Bug Summary

File:tools/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 706, column 7
Potential leak of memory pointed to by field 'DiagStorage'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn326551/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn326551/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-03-02-155150-1477-1 -x c++ /build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp

/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp

1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// \brief Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 65, __extension__ __PRETTY_FUNCTION__))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
84 IdentifierInfo &II,
85 SourceLocation NameLoc,
86 Scope *S, CXXScopeSpec &SS,
87 ParsedType ObjectTypePtr,
88 bool EnteringContext) {
89 // Determine where to perform name lookup.
90
91 // FIXME: This area of the standard is very messy, and the current
92 // wording is rather unclear about which scopes we search for the
93 // destructor name; see core issues 399 and 555. Issue 399 in
94 // particular shows where the current description of destructor name
95 // lookup is completely out of line with existing practice, e.g.,
96 // this appears to be ill-formed:
97 //
98 // namespace N {
99 // template <typename T> struct S {
100 // ~S();
101 // };
102 // }
103 //
104 // void f(N::S<int>* s) {
105 // s->N::S<int>::~S();
106 // }
107 //
108 // See also PR6358 and PR6359.
109 // For this reason, we're currently only doing the C++03 version of this
110 // code; the C++0x version has to wait until we get a proper spec.
111 QualType SearchType;
112 DeclContext *LookupCtx = nullptr;
113 bool isDependent = false;
114 bool LookInScope = false;
115
116 if (SS.isInvalid())
117 return nullptr;
118
119 // If we have an object type, it's because we are in a
120 // pseudo-destructor-expression or a member access expression, and
121 // we know what type we're looking for.
122 if (ObjectTypePtr)
123 SearchType = GetTypeFromParser(ObjectTypePtr);
124
125 if (SS.isSet()) {
126 NestedNameSpecifier *NNS = SS.getScopeRep();
127
128 bool AlreadySearched = false;
129 bool LookAtPrefix = true;
130 // C++11 [basic.lookup.qual]p6:
131 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
132 // the type-names are looked up as types in the scope designated by the
133 // nested-name-specifier. Similarly, in a qualified-id of the form:
134 //
135 // nested-name-specifier[opt] class-name :: ~ class-name
136 //
137 // the second class-name is looked up in the same scope as the first.
138 //
139 // Here, we determine whether the code below is permitted to look at the
140 // prefix of the nested-name-specifier.
141 DeclContext *DC = computeDeclContext(SS, EnteringContext);
142 if (DC && DC->isFileContext()) {
143 AlreadySearched = true;
144 LookupCtx = DC;
145 isDependent = false;
146 } else if (DC && isa<CXXRecordDecl>(DC)) {
147 LookAtPrefix = false;
148 LookInScope = true;
149 }
150
151 // The second case from the C++03 rules quoted further above.
152 NestedNameSpecifier *Prefix = nullptr;
153 if (AlreadySearched) {
154 // Nothing left to do.
155 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
156 CXXScopeSpec PrefixSS;
157 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
158 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
159 isDependent = isDependentScopeSpecifier(PrefixSS);
160 } else if (ObjectTypePtr) {
161 LookupCtx = computeDeclContext(SearchType);
162 isDependent = SearchType->isDependentType();
163 } else {
164 LookupCtx = computeDeclContext(SS, EnteringContext);
165 isDependent = LookupCtx && LookupCtx->isDependentContext();
166 }
167 } else if (ObjectTypePtr) {
168 // C++ [basic.lookup.classref]p3:
169 // If the unqualified-id is ~type-name, the type-name is looked up
170 // in the context of the entire postfix-expression. If the type T
171 // of the object expression is of a class type C, the type-name is
172 // also looked up in the scope of class C. At least one of the
173 // lookups shall find a name that refers to (possibly
174 // cv-qualified) T.
175 LookupCtx = computeDeclContext(SearchType);
176 isDependent = SearchType->isDependentType();
177 assert((isDependent || !SearchType->isIncompleteType()) &&(static_cast <bool> ((isDependent || !SearchType->isIncompleteType
()) && "Caller should have completed object type") ? void
(0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 178, __extension__ __PRETTY_FUNCTION__))
178 "Caller should have completed object type")(static_cast <bool> ((isDependent || !SearchType->isIncompleteType
()) && "Caller should have completed object type") ? void
(0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 178, __extension__ __PRETTY_FUNCTION__))
;
179
180 LookInScope = true;
181 } else {
182 // Perform lookup into the current scope (only).
183 LookInScope = true;
184 }
185
186 TypeDecl *NonMatchingTypeDecl = nullptr;
187 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
188 for (unsigned Step = 0; Step != 2; ++Step) {
189 // Look for the name first in the computed lookup context (if we
190 // have one) and, if that fails to find a match, in the scope (if
191 // we're allowed to look there).
192 Found.clear();
193 if (Step == 0 && LookupCtx) {
194 if (RequireCompleteDeclContext(SS, LookupCtx))
195 return nullptr;
196 LookupQualifiedName(Found, LookupCtx);
197 } else if (Step == 1 && LookInScope && S) {
198 LookupName(Found, S);
199 } else {
200 continue;
201 }
202
203 // FIXME: Should we be suppressing ambiguities here?
204 if (Found.isAmbiguous())
205 return nullptr;
206
207 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
208 QualType T = Context.getTypeDeclType(Type);
209 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
210
211 if (SearchType.isNull() || SearchType->isDependentType() ||
212 Context.hasSameUnqualifiedType(T, SearchType)) {
213 // We found our type!
214
215 return CreateParsedType(T,
216 Context.getTrivialTypeSourceInfo(T, NameLoc));
217 }
218
219 if (!SearchType.isNull())
220 NonMatchingTypeDecl = Type;
221 }
222
223 // If the name that we found is a class template name, and it is
224 // the same name as the template name in the last part of the
225 // nested-name-specifier (if present) or the object type, then
226 // this is the destructor for that class.
227 // FIXME: This is a workaround until we get real drafting for core
228 // issue 399, for which there isn't even an obvious direction.
229 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
230 QualType MemberOfType;
231 if (SS.isSet()) {
232 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
233 // Figure out the type of the context, if it has one.
234 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
235 MemberOfType = Context.getTypeDeclType(Record);
236 }
237 }
238 if (MemberOfType.isNull())
239 MemberOfType = SearchType;
240
241 if (MemberOfType.isNull())
242 continue;
243
244 // We're referring into a class template specialization. If the
245 // class template we found is the same as the template being
246 // specialized, we found what we are looking for.
247 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
248 if (ClassTemplateSpecializationDecl *Spec
249 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
250 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
251 Template->getCanonicalDecl())
252 return CreateParsedType(
253 MemberOfType,
254 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
255 }
256
257 continue;
258 }
259
260 // We're referring to an unresolved class template
261 // specialization. Determine whether we class template we found
262 // is the same as the template being specialized or, if we don't
263 // know which template is being specialized, that it at least
264 // has the same name.
265 if (const TemplateSpecializationType *SpecType
266 = MemberOfType->getAs<TemplateSpecializationType>()) {
267 TemplateName SpecName = SpecType->getTemplateName();
268
269 // The class template we found is the same template being
270 // specialized.
271 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
272 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
273 return CreateParsedType(
274 MemberOfType,
275 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
276
277 continue;
278 }
279
280 // The class template we found has the same name as the
281 // (dependent) template name being specialized.
282 if (DependentTemplateName *DepTemplate
283 = SpecName.getAsDependentTemplateName()) {
284 if (DepTemplate->isIdentifier() &&
285 DepTemplate->getIdentifier() == Template->getIdentifier())
286 return CreateParsedType(
287 MemberOfType,
288 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
289
290 continue;
291 }
292 }
293 }
294 }
295
296 if (isDependent) {
297 // We didn't find our type, but that's okay: it's dependent
298 // anyway.
299
300 // FIXME: What if we have no nested-name-specifier?
301 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
302 SS.getWithLocInContext(Context),
303 II, NameLoc);
304 return ParsedType::make(T);
305 }
306
307 if (NonMatchingTypeDecl) {
308 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
309 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
310 << T << SearchType;
311 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
312 << T;
313 } else if (ObjectTypePtr)
314 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
315 << &II;
316 else {
317 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
318 diag::err_destructor_class_name);
319 if (S) {
320 const DeclContext *Ctx = S->getEntity();
321 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
322 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
323 Class->getNameAsString());
324 }
325 }
326
327 return nullptr;
328}
329
330ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
331 ParsedType ObjectType) {
332 if (DS.getTypeSpecType() == DeclSpec::TST_error)
333 return nullptr;
334
335 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
336 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
337 return nullptr;
338 }
339
340 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 341, __extension__ __PRETTY_FUNCTION__))
341 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 341, __extension__ __PRETTY_FUNCTION__))
;
342 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
343
344 // If we know the type of the object, check that the correct destructor
345 // type was named now; we can give better diagnostics this way.
346 QualType SearchType = GetTypeFromParser(ObjectType);
347 if (!SearchType.isNull() && !SearchType->isDependentType() &&
348 !Context.hasSameUnqualifiedType(T, SearchType)) {
349 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
350 << T << SearchType;
351 return nullptr;
352 }
353
354 return ParsedType::make(T);
355}
356
357bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
358 const UnqualifiedId &Name) {
359 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 359, __extension__ __PRETTY_FUNCTION__))
;
360
361 if (!SS.isValid())
362 return false;
363
364 switch (SS.getScopeRep()->getKind()) {
365 case NestedNameSpecifier::Identifier:
366 case NestedNameSpecifier::TypeSpec:
367 case NestedNameSpecifier::TypeSpecWithTemplate:
368 // Per C++11 [over.literal]p2, literal operators can only be declared at
369 // namespace scope. Therefore, this unqualified-id cannot name anything.
370 // Reject it early, because we have no AST representation for this in the
371 // case where the scope is dependent.
372 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
373 << SS.getScopeRep();
374 return true;
375
376 case NestedNameSpecifier::Global:
377 case NestedNameSpecifier::Super:
378 case NestedNameSpecifier::Namespace:
379 case NestedNameSpecifier::NamespaceAlias:
380 return false;
381 }
382
383 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 383)
;
384}
385
386/// \brief Build a C++ typeid expression with a type operand.
387ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
388 SourceLocation TypeidLoc,
389 TypeSourceInfo *Operand,
390 SourceLocation RParenLoc) {
391 // C++ [expr.typeid]p4:
392 // The top-level cv-qualifiers of the lvalue expression or the type-id
393 // that is the operand of typeid are always ignored.
394 // If the type of the type-id is a class type or a reference to a class
395 // type, the class shall be completely-defined.
396 Qualifiers Quals;
397 QualType T
398 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
399 Quals);
400 if (T->getAs<RecordType>() &&
401 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
402 return ExprError();
403
404 if (T->isVariablyModifiedType())
405 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
406
407 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
408 SourceRange(TypeidLoc, RParenLoc));
409}
410
411/// \brief Build a C++ typeid expression with an expression operand.
412ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
413 SourceLocation TypeidLoc,
414 Expr *E,
415 SourceLocation RParenLoc) {
416 bool WasEvaluated = false;
417 if (E && !E->isTypeDependent()) {
418 if (E->getType()->isPlaceholderType()) {
419 ExprResult result = CheckPlaceholderExpr(E);
420 if (result.isInvalid()) return ExprError();
421 E = result.get();
422 }
423
424 QualType T = E->getType();
425 if (const RecordType *RecordT = T->getAs<RecordType>()) {
426 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
427 // C++ [expr.typeid]p3:
428 // [...] If the type of the expression is a class type, the class
429 // shall be completely-defined.
430 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
431 return ExprError();
432
433 // C++ [expr.typeid]p3:
434 // When typeid is applied to an expression other than an glvalue of a
435 // polymorphic class type [...] [the] expression is an unevaluated
436 // operand. [...]
437 if (RecordD->isPolymorphic() && E->isGLValue()) {
438 // The subexpression is potentially evaluated; switch the context
439 // and recheck the subexpression.
440 ExprResult Result = TransformToPotentiallyEvaluated(E);
441 if (Result.isInvalid()) return ExprError();
442 E = Result.get();
443
444 // We require a vtable to query the type at run time.
445 MarkVTableUsed(TypeidLoc, RecordD);
446 WasEvaluated = true;
447 }
448 }
449
450 // C++ [expr.typeid]p4:
451 // [...] If the type of the type-id is a reference to a possibly
452 // cv-qualified type, the result of the typeid expression refers to a
453 // std::type_info object representing the cv-unqualified referenced
454 // type.
455 Qualifiers Quals;
456 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
457 if (!Context.hasSameType(T, UnqualT)) {
458 T = UnqualT;
459 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
460 }
461 }
462
463 if (E->getType()->isVariablyModifiedType())
464 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
465 << E->getType());
466 else if (!inTemplateInstantiation() &&
467 E->HasSideEffects(Context, WasEvaluated)) {
468 // The expression operand for typeid is in an unevaluated expression
469 // context, so side effects could result in unintended consequences.
470 Diag(E->getExprLoc(), WasEvaluated
471 ? diag::warn_side_effects_typeid
472 : diag::warn_side_effects_unevaluated_context);
473 }
474
475 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
476 SourceRange(TypeidLoc, RParenLoc));
477}
478
479/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
480ExprResult
481Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
482 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
483 // Find the std::type_info type.
484 if (!getStdNamespace())
485 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
486
487 if (!CXXTypeInfoDecl) {
488 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
489 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
490 LookupQualifiedName(R, getStdNamespace());
491 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
492 // Microsoft's typeinfo doesn't have type_info in std but in the global
493 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
494 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
495 LookupQualifiedName(R, Context.getTranslationUnitDecl());
496 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
497 }
498 if (!CXXTypeInfoDecl)
499 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
500 }
501
502 if (!getLangOpts().RTTI) {
503 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
504 }
505
506 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
507
508 if (isType) {
509 // The operand is a type; handle it as such.
510 TypeSourceInfo *TInfo = nullptr;
511 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
512 &TInfo);
513 if (T.isNull())
514 return ExprError();
515
516 if (!TInfo)
517 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
518
519 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
520 }
521
522 // The operand is an expression.
523 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
524}
525
526/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
527/// a single GUID.
528static void
529getUuidAttrOfType(Sema &SemaRef, QualType QT,
530 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
531 // Optionally remove one level of pointer, reference or array indirection.
532 const Type *Ty = QT.getTypePtr();
533 if (QT->isPointerType() || QT->isReferenceType())
534 Ty = QT->getPointeeType().getTypePtr();
535 else if (QT->isArrayType())
536 Ty = Ty->getBaseElementTypeUnsafe();
537
538 const auto *TD = Ty->getAsTagDecl();
539 if (!TD)
540 return;
541
542 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
543 UuidAttrs.insert(Uuid);
544 return;
545 }
546
547 // __uuidof can grab UUIDs from template arguments.
548 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
549 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
550 for (const TemplateArgument &TA : TAL.asArray()) {
551 const UuidAttr *UuidForTA = nullptr;
552 if (TA.getKind() == TemplateArgument::Type)
553 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
554 else if (TA.getKind() == TemplateArgument::Declaration)
555 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
556
557 if (UuidForTA)
558 UuidAttrs.insert(UuidForTA);
559 }
560 }
561}
562
563/// \brief Build a Microsoft __uuidof expression with a type operand.
564ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
565 SourceLocation TypeidLoc,
566 TypeSourceInfo *Operand,
567 SourceLocation RParenLoc) {
568 StringRef UuidStr;
569 if (!Operand->getType()->isDependentType()) {
570 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
571 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
572 if (UuidAttrs.empty())
573 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
574 if (UuidAttrs.size() > 1)
575 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
576 UuidStr = UuidAttrs.back()->getGuid();
577 }
578
579 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
580 SourceRange(TypeidLoc, RParenLoc));
581}
582
583/// \brief Build a Microsoft __uuidof expression with an expression operand.
584ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
585 SourceLocation TypeidLoc,
586 Expr *E,
587 SourceLocation RParenLoc) {
588 StringRef UuidStr;
589 if (!E->getType()->isDependentType()) {
590 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
591 UuidStr = "00000000-0000-0000-0000-000000000000";
592 } else {
593 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
594 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
595 if (UuidAttrs.empty())
596 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
597 if (UuidAttrs.size() > 1)
598 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
599 UuidStr = UuidAttrs.back()->getGuid();
600 }
601 }
602
603 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
604 SourceRange(TypeidLoc, RParenLoc));
605}
606
607/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
608ExprResult
609Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
610 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
611 // If MSVCGuidDecl has not been cached, do the lookup.
612 if (!MSVCGuidDecl) {
613 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
614 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
615 LookupQualifiedName(R, Context.getTranslationUnitDecl());
616 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
617 if (!MSVCGuidDecl)
618 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
619 }
620
621 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
622
623 if (isType) {
624 // The operand is a type; handle it as such.
625 TypeSourceInfo *TInfo = nullptr;
626 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
627 &TInfo);
628 if (T.isNull())
629 return ExprError();
630
631 if (!TInfo)
632 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
633
634 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
635 }
636
637 // The operand is an expression.
638 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
639}
640
641/// ActOnCXXBoolLiteral - Parse {true,false} literals.
642ExprResult
643Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
644 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 645, __extension__ __PRETTY_FUNCTION__))
645 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 645, __extension__ __PRETTY_FUNCTION__))
;
646 return new (Context)
647 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
648}
649
650/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
651ExprResult
652Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
653 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
654}
655
656/// ActOnCXXThrow - Parse throw expressions.
657ExprResult
658Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
659 bool IsThrownVarInScope = false;
660 if (Ex) {
1
Assuming 'Ex' is null
2
Taking false branch
661 // C++0x [class.copymove]p31:
662 // When certain criteria are met, an implementation is allowed to omit the
663 // copy/move construction of a class object [...]
664 //
665 // - in a throw-expression, when the operand is the name of a
666 // non-volatile automatic object (other than a function or catch-
667 // clause parameter) whose scope does not extend beyond the end of the
668 // innermost enclosing try-block (if there is one), the copy/move
669 // operation from the operand to the exception object (15.1) can be
670 // omitted by constructing the automatic object directly into the
671 // exception object
672 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
673 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
674 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
675 for( ; S; S = S->getParent()) {
676 if (S->isDeclScope(Var)) {
677 IsThrownVarInScope = true;
678 break;
679 }
680
681 if (S->getFlags() &
682 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
683 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
684 Scope::TryScope))
685 break;
686 }
687 }
688 }
689 }
690
691 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
3
Calling 'Sema::BuildCXXThrow'
692}
693
694ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
695 bool IsThrownVarInScope) {
696 // Don't report an error if 'throw' is used in system headers.
697 if (!getLangOpts().CXXExceptions &&
4
Assuming the condition is false
698 !getSourceManager().isInSystemHeader(OpLoc))
699 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
700
701 // Exceptions aren't allowed in CUDA device code.
702 if (getLangOpts().CUDA)
5
Assuming the condition is true
6
Taking true branch
703 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
7
Calling 'operator<<'
24
Returned allocated memory
704 << "throw" << CurrentCUDATarget();
705
706 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
25
Potential leak of memory pointed to by field 'DiagStorage'
707 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
708
709 if (Ex && !Ex->isTypeDependent()) {
710 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
711 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
712 return ExprError();
713
714 // Initialize the exception result. This implicitly weeds out
715 // abstract types or types with inaccessible copy constructors.
716
717 // C++0x [class.copymove]p31:
718 // When certain criteria are met, an implementation is allowed to omit the
719 // copy/move construction of a class object [...]
720 //
721 // - in a throw-expression, when the operand is the name of a
722 // non-volatile automatic object (other than a function or
723 // catch-clause
724 // parameter) whose scope does not extend beyond the end of the
725 // innermost enclosing try-block (if there is one), the copy/move
726 // operation from the operand to the exception object (15.1) can be
727 // omitted by constructing the automatic object directly into the
728 // exception object
729 const VarDecl *NRVOVariable = nullptr;
730 if (IsThrownVarInScope)
731 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
732
733 InitializedEntity Entity = InitializedEntity::InitializeException(
734 OpLoc, ExceptionObjectTy,
735 /*NRVO=*/NRVOVariable != nullptr);
736 ExprResult Res = PerformMoveOrCopyInitialization(
737 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
738 if (Res.isInvalid())
739 return ExprError();
740 Ex = Res.get();
741 }
742
743 return new (Context)
744 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
745}
746
747static void
748collectPublicBases(CXXRecordDecl *RD,
749 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
750 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
751 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
752 bool ParentIsPublic) {
753 for (const CXXBaseSpecifier &BS : RD->bases()) {
754 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
755 bool NewSubobject;
756 // Virtual bases constitute the same subobject. Non-virtual bases are
757 // always distinct subobjects.
758 if (BS.isVirtual())
759 NewSubobject = VBases.insert(BaseDecl).second;
760 else
761 NewSubobject = true;
762
763 if (NewSubobject)
764 ++SubobjectsSeen[BaseDecl];
765
766 // Only add subobjects which have public access throughout the entire chain.
767 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
768 if (PublicPath)
769 PublicSubobjectsSeen.insert(BaseDecl);
770
771 // Recurse on to each base subobject.
772 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
773 PublicPath);
774 }
775}
776
777static void getUnambiguousPublicSubobjects(
778 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
779 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
780 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
781 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
782 SubobjectsSeen[RD] = 1;
783 PublicSubobjectsSeen.insert(RD);
784 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
785 /*ParentIsPublic=*/true);
786
787 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
788 // Skip ambiguous objects.
789 if (SubobjectsSeen[PublicSubobject] > 1)
790 continue;
791
792 Objects.push_back(PublicSubobject);
793 }
794}
795
796/// CheckCXXThrowOperand - Validate the operand of a throw.
797bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
798 QualType ExceptionObjectTy, Expr *E) {
799 // If the type of the exception would be an incomplete type or a pointer
800 // to an incomplete type other than (cv) void the program is ill-formed.
801 QualType Ty = ExceptionObjectTy;
802 bool isPointer = false;
803 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
804 Ty = Ptr->getPointeeType();
805 isPointer = true;
806 }
807 if (!isPointer || !Ty->isVoidType()) {
808 if (RequireCompleteType(ThrowLoc, Ty,
809 isPointer ? diag::err_throw_incomplete_ptr
810 : diag::err_throw_incomplete,
811 E->getSourceRange()))
812 return true;
813
814 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
815 diag::err_throw_abstract_type, E))
816 return true;
817 }
818
819 // If the exception has class type, we need additional handling.
820 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
821 if (!RD)
822 return false;
823
824 // If we are throwing a polymorphic class type or pointer thereof,
825 // exception handling will make use of the vtable.
826 MarkVTableUsed(ThrowLoc, RD);
827
828 // If a pointer is thrown, the referenced object will not be destroyed.
829 if (isPointer)
830 return false;
831
832 // If the class has a destructor, we must be able to call it.
833 if (!RD->hasIrrelevantDestructor()) {
834 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
835 MarkFunctionReferenced(E->getExprLoc(), Destructor);
836 CheckDestructorAccess(E->getExprLoc(), Destructor,
837 PDiag(diag::err_access_dtor_exception) << Ty);
838 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
839 return true;
840 }
841 }
842
843 // The MSVC ABI creates a list of all types which can catch the exception
844 // object. This list also references the appropriate copy constructor to call
845 // if the object is caught by value and has a non-trivial copy constructor.
846 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
847 // We are only interested in the public, unambiguous bases contained within
848 // the exception object. Bases which are ambiguous or otherwise
849 // inaccessible are not catchable types.
850 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
851 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
852
853 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
854 // Attempt to lookup the copy constructor. Various pieces of machinery
855 // will spring into action, like template instantiation, which means this
856 // cannot be a simple walk of the class's decls. Instead, we must perform
857 // lookup and overload resolution.
858 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
859 if (!CD)
860 continue;
861
862 // Mark the constructor referenced as it is used by this throw expression.
863 MarkFunctionReferenced(E->getExprLoc(), CD);
864
865 // Skip this copy constructor if it is trivial, we don't need to record it
866 // in the catchable type data.
867 if (CD->isTrivial())
868 continue;
869
870 // The copy constructor is non-trivial, create a mapping from this class
871 // type to this constructor.
