Bug Summary

File:tools/clang/lib/Sema/SemaExprCXX.cpp
Location:line 444, column 7
Description:Called C++ object pointer is null

Annotated Source Code

1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/RecursiveASTVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// \brief Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")((NNS->getAsIdentifier() == &Name && "not a constructor name"
) ? static_cast<void> (0) : __assert_fail ("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 65, __PRETTY_FUNCTION__))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
84 IdentifierInfo &II,
85 SourceLocation NameLoc,
86 Scope *S, CXXScopeSpec &SS,
87 ParsedType ObjectTypePtr,
88 bool EnteringContext) {
89 // Determine where to perform name lookup.
90
91 // FIXME: This area of the standard is very messy, and the current
92 // wording is rather unclear about which scopes we search for the
93 // destructor name; see core issues 399 and 555. Issue 399 in
94 // particular shows where the current description of destructor name
95 // lookup is completely out of line with existing practice, e.g.,
96 // this appears to be ill-formed:
97 //
98 // namespace N {
99 // template <typename T> struct S {
100 // ~S();
101 // };
102 // }
103 //
104 // void f(N::S<int>* s) {
105 // s->N::S<int>::~S();
106 // }
107 //
108 // See also PR6358 and PR6359.
109 // For this reason, we're currently only doing the C++03 version of this
110 // code; the C++0x version has to wait until we get a proper spec.
111 QualType SearchType;
112 DeclContext *LookupCtx = nullptr;
113 bool isDependent = false;
114 bool LookInScope = false;
115
116 // If we have an object type, it's because we are in a
117 // pseudo-destructor-expression or a member access expression, and
118 // we know what type we're looking for.
119 if (ObjectTypePtr)
120 SearchType = GetTypeFromParser(ObjectTypePtr);
121
122 if (SS.isSet()) {
123 NestedNameSpecifier *NNS = SS.getScopeRep();
124
125 bool AlreadySearched = false;
126 bool LookAtPrefix = true;
127 // C++11 [basic.lookup.qual]p6:
128 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
129 // the type-names are looked up as types in the scope designated by the
130 // nested-name-specifier. Similarly, in a qualified-id of the form:
131 //
132 // nested-name-specifier[opt] class-name :: ~ class-name
133 //
134 // the second class-name is looked up in the same scope as the first.
135 //
136 // Here, we determine whether the code below is permitted to look at the
137 // prefix of the nested-name-specifier.
138 DeclContext *DC = computeDeclContext(SS, EnteringContext);
139 if (DC && DC->isFileContext()) {
140 AlreadySearched = true;
141 LookupCtx = DC;
142 isDependent = false;
143 } else if (DC && isa<CXXRecordDecl>(DC)) {
144 LookAtPrefix = false;
145 LookInScope = true;
146 }
147
148 // The second case from the C++03 rules quoted further above.
149 NestedNameSpecifier *Prefix = nullptr;
150 if (AlreadySearched) {
151 // Nothing left to do.
152 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
153 CXXScopeSpec PrefixSS;
154 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
155 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
156 isDependent = isDependentScopeSpecifier(PrefixSS);
157 } else if (ObjectTypePtr) {
158 LookupCtx = computeDeclContext(SearchType);
159 isDependent = SearchType->isDependentType();
160 } else {
161 LookupCtx = computeDeclContext(SS, EnteringContext);
162 isDependent = LookupCtx && LookupCtx->isDependentContext();
163 }
164 } else if (ObjectTypePtr) {
165 // C++ [basic.lookup.classref]p3:
166 // If the unqualified-id is ~type-name, the type-name is looked up
167 // in the context of the entire postfix-expression. If the type T
168 // of the object expression is of a class type C, the type-name is
169 // also looked up in the scope of class C. At least one of the
170 // lookups shall find a name that refers to (possibly
171 // cv-qualified) T.
172 LookupCtx = computeDeclContext(SearchType);
173 isDependent = SearchType->isDependentType();
174 assert((isDependent || !SearchType->isIncompleteType()) &&(((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 175, __PRETTY_FUNCTION__))
175 "Caller should have completed object type")(((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 175, __PRETTY_FUNCTION__))
;
176
177 LookInScope = true;
178 } else {
179 // Perform lookup into the current scope (only).
180 LookInScope = true;
181 }
182
183 TypeDecl *NonMatchingTypeDecl = nullptr;
184 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
185 for (unsigned Step = 0; Step != 2; ++Step) {
186 // Look for the name first in the computed lookup context (if we
187 // have one) and, if that fails to find a match, in the scope (if
188 // we're allowed to look there).
189 Found.clear();
190 if (Step == 0 && LookupCtx)
191 LookupQualifiedName(Found, LookupCtx);
192 else if (Step == 1 && LookInScope && S)
193 LookupName(Found, S);
194 else
195 continue;
196
197 // FIXME: Should we be suppressing ambiguities here?
198 if (Found.isAmbiguous())
199 return ParsedType();
200
201 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
202 QualType T = Context.getTypeDeclType(Type);
203 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
204
205 if (SearchType.isNull() || SearchType->isDependentType() ||
206 Context.hasSameUnqualifiedType(T, SearchType)) {
207 // We found our type!
208
209 return CreateParsedType(T,
210 Context.getTrivialTypeSourceInfo(T, NameLoc));
211 }
212
213 if (!SearchType.isNull())
214 NonMatchingTypeDecl = Type;
215 }
216
217 // If the name that we found is a class template name, and it is
218 // the same name as the template name in the last part of the
219 // nested-name-specifier (if present) or the object type, then
220 // this is the destructor for that class.
221 // FIXME: This is a workaround until we get real drafting for core
222 // issue 399, for which there isn't even an obvious direction.
223 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
224 QualType MemberOfType;
225 if (SS.isSet()) {
226 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
227 // Figure out the type of the context, if it has one.
228 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
229 MemberOfType = Context.getTypeDeclType(Record);
230 }
231 }
232 if (MemberOfType.isNull())
233 MemberOfType = SearchType;
234
235 if (MemberOfType.isNull())
236 continue;
237
238 // We're referring into a class template specialization. If the
239 // class template we found is the same as the template being
240 // specialized, we found what we are looking for.
241 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
242 if (ClassTemplateSpecializationDecl *Spec
243 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
244 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
245 Template->getCanonicalDecl())
246 return CreateParsedType(
247 MemberOfType,
248 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
249 }
250
251 continue;
252 }
253
254 // We're referring to an unresolved class template
255 // specialization. Determine whether we class template we found
256 // is the same as the template being specialized or, if we don't
257 // know which template is being specialized, that it at least
258 // has the same name.
259 if (const TemplateSpecializationType *SpecType
260 = MemberOfType->getAs<TemplateSpecializationType>()) {
261 TemplateName SpecName = SpecType->getTemplateName();
262
263 // The class template we found is the same template being
264 // specialized.
265 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
266 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
267 return CreateParsedType(
268 MemberOfType,
269 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
270
271 continue;
272 }
273
274 // The class template we found has the same name as the
275 // (dependent) template name being specialized.
276 if (DependentTemplateName *DepTemplate
277 = SpecName.getAsDependentTemplateName()) {
278 if (DepTemplate->isIdentifier() &&
279 DepTemplate->getIdentifier() == Template->getIdentifier())
280 return CreateParsedType(
281 MemberOfType,
282 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
283
284 continue;
285 }
286 }
287 }
288 }
289
290 if (isDependent) {
291 // We didn't find our type, but that's okay: it's dependent
292 // anyway.
293
294 // FIXME: What if we have no nested-name-specifier?
295 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
296 SS.getWithLocInContext(Context),
297 II, NameLoc);
298 return ParsedType::make(T);
299 }
300
301 if (NonMatchingTypeDecl) {
302 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
303 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
304 << T << SearchType;
305 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
306 << T;
307 } else if (ObjectTypePtr)
308 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
309 << &II;
310 else {
311 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
312 diag::err_destructor_class_name);
313 if (S) {
314 const DeclContext *Ctx = S->getEntity();
315 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
316 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
317 Class->getNameAsString());
318 }
319 }
320
321 return ParsedType();
322}
323
324ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
325 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
326 return ParsedType();
327 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype((DS.getTypeSpecType() == DeclSpec::TST_decltype && "only get destructor types from declspecs"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"only get destructor types from declspecs\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 328, __PRETTY_FUNCTION__))
328 && "only get destructor types from declspecs")((DS.getTypeSpecType() == DeclSpec::TST_decltype && "only get destructor types from declspecs"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"only get destructor types from declspecs\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 328, __PRETTY_FUNCTION__))
;
329 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
330 QualType SearchType = GetTypeFromParser(ObjectType);
331 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
332 return ParsedType::make(T);
333 }
334
335 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
336 << T << SearchType;
337 return ParsedType();
338}
339
340bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
341 const UnqualifiedId &Name) {
342 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId)((Name.getKind() == UnqualifiedId::IK_LiteralOperatorId) ? static_cast
<void> (0) : __assert_fail ("Name.getKind() == UnqualifiedId::IK_LiteralOperatorId"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 342, __PRETTY_FUNCTION__))
;
343
344 if (!SS.isValid())
345 return false;
346
347 switch (SS.getScopeRep()->getKind()) {
348 case NestedNameSpecifier::Identifier:
349 case NestedNameSpecifier::TypeSpec:
350 case NestedNameSpecifier::TypeSpecWithTemplate:
351 // Per C++11 [over.literal]p2, literal operators can only be declared at
352 // namespace scope. Therefore, this unqualified-id cannot name anything.
353 // Reject it early, because we have no AST representation for this in the
354 // case where the scope is dependent.
355 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
356 << SS.getScopeRep();
357 return true;
358
359 case NestedNameSpecifier::Global:
360 case NestedNameSpecifier::Super:
361 case NestedNameSpecifier::Namespace:
362 case NestedNameSpecifier::NamespaceAlias:
363 return false;
364 }
365
366 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 366)
;
367}
368
369/// \brief Build a C++ typeid expression with a type operand.
370ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
371 SourceLocation TypeidLoc,
372 TypeSourceInfo *Operand,
373 SourceLocation RParenLoc) {
374 // C++ [expr.typeid]p4:
375 // The top-level cv-qualifiers of the lvalue expression or the type-id
376 // that is the operand of typeid are always ignored.
377 // If the type of the type-id is a class type or a reference to a class
378 // type, the class shall be completely-defined.
379 Qualifiers Quals;
380 QualType T
381 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
382 Quals);
383 if (T->getAs<RecordType>() &&
384 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
385 return ExprError();
386
387 if (T->isVariablyModifiedType())
388 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
389
390 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
391 SourceRange(TypeidLoc, RParenLoc));
392}
393
394/// \brief Build a C++ typeid expression with an expression operand.
395ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
396 SourceLocation TypeidLoc,
397 Expr *E,
398 SourceLocation RParenLoc) {
399 if (E && !E->isTypeDependent()) {
8
Assuming pointer value is null
400 if (E->getType()->isPlaceholderType()) {
401 ExprResult result = CheckPlaceholderExpr(E);
402 if (result.isInvalid()) return ExprError();
403 E = result.get();
404 }
405
406 QualType T = E->getType();
407 if (const RecordType *RecordT = T->getAs<RecordType>()) {
408 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
409 // C++ [expr.typeid]p3:
410 // [...] If the type of the expression is a class type, the class
411 // shall be completely-defined.
412 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
413 return ExprError();
414
415 // C++ [expr.typeid]p3:
416 // When typeid is applied to an expression other than an glvalue of a
417 // polymorphic class type [...] [the] expression is an unevaluated
418 // operand. [...]
419 if (RecordD->isPolymorphic() && E->isGLValue()) {
420 // The subexpression is potentially evaluated; switch the context
421 // and recheck the subexpression.
422 ExprResult Result = TransformToPotentiallyEvaluated(E);
423 if (Result.isInvalid()) return ExprError();
424 E = Result.get();
425
426 // We require a vtable to query the type at run time.
427 MarkVTableUsed(TypeidLoc, RecordD);
428 }
429 }
430
431 // C++ [expr.typeid]p4:
432 // [...] If the type of the type-id is a reference to a possibly
433 // cv-qualified type, the result of the typeid expression refers to a
434 // std::type_info object representing the cv-unqualified referenced
435 // type.
436 Qualifiers Quals;
437 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
438 if (!Context.hasSameType(T, UnqualT)) {
439 T = UnqualT;
440 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
441 }
442 }
443
444 if (E->getType()->isVariablyModifiedType())
9
Called C++ object pointer is null
445 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
446 << E->getType());
447
448 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
449 SourceRange(TypeidLoc, RParenLoc));
450}
451
452/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
453ExprResult
454Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
455 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
456 // Find the std::type_info type.
457 if (!getStdNamespace())
1
Taking false branch
458 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
459
460 if (!CXXTypeInfoDecl) {
2
Taking false branch
461 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
462 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
463 LookupQualifiedName(R, getStdNamespace());
464 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
465 // Microsoft's typeinfo doesn't have type_info in std but in the global
466 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
467 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
468 LookupQualifiedName(R, Context.getTranslationUnitDecl());
469 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
470 }
471 if (!CXXTypeInfoDecl)
472 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
473 }
474
475 if (!getLangOpts().RTTI) {
3
Taking false branch
476 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
477 }
478
479 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
480
481 if (isType) {
4
Assuming 'isType' is 0
5
Taking false branch
482 // The operand is a type; handle it as such.
483 TypeSourceInfo *TInfo = nullptr;
484 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
485 &TInfo);
486 if (T.isNull())
487 return ExprError();
488
489 if (!TInfo)
490 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
491
492 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
493 }
494
495 // The operand is an expression.
496 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
6
Passing value via 3rd parameter 'E'
7
Calling 'Sema::BuildCXXTypeId'
497}
498
499/// \brief Build a Microsoft __uuidof expression with a type operand.
500ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
501 SourceLocation TypeidLoc,
502 TypeSourceInfo *Operand,
503 SourceLocation RParenLoc) {
504 if (!Operand->getType()->isDependentType()) {
505 bool HasMultipleGUIDs = false;
506 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
507 &HasMultipleGUIDs)) {
508 if (HasMultipleGUIDs)
509 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
510 else
511 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
512 }
513 }
514
515 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
516 SourceRange(TypeidLoc, RParenLoc));
517}
518
519/// \brief Build a Microsoft __uuidof expression with an expression operand.
520ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
521 SourceLocation TypeidLoc,
522 Expr *E,
523 SourceLocation RParenLoc) {
524 if (!E->getType()->isDependentType()) {
525 bool HasMultipleGUIDs = false;
526 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
527 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
528 if (HasMultipleGUIDs)
529 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
530 else
531 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
532 }
533 }
534
535 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
536 SourceRange(TypeidLoc, RParenLoc));
537}
538
539/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
540ExprResult
541Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
542 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
543 // If MSVCGuidDecl has not been cached, do the lookup.
544 if (!MSVCGuidDecl) {
545 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
546 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
547 LookupQualifiedName(R, Context.getTranslationUnitDecl());
548 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
549 if (!MSVCGuidDecl)
550 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
551 }
552
553 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
554
555 if (isType) {
556 // The operand is a type; handle it as such.
557 TypeSourceInfo *TInfo = nullptr;
558 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
559 &TInfo);
560 if (T.isNull())
561 return ExprError();
562
563 if (!TInfo)
564 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
565
566 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
567 }
568
569 // The operand is an expression.
570 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
571}
572
573/// ActOnCXXBoolLiteral - Parse {true,false} literals.
574ExprResult
575Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
576 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"
) ? static_cast<void> (0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 577, __PRETTY_FUNCTION__))
577 "Unknown C++ Boolean value!")(((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"
) ? static_cast<void> (0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 577, __PRETTY_FUNCTION__))
;
578 return new (Context)
579 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
580}
581
582/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
583ExprResult
584Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
585 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
586}
587
588/// ActOnCXXThrow - Parse throw expressions.
589ExprResult
590Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
591 bool IsThrownVarInScope = false;
592 if (Ex) {
593 // C++0x [class.copymove]p31:
594 // When certain criteria are met, an implementation is allowed to omit the
595 // copy/move construction of a class object [...]
596 //
597 // - in a throw-expression, when the operand is the name of a
598 // non-volatile automatic object (other than a function or catch-
599 // clause parameter) whose scope does not extend beyond the end of the
600 // innermost enclosing try-block (if there is one), the copy/move
601 // operation from the operand to the exception object (15.1) can be
602 // omitted by constructing the automatic object directly into the
603 // exception object
604 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
605 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
606 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
607 for( ; S; S = S->getParent()) {
608 if (S->isDeclScope(Var)) {
609 IsThrownVarInScope = true;
610 break;
611 }
612
613 if (S->getFlags() &
614 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
615 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
616 Scope::TryScope))
617 break;
618 }
619 }
620 }
621 }
622
623 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
624}
625
626ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
627 bool IsThrownVarInScope) {
628 // Don't report an error if 'throw' is used in system headers.
629 if (!getLangOpts().CXXExceptions &&
630 !getSourceManager().isInSystemHeader(OpLoc))
631 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
632
633 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
634 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
635
636 if (Ex && !Ex->isTypeDependent()) {
637 ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
638 if (ExRes.isInvalid())
639 return ExprError();
640 Ex = ExRes.get();
641 }
642
643 return new (Context)
644 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
645}
646
647/// CheckCXXThrowOperand - Validate the operand of a throw.
648ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
649 bool IsThrownVarInScope) {
650 // C++ [except.throw]p3:
651 // A throw-expression initializes a temporary object, called the exception
652 // object, the type of which is determined by removing any top-level
653 // cv-qualifiers from the static type of the operand of throw and adjusting
654 // the type from "array of T" or "function returning T" to "pointer to T"
655 // or "pointer to function returning T", [...]
656 if (E->getType().hasQualifiers())
657 E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
658 E->getValueKind()).get();
659
660 ExprResult Res = DefaultFunctionArrayConversion(E);
661 if (Res.isInvalid())
662 return ExprError();
663 E = Res.get();
664
665 // If the type of the exception would be an incomplete type or a pointer
666 // to an incomplete type other than (cv) void the program is ill-formed.
667 QualType Ty = E->getType();
668 bool isPointer = false;
669 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
670 Ty = Ptr->getPointeeType();
671 isPointer = true;
672 }
673 if (!isPointer || !Ty->isVoidType()) {
674 if (RequireCompleteType(ThrowLoc, Ty,
675 isPointer? diag::err_throw_incomplete_ptr
676 : diag::err_throw_incomplete,
677 E->getSourceRange()))
678 return ExprError();
679
680 if (RequireNonAbstractType(ThrowLoc, E->getType(),
681 diag::err_throw_abstract_type, E))
682 return ExprError();
683 }
684
685 // Initialize the exception result. This implicitly weeds out
686 // abstract types or types with inaccessible copy constructors.
687
688 // C++0x [class.copymove]p31:
689 // When certain criteria are met, an implementation is allowed to omit the
690 // copy/move construction of a class object [...]
691 //
692 // - in a throw-expression, when the operand is the name of a
693 // non-volatile automatic object (other than a function or catch-clause
694 // parameter) whose scope does not extend beyond the end of the
695 // innermost enclosing try-block (if there is one), the copy/move
696 // operation from the operand to the exception object (15.1) can be
697 // omitted by constructing the automatic object directly into the
698 // exception object
699 const VarDecl *NRVOVariable = nullptr;
700 if (IsThrownVarInScope)
701 NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
702
703 InitializedEntity Entity =
704 InitializedEntity::InitializeException(ThrowLoc, E->getType(),
705 /*NRVO=*/NRVOVariable != nullptr);
706 Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
707 QualType(), E,
708 IsThrownVarInScope);
709 if (Res.isInvalid())
710 return ExprError();
711 E = Res.get();
712
713 // If the exception has class type, we need additional handling.
714 const RecordType *RecordTy = Ty->getAs<RecordType>();
715 if (!RecordTy)
716 return E;
717 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
718
719 // If we are throwing a polymorphic class type or pointer thereof,
720 // exception handling will make use of the vtable.
721 MarkVTableUsed(ThrowLoc, RD);
722
723 // If a pointer is thrown, the referenced object will not be destroyed.
724 if (isPointer)
725 return E;
726
727 // If the class has a destructor, we must be able to call it.
728 if (RD->hasIrrelevantDestructor())
729 return E;
730
731 CXXDestructorDecl *Destructor = LookupDestructor(RD);
732 if (!Destructor)
733 return E;
734
735 MarkFunctionReferenced(E->getExprLoc(), Destructor);
736 CheckDestructorAccess(E->getExprLoc(), Destructor,
737 PDiag(diag::err_access_dtor_exception) << Ty);
738 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
739 return ExprError();
740 return E;
741}
742
743QualType Sema::getCurrentThisType() {
744 DeclContext *DC = getFunctionLevelDeclContext();
745 QualType ThisTy = CXXThisTypeOverride;
746 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
747 if (method && method->isInstance())
748 ThisTy = method->getThisType(Context);
749 }
750 if (ThisTy.isNull()) {
751 if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
752 CurContext->getParent()->getParent()->isRecord()) {
753 // This is a generic lambda call operator that is being instantiated
754 // within a default initializer - so use the enclosing class as 'this'.
755 // There is no enclosing member function to retrieve the 'this' pointer
756 // from.
757 QualType ClassTy = Context.getTypeDeclType(
758 cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
759 // There are no cv-qualifiers for 'this' within default initializers,
760 // per [expr.prim.general]p4.
761 return Context.getPointerType(ClassTy);
762 }
763 }
764 return ThisTy;
765}
766
767Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
768 Decl *ContextDecl,
769 unsigned CXXThisTypeQuals,
770 bool Enabled)
771 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
772{
773 if (!Enabled || !ContextDecl)
774 return;
775
776 CXXRecordDecl *Record = nullptr;
777 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
778 Record = Template->getTemplatedDecl();
779 else
780 Record = cast<CXXRecordDecl>(ContextDecl);
781
782 S.CXXThisTypeOverride
783 = S.Context.getPointerType(
784 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
785
786 this->Enabled = true;
787}
788
789
790Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
791 if (Enabled) {
792 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
793 }
794}
795
796static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
797 QualType ThisTy, SourceLocation Loc) {
798 FieldDecl *Field
799 = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
800 Context.getTrivialTypeSourceInfo(ThisTy, Loc),
801 nullptr, false, ICIS_NoInit);
802 Field->setImplicit(true);
803 Field->setAccess(AS_private);
804 RD->addDecl(Field);
805 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
806}
807
808bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
809 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
810 // We don't need to capture this in an unevaluated context.
811 if (isUnevaluatedContext() && !Explicit)
812 return true;
813
814 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
815 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
816 // Otherwise, check that we can capture 'this'.
817 unsigned NumClosures = 0;
818 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
819 if (CapturingScopeInfo *CSI =
820 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
821 if (CSI->CXXThisCaptureIndex != 0) {
822 // 'this' is already being captured; there isn't anything more to do.
823 break;
824 }
825 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
826 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
827 // This context can't implicitly capture 'this'; fail out.
828 if (BuildAndDiagnose)
829 Diag(Loc, diag::err_this_capture) << Explicit;
830 return true;
831 }
832 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
833 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
834 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
835 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
836 Explicit) {
837 // This closure can capture 'this'; continue looking upwards.
838 NumClosures++;
839 Explicit = false;
840 continue;
841 }
842 // This context can't implicitly capture 'this'; fail out.
843 if (BuildAndDiagnose)
844 Diag(Loc, diag::err_this_capture) << Explicit;
845 return true;
846 }
847 break;
848 }
849 if (!BuildAndDiagnose) return false;
850 // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
851 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
852 // contexts.
853 for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
854 --idx, --NumClosures) {
855 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
856 Expr *ThisExpr = nullptr;
857 QualType ThisTy = getCurrentThisType();
858 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
859 // For lambda expressions, build a field and an initializing expression.
860 ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
861 else if (CapturedRegionScopeInfo *RSI
862 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
863 ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
864
865 bool isNested = NumClosures > 1;
866 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
867 }
868 return false;
869}
870
871ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
872 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
873 /// is a non-lvalue expression whose value is the address of the object for
874 /// which the function is called.
875
876 QualType ThisTy = getCurrentThisType();
877 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
878
879 CheckCXXThisCapture(Loc);
880 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
881}
882
883bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
884 // If we're outside the body of a member function, then we'll have a specified
885 // type for 'this'.
886 if (CXXThisTypeOverride.isNull())
887 return false;
888
889 // Determine whether we're looking into a class that's currently being
890 // defined.
891 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
892 return Class && Class->isBeingDefined();
893}
894
895ExprResult
896Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
897 SourceLocation LParenLoc,
898 MultiExprArg exprs,
899 SourceLocation RParenLoc) {
900 if (!TypeRep)
901 return ExprError();
902
903 TypeSourceInfo *TInfo;
904 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
905 if (!TInfo)
906 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
907
908 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
909}
910
911/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
912/// Can be interpreted either as function-style casting ("int(x)")
913/// or class type construction ("ClassType(x,y,z)")
914/// or creation of a value-initialized type ("int()").
915ExprResult
916Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
917 SourceLocation LParenLoc,
918 MultiExprArg Exprs,
919 SourceLocation RParenLoc) {
920 QualType Ty = TInfo->getType();
921 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
922
923 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
924 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
925 RParenLoc);
926 }
927
928 bool ListInitialization = LParenLoc.isInvalid();
929 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 930, __PRETTY_FUNCTION__))
930 && "List initialization must have initializer list as expression.")(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 930, __PRETTY_FUNCTION__))
;
931 SourceRange FullRange = SourceRange(TyBeginLoc,
932 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
933
934 // C++ [expr.type.conv]p1:
935 // If the expression list is a single expression, the type conversion
936 // expression is equivalent (in definedness, and if defined in meaning) to the
937 // corresponding cast expression.
938 if (Exprs.size() == 1 && !ListInitialization) {
939 Expr *Arg = Exprs[0];
940 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
941 }
942
943 QualType ElemTy = Ty;
944 if (Ty->isArrayType()) {
945 if (!ListInitialization)
946 return ExprError(Diag(TyBeginLoc,
947 diag::err_value_init_for_array_type) << FullRange);
948 ElemTy = Context.getBaseElementType(Ty);
949 }
950
951 if (!Ty->isVoidType() &&
952 RequireCompleteType(TyBeginLoc, ElemTy,
953 diag::err_invalid_incomplete_type_use, FullRange))
954 return ExprError();
955
956 if (RequireNonAbstractType(TyBeginLoc, Ty,
957 diag::err_allocation_of_abstract_type))
958 return ExprError();
959
960 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
961 InitializationKind Kind =
962 Exprs.size() ? ListInitialization
963 ? InitializationKind::CreateDirectList(TyBeginLoc)
964 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
965 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
966 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
967 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
968
969 if (Result.isInvalid() || !ListInitialization)
970 return Result;
971
972 Expr *Inner = Result.get();
973 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
974 Inner = BTE->getSubExpr();
975 if (isa<InitListExpr>(Inner)) {
976 // If the list-initialization doesn't involve a constructor call, we'll get
977 // the initializer-list (with corrected type) back, but that's not what we
978 // want, since it will be treated as an initializer list in further
979 // processing. Explicitly insert a cast here.
