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2172, __PRETTY_FUNCTION__)); | ||||
2173 | if (SS.isInvalid()) | ||||
2174 | return ExprError(); | ||||
2175 | |||||
2176 | TemplateArgumentListInfo TemplateArgsBuffer; | ||||
2177 | |||||
2178 | // Decompose the UnqualifiedId into the following data. | ||||
2179 | DeclarationNameInfo NameInfo; | ||||
2180 | const TemplateArgumentListInfo *TemplateArgs; | ||||
2181 | DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs); | ||||
2182 | |||||
2183 | DeclarationName Name = NameInfo.getName(); | ||||
2184 | IdentifierInfo *II = Name.getAsIdentifierInfo(); | ||||
2185 | SourceLocation NameLoc = NameInfo.getLoc(); | ||||
2186 | |||||
2187 | if (II && II->isEditorPlaceholder()) { | ||||
2188 | // FIXME: When typed placeholders are supported we can create a typed | ||||
2189 | // placeholder expression node. | ||||
2190 | return ExprError(); | ||||
2191 | } | ||||
2192 | |||||
2193 | // C++ [temp.dep.expr]p3: | ||||
2194 | // An id-expression is type-dependent if it contains: | ||||
2195 | // -- an identifier that was declared with a dependent type, | ||||
2196 | // (note: handled after lookup) | ||||
2197 | // -- a template-id that is dependent, | ||||
2198 | // (note: handled in BuildTemplateIdExpr) | ||||
2199 | // -- a conversion-function-id that specifies a dependent type, | ||||
2200 | // -- a nested-name-specifier that contains a class-name that | ||||
2201 | // names a dependent type. | ||||
2202 | // Determine whether this is a member of an unknown specialization; | ||||
2203 | // we need to handle these differently. | ||||
2204 | bool DependentID = false; | ||||
2205 | if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName && | ||||
2206 | Name.getCXXNameType()->isDependentType()) { | ||||
2207 | DependentID = true; | ||||
2208 | } else if (SS.isSet()) { | ||||
2209 | if (DeclContext *DC = computeDeclContext(SS, false)) { | ||||
2210 | if (RequireCompleteDeclContext(SS, DC)) | ||||
2211 | return ExprError(); | ||||
2212 | } else { | ||||
2213 | DependentID = true; | ||||
2214 | } | ||||
2215 | } | ||||
2216 | |||||
2217 | if (DependentID) | ||||
2218 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | ||||
2219 | IsAddressOfOperand, TemplateArgs); | ||||
2220 | |||||
2221 | // Perform the required lookup. | ||||
2222 | LookupResult R(*this, NameInfo, | ||||
2223 | (Id.getKind() == UnqualifiedIdKind::IK_ImplicitSelfParam) | ||||
2224 | ? LookupObjCImplicitSelfParam | ||||
2225 | : LookupOrdinaryName); | ||||
2226 | if (TemplateKWLoc.isValid() || TemplateArgs) { | ||||
2227 | // Lookup the template name again to correctly establish the context in | ||||
2228 | // which it was found. This is really unfortunate as we already did the | ||||
2229 | // lookup to determine that it was a template name in the first place. If | ||||
2230 | // this becomes a performance hit, we can work harder to preserve those | ||||
2231 | // results until we get here but it's likely not worth it. | ||||
2232 | bool MemberOfUnknownSpecialization; | ||||
2233 | AssumedTemplateKind AssumedTemplate; | ||||
2234 | if (LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false, | ||||
2235 | MemberOfUnknownSpecialization, TemplateKWLoc, | ||||
2236 | &AssumedTemplate)) | ||||
2237 | return ExprError(); | ||||
2238 | |||||
2239 | if (MemberOfUnknownSpecialization || | ||||
2240 | (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)) | ||||
2241 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | ||||
2242 | IsAddressOfOperand, TemplateArgs); | ||||
2243 | } else { | ||||
2244 | bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl(); | ||||
2245 | LookupParsedName(R, S, &SS, !IvarLookupFollowUp); | ||||
2246 | |||||
2247 | // If the result might be in a dependent base class, this is a dependent | ||||
2248 | // id-expression. | ||||
2249 | if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) | ||||
2250 | return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo, | ||||
2251 | IsAddressOfOperand, TemplateArgs); | ||||
2252 | |||||
2253 | // If this reference is in an Objective-C method, then we need to do | ||||
2254 | // some special Objective-C lookup, too. | ||||
2255 | if (IvarLookupFollowUp) { | ||||
2256 | ExprResult E(LookupInObjCMethod(R, S, II, true)); | ||||
2257 | if (E.isInvalid()) | ||||
2258 | return ExprError(); | ||||
2259 | |||||
2260 | if (Expr *Ex = E.getAs<Expr>()) | ||||
2261 | return Ex; | ||||
2262 | } | ||||
2263 | } | ||||
2264 | |||||
2265 | if (R.isAmbiguous()) | ||||
2266 | return ExprError(); | ||||
2267 | |||||
2268 | // This could be an implicitly declared function reference (legal in C90, | ||||
2269 | // extension in C99, forbidden in C++). | ||||
2270 | if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) { | ||||
2271 | NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S); | ||||
2272 | if (D) R.addDecl(D); | ||||
2273 | } | ||||
2274 | |||||
2275 | // Determine whether this name might be a candidate for | ||||
2276 | // argument-dependent lookup. | ||||
2277 | bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen); | ||||
2278 | |||||
2279 | if (R.empty() && !ADL) { | ||||
2280 | if (SS.isEmpty() && getLangOpts().MSVCCompat) { | ||||
2281 | if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo, | ||||
2282 | TemplateKWLoc, TemplateArgs)) | ||||
2283 | return E; | ||||
2284 | } | ||||
2285 | |||||
2286 | // Don't diagnose an empty lookup for inline assembly. | ||||
2287 | if (IsInlineAsmIdentifier) | ||||
2288 | return ExprError(); | ||||
2289 | |||||
2290 | // If this name wasn't predeclared and if this is not a function | ||||
2291 | // call, diagnose the problem. | ||||
2292 | TypoExpr *TE = nullptr; | ||||
2293 | DefaultFilterCCC DefaultValidator(II, SS.isValid() ? SS.getScopeRep() | ||||
2294 | : nullptr); | ||||
2295 | DefaultValidator.IsAddressOfOperand = IsAddressOfOperand; | ||||
2296 | assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&(((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && "Typo correction callback misconfigured") ? static_cast<void > (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2297, __PRETTY_FUNCTION__)) | ||||
2297 | "Typo correction callback misconfigured")(((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && "Typo correction callback misconfigured") ? static_cast<void > (0) : __assert_fail ("(!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) && \"Typo correction callback misconfigured\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2297, __PRETTY_FUNCTION__)); | ||||
2298 | if (CCC) { | ||||
2299 | // Make sure the callback knows what the typo being diagnosed is. | ||||
2300 | CCC->setTypoName(II); | ||||
2301 | if (SS.isValid()) | ||||
2302 | CCC->setTypoNNS(SS.getScopeRep()); | ||||
2303 | } | ||||
2304 | // FIXME: DiagnoseEmptyLookup produces bad diagnostics if we're looking for | ||||
2305 | // a template name, but we happen to have always already looked up the name | ||||
2306 | // before we get here if it must be a template name. | ||||
2307 | if (DiagnoseEmptyLookup(S, SS, R, CCC ? *CCC : DefaultValidator, nullptr, | ||||
2308 | None, &TE)) { | ||||
2309 | if (TE && KeywordReplacement) { | ||||
2310 | auto &State = getTypoExprState(TE); | ||||
2311 | auto BestTC = State.Consumer->getNextCorrection(); | ||||
2312 | if (BestTC.isKeyword()) { | ||||
2313 | auto *II = BestTC.getCorrectionAsIdentifierInfo(); | ||||
2314 | if (State.DiagHandler) | ||||
2315 | State.DiagHandler(BestTC); | ||||
2316 | KeywordReplacement->startToken(); | ||||
2317 | KeywordReplacement->setKind(II->getTokenID()); | ||||
2318 | KeywordReplacement->setIdentifierInfo(II); | ||||
2319 | KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin()); | ||||
2320 | // Clean up the state associated with the TypoExpr, since it has | ||||
2321 | // now been diagnosed (without a call to CorrectDelayedTyposInExpr). | ||||
2322 | clearDelayedTypo(TE); | ||||
2323 | // Signal that a correction to a keyword was performed by returning a | ||||
2324 | // valid-but-null ExprResult. | ||||
2325 | return (Expr*)nullptr; | ||||
2326 | } | ||||
2327 | State.Consumer->resetCorrectionStream(); | ||||
2328 | } | ||||
2329 | return TE ? TE : ExprError(); | ||||
2330 | } | ||||
2331 | |||||
2332 | assert(!R.empty() &&((!R.empty() && "DiagnoseEmptyLookup returned false but added no results" ) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2333, __PRETTY_FUNCTION__)) | ||||
2333 | "DiagnoseEmptyLookup returned false but added no results")((!R.empty() && "DiagnoseEmptyLookup returned false but added no results" ) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"DiagnoseEmptyLookup returned false but added no results\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2333, __PRETTY_FUNCTION__)); | ||||
2334 | |||||
2335 | // If we found an Objective-C instance variable, let | ||||
2336 | // LookupInObjCMethod build the appropriate expression to | ||||
2337 | // reference the ivar. | ||||
2338 | if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) { | ||||
2339 | R.clear(); | ||||
2340 | ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier())); | ||||
2341 | // In a hopelessly buggy code, Objective-C instance variable | ||||
2342 | // lookup fails and no expression will be built to reference it. | ||||
2343 | if (!E.isInvalid() && !E.get()) | ||||
2344 | return ExprError(); | ||||
2345 | return E; | ||||
2346 | } | ||||
2347 | } | ||||
2348 | |||||
2349 | // This is guaranteed from this point on. | ||||
2350 | assert(!R.empty() || ADL)((!R.empty() || ADL) ? static_cast<void> (0) : __assert_fail ("!R.empty() || ADL", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2350, __PRETTY_FUNCTION__)); | ||||
2351 | |||||
2352 | // Check whether this might be a C++ implicit instance member access. | ||||
2353 | // C++ [class.mfct.non-static]p3: | ||||
2354 | // When an id-expression that is not part of a class member access | ||||
2355 | // syntax and not used to form a pointer to member is used in the | ||||
2356 | // body of a non-static member function of class X, if name lookup | ||||
2357 | // resolves the name in the id-expression to a non-static non-type | ||||
2358 | // member of some class C, the id-expression is transformed into a | ||||
2359 | // class member access expression using (*this) as the | ||||
2360 | // postfix-expression to the left of the . operator. | ||||
2361 | // | ||||
2362 | // But we don't actually need to do this for '&' operands if R | ||||
2363 | // resolved to a function or overloaded function set, because the | ||||
2364 | // expression is ill-formed if it actually works out to be a | ||||
2365 | // non-static member function: | ||||
2366 | // | ||||
2367 | // C++ [expr.ref]p4: | ||||
2368 | // Otherwise, if E1.E2 refers to a non-static member function. . . | ||||
2369 | // [t]he expression can be used only as the left-hand operand of a | ||||
2370 | // member function call. | ||||
2371 | // | ||||
2372 | // There are other safeguards against such uses, but it's important | ||||
2373 | // to get this right here so that we don't end up making a | ||||
2374 | // spuriously dependent expression if we're inside a dependent | ||||
2375 | // instance method. | ||||
2376 | if (!R.empty() && (*R.begin())->isCXXClassMember()) { | ||||
2377 | bool MightBeImplicitMember; | ||||
2378 | if (!IsAddressOfOperand) | ||||
2379 | MightBeImplicitMember = true; | ||||
2380 | else if (!SS.isEmpty()) | ||||
2381 | MightBeImplicitMember = false; | ||||
2382 | else if (R.isOverloadedResult()) | ||||
2383 | MightBeImplicitMember = false; | ||||
2384 | else if (R.isUnresolvableResult()) | ||||
2385 | MightBeImplicitMember = true; | ||||
2386 | else | ||||
2387 | MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) || | ||||
2388 | isa<IndirectFieldDecl>(R.getFoundDecl()) || | ||||
2389 | isa<MSPropertyDecl>(R.getFoundDecl()); | ||||
2390 | |||||
2391 | if (MightBeImplicitMember) | ||||
2392 | return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc, | ||||
2393 | R, TemplateArgs, S); | ||||
2394 | } | ||||
2395 | |||||
2396 | if (TemplateArgs || TemplateKWLoc.isValid()) { | ||||
2397 | |||||
2398 | // In C++1y, if this is a variable template id, then check it | ||||
2399 | // in BuildTemplateIdExpr(). | ||||
2400 | // The single lookup result must be a variable template declaration. | ||||
2401 | if (Id.getKind() == UnqualifiedIdKind::IK_TemplateId && Id.TemplateId && | ||||
2402 | Id.TemplateId->Kind == TNK_Var_template) { | ||||
2403 | assert(R.getAsSingle<VarTemplateDecl>() &&((R.getAsSingle<VarTemplateDecl>() && "There should only be one declaration found." ) ? static_cast<void> (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2404, __PRETTY_FUNCTION__)) | ||||
2404 | "There should only be one declaration found.")((R.getAsSingle<VarTemplateDecl>() && "There should only be one declaration found." ) ? static_cast<void> (0) : __assert_fail ("R.getAsSingle<VarTemplateDecl>() && \"There should only be one declaration found.\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2404, __PRETTY_FUNCTION__)); | ||||
2405 | } | ||||
2406 | |||||
2407 | return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs); | ||||
2408 | } | ||||
2409 | |||||
2410 | return BuildDeclarationNameExpr(SS, R, ADL); | ||||
2411 | } | ||||
2412 | |||||
2413 | /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified | ||||
2414 | /// declaration name, generally during template instantiation. | ||||
2415 | /// There's a large number of things which don't need to be done along | ||||
2416 | /// this path. | ||||
2417 | ExprResult Sema::BuildQualifiedDeclarationNameExpr( | ||||
2418 | CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, | ||||
2419 | bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) { | ||||
2420 | DeclContext *DC = computeDeclContext(SS, false); | ||||
2421 | if (!DC) | ||||
2422 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | ||||
2423 | NameInfo, /*TemplateArgs=*/nullptr); | ||||
2424 | |||||
2425 | if (RequireCompleteDeclContext(SS, DC)) | ||||
2426 | return ExprError(); | ||||
2427 | |||||
2428 | LookupResult R(*this, NameInfo, LookupOrdinaryName); | ||||
2429 | LookupQualifiedName(R, DC); | ||||
2430 | |||||
2431 | if (R.isAmbiguous()) | ||||
2432 | return ExprError(); | ||||
2433 | |||||
2434 | if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation) | ||||
2435 | return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(), | ||||
2436 | NameInfo, /*TemplateArgs=*/nullptr); | ||||
2437 | |||||
2438 | if (R.empty()) { | ||||
2439 | Diag(NameInfo.getLoc(), diag::err_no_member) | ||||
2440 | << NameInfo.getName() << DC << SS.getRange(); | ||||
2441 | return ExprError(); | ||||
2442 | } | ||||
2443 | |||||
2444 | if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) { | ||||
2445 | // Diagnose a missing typename if this resolved unambiguously to a type in | ||||
2446 | // a dependent context. If we can recover with a type, downgrade this to | ||||
2447 | // a warning in Microsoft compatibility mode. | ||||
2448 | unsigned DiagID = diag::err_typename_missing; | ||||
2449 | if (RecoveryTSI && getLangOpts().MSVCCompat) | ||||
2450 | DiagID = diag::ext_typename_missing; | ||||
2451 | SourceLocation Loc = SS.getBeginLoc(); | ||||
2452 | auto D = Diag(Loc, DiagID); | ||||
2453 | D << SS.getScopeRep() << NameInfo.getName().getAsString() | ||||
2454 | << SourceRange(Loc, NameInfo.getEndLoc()); | ||||
2455 | |||||
2456 | // Don't recover if the caller isn't expecting us to or if we're in a SFINAE | ||||
2457 | // context. | ||||
2458 | if (!RecoveryTSI) | ||||
2459 | return ExprError(); | ||||
2460 | |||||
2461 | // Only issue the fixit if we're prepared to recover. | ||||
2462 | D << FixItHint::CreateInsertion(Loc, "typename "); | ||||
2463 | |||||
2464 | // Recover by pretending this was an elaborated type. | ||||
2465 | QualType Ty = Context.getTypeDeclType(TD); | ||||
2466 | TypeLocBuilder TLB; | ||||
2467 | TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc()); | ||||
2468 | |||||
2469 | QualType ET = getElaboratedType(ETK_None, SS, Ty); | ||||
2470 | ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET); | ||||
2471 | QTL.setElaboratedKeywordLoc(SourceLocation()); | ||||
2472 | QTL.setQualifierLoc(SS.getWithLocInContext(Context)); | ||||
2473 | |||||
2474 | *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET); | ||||
2475 | |||||
2476 | return ExprEmpty(); | ||||
2477 | } | ||||
2478 | |||||
2479 | // Defend against this resolving to an implicit member access. We usually | ||||
2480 | // won't get here if this might be a legitimate a class member (we end up in | ||||
2481 | // BuildMemberReferenceExpr instead), but this can be valid if we're forming | ||||
2482 | // a pointer-to-member or in an unevaluated context in C++11. | ||||
2483 | if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand) | ||||
2484 | return BuildPossibleImplicitMemberExpr(SS, | ||||
2485 | /*TemplateKWLoc=*/SourceLocation(), | ||||
2486 | R, /*TemplateArgs=*/nullptr, S); | ||||
2487 | |||||
2488 | return BuildDeclarationNameExpr(SS, R, /* ADL */ false); | ||||
2489 | } | ||||
2490 | |||||
2491 | /// The parser has read a name in, and Sema has detected that we're currently | ||||
2492 | /// inside an ObjC method. Perform some additional checks and determine if we | ||||
2493 | /// should form a reference to an ivar. | ||||
2494 | /// | ||||
2495 | /// Ideally, most of this would be done by lookup, but there's | ||||
2496 | /// actually quite a lot of extra work involved. | ||||
2497 | DeclResult Sema::LookupIvarInObjCMethod(LookupResult &Lookup, Scope *S, | ||||
2498 | IdentifierInfo *II) { | ||||
2499 | SourceLocation Loc = Lookup.getNameLoc(); | ||||
2500 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | ||||
2501 | |||||
2502 | // Check for error condition which is already reported. | ||||
2503 | if (!CurMethod) | ||||
2504 | return DeclResult(true); | ||||
2505 | |||||
2506 | // There are two cases to handle here. 1) scoped lookup could have failed, | ||||
2507 | // in which case we should look for an ivar. 2) scoped lookup could have | ||||
2508 | // found a decl, but that decl is outside the current instance method (i.e. | ||||
2509 | // a global variable). In these two cases, we do a lookup for an ivar with | ||||
2510 | // this name, if the lookup sucedes, we replace it our current decl. | ||||
2511 | |||||
2512 | // If we're in a class method, we don't normally want to look for | ||||
2513 | // ivars. But if we don't find anything else, and there's an | ||||
2514 | // ivar, that's an error. | ||||
2515 | bool IsClassMethod = CurMethod->isClassMethod(); | ||||
2516 | |||||
2517 | bool LookForIvars; | ||||
2518 | if (Lookup.empty()) | ||||
2519 | LookForIvars = true; | ||||
2520 | else if (IsClassMethod) | ||||
2521 | LookForIvars = false; | ||||
2522 | else | ||||
2523 | LookForIvars = (Lookup.isSingleResult() && | ||||
2524 | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()); | ||||
2525 | ObjCInterfaceDecl *IFace = nullptr; | ||||
2526 | if (LookForIvars) { | ||||
2527 | IFace = CurMethod->getClassInterface(); | ||||
2528 | ObjCInterfaceDecl *ClassDeclared; | ||||
2529 | ObjCIvarDecl *IV = nullptr; | ||||
2530 | if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) { | ||||
2531 | // Diagnose using an ivar in a class method. | ||||
2532 | if (IsClassMethod) { | ||||
2533 | Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); | ||||
2534 | return DeclResult(true); | ||||
2535 | } | ||||
2536 | |||||
2537 | // Diagnose the use of an ivar outside of the declaring class. | ||||
2538 | if (IV->getAccessControl() == ObjCIvarDecl::Private && | ||||
2539 | !declaresSameEntity(ClassDeclared, IFace) && | ||||
2540 | !getLangOpts().DebuggerSupport) | ||||
2541 | Diag(Loc, diag::err_private_ivar_access) << IV->getDeclName(); | ||||
2542 | |||||
2543 | // Success. | ||||
2544 | return IV; | ||||
2545 | } | ||||
2546 | } else if (CurMethod->isInstanceMethod()) { | ||||
2547 | // We should warn if a local variable hides an ivar. | ||||
2548 | if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) { | ||||
2549 | ObjCInterfaceDecl *ClassDeclared; | ||||
2550 | if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) { | ||||
2551 | if (IV->getAccessControl() != ObjCIvarDecl::Private || | ||||
2552 | declaresSameEntity(IFace, ClassDeclared)) | ||||
2553 | Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName(); | ||||
2554 | } | ||||
2555 | } | ||||
2556 | } else if (Lookup.isSingleResult() && | ||||
2557 | Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) { | ||||
2558 | // If accessing a stand-alone ivar in a class method, this is an error. | ||||
2559 | if (const ObjCIvarDecl *IV = | ||||
2560 | dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl())) { | ||||
2561 | Diag(Loc, diag::err_ivar_use_in_class_method) << IV->getDeclName(); | ||||
2562 | return DeclResult(true); | ||||
2563 | } | ||||
2564 | } | ||||
2565 | |||||
2566 | // Didn't encounter an error, didn't find an ivar. | ||||
2567 | return DeclResult(false); | ||||
2568 | } | ||||
2569 | |||||
2570 | ExprResult Sema::BuildIvarRefExpr(Scope *S, SourceLocation Loc, | ||||
2571 | ObjCIvarDecl *IV) { | ||||
2572 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); | ||||
2573 | assert(CurMethod && CurMethod->isInstanceMethod() &&((CurMethod && CurMethod->isInstanceMethod() && "should not reference ivar from this context") ? static_cast <void> (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2574, __PRETTY_FUNCTION__)) | ||||
2574 | "should not reference ivar from this context")((CurMethod && CurMethod->isInstanceMethod() && "should not reference ivar from this context") ? static_cast <void> (0) : __assert_fail ("CurMethod && CurMethod->isInstanceMethod() && \"should not reference ivar from this context\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2574, __PRETTY_FUNCTION__)); | ||||
2575 | |||||
2576 | ObjCInterfaceDecl *IFace = CurMethod->getClassInterface(); | ||||
2577 | assert(IFace && "should not reference ivar from this context")((IFace && "should not reference ivar from this context" ) ? static_cast<void> (0) : __assert_fail ("IFace && \"should not reference ivar from this context\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2577, __PRETTY_FUNCTION__)); | ||||
2578 | |||||
2579 | // If we're referencing an invalid decl, just return this as a silent | ||||
2580 | // error node. The error diagnostic was already emitted on the decl. | ||||
2581 | if (IV->isInvalidDecl()) | ||||
2582 | return ExprError(); | ||||
2583 | |||||
2584 | // Check if referencing a field with __attribute__((deprecated)). | ||||
2585 | if (DiagnoseUseOfDecl(IV, Loc)) | ||||
2586 | return ExprError(); | ||||
2587 | |||||
2588 | // FIXME: This should use a new expr for a direct reference, don't | ||||
