Bug Summary

File:tools/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 459, column 7
Called C++ object pointer is null

Annotated Source Code

1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/SemaLambda.h"
37#include "clang/Sema/TemplateDeduction.h"
38#include "llvm/ADT/APInt.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41using namespace clang;
42using namespace sema;
43
44/// \brief Handle the result of the special case name lookup for inheriting
45/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46/// constructor names in member using declarations, even if 'X' is not the
47/// name of the corresponding type.
48ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49 SourceLocation NameLoc,
50 IdentifierInfo &Name) {
51 NestedNameSpecifier *NNS = SS.getScopeRep();
52
53 // Convert the nested-name-specifier into a type.
54 QualType Type;
55 switch (NNS->getKind()) {
56 case NestedNameSpecifier::TypeSpec:
57 case NestedNameSpecifier::TypeSpecWithTemplate:
58 Type = QualType(NNS->getAsType(), 0);
59 break;
60
61 case NestedNameSpecifier::Identifier:
62 // Strip off the last layer of the nested-name-specifier and build a
63 // typename type for it.
64 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")((NNS->getAsIdentifier() == &Name && "not a constructor name"
) ? static_cast<void> (0) : __assert_fail ("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 64, __PRETTY_FUNCTION__))
;
65 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66 NNS->getAsIdentifier());
67 break;
68
69 case NestedNameSpecifier::Global:
70 case NestedNameSpecifier::Super:
71 case NestedNameSpecifier::Namespace:
72 case NestedNameSpecifier::NamespaceAlias:
73 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 73)
;
74 }
75
76 // This reference to the type is located entirely at the location of the
77 // final identifier in the qualified-id.
78 return CreateParsedType(Type,
79 Context.getTrivialTypeSourceInfo(Type, NameLoc));
80}
81
82ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
83 IdentifierInfo &II,
84 SourceLocation NameLoc,
85 Scope *S, CXXScopeSpec &SS,
86 ParsedType ObjectTypePtr,
87 bool EnteringContext) {
88 // Determine where to perform name lookup.
89
90 // FIXME: This area of the standard is very messy, and the current
91 // wording is rather unclear about which scopes we search for the
92 // destructor name; see core issues 399 and 555. Issue 399 in
93 // particular shows where the current description of destructor name
94 // lookup is completely out of line with existing practice, e.g.,
95 // this appears to be ill-formed:
96 //
97 // namespace N {
98 // template <typename T> struct S {
99 // ~S();
100 // };
101 // }
102 //
103 // void f(N::S<int>* s) {
104 // s->N::S<int>::~S();
105 // }
106 //
107 // See also PR6358 and PR6359.
108 // For this reason, we're currently only doing the C++03 version of this
109 // code; the C++0x version has to wait until we get a proper spec.
110 QualType SearchType;
111 DeclContext *LookupCtx = nullptr;
112 bool isDependent = false;
113 bool LookInScope = false;
114
115 if (SS.isInvalid())
116 return nullptr;
117
118 // If we have an object type, it's because we are in a
119 // pseudo-destructor-expression or a member access expression, and
120 // we know what type we're looking for.
121 if (ObjectTypePtr)
122 SearchType = GetTypeFromParser(ObjectTypePtr);
123
124 if (SS.isSet()) {
125 NestedNameSpecifier *NNS = SS.getScopeRep();
126
127 bool AlreadySearched = false;
128 bool LookAtPrefix = true;
129 // C++11 [basic.lookup.qual]p6:
130 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
131 // the type-names are looked up as types in the scope designated by the
132 // nested-name-specifier. Similarly, in a qualified-id of the form:
133 //
134 // nested-name-specifier[opt] class-name :: ~ class-name
135 //
136 // the second class-name is looked up in the same scope as the first.
137 //
138 // Here, we determine whether the code below is permitted to look at the
139 // prefix of the nested-name-specifier.
140 DeclContext *DC = computeDeclContext(SS, EnteringContext);
141 if (DC && DC->isFileContext()) {
142 AlreadySearched = true;
143 LookupCtx = DC;
144 isDependent = false;
145 } else if (DC && isa<CXXRecordDecl>(DC)) {
146 LookAtPrefix = false;
147 LookInScope = true;
148 }
149
150 // The second case from the C++03 rules quoted further above.