980 QualType ResultType = Result.get()->getType();
981 Result = CXXFunctionalCastExpr::Create(
982 Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
983 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
984 }
985
986 // FIXME: Improve AST representation?
987 return Result;
988}
989
990/// doesUsualArrayDeleteWantSize - Answers whether the usual
991/// operator delete[] for the given type has a size_t parameter.
992static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
993 QualType allocType) {
994 const RecordType *record =
995 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
996 if (!record) return false;
997
998 // Try to find an operator delete[] in class scope.
999
1000 DeclarationName deleteName =
1001 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1002 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1003 S.LookupQualifiedName(ops, record->getDecl());
1004
1005 // We're just doing this for information.
1006 ops.suppressDiagnostics();
1007
1008 // Very likely: there's no operator delete[].
1009 if (ops.empty()) return false;
1010
1011 // If it's ambiguous, it should be illegal to call operator delete[]
1012 // on this thing, so it doesn't matter if we allocate extra space or not.
1013 if (ops.isAmbiguous()) return false;
1014
1015 LookupResult::Filter filter = ops.makeFilter();
1016 while (filter.hasNext()) {
1017 NamedDecl *del = filter.next()->getUnderlyingDecl();
1018
1019 // C++0x [basic.stc.dynamic.deallocation]p2:
1020 // A template instance is never a usual deallocation function,
1021 // regardless of its signature.
1022 if (isa<FunctionTemplateDecl>(del)) {
1023 filter.erase();
1024 continue;
1025 }
1026
1027 // C++0x [basic.stc.dynamic.deallocation]p2:
1028 // If class T does not declare [an operator delete[] with one
1029 // parameter] but does declare a member deallocation function
1030 // named operator delete[] with exactly two parameters, the
1031 // second of which has type std::size_t, then this function
1032 // is a usual deallocation function.
1033 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
1034 filter.erase();
1035 continue;
1036 }
1037 }
1038 filter.done();
1039
1040 if (!ops.isSingleResult()) return false;
1041
1042 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
1043 return (del->getNumParams() == 2);
1044}
1045
1046/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1047///
1048/// E.g.:
1049/// @code new (memory) int[size][4] @endcode
1050/// or
1051/// @code ::new Foo(23, "hello") @endcode
1052///
1053/// \param StartLoc The first location of the expression.
1054/// \param UseGlobal True if 'new' was prefixed with '::'.
1055/// \param PlacementLParen Opening paren of the placement arguments.
1056/// \param PlacementArgs Placement new arguments.
1057/// \param PlacementRParen Closing paren of the placement arguments.
1058/// \param TypeIdParens If the type is in parens, the source range.
1059/// \param D The type to be allocated, as well as array dimensions.
1060/// \param Initializer The initializing expression or initializer-list, or null
1061/// if there is none.
1062ExprResult
1063Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1064 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1065 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1066 Declarator &D, Expr *Initializer) {
1067 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1068
1069 Expr *ArraySize = nullptr;
1070 // If the specified type is an array, unwrap it and save the expression.
1071 if (D.getNumTypeObjects() > 0 &&
1072 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1073 DeclaratorChunk &Chunk = D.getTypeObject(0);
1074 if (TypeContainsAuto)
1075 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1076 << D.getSourceRange());
1077 if (Chunk.Arr.hasStatic)
1078 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1079 << D.getSourceRange());
1080 if (!Chunk.Arr.NumElts)
1081 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1082 << D.getSourceRange());
1083
1084 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1085 D.DropFirstTypeObject();
1086 }
1087
1088 // Every dimension shall be of constant size.
1089 if (ArraySize) {
1090 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1091 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1092 break;
1093
1094 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1095 if (Expr *NumElts = (Expr *)Array.NumElts) {
1096 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1097 if (getLangOpts().CPlusPlus14) {
1098 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1099 // shall be a converted constant expression (5.19) of type std::size_t
1100 // and shall evaluate to a strictly positive value.
1101 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1102 assert(IntWidth && "Builtin type of size 0?")((IntWidth && "Builtin type of size 0?") ? static_cast
<void> (0) : __assert_fail ("IntWidth && \"Builtin type of size 0?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1102, __PRETTY_FUNCTION__))
;
1103 llvm::APSInt Value(IntWidth);
1104 Array.NumElts
1105 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1106 CCEK_NewExpr)
1107 .get();
1108 } else {
1109 Array.NumElts
1110 = VerifyIntegerConstantExpression(NumElts, nullptr,
1111 diag::err_new_array_nonconst)
1112 .get();
1113 }
1114 if (!Array.NumElts)
1115 return ExprError();
1116 }
1117 }
1118 }
1119 }
1120
1121 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1122 QualType AllocType = TInfo->getType();
1123 if (D.isInvalidType())
1124 return ExprError();
1125
1126 SourceRange DirectInitRange;
1127 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1128 DirectInitRange = List->getSourceRange();
1129
1130 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1131 PlacementLParen,
1132 PlacementArgs,
1133 PlacementRParen,
1134 TypeIdParens,
1135 AllocType,
1136 TInfo,
1137 ArraySize,
1138 DirectInitRange,
1139 Initializer,
1140 TypeContainsAuto);
1141}
1142
1143static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1144 Expr *Init) {
1145 if (!Init)
1146 return true;
1147 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1148 return PLE->getNumExprs() == 0;
1149 if (isa<ImplicitValueInitExpr>(Init))
1150 return true;
1151 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1152 return !CCE->isListInitialization() &&
1153 CCE->getConstructor()->isDefaultConstructor();
1154 else if (Style == CXXNewExpr::ListInit) {
1155 assert(isa<InitListExpr>(Init) &&((isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1156, __PRETTY_FUNCTION__))
1156 "Shouldn't create list CXXConstructExprs for arrays.")((isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1156, __PRETTY_FUNCTION__))
;
1157 return true;
1158 }
1159 return false;
1160}
1161
1162ExprResult
1163Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1164 SourceLocation PlacementLParen,
1165 MultiExprArg PlacementArgs,
1166 SourceLocation PlacementRParen,
1167 SourceRange TypeIdParens,
1168 QualType AllocType,
1169 TypeSourceInfo *AllocTypeInfo,
1170 Expr *ArraySize,
1171 SourceRange DirectInitRange,
1172 Expr *Initializer,
1173 bool TypeMayContainAuto) {
1174 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1175 SourceLocation StartLoc = Range.getBegin();
1176
1177 CXXNewExpr::InitializationStyle initStyle;
1178 if (DirectInitRange.isValid()) {
1179 assert(Initializer && "Have parens but no initializer.")((Initializer && "Have parens but no initializer.") ?
static_cast<void> (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1179, __PRETTY_FUNCTION__))
;
1180 initStyle = CXXNewExpr::CallInit;
1181 } else if (Initializer && isa<InitListExpr>(Initializer))
1182 initStyle = CXXNewExpr::ListInit;
1183 else {
1184 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1186, __PRETTY_FUNCTION__))
1185 isa<CXXConstructExpr>(Initializer)) &&(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1186, __PRETTY_FUNCTION__))
1186 "Initializer expression that cannot have been implicitly created.")(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1186, __PRETTY_FUNCTION__))
;
1187 initStyle = CXXNewExpr::NoInit;
1188 }
1189
1190 Expr **Inits = &Initializer;
1191 unsigned NumInits = Initializer ? 1 : 0;
1192 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1193 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")((initStyle == CXXNewExpr::CallInit && "paren init for non-call init"
) ? static_cast<void> (0) : __assert_fail ("initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1193, __PRETTY_FUNCTION__))
;
1194 Inits = List->getExprs();
1195 NumInits = List->getNumExprs();
1196 }
1197
1198 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1199 if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1200 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1201 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1202 << AllocType << TypeRange);
1203 if (initStyle == CXXNewExpr::ListInit ||
1204 (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1205 return ExprError(Diag(Inits[0]->getLocStart(),
1206 diag::err_auto_new_list_init)
1207 << AllocType << TypeRange);
1208 if (NumInits > 1) {
1209 Expr *FirstBad = Inits[1];
1210 return ExprError(Diag(FirstBad->getLocStart(),
1211 diag::err_auto_new_ctor_multiple_expressions)
1212 << AllocType << TypeRange);
1213 }
1214 Expr *Deduce = Inits[0];
1215 QualType DeducedType;
1216 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1217 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1218 << AllocType << Deduce->getType()
1219 << TypeRange << Deduce->getSourceRange());
1220 if (DeducedType.isNull())
1221 return ExprError();
1222 AllocType = DeducedType;
1223 }
1224
1225 // Per C++0x [expr.new]p5, the type being constructed may be a
1226 // typedef of an array type.
1227 if (!ArraySize) {
1228 if (const ConstantArrayType *Array
1229 = Context.getAsConstantArrayType(AllocType)) {
1230 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1231 Context.getSizeType(),
1232 TypeRange.getEnd());
1233 AllocType = Array->getElementType();
1234 }
1235 }
1236
1237 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1238 return ExprError();
1239
1240 if (initStyle == CXXNewExpr::ListInit &&
1241 isStdInitializerList(AllocType, nullptr)) {
1242 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1243 diag::warn_dangling_std_initializer_list)
1244 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1245 }
1246
1247 // In ARC, infer 'retaining' for the allocated
1248 if (getLangOpts().ObjCAutoRefCount &&
1249 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1250 AllocType->isObjCLifetimeType()) {
1251 AllocType = Context.getLifetimeQualifiedType(AllocType,
1252 AllocType->getObjCARCImplicitLifetime());
1253 }
1254
1255 QualType ResultType = Context.getPointerType(AllocType);
1256
1257 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1258 ExprResult result = CheckPlaceholderExpr(ArraySize);
1259 if (result.isInvalid()) return ExprError();
1260 ArraySize = result.get();
1261 }
1262 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1263 // integral or enumeration type with a non-negative value."
1264 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1265 // enumeration type, or a class type for which a single non-explicit
1266 // conversion function to integral or unscoped enumeration type exists.
1267 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1268 // std::size_t.
1269 if (ArraySize && !ArraySize->isTypeDependent()) {
1270 ExprResult ConvertedSize;
1271 if (getLangOpts().CPlusPlus14) {
1272 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")((Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"
) ? static_cast<void> (0) : __assert_fail ("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1272, __PRETTY_FUNCTION__))
;
1273
1274 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1275 AA_Converting);
1276
1277 if (!ConvertedSize.isInvalid() &&
1278 ArraySize->getType()->getAs<RecordType>())
1279 // Diagnose the compatibility of this conversion.
1280 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1281 << ArraySize->getType() << 0 << "'size_t'";
1282 } else {
1283 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1284 protected:
1285 Expr *ArraySize;
1286
1287 public:
1288 SizeConvertDiagnoser(Expr *ArraySize)
1289 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1290 ArraySize(ArraySize) {}
1291
1292 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1293 QualType T) override {
1294 return S.Diag(Loc, diag::err_array_size_not_integral)
1295 << S.getLangOpts().CPlusPlus11 << T;
1296 }
1297
1298 SemaDiagnosticBuilder diagnoseIncomplete(
1299 Sema &S, SourceLocation Loc, QualType T) override {
1300 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1301 << T << ArraySize->getSourceRange();
1302 }
1303
1304 SemaDiagnosticBuilder diagnoseExplicitConv(
1305 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1306 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1307 }
1308
1309 SemaDiagnosticBuilder noteExplicitConv(
1310 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1311 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1312 << ConvTy->isEnumeralType() << ConvTy;
1313 }
1314
1315 SemaDiagnosticBuilder diagnoseAmbiguous(
1316 Sema &S, SourceLocation Loc, QualType T) override {
1317 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1318 }
1319
1320 SemaDiagnosticBuilder noteAmbiguous(
1321 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1322 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1323 << ConvTy->isEnumeralType() << ConvTy;
1324 }
1325
1326 virtual SemaDiagnosticBuilder diagnoseConversion(
1327 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1328 return S.Diag(Loc,
1329 S.getLangOpts().CPlusPlus11
1330 ? diag::warn_cxx98_compat_array_size_conversion
1331 : diag::ext_array_size_conversion)
1332 << T << ConvTy->isEnumeralType() << ConvTy;
1333 }
1334 } SizeDiagnoser(ArraySize);
1335
1336 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1337 SizeDiagnoser);
1338 }
1339 if (ConvertedSize.isInvalid())
1340 return ExprError();
1341
1342 ArraySize = ConvertedSize.get();
1343 QualType SizeType = ArraySize->getType();
1344
1345 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1346 return ExprError();
1347
1348 // C++98 [expr.new]p7:
1349 // The expression in a direct-new-declarator shall have integral type
1350 // with a non-negative value.
1351 //
1352 // Let's see if this is a constant < 0. If so, we reject it out of
1353 // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1354 // array type.
1355 //
1356 // Note: such a construct has well-defined semantics in C++11: it throws
1357 // std::bad_array_new_length.
1358 if (!ArraySize->isValueDependent()) {
1359 llvm::APSInt Value;
1360 // We've already performed any required implicit conversion to integer or
1361 // unscoped enumeration type.
1362 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1363 if (Value < llvm::APSInt(
1364 llvm::APInt::getNullValue(Value.getBitWidth()),
1365 Value.isUnsigned())) {
1366 if (getLangOpts().CPlusPlus11)
1367 Diag(ArraySize->getLocStart(),
1368 diag::warn_typecheck_negative_array_new_size)
1369 << ArraySize->getSourceRange();
1370 else
1371 return ExprError(Diag(ArraySize->getLocStart(),
1372 diag::err_typecheck_negative_array_size)
1373 << ArraySize->getSourceRange());
1374 } else if (!AllocType->isDependentType()) {
1375 unsigned ActiveSizeBits =
1376 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1377 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1378 if (getLangOpts().CPlusPlus11)
1379 Diag(ArraySize->getLocStart(),
1380 diag::warn_array_new_too_large)
1381 << Value.toString(10)
1382 << ArraySize->getSourceRange();
1383 else
1384 return ExprError(Diag(ArraySize->getLocStart(),
1385 diag::err_array_too_large)
1386 << Value.toString(10)
1387 << ArraySize->getSourceRange());
1388 }
1389 }
1390 } else if (TypeIdParens.isValid()) {
1391 // Can't have dynamic array size when the type-id is in parentheses.
1392 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1393 << ArraySize->getSourceRange()
1394 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1395 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1396
1397 TypeIdParens = SourceRange();
1398 }
1399 }
1400
1401 // Note that we do *not* convert the argument in any way. It can
1402 // be signed, larger than size_t, whatever.
1403 }
1404
1405 FunctionDecl *OperatorNew = nullptr;
1406 FunctionDecl *OperatorDelete = nullptr;
1407
1408 if (!AllocType->isDependentType() &&
1409 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1410 FindAllocationFunctions(StartLoc,
1411 SourceRange(PlacementLParen, PlacementRParen),
1412 UseGlobal, AllocType, ArraySize, PlacementArgs,
1413 OperatorNew, OperatorDelete))
1414 return ExprError();
1415
1416 // If this is an array allocation, compute whether the usual array
1417 // deallocation function for the type has a size_t parameter.
1418 bool UsualArrayDeleteWantsSize = false;
1419 if (ArraySize && !AllocType->isDependentType())
1420 UsualArrayDeleteWantsSize
1421 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1422
1423 SmallVector<Expr *, 8> AllPlaceArgs;
1424 if (OperatorNew) {
1425 const FunctionProtoType *Proto =
1426 OperatorNew->getType()->getAs<FunctionProtoType>();
1427 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1428 : VariadicDoesNotApply;
1429
1430 // We've already converted the placement args, just fill in any default
1431 // arguments. Skip the first parameter because we don't have a corresponding
1432 // argument.
1433 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1434 PlacementArgs, AllPlaceArgs, CallType))
1435 return ExprError();
1436
1437 if (!AllPlaceArgs.empty())
1438 PlacementArgs = AllPlaceArgs;
1439
1440 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1441 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1442
1443 // FIXME: Missing call to CheckFunctionCall or equivalent
1444 }
1445
1446 // Warn if the type is over-aligned and is being allocated by global operator
1447 // new.
1448 if (PlacementArgs.empty() && OperatorNew &&
1449 (OperatorNew->isImplicit() ||
1450 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1451 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1452 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1453 if (Align > SuitableAlign)
1454 Diag(StartLoc, diag::warn_overaligned_type)
1455 << AllocType
1456 << unsigned(Align / Context.getCharWidth())
1457 << unsigned(SuitableAlign / Context.getCharWidth());
1458 }
1459 }
1460
1461 QualType InitType = AllocType;
1462 // Array 'new' can't have any initializers except empty parentheses.
1463 // Initializer lists are also allowed, in C++11. Rely on the parser for the
1464 // dialect distinction.
1465 if (ResultType->isArrayType() || ArraySize) {
1466 if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1467 SourceRange InitRange(Inits[0]->getLocStart(),
1468 Inits[NumInits - 1]->getLocEnd());
1469 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1470 return ExprError();
1471 }
1472 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1473 // We do the initialization typechecking against the array type
1474 // corresponding to the number of initializers + 1 (to also check
1475 // default-initialization).
1476 unsigned NumElements = ILE->getNumInits() + 1;
1477 InitType = Context.getConstantArrayType(AllocType,
1478 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1479 ArrayType::Normal, 0);
1480 }
1481 }
1482
1483 // If we can perform the initialization, and we've not already done so,
1484 // do it now.
1485 if (!AllocType->isDependentType() &&
1486 !Expr::hasAnyTypeDependentArguments(
1487 llvm::makeArrayRef(Inits, NumInits))) {
1488 // C++11 [expr.new]p15:
1489 // A new-expression that creates an object of type T initializes that
1490 // object as follows:
1491 InitializationKind Kind
1492 // - If the new-initializer is omitted, the object is default-
1493 // initialized (8.5); if no initialization is performed,
1494 // the object has indeterminate value
1495 = initStyle == CXXNewExpr::NoInit
1496 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1497 // - Otherwise, the new-initializer is interpreted according to the
1498 // initialization rules of 8.5 for direct-initialization.
1499 : initStyle == CXXNewExpr::ListInit
1500 ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1501 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1502 DirectInitRange.getBegin(),
1503 DirectInitRange.getEnd());
1504
1505 InitializedEntity Entity
1506 = InitializedEntity::InitializeNew(StartLoc, InitType);
1507 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1508 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1509 MultiExprArg(Inits, NumInits));
1510 if (FullInit.isInvalid())
1511 return ExprError();
1512
1513 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1514 // we don't want the initialized object to be destructed.
1515 if (CXXBindTemporaryExpr *Binder =
1516 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1517 FullInit = Binder->getSubExpr();
1518
1519 Initializer = FullInit.get();
1520 }
1521
1522 // Mark the new and delete operators as referenced.
1523 if (OperatorNew) {
1524 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1525 return ExprError();
1526 MarkFunctionReferenced(StartLoc, OperatorNew);
1527 }
1528 if (OperatorDelete) {
1529 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1530 return ExprError();
1531 MarkFunctionReferenced(StartLoc, OperatorDelete);
1532 }
1533
1534 // C++0x [expr.new]p17:
1535 // If the new expression creates an array of objects of class type,
1536 // access and ambiguity control are done for the destructor.
1537 QualType BaseAllocType = Context.getBaseElementType(AllocType);
1538 if (ArraySize && !BaseAllocType->isDependentType()) {
1539 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1540 if (CXXDestructorDecl *dtor = LookupDestructor(
1541 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1542 MarkFunctionReferenced(StartLoc, dtor);
1543 CheckDestructorAccess(StartLoc, dtor,
1544 PDiag(diag::err_access_dtor)
1545 << BaseAllocType);
1546 if (DiagnoseUseOfDecl(dtor, StartLoc))
1547 return ExprError();
1548 }
1549 }
1550 }
1551
1552 return new (Context)
1553 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
1554 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
1555 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
1556 Range, DirectInitRange);
1557}
1558
1559/// \brief Checks that a type is suitable as the allocated type
1560/// in a new-expression.
1561bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1562 SourceRange R) {
1563 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1564 // abstract class type or array thereof.
1565 if (AllocType->isFunctionType())
1566 return Diag(Loc, diag::err_bad_new_type)
1567 << AllocType << 0 << R;
1568 else if (AllocType->isReferenceType())
1569 return Diag(Loc, diag::err_bad_new_type)
1570 << AllocType << 1 << R;
1571 else if (!AllocType->isDependentType() &&
1572 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1573 return true;
1574 else if (RequireNonAbstractType(Loc, AllocType,
1575 diag::err_allocation_of_abstract_type))
1576 return true;
1577 else if (AllocType->isVariablyModifiedType())
1578 return Diag(Loc, diag::err_variably_modified_new_type)
1579 << AllocType;
1580 else if (unsigned AddressSpace = AllocType.getAddressSpace())
1581 return Diag(Loc, diag::err_address_space_qualified_new)
1582 << AllocType.getUnqualifiedType() << AddressSpace;
1583 else if (getLangOpts().ObjCAutoRefCount) {
1584 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1585 QualType BaseAllocType = Context.getBaseElementType(AT);
1586 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1587 BaseAllocType->isObjCLifetimeType())
1588 return Diag(Loc, diag::err_arc_new_array_without_ownership)
1589 << BaseAllocType;
1590 }
1591 }
1592
1593 return false;
1594}
1595
1596/// \brief Determine whether the given function is a non-placement
1597/// deallocation function.
1598static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1599 if (FD->isInvalidDecl())
1600 return false;
1601
1602 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1603 return Method->isUsualDeallocationFunction();
1604
1605 if (FD->getOverloadedOperator() != OO_Delete &&
1606 FD->getOverloadedOperator() != OO_Array_Delete)
1607 return false;
1608
1609 if (FD->getNumParams() == 1)
1610 return true;
1611
1612 return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1613 S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1614 S.Context.getSizeType());
1615}
1616
1617/// FindAllocationFunctions - Finds the overloads of operator new and delete
1618/// that are appropriate for the allocation.
1619bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1620 bool UseGlobal, QualType AllocType,
1621 bool IsArray, MultiExprArg PlaceArgs,
1622 FunctionDecl *&OperatorNew,
1623 FunctionDecl *&OperatorDelete) {
1624 // --- Choosing an allocation function ---
1625 // C++ 5.3.4p8 - 14 & 18
1626 // 1) If UseGlobal is true, only look in the global scope. Else, also look
1627 // in the scope of the allocated class.
1628 // 2) If an array size is given, look for operator new[], else look for
1629 // operator new.
1630 // 3) The first argument is always size_t. Append the arguments from the
1631 // placement form.
1632
1633 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1634 // We don't care about the actual value of this argument.
1635 // FIXME: Should the Sema create the expression and embed it in the syntax
1636 // tree? Or should the consumer just recalculate the value?
1637 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1638 Context.getTargetInfo().getPointerWidth(0)),
1639 Context.getSizeType(),
1640 SourceLocation());
1641 AllocArgs[0] = &Size;
1642 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1643
1644 // C++ [expr.new]p8:
1645 // If the allocated type is a non-array type, the allocation
1646 // function's name is operator new and the deallocation function's
1647 // name is operator delete. If the allocated type is an array
1648 // type, the allocation function's name is operator new[] and the
1649 // deallocation function's name is operator delete[].
1650 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1651 IsArray ? OO_Array_New : OO_New);
1652 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1653 IsArray ? OO_Array_Delete : OO_Delete);
1654
1655 QualType AllocElemType = Context.getBaseElementType(AllocType);
1656
1657 if (AllocElemType->isRecordType() && !UseGlobal) {
1658 CXXRecordDecl *Record
1659 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1660 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1661 /*AllowMissing=*/true, OperatorNew))
1662 return true;
1663 }
1664
1665 if (!OperatorNew) {
1666 // Didn't find a member overload. Look for a global one.
1667 DeclareGlobalNewDelete();
1668 DeclContext *TUDecl = Context.getTranslationUnitDecl();
1669 bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
1670 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1671 /*AllowMissing=*/FallbackEnabled, OperatorNew,
1672 /*Diagnose=*/!FallbackEnabled)) {
1673 if (!FallbackEnabled)
1674 return true;
1675
1676 // MSVC will fall back on trying to find a matching global operator new
1677 // if operator new[] cannot be found. Also, MSVC will leak by not
1678 // generating a call to operator delete or operator delete[], but we
1679 // will not replicate that bug.
1680 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1681 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1682 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1683 /*AllowMissing=*/false, OperatorNew))
1684 return true;
1685 }
1686 }
1687
1688 // We don't need an operator delete if we're running under
1689 // -fno-exceptions.
1690 if (!getLangOpts().Exceptions) {
1691 OperatorDelete = nullptr;
1692 return false;
1693 }
1694
1695 // C++ [expr.new]p19:
1696 //
1697 // If the new-expression begins with a unary :: operator, the
1698 // deallocation function's name is looked up in the global
1699 // scope. Otherwise, if the allocated type is a class type T or an
1700 // array thereof, the deallocation function's name is looked up in
1701 // the scope of T. If this lookup fails to find the name, or if
1702 // the allocated type is not a class type or array thereof, the
1703 // deallocation function's name is looked up in the global scope.
1704 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1705 if (AllocElemType->isRecordType() && !UseGlobal) {
1706 CXXRecordDecl *RD
1707 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1708 LookupQualifiedName(FoundDelete, RD);
1709 }
1710 if (FoundDelete.isAmbiguous())
1711 return true; // FIXME: clean up expressions?
1712
1713 if (FoundDelete.empty()) {
1714 DeclareGlobalNewDelete();
1715 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1716 }
1717
1718 FoundDelete.suppressDiagnostics();
1719
1720 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1721
1722 // Whether we're looking for a placement operator delete is dictated
1723 // by whether we selected a placement operator new, not by whether
1724 // we had explicit placement arguments. This matters for things like
1725 // struct A { void *operator new(size_t, int = 0); ... };
1726 // A *a = new A()
1727 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1728
1729 if (isPlacementNew) {
1730 // C++ [expr.new]p20:
1731 // A declaration of a placement deallocation function matches the
1732 // declaration of a placement allocation function if it has the
1733 // same number of parameters and, after parameter transformations
1734 // (8.3.5), all parameter types except the first are
1735 // identical. [...]
1736 //
1737 // To perform this comparison, we compute the function type that
1738 // the deallocation function should have, and use that type both
1739 // for template argument deduction and for comparison purposes.
1740 //
1741 // FIXME: this comparison should ignore CC and the like.
1742 QualType ExpectedFunctionType;
1743 {
1744 const FunctionProtoType *Proto
1745 = OperatorNew->getType()->getAs<FunctionProtoType>();
1746
1747 SmallVector<QualType, 4> ArgTypes;
1748 ArgTypes.push_back(Context.VoidPtrTy);
1749 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
1750 ArgTypes.push_back(Proto->getParamType(I));
1751
1752 FunctionProtoType::ExtProtoInfo EPI;
1753 EPI.Variadic = Proto->isVariadic();
1754
1755 ExpectedFunctionType
1756 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1757 }
1758
1759 for (LookupResult::iterator D = FoundDelete.begin(),
1760 DEnd = FoundDelete.end();
1761 D != DEnd; ++D) {
1762 FunctionDecl *Fn = nullptr;
1763 if (FunctionTemplateDecl *FnTmpl
1764 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1765 // Perform template argument deduction to try to match the
1766 // expected function type.