2589 | // turn this into Self->ivar, just return a BareIVarExpr or something. | ||||
2590 | IdentifierInfo &II = Context.Idents.get("self"); | ||||
2591 | UnqualifiedId SelfName; | ||||
2592 | SelfName.setIdentifier(&II, SourceLocation()); | ||||
2593 | SelfName.setKind(UnqualifiedIdKind::IK_ImplicitSelfParam); | ||||
2594 | CXXScopeSpec SelfScopeSpec; | ||||
2595 | SourceLocation TemplateKWLoc; | ||||
2596 | ExprResult SelfExpr = | ||||
2597 | ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc, SelfName, | ||||
2598 | /*HasTrailingLParen=*/false, | ||||
2599 | /*IsAddressOfOperand=*/false); | ||||
2600 | if (SelfExpr.isInvalid()) | ||||
2601 | return ExprError(); | ||||
2602 | |||||
2603 | SelfExpr = DefaultLvalueConversion(SelfExpr.get()); | ||||
2604 | if (SelfExpr.isInvalid()) | ||||
2605 | return ExprError(); | ||||
2606 | |||||
2607 | MarkAnyDeclReferenced(Loc, IV, true); | ||||
2608 | |||||
2609 | ObjCMethodFamily MF = CurMethod->getMethodFamily(); | ||||
2610 | if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize && | ||||
2611 | !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV)) | ||||
2612 | Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName(); | ||||
2613 | |||||
2614 | ObjCIvarRefExpr *Result = new (Context) | ||||
2615 | ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc, | ||||
2616 | IV->getLocation(), SelfExpr.get(), true, true); | ||||
2617 | |||||
2618 | if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) { | ||||
2619 | if (!isUnevaluatedContext() && | ||||
2620 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc)) | ||||
2621 | getCurFunction()->recordUseOfWeak(Result); | ||||
2622 | } | ||||
2623 | if (getLangOpts().ObjCAutoRefCount) | ||||
2624 | if (const BlockDecl *BD = CurContext->getInnermostBlockDecl()) | ||||
2625 | ImplicitlyRetainedSelfLocs.push_back({Loc, BD}); | ||||
2626 | |||||
2627 | return Result; | ||||
2628 | } | ||||
2629 | |||||
2630 | /// The parser has read a name in, and Sema has detected that we're currently | ||||
2631 | /// inside an ObjC method. Perform some additional checks and determine if we | ||||
2632 | /// should form a reference to an ivar. If so, build an expression referencing | ||||
2633 | /// that ivar. | ||||
2634 | ExprResult | ||||
2635 | Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S, | ||||
2636 | IdentifierInfo *II, bool AllowBuiltinCreation) { | ||||
2637 | // FIXME: Integrate this lookup step into LookupParsedName. | ||||
2638 | DeclResult Ivar = LookupIvarInObjCMethod(Lookup, S, II); | ||||
2639 | if (Ivar.isInvalid()) | ||||
2640 | return ExprError(); | ||||
2641 | if (Ivar.isUsable()) | ||||
2642 | return BuildIvarRefExpr(S, Lookup.getNameLoc(), | ||||
2643 | cast<ObjCIvarDecl>(Ivar.get())); | ||||
2644 | |||||
2645 | if (Lookup.empty() && II && AllowBuiltinCreation) | ||||
2646 | LookupBuiltin(Lookup); | ||||
2647 | |||||
2648 | // Sentinel value saying that we didn't do anything special. | ||||
2649 | return ExprResult(false); | ||||
2650 | } | ||||
2651 | |||||
2652 | /// Cast a base object to a member's actual type. | ||||
2653 | /// | ||||
2654 | /// Logically this happens in three phases: | ||||
2655 | /// | ||||
2656 | /// * First we cast from the base type to the naming class. | ||||
2657 | /// The naming class is the class into which we were looking | ||||
2658 | /// when we found the member; it's the qualifier type if a | ||||
2659 | /// qualifier was provided, and otherwise it's the base type. | ||||
2660 | /// | ||||
2661 | /// * Next we cast from the naming class to the declaring class. | ||||
2662 | /// If the member we found was brought into a class's scope by | ||||
2663 | /// a using declaration, this is that class; otherwise it's | ||||
2664 | /// the class declaring the member. | ||||
2665 | /// | ||||
2666 | /// * Finally we cast from the declaring class to the "true" | ||||
2667 | /// declaring class of the member. This conversion does not | ||||
2668 | /// obey access control. | ||||
2669 | ExprResult | ||||
2670 | Sema::PerformObjectMemberConversion(Expr *From, | ||||
2671 | NestedNameSpecifier *Qualifier, | ||||
2672 | NamedDecl *FoundDecl, | ||||
2673 | NamedDecl *Member) { | ||||
2674 | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext()); | ||||
2675 | if (!RD) | ||||
2676 | return From; | ||||
2677 | |||||
2678 | QualType DestRecordType; | ||||
2679 | QualType DestType; | ||||
2680 | QualType FromRecordType; | ||||
2681 | QualType FromType = From->getType(); | ||||
2682 | bool PointerConversions = false; | ||||
2683 | if (isa<FieldDecl>(Member)) { | ||||
2684 | DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD)); | ||||
2685 | auto FromPtrType = FromType->getAs<PointerType>(); | ||||
2686 | DestRecordType = Context.getAddrSpaceQualType( | ||||
2687 | DestRecordType, FromPtrType | ||||
2688 | ? FromType->getPointeeType().getAddressSpace() | ||||
2689 | : FromType.getAddressSpace()); | ||||
2690 | |||||
2691 | if (FromPtrType) { | ||||
2692 | DestType = Context.getPointerType(DestRecordType); | ||||
2693 | FromRecordType = FromPtrType->getPointeeType(); | ||||
2694 | PointerConversions = true; | ||||
2695 | } else { | ||||
2696 | DestType = DestRecordType; | ||||
2697 | FromRecordType = FromType; | ||||
2698 | } | ||||
2699 | } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) { | ||||
2700 | if (Method->isStatic()) | ||||
2701 | return From; | ||||
2702 | |||||
2703 | DestType = Method->getThisType(); | ||||
2704 | DestRecordType = DestType->getPointeeType(); | ||||
2705 | |||||
2706 | if (FromType->getAs<PointerType>()) { | ||||
2707 | FromRecordType = FromType->getPointeeType(); | ||||
2708 | PointerConversions = true; | ||||
2709 | } else { | ||||
2710 | FromRecordType = FromType; | ||||
2711 | DestType = DestRecordType; | ||||
2712 | } | ||||
2713 | } else { | ||||
2714 | // No conversion necessary. | ||||
2715 | return From; | ||||
2716 | } | ||||
2717 | |||||
2718 | if (DestType->isDependentType() || FromType->isDependentType()) | ||||
2719 | return From; | ||||
2720 | |||||
2721 | // If the unqualified types are the same, no conversion is necessary. | ||||
2722 | if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) | ||||
2723 | return From; | ||||
2724 | |||||
2725 | SourceRange FromRange = From->getSourceRange(); | ||||
2726 | SourceLocation FromLoc = FromRange.getBegin(); | ||||
2727 | |||||
2728 | ExprValueKind VK = From->getValueKind(); | ||||
2729 | |||||
2730 | // C++ [class.member.lookup]p8: | ||||
2731 | // [...] Ambiguities can often be resolved by qualifying a name with its | ||||
2732 | // class name. | ||||
2733 | // | ||||
2734 | // If the member was a qualified name and the qualified referred to a | ||||
2735 | // specific base subobject type, we'll cast to that intermediate type | ||||
2736 | // first and then to the object in which the member is declared. That allows | ||||
2737 | // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as: | ||||
2738 | // | ||||
2739 | // class Base { public: int x; }; | ||||
2740 | // class Derived1 : public Base { }; | ||||
2741 | // class Derived2 : public Base { }; | ||||
2742 | // class VeryDerived : public Derived1, public Derived2 { void f(); }; | ||||
2743 | // | ||||
2744 | // void VeryDerived::f() { | ||||
2745 | // x = 17; // error: ambiguous base subobjects | ||||
2746 | // Derived1::x = 17; // okay, pick the Base subobject of Derived1 | ||||
2747 | // } | ||||
2748 | if (Qualifier && Qualifier->getAsType()) { | ||||
2749 | QualType QType = QualType(Qualifier->getAsType(), 0); | ||||
2750 | assert(QType->isRecordType() && "lookup done with non-record type")((QType->isRecordType() && "lookup done with non-record type" ) ? static_cast<void> (0) : __assert_fail ("QType->isRecordType() && \"lookup done with non-record type\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2750, __PRETTY_FUNCTION__)); | ||||
2751 | |||||
2752 | QualType QRecordType = QualType(QType->getAs<RecordType>(), 0); | ||||
2753 | |||||
2754 | // In C++98, the qualifier type doesn't actually have to be a base | ||||
2755 | // type of the object type, in which case we just ignore it. | ||||
2756 | // Otherwise build the appropriate casts. | ||||
2757 | if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) { | ||||
2758 | CXXCastPath BasePath; | ||||
2759 | if (CheckDerivedToBaseConversion(FromRecordType, QRecordType, | ||||
2760 | FromLoc, FromRange, &BasePath)) | ||||
2761 | return ExprError(); | ||||
2762 | |||||
2763 | if (PointerConversions) | ||||
2764 | QType = Context.getPointerType(QType); | ||||
2765 | From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase, | ||||
2766 | VK, &BasePath).get(); | ||||
2767 | |||||
2768 | FromType = QType; | ||||
2769 | FromRecordType = QRecordType; | ||||
2770 | |||||
2771 | // If the qualifier type was the same as the destination type, | ||||
2772 | // we're done. | ||||
2773 | if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType)) | ||||
2774 | return From; | ||||
2775 | } | ||||
2776 | } | ||||
2777 | |||||
2778 | bool IgnoreAccess = false; | ||||
2779 | |||||
2780 | // If we actually found the member through a using declaration, cast | ||||
2781 | // down to the using declaration's type. | ||||
2782 | // | ||||
2783 | // Pointer equality is fine here because only one declaration of a | ||||
2784 | // class ever has member declarations. | ||||
2785 | if (FoundDecl->getDeclContext() != Member->getDeclContext()) { | ||||
2786 | assert(isa<UsingShadowDecl>(FoundDecl))((isa<UsingShadowDecl>(FoundDecl)) ? static_cast<void > (0) : __assert_fail ("isa<UsingShadowDecl>(FoundDecl)" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2786, __PRETTY_FUNCTION__)); | ||||
2787 | QualType URecordType = Context.getTypeDeclType( | ||||
2788 | cast<CXXRecordDecl>(FoundDecl->getDeclContext())); | ||||
2789 | |||||
2790 | // We only need to do this if the naming-class to declaring-class | ||||
2791 | // conversion is non-trivial. | ||||
2792 | if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) { | ||||
2793 | assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType))((IsDerivedFrom(FromLoc, FromRecordType, URecordType)) ? static_cast <void> (0) : __assert_fail ("IsDerivedFrom(FromLoc, FromRecordType, URecordType)" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2793, __PRETTY_FUNCTION__)); | ||||
2794 | CXXCastPath BasePath; | ||||
2795 | if (CheckDerivedToBaseConversion(FromRecordType, URecordType, | ||||
2796 | FromLoc, FromRange, &BasePath)) | ||||
2797 | return ExprError(); | ||||
2798 | |||||
2799 | QualType UType = URecordType; | ||||
2800 | if (PointerConversions) | ||||
2801 | UType = Context.getPointerType(UType); | ||||
2802 | From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase, | ||||
2803 | VK, &BasePath).get(); | ||||
2804 | FromType = UType; | ||||
2805 | FromRecordType = URecordType; | ||||
2806 | } | ||||
2807 | |||||
2808 | // We don't do access control for the conversion from the | ||||
2809 | // declaring class to the true declaring class. | ||||
2810 | IgnoreAccess = true; | ||||
2811 | } | ||||
2812 | |||||
2813 | CXXCastPath BasePath; | ||||
2814 | if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType, | ||||
2815 | FromLoc, FromRange, &BasePath, | ||||
2816 | IgnoreAccess)) | ||||
2817 | return ExprError(); | ||||
2818 | |||||
2819 | return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase, | ||||
2820 | VK, &BasePath); | ||||
2821 | } | ||||
2822 | |||||
2823 | bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS, | ||||
2824 | const LookupResult &R, | ||||
2825 | bool HasTrailingLParen) { | ||||
2826 | // Only when used directly as the postfix-expression of a call. | ||||
2827 | if (!HasTrailingLParen) | ||||
2828 | return false; | ||||
2829 | |||||
2830 | // Never if a scope specifier was provided. | ||||
2831 | if (SS.isSet()) | ||||
2832 | return false; | ||||
2833 | |||||
2834 | // Only in C++ or ObjC++. | ||||
2835 | if (!getLangOpts().CPlusPlus) | ||||
2836 | return false; | ||||
2837 | |||||
2838 | // Turn off ADL when we find certain kinds of declarations during | ||||
2839 | // normal lookup: | ||||
2840 | for (NamedDecl *D : R) { | ||||
2841 | // C++0x [basic.lookup.argdep]p3: | ||||
2842 | // -- a declaration of a class member | ||||
2843 | // Since using decls preserve this property, we check this on the | ||||
2844 | // original decl. | ||||
2845 | if (D->isCXXClassMember()) | ||||
2846 | return false; | ||||
2847 | |||||
2848 | // C++0x [basic.lookup.argdep]p3: | ||||
2849 | // -- a block-scope function declaration that is not a | ||||
2850 | // using-declaration | ||||
2851 | // NOTE: we also trigger this for function templates (in fact, we | ||||
2852 | // don't check the decl type at all, since all other decl types | ||||
2853 | // turn off ADL anyway). | ||||
2854 | if (isa<UsingShadowDecl>(D)) | ||||
2855 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); | ||||
2856 | else if (D->getLexicalDeclContext()->isFunctionOrMethod()) | ||||
2857 | return false; | ||||
2858 | |||||
2859 | // C++0x [basic.lookup.argdep]p3: | ||||
2860 | // -- a declaration that is neither a function or a function | ||||
2861 | // template | ||||
2862 | // And also for builtin functions. | ||||
2863 | if (isa<FunctionDecl>(D)) { | ||||
2864 | FunctionDecl *FDecl = cast<FunctionDecl>(D); | ||||
2865 | |||||
2866 | // But also builtin functions. | ||||
2867 | if (FDecl->getBuiltinID() && FDecl->isImplicit()) | ||||
2868 | return false; | ||||
2869 | } else if (!isa<FunctionTemplateDecl>(D)) | ||||
2870 | return false; | ||||
2871 | } | ||||
2872 | |||||
2873 | return true; | ||||
2874 | } | ||||
2875 | |||||
2876 | |||||
2877 | /// Diagnoses obvious problems with the use of the given declaration | ||||
2878 | /// as an expression. This is only actually called for lookups that | ||||
2879 | /// were not overloaded, and it doesn't promise that the declaration | ||||
2880 | /// will in fact be used. | ||||
2881 | static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) { | ||||
2882 | if (D->isInvalidDecl()) | ||||
2883 | return true; | ||||
2884 | |||||
2885 | if (isa<TypedefNameDecl>(D)) { | ||||
2886 | S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName(); | ||||
2887 | return true; | ||||
2888 | } | ||||
2889 | |||||
2890 | if (isa<ObjCInterfaceDecl>(D)) { | ||||
2891 | S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName(); | ||||
2892 | return true; | ||||
2893 | } | ||||
2894 | |||||
2895 | if (isa<NamespaceDecl>(D)) { | ||||
2896 | S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName(); | ||||
2897 | return true; | ||||
2898 | } | ||||
2899 | |||||
2900 | return false; | ||||
2901 | } | ||||
2902 | |||||
2903 | // Certain multiversion types should be treated as overloaded even when there is | ||||
2904 | // only one result. | ||||
2905 | static bool ShouldLookupResultBeMultiVersionOverload(const LookupResult &R) { | ||||
2906 | assert(R.isSingleResult() && "Expected only a single result")((R.isSingleResult() && "Expected only a single result" ) ? static_cast<void> (0) : __assert_fail ("R.isSingleResult() && \"Expected only a single result\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2906, __PRETTY_FUNCTION__)); | ||||
2907 | const auto *FD = dyn_cast<FunctionDecl>(R.getFoundDecl()); | ||||
2908 | return FD && | ||||
2909 | (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()); | ||||
2910 | } | ||||
2911 | |||||
2912 | ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS, | ||||
2913 | LookupResult &R, bool NeedsADL, | ||||
2914 | bool AcceptInvalidDecl) { | ||||
2915 | // If this is a single, fully-resolved result and we don't need ADL, | ||||
2916 | // just build an ordinary singleton decl ref. | ||||
2917 | if (!NeedsADL && R.isSingleResult() && | ||||
2918 | !R.getAsSingle<FunctionTemplateDecl>() && | ||||
2919 | !ShouldLookupResultBeMultiVersionOverload(R)) | ||||
2920 | return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(), | ||||
2921 | R.getRepresentativeDecl(), nullptr, | ||||
2922 | AcceptInvalidDecl); | ||||
2923 | |||||
2924 | // We only need to check the declaration if there's exactly one | ||||
2925 | // result, because in the overloaded case the results can only be | ||||
2926 | // functions and function templates. | ||||
2927 | if (R.isSingleResult() && !ShouldLookupResultBeMultiVersionOverload(R) && | ||||
2928 | CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl())) | ||||
2929 | return ExprError(); | ||||
2930 | |||||
2931 | // Otherwise, just build an unresolved lookup expression. Suppress | ||||
2932 | // any lookup-related diagnostics; we'll hash these out later, when | ||||
2933 | // we've picked a target. | ||||
2934 | R.suppressDiagnostics(); | ||||
2935 | |||||
2936 | UnresolvedLookupExpr *ULE | ||||
2937 | = UnresolvedLookupExpr::Create(Context, R.getNamingClass(), | ||||
2938 | SS.getWithLocInContext(Context), | ||||
2939 | R.getLookupNameInfo(), | ||||
2940 | NeedsADL, R.isOverloadedResult(), | ||||
2941 | R.begin(), R.end()); | ||||
2942 | |||||
2943 | return ULE; | ||||
2944 | } | ||||
2945 | |||||
2946 | static void | ||||
2947 | diagnoseUncapturableValueReference(Sema &S, SourceLocation loc, | ||||
2948 | ValueDecl *var, DeclContext *DC); | ||||
2949 | |||||
2950 | /// Complete semantic analysis for a reference to the given declaration. | ||||
2951 | ExprResult Sema::BuildDeclarationNameExpr( | ||||
2952 | const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D, | ||||
2953 | NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs, | ||||
2954 | bool AcceptInvalidDecl) { | ||||
2955 | assert(D && "Cannot refer to a NULL declaration")((D && "Cannot refer to a NULL declaration") ? static_cast <void> (0) : __assert_fail ("D && \"Cannot refer to a NULL declaration\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2955, __PRETTY_FUNCTION__)); | ||||
2956 | assert(!isa<FunctionTemplateDecl>(D) &&((!isa<FunctionTemplateDecl>(D) && "Cannot refer unambiguously to a function template" ) ? static_cast<void> (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2957, __PRETTY_FUNCTION__)) | ||||
2957 | "Cannot refer unambiguously to a function template")((!isa<FunctionTemplateDecl>(D) && "Cannot refer unambiguously to a function template" ) ? static_cast<void> (0) : __assert_fail ("!isa<FunctionTemplateDecl>(D) && \"Cannot refer unambiguously to a function template\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 2957, __PRETTY_FUNCTION__)); | ||||
2958 | |||||
2959 | SourceLocation Loc = NameInfo.getLoc(); | ||||
2960 | if (CheckDeclInExpr(*this, Loc, D)) | ||||
2961 | return ExprError(); | ||||
2962 | |||||
2963 | if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) { | ||||
2964 | // Specifically diagnose references to class templates that are missing | ||||
2965 | // a template argument list. | ||||
2966 | diagnoseMissingTemplateArguments(TemplateName(Template), Loc); | ||||
2967 | return ExprError(); | ||||
2968 | } | ||||
2969 | |||||
2970 | // Make sure that we're referring to a value. | ||||
2971 | ValueDecl *VD = dyn_cast<ValueDecl>(D); | ||||
2972 | if (!VD) { | ||||
2973 | Diag(Loc, diag::err_ref_non_value) | ||||
2974 | << D << SS.getRange(); | ||||
2975 | Diag(D->getLocation(), diag::note_declared_at); | ||||
2976 | return ExprError(); | ||||
2977 | } | ||||
2978 | |||||
2979 | // Check whether this declaration can be used. Note that we suppress | ||||
2980 | // this check when we're going to perform argument-dependent lookup | ||||
2981 | // on this function name, because this might not be the function | ||||
2982 | // that overload resolution actually selects. | ||||
2983 | if (DiagnoseUseOfDecl(VD, Loc)) | ||||
2984 | return ExprError(); | ||||
2985 | |||||
2986 | // Only create DeclRefExpr's for valid Decl's. | ||||
2987 | if (VD->isInvalidDecl() && !AcceptInvalidDecl) | ||||
2988 | return ExprError(); | ||||
2989 | |||||
2990 | // Handle members of anonymous structs and unions. If we got here, | ||||
2991 | // and the reference is to a class member indirect field, then this | ||||
2992 | // must be the subject of a pointer-to-member expression. | ||||
2993 | if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD)) | ||||
2994 | if (!indirectField->isCXXClassMember()) | ||||
2995 | return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(), | ||||
2996 | indirectField); | ||||
2997 | |||||
2998 | { | ||||
2999 | QualType type = VD->getType(); | ||||
3000 | if (type.isNull()) | ||||
3001 | return ExprError(); | ||||
3002 | if (auto *FPT = type->getAs<FunctionProtoType>()) { | ||||
3003 | // C++ [except.spec]p17: | ||||
3004 | // An exception-specification is considered to be needed when: | ||||
3005 | // - in an expression, the function is the unique lookup result or | ||||
3006 | // the selected member of a set of overloaded functions. | ||||
3007 | ResolveExceptionSpec(Loc, FPT); | ||||
3008 | type = VD->getType(); | ||||
3009 | } | ||||
3010 | ExprValueKind valueKind = VK_RValue; | ||||
3011 | |||||
3012 | switch (D->getKind()) { | ||||
3013 | // Ignore all the non-ValueDecl kinds. | ||||
3014 | #define ABSTRACT_DECL(kind) | ||||
3015 | #define VALUE(type, base) | ||||
3016 | #define DECL(type, base) \ | ||||
3017 | case Decl::type: | ||||
3018 | #include "clang/AST/DeclNodes.inc" | ||||
3019 | llvm_unreachable("invalid value decl kind")::llvm::llvm_unreachable_internal("invalid value decl kind", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3019); | ||||
3020 | |||||
3021 | // These shouldn't make it here. | ||||
3022 | case Decl::ObjCAtDefsField: | ||||
3023 | llvm_unreachable("forming non-member reference to ivar?")::llvm::llvm_unreachable_internal("forming non-member reference to ivar?" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3023); | ||||
3024 | |||||
3025 | // Enum constants are always r-values and never references. | ||||
3026 | // Unresolved using declarations are dependent. | ||||
3027 | case Decl::EnumConstant: | ||||
3028 | case Decl::UnresolvedUsingValue: | ||||
3029 | case Decl::OMPDeclareReduction: | ||||
3030 | case Decl::OMPDeclareMapper: | ||||
3031 | valueKind = VK_RValue; | ||||
3032 | break; | ||||
3033 | |||||
3034 | // Fields and indirect fields that got here must be for | ||||
3035 | // pointer-to-member expressions; we just call them l-values for | ||||
3036 | // internal consistency, because this subexpression doesn't really | ||||
3037 | // exist in the high-level semantics. | ||||
3038 | case Decl::Field: | ||||
3039 | case Decl::IndirectField: | ||||
3040 | case Decl::ObjCIvar: | ||||
3041 | assert(getLangOpts().CPlusPlus &&((getLangOpts().CPlusPlus && "building reference to field in C?" ) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"building reference to field in C?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3042, __PRETTY_FUNCTION__)) | ||||