151 NestedNameSpecifier *Prefix = nullptr;
152 if (AlreadySearched) {
153 // Nothing left to do.
154 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
155 CXXScopeSpec PrefixSS;
156 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
157 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
158 isDependent = isDependentScopeSpecifier(PrefixSS);
159 } else if (ObjectTypePtr) {
160 LookupCtx = computeDeclContext(SearchType);
161 isDependent = SearchType->isDependentType();
162 } else {
163 LookupCtx = computeDeclContext(SS, EnteringContext);
164 isDependent = LookupCtx && LookupCtx->isDependentContext();
165 }
166 } else if (ObjectTypePtr) {
167 // C++ [basic.lookup.classref]p3:
168 // If the unqualified-id is ~type-name, the type-name is looked up
169 // in the context of the entire postfix-expression. If the type T
170 // of the object expression is of a class type C, the type-name is
171 // also looked up in the scope of class C. At least one of the
172 // lookups shall find a name that refers to (possibly
173 // cv-qualified) T.
174 LookupCtx = computeDeclContext(SearchType);
175 isDependent = SearchType->isDependentType();
176 assert((isDependent || !SearchType->isIncompleteType()) &&(((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 177, __PRETTY_FUNCTION__))
177 "Caller should have completed object type")(((isDependent || !SearchType->isIncompleteType()) &&
"Caller should have completed object type") ? static_cast<
void> (0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 177, __PRETTY_FUNCTION__))
;
178
179 LookInScope = true;
180 } else {
181 // Perform lookup into the current scope (only).
182 LookInScope = true;
183 }
184
185 TypeDecl *NonMatchingTypeDecl = nullptr;
186 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187 for (unsigned Step = 0; Step != 2; ++Step) {
188 // Look for the name first in the computed lookup context (if we
189 // have one) and, if that fails to find a match, in the scope (if
190 // we're allowed to look there).
191 Found.clear();
192 if (Step == 0 && LookupCtx)
193 LookupQualifiedName(Found, LookupCtx);
194 else if (Step == 1 && LookInScope && S)
195 LookupName(Found, S);
196 else
197 continue;
198
199 // FIXME: Should we be suppressing ambiguities here?
200 if (Found.isAmbiguous())
201 return nullptr;
202
203 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204 QualType T = Context.getTypeDeclType(Type);
205 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
206
207 if (SearchType.isNull() || SearchType->isDependentType() ||
208 Context.hasSameUnqualifiedType(T, SearchType)) {
209 // We found our type!
210
211 return CreateParsedType(T,
212 Context.getTrivialTypeSourceInfo(T, NameLoc));
213 }
214
215 if (!SearchType.isNull())
216 NonMatchingTypeDecl = Type;
217 }
218
219 // If the name that we found is a class template name, and it is
220 // the same name as the template name in the last part of the
221 // nested-name-specifier (if present) or the object type, then
222 // this is the destructor for that class.
223 // FIXME: This is a workaround until we get real drafting for core
224 // issue 399, for which there isn't even an obvious direction.
225 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
226 QualType MemberOfType;
227 if (SS.isSet()) {
228 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
229 // Figure out the type of the context, if it has one.
230 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
231 MemberOfType = Context.getTypeDeclType(Record);
232 }
233 }
234 if (MemberOfType.isNull())
235 MemberOfType = SearchType;
236
237 if (MemberOfType.isNull())
238 continue;
239
240 // We're referring into a class template specialization. If the
241 // class template we found is the same as the template being
242 // specialized, we found what we are looking for.
243 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
244 if (ClassTemplateSpecializationDecl *Spec
245 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
246 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
247 Template->getCanonicalDecl())
248 return CreateParsedType(
249 MemberOfType,
250 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
251 }
252
253 continue;
254 }
255
256 // We're referring to an unresolved class template
257 // specialization. Determine whether we class template we found
258 // is the same as the template being specialized or, if we don't
259 // know which template is being specialized, that it at least
260 // has the same name.