1767 TemplateDeductionInfo Info(StartLoc);
1768 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
1769 Info))
1770 continue;
1771 } else
1772 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1773
1774 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1775 Matches.push_back(std::make_pair(D.getPair(), Fn));
1776 }
1777 } else {
1778 // C++ [expr.new]p20:
1779 // [...] Any non-placement deallocation function matches a
1780 // non-placement allocation function. [...]
1781 for (LookupResult::iterator D = FoundDelete.begin(),
1782 DEnd = FoundDelete.end();
1783 D != DEnd; ++D) {
1784 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1785 if (isNonPlacementDeallocationFunction(*this, Fn))
1786 Matches.push_back(std::make_pair(D.getPair(), Fn));
1787 }
1788
1789 // C++1y [expr.new]p22:
1790 // For a non-placement allocation function, the normal deallocation
1791 // function lookup is used
1792 // C++1y [expr.delete]p?:
1793 // If [...] deallocation function lookup finds both a usual deallocation
1794 // function with only a pointer parameter and a usual deallocation
1795 // function with both a pointer parameter and a size parameter, then the
1796 // selected deallocation function shall be the one with two parameters.
1797 // Otherwise, the selected deallocation function shall be the function
1798 // with one parameter.
1799 if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
1800 if (Matches[0].second->getNumParams() == 1)
1801 Matches.erase(Matches.begin());
1802 else
1803 Matches.erase(Matches.begin() + 1);
1804 assert(Matches[0].second->getNumParams() == 2 &&((Matches[0].second->getNumParams() == 2 && "found an unexpected usual deallocation function"
) ? static_cast<void> (0) : __assert_fail ("Matches[0].second->getNumParams() == 2 && \"found an unexpected usual deallocation function\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1805, __PRETTY_FUNCTION__))
1805 "found an unexpected usual deallocation function")((Matches[0].second->getNumParams() == 2 && "found an unexpected usual deallocation function"
) ? static_cast<void> (0) : __assert_fail ("Matches[0].second->getNumParams() == 2 && \"found an unexpected usual deallocation function\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1805, __PRETTY_FUNCTION__))
;
1806 }
1807 }
1808
1809 // C++ [expr.new]p20:
1810 // [...] If the lookup finds a single matching deallocation
1811 // function, that function will be called; otherwise, no
1812 // deallocation function will be called.
1813 if (Matches.size() == 1) {
1814 OperatorDelete = Matches[0].second;
1815
1816 // C++0x [expr.new]p20:
1817 // If the lookup finds the two-parameter form of a usual
1818 // deallocation function (3.7.4.2) and that function, considered
1819 // as a placement deallocation function, would have been
1820 // selected as a match for the allocation function, the program
1821 // is ill-formed.
1822 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1823 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
1824 Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1825 << SourceRange(PlaceArgs.front()->getLocStart(),
1826 PlaceArgs.back()->getLocEnd());
1827 if (!OperatorDelete->isImplicit())
1828 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1829 << DeleteName;
1830 } else {
1831 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1832 Matches[0].first);
1833 }
1834 }
1835
1836 return false;
1837}
1838
1839/// \brief Find an fitting overload for the allocation function
1840/// in the specified scope.
1841///
1842/// \param StartLoc The location of the 'new' token.
1843/// \param Range The range of the placement arguments.
1844/// \param Name The name of the function ('operator new' or 'operator new[]').
1845/// \param Args The placement arguments specified.
1846/// \param Ctx The scope in which we should search; either a class scope or the
1847/// translation unit.
1848/// \param AllowMissing If \c true, report an error if we can't find any
1849/// allocation functions. Otherwise, succeed but don't fill in \p
1850/// Operator.
1851/// \param Operator Filled in with the found allocation function. Unchanged if
1852/// no allocation function was found.
1853/// \param Diagnose If \c true, issue errors if the allocation function is not
1854/// usable.
1855bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1856 DeclarationName Name, MultiExprArg Args,
1857 DeclContext *Ctx,
1858 bool AllowMissing, FunctionDecl *&Operator,
1859 bool Diagnose) {
1860 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1861 LookupQualifiedName(R, Ctx);
1862 if (R.empty()) {
1863 if (AllowMissing || !Diagnose)
1864 return false;
1865 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1866 << Name << Range;
1867 }
1868
1869 if (R.isAmbiguous())
1870 return true;
1871
1872 R.suppressDiagnostics();
1873
1874 OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
1875 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1876 Alloc != AllocEnd; ++Alloc) {
1877 // Even member operator new/delete are implicitly treated as
1878 // static, so don't use AddMemberCandidate.
1879 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1880
1881 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1882 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1883 /*ExplicitTemplateArgs=*/nullptr,
1884 Args, Candidates,
1885 /*SuppressUserConversions=*/false);
1886 continue;
1887 }
1888
1889 FunctionDecl *Fn = cast<FunctionDecl>(D);
1890 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1891 /*SuppressUserConversions=*/false);
1892 }
1893
1894 // Do the resolution.
1895 OverloadCandidateSet::iterator Best;
1896 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1897 case OR_Success: {
1898 // Got one!
1899 FunctionDecl *FnDecl = Best->Function;
1900 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1901 Best->FoundDecl, Diagnose) == AR_inaccessible)
1902 return true;
1903
1904 Operator = FnDecl;
1905 return false;
1906 }
1907
1908 case OR_No_Viable_Function:
1909 if (Diagnose) {
1910 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1911 << Name << Range;
1912 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1913 }
1914 return true;
1915
1916 case OR_Ambiguous:
1917 if (Diagnose) {
1918 Diag(StartLoc, diag::err_ovl_ambiguous_call)
1919 << Name << Range;
1920 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
1921 }
1922 return true;
1923
1924 case OR_Deleted: {
1925 if (Diagnose) {
1926 Diag(StartLoc, diag::err_ovl_deleted_call)
1927 << Best->Function->isDeleted()
1928 << Name
1929 << getDeletedOrUnavailableSuffix(Best->Function)
1930 << Range;
1931 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1932 }
1933 return true;
1934 }
1935 }
1936 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1936)
;
1937}
1938
1939
1940/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1941/// delete. These are:
1942/// @code
1943/// // C++03:
1944/// void* operator new(std::size_t) throw(std::bad_alloc);
1945/// void* operator new[](std::size_t) throw(std::bad_alloc);
1946/// void operator delete(void *) throw();
1947/// void operator delete[](void *) throw();
1948/// // C++11:
1949/// void* operator new(std::size_t);
1950/// void* operator new[](std::size_t);
1951/// void operator delete(void *) noexcept;
1952/// void operator delete[](void *) noexcept;
1953/// // C++1y:
1954/// void* operator new(std::size_t);
1955/// void* operator new[](std::size_t);
1956/// void operator delete(void *) noexcept;
1957/// void operator delete[](void *) noexcept;
1958/// void operator delete(void *, std::size_t) noexcept;
1959/// void operator delete[](void *, std::size_t) noexcept;
1960/// @endcode
1961/// Note that the placement and nothrow forms of new are *not* implicitly
1962/// declared. Their use requires including \<new\>.
1963void Sema::DeclareGlobalNewDelete() {
1964 if (GlobalNewDeleteDeclared)
1965 return;
1966
1967 // C++ [basic.std.dynamic]p2:
1968 // [...] The following allocation and deallocation functions (18.4) are
1969 // implicitly declared in global scope in each translation unit of a
1970 // program
1971 //
1972 // C++03:
1973 // void* operator new(std::size_t) throw(std::bad_alloc);
1974 // void* operator new[](std::size_t) throw(std::bad_alloc);
1975 // void operator delete(void*) throw();
1976 // void operator delete[](void*) throw();
1977 // C++11:
1978 // void* operator new(std::size_t);
1979 // void* operator new[](std::size_t);
1980 // void operator delete(void*) noexcept;
1981 // void operator delete[](void*) noexcept;
1982 // C++1y:
1983 // void* operator new(std::size_t);
1984 // void* operator new[](std::size_t);
1985 // void operator delete(void*) noexcept;
1986 // void operator delete[](void*) noexcept;
1987 // void operator delete(void*, std::size_t) noexcept;
1988 // void operator delete[](void*, std::size_t) noexcept;
1989 //
1990 // These implicit declarations introduce only the function names operator
1991 // new, operator new[], operator delete, operator delete[].
1992 //
1993 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1994 // "std" or "bad_alloc" as necessary to form the exception specification.
1995 // However, we do not make these implicit declarations visible to name
1996 // lookup.
1997 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1998 // The "std::bad_alloc" class has not yet been declared, so build it
1999 // implicitly.
2000 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2001 getOrCreateStdNamespace(),
2002 SourceLocation(), SourceLocation(),
2003 &PP.getIdentifierTable().get("bad_alloc"),
2004 nullptr);
2005 getStdBadAlloc()->setImplicit(true);
2006 }
2007
2008 GlobalNewDeleteDeclared = true;
2009
2010 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2011 QualType SizeT = Context.getSizeType();
2012 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
2013
2014 DeclareGlobalAllocationFunction(
2015 Context.DeclarationNames.getCXXOperatorName(OO_New),
2016 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2017 DeclareGlobalAllocationFunction(
2018 Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
2019 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2020 DeclareGlobalAllocationFunction(
2021 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2022 Context.VoidTy, VoidPtr);
2023 DeclareGlobalAllocationFunction(
2024 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2025 Context.VoidTy, VoidPtr);
2026 if (getLangOpts().SizedDeallocation) {
2027 DeclareGlobalAllocationFunction(
2028 Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2029 Context.VoidTy, VoidPtr, Context.getSizeType());
2030 DeclareGlobalAllocationFunction(
2031 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2032 Context.VoidTy, VoidPtr, Context.getSizeType());
2033 }
2034}
2035
2036/// DeclareGlobalAllocationFunction - Declares a single implicit global
2037/// allocation function if it doesn't already exist.
2038void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2039 QualType Return,
2040 QualType Param1, QualType Param2,
2041 bool AddMallocAttr) {
2042 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2043 unsigned NumParams = Param2.isNull() ? 1 : 2;
2044
2045 // Check if this function is already declared.
2046 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2047 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2048 Alloc != AllocEnd; ++Alloc) {
2049 // Only look at non-template functions, as it is the predefined,
2050 // non-templated allocation function we are trying to declare here.
2051 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2052 if (Func->getNumParams() == NumParams) {
2053 QualType InitialParam1Type =
2054 Context.getCanonicalType(Func->getParamDecl(0)
2055 ->getType().getUnqualifiedType());
2056 QualType InitialParam2Type =
2057 NumParams == 2
2058 ? Context.getCanonicalType(Func->getParamDecl(1)
2059 ->getType().getUnqualifiedType())
2060 : QualType();
2061 // FIXME: Do we need to check for default arguments here?
2062 if (InitialParam1Type == Param1 &&
2063 (NumParams == 1 || InitialParam2Type == Param2)) {
2064 if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
2065 Func->addAttr(MallocAttr::CreateImplicit(Context));
2066 // Make the function visible to name lookup, even if we found it in
2067 // an unimported module. It either is an implicitly-declared global
2068 // allocation function, or is suppressing that function.
2069 Func->setHidden(false);
2070 return;
2071 }
2072 }
2073 }
2074 }
2075
2076 FunctionProtoType::ExtProtoInfo EPI;
2077
2078 QualType BadAllocType;
2079 bool HasBadAllocExceptionSpec
2080 = (Name.getCXXOverloadedOperator() == OO_New ||
2081 Name.getCXXOverloadedOperator() == OO_Array_New);
2082 if (HasBadAllocExceptionSpec) {
2083 if (!getLangOpts().CPlusPlus11) {
2084 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2085 assert(StdBadAlloc && "Must have std::bad_alloc declared")((StdBadAlloc && "Must have std::bad_alloc declared")
? static_cast<void> (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2085, __PRETTY_FUNCTION__))
;
2086 EPI.ExceptionSpec.Type = EST_Dynamic;
2087 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2088 }
2089 } else {
2090 EPI.ExceptionSpec =
2091 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2092 }
2093
2094 QualType Params[] = { Param1, Param2 };
2095
2096 QualType FnType = Context.getFunctionType(
2097 Return, llvm::makeArrayRef(Params, NumParams), EPI);
2098 FunctionDecl *Alloc =
2099 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2100 SourceLocation(), Name,
2101 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2102 Alloc->setImplicit();
2103
2104 if (AddMallocAttr)
2105 Alloc->addAttr(MallocAttr::CreateImplicit(Context));
2106
2107 ParmVarDecl *ParamDecls[2];
2108 for (unsigned I = 0; I != NumParams; ++I) {
2109 ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2110 SourceLocation(), nullptr,
2111 Params[I], /*TInfo=*/nullptr,
2112 SC_None, nullptr);
2113 ParamDecls[I]->setImplicit();
2114 }
2115 Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams));
2116
2117 Context.getTranslationUnitDecl()->addDecl(Alloc);
2118 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2119}
2120
2121FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2122 bool CanProvideSize,
2123 DeclarationName Name) {
2124 DeclareGlobalNewDelete();
2125
2126 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2127 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2128
2129 // C++ [expr.new]p20:
2130 // [...] Any non-placement deallocation function matches a
2131 // non-placement allocation function. [...]
2132 llvm::SmallVector<FunctionDecl*, 2> Matches;
2133 for (LookupResult::iterator D = FoundDelete.begin(),
2134 DEnd = FoundDelete.end();
2135 D != DEnd; ++D) {
2136 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2137 if (isNonPlacementDeallocationFunction(*this, Fn))
2138 Matches.push_back(Fn);
2139 }
2140
2141 // C++1y [expr.delete]p?:
2142 // If the type is complete and deallocation function lookup finds both a
2143 // usual deallocation function with only a pointer parameter and a usual
2144 // deallocation function with both a pointer parameter and a size
2145 // parameter, then the selected deallocation function shall be the one
2146 // with two parameters. Otherwise, the selected deallocation function
2147 // shall be the function with one parameter.
2148 if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2149 unsigned NumArgs = CanProvideSize ? 2 : 1;
2150 if (Matches[0]->getNumParams() != NumArgs)
2151 Matches.erase(Matches.begin());
2152 else
2153 Matches.erase(Matches.begin() + 1);
2154 assert(Matches[0]->getNumParams() == NumArgs &&((Matches[0]->getNumParams() == NumArgs && "found an unexpected usual deallocation function"
) ? static_cast<void> (0) : __assert_fail ("Matches[0]->getNumParams() == NumArgs && \"found an unexpected usual deallocation function\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2155, __PRETTY_FUNCTION__))
2155 "found an unexpected usual deallocation function")((Matches[0]->getNumParams() == NumArgs && "found an unexpected usual deallocation function"
) ? static_cast<void> (0) : __assert_fail ("Matches[0]->getNumParams() == NumArgs && \"found an unexpected usual deallocation function\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2155, __PRETTY_FUNCTION__))
;
2156 }
2157
2158 assert(Matches.size() == 1 &&((Matches.size() == 1 && "unexpectedly have multiple usual deallocation functions"
) ? static_cast<void> (0) : __assert_fail ("Matches.size() == 1 && \"unexpectedly have multiple usual deallocation functions\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2159, __PRETTY_FUNCTION__))
2159 "unexpectedly have multiple usual deallocation functions")((Matches.size() == 1 && "unexpectedly have multiple usual deallocation functions"
) ? static_cast<void> (0) : __assert_fail ("Matches.size() == 1 && \"unexpectedly have multiple usual deallocation functions\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2159, __PRETTY_FUNCTION__))
;
2160 return Matches.front();
2161}
2162
2163bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2164 DeclarationName Name,
2165 FunctionDecl* &Operator, bool Diagnose) {
2166 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2167 // Try to find operator delete/operator delete[] in class scope.
2168 LookupQualifiedName(Found, RD);
2169
2170 if (Found.isAmbiguous())
2171 return true;
2172
2173 Found.suppressDiagnostics();
2174
2175 SmallVector<DeclAccessPair,4> Matches;
2176 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2177 F != FEnd; ++F) {
2178 NamedDecl *ND = (*F)->getUnderlyingDecl();
2179
2180 // Ignore template operator delete members from the check for a usual
2181 // deallocation function.
2182 if (isa<FunctionTemplateDecl>(ND))
2183 continue;
2184
2185 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2186 Matches.push_back(F.getPair());
2187 }
2188
2189 // There's exactly one suitable operator; pick it.
2190 if (Matches.size() == 1) {
2191 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2192
2193 if (Operator->isDeleted()) {
2194 if (Diagnose) {
2195 Diag(StartLoc, diag::err_deleted_function_use);
2196 NoteDeletedFunction(Operator);
2197 }
2198 return true;
2199 }
2200
2201 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2202 Matches[0], Diagnose) == AR_inaccessible)
2203 return true;
2204
2205 return false;
2206
2207 // We found multiple suitable operators; complain about the ambiguity.
2208 } else if (!Matches.empty()) {
2209 if (Diagnose) {
2210 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2211 << Name << RD;
2212
2213 for (SmallVectorImpl<DeclAccessPair>::iterator
2214 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2215 Diag((*F)->getUnderlyingDecl()->getLocation(),
2216 diag::note_member_declared_here) << Name;
2217 }
2218 return true;
2219 }
2220
2221 // We did find operator delete/operator delete[] declarations, but
2222 // none of them were suitable.
2223 if (!Found.empty()) {
2224 if (Diagnose) {
2225 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2226 << Name << RD;
2227
2228 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2229 F != FEnd; ++F)
2230 Diag((*F)->getUnderlyingDecl()->getLocation(),
2231 diag::note_member_declared_here) << Name;
2232 }
2233 return true;
2234 }
2235
2236 Operator = nullptr;
2237 return false;
2238}
2239
2240/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2241/// @code ::delete ptr; @endcode
2242/// or
2243/// @code delete [] ptr; @endcode
2244ExprResult
2245Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2246 bool ArrayForm, Expr *ExE) {
2247 // C++ [expr.delete]p1:
2248 // The operand shall have a pointer type, or a class type having a single
2249 // non-explicit conversion function to a pointer type. The result has type
2250 // void.
2251 //
2252 // DR599 amends "pointer type" to "pointer to object type" in both cases.
2253
2254 ExprResult Ex = ExE;
2255 FunctionDecl *OperatorDelete = nullptr;
2256 bool ArrayFormAsWritten = ArrayForm;
2257 bool UsualArrayDeleteWantsSize = false;
2258
2259 if (!Ex.get()->isTypeDependent()) {
2260 // Perform lvalue-to-rvalue cast, if needed.
2261 Ex = DefaultLvalueConversion(Ex.get());
2262 if (Ex.isInvalid())
2263 return ExprError();
2264
2265 QualType Type = Ex.get()->getType();
2266
2267 class DeleteConverter : public ContextualImplicitConverter {
2268 public:
2269 DeleteConverter() : ContextualImplicitConverter(false, true) {}
2270
2271 bool match(QualType ConvType) override {
2272 // FIXME: If we have an operator T* and an operator void*, we must pick
2273 // the operator T*.
2274 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2275 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2276 return true;
2277 return false;
2278 }
2279
2280 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2281 QualType T) override {
2282 return S.Diag(Loc, diag::err_delete_operand) << T;
2283 }
2284
2285 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2286 QualType T) override {
2287 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2288 }
2289
2290 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2291 QualType T,
2292 QualType ConvTy) override {
2293 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2294 }
2295
2296 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2297 QualType ConvTy) override {
2298 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2299 << ConvTy;
2300 }
2301
2302 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2303 QualType T) override {
2304 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2305 }
2306
2307 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2308 QualType ConvTy) override {
2309 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2310 << ConvTy;
2311 }
2312
2313 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2314 QualType T,
2315 QualType ConvTy) override {
2316 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2316)
;
2317 }
2318 } Converter;
2319
2320 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
2321 if (Ex.isInvalid())
2322 return ExprError();
2323 Type = Ex.get()->getType();
2324 if (!Converter.match(Type))
2325 // FIXME: PerformContextualImplicitConversion should return ExprError
2326 // itself in this case.
2327 return ExprError();
2328
2329 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2330 QualType PointeeElem = Context.getBaseElementType(Pointee);
2331
2332 if (unsigned AddressSpace = Pointee.getAddressSpace())
2333 return Diag(Ex.get()->getLocStart(),
2334 diag::err_address_space_qualified_delete)
2335 << Pointee.getUnqualifiedType() << AddressSpace;
2336
2337 CXXRecordDecl *PointeeRD = nullptr;
2338 if (Pointee->isVoidType() && !isSFINAEContext()) {
2339 // The C++ standard bans deleting a pointer to a non-object type, which
2340 // effectively bans deletion of "void*". However, most compilers support
2341 // this, so we treat it as a warning unless we're in a SFINAE context.
2342 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2343 << Type << Ex.get()->getSourceRange();
2344 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2345 return ExprError(Diag(StartLoc, diag::err_delete_operand)
2346 << Type << Ex.get()->getSourceRange());
2347 } else if (!Pointee->isDependentType()) {
2348 if (!RequireCompleteType(StartLoc, Pointee,
2349 diag::warn_delete_incomplete, Ex.get())) {
2350 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2351 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2352 }
2353 }
2354
2355 // C++ [expr.delete]p2:
2356 // [Note: a pointer to a const type can be the operand of a
2357 // delete-expression; it is not necessary to cast away the constness
2358 // (5.2.11) of the pointer expression before it is used as the operand
2359 // of the delete-expression. ]
2360
2361 if (Pointee->isArrayType() && !ArrayForm) {
2362 Diag(StartLoc, diag::warn_delete_array_type)
2363 << Type << Ex.get()->getSourceRange()
2364 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2365 ArrayForm = true;
2366 }
2367
2368 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2369 ArrayForm ? OO_Array_Delete : OO_Delete);
2370
2371 if (PointeeRD) {
2372 if (!UseGlobal &&
2373 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2374 OperatorDelete))
2375 return ExprError();
2376
2377 // If we're allocating an array of records, check whether the
2378 // usual operator delete[] has a size_t parameter.
2379 if (ArrayForm) {
2380 // If the user specifically asked to use the global allocator,
2381 // we'll need to do the lookup into the class.
2382 if (UseGlobal)
2383 UsualArrayDeleteWantsSize =
2384 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2385
2386 // Otherwise, the usual operator delete[] should be the
2387 // function we just found.
2388 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2389 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2390 }
2391
2392 if (!PointeeRD->hasIrrelevantDestructor())
2393 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2394 MarkFunctionReferenced(StartLoc,
2395 const_cast<CXXDestructorDecl*>(Dtor));
2396 if (DiagnoseUseOfDecl(Dtor, StartLoc))
2397 return ExprError();
2398 }
2399
2400 // C++ [expr.delete]p3:
2401 // In the first alternative (delete object), if the static type of the
2402 // object to be deleted is different from its dynamic type, the static
2403 // type shall be a base class of the dynamic type of the object to be
2404 // deleted and the static type shall have a virtual destructor or the
2405 // behavior is undefined.
2406 //
2407 // Note: a final class cannot be derived from, no issue there
2408 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2409 CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2410 if (dtor && !dtor->isVirtual()) {
2411 if (PointeeRD->isAbstract()) {
2412 // If the class is abstract, we warn by default, because we're
2413 // sure the code has undefined behavior.
2414 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2415 << PointeeElem;
2416 } else if (!ArrayForm) {
2417 // Otherwise, if this is not an array delete, it's a bit suspect,
2418 // but not necessarily wrong.
2419 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2420 }
2421 }
2422 }
2423
2424 }
2425
2426 if (!OperatorDelete)
2427 // Look for a global declaration.
2428 OperatorDelete = FindUsualDeallocationFunction(
2429 StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
2430 (!ArrayForm || UsualArrayDeleteWantsSize ||
2431 Pointee.isDestructedType()),
2432 DeleteName);
2433
2434 MarkFunctionReferenced(StartLoc, OperatorDelete);
2435
2436 // Check access and ambiguity of operator delete and destructor.
2437 if (PointeeRD) {
2438 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2439 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2440 PDiag(diag::err_access_dtor) << PointeeElem);
2441 }
2442 }
2443 }
2444
2445 return new (Context) CXXDeleteExpr(
2446 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
2447 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
2448}
2449
2450/// \brief Check the use of the given variable as a C++ condition in an if,
2451/// while, do-while, or switch statement.
2452ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2453 SourceLocation StmtLoc,
2454 bool ConvertToBoolean) {
2455 if (ConditionVar->isInvalidDecl())
2456 return ExprError();
2457
2458 QualType T = ConditionVar->getType();
2459
2460 // C++ [stmt.select]p2:
2461 // The declarator shall not specify a function or an array.
2462 if (T->isFunctionType())
2463 return ExprError(Diag(ConditionVar->getLocation(),
2464 diag::err_invalid_use_of_function_type)
2465 << ConditionVar->getSourceRange());
2466 else if (T->isArrayType())
2467 return ExprError(Diag(ConditionVar->getLocation(),
2468 diag::err_invalid_use_of_array_type)
2469 << ConditionVar->getSourceRange());
2470
2471 ExprResult Condition = DeclRefExpr::Create(
2472 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
2473 /*enclosing*/ false, ConditionVar->getLocation(),
2474 ConditionVar->getType().getNonReferenceType(), VK_LValue);
2475
2476 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2477
2478 if (ConvertToBoolean) {
2479 Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
2480 if (Condition.isInvalid())
2481 return ExprError();
2482 }
2483
2484 return Condition;
2485}
2486
2487/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2488ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2489 // C++ 6.4p4:
2490 // The value of a condition that is an initialized declaration in a statement
2491 // other than a switch statement is the value of the declared variable
2492 // implicitly converted to type bool. If that conversion is ill-formed, the
2493 // program is ill-formed.
2494 // The value of a condition that is an expression is the value of the
2495 // expression, implicitly converted to bool.
2496 //
2497 return PerformContextuallyConvertToBool(CondExpr);
2498}
2499
2500/// Helper function to determine whether this is the (deprecated) C++
2501/// conversion from a string literal to a pointer to non-const char or
2502/// non-const wchar_t (for narrow and wide string literals,
2503/// respectively).
2504bool
2505Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2506 // Look inside the implicit cast, if it exists.
2507 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2508 From = Cast->getSubExpr();
2509
2510 // A string literal (2.13.4) that is not a wide string literal can
2511 // be converted to an rvalue of type "pointer to char"; a wide
2512 // string literal can be converted to an rvalue of type "pointer
2513 // to wchar_t" (C++ 4.2p2).
2514 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2515 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2516 if (const BuiltinType *ToPointeeType
2517 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2518 // This conversion is considered only when there is an
2519 // explicit appropriate pointer target type (C++ 4.2p2).