872 // N.B. The selection of copy constructor is not sensitive to this
873 // particular throw-site. Lookup will be performed at the catch-site to
874 // ensure that the copy constructor is, in fact, accessible (via
875 // friendship or any other means).
876 Context.addCopyConstructorForExceptionObject(Subobject, CD);
877
878 // We don't keep the instantiated default argument expressions around so
879 // we must rebuild them here.
880 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
881 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
882 return true;
883 }
884 }
885 }
886
887 return false;
888}
889
890static QualType adjustCVQualifiersForCXXThisWithinLambda(
891 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
892 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
893
894 QualType ClassType = ThisTy->getPointeeType();
895 LambdaScopeInfo *CurLSI = nullptr;
896 DeclContext *CurDC = CurSemaContext;
897
898 // Iterate through the stack of lambdas starting from the innermost lambda to
899 // the outermost lambda, checking if '*this' is ever captured by copy - since
900 // that could change the cv-qualifiers of the '*this' object.
901 // The object referred to by '*this' starts out with the cv-qualifiers of its
902 // member function. We then start with the innermost lambda and iterate
903 // outward checking to see if any lambda performs a by-copy capture of '*this'
904 // - and if so, any nested lambda must respect the 'constness' of that
905 // capturing lamdbda's call operator.
906 //
907
908 // Since the FunctionScopeInfo stack is representative of the lexical
909 // nesting of the lambda expressions during initial parsing (and is the best
910 // place for querying information about captures about lambdas that are
911 // partially processed) and perhaps during instantiation of function templates
912 // that contain lambda expressions that need to be transformed BUT not
913 // necessarily during instantiation of a nested generic lambda's function call
914 // operator (which might even be instantiated at the end of the TU) - at which
915 // time the DeclContext tree is mature enough to query capture information
916 // reliably - we use a two pronged approach to walk through all the lexically
917 // enclosing lambda expressions:
918 //
919 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
920 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
921 // enclosed by the call-operator of the LSI below it on the stack (while
922 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
923 // the stack represents the innermost lambda.
924 //
925 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
926 // represents a lambda's call operator. If it does, we must be instantiating
927 // a generic lambda's call operator (represented by the Current LSI, and
928 // should be the only scenario where an inconsistency between the LSI and the
929 // DeclContext should occur), so climb out the DeclContexts if they
930 // represent lambdas, while querying the corresponding closure types
931 // regarding capture information.
932
933 // 1) Climb down the function scope info stack.
934 for (int I = FunctionScopes.size();
935 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
936 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
937 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
938 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
939 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
940
941 if (!CurLSI->isCXXThisCaptured())
942 continue;
943
944 auto C = CurLSI->getCXXThisCapture();
945
946 if (C.isCopyCapture()) {
947 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
948 if (CurLSI->CallOperator->isConst())
949 ClassType.addConst();
950 return ASTCtx.getPointerType(ClassType);
951 }
952 }
953
954 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
955 // happen during instantiation of its nested generic lambda call operator)
956 if (isLambdaCallOperator(CurDC)) {
957 assert(CurLSI && "While computing 'this' capture-type for a generic "(static_cast <bool> (CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? void
(0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 958, __extension__ __PRETTY_FUNCTION__))
958 "lambda, we must have a corresponding LambdaScopeInfo")(static_cast <bool> (CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? void
(0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 958, __extension__ __PRETTY_FUNCTION__))
;
959 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
960 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
961 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
962 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
963 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
;
964 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 964, __extension__ __PRETTY_FUNCTION__))
;
965
966 auto IsThisCaptured =
967 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
968 IsConst = false;
969 IsByCopy = false;
970 for (auto &&C : Closure->captures()) {
971 if (C.capturesThis()) {
972 if (C.getCaptureKind() == LCK_StarThis)
973 IsByCopy = true;
974 if (Closure->getLambdaCallOperator()->isConst())
975 IsConst = true;
976 return true;
977 }
978 }
979 return false;
980 };
981
982 bool IsByCopyCapture = false;
983 bool IsConstCapture = false;
984 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
985 while (Closure &&
986 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
987 if (IsByCopyCapture) {
988 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
989 if (IsConstCapture)
990 ClassType.addConst();
991 return ASTCtx.getPointerType(ClassType);
992 }
993 Closure = isLambdaCallOperator(Closure->getParent())
994 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
995 : nullptr;
996 }
997 }
998 return ASTCtx.getPointerType(ClassType);
999}
1000
1001QualType Sema::getCurrentThisType() {
1002 DeclContext *DC = getFunctionLevelDeclContext();
1003 QualType ThisTy = CXXThisTypeOverride;
1004
1005 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1006 if (method && method->isInstance())
1007 ThisTy = method->getThisType(Context);
1008 }
1009
1010 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1011 inTemplateInstantiation()) {
1012
1013 assert(isa<CXXRecordDecl>(DC) &&(static_cast <bool> (isa<CXXRecordDecl>(DC) &&
"Trying to get 'this' type from static method?") ? void (0) :
__assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1014, __extension__ __PRETTY_FUNCTION__))
1014 "Trying to get 'this' type from static method?")(static_cast <bool> (isa<CXXRecordDecl>(DC) &&
"Trying to get 'this' type from static method?") ? void (0) :
__assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1014, __extension__ __PRETTY_FUNCTION__))
;
1015
1016 // This is a lambda call operator that is being instantiated as a default
1017 // initializer. DC must point to the enclosing class type, so we can recover
1018 // the 'this' type from it.
1019
1020 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1021 // There are no cv-qualifiers for 'this' within default initializers,
1022 // per [expr.prim.general]p4.
1023 ThisTy = Context.getPointerType(ClassTy);
1024 }
1025
1026 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1027 // might need to be adjusted if the lambda or any of its enclosing lambda's
1028 // captures '*this' by copy.
1029 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1030 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1031 CurContext, Context);
1032 return ThisTy;
1033}
1034
1035Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1036 Decl *ContextDecl,
1037 unsigned CXXThisTypeQuals,
1038 bool Enabled)
1039 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1040{
1041 if (!Enabled || !ContextDecl)
1042 return;
1043
1044 CXXRecordDecl *Record = nullptr;
1045 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1046 Record = Template->getTemplatedDecl();
1047 else
1048 Record = cast<CXXRecordDecl>(ContextDecl);
1049
1050 // We care only for CVR qualifiers here, so cut everything else.
1051 CXXThisTypeQuals &= Qualifiers::FastMask;
1052 S.CXXThisTypeOverride
1053 = S.Context.getPointerType(
1054 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
1055
1056 this->Enabled = true;
1057}
1058
1059
1060Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1061 if (Enabled) {
1062 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1063 }
1064}
1065
1066static Expr *captureThis(Sema &S, ASTContext &Context, RecordDecl *RD,
1067 QualType ThisTy, SourceLocation Loc,
1068 const bool ByCopy) {
1069
1070 QualType AdjustedThisTy = ThisTy;
1071 // The type of the corresponding data member (not a 'this' pointer if 'by
1072 // copy').
1073 QualType CaptureThisFieldTy = ThisTy;
1074 if (ByCopy) {
1075 // If we are capturing the object referred to by '*this' by copy, ignore any
1076 // cv qualifiers inherited from the type of the member function for the type
1077 // of the closure-type's corresponding data member and any use of 'this'.
1078 CaptureThisFieldTy = ThisTy->getPointeeType();
1079 CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1080 AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
1081 }
1082
1083 FieldDecl *Field = FieldDecl::Create(
1084 Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
1085 Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
1086 ICIS_NoInit);
1087
1088 Field->setImplicit(true);
1089 Field->setAccess(AS_private);
1090 RD->addDecl(Field);
1091 Expr *This =
1092 new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
1093 if (ByCopy) {
1094 Expr *StarThis = S.CreateBuiltinUnaryOp(Loc,
1095 UO_Deref,
1096 This).get();
1097 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1098 nullptr, CaptureThisFieldTy, Loc);
1099 InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1100 InitializationSequence Init(S, Entity, InitKind, StarThis);
1101 ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
1102 if (ER.isInvalid()) return nullptr;
1103 return ER.get();
1104 }
1105 return This;
1106}
1107
1108bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1109 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1110 const bool ByCopy) {
1111 // We don't need to capture this in an unevaluated context.
1112 if (isUnevaluatedContext() && !Explicit)
1113 return true;
1114
1115 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1115, __extension__ __PRETTY_FUNCTION__))
;
1116
1117 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
1118 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
1119
1120 // Check that we can capture the *enclosing object* (referred to by '*this')
1121 // by the capturing-entity/closure (lambda/block/etc) at
1122 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1123
1124 // Note: The *enclosing object* can only be captured by-value by a
1125 // closure that is a lambda, using the explicit notation:
1126 // [*this] { ... }.
1127 // Every other capture of the *enclosing object* results in its by-reference
1128 // capture.
1129
1130 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1131 // stack), we can capture the *enclosing object* only if:
1132 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1133 // - or, 'L' has an implicit capture.
1134 // AND
1135 // -- there is no enclosing closure
1136 // -- or, there is some enclosing closure 'E' that has already captured the
1137 // *enclosing object*, and every intervening closure (if any) between 'E'
1138 // and 'L' can implicitly capture the *enclosing object*.
1139 // -- or, every enclosing closure can implicitly capture the
1140 // *enclosing object*
1141
1142
1143 unsigned NumCapturingClosures = 0;
1144 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
1145 if (CapturingScopeInfo *CSI =
1146 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1147 if (CSI->CXXThisCaptureIndex != 0) {
1148 // 'this' is already being captured; there isn't anything more to do.
1149 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1150 break;
1151 }
1152 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1153 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1154 // This context can't implicitly capture 'this'; fail out.
1155 if (BuildAndDiagnose)
1156 Diag(Loc, diag::err_this_capture)
1157 << (Explicit && idx == MaxFunctionScopesIndex);
1158 return true;
1159 }
1160 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1161 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1162 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1163 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1164 (Explicit && idx == MaxFunctionScopesIndex)) {
1165 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1166 // iteration through can be an explicit capture, all enclosing closures,
1167 // if any, must perform implicit captures.
1168
1169 // This closure can capture 'this'; continue looking upwards.
1170 NumCapturingClosures++;
1171 continue;
1172 }
1173 // This context can't implicitly capture 'this'; fail out.
1174 if (BuildAndDiagnose)
1175 Diag(Loc, diag::err_this_capture)
1176 << (Explicit && idx == MaxFunctionScopesIndex);
1177 return true;
1178 }
1179 break;
1180 }
1181 if (!BuildAndDiagnose) return false;
1182
1183 // If we got here, then the closure at MaxFunctionScopesIndex on the
1184 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1185 // (including implicit by-reference captures in any enclosing closures).
1186
1187 // In the loop below, respect the ByCopy flag only for the closure requesting
1188 // the capture (i.e. first iteration through the loop below). Ignore it for
1189 // all enclosing closure's up to NumCapturingClosures (since they must be
1190 // implicitly capturing the *enclosing object* by reference (see loop
1191 // above)).
1192 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1195, __extension__ __PRETTY_FUNCTION__))
1193 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1195, __extension__ __PRETTY_FUNCTION__))
1194 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1195, __extension__ __PRETTY_FUNCTION__))
1195 "*this) by copy")(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1195, __extension__ __PRETTY_FUNCTION__))
;
1196 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
1197 // contexts.
1198 QualType ThisTy = getCurrentThisType();
1199 for (unsigned idx = MaxFunctionScopesIndex; NumCapturingClosures;
1200 --idx, --NumCapturingClosures) {
1201 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1202 Expr *ThisExpr = nullptr;
1203
1204 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
1205 // For lambda expressions, build a field and an initializing expression,
1206 // and capture the *enclosing object* by copy only if this is the first
1207 // iteration.
1208 ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
1209 ByCopy && idx == MaxFunctionScopesIndex);
1210
1211 } else if (CapturedRegionScopeInfo *RSI
1212 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
1213 ThisExpr =
1214 captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
1215 false/*ByCopy*/);
1216
1217 bool isNested = NumCapturingClosures > 1;
1218 CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
1219 }
1220 return false;
1221}
1222
1223ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1224 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1225 /// is a non-lvalue expression whose value is the address of the object for
1226 /// which the function is called.
1227
1228 QualType ThisTy = getCurrentThisType();
1229 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
1230
1231 CheckCXXThisCapture(Loc);
1232 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1233}
1234
1235bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1236 // If we're outside the body of a member function, then we'll have a specified
1237 // type for 'this'.
1238 if (CXXThisTypeOverride.isNull())
1239 return false;
1240
1241 // Determine whether we're looking into a class that's currently being
1242 // defined.
1243 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1244 return Class && Class->isBeingDefined();
1245}
1246
1247/// Parse construction of a specified type.
1248/// Can be interpreted either as function-style casting ("int(x)")
1249/// or class type construction ("ClassType(x,y,z)")
1250/// or creation of a value-initialized type ("int()").
1251ExprResult
1252Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1253 SourceLocation LParenOrBraceLoc,
1254 MultiExprArg exprs,
1255 SourceLocation RParenOrBraceLoc,
1256 bool ListInitialization) {
1257 if (!TypeRep)
1258 return ExprError();
1259
1260 TypeSourceInfo *TInfo;
1261 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1262 if (!TInfo)
1263 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1264
1265 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1266 RParenOrBraceLoc, ListInitialization);
1267 // Avoid creating a non-type-dependent expression that contains typos.
1268 // Non-type-dependent expressions are liable to be discarded without
1269 // checking for embedded typos.
1270 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1271 !Result.get()->isTypeDependent())
1272 Result = CorrectDelayedTyposInExpr(Result.get());
1273 return Result;
1274}
1275
1276ExprResult
1277Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1278 SourceLocation LParenOrBraceLoc,
1279 MultiExprArg Exprs,
1280 SourceLocation RParenOrBraceLoc,
1281 bool ListInitialization) {
1282 QualType Ty = TInfo->getType();
1283 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1284
1285 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1286 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1287 // directly. We work around this by dropping the locations of the braces.
1288 SourceRange Locs = ListInitialization
1289 ? SourceRange()
1290 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1291 return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1292 Exprs, Locs.getEnd());
1293 }
1294
1295 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1297, __extension__ __PRETTY_FUNCTION__))
1296 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1297, __extension__ __PRETTY_FUNCTION__))
1297 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1297, __extension__ __PRETTY_FUNCTION__))
;
1298 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1299
1300 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1301 InitializationKind Kind =
1302 Exprs.size()
1303 ? ListInitialization
1304 ? InitializationKind::CreateDirectList(
1305 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1306 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1307 RParenOrBraceLoc)
1308 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1309 RParenOrBraceLoc);
1310
1311 // C++1z [expr.type.conv]p1:
1312 // If the type is a placeholder for a deduced class type, [...perform class
1313 // template argument deduction...]
1314 DeducedType *Deduced = Ty->getContainedDeducedType();
1315 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1316 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1317 Kind, Exprs);
1318 if (Ty.isNull())
1319 return ExprError();
1320 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1321 }
1322
1323 // C++ [expr.type.conv]p1:
1324 // If the expression list is a parenthesized single expression, the type
1325 // conversion expression is equivalent (in definedness, and if defined in
1326 // meaning) to the corresponding cast expression.
1327 if (Exprs.size() == 1 && !ListInitialization &&
1328 !isa<InitListExpr>(Exprs[0])) {
1329 Expr *Arg = Exprs[0];
1330 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1331 RParenOrBraceLoc);
1332 }
1333
1334 // For an expression of the form T(), T shall not be an array type.
1335 QualType ElemTy = Ty;
1336 if (Ty->isArrayType()) {
1337 if (!ListInitialization)
1338 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1339 << FullRange);
1340 ElemTy = Context.getBaseElementType(Ty);
1341 }
1342
1343 // There doesn't seem to be an explicit rule against this but sanity demands
1344 // we only construct objects with object types.
1345 if (Ty->isFunctionType())
1346 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1347 << Ty << FullRange);
1348
1349 // C++17 [expr.type.conv]p2:
1350 // If the type is cv void and the initializer is (), the expression is a
1351 // prvalue of the specified type that performs no initialization.
1352 if (!Ty->isVoidType() &&
1353 RequireCompleteType(TyBeginLoc, ElemTy,
1354 diag::err_invalid_incomplete_type_use, FullRange))
1355 return ExprError();
1356
1357 // Otherwise, the expression is a prvalue of the specified type whose
1358 // result object is direct-initialized (11.6) with the initializer.
1359 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1360 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1361
1362 if (Result.isInvalid())
1363 return Result;
1364
1365 Expr *Inner = Result.get();
1366 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1367 Inner = BTE->getSubExpr();
1368 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1369 !isa<CXXScalarValueInitExpr>(Inner)) {
1370 // If we created a CXXTemporaryObjectExpr, that node also represents the
1371 // functional cast. Otherwise, create an explicit cast to represent
1372 // the syntactic form of a functional-style cast that was used here.
1373 //
1374 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1375 // would give a more consistent AST representation than using a
1376 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1377 // is sometimes handled by initialization and sometimes not.
1378 QualType ResultType = Result.get()->getType();
1379 SourceRange Locs = ListInitialization
1380 ? SourceRange()
1381 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1382 Result = CXXFunctionalCastExpr::Create(
1383 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1384 Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1385 }
1386
1387 return Result;
1388}
1389
1390/// \brief Determine whether the given function is a non-placement
1391/// deallocation function.
1392static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1393 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1394 return Method->isUsualDeallocationFunction();
1395
1396 if (FD->getOverloadedOperator() != OO_Delete &&
1397 FD->getOverloadedOperator() != OO_Array_Delete)
1398 return false;
1399
1400 unsigned UsualParams = 1;
1401
1402 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1403 S.Context.hasSameUnqualifiedType(
1404 FD->getParamDecl(UsualParams)->getType(),
1405 S.Context.getSizeType()))
1406 ++UsualParams;
1407
1408 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1409 S.Context.hasSameUnqualifiedType(
1410 FD->getParamDecl(UsualParams)->getType(),
1411 S.Context.getTypeDeclType(S.getStdAlignValT())))
1412 ++UsualParams;
1413
1414 return UsualParams == FD->getNumParams();
1415}
1416
1417namespace {
1418 struct UsualDeallocFnInfo {
1419 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1420 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1421 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1422 Destroying(false), HasSizeT(false), HasAlignValT(false),
1423 CUDAPref(Sema::CFP_Native) {
1424 // A function template declaration is never a usual deallocation function.
1425 if (!FD)
1426 return;
1427 unsigned NumBaseParams = 1;
1428 if (FD->isDestroyingOperatorDelete()) {
1429 Destroying = true;
1430 ++NumBaseParams;
1431 }
1432 if (FD->getNumParams() == NumBaseParams + 2)
1433 HasAlignValT = HasSizeT = true;
1434 else if (FD->getNumParams() == NumBaseParams + 1) {
1435 HasSizeT = FD->getParamDecl(NumBaseParams)->getType()->isIntegerType();
1436 HasAlignValT = !HasSizeT;
1437 }
1438
1439 // In CUDA, determine how much we'd like / dislike to call this.
1440 if (S.getLangOpts().CUDA)
1441 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1442 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1443 }
1444
1445 operator bool() const { return FD; }
1446
1447 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1448 bool WantAlign) const {
1449 // C++ P0722:
1450 // A destroying operator delete is preferred over a non-destroying
1451 // operator delete.
1452 if (Destroying != Other.Destroying)
1453 return Destroying;
1454
1455 // C++17 [expr.delete]p10:
1456 // If the type has new-extended alignment, a function with a parameter
1457 // of type std::align_val_t is preferred; otherwise a function without
1458 // such a parameter is preferred
1459 if (HasAlignValT != Other.HasAlignValT)
1460 return HasAlignValT == WantAlign;
1461
1462 if (HasSizeT != Other.HasSizeT)
1463 return HasSizeT == WantSize;
1464
1465 // Use CUDA call preference as a tiebreaker.
1466 return CUDAPref > Other.CUDAPref;
1467 }
1468
1469 DeclAccessPair Found;
1470 FunctionDecl *FD;
1471 bool Destroying, HasSizeT, HasAlignValT;
1472 Sema::CUDAFunctionPreference CUDAPref;
1473 };
1474}
1475
1476/// Determine whether a type has new-extended alignment. This may be called when
1477/// the type is incomplete (for a delete-expression with an incomplete pointee
1478/// type), in which case it will conservatively return false if the alignment is
1479/// not known.
1480static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1481 return S.getLangOpts().AlignedAllocation &&
1482 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1483 S.getASTContext().getTargetInfo().getNewAlign();
1484}
1485
1486/// Select the correct "usual" deallocation function to use from a selection of
1487/// deallocation functions (either global or class-scope).
1488static UsualDeallocFnInfo resolveDeallocationOverload(
1489 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1490 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1491 UsualDeallocFnInfo Best;
1492
1493 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1494 UsualDeallocFnInfo Info(S, I.getPair());
1495 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1496 Info.CUDAPref == Sema::CFP_Never)
1497 continue;
1498
1499 if (!Best) {
1500 Best = Info;
1501 if (BestFns)
1502 BestFns->push_back(Info);
1503 continue;
1504 }
1505
1506 if (Best.isBetterThan(Info, WantSize, WantAlign))
1507 continue;
1508
1509 // If more than one preferred function is found, all non-preferred
1510 // functions are eliminated from further consideration.
1511 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1512 BestFns->clear();
1513
1514 Best = Info;
1515 if (BestFns)
1516 BestFns->push_back(Info);
1517 }
1518
1519 return Best;
1520}
1521
1522/// Determine whether a given type is a class for which 'delete[]' would call
1523/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1524/// we need to store the array size (even if the type is
1525/// trivially-destructible).
1526static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1527 QualType allocType) {
1528 const RecordType *record =
1529 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1530 if (!record) return false;
1531
1532 // Try to find an operator delete[] in class scope.
1533
1534 DeclarationName deleteName =
1535 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1536 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1537 S.LookupQualifiedName(ops, record->getDecl());
1538
1539 // We're just doing this for information.
1540 ops.suppressDiagnostics();
1541
1542 // Very likely: there's no operator delete[].
1543 if (ops.empty()) return false;
1544
1545 // If it's ambiguous, it should be illegal to call operator delete[]
1546 // on this thing, so it doesn't matter if we allocate extra space or not.
1547 if (ops.isAmbiguous()) return false;
1548
1549 // C++17 [expr.delete]p10:
1550 // If the deallocation functions have class scope, the one without a
1551 // parameter of type std::size_t is selected.
1552 auto Best = resolveDeallocationOverload(
1553 S, ops, /*WantSize*/false,
1554 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1555 return Best && Best.HasSizeT;
1556}
1557
1558/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1559///
1560/// E.g.:
1561/// @code new (memory) int[size][4] @endcode
1562/// or
1563/// @code ::new Foo(23, "hello") @endcode
1564///
1565/// \param StartLoc The first location of the expression.
1566/// \param UseGlobal True if 'new' was prefixed with '::'.
1567/// \param PlacementLParen Opening paren of the placement arguments.
1568/// \param PlacementArgs Placement new arguments.
1569/// \param PlacementRParen Closing paren of the placement arguments.
1570/// \param TypeIdParens If the type is in parens, the source range.
1571/// \param D The type to be allocated, as well as array dimensions.
1572/// \param Initializer The initializing expression or initializer-list, or null
1573/// if there is none.
1574ExprResult
1575Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1576 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1577 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1578 Declarator &D, Expr *Initializer) {
1579 Expr *ArraySize = nullptr;
1580 // If the specified type is an array, unwrap it and save the expression.
1581 if (D.getNumTypeObjects() > 0 &&
1582 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1583 DeclaratorChunk &Chunk = D.getTypeObject(0);
1584 if (D.getDeclSpec().hasAutoTypeSpec())
1585 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1586 << D.getSourceRange());
1587 if (Chunk.Arr.hasStatic)
1588 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1589 << D.getSourceRange());
1590 if (!Chunk.Arr.NumElts)
1591 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1592 << D.getSourceRange());
1593
1594 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1595 D.DropFirstTypeObject();
1596 }
1597
1598 // Every dimension shall be of constant size.