261 if (const TemplateSpecializationType *SpecType
262 = MemberOfType->getAs<TemplateSpecializationType>()) {
263 TemplateName SpecName = SpecType->getTemplateName();
264
265 // The class template we found is the same template being
266 // specialized.
267 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
268 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
269 return CreateParsedType(
270 MemberOfType,
271 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
272
273 continue;
274 }
275
276 // The class template we found has the same name as the
277 // (dependent) template name being specialized.
278 if (DependentTemplateName *DepTemplate
279 = SpecName.getAsDependentTemplateName()) {
280 if (DepTemplate->isIdentifier() &&
281 DepTemplate->getIdentifier() == Template->getIdentifier())
282 return CreateParsedType(
283 MemberOfType,
284 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
285
286 continue;
287 }
288 }
289 }
290 }
291
292 if (isDependent) {
293 // We didn't find our type, but that's okay: it's dependent
294 // anyway.
295
296 // FIXME: What if we have no nested-name-specifier?
297 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
298 SS.getWithLocInContext(Context),
299 II, NameLoc);
300 return ParsedType::make(T);
301 }
302
303 if (NonMatchingTypeDecl) {
304 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
305 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
306 << T << SearchType;
307 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
308 << T;
309 } else if (ObjectTypePtr)
310 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
311 << &II;
312 else {
313 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
314 diag::err_destructor_class_name);
315 if (S) {
316 const DeclContext *Ctx = S->getEntity();
317 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
318 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
319 Class->getNameAsString());
320 }
321 }
322
323 return nullptr;
324}
325
326ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
327 ParsedType ObjectType) {
328 if (DS.getTypeSpecType() == DeclSpec::TST_error)
329 return nullptr;
330
331 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
332 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
333 return nullptr;
334 }
335
336 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&((DS.getTypeSpecType() == DeclSpec::TST_decltype && "unexpected type in getDestructorType"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 337, __PRETTY_FUNCTION__))
337 "unexpected type in getDestructorType")((DS.getTypeSpecType() == DeclSpec::TST_decltype && "unexpected type in getDestructorType"
) ? static_cast<void> (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 337, __PRETTY_FUNCTION__))
;
338 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
339
340 // If we know the type of the object, check that the correct destructor
341 // type was named now; we can give better diagnostics this way.
342 QualType SearchType = GetTypeFromParser(ObjectType);
343 if (!SearchType.isNull() && !SearchType->isDependentType() &&
344 !Context.hasSameUnqualifiedType(T, SearchType)) {
345 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
346 << T << SearchType;
347 return nullptr;
348 }
349
350 return ParsedType::make(T);
351}
352
353bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
354 const UnqualifiedId &Name) {
355 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId)((Name.getKind() == UnqualifiedId::IK_LiteralOperatorId) ? static_cast
<void> (0) : __assert_fail ("Name.getKind() == UnqualifiedId::IK_LiteralOperatorId"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 355, __PRETTY_FUNCTION__))
;
356
357 if (!SS.isValid())
358 return false;
359
360 switch (SS.getScopeRep()->getKind()) {
361 case NestedNameSpecifier::Identifier:
362 case NestedNameSpecifier::TypeSpec:
363 case NestedNameSpecifier::TypeSpecWithTemplate:
364 // Per C++11 [over.literal]p2, literal operators can only be declared at
365 // namespace scope. Therefore, this unqualified-id cannot name anything.
366 // Reject it early, because we have no AST representation for this in the
367 // case where the scope is dependent.
368 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
369 << SS.getScopeRep();
370 return true;
371
372 case NestedNameSpecifier::Global:
373 case NestedNameSpecifier::Super:
374 case NestedNameSpecifier::Namespace:
375 case NestedNameSpecifier::NamespaceAlias:
376 return false;
377 }
378
379 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 379)
;
380}
381
382/// \brief Build a C++ typeid expression with a type operand.
383ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
384 SourceLocation TypeidLoc,
385 TypeSourceInfo *Operand,
386 SourceLocation RParenLoc) {
387 // C++ [expr.typeid]p4:
388 // The top-level cv-qualifiers of the lvalue expression or the type-id
389 // that is the operand of typeid are always ignored.