2520 if (!ToPtrType->getPointeeType().hasQualifiers()) {
2521 switch (StrLit->getKind()) {
2522 case StringLiteral::UTF8:
2523 case StringLiteral::UTF16:
2524 case StringLiteral::UTF32:
2525 // We don't allow UTF literals to be implicitly converted
2526 break;
2527 case StringLiteral::Ascii:
2528 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2529 ToPointeeType->getKind() == BuiltinType::Char_S);
2530 case StringLiteral::Wide:
2531 return ToPointeeType->isWideCharType();
2532 }
2533 }
2534 }
2535
2536 return false;
2537}
2538
2539static ExprResult BuildCXXCastArgument(Sema &S,
2540 SourceLocation CastLoc,
2541 QualType Ty,
2542 CastKind Kind,
2543 CXXMethodDecl *Method,
2544 DeclAccessPair FoundDecl,
2545 bool HadMultipleCandidates,
2546 Expr *From) {
2547 switch (Kind) {
2548 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2548)
;
2549 case CK_ConstructorConversion: {
2550 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2551 SmallVector<Expr*, 8> ConstructorArgs;
2552
2553 if (S.RequireNonAbstractType(CastLoc, Ty,
2554 diag::err_allocation_of_abstract_type))
2555 return ExprError();
2556
2557 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2558 return ExprError();
2559
2560 S.CheckConstructorAccess(CastLoc, Constructor,
2561 InitializedEntity::InitializeTemporary(Ty),
2562 Constructor->getAccess());
2563
2564 ExprResult Result = S.BuildCXXConstructExpr(
2565 CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2566 ConstructorArgs, HadMultipleCandidates,
2567 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2568 CXXConstructExpr::CK_Complete, SourceRange());
2569 if (Result.isInvalid())
2570 return ExprError();
2571
2572 return S.MaybeBindToTemporary(Result.getAs<Expr>());
2573 }
2574
2575 case CK_UserDefinedConversion: {
2576 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")((!From->getType()->isPointerType() && "Arg can't have pointer type!"
) ? static_cast<void> (0) : __assert_fail ("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2576, __PRETTY_FUNCTION__))
;
2577
2578 // Create an implicit call expr that calls it.
2579 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2580 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2581 HadMultipleCandidates);
2582 if (Result.isInvalid())
2583 return ExprError();
2584 // Record usage of conversion in an implicit cast.
2585 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
2586 CK_UserDefinedConversion, Result.get(),
2587 nullptr, Result.get()->getValueKind());
2588
2589 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
2590
2591 return S.MaybeBindToTemporary(Result.get());
2592 }
2593 }
2594}
2595
2596/// PerformImplicitConversion - Perform an implicit conversion of the
2597/// expression From to the type ToType using the pre-computed implicit
2598/// conversion sequence ICS. Returns the converted
2599/// expression. Action is the kind of conversion we're performing,
2600/// used in the error message.
2601ExprResult
2602Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2603 const ImplicitConversionSequence &ICS,
2604 AssignmentAction Action,
2605 CheckedConversionKind CCK) {
2606 switch (ICS.getKind()) {
2607 case ImplicitConversionSequence::StandardConversion: {
2608 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2609 Action, CCK);
2610 if (Res.isInvalid())
2611 return ExprError();
2612 From = Res.get();
2613 break;
2614 }
2615
2616 case ImplicitConversionSequence::UserDefinedConversion: {
2617
2618 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2619 CastKind CastKind;
2620 QualType BeforeToType;
2621 assert(FD && "FIXME: aggregate initialization from init list")((FD && "FIXME: aggregate initialization from init list"
) ? static_cast<void> (0) : __assert_fail ("FD && \"FIXME: aggregate initialization from init list\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2621, __PRETTY_FUNCTION__))
;
2622 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2623 CastKind = CK_UserDefinedConversion;
2624
2625 // If the user-defined conversion is specified by a conversion function,
2626 // the initial standard conversion sequence converts the source type to
2627 // the implicit object parameter of the conversion function.
2628 BeforeToType = Context.getTagDeclType(Conv->getParent());
2629 } else {
2630 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2631 CastKind = CK_ConstructorConversion;
2632 // Do no conversion if dealing with ... for the first conversion.
2633 if (!ICS.UserDefined.EllipsisConversion) {
2634 // If the user-defined conversion is specified by a constructor, the
2635 // initial standard conversion sequence converts the source type to
2636 // the type required by the argument of the constructor
2637 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2638 }
2639 }
2640 // Watch out for ellipsis conversion.
2641 if (!ICS.UserDefined.EllipsisConversion) {
2642 ExprResult Res =
2643 PerformImplicitConversion(From, BeforeToType,
2644 ICS.UserDefined.Before, AA_Converting,
2645 CCK);
2646 if (Res.isInvalid())
2647 return ExprError();
2648 From = Res.get();
2649 }
2650
2651 ExprResult CastArg
2652 = BuildCXXCastArgument(*this,
2653 From->getLocStart(),
2654 ToType.getNonReferenceType(),
2655 CastKind, cast<CXXMethodDecl>(FD),
2656 ICS.UserDefined.FoundConversionFunction,
2657 ICS.UserDefined.HadMultipleCandidates,
2658 From);
2659
2660 if (CastArg.isInvalid())
2661 return ExprError();
2662
2663 From = CastArg.get();
2664
2665 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2666 AA_Converting, CCK);
2667 }
2668
2669 case ImplicitConversionSequence::AmbiguousConversion:
2670 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2671 PDiag(diag::err_typecheck_ambiguous_condition)
2672 << From->getSourceRange());
2673 return ExprError();
2674
2675 case ImplicitConversionSequence::EllipsisConversion:
2676 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2676)
;
2677
2678 case ImplicitConversionSequence::BadConversion:
2679 return ExprError();
2680 }
2681
2682 // Everything went well.
2683 return From;
2684}
2685
2686/// PerformImplicitConversion - Perform an implicit conversion of the
2687/// expression From to the type ToType by following the standard
2688/// conversion sequence SCS. Returns the converted
2689/// expression. Flavor is the context in which we're performing this
2690/// conversion, for use in error messages.
2691ExprResult
2692Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2693 const StandardConversionSequence& SCS,
2694 AssignmentAction Action,
2695 CheckedConversionKind CCK) {
2696 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2697
2698 // Overall FIXME: we are recomputing too many types here and doing far too
2699 // much extra work. What this means is that we need to keep track of more
2700 // information that is computed when we try the implicit conversion initially,
2701 // so that we don't need to recompute anything here.
2702 QualType FromType = From->getType();
2703
2704 if (SCS.CopyConstructor) {
2705 // FIXME: When can ToType be a reference type?
2706 assert(!ToType->isReferenceType())((!ToType->isReferenceType()) ? static_cast<void> (0
) : __assert_fail ("!ToType->isReferenceType()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2706, __PRETTY_FUNCTION__))
;
2707 if (SCS.Second == ICK_Derived_To_Base) {
2708 SmallVector<Expr*, 8> ConstructorArgs;
2709 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2710 From, /*FIXME:ConstructLoc*/SourceLocation(),
2711 ConstructorArgs))
2712 return ExprError();
2713 return BuildCXXConstructExpr(
2714 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
2715 ConstructorArgs, /*HadMultipleCandidates*/ false,
2716 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2717 CXXConstructExpr::CK_Complete, SourceRange());
2718 }
2719 return BuildCXXConstructExpr(
2720 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor,
2721 From, /*HadMultipleCandidates*/ false,
2722 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
2723 CXXConstructExpr::CK_Complete, SourceRange());
2724 }
2725
2726 // Resolve overloaded function references.
2727 if (Context.hasSameType(FromType, Context.OverloadTy)) {
2728 DeclAccessPair Found;
2729 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2730 true, Found);
2731 if (!Fn)
2732 return ExprError();
2733
2734 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2735 return ExprError();
2736
2737 From = FixOverloadedFunctionReference(From, Found, Fn);
2738 FromType = From->getType();
2739 }
2740
2741 // If we're converting to an atomic type, first convert to the corresponding
2742 // non-atomic type.
2743 QualType ToAtomicType;
2744 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
2745 ToAtomicType = ToType;
2746 ToType = ToAtomic->getValueType();
2747 }
2748
2749 // Perform the first implicit conversion.
2750 switch (SCS.First) {
2751 case ICK_Identity:
2752 // Nothing to do.
2753 break;
2754
2755 case ICK_Lvalue_To_Rvalue: {
2756 assert(From->getObjectKind() != OK_ObjCProperty)((From->getObjectKind() != OK_ObjCProperty) ? static_cast<
void> (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2756, __PRETTY_FUNCTION__))
;
2757 ExprResult FromRes = DefaultLvalueConversion(From);
2758 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!")((!FromRes.isInvalid() && "Can't perform deduced conversion?!"
) ? static_cast<void> (0) : __assert_fail ("!FromRes.isInvalid() && \"Can't perform deduced conversion?!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2758, __PRETTY_FUNCTION__))
;
2759 From = FromRes.get();
2760 FromType = From->getType();
2761 break;
2762 }
2763
2764 case ICK_Array_To_Pointer:
2765 FromType = Context.getArrayDecayedType(FromType);
2766 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2767 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2768 break;
2769
2770 case ICK_Function_To_Pointer:
2771 FromType = Context.getPointerType(FromType);
2772 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2773 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2774 break;
2775
2776 default:
2777 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2777)
;
2778 }
2779
2780 // Perform the second implicit conversion
2781 switch (SCS.Second) {
2782 case ICK_Identity:
2783 // C++ [except.spec]p5:
2784 // [For] assignment to and initialization of pointers to functions,
2785 // pointers to member functions, and references to functions: the
2786 // target entity shall allow at least the exceptions allowed by the
2787 // source value in the assignment or initialization.
2788 switch (Action) {
2789 case AA_Assigning:
2790 case AA_Initializing:
2791 // Note, function argument passing and returning are initialization.
2792 case AA_Passing:
2793 case AA_Returning:
2794 case AA_Sending:
2795 case AA_Passing_CFAudited:
2796 if (CheckExceptionSpecCompatibility(From, ToType))
2797 return ExprError();
2798 break;
2799
2800 case AA_Casting:
2801 case AA_Converting:
2802 // Casts and implicit conversions are not initialization, so are not
2803 // checked for exception specification mismatches.
2804 break;
2805 }
2806 // Nothing else to do.
2807 break;
2808
2809 case ICK_NoReturn_Adjustment:
2810 // If both sides are functions (or pointers/references to them), there could
2811 // be incompatible exception declarations.
2812 if (CheckExceptionSpecCompatibility(From, ToType))
2813 return ExprError();
2814
2815 From = ImpCastExprToType(From, ToType, CK_NoOp,
2816 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2817 break;
2818
2819 case ICK_Integral_Promotion:
2820 case ICK_Integral_Conversion:
2821 if (ToType->isBooleanType()) {
2822 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2824, __PRETTY_FUNCTION__))
2823 SCS.Second == ICK_Integral_Promotion &&((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2824, __PRETTY_FUNCTION__))
2824 "only enums with fixed underlying type can promote to bool")((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2824, __PRETTY_FUNCTION__))
;
2825 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2826 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2827 } else {
2828 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2829 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2830 }
2831 break;
2832
2833 case ICK_Floating_Promotion:
2834 case ICK_Floating_Conversion:
2835 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2836 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2837 break;
2838
2839 case ICK_Complex_Promotion:
2840 case ICK_Complex_Conversion: {
2841 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2842 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2843 CastKind CK;
2844 if (FromEl->isRealFloatingType()) {
2845 if (ToEl->isRealFloatingType())
2846 CK = CK_FloatingComplexCast;
2847 else
2848 CK = CK_FloatingComplexToIntegralComplex;
2849 } else if (ToEl->isRealFloatingType()) {
2850 CK = CK_IntegralComplexToFloatingComplex;
2851 } else {
2852 CK = CK_IntegralComplexCast;
2853 }
2854 From = ImpCastExprToType(From, ToType, CK,
2855 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2856 break;
2857 }
2858
2859 case ICK_Floating_Integral:
2860 if (ToType->isRealFloatingType())
2861 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2862 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2863 else
2864 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2865 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2866 break;
2867
2868 case ICK_Compatible_Conversion:
2869 From = ImpCastExprToType(From, ToType, CK_NoOp,
2870 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2871 break;
2872
2873 case ICK_Writeback_Conversion:
2874 case ICK_Pointer_Conversion: {
2875 if (SCS.IncompatibleObjC && Action != AA_Casting) {
2876 // Diagnose incompatible Objective-C conversions
2877 if (Action == AA_Initializing || Action == AA_Assigning)
2878 Diag(From->getLocStart(),
2879 diag::ext_typecheck_convert_incompatible_pointer)
2880 << ToType << From->getType() << Action
2881 << From->getSourceRange() << 0;
2882 else
2883 Diag(From->getLocStart(),
2884 diag::ext_typecheck_convert_incompatible_pointer)
2885 << From->getType() << ToType << Action
2886 << From->getSourceRange() << 0;
2887
2888 if (From->getType()->isObjCObjectPointerType() &&
2889 ToType->isObjCObjectPointerType())
2890 EmitRelatedResultTypeNote(From);
2891 }
2892 else if (getLangOpts().ObjCAutoRefCount &&
2893 !CheckObjCARCUnavailableWeakConversion(ToType,
2894 From->getType())) {
2895 if (Action == AA_Initializing)
2896 Diag(From->getLocStart(),
2897 diag::err_arc_weak_unavailable_assign);
2898 else
2899 Diag(From->getLocStart(),
2900 diag::err_arc_convesion_of_weak_unavailable)
2901 << (Action == AA_Casting) << From->getType() << ToType
2902 << From->getSourceRange();
2903 }
2904
2905 CastKind Kind = CK_Invalid;
2906 CXXCastPath BasePath;
2907 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2908 return ExprError();
2909
2910 // Make sure we extend blocks if necessary.
2911 // FIXME: doing this here is really ugly.
2912 if (Kind == CK_BlockPointerToObjCPointerCast) {
2913 ExprResult E = From;
2914 (void) PrepareCastToObjCObjectPointer(E);
2915 From = E.get();
2916 }
2917 if (getLangOpts().ObjCAutoRefCount)
2918 CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
2919 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2920 .get();
2921 break;
2922 }
2923
2924 case ICK_Pointer_Member: {
2925 CastKind Kind = CK_Invalid;
2926 CXXCastPath BasePath;
2927 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2928 return ExprError();
2929 if (CheckExceptionSpecCompatibility(From, ToType))
2930 return ExprError();
2931
2932 // We may not have been able to figure out what this member pointer resolved
2933 // to up until this exact point. Attempt to lock-in it's inheritance model.
2934 QualType FromType = From->getType();
2935 if (FromType->isMemberPointerType())
2936 if (Context.getTargetInfo().getCXXABI().isMicrosoft())
2937 RequireCompleteType(From->getExprLoc(), FromType, 0);
2938
2939 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2940 .get();
2941 break;
2942 }
2943
2944 case ICK_Boolean_Conversion:
2945 // Perform half-to-boolean conversion via float.
2946 if (From->getType()->isHalfType()) {
2947 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
2948 FromType = Context.FloatTy;
2949 }
2950
2951 From = ImpCastExprToType(From, Context.BoolTy,
2952 ScalarTypeToBooleanCastKind(FromType),
2953 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2954 break;
2955
2956 case ICK_Derived_To_Base: {
2957 CXXCastPath BasePath;
2958 if (CheckDerivedToBaseConversion(From->getType(),
2959 ToType.getNonReferenceType(),
2960 From->getLocStart(),
2961 From->getSourceRange(),
2962 &BasePath,
2963 CStyle))
2964 return ExprError();
2965
2966 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2967 CK_DerivedToBase, From->getValueKind(),
2968 &BasePath, CCK).get();
2969 break;
2970 }
2971
2972 case ICK_Vector_Conversion:
2973 From = ImpCastExprToType(From, ToType, CK_BitCast,
2974 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2975 break;
2976
2977 case ICK_Vector_Splat:
2978 From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2979 VK_RValue, /*BasePath=*/nullptr, CCK).get();
2980 break;
2981
2982 case ICK_Complex_Real:
2983 // Case 1. x -> _Complex y
2984 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2985 QualType ElType = ToComplex->getElementType();
2986 bool isFloatingComplex = ElType->isRealFloatingType();
2987
2988 // x -> y
2989 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2990 // do nothing
2991 } else if (From->getType()->isRealFloatingType()) {
2992 From = ImpCastExprToType(From, ElType,
2993 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
2994 } else {
2995 assert(From->getType()->isIntegerType())((From->getType()->isIntegerType()) ? static_cast<void
> (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2995, __PRETTY_FUNCTION__))
;
2996 From = ImpCastExprToType(From, ElType,
2997 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
2998 }
2999 // y -> _Complex y
3000 From = ImpCastExprToType(From, ToType,
3001 isFloatingComplex ? CK_FloatingRealToComplex
3002 : CK_IntegralRealToComplex).get();
3003
3004 // Case 2. _Complex x -> y
3005 } else {
3006 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
3007 assert(FromComplex)((FromComplex) ? static_cast<void> (0) : __assert_fail (
"FromComplex", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3007, __PRETTY_FUNCTION__))
;
3008
3009 QualType ElType = FromComplex->getElementType();
3010 bool isFloatingComplex = ElType->isRealFloatingType();
3011
3012 // _Complex x -> x
3013 From = ImpCastExprToType(From, ElType,
3014 isFloatingComplex ? CK_FloatingComplexToReal
3015 : CK_IntegralComplexToReal,
3016 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3017
3018 // x -> y
3019 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
3020 // do nothing
3021 } else if (ToType->isRealFloatingType()) {
3022 From = ImpCastExprToType(From, ToType,
3023 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
3024 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3025 } else {
3026 assert(ToType->isIntegerType())((ToType->isIntegerType()) ? static_cast<void> (0) :
__assert_fail ("ToType->isIntegerType()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3026, __PRETTY_FUNCTION__))
;
3027 From = ImpCastExprToType(From, ToType,
3028 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3029 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3030 }
3031 }
3032 break;
3033
3034 case ICK_Block_Pointer_Conversion: {
3035 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3036 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3037 break;
3038 }
3039
3040 case ICK_TransparentUnionConversion: {
3041 ExprResult FromRes = From;
3042 Sema::AssignConvertType ConvTy =
3043 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3044 if (FromRes.isInvalid())
3045 return ExprError();
3046 From = FromRes.get();
3047 assert ((ConvTy == Sema::Compatible) &&(((ConvTy == Sema::Compatible) && "Improper transparent union conversion"
) ? static_cast<void> (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3048, __PRETTY_FUNCTION__))
3048 "Improper transparent union conversion")(((ConvTy == Sema::Compatible) && "Improper transparent union conversion"
) ? static_cast<void> (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3048, __PRETTY_FUNCTION__))
;
3049 (void)ConvTy;
3050 break;
3051 }
3052
3053 case ICK_Zero_Event_Conversion:
3054 From = ImpCastExprToType(From, ToType,
3055 CK_ZeroToOCLEvent,
3056 From->getValueKind()).get();
3057 break;
3058
3059 case ICK_Lvalue_To_Rvalue:
3060 case ICK_Array_To_Pointer:
3061 case ICK_Function_To_Pointer:
3062 case ICK_Qualification:
3063 case ICK_Num_Conversion_Kinds:
3064 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3064)
;
3065 }
3066
3067 switch (SCS.Third) {
3068 case ICK_Identity:
3069 // Nothing to do.
3070 break;
3071
3072 case ICK_Qualification: {
3073 // The qualification keeps the category of the inner expression, unless the
3074 // target type isn't a reference.
3075 ExprValueKind VK = ToType->isReferenceType() ?
3076 From->getValueKind() : VK_RValue;
3077 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3078 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3079
3080 if (SCS.DeprecatedStringLiteralToCharPtr &&
3081 !getLangOpts().WritableStrings) {
3082 Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3083 ? diag::ext_deprecated_string_literal_conversion
3084 : diag::warn_deprecated_string_literal_conversion)
3085 << ToType.getNonReferenceType();
3086 }
3087
3088 break;
3089 }
3090
3091 default:
3092 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3092)
;
3093 }
3094
3095 // If this conversion sequence involved a scalar -> atomic conversion, perform
3096 // that conversion now.
3097 if (!ToAtomicType.isNull()) {
3098 assert(Context.hasSameType(((Context.hasSameType( ToAtomicType->castAs<AtomicType>
()->getValueType(), From->getType())) ? static_cast<
void> (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3099, __PRETTY_FUNCTION__))
3099 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))((Context.hasSameType( ToAtomicType->castAs<AtomicType>
()->getValueType(), From->getType())) ? static_cast<
void> (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3099, __PRETTY_FUNCTION__))
;
3100 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3101 VK_RValue, nullptr, CCK).get();
3102 }
3103
3104 return From;
3105}
3106
3107/// \brief Check the completeness of a type in a unary type trait.
3108///
3109/// If the particular type trait requires a complete type, tries to complete
3110/// it. If completing the type fails, a diagnostic is emitted and false
3111/// returned. If completing the type succeeds or no completion was required,
3112/// returns true.
3113static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3114 SourceLocation Loc,
3115 QualType ArgTy) {
3116 // C++0x [meta.unary.prop]p3:
3117 // For all of the class templates X declared in this Clause, instantiating
3118 // that template with a template argument that is a class template
3119 // specialization may result in the implicit instantiation of the template
3120 // argument if and only if the semantics of X require that the argument
3121 // must be a complete type.
3122 // We apply this rule to all the type trait expressions used to implement
3123 // these class templates. We also try to follow any GCC documented behavior
3124 // in these expressions to ensure portability of standard libraries.
3125 switch (UTT) {
3126 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3126)
;
3127 // is_complete_type somewhat obviously cannot require a complete type.
3128 case UTT_IsCompleteType:
3129 // Fall-through
3130
3131 // These traits are modeled on the type predicates in C++0x
3132 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3133 // requiring a complete type, as whether or not they return true cannot be
3134 // impacted by the completeness of the type.
3135 case UTT_IsVoid:
3136 case UTT_IsIntegral:
3137 case UTT_IsFloatingPoint:
3138 case UTT_IsArray:
3139 case UTT_IsPointer:
3140 case UTT_IsLvalueReference:
3141 case UTT_IsRvalueReference:
3142 case UTT_IsMemberFunctionPointer:
3143 case UTT_IsMemberObjectPointer:
3144 case UTT_IsEnum:
3145 case UTT_IsUnion:
3146 case UTT_IsClass:
3147 case UTT_IsFunction:
3148 case UTT_IsReference:
3149 case UTT_IsArithmetic:
3150 case UTT_IsFundamental:
3151 case UTT_IsObject:
3152 case UTT_IsScalar:
3153 case UTT_IsCompound:
3154 case UTT_IsMemberPointer:
3155 // Fall-through
3156
3157 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3158 // which requires some of its traits to have the complete type. However,
3159 // the completeness of the type cannot impact these traits' semantics, and
3160 // so they don't require it. This matches the comments on these traits in
3161 // Table 49.
3162 case UTT_IsConst:
3163 case UTT_IsVolatile:
3164 case UTT_IsSigned:
3165 case UTT_IsUnsigned:
3166 return true;
3167
3168 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3169 // applied to a complete type.
3170 case UTT_IsTrivial:
3171 case UTT_IsTriviallyCopyable:
3172 case UTT_IsStandardLayout:
3173 case UTT_IsPOD:
3174 case UTT_IsLiteral:
3175 case UTT_IsEmpty:
3176 case UTT_IsPolymorphic:
3177 case UTT_IsAbstract:
3178 case UTT_IsInterfaceClass:
3179 case UTT_IsDestructible:
3180 case UTT_IsNothrowDestructible:
3181 // Fall-through
3182
3183 // These traits require a complete type.
3184 case UTT_IsFinal:
3185 case UTT_IsSealed:
3186
3187 // These trait expressions are designed to help implement predicates in
3188 // [meta.unary.prop] despite not being named the same. They are specified
3189 // by both GCC and the Embarcadero C++ compiler, and require the complete
3190 // type due to the overarching C++0x type predicates being implemented
3191 // requiring the complete type.
3192 case UTT_HasNothrowAssign:
3193 case UTT_HasNothrowMoveAssign:
3194 case UTT_HasNothrowConstructor:
3195 case UTT_HasNothrowCopy:
3196 case UTT_HasTrivialAssign:
3197 case UTT_HasTrivialMoveAssign:
3198 case UTT_HasTrivialDefaultConstructor:
3199 case UTT_HasTrivialMoveConstructor:
3200 case UTT_HasTrivialCopy:
3201 case UTT_HasTrivialDestructor:
3202 case UTT_HasVirtualDestructor:
3203 // Arrays of unknown bound are expressly allowed.
3204 QualType ElTy = ArgTy;
3205 if (ArgTy->isIncompleteArrayType())
3206 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3207
3208 // The void type is expressly allowed.
3209 if (ElTy->isVoidType())
3210 return true;
3211
3212 return !S.RequireCompleteType(
3213 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3214 }
3215}
3216
3217static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3218 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3219 bool (CXXRecordDecl::*HasTrivial)() const,
3220 bool (CXXRecordDecl::*HasNonTrivial)() const,
3221 bool (CXXMethodDecl::*IsDesiredOp)() const)
3222{
3223 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3224 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3225 return true;
3226
3227 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3228 DeclarationNameInfo NameInfo(Name, KeyLoc);
3229 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3230 if (Self.LookupQualifiedName(Res, RD)) {
3231 bool FoundOperator = false;
3232 Res.suppressDiagnostics();
3233 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3234 Op != OpEnd; ++Op) {
3235 if (isa<FunctionTemplateDecl>(*Op))
3236 continue;
3237
3238 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3239 if((Operator->*IsDesiredOp)()) {
3240 FoundOperator = true;
3241 const FunctionProtoType *CPT =
3242 Operator->getType()->getAs<FunctionProtoType>();
3243 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3244 if (!CPT || !CPT->isNothrow(C))
3245 return false;
3246 }
3247 }
3248 return FoundOperator;
3249 }
3250 return false;
3251}
3252
3253static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
3254 SourceLocation KeyLoc, QualType T) {
3255 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((!T->isDependentType() && "Cannot evaluate traits of dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3255, __PRETTY_FUNCTION__))
;
3256
3257 ASTContext &C = Self.Context;
3258 switch(UTT) {
3259 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3259)
;
3260 // Type trait expressions corresponding to the primary type category
3261 // predicates in C++0x [meta.unary.cat].
3262 case UTT_IsVoid:
3263 return T->isVoidType();
3264 case UTT_IsIntegral:
3265 return T->isIntegralType(C);
3266 case UTT_IsFloatingPoint:
3267 return T->isFloatingType();
3268 case UTT_IsArray:
3269 return T->isArrayType();
3270 case UTT_IsPointer:
3271 return T->isPointerType();
3272 case UTT_IsLvalueReference:
3273 return T->isLValueReferenceType();
3274 case UTT_IsRvalueReference:
3275 return T->isRValueReferenceType();
3276 case UTT_IsMemberFunctionPointer:
3277 return T->isMemberFunctionPointerType();
3278 case UTT_IsMemberObjectPointer:
3279 return T->isMemberDataPointerType();
3280 case UTT_IsEnum:
3281 return T->isEnumeralType();
3282 case UTT_IsUnion:
3283 return T->isUnionType();
3284 case UTT_IsClass:
3285 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3286 case UTT_IsFunction:
3287 return T->isFunctionType();
3288
3289 // Type trait expressions which correspond to the convenient composition
3290 // predicates in C++0x [meta.unary.comp].