3042 | "building reference to field in C?")((getLangOpts().CPlusPlus && "building reference to field in C?" ) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"building reference to field in C?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3042, __PRETTY_FUNCTION__)); | ||||
3043 | |||||
3044 | // These can't have reference type in well-formed programs, but | ||||
3045 | // for internal consistency we do this anyway. | ||||
3046 | type = type.getNonReferenceType(); | ||||
3047 | valueKind = VK_LValue; | ||||
3048 | break; | ||||
3049 | |||||
3050 | // Non-type template parameters are either l-values or r-values | ||||
3051 | // depending on the type. | ||||
3052 | case Decl::NonTypeTemplateParm: { | ||||
3053 | if (const ReferenceType *reftype = type->getAs<ReferenceType>()) { | ||||
3054 | type = reftype->getPointeeType(); | ||||
3055 | valueKind = VK_LValue; // even if the parameter is an r-value reference | ||||
3056 | break; | ||||
3057 | } | ||||
3058 | |||||
3059 | // For non-references, we need to strip qualifiers just in case | ||||
3060 | // the template parameter was declared as 'const int' or whatever. | ||||
3061 | valueKind = VK_RValue; | ||||
3062 | type = type.getUnqualifiedType(); | ||||
3063 | break; | ||||
3064 | } | ||||
3065 | |||||
3066 | case Decl::Var: | ||||
3067 | case Decl::VarTemplateSpecialization: | ||||
3068 | case Decl::VarTemplatePartialSpecialization: | ||||
3069 | case Decl::Decomposition: | ||||
3070 | case Decl::OMPCapturedExpr: | ||||
3071 | // In C, "extern void blah;" is valid and is an r-value. | ||||
3072 | if (!getLangOpts().CPlusPlus && | ||||
3073 | !type.hasQualifiers() && | ||||
3074 | type->isVoidType()) { | ||||
3075 | valueKind = VK_RValue; | ||||
3076 | break; | ||||
3077 | } | ||||
3078 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
3079 | |||||
3080 | case Decl::ImplicitParam: | ||||
3081 | case Decl::ParmVar: { | ||||
3082 | // These are always l-values. | ||||
3083 | valueKind = VK_LValue; | ||||
3084 | type = type.getNonReferenceType(); | ||||
3085 | |||||
3086 | // FIXME: Does the addition of const really only apply in | ||||
3087 | // potentially-evaluated contexts? Since the variable isn't actually | ||||
3088 | // captured in an unevaluated context, it seems that the answer is no. | ||||
3089 | if (!isUnevaluatedContext()) { | ||||
3090 | QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc); | ||||
3091 | if (!CapturedType.isNull()) | ||||
3092 | type = CapturedType; | ||||
3093 | } | ||||
3094 | |||||
3095 | break; | ||||
3096 | } | ||||
3097 | |||||
3098 | case Decl::Binding: { | ||||
3099 | // These are always lvalues. | ||||
3100 | valueKind = VK_LValue; | ||||
3101 | type = type.getNonReferenceType(); | ||||
3102 | // FIXME: Support lambda-capture of BindingDecls, once CWG actually | ||||
3103 | // decides how that's supposed to work. | ||||
3104 | auto *BD = cast<BindingDecl>(VD); | ||||
3105 | if (BD->getDeclContext() != CurContext) { | ||||
3106 | auto *DD = dyn_cast_or_null<VarDecl>(BD->getDecomposedDecl()); | ||||
3107 | if (DD && DD->hasLocalStorage()) | ||||
3108 | diagnoseUncapturableValueReference(*this, Loc, BD, CurContext); | ||||
3109 | } | ||||
3110 | break; | ||||
3111 | } | ||||
3112 | |||||
3113 | case Decl::Function: { | ||||
3114 | if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) { | ||||
3115 | if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) { | ||||
3116 | type = Context.BuiltinFnTy; | ||||
3117 | valueKind = VK_RValue; | ||||
3118 | break; | ||||
3119 | } | ||||
3120 | } | ||||
3121 | |||||
3122 | const FunctionType *fty = type->castAs<FunctionType>(); | ||||
3123 | |||||
3124 | // If we're referring to a function with an __unknown_anytype | ||||
3125 | // result type, make the entire expression __unknown_anytype. | ||||
3126 | if (fty->getReturnType() == Context.UnknownAnyTy) { | ||||
3127 | type = Context.UnknownAnyTy; | ||||
3128 | valueKind = VK_RValue; | ||||
3129 | break; | ||||
3130 | } | ||||
3131 | |||||
3132 | // Functions are l-values in C++. | ||||
3133 | if (getLangOpts().CPlusPlus) { | ||||
3134 | valueKind = VK_LValue; | ||||
3135 | break; | ||||
3136 | } | ||||
3137 | |||||
3138 | // C99 DR 316 says that, if a function type comes from a | ||||
3139 | // function definition (without a prototype), that type is only | ||||
3140 | // used for checking compatibility. Therefore, when referencing | ||||
3141 | // the function, we pretend that we don't have the full function | ||||
3142 | // type. | ||||
3143 | if (!cast<FunctionDecl>(VD)->hasPrototype() && | ||||
3144 | isa<FunctionProtoType>(fty)) | ||||
3145 | type = Context.getFunctionNoProtoType(fty->getReturnType(), | ||||
3146 | fty->getExtInfo()); | ||||
3147 | |||||
3148 | // Functions are r-values in C. | ||||
3149 | valueKind = VK_RValue; | ||||
3150 | break; | ||||
3151 | } | ||||
3152 | |||||
3153 | case Decl::CXXDeductionGuide: | ||||
3154 | llvm_unreachable("building reference to deduction guide")::llvm::llvm_unreachable_internal("building reference to deduction guide" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3154); | ||||
3155 | |||||
3156 | case Decl::MSProperty: | ||||
3157 | valueKind = VK_LValue; | ||||
3158 | break; | ||||
3159 | |||||
3160 | case Decl::CXXMethod: | ||||
3161 | // If we're referring to a method with an __unknown_anytype | ||||
3162 | // result type, make the entire expression __unknown_anytype. | ||||
3163 | // This should only be possible with a type written directly. | ||||
3164 | if (const FunctionProtoType *proto | ||||
3165 | = dyn_cast<FunctionProtoType>(VD->getType())) | ||||
3166 | if (proto->getReturnType() == Context.UnknownAnyTy) { | ||||
3167 | type = Context.UnknownAnyTy; | ||||
3168 | valueKind = VK_RValue; | ||||
3169 | break; | ||||
3170 | } | ||||
3171 | |||||
3172 | // C++ methods are l-values if static, r-values if non-static. | ||||
3173 | if (cast<CXXMethodDecl>(VD)->isStatic()) { | ||||
3174 | valueKind = VK_LValue; | ||||
3175 | break; | ||||
3176 | } | ||||
3177 | LLVM_FALLTHROUGH[[gnu::fallthrough]]; | ||||
3178 | |||||
3179 | case Decl::CXXConversion: | ||||
3180 | case Decl::CXXDestructor: | ||||
3181 | case Decl::CXXConstructor: | ||||
3182 | valueKind = VK_RValue; | ||||
3183 | break; | ||||
3184 | } | ||||
3185 | |||||
3186 | return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD, | ||||
3187 | /*FIXME: TemplateKWLoc*/ SourceLocation(), | ||||
3188 | TemplateArgs); | ||||
3189 | } | ||||
3190 | } | ||||
3191 | |||||
3192 | static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source, | ||||
3193 | SmallString<32> &Target) { | ||||
3194 | Target.resize(CharByteWidth * (Source.size() + 1)); | ||||
3195 | char *ResultPtr = &Target[0]; | ||||
3196 | const llvm::UTF8 *ErrorPtr; | ||||
3197 | bool success = | ||||
3198 | llvm::ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr); | ||||
3199 | (void)success; | ||||
3200 | assert(success)((success) ? static_cast<void> (0) : __assert_fail ("success" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3200, __PRETTY_FUNCTION__)); | ||||
3201 | Target.resize(ResultPtr - &Target[0]); | ||||
3202 | } | ||||
3203 | |||||
3204 | ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc, | ||||
3205 | PredefinedExpr::IdentKind IK) { | ||||
3206 | // Pick the current block, lambda, captured statement or function. | ||||
3207 | Decl *currentDecl = nullptr; | ||||
3208 | if (const BlockScopeInfo *BSI = getCurBlock()) | ||||
3209 | currentDecl = BSI->TheDecl; | ||||
3210 | else if (const LambdaScopeInfo *LSI = getCurLambda()) | ||||
3211 | currentDecl = LSI->CallOperator; | ||||
3212 | else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion()) | ||||
3213 | currentDecl = CSI->TheCapturedDecl; | ||||
3214 | else | ||||
3215 | currentDecl = getCurFunctionOrMethodDecl(); | ||||
3216 | |||||
3217 | if (!currentDecl) { | ||||
3218 | Diag(Loc, diag::ext_predef_outside_function); | ||||
3219 | currentDecl = Context.getTranslationUnitDecl(); | ||||
3220 | } | ||||
3221 | |||||
3222 | QualType ResTy; | ||||
3223 | StringLiteral *SL = nullptr; | ||||
3224 | if (cast<DeclContext>(currentDecl)->isDependentContext()) | ||||
3225 | ResTy = Context.DependentTy; | ||||
3226 | else { | ||||
3227 | // Pre-defined identifiers are of type char[x], where x is the length of | ||||
3228 | // the string. | ||||
3229 | auto Str = PredefinedExpr::ComputeName(IK, currentDecl); | ||||
3230 | unsigned Length = Str.length(); | ||||
3231 | |||||
3232 | llvm::APInt LengthI(32, Length + 1); | ||||
3233 | if (IK == PredefinedExpr::LFunction || IK == PredefinedExpr::LFuncSig) { | ||||
3234 | ResTy = | ||||
3235 | Context.adjustStringLiteralBaseType(Context.WideCharTy.withConst()); | ||||
3236 | SmallString<32> RawChars; | ||||
3237 | ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(), | ||||
3238 | Str, RawChars); | ||||
3239 | ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, | ||||
3240 | ArrayType::Normal, | ||||
3241 | /*IndexTypeQuals*/ 0); | ||||
3242 | SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide, | ||||
3243 | /*Pascal*/ false, ResTy, Loc); | ||||
3244 | } else { | ||||
3245 | ResTy = Context.adjustStringLiteralBaseType(Context.CharTy.withConst()); | ||||
3246 | ResTy = Context.getConstantArrayType(ResTy, LengthI, nullptr, | ||||
3247 | ArrayType::Normal, | ||||
3248 | /*IndexTypeQuals*/ 0); | ||||
3249 | SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii, | ||||
3250 | /*Pascal*/ false, ResTy, Loc); | ||||
3251 | } | ||||
3252 | } | ||||
3253 | |||||
3254 | return PredefinedExpr::Create(Context, Loc, ResTy, IK, SL); | ||||
3255 | } | ||||
3256 | |||||
3257 | ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) { | ||||
3258 | PredefinedExpr::IdentKind IK; | ||||
3259 | |||||
3260 | switch (Kind) { | ||||
3261 | default: llvm_unreachable("Unknown simple primary expr!")::llvm::llvm_unreachable_internal("Unknown simple primary expr!" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3261); | ||||
3262 | case tok::kw___func__: IK = PredefinedExpr::Func; break; // [C99 6.4.2.2] | ||||
3263 | case tok::kw___FUNCTION__: IK = PredefinedExpr::Function; break; | ||||
3264 | case tok::kw___FUNCDNAME__: IK = PredefinedExpr::FuncDName; break; // [MS] | ||||
3265 | case tok::kw___FUNCSIG__: IK = PredefinedExpr::FuncSig; break; // [MS] | ||||
3266 | case tok::kw_L__FUNCTION__: IK = PredefinedExpr::LFunction; break; // [MS] | ||||
3267 | case tok::kw_L__FUNCSIG__: IK = PredefinedExpr::LFuncSig; break; // [MS] | ||||
3268 | case tok::kw___PRETTY_FUNCTION__: IK = PredefinedExpr::PrettyFunction; break; | ||||
3269 | } | ||||
3270 | |||||
3271 | return BuildPredefinedExpr(Loc, IK); | ||||
3272 | } | ||||
3273 | |||||
3274 | ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) { | ||||
3275 | SmallString<16> CharBuffer; | ||||
3276 | bool Invalid = false; | ||||
3277 | StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid); | ||||
3278 | if (Invalid) | ||||
3279 | return ExprError(); | ||||
3280 | |||||
3281 | CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(), | ||||
3282 | PP, Tok.getKind()); | ||||
3283 | if (Literal.hadError()) | ||||
3284 | return ExprError(); | ||||
3285 | |||||
3286 | QualType Ty; | ||||
3287 | if (Literal.isWide()) | ||||
3288 | Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++. | ||||
3289 | else if (Literal.isUTF8() && getLangOpts().Char8) | ||||
3290 | Ty = Context.Char8Ty; // u8'x' -> char8_t when it exists. | ||||
3291 | else if (Literal.isUTF16()) | ||||
3292 | Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11. | ||||
3293 | else if (Literal.isUTF32()) | ||||
3294 | Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11. | ||||
3295 | else if (!getLangOpts().CPlusPlus || Literal.isMultiChar()) | ||||
3296 | Ty = Context.IntTy; // 'x' -> int in C, 'wxyz' -> int in C++. | ||||
3297 | else | ||||
3298 | Ty = Context.CharTy; // 'x' -> char in C++ | ||||
3299 | |||||
3300 | CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii; | ||||
3301 | if (Literal.isWide()) | ||||
3302 | Kind = CharacterLiteral::Wide; | ||||
3303 | else if (Literal.isUTF16()) | ||||
3304 | Kind = CharacterLiteral::UTF16; | ||||
3305 | else if (Literal.isUTF32()) | ||||
3306 | Kind = CharacterLiteral::UTF32; | ||||
3307 | else if (Literal.isUTF8()) | ||||
3308 | Kind = CharacterLiteral::UTF8; | ||||
3309 | |||||
3310 | Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty, | ||||
3311 | Tok.getLocation()); | ||||
3312 | |||||
3313 | if (Literal.getUDSuffix().empty()) | ||||
3314 | return Lit; | ||||
3315 | |||||
3316 | // We're building a user-defined literal. | ||||
3317 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | ||||
3318 | SourceLocation UDSuffixLoc = | ||||
3319 | getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); | ||||
3320 | |||||
3321 | // Make sure we're allowed user-defined literals here. | ||||
3322 | if (!UDLScope) | ||||
3323 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl)); | ||||
3324 | |||||
3325 | // C++11 [lex.ext]p6: The literal L is treated as a call of the form | ||||
3326 | // operator "" X (ch) | ||||
3327 | return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc, | ||||
3328 | Lit, Tok.getLocation()); | ||||
3329 | } | ||||
3330 | |||||
3331 | ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) { | ||||
3332 | unsigned IntSize = Context.getTargetInfo().getIntWidth(); | ||||
3333 | return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val), | ||||
3334 | Context.IntTy, Loc); | ||||
3335 | } | ||||
3336 | |||||
3337 | static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal, | ||||
3338 | QualType Ty, SourceLocation Loc) { | ||||
3339 | const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty); | ||||
3340 | |||||
3341 | using llvm::APFloat; | ||||
3342 | APFloat Val(Format); | ||||
3343 | |||||
3344 | APFloat::opStatus result = Literal.GetFloatValue(Val); | ||||
3345 | |||||
3346 | // Overflow is always an error, but underflow is only an error if | ||||
3347 | // we underflowed to zero (APFloat reports denormals as underflow). | ||||
3348 | if ((result & APFloat::opOverflow) || | ||||
3349 | ((result & APFloat::opUnderflow) && Val.isZero())) { | ||||
3350 | unsigned diagnostic; | ||||
3351 | SmallString<20> buffer; | ||||
3352 | if (result & APFloat::opOverflow) { | ||||
3353 | diagnostic = diag::warn_float_overflow; | ||||
3354 | APFloat::getLargest(Format).toString(buffer); | ||||
3355 | } else { | ||||
3356 | diagnostic = diag::warn_float_underflow; | ||||
3357 | APFloat::getSmallest(Format).toString(buffer); | ||||
3358 | } | ||||
3359 | |||||
3360 | S.Diag(Loc, diagnostic) | ||||
3361 | << Ty | ||||
3362 | << StringRef(buffer.data(), buffer.size()); | ||||
3363 | } | ||||
3364 | |||||
3365 | bool isExact = (result == APFloat::opOK); | ||||
3366 | return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc); | ||||
3367 | } | ||||
3368 | |||||
3369 | bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) { | ||||
3370 | assert(E && "Invalid expression")((E && "Invalid expression") ? static_cast<void> (0) : __assert_fail ("E && \"Invalid expression\"", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3370, __PRETTY_FUNCTION__)); | ||||
3371 | |||||
3372 | if (E->isValueDependent()) | ||||
3373 | return false; | ||||
3374 | |||||
3375 | QualType QT = E->getType(); | ||||
3376 | if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) { | ||||
3377 | Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT; | ||||
3378 | return true; | ||||
3379 | } | ||||
3380 | |||||
3381 | llvm::APSInt ValueAPS; | ||||
3382 | ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS); | ||||
3383 | |||||
3384 | if (R.isInvalid()) | ||||
3385 | return true; | ||||
3386 | |||||
3387 | bool ValueIsPositive = ValueAPS.isStrictlyPositive(); | ||||
3388 | if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) { | ||||
3389 | Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value) | ||||
3390 | << ValueAPS.toString(10) << ValueIsPositive; | ||||
3391 | return true; | ||||
3392 | } | ||||
3393 | |||||
3394 | return false; | ||||
3395 | } | ||||
3396 | |||||
3397 | ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) { | ||||
3398 | // Fast path for a single digit (which is quite common). A single digit | ||||
3399 | // cannot have a trigraph, escaped newline, radix prefix, or suffix. | ||||
3400 | if (Tok.getLength() == 1) { | ||||
3401 | const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok); | ||||
3402 | return ActOnIntegerConstant(Tok.getLocation(), Val-'0'); | ||||
3403 | } | ||||
3404 | |||||
3405 | SmallString<128> SpellingBuffer; | ||||
3406 | // NumericLiteralParser wants to overread by one character. Add padding to | ||||
3407 | // the buffer in case the token is copied to the buffer. If getSpelling() | ||||
3408 | // returns a StringRef to the memory buffer, it should have a null char at | ||||
3409 | // the EOF, so it is also safe. | ||||
3410 | SpellingBuffer.resize(Tok.getLength() + 1); | ||||
3411 | |||||
3412 | // Get the spelling of the token, which eliminates trigraphs, etc. | ||||
3413 | bool Invalid = false; | ||||
3414 | StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid); | ||||
3415 | if (Invalid) | ||||
3416 | return ExprError(); | ||||
3417 | |||||
3418 | NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP); | ||||
3419 | if (Literal.hadError) | ||||
3420 | return ExprError(); | ||||
3421 | |||||
3422 | if (Literal.hasUDSuffix()) { | ||||
3423 | // We're building a user-defined literal. | ||||
3424 | IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix()); | ||||
3425 | SourceLocation UDSuffixLoc = | ||||
3426 | getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset()); | ||||
3427 | |||||
3428 | // Make sure we're allowed user-defined literals here. | ||||
3429 | if (!UDLScope) | ||||
3430 | return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl)); | ||||
3431 | |||||
3432 | QualType CookedTy; | ||||
3433 | if (Literal.isFloatingLiteral()) { | ||||
3434 | // C++11 [lex.ext]p4: If S contains a literal operator with parameter type | ||||
3435 | // long double, the literal is treated as a call of the form | ||||
3436 | // operator "" X (f L) | ||||
3437 | CookedTy = Context.LongDoubleTy; | ||||
3438 | } else { | ||||
3439 | // C++11 [lex.ext]p3: If S contains a literal operator with parameter type | ||||
3440 | // unsigned long long, the literal is treated as a call of the form | ||||
3441 | // operator "" X (n ULL) | ||||
3442 | CookedTy = Context.UnsignedLongLongTy; | ||||
3443 | } | ||||
3444 | |||||
3445 | DeclarationName OpName = | ||||
3446 | Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix); | ||||
3447 | DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc); | ||||
3448 | OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc); | ||||
3449 | |||||
3450 | SourceLocation TokLoc = Tok.getLocation(); | ||||
3451 | |||||
3452 | // Perform literal operator lookup to determine if we're building a raw | ||||
3453 | // literal or a cooked one. | ||||
3454 | LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName); | ||||
3455 | switch (LookupLiteralOperator(UDLScope, R, CookedTy, | ||||
3456 | /*AllowRaw*/ true, /*AllowTemplate*/ true, | ||||
3457 | /*AllowStringTemplate*/ false, | ||||
3458 | /*DiagnoseMissing*/ !Literal.isImaginary)) { | ||||
3459 | case LOLR_ErrorNoDiagnostic: | ||||
3460 | // Lookup failure for imaginary constants isn't fatal, there's still the | ||||
3461 | // GNU extension producing _Complex types. | ||||
3462 | break; | ||||
3463 | case LOLR_Error: | ||||
3464 | return ExprError(); | ||||
3465 | case LOLR_Cooked: { | ||||
3466 | Expr *Lit; | ||||
3467 | if (Literal.isFloatingLiteral()) { | ||||
3468 | Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation()); | ||||
3469 | } else { | ||||
3470 | llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0); | ||||
3471 | if (Literal.GetIntegerValue(ResultVal)) | ||||
3472 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | ||||
3473 | << /* Unsigned */ 1; | ||||
3474 | Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy, | ||||
3475 | Tok.getLocation()); | ||||
3476 | } | ||||
3477 | return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); | ||||
3478 | } | ||||
3479 | |||||
3480 | case LOLR_Raw: { | ||||
3481 | // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the | ||||
3482 | // literal is treated as a call of the form | ||||
3483 | // operator "" X ("n") | ||||
3484 | unsigned Length = Literal.getUDSuffixOffset(); | ||||
3485 | QualType StrTy = Context.getConstantArrayType( | ||||
3486 | Context.adjustStringLiteralBaseType(Context.CharTy.withConst()), | ||||
3487 | llvm::APInt(32, Length + 1), nullptr, ArrayType::Normal, 0); | ||||
3488 | Expr *Lit = StringLiteral::Create( | ||||
3489 | Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii, | ||||
3490 | /*Pascal*/false, StrTy, &TokLoc, 1); | ||||
3491 | return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc); | ||||
3492 | } | ||||
3493 | |||||
3494 | case LOLR_Template: { | ||||
3495 | // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator | ||||
3496 | // template), L is treated as a call fo the form | ||||
3497 | // operator "" X <'c1', 'c2', ... 'ck'>() | ||||
3498 | // where n is the source character sequence c1 c2 ... ck. | ||||
3499 | TemplateArgumentListInfo ExplicitArgs; | ||||
3500 | unsigned CharBits = Context.getIntWidth(Context.CharTy); | ||||
3501 | bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType(); | ||||
3502 | llvm::APSInt Value(CharBits, CharIsUnsigned); | ||||
3503 | for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) { | ||||
3504 | Value = TokSpelling[I]; | ||||
3505 | TemplateArgument Arg(Context, Value, Context.CharTy); | ||||
3506 | TemplateArgumentLocInfo ArgInfo; | ||||
3507 | ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo)); | ||||
3508 | } | ||||
3509 | return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc, | ||||
3510 | &ExplicitArgs); | ||||
3511 | } | ||||
3512 | case LOLR_StringTemplate: | ||||
3513 | llvm_unreachable("unexpected literal operator lookup result")::llvm::llvm_unreachable_internal("unexpected literal operator lookup result" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3513); | ||||
3514 | } | ||||
3515 | } | ||||
3516 | |||||
3517 | Expr *Res; | ||||
3518 | |||||
3519 | if (Literal.isFixedPointLiteral()) { | ||||
3520 | QualType Ty; | ||||
3521 | |||||
3522 | if (Literal.isAccum) { | ||||
3523 | if (Literal.isHalf) { | ||||
3524 | Ty = Context.ShortAccumTy; | ||||
3525 | } else if (Literal.isLong) { | ||||
3526 | Ty = Context.LongAccumTy; | ||||
3527 | } else { | ||||
3528 | Ty = Context.AccumTy; | ||||
3529 | } | ||||
3530 | } else if (Literal.isFract) { | ||||