390 // If the type of the type-id is a class type or a reference to a class
391 // type, the class shall be completely-defined.
392 Qualifiers Quals;
393 QualType T
394 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
395 Quals);
396 if (T->getAs<RecordType>() &&
397 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
398 return ExprError();
399
400 if (T->isVariablyModifiedType())
401 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
402
403 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
404 SourceRange(TypeidLoc, RParenLoc));
405}
406
407/// \brief Build a C++ typeid expression with an expression operand.
408ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
409 SourceLocation TypeidLoc,
410 Expr *E,
411 SourceLocation RParenLoc) {
412 bool WasEvaluated = false;
413 if (E && !E->isTypeDependent()) {
11
Assuming 'E' is null
414 if (E->getType()->isPlaceholderType()) {
415 ExprResult result = CheckPlaceholderExpr(E);
416 if (result.isInvalid()) return ExprError();
417 E = result.get();
418 }
419
420 QualType T = E->getType();
421 if (const RecordType *RecordT = T->getAs<RecordType>()) {
422 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
423 // C++ [expr.typeid]p3:
424 // [...] If the type of the expression is a class type, the class
425 // shall be completely-defined.
426 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
427 return ExprError();
428
429 // C++ [expr.typeid]p3:
430 // When typeid is applied to an expression other than an glvalue of a
431 // polymorphic class type [...] [the] expression is an unevaluated
432 // operand. [...]
433 if (RecordD->isPolymorphic() && E->isGLValue()) {
434 // The subexpression is potentially evaluated; switch the context
435 // and recheck the subexpression.
436 ExprResult Result = TransformToPotentiallyEvaluated(E);
437 if (Result.isInvalid()) return ExprError();
438 E = Result.get();
439
440 // We require a vtable to query the type at run time.
441 MarkVTableUsed(TypeidLoc, RecordD);
442 WasEvaluated = true;
443 }
444 }
445
446 // C++ [expr.typeid]p4:
447 // [...] If the type of the type-id is a reference to a possibly
448 // cv-qualified type, the result of the typeid expression refers to a
449 // std::type_info object representing the cv-unqualified referenced
450 // type.
451 Qualifiers Quals;
452 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
453 if (!Context.hasSameType(T, UnqualT)) {
454 T = UnqualT;
455 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
456 }
457 }
458
459 if (E->getType()->isVariablyModifiedType())
12
Called C++ object pointer is null
460 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
461 << E->getType());
462 else if (!inTemplateInstantiation() &&
463 E->HasSideEffects(Context, WasEvaluated)) {
464 // The expression operand for typeid is in an unevaluated expression
465 // context, so side effects could result in unintended consequences.
466 Diag(E->getExprLoc(), WasEvaluated
467 ? diag::warn_side_effects_typeid
468 : diag::warn_side_effects_unevaluated_context);
469 }
470
471 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
472 SourceRange(TypeidLoc, RParenLoc));
473}
474
475/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
476ExprResult
477Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
478 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
479 // Find the std::type_info type.
480 if (!getStdNamespace())
1
Assuming the condition is false
2
Taking false branch
481 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
482
483 if (!CXXTypeInfoDecl) {
3
Assuming the condition is false
4
Taking false branch
484 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
485 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
486 LookupQualifiedName(R, getStdNamespace());
487 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
488 // Microsoft's typeinfo doesn't have type_info in std but in the global
489 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
490 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
491 LookupQualifiedName(R, Context.getTranslationUnitDecl());
492 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
493 }
494 if (!CXXTypeInfoDecl)
495 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
496 }
497
498 if (!getLangOpts().RTTI) {
5
Assuming the condition is false
6
Taking false branch
499 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
500 }
501
502 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
503
504 if (isType) {
7
Assuming 'isType' is 0
8
Taking false branch
505 // The operand is a type; handle it as such.
506 TypeSourceInfo *TInfo = nullptr;
507 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
508 &TInfo);
509 if (T.isNull())
510 return ExprError();
511
512 if (!TInfo)
513 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
514
515 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
516 }
517
518 // The operand is an expression.