3291 case UTT_IsReference:
3292 return T->isReferenceType();
3293 case UTT_IsArithmetic:
3294 return T->isArithmeticType() && !T->isEnumeralType();
3295 case UTT_IsFundamental:
3296 return T->isFundamentalType();
3297 case UTT_IsObject:
3298 return T->isObjectType();
3299 case UTT_IsScalar:
3300 // Note: semantic analysis depends on Objective-C lifetime types to be
3301 // considered scalar types. However, such types do not actually behave
3302 // like scalar types at run time (since they may require retain/release
3303 // operations), so we report them as non-scalar.
3304 if (T->isObjCLifetimeType()) {
3305 switch (T.getObjCLifetime()) {
3306 case Qualifiers::OCL_None:
3307 case Qualifiers::OCL_ExplicitNone:
3308 return true;
3309
3310 case Qualifiers::OCL_Strong:
3311 case Qualifiers::OCL_Weak:
3312 case Qualifiers::OCL_Autoreleasing:
3313 return false;
3314 }
3315 }
3316
3317 return T->isScalarType();
3318 case UTT_IsCompound:
3319 return T->isCompoundType();
3320 case UTT_IsMemberPointer:
3321 return T->isMemberPointerType();
3322
3323 // Type trait expressions which correspond to the type property predicates
3324 // in C++0x [meta.unary.prop].
3325 case UTT_IsConst:
3326 return T.isConstQualified();
3327 case UTT_IsVolatile:
3328 return T.isVolatileQualified();
3329 case UTT_IsTrivial:
3330 return T.isTrivialType(Self.Context);
3331 case UTT_IsTriviallyCopyable:
3332 return T.isTriviallyCopyableType(Self.Context);
3333 case UTT_IsStandardLayout:
3334 return T->isStandardLayoutType();
3335 case UTT_IsPOD:
3336 return T.isPODType(Self.Context);
3337 case UTT_IsLiteral:
3338 return T->isLiteralType(Self.Context);
3339 case UTT_IsEmpty:
3340 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3341 return !RD->isUnion() && RD->isEmpty();
3342 return false;
3343 case UTT_IsPolymorphic:
3344 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3345 return RD->isPolymorphic();
3346 return false;
3347 case UTT_IsAbstract:
3348 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3349 return RD->isAbstract();
3350 return false;
3351 case UTT_IsInterfaceClass:
3352 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3353 return RD->isInterface();
3354 return false;
3355 case UTT_IsFinal:
3356 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3357 return RD->hasAttr<FinalAttr>();
3358 return false;
3359 case UTT_IsSealed:
3360 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3361 if (FinalAttr *FA = RD->getAttr<FinalAttr>())
3362 return FA->isSpelledAsSealed();
3363 return false;
3364 case UTT_IsSigned:
3365 return T->isSignedIntegerType();
3366 case UTT_IsUnsigned:
3367 return T->isUnsignedIntegerType();
3368
3369 // Type trait expressions which query classes regarding their construction,
3370 // destruction, and copying. Rather than being based directly on the
3371 // related type predicates in the standard, they are specified by both
3372 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3373 // specifications.
3374 //
3375 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3376 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3377 //
3378 // Note that these builtins do not behave as documented in g++: if a class
3379 // has both a trivial and a non-trivial special member of a particular kind,
3380 // they return false! For now, we emulate this behavior.
3381 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3382 // does not correctly compute triviality in the presence of multiple special
3383 // members of the same kind. Revisit this once the g++ bug is fixed.
3384 case UTT_HasTrivialDefaultConstructor:
3385 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3386 // If __is_pod (type) is true then the trait is true, else if type is
3387 // a cv class or union type (or array thereof) with a trivial default
3388 // constructor ([class.ctor]) then the trait is true, else it is false.
3389 if (T.isPODType(Self.Context))
3390 return true;
3391 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3392 return RD->hasTrivialDefaultConstructor() &&
3393 !RD->hasNonTrivialDefaultConstructor();
3394 return false;
3395 case UTT_HasTrivialMoveConstructor:
3396 // This trait is implemented by MSVC 2012 and needed to parse the
3397 // standard library headers. Specifically this is used as the logic
3398 // behind std::is_trivially_move_constructible (20.9.4.3).
3399 if (T.isPODType(Self.Context))
3400 return true;
3401 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3402 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3403 return false;
3404 case UTT_HasTrivialCopy:
3405 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3406 // If __is_pod (type) is true or type is a reference type then
3407 // the trait is true, else if type is a cv class or union type
3408 // with a trivial copy constructor ([class.copy]) then the trait
3409 // is true, else it is false.
3410 if (T.isPODType(Self.Context) || T->isReferenceType())
3411 return true;
3412 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3413 return RD->hasTrivialCopyConstructor() &&
3414 !RD->hasNonTrivialCopyConstructor();
3415 return false;
3416 case UTT_HasTrivialMoveAssign:
3417 // This trait is implemented by MSVC 2012 and needed to parse the
3418 // standard library headers. Specifically it is used as the logic
3419 // behind std::is_trivially_move_assignable (20.9.4.3)
3420 if (T.isPODType(Self.Context))
3421 return true;
3422 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3423 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3424 return false;
3425 case UTT_HasTrivialAssign:
3426 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3427 // If type is const qualified or is a reference type then the
3428 // trait is false. Otherwise if __is_pod (type) is true then the
3429 // trait is true, else if type is a cv class or union type with
3430 // a trivial copy assignment ([class.copy]) then the trait is
3431 // true, else it is false.
3432 // Note: the const and reference restrictions are interesting,
3433 // given that const and reference members don't prevent a class
3434 // from having a trivial copy assignment operator (but do cause
3435 // errors if the copy assignment operator is actually used, q.v.
3436 // [class.copy]p12).
3437
3438 if (T.isConstQualified())
3439 return false;
3440 if (T.isPODType(Self.Context))
3441 return true;
3442 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3443 return RD->hasTrivialCopyAssignment() &&
3444 !RD->hasNonTrivialCopyAssignment();
3445 return false;
3446 case UTT_IsDestructible:
3447 case UTT_IsNothrowDestructible:
3448 // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible.
3449 // For now, let's fall through.
3450 case UTT_HasTrivialDestructor:
3451 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3452 // If __is_pod (type) is true or type is a reference type
3453 // then the trait is true, else if type is a cv class or union
3454 // type (or array thereof) with a trivial destructor
3455 // ([class.dtor]) then the trait is true, else it is
3456 // false.
3457 if (T.isPODType(Self.Context) || T->isReferenceType())
3458 return true;
3459
3460 // Objective-C++ ARC: autorelease types don't require destruction.
3461 if (T->isObjCLifetimeType() &&
3462 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3463 return true;
3464
3465 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3466 return RD->hasTrivialDestructor();
3467 return false;
3468 // TODO: Propagate nothrowness for implicitly declared special members.
3469 case UTT_HasNothrowAssign:
3470 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3471 // If type is const qualified or is a reference type then the
3472 // trait is false. Otherwise if __has_trivial_assign (type)
3473 // is true then the trait is true, else if type is a cv class
3474 // or union type with copy assignment operators that are known
3475 // not to throw an exception then the trait is true, else it is
3476 // false.
3477 if (C.getBaseElementType(T).isConstQualified())
3478 return false;
3479 if (T->isReferenceType())
3480 return false;
3481 if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3482 return true;
3483
3484 if (const RecordType *RT = T->getAs<RecordType>())
3485 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3486 &CXXRecordDecl::hasTrivialCopyAssignment,
3487 &CXXRecordDecl::hasNonTrivialCopyAssignment,
3488 &CXXMethodDecl::isCopyAssignmentOperator);
3489 return false;
3490 case UTT_HasNothrowMoveAssign:
3491 // This trait is implemented by MSVC 2012 and needed to parse the
3492 // standard library headers. Specifically this is used as the logic
3493 // behind std::is_nothrow_move_assignable (20.9.4.3).
3494 if (T.isPODType(Self.Context))
3495 return true;
3496
3497 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3498 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3499 &CXXRecordDecl::hasTrivialMoveAssignment,
3500 &CXXRecordDecl::hasNonTrivialMoveAssignment,
3501 &CXXMethodDecl::isMoveAssignmentOperator);
3502 return false;
3503 case UTT_HasNothrowCopy:
3504 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3505 // If __has_trivial_copy (type) is true then the trait is true, else
3506 // if type is a cv class or union type with copy constructors that are
3507 // known not to throw an exception then the trait is true, else it is
3508 // false.
3509 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3510 return true;
3511 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3512 if (RD->hasTrivialCopyConstructor() &&
3513 !RD->hasNonTrivialCopyConstructor())
3514 return true;
3515
3516 bool FoundConstructor = false;
3517 unsigned FoundTQs;
3518 DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3519 for (DeclContext::lookup_const_iterator Con = R.begin(),
3520 ConEnd = R.end(); Con != ConEnd; ++Con) {
3521 // A template constructor is never a copy constructor.
3522 // FIXME: However, it may actually be selected at the actual overload
3523 // resolution point.
3524 if (isa<FunctionTemplateDecl>(*Con))
3525 continue;
3526 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3527 if (Constructor->isCopyConstructor(FoundTQs)) {
3528 FoundConstructor = true;
3529 const FunctionProtoType *CPT
3530 = Constructor->getType()->getAs<FunctionProtoType>();
3531 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3532 if (!CPT)
3533 return false;
3534 // TODO: check whether evaluating default arguments can throw.
3535 // For now, we'll be conservative and assume that they can throw.
3536 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1)
3537 return false;
3538 }
3539 }
3540
3541 return FoundConstructor;
3542 }
3543 return false;
3544 case UTT_HasNothrowConstructor:
3545 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3546 // If __has_trivial_constructor (type) is true then the trait is
3547 // true, else if type is a cv class or union type (or array
3548 // thereof) with a default constructor that is known not to
3549 // throw an exception then the trait is true, else it is false.
3550 if (T.isPODType(C) || T->isObjCLifetimeType())
3551 return true;
3552 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3553 if (RD->hasTrivialDefaultConstructor() &&
3554 !RD->hasNonTrivialDefaultConstructor())
3555 return true;
3556
3557 bool FoundConstructor = false;
3558 DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3559 for (DeclContext::lookup_const_iterator Con = R.begin(),
3560 ConEnd = R.end(); Con != ConEnd; ++Con) {
3561 // FIXME: In C++0x, a constructor template can be a default constructor.
3562 if (isa<FunctionTemplateDecl>(*Con))
3563 continue;
3564 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3565 if (Constructor->isDefaultConstructor()) {
3566 FoundConstructor = true;
3567 const FunctionProtoType *CPT
3568 = Constructor->getType()->getAs<FunctionProtoType>();
3569 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3570 if (!CPT)
3571 return false;
3572 // FIXME: check whether evaluating default arguments can throw.
3573 // For now, we'll be conservative and assume that they can throw.
3574 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0)
3575 return false;
3576 }
3577 }
3578 return FoundConstructor;
3579 }
3580 return false;
3581 case UTT_HasVirtualDestructor:
3582 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3583 // If type is a class type with a virtual destructor ([class.dtor])
3584 // then the trait is true, else it is false.
3585 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3586 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3587 return Destructor->isVirtual();
3588 return false;
3589
3590 // These type trait expressions are modeled on the specifications for the
3591 // Embarcadero C++0x type trait functions:
3592 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3593 case UTT_IsCompleteType:
3594 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3595 // Returns True if and only if T is a complete type at the point of the
3596 // function call.
3597 return !T->isIncompleteType();
3598 }
3599}
3600
3601/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3602/// ARC mode.
3603static bool hasNontrivialObjCLifetime(QualType T) {
3604 switch (T.getObjCLifetime()) {
3605 case Qualifiers::OCL_ExplicitNone:
3606 return false;
3607
3608 case Qualifiers::OCL_Strong:
3609 case Qualifiers::OCL_Weak:
3610 case Qualifiers::OCL_Autoreleasing:
3611 return true;
3612
3613 case Qualifiers::OCL_None:
3614 return T->isObjCLifetimeType();
3615 }
3616
3617 llvm_unreachable("Unknown ObjC lifetime qualifier")::llvm::llvm_unreachable_internal("Unknown ObjC lifetime qualifier"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3617)
;
3618}
3619
3620static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
3621 QualType RhsT, SourceLocation KeyLoc);
3622
3623static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3624 ArrayRef<TypeSourceInfo *> Args,
3625 SourceLocation RParenLoc) {
3626 if (Kind <= UTT_Last)
3627 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
3628
3629 if (Kind <= BTT_Last)
3630 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
3631 Args[1]->getType(), RParenLoc);
3632
3633 switch (Kind) {
3634 case clang::TT_IsConstructible:
3635 case clang::TT_IsNothrowConstructible:
3636 case clang::TT_IsTriviallyConstructible: {
3637 // C++11 [meta.unary.prop]:
3638 // is_trivially_constructible is defined as:
3639 //
3640 // is_constructible<T, Args...>::value is true and the variable
3641 // definition for is_constructible, as defined below, is known to call
3642 // no operation that is not trivial.
3643 //
3644 // The predicate condition for a template specialization
3645 // is_constructible<T, Args...> shall be satisfied if and only if the
3646 // following variable definition would be well-formed for some invented
3647 // variable t:
3648 //
3649 // T t(create<Args>()...);
3650 assert(!Args.empty())((!Args.empty()) ? static_cast<void> (0) : __assert_fail
("!Args.empty()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3650, __PRETTY_FUNCTION__))
;
3651
3652 // Precondition: T and all types in the parameter pack Args shall be
3653 // complete types, (possibly cv-qualified) void, or arrays of
3654 // unknown bound.
3655 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3656 QualType ArgTy = Args[I]->getType();
3657 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
3658 continue;
3659
3660 if (S.RequireCompleteType(KWLoc, ArgTy,
3661 diag::err_incomplete_type_used_in_type_trait_expr))
3662 return false;
3663 }
3664
3665 // Make sure the first argument is a complete type.
3666 if (Args[0]->getType()->isIncompleteType())
3667 return false;
3668
3669 // Make sure the first argument is not an abstract type.
3670 CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl();
3671 if (RD && RD->isAbstract())
3672 return false;
3673
3674 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3675 SmallVector<Expr *, 2> ArgExprs;
3676 ArgExprs.reserve(Args.size() - 1);
3677 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3678 QualType T = Args[I]->getType();
3679 if (T->isObjectType() || T->isFunctionType())
3680 T = S.Context.getRValueReferenceType(T);
3681 OpaqueArgExprs.push_back(
3682 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3683 T.getNonLValueExprType(S.Context),
3684 Expr::getValueKindForType(T)));
3685 }
3686 for (Expr &E : OpaqueArgExprs)
3687 ArgExprs.push_back(&E);
3688
3689 // Perform the initialization in an unevaluated context within a SFINAE
3690 // trap at translation unit scope.
3691 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3692 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3693 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3694 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3695 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3696 RParenLoc));
3697 InitializationSequence Init(S, To, InitKind, ArgExprs);
3698 if (Init.Failed())
3699 return false;
3700
3701 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3702 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3703 return false;
3704
3705 if (Kind == clang::TT_IsConstructible)
3706 return true;
3707
3708 if (Kind == clang::TT_IsNothrowConstructible)
3709 return S.canThrow(Result.get()) == CT_Cannot;
3710
3711 if (Kind == clang::TT_IsTriviallyConstructible) {
3712 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3713 // lifetime, this is a non-trivial construction.
3714 if (S.getLangOpts().ObjCAutoRefCount &&
3715 hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3716 return false;
3717
3718 // The initialization succeeded; now make sure there are no non-trivial
3719 // calls.
3720 return !Result.get()->hasNonTrivialCall(S.Context);
3721 }
3722
3723 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3723)
;
3724 return false;
3725 }
3726 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3726)
;
3727 }
3728
3729 return false;
3730}
3731
3732ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3733 ArrayRef<TypeSourceInfo *> Args,
3734 SourceLocation RParenLoc) {
3735 QualType ResultType = Context.getLogicalOperationType();
3736
3737 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
3738 *this, Kind, KWLoc, Args[0]->getType()))
3739 return ExprError();
3740
3741 bool Dependent = false;
3742 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3743 if (Args[I]->getType()->isDependentType()) {
3744 Dependent = true;
3745 break;
3746 }
3747 }
3748
3749 bool Result = false;
3750 if (!Dependent)
3751 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3752
3753 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
3754 RParenLoc, Result);
3755}
3756
3757ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3758 ArrayRef<ParsedType> Args,
3759 SourceLocation RParenLoc) {
3760 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3761 ConvertedArgs.reserve(Args.size());
3762
3763 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3764 TypeSourceInfo *TInfo;
3765 QualType T = GetTypeFromParser(Args[I], &TInfo);
3766 if (!TInfo)
3767 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3768
3769 ConvertedArgs.push_back(TInfo);
3770 }
3771
3772 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3773}
3774
3775static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
3776 QualType RhsT, SourceLocation KeyLoc) {
3777 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&((!LhsT->isDependentType() && !RhsT->isDependentType
() && "Cannot evaluate traits of dependent types") ? static_cast
<void> (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3778, __PRETTY_FUNCTION__))
3778 "Cannot evaluate traits of dependent types")((!LhsT->isDependentType() && !RhsT->isDependentType
() && "Cannot evaluate traits of dependent types") ? static_cast
<void> (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3778, __PRETTY_FUNCTION__))
;
3779
3780 switch(BTT) {
3781 case BTT_IsBaseOf: {
3782 // C++0x [meta.rel]p2
3783 // Base is a base class of Derived without regard to cv-qualifiers or
3784 // Base and Derived are not unions and name the same class type without
3785 // regard to cv-qualifiers.
3786
3787 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3788 if (!lhsRecord) return false;
3789
3790 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3791 if (!rhsRecord) return false;
3792
3793 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)((Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord
== rhsRecord)) ? static_cast<void> (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3794, __PRETTY_FUNCTION__))
3794 == (lhsRecord == rhsRecord))((Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord
== rhsRecord)) ? static_cast<void> (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3794, __PRETTY_FUNCTION__))
;
3795
3796 if (lhsRecord == rhsRecord)
3797 return !lhsRecord->getDecl()->isUnion();
3798
3799 // C++0x [meta.rel]p2:
3800 // If Base and Derived are class types and are different types
3801 // (ignoring possible cv-qualifiers) then Derived shall be a
3802 // complete type.
3803 if (Self.RequireCompleteType(KeyLoc, RhsT,
3804 diag::err_incomplete_type_used_in_type_trait_expr))
3805 return false;
3806
3807 return cast<CXXRecordDecl>(rhsRecord->getDecl())
3808 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3809 }
3810 case BTT_IsSame:
3811 return Self.Context.hasSameType(LhsT, RhsT);
3812 case BTT_TypeCompatible:
3813 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3814 RhsT.getUnqualifiedType());
3815 case BTT_IsConvertible:
3816 case BTT_IsConvertibleTo: {
3817 // C++0x [meta.rel]p4:
3818 // Given the following function prototype:
3819 //
3820 // template <class T>
3821 // typename add_rvalue_reference<T>::type create();
3822 //
3823 // the predicate condition for a template specialization
3824 // is_convertible<From, To> shall be satisfied if and only if
3825 // the return expression in the following code would be
3826 // well-formed, including any implicit conversions to the return
3827 // type of the function:
3828 //
3829 // To test() {
3830 // return create<From>();
3831 // }
3832 //
3833 // Access checking is performed as if in a context unrelated to To and
3834 // From. Only the validity of the immediate context of the expression
3835 // of the return-statement (including conversions to the return type)
3836 // is considered.
3837 //
3838 // We model the initialization as a copy-initialization of a temporary
3839 // of the appropriate type, which for this expression is identical to the
3840 // return statement (since NRVO doesn't apply).
3841
3842 // Functions aren't allowed to return function or array types.
3843 if (RhsT->isFunctionType() || RhsT->isArrayType())
3844 return false;
3845
3846 // A return statement in a void function must have void type.
3847 if (RhsT->isVoidType())
3848 return LhsT->isVoidType();
3849
3850 // A function definition requires a complete, non-abstract return type.
3851 if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3852 Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3853 return false;
3854
3855 // Compute the result of add_rvalue_reference.
3856 if (LhsT->isObjectType() || LhsT->isFunctionType())
3857 LhsT = Self.Context.getRValueReferenceType(LhsT);
3858
3859 // Build a fake source and destination for initialization.
3860 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3861 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3862 Expr::getValueKindForType(LhsT));
3863 Expr *FromPtr = &From;
3864 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3865 SourceLocation()));
3866
3867 // Perform the initialization in an unevaluated context within a SFINAE
3868 // trap at translation unit scope.
3869 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3870 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3871 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3872 InitializationSequence Init(Self, To, Kind, FromPtr);
3873 if (Init.Failed())
3874 return false;
3875
3876 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3877 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3878 }
3879
3880 case BTT_IsNothrowAssignable:
3881 case BTT_IsTriviallyAssignable: {
3882 // C++11 [meta.unary.prop]p3:
3883 // is_trivially_assignable is defined as:
3884 // is_assignable<T, U>::value is true and the assignment, as defined by
3885 // is_assignable, is known to call no operation that is not trivial
3886 //
3887 // is_assignable is defined as:
3888 // The expression declval<T>() = declval<U>() is well-formed when
3889 // treated as an unevaluated operand (Clause 5).
3890 //
3891 // For both, T and U shall be complete types, (possibly cv-qualified)
3892 // void, or arrays of unknown bound.
3893 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3894 Self.RequireCompleteType(KeyLoc, LhsT,
3895 diag::err_incomplete_type_used_in_type_trait_expr))
3896 return false;
3897 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3898 Self.RequireCompleteType(KeyLoc, RhsT,
3899 diag::err_incomplete_type_used_in_type_trait_expr))
3900 return false;
3901
3902 // cv void is never assignable.
3903 if (LhsT->isVoidType() || RhsT->isVoidType())
3904 return false;
3905
3906 // Build expressions that emulate the effect of declval<T>() and
3907 // declval<U>().
3908 if (LhsT->isObjectType() || LhsT->isFunctionType())
3909 LhsT = Self.Context.getRValueReferenceType(LhsT);
3910 if (RhsT->isObjectType() || RhsT->isFunctionType())
3911 RhsT = Self.Context.getRValueReferenceType(RhsT);
3912 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3913 Expr::getValueKindForType(LhsT));
3914 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3915 Expr::getValueKindForType(RhsT));
3916
3917 // Attempt the assignment in an unevaluated context within a SFINAE
3918 // trap at translation unit scope.
3919 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3920 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3921 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3922 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
3923 &Rhs);
3924 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3925 return false;
3926
3927 if (BTT == BTT_IsNothrowAssignable)
3928 return Self.canThrow(Result.get()) == CT_Cannot;
3929
3930 if (BTT == BTT_IsTriviallyAssignable) {
3931 // Under Objective-C ARC, if the destination has non-trivial Objective-C
3932 // lifetime, this is a non-trivial assignment.
3933 if (Self.getLangOpts().ObjCAutoRefCount &&
3934 hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3935 return false;
3936
3937 return !Result.get()->hasNonTrivialCall(Self.Context);
3938 }
3939
3940 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3940)
;
3941 return false;
3942 }
3943 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3943)
;
3944 }
3945 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3945)
;
3946}
3947
3948ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3949 SourceLocation KWLoc,
3950 ParsedType Ty,
3951 Expr* DimExpr,
3952 SourceLocation RParen) {
3953 TypeSourceInfo *TSInfo;
3954 QualType T = GetTypeFromParser(Ty, &TSInfo);
3955 if (!TSInfo)
3956 TSInfo = Context.getTrivialTypeSourceInfo(T);
3957
3958 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3959}
3960
3961static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3962 QualType T, Expr *DimExpr,
3963 SourceLocation KeyLoc) {
3964 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((!T->isDependentType() && "Cannot evaluate traits of dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3964, __PRETTY_FUNCTION__))
;
3965
3966 switch(ATT) {
3967 case ATT_ArrayRank:
3968 if (T->isArrayType()) {
3969 unsigned Dim = 0;
3970 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3971 ++Dim;
3972 T = AT->getElementType();
3973 }
3974 return Dim;
3975 }
3976 return 0;
3977
3978 case ATT_ArrayExtent: {
3979 llvm::APSInt Value;
3980 uint64_t Dim;
3981 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3982 diag::err_dimension_expr_not_constant_integer,
3983 false).isInvalid())
3984 return 0;
3985 if (Value.isSigned() && Value.isNegative()) {
3986 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3987 << DimExpr->getSourceRange();
3988 return 0;
3989 }
3990 Dim = Value.getLimitedValue();
3991
3992 if (T->isArrayType()) {
3993 unsigned D = 0;
3994 bool Matched = false;
3995 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3996 if (Dim == D) {
3997 Matched = true;
3998 break;
3999 }
4000 ++D;
4001 T = AT->getElementType();
4002 }
4003
4004 if (Matched && T->isArrayType()) {
4005 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
4006 return CAT->getSize().getLimitedValue();
4007 }
4008 }
4009 return 0;
4010 }
4011 }
4012 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4012)
;
4013}
4014
4015ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
4016 SourceLocation KWLoc,
4017 TypeSourceInfo *TSInfo,
4018 Expr* DimExpr,
4019 SourceLocation RParen) {
4020 QualType T = TSInfo->getType();
4021
4022 // FIXME: This should likely be tracked as an APInt to remove any host
4023 // assumptions about the width of size_t on the target.
4024 uint64_t Value = 0;
4025 if (!T->isDependentType())
4026 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4027
4028 // While the specification for these traits from the Embarcadero C++
4029 // compiler's documentation says the return type is 'unsigned int', Clang
4030 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4031 // compiler, there is no difference. On several other platforms this is an
4032 // important distinction.
4033 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4034 RParen, Context.getSizeType());
4035}
4036
4037ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4038 SourceLocation KWLoc,
4039 Expr *Queried,
4040 SourceLocation RParen) {
4041 // If error parsing the expression, ignore.
4042 if (!Queried)
4043 return ExprError();
4044
4045 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4046
4047 return Result;
4048}
4049
4050static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4051 switch (ET) {
4052 case ET_IsLValueExpr: return E->isLValue();
4053 case ET_IsRValueExpr: return E->isRValue();
4054 }
4055 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4055)
;
4056}
4057
4058ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4059 SourceLocation KWLoc,
4060 Expr *Queried,
4061 SourceLocation RParen) {
4062 if (Queried->isTypeDependent()) {
4063 // Delay type-checking for type-dependent expressions.
4064 } else if (Queried->getType()->isPlaceholderType()) {
4065 ExprResult PE = CheckPlaceholderExpr(Queried);
4066 if (PE.isInvalid()) return ExprError();
4067 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
4068 }
4069
4070 bool Value = EvaluateExpressionTrait(ET, Queried);
4071
4072 return new (Context)
4073 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
4074}
4075
4076QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4077 ExprValueKind &VK,
4078 SourceLocation Loc,
4079 bool isIndirect) {
4080 assert(!LHS.get()->getType()->isPlaceholderType() &&((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4082, __PRETTY_FUNCTION__))
4081 !RHS.get()->getType()->isPlaceholderType() &&((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4082, __PRETTY_FUNCTION__))
4082 "placeholders should have been weeded out by now")((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4082, __PRETTY_FUNCTION__))
;
4083
4084 // The LHS undergoes lvalue conversions if this is ->*.