1599 if (ArraySize) {
1600 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1601 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1602 break;
1603
1604 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1605 if (Expr *NumElts = (Expr *)Array.NumElts) {
1606 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1607 if (getLangOpts().CPlusPlus14) {
1608 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1609 // shall be a converted constant expression (5.19) of type std::size_t
1610 // and shall evaluate to a strictly positive value.
1611 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1612 assert(IntWidth && "Builtin type of size 0?")(static_cast <bool> (IntWidth && "Builtin type of size 0?"
) ? void (0) : __assert_fail ("IntWidth && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1612, __extension__ __PRETTY_FUNCTION__))
;
1613 llvm::APSInt Value(IntWidth);
1614 Array.NumElts
1615 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1616 CCEK_NewExpr)
1617 .get();
1618 } else {
1619 Array.NumElts
1620 = VerifyIntegerConstantExpression(NumElts, nullptr,
1621 diag::err_new_array_nonconst)
1622 .get();
1623 }
1624 if (!Array.NumElts)
1625 return ExprError();
1626 }
1627 }
1628 }
1629 }
1630
1631 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1632 QualType AllocType = TInfo->getType();
1633 if (D.isInvalidType())
1634 return ExprError();
1635
1636 SourceRange DirectInitRange;
1637 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1638 DirectInitRange = List->getSourceRange();
1639
1640 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1641 PlacementLParen,
1642 PlacementArgs,
1643 PlacementRParen,
1644 TypeIdParens,
1645 AllocType,
1646 TInfo,
1647 ArraySize,
1648 DirectInitRange,
1649 Initializer);
1650}
1651
1652static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1653 Expr *Init) {
1654 if (!Init)
1655 return true;
1656 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1657 return PLE->getNumExprs() == 0;
1658 if (isa<ImplicitValueInitExpr>(Init))
1659 return true;
1660 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1661 return !CCE->isListInitialization() &&
1662 CCE->getConstructor()->isDefaultConstructor();
1663 else if (Style == CXXNewExpr::ListInit) {
1664 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1665, __extension__ __PRETTY_FUNCTION__))
1665 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1665, __extension__ __PRETTY_FUNCTION__))
;
1666 return true;
1667 }
1668 return false;
1669}
1670
1671// Emit a diagnostic if an aligned allocation/deallocation function that is not
1672// implemented in the standard library is selected.
1673static void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1674 SourceLocation Loc, bool IsDelete,
1675 Sema &S) {
1676 if (!S.getLangOpts().AlignedAllocationUnavailable)
1677 return;
1678
1679 // Return if there is a definition.
1680 if (FD.isDefined())
1681 return;
1682
1683 bool IsAligned = false;
1684 if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned) {
1685 const llvm::Triple &T = S.getASTContext().getTargetInfo().getTriple();
1686 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1687 S.getASTContext().getTargetInfo().getPlatformName());
1688
1689 S.Diag(Loc, diag::warn_aligned_allocation_unavailable)
1690 << IsDelete << FD.getType().getAsString() << OSName
1691 << alignedAllocMinVersion(T.getOS()).getAsString();
1692 S.Diag(Loc, diag::note_silence_unligned_allocation_unavailable);
1693 }
1694}
1695
1696ExprResult
1697Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1698 SourceLocation PlacementLParen,
1699 MultiExprArg PlacementArgs,
1700 SourceLocation PlacementRParen,
1701 SourceRange TypeIdParens,
1702 QualType AllocType,
1703 TypeSourceInfo *AllocTypeInfo,
1704 Expr *ArraySize,
1705 SourceRange DirectInitRange,
1706 Expr *Initializer) {
1707 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1708 SourceLocation StartLoc = Range.getBegin();
1709
1710 CXXNewExpr::InitializationStyle initStyle;
1711 if (DirectInitRange.isValid()) {
1712 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1712, __extension__ __PRETTY_FUNCTION__))
;
1713 initStyle = CXXNewExpr::CallInit;
1714 } else if (Initializer && isa<InitListExpr>(Initializer))
1715 initStyle = CXXNewExpr::ListInit;
1716 else {
1717 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1719, __extension__ __PRETTY_FUNCTION__))
1718 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1719, __extension__ __PRETTY_FUNCTION__))
1719 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1719, __extension__ __PRETTY_FUNCTION__))
;
1720 initStyle = CXXNewExpr::NoInit;
1721 }
1722
1723 Expr **Inits = &Initializer;
1724 unsigned NumInits = Initializer ? 1 : 0;
1725 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1726 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1726, __extension__ __PRETTY_FUNCTION__))
;
1727 Inits = List->getExprs();
1728 NumInits = List->getNumExprs();
1729 }
1730
1731 // C++11 [expr.new]p15:
1732 // A new-expression that creates an object of type T initializes that
1733 // object as follows:
1734 InitializationKind Kind
1735 // - If the new-initializer is omitted, the object is default-
1736 // initialized (8.5); if no initialization is performed,
1737 // the object has indeterminate value
1738 = initStyle == CXXNewExpr::NoInit
1739 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1740 // - Otherwise, the new-initializer is interpreted according to the
1741 // initialization rules of 8.5 for direct-initialization.
1742 : initStyle == CXXNewExpr::ListInit
1743 ? InitializationKind::CreateDirectList(TypeRange.getBegin(),
1744 Initializer->getLocStart(),
1745 Initializer->getLocEnd())
1746 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1747 DirectInitRange.getBegin(),
1748 DirectInitRange.getEnd());
1749
1750 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1751 auto *Deduced = AllocType->getContainedDeducedType();
1752 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1753 if (ArraySize)
1754 return ExprError(Diag(ArraySize->getExprLoc(),
1755 diag::err_deduced_class_template_compound_type)
1756 << /*array*/ 2 << ArraySize->getSourceRange());
1757
1758 InitializedEntity Entity
1759 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1760 AllocType = DeduceTemplateSpecializationFromInitializer(
1761 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1762 if (AllocType.isNull())
1763 return ExprError();
1764 } else if (Deduced) {
1765 bool Braced = (initStyle == CXXNewExpr::ListInit);
1766 if (NumInits == 1) {
1767 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1768 Inits = p->getInits();
1769 NumInits = p->getNumInits();
1770 Braced = true;
1771 }
1772 }
1773
1774 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1775 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1776 << AllocType << TypeRange);
1777 if (NumInits > 1) {
1778 Expr *FirstBad = Inits[1];
1779 return ExprError(Diag(FirstBad->getLocStart(),
1780 diag::err_auto_new_ctor_multiple_expressions)
1781 << AllocType << TypeRange);
1782 }
1783 if (Braced && !getLangOpts().CPlusPlus17)
1784 Diag(Initializer->getLocStart(), diag::ext_auto_new_list_init)
1785 << AllocType << TypeRange;
1786 Expr *Deduce = Inits[0];
1787 QualType DeducedType;
1788 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1789 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1790 << AllocType << Deduce->getType()
1791 << TypeRange << Deduce->getSourceRange());
1792 if (DeducedType.isNull())
1793 return ExprError();
1794 AllocType = DeducedType;
1795 }
1796
1797 // Per C++0x [expr.new]p5, the type being constructed may be a
1798 // typedef of an array type.
1799 if (!ArraySize) {
1800 if (const ConstantArrayType *Array
1801 = Context.getAsConstantArrayType(AllocType)) {
1802 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1803 Context.getSizeType(),
1804 TypeRange.getEnd());
1805 AllocType = Array->getElementType();
1806 }
1807 }
1808
1809 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1810 return ExprError();
1811
1812 if (initStyle == CXXNewExpr::ListInit &&
1813 isStdInitializerList(AllocType, nullptr)) {
1814 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1815 diag::warn_dangling_std_initializer_list)
1816 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1817 }
1818
1819 // In ARC, infer 'retaining' for the allocated
1820 if (getLangOpts().ObjCAutoRefCount &&
1821 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1822 AllocType->isObjCLifetimeType()) {
1823 AllocType = Context.getLifetimeQualifiedType(AllocType,
1824 AllocType->getObjCARCImplicitLifetime());
1825 }
1826
1827 QualType ResultType = Context.getPointerType(AllocType);
1828
1829 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1830 ExprResult result = CheckPlaceholderExpr(ArraySize);
1831 if (result.isInvalid()) return ExprError();
1832 ArraySize = result.get();
1833 }
1834 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1835 // integral or enumeration type with a non-negative value."
1836 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1837 // enumeration type, or a class type for which a single non-explicit
1838 // conversion function to integral or unscoped enumeration type exists.
1839 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1840 // std::size_t.
1841 llvm::Optional<uint64_t> KnownArraySize;
1842 if (ArraySize && !ArraySize->isTypeDependent()) {
1843 ExprResult ConvertedSize;
1844 if (getLangOpts().CPlusPlus14) {
1845 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1845, __extension__ __PRETTY_FUNCTION__))
;
1846
1847 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1848 AA_Converting);
1849
1850 if (!ConvertedSize.isInvalid() &&
1851 ArraySize->getType()->getAs<RecordType>())
1852 // Diagnose the compatibility of this conversion.
1853 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1854 << ArraySize->getType() << 0 << "'size_t'";
1855 } else {
1856 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1857 protected:
1858 Expr *ArraySize;
1859
1860 public:
1861 SizeConvertDiagnoser(Expr *ArraySize)
1862 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1863 ArraySize(ArraySize) {}
1864
1865 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1866 QualType T) override {
1867 return S.Diag(Loc, diag::err_array_size_not_integral)
1868 << S.getLangOpts().CPlusPlus11 << T;
1869 }
1870
1871 SemaDiagnosticBuilder diagnoseIncomplete(
1872 Sema &S, SourceLocation Loc, QualType T) override {
1873 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1874 << T << ArraySize->getSourceRange();
1875 }
1876
1877 SemaDiagnosticBuilder diagnoseExplicitConv(
1878 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1879 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1880 }
1881
1882 SemaDiagnosticBuilder noteExplicitConv(
1883 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1884 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1885 << ConvTy->isEnumeralType() << ConvTy;
1886 }
1887
1888 SemaDiagnosticBuilder diagnoseAmbiguous(
1889 Sema &S, SourceLocation Loc, QualType T) override {
1890 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1891 }
1892
1893 SemaDiagnosticBuilder noteAmbiguous(
1894 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1895 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1896 << ConvTy->isEnumeralType() << ConvTy;
1897 }
1898
1899 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1900 QualType T,
1901 QualType ConvTy) override {
1902 return S.Diag(Loc,
1903 S.getLangOpts().CPlusPlus11
1904 ? diag::warn_cxx98_compat_array_size_conversion
1905 : diag::ext_array_size_conversion)
1906 << T << ConvTy->isEnumeralType() << ConvTy;
1907 }
1908 } SizeDiagnoser(ArraySize);
1909
1910 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1911 SizeDiagnoser);
1912 }
1913 if (ConvertedSize.isInvalid())
1914 return ExprError();
1915
1916 ArraySize = ConvertedSize.get();
1917 QualType SizeType = ArraySize->getType();
1918
1919 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1920 return ExprError();
1921
1922 // C++98 [expr.new]p7:
1923 // The expression in a direct-new-declarator shall have integral type
1924 // with a non-negative value.
1925 //
1926 // Let's see if this is a constant < 0. If so, we reject it out of hand,
1927 // per CWG1464. Otherwise, if it's not a constant, we must have an
1928 // unparenthesized array type.
1929 if (!ArraySize->isValueDependent()) {
1930 llvm::APSInt Value;
1931 // We've already performed any required implicit conversion to integer or
1932 // unscoped enumeration type.
1933 // FIXME: Per CWG1464, we are required to check the value prior to
1934 // converting to size_t. This will never find a negative array size in
1935 // C++14 onwards, because Value is always unsigned here!
1936 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1937 if (Value.isSigned() && Value.isNegative()) {
1938 return ExprError(Diag(ArraySize->getLocStart(),
1939 diag::err_typecheck_negative_array_size)
1940 << ArraySize->getSourceRange());
1941 }
1942
1943 if (!AllocType->isDependentType()) {
1944 unsigned ActiveSizeBits =
1945 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1946 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1947 return ExprError(Diag(ArraySize->getLocStart(),
1948 diag::err_array_too_large)
1949 << Value.toString(10)
1950 << ArraySize->getSourceRange());
1951 }
1952
1953 KnownArraySize = Value.getZExtValue();
1954 } else if (TypeIdParens.isValid()) {
1955 // Can't have dynamic array size when the type-id is in parentheses.
1956 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1957 << ArraySize->getSourceRange()
1958 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1959 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1960
1961 TypeIdParens = SourceRange();
1962 }
1963 }
1964
1965 // Note that we do *not* convert the argument in any way. It can
1966 // be signed, larger than size_t, whatever.
1967 }
1968
1969 FunctionDecl *OperatorNew = nullptr;
1970 FunctionDecl *OperatorDelete = nullptr;
1971 unsigned Alignment =
1972 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
1973 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
1974 bool PassAlignment = getLangOpts().AlignedAllocation &&
1975 Alignment > NewAlignment;
1976
1977 if (!AllocType->isDependentType() &&
1978 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1979 FindAllocationFunctions(StartLoc,
1980 SourceRange(PlacementLParen, PlacementRParen),
1981 UseGlobal, AllocType, ArraySize, PassAlignment,
1982 PlacementArgs, OperatorNew, OperatorDelete))
1983 return ExprError();
1984
1985 // If this is an array allocation, compute whether the usual array
1986 // deallocation function for the type has a size_t parameter.
1987 bool UsualArrayDeleteWantsSize = false;
1988 if (ArraySize && !AllocType->isDependentType())
1989 UsualArrayDeleteWantsSize =
1990 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1991
1992 SmallVector<Expr *, 8> AllPlaceArgs;
1993 if (OperatorNew) {
1994 const FunctionProtoType *Proto =
1995 OperatorNew->getType()->getAs<FunctionProtoType>();
1996 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1997 : VariadicDoesNotApply;
1998
1999 // We've already converted the placement args, just fill in any default
2000 // arguments. Skip the first parameter because we don't have a corresponding
2001 // argument. Skip the second parameter too if we're passing in the
2002 // alignment; we've already filled it in.
2003 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2004 PassAlignment ? 2 : 1, PlacementArgs,
2005 AllPlaceArgs, CallType))
2006 return ExprError();
2007
2008 if (!AllPlaceArgs.empty())
2009 PlacementArgs = AllPlaceArgs;
2010
2011 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2012 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2013
2014 // FIXME: Missing call to CheckFunctionCall or equivalent
2015
2016 // Warn if the type is over-aligned and is being allocated by (unaligned)
2017 // global operator new.
2018 if (PlacementArgs.empty() && !PassAlignment &&
2019 (OperatorNew->isImplicit() ||
2020 (OperatorNew->getLocStart().isValid() &&
2021 getSourceManager().isInSystemHeader(OperatorNew->getLocStart())))) {
2022 if (Alignment > NewAlignment)
2023 Diag(StartLoc, diag::warn_overaligned_type)
2024 << AllocType
2025 << unsigned(Alignment / Context.getCharWidth())
2026 << unsigned(NewAlignment / Context.getCharWidth());
2027 }
2028 }
2029
2030 // Array 'new' can't have any initializers except empty parentheses.
2031 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2032 // dialect distinction.
2033 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2034 SourceRange InitRange(Inits[0]->getLocStart(),
2035 Inits[NumInits - 1]->getLocEnd());
2036 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2037 return ExprError();
2038 }
2039
2040 // If we can perform the initialization, and we've not already done so,
2041 // do it now.
2042 if (!AllocType->isDependentType() &&
2043 !Expr::hasAnyTypeDependentArguments(
2044 llvm::makeArrayRef(Inits, NumInits))) {
2045 // The type we initialize is the complete type, including the array bound.
2046 QualType InitType;
2047 if (KnownArraySize)
2048 InitType = Context.getConstantArrayType(
2049 AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2050 *KnownArraySize),
2051 ArrayType::Normal, 0);
2052 else if (ArraySize)
2053 InitType =
2054 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2055 else
2056 InitType = AllocType;
2057
2058 InitializedEntity Entity
2059 = InitializedEntity::InitializeNew(StartLoc, InitType);
2060 InitializationSequence InitSeq(*this, Entity, Kind,
2061 MultiExprArg(Inits, NumInits));
2062 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2063 MultiExprArg(Inits, NumInits));
2064 if (FullInit.isInvalid())
2065 return ExprError();
2066
2067 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2068 // we don't want the initialized object to be destructed.
2069 // FIXME: We should not create these in the first place.
2070 if (CXXBindTemporaryExpr *Binder =
2071 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2072 FullInit = Binder->getSubExpr();
2073
2074 Initializer = FullInit.get();
2075 }
2076
2077 // Mark the new and delete operators as referenced.
2078 if (OperatorNew) {
2079 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2080 return ExprError();
2081 MarkFunctionReferenced(StartLoc, OperatorNew);
2082 diagnoseUnavailableAlignedAllocation(*OperatorNew, StartLoc, false, *this);
2083 }
2084 if (OperatorDelete) {
2085 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2086 return ExprError();
2087 MarkFunctionReferenced(StartLoc, OperatorDelete);
2088 diagnoseUnavailableAlignedAllocation(*OperatorDelete, StartLoc, true, *this);
2089 }
2090
2091 // C++0x [expr.new]p17:
2092 // If the new expression creates an array of objects of class type,
2093 // access and ambiguity control are done for the destructor.
2094 QualType BaseAllocType = Context.getBaseElementType(AllocType);
2095 if (ArraySize && !BaseAllocType->isDependentType()) {
2096 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
2097 if (CXXDestructorDecl *dtor = LookupDestructor(
2098 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
2099 MarkFunctionReferenced(StartLoc, dtor);
2100 CheckDestructorAccess(StartLoc, dtor,
2101 PDiag(diag::err_access_dtor)
2102 << BaseAllocType);
2103 if (DiagnoseUseOfDecl(dtor, StartLoc))
2104 return ExprError();
2105 }
2106 }
2107 }
2108
2109 return new (Context)
2110 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, PassAlignment,
2111 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
2112 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
2113 Range, DirectInitRange);
2114}
2115
2116/// \brief Checks that a type is suitable as the allocated type
2117/// in a new-expression.
2118bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2119 SourceRange R) {
2120 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2121 // abstract class type or array thereof.
2122 if (AllocType->isFunctionType())
2123 return Diag(Loc, diag::err_bad_new_type)
2124 << AllocType << 0 << R;
2125 else if (AllocType->isReferenceType())
2126 return Diag(Loc, diag::err_bad_new_type)
2127 << AllocType << 1 << R;
2128 else if (!AllocType->isDependentType() &&
2129 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2130 return true;
2131 else if (RequireNonAbstractType(Loc, AllocType,
2132 diag::err_allocation_of_abstract_type))
2133 return true;
2134 else if (AllocType->isVariablyModifiedType())
2135 return Diag(Loc, diag::err_variably_modified_new_type)
2136 << AllocType;
2137 else if (AllocType.getAddressSpace() != LangAS::Default)
2138 return Diag(Loc, diag::err_address_space_qualified_new)
2139 << AllocType.getUnqualifiedType()
2140 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2141 else if (getLangOpts().ObjCAutoRefCount) {
2142 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2143 QualType BaseAllocType = Context.getBaseElementType(AT);
2144 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2145 BaseAllocType->isObjCLifetimeType())
2146 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2147 << BaseAllocType;
2148 }
2149 }
2150
2151 return false;
2152}
2153
2154static bool resolveAllocationOverload(
2155 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2156 bool &PassAlignment, FunctionDecl *&Operator,
2157 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2158 OverloadCandidateSet Candidates(R.getNameLoc(),
2159 OverloadCandidateSet::CSK_Normal);
2160 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2161 Alloc != AllocEnd; ++Alloc) {
2162 // Even member operator new/delete are implicitly treated as
2163 // static, so don't use AddMemberCandidate.
2164 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2165
2166 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2167 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2168 /*ExplicitTemplateArgs=*/nullptr, Args,
2169 Candidates,
2170 /*SuppressUserConversions=*/false);
2171 continue;
2172 }
2173
2174 FunctionDecl *Fn = cast<FunctionDecl>(D);
2175 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2176 /*SuppressUserConversions=*/false);
2177 }
2178
2179 // Do the resolution.
2180 OverloadCandidateSet::iterator Best;
2181 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2182 case OR_Success: {
2183 // Got one!
2184 FunctionDecl *FnDecl = Best->Function;
2185 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2186 Best->FoundDecl) == Sema::AR_inaccessible)
2187 return true;
2188
2189 Operator = FnDecl;
2190 return false;
2191 }
2192
2193 case OR_No_Viable_Function:
2194 // C++17 [expr.new]p13:
2195 // If no matching function is found and the allocated object type has
2196 // new-extended alignment, the alignment argument is removed from the
2197 // argument list, and overload resolution is performed again.
2198 if (PassAlignment) {
2199 PassAlignment = false;
2200 AlignArg = Args[1];
2201 Args.erase(Args.begin() + 1);
2202 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2203 Operator, &Candidates, AlignArg,
2204 Diagnose);
2205 }
2206
2207 // MSVC will fall back on trying to find a matching global operator new
2208 // if operator new[] cannot be found. Also, MSVC will leak by not
2209 // generating a call to operator delete or operator delete[], but we
2210 // will not replicate that bug.
2211 // FIXME: Find out how this interacts with the std::align_val_t fallback
2212 // once MSVC implements it.
2213 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2214 S.Context.getLangOpts().MSVCCompat) {
2215 R.clear();
2216 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2217 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2218 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2219 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2220 Operator, /*Candidates=*/nullptr,
2221 /*AlignArg=*/nullptr, Diagnose);
2222 }
2223
2224 if (Diagnose) {
2225 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2226 << R.getLookupName() << Range;
2227
2228 // If we have aligned candidates, only note the align_val_t candidates
2229 // from AlignedCandidates and the non-align_val_t candidates from
2230 // Candidates.
2231 if (AlignedCandidates) {
2232 auto IsAligned = [](OverloadCandidate &C) {
2233 return C.Function->getNumParams() > 1 &&
2234 C.Function->getParamDecl(1)->getType()->isAlignValT();
2235 };
2236 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2237
2238 // This was an overaligned allocation, so list the aligned candidates
2239 // first.
2240 Args.insert(Args.begin() + 1, AlignArg);
2241 AlignedCandidates->NoteCandidates(S, OCD_AllCandidates, Args, "",
2242 R.getNameLoc(), IsAligned);
2243 Args.erase(Args.begin() + 1);
2244 Candidates.NoteCandidates(S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2245 IsUnaligned);
2246 } else {
2247 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2248 }
2249 }
2250 return true;
2251
2252 case OR_Ambiguous:
2253 if (Diagnose) {
2254 S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
2255 << R.getLookupName() << Range;
2256 Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
2257 }
2258 return true;
2259
2260 case OR_Deleted: {
2261 if (Diagnose) {
2262 S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
2263 << Best->Function->isDeleted() << R.getLookupName()
2264 << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
2265 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2266 }
2267 return true;
2268 }
2269 }
2270 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2270)
;
2271}
2272
2273
2274/// FindAllocationFunctions - Finds the overloads of operator new and delete
2275/// that are appropriate for the allocation.
2276bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2277 bool UseGlobal, QualType AllocType,
2278 bool IsArray, bool &PassAlignment,
2279 MultiExprArg PlaceArgs,
2280 FunctionDecl *&OperatorNew,
2281 FunctionDecl *&OperatorDelete,
2282 bool Diagnose) {
2283 // --- Choosing an allocation function ---
2284 // C++ 5.3.4p8 - 14 & 18
2285 // 1) If UseGlobal is true, only look in the global scope. Else, also look
2286 // in the scope of the allocated class.
2287 // 2) If an array size is given, look for operator new[], else look for
2288 // operator new.
2289 // 3) The first argument is always size_t. Append the arguments from the
2290 // placement form.
2291
2292 SmallVector<Expr*, 8> AllocArgs;
2293 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2294
2295 // We don't care about the actual value of these arguments.
2296 // FIXME: Should the Sema create the expression and embed it in the syntax
2297 // tree? Or should the consumer just recalculate the value?