519 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
9
Passing value via 3rd parameter 'E'
10
Calling 'Sema::BuildCXXTypeId'
520}
521
522/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
523/// a single GUID.
524static void
525getUuidAttrOfType(Sema &SemaRef, QualType QT,
526 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
527 // Optionally remove one level of pointer, reference or array indirection.
528 const Type *Ty = QT.getTypePtr();
529 if (QT->isPointerType() || QT->isReferenceType())
530 Ty = QT->getPointeeType().getTypePtr();
531 else if (QT->isArrayType())
532 Ty = Ty->getBaseElementTypeUnsafe();
533
534 const auto *TD = Ty->getAsTagDecl();
535 if (!TD)
536 return;
537
538 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
539 UuidAttrs.insert(Uuid);
540 return;
541 }
542
543 // __uuidof can grab UUIDs from template arguments.
544 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
545 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
546 for (const TemplateArgument &TA : TAL.asArray()) {
547 const UuidAttr *UuidForTA = nullptr;
548 if (TA.getKind() == TemplateArgument::Type)
549 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
550 else if (TA.getKind() == TemplateArgument::Declaration)
551 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
552
553 if (UuidForTA)
554 UuidAttrs.insert(UuidForTA);
555 }
556 }
557}
558
559/// \brief Build a Microsoft __uuidof expression with a type operand.
560ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
561 SourceLocation TypeidLoc,
562 TypeSourceInfo *Operand,
563 SourceLocation RParenLoc) {
564 StringRef UuidStr;
565 if (!Operand->getType()->isDependentType()) {
566 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
567 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
568 if (UuidAttrs.empty())
569 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
570 if (UuidAttrs.size() > 1)
571 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
572 UuidStr = UuidAttrs.back()->getGuid();
573 }
574
575 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
576 SourceRange(TypeidLoc, RParenLoc));
577}
578
579/// \brief Build a Microsoft __uuidof expression with an expression operand.
580ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
581 SourceLocation TypeidLoc,
582 Expr *E,
583 SourceLocation RParenLoc) {
584 StringRef UuidStr;
585 if (!E->getType()->isDependentType()) {
586 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
587 UuidStr = "00000000-0000-0000-0000-000000000000";
588 } else {
589 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
590 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
591 if (UuidAttrs.empty())
592 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
593 if (UuidAttrs.size() > 1)
594 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
595 UuidStr = UuidAttrs.back()->getGuid();
596 }
597 }
598
599 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
600 SourceRange(TypeidLoc, RParenLoc));
601}
602
603/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
604ExprResult
605Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
606 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
607 // If MSVCGuidDecl has not been cached, do the lookup.
608 if (!MSVCGuidDecl) {
609 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
610 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
611 LookupQualifiedName(R, Context.getTranslationUnitDecl());
612 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
613 if (!MSVCGuidDecl)
614 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
615 }
616
617 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
618
619 if (isType) {
620 // The operand is a type; handle it as such.
621 TypeSourceInfo *TInfo = nullptr;
622 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
623 &TInfo);
624 if (T.isNull())
625 return ExprError();
626
627 if (!TInfo)
628 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
629
630 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
631 }
632
633 // The operand is an expression.
634 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
635}
636
637/// ActOnCXXBoolLiteral - Parse {true,false} literals.
638ExprResult
639Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
640 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"
) ? static_cast<void> (0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 641, __PRETTY_FUNCTION__))
641 "Unknown C++ Boolean value!")(((Kind == tok::kw_true || Kind == tok::kw_false) && "Unknown C++ Boolean value!"
) ? static_cast<void> (0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 641, __PRETTY_FUNCTION__))
;
642 return new (Context)
643 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
644}
645
646/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
647ExprResult
648Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
649 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
650}
651
652/// ActOnCXXThrow - Parse throw expressions.
653ExprResult
654Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
655 bool IsThrownVarInScope = false;
656 if (Ex) {
657 // C++0x [class.copymove]p31:
658 // When certain criteria are met, an implementation is allowed to omit the
659 // copy/move construction of a class object [...]