3531 | if (Literal.isHalf) { | ||||
3532 | Ty = Context.ShortFractTy; | ||||
3533 | } else if (Literal.isLong) { | ||||
3534 | Ty = Context.LongFractTy; | ||||
3535 | } else { | ||||
3536 | Ty = Context.FractTy; | ||||
3537 | } | ||||
3538 | } | ||||
3539 | |||||
3540 | if (Literal.isUnsigned) Ty = Context.getCorrespondingUnsignedType(Ty); | ||||
3541 | |||||
3542 | bool isSigned = !Literal.isUnsigned; | ||||
3543 | unsigned scale = Context.getFixedPointScale(Ty); | ||||
3544 | unsigned bit_width = Context.getTypeInfo(Ty).Width; | ||||
3545 | |||||
3546 | llvm::APInt Val(bit_width, 0, isSigned); | ||||
3547 | bool Overflowed = Literal.GetFixedPointValue(Val, scale); | ||||
3548 | bool ValIsZero = Val.isNullValue() && !Overflowed; | ||||
3549 | |||||
3550 | auto MaxVal = Context.getFixedPointMax(Ty).getValue(); | ||||
3551 | if (Literal.isFract && Val == MaxVal + 1 && !ValIsZero) | ||||
3552 | // Clause 6.4.4 - The value of a constant shall be in the range of | ||||
3553 | // representable values for its type, with exception for constants of a | ||||
3554 | // fract type with a value of exactly 1; such a constant shall denote | ||||
3555 | // the maximal value for the type. | ||||
3556 | --Val; | ||||
3557 | else if (Val.ugt(MaxVal) || Overflowed) | ||||
3558 | Diag(Tok.getLocation(), diag::err_too_large_for_fixed_point); | ||||
3559 | |||||
3560 | Res = FixedPointLiteral::CreateFromRawInt(Context, Val, Ty, | ||||
3561 | Tok.getLocation(), scale); | ||||
3562 | } else if (Literal.isFloatingLiteral()) { | ||||
3563 | QualType Ty; | ||||
3564 | if (Literal.isHalf){ | ||||
3565 | if (getOpenCLOptions().isEnabled("cl_khr_fp16")) | ||||
3566 | Ty = Context.HalfTy; | ||||
3567 | else { | ||||
3568 | Diag(Tok.getLocation(), diag::err_half_const_requires_fp16); | ||||
3569 | return ExprError(); | ||||
3570 | } | ||||
3571 | } else if (Literal.isFloat) | ||||
3572 | Ty = Context.FloatTy; | ||||
3573 | else if (Literal.isLong) | ||||
3574 | Ty = Context.LongDoubleTy; | ||||
3575 | else if (Literal.isFloat16) | ||||
3576 | Ty = Context.Float16Ty; | ||||
3577 | else if (Literal.isFloat128) | ||||
3578 | Ty = Context.Float128Ty; | ||||
3579 | else | ||||
3580 | Ty = Context.DoubleTy; | ||||
3581 | |||||
3582 | Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation()); | ||||
3583 | |||||
3584 | if (Ty == Context.DoubleTy) { | ||||
3585 | if (getLangOpts().SinglePrecisionConstants) { | ||||
3586 | const BuiltinType *BTy = Ty->getAs<BuiltinType>(); | ||||
3587 | if (BTy->getKind() != BuiltinType::Float) { | ||||
3588 | Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); | ||||
3589 | } | ||||
3590 | } else if (getLangOpts().OpenCL && | ||||
3591 | !getOpenCLOptions().isEnabled("cl_khr_fp64")) { | ||||
3592 | // Impose single-precision float type when cl_khr_fp64 is not enabled. | ||||
3593 | Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64); | ||||
3594 | Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get(); | ||||
3595 | } | ||||
3596 | } | ||||
3597 | } else if (!Literal.isIntegerLiteral()) { | ||||
3598 | return ExprError(); | ||||
3599 | } else { | ||||
3600 | QualType Ty; | ||||
3601 | |||||
3602 | // 'long long' is a C99 or C++11 feature. | ||||
3603 | if (!getLangOpts().C99 && Literal.isLongLong) { | ||||
3604 | if (getLangOpts().CPlusPlus) | ||||
3605 | Diag(Tok.getLocation(), | ||||
3606 | getLangOpts().CPlusPlus11 ? | ||||
3607 | diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong); | ||||
3608 | else | ||||
3609 | Diag(Tok.getLocation(), diag::ext_c99_longlong); | ||||
3610 | } | ||||
3611 | |||||
3612 | // Get the value in the widest-possible width. | ||||
3613 | unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth(); | ||||
3614 | llvm::APInt ResultVal(MaxWidth, 0); | ||||
3615 | |||||
3616 | if (Literal.GetIntegerValue(ResultVal)) { | ||||
3617 | // If this value didn't fit into uintmax_t, error and force to ull. | ||||
3618 | Diag(Tok.getLocation(), diag::err_integer_literal_too_large) | ||||
3619 | << /* Unsigned */ 1; | ||||
3620 | Ty = Context.UnsignedLongLongTy; | ||||
3621 | assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&((Context.getTypeSize(Ty) == ResultVal.getBitWidth() && "long long is not intmax_t?") ? static_cast<void> (0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3622, __PRETTY_FUNCTION__)) | ||||
3622 | "long long is not intmax_t?")((Context.getTypeSize(Ty) == ResultVal.getBitWidth() && "long long is not intmax_t?") ? static_cast<void> (0) : __assert_fail ("Context.getTypeSize(Ty) == ResultVal.getBitWidth() && \"long long is not intmax_t?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3622, __PRETTY_FUNCTION__)); | ||||
3623 | } else { | ||||
3624 | // If this value fits into a ULL, try to figure out what else it fits into | ||||
3625 | // according to the rules of C99 6.4.4.1p5. | ||||
3626 | |||||
3627 | // Octal, Hexadecimal, and integers with a U suffix are allowed to | ||||
3628 | // be an unsigned int. | ||||
3629 | bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10; | ||||
3630 | |||||
3631 | // Check from smallest to largest, picking the smallest type we can. | ||||
3632 | unsigned Width = 0; | ||||
3633 | |||||
3634 | // Microsoft specific integer suffixes are explicitly sized. | ||||
3635 | if (Literal.MicrosoftInteger) { | ||||
3636 | if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) { | ||||
3637 | Width = 8; | ||||
3638 | Ty = Context.CharTy; | ||||
3639 | } else { | ||||
3640 | Width = Literal.MicrosoftInteger; | ||||
3641 | Ty = Context.getIntTypeForBitwidth(Width, | ||||
3642 | /*Signed=*/!Literal.isUnsigned); | ||||
3643 | } | ||||
3644 | } | ||||
3645 | |||||
3646 | if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) { | ||||
3647 | // Are int/unsigned possibilities? | ||||
3648 | unsigned IntSize = Context.getTargetInfo().getIntWidth(); | ||||
3649 | |||||
3650 | // Does it fit in a unsigned int? | ||||
3651 | if (ResultVal.isIntN(IntSize)) { | ||||
3652 | // Does it fit in a signed int? | ||||
3653 | if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0) | ||||
3654 | Ty = Context.IntTy; | ||||
3655 | else if (AllowUnsigned) | ||||
3656 | Ty = Context.UnsignedIntTy; | ||||
3657 | Width = IntSize; | ||||
3658 | } | ||||
3659 | } | ||||
3660 | |||||
3661 | // Are long/unsigned long possibilities? | ||||
3662 | if (Ty.isNull() && !Literal.isLongLong) { | ||||
3663 | unsigned LongSize = Context.getTargetInfo().getLongWidth(); | ||||
3664 | |||||
3665 | // Does it fit in a unsigned long? | ||||
3666 | if (ResultVal.isIntN(LongSize)) { | ||||
3667 | // Does it fit in a signed long? | ||||
3668 | if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0) | ||||
3669 | Ty = Context.LongTy; | ||||
3670 | else if (AllowUnsigned) | ||||
3671 | Ty = Context.UnsignedLongTy; | ||||
3672 | // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2 | ||||
3673 | // is compatible. | ||||
3674 | else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) { | ||||
3675 | const unsigned LongLongSize = | ||||
3676 | Context.getTargetInfo().getLongLongWidth(); | ||||
3677 | Diag(Tok.getLocation(), | ||||
3678 | getLangOpts().CPlusPlus | ||||
3679 | ? Literal.isLong | ||||
3680 | ? diag::warn_old_implicitly_unsigned_long_cxx | ||||
3681 | : /*C++98 UB*/ diag:: | ||||
3682 | ext_old_implicitly_unsigned_long_cxx | ||||
3683 | : diag::warn_old_implicitly_unsigned_long) | ||||
3684 | << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0 | ||||
3685 | : /*will be ill-formed*/ 1); | ||||
3686 | Ty = Context.UnsignedLongTy; | ||||
3687 | } | ||||
3688 | Width = LongSize; | ||||
3689 | } | ||||
3690 | } | ||||
3691 | |||||
3692 | // Check long long if needed. | ||||
3693 | if (Ty.isNull()) { | ||||
3694 | unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth(); | ||||
3695 | |||||
3696 | // Does it fit in a unsigned long long? | ||||
3697 | if (ResultVal.isIntN(LongLongSize)) { | ||||
3698 | // Does it fit in a signed long long? | ||||
3699 | // To be compatible with MSVC, hex integer literals ending with the | ||||
3700 | // LL or i64 suffix are always signed in Microsoft mode. | ||||
3701 | if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 || | ||||
3702 | (getLangOpts().MSVCCompat && Literal.isLongLong))) | ||||
3703 | Ty = Context.LongLongTy; | ||||
3704 | else if (AllowUnsigned) | ||||
3705 | Ty = Context.UnsignedLongLongTy; | ||||
3706 | Width = LongLongSize; | ||||
3707 | } | ||||
3708 | } | ||||
3709 | |||||
3710 | // If we still couldn't decide a type, we probably have something that | ||||
3711 | // does not fit in a signed long long, but has no U suffix. | ||||
3712 | if (Ty.isNull()) { | ||||
3713 | Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed); | ||||
3714 | Ty = Context.UnsignedLongLongTy; | ||||
3715 | Width = Context.getTargetInfo().getLongLongWidth(); | ||||
3716 | } | ||||
3717 | |||||
3718 | if (ResultVal.getBitWidth() != Width) | ||||
3719 | ResultVal = ResultVal.trunc(Width); | ||||
3720 | } | ||||
3721 | Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation()); | ||||
3722 | } | ||||
3723 | |||||
3724 | // If this is an imaginary literal, create the ImaginaryLiteral wrapper. | ||||
3725 | if (Literal.isImaginary) { | ||||
3726 | Res = new (Context) ImaginaryLiteral(Res, | ||||
3727 | Context.getComplexType(Res->getType())); | ||||
3728 | |||||
3729 | Diag(Tok.getLocation(), diag::ext_imaginary_constant); | ||||
3730 | } | ||||
3731 | return Res; | ||||
3732 | } | ||||
3733 | |||||
3734 | ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) { | ||||
3735 | assert(E && "ActOnParenExpr() missing expr")((E && "ActOnParenExpr() missing expr") ? static_cast <void> (0) : __assert_fail ("E && \"ActOnParenExpr() missing expr\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3735, __PRETTY_FUNCTION__)); | ||||
3736 | return new (Context) ParenExpr(L, R, E); | ||||
3737 | } | ||||
3738 | |||||
3739 | static bool CheckVecStepTraitOperandType(Sema &S, QualType T, | ||||
3740 | SourceLocation Loc, | ||||
3741 | SourceRange ArgRange) { | ||||
3742 | // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in | ||||
3743 | // scalar or vector data type argument..." | ||||
3744 | // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic | ||||
3745 | // type (C99 6.2.5p18) or void. | ||||
3746 | if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) { | ||||
3747 | S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type) | ||||
3748 | << T << ArgRange; | ||||
3749 | return true; | ||||
3750 | } | ||||
3751 | |||||
3752 | assert((T->isVoidType() || !T->isIncompleteType()) &&(((T->isVoidType() || !T->isIncompleteType()) && "Scalar types should always be complete") ? static_cast<void > (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3753, __PRETTY_FUNCTION__)) | ||||
3753 | "Scalar types should always be complete")(((T->isVoidType() || !T->isIncompleteType()) && "Scalar types should always be complete") ? static_cast<void > (0) : __assert_fail ("(T->isVoidType() || !T->isIncompleteType()) && \"Scalar types should always be complete\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3753, __PRETTY_FUNCTION__)); | ||||
3754 | return false; | ||||
3755 | } | ||||
3756 | |||||
3757 | static bool CheckExtensionTraitOperandType(Sema &S, QualType T, | ||||
3758 | SourceLocation Loc, | ||||
3759 | SourceRange ArgRange, | ||||
3760 | UnaryExprOrTypeTrait TraitKind) { | ||||
3761 | // Invalid types must be hard errors for SFINAE in C++. | ||||
3762 | if (S.LangOpts.CPlusPlus) | ||||
3763 | return true; | ||||
3764 | |||||
3765 | // C99 6.5.3.4p1: | ||||
3766 | if (T->isFunctionType() && | ||||
3767 | (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf || | ||||
3768 | TraitKind == UETT_PreferredAlignOf)) { | ||||
3769 | // sizeof(function)/alignof(function) is allowed as an extension. | ||||
3770 | S.Diag(Loc, diag::ext_sizeof_alignof_function_type) | ||||
3771 | << TraitKind << ArgRange; | ||||
3772 | return false; | ||||
3773 | } | ||||
3774 | |||||
3775 | // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where | ||||
3776 | // this is an error (OpenCL v1.1 s6.3.k) | ||||
3777 | if (T->isVoidType()) { | ||||
3778 | unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type | ||||
3779 | : diag::ext_sizeof_alignof_void_type; | ||||
3780 | S.Diag(Loc, DiagID) << TraitKind << ArgRange; | ||||
3781 | return false; | ||||
3782 | } | ||||
3783 | |||||
3784 | return true; | ||||
3785 | } | ||||
3786 | |||||
3787 | static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T, | ||||
3788 | SourceLocation Loc, | ||||
3789 | SourceRange ArgRange, | ||||
3790 | UnaryExprOrTypeTrait TraitKind) { | ||||
3791 | // Reject sizeof(interface) and sizeof(interface<proto>) if the | ||||
3792 | // runtime doesn't allow it. | ||||
3793 | if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) { | ||||
3794 | S.Diag(Loc, diag::err_sizeof_nonfragile_interface) | ||||
3795 | << T << (TraitKind == UETT_SizeOf) | ||||
3796 | << ArgRange; | ||||
3797 | return true; | ||||
3798 | } | ||||
3799 | |||||
3800 | return false; | ||||
3801 | } | ||||
3802 | |||||
3803 | /// Check whether E is a pointer from a decayed array type (the decayed | ||||
3804 | /// pointer type is equal to T) and emit a warning if it is. | ||||
3805 | static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T, | ||||
3806 | Expr *E) { | ||||
3807 | // Don't warn if the operation changed the type. | ||||
3808 | if (T != E->getType()) | ||||
3809 | return; | ||||
3810 | |||||
3811 | // Now look for array decays. | ||||
3812 | ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E); | ||||
3813 | if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay) | ||||
3814 | return; | ||||
3815 | |||||
3816 | S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange() | ||||
3817 | << ICE->getType() | ||||
3818 | << ICE->getSubExpr()->getType(); | ||||
3819 | } | ||||
3820 | |||||
3821 | /// Check the constraints on expression operands to unary type expression | ||||
3822 | /// and type traits. | ||||
3823 | /// | ||||
3824 | /// Completes any types necessary and validates the constraints on the operand | ||||
3825 | /// expression. The logic mostly mirrors the type-based overload, but may modify | ||||
3826 | /// the expression as it completes the type for that expression through template | ||||
3827 | /// instantiation, etc. | ||||
3828 | bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E, | ||||
3829 | UnaryExprOrTypeTrait ExprKind) { | ||||
3830 | QualType ExprTy = E->getType(); | ||||
3831 | assert(!ExprTy->isReferenceType())((!ExprTy->isReferenceType()) ? static_cast<void> (0 ) : __assert_fail ("!ExprTy->isReferenceType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3831, __PRETTY_FUNCTION__)); | ||||
3832 | |||||
3833 | bool IsUnevaluatedOperand = | ||||
3834 | (ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf || | ||||
3835 | ExprKind == UETT_PreferredAlignOf); | ||||
3836 | if (IsUnevaluatedOperand) { | ||||
3837 | ExprResult Result = CheckUnevaluatedOperand(E); | ||||
3838 | if (Result.isInvalid()) | ||||
3839 | return true; | ||||
3840 | E = Result.get(); | ||||
3841 | } | ||||
3842 | |||||
3843 | if (ExprKind == UETT_VecStep) | ||||
3844 | return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(), | ||||
3845 | E->getSourceRange()); | ||||
3846 | |||||
3847 | // Whitelist some types as extensions | ||||
3848 | if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(), | ||||
3849 | E->getSourceRange(), ExprKind)) | ||||
3850 | return false; | ||||
3851 | |||||
3852 | // 'alignof' applied to an expression only requires the base element type of | ||||
3853 | // the expression to be complete. 'sizeof' requires the expression's type to | ||||
3854 | // be complete (and will attempt to complete it if it's an array of unknown | ||||
3855 | // bound). | ||||
3856 | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | ||||
3857 | if (RequireCompleteType(E->getExprLoc(), | ||||
3858 | Context.getBaseElementType(E->getType()), | ||||
3859 | diag::err_sizeof_alignof_incomplete_type, ExprKind, | ||||
3860 | E->getSourceRange())) | ||||
3861 | return true; | ||||
3862 | } else { | ||||
3863 | if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type, | ||||
3864 | ExprKind, E->getSourceRange())) | ||||
3865 | return true; | ||||
3866 | } | ||||
3867 | |||||
3868 | // Completing the expression's type may have changed it. | ||||
3869 | ExprTy = E->getType(); | ||||
3870 | assert(!ExprTy->isReferenceType())((!ExprTy->isReferenceType()) ? static_cast<void> (0 ) : __assert_fail ("!ExprTy->isReferenceType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 3870, __PRETTY_FUNCTION__)); | ||||
3871 | |||||
3872 | if (ExprTy->isFunctionType()) { | ||||
3873 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type) | ||||
3874 | << ExprKind << E->getSourceRange(); | ||||
3875 | return true; | ||||
3876 | } | ||||
3877 | |||||
3878 | // The operand for sizeof and alignof is in an unevaluated expression context, | ||||
3879 | // so side effects could result in unintended consequences. | ||||
3880 | if (IsUnevaluatedOperand && !inTemplateInstantiation() && | ||||
3881 | E->HasSideEffects(Context, false)) | ||||
3882 | Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context); | ||||
3883 | |||||
3884 | if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(), | ||||
3885 | E->getSourceRange(), ExprKind)) | ||||
3886 | return true; | ||||
3887 | |||||
3888 | if (ExprKind == UETT_SizeOf) { | ||||
3889 | if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) { | ||||
3890 | if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) { | ||||
3891 | QualType OType = PVD->getOriginalType(); | ||||
3892 | QualType Type = PVD->getType(); | ||||
3893 | if (Type->isPointerType() && OType->isArrayType()) { | ||||
3894 | Diag(E->getExprLoc(), diag::warn_sizeof_array_param) | ||||
3895 | << Type << OType; | ||||
3896 | Diag(PVD->getLocation(), diag::note_declared_at); | ||||
3897 | } | ||||
3898 | } | ||||
3899 | } | ||||
3900 | |||||
3901 | // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array | ||||
3902 | // decays into a pointer and returns an unintended result. This is most | ||||
3903 | // likely a typo for "sizeof(array) op x". | ||||
3904 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) { | ||||
3905 | warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), | ||||
3906 | BO->getLHS()); | ||||
3907 | warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(), | ||||
3908 | BO->getRHS()); | ||||
3909 | } | ||||
3910 | } | ||||
3911 | |||||
3912 | return false; | ||||
3913 | } | ||||
3914 | |||||
3915 | /// Check the constraints on operands to unary expression and type | ||||
3916 | /// traits. | ||||
3917 | /// | ||||
3918 | /// This will complete any types necessary, and validate the various constraints | ||||
3919 | /// on those operands. | ||||
3920 | /// | ||||
3921 | /// The UsualUnaryConversions() function is *not* called by this routine. | ||||
3922 | /// C99 6.3.2.1p[2-4] all state: | ||||
3923 | /// Except when it is the operand of the sizeof operator ... | ||||
3924 | /// | ||||
3925 | /// C++ [expr.sizeof]p4 | ||||
3926 | /// The lvalue-to-rvalue, array-to-pointer, and function-to-pointer | ||||
3927 | /// standard conversions are not applied to the operand of sizeof. | ||||
3928 | /// | ||||
3929 | /// This policy is followed for all of the unary trait expressions. | ||||
3930 | bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType, | ||||
3931 | SourceLocation OpLoc, | ||||
3932 | SourceRange ExprRange, | ||||
3933 | UnaryExprOrTypeTrait ExprKind) { | ||||
3934 | if (ExprType->isDependentType()) | ||||
3935 | return false; | ||||
3936 | |||||
3937 | // C++ [expr.sizeof]p2: | ||||
3938 | // When applied to a reference or a reference type, the result | ||||
3939 | // is the size of the referenced type. | ||||
3940 | // C++11 [expr.alignof]p3: | ||||
3941 | // When alignof is applied to a reference type, the result | ||||
3942 | // shall be the alignment of the referenced type. | ||||
3943 | if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>()) | ||||
3944 | ExprType = Ref->getPointeeType(); | ||||
3945 | |||||
3946 | // C11 6.5.3.4/3, C++11 [expr.alignof]p3: | ||||
3947 | // When alignof or _Alignof is applied to an array type, the result | ||||
3948 | // is the alignment of the element type. | ||||
3949 | if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf || | ||||
3950 | ExprKind == UETT_OpenMPRequiredSimdAlign) | ||||
3951 | ExprType = Context.getBaseElementType(ExprType); | ||||
3952 | |||||
3953 | if (ExprKind == UETT_VecStep) | ||||
3954 | return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange); | ||||
3955 | |||||
3956 | // Whitelist some types as extensions | ||||
3957 | if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange, | ||||
3958 | ExprKind)) | ||||
3959 | return false; | ||||
3960 | |||||
3961 | if (RequireCompleteType(OpLoc, ExprType, | ||||
3962 | diag::err_sizeof_alignof_incomplete_type, | ||||
3963 | ExprKind, ExprRange)) | ||||
3964 | return true; | ||||
3965 | |||||
3966 | if (ExprType->isFunctionType()) { | ||||
3967 | Diag(OpLoc, diag::err_sizeof_alignof_function_type) | ||||
3968 | << ExprKind << ExprRange; | ||||
3969 | return true; | ||||
3970 | } | ||||
3971 | |||||
3972 | if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange, | ||||
3973 | ExprKind)) | ||||
3974 | return true; | ||||
3975 | |||||
3976 | return false; | ||||
3977 | } | ||||
3978 | |||||
3979 | static bool CheckAlignOfExpr(Sema &S, Expr *E, UnaryExprOrTypeTrait ExprKind) { | ||||
3980 | // Cannot know anything else if the expression is dependent. | ||||
3981 | if (E->isTypeDependent()) | ||||
3982 | return false; | ||||
3983 | |||||
3984 | if (E->getObjectKind() == OK_BitField) { | ||||
3985 | S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) | ||||
3986 | << 1 << E->getSourceRange(); | ||||
3987 | return true; | ||||
3988 | } | ||||
3989 | |||||
3990 | ValueDecl *D = nullptr; | ||||
3991 | Expr *Inner = E->IgnoreParens(); | ||||
3992 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Inner)) { | ||||
3993 | D = DRE->getDecl(); | ||||
3994 | } else if (MemberExpr *ME = dyn_cast<MemberExpr>(Inner)) { | ||||
3995 | D = ME->getMemberDecl(); | ||||
3996 | } | ||||
3997 | |||||
3998 | // If it's a field, require the containing struct to have a | ||||
3999 | // complete definition so that we can compute the layout. | ||||
4000 | // | ||||
4001 | // This can happen in C++11 onwards, either by naming the member | ||||
4002 | // in a way that is not transformed into a member access expression | ||||
4003 | // (in an unevaluated operand, for instance), or by naming the member | ||||
4004 | // in a trailing-return-type. | ||||
4005 | // | ||||
4006 | // For the record, since __alignof__ on expressions is a GCC | ||||