4085 if (isIndirect) {
4086 LHS = DefaultLvalueConversion(LHS.get());
4087 if (LHS.isInvalid()) return QualType();
4088 }
4089
4090 // The RHS always undergoes lvalue conversions.
4091 RHS = DefaultLvalueConversion(RHS.get());
4092 if (RHS.isInvalid()) return QualType();
4093
4094 const char *OpSpelling = isIndirect ? "->*" : ".*";
4095 // C++ 5.5p2
4096 // The binary operator .* [p3: ->*] binds its second operand, which shall
4097 // be of type "pointer to member of T" (where T is a completely-defined
4098 // class type) [...]
4099 QualType RHSType = RHS.get()->getType();
4100 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4101 if (!MemPtr) {
4102 Diag(Loc, diag::err_bad_memptr_rhs)
4103 << OpSpelling << RHSType << RHS.get()->getSourceRange();
4104 return QualType();
4105 }
4106
4107 QualType Class(MemPtr->getClass(), 0);
4108
4109 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4110 // member pointer points must be completely-defined. However, there is no
4111 // reason for this semantic distinction, and the rule is not enforced by
4112 // other compilers. Therefore, we do not check this property, as it is
4113 // likely to be considered a defect.
4114
4115 // C++ 5.5p2
4116 // [...] to its first operand, which shall be of class T or of a class of
4117 // which T is an unambiguous and accessible base class. [p3: a pointer to
4118 // such a class]
4119 QualType LHSType = LHS.get()->getType();
4120 if (isIndirect) {
4121 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4122 LHSType = Ptr->getPointeeType();
4123 else {
4124 Diag(Loc, diag::err_bad_memptr_lhs)
4125 << OpSpelling << 1 << LHSType
4126 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4127 return QualType();
4128 }
4129 }
4130
4131 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4132 // If we want to check the hierarchy, we need a complete type.
4133 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4134 OpSpelling, (int)isIndirect)) {
4135 return QualType();
4136 }
4137
4138 if (!IsDerivedFrom(LHSType, Class)) {
4139 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4140 << (int)isIndirect << LHS.get()->getType();
4141 return QualType();
4142 }
4143
4144 CXXCastPath BasePath;
4145 if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
4146 SourceRange(LHS.get()->getLocStart(),
4147 RHS.get()->getLocEnd()),
4148 &BasePath))
4149 return QualType();
4150
4151 // Cast LHS to type of use.
4152 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4153 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4154 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
4155 &BasePath);
4156 }
4157
4158 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4159 // Diagnose use of pointer-to-member type which when used as
4160 // the functional cast in a pointer-to-member expression.
4161 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4162 return QualType();
4163 }
4164
4165 // C++ 5.5p2
4166 // The result is an object or a function of the type specified by the
4167 // second operand.
4168 // The cv qualifiers are the union of those in the pointer and the left side,
4169 // in accordance with 5.5p5 and 5.2.5.
4170 QualType Result = MemPtr->getPointeeType();
4171 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4172
4173 // C++0x [expr.mptr.oper]p6:
4174 // In a .* expression whose object expression is an rvalue, the program is
4175 // ill-formed if the second operand is a pointer to member function with
4176 // ref-qualifier &. In a ->* expression or in a .* expression whose object
4177 // expression is an lvalue, the program is ill-formed if the second operand
4178 // is a pointer to member function with ref-qualifier &&.
4179 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4180 switch (Proto->getRefQualifier()) {
4181 case RQ_None:
4182 // Do nothing
4183 break;
4184
4185 case RQ_LValue:
4186 if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4187 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4188 << RHSType << 1 << LHS.get()->getSourceRange();
4189 break;
4190
4191 case RQ_RValue:
4192 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4193 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4194 << RHSType << 0 << LHS.get()->getSourceRange();
4195 break;
4196 }
4197 }
4198
4199 // C++ [expr.mptr.oper]p6:
4200 // The result of a .* expression whose second operand is a pointer
4201 // to a data member is of the same value category as its
4202 // first operand. The result of a .* expression whose second
4203 // operand is a pointer to a member function is a prvalue. The
4204 // result of an ->* expression is an lvalue if its second operand
4205 // is a pointer to data member and a prvalue otherwise.
4206 if (Result->isFunctionType()) {
4207 VK = VK_RValue;
4208 return Context.BoundMemberTy;
4209 } else if (isIndirect) {
4210 VK = VK_LValue;
4211 } else {
4212 VK = LHS.get()->getValueKind();
4213 }
4214
4215 return Result;
4216}
4217
4218/// \brief Try to convert a type to another according to C++0x 5.16p3.
4219///
4220/// This is part of the parameter validation for the ? operator. If either
4221/// value operand is a class type, the two operands are attempted to be
4222/// converted to each other. This function does the conversion in one direction.
4223/// It returns true if the program is ill-formed and has already been diagnosed
4224/// as such.
4225static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4226 SourceLocation QuestionLoc,
4227 bool &HaveConversion,
4228 QualType &ToType) {
4229 HaveConversion = false;
4230 ToType = To->getType();
4231
4232 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4233 SourceLocation());
4234 // C++0x 5.16p3
4235 // The process for determining whether an operand expression E1 of type T1
4236 // can be converted to match an operand expression E2 of type T2 is defined
4237 // as follows:
4238 // -- If E2 is an lvalue:
4239 bool ToIsLvalue = To->isLValue();
4240 if (ToIsLvalue) {
4241 // E1 can be converted to match E2 if E1 can be implicitly converted to
4242 // type "lvalue reference to T2", subject to the constraint that in the
4243 // conversion the reference must bind directly to E1.
4244 QualType T = Self.Context.getLValueReferenceType(ToType);
4245 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4246
4247 InitializationSequence InitSeq(Self, Entity, Kind, From);
4248 if (InitSeq.isDirectReferenceBinding()) {
4249 ToType = T;
4250 HaveConversion = true;
4251 return false;
4252 }
4253
4254 if (InitSeq.isAmbiguous())
4255 return InitSeq.Diagnose(Self, Entity, Kind, From);
4256 }
4257
4258 // -- If E2 is an rvalue, or if the conversion above cannot be done:
4259 // -- if E1 and E2 have class type, and the underlying class types are
4260 // the same or one is a base class of the other:
4261 QualType FTy = From->getType();
4262 QualType TTy = To->getType();
4263 const RecordType *FRec = FTy->getAs<RecordType>();
4264 const RecordType *TRec = TTy->getAs<RecordType>();
4265 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4266 Self.IsDerivedFrom(FTy, TTy);
4267 if (FRec && TRec &&
4268 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4269 // E1 can be converted to match E2 if the class of T2 is the
4270 // same type as, or a base class of, the class of T1, and
4271 // [cv2 > cv1].
4272 if (FRec == TRec || FDerivedFromT) {
4273 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4274 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4275 InitializationSequence InitSeq(Self, Entity, Kind, From);
4276 if (InitSeq) {
4277 HaveConversion = true;
4278 return false;
4279 }
4280
4281 if (InitSeq.isAmbiguous())
4282 return InitSeq.Diagnose(Self, Entity, Kind, From);
4283 }
4284 }
4285
4286 return false;
4287 }
4288
4289 // -- Otherwise: E1 can be converted to match E2 if E1 can be
4290 // implicitly converted to the type that expression E2 would have
4291 // if E2 were converted to an rvalue (or the type it has, if E2 is
4292 // an rvalue).
4293 //
4294 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4295 // to the array-to-pointer or function-to-pointer conversions.
4296 if (!TTy->getAs<TagType>())
4297 TTy = TTy.getUnqualifiedType();
4298
4299 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4300 InitializationSequence InitSeq(Self, Entity, Kind, From);
4301 HaveConversion = !InitSeq.Failed();
4302 ToType = TTy;
4303 if (InitSeq.isAmbiguous())
4304 return InitSeq.Diagnose(Self, Entity, Kind, From);
4305
4306 return false;
4307}
4308
4309/// \brief Try to find a common type for two according to C++0x 5.16p5.
4310///
4311/// This is part of the parameter validation for the ? operator. If either
4312/// value operand is a class type, overload resolution is used to find a
4313/// conversion to a common type.
4314static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4315 SourceLocation QuestionLoc) {
4316 Expr *Args[2] = { LHS.get(), RHS.get() };
4317 OverloadCandidateSet CandidateSet(QuestionLoc,
4318 OverloadCandidateSet::CSK_Operator);
4319 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4320 CandidateSet);
4321
4322 OverloadCandidateSet::iterator Best;
4323 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4324 case OR_Success: {
4325 // We found a match. Perform the conversions on the arguments and move on.
4326 ExprResult LHSRes =
4327 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4328 Best->Conversions[0], Sema::AA_Converting);
4329 if (LHSRes.isInvalid())
4330 break;
4331 LHS = LHSRes;
4332
4333 ExprResult RHSRes =
4334 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4335 Best->Conversions[1], Sema::AA_Converting);
4336 if (RHSRes.isInvalid())
4337 break;
4338 RHS = RHSRes;
4339 if (Best->Function)
4340 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4341 return false;
4342 }
4343
4344 case OR_No_Viable_Function:
4345
4346 // Emit a better diagnostic if one of the expressions is a null pointer
4347 // constant and the other is a pointer type. In this case, the user most
4348 // likely forgot to take the address of the other expression.
4349 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4350 return true;
4351
4352 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4353 << LHS.get()->getType() << RHS.get()->getType()
4354 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4355 return true;
4356
4357 case OR_Ambiguous:
4358 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4359 << LHS.get()->getType() << RHS.get()->getType()
4360 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4361 // FIXME: Print the possible common types by printing the return types of
4362 // the viable candidates.
4363 break;
4364
4365 case OR_Deleted:
4366 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4366)
;
4367 }
4368 return true;
4369}
4370
4371/// \brief Perform an "extended" implicit conversion as returned by
4372/// TryClassUnification.
4373static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4374 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4375 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4376 SourceLocation());
4377 Expr *Arg = E.get();
4378 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4379 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4380 if (Result.isInvalid())
4381 return true;
4382
4383 E = Result;
4384 return false;
4385}
4386
4387/// \brief Check the operands of ?: under C++ semantics.
4388///
4389/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4390/// extension. In this case, LHS == Cond. (But they're not aliases.)
4391QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4392 ExprResult &RHS, ExprValueKind &VK,
4393 ExprObjectKind &OK,
4394 SourceLocation QuestionLoc) {
4395 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4396 // interface pointers.
4397
4398 // C++11 [expr.cond]p1
4399 // The first expression is contextually converted to bool.
4400 if (!Cond.get()->isTypeDependent()) {
4401 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
4402 if (CondRes.isInvalid())
4403 return QualType();
4404 Cond = CondRes;
4405 }
4406
4407 // Assume r-value.
4408 VK = VK_RValue;
4409 OK = OK_Ordinary;
4410
4411 // Either of the arguments dependent?
4412 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4413 return Context.DependentTy;
4414
4415 // C++11 [expr.cond]p2
4416 // If either the second or the third operand has type (cv) void, ...
4417 QualType LTy = LHS.get()->getType();
4418 QualType RTy = RHS.get()->getType();
4419 bool LVoid = LTy->isVoidType();
4420 bool RVoid = RTy->isVoidType();
4421 if (LVoid || RVoid) {
4422 // ... one of the following shall hold:
4423 // -- The second or the third operand (but not both) is a (possibly
4424 // parenthesized) throw-expression; the result is of the type
4425 // and value category of the other.
4426 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
4427 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
4428 if (LThrow != RThrow) {
4429 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
4430 VK = NonThrow->getValueKind();
4431 // DR (no number yet): the result is a bit-field if the
4432 // non-throw-expression operand is a bit-field.
4433 OK = NonThrow->getObjectKind();
4434 return NonThrow->getType();
4435 }
4436
4437 // -- Both the second and third operands have type void; the result is of
4438 // type void and is a prvalue.
4439 if (LVoid && RVoid)
4440 return Context.VoidTy;
4441
4442 // Neither holds, error.
4443 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4444 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4445 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4446 return QualType();
4447 }
4448
4449 // Neither is void.
4450
4451 // C++11 [expr.cond]p3
4452 // Otherwise, if the second and third operand have different types, and
4453 // either has (cv) class type [...] an attempt is made to convert each of
4454 // those operands to the type of the other.
4455 if (!Context.hasSameType(LTy, RTy) &&
4456 (LTy->isRecordType() || RTy->isRecordType())) {
4457 // These return true if a single direction is already ambiguous.
4458 QualType L2RType, R2LType;
4459 bool HaveL2R, HaveR2L;
4460 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4461 return QualType();
4462 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4463 return QualType();
4464
4465 // If both can be converted, [...] the program is ill-formed.
4466 if (HaveL2R && HaveR2L) {
4467 Diag(QuestionLoc, diag::err_conditional_ambiguous)
4468 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4469 return QualType();
4470 }
4471
4472 // If exactly one conversion is possible, that conversion is applied to
4473 // the chosen operand and the converted operands are used in place of the
4474 // original operands for the remainder of this section.
4475 if (HaveL2R) {
4476 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4477 return QualType();
4478 LTy = LHS.get()->getType();
4479 } else if (HaveR2L) {
4480 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4481 return QualType();
4482 RTy = RHS.get()->getType();
4483 }
4484 }
4485
4486 // C++11 [expr.cond]p3
4487 // if both are glvalues of the same value category and the same type except
4488 // for cv-qualification, an attempt is made to convert each of those
4489 // operands to the type of the other.
4490 ExprValueKind LVK = LHS.get()->getValueKind();
4491 ExprValueKind RVK = RHS.get()->getValueKind();
4492 if (!Context.hasSameType(LTy, RTy) &&
4493 Context.hasSameUnqualifiedType(LTy, RTy) &&
4494 LVK == RVK && LVK != VK_RValue) {
4495 // Since the unqualified types are reference-related and we require the
4496 // result to be as if a reference bound directly, the only conversion
4497 // we can perform is to add cv-qualifiers.
4498 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4499 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4500 if (RCVR.isStrictSupersetOf(LCVR)) {
4501 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
4502 LTy = LHS.get()->getType();
4503 }
4504 else if (LCVR.isStrictSupersetOf(RCVR)) {
4505 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
4506 RTy = RHS.get()->getType();
4507 }
4508 }
4509
4510 // C++11 [expr.cond]p4
4511 // If the second and third operands are glvalues of the same value
4512 // category and have the same type, the result is of that type and
4513 // value category and it is a bit-field if the second or the third
4514 // operand is a bit-field, or if both are bit-fields.
4515 // We only extend this to bitfields, not to the crazy other kinds of
4516 // l-values.
4517 bool Same = Context.hasSameType(LTy, RTy);
4518 if (Same && LVK == RVK && LVK != VK_RValue &&
4519 LHS.get()->isOrdinaryOrBitFieldObject() &&
4520 RHS.get()->isOrdinaryOrBitFieldObject()) {
4521 VK = LHS.get()->getValueKind();
4522 if (LHS.get()->getObjectKind() == OK_BitField ||
4523 RHS.get()->getObjectKind() == OK_BitField)
4524 OK = OK_BitField;
4525 return LTy;
4526 }
4527
4528 // C++11 [expr.cond]p5
4529 // Otherwise, the result is a prvalue. If the second and third operands
4530 // do not have the same type, and either has (cv) class type, ...
4531 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4532 // ... overload resolution is used to determine the conversions (if any)
4533 // to be applied to the operands. If the overload resolution fails, the
4534 // program is ill-formed.
4535 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4536 return QualType();
4537 }
4538
4539 // C++11 [expr.cond]p6
4540 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4541 // conversions are performed on the second and third operands.
4542 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
4543 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
4544 if (LHS.isInvalid() || RHS.isInvalid())
4545 return QualType();
4546 LTy = LHS.get()->getType();
4547 RTy = RHS.get()->getType();
4548
4549 // After those conversions, one of the following shall hold:
4550 // -- The second and third operands have the same type; the result
4551 // is of that type. If the operands have class type, the result
4552 // is a prvalue temporary of the result type, which is
4553 // copy-initialized from either the second operand or the third
4554 // operand depending on the value of the first operand.
4555 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4556 if (LTy->isRecordType()) {
4557 // The operands have class type. Make a temporary copy.
4558 if (RequireNonAbstractType(QuestionLoc, LTy,
4559 diag::err_allocation_of_abstract_type))
4560 return QualType();
4561 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4562
4563 ExprResult LHSCopy = PerformCopyInitialization(Entity,
4564 SourceLocation(),
4565 LHS);
4566 if (LHSCopy.isInvalid())
4567 return QualType();
4568
4569 ExprResult RHSCopy = PerformCopyInitialization(Entity,
4570 SourceLocation(),
4571 RHS);
4572 if (RHSCopy.isInvalid())
4573 return QualType();
4574
4575 LHS = LHSCopy;
4576 RHS = RHSCopy;
4577 }
4578
4579 return LTy;
4580 }
4581
4582 // Extension: conditional operator involving vector types.
4583 if (LTy->isVectorType() || RTy->isVectorType())
4584 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4585
4586 // -- The second and third operands have arithmetic or enumeration type;
4587 // the usual arithmetic conversions are performed to bring them to a
4588 // common type, and the result is of that type.
4589 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4590 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
4591 if (LHS.isInvalid() || RHS.isInvalid())
4592 return QualType();
4593
4594 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
4595 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
4596
4597 return ResTy;
4598 }
4599
4600 // -- The second and third operands have pointer type, or one has pointer
4601 // type and the other is a null pointer constant, or both are null
4602 // pointer constants, at least one of which is non-integral; pointer
4603 // conversions and qualification conversions are performed to bring them
4604 // to their composite pointer type. The result is of the composite
4605 // pointer type.
4606 // -- The second and third operands have pointer to member type, or one has
4607 // pointer to member type and the other is a null pointer constant;
4608 // pointer to member conversions and qualification conversions are
4609 // performed to bring them to a common type, whose cv-qualification
4610 // shall match the cv-qualification of either the second or the third
4611 // operand. The result is of the common type.
4612 bool NonStandardCompositeType = false;
4613 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4614 isSFINAEContext() ? nullptr
4615 : &NonStandardCompositeType);
4616 if (!Composite.isNull()) {
4617 if (NonStandardCompositeType)
4618 Diag(QuestionLoc,
4619 diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4620 << LTy << RTy << Composite
4621 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4622
4623 return Composite;
4624 }
4625
4626 // Similarly, attempt to find composite type of two objective-c pointers.
4627 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4628 if (!Composite.isNull())
4629 return Composite;
4630
4631 // Check if we are using a null with a non-pointer type.
4632 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4633 return QualType();
4634
4635 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4636 << LHS.get()->getType() << RHS.get()->getType()
4637 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4638 return QualType();
4639}
4640
4641/// \brief Find a merged pointer type and convert the two expressions to it.
4642///
4643/// This finds the composite pointer type (or member pointer type) for @p E1
4644/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4645/// type and returns it.
4646/// It does not emit diagnostics.
4647///
4648/// \param Loc The location of the operator requiring these two expressions to
4649/// be converted to the composite pointer type.
4650///
4651/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4652/// a non-standard (but still sane) composite type to which both expressions
4653/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4654/// will be set true.
4655QualType Sema::FindCompositePointerType(SourceLocation Loc,
4656 Expr *&E1, Expr *&E2,
4657 bool *NonStandardCompositeType) {
4658 if (NonStandardCompositeType)
4659 *NonStandardCompositeType = false;
4660
4661 assert(getLangOpts().CPlusPlus && "This function assumes C++")((getLangOpts().CPlusPlus && "This function assumes C++"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4661, __PRETTY_FUNCTION__))
;
4662 QualType T1 = E1->getType(), T2 = E2->getType();
4663
4664 // C++11 5.9p2
4665 // Pointer conversions and qualification conversions are performed on
4666 // pointer operands to bring them to their composite pointer type. If
4667 // one operand is a null pointer constant, the composite pointer type is
4668 // std::nullptr_t if the other operand is also a null pointer constant or,
4669 // if the other operand is a pointer, the type of the other operand.
4670 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4671 !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4672 if (T1->isNullPtrType() &&
4673 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4674 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
4675 return T1;
4676 }
4677 if (T2->isNullPtrType() &&
4678 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4679 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
4680 return T2;
4681 }
4682 return QualType();
4683 }
4684
4685 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4686 if (T2->isMemberPointerType())
4687 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
4688 else
4689 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
4690 return T2;
4691 }
4692 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4693 if (T1->isMemberPointerType())
4694 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
4695 else
4696 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
4697 return T1;
4698 }
4699
4700 // Now both have to be pointers or member pointers.
4701 if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4702 (!T2->isPointerType() && !T2->isMemberPointerType()))
4703 return QualType();
4704
4705 // Otherwise, of one of the operands has type "pointer to cv1 void," then
4706 // the other has type "pointer to cv2 T" and the composite pointer type is
4707 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4708 // Otherwise, the composite pointer type is a pointer type similar to the
4709 // type of one of the operands, with a cv-qualification signature that is
4710 // the union of the cv-qualification signatures of the operand types.
4711 // In practice, the first part here is redundant; it's subsumed by the second.
4712 // What we do here is, we build the two possible composite types, and try the
4713 // conversions in both directions. If only one works, or if the two composite
4714 // types are the same, we have succeeded.
4715 // FIXME: extended qualifiers?
4716 typedef SmallVector<unsigned, 4> QualifierVector;
4717 QualifierVector QualifierUnion;
4718 typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4719 ContainingClassVector;
4720 ContainingClassVector MemberOfClass;
4721 QualType Composite1 = Context.getCanonicalType(T1),
4722 Composite2 = Context.getCanonicalType(T2);
4723 unsigned NeedConstBefore = 0;
4724 do {
4725 const PointerType *Ptr1, *Ptr2;
4726 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4727 (Ptr2 = Composite2->getAs<PointerType>())) {
4728 Composite1 = Ptr1->getPointeeType();
4729 Composite2 = Ptr2->getPointeeType();
4730
4731 // If we're allowed to create a non-standard composite type, keep track
4732 // of where we need to fill in additional 'const' qualifiers.
4733 if (NonStandardCompositeType &&
4734 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4735 NeedConstBefore = QualifierUnion.size();
4736
4737 QualifierUnion.push_back(
4738 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4739 MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
4740 continue;
4741 }
4742
4743 const MemberPointerType *MemPtr1, *MemPtr2;
4744 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4745 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4746 Composite1 = MemPtr1->getPointeeType();
4747 Composite2 = MemPtr2->getPointeeType();
4748
4749 // If we're allowed to create a non-standard composite type, keep track
4750 // of where we need to fill in additional 'const' qualifiers.
4751 if (NonStandardCompositeType &&
4752 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4753 NeedConstBefore = QualifierUnion.size();
4754
4755 QualifierUnion.push_back(
4756 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4757 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4758 MemPtr2->getClass()));
4759 continue;
4760 }
4761
4762 // FIXME: block pointer types?
4763
4764 // Cannot unwrap any more types.
4765 break;
4766 } while (true);
4767
4768 if (NeedConstBefore && NonStandardCompositeType) {
4769 // Extension: Add 'const' to qualifiers that come before the first qualifier
4770 // mismatch, so that our (non-standard!) composite type meets the
4771 // requirements of C++ [conv.qual]p4 bullet 3.
4772 for (unsigned I = 0; I != NeedConstBefore; ++I) {
4773 if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4774 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4775 *NonStandardCompositeType = true;
4776 }
4777 }
4778 }
4779
4780 // Rewrap the composites as pointers or member pointers with the union CVRs.
4781 ContainingClassVector::reverse_iterator MOC
4782 = MemberOfClass.rbegin();
4783 for (QualifierVector::reverse_iterator
4784 I = QualifierUnion.rbegin(),
4785 E = QualifierUnion.rend();
4786 I != E; (void)++I, ++MOC) {
4787 Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4788 if (MOC->first && MOC->second) {
4789 // Rebuild member pointer type
4790 Composite1 = Context.getMemberPointerType(
4791 Context.getQualifiedType(Composite1, Quals),
4792 MOC->first);
4793 Composite2 = Context.getMemberPointerType(
4794 Context.getQualifiedType(Composite2, Quals),
4795 MOC->second);
4796 } else {
4797 // Rebuild pointer type
4798 Composite1
4799 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4800 Composite2
4801 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4802 }
4803 }
4804
4805 // Try to convert to the first composite pointer type.
4806 InitializedEntity Entity1
4807 = InitializedEntity::InitializeTemporary(Composite1);
4808 InitializationKind Kind
4809 = InitializationKind::CreateCopy(Loc, SourceLocation());
4810 InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4811 InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4812
4813 if (E1ToC1 && E2ToC1) {
4814 // Conversion to Composite1 is viable.
4815 if (!Context.hasSameType(Composite1, Composite2)) {
4816 // Composite2 is a different type from Composite1. Check whether
4817 // Composite2 is also viable.
4818 InitializedEntity Entity2
4819 = InitializedEntity::InitializeTemporary(Composite2);
4820 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4821 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4822 if (E1ToC2 && E2ToC2) {
4823 // Both Composite1 and Composite2 are viable and are different;
4824 // this is an ambiguity.
4825 return QualType();
4826 }
4827 }
4828
4829 // Convert E1 to Composite1
4830 ExprResult E1Result
4831 = E1ToC1.Perform(*this, Entity1, Kind, E1);
4832 if (E1Result.isInvalid())
4833 return QualType();
4834 E1 = E1Result.getAs<Expr>();
4835
4836 // Convert E2 to Composite1
4837 ExprResult E2Result
4838 = E2ToC1.Perform(*this, Entity1, Kind, E2);
4839 if (E2Result.isInvalid())
4840 return QualType();
4841 E2 = E2Result.getAs<Expr>();
4842
4843 return Composite1;
4844 }
4845
4846 // Check whether Composite2 is viable.
4847 InitializedEntity Entity2
4848 = InitializedEntity::InitializeTemporary(Composite2);
4849 InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4850 InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4851 if (!E1ToC2 || !E2ToC2)
4852 return QualType();
4853
4854 // Convert E1 to Composite2
4855 ExprResult E1Result
4856 = E1ToC2.Perform(*this, Entity2, Kind, E1);
4857 if (E1Result.isInvalid())
4858 return QualType();
4859 E1 = E1Result.getAs<Expr>();
4860
4861 // Convert E2 to Composite2
4862 ExprResult E2Result
4863 = E2ToC2.Perform(*this, Entity2, Kind, E2);
4864 if (E2Result.isInvalid())
4865 return QualType();
4866 E2 = E2Result.getAs<Expr>();
4867
4868 return Composite2;
4869}
4870
4871ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4872 if (!E)
4873 return ExprError();
4874
4875 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")((!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXBindTemporaryExpr>(E) && \"Double-bound temporary?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4875, __PRETTY_FUNCTION__))
;
4876
4877 // If the result is a glvalue, we shouldn't bind it.
4878 if (!E->isRValue())
4879 return E;
4880
4881 // In ARC, calls that return a retainable type can return retained,
4882 // in which case we have to insert a consuming cast.