2298 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2299 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2300 Context.getTargetInfo().getPointerWidth(0)),
2301 Context.getSizeType(),
2302 SourceLocation());
2303 AllocArgs.push_back(&Size);
2304
2305 QualType AlignValT = Context.VoidTy;
2306 if (PassAlignment) {
2307 DeclareGlobalNewDelete();
2308 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2309 }
2310 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2311 if (PassAlignment)
2312 AllocArgs.push_back(&Align);
2313
2314 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2315
2316 // C++ [expr.new]p8:
2317 // If the allocated type is a non-array type, the allocation
2318 // function's name is operator new and the deallocation function's
2319 // name is operator delete. If the allocated type is an array
2320 // type, the allocation function's name is operator new[] and the
2321 // deallocation function's name is operator delete[].
2322 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2323 IsArray ? OO_Array_New : OO_New);
2324
2325 QualType AllocElemType = Context.getBaseElementType(AllocType);
2326
2327 // Find the allocation function.
2328 {
2329 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2330
2331 // C++1z [expr.new]p9:
2332 // If the new-expression begins with a unary :: operator, the allocation
2333 // function's name is looked up in the global scope. Otherwise, if the
2334 // allocated type is a class type T or array thereof, the allocation
2335 // function's name is looked up in the scope of T.
2336 if (AllocElemType->isRecordType() && !UseGlobal)
2337 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2338
2339 // We can see ambiguity here if the allocation function is found in
2340 // multiple base classes.
2341 if (R.isAmbiguous())
2342 return true;
2343
2344 // If this lookup fails to find the name, or if the allocated type is not
2345 // a class type, the allocation function's name is looked up in the
2346 // global scope.
2347 if (R.empty())
2348 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2349
2350 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2350, __extension__ __PRETTY_FUNCTION__))
;
2351 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2351, __extension__ __PRETTY_FUNCTION__))
;
2352
2353 // We do our own custom access checks below.
2354 R.suppressDiagnostics();
2355
2356 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2357 OperatorNew, /*Candidates=*/nullptr,
2358 /*AlignArg=*/nullptr, Diagnose))
2359 return true;
2360 }
2361
2362 // We don't need an operator delete if we're running under -fno-exceptions.
2363 if (!getLangOpts().Exceptions) {
2364 OperatorDelete = nullptr;
2365 return false;
2366 }
2367
2368 // Note, the name of OperatorNew might have been changed from array to
2369 // non-array by resolveAllocationOverload.
2370 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2371 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2372 ? OO_Array_Delete
2373 : OO_Delete);
2374
2375 // C++ [expr.new]p19:
2376 //
2377 // If the new-expression begins with a unary :: operator, the
2378 // deallocation function's name is looked up in the global
2379 // scope. Otherwise, if the allocated type is a class type T or an
2380 // array thereof, the deallocation function's name is looked up in
2381 // the scope of T. If this lookup fails to find the name, or if
2382 // the allocated type is not a class type or array thereof, the
2383 // deallocation function's name is looked up in the global scope.
2384 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2385 if (AllocElemType->isRecordType() && !UseGlobal) {
2386 CXXRecordDecl *RD
2387 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2388 LookupQualifiedName(FoundDelete, RD);
2389 }
2390 if (FoundDelete.isAmbiguous())
2391 return true; // FIXME: clean up expressions?
2392
2393 bool FoundGlobalDelete = FoundDelete.empty();
2394 if (FoundDelete.empty()) {
2395 DeclareGlobalNewDelete();
2396 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2397 }
2398
2399 FoundDelete.suppressDiagnostics();
2400
2401 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2402
2403 // Whether we're looking for a placement operator delete is dictated
2404 // by whether we selected a placement operator new, not by whether
2405 // we had explicit placement arguments. This matters for things like
2406 // struct A { void *operator new(size_t, int = 0); ... };
2407 // A *a = new A()
2408 //
2409 // We don't have any definition for what a "placement allocation function"
2410 // is, but we assume it's any allocation function whose
2411 // parameter-declaration-clause is anything other than (size_t).
2412 //
2413 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2414 // This affects whether an exception from the constructor of an overaligned
2415 // type uses the sized or non-sized form of aligned operator delete.
2416 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2417 OperatorNew->isVariadic();
2418
2419 if (isPlacementNew) {
2420 // C++ [expr.new]p20:
2421 // A declaration of a placement deallocation function matches the
2422 // declaration of a placement allocation function if it has the
2423 // same number of parameters and, after parameter transformations
2424 // (8.3.5), all parameter types except the first are
2425 // identical. [...]
2426 //
2427 // To perform this comparison, we compute the function type that
2428 // the deallocation function should have, and use that type both
2429 // for template argument deduction and for comparison purposes.
2430 QualType ExpectedFunctionType;
2431 {
2432 const FunctionProtoType *Proto
2433 = OperatorNew->getType()->getAs<FunctionProtoType>();
2434
2435 SmallVector<QualType, 4> ArgTypes;
2436 ArgTypes.push_back(Context.VoidPtrTy);
2437 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2438 ArgTypes.push_back(Proto->getParamType(I));
2439
2440 FunctionProtoType::ExtProtoInfo EPI;
2441 // FIXME: This is not part of the standard's rule.
2442 EPI.Variadic = Proto->isVariadic();
2443
2444 ExpectedFunctionType
2445 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2446 }
2447
2448 for (LookupResult::iterator D = FoundDelete.begin(),
2449 DEnd = FoundDelete.end();
2450 D != DEnd; ++D) {
2451 FunctionDecl *Fn = nullptr;
2452 if (FunctionTemplateDecl *FnTmpl =
2453 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2454 // Perform template argument deduction to try to match the
2455 // expected function type.
2456 TemplateDeductionInfo Info(StartLoc);
2457 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2458 Info))
2459 continue;
2460 } else
2461 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2462
2463 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2464 ExpectedFunctionType,
2465 /*AdjustExcpetionSpec*/true),
2466 ExpectedFunctionType))
2467 Matches.push_back(std::make_pair(D.getPair(), Fn));
2468 }
2469
2470 if (getLangOpts().CUDA)
2471 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2472 } else {
2473 // C++1y [expr.new]p22:
2474 // For a non-placement allocation function, the normal deallocation
2475 // function lookup is used
2476 //
2477 // Per [expr.delete]p10, this lookup prefers a member operator delete
2478 // without a size_t argument, but prefers a non-member operator delete
2479 // with a size_t where possible (which it always is in this case).
2480 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2481 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2482 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2483 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2484 &BestDeallocFns);
2485 if (Selected)
2486 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2487 else {
2488 // If we failed to select an operator, all remaining functions are viable
2489 // but ambiguous.
2490 for (auto Fn : BestDeallocFns)
2491 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2492 }
2493 }
2494
2495 // C++ [expr.new]p20:
2496 // [...] If the lookup finds a single matching deallocation
2497 // function, that function will be called; otherwise, no
2498 // deallocation function will be called.
2499 if (Matches.size() == 1) {
2500 OperatorDelete = Matches[0].second;
2501
2502 // C++1z [expr.new]p23:
2503 // If the lookup finds a usual deallocation function (3.7.4.2)
2504 // with a parameter of type std::size_t and that function, considered
2505 // as a placement deallocation function, would have been
2506 // selected as a match for the allocation function, the program
2507 // is ill-formed.
2508 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2509 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2510 UsualDeallocFnInfo Info(*this,
2511 DeclAccessPair::make(OperatorDelete, AS_public));
2512 // Core issue, per mail to core reflector, 2016-10-09:
2513 // If this is a member operator delete, and there is a corresponding
2514 // non-sized member operator delete, this isn't /really/ a sized
2515 // deallocation function, it just happens to have a size_t parameter.
2516 bool IsSizedDelete = Info.HasSizeT;
2517 if (IsSizedDelete && !FoundGlobalDelete) {
2518 auto NonSizedDelete =
2519 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2520 /*WantAlign*/Info.HasAlignValT);
2521 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2522 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2523 IsSizedDelete = false;
2524 }
2525
2526 if (IsSizedDelete) {
2527 SourceRange R = PlaceArgs.empty()
2528 ? SourceRange()
2529 : SourceRange(PlaceArgs.front()->getLocStart(),
2530 PlaceArgs.back()->getLocEnd());
2531 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2532 if (!OperatorDelete->isImplicit())
2533 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2534 << DeleteName;
2535 }
2536 }
2537
2538 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2539 Matches[0].first);
2540 } else if (!Matches.empty()) {
2541 // We found multiple suitable operators. Per [expr.new]p20, that means we
2542 // call no 'operator delete' function, but we should at least warn the user.
2543 // FIXME: Suppress this warning if the construction cannot throw.
2544 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2545 << DeleteName << AllocElemType;
2546
2547 for (auto &Match : Matches)
2548 Diag(Match.second->getLocation(),
2549 diag::note_member_declared_here) << DeleteName;
2550 }
2551
2552 return false;
2553}
2554
2555/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2556/// delete. These are:
2557/// @code
2558/// // C++03:
2559/// void* operator new(std::size_t) throw(std::bad_alloc);
2560/// void* operator new[](std::size_t) throw(std::bad_alloc);
2561/// void operator delete(void *) throw();
2562/// void operator delete[](void *) throw();
2563/// // C++11:
2564/// void* operator new(std::size_t);
2565/// void* operator new[](std::size_t);
2566/// void operator delete(void *) noexcept;
2567/// void operator delete[](void *) noexcept;
2568/// // C++1y:
2569/// void* operator new(std::size_t);
2570/// void* operator new[](std::size_t);
2571/// void operator delete(void *) noexcept;
2572/// void operator delete[](void *) noexcept;
2573/// void operator delete(void *, std::size_t) noexcept;
2574/// void operator delete[](void *, std::size_t) noexcept;
2575/// @endcode
2576/// Note that the placement and nothrow forms of new are *not* implicitly
2577/// declared. Their use requires including \<new\>.
2578void Sema::DeclareGlobalNewDelete() {
2579 if (GlobalNewDeleteDeclared)
2580 return;
2581
2582 // C++ [basic.std.dynamic]p2:
2583 // [...] The following allocation and deallocation functions (18.4) are
2584 // implicitly declared in global scope in each translation unit of a
2585 // program
2586 //
2587 // C++03:
2588 // void* operator new(std::size_t) throw(std::bad_alloc);
2589 // void* operator new[](std::size_t) throw(std::bad_alloc);
2590 // void operator delete(void*) throw();
2591 // void operator delete[](void*) throw();
2592 // C++11:
2593 // void* operator new(std::size_t);
2594 // void* operator new[](std::size_t);
2595 // void operator delete(void*) noexcept;
2596 // void operator delete[](void*) noexcept;
2597 // C++1y:
2598 // void* operator new(std::size_t);
2599 // void* operator new[](std::size_t);
2600 // void operator delete(void*) noexcept;
2601 // void operator delete[](void*) noexcept;
2602 // void operator delete(void*, std::size_t) noexcept;
2603 // void operator delete[](void*, std::size_t) noexcept;
2604 //
2605 // These implicit declarations introduce only the function names operator
2606 // new, operator new[], operator delete, operator delete[].
2607 //
2608 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2609 // "std" or "bad_alloc" as necessary to form the exception specification.
2610 // However, we do not make these implicit declarations visible to name
2611 // lookup.
2612 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2613 // The "std::bad_alloc" class has not yet been declared, so build it
2614 // implicitly.
2615 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2616 getOrCreateStdNamespace(),
2617 SourceLocation(), SourceLocation(),
2618 &PP.getIdentifierTable().get("bad_alloc"),
2619 nullptr);
2620 getStdBadAlloc()->setImplicit(true);
2621 }
2622 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2623 // The "std::align_val_t" enum class has not yet been declared, so build it
2624 // implicitly.
2625 auto *AlignValT = EnumDecl::Create(
2626 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2627 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2628 AlignValT->setIntegerType(Context.getSizeType());
2629 AlignValT->setPromotionType(Context.getSizeType());
2630 AlignValT->setImplicit(true);
2631 StdAlignValT = AlignValT;
2632 }
2633
2634 GlobalNewDeleteDeclared = true;
2635
2636 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2637 QualType SizeT = Context.getSizeType();
2638
2639 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2640 QualType Return, QualType Param) {
2641 llvm::SmallVector<QualType, 3> Params;
2642 Params.push_back(Param);
2643
2644 // Create up to four variants of the function (sized/aligned).
2645 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2646 (Kind == OO_Delete || Kind == OO_Array_Delete);
2647 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2648
2649 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2650 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2651 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2652 if (Sized)
2653 Params.push_back(SizeT);
2654
2655 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2656 if (Aligned)
2657 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2658
2659 DeclareGlobalAllocationFunction(
2660 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2661
2662 if (Aligned)
2663 Params.pop_back();
2664 }
2665 }
2666 };
2667
2668 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2669 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2670 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2671 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2672}
2673
2674/// DeclareGlobalAllocationFunction - Declares a single implicit global
2675/// allocation function if it doesn't already exist.
2676void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2677 QualType Return,
2678 ArrayRef<QualType> Params) {
2679 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2680
2681 // Check if this function is already declared.
2682 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2683 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2684 Alloc != AllocEnd; ++Alloc) {
2685 // Only look at non-template functions, as it is the predefined,
2686 // non-templated allocation function we are trying to declare here.
2687 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2688 if (Func->getNumParams() == Params.size()) {
2689 llvm::SmallVector<QualType, 3> FuncParams;
2690 for (auto *P : Func->parameters())
2691 FuncParams.push_back(
2692 Context.getCanonicalType(P->getType().getUnqualifiedType()));
2693 if (llvm::makeArrayRef(FuncParams) == Params) {
2694 // Make the function visible to name lookup, even if we found it in
2695 // an unimported module. It either is an implicitly-declared global
2696 // allocation function, or is suppressing that function.
2697 Func->setVisibleDespiteOwningModule();
2698 return;
2699 }
2700 }
2701 }
2702 }
2703
2704 FunctionProtoType::ExtProtoInfo EPI;
2705
2706 QualType BadAllocType;
2707 bool HasBadAllocExceptionSpec
2708 = (Name.getCXXOverloadedOperator() == OO_New ||
2709 Name.getCXXOverloadedOperator() == OO_Array_New);
2710 if (HasBadAllocExceptionSpec) {
2711 if (!getLangOpts().CPlusPlus11) {
2712 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2713 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2713, __extension__ __PRETTY_FUNCTION__))
;
2714 EPI.ExceptionSpec.Type = EST_Dynamic;
2715 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2716 }
2717 } else {
2718 EPI.ExceptionSpec =
2719 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2720 }
2721
2722 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2723 QualType FnType = Context.getFunctionType(Return, Params, EPI);
2724 FunctionDecl *Alloc = FunctionDecl::Create(
2725 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2726 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2727 Alloc->setImplicit();
2728 // Global allocation functions should always be visible.
2729 Alloc->setVisibleDespiteOwningModule();
2730
2731 // Implicit sized deallocation functions always have default visibility.
2732 Alloc->addAttr(
2733 VisibilityAttr::CreateImplicit(Context, VisibilityAttr::Default));
2734
2735 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2736 for (QualType T : Params) {
2737 ParamDecls.push_back(ParmVarDecl::Create(
2738 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2739 /*TInfo=*/nullptr, SC_None, nullptr));
2740 ParamDecls.back()->setImplicit();
2741 }
2742 Alloc->setParams(ParamDecls);
2743 if (ExtraAttr)
2744 Alloc->addAttr(ExtraAttr);
2745 Context.getTranslationUnitDecl()->addDecl(Alloc);
2746 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2747 };
2748
2749 if (!LangOpts.CUDA)
2750 CreateAllocationFunctionDecl(nullptr);
2751 else {
2752 // Host and device get their own declaration so each can be
2753 // defined or re-declared independently.
2754 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2755 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2756 }
2757}
2758
2759FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2760 bool CanProvideSize,
2761 bool Overaligned,
2762 DeclarationName Name) {
2763 DeclareGlobalNewDelete();
2764
2765 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2766 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2767
2768 // FIXME: It's possible for this to result in ambiguity, through a
2769 // user-declared variadic operator delete or the enable_if attribute. We
2770 // should probably not consider those cases to be usual deallocation
2771 // functions. But for now we just make an arbitrary choice in that case.
2772 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2773 Overaligned);
2774 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2774, __extension__ __PRETTY_FUNCTION__))
;
2775 return Result.FD;
2776}
2777
2778FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2779 CXXRecordDecl *RD) {
2780 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2781
2782 FunctionDecl *OperatorDelete = nullptr;
2783 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2784 return nullptr;
2785 if (OperatorDelete)
2786 return OperatorDelete;
2787
2788 // If there's no class-specific operator delete, look up the global
2789 // non-array delete.
2790 return FindUsualDeallocationFunction(
2791 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2792 Name);
2793}
2794
2795bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2796 DeclarationName Name,
2797 FunctionDecl *&Operator, bool Diagnose) {
2798 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2799 // Try to find operator delete/operator delete[] in class scope.
2800 LookupQualifiedName(Found, RD);
2801
2802 if (Found.isAmbiguous())
2803 return true;
2804
2805 Found.suppressDiagnostics();
2806
2807 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2808
2809 // C++17 [expr.delete]p10:
2810 // If the deallocation functions have class scope, the one without a
2811 // parameter of type std::size_t is selected.
2812 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2813 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2814 /*WantAlign*/ Overaligned, &Matches);
2815
2816 // If we could find an overload, use it.
2817 if (Matches.size() == 1) {
2818 Operator = cast<CXXMethodDecl>(Matches[0].FD);
2819
2820 // FIXME: DiagnoseUseOfDecl?
2821 if (Operator->isDeleted()) {
2822 if (Diagnose) {
2823 Diag(StartLoc, diag::err_deleted_function_use);
2824 NoteDeletedFunction(Operator);
2825 }
2826 return true;
2827 }
2828
2829 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2830 Matches[0].Found, Diagnose) == AR_inaccessible)
2831 return true;
2832
2833 return false;
2834 }
2835
2836 // We found multiple suitable operators; complain about the ambiguity.
2837 // FIXME: The standard doesn't say to do this; it appears that the intent
2838 // is that this should never happen.
2839 if (!Matches.empty()) {
2840 if (Diagnose) {
2841 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2842 << Name << RD;
2843 for (auto &Match : Matches)
2844 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2845 }
2846 return true;
2847 }
2848
2849 // We did find operator delete/operator delete[] declarations, but
2850 // none of them were suitable.
2851 if (!Found.empty()) {
2852 if (Diagnose) {
2853 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2854 << Name << RD;
2855
2856 for (NamedDecl *D : Found)
2857 Diag(D->getUnderlyingDecl()->getLocation(),
2858 diag::note_member_declared_here) << Name;
2859 }
2860 return true;
2861 }
2862
2863 Operator = nullptr;
2864 return false;
2865}
2866
2867namespace {
2868/// \brief Checks whether delete-expression, and new-expression used for
2869/// initializing deletee have the same array form.
2870class MismatchingNewDeleteDetector {
2871public:
2872 enum MismatchResult {
2873 /// Indicates that there is no mismatch or a mismatch cannot be proven.
2874 NoMismatch,
2875 /// Indicates that variable is initialized with mismatching form of \a new.
2876 VarInitMismatches,
2877 /// Indicates that member is initialized with mismatching form of \a new.
2878 MemberInitMismatches,
2879 /// Indicates that 1 or more constructors' definitions could not been
2880 /// analyzed, and they will be checked again at the end of translation unit.
2881 AnalyzeLater
2882 };
2883
2884 /// \param EndOfTU True, if this is the final analysis at the end of
2885 /// translation unit. False, if this is the initial analysis at the point
2886 /// delete-expression was encountered.
2887 explicit MismatchingNewDeleteDetector(bool EndOfTU)
2888 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2889 HasUndefinedConstructors(false) {}
2890
2891 /// \brief Checks whether pointee of a delete-expression is initialized with
2892 /// matching form of new-expression.
2893 ///
2894 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2895 /// point where delete-expression is encountered, then a warning will be
2896 /// issued immediately. If return value is \c AnalyzeLater at the point where
2897 /// delete-expression is seen, then member will be analyzed at the end of
2898 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2899 /// couldn't be analyzed. If at least one constructor initializes the member
2900 /// with matching type of new, the return value is \c NoMismatch.
2901 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2902 /// \brief Analyzes a class member.
2903 /// \param Field Class member to analyze.
2904 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2905 /// for deleting the \p Field.
2906 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2907 FieldDecl *Field;
2908 /// List of mismatching new-expressions used for initialization of the pointee
2909 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2910 /// Indicates whether delete-expression was in array form.
2911 bool IsArrayForm;
2912
2913private:
2914 const bool EndOfTU;
2915 /// \brief Indicates that there is at least one constructor without body.
2916 bool HasUndefinedConstructors;
2917 /// \brief Returns \c CXXNewExpr from given initialization expression.
2918 /// \param E Expression used for initializing pointee in delete-expression.
2919 /// E can be a single-element \c InitListExpr consisting of new-expression.
2920 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
2921 /// \brief Returns whether member is initialized with mismatching form of
2922 /// \c new either by the member initializer or in-class initialization.
2923 ///
2924 /// If bodies of all constructors are not visible at the end of translation
2925 /// unit or at least one constructor initializes member with the matching
2926 /// form of \c new, mismatch cannot be proven, and this function will return
2927 /// \c NoMismatch.
2928 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
2929 /// \brief Returns whether variable is initialized with mismatching form of
2930 /// \c new.
2931 ///
2932 /// If variable is initialized with matching form of \c new or variable is not
2933 /// initialized with a \c new expression, this function will return true.
2934 /// If variable is initialized with mismatching form of \c new, returns false.
2935 /// \param D Variable to analyze.
2936 bool hasMatchingVarInit(const DeclRefExpr *D);
2937 /// \brief Checks whether the constructor initializes pointee with mismatching
2938 /// form of \c new.
2939 ///
2940 /// Returns true, if member is initialized with matching form of \c new in
2941 /// member initializer list. Returns false, if member is initialized with the
2942 /// matching form of \c new in this constructor's initializer or given
2943 /// constructor isn't defined at the point where delete-expression is seen, or
2944 /// member isn't initialized by the constructor.
2945 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
2946 /// \brief Checks whether member is initialized with matching form of
2947 /// \c new in member initializer list.
2948 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
2949 /// Checks whether member is initialized with mismatching form of \c new by
2950 /// in-class initializer.