4007 | // extension, GCC seems to permit this but always gives the | ||||
4008 | // nonsensical answer 0. | ||||
4009 | // | ||||
4010 | // We don't really need the layout here --- we could instead just | ||||
4011 | // directly check for all the appropriate alignment-lowing | ||||
4012 | // attributes --- but that would require duplicating a lot of | ||||
4013 | // logic that just isn't worth duplicating for such a marginal | ||||
4014 | // use-case. | ||||
4015 | if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) { | ||||
4016 | // Fast path this check, since we at least know the record has a | ||||
4017 | // definition if we can find a member of it. | ||||
4018 | if (!FD->getParent()->isCompleteDefinition()) { | ||||
4019 | S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type) | ||||
4020 | << E->getSourceRange(); | ||||
4021 | return true; | ||||
4022 | } | ||||
4023 | |||||
4024 | // Otherwise, if it's a field, and the field doesn't have | ||||
4025 | // reference type, then it must have a complete type (or be a | ||||
4026 | // flexible array member, which we explicitly want to | ||||
4027 | // white-list anyway), which makes the following checks trivial. | ||||
4028 | if (!FD->getType()->isReferenceType()) | ||||
4029 | return false; | ||||
4030 | } | ||||
4031 | |||||
4032 | return S.CheckUnaryExprOrTypeTraitOperand(E, ExprKind); | ||||
4033 | } | ||||
4034 | |||||
4035 | bool Sema::CheckVecStepExpr(Expr *E) { | ||||
4036 | E = E->IgnoreParens(); | ||||
4037 | |||||
4038 | // Cannot know anything else if the expression is dependent. | ||||
4039 | if (E->isTypeDependent()) | ||||
4040 | return false; | ||||
4041 | |||||
4042 | return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep); | ||||
4043 | } | ||||
4044 | |||||
4045 | static void captureVariablyModifiedType(ASTContext &Context, QualType T, | ||||
4046 | CapturingScopeInfo *CSI) { | ||||
4047 | assert(T->isVariablyModifiedType())((T->isVariablyModifiedType()) ? static_cast<void> ( 0) : __assert_fail ("T->isVariablyModifiedType()", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4047, __PRETTY_FUNCTION__)); | ||||
4048 | assert(CSI != nullptr)((CSI != nullptr) ? static_cast<void> (0) : __assert_fail ("CSI != nullptr", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4048, __PRETTY_FUNCTION__)); | ||||
4049 | |||||
4050 | // We're going to walk down into the type and look for VLA expressions. | ||||
4051 | do { | ||||
4052 | const Type *Ty = T.getTypePtr(); | ||||
4053 | switch (Ty->getTypeClass()) { | ||||
4054 | #define TYPE(Class, Base) | ||||
4055 | #define ABSTRACT_TYPE(Class, Base) | ||||
4056 | #define NON_CANONICAL_TYPE(Class, Base) | ||||
4057 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: | ||||
4058 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) | ||||
4059 | #include "clang/AST/TypeNodes.inc" | ||||
4060 | T = QualType(); | ||||
4061 | break; | ||||
4062 | // These types are never variably-modified. | ||||
4063 | case Type::Builtin: | ||||
4064 | case Type::Complex: | ||||
4065 | case Type::Vector: | ||||
4066 | case Type::ExtVector: | ||||
4067 | case Type::Record: | ||||
4068 | case Type::Enum: | ||||
4069 | case Type::Elaborated: | ||||
4070 | case Type::TemplateSpecialization: | ||||
4071 | case Type::ObjCObject: | ||||
4072 | case Type::ObjCInterface: | ||||
4073 | case Type::ObjCObjectPointer: | ||||
4074 | case Type::ObjCTypeParam: | ||||
4075 | case Type::Pipe: | ||||
4076 | llvm_unreachable("type class is never variably-modified!")::llvm::llvm_unreachable_internal("type class is never variably-modified!" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4076); | ||||
4077 | case Type::Adjusted: | ||||
4078 | T = cast<AdjustedType>(Ty)->getOriginalType(); | ||||
4079 | break; | ||||
4080 | case Type::Decayed: | ||||
4081 | T = cast<DecayedType>(Ty)->getPointeeType(); | ||||
4082 | break; | ||||
4083 | case Type::Pointer: | ||||
4084 | T = cast<PointerType>(Ty)->getPointeeType(); | ||||
4085 | break; | ||||
4086 | case Type::BlockPointer: | ||||
4087 | T = cast<BlockPointerType>(Ty)->getPointeeType(); | ||||
4088 | break; | ||||
4089 | case Type::LValueReference: | ||||
4090 | case Type::RValueReference: | ||||
4091 | T = cast<ReferenceType>(Ty)->getPointeeType(); | ||||
4092 | break; | ||||
4093 | case Type::MemberPointer: | ||||
4094 | T = cast<MemberPointerType>(Ty)->getPointeeType(); | ||||
4095 | break; | ||||
4096 | case Type::ConstantArray: | ||||
4097 | case Type::IncompleteArray: | ||||
4098 | // Losing element qualification here is fine. | ||||
4099 | T = cast<ArrayType>(Ty)->getElementType(); | ||||
4100 | break; | ||||
4101 | case Type::VariableArray: { | ||||
4102 | // Losing element qualification here is fine. | ||||
4103 | const VariableArrayType *VAT = cast<VariableArrayType>(Ty); | ||||
4104 | |||||
4105 | // Unknown size indication requires no size computation. | ||||
4106 | // Otherwise, evaluate and record it. | ||||
4107 | auto Size = VAT->getSizeExpr(); | ||||
4108 | if (Size && !CSI->isVLATypeCaptured(VAT) && | ||||
4109 | (isa<CapturedRegionScopeInfo>(CSI) || isa<LambdaScopeInfo>(CSI))) | ||||
4110 | CSI->addVLATypeCapture(Size->getExprLoc(), VAT, Context.getSizeType()); | ||||
4111 | |||||
4112 | T = VAT->getElementType(); | ||||
4113 | break; | ||||
4114 | } | ||||
4115 | case Type::FunctionProto: | ||||
4116 | case Type::FunctionNoProto: | ||||
4117 | T = cast<FunctionType>(Ty)->getReturnType(); | ||||
4118 | break; | ||||
4119 | case Type::Paren: | ||||
4120 | case Type::TypeOf: | ||||
4121 | case Type::UnaryTransform: | ||||
4122 | case Type::Attributed: | ||||
4123 | case Type::SubstTemplateTypeParm: | ||||
4124 | case Type::PackExpansion: | ||||
4125 | case Type::MacroQualified: | ||||
4126 | // Keep walking after single level desugaring. | ||||
4127 | T = T.getSingleStepDesugaredType(Context); | ||||
4128 | break; | ||||
4129 | case Type::Typedef: | ||||
4130 | T = cast<TypedefType>(Ty)->desugar(); | ||||
4131 | break; | ||||
4132 | case Type::Decltype: | ||||
4133 | T = cast<DecltypeType>(Ty)->desugar(); | ||||
4134 | break; | ||||
4135 | case Type::Auto: | ||||
4136 | case Type::DeducedTemplateSpecialization: | ||||
4137 | T = cast<DeducedType>(Ty)->getDeducedType(); | ||||
4138 | break; | ||||
4139 | case Type::TypeOfExpr: | ||||
4140 | T = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType(); | ||||
4141 | break; | ||||
4142 | case Type::Atomic: | ||||
4143 | T = cast<AtomicType>(Ty)->getValueType(); | ||||
4144 | break; | ||||
4145 | } | ||||
4146 | } while (!T.isNull() && T->isVariablyModifiedType()); | ||||
4147 | } | ||||
4148 | |||||
4149 | /// Build a sizeof or alignof expression given a type operand. | ||||
4150 | ExprResult | ||||
4151 | Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo, | ||||
4152 | SourceLocation OpLoc, | ||||
4153 | UnaryExprOrTypeTrait ExprKind, | ||||
4154 | SourceRange R) { | ||||
4155 | if (!TInfo) | ||||
4156 | return ExprError(); | ||||
4157 | |||||
4158 | QualType T = TInfo->getType(); | ||||
4159 | |||||
4160 | if (!T->isDependentType() && | ||||
4161 | CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind)) | ||||
4162 | return ExprError(); | ||||
4163 | |||||
4164 | if (T->isVariablyModifiedType() && FunctionScopes.size() > 1) { | ||||
4165 | if (auto *TT = T->getAs<TypedefType>()) { | ||||
4166 | for (auto I = FunctionScopes.rbegin(), | ||||
4167 | E = std::prev(FunctionScopes.rend()); | ||||
4168 | I != E; ++I) { | ||||
4169 | auto *CSI = dyn_cast<CapturingScopeInfo>(*I); | ||||
4170 | if (CSI == nullptr) | ||||
4171 | break; | ||||
4172 | DeclContext *DC = nullptr; | ||||
4173 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | ||||
4174 | DC = LSI->CallOperator; | ||||
4175 | else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) | ||||
4176 | DC = CRSI->TheCapturedDecl; | ||||
4177 | else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) | ||||
4178 | DC = BSI->TheDecl; | ||||
4179 | if (DC) { | ||||
4180 | if (DC->containsDecl(TT->getDecl())) | ||||
4181 | break; | ||||
4182 | captureVariablyModifiedType(Context, T, CSI); | ||||
4183 | } | ||||
4184 | } | ||||
4185 | } | ||||
4186 | } | ||||
4187 | |||||
4188 | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | ||||
4189 | return new (Context) UnaryExprOrTypeTraitExpr( | ||||
4190 | ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd()); | ||||
4191 | } | ||||
4192 | |||||
4193 | /// Build a sizeof or alignof expression given an expression | ||||
4194 | /// operand. | ||||
4195 | ExprResult | ||||
4196 | Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc, | ||||
4197 | UnaryExprOrTypeTrait ExprKind) { | ||||
4198 | ExprResult PE = CheckPlaceholderExpr(E); | ||||
4199 | if (PE.isInvalid()) | ||||
4200 | return ExprError(); | ||||
4201 | |||||
4202 | E = PE.get(); | ||||
4203 | |||||
4204 | // Verify that the operand is valid. | ||||
4205 | bool isInvalid = false; | ||||
4206 | if (E->isTypeDependent()) { | ||||
4207 | // Delay type-checking for type-dependent expressions. | ||||
4208 | } else if (ExprKind == UETT_AlignOf || ExprKind == UETT_PreferredAlignOf) { | ||||
4209 | isInvalid = CheckAlignOfExpr(*this, E, ExprKind); | ||||
4210 | } else if (ExprKind == UETT_VecStep) { | ||||
4211 | isInvalid = CheckVecStepExpr(E); | ||||
4212 | } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) { | ||||
4213 | Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr); | ||||
4214 | isInvalid = true; | ||||
4215 | } else if (E->refersToBitField()) { // C99 6.5.3.4p1. | ||||
4216 | Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0; | ||||
4217 | isInvalid = true; | ||||
4218 | } else { | ||||
4219 | isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf); | ||||
4220 | } | ||||
4221 | |||||
4222 | if (isInvalid) | ||||
4223 | return ExprError(); | ||||
4224 | |||||
4225 | if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) { | ||||
4226 | PE = TransformToPotentiallyEvaluated(E); | ||||
4227 | if (PE.isInvalid()) return ExprError(); | ||||
4228 | E = PE.get(); | ||||
4229 | } | ||||
4230 | |||||
4231 | // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t. | ||||
4232 | return new (Context) UnaryExprOrTypeTraitExpr( | ||||
4233 | ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd()); | ||||
4234 | } | ||||
4235 | |||||
4236 | /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c | ||||
4237 | /// expr and the same for @c alignof and @c __alignof | ||||
4238 | /// Note that the ArgRange is invalid if isType is false. | ||||
4239 | ExprResult | ||||
4240 | Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc, | ||||
4241 | UnaryExprOrTypeTrait ExprKind, bool IsType, | ||||
4242 | void *TyOrEx, SourceRange ArgRange) { | ||||
4243 | // If error parsing type, ignore. | ||||
4244 | if (!TyOrEx) return ExprError(); | ||||
4245 | |||||
4246 | if (IsType) { | ||||
4247 | TypeSourceInfo *TInfo; | ||||
4248 | (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo); | ||||
4249 | return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange); | ||||
4250 | } | ||||
4251 | |||||
4252 | Expr *ArgEx = (Expr *)TyOrEx; | ||||
4253 | ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind); | ||||
4254 | return Result; | ||||
4255 | } | ||||
4256 | |||||
4257 | static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc, | ||||
4258 | bool IsReal) { | ||||
4259 | if (V.get()->isTypeDependent()) | ||||
4260 | return S.Context.DependentTy; | ||||
4261 | |||||
4262 | // _Real and _Imag are only l-values for normal l-values. | ||||
4263 | if (V.get()->getObjectKind() != OK_Ordinary) { | ||||
4264 | V = S.DefaultLvalueConversion(V.get()); | ||||
4265 | if (V.isInvalid()) | ||||
4266 | return QualType(); | ||||
4267 | } | ||||
4268 | |||||
4269 | // These operators return the element type of a complex type. | ||||
4270 | if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>()) | ||||
4271 | return CT->getElementType(); | ||||
4272 | |||||
4273 | // Otherwise they pass through real integer and floating point types here. | ||||
4274 | if (V.get()->getType()->isArithmeticType()) | ||||
4275 | return V.get()->getType(); | ||||
4276 | |||||
4277 | // Test for placeholders. | ||||
4278 | ExprResult PR = S.CheckPlaceholderExpr(V.get()); | ||||
4279 | if (PR.isInvalid()) return QualType(); | ||||
4280 | if (PR.get() != V.get()) { | ||||
4281 | V = PR; | ||||
4282 | return CheckRealImagOperand(S, V, Loc, IsReal); | ||||
4283 | } | ||||
4284 | |||||
4285 | // Reject anything else. | ||||
4286 | S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType() | ||||
4287 | << (IsReal ? "__real" : "__imag"); | ||||
4288 | return QualType(); | ||||
4289 | } | ||||
4290 | |||||
4291 | |||||
4292 | |||||
4293 | ExprResult | ||||
4294 | Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc, | ||||
4295 | tok::TokenKind Kind, Expr *Input) { | ||||
4296 | UnaryOperatorKind Opc; | ||||
4297 | switch (Kind) { | ||||
4298 | default: llvm_unreachable("Unknown unary op!")::llvm::llvm_unreachable_internal("Unknown unary op!", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4298); | ||||
4299 | case tok::plusplus: Opc = UO_PostInc; break; | ||||
4300 | case tok::minusminus: Opc = UO_PostDec; break; | ||||
4301 | } | ||||
4302 | |||||
4303 | // Since this might is a postfix expression, get rid of ParenListExprs. | ||||
4304 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input); | ||||
4305 | if (Result.isInvalid()) return ExprError(); | ||||
4306 | Input = Result.get(); | ||||
4307 | |||||
4308 | return BuildUnaryOp(S, OpLoc, Opc, Input); | ||||
4309 | } | ||||
4310 | |||||
4311 | /// Diagnose if arithmetic on the given ObjC pointer is illegal. | ||||
4312 | /// | ||||
4313 | /// \return true on error | ||||
4314 | static bool checkArithmeticOnObjCPointer(Sema &S, | ||||
4315 | SourceLocation opLoc, | ||||
4316 | Expr *op) { | ||||
4317 | assert(op->getType()->isObjCObjectPointerType())((op->getType()->isObjCObjectPointerType()) ? static_cast <void> (0) : __assert_fail ("op->getType()->isObjCObjectPointerType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4317, __PRETTY_FUNCTION__)); | ||||
4318 | if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() && | ||||
4319 | !S.LangOpts.ObjCSubscriptingLegacyRuntime) | ||||
4320 | return false; | ||||
4321 | |||||
4322 | S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface) | ||||
4323 | << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType() | ||||
4324 | << op->getSourceRange(); | ||||
4325 | return true; | ||||
4326 | } | ||||
4327 | |||||
4328 | static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) { | ||||
4329 | auto *BaseNoParens = Base->IgnoreParens(); | ||||
4330 | if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens)) | ||||
4331 | return MSProp->getPropertyDecl()->getType()->isArrayType(); | ||||
4332 | return isa<MSPropertySubscriptExpr>(BaseNoParens); | ||||
4333 | } | ||||
4334 | |||||
4335 | ExprResult | ||||
4336 | Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc, | ||||
4337 | Expr *idx, SourceLocation rbLoc) { | ||||
4338 | if (base
| ||||
4339 | base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection)) | ||||
4340 | return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(), | ||||
4341 | /*Length=*/nullptr, rbLoc); | ||||
4342 | |||||
4343 | // Since this might be a postfix expression, get rid of ParenListExprs. | ||||
4344 | if (isa<ParenListExpr>(base)) { | ||||
4345 | ExprResult result = MaybeConvertParenListExprToParenExpr(S, base); | ||||
4346 | if (result.isInvalid()) return ExprError(); | ||||
4347 | base = result.get(); | ||||
4348 | } | ||||
4349 | |||||
4350 | // A comma-expression as the index is deprecated in C++2a onwards. | ||||
4351 | if (getLangOpts().CPlusPlus2a && | ||||
4352 | ((isa<BinaryOperator>(idx) && cast<BinaryOperator>(idx)->isCommaOp()) || | ||||
4353 | (isa<CXXOperatorCallExpr>(idx) && | ||||
4354 | cast<CXXOperatorCallExpr>(idx)->getOperator() == OO_Comma))) { | ||||
4355 | Diag(idx->getExprLoc(), diag::warn_deprecated_comma_subscript) | ||||
4356 | << SourceRange(base->getBeginLoc(), rbLoc); | ||||
4357 | } | ||||
4358 | |||||
4359 | // Handle any non-overload placeholder types in the base and index | ||||
4360 | // expressions. We can't handle overloads here because the other | ||||
4361 | // operand might be an overloadable type, in which case the overload | ||||
4362 | // resolution for the operator overload should get the first crack | ||||
4363 | // at the overload. | ||||
4364 | bool IsMSPropertySubscript = false; | ||||
4365 | if (base->getType()->isNonOverloadPlaceholderType()) { | ||||
4366 | IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base); | ||||
4367 | if (!IsMSPropertySubscript) { | ||||
4368 | ExprResult result = CheckPlaceholderExpr(base); | ||||
4369 | if (result.isInvalid()) | ||||
4370 | return ExprError(); | ||||
4371 | base = result.get(); | ||||
4372 | } | ||||
4373 | } | ||||
4374 | if (idx->getType()->isNonOverloadPlaceholderType()) { | ||||
4375 | ExprResult result = CheckPlaceholderExpr(idx); | ||||
4376 | if (result.isInvalid()) return ExprError(); | ||||
4377 | idx = result.get(); | ||||
4378 | } | ||||
4379 | |||||
4380 | // Build an unanalyzed expression if either operand is type-dependent. | ||||
4381 | if (getLangOpts().CPlusPlus && | ||||
4382 | (base->isTypeDependent() || idx->isTypeDependent())) { | ||||
4383 | return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy, | ||||
4384 | VK_LValue, OK_Ordinary, rbLoc); | ||||
4385 | } | ||||
4386 | |||||
4387 | // MSDN, property (C++) | ||||
4388 | // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx | ||||
4389 | // This attribute can also be used in the declaration of an empty array in a | ||||
4390 | // class or structure definition. For example: | ||||
4391 | // __declspec(property(get=GetX, put=PutX)) int x[]; | ||||
4392 | // The above statement indicates that x[] can be used with one or more array | ||||
4393 | // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b), | ||||
4394 | // and p->x[a][b] = i will be turned into p->PutX(a, b, i); | ||||
4395 | if (IsMSPropertySubscript
| ||||
4396 | // Build MS property subscript expression if base is MS property reference | ||||
4397 | // or MS property subscript. | ||||
4398 | return new (Context) MSPropertySubscriptExpr( | ||||
4399 | base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc); | ||||
4400 | } | ||||
4401 | |||||
4402 | // Use C++ overloaded-operator rules if either operand has record | ||||
4403 | // type. The spec says to do this if either type is *overloadable*, | ||||
4404 | // but enum types can't declare subscript operators or conversion | ||||
4405 | // operators, so there's nothing interesting for overload resolution | ||||
4406 | // to do if there aren't any record types involved. | ||||
4407 | // | ||||
4408 | // ObjC pointers have their own subscripting logic that is not tied | ||||
4409 | // to overload resolution and so should not take this path. | ||||
4410 | if (getLangOpts().CPlusPlus
| ||||
4411 | (base->getType()->isRecordType() || | ||||
4412 | (!base->getType()->isObjCObjectPointerType() && | ||||
4413 | idx->getType()->isRecordType()))) { | ||||
4414 | return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx); | ||||
4415 | } | ||||
4416 | |||||
4417 | ExprResult Res = CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc); | ||||
4418 | |||||
4419 | if (!Res.isInvalid() && isa<ArraySubscriptExpr>(Res.get())) | ||||
4420 | CheckSubscriptAccessOfNoDeref(cast<ArraySubscriptExpr>(Res.get())); | ||||
4421 | |||||
4422 | return Res; | ||||
4423 | } | ||||
4424 | |||||
4425 | void Sema::CheckAddressOfNoDeref(const Expr *E) { | ||||
4426 | ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); | ||||
4427 | const Expr *StrippedExpr = E->IgnoreParenImpCasts(); | ||||
4428 | |||||
4429 | // For expressions like `&(*s).b`, the base is recorded and what should be | ||||
4430 | // checked. | ||||
4431 | const MemberExpr *Member = nullptr; | ||||
4432 | while ((Member = dyn_cast<MemberExpr>(StrippedExpr)) && !Member->isArrow()) | ||||
4433 | StrippedExpr = Member->getBase()->IgnoreParenImpCasts(); | ||||
4434 | |||||
4435 | LastRecord.PossibleDerefs.erase(StrippedExpr); | ||||
4436 | } | ||||
4437 | |||||
4438 | void Sema::CheckSubscriptAccessOfNoDeref(const ArraySubscriptExpr *E) { | ||||
4439 | QualType ResultTy = E->getType(); | ||||
4440 | ExpressionEvaluationContextRecord &LastRecord = ExprEvalContexts.back(); | ||||
4441 | |||||
4442 | // Bail if the element is an array since it is not memory access. | ||||
4443 | if (isa<ArrayType>(ResultTy)) | ||||
4444 | return; | ||||
4445 | |||||
4446 | if (ResultTy->hasAttr(attr::NoDeref)) { | ||||
4447 | LastRecord.PossibleDerefs.insert(E); | ||||
4448 | return; | ||||
4449 | } | ||||
4450 | |||||
4451 | // Check if the base type is a pointer to a member access of a struct | ||||
4452 | // marked with noderef. | ||||
4453 | const Expr *Base = E->getBase(); | ||||
4454 | QualType BaseTy = Base->getType(); | ||||
4455 | if (!(isa<ArrayType>(BaseTy) || isa<PointerType>(BaseTy))) | ||||
4456 | // Not a pointer access | ||||
4457 | return; | ||||
4458 | |||||
4459 | const MemberExpr *Member = nullptr; | ||||
4460 | while ((Member = dyn_cast<MemberExpr>(Base->IgnoreParenCasts())) && | ||||
4461 | Member->isArrow()) | ||||
4462 | Base = Member->getBase(); | ||||
4463 | |||||
4464 | if (const auto *Ptr = dyn_cast<PointerType>(Base->getType())) { | ||||
4465 | if (Ptr->getPointeeType()->hasAttr(attr::NoDeref)) | ||||
4466 | LastRecord.PossibleDerefs.insert(E); | ||||
4467 | } | ||||
4468 | } | ||||
4469 | |||||
4470 | ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc, | ||||
4471 | Expr *LowerBound, | ||||
4472 | SourceLocation ColonLoc, Expr *Length, | ||||
4473 | SourceLocation RBLoc) { | ||||
4474 | if (Base->getType()->isPlaceholderType() && | ||||
4475 | !Base->getType()->isSpecificPlaceholderType( | ||||
4476 | BuiltinType::OMPArraySection)) { | ||||
4477 | ExprResult Result = CheckPlaceholderExpr(Base); | ||||
4478 | if (Result.isInvalid()) | ||||
4479 | return ExprError(); | ||||
4480 | Base = Result.get(); | ||||
4481 | } | ||||
4482 | if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) { | ||||
4483 | ExprResult Result = CheckPlaceholderExpr(LowerBound); | ||||
4484 | if (Result.isInvalid()) | ||||
4485 | return ExprError(); | ||||
4486 | Result = DefaultLvalueConversion(Result.get()); | ||||
4487 | if (Result.isInvalid()) | ||||
4488 | return ExprError(); | ||||
4489 | LowerBound = Result.get(); | ||||
4490 | } | ||||
4491 | if (Length && Length->getType()->isNonOverloadPlaceholderType()) { | ||||
4492 | ExprResult Result = CheckPlaceholderExpr(Length); | ||||
4493 | if (Result.isInvalid()) | ||||
4494 | return ExprError(); | ||||