4883 if (getLangOpts().ObjCAutoRefCount &&
4884 E->getType()->isObjCRetainableType()) {
4885
4886 bool ReturnsRetained;
4887
4888 // For actual calls, we compute this by examining the type of the
4889 // called value.
4890 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4891 Expr *Callee = Call->getCallee()->IgnoreParens();
4892 QualType T = Callee->getType();
4893
4894 if (T == Context.BoundMemberTy) {
4895 // Handle pointer-to-members.
4896 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4897 T = BinOp->getRHS()->getType();
4898 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4899 T = Mem->getMemberDecl()->getType();
4900 }
4901
4902 if (const PointerType *Ptr = T->getAs<PointerType>())
4903 T = Ptr->getPointeeType();
4904 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4905 T = Ptr->getPointeeType();
4906 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4907 T = MemPtr->getPointeeType();
4908
4909 const FunctionType *FTy = T->getAs<FunctionType>();
4910 assert(FTy && "call to value not of function type?")((FTy && "call to value not of function type?") ? static_cast
<void> (0) : __assert_fail ("FTy && \"call to value not of function type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4910, __PRETTY_FUNCTION__))
;
4911 ReturnsRetained = FTy->getExtInfo().getProducesResult();
4912
4913 // ActOnStmtExpr arranges things so that StmtExprs of retainable
4914 // type always produce a +1 object.
4915 } else if (isa<StmtExpr>(E)) {
4916 ReturnsRetained = true;
4917
4918 // We hit this case with the lambda conversion-to-block optimization;
4919 // we don't want any extra casts here.
4920 } else if (isa<CastExpr>(E) &&
4921 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4922 return E;
4923
4924 // For message sends and property references, we try to find an
4925 // actual method. FIXME: we should infer retention by selector in
4926 // cases where we don't have an actual method.
4927 } else {
4928 ObjCMethodDecl *D = nullptr;
4929 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4930 D = Send->getMethodDecl();
4931 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4932 D = BoxedExpr->getBoxingMethod();
4933 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4934 D = ArrayLit->getArrayWithObjectsMethod();
4935 } else if (ObjCDictionaryLiteral *DictLit
4936 = dyn_cast<ObjCDictionaryLiteral>(E)) {
4937 D = DictLit->getDictWithObjectsMethod();
4938 }
4939
4940 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4941
4942 // Don't do reclaims on performSelector calls; despite their
4943 // return type, the invoked method doesn't necessarily actually
4944 // return an object.
4945 if (!ReturnsRetained &&
4946 D && D->getMethodFamily() == OMF_performSelector)
4947 return E;
4948 }
4949
4950 // Don't reclaim an object of Class type.
4951 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4952 return E;
4953
4954 ExprNeedsCleanups = true;
4955
4956 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4957 : CK_ARCReclaimReturnedObject);
4958 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
4959 VK_RValue);
4960 }
4961
4962 if (!getLangOpts().CPlusPlus)
4963 return E;
4964
4965 // Search for the base element type (cf. ASTContext::getBaseElementType) with
4966 // a fast path for the common case that the type is directly a RecordType.
4967 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4968 const RecordType *RT = nullptr;
4969 while (!RT) {
4970 switch (T->getTypeClass()) {
4971 case Type::Record:
4972 RT = cast<RecordType>(T);
4973 break;
4974 case Type::ConstantArray:
4975 case Type::IncompleteArray:
4976 case Type::VariableArray:
4977 case Type::DependentSizedArray:
4978 T = cast<ArrayType>(T)->getElementType().getTypePtr();
4979 break;
4980 default:
4981 return E;
4982 }
4983 }
4984
4985 // That should be enough to guarantee that this type is complete, if we're
4986 // not processing a decltype expression.
4987 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4988 if (RD->isInvalidDecl() || RD->isDependentContext())
4989 return E;
4990
4991 bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4992 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
4993
4994 if (Destructor) {
4995 MarkFunctionReferenced(E->getExprLoc(), Destructor);
4996 CheckDestructorAccess(E->getExprLoc(), Destructor,
4997 PDiag(diag::err_access_dtor_temp)
4998 << E->getType());
4999 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
5000 return ExprError();
5001
5002 // If destructor is trivial, we can avoid the extra copy.
5003 if (Destructor->isTrivial())
5004 return E;
5005
5006 // We need a cleanup, but we don't need to remember the temporary.
5007 ExprNeedsCleanups = true;
5008 }
5009
5010 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
5011 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
5012
5013 if (IsDecltype)
5014 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
5015
5016 return Bind;
5017}
5018
5019ExprResult
5020Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
5021 if (SubExpr.isInvalid())
5022 return ExprError();
5023
5024 return MaybeCreateExprWithCleanups(SubExpr.get());
5025}
5026
5027Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
5028 assert(SubExpr && "subexpression can't be null!")((SubExpr && "subexpression can't be null!") ? static_cast
<void> (0) : __assert_fail ("SubExpr && \"subexpression can't be null!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5028, __PRETTY_FUNCTION__))
;
5029
5030 CleanupVarDeclMarking();
5031
5032 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5033 assert(ExprCleanupObjects.size() >= FirstCleanup)((ExprCleanupObjects.size() >= FirstCleanup) ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() >= FirstCleanup"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5033, __PRETTY_FUNCTION__))
;
5034 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup)((ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup
) ? static_cast<void> (0) : __assert_fail ("ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5034, __PRETTY_FUNCTION__))
;
5035 if (!ExprNeedsCleanups)
5036 return SubExpr;
5037
5038 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5039 ExprCleanupObjects.size() - FirstCleanup);
5040
5041 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
5042 DiscardCleanupsInEvaluationContext();
5043
5044 return E;
5045}
5046
5047Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5048 assert(SubStmt && "sub-statement can't be null!")((SubStmt && "sub-statement can't be null!") ? static_cast
<void> (0) : __assert_fail ("SubStmt && \"sub-statement can't be null!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5048, __PRETTY_FUNCTION__))
;
5049
5050 CleanupVarDeclMarking();
5051
5052 if (!ExprNeedsCleanups)
5053 return SubStmt;
5054
5055 // FIXME: In order to attach the temporaries, wrap the statement into
5056 // a StmtExpr; currently this is only used for asm statements.
5057 // This is hacky, either create a new CXXStmtWithTemporaries statement or
5058 // a new AsmStmtWithTemporaries.
5059 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5060 SourceLocation(),
5061 SourceLocation());
5062 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5063 SourceLocation());
5064 return MaybeCreateExprWithCleanups(E);
5065}
5066
5067/// Process the expression contained within a decltype. For such expressions,
5068/// certain semantic checks on temporaries are delayed until this point, and
5069/// are omitted for the 'topmost' call in the decltype expression. If the
5070/// topmost call bound a temporary, strip that temporary off the expression.
5071ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5072 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression")((ExprEvalContexts.back().IsDecltype && "not in a decltype expression"
) ? static_cast<void> (0) : __assert_fail ("ExprEvalContexts.back().IsDecltype && \"not in a decltype expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5072, __PRETTY_FUNCTION__))
;
5073
5074 // C++11 [expr.call]p11:
5075 // If a function call is a prvalue of object type,
5076 // -- if the function call is either
5077 // -- the operand of a decltype-specifier, or
5078 // -- the right operand of a comma operator that is the operand of a
5079 // decltype-specifier,
5080 // a temporary object is not introduced for the prvalue.
5081
5082 // Recursively rebuild ParenExprs and comma expressions to strip out the
5083 // outermost CXXBindTemporaryExpr, if any.
5084 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5085 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5086 if (SubExpr.isInvalid())
5087 return ExprError();
5088 if (SubExpr.get() == PE->getSubExpr())
5089 return E;
5090 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
5091 }
5092 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5093 if (BO->getOpcode() == BO_Comma) {
5094 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5095 if (RHS.isInvalid())
5096 return ExprError();
5097 if (RHS.get() == BO->getRHS())
5098 return E;
5099 return new (Context) BinaryOperator(
5100 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
5101 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
5102 }
5103 }
5104
5105 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5106 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
5107 : nullptr;
5108 if (TopCall)
5109 E = TopCall;
5110 else
5111 TopBind = nullptr;
5112
5113 // Disable the special decltype handling now.
5114 ExprEvalContexts.back().IsDecltype = false;
5115
5116 // In MS mode, don't perform any extra checking of call return types within a
5117 // decltype expression.
5118 if (getLangOpts().MSVCCompat)
5119 return E;
5120
5121 // Perform the semantic checks we delayed until this point.
5122 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5123 I != N; ++I) {
5124 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5125 if (Call == TopCall)
5126 continue;
5127
5128 if (CheckCallReturnType(Call->getCallReturnType(),
5129 Call->getLocStart(),
5130 Call, Call->getDirectCallee()))
5131 return ExprError();
5132 }
5133
5134 // Now all relevant types are complete, check the destructors are accessible
5135 // and non-deleted, and annotate them on the temporaries.
5136 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5137 I != N; ++I) {
5138 CXXBindTemporaryExpr *Bind =
5139 ExprEvalContexts.back().DelayedDecltypeBinds[I];
5140 if (Bind == TopBind)
5141 continue;
5142
5143 CXXTemporary *Temp = Bind->getTemporary();
5144
5145 CXXRecordDecl *RD =
5146 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5147 CXXDestructorDecl *Destructor = LookupDestructor(RD);
5148 Temp->setDestructor(Destructor);
5149
5150 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5151 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5152 PDiag(diag::err_access_dtor_temp)
5153 << Bind->getType());
5154 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5155 return ExprError();
5156
5157 // We need a cleanup, but we don't need to remember the temporary.
5158 ExprNeedsCleanups = true;
5159 }
5160
5161 // Possibly strip off the top CXXBindTemporaryExpr.
5162 return E;
5163}
5164
5165/// Note a set of 'operator->' functions that were used for a member access.
5166static void noteOperatorArrows(Sema &S,
5167 ArrayRef<FunctionDecl *> OperatorArrows) {
5168 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5169 // FIXME: Make this configurable?
5170 unsigned Limit = 9;
5171 if (OperatorArrows.size() > Limit) {
5172 // Produce Limit-1 normal notes and one 'skipping' note.
5173 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5174 SkipCount = OperatorArrows.size() - (Limit - 1);
5175 }
5176
5177 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5178 if (I == SkipStart) {
5179 S.Diag(OperatorArrows[I]->getLocation(),
5180 diag::note_operator_arrows_suppressed)
5181 << SkipCount;
5182 I += SkipCount;
5183 } else {
5184 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5185 << OperatorArrows[I]->getCallResultType();
5186 ++I;
5187 }
5188 }
5189}
5190
5191ExprResult
5192Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
5193 tok::TokenKind OpKind, ParsedType &ObjectType,
5194 bool &MayBePseudoDestructor) {
5195 // Since this might be a postfix expression, get rid of ParenListExprs.
5196 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5197 if (Result.isInvalid()) return ExprError();
5198 Base = Result.get();
5199
5200 Result = CheckPlaceholderExpr(Base);
5201 if (Result.isInvalid()) return ExprError();
5202 Base = Result.get();
5203
5204 QualType BaseType = Base->getType();
5205 MayBePseudoDestructor = false;
5206 if (BaseType->isDependentType()) {
5207 // If we have a pointer to a dependent type and are using the -> operator,
5208 // the object type is the type that the pointer points to. We might still
5209 // have enough information about that type to do something useful.
5210 if (OpKind == tok::arrow)
5211 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5212 BaseType = Ptr->getPointeeType();
5213
5214 ObjectType = ParsedType::make(BaseType);
5215 MayBePseudoDestructor = true;
5216 return Base;
5217 }
5218
5219 // C++ [over.match.oper]p8:
5220 // [...] When operator->returns, the operator-> is applied to the value
5221 // returned, with the original second operand.
5222 if (OpKind == tok::arrow) {
5223 QualType StartingType = BaseType;
5224 bool NoArrowOperatorFound = false;
5225 bool FirstIteration = true;
5226 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5227 // The set of types we've considered so far.
5228 llvm::SmallPtrSet<CanQualType,8> CTypes;
5229 SmallVector<FunctionDecl*, 8> OperatorArrows;
5230 CTypes.insert(Context.getCanonicalType(BaseType));
5231
5232 while (BaseType->isRecordType()) {
5233 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5234 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5235 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5236 noteOperatorArrows(*this, OperatorArrows);
5237 Diag(OpLoc, diag::note_operator_arrow_depth)
5238 << getLangOpts().ArrowDepth;
5239 return ExprError();
5240 }
5241
5242 Result = BuildOverloadedArrowExpr(
5243 S, Base, OpLoc,
5244 // When in a template specialization and on the first loop iteration,
5245 // potentially give the default diagnostic (with the fixit in a
5246 // separate note) instead of having the error reported back to here
5247 // and giving a diagnostic with a fixit attached to the error itself.
5248 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5249 ? nullptr
5250 : &NoArrowOperatorFound);
5251 if (Result.isInvalid()) {
5252 if (NoArrowOperatorFound) {
5253 if (FirstIteration) {
5254 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5255 << BaseType << 1 << Base->getSourceRange()
5256 << FixItHint::CreateReplacement(OpLoc, ".");
5257 OpKind = tok::period;
5258 break;
5259 }
5260 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5261 << BaseType << Base->getSourceRange();
5262 CallExpr *CE = dyn_cast<CallExpr>(Base);
5263 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
5264 Diag(CD->getLocStart(),
5265 diag::note_member_reference_arrow_from_operator_arrow);
5266 }
5267 }
5268 return ExprError();
5269 }
5270 Base = Result.get();
5271 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5272 OperatorArrows.push_back(OpCall->getDirectCallee());
5273 BaseType = Base->getType();
5274 CanQualType CBaseType = Context.getCanonicalType(BaseType);
5275 if (!CTypes.insert(CBaseType).second) {
5276 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
5277 noteOperatorArrows(*this, OperatorArrows);
5278 return ExprError();
5279 }
5280 FirstIteration = false;
5281 }
5282
5283 if (OpKind == tok::arrow &&
5284 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5285 BaseType = BaseType->getPointeeType();
5286 }
5287
5288 // Objective-C properties allow "." access on Objective-C pointer types,
5289 // so adjust the base type to the object type itself.
5290 if (BaseType->isObjCObjectPointerType())
5291 BaseType = BaseType->getPointeeType();
5292
5293 // C++ [basic.lookup.classref]p2:
5294 // [...] If the type of the object expression is of pointer to scalar
5295 // type, the unqualified-id is looked up in the context of the complete
5296 // postfix-expression.
5297 //
5298 // This also indicates that we could be parsing a pseudo-destructor-name.
5299 // Note that Objective-C class and object types can be pseudo-destructor
5300 // expressions or normal member (ivar or property) access expressions.
5301 if (BaseType->isObjCObjectOrInterfaceType()) {
5302 MayBePseudoDestructor = true;
5303 } else if (!BaseType->isRecordType()) {
5304 ObjectType = ParsedType();
5305 MayBePseudoDestructor = true;
5306 return Base;
5307 }
5308
5309 // The object type must be complete (or dependent), or
5310 // C++11 [expr.prim.general]p3:
5311 // Unlike the object expression in other contexts, *this is not required to
5312 // be of complete type for purposes of class member access (5.2.5) outside
5313 // the member function body.
5314 if (!BaseType->isDependentType() &&
5315 !isThisOutsideMemberFunctionBody(BaseType) &&
5316 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5317 return ExprError();
5318
5319 // C++ [basic.lookup.classref]p2:
5320 // If the id-expression in a class member access (5.2.5) is an
5321 // unqualified-id, and the type of the object expression is of a class
5322 // type C (or of pointer to a class type C), the unqualified-id is looked
5323 // up in the scope of class C. [...]
5324 ObjectType = ParsedType::make(BaseType);
5325 return Base;
5326}
5327
5328ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
5329 Expr *MemExpr) {
5330 SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5331 Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5332 << isa<CXXPseudoDestructorExpr>(MemExpr)
5333 << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5334
5335 return ActOnCallExpr(/*Scope*/ nullptr,
5336 MemExpr,
5337 /*LPLoc*/ ExpectedLParenLoc,
5338 None,
5339 /*RPLoc*/ ExpectedLParenLoc);
5340}
5341
5342static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5343 tok::TokenKind& OpKind, SourceLocation OpLoc) {
5344 if (Base->hasPlaceholderType()) {
5345 ExprResult result = S.CheckPlaceholderExpr(Base);
5346 if (result.isInvalid()) return true;
5347 Base = result.get();
5348 }
5349 ObjectType = Base->getType();
5350
5351 // C++ [expr.pseudo]p2:
5352 // The left-hand side of the dot operator shall be of scalar type. The
5353 // left-hand side of the arrow operator shall be of pointer to scalar type.
5354 // This scalar type is the object type.
5355 // Note that this is rather different from the normal handling for the
5356 // arrow operator.
5357 if (OpKind == tok::arrow) {
5358 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5359 ObjectType = Ptr->getPointeeType();
5360 } else if (!Base->isTypeDependent()) {
5361 // The user wrote "p->" when she probably meant "p."; fix it.
5362 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5363 << ObjectType << true
5364 << FixItHint::CreateReplacement(OpLoc, ".");
5365 if (S.isSFINAEContext())
5366 return true;
5367
5368 OpKind = tok::period;
5369 }
5370 }
5371
5372 return false;
5373}
5374
5375ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5376 SourceLocation OpLoc,
5377 tok::TokenKind OpKind,
5378 const CXXScopeSpec &SS,
5379 TypeSourceInfo *ScopeTypeInfo,
5380 SourceLocation CCLoc,
5381 SourceLocation TildeLoc,
5382 PseudoDestructorTypeStorage Destructed,
5383 bool HasTrailingLParen) {
5384 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5385
5386 QualType ObjectType;
5387 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5388 return ExprError();
5389
5390 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5391 !ObjectType->isVectorType()) {
5392 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
5393 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5394 else {
5395 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5396 << ObjectType << Base->getSourceRange();
5397 return ExprError();
5398 }
5399 }
5400
5401 // C++ [expr.pseudo]p2:
5402 // [...] The cv-unqualified versions of the object type and of the type
5403 // designated by the pseudo-destructor-name shall be the same type.
5404 if (DestructedTypeInfo) {
5405 QualType DestructedType = DestructedTypeInfo->getType();
5406 SourceLocation DestructedTypeStart
5407 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5408 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5409 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5410 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5411 << ObjectType << DestructedType << Base->getSourceRange()
5412 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5413
5414 // Recover by setting the destructed type to the object type.
5415 DestructedType = ObjectType;
5416 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5417 DestructedTypeStart);
5418 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5419 } else if (DestructedType.getObjCLifetime() !=
5420 ObjectType.getObjCLifetime()) {
5421
5422 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5423 // Okay: just pretend that the user provided the correctly-qualified
5424 // type.
5425 } else {
5426 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5427 << ObjectType << DestructedType << Base->getSourceRange()
5428 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5429 }
5430
5431 // Recover by setting the destructed type to the object type.
5432 DestructedType = ObjectType;
5433 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5434 DestructedTypeStart);
5435 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5436 }
5437 }
5438 }
5439
5440 // C++ [expr.pseudo]p2:
5441 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5442 // form
5443 //
5444 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5445 //
5446 // shall designate the same scalar type.
5447 if (ScopeTypeInfo) {
5448 QualType ScopeType = ScopeTypeInfo->getType();
5449 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5450 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5451
5452 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5453 diag::err_pseudo_dtor_type_mismatch)
5454 << ObjectType << ScopeType << Base->getSourceRange()
5455 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5456
5457 ScopeType = QualType();
5458 ScopeTypeInfo = nullptr;
5459 }
5460 }
5461
5462 Expr *Result
5463 = new (Context) CXXPseudoDestructorExpr(Context, Base,
5464 OpKind == tok::arrow, OpLoc,
5465 SS.getWithLocInContext(Context),
5466 ScopeTypeInfo,
5467 CCLoc,
5468 TildeLoc,
5469 Destructed);
5470
5471 if (HasTrailingLParen)
5472 return Result;
5473
5474 return DiagnoseDtorReference(Destructed.getLocation(), Result);
5475}
5476
5477ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5478 SourceLocation OpLoc,
5479 tok::TokenKind OpKind,
5480 CXXScopeSpec &SS,
5481 UnqualifiedId &FirstTypeName,
5482 SourceLocation CCLoc,
5483 SourceLocation TildeLoc,
5484 UnqualifiedId &SecondTypeName,
5485 bool HasTrailingLParen) {
5486 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||(((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid first type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5488, __PRETTY_FUNCTION__))
5487 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&(((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid first type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5488, __PRETTY_FUNCTION__))
5488 "Invalid first type name in pseudo-destructor")(((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid first type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5488, __PRETTY_FUNCTION__))
;
5489 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||(((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid second type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5491, __PRETTY_FUNCTION__))
5490 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&(((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid second type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5491, __PRETTY_FUNCTION__))
5491 "Invalid second type name in pseudo-destructor")(((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid second type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5491, __PRETTY_FUNCTION__))
;
5492
5493 QualType ObjectType;
5494 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5495 return ExprError();
5496
5497 // Compute the object type that we should use for name lookup purposes. Only
5498 // record types and dependent types matter.
5499 ParsedType ObjectTypePtrForLookup;
5500 if (!SS.isSet()) {
5501 if (ObjectType->isRecordType())
5502 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5503 else if (ObjectType->isDependentType())
5504 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5505 }
5506
5507 // Convert the name of the type being destructed (following the ~) into a
5508 // type (with source-location information).
5509 QualType DestructedType;
5510 TypeSourceInfo *DestructedTypeInfo = nullptr;
5511 PseudoDestructorTypeStorage Destructed;
5512 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5513 ParsedType T = getTypeName(*SecondTypeName.Identifier,
5514 SecondTypeName.StartLocation,
5515 S, &SS, true, false, ObjectTypePtrForLookup);
5516 if (!T &&
5517 ((SS.isSet() && !computeDeclContext(SS, false)) ||
5518 (!SS.isSet() && ObjectType->isDependentType()))) {
5519 // The name of the type being destroyed is a dependent name, and we
5520 // couldn't find anything useful in scope. Just store the identifier and
5521 // it's location, and we'll perform (qualified) name lookup again at
5522 // template instantiation time.
5523 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5524 SecondTypeName.StartLocation);
5525 } else if (!T) {
5526 Diag(SecondTypeName.StartLocation,
5527 diag::err_pseudo_dtor_destructor_non_type)
5528 << SecondTypeName.Identifier << ObjectType;
5529 if (isSFINAEContext())
5530 return ExprError();
5531
5532 // Recover by assuming we had the right type all along.
5533 DestructedType = ObjectType;
5534 } else
5535 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5536 } else {
5537 // Resolve the template-id to a type.
5538 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5539 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5540 TemplateId->NumArgs);
5541 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5542 TemplateId->TemplateKWLoc,
5543 TemplateId->Template,
5544 TemplateId->TemplateNameLoc,
5545 TemplateId->LAngleLoc,
5546 TemplateArgsPtr,
5547 TemplateId->RAngleLoc);
5548 if (T.isInvalid() || !T.get()) {
5549 // Recover by assuming we had the right type all along.
5550 DestructedType = ObjectType;
5551 } else
5552 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5553 }
5554
5555 // If we've performed some kind of recovery, (re-)build the type source
5556 // information.
5557 if (!DestructedType.isNull()) {
5558 if (!DestructedTypeInfo)
5559 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5560 SecondTypeName.StartLocation);
5561 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5562 }
5563
5564 // Convert the name of the scope type (the type prior to '::') into a type.
5565 TypeSourceInfo *ScopeTypeInfo = nullptr;
5566 QualType ScopeType;
5567 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5568 FirstTypeName.Identifier) {
5569 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5570 ParsedType T = getTypeName(*FirstTypeName.Identifier,
5571 FirstTypeName.StartLocation,
5572 S, &SS, true, false, ObjectTypePtrForLookup);
5573 if (!T) {
5574 Diag(FirstTypeName.StartLocation,
5575 diag::err_pseudo_dtor_destructor_non_type)
5576 << FirstTypeName.Identifier << ObjectType;
5577
5578 if (isSFINAEContext())
5579 return ExprError();
5580
5581 // Just drop this type. It's unnecessary anyway.
5582 ScopeType = QualType();
5583 } else
5584 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5585 } else {
5586 // Resolve the template-id to a type.
5587 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5588 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5589 TemplateId->NumArgs);
5590 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5591 TemplateId->TemplateKWLoc,
5592 TemplateId->Template,
5593 TemplateId->TemplateNameLoc,
5594 TemplateId->LAngleLoc,
5595 TemplateArgsPtr,
5596 TemplateId->RAngleLoc);
5597 if (T.isInvalid() || !T.get()) {
5598 // Recover by dropping this type.
5599 ScopeType = QualType();
5600 } else
5601 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5602 }
5603 }
5604
5605 if (!ScopeType.isNull() && !ScopeTypeInfo)
5606 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5607 FirstTypeName.StartLocation);
5608
5609
5610 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5611 ScopeTypeInfo, CCLoc, TildeLoc,
5612 Destructed, HasTrailingLParen);
5613}
5614
5615ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5616 SourceLocation OpLoc,
5617 tok::TokenKind OpKind,
5618 SourceLocation TildeLoc,
5619 const DeclSpec& DS,
5620 bool HasTrailingLParen) {
5621 QualType ObjectType;
5622 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5623 return ExprError();
5624
5625 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5626
5627 TypeLocBuilder TLB;
5628 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5629 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5630 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5631 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5632
5633 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5634 nullptr, SourceLocation(), TildeLoc,
5635 Destructed, HasTrailingLParen);
5636}
5637
5638ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5639 CXXConversionDecl *Method,
5640 bool HadMultipleCandidates) {
5641 if (Method->getParent()->isLambda() &&
5642 Method->getConversionType()->isBlockPointerType()) {
5643 // This is a lambda coversion to block pointer; check if the argument
5644 // is a LambdaExpr.
5645 Expr *SubE = E;
5646 CastExpr *CE = dyn_cast<CastExpr>(SubE);
5647 if (CE && CE->getCastKind() == CK_NoOp)
5648 SubE = CE->getSubExpr();
5649 SubE = SubE->IgnoreParens();
5650 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5651 SubE = BE->getSubExpr();
5652 if (isa<LambdaExpr>(SubE)) {
5653 // For the conversion to block pointer on a lambda expression, we
5654 // construct a special BlockLiteral instead; this doesn't really make
5655 // a difference in ARC, but outside of ARC the resulting block literal
5656 // follows the normal lifetime rules for block literals instead of being
5657 // autoreleased.