2951 MismatchResult analyzeInClassInitializer();
2952};
2953}
2954
2955MismatchingNewDeleteDetector::MismatchResult
2956MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
2957 NewExprs.clear();
2958 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2958, __extension__ __PRETTY_FUNCTION__))
;
2959 IsArrayForm = DE->isArrayForm();
2960 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
2961 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
2962 return analyzeMemberExpr(ME);
2963 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
2964 if (!hasMatchingVarInit(D))
2965 return VarInitMismatches;
2966 }
2967 return NoMismatch;
2968}
2969
2970const CXXNewExpr *
2971MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
2972 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2972, __extension__ __PRETTY_FUNCTION__))
;
2973 E = E->IgnoreParenImpCasts();
2974 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
2975 if (ILE->getNumInits() == 1)
2976 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
2977 }
2978
2979 return dyn_cast_or_null<const CXXNewExpr>(E);
2980}
2981
2982bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
2983 const CXXCtorInitializer *CI) {
2984 const CXXNewExpr *NE = nullptr;
2985 if (Field == CI->getMember() &&
2986 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
2987 if (NE->isArray() == IsArrayForm)
2988 return true;
2989 else
2990 NewExprs.push_back(NE);
2991 }
2992 return false;
2993}
2994
2995bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
2996 const CXXConstructorDecl *CD) {
2997 if (CD->isImplicit())
2998 return false;
2999 const FunctionDecl *Definition = CD;
3000 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3001 HasUndefinedConstructors = true;
3002 return EndOfTU;
3003 }
3004 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3005 if (hasMatchingNewInCtorInit(CI))
3006 return true;
3007 }
3008 return false;
3009}
3010
3011MismatchingNewDeleteDetector::MismatchResult
3012MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3013 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3013, __extension__ __PRETTY_FUNCTION__))
;
3014 const Expr *InitExpr = Field->getInClassInitializer();
3015 if (!InitExpr)
3016 return EndOfTU ? NoMismatch : AnalyzeLater;
3017 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3018 if (NE->isArray() != IsArrayForm) {
3019 NewExprs.push_back(NE);
3020 return MemberInitMismatches;
3021 }
3022 }
3023 return NoMismatch;
3024}
3025
3026MismatchingNewDeleteDetector::MismatchResult
3027MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3028 bool DeleteWasArrayForm) {
3029 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3029, __extension__ __PRETTY_FUNCTION__))
;
3030 this->Field = Field;
3031 IsArrayForm = DeleteWasArrayForm;
3032 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3033 for (const auto *CD : RD->ctors()) {
3034 if (hasMatchingNewInCtor(CD))
3035 return NoMismatch;
3036 }
3037 if (HasUndefinedConstructors)
3038 return EndOfTU ? NoMismatch : AnalyzeLater;
3039 if (!NewExprs.empty())
3040 return MemberInitMismatches;
3041 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3042 : NoMismatch;
3043}
3044
3045MismatchingNewDeleteDetector::MismatchResult
3046MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3047 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3047, __extension__ __PRETTY_FUNCTION__))
;
3048 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3049 return analyzeField(F, IsArrayForm);
3050 return NoMismatch;
3051}
3052
3053bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3054 const CXXNewExpr *NE = nullptr;
3055 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3056 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3057 NE->isArray() != IsArrayForm) {
3058 NewExprs.push_back(NE);
3059 }
3060 }
3061 return NewExprs.empty();
3062}
3063
3064static void
3065DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3066 const MismatchingNewDeleteDetector &Detector) {
3067 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3068 FixItHint H;
3069 if (!Detector.IsArrayForm)
3070 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3071 else {
3072 SourceLocation RSquare = Lexer::findLocationAfterToken(
3073 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3074 SemaRef.getLangOpts(), true);
3075 if (RSquare.isValid())
3076 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3077 }
3078 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3079 << Detector.IsArrayForm << H;
3080
3081 for (const auto *NE : Detector.NewExprs)
3082 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3083 << Detector.IsArrayForm;
3084}
3085
3086void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3087 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3088 return;
3089 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3090 switch (Detector.analyzeDeleteExpr(DE)) {
3091 case MismatchingNewDeleteDetector::VarInitMismatches:
3092 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3093 DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
3094 break;
3095 }
3096 case MismatchingNewDeleteDetector::AnalyzeLater: {
3097 DeleteExprs[Detector.Field].push_back(
3098 std::make_pair(DE->getLocStart(), DE->isArrayForm()));
3099 break;
3100 }
3101 case MismatchingNewDeleteDetector::NoMismatch:
3102 break;
3103 }
3104}
3105
3106void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3107 bool DeleteWasArrayForm) {
3108 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3109 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3110 case MismatchingNewDeleteDetector::VarInitMismatches:
3111 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3111)
;
3112 case MismatchingNewDeleteDetector::AnalyzeLater:
3113 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3114)
3114 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3114)
;
3115 case MismatchingNewDeleteDetector::MemberInitMismatches:
3116 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3117 break;
3118 case MismatchingNewDeleteDetector::NoMismatch:
3119 break;
3120 }
3121}
3122
3123/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3124/// @code ::delete ptr; @endcode
3125/// or
3126/// @code delete [] ptr; @endcode
3127ExprResult
3128Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3129 bool ArrayForm, Expr *ExE) {
3130 // C++ [expr.delete]p1:
3131 // The operand shall have a pointer type, or a class type having a single
3132 // non-explicit conversion function to a pointer type. The result has type
3133 // void.
3134 //
3135 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3136
3137 ExprResult Ex = ExE;
3138 FunctionDecl *OperatorDelete = nullptr;
3139 bool ArrayFormAsWritten = ArrayForm;
3140 bool UsualArrayDeleteWantsSize = false;
3141
3142 if (!Ex.get()->isTypeDependent()) {
3143 // Perform lvalue-to-rvalue cast, if needed.
3144 Ex = DefaultLvalueConversion(Ex.get());
3145 if (Ex.isInvalid())
3146 return ExprError();
3147
3148 QualType Type = Ex.get()->getType();
3149
3150 class DeleteConverter : public ContextualImplicitConverter {
3151 public:
3152 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3153
3154 bool match(QualType ConvType) override {
3155 // FIXME: If we have an operator T* and an operator void*, we must pick
3156 // the operator T*.
3157 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3158 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3159 return true;
3160 return false;
3161 }
3162
3163 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3164 QualType T) override {
3165 return S.Diag(Loc, diag::err_delete_operand) << T;
3166 }
3167
3168 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3169 QualType T) override {
3170 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3171 }
3172
3173 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3174 QualType T,
3175 QualType ConvTy) override {
3176 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3177 }
3178
3179 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3180 QualType ConvTy) override {
3181 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3182 << ConvTy;
3183 }
3184
3185 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3186 QualType T) override {
3187 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3188 }
3189
3190 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3191 QualType ConvTy) override {
3192 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3193 << ConvTy;
3194 }
3195
3196 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3197 QualType T,
3198 QualType ConvTy) override {
3199 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3199)
;
3200 }
3201 } Converter;
3202
3203 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3204 if (Ex.isInvalid())
3205 return ExprError();
3206 Type = Ex.get()->getType();
3207 if (!Converter.match(Type))
3208 // FIXME: PerformContextualImplicitConversion should return ExprError
3209 // itself in this case.
3210 return ExprError();
3211
3212 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3213 QualType PointeeElem = Context.getBaseElementType(Pointee);
3214
3215 if (Pointee.getAddressSpace() != LangAS::Default)
3216 return Diag(Ex.get()->getLocStart(),
3217 diag::err_address_space_qualified_delete)
3218 << Pointee.getUnqualifiedType()
3219 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3220
3221 CXXRecordDecl *PointeeRD = nullptr;
3222 if (Pointee->isVoidType() && !isSFINAEContext()) {
3223 // The C++ standard bans deleting a pointer to a non-object type, which
3224 // effectively bans deletion of "void*". However, most compilers support
3225 // this, so we treat it as a warning unless we're in a SFINAE context.
3226 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3227 << Type << Ex.get()->getSourceRange();
3228 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3229 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3230 << Type << Ex.get()->getSourceRange());
3231 } else if (!Pointee->isDependentType()) {
3232 // FIXME: This can result in errors if the definition was imported from a
3233 // module but is hidden.
3234 if (!RequireCompleteType(StartLoc, Pointee,
3235 diag::warn_delete_incomplete, Ex.get())) {
3236 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3237 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3238 }
3239 }
3240
3241 if (Pointee->isArrayType() && !ArrayForm) {
3242 Diag(StartLoc, diag::warn_delete_array_type)
3243 << Type << Ex.get()->getSourceRange()
3244 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3245 ArrayForm = true;
3246 }
3247
3248 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3249 ArrayForm ? OO_Array_Delete : OO_Delete);
3250
3251 if (PointeeRD) {
3252 if (!UseGlobal &&
3253 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3254 OperatorDelete))
3255 return ExprError();
3256
3257 // If we're allocating an array of records, check whether the
3258 // usual operator delete[] has a size_t parameter.
3259 if (ArrayForm) {
3260 // If the user specifically asked to use the global allocator,
3261 // we'll need to do the lookup into the class.
3262 if (UseGlobal)
3263 UsualArrayDeleteWantsSize =
3264 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3265
3266 // Otherwise, the usual operator delete[] should be the
3267 // function we just found.
3268 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3269 UsualArrayDeleteWantsSize =
3270 UsualDeallocFnInfo(*this,
3271 DeclAccessPair::make(OperatorDelete, AS_public))
3272 .HasSizeT;
3273 }
3274
3275 if (!PointeeRD->hasIrrelevantDestructor())
3276 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3277 MarkFunctionReferenced(StartLoc,
3278 const_cast<CXXDestructorDecl*>(Dtor));
3279 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3280 return ExprError();
3281 }
3282
3283 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3284 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3285 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3286 SourceLocation());
3287 }
3288
3289 if (!OperatorDelete) {
3290 bool IsComplete = isCompleteType(StartLoc, Pointee);
3291 bool CanProvideSize =
3292 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3293 Pointee.isDestructedType());
3294 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3295
3296 // Look for a global declaration.
3297 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3298 Overaligned, DeleteName);
3299 }
3300
3301 MarkFunctionReferenced(StartLoc, OperatorDelete);
3302
3303 // Check access and ambiguity of destructor if we're going to call it.
3304 // Note that this is required even for a virtual delete.
3305 bool IsVirtualDelete = false;
3306 if (PointeeRD) {
3307 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3308 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3309 PDiag(diag::err_access_dtor) << PointeeElem);
3310 IsVirtualDelete = Dtor->isVirtual();
3311 }
3312 }
3313
3314 diagnoseUnavailableAlignedAllocation(*OperatorDelete, StartLoc, true,
3315 *this);
3316
3317 // Convert the operand to the type of the first parameter of operator
3318 // delete. This is only necessary if we selected a destroying operator
3319 // delete that we are going to call (non-virtually); converting to void*
3320 // is trivial and left to AST consumers to handle.
3321 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3322 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3323 Qualifiers Qs = Pointee.getQualifiers();
3324 if (Qs.hasCVRQualifiers()) {
3325 // Qualifiers are irrelevant to this conversion; we're only looking
3326 // for access and ambiguity.
3327 Qs.removeCVRQualifiers();
3328 QualType Unqual = Context.getPointerType(
3329 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3330 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3331 }
3332 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3333 if (Ex.isInvalid())
3334 return ExprError();
3335 }
3336 }
3337
3338 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3339 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3340 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3341 AnalyzeDeleteExprMismatch(Result);
3342 return Result;
3343}
3344
3345void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3346 bool IsDelete, bool CallCanBeVirtual,
3347 bool WarnOnNonAbstractTypes,
3348 SourceLocation DtorLoc) {
3349 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3350 return;
3351
3352 // C++ [expr.delete]p3:
3353 // In the first alternative (delete object), if the static type of the
3354 // object to be deleted is different from its dynamic type, the static
3355 // type shall be a base class of the dynamic type of the object to be
3356 // deleted and the static type shall have a virtual destructor or the
3357 // behavior is undefined.
3358 //
3359 const CXXRecordDecl *PointeeRD = dtor->getParent();
3360 // Note: a final class cannot be derived from, no issue there
3361 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3362 return;
3363
3364 // If the superclass is in a system header, there's nothing that can be done.
3365 // The `delete` (where we emit the warning) can be in a system header,
3366 // what matters for this warning is where the deleted type is defined.
3367 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3368 return;
3369
3370 QualType ClassType = dtor->getThisType(Context)->getPointeeType();
3371 if (PointeeRD->isAbstract()) {
3372 // If the class is abstract, we warn by default, because we're
3373 // sure the code has undefined behavior.
3374 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3375 << ClassType;
3376 } else if (WarnOnNonAbstractTypes) {
3377 // Otherwise, if this is not an array delete, it's a bit suspect,
3378 // but not necessarily wrong.
3379 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3380 << ClassType;
3381 }
3382 if (!IsDelete) {
3383 std::string TypeStr;
3384 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3385 Diag(DtorLoc, diag::note_delete_non_virtual)
3386 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3387 }
3388}
3389
3390Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3391 SourceLocation StmtLoc,
3392 ConditionKind CK) {
3393 ExprResult E =
3394 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3395 if (E.isInvalid())
3396 return ConditionError();
3397 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3398 CK == ConditionKind::ConstexprIf);
3399}
3400
3401/// \brief Check the use of the given variable as a C++ condition in an if,
3402/// while, do-while, or switch statement.
3403ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3404 SourceLocation StmtLoc,
3405 ConditionKind CK) {
3406 if (ConditionVar->isInvalidDecl())
3407 return ExprError();
3408
3409 QualType T = ConditionVar->getType();
3410
3411 // C++ [stmt.select]p2:
3412 // The declarator shall not specify a function or an array.
3413 if (T->isFunctionType())
3414 return ExprError(Diag(ConditionVar->getLocation(),
3415 diag::err_invalid_use_of_function_type)
3416 << ConditionVar->getSourceRange());
3417 else if (T->isArrayType())
3418 return ExprError(Diag(ConditionVar->getLocation(),
3419 diag::err_invalid_use_of_array_type)
3420 << ConditionVar->getSourceRange());
3421
3422 ExprResult Condition = DeclRefExpr::Create(
3423 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
3424 /*enclosing*/ false, ConditionVar->getLocation(),
3425 ConditionVar->getType().getNonReferenceType(), VK_LValue);
3426
3427 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
3428
3429 switch (CK) {
3430 case ConditionKind::Boolean:
3431 return CheckBooleanCondition(StmtLoc, Condition.get());
3432
3433 case ConditionKind::ConstexprIf:
3434 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3435
3436 case ConditionKind::Switch:
3437 return CheckSwitchCondition(StmtLoc, Condition.get());
3438 }
3439
3440 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3440)
;
3441}
3442
3443/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3444ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3445 // C++ 6.4p4:
3446 // The value of a condition that is an initialized declaration in a statement
3447 // other than a switch statement is the value of the declared variable
3448 // implicitly converted to type bool. If that conversion is ill-formed, the
3449 // program is ill-formed.
3450 // The value of a condition that is an expression is the value of the
3451 // expression, implicitly converted to bool.
3452 //
3453 // FIXME: Return this value to the caller so they don't need to recompute it.
3454 llvm::APSInt Value(/*BitWidth*/1);
3455 return (IsConstexpr && !CondExpr->isValueDependent())
3456 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3457 CCEK_ConstexprIf)
3458 : PerformContextuallyConvertToBool(CondExpr);
3459}
3460
3461/// Helper function to determine whether this is the (deprecated) C++
3462/// conversion from a string literal to a pointer to non-const char or
3463/// non-const wchar_t (for narrow and wide string literals,
3464/// respectively).
3465bool
3466Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3467 // Look inside the implicit cast, if it exists.
3468 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3469 From = Cast->getSubExpr();
3470
3471 // A string literal (2.13.4) that is not a wide string literal can
3472 // be converted to an rvalue of type "pointer to char"; a wide
3473 // string literal can be converted to an rvalue of type "pointer
3474 // to wchar_t" (C++ 4.2p2).
3475 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3476 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3477 if (const BuiltinType *ToPointeeType
3478 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3479 // This conversion is considered only when there is an
3480 // explicit appropriate pointer target type (C++ 4.2p2).
3481 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3482 switch (StrLit->getKind()) {
3483 case StringLiteral::UTF8:
3484 case StringLiteral::UTF16:
3485 case StringLiteral::UTF32:
3486 // We don't allow UTF literals to be implicitly converted
3487 break;
3488 case StringLiteral::Ascii:
3489 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3490 ToPointeeType->getKind() == BuiltinType::Char_S);
3491 case StringLiteral::Wide:
3492 return Context.typesAreCompatible(Context.getWideCharType(),
3493 QualType(ToPointeeType, 0));
3494 }
3495 }
3496 }
3497
3498 return false;
3499}
3500
3501static ExprResult BuildCXXCastArgument(Sema &S,
3502 SourceLocation CastLoc,
3503 QualType Ty,
3504 CastKind Kind,
3505 CXXMethodDecl *Method,
3506 DeclAccessPair FoundDecl,
3507 bool HadMultipleCandidates,
3508 Expr *From) {
3509 switch (Kind) {
3510 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3510)
;
3511 case CK_ConstructorConversion: {
3512 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3513 SmallVector<Expr*, 8> ConstructorArgs;
3514
3515 if (S.RequireNonAbstractType(CastLoc, Ty,
3516 diag::err_allocation_of_abstract_type))
3517 return ExprError();
3518
3519 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3520 return ExprError();
3521
3522 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3523 InitializedEntity::InitializeTemporary(Ty));
3524 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3525 return ExprError();
3526
3527 ExprResult Result = S.BuildCXXConstructExpr(
3528 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3529 ConstructorArgs, HadMultipleCandidates,
3530 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3531 CXXConstructExpr::CK_Complete, SourceRange());
3532 if (Result.isInvalid())
3533 return ExprError();
3534
3535 return S.MaybeBindToTemporary(Result.getAs<Expr>());
3536 }
3537
3538 case CK_UserDefinedConversion: {
3539 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3539, __extension__ __PRETTY_FUNCTION__))
;
3540
3541 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3542 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3543 return ExprError();
3544
3545 // Create an implicit call expr that calls it.
3546 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3547 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3548 HadMultipleCandidates);
3549 if (Result.isInvalid())
3550 return ExprError();
3551 // Record usage of conversion in an implicit cast.
3552 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3553 CK_UserDefinedConversion, Result.get(),
3554 nullptr, Result.get()->getValueKind());
3555
3556 return S.MaybeBindToTemporary(Result.get());
3557 }
3558 }
3559}
3560
3561/// PerformImplicitConversion - Perform an implicit conversion of the
3562/// expression From to the type ToType using the pre-computed implicit
3563/// conversion sequence ICS. Returns the converted
3564/// expression. Action is the kind of conversion we're performing,
3565/// used in the error message.
3566ExprResult
3567Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3568 const ImplicitConversionSequence &ICS,
3569 AssignmentAction Action,
3570 CheckedConversionKind CCK) {
3571 switch (ICS.getKind()) {
3572 case ImplicitConversionSequence::StandardConversion: {
3573 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3574 Action, CCK);
3575 if (Res.isInvalid())
3576 return ExprError();
3577 From = Res.get();
3578 break;
3579 }
3580
3581 case ImplicitConversionSequence::UserDefinedConversion: {
3582
3583 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3584 CastKind CastKind;
3585 QualType BeforeToType;
3586 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3586, __extension__ __PRETTY_FUNCTION__))
;
3587 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3588 CastKind = CK_UserDefinedConversion;
3589
3590 // If the user-defined conversion is specified by a conversion function,
3591 // the initial standard conversion sequence converts the source type to
3592 // the implicit object parameter of the conversion function.
3593 BeforeToType = Context.getTagDeclType(Conv->getParent());
3594 } else {
3595 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3596 CastKind = CK_ConstructorConversion;
3597 // Do no conversion if dealing with ... for the first conversion.
3598 if (!ICS.UserDefined.EllipsisConversion) {
3599 // If the user-defined conversion is specified by a constructor, the
3600 // initial standard conversion sequence converts the source type to
3601 // the type required by the argument of the constructor
3602 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3603 }
3604 }
3605 // Watch out for ellipsis conversion.
3606 if (!ICS.UserDefined.EllipsisConversion) {
3607 ExprResult Res =
3608 PerformImplicitConversion(From, BeforeToType,
3609 ICS.UserDefined.Before, AA_Converting,
3610 CCK);
3611 if (Res.isInvalid())
3612 return ExprError();
3613 From = Res.get();
3614 }
3615
3616 ExprResult CastArg
3617 = BuildCXXCastArgument(*this,
3618 From->getLocStart(),
3619 ToType.getNonReferenceType(),
3620 CastKind, cast<CXXMethodDecl>(FD),
3621 ICS.UserDefined.FoundConversionFunction,
3622 ICS.UserDefined.HadMultipleCandidates,
3623 From);
3624
3625 if (CastArg.isInvalid())
3626 return ExprError();
3627
3628 From = CastArg.get();
3629
3630 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3631 AA_Converting, CCK);
3632 }
3633
3634 case ImplicitConversionSequence::AmbiguousConversion:
3635 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3636 PDiag(diag::err_typecheck_ambiguous_condition)
3637 << From->getSourceRange());
3638 return ExprError();
3639
3640 case ImplicitConversionSequence::EllipsisConversion:
3641 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3641)
;
3642
3643 case ImplicitConversionSequence::BadConversion:
3644 bool Diagnosed =
3645 DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3646 From->getType(), From, Action);
3647 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3647, __extension__ __PRETTY_FUNCTION__))
; (void)Diagnosed;
3648 return ExprError();
3649 }
3650
3651 // Everything went well.
3652 return From;
3653}
3654
3655/// PerformImplicitConversion - Perform an implicit conversion of the
3656/// expression From to the type ToType by following the standard
3657/// conversion sequence SCS. Returns the converted
3658/// expression. Flavor is the context in which we're performing this
3659/// conversion, for use in error messages.
3660ExprResult
3661Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3662 const StandardConversionSequence& SCS,
3663 AssignmentAction Action,
3664 CheckedConversionKind CCK) {
3665 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3666
3667 // Overall FIXME: we are recomputing too many types here and doing far too
3668 // much extra work. What this means is that we need to keep track of more
3669 // information that is computed when we try the implicit conversion initially,
3670 // so that we don't need to recompute anything here.
3671 QualType FromType = From->getType();
3672
3673 if (SCS.CopyConstructor) {
3674 // FIXME: When can ToType be a reference type?
3675 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3675, __extension__ __PRETTY_FUNCTION__))
;
3676 if (SCS.Second == ICK_Derived_To_Base) {
3677 SmallVector<Expr*, 8> ConstructorArgs;
3678 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3679 From, /*FIXME:ConstructLoc*/SourceLocation(),
3680 ConstructorArgs))
3681 return ExprError();
3682 return BuildCXXConstructExpr(
3683 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3684 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3685 ConstructorArgs, /*HadMultipleCandidates*/ false,
3686 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3687 CXXConstructExpr::CK_Complete, SourceRange());
3688 }
3689 return BuildCXXConstructExpr(
3690 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3691 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3692 From, /*HadMultipleCandidates*/ false,
3693 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3694 CXXConstructExpr::CK_Complete, SourceRange());
3695 }
3696
3697 // Resolve overloaded function references.
3698 if (Context.hasSameType(FromType, Context.OverloadTy)) {
3699 DeclAccessPair Found;
3700 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3701 true, Found);
3702 if (!Fn)
3703 return ExprError();
3704
3705 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
3706 return ExprError();
3707
3708 From = FixOverloadedFunctionReference(From, Found, Fn);
3709 FromType = From->getType();
3710 }
3711
3712 // If we're converting to an atomic type, first convert to the corresponding
3713 // non-atomic type.
3714 QualType ToAtomicType;
3715 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3716 ToAtomicType = ToType;
3717 ToType = ToAtomic->getValueType();
3718 }
3719
3720 QualType InitialFromType = FromType;
3721 // Perform the first implicit conversion.
3722 switch (SCS.First) {
3723 case ICK_Identity:
3724 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3725 FromType = FromAtomic->getValueType().getUnqualifiedType();
3726 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3727 From, /*BasePath=*/nullptr, VK_RValue);
3728 }
3729 break;
3730
3731 case ICK_Lvalue_To_Rvalue: {
3732 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3732, __extension__ __PRETTY_FUNCTION__))
;
3733 ExprResult FromRes = DefaultLvalueConversion(From);
3734 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!")(static_cast <bool> (!FromRes.isInvalid() && "Can't perform deduced conversion?!"
) ? void (0) : __assert_fail ("!FromRes.isInvalid() && \"Can't perform deduced conversion?!\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3734, __extension__ __PRETTY_FUNCTION__))
;
3735 From = FromRes.get();
3736 FromType = From->getType();
3737 break;
3738 }
3739
3740 case ICK_Array_To_Pointer:
3741 FromType = Context.getArrayDecayedType(FromType);
3742 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3743 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3744 break;
3745
3746 case ICK_Function_To_Pointer:
3747 FromType = Context.getPointerType(FromType);
3748 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3749 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3750 break;
3751
3752 default:
3753 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3753)
;
3754 }
3755
3756 // Perform the second implicit conversion
3757 switch (SCS.Second) {
3758 case ICK_Identity:
3759 // C++ [except.spec]p5:
3760 // [For] assignment to and initialization of pointers to functions,
3761 // pointers to member functions, and references to functions: the
3762 // target entity shall allow at least the exceptions allowed by the
3763 // source value in the assignment or initialization.
3764 switch (Action) {
3765 case AA_Assigning:
3766 case AA_Initializing:
3767 // Note, function argument passing and returning are initialization.
3768 case AA_Passing:
3769 case AA_Returning:
3770 case AA_Sending:
3771 case AA_Passing_CFAudited:
3772 if (CheckExceptionSpecCompatibility(From, ToType))
3773 return ExprError();
3774 break;
3775
3776 case AA_Casting:
3777 case AA_Converting:
3778 // Casts and implicit conversions are not initialization, so are not
3779 // checked for exception specification mismatches.
3780 break;
3781 }
3782 // Nothing else to do.