660 //
661 // - in a throw-expression, when the operand is the name of a
662 // non-volatile automatic object (other than a function or catch-
663 // clause parameter) whose scope does not extend beyond the end of the
664 // innermost enclosing try-block (if there is one), the copy/move
665 // operation from the operand to the exception object (15.1) can be
666 // omitted by constructing the automatic object directly into the
667 // exception object
668 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
669 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
670 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
671 for( ; S; S = S->getParent()) {
672 if (S->isDeclScope(Var)) {
673 IsThrownVarInScope = true;
674 break;
675 }
676
677 if (S->getFlags() &
678 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
679 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
680 Scope::TryScope))
681 break;
682 }
683 }
684 }
685 }
686
687 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
688}
689
690ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
691 bool IsThrownVarInScope) {
692 // Don't report an error if 'throw' is used in system headers.
693 if (!getLangOpts().CXXExceptions &&
694 !getSourceManager().isInSystemHeader(OpLoc))
695 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
696
697 // Exceptions aren't allowed in CUDA device code.
698 if (getLangOpts().CUDA)
699 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
700 << "throw" << CurrentCUDATarget();
701
702 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
703 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
704
705 if (Ex && !Ex->isTypeDependent()) {
706 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
707 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
708 return ExprError();
709
710 // Initialize the exception result. This implicitly weeds out
711 // abstract types or types with inaccessible copy constructors.
712
713 // C++0x [class.copymove]p31:
714 // When certain criteria are met, an implementation is allowed to omit the
715 // copy/move construction of a class object [...]
716 //
717 // - in a throw-expression, when the operand is the name of a
718 // non-volatile automatic object (other than a function or
719 // catch-clause
720 // parameter) whose scope does not extend beyond the end of the
721 // innermost enclosing try-block (if there is one), the copy/move
722 // operation from the operand to the exception object (15.1) can be
723 // omitted by constructing the automatic object directly into the
724 // exception object
725 const VarDecl *NRVOVariable = nullptr;
726 if (IsThrownVarInScope)
727 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false);
728
729 InitializedEntity Entity = InitializedEntity::InitializeException(
730 OpLoc, ExceptionObjectTy,
731 /*NRVO=*/NRVOVariable != nullptr);
732 ExprResult Res = PerformMoveOrCopyInitialization(
733 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
734 if (Res.isInvalid())
735 return ExprError();
736 Ex = Res.get();
737 }
738
739 return new (Context)
740 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
741}
742
743static void
744collectPublicBases(CXXRecordDecl *RD,
745 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
746 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
747 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
748 bool ParentIsPublic) {
749 for (const CXXBaseSpecifier &BS : RD->bases()) {
750 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
751 bool NewSubobject;
752 // Virtual bases constitute the same subobject. Non-virtual bases are
753 // always distinct subobjects.
754 if (BS.isVirtual())
755 NewSubobject = VBases.insert(BaseDecl).second;
756 else
757 NewSubobject = true;
758
759 if (NewSubobject)
760 ++SubobjectsSeen[BaseDecl];
761
762 // Only add subobjects which have public access throughout the entire chain.
763 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
764 if (PublicPath)
765 PublicSubobjectsSeen.insert(BaseDecl);
766
767 // Recurse on to each base subobject.
768 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
769 PublicPath);
770 }
771}
772
773static void getUnambiguousPublicSubobjects(
774 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
775 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
776 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
777 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
778 SubobjectsSeen[RD] = 1;
779 PublicSubobjectsSeen.insert(RD);
780 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
781 /*ParentIsPublic=*/true);
782
783 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
784 // Skip ambiguous objects.
785 if (SubobjectsSeen[PublicSubobject] > 1)
786 continue;
787
788 Objects.push_back(PublicSubobject);
789 }
790}
791
792/// CheckCXXThrowOperand - Validate the operand of a throw.
793bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
794 QualType ExceptionObjectTy, Expr *E) {
795 // If the type of the exception would be an incomplete type or a pointer
796 // to an incomplete type other than (cv) void the program is ill-formed.