5658 DiagnosticErrorTrap Trap(Diags);
5659 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5660 E->getExprLoc(),
5661 Method, E);
5662 if (Exp.isInvalid())
5663 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5664 return Exp;
5665 }
5666 }
5667
5668 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
5669 FoundDecl, Method);
5670 if (Exp.isInvalid())
5671 return true;
5672
5673 MemberExpr *ME =
5674 new (Context) MemberExpr(Exp.get(), /*IsArrow=*/false, Method,
5675 SourceLocation(), Context.BoundMemberTy,
5676 VK_RValue, OK_Ordinary);
5677 if (HadMultipleCandidates)
5678 ME->setHadMultipleCandidates(true);
5679 MarkMemberReferenced(ME);
5680
5681 QualType ResultType = Method->getReturnType();
5682 ExprValueKind VK = Expr::getValueKindForType(ResultType);
5683 ResultType = ResultType.getNonLValueExprType(Context);
5684
5685 CXXMemberCallExpr *CE =
5686 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
5687 Exp.get()->getLocEnd());
5688 return CE;
5689}
5690
5691ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5692 SourceLocation RParen) {
5693 CanThrowResult CanThrow = canThrow(Operand);
5694 return new (Context)
5695 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
5696}
5697
5698ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5699 Expr *Operand, SourceLocation RParen) {
5700 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5701}
5702
5703static bool IsSpecialDiscardedValue(Expr *E) {
5704 // In C++11, discarded-value expressions of a certain form are special,
5705 // according to [expr]p10:
5706 // The lvalue-to-rvalue conversion (4.1) is applied only if the
5707 // expression is an lvalue of volatile-qualified type and it has
5708 // one of the following forms:
5709 E = E->IgnoreParens();
5710
5711 // - id-expression (5.1.1),
5712 if (isa<DeclRefExpr>(E))
5713 return true;
5714
5715 // - subscripting (5.2.1),
5716 if (isa<ArraySubscriptExpr>(E))
5717 return true;
5718
5719 // - class member access (5.2.5),
5720 if (isa<MemberExpr>(E))
5721 return true;
5722
5723 // - indirection (5.3.1),
5724 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5725 if (UO->getOpcode() == UO_Deref)
5726 return true;
5727
5728 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5729 // - pointer-to-member operation (5.5),
5730 if (BO->isPtrMemOp())
5731 return true;
5732
5733 // - comma expression (5.18) where the right operand is one of the above.
5734 if (BO->getOpcode() == BO_Comma)
5735 return IsSpecialDiscardedValue(BO->getRHS());
5736 }
5737
5738 // - conditional expression (5.16) where both the second and the third
5739 // operands are one of the above, or
5740 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5741 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5742 IsSpecialDiscardedValue(CO->getFalseExpr());
5743 // The related edge case of "*x ?: *x".
5744 if (BinaryConditionalOperator *BCO =
5745 dyn_cast<BinaryConditionalOperator>(E)) {
5746 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5747 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5748 IsSpecialDiscardedValue(BCO->getFalseExpr());
5749 }
5750
5751 // Objective-C++ extensions to the rule.
5752 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5753 return true;
5754
5755 return false;
5756}
5757
5758/// Perform the conversions required for an expression used in a
5759/// context that ignores the result.
5760ExprResult Sema::IgnoredValueConversions(Expr *E) {
5761 if (E->hasPlaceholderType()) {
5762 ExprResult result = CheckPlaceholderExpr(E);
5763 if (result.isInvalid()) return E;
5764 E = result.get();
5765 }
5766
5767 // C99 6.3.2.1:
5768 // [Except in specific positions,] an lvalue that does not have
5769 // array type is converted to the value stored in the
5770 // designated object (and is no longer an lvalue).
5771 if (E->isRValue()) {
5772 // In C, function designators (i.e. expressions of function type)
5773 // are r-values, but we still want to do function-to-pointer decay
5774 // on them. This is both technically correct and convenient for
5775 // some clients.
5776 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5777 return DefaultFunctionArrayConversion(E);
5778
5779 return E;
5780 }
5781
5782 if (getLangOpts().CPlusPlus) {
5783 // The C++11 standard defines the notion of a discarded-value expression;
5784 // normally, we don't need to do anything to handle it, but if it is a
5785 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5786 // conversion.
5787 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5788 E->getType().isVolatileQualified() &&
5789 IsSpecialDiscardedValue(E)) {
5790 ExprResult Res = DefaultLvalueConversion(E);
5791 if (Res.isInvalid())
5792 return E;
5793 E = Res.get();
5794 }
5795 return E;
5796 }
5797
5798 // GCC seems to also exclude expressions of incomplete enum type.
5799 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5800 if (!T->getDecl()->isComplete()) {
5801 // FIXME: stupid workaround for a codegen bug!
5802 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
5803 return E;
5804 }
5805 }
5806
5807 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5808 if (Res.isInvalid())
5809 return E;
5810 E = Res.get();
5811
5812 if (!E->getType()->isVoidType())
5813 RequireCompleteType(E->getExprLoc(), E->getType(),
5814 diag::err_incomplete_type);
5815 return E;
5816}
5817
5818// If we can unambiguously determine whether Var can never be used
5819// in a constant expression, return true.
5820// - if the variable and its initializer are non-dependent, then
5821// we can unambiguously check if the variable is a constant expression.
5822// - if the initializer is not value dependent - we can determine whether
5823// it can be used to initialize a constant expression. If Init can not
5824// be used to initialize a constant expression we conclude that Var can
5825// never be a constant expression.
5826// - FXIME: if the initializer is dependent, we can still do some analysis and
5827// identify certain cases unambiguously as non-const by using a Visitor:
5828// - such as those that involve odr-use of a ParmVarDecl, involve a new
5829// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
5830static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
5831 ASTContext &Context) {
5832 if (isa<ParmVarDecl>(Var)) return true;
5833 const VarDecl *DefVD = nullptr;
5834
5835 // If there is no initializer - this can not be a constant expression.
5836 if (!Var->getAnyInitializer(DefVD)) return true;
5837 assert(DefVD)((DefVD) ? static_cast<void> (0) : __assert_fail ("DefVD"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5837, __PRETTY_FUNCTION__))
;
5838 if (DefVD->isWeak()) return false;
5839 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
5840
5841 Expr *Init = cast<Expr>(Eval->Value);
5842
5843 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
5844 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
5845 // of value-dependent expressions, and use it here to determine whether the
5846 // initializer is a potential constant expression.
5847 return false;
5848 }
5849
5850 return !IsVariableAConstantExpression(Var, Context);
5851}
5852
5853/// \brief Check if the current lambda has any potential captures
5854/// that must be captured by any of its enclosing lambdas that are ready to
5855/// capture. If there is a lambda that can capture a nested
5856/// potential-capture, go ahead and do so. Also, check to see if any
5857/// variables are uncaptureable or do not involve an odr-use so do not
5858/// need to be captured.
5859
5860static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
5861 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
5862
5863 assert(!S.isUnevaluatedContext())((!S.isUnevaluatedContext()) ? static_cast<void> (0) : __assert_fail
("!S.isUnevaluatedContext()", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5863, __PRETTY_FUNCTION__))
;
5864 assert(S.CurContext->isDependentContext())((S.CurContext->isDependentContext()) ? static_cast<void
> (0) : __assert_fail ("S.CurContext->isDependentContext()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5864, __PRETTY_FUNCTION__))
;
5865 assert(CurrentLSI->CallOperator == S.CurContext &&((CurrentLSI->CallOperator == S.CurContext && "The current call operator must be synchronized with Sema's CurContext"
) ? static_cast<void> (0) : __assert_fail ("CurrentLSI->CallOperator == S.CurContext && \"The current call operator must be synchronized with Sema's CurContext\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5866, __PRETTY_FUNCTION__))
5866 "The current call operator must be synchronized with Sema's CurContext")((CurrentLSI->CallOperator == S.CurContext && "The current call operator must be synchronized with Sema's CurContext"
) ? static_cast<void> (0) : __assert_fail ("CurrentLSI->CallOperator == S.CurContext && \"The current call operator must be synchronized with Sema's CurContext\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5866, __PRETTY_FUNCTION__))
;
5867
5868 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
5869
5870 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
5871 S.FunctionScopes.data(), S.FunctionScopes.size());
5872
5873 // All the potentially captureable variables in the current nested
5874 // lambda (within a generic outer lambda), must be captured by an
5875 // outer lambda that is enclosed within a non-dependent context.
5876 const unsigned NumPotentialCaptures =
5877 CurrentLSI->getNumPotentialVariableCaptures();
5878 for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
5879 Expr *VarExpr = nullptr;
5880 VarDecl *Var = nullptr;
5881 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
5882 // If the variable is clearly identified as non-odr-used and the full
5883 // expression is not instantiation dependent, only then do we not
5884 // need to check enclosing lambda's for speculative captures.
5885 // For e.g.:
5886 // Even though 'x' is not odr-used, it should be captured.
5887 // int test() {
5888 // const int x = 10;
5889 // auto L = [=](auto a) {
5890 // (void) +x + a;
5891 // };
5892 // }
5893 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
5894 !IsFullExprInstantiationDependent)
5895 continue;
5896
5897 // If we have a capture-capable lambda for the variable, go ahead and
5898 // capture the variable in that lambda (and all its enclosing lambdas).
5899 if (const Optional<unsigned> Index =
5900 getStackIndexOfNearestEnclosingCaptureCapableLambda(
5901 FunctionScopesArrayRef, Var, S)) {
5902 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
5903 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
5904 &FunctionScopeIndexOfCapturableLambda);
5905 }
5906 const bool IsVarNeverAConstantExpression =
5907 VariableCanNeverBeAConstantExpression(Var, S.Context);
5908 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
5909 // This full expression is not instantiation dependent or the variable
5910 // can not be used in a constant expression - which means
5911 // this variable must be odr-used here, so diagnose a
5912 // capture violation early, if the variable is un-captureable.
5913 // This is purely for diagnosing errors early. Otherwise, this
5914 // error would get diagnosed when the lambda becomes capture ready.
5915 QualType CaptureType, DeclRefType;
5916 SourceLocation ExprLoc = VarExpr->getExprLoc();
5917 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
5918 /*EllipsisLoc*/ SourceLocation(),
5919 /*BuildAndDiagnose*/false, CaptureType,
5920 DeclRefType, nullptr)) {
5921 // We will never be able to capture this variable, and we need
5922 // to be able to in any and all instantiations, so diagnose it.
5923 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
5924 /*EllipsisLoc*/ SourceLocation(),
5925 /*BuildAndDiagnose*/true, CaptureType,
5926 DeclRefType, nullptr);
5927 }
5928 }
5929 }
5930
5931 // Check if 'this' needs to be captured.
5932 if (CurrentLSI->hasPotentialThisCapture()) {
5933 // If we have a capture-capable lambda for 'this', go ahead and capture
5934 // 'this' in that lambda (and all its enclosing lambdas).
5935 if (const Optional<unsigned> Index =
5936 getStackIndexOfNearestEnclosingCaptureCapableLambda(
5937 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
5938 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
5939 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
5940 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
5941 &FunctionScopeIndexOfCapturableLambda);
5942 }
5943 }
5944
5945 // Reset all the potential captures at the end of each full-expression.
5946 CurrentLSI->clearPotentialCaptures();
5947}
5948
5949static ExprResult attemptRecovery(Sema &SemaRef,
5950 const TypoCorrectionConsumer &Consumer,
5951 TypoCorrection TC) {
5952 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
5953 Consumer.getLookupResult().getLookupKind());
5954 const CXXScopeSpec *SS = Consumer.getSS();
5955 CXXScopeSpec NewSS;
5956
5957 // Use an approprate CXXScopeSpec for building the expr.
5958 if (auto *NNS = TC.getCorrectionSpecifier())
5959 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
5960 else if (SS && !TC.WillReplaceSpecifier())
5961 NewSS = *SS;
5962
5963 if (auto *ND = TC.getCorrectionDecl()) {
5964 R.setLookupName(ND->getDeclName());
5965 R.addDecl(ND);
5966 if (ND->isCXXClassMember()) {
5967 // Figure out the correct naming class to add to the LookupResult.
5968 CXXRecordDecl *Record = nullptr;
5969 if (auto *NNS = TC.getCorrectionSpecifier())
5970 Record = NNS->getAsType()->getAsCXXRecordDecl();
5971 if (!Record)
5972 Record = cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
5973 R.setNamingClass(Record);
5974
5975 // Detect and handle the case where the decl might be an implicit
5976 // member.
5977 bool MightBeImplicitMember;
5978 if (!Consumer.isAddressOfOperand())
5979 MightBeImplicitMember = true;
5980 else if (!NewSS.isEmpty())
5981 MightBeImplicitMember = false;
5982 else if (R.isOverloadedResult())
5983 MightBeImplicitMember = false;
5984 else if (R.isUnresolvableResult())
5985 MightBeImplicitMember = true;
5986 else
5987 MightBeImplicitMember = isa<FieldDecl>(ND) ||
5988 isa<IndirectFieldDecl>(ND) ||
5989 isa<MSPropertyDecl>(ND);
5990
5991 if (MightBeImplicitMember)
5992 return SemaRef.BuildPossibleImplicitMemberExpr(
5993 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
5994 /*TemplateArgs*/ nullptr);
5995 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
5996 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
5997 Ivar->getIdentifier());
5998 }
5999 }
6000
6001 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
6002 /*AcceptInvalidDecl*/ true);
6003}
6004
6005namespace {
6006class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
6007 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
6008
6009public:
6010 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
6011 : TypoExprs(TypoExprs) {}
6012 bool VisitTypoExpr(TypoExpr *TE) {
6013 TypoExprs.insert(TE);
6014 return true;
6015 }
6016};
6017
6018class TransformTypos : public TreeTransform<TransformTypos> {
6019 typedef TreeTransform<TransformTypos> BaseTransform;
6020
6021 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
6022 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
6023 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
6024 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
6025
6026 /// \brief Emit diagnostics for all of the TypoExprs encountered.
6027 /// If the TypoExprs were successfully corrected, then the diagnostics should
6028 /// suggest the corrections. Otherwise the diagnostics will not suggest
6029 /// anything (having been passed an empty TypoCorrection).
6030 void EmitAllDiagnostics() {
6031 for (auto E : TypoExprs) {
6032 TypoExpr *TE = cast<TypoExpr>(E);
6033 auto &State = SemaRef.getTypoExprState(TE);
6034 if (State.DiagHandler) {
6035 TypoCorrection TC = State.Consumer->getCurrentCorrection();
6036 ExprResult Replacement = TransformCache[TE];
6037
6038 // Extract the NamedDecl from the transformed TypoExpr and add it to the
6039 // TypoCorrection, replacing the existing decls. This ensures the right
6040 // NamedDecl is used in diagnostics e.g. in the case where overload
6041 // resolution was used to select one from several possible decls that
6042 // had been stored in the TypoCorrection.
6043 if (auto *ND = getDeclFromExpr(
6044 Replacement.isInvalid() ? nullptr : Replacement.get()))
6045 TC.setCorrectionDecl(ND);
6046
6047 State.DiagHandler(TC);
6048 }
6049 SemaRef.clearDelayedTypo(TE);
6050 }
6051 }
6052
6053 /// \brief If corrections for the first TypoExpr have been exhausted for a
6054 /// given combination of the other TypoExprs, retry those corrections against
6055 /// the next combination of substitutions for the other TypoExprs by advancing
6056 /// to the next potential correction of the second TypoExpr. For the second
6057 /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
6058 /// the stream is reset and the next TypoExpr's stream is advanced by one (a
6059 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
6060 /// TransformCache). Returns true if there is still any untried combinations
6061 /// of corrections.
6062 bool CheckAndAdvanceTypoExprCorrectionStreams() {
6063 for (auto TE : TypoExprs) {
6064 auto &State = SemaRef.getTypoExprState(TE);
6065 TransformCache.erase(TE);
6066 if (!State.Consumer->finished())
6067 return true;
6068 State.Consumer->resetCorrectionStream();
6069 }
6070 return false;
6071 }
6072
6073 NamedDecl *getDeclFromExpr(Expr *E) {
6074 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
6075 E = OverloadResolution[OE];
6076
6077 if (!E)
6078 return nullptr;
6079 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
6080 return DRE->getDecl();
6081 if (auto *ME = dyn_cast<MemberExpr>(E))
6082 return ME->getMemberDecl();
6083 // FIXME: Add any other expr types that could be be seen by the delayed typo
6084 // correction TreeTransform for which the corresponding TypoCorrection could
6085 // contain multple decls.
6086 return nullptr;
6087 }
6088
6089 ExprResult TryTransform(Expr *E) {
6090 Sema::SFINAETrap Trap(SemaRef);
6091 ExprResult Res = TransformExpr(E);
6092 if (Trap.hasErrorOccurred() || Res.isInvalid())
6093 return ExprError();
6094
6095 return ExprFilter(Res.get());
6096 }
6097
6098public:
6099 TransformTypos(Sema &SemaRef, llvm::function_ref<ExprResult(Expr *)> Filter)
6100 : BaseTransform(SemaRef), ExprFilter(Filter) {}
6101
6102 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
6103 MultiExprArg Args,
6104 SourceLocation RParenLoc,
6105 Expr *ExecConfig = nullptr) {
6106 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
6107 RParenLoc, ExecConfig);
6108 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
6109 if (Result.isUsable()) {
6110 Expr *ResultCall = Result.get();
6111 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
6112 ResultCall = BE->getSubExpr();
6113 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
6114 OverloadResolution[OE] = CE->getCallee();
6115 }
6116 }
6117 return Result;
6118 }
6119
6120 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
6121
6122 ExprResult Transform(Expr *E) {
6123 ExprResult Res;
6124 while (true) {
6125 Res = TryTransform(E);
6126
6127 // Exit if either the transform was valid or if there were no TypoExprs
6128 // to transform that still have any untried correction candidates..
6129 if (!Res.isInvalid() ||
6130 !CheckAndAdvanceTypoExprCorrectionStreams())
6131 break;
6132 }
6133
6134 // Ensure none of the TypoExprs have multiple typo correction candidates
6135 // with the same edit length that pass all the checks and filters.
6136 // TODO: Properly handle various permutations of possible corrections when
6137 // there is more than one potentially ambiguous typo correction.
6138 while (!AmbiguousTypoExprs.empty()) {
6139 auto TE = AmbiguousTypoExprs.back();
6140 auto Cached = TransformCache[TE];
6141 AmbiguousTypoExprs.pop_back();
6142 TransformCache.erase(TE);
6143 if (!TryTransform(E).isInvalid()) {
6144 SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream();
6145 TransformCache.erase(TE);
6146 Res = ExprError();
6147 break;
6148 } else
6149 TransformCache[TE] = Cached;
6150 }
6151
6152 // Ensure that all of the TypoExprs within the current Expr have been found.
6153 if (!Res.isUsable())
6154 FindTypoExprs(TypoExprs).TraverseStmt(E);
6155
6156 EmitAllDiagnostics();
6157
6158 return Res;
6159 }
6160
6161 ExprResult TransformTypoExpr(TypoExpr *E) {
6162 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
6163 // cached transformation result if there is one and the TypoExpr isn't the
6164 // first one that was encountered.
6165 auto &CacheEntry = TransformCache[E];
6166 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
6167 return CacheEntry;
6168 }
6169
6170 auto &State = SemaRef.getTypoExprState(E);
6171 assert(State.Consumer && "Cannot transform a cleared TypoExpr")((State.Consumer && "Cannot transform a cleared TypoExpr"
) ? static_cast<void> (0) : __assert_fail ("State.Consumer && \"Cannot transform a cleared TypoExpr\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6171, __PRETTY_FUNCTION__))
;
6172
6173 // For the first TypoExpr and an uncached TypoExpr, find the next likely
6174 // typo correction and return it.
6175 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
6176 ExprResult NE = State.RecoveryHandler ?
6177 State.RecoveryHandler(SemaRef, E, TC) :
6178 attemptRecovery(SemaRef, *State.Consumer, TC);
6179 if (!NE.isInvalid()) {
6180 // Check whether there may be a second viable correction with the same
6181 // edit distance; if so, remember this TypoExpr may have an ambiguous
6182 // correction so it can be more thoroughly vetted later.
6183 TypoCorrection Next;
6184 if ((Next = State.Consumer->peekNextCorrection()) &&
6185 Next.getEditDistance(false) == TC.getEditDistance(false)) {
6186 AmbiguousTypoExprs.insert(E);
6187 } else {
6188 AmbiguousTypoExprs.remove(E);
6189 }
6190 assert(!NE.isUnset() &&((!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? static_cast<void> (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6191, __PRETTY_FUNCTION__))
6191 "Typo was transformed into a valid-but-null ExprResult")((!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? static_cast<void> (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6191, __PRETTY_FUNCTION__))
;
6192 return CacheEntry = NE;
6193 }
6194 }
6195 return CacheEntry = ExprError();
6196 }
6197};
6198}
6199
6200ExprResult Sema::CorrectDelayedTyposInExpr(
6201 Expr *E, llvm::function_ref<ExprResult(Expr *)> Filter) {
6202 // If the current evaluation context indicates there are uncorrected typos
6203 // and the current expression isn't guaranteed to not have typos, try to
6204 // resolve any TypoExpr nodes that might be in the expression.
6205 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
6206 (E->isTypeDependent() || E->isValueDependent() ||
6207 E->isInstantiationDependent())) {
6208 auto TyposResolved = DelayedTypos.size();
6209 auto Result = TransformTypos(*this, Filter).Transform(E);
6210 TyposResolved -= DelayedTypos.size();
6211 if (TyposResolved) {
6212 ExprEvalContexts.back().NumTypos -= TyposResolved;
6213 return Result;
6214 }
6215 }
6216 return E;
6217}
6218
6219ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
6220 bool DiscardedValue,
6221 bool IsConstexpr,
6222 bool IsLambdaInitCaptureInitializer) {
6223 ExprResult FullExpr = FE;
6224
6225 if (!FullExpr.get())
6226 return ExprError();
6227
6228 // If we are an init-expression in a lambdas init-capture, we should not
6229 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
6230 // containing full-expression is done).
6231 // template<class ... Ts> void test(Ts ... t) {
6232 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
6233 // return a;
6234 // }() ...);
6235 // }
6236 // FIXME: This is a hack. It would be better if we pushed the lambda scope
6237 // when we parse the lambda introducer, and teach capturing (but not
6238 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
6239 // corresponding class yet (that is, have LambdaScopeInfo either represent a
6240 // lambda where we've entered the introducer but not the body, or represent a
6241 // lambda where we've entered the body, depending on where the
6242 // parser/instantiation has got to).
6243 if (!IsLambdaInitCaptureInitializer &&
6244 DiagnoseUnexpandedParameterPack(FullExpr.get()))
6245 return ExprError();
6246
6247 // Top-level expressions default to 'id' when we're in a debugger.
6248 if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
6249 FullExpr.get()->getType() == Context.UnknownAnyTy) {
6250 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
6251 if (FullExpr.isInvalid())
6252 return ExprError();
6253 }
6254
6255 if (DiscardedValue) {
6256 FullExpr = CheckPlaceholderExpr(FullExpr.get());
6257 if (FullExpr.isInvalid())
6258 return ExprError();
6259
6260 FullExpr = IgnoredValueConversions(FullExpr.get());
6261 if (FullExpr.isInvalid())
6262 return ExprError();
6263 }
6264
6265 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
6266 if (FullExpr.isInvalid())
6267 return ExprError();
6268
6269 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
6270
6271 // At the end of this full expression (which could be a deeply nested
6272 // lambda), if there is a potential capture within the nested lambda,
6273 // have the outer capture-able lambda try and capture it.
6274 // Consider the following code:
6275 // void f(int, int);
6276 // void f(const int&, double);
6277 // void foo() {
6278 // const int x = 10, y = 20;
6279 // auto L = [=](auto a) {
6280 // auto M = [=](auto b) {
6281 // f(x, b); <-- requires x to be captured by L and M
6282 // f(y, a); <-- requires y to be captured by L, but not all Ms
6283 // };
6284 // };
6285 // }
6286
6287 // FIXME: Also consider what happens for something like this that involves
6288 // the gnu-extension statement-expressions or even lambda-init-captures:
6289 // void f() {
6290 // const int n = 0;
6291 // auto L = [&](auto a) {
6292 // +n + ({ 0; a; });
6293 // };
6294 // }
6295 //
6296 // Here, we see +n, and then the full-expression 0; ends, so we don't
6297 // capture n (and instead remove it from our list of potential captures),
6298 // and then the full-expression +n + ({ 0; }); ends, but it's too late
6299 // for us to see that we need to capture n after all.
6300
6301 LambdaScopeInfo *const CurrentLSI = getCurLambda();
6302 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
6303 // even if CurContext is not a lambda call operator. Refer to that Bug Report
6304 // for an example of the code that might cause this asynchrony.
6305 // By ensuring we are in the context of a lambda's call operator
6306 // we can fix the bug (we only need to check whether we need to capture
6307 // if we are within a lambda's body); but per the comments in that
6308 // PR, a proper fix would entail :
6309 // "Alternative suggestion:
6310 // - Add to Sema an integer holding the smallest (outermost) scope
6311 // index that we are *lexically* within, and save/restore/set to
6312 // FunctionScopes.size() in InstantiatingTemplate's
6313 // constructor/destructor.
6314 // - Teach the handful of places that iterate over FunctionScopes to
6315 // stop at the outermost enclosing lexical scope."
6316 const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
6317 if (IsInLambdaDeclContext && CurrentLSI &&
6318 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
6319 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
6320 *this);
6321 return MaybeCreateExprWithCleanups(FullExpr);
6322}
6323
6324StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
6325 if (!FullStmt) return StmtError();
6326
6327 return MaybeCreateStmtWithCleanups(FullStmt);
6328}
6329
6330Sema::IfExistsResult
6331Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
6332 CXXScopeSpec &SS,
6333 const DeclarationNameInfo &TargetNameInfo) {
6334 DeclarationName TargetName = TargetNameInfo.getName();
6335 if (!TargetName)
6336 return IER_DoesNotExist;
6337
6338 // If the name itself is dependent, then the result is dependent.
6339 if (TargetName.isDependentName())
6340 return IER_Dependent;
6341
6342 // Do the redeclaration lookup in the current scope.
6343 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
6344 Sema::NotForRedeclaration);
6345 LookupParsedName(R, S, &SS);
6346 R.suppressDiagnostics();
6347
6348 switch (R.getResultKind()) {
6349 case LookupResult::Found:
6350 case LookupResult::FoundOverloaded:
6351 case LookupResult::FoundUnresolvedValue:
6352 case LookupResult::Ambiguous:
6353 return IER_Exists;
6354
6355 case LookupResult::NotFound:
6356 return IER_DoesNotExist;
6357
6358 case LookupResult::NotFoundInCurrentInstantiation:
6359 return IER_Dependent;
6360 }
6361
6362 llvm_unreachable("Invalid LookupResult Kind!")::llvm::llvm_unreachable_internal("Invalid LookupResult Kind!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224369/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6362)
;
6363}
6364
6365Sema::IfExistsResult
6366Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
6367 bool IsIfExists, CXXScopeSpec &SS,
6368 UnqualifiedId &Name) {
6369 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6370
6371 // Check for unexpanded parameter packs.
6372 SmallVector<UnexpandedParameterPack, 4> Unexpanded;
6373 collectUnexpandedParameterPacks(SS, Unexpanded);
6374 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
6375 if (!Unexpanded.empty()) {
6376 DiagnoseUnexpandedParameterPacks(KeywordLoc,
6377 IsIfExists? UPPC_IfExists
6378 : UPPC_IfNotExists,
6379 Unexpanded);
6380 return IER_Error;
6381 }
6382
6383 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
6384}