3783 break;
3784
3785 case ICK_Integral_Promotion:
3786 case ICK_Integral_Conversion:
3787 if (ToType->isBooleanType()) {
3788 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3790, __extension__ __PRETTY_FUNCTION__))
3789 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3790, __extension__ __PRETTY_FUNCTION__))
3790 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3790, __extension__ __PRETTY_FUNCTION__))
;
3791 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
3792 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3793 } else {
3794 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
3795 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3796 }
3797 break;
3798
3799 case ICK_Floating_Promotion:
3800 case ICK_Floating_Conversion:
3801 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
3802 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3803 break;
3804
3805 case ICK_Complex_Promotion:
3806 case ICK_Complex_Conversion: {
3807 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
3808 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
3809 CastKind CK;
3810 if (FromEl->isRealFloatingType()) {
3811 if (ToEl->isRealFloatingType())
3812 CK = CK_FloatingComplexCast;
3813 else
3814 CK = CK_FloatingComplexToIntegralComplex;
3815 } else if (ToEl->isRealFloatingType()) {
3816 CK = CK_IntegralComplexToFloatingComplex;
3817 } else {
3818 CK = CK_IntegralComplexCast;
3819 }
3820 From = ImpCastExprToType(From, ToType, CK,
3821 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3822 break;
3823 }
3824
3825 case ICK_Floating_Integral:
3826 if (ToType->isRealFloatingType())
3827 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
3828 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3829 else
3830 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
3831 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3832 break;
3833
3834 case ICK_Compatible_Conversion:
3835 From = ImpCastExprToType(From, ToType, CK_NoOp,
3836 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3837 break;
3838
3839 case ICK_Writeback_Conversion:
3840 case ICK_Pointer_Conversion: {
3841 if (SCS.IncompatibleObjC && Action != AA_Casting) {
3842 // Diagnose incompatible Objective-C conversions
3843 if (Action == AA_Initializing || Action == AA_Assigning)
3844 Diag(From->getLocStart(),
3845 diag::ext_typecheck_convert_incompatible_pointer)
3846 << ToType << From->getType() << Action
3847 << From->getSourceRange() << 0;
3848 else
3849 Diag(From->getLocStart(),
3850 diag::ext_typecheck_convert_incompatible_pointer)
3851 << From->getType() << ToType << Action
3852 << From->getSourceRange() << 0;
3853
3854 if (From->getType()->isObjCObjectPointerType() &&
3855 ToType->isObjCObjectPointerType())
3856 EmitRelatedResultTypeNote(From);
3857 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
3858 !CheckObjCARCUnavailableWeakConversion(ToType,
3859 From->getType())) {
3860 if (Action == AA_Initializing)
3861 Diag(From->getLocStart(),
3862 diag::err_arc_weak_unavailable_assign);
3863 else
3864 Diag(From->getLocStart(),
3865 diag::err_arc_convesion_of_weak_unavailable)
3866 << (Action == AA_Casting) << From->getType() << ToType
3867 << From->getSourceRange();
3868 }
3869
3870 CastKind Kind;
3871 CXXCastPath BasePath;
3872 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
3873 return ExprError();
3874
3875 // Make sure we extend blocks if necessary.
3876 // FIXME: doing this here is really ugly.
3877 if (Kind == CK_BlockPointerToObjCPointerCast) {
3878 ExprResult E = From;
3879 (void) PrepareCastToObjCObjectPointer(E);
3880 From = E.get();
3881 }
3882 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
3883 CheckObjCConversion(SourceRange(), ToType, From, CCK);
3884 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3885 .get();
3886 break;
3887 }
3888
3889 case ICK_Pointer_Member: {
3890 CastKind Kind;
3891 CXXCastPath BasePath;
3892 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
3893 return ExprError();
3894 if (CheckExceptionSpecCompatibility(From, ToType))
3895 return ExprError();
3896
3897 // We may not have been able to figure out what this member pointer resolved
3898 // to up until this exact point. Attempt to lock-in it's inheritance model.
3899 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3900 (void)isCompleteType(From->getExprLoc(), From->getType());
3901 (void)isCompleteType(From->getExprLoc(), ToType);
3902 }
3903
3904 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3905 .get();
3906 break;
3907 }
3908
3909 case ICK_Boolean_Conversion:
3910 // Perform half-to-boolean conversion via float.
3911 if (From->getType()->isHalfType()) {
3912 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
3913 FromType = Context.FloatTy;
3914 }
3915
3916 From = ImpCastExprToType(From, Context.BoolTy,
3917 ScalarTypeToBooleanCastKind(FromType),
3918 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3919 break;
3920
3921 case ICK_Derived_To_Base: {
3922 CXXCastPath BasePath;
3923 if (CheckDerivedToBaseConversion(From->getType(),
3924 ToType.getNonReferenceType(),
3925 From->getLocStart(),
3926 From->getSourceRange(),
3927 &BasePath,
3928 CStyle))
3929 return ExprError();
3930
3931 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
3932 CK_DerivedToBase, From->getValueKind(),
3933 &BasePath, CCK).get();
3934 break;
3935 }
3936
3937 case ICK_Vector_Conversion:
3938 From = ImpCastExprToType(From, ToType, CK_BitCast,
3939 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3940 break;
3941
3942 case ICK_Vector_Splat: {
3943 // Vector splat from any arithmetic type to a vector.
3944 Expr *Elem = prepareVectorSplat(ToType, From).get();
3945 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
3946 /*BasePath=*/nullptr, CCK).get();
3947 break;
3948 }
3949
3950 case ICK_Complex_Real:
3951 // Case 1. x -> _Complex y
3952 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
3953 QualType ElType = ToComplex->getElementType();
3954 bool isFloatingComplex = ElType->isRealFloatingType();
3955
3956 // x -> y
3957 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
3958 // do nothing
3959 } else if (From->getType()->isRealFloatingType()) {
3960 From = ImpCastExprToType(From, ElType,
3961 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
3962 } else {
3963 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3963, __extension__ __PRETTY_FUNCTION__))
;
3964 From = ImpCastExprToType(From, ElType,
3965 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
3966 }
3967 // y -> _Complex y
3968 From = ImpCastExprToType(From, ToType,
3969 isFloatingComplex ? CK_FloatingRealToComplex
3970 : CK_IntegralRealToComplex).get();
3971
3972 // Case 2. _Complex x -> y
3973 } else {
3974 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
3975 assert(FromComplex)(static_cast <bool> (FromComplex) ? void (0) : __assert_fail
("FromComplex", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3975, __extension__ __PRETTY_FUNCTION__))
;
3976
3977 QualType ElType = FromComplex->getElementType();
3978 bool isFloatingComplex = ElType->isRealFloatingType();
3979
3980 // _Complex x -> x
3981 From = ImpCastExprToType(From, ElType,
3982 isFloatingComplex ? CK_FloatingComplexToReal
3983 : CK_IntegralComplexToReal,
3984 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3985
3986 // x -> y
3987 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
3988 // do nothing
3989 } else if (ToType->isRealFloatingType()) {
3990 From = ImpCastExprToType(From, ToType,
3991 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
3992 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3993 } else {
3994 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3994, __extension__ __PRETTY_FUNCTION__))
;
3995 From = ImpCastExprToType(From, ToType,
3996 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3997 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3998 }
3999 }
4000 break;
4001
4002 case ICK_Block_Pointer_Conversion: {
4003 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
4004 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4005 break;
4006 }
4007
4008 case ICK_TransparentUnionConversion: {
4009 ExprResult FromRes = From;
4010 Sema::AssignConvertType ConvTy =
4011 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4012 if (FromRes.isInvalid())
4013 return ExprError();
4014 From = FromRes.get();
4015 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4016, __extension__ __PRETTY_FUNCTION__))
4016 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4016, __extension__ __PRETTY_FUNCTION__))
;
4017 (void)ConvTy;
4018 break;
4019 }
4020
4021 case ICK_Zero_Event_Conversion:
4022 From = ImpCastExprToType(From, ToType,
4023 CK_ZeroToOCLEvent,
4024 From->getValueKind()).get();
4025 break;
4026
4027 case ICK_Zero_Queue_Conversion:
4028 From = ImpCastExprToType(From, ToType,
4029 CK_ZeroToOCLQueue,
4030 From->getValueKind()).get();
4031 break;
4032
4033 case ICK_Lvalue_To_Rvalue:
4034 case ICK_Array_To_Pointer:
4035 case ICK_Function_To_Pointer:
4036 case ICK_Function_Conversion:
4037 case ICK_Qualification:
4038 case ICK_Num_Conversion_Kinds:
4039 case ICK_C_Only_Conversion:
4040 case ICK_Incompatible_Pointer_Conversion:
4041 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4041)
;
4042 }
4043
4044 switch (SCS.Third) {
4045 case ICK_Identity:
4046 // Nothing to do.
4047 break;
4048
4049 case ICK_Function_Conversion:
4050 // If both sides are functions (or pointers/references to them), there could
4051 // be incompatible exception declarations.
4052 if (CheckExceptionSpecCompatibility(From, ToType))
4053 return ExprError();
4054
4055 From = ImpCastExprToType(From, ToType, CK_NoOp,
4056 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4057 break;
4058
4059 case ICK_Qualification: {
4060 // The qualification keeps the category of the inner expression, unless the
4061 // target type isn't a reference.
4062 ExprValueKind VK = ToType->isReferenceType() ?
4063 From->getValueKind() : VK_RValue;
4064 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
4065 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
4066
4067 if (SCS.DeprecatedStringLiteralToCharPtr &&
4068 !getLangOpts().WritableStrings) {
4069 Diag(From->getLocStart(), getLangOpts().CPlusPlus11
4070 ? diag::ext_deprecated_string_literal_conversion
4071 : diag::warn_deprecated_string_literal_conversion)
4072 << ToType.getNonReferenceType();
4073 }
4074
4075 break;
4076 }
4077
4078 default:
4079 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4079)
;
4080 }
4081
4082 // If this conversion sequence involved a scalar -> atomic conversion, perform
4083 // that conversion now.
4084 if (!ToAtomicType.isNull()) {
4085 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4086, __extension__ __PRETTY_FUNCTION__))
4086 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4086, __extension__ __PRETTY_FUNCTION__))
;
4087 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4088 VK_RValue, nullptr, CCK).get();
4089 }
4090
4091 // If this conversion sequence succeeded and involved implicitly converting a
4092 // _Nullable type to a _Nonnull one, complain.
4093 if (CCK == CCK_ImplicitConversion)
4094 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4095 From->getLocStart());
4096
4097 return From;
4098}
4099
4100/// \brief Check the completeness of a type in a unary type trait.
4101///
4102/// If the particular type trait requires a complete type, tries to complete
4103/// it. If completing the type fails, a diagnostic is emitted and false
4104/// returned. If completing the type succeeds or no completion was required,
4105/// returns true.
4106static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4107 SourceLocation Loc,
4108 QualType ArgTy) {
4109 // C++0x [meta.unary.prop]p3:
4110 // For all of the class templates X declared in this Clause, instantiating
4111 // that template with a template argument that is a class template
4112 // specialization may result in the implicit instantiation of the template
4113 // argument if and only if the semantics of X require that the argument
4114 // must be a complete type.
4115 // We apply this rule to all the type trait expressions used to implement
4116 // these class templates. We also try to follow any GCC documented behavior
4117 // in these expressions to ensure portability of standard libraries.
4118 switch (UTT) {
4119 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4119)
;
4120 // is_complete_type somewhat obviously cannot require a complete type.
4121 case UTT_IsCompleteType:
4122 // Fall-through
4123
4124 // These traits are modeled on the type predicates in C++0x
4125 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4126 // requiring a complete type, as whether or not they return true cannot be
4127 // impacted by the completeness of the type.
4128 case UTT_IsVoid:
4129 case UTT_IsIntegral:
4130 case UTT_IsFloatingPoint:
4131 case UTT_IsArray:
4132 case UTT_IsPointer:
4133 case UTT_IsLvalueReference:
4134 case UTT_IsRvalueReference:
4135 case UTT_IsMemberFunctionPointer:
4136 case UTT_IsMemberObjectPointer:
4137 case UTT_IsEnum:
4138 case UTT_IsUnion:
4139 case UTT_IsClass:
4140 case UTT_IsFunction:
4141 case UTT_IsReference:
4142 case UTT_IsArithmetic:
4143 case UTT_IsFundamental:
4144 case UTT_IsObject:
4145 case UTT_IsScalar:
4146 case UTT_IsCompound:
4147 case UTT_IsMemberPointer:
4148 // Fall-through
4149
4150 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4151 // which requires some of its traits to have the complete type. However,
4152 // the completeness of the type cannot impact these traits' semantics, and
4153 // so they don't require it. This matches the comments on these traits in
4154 // Table 49.
4155 case UTT_IsConst:
4156 case UTT_IsVolatile:
4157 case UTT_IsSigned:
4158 case UTT_IsUnsigned:
4159
4160 // This type trait always returns false, checking the type is moot.
4161 case UTT_IsInterfaceClass:
4162 return true;
4163
4164 // C++14 [meta.unary.prop]:
4165 // If T is a non-union class type, T shall be a complete type.
4166 case UTT_IsEmpty:
4167 case UTT_IsPolymorphic:
4168 case UTT_IsAbstract:
4169 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4170 if (!RD->isUnion())
4171 return !S.RequireCompleteType(
4172 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4173 return true;
4174
4175 // C++14 [meta.unary.prop]:
4176 // If T is a class type, T shall be a complete type.
4177 case UTT_IsFinal:
4178 case UTT_IsSealed:
4179 if (ArgTy->getAsCXXRecordDecl())
4180 return !S.RequireCompleteType(
4181 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4182 return true;
4183
4184 // C++1z [meta.unary.prop]:
4185 // remove_all_extents_t<T> shall be a complete type or cv void.
4186 case UTT_IsAggregate:
4187 case UTT_IsTrivial:
4188 case UTT_IsTriviallyCopyable:
4189 case UTT_IsStandardLayout:
4190 case UTT_IsPOD:
4191 case UTT_IsLiteral:
4192 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4193 // or an array of unknown bound. But GCC actually imposes the same constraints
4194 // as above.
4195 case UTT_HasNothrowAssign:
4196 case UTT_HasNothrowMoveAssign:
4197 case UTT_HasNothrowConstructor:
4198 case UTT_HasNothrowCopy:
4199 case UTT_HasTrivialAssign:
4200 case UTT_HasTrivialMoveAssign:
4201 case UTT_HasTrivialDefaultConstructor:
4202 case UTT_HasTrivialMoveConstructor:
4203 case UTT_HasTrivialCopy:
4204 case UTT_HasTrivialDestructor:
4205 case UTT_HasVirtualDestructor:
4206 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4207 LLVM_FALLTHROUGH[[clang::fallthrough]];
4208
4209 // C++1z [meta.unary.prop]:
4210 // T shall be a complete type, cv void, or an array of unknown bound.
4211 case UTT_IsDestructible:
4212 case UTT_IsNothrowDestructible:
4213 case UTT_IsTriviallyDestructible:
4214 case UTT_HasUniqueObjectRepresentations:
4215 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4216 return true;
4217
4218 return !S.RequireCompleteType(
4219 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4220 }
4221}
4222
4223static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4224 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4225 bool (CXXRecordDecl::*HasTrivial)() const,
4226 bool (CXXRecordDecl::*HasNonTrivial)() const,
4227 bool (CXXMethodDecl::*IsDesiredOp)() const)
4228{
4229 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4230 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4231 return true;
4232
4233 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4234 DeclarationNameInfo NameInfo(Name, KeyLoc);
4235 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4236 if (Self.LookupQualifiedName(Res, RD)) {
4237 bool FoundOperator = false;
4238 Res.suppressDiagnostics();
4239 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4240 Op != OpEnd; ++Op) {
4241 if (isa<FunctionTemplateDecl>(*Op))
4242 continue;
4243
4244 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4245 if((Operator->*IsDesiredOp)()) {
4246 FoundOperator = true;
4247 const FunctionProtoType *CPT =
4248 Operator->getType()->getAs<FunctionProtoType>();
4249 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4250 if (!CPT || !CPT->isNothrow(C))
4251 return false;
4252 }
4253 }
4254 return FoundOperator;
4255 }
4256 return false;
4257}
4258
4259static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4260 SourceLocation KeyLoc, QualType T) {
4261 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4261, __extension__ __PRETTY_FUNCTION__))
;
4262
4263 ASTContext &C = Self.Context;
4264 switch(UTT) {
4265 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4265)
;
4266 // Type trait expressions corresponding to the primary type category
4267 // predicates in C++0x [meta.unary.cat].
4268 case UTT_IsVoid:
4269 return T->isVoidType();
4270 case UTT_IsIntegral:
4271 return T->isIntegralType(C);
4272 case UTT_IsFloatingPoint:
4273 return T->isFloatingType();
4274 case UTT_IsArray:
4275 return T->isArrayType();
4276 case UTT_IsPointer:
4277 return T->isPointerType();
4278 case UTT_IsLvalueReference:
4279 return T->isLValueReferenceType();
4280 case UTT_IsRvalueReference:
4281 return T->isRValueReferenceType();
4282 case UTT_IsMemberFunctionPointer:
4283 return T->isMemberFunctionPointerType();
4284 case UTT_IsMemberObjectPointer:
4285 return T->isMemberDataPointerType();
4286 case UTT_IsEnum:
4287 return T->isEnumeralType();
4288 case UTT_IsUnion:
4289 return T->isUnionType();
4290 case UTT_IsClass:
4291 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4292 case UTT_IsFunction:
4293 return T->isFunctionType();
4294
4295 // Type trait expressions which correspond to the convenient composition
4296 // predicates in C++0x [meta.unary.comp].
4297 case UTT_IsReference:
4298 return T->isReferenceType();
4299 case UTT_IsArithmetic:
4300 return T->isArithmeticType() && !T->isEnumeralType();
4301 case UTT_IsFundamental:
4302 return T->isFundamentalType();
4303 case UTT_IsObject:
4304 return T->isObjectType();
4305 case UTT_IsScalar:
4306 // Note: semantic analysis depends on Objective-C lifetime types to be
4307 // considered scalar types. However, such types do not actually behave
4308 // like scalar types at run time (since they may require retain/release
4309 // operations), so we report them as non-scalar.
4310 if (T->isObjCLifetimeType()) {
4311 switch (T.getObjCLifetime()) {
4312 case Qualifiers::OCL_None:
4313 case Qualifiers::OCL_ExplicitNone:
4314 return true;
4315
4316 case Qualifiers::OCL_Strong:
4317 case Qualifiers::OCL_Weak:
4318 case Qualifiers::OCL_Autoreleasing:
4319 return false;
4320 }
4321 }
4322
4323 return T->isScalarType();
4324 case UTT_IsCompound:
4325 return T->isCompoundType();
4326 case UTT_IsMemberPointer:
4327 return T->isMemberPointerType();
4328
4329 // Type trait expressions which correspond to the type property predicates
4330 // in C++0x [meta.unary.prop].
4331 case UTT_IsConst:
4332 return T.isConstQualified();
4333 case UTT_IsVolatile:
4334 return T.isVolatileQualified();
4335 case UTT_IsTrivial:
4336 return T.isTrivialType(C);
4337 case UTT_IsTriviallyCopyable:
4338 return T.isTriviallyCopyableType(C);
4339 case UTT_IsStandardLayout:
4340 return T->isStandardLayoutType();
4341 case UTT_IsPOD:
4342 return T.isPODType(C);
4343 case UTT_IsLiteral:
4344 return T->isLiteralType(C);
4345 case UTT_IsEmpty:
4346 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4347 return !RD->isUnion() && RD->isEmpty();
4348 return false;
4349 case UTT_IsPolymorphic:
4350 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4351 return !RD->isUnion() && RD->isPolymorphic();
4352 return false;
4353 case UTT_IsAbstract:
4354 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4355 return !RD->isUnion() && RD->isAbstract();
4356 return false;
4357 case UTT_IsAggregate:
4358 // Report vector extensions and complex types as aggregates because they
4359 // support aggregate initialization. GCC mirrors this behavior for vectors
4360 // but not _Complex.
4361 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4362 T->isAnyComplexType();
4363 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4364 // even then only when it is used with the 'interface struct ...' syntax
4365 // Clang doesn't support /CLR which makes this type trait moot.
4366 case UTT_IsInterfaceClass:
4367 return false;
4368 case UTT_IsFinal:
4369 case UTT_IsSealed:
4370 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4371 return RD->hasAttr<FinalAttr>();
4372 return false;
4373 case UTT_IsSigned:
4374 return T->isSignedIntegerType();
4375 case UTT_IsUnsigned:
4376 return T->isUnsignedIntegerType();
4377
4378 // Type trait expressions which query classes regarding their construction,
4379 // destruction, and copying. Rather than being based directly on the
4380 // related type predicates in the standard, they are specified by both
4381 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4382 // specifications.
4383 //
4384 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4385 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4386 //
4387 // Note that these builtins do not behave as documented in g++: if a class
4388 // has both a trivial and a non-trivial special member of a particular kind,
4389 // they return false! For now, we emulate this behavior.
4390 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4391 // does not correctly compute triviality in the presence of multiple special
4392 // members of the same kind. Revisit this once the g++ bug is fixed.
4393 case UTT_HasTrivialDefaultConstructor:
4394 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4395 // If __is_pod (type) is true then the trait is true, else if type is
4396 // a cv class or union type (or array thereof) with a trivial default
4397 // constructor ([class.ctor]) then the trait is true, else it is false.
4398 if (T.isPODType(C))
4399 return true;
4400 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4401 return RD->hasTrivialDefaultConstructor() &&
4402 !RD->hasNonTrivialDefaultConstructor();
4403 return false;
4404 case UTT_HasTrivialMoveConstructor:
4405 // This trait is implemented by MSVC 2012 and needed to parse the
4406 // standard library headers. Specifically this is used as the logic
4407 // behind std::is_trivially_move_constructible (20.9.4.3).
4408 if (T.isPODType(C))
4409 return true;
4410 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4411 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4412 return false;
4413 case UTT_HasTrivialCopy:
4414 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4415 // If __is_pod (type) is true or type is a reference type then
4416 // the trait is true, else if type is a cv class or union type
4417 // with a trivial copy constructor ([class.copy]) then the trait
4418 // is true, else it is false.
4419 if (T.isPODType(C) || T->isReferenceType())
4420 return true;
4421 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4422 return RD->hasTrivialCopyConstructor() &&
4423 !RD->hasNonTrivialCopyConstructor();
4424 return false;
4425 case UTT_HasTrivialMoveAssign:
4426 // This trait is implemented by MSVC 2012 and needed to parse the
4427 // standard library headers. Specifically it is used as the logic
4428 // behind std::is_trivially_move_assignable (20.9.4.3)
4429 if (T.isPODType(C))
4430 return true;
4431 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4432 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4433 return false;
4434 case UTT_HasTrivialAssign:
4435 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4436 // If type is const qualified or is a reference type then the
4437 // trait is false. Otherwise if __is_pod (type) is true then the
4438 // trait is true, else if type is a cv class or union type with
4439 // a trivial copy assignment ([class.copy]) then the trait is
4440 // true, else it is false.
4441 // Note: the const and reference restrictions are interesting,
4442 // given that const and reference members don't prevent a class
4443 // from having a trivial copy assignment operator (but do cause
4444 // errors if the copy assignment operator is actually used, q.v.
4445 // [class.copy]p12).
4446
4447 if (T.isConstQualified())
4448 return false;
4449 if (T.isPODType(C))
4450 return true;
4451 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4452 return RD->hasTrivialCopyAssignment() &&
4453 !RD->hasNonTrivialCopyAssignment();
4454 return false;
4455 case UTT_IsDestructible:
4456 case UTT_IsTriviallyDestructible:
4457 case UTT_IsNothrowDestructible:
4458 // C++14 [meta.unary.prop]:
4459 // For reference types, is_destructible<T>::value is true.
4460 if (T->isReferenceType())
4461 return true;
4462
4463 // Objective-C++ ARC: autorelease types don't require destruction.
4464 if (T->isObjCLifetimeType() &&
4465 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4466 return true;
4467
4468 // C++14 [meta.unary.prop]:
4469 // For incomplete types and function types, is_destructible<T>::value is
4470 // false.