797 QualType Ty = ExceptionObjectTy;
798 bool isPointer = false;
799 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
800 Ty = Ptr->getPointeeType();
801 isPointer = true;
802 }
803 if (!isPointer || !Ty->isVoidType()) {
804 if (RequireCompleteType(ThrowLoc, Ty,
805 isPointer ? diag::err_throw_incomplete_ptr
806 : diag::err_throw_incomplete,
807 E->getSourceRange()))
808 return true;
809
810 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
811 diag::err_throw_abstract_type, E))
812 return true;
813 }
814
815 // If the exception has class type, we need additional handling.
816 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
817 if (!RD)
818 return false;
819
820 // If we are throwing a polymorphic class type or pointer thereof,
821 // exception handling will make use of the vtable.
822 MarkVTableUsed(ThrowLoc, RD);
823
824 // If a pointer is thrown, the referenced object will not be destroyed.
825 if (isPointer)
826 return false;
827
828 // If the class has a destructor, we must be able to call it.
829 if (!RD->hasIrrelevantDestructor()) {
830 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
831 MarkFunctionReferenced(E->getExprLoc(), Destructor);
832 CheckDestructorAccess(E->getExprLoc(), Destructor,
833 PDiag(diag::err_access_dtor_exception) << Ty);
834 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
835 return true;
836 }
837 }
838
839 // The MSVC ABI creates a list of all types which can catch the exception
840 // object. This list also references the appropriate copy constructor to call
841 // if the object is caught by value and has a non-trivial copy constructor.
842 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
843 // We are only interested in the public, unambiguous bases contained within
844 // the exception object. Bases which are ambiguous or otherwise
845 // inaccessible are not catchable types.
846 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
847 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
848
849 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
850 // Attempt to lookup the copy constructor. Various pieces of machinery
851 // will spring into action, like template instantiation, which means this
852 // cannot be a simple walk of the class's decls. Instead, we must perform
853 // lookup and overload resolution.
854 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
855 if (!CD)
856 continue;
857
858 // Mark the constructor referenced as it is used by this throw expression.
859 MarkFunctionReferenced(E->getExprLoc(), CD);
860
861 // Skip this copy constructor if it is trivial, we don't need to record it
862 // in the catchable type data.
863 if (CD->isTrivial())
864 continue;
865
866 // The copy constructor is non-trivial, create a mapping from this class
867 // type to this constructor.
868 // N.B. The selection of copy constructor is not sensitive to this
869 // particular throw-site. Lookup will be performed at the catch-site to
870 // ensure that the copy constructor is, in fact, accessible (via
871 // friendship or any other means).
872 Context.addCopyConstructorForExceptionObject(Subobject, CD);
873
874 // We don't keep the instantiated default argument expressions around so
875 // we must rebuild them here.
876 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
877 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
878 return true;
879 }
880 }
881 }
882
883 return false;
884}
885
886static QualType adjustCVQualifiersForCXXThisWithinLambda(
887 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
888 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
889
890 QualType ClassType = ThisTy->getPointeeType();
891 LambdaScopeInfo *CurLSI = nullptr;
892 DeclContext *CurDC = CurSemaContext;
893
894 // Iterate through the stack of lambdas starting from the innermost lambda to
895 // the outermost lambda, checking if '*this' is ever captured by copy - since
896 // that could change the cv-qualifiers of the '*this' object.
897 // The object referred to by '*this' starts out with the cv-qualifiers of its
898 // member function. We then start with the innermost lambda and iterate
899 // outward checking to see if any lambda performs a by-copy capture of '*this'
900 // - and if so, any nested lambda must respect the 'constness' of that
901 // capturing lamdbda's call operator.
902 //
903
904 // The issue is that we cannot rely entirely on the FunctionScopeInfo stack
905 // since ScopeInfos are pushed on during parsing and treetransforming. But
906 // since a generic lambda's call operator can be instantiated anywhere (even
907 // end of the TU) we need to be able to examine its enclosing lambdas and so
908 // we use the DeclContext to get a hold of the closure-class and query it for
909 // capture information. The reason we don't just resort to always using the
910 // DeclContext chain is that it is only mature for lambda expressions
911 // enclosing generic lambda's call operators that are being instantiated.