4495 | Result = DefaultLvalueConversion(Result.get()); | ||||
4496 | if (Result.isInvalid()) | ||||
4497 | return ExprError(); | ||||
4498 | Length = Result.get(); | ||||
4499 | } | ||||
4500 | |||||
4501 | // Build an unanalyzed expression if either operand is type-dependent. | ||||
4502 | if (Base->isTypeDependent() || | ||||
4503 | (LowerBound && | ||||
4504 | (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) || | ||||
4505 | (Length && (Length->isTypeDependent() || Length->isValueDependent()))) { | ||||
4506 | return new (Context) | ||||
4507 | OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy, | ||||
4508 | VK_LValue, OK_Ordinary, ColonLoc, RBLoc); | ||||
4509 | } | ||||
4510 | |||||
4511 | // Perform default conversions. | ||||
4512 | QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base); | ||||
4513 | QualType ResultTy; | ||||
4514 | if (OriginalTy->isAnyPointerType()) { | ||||
4515 | ResultTy = OriginalTy->getPointeeType(); | ||||
4516 | } else if (OriginalTy->isArrayType()) { | ||||
4517 | ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType(); | ||||
4518 | } else { | ||||
4519 | return ExprError( | ||||
4520 | Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value) | ||||
4521 | << Base->getSourceRange()); | ||||
4522 | } | ||||
4523 | // C99 6.5.2.1p1 | ||||
4524 | if (LowerBound) { | ||||
4525 | auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(), | ||||
4526 | LowerBound); | ||||
4527 | if (Res.isInvalid()) | ||||
4528 | return ExprError(Diag(LowerBound->getExprLoc(), | ||||
4529 | diag::err_omp_typecheck_section_not_integer) | ||||
4530 | << 0 << LowerBound->getSourceRange()); | ||||
4531 | LowerBound = Res.get(); | ||||
4532 | |||||
4533 | if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | ||||
4534 | LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | ||||
4535 | Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char) | ||||
4536 | << 0 << LowerBound->getSourceRange(); | ||||
4537 | } | ||||
4538 | if (Length) { | ||||
4539 | auto Res = | ||||
4540 | PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length); | ||||
4541 | if (Res.isInvalid()) | ||||
4542 | return ExprError(Diag(Length->getExprLoc(), | ||||
4543 | diag::err_omp_typecheck_section_not_integer) | ||||
4544 | << 1 << Length->getSourceRange()); | ||||
4545 | Length = Res.get(); | ||||
4546 | |||||
4547 | if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | ||||
4548 | Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | ||||
4549 | Diag(Length->getExprLoc(), diag::warn_omp_section_is_char) | ||||
4550 | << 1 << Length->getSourceRange(); | ||||
4551 | } | ||||
4552 | |||||
4553 | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | ||||
4554 | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object | ||||
4555 | // type. Note that functions are not objects, and that (in C99 parlance) | ||||
4556 | // incomplete types are not object types. | ||||
4557 | if (ResultTy->isFunctionType()) { | ||||
4558 | Diag(Base->getExprLoc(), diag::err_omp_section_function_type) | ||||
4559 | << ResultTy << Base->getSourceRange(); | ||||
4560 | return ExprError(); | ||||
4561 | } | ||||
4562 | |||||
4563 | if (RequireCompleteType(Base->getExprLoc(), ResultTy, | ||||
4564 | diag::err_omp_section_incomplete_type, Base)) | ||||
4565 | return ExprError(); | ||||
4566 | |||||
4567 | if (LowerBound && !OriginalTy->isAnyPointerType()) { | ||||
4568 | Expr::EvalResult Result; | ||||
4569 | if (LowerBound->EvaluateAsInt(Result, Context)) { | ||||
4570 | // OpenMP 4.5, [2.4 Array Sections] | ||||
4571 | // The array section must be a subset of the original array. | ||||
4572 | llvm::APSInt LowerBoundValue = Result.Val.getInt(); | ||||
4573 | if (LowerBoundValue.isNegative()) { | ||||
4574 | Diag(LowerBound->getExprLoc(), diag::err_omp_section_not_subset_of_array) | ||||
4575 | << LowerBound->getSourceRange(); | ||||
4576 | return ExprError(); | ||||
4577 | } | ||||
4578 | } | ||||
4579 | } | ||||
4580 | |||||
4581 | if (Length) { | ||||
4582 | Expr::EvalResult Result; | ||||
4583 | if (Length->EvaluateAsInt(Result, Context)) { | ||||
4584 | // OpenMP 4.5, [2.4 Array Sections] | ||||
4585 | // The length must evaluate to non-negative integers. | ||||
4586 | llvm::APSInt LengthValue = Result.Val.getInt(); | ||||
4587 | if (LengthValue.isNegative()) { | ||||
4588 | Diag(Length->getExprLoc(), diag::err_omp_section_length_negative) | ||||
4589 | << LengthValue.toString(/*Radix=*/10, /*Signed=*/true) | ||||
4590 | << Length->getSourceRange(); | ||||
4591 | return ExprError(); | ||||
4592 | } | ||||
4593 | } | ||||
4594 | } else if (ColonLoc.isValid() && | ||||
4595 | (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() && | ||||
4596 | !OriginalTy->isVariableArrayType()))) { | ||||
4597 | // OpenMP 4.5, [2.4 Array Sections] | ||||
4598 | // When the size of the array dimension is not known, the length must be | ||||
4599 | // specified explicitly. | ||||
4600 | Diag(ColonLoc, diag::err_omp_section_length_undefined) | ||||
4601 | << (!OriginalTy.isNull() && OriginalTy->isArrayType()); | ||||
4602 | return ExprError(); | ||||
4603 | } | ||||
4604 | |||||
4605 | if (!Base->getType()->isSpecificPlaceholderType( | ||||
4606 | BuiltinType::OMPArraySection)) { | ||||
4607 | ExprResult Result = DefaultFunctionArrayLvalueConversion(Base); | ||||
4608 | if (Result.isInvalid()) | ||||
4609 | return ExprError(); | ||||
4610 | Base = Result.get(); | ||||
4611 | } | ||||
4612 | return new (Context) | ||||
4613 | OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy, | ||||
4614 | VK_LValue, OK_Ordinary, ColonLoc, RBLoc); | ||||
4615 | } | ||||
4616 | |||||
4617 | ExprResult | ||||
4618 | Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc, | ||||
4619 | Expr *Idx, SourceLocation RLoc) { | ||||
4620 | Expr *LHSExp = Base; | ||||
4621 | Expr *RHSExp = Idx; | ||||
4622 | |||||
4623 | ExprValueKind VK = VK_LValue; | ||||
4624 | ExprObjectKind OK = OK_Ordinary; | ||||
4625 | |||||
4626 | // Per C++ core issue 1213, the result is an xvalue if either operand is | ||||
4627 | // a non-lvalue array, and an lvalue otherwise. | ||||
4628 | if (getLangOpts().CPlusPlus11) { | ||||
4629 | for (auto *Op : {LHSExp, RHSExp}) { | ||||
4630 | Op = Op->IgnoreImplicit(); | ||||
4631 | if (Op->getType()->isArrayType() && !Op->isLValue()) | ||||
4632 | VK = VK_XValue; | ||||
4633 | } | ||||
4634 | } | ||||
4635 | |||||
4636 | // Perform default conversions. | ||||
4637 | if (!LHSExp->getType()->getAs<VectorType>()) { | ||||
4638 | ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp); | ||||
4639 | if (Result.isInvalid()) | ||||
4640 | return ExprError(); | ||||
4641 | LHSExp = Result.get(); | ||||
4642 | } | ||||
4643 | ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp); | ||||
4644 | if (Result.isInvalid()) | ||||
4645 | return ExprError(); | ||||
4646 | RHSExp = Result.get(); | ||||
4647 | |||||
4648 | QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType(); | ||||
4649 | |||||
4650 | // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent | ||||
4651 | // to the expression *((e1)+(e2)). This means the array "Base" may actually be | ||||
4652 | // in the subscript position. As a result, we need to derive the array base | ||||
4653 | // and index from the expression types. | ||||
4654 | Expr *BaseExpr, *IndexExpr; | ||||
4655 | QualType ResultType; | ||||
4656 | if (LHSTy->isDependentType() || RHSTy->isDependentType()) { | ||||
4657 | BaseExpr = LHSExp; | ||||
4658 | IndexExpr = RHSExp; | ||||
4659 | ResultType = Context.DependentTy; | ||||
4660 | } else if (const PointerType *PTy
| ||||
4661 | BaseExpr = LHSExp; | ||||
4662 | IndexExpr = RHSExp; | ||||
4663 | ResultType = PTy->getPointeeType(); | ||||
4664 | } else if (const ObjCObjectPointerType *PTy
| ||||
4665 | LHSTy->getAs<ObjCObjectPointerType>()) { | ||||
4666 | BaseExpr = LHSExp; | ||||
4667 | IndexExpr = RHSExp; | ||||
4668 | |||||
4669 | // Use custom logic if this should be the pseudo-object subscript | ||||
4670 | // expression. | ||||
4671 | if (!LangOpts.isSubscriptPointerArithmetic()) | ||||
4672 | return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr, | ||||
4673 | nullptr); | ||||
4674 | |||||
4675 | ResultType = PTy->getPointeeType(); | ||||
4676 | } else if (const PointerType *PTy
| ||||
4677 | // Handle the uncommon case of "123[Ptr]". | ||||
4678 | BaseExpr = RHSExp; | ||||
4679 | IndexExpr = LHSExp; | ||||
4680 | ResultType = PTy->getPointeeType(); | ||||
4681 | } else if (const ObjCObjectPointerType *PTy
| ||||
4682 | RHSTy->getAs<ObjCObjectPointerType>()) { | ||||
4683 | // Handle the uncommon case of "123[Ptr]". | ||||
4684 | BaseExpr = RHSExp; | ||||
4685 | IndexExpr = LHSExp; | ||||
4686 | ResultType = PTy->getPointeeType(); | ||||
4687 | if (!LangOpts.isSubscriptPointerArithmetic()) { | ||||
4688 | Diag(LLoc, diag::err_subscript_nonfragile_interface) | ||||
4689 | << ResultType << BaseExpr->getSourceRange(); | ||||
4690 | return ExprError(); | ||||
4691 | } | ||||
4692 | } else if (const VectorType *VTy
| ||||
4693 | BaseExpr = LHSExp; // vectors: V[123] | ||||
4694 | IndexExpr = RHSExp; | ||||
4695 | // We apply C++ DR1213 to vector subscripting too. | ||||
4696 | if (getLangOpts().CPlusPlus11 && LHSExp->getValueKind() == VK_RValue) { | ||||
4697 | ExprResult Materialized = TemporaryMaterializationConversion(LHSExp); | ||||
4698 | if (Materialized.isInvalid()) | ||||
4699 | return ExprError(); | ||||
4700 | LHSExp = Materialized.get(); | ||||
4701 | } | ||||
4702 | VK = LHSExp->getValueKind(); | ||||
4703 | if (VK != VK_RValue) | ||||
4704 | OK = OK_VectorComponent; | ||||
4705 | |||||
4706 | ResultType = VTy->getElementType(); | ||||
4707 | QualType BaseType = BaseExpr->getType(); | ||||
4708 | Qualifiers BaseQuals = BaseType.getQualifiers(); | ||||
4709 | Qualifiers MemberQuals = ResultType.getQualifiers(); | ||||
4710 | Qualifiers Combined = BaseQuals + MemberQuals; | ||||
4711 | if (Combined != MemberQuals) | ||||
4712 | ResultType = Context.getQualifiedType(ResultType, Combined); | ||||
4713 | } else if (LHSTy->isArrayType()) { | ||||
4714 | // If we see an array that wasn't promoted by | ||||
4715 | // DefaultFunctionArrayLvalueConversion, it must be an array that | ||||
4716 | // wasn't promoted because of the C90 rule that doesn't | ||||
4717 | // allow promoting non-lvalue arrays. Warn, then | ||||
4718 | // force the promotion here. | ||||
4719 | Diag(LHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) | ||||
4720 | << LHSExp->getSourceRange(); | ||||
4721 | LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy), | ||||
4722 | CK_ArrayToPointerDecay).get(); | ||||
4723 | LHSTy = LHSExp->getType(); | ||||
4724 | |||||
4725 | BaseExpr = LHSExp; | ||||
4726 | IndexExpr = RHSExp; | ||||
4727 | ResultType = LHSTy->getAs<PointerType>()->getPointeeType(); | ||||
4728 | } else if (RHSTy->isArrayType()) { | ||||
4729 | // Same as previous, except for 123[f().a] case | ||||
4730 | Diag(RHSExp->getBeginLoc(), diag::ext_subscript_non_lvalue) | ||||
4731 | << RHSExp->getSourceRange(); | ||||
4732 | RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy), | ||||
4733 | CK_ArrayToPointerDecay).get(); | ||||
4734 | RHSTy = RHSExp->getType(); | ||||
4735 | |||||
4736 | BaseExpr = RHSExp; | ||||
4737 | IndexExpr = LHSExp; | ||||
4738 | ResultType = RHSTy->getAs<PointerType>()->getPointeeType(); | ||||
| |||||
4739 | } else { | ||||
4740 | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value) | ||||
4741 | << LHSExp->getSourceRange() << RHSExp->getSourceRange()); | ||||
4742 | } | ||||
4743 | // C99 6.5.2.1p1 | ||||
4744 | if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent()) | ||||
4745 | return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer) | ||||
4746 | << IndexExpr->getSourceRange()); | ||||
4747 | |||||
4748 | if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) || | ||||
4749 | IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U)) | ||||
4750 | && !IndexExpr->isTypeDependent()) | ||||
4751 | Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange(); | ||||
4752 | |||||
4753 | // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly, | ||||
4754 | // C++ [expr.sub]p1: The type "T" shall be a completely-defined object | ||||
4755 | // type. Note that Functions are not objects, and that (in C99 parlance) | ||||
4756 | // incomplete types are not object types. | ||||
4757 | if (ResultType->isFunctionType()) { | ||||
4758 | Diag(BaseExpr->getBeginLoc(), diag::err_subscript_function_type) | ||||
4759 | << ResultType << BaseExpr->getSourceRange(); | ||||
4760 | return ExprError(); | ||||
4761 | } | ||||
4762 | |||||
4763 | if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) { | ||||
4764 | // GNU extension: subscripting on pointer to void | ||||
4765 | Diag(LLoc, diag::ext_gnu_subscript_void_type) | ||||
4766 | << BaseExpr->getSourceRange(); | ||||
4767 | |||||
4768 | // C forbids expressions of unqualified void type from being l-values. | ||||
4769 | // See IsCForbiddenLValueType. | ||||
4770 | if (!ResultType.hasQualifiers()) VK = VK_RValue; | ||||
4771 | } else if (!ResultType->isDependentType() && | ||||
4772 | RequireCompleteType(LLoc, ResultType, | ||||
4773 | diag::err_subscript_incomplete_type, BaseExpr)) | ||||
4774 | return ExprError(); | ||||
4775 | |||||
4776 | assert(VK == VK_RValue || LangOpts.CPlusPlus ||((VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType ()) ? static_cast<void> (0) : __assert_fail ("VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4777, __PRETTY_FUNCTION__)) | ||||
4777 | !ResultType.isCForbiddenLValueType())((VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType ()) ? static_cast<void> (0) : __assert_fail ("VK == VK_RValue || LangOpts.CPlusPlus || !ResultType.isCForbiddenLValueType()" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4777, __PRETTY_FUNCTION__)); | ||||
4778 | |||||
4779 | if (LHSExp->IgnoreParenImpCasts()->getType()->isVariablyModifiedType() && | ||||
4780 | FunctionScopes.size() > 1) { | ||||
4781 | if (auto *TT = | ||||
4782 | LHSExp->IgnoreParenImpCasts()->getType()->getAs<TypedefType>()) { | ||||
4783 | for (auto I = FunctionScopes.rbegin(), | ||||
4784 | E = std::prev(FunctionScopes.rend()); | ||||
4785 | I != E; ++I) { | ||||
4786 | auto *CSI = dyn_cast<CapturingScopeInfo>(*I); | ||||
4787 | if (CSI == nullptr) | ||||
4788 | break; | ||||
4789 | DeclContext *DC = nullptr; | ||||
4790 | if (auto *LSI = dyn_cast<LambdaScopeInfo>(CSI)) | ||||
4791 | DC = LSI->CallOperator; | ||||
4792 | else if (auto *CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) | ||||
4793 | DC = CRSI->TheCapturedDecl; | ||||
4794 | else if (auto *BSI = dyn_cast<BlockScopeInfo>(CSI)) | ||||
4795 | DC = BSI->TheDecl; | ||||
4796 | if (DC) { | ||||
4797 | if (DC->containsDecl(TT->getDecl())) | ||||
4798 | break; | ||||
4799 | captureVariablyModifiedType( | ||||
4800 | Context, LHSExp->IgnoreParenImpCasts()->getType(), CSI); | ||||
4801 | } | ||||
4802 | } | ||||
4803 | } | ||||
4804 | } | ||||
4805 | |||||
4806 | return new (Context) | ||||
4807 | ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc); | ||||
4808 | } | ||||
4809 | |||||
4810 | bool Sema::CheckCXXDefaultArgExpr(SourceLocation CallLoc, FunctionDecl *FD, | ||||
4811 | ParmVarDecl *Param) { | ||||
4812 | if (Param->hasUnparsedDefaultArg()) { | ||||
4813 | Diag(CallLoc, | ||||
4814 | diag::err_use_of_default_argument_to_function_declared_later) << | ||||
4815 | FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName(); | ||||
4816 | Diag(UnparsedDefaultArgLocs[Param], | ||||
4817 | diag::note_default_argument_declared_here); | ||||
4818 | return true; | ||||
4819 | } | ||||
4820 | |||||
4821 | if (Param->hasUninstantiatedDefaultArg()) { | ||||
4822 | Expr *UninstExpr = Param->getUninstantiatedDefaultArg(); | ||||
4823 | |||||
4824 | EnterExpressionEvaluationContext EvalContext( | ||||
4825 | *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); | ||||
4826 | |||||
4827 | // Instantiate the expression. | ||||
4828 | // | ||||
4829 | // FIXME: Pass in a correct Pattern argument, otherwise | ||||
4830 | // getTemplateInstantiationArgs uses the lexical context of FD, e.g. | ||||
4831 | // | ||||
4832 | // template<typename T> | ||||
4833 | // struct A { | ||||
4834 | // static int FooImpl(); | ||||
4835 | // | ||||
4836 | // template<typename Tp> | ||||
4837 | // // bug: default argument A<T>::FooImpl() is evaluated with 2-level | ||||
4838 | // // template argument list [[T], [Tp]], should be [[Tp]]. | ||||
4839 | // friend A<Tp> Foo(int a); | ||||
4840 | // }; | ||||
4841 | // | ||||
4842 | // template<typename T> | ||||
4843 | // A<T> Foo(int a = A<T>::FooImpl()); | ||||
4844 | MultiLevelTemplateArgumentList MutiLevelArgList | ||||
4845 | = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true); | ||||
4846 | |||||
4847 | InstantiatingTemplate Inst(*this, CallLoc, Param, | ||||
4848 | MutiLevelArgList.getInnermost()); | ||||
4849 | if (Inst.isInvalid()) | ||||
4850 | return true; | ||||
4851 | if (Inst.isAlreadyInstantiating()) { | ||||
4852 | Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; | ||||
4853 | Param->setInvalidDecl(); | ||||
4854 | return true; | ||||
4855 | } | ||||
4856 | |||||
4857 | ExprResult Result; | ||||
4858 | { | ||||
4859 | // C++ [dcl.fct.default]p5: | ||||
4860 | // The names in the [default argument] expression are bound, and | ||||
4861 | // the semantic constraints are checked, at the point where the | ||||
4862 | // default argument expression appears. | ||||
4863 | ContextRAII SavedContext(*this, FD); | ||||
4864 | LocalInstantiationScope Local(*this); | ||||
4865 | runWithSufficientStackSpace(CallLoc, [&] { | ||||
4866 | Result = SubstInitializer(UninstExpr, MutiLevelArgList, | ||||
4867 | /*DirectInit*/false); | ||||
4868 | }); | ||||
4869 | } | ||||
4870 | if (Result.isInvalid()) | ||||
4871 | return true; | ||||
4872 | |||||
4873 | // Check the expression as an initializer for the parameter. | ||||
4874 | InitializedEntity Entity | ||||
4875 | = InitializedEntity::InitializeParameter(Context, Param); | ||||
4876 | InitializationKind Kind = InitializationKind::CreateCopy( | ||||
4877 | Param->getLocation(), | ||||
4878 | /*FIXME:EqualLoc*/ UninstExpr->getBeginLoc()); | ||||
4879 | Expr *ResultE = Result.getAs<Expr>(); | ||||
4880 | |||||
4881 | InitializationSequence InitSeq(*this, Entity, Kind, ResultE); | ||||
4882 | Result = InitSeq.Perform(*this, Entity, Kind, ResultE); | ||||
4883 | if (Result.isInvalid()) | ||||
4884 | return true; | ||||
4885 | |||||
4886 | Result = | ||||
4887 | ActOnFinishFullExpr(Result.getAs<Expr>(), Param->getOuterLocStart(), | ||||
4888 | /*DiscardedValue*/ false); | ||||
4889 | if (Result.isInvalid()) | ||||
4890 | return true; | ||||
4891 | |||||
4892 | // Remember the instantiated default argument. | ||||
4893 | Param->setDefaultArg(Result.getAs<Expr>()); | ||||
4894 | if (ASTMutationListener *L = getASTMutationListener()) { | ||||
4895 | L->DefaultArgumentInstantiated(Param); | ||||
4896 | } | ||||
4897 | } | ||||
4898 | |||||
4899 | // If the default argument expression is not set yet, we are building it now. | ||||
4900 | if (!Param->hasInit()) { | ||||
4901 | Diag(Param->getBeginLoc(), diag::err_recursive_default_argument) << FD; | ||||
4902 | Param->setInvalidDecl(); | ||||
4903 | return true; | ||||
4904 | } | ||||
4905 | |||||
4906 | // If the default expression creates temporaries, we need to | ||||
4907 | // push them to the current stack of expression temporaries so they'll | ||||
4908 | // be properly destroyed. | ||||
4909 | // FIXME: We should really be rebuilding the default argument with new | ||||
4910 | // bound temporaries; see the comment in PR5810. | ||||
4911 | // We don't need to do that with block decls, though, because | ||||
4912 | // blocks in default argument expression can never capture anything. | ||||
4913 | if (auto Init = dyn_cast<ExprWithCleanups>(Param->getInit())) { | ||||
4914 | // Set the "needs cleanups" bit regardless of whether there are | ||||
4915 | // any explicit objects. | ||||
4916 | Cleanup.setExprNeedsCleanups(Init->cleanupsHaveSideEffects()); | ||||
4917 | |||||
4918 | // Append all the objects to the cleanup list. Right now, this | ||||
4919 | // should always be a no-op, because blocks in default argument | ||||
4920 | // expressions should never be able to capture anything. | ||||
4921 | assert(!Init->getNumObjects() &&((!Init->getNumObjects() && "default argument expression has capturing blocks?" ) ? static_cast<void> (0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4922, __PRETTY_FUNCTION__)) | ||||
4922 | "default argument expression has capturing blocks?")((!Init->getNumObjects() && "default argument expression has capturing blocks?" ) ? static_cast<void> (0) : __assert_fail ("!Init->getNumObjects() && \"default argument expression has capturing blocks?\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 4922, __PRETTY_FUNCTION__)); | ||||
4923 | } | ||||
4924 | |||||
4925 | // We already type-checked the argument, so we know it works. | ||||
4926 | // Just mark all of the declarations in this potentially-evaluated expression | ||||
4927 | // as being "referenced". | ||||
4928 | EnterExpressionEvaluationContext EvalContext( | ||||
4929 | *this, ExpressionEvaluationContext::PotentiallyEvaluated, Param); | ||||
4930 | MarkDeclarationsReferencedInExpr(Param->getDefaultArg(), | ||||
4931 | /*SkipLocalVariables=*/true); | ||||
4932 | return false; | ||||
4933 | } | ||||
4934 | |||||
4935 | ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc, | ||||
4936 | FunctionDecl *FD, ParmVarDecl *Param) { | ||||
4937 | if (CheckCXXDefaultArgExpr(CallLoc, FD, Param)) | ||||
4938 | return ExprError(); | ||||
4939 | return CXXDefaultArgExpr::Create(Context, CallLoc, Param, CurContext); | ||||
4940 | } | ||||
4941 | |||||
4942 | Sema::VariadicCallType | ||||
4943 | Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto, | ||||
4944 | Expr *Fn) { | ||||
4945 | if (Proto && Proto->isVariadic()) { | ||||
4946 | if (dyn_cast_or_null<CXXConstructorDecl>(FDecl)) | ||||
4947 | return VariadicConstructor; | ||||
4948 | else if (Fn && Fn->getType()->isBlockPointerType()) | ||||
4949 | return VariadicBlock; | ||||
4950 | else if (FDecl) { | ||||
4951 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl)) | ||||
4952 | if (Method->isInstance()) | ||||
4953 | return VariadicMethod; | ||||
4954 | } else if (Fn && Fn->getType() == Context.BoundMemberTy) | ||||
4955 | return VariadicMethod; | ||||
4956 | return VariadicFunction; | ||||
4957 | } | ||||
4958 | return VariadicDoesNotApply; | ||||
4959 | } | ||||
4960 | |||||
4961 | namespace { | ||||
4962 | class FunctionCallCCC final : public FunctionCallFilterCCC { | ||||
4963 | public: | ||||