4471 if (T->isIncompleteType() || T->isFunctionType())
4472 return false;
4473
4474 // A type that requires destruction (via a non-trivial destructor or ARC
4475 // lifetime semantics) is not trivially-destructible.
4476 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4477 return false;
4478
4479 // C++14 [meta.unary.prop]:
4480 // For object types and given U equal to remove_all_extents_t<T>, if the
4481 // expression std::declval<U&>().~U() is well-formed when treated as an
4482 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4483 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4484 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4485 if (!Destructor)
4486 return false;
4487 // C++14 [dcl.fct.def.delete]p2:
4488 // A program that refers to a deleted function implicitly or
4489 // explicitly, other than to declare it, is ill-formed.
4490 if (Destructor->isDeleted())
4491 return false;
4492 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4493 return false;
4494 if (UTT == UTT_IsNothrowDestructible) {
4495 const FunctionProtoType *CPT =
4496 Destructor->getType()->getAs<FunctionProtoType>();
4497 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4498 if (!CPT || !CPT->isNothrow(C))
4499 return false;
4500 }
4501 }
4502 return true;
4503
4504 case UTT_HasTrivialDestructor:
4505 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4506 // If __is_pod (type) is true or type is a reference type
4507 // then the trait is true, else if type is a cv class or union
4508 // type (or array thereof) with a trivial destructor
4509 // ([class.dtor]) then the trait is true, else it is
4510 // false.
4511 if (T.isPODType(C) || T->isReferenceType())
4512 return true;
4513
4514 // Objective-C++ ARC: autorelease types don't require destruction.
4515 if (T->isObjCLifetimeType() &&
4516 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4517 return true;
4518
4519 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4520 return RD->hasTrivialDestructor();
4521 return false;
4522 // TODO: Propagate nothrowness for implicitly declared special members.
4523 case UTT_HasNothrowAssign:
4524 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4525 // If type is const qualified or is a reference type then the
4526 // trait is false. Otherwise if __has_trivial_assign (type)
4527 // is true then the trait is true, else if type is a cv class
4528 // or union type with copy assignment operators that are known
4529 // not to throw an exception then the trait is true, else it is
4530 // false.
4531 if (C.getBaseElementType(T).isConstQualified())
4532 return false;
4533 if (T->isReferenceType())
4534 return false;
4535 if (T.isPODType(C) || T->isObjCLifetimeType())
4536 return true;
4537
4538 if (const RecordType *RT = T->getAs<RecordType>())
4539 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4540 &CXXRecordDecl::hasTrivialCopyAssignment,
4541 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4542 &CXXMethodDecl::isCopyAssignmentOperator);
4543 return false;
4544 case UTT_HasNothrowMoveAssign:
4545 // This trait is implemented by MSVC 2012 and needed to parse the
4546 // standard library headers. Specifically this is used as the logic
4547 // behind std::is_nothrow_move_assignable (20.9.4.3).
4548 if (T.isPODType(C))
4549 return true;
4550
4551 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4552 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4553 &CXXRecordDecl::hasTrivialMoveAssignment,
4554 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4555 &CXXMethodDecl::isMoveAssignmentOperator);
4556 return false;
4557 case UTT_HasNothrowCopy:
4558 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4559 // If __has_trivial_copy (type) is true then the trait is true, else
4560 // if type is a cv class or union type with copy constructors that are
4561 // known not to throw an exception then the trait is true, else it is
4562 // false.
4563 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4564 return true;
4565 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4566 if (RD->hasTrivialCopyConstructor() &&
4567 !RD->hasNonTrivialCopyConstructor())
4568 return true;
4569
4570 bool FoundConstructor = false;
4571 unsigned FoundTQs;
4572 for (const auto *ND : Self.LookupConstructors(RD)) {
4573 // A template constructor is never a copy constructor.
4574 // FIXME: However, it may actually be selected at the actual overload
4575 // resolution point.
4576 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4577 continue;
4578 // UsingDecl itself is not a constructor
4579 if (isa<UsingDecl>(ND))
4580 continue;
4581 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4582 if (Constructor->isCopyConstructor(FoundTQs)) {
4583 FoundConstructor = true;
4584 const FunctionProtoType *CPT
4585 = Constructor->getType()->getAs<FunctionProtoType>();
4586 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4587 if (!CPT)
4588 return false;
4589 // TODO: check whether evaluating default arguments can throw.
4590 // For now, we'll be conservative and assume that they can throw.
4591 if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
4592 return false;
4593 }
4594 }
4595
4596 return FoundConstructor;
4597 }
4598 return false;
4599 case UTT_HasNothrowConstructor:
4600 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4601 // If __has_trivial_constructor (type) is true then the trait is
4602 // true, else if type is a cv class or union type (or array
4603 // thereof) with a default constructor that is known not to
4604 // throw an exception then the trait is true, else it is false.
4605 if (T.isPODType(C) || T->isObjCLifetimeType())
4606 return true;
4607 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4608 if (RD->hasTrivialDefaultConstructor() &&
4609 !RD->hasNonTrivialDefaultConstructor())
4610 return true;
4611
4612 bool FoundConstructor = false;
4613 for (const auto *ND : Self.LookupConstructors(RD)) {
4614 // FIXME: In C++0x, a constructor template can be a default constructor.
4615 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4616 continue;
4617 // UsingDecl itself is not a constructor
4618 if (isa<UsingDecl>(ND))
4619 continue;
4620 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4621 if (Constructor->isDefaultConstructor()) {
4622 FoundConstructor = true;
4623 const FunctionProtoType *CPT
4624 = Constructor->getType()->getAs<FunctionProtoType>();
4625 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4626 if (!CPT)
4627 return false;
4628 // FIXME: check whether evaluating default arguments can throw.
4629 // For now, we'll be conservative and assume that they can throw.
4630 if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
4631 return false;
4632 }
4633 }
4634 return FoundConstructor;
4635 }
4636 return false;
4637 case UTT_HasVirtualDestructor:
4638 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4639 // If type is a class type with a virtual destructor ([class.dtor])
4640 // then the trait is true, else it is false.
4641 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4642 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4643 return Destructor->isVirtual();
4644 return false;
4645
4646 // These type trait expressions are modeled on the specifications for the
4647 // Embarcadero C++0x type trait functions:
4648 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4649 case UTT_IsCompleteType:
4650 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4651 // Returns True if and only if T is a complete type at the point of the
4652 // function call.
4653 return !T->isIncompleteType();
4654 case UTT_HasUniqueObjectRepresentations:
4655 return C.hasUniqueObjectRepresentations(T);
4656 }
4657}
4658
4659static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4660 QualType RhsT, SourceLocation KeyLoc);
4661
4662static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4663 ArrayRef<TypeSourceInfo *> Args,
4664 SourceLocation RParenLoc) {
4665 if (Kind <= UTT_Last)
4666 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4667
4668 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4669 // traits to avoid duplication.
4670 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4671 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4672 Args[1]->getType(), RParenLoc);
4673
4674 switch (Kind) {
4675 case clang::BTT_ReferenceBindsToTemporary:
4676 case clang::TT_IsConstructible:
4677 case clang::TT_IsNothrowConstructible:
4678 case clang::TT_IsTriviallyConstructible: {
4679 // C++11 [meta.unary.prop]:
4680 // is_trivially_constructible is defined as:
4681 //
4682 // is_constructible<T, Args...>::value is true and the variable
4683 // definition for is_constructible, as defined below, is known to call
4684 // no operation that is not trivial.
4685 //
4686 // The predicate condition for a template specialization
4687 // is_constructible<T, Args...> shall be satisfied if and only if the
4688 // following variable definition would be well-formed for some invented
4689 // variable t:
4690 //
4691 // T t(create<Args>()...);
4692 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4692, __extension__ __PRETTY_FUNCTION__))
;
4693
4694 // Precondition: T and all types in the parameter pack Args shall be
4695 // complete types, (possibly cv-qualified) void, or arrays of
4696 // unknown bound.
4697 for (const auto *TSI : Args) {
4698 QualType ArgTy = TSI->getType();
4699 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4700 continue;
4701
4702 if (S.RequireCompleteType(KWLoc, ArgTy,
4703 diag::err_incomplete_type_used_in_type_trait_expr))
4704 return false;
4705 }
4706
4707 // Make sure the first argument is not incomplete nor a function type.
4708 QualType T = Args[0]->getType();
4709 if (T->isIncompleteType() || T->isFunctionType())
4710 return false;
4711
4712 // Make sure the first argument is not an abstract type.
4713 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4714 if (RD && RD->isAbstract())
4715 return false;
4716
4717 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4718 SmallVector<Expr *, 2> ArgExprs;
4719 ArgExprs.reserve(Args.size() - 1);
4720 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4721 QualType ArgTy = Args[I]->getType();
4722 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4723 ArgTy = S.Context.getRValueReferenceType(ArgTy);
4724 OpaqueArgExprs.push_back(
4725 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
4726 ArgTy.getNonLValueExprType(S.Context),
4727 Expr::getValueKindForType(ArgTy)));
4728 }
4729 for (Expr &E : OpaqueArgExprs)
4730 ArgExprs.push_back(&E);
4731
4732 // Perform the initialization in an unevaluated context within a SFINAE
4733 // trap at translation unit scope.
4734 EnterExpressionEvaluationContext Unevaluated(
4735 S, Sema::ExpressionEvaluationContext::Unevaluated);
4736 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4737 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4738 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4739 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4740 RParenLoc));
4741 InitializationSequence Init(S, To, InitKind, ArgExprs);
4742 if (Init.Failed())
4743 return false;
4744
4745 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4746 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4747 return false;
4748
4749 if (Kind == clang::TT_IsConstructible)
4750 return true;
4751
4752 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
4753 if (!T->isReferenceType())
4754 return false;
4755
4756 return !Init.isDirectReferenceBinding();
4757 }
4758
4759 if (Kind == clang::TT_IsNothrowConstructible)
4760 return S.canThrow(Result.get()) == CT_Cannot;
4761
4762 if (Kind == clang::TT_IsTriviallyConstructible) {
4763 // Under Objective-C ARC and Weak, if the destination has non-trivial
4764 // Objective-C lifetime, this is a non-trivial construction.
4765 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
4766 return false;
4767
4768 // The initialization succeeded; now make sure there are no non-trivial
4769 // calls.
4770 return !Result.get()->hasNonTrivialCall(S.Context);
4771 }
4772
4773 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4773)
;
4774 return false;
4775 }
4776 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4776)
;
4777 }
4778
4779 return false;
4780}
4781
4782ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4783 ArrayRef<TypeSourceInfo *> Args,
4784 SourceLocation RParenLoc) {
4785 QualType ResultType = Context.getLogicalOperationType();
4786
4787 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
4788 *this, Kind, KWLoc, Args[0]->getType()))
4789 return ExprError();
4790
4791 bool Dependent = false;
4792 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4793 if (Args[I]->getType()->isDependentType()) {
4794 Dependent = true;
4795 break;
4796 }
4797 }
4798
4799 bool Result = false;
4800 if (!Dependent)
4801 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
4802
4803 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
4804 RParenLoc, Result);
4805}
4806
4807ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4808 ArrayRef<ParsedType> Args,
4809 SourceLocation RParenLoc) {
4810 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
4811 ConvertedArgs.reserve(Args.size());
4812
4813 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4814 TypeSourceInfo *TInfo;
4815 QualType T = GetTypeFromParser(Args[I], &TInfo);
4816 if (!TInfo)
4817 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
4818
4819 ConvertedArgs.push_back(TInfo);
4820 }
4821
4822 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
4823}
4824
4825static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4826 QualType RhsT, SourceLocation KeyLoc) {
4827 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4828, __extension__ __PRETTY_FUNCTION__))
4828 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4828, __extension__ __PRETTY_FUNCTION__))
;
4829
4830 switch(BTT) {
4831 case BTT_IsBaseOf: {
4832 // C++0x [meta.rel]p2
4833 // Base is a base class of Derived without regard to cv-qualifiers or
4834 // Base and Derived are not unions and name the same class type without
4835 // regard to cv-qualifiers.
4836
4837 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
4838 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
4839 if (!rhsRecord || !lhsRecord) {
4840 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
4841 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
4842 if (!LHSObjTy || !RHSObjTy)
4843 return false;
4844
4845 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
4846 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
4847 if (!BaseInterface || !DerivedInterface)
4848 return false;
4849
4850 if (Self.RequireCompleteType(
4851 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
4852 return false;
4853
4854 return BaseInterface->isSuperClassOf(DerivedInterface);
4855 }
4856
4857 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4858, __extension__ __PRETTY_FUNCTION__))
4858 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4858, __extension__ __PRETTY_FUNCTION__))
;
4859
4860 if (lhsRecord == rhsRecord)
4861 return !lhsRecord->getDecl()->isUnion();
4862
4863 // C++0x [meta.rel]p2:
4864 // If Base and Derived are class types and are different types
4865 // (ignoring possible cv-qualifiers) then Derived shall be a
4866 // complete type.
4867 if (Self.RequireCompleteType(KeyLoc, RhsT,
4868 diag::err_incomplete_type_used_in_type_trait_expr))
4869 return false;
4870
4871 return cast<CXXRecordDecl>(rhsRecord->getDecl())
4872 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
4873 }
4874 case BTT_IsSame:
4875 return Self.Context.hasSameType(LhsT, RhsT);
4876 case BTT_TypeCompatible: {
4877 // GCC ignores cv-qualifiers on arrays for this builtin.
4878 Qualifiers LhsQuals, RhsQuals;
4879 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
4880 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
4881 return Self.Context.typesAreCompatible(Lhs, Rhs);
4882 }
4883 case BTT_IsConvertible:
4884 case BTT_IsConvertibleTo: {
4885 // C++0x [meta.rel]p4:
4886 // Given the following function prototype:
4887 //
4888 // template <class T>
4889 // typename add_rvalue_reference<T>::type create();
4890 //
4891 // the predicate condition for a template specialization
4892 // is_convertible<From, To> shall be satisfied if and only if
4893 // the return expression in the following code would be
4894 // well-formed, including any implicit conversions to the return
4895 // type of the function:
4896 //
4897 // To test() {
4898 // return create<From>();
4899 // }
4900 //
4901 // Access checking is performed as if in a context unrelated to To and
4902 // From. Only the validity of the immediate context of the expression
4903 // of the return-statement (including conversions to the return type)
4904 // is considered.
4905 //
4906 // We model the initialization as a copy-initialization of a temporary
4907 // of the appropriate type, which for this expression is identical to the
4908 // return statement (since NRVO doesn't apply).
4909
4910 // Functions aren't allowed to return function or array types.
4911 if (RhsT->isFunctionType() || RhsT->isArrayType())
4912 return false;
4913
4914 // A return statement in a void function must have void type.
4915 if (RhsT->isVoidType())
4916 return LhsT->isVoidType();
4917
4918 // A function definition requires a complete, non-abstract return type.
4919 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
4920 return false;
4921
4922 // Compute the result of add_rvalue_reference.
4923 if (LhsT->isObjectType() || LhsT->isFunctionType())
4924 LhsT = Self.Context.getRValueReferenceType(LhsT);
4925
4926 // Build a fake source and destination for initialization.
4927 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
4928 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4929 Expr::getValueKindForType(LhsT));
4930 Expr *FromPtr = &From;
4931 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
4932 SourceLocation()));
4933
4934 // Perform the initialization in an unevaluated context within a SFINAE
4935 // trap at translation unit scope.
4936 EnterExpressionEvaluationContext Unevaluated(
4937 Self, Sema::ExpressionEvaluationContext::Unevaluated);
4938 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4939 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4940 InitializationSequence Init(Self, To, Kind, FromPtr);
4941 if (Init.Failed())
4942 return false;
4943
4944 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
4945 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
4946 }
4947
4948 case BTT_IsAssignable:
4949 case BTT_IsNothrowAssignable:
4950 case BTT_IsTriviallyAssignable: {
4951 // C++11 [meta.unary.prop]p3:
4952 // is_trivially_assignable is defined as:
4953 // is_assignable<T, U>::value is true and the assignment, as defined by
4954 // is_assignable, is known to call no operation that is not trivial
4955 //
4956 // is_assignable is defined as:
4957 // The expression declval<T>() = declval<U>() is well-formed when
4958 // treated as an unevaluated operand (Clause 5).
4959 //
4960 // For both, T and U shall be complete types, (possibly cv-qualified)
4961 // void, or arrays of unknown bound.
4962 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
4963 Self.RequireCompleteType(KeyLoc, LhsT,
4964 diag::err_incomplete_type_used_in_type_trait_expr))
4965 return false;
4966 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
4967 Self.RequireCompleteType(KeyLoc, RhsT,
4968 diag::err_incomplete_type_used_in_type_trait_expr))
4969 return false;
4970
4971 // cv void is never assignable.
4972 if (LhsT->isVoidType() || RhsT->isVoidType())
4973 return false;
4974
4975 // Build expressions that emulate the effect of declval<T>() and
4976 // declval<U>().
4977 if (LhsT->isObjectType() || LhsT->isFunctionType())
4978 LhsT = Self.Context.getRValueReferenceType(LhsT);
4979 if (RhsT->isObjectType() || RhsT->isFunctionType())
4980 RhsT = Self.Context.getRValueReferenceType(RhsT);
4981 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4982 Expr::getValueKindForType(LhsT));
4983 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
4984 Expr::getValueKindForType(RhsT));
4985
4986 // Attempt the assignment in an unevaluated context within a SFINAE
4987 // trap at translation unit scope.
4988 EnterExpressionEvaluationContext Unevaluated(
4989 Self, Sema::ExpressionEvaluationContext::Unevaluated);
4990 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4991 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4992 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
4993 &Rhs);
4994 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4995 return false;
4996
4997 if (BTT == BTT_IsAssignable)
4998 return true;
4999
5000 if (BTT == BTT_IsNothrowAssignable)
5001 return Self.canThrow(Result.get()) == CT_Cannot;
5002
5003 if (BTT == BTT_IsTriviallyAssignable) {
5004 // Under Objective-C ARC and Weak, if the destination has non-trivial
5005 // Objective-C lifetime, this is a non-trivial assignment.
5006 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5007 return false;
5008
5009 return !Result.get()->hasNonTrivialCall(Self.Context);
5010 }
5011
5012 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5012)
;
5013 return false;
5014 }
5015 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5015)
;
5016 }
5017 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5017)
;
5018}
5019
5020ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5021 SourceLocation KWLoc,
5022 ParsedType Ty,
5023 Expr* DimExpr,
5024 SourceLocation RParen) {
5025 TypeSourceInfo *TSInfo;
5026 QualType T = GetTypeFromParser(Ty, &TSInfo);
5027 if (!TSInfo)
5028 TSInfo = Context.getTrivialTypeSourceInfo(T);
5029
5030 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5031}
5032
5033static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5034 QualType T, Expr *DimExpr,
5035 SourceLocation KeyLoc) {
5036 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5036, __extension__ __PRETTY_FUNCTION__))
;
5037
5038 switch(ATT) {
5039 case ATT_ArrayRank:
5040 if (T->isArrayType()) {
5041 unsigned Dim = 0;
5042 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5043 ++Dim;
5044 T = AT->getElementType();
5045 }
5046 return Dim;
5047 }
5048 return 0;
5049
5050 case ATT_ArrayExtent: {
5051 llvm::APSInt Value;
5052 uint64_t Dim;
5053 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5054 diag::err_dimension_expr_not_constant_integer,
5055 false).isInvalid())
5056 return 0;
5057 if (Value.isSigned() && Value.isNegative()) {
5058 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5059 << DimExpr->getSourceRange();
5060 return 0;
5061 }
5062 Dim = Value.getLimitedValue();
5063
5064 if (T->isArrayType()) {
5065 unsigned D = 0;
5066 bool Matched = false;
5067 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5068 if (Dim == D) {
5069 Matched = true;
5070 break;
5071 }
5072 ++D;
5073 T = AT->getElementType();
5074 }
5075
5076 if (Matched && T->isArrayType()) {
5077 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5078 return CAT->getSize().getLimitedValue();
5079 }
5080 }
5081 return 0;
5082 }
5083 }
5084 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5084)
;
5085}
5086
5087ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5088 SourceLocation KWLoc,
5089 TypeSourceInfo *TSInfo,
5090 Expr* DimExpr,
5091 SourceLocation RParen) {
5092 QualType T = TSInfo->getType();
5093
5094 // FIXME: This should likely be tracked as an APInt to remove any host
5095 // assumptions about the width of size_t on the target.
5096 uint64_t Value = 0;
5097 if (!T->isDependentType())
5098 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5099
5100 // While the specification for these traits from the Embarcadero C++
5101 // compiler's documentation says the return type is 'unsigned int', Clang
5102 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5103 // compiler, there is no difference. On several other platforms this is an
5104 // important distinction.
5105 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5106 RParen, Context.getSizeType());
5107}
5108
5109ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5110 SourceLocation KWLoc,
5111 Expr *Queried,
5112 SourceLocation RParen) {
5113 // If error parsing the expression, ignore.
5114 if (!Queried)
5115 return ExprError();
5116
5117 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5118
5119 return Result;
5120}
5121
5122static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5123 switch (ET) {
5124 case ET_IsLValueExpr: return E->isLValue();
5125 case ET_IsRValueExpr: return E->isRValue();
5126 }
5127 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5127)
;
5128}
5129
5130ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5131 SourceLocation KWLoc,
5132 Expr *Queried,
5133 SourceLocation RParen) {
5134 if (Queried->isTypeDependent()) {
5135 // Delay type-checking for type-dependent expressions.
5136 } else if (Queried->getType()->isPlaceholderType()) {
5137 ExprResult PE = CheckPlaceholderExpr(Queried);
5138 if (PE.isInvalid()) return ExprError();
5139 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5140 }
5141
5142 bool Value = EvaluateExpressionTrait(ET, Queried);
5143
5144 return new (Context)
5145 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5146}
5147
5148QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5149 ExprValueKind &VK,
5150 SourceLocation Loc,
5151 bool isIndirect) {
5152 assert(!LHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5154, __extension__ __PRETTY_FUNCTION__))
5153 !RHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5154, __extension__ __PRETTY_FUNCTION__))
5154 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5154, __extension__ __PRETTY_FUNCTION__))
;
5155
5156 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5157 // temporary materialization conversion otherwise.
5158 if (isIndirect)
5159 LHS = DefaultLvalueConversion(LHS.get());
5160 else if (LHS.get()->isRValue())
5161 LHS = TemporaryMaterializationConversion(LHS.get());
5162 if (LHS.isInvalid())
5163 return QualType();
5164
5165 // The RHS always undergoes lvalue conversions.
5166 RHS = DefaultLvalueConversion(RHS.get());
5167 if (RHS.isInvalid()) return QualType();
5168
5169 const char *OpSpelling = isIndirect ? "->*" : ".*";
5170 // C++ 5.5p2
5171 // The binary operator .* [p3: ->*] binds its second operand, which shall
5172 // be of type "pointer to member of T" (where T is a completely-defined
5173 // class type) [...]
5174 QualType RHSType = RHS.get()->getType();
5175 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5176 if (!MemPtr) {
5177 Diag(Loc, diag::err_bad_memptr_rhs)
5178 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5179 return QualType();
5180 }
5181
5182 QualType Class(MemPtr->getClass(), 0);
5183
5184 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5185 // member pointer points must be completely-defined. However, there is no
5186 // reason for this semantic distinction, and the rule is not enforced by
5187 // other compilers. Therefore, we do not check this property, as it is
5188 // likely to be considered a defect.
5189
5190 // C++ 5.5p2
5191 // [...] to its first operand, which shall be of class T or of a class of
5192 // which T is an unambiguous and accessible base class. [p3: a pointer to
5193 // such a class]
5194 QualType LHSType = LHS.get()->getType();
5195 if (isIndirect) {
5196 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5197 LHSType = Ptr->getPointeeType();
5198 else {
5199 Diag(Loc, diag::err_bad_memptr_lhs)
5200 << OpSpelling << 1 << LHSType
5201 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5202 return QualType();
5203 }
5204 }
5205
5206 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5207 // If we want to check the hierarchy, we need a complete type.
5208 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5209 OpSpelling, (int)isIndirect)) {
5210 return QualType();
5211 }
5212
5213 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5214 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5215 << (int)isIndirect << LHS.get()->getType();
5216 return QualType();
5217 }
5218
5219 CXXCastPath BasePath;
5220 if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
5221 SourceRange(LHS.get()->getLocStart(),
5222 RHS.get()->getLocEnd()),
5223 &BasePath))
5224 return QualType();
5225
5226 // Cast LHS to type of use.
5227 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5228 if (isIndirect)
5229 UseType = Context.getPointerType(UseType);
5230 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5231 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5232 &BasePath);
5233 }
5234
5235 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5236 // Diagnose use of pointer-to-member type which when used as
5237 // the functional cast in a pointer-to-member expression.
5238 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5239 return QualType();
5240 }
5241
5242 // C++ 5.5p2
5243 // The result is an object or a function of the type specified by the
5244 // second operand.
5245 // The cv qualifiers are the union of those in the pointer and the left side,
5246 // in accordance with 5.5p5 and 5.2.5.
5247 QualType Result = MemPtr->getPointeeType();
5248 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5249
5250 // C++0x [expr.mptr.oper]p6:
5251 // In a .* expression whose object expression is an rvalue, the program is
5252 // ill-formed if the second operand is a pointer to member function with
5253 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5254 // expression is an lvalue, the program is ill-formed if the second operand
5255 // is a pointer to member function with ref-qualifier &&.
5256 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5257 switch (Proto->getRefQualifier()) {
5258 case RQ_None:
5259 // Do nothing
5260 break;
5261
5262 case RQ_LValue:
5263 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5264 // C++2a allows functions with ref-qualifier & if they are also 'const'.
5265 if (Proto->isConst())
5266 Diag(Loc, getLangOpts().CPlusPlus2a
5267 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5268 : diag::ext_pointer_to_const_ref_member_on_rvalue);
5269 else
5270 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5271 << RHSType << 1 << LHS.get()->getSourceRange();
5272 }
5273 break;
5274
5275 case RQ_RValue:
5276 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5277 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5278 << RHSType << 0 << LHS.get()->getSourceRange();
5279 break;
5280 }
5281 }
5282
5283 // C++ [expr.mptr.oper]p6:
5284 // The result of a .* expression whose second operand is a pointer
5285 // to a data member is of the same value category as its
5286 // first operand. The result of a .* expression whose second
5287 // operand is a pointer to a member function is a prvalue. The
5288 // result of an ->* expression is an lvalue if its second operand
5289 // is a pointer to data member and a prvalue otherwise.
5290 if (Result->isFunctionType()) {
5291 VK = VK_RValue;
5292 return Context.BoundMemberTy;
5293 } else if (isIndirect) {
5294 VK = VK_LValue;
5295 } else {
5296 VK = LHS.get()->getValueKind();
5297 }
5298
5299 return Result;
5300}
5301
5302/// \brief Try to convert a type to another according to C++11 5.16p3.
5303///
5304/// This is part of the parameter validation for the ? operator. If either
5305/// value operand is a class type, the two operands are attempted to be
5306/// converted to each other. This function does the conversion in one direction.
5307/// It returns true if the program is ill-formed and has already been diagnosed
5308/// as such.
5309static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5310 SourceLocation QuestionLoc,
5311 bool &HaveConversion,
5312 QualType &ToType) {
5313 HaveConversion = false;
5314 ToType = To->getType();
5315
5316 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
5317 SourceLocation());
5318 // C++11 5.16p3
5319 // The process for determining whether an operand expression E1 of type T1
5320 // can be converted to match an operand expression E2 of type T2 is defined
5321 // as follows:
5322 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5323 // implicitly converted to type "lvalue reference to T2", subject to the
5324 // constraint that in the conversion the reference must bind directly to
5325 // an lvalue.
5326 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5327 // implicitly conveted to the type "rvalue reference to R2", subject to
5328 // the constraint that the reference must bind directly.
5329 if (To->isLValue() || To->isXValue()) {
5330 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5331 : Self.Context.getRValueReferenceType(ToType);
5332
5333 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5334
5335 InitializationSequence InitSeq(Self, Entity, Kind, From);
5336 if (InitSeq.isDirectReferenceBinding()) {
5337 ToType = T;
5338 HaveConversion = true;
5339 return false;
5340 }
5341
5342 if (InitSeq.isAmbiguous())
5343 return InitSeq.Diagnose(Self, Entity, Kind, From);
5344 }
5345
5346 // -- If E2 is an rvalue, or if the conversion above cannot be done:
5347 // -- if E1 and E2 have class type, and the underlying class types are
5348 // the same or one is a base class of the other:
5349 QualType FTy = From->getType();
5350 QualType TTy = To->getType();
5351 const RecordType *FRec = FTy->getAs<RecordType>();
5352 const RecordType *TRec = TTy->getAs<RecordType>();
5353 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5354 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5355 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5356 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5357 // E1 can be converted to match E2 if the class of T2 is the
5358 // same type as, or a base class of, the class of T1, and
5359 // [cv2 > cv1].
5360 if (FRec == TRec || FDerivedFromT) {
5361 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5362 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5363 InitializationSequence InitSeq(Self, Entity, Kind, From);
5364 if (InitSeq) {
5365 HaveConversion = true;
5366 return false;
5367 }
5368
5369 if (InitSeq.isAmbiguous())
5370 return InitSeq.Diagnose(Self, Entity, Kind, From);
5371 }
5372 }
5373
5374 return false;
5375 }
5376
5377 // -- Otherwise: E1 can be converted to match E2 if E1 can be
5378 // implicitly converted to the type that expression E2 would have
5379 // if E2 were converted to an rvalue (or the type it has, if E2 is
5380 // an rvalue).
5381 //
5382 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5383 // to the array-to-pointer or function-to-pointer conversions.
5384 TTy = TTy.getNonLValueExprType(Self.Context);
5385
5386 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5387 InitializationSequence InitSeq(Self, Entity, Kind, From);
5388 HaveConversion = !InitSeq.Failed();
5389 ToType = TTy;
5390 if (InitSeq.isAmbiguous())
5391 return InitSeq.Diagnose(Self, Entity, Kind, From);
5392
5393 return false;
5394}
5395
5396/// \brief Try to find a common type for two according to C++0x 5.16p5.
5397///
5398/// This is part of the parameter validation for the ? operator. If either
5399/// value operand is a class type, overload resolution is used to find a
5400/// conversion to a common type.
5401static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5402 SourceLocation QuestionLoc) {
5403 Expr *Args[2] = { LHS.get(), RHS.get() };
5404 OverloadCandidateSet CandidateSet(QuestionLoc,
5405 OverloadCandidateSet::CSK_Operator);
5406 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5407 CandidateSet);
5408
5409 OverloadCandidateSet::iterator Best;
5410 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5411 case OR_Success: {
5412 // We found a match. Perform the conversions on the arguments and move on.
5413 ExprResult LHSRes = Self.PerformImplicitConversion(
5414 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5415 Sema::AA_Converting);
5416 if (LHSRes.isInvalid())
5417 break;
5418 LHS = LHSRes;
5419
5420 ExprResult RHSRes = Self.PerformImplicitConversion(
5421 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5422 Sema::AA_Converting);
5423 if (RHSRes.isInvalid())
5424 break;
5425 RHS = RHSRes;
5426 if (Best->Function)
5427 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5428 return false;
5429 }
5430
5431 case OR_No_Viable_Function:
5432
5433 // Emit a better diagnostic if one of the expressions is a null pointer
5434 // constant and the other is a pointer type. In this case, the user most
5435 // likely forgot to take the address of the other expression.
5436 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5437 return true;
5438
5439 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5440 << LHS.get()->getType() << RHS.get()->getType()
5441 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5442 return true;
5443
5444 case OR_Ambiguous:
5445 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5446 << LHS.get()->getType() << RHS.get()->getType()
5447 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5448 // FIXME: Print the possible common types by printing the return types of
5449 // the viable candidates.
5450 break;
5451
5452 case OR_Deleted:
5453 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5453)
;
5454 }
5455 return true;
5456}
5457
5458/// \brief Perform an "extended" implicit conversion as returned by
5459/// TryClassUnification.
5460static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5461 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5462 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
5463 SourceLocation());
5464 Expr *Arg = E.get();
5465 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5466 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5467 if (Result.isInvalid())
5468 return true;
5469
5470 E = Result;
5471 return false;
5472}
5473
5474/// \brief Check the operands of ?: under C++ semantics.
5475///
5476/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5477/// extension. In this case, LHS == Cond. (But they're not aliases.)
5478QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5479 ExprResult &RHS, ExprValueKind &VK,
5480 ExprObjectKind &OK,
5481 SourceLocation QuestionLoc) {
5482 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5483 // interface pointers.
5484
5485 // C++11 [expr.cond]p1
5486 // The first expression is contextually converted to bool.
5487 //
5488 // FIXME; GCC's vector extension permits the use of a?b:c where the type of
5489 // a is that of a integer vector with the same number of elements and
5490 // size as the vectors of b and c. If one of either b or c is a scalar
5491 // it is implicitly converted to match the type of the vector.
5492 // Otherwise the expression is ill-formed. If both b and c are scalars,
5493 // then b and c are checked and converted to the type of a if possible.
5494 // Unlike the OpenCL ?: operator, the expression is evaluated as
5495 // (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
5496 if (!Cond.get()->isTypeDependent()) {
5497 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5498 if (CondRes.isInvalid())
5499 return QualType();
5500 Cond = CondRes;
5501 }
5502
5503 // Assume r-value.
5504 VK = VK_RValue;
5505 OK = OK_Ordinary;
5506
5507 // Either of the arguments dependent?
5508 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5509 return Context.DependentTy;
5510
5511 // C++11 [expr.cond]p2
5512 // If either the second or the third operand has type (cv) void, ...
5513 QualType LTy = LHS.get()->getType();
5514 QualType RTy = RHS.get()->getType();
5515 bool LVoid = LTy->isVoidType();
5516 bool RVoid = RTy->isVoidType();
5517 if (LVoid || RVoid) {
5518 // ... one of the following shall hold:
5519 // -- The second or the third operand (but not both) is a (possibly
5520 // parenthesized) throw-expression; the result is of the type
5521 // and value category of the other.
5522 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5523 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5524 if (LThrow != RThrow) {
5525 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5526 VK = NonThrow->getValueKind();
5527 // DR (no number yet): the result is a bit-field if the
5528 // non-throw-expression operand is a bit-field.
5529 OK = NonThrow->getObjectKind();
5530 return NonThrow->getType();
5531 }
5532
5533 // -- Both the second and third operands have type void; the result is of
5534 // type void and is a prvalue.
5535 if (LVoid && RVoid)
5536 return Context.VoidTy;
5537
5538 // Neither holds, error.
5539 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5540 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5541 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5542 return QualType();
5543 }
5544
5545 // Neither is void.
5546
5547 // C++11 [expr.cond]p3
5548 // Otherwise, if the second and third operand have different types, and
5549 // either has (cv) class type [...] an attempt is made to convert each of
5550 // those operands to the type of the other.
5551 if (!Context.hasSameType(LTy, RTy) &&
5552 (LTy->isRecordType() || RTy->isRecordType())) {
5553 // These return true if a single direction is already ambiguous.
5554 QualType L2RType, R2LType;
5555 bool HaveL2R, HaveR2L;
5556 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5557 return QualType();
5558 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5559 return QualType();
5560
5561 // If both can be converted, [...] the program is ill-formed.
5562 if (HaveL2R && HaveR2L) {
5563 Diag(QuestionLoc, diag::err_conditional_ambiguous)
5564 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5565 return QualType();
5566 }
5567
5568 // If exactly one conversion is possible, that conversion is applied to
5569 // the chosen operand and the converted operands are used in place of the
5570 // original operands for the remainder of this section.
5571 if (HaveL2R) {
5572 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5573 return QualType();
5574 LTy = LHS.get()->getType();
5575 } else if (HaveR2L) {
5576 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5577 return QualType();
5578 RTy = RHS.get()->getType();
5579 }
5580 }
5581
5582 // C++11 [expr.cond]p3
5583 // if both are glvalues of the same value category and the same type except
5584 // for cv-qualification, an attempt is made to convert each of those
5585 // operands to the type of the other.
5586 // FIXME:
5587 // Resolving a defect in P0012R1: we extend this to cover all cases where
5588 // one of the operands is reference-compatible with the other, in order
5589 // to support conditionals between functions differing in noexcept.
5590 ExprValueKind LVK = LHS.get()->getValueKind();
5591 ExprValueKind RVK = RHS.get()->getValueKind();
5592 if (!Context.hasSameType(LTy, RTy) &&
5593 LVK == RVK && LVK != VK_RValue) {
5594 // DerivedToBase was already handled by the class-specific case above.
5595 // FIXME: Should we allow ObjC conversions here?
5596 bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
5597 if (CompareReferenceRelationship(
5598 QuestionLoc, LTy, RTy, DerivedToBase,
5599 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5600 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5601 // [...] subject to the constraint that the reference must bind
5602 // directly [...]
5603 !RHS.get()->refersToBitField() &&
5604 !RHS.get()->refersToVectorElement()) {
5605 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5606 RTy = RHS.get()->getType();
5607 } else if (CompareReferenceRelationship(
5608 QuestionLoc, RTy, LTy, DerivedToBase,
5609 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5610 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5611 !LHS.get()->refersToBitField() &&
5612 !LHS.get()->refersToVectorElement()) {
5613 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5614 LTy = LHS.get()->getType();
5615 }
5616 }
5617
5618 // C++11 [expr.cond]p4
5619 // If the second and third operands are glvalues of the same value
5620 // category and have the same type, the result is of that type and
5621 // value category and it is a bit-field if the second or the third
5622 // operand is a bit-field, or if both are bit-fields.
5623 // We only extend this to bitfields, not to the crazy other kinds of
5624 // l-values.
5625 bool Same = Context.hasSameType(LTy, RTy);
5626 if (Same && LVK == RVK && LVK != VK_RValue &&
5627 LHS.get()->isOrdinaryOrBitFieldObject() &&
5628 RHS.get()->isOrdinaryOrBitFieldObject()) {
5629 VK = LHS.get()->getValueKind();
5630 if (LHS.get()->getObjectKind() == OK_BitField ||
5631 RHS.get()->getObjectKind() == OK_BitField)
5632 OK = OK_BitField;
5633
5634 // If we have function pointer types, unify them anyway to unify their
5635 // exception specifications, if any.
5636 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5637 Qualifiers Qs = LTy.getQualifiers();
5638 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
5639 /*ConvertArgs*/false);
5640 LTy = Context.getQualifiedType(LTy, Qs);
5641
5642 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5643, __extension__ __PRETTY_FUNCTION__))
5643 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5643, __extension__ __PRETTY_FUNCTION__))
;
5644 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type")(static_cast <bool> (Context.hasSameType(LTy, RTy) &&
"bad composite pointer type") ? void (0) : __assert_fail ("Context.hasSameType(LTy, RTy) && \"bad composite pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5644, __extension__ __PRETTY_FUNCTION__))
;
5645 }
5646
5647 return LTy;
5648 }
5649
5650 // C++11 [expr.cond]p5
5651 // Otherwise, the result is a prvalue. If the second and third operands
5652 // do not have the same type, and either has (cv) class type, ...
5653 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5654 // ... overload resolution is used to determine the conversions (if any)
5655 // to be applied to the operands. If the overload resolution fails, the
5656 // program is ill-formed.
5657 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5658 return QualType();
5659 }
5660
5661 // C++11 [expr.cond]p6
5662 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5663 // conversions are performed on the second and third operands.
5664 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5665 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5666 if (LHS.isInvalid() || RHS.isInvalid())
5667 return QualType();
5668 LTy = LHS.get()->getType();
5669 RTy = RHS.get()->getType();
5670
5671 // After those conversions, one of the following shall hold:
5672 // -- The second and third operands have the same type; the result
5673 // is of that type. If the operands have class type, the result
5674 // is a prvalue temporary of the result type, which is
5675 // copy-initialized from either the second operand or the third
5676 // operand depending on the value of the first operand.
5677 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5678 if (LTy->isRecordType()) {
5679 // The operands have class type. Make a temporary copy.
5680 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5681
5682 ExprResult LHSCopy = PerformCopyInitialization(Entity,
5683 SourceLocation(),
5684 LHS);
5685 if (LHSCopy.isInvalid())
5686 return QualType();
5687
5688 ExprResult RHSCopy = PerformCopyInitialization(Entity,
5689 SourceLocation(),
5690 RHS);
5691 if (RHSCopy.isInvalid())
5692 return QualType();
5693
5694 LHS = LHSCopy;
5695 RHS = RHSCopy;
5696 }
5697
5698 // If we have function pointer types, unify them anyway to unify their
5699 // exception specifications, if any.
5700 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5701 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
5702 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5703, __extension__ __PRETTY_FUNCTION__))
5703 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5703, __extension__ __PRETTY_FUNCTION__))
;
5704 }
5705
5706 return LTy;
5707 }
5708
5709 // Extension: conditional operator involving vector types.
5710 if (LTy->isVectorType() || RTy->isVectorType())
5711 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5712 /*AllowBothBool*/true,
5713 /*AllowBoolConversions*/false);
5714
5715 // -- The second and third operands have arithmetic or enumeration type;
5716 // the usual arithmetic conversions are performed to bring them to a
5717 // common type, and the result is of that type.
5718 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5719 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5720 if (LHS.isInvalid() || RHS.isInvalid())
5721 return QualType();
5722 if (ResTy.isNull()) {
5723 Diag(QuestionLoc,
5724 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
5725 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5726 return QualType();
5727 }
5728
5729 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5730 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5731
5732 return ResTy;
5733 }
5734
5735 // -- The second and third operands have pointer type, or one has pointer
5736 // type and the other is a null pointer constant, or both are null
5737 // pointer constants, at least one of which is non-integral; pointer
5738 // conversions and qualification conversions are performed to bring them
5739 // to their composite pointer type. The result is of the composite
5740 // pointer type.
5741 // -- The second and third operands have pointer to member type, or one has
5742 // pointer to member type and the other is a null pointer constant;
5743 // pointer to member conversions and qualification conversions are
5744 // performed to bring them to a common type, whose cv-qualification
5745 // shall match the cv-qualification of either the second or the third
5746 // operand. The result is of the common type.
5747 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
5748 if (!Composite.isNull())
5749 return Composite;
5750
5751 // Similarly, attempt to find composite type of two objective-c pointers.
5752 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5753 if (!Composite.isNull())
5754 return Composite;
5755
5756 // Check if we are using a null with a non-pointer type.
5757 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5758 return QualType();
5759
5760 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5761 << LHS.get()->getType() << RHS.get()->getType()
5762 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5763 return QualType();
5764}
5765
5766static FunctionProtoType::ExceptionSpecInfo
5767mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
5768 FunctionProtoType::ExceptionSpecInfo ESI2,
5769 SmallVectorImpl<QualType> &ExceptionTypeStorage) {
5770 ExceptionSpecificationType EST1 = ESI1.Type;
5771 ExceptionSpecificationType EST2 = ESI2.Type;
5772
5773 // If either of them can throw anything, that is the result.
5774 if (EST1 == EST_None) return ESI1;
5775 if (EST2 == EST_None) return ESI2;
5776 if (EST1 == EST_MSAny) return ESI1;
5777 if (EST2 == EST_MSAny) return ESI2;
5778
5779 // If either of them is non-throwing, the result is the other.
5780 if (EST1 == EST_DynamicNone) return ESI2;
5781 if (EST2 == EST_DynamicNone) return ESI1;
5782 if (EST1 == EST_BasicNoexcept) return ESI2;
5783 if (EST2 == EST_BasicNoexcept) return ESI1;
5784
5785 // If either of them is a non-value-dependent computed noexcept, that
5786 // determines the result.
5787 if (EST2 == EST_ComputedNoexcept && ESI2.NoexceptExpr &&
5788 !ESI2.NoexceptExpr->isValueDependent())
5789 return !ESI2.NoexceptExpr->EvaluateKnownConstInt(S.Context) ? ESI2 : ESI1;
5790 if (EST1 == EST_ComputedNoexcept && ESI1.NoexceptExpr &&
5791 !ESI1.NoexceptExpr->isValueDependent())
5792 return !ESI1.NoexceptExpr->EvaluateKnownConstInt(S.Context) ? ESI1 : ESI2;
5793 // If we're left with value-dependent computed noexcept expressions, we're
5794 // stuck. Before C++17, we can just drop the exception specification entirely,
5795 // since it's not actually part of the canonical type. And this should never
5796 // happen in C++17, because it would mean we were computing the composite
5797 // pointer type of dependent types, which should never happen.
5798 if (EST1 == EST_ComputedNoexcept || EST2 == EST_ComputedNoexcept) {
5799 assert(!S.getLangOpts().CPlusPlus17 &&(static_cast <bool> (!S.getLangOpts().CPlusPlus17 &&
"computing composite pointer type of dependent types") ? void
(0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5800, __extension__ __PRETTY_FUNCTION__))
5800 "computing composite pointer type of dependent types")(static_cast <bool> (!S.getLangOpts().CPlusPlus17 &&
"computing composite pointer type of dependent types") ? void
(0) : __assert_fail ("!S.getLangOpts().CPlusPlus17 && \"computing composite pointer type of dependent types\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5800, __extension__ __PRETTY_FUNCTION__))
;
5801 return FunctionProtoType::ExceptionSpecInfo();
5802 }
5803
5804 // Switch over the possibilities so that people adding new values know to
5805 // update this function.
5806 switch (EST1) {
5807 case EST_None:
5808 case EST_DynamicNone:
5809 case EST_MSAny:
5810 case EST_BasicNoexcept:
5811 case EST_ComputedNoexcept:
5812 llvm_unreachable("handled above")::llvm::llvm_unreachable_internal("handled above", "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5812)
;
5813
5814 case EST_Dynamic: {
5815 // This is the fun case: both exception specifications are dynamic. Form
5816 // the union of the two lists.
5817 assert(EST2 == EST_Dynamic && "other cases should already be handled")(static_cast <bool> (EST2 == EST_Dynamic && "other cases should already be handled"
) ? void (0) : __assert_fail ("EST2 == EST_Dynamic && \"other cases should already be handled\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5817, __extension__ __PRETTY_FUNCTION__))
;
5818 llvm::SmallPtrSet<QualType, 8> Found;
5819 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
5820 for (QualType E : Exceptions)
5821 if (Found.insert(S.Context.getCanonicalType(E)).second)
5822 ExceptionTypeStorage.push_back(E);
5823
5824 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
5825 Result.Exceptions = ExceptionTypeStorage;
5826 return Result;
5827 }
5828
5829 case EST_Unevaluated:
5830 case EST_Uninstantiated:
5831 case EST_Unparsed:
5832 llvm_unreachable("shouldn't see unresolved exception specifications here")::llvm::llvm_unreachable_internal("shouldn't see unresolved exception specifications here"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5832)
;
5833 }
5834
5835 llvm_unreachable("invalid ExceptionSpecificationType")::llvm::llvm_unreachable_internal("invalid ExceptionSpecificationType"
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5835)
;
5836}
5837
5838/// \brief Find a merged pointer type and convert the two expressions to it.
5839///
5840/// This finds the composite pointer type (or member pointer type) for @p E1
5841/// and @p E2 according to C++1z 5p14. It converts both expressions to this
5842/// type and returns it.
5843/// It does not emit diagnostics.
5844///
5845/// \param Loc The location of the operator requiring these two expressions to
5846/// be converted to the composite pointer type.
5847///
5848/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
5849QualType Sema::FindCompositePointerType(SourceLocation Loc,
5850 Expr *&E1, Expr *&E2,
5851 bool ConvertArgs) {
5852 assert(getLangOpts().CPlusPlus && "This function assumes C++")(static_cast <bool> (getLangOpts().CPlusPlus &&
"This function assumes C++") ? void (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\""
, "/build/llvm-toolchain-snapshot-7~svn326551/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5852, __extension__ __PRETTY_FUNCTION__))
;
5853
5854 // C++1z [expr]p14:
5855 // The composite pointer type of two operands p1 and p2 having types T1
5856 // and T2