4964 | FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName, | ||||
4965 | unsigned NumArgs, MemberExpr *ME) | ||||
4966 | : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME), | ||||
4967 | FunctionName(FuncName) {} | ||||
4968 | |||||
4969 | bool ValidateCandidate(const TypoCorrection &candidate) override { | ||||
4970 | if (!candidate.getCorrectionSpecifier() || | ||||
4971 | candidate.getCorrectionAsIdentifierInfo() != FunctionName) { | ||||
4972 | return false; | ||||
4973 | } | ||||
4974 | |||||
4975 | return FunctionCallFilterCCC::ValidateCandidate(candidate); | ||||
4976 | } | ||||
4977 | |||||
4978 | std::unique_ptr<CorrectionCandidateCallback> clone() override { | ||||
4979 | return std::make_unique<FunctionCallCCC>(*this); | ||||
4980 | } | ||||
4981 | |||||
4982 | private: | ||||
4983 | const IdentifierInfo *const FunctionName; | ||||
4984 | }; | ||||
4985 | } | ||||
4986 | |||||
4987 | static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn, | ||||
4988 | FunctionDecl *FDecl, | ||||
4989 | ArrayRef<Expr *> Args) { | ||||
4990 | MemberExpr *ME = dyn_cast<MemberExpr>(Fn); | ||||
4991 | DeclarationName FuncName = FDecl->getDeclName(); | ||||
4992 | SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getBeginLoc(); | ||||
4993 | |||||
4994 | FunctionCallCCC CCC(S, FuncName.getAsIdentifierInfo(), Args.size(), ME); | ||||
4995 | if (TypoCorrection Corrected = S.CorrectTypo( | ||||
4996 | DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName, | ||||
4997 | S.getScopeForContext(S.CurContext), nullptr, CCC, | ||||
4998 | Sema::CTK_ErrorRecovery)) { | ||||
4999 | if (NamedDecl *ND = Corrected.getFoundDecl()) { | ||||
5000 | if (Corrected.isOverloaded()) { | ||||
5001 | OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal); | ||||
5002 | OverloadCandidateSet::iterator Best; | ||||
5003 | for (NamedDecl *CD : Corrected) { | ||||
5004 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD)) | ||||
5005 | S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args, | ||||
5006 | OCS); | ||||
5007 | } | ||||
5008 | switch (OCS.BestViableFunction(S, NameLoc, Best)) { | ||||
5009 | case OR_Success: | ||||
5010 | ND = Best->FoundDecl; | ||||
5011 | Corrected.setCorrectionDecl(ND); | ||||
5012 | break; | ||||
5013 | default: | ||||
5014 | break; | ||||
5015 | } | ||||
5016 | } | ||||
5017 | ND = ND->getUnderlyingDecl(); | ||||
5018 | if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) | ||||
5019 | return Corrected; | ||||
5020 | } | ||||
5021 | } | ||||
5022 | return TypoCorrection(); | ||||
5023 | } | ||||
5024 | |||||
5025 | /// ConvertArgumentsForCall - Converts the arguments specified in | ||||
5026 | /// Args/NumArgs to the parameter types of the function FDecl with | ||||
5027 | /// function prototype Proto. Call is the call expression itself, and | ||||
5028 | /// Fn is the function expression. For a C++ member function, this | ||||
5029 | /// routine does not attempt to convert the object argument. Returns | ||||
5030 | /// true if the call is ill-formed. | ||||
5031 | bool | ||||
5032 | Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn, | ||||
5033 | FunctionDecl *FDecl, | ||||
5034 | const FunctionProtoType *Proto, | ||||
5035 | ArrayRef<Expr *> Args, | ||||
5036 | SourceLocation RParenLoc, | ||||
5037 | bool IsExecConfig) { | ||||
5038 | // Bail out early if calling a builtin with custom typechecking. | ||||
5039 | if (FDecl) | ||||
5040 | if (unsigned ID = FDecl->getBuiltinID()) | ||||
5041 | if (Context.BuiltinInfo.hasCustomTypechecking(ID)) | ||||
5042 | return false; | ||||
5043 | |||||
5044 | // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by | ||||
5045 | // assignment, to the types of the corresponding parameter, ... | ||||
5046 | unsigned NumParams = Proto->getNumParams(); | ||||
5047 | bool Invalid = false; | ||||
5048 | unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams; | ||||
5049 | unsigned FnKind = Fn->getType()->isBlockPointerType() | ||||
5050 | ? 1 /* block */ | ||||
5051 | : (IsExecConfig ? 3 /* kernel function (exec config) */ | ||||
5052 | : 0 /* function */); | ||||
5053 | |||||
5054 | // If too few arguments are available (and we don't have default | ||||
5055 | // arguments for the remaining parameters), don't make the call. | ||||
5056 | if (Args.size() < NumParams) { | ||||
5057 | if (Args.size() < MinArgs) { | ||||
5058 | TypoCorrection TC; | ||||
5059 | if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { | ||||
5060 | unsigned diag_id = | ||||
5061 | MinArgs == NumParams && !Proto->isVariadic() | ||||
5062 | ? diag::err_typecheck_call_too_few_args_suggest | ||||
5063 | : diag::err_typecheck_call_too_few_args_at_least_suggest; | ||||
5064 | diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs | ||||
5065 | << static_cast<unsigned>(Args.size()) | ||||
5066 | << TC.getCorrectionRange()); | ||||
5067 | } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName()) | ||||
5068 | Diag(RParenLoc, | ||||
5069 | MinArgs == NumParams && !Proto->isVariadic() | ||||
5070 | ? diag::err_typecheck_call_too_few_args_one | ||||
5071 | : diag::err_typecheck_call_too_few_args_at_least_one) | ||||
5072 | << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange(); | ||||
5073 | else | ||||
5074 | Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic() | ||||
5075 | ? diag::err_typecheck_call_too_few_args | ||||
5076 | : diag::err_typecheck_call_too_few_args_at_least) | ||||
5077 | << FnKind << MinArgs << static_cast<unsigned>(Args.size()) | ||||
5078 | << Fn->getSourceRange(); | ||||
5079 | |||||
5080 | // Emit the location of the prototype. | ||||
5081 | if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) | ||||
5082 | Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl; | ||||
5083 | |||||
5084 | return true; | ||||
5085 | } | ||||
5086 | // We reserve space for the default arguments when we create | ||||
5087 | // the call expression, before calling ConvertArgumentsForCall. | ||||
5088 | assert((Call->getNumArgs() == NumParams) &&(((Call->getNumArgs() == NumParams) && "We should have reserved space for the default arguments before!" ) ? static_cast<void> (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 5089, __PRETTY_FUNCTION__)) | ||||
5089 | "We should have reserved space for the default arguments before!")(((Call->getNumArgs() == NumParams) && "We should have reserved space for the default arguments before!" ) ? static_cast<void> (0) : __assert_fail ("(Call->getNumArgs() == NumParams) && \"We should have reserved space for the default arguments before!\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 5089, __PRETTY_FUNCTION__)); | ||||
5090 | } | ||||
5091 | |||||
5092 | // If too many are passed and not variadic, error on the extras and drop | ||||
5093 | // them. | ||||
5094 | if (Args.size() > NumParams) { | ||||
5095 | if (!Proto->isVariadic()) { | ||||
5096 | TypoCorrection TC; | ||||
5097 | if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) { | ||||
5098 | unsigned diag_id = | ||||
5099 | MinArgs == NumParams && !Proto->isVariadic() | ||||
5100 | ? diag::err_typecheck_call_too_many_args_suggest | ||||
5101 | : diag::err_typecheck_call_too_many_args_at_most_suggest; | ||||
5102 | diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams | ||||
5103 | << static_cast<unsigned>(Args.size()) | ||||
5104 | << TC.getCorrectionRange()); | ||||
5105 | } else if (NumParams == 1 && FDecl && | ||||
5106 | FDecl->getParamDecl(0)->getDeclName()) | ||||
5107 | Diag(Args[NumParams]->getBeginLoc(), | ||||
5108 | MinArgs == NumParams | ||||
5109 | ? diag::err_typecheck_call_too_many_args_one | ||||
5110 | : diag::err_typecheck_call_too_many_args_at_most_one) | ||||
5111 | << FnKind << FDecl->getParamDecl(0) | ||||
5112 | << static_cast<unsigned>(Args.size()) << Fn->getSourceRange() | ||||
5113 | << SourceRange(Args[NumParams]->getBeginLoc(), | ||||
5114 | Args.back()->getEndLoc()); | ||||
5115 | else | ||||
5116 | Diag(Args[NumParams]->getBeginLoc(), | ||||
5117 | MinArgs == NumParams | ||||
5118 | ? diag::err_typecheck_call_too_many_args | ||||
5119 | : diag::err_typecheck_call_too_many_args_at_most) | ||||
5120 | << FnKind << NumParams << static_cast<unsigned>(Args.size()) | ||||
5121 | << Fn->getSourceRange() | ||||
5122 | << SourceRange(Args[NumParams]->getBeginLoc(), | ||||
5123 | Args.back()->getEndLoc()); | ||||
5124 | |||||
5125 | // Emit the location of the prototype. | ||||
5126 | if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig) | ||||
5127 | Diag(FDecl->getBeginLoc(), diag::note_callee_decl) << FDecl; | ||||
5128 | |||||
5129 | // This deletes the extra arguments. | ||||
5130 | Call->shrinkNumArgs(NumParams); | ||||
5131 | return true; | ||||
5132 | } | ||||
5133 | } | ||||
5134 | SmallVector<Expr *, 8> AllArgs; | ||||
5135 | VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn); | ||||
5136 | |||||
5137 | Invalid = GatherArgumentsForCall(Call->getBeginLoc(), FDecl, Proto, 0, Args, | ||||
5138 | AllArgs, CallType); | ||||
5139 | if (Invalid) | ||||
5140 | return true; | ||||
5141 | unsigned TotalNumArgs = AllArgs.size(); | ||||
5142 | for (unsigned i = 0; i < TotalNumArgs; ++i) | ||||
5143 | Call->setArg(i, AllArgs[i]); | ||||
5144 | |||||
5145 | return false; | ||||
5146 | } | ||||
5147 | |||||
5148 | bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl, | ||||
5149 | const FunctionProtoType *Proto, | ||||
5150 | unsigned FirstParam, ArrayRef<Expr *> Args, | ||||
5151 | SmallVectorImpl<Expr *> &AllArgs, | ||||
5152 | VariadicCallType CallType, bool AllowExplicit, | ||||
5153 | bool IsListInitialization) { | ||||
5154 | unsigned NumParams = Proto->getNumParams(); | ||||
5155 | bool Invalid = false; | ||||
5156 | size_t ArgIx = 0; | ||||
5157 | // Continue to check argument types (even if we have too few/many args). | ||||
5158 | for (unsigned i = FirstParam; i < NumParams; i++) { | ||||
5159 | QualType ProtoArgType = Proto->getParamType(i); | ||||
5160 | |||||
5161 | Expr *Arg; | ||||
5162 | ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr; | ||||
5163 | if (ArgIx < Args.size()) { | ||||
5164 | Arg = Args[ArgIx++]; | ||||
5165 | |||||
5166 | if (RequireCompleteType(Arg->getBeginLoc(), ProtoArgType, | ||||
5167 | diag::err_call_incomplete_argument, Arg)) | ||||
5168 | return true; | ||||
5169 | |||||
5170 | // Strip the unbridged-cast placeholder expression off, if applicable. | ||||
5171 | bool CFAudited = false; | ||||
5172 | if (Arg->getType() == Context.ARCUnbridgedCastTy && | ||||
5173 | FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && | ||||
5174 | (!Param || !Param->hasAttr<CFConsumedAttr>())) | ||||
5175 | Arg = stripARCUnbridgedCast(Arg); | ||||
5176 | else if (getLangOpts().ObjCAutoRefCount && | ||||
5177 | FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() && | ||||
5178 | (!Param || !Param->hasAttr<CFConsumedAttr>())) | ||||
5179 | CFAudited = true; | ||||
5180 | |||||
5181 | if (Proto->getExtParameterInfo(i).isNoEscape()) | ||||
5182 | if (auto *BE = dyn_cast<BlockExpr>(Arg->IgnoreParenNoopCasts(Context))) | ||||
5183 | BE->getBlockDecl()->setDoesNotEscape(); | ||||
5184 | |||||
5185 | InitializedEntity Entity = | ||||
5186 | Param ? InitializedEntity::InitializeParameter(Context, Param, | ||||
5187 | ProtoArgType) | ||||
5188 | : InitializedEntity::InitializeParameter( | ||||
5189 | Context, ProtoArgType, Proto->isParamConsumed(i)); | ||||
5190 | |||||
5191 | // Remember that parameter belongs to a CF audited API. | ||||
5192 | if (CFAudited) | ||||
5193 | Entity.setParameterCFAudited(); | ||||
5194 | |||||
5195 | ExprResult ArgE = PerformCopyInitialization( | ||||
5196 | Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit); | ||||
5197 | if (ArgE.isInvalid()) | ||||
5198 | return true; | ||||
5199 | |||||
5200 | Arg = ArgE.getAs<Expr>(); | ||||
5201 | } else { | ||||
5202 | assert(Param && "can't use default arguments without a known callee")((Param && "can't use default arguments without a known callee" ) ? static_cast<void> (0) : __assert_fail ("Param && \"can't use default arguments without a known callee\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 5202, __PRETTY_FUNCTION__)); | ||||
5203 | |||||
5204 | ExprResult ArgExpr = BuildCXXDefaultArgExpr(CallLoc, FDecl, Param); | ||||
5205 | if (ArgExpr.isInvalid()) | ||||
5206 | return true; | ||||
5207 | |||||
5208 | Arg = ArgExpr.getAs<Expr>(); | ||||
5209 | } | ||||
5210 | |||||
5211 | // Check for array bounds violations for each argument to the call. This | ||||
5212 | // check only triggers warnings when the argument isn't a more complex Expr | ||||
5213 | // with its own checking, such as a BinaryOperator. | ||||
5214 | CheckArrayAccess(Arg); | ||||
5215 | |||||
5216 | // Check for violations of C99 static array rules (C99 6.7.5.3p7). | ||||
5217 | CheckStaticArrayArgument(CallLoc, Param, Arg); | ||||
5218 | |||||
5219 | AllArgs.push_back(Arg); | ||||
5220 | } | ||||
5221 | |||||
5222 | // If this is a variadic call, handle args passed through "...". | ||||
5223 | if (CallType != VariadicDoesNotApply) { | ||||
5224 | // Assume that extern "C" functions with variadic arguments that | ||||
5225 | // return __unknown_anytype aren't *really* variadic. | ||||
5226 | if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl && | ||||
5227 | FDecl->isExternC()) { | ||||
5228 | for (Expr *A : Args.slice(ArgIx)) { | ||||
5229 | QualType paramType; // ignored | ||||
5230 | ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType); | ||||
5231 | Invalid |= arg.isInvalid(); | ||||
5232 | AllArgs.push_back(arg.get()); | ||||
5233 | } | ||||
5234 | |||||
5235 | // Otherwise do argument promotion, (C99 6.5.2.2p7). | ||||
5236 | } else { | ||||
5237 | for (Expr *A : Args.slice(ArgIx)) { | ||||
5238 | ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl); | ||||
5239 | Invalid |= Arg.isInvalid(); | ||||
5240 | AllArgs.push_back(Arg.get()); | ||||
5241 | } | ||||
5242 | } | ||||
5243 | |||||
5244 | // Check for array bounds violations. | ||||
5245 | for (Expr *A : Args.slice(ArgIx)) | ||||
5246 | CheckArrayAccess(A); | ||||
5247 | } | ||||
5248 | return Invalid; | ||||
5249 | } | ||||
5250 | |||||
5251 | static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) { | ||||
5252 | TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc(); | ||||
5253 | if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>()) | ||||
5254 | TL = DTL.getOriginalLoc(); | ||||
5255 | if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>()) | ||||
5256 | S.Diag(PVD->getLocation(), diag::note_callee_static_array) | ||||
5257 | << ATL.getLocalSourceRange(); | ||||
5258 | } | ||||
5259 | |||||
5260 | /// CheckStaticArrayArgument - If the given argument corresponds to a static | ||||
5261 | /// array parameter, check that it is non-null, and that if it is formed by | ||||
5262 | /// array-to-pointer decay, the underlying array is sufficiently large. | ||||
5263 | /// | ||||
5264 | /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the | ||||
5265 | /// array type derivation, then for each call to the function, the value of the | ||||
5266 | /// corresponding actual argument shall provide access to the first element of | ||||
5267 | /// an array with at least as many elements as specified by the size expression. | ||||
5268 | void | ||||
5269 | Sema::CheckStaticArrayArgument(SourceLocation CallLoc, | ||||
5270 | ParmVarDecl *Param, | ||||
5271 | const Expr *ArgExpr) { | ||||
5272 | // Static array parameters are not supported in C++. | ||||
5273 | if (!Param || getLangOpts().CPlusPlus) | ||||
5274 | return; | ||||
5275 | |||||
5276 | QualType OrigTy = Param->getOriginalType(); | ||||
5277 | |||||
5278 | const ArrayType *AT = Context.getAsArrayType(OrigTy); | ||||
5279 | if (!AT || AT->getSizeModifier() != ArrayType::Static) | ||||
5280 | return; | ||||
5281 | |||||
5282 | if (ArgExpr->isNullPointerConstant(Context, | ||||
5283 | Expr::NPC_NeverValueDependent)) { | ||||
5284 | Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange(); | ||||
5285 | DiagnoseCalleeStaticArrayParam(*this, Param); | ||||
5286 | return; | ||||
5287 | } | ||||
5288 | |||||
5289 | const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT); | ||||
5290 | if (!CAT) | ||||
5291 | return; | ||||
5292 | |||||
5293 | const ConstantArrayType *ArgCAT = | ||||
5294 | Context.getAsConstantArrayType(ArgExpr->IgnoreParenCasts()->getType()); | ||||
5295 | if (!ArgCAT) | ||||
5296 | return; | ||||
5297 | |||||
5298 | if (getASTContext().hasSameUnqualifiedType(CAT->getElementType(), | ||||
5299 | ArgCAT->getElementType())) { | ||||
5300 | if (ArgCAT->getSize().ult(CAT->getSize())) { | ||||
5301 | Diag(CallLoc, diag::warn_static_array_too_small) | ||||
5302 | << ArgExpr->getSourceRange() | ||||
5303 | << (unsigned)ArgCAT->getSize().getZExtValue() | ||||
5304 | << (unsigned)CAT->getSize().getZExtValue() << 0; | ||||
5305 | DiagnoseCalleeStaticArrayParam(*this, Param); | ||||
5306 | } | ||||
5307 | return; | ||||
5308 | } | ||||
5309 | |||||
5310 | Optional<CharUnits> ArgSize = | ||||
5311 | getASTContext().getTypeSizeInCharsIfKnown(ArgCAT); | ||||
5312 | Optional<CharUnits> ParmSize = getASTContext().getTypeSizeInCharsIfKnown(CAT); | ||||
5313 | if (ArgSize && ParmSize && *ArgSize < *ParmSize) { | ||||
5314 | Diag(CallLoc, diag::warn_static_array_too_small) | ||||
5315 | << ArgExpr->getSourceRange() << (unsigned)ArgSize->getQuantity() | ||||
5316 | << (unsigned)ParmSize->getQuantity() << 1; | ||||
5317 | DiagnoseCalleeStaticArrayParam(*this, Param); | ||||
5318 | } | ||||
5319 | } | ||||
5320 | |||||
5321 | /// Given a function expression of unknown-any type, try to rebuild it | ||||
5322 | /// to have a function type. | ||||
5323 | static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn); | ||||
5324 | |||||
5325 | /// Is the given type a placeholder that we need to lower out | ||||
5326 | /// immediately during argument processing? | ||||
5327 | static bool isPlaceholderToRemoveAsArg(QualType type) { | ||||
5328 | // Placeholders are never sugared. | ||||
5329 | const BuiltinType *placeholder = dyn_cast<BuiltinType>(type); | ||||
5330 | if (!placeholder) return false; | ||||
5331 | |||||
5332 | switch (placeholder->getKind()) { | ||||
5333 | // Ignore all the non-placeholder types. | ||||
5334 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ | ||||
5335 | case BuiltinType::Id: | ||||
5336 | #include "clang/Basic/OpenCLImageTypes.def" | ||||
5337 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ | ||||
5338 | case BuiltinType::Id: | ||||
5339 | #include "clang/Basic/OpenCLExtensionTypes.def" | ||||
5340 | // In practice we'll never use this, since all SVE types are sugared | ||||
5341 | // via TypedefTypes rather than exposed directly as BuiltinTypes. | ||||
5342 | #define SVE_TYPE(Name, Id, SingletonId) \ | ||||
5343 | case BuiltinType::Id: | ||||
5344 | #include "clang/Basic/AArch64SVEACLETypes.def" | ||||
5345 | #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) | ||||
5346 | #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID: | ||||
5347 | #include "clang/AST/BuiltinTypes.def" | ||||
5348 | return false; | ||||
5349 | |||||
5350 | // We cannot lower out overload sets; they might validly be resolved | ||||
5351 | // by the call machinery. | ||||
5352 | case BuiltinType::Overload: | ||||
5353 | return false; | ||||
5354 | |||||
5355 | // Unbridged casts in ARC can be handled in some call positions and | ||||
5356 | // should be left in place. | ||||
5357 | case BuiltinType::ARCUnbridgedCast: | ||||
5358 | return false; | ||||
5359 | |||||
5360 | // Pseudo-objects should be converted as soon as possible. | ||||
5361 | case BuiltinType::PseudoObject: | ||||
5362 | return true; | ||||
5363 | |||||
5364 | // The debugger mode could theoretically but currently does not try | ||||
5365 | // to resolve unknown-typed arguments based on known parameter types. | ||||
5366 | case BuiltinType::UnknownAny: | ||||
5367 | return true; | ||||
5368 | |||||
5369 | // These are always invalid as call arguments and should be reported. | ||||
5370 | case BuiltinType::BoundMember: | ||||
5371 | case BuiltinType::BuiltinFn: | ||||
5372 | case BuiltinType::OMPArraySection: | ||||
5373 | return true; | ||||
5374 | |||||
5375 | } | ||||
5376 | llvm_unreachable("bad builtin type kind")::llvm::llvm_unreachable_internal("bad builtin type kind", "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 5376); | ||||
5377 | } | ||||
5378 | |||||
5379 | /// Check an argument list for placeholders that we won't try to | ||||
5380 | /// handle later. | ||||
5381 | static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) { | ||||
5382 | // Apply this processing to all the arguments at once instead of | ||||
5383 | // dying at the first failure. | ||||
5384 | bool hasInvalid = false; | ||||
5385 | for (size_t i = 0, e = args.size(); i != e; i++) { | ||||
5386 | if (isPlaceholderToRemoveAsArg(args[i]->getType())) { | ||||
5387 | ExprResult result = S.CheckPlaceholderExpr(args[i]); | ||||
5388 | if (result.isInvalid()) hasInvalid = true; | ||||
5389 | else args[i] = result.get(); | ||||
5390 | } else if (hasInvalid) { | ||||
5391 | (void)S.CorrectDelayedTyposInExpr(args[i]); | ||||
5392 | } | ||||
5393 | } | ||||
5394 | return hasInvalid; | ||||
5395 | } | ||||
5396 | |||||
5397 | /// If a builtin function has a pointer argument with no explicit address | ||||
5398 | /// space, then it should be able to accept a pointer to any address | ||||
5399 | /// space as input. In order to do this, we need to replace the | ||||
5400 | /// standard builtin declaration with one that uses the same address space | ||||
5401 | /// as the call. | ||||
5402 | /// | ||||
5403 | /// \returns nullptr If this builtin is not a candidate for a rewrite i.e. | ||||
5404 | /// it does not contain any pointer arguments without | ||||
5405 | /// an address space qualifer. Otherwise the rewritten | ||||
5406 | /// FunctionDecl is returned. | ||||
5407 | /// TODO: Handle pointer return types. | ||||
5408 | static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context, | ||||
5409 | FunctionDecl *FDecl, | ||||
5410 | MultiExprArg ArgExprs) { | ||||
5411 | |||||
5412 | QualType DeclType = FDecl->getType(); | ||||
5413 | const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType); | ||||
5414 | |||||
5415 | if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) || !FT || | ||||
5416 | ArgExprs.size() < FT->getNumParams()) | ||||
5417 | return nullptr; | ||||
5418 | |||||
5419 | bool NeedsNewDecl = false; | ||||
5420 | unsigned i = 0; | ||||
5421 | SmallVector<QualType, 8> OverloadParams; | ||||
5422 | |||||
5423 | for (QualType ParamType : FT->param_types()) { | ||||
5424 | |||||
5425 | // Convert array arguments to pointer to simplify type lookup. | ||||
5426 | ExprResult ArgRes = | ||||
5427 | Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]); | ||||
5428 | if (ArgRes.isInvalid()) | ||||
5429 | return nullptr; | ||||
5430 | Expr *Arg = ArgRes.get(); | ||||
5431 | QualType ArgType = Arg->getType(); | ||||
5432 | if (!ParamType->isPointerType() || | ||||
5433 | ParamType.getQualifiers().hasAddressSpace() || | ||||
5434 | !ArgType->isPointerType() || | ||||
5435 | !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) { | ||||
5436 | OverloadParams.push_back(ParamType); | ||||
5437 | continue; | ||||
5438 | } | ||||
5439 | |||||
5440 | QualType PointeeType = ParamType->getPointeeType(); | ||||
5441 | if (PointeeType.getQualifiers().hasAddressSpace()) | ||||
5442 | continue; | ||||
5443 | |||||
5444 | NeedsNewDecl = true; | ||||
5445 | LangAS AS = ArgType->getPointeeType().getAddressSpace(); | ||||
5446 | |||||
5447 | PointeeType = Context.getAddrSpaceQualType(PointeeType, AS); | ||||
5448 | OverloadParams.push_back(Context.getPointerType(PointeeType)); | ||||
5449 | } | ||||
5450 | |||||
5451 | if (!NeedsNewDecl) | ||||
5452 | return nullptr; | ||||
5453 | |||||
5454 | FunctionProtoType::ExtProtoInfo EPI; | ||||
5455 | EPI.Variadic = FT->isVariadic(); | ||||
5456 | QualType OverloadTy = Context.getFunctionType(FT->getReturnType(), | ||||
5457 | OverloadParams, EPI); | ||||
5458 | DeclContext *Parent = FDecl->getParent(); | ||||
5459 | FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent, | ||||
5460 | FDecl->getLocation(), | ||||
5461 | FDecl->getLocation(), | ||||
5462 | FDecl->getIdentifier(), | ||||
5463 | OverloadTy, | ||||
5464 | /*TInfo=*/nullptr, | ||||
5465 | SC_Extern, false, | ||||
5466 | /*hasPrototype=*/true); | ||||
5467 | SmallVector<ParmVarDecl*, 16> Params; | ||||
5468 | FT = cast<FunctionProtoType>(OverloadTy); | ||||
5469 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { | ||||
5470 | QualType ParamType = FT->getParamType(i); | ||||
5471 | ParmVarDecl *Parm = | ||||
5472 | ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(), | ||||
5473 | SourceLocation(), nullptr, ParamType, | ||||
5474 | /*TInfo=*/nullptr, SC_None, nullptr); | ||||
5475 | Parm->setScopeInfo(0, i); | ||||
5476 | Params.push_back(Parm); | ||||
5477 | } | ||||
5478 | OverloadDecl->setParams(Params); | ||||
5479 | return OverloadDecl; | ||||
5480 | } | ||||
5481 | |||||
5482 | static void checkDirectCallValidity(Sema &S, const Expr *Fn, | ||||
5483 | FunctionDecl *Callee, | ||||
5484 | MultiExprArg ArgExprs) { | ||||
5485 | // `Callee` (when called with ArgExprs) may be ill-formed. enable_if (and | ||||
5486 | // similar attributes) really don't like it when functions are called with an | ||||
5487 | // invalid number of args. | ||||
5488 | if (S.TooManyArguments(Callee->getNumParams(), ArgExprs.size(), | ||||
5489 | /*PartialOverloading=*/false) && | ||||
5490 | !Callee->isVariadic()) | ||||
5491 | return; | ||||
5492 | if (Callee->getMinRequiredArguments() > ArgExprs.size()) | ||||
5493 | return; | ||||
5494 | |||||
5495 | if (const EnableIfAttr *Attr = S.CheckEnableIf(Callee, ArgExprs, true)) { | ||||
5496 | S.Diag(Fn->getBeginLoc(), | ||||
5497 | isa<CXXMethodDecl>(Callee) | ||||
5498 | ? diag::err_ovl_no_viable_member_function_in_call | ||||
5499 | : diag::err_ovl_no_viable_function_in_call) | ||||
5500 | << Callee << Callee->getSourceRange(); | ||||
5501 | S.Diag(Callee->getLocation(), | ||||
5502 | diag::note_ovl_candidate_disabled_by_function_cond_attr) | ||||
5503 | << Attr->getCond()->getSourceRange() << Attr->getMessage(); | ||||
5504 | return; | ||||
5505 | } | ||||
5506 | } | ||||
5507 | |||||
5508 | static bool enclosingClassIsRelatedToClassInWhichMembersWereFound( | ||||
5509 | const UnresolvedMemberExpr *const UME, Sema &S) { | ||||
5510 | |||||
5511 | const auto GetFunctionLevelDCIfCXXClass = | ||||
5512 | [](Sema &S) -> const CXXRecordDecl * { | ||||
5513 | const DeclContext *const DC = S.getFunctionLevelDeclContext(); | ||||
5514 | if (!DC || !DC->getParent()) | ||||
5515 | return nullptr; | ||||
5516 | |||||
5517 | // If the call to some member function was made from within a member | ||||
5518 | // function body 'M' return return 'M's parent. | ||||
5519 | if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) | ||||
5520 | return MD->getParent()->getCanonicalDecl(); | ||||
5521 | // else the call was made from within a default member initializer of a | ||||
5522 | // class, so return the class. | ||||
5523 | if (const auto *RD = dyn_cast<CXXRecordDecl>(DC)) | ||||
5524 | return RD->getCanonicalDecl(); | ||||
5525 | return nullptr; | ||||
5526 | }; | ||||
5527 | // If our DeclContext is neither a member function nor a class (in the | ||||
5528 | // case of a lambda in a default member initializer), we can't have an | ||||
5529 | // enclosing 'this'. | ||||
5530 | |||||
5531 | const CXXRecordDecl *const CurParentClass = GetFunctionLevelDCIfCXXClass(S); | ||||
5532 | if (!CurParentClass) | ||||
5533 | return false; | ||||
5534 | |||||
5535 | // The naming class for implicit member functions call is the class in which | ||||
5536 | // name lookup starts. | ||||
5537 | const CXXRecordDecl *const NamingClass = | ||||
5538 | UME->getNamingClass()->getCanonicalDecl(); | ||||
5539 | assert(NamingClass && "Must have naming class even for implicit access")((NamingClass && "Must have naming class even for implicit access" ) ? static_cast<void> (0) : __assert_fail ("NamingClass && \"Must have naming class even for implicit access\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 5539, __PRETTY_FUNCTION__)); | ||||
5540 | |||||
5541 | // If the unresolved member functions were found in a 'naming class' that is | ||||
5542 | // related (either the same or derived from) to the class that contains the | ||||
5543 | // member function that itself contained the implicit member access. | ||||
5544 | |||||
5545 | return CurParentClass == NamingClass || | ||||
5546 | CurParentClass->isDerivedFrom(NamingClass); | ||||
5547 | } | ||||
5548 | |||||
5549 | static void | ||||
5550 | tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( | ||||
5551 | Sema &S, const UnresolvedMemberExpr *const UME, SourceLocation CallLoc) { | ||||
5552 | |||||
5553 | if (!UME) | ||||
5554 | return; | ||||
5555 | |||||
5556 | LambdaScopeInfo *const CurLSI = S.getCurLambda(); | ||||
5557 | // Only try and implicitly capture 'this' within a C++ Lambda if it hasn't | ||||
5558 | // already been captured, or if this is an implicit member function call (if | ||||
5559 | // it isn't, an attempt to capture 'this' should already have been made). | ||||
5560 | if (!CurLSI || CurLSI->ImpCaptureStyle == CurLSI->ImpCap_None || | ||||
5561 | !UME->isImplicitAccess() || CurLSI->isCXXThisCaptured()) | ||||
5562 | return; | ||||
5563 | |||||
5564 | // Check if the naming class in which the unresolved members were found is | ||||
5565 | // related (same as or is a base of) to the enclosing class. | ||||
5566 | |||||
5567 | if (!enclosingClassIsRelatedToClassInWhichMembersWereFound(UME, S)) | ||||
5568 | return; | ||||
5569 | |||||
5570 | |||||
5571 | DeclContext *EnclosingFunctionCtx = S.CurContext->getParent()->getParent(); | ||||
5572 | // If the enclosing function is not dependent, then this lambda is | ||||
5573 | // capture ready, so if we can capture this, do so. | ||||
5574 | if (!EnclosingFunctionCtx->isDependentContext()) { | ||||
5575 | // If the current lambda and all enclosing lambdas can capture 'this' - | ||||
5576 | // then go ahead and capture 'this' (since our unresolved overload set | ||||
5577 | // contains at least one non-static member function). | ||||
5578 | if (!S.CheckCXXThisCapture(CallLoc, /*Explcit*/ false, /*Diagnose*/ false)) | ||||
5579 | S.CheckCXXThisCapture(CallLoc); | ||||
5580 | } else if (S.CurContext->isDependentContext()) { | ||||
5581 | // ... since this is an implicit member reference, that might potentially | ||||
5582 | // involve a 'this' capture, mark 'this' for potential capture in | ||||
5583 | // enclosing lambdas. | ||||
5584 | if (CurLSI->ImpCaptureStyle != CurLSI->ImpCap_None) | ||||
5585 | CurLSI->addPotentialThisCapture(CallLoc); | ||||
5586 | } | ||||
5587 | } | ||||
5588 | |||||
5589 | ExprResult Sema::ActOnCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, | ||||
5590 | MultiExprArg ArgExprs, SourceLocation RParenLoc, | ||||
5591 | Expr *ExecConfig) { | ||||
5592 | ExprResult Call = | ||||
5593 | BuildCallExpr(Scope, Fn, LParenLoc, ArgExprs, RParenLoc, ExecConfig); | ||||
5594 | if (Call.isInvalid()) | ||||
5595 | return Call; | ||||
5596 | |||||
5597 | // Diagnose uses of the C++20 "ADL-only template-id call" feature in earlier | ||||
5598 | // language modes. | ||||
5599 | if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(Fn)) { | ||||
5600 | if (ULE->hasExplicitTemplateArgs() && | ||||
5601 | ULE->decls_begin() == ULE->decls_end()) { | ||||
5602 | Diag(Fn->getExprLoc(), getLangOpts().CPlusPlus2a | ||||
5603 | ? diag::warn_cxx17_compat_adl_only_template_id | ||||
5604 | : diag::ext_adl_only_template_id) | ||||
5605 | << ULE->getName(); | ||||
5606 | } | ||||
5607 | } | ||||
5608 | |||||
5609 | return Call; | ||||
5610 | } | ||||
5611 | |||||
5612 | /// BuildCallExpr - Handle a call to Fn with the specified array of arguments. | ||||
5613 | /// This provides the location of the left/right parens and a list of comma | ||||
5614 | /// locations. | ||||
5615 | ExprResult Sema::BuildCallExpr(Scope *Scope, Expr *Fn, SourceLocation LParenLoc, | ||||
5616 | MultiExprArg ArgExprs, SourceLocation RParenLoc, | ||||
5617 | Expr *ExecConfig, bool IsExecConfig) { | ||||
5618 | // Since this might be a postfix expression, get rid of ParenListExprs. | ||||
5619 | ExprResult Result = MaybeConvertParenListExprToParenExpr(Scope, Fn); | ||||
5620 | if (Result.isInvalid()) return ExprError(); | ||||
5621 | Fn = Result.get(); | ||||
5622 | |||||
5623 | if (checkArgsForPlaceholders(*this, ArgExprs)) | ||||
5624 | return ExprError(); | ||||
5625 | |||||
5626 | if (getLangOpts().CPlusPlus) { | ||||
5627 | // If this is a pseudo-destructor expression, build the call immediately. | ||||
5628 | if (isa<CXXPseudoDestructorExpr>(Fn)) { | ||||
5629 | if (!ArgExprs.empty()) { | ||||
5630 | // Pseudo-destructor calls should not have any arguments. | ||||
5631 | Diag(Fn->getBeginLoc(), diag::err_pseudo_dtor_call_with_args) | ||||
5632 | << FixItHint::CreateRemoval( | ||||
5633 | SourceRange(ArgExprs.front()->getBeginLoc(), | ||||
5634 | ArgExprs.back()->getEndLoc())); | ||||
5635 | } | ||||
5636 | |||||
5637 | return CallExpr::Create(Context, Fn, /*Args=*/{}, Context.VoidTy, | ||||
5638 | VK_RValue, RParenLoc); | ||||
5639 | } | ||||
5640 | if (Fn->getType() == Context.PseudoObjectTy) { | ||||
5641 | ExprResult result = CheckPlaceholderExpr(Fn); | ||||
5642 | if (result.isInvalid()) return ExprError(); | ||||
5643 | Fn = result.get(); | ||||
5644 | } | ||||
5645 | |||||
5646 | // Determine whether this is a dependent call inside a C++ template, | ||||
5647 | // in which case we won't do any semantic analysis now. | ||||
5648 | if (Fn->isTypeDependent() || Expr::hasAnyTypeDependentArguments(ArgExprs)) { | ||||
5649 | if (ExecConfig) { | ||||
5650 | return CUDAKernelCallExpr::Create( | ||||
5651 | Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs, | ||||
5652 | Context.DependentTy, VK_RValue, RParenLoc); | ||||
5653 | } else { | ||||
5654 | |||||
5655 | tryImplicitlyCaptureThisIfImplicitMemberFunctionAccessWithDependentArgs( | ||||
5656 | *this, dyn_cast<UnresolvedMemberExpr>(Fn->IgnoreParens()), | ||||
5657 | Fn->getBeginLoc()); | ||||
5658 | |||||
5659 | return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, | ||||
5660 | VK_RValue, RParenLoc); | ||||
5661 | } | ||||
5662 | } | ||||
5663 | |||||
5664 | // Determine whether this is a call to an object (C++ [over.call.object]). | ||||
5665 | if (Fn->getType()->isRecordType()) | ||||
5666 | return BuildCallToObjectOfClassType(Scope, Fn, LParenLoc, ArgExprs, | ||||
5667 | RParenLoc); | ||||
5668 | |||||
5669 | if (Fn->getType() == Context.UnknownAnyTy) { | ||||
5670 | ExprResult result = rebuildUnknownAnyFunction(*this, Fn); | ||||
5671 | if (result.isInvalid()) return ExprError(); | ||||
5672 | Fn = result.get(); | ||||
5673 | } | ||||
5674 | |||||
5675 | if (Fn->getType() == Context.BoundMemberTy) { | ||||
5676 | return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, | ||||
5677 | RParenLoc); | ||||
5678 | } | ||||
5679 | } | ||||
5680 | |||||
5681 | // Check for overloaded calls. This can happen even in C due to extensions. | ||||
5682 | if (Fn->getType() == Context.OverloadTy) { | ||||
5683 | OverloadExpr::FindResult find = OverloadExpr::find(Fn); | ||||
5684 | |||||
5685 | // We aren't supposed to apply this logic if there's an '&' involved. | ||||
5686 | if (!find.HasFormOfMemberPointer) { | ||||
5687 | if (Expr::hasAnyTypeDependentArguments(ArgExprs)) | ||||
5688 | return CallExpr::Create(Context, Fn, ArgExprs, Context.DependentTy, | ||||
5689 | VK_RValue, RParenLoc); | ||||
5690 | OverloadExpr *ovl = find.Expression; | ||||
5691 | if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(ovl)) | ||||
5692 | return BuildOverloadedCallExpr( | ||||
5693 | Scope, Fn, ULE, LParenLoc, ArgExprs, RParenLoc, ExecConfig, | ||||
5694 | /*AllowTypoCorrection=*/true, find.IsAddressOfOperand); | ||||
5695 | return BuildCallToMemberFunction(Scope, Fn, LParenLoc, ArgExprs, | ||||
5696 | RParenLoc); | ||||
5697 | } | ||||
5698 | } | ||||
5699 | |||||
5700 | // If we're directly calling a function, get the appropriate declaration. | ||||
5701 | if (Fn->getType() == Context.UnknownAnyTy) { | ||||
5702 | ExprResult result = rebuildUnknownAnyFunction(*this, Fn); | ||||
5703 | if (result.isInvalid()) return ExprError(); | ||||
5704 | Fn = result.get(); | ||||
5705 | } | ||||
5706 | |||||
5707 | Expr *NakedFn = Fn->IgnoreParens(); | ||||
5708 | |||||
5709 | bool CallingNDeclIndirectly = false; | ||||
5710 | NamedDecl *NDecl = nullptr; | ||||
5711 | if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn)) { | ||||
5712 | if (UnOp->getOpcode() == UO_AddrOf) { | ||||
5713 | CallingNDeclIndirectly = true; | ||||
5714 | NakedFn = UnOp->getSubExpr()->IgnoreParens(); | ||||
5715 | } | ||||
5716 | } | ||||
5717 | |||||
5718 | if (auto *DRE = dyn_cast<DeclRefExpr>(NakedFn)) { | ||||
5719 | NDecl = DRE->getDecl(); | ||||
5720 | |||||
5721 | FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl); | ||||
5722 | if (FDecl && FDecl->getBuiltinID()) { | ||||
5723 | // Rewrite the function decl for this builtin by replacing parameters | ||||
5724 | // with no explicit address space with the address space of the arguments | ||||
5725 | // in ArgExprs. | ||||
5726 | if ((FDecl = | ||||
5727 | rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) { | ||||
5728 | NDecl = FDecl; | ||||
5729 | Fn = DeclRefExpr::Create( | ||||
5730 | Context, FDecl->getQualifierLoc(), SourceLocation(), FDecl, false, | ||||
5731 | SourceLocation(), FDecl->getType(), Fn->getValueKind(), FDecl, | ||||
5732 | nullptr, DRE->isNonOdrUse()); | ||||
5733 | } | ||||
5734 | } | ||||
5735 | } else if (isa<MemberExpr>(NakedFn)) | ||||
5736 | NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl(); | ||||
5737 | |||||
5738 | if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) { | ||||
5739 | if (CallingNDeclIndirectly && !checkAddressOfFunctionIsAvailable( | ||||
5740 | FD, /*Complain=*/true, Fn->getBeginLoc())) | ||||
5741 | return ExprError(); | ||||
5742 | |||||
5743 | if (getLangOpts().OpenCL && checkOpenCLDisabledDecl(*FD, *Fn)) | ||||
5744 | return ExprError(); | ||||
5745 | |||||
5746 | checkDirectCallValidity(*this, Fn, FD, ArgExprs); | ||||
5747 | } | ||||
5748 | |||||
5749 | return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc, | ||||
5750 | ExecConfig, IsExecConfig); | ||||
5751 | } | ||||
5752 | |||||
5753 | /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments. | ||||
5754 | /// | ||||
5755 | /// __builtin_astype( value, dst type ) | ||||
5756 | /// | ||||
5757 | ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy, | ||||
5758 | SourceLocation BuiltinLoc, | ||||
5759 | SourceLocation RParenLoc) { | ||||
5760 | ExprValueKind VK = VK_RValue; | ||||
5761 | ExprObjectKind OK = OK_Ordinary; | ||||
5762 | QualType DstTy = GetTypeFromParser(ParsedDestTy); | ||||
5763 | QualType SrcTy = E->getType(); | ||||
5764 | if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy)) | ||||
5765 | return ExprError(Diag(BuiltinLoc, | ||||
5766 | diag::err_invalid_astype_of_different_size) | ||||
5767 | << DstTy | ||||
5768 | << SrcTy | ||||
5769 | << E->getSourceRange()); | ||||
5770 | return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc); | ||||
5771 | } | ||||
5772 | |||||
5773 | /// ActOnConvertVectorExpr - create a new convert-vector expression from the | ||||
5774 | /// provided arguments. | ||||
5775 | /// | ||||
5776 | /// __builtin_convertvector( value, dst type ) | ||||
5777 | /// | ||||
5778 | ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy, | ||||
5779 | SourceLocation BuiltinLoc, | ||||
5780 | SourceLocation RParenLoc) { | ||||
5781 | TypeSourceInfo *TInfo; | ||||
5782 | GetTypeFromParser(ParsedDestTy, &TInfo); | ||||
5783 | return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc); | ||||
5784 | } | ||||
5785 | |||||
5786 | /// BuildResolvedCallExpr - Build a call to a resolved expression, | ||||
5787 | /// i.e. an expression not of \p OverloadTy. The expression should | ||||
5788 | /// unary-convert to an expression of function-pointer or | ||||
5789 | /// block-pointer type. | ||||
5790 | /// | ||||
5791 | /// \param NDecl the declaration being called, if available | ||||
5792 | ExprResult Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl, | ||||
5793 | SourceLocation LParenLoc, | ||||
5794 | ArrayRef<Expr *> Args, | ||||
5795 | SourceLocation RParenLoc, Expr *Config, | ||||
5796 | bool IsExecConfig, ADLCallKind UsesADL) { | ||||
5797 | FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl); | ||||
5798 | unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0); | ||||
5799 | |||||
5800 | // Functions with 'interrupt' attribute cannot be called directly. | ||||
5801 | if (FDecl && FDecl->hasAttr<AnyX86InterruptAttr>()) { | ||||
5802 | Diag(Fn->getExprLoc(), diag::err_anyx86_interrupt_called); | ||||
5803 | return ExprError(); | ||||
5804 | } | ||||
5805 | |||||
5806 | // Interrupt handlers don't save off the VFP regs automatically on ARM, | ||||
5807 | // so there's some risk when calling out to non-interrupt handler functions | ||||
5808 | // that the callee might not preserve them. This is easy to diagnose here, | ||||
5809 | // but can be very challenging to debug. | ||||
5810 | if (auto *Caller = getCurFunctionDecl()) | ||||
5811 | if (Caller->hasAttr<ARMInterruptAttr>()) { | ||||
5812 | bool VFP = Context.getTargetInfo().hasFeature("vfp"); | ||||
5813 | if (VFP && (!FDecl || !FDecl->hasAttr<ARMInterruptAttr>())) | ||||
5814 | Diag(Fn->getExprLoc(), diag::warn_arm_interrupt_calling_convention); | ||||
5815 | } | ||||
5816 | |||||
5817 | // Promote the function operand. | ||||
5818 | // We special-case function promotion here because we only allow promoting | ||||
5819 | // builtin functions to function pointers in the callee of a call. | ||||
5820 | ExprResult Result; | ||||
5821 | QualType ResultTy; | ||||
5822 | if (BuiltinID && | ||||
5823 | Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) { | ||||
5824 | // Extract the return type from the (builtin) function pointer type. | ||||
5825 | // FIXME Several builtins still have setType in | ||||
5826 | // Sema::CheckBuiltinFunctionCall. One should review their definitions in | ||||
5827 | // Builtins.def to ensure they are correct before removing setType calls. | ||||
5828 | QualType FnPtrTy = Context.getPointerType(FDecl->getType()); | ||||
5829 | Result = ImpCastExprToType(Fn, FnPtrTy, CK_BuiltinFnToFnPtr).get(); | ||||
5830 | ResultTy = FDecl->getCallResultType(); | ||||
5831 | } else { | ||||
5832 | Result = CallExprUnaryConversions(Fn); | ||||
5833 | ResultTy = Context.BoolTy; | ||||
5834 | } | ||||
5835 | if (Result.isInvalid()) | ||||
5836 | return ExprError(); | ||||
5837 | Fn = Result.get(); | ||||
5838 | |||||
5839 | // Check for a valid function type, but only if it is not a builtin which | ||||
5840 | // requires custom type checking. These will be handled by | ||||
5841 | // CheckBuiltinFunctionCall below just after creation of the call expression. | ||||
5842 | const FunctionType *FuncT = nullptr; | ||||
5843 | if (!BuiltinID || !Context.BuiltinInfo.hasCustomTypechecking(BuiltinID)) { | ||||
5844 | retry: | ||||
5845 | if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) { | ||||
5846 | // C99 6.5.2.2p1 - "The expression that denotes the called function shall | ||||
5847 | // have type pointer to function". | ||||
5848 | FuncT = PT->getPointeeType()->getAs<FunctionType>(); | ||||
5849 | if (!FuncT) | ||||
5850 | return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | ||||
5851 | << Fn->getType() << Fn->getSourceRange()); | ||||
5852 | } else if (const BlockPointerType *BPT = | ||||
5853 | Fn->getType()->getAs<BlockPointerType>()) { | ||||
5854 | FuncT = BPT->getPointeeType()->castAs<FunctionType>(); | ||||
5855 | } else { | ||||
5856 | // Handle calls to expressions of unknown-any type. | ||||
5857 | if (Fn->getType() == Context.UnknownAnyTy) { | ||||
5858 | ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn); | ||||
5859 | if (rewrite.isInvalid()) | ||||
5860 | return ExprError(); | ||||
5861 | Fn = rewrite.get(); | ||||
5862 | goto retry; | ||||
5863 | } | ||||
5864 | |||||
5865 | return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function) | ||||
5866 | << Fn->getType() << Fn->getSourceRange()); | ||||
5867 | } | ||||
5868 | } | ||||
5869 | |||||
5870 | // Get the number of parameters in the function prototype, if any. | ||||
5871 | // We will allocate space for max(Args.size(), NumParams) arguments | ||||
5872 | // in the call expression. | ||||
5873 | const auto *Proto = dyn_cast_or_null<FunctionProtoType>(FuncT); | ||||
5874 | unsigned NumParams = Proto ? Proto->getNumParams() : 0; | ||||
5875 | |||||
5876 | CallExpr *TheCall; | ||||
5877 | if (Config) { | ||||
5878 | assert(UsesADL == ADLCallKind::NotADL &&((UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL" ) ? static_cast<void> (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 5879, __PRETTY_FUNCTION__)) | ||||
5879 | "CUDAKernelCallExpr should not use ADL")((UsesADL == ADLCallKind::NotADL && "CUDAKernelCallExpr should not use ADL" ) ? static_cast<void> (0) : __assert_fail ("UsesADL == ADLCallKind::NotADL && \"CUDAKernelCallExpr should not use ADL\"" , "/build/llvm-toolchain-snapshot-10~+201911111502510600c19528f1809/clang/lib/Sema/SemaExpr.cpp" , 5879, __PRETTY_FUNCTION__)) |