912
913 for (int I = FunctionScopes.size();
914 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]);
915 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
916 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
917
918 if (!CurLSI->isCXXThisCaptured())
919 continue;
920
921 auto C = CurLSI->getCXXThisCapture();
922
923 if (C.isCopyCapture()) {
924 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
925 if (CurLSI->CallOperator->isConst())
926 ClassType.addConst();
927 return ASTCtx.getPointerType(ClassType);
928 }
929 }
930 // We've run out of ScopeInfos but check if CurDC is a lambda (which can
931 // happen during instantiation of generic lambdas)
932 if (isLambdaCallOperator(CurDC)) {
933 assert(CurLSI)((CurLSI) ? static_cast<void> (0) : __assert_fail ("CurLSI"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 933, __PRETTY_FUNCTION__))
;
934 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator))((isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator
)) ? static_cast<void> (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 934, __PRETTY_FUNCTION__))
;
935 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))((CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator
)) ? static_cast<void> (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 935, __PRETTY_FUNCTION__))
;
936
937 auto IsThisCaptured =
938 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
939 IsConst = false;
940 IsByCopy = false;
941 for (auto &&C : Closure->captures()) {
942 if (C.capturesThis()) {
943 if (C.getCaptureKind() == LCK_StarThis)
944 IsByCopy = true;
945 if (Closure->getLambdaCallOperator()->isConst())
946 IsConst = true;
947 return true;
948 }
949 }
950 return false;
951 };
952
953 bool IsByCopyCapture = false;
954 bool IsConstCapture = false;
955 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
956 while (Closure &&
957 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
958 if (IsByCopyCapture) {
959 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
960 if (IsConstCapture)
961 ClassType.addConst();
962 return ASTCtx.getPointerType(ClassType);
963 }
964 Closure = isLambdaCallOperator(Closure->getParent())
965 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
966 : nullptr;
967 }
968 }
969 return ASTCtx.getPointerType(ClassType);
970}
971
972QualType Sema::getCurrentThisType() {
973 DeclContext *DC = getFunctionLevelDeclContext();
974 QualType ThisTy = CXXThisTypeOverride;
975
976 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
977 if (method && method->isInstance())
978 ThisTy = method->getThisType(Context);
979 }
980
981 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
982 inTemplateInstantiation()) {
983
984 assert(isa<CXXRecordDecl>(DC) &&((isa<CXXRecordDecl>(DC) && "Trying to get 'this' type from static method?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 985, __PRETTY_FUNCTION__))
985 "Trying to get 'this' type from static method?")((isa<CXXRecordDecl>(DC) && "Trying to get 'this' type from static method?"
) ? static_cast<void> (0) : __assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 985, __PRETTY_FUNCTION__))
;
986
987 // This is a lambda call operator that is being instantiated as a default
988 // initializer. DC must point to the enclosing class type, so we can recover
989 // the 'this' type from it.
990
991 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
992 // There are no cv-qualifiers for 'this' within default initializers,
993 // per [expr.prim.general]p4.
994 ThisTy = Context.getPointerType(ClassTy);
995 }
996
997 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
998 // might need to be adjusted if the lambda or any of its enclosing lambda's
999 // captures '*this' by copy.
1000 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1001 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1002 CurContext, Context);
1003 return ThisTy;
1004}
1005
1006Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1007 Decl *ContextDecl,
1008 unsigned CXXThisTypeQuals,
1009 bool Enabled)
1010 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1011{
1012 if (!Enabled || !ContextDecl)
1013 return;
1014
1015 CXXRecordDecl *Record = nullptr;
1016 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1017 Record = Template->getTemplatedDecl();
1018 else
1019 Record = cast<CXXRecordDecl>(ContextDecl);
1020
1021 // We care only for CVR qualifiers here, so cut everything else.
1022 CXXThisTypeQuals &= Qualifiers::FastMask;
1023 S.CXXThisTypeOverride
1024 = S.Context.getPointerType(
1025 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
1026
1027 this->Enabled = true;
1028}
1029
1030
1031Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1032 if (Enabled) {
1033 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1034 }
1035}
1036
1037static Expr *captureThis(Sema &S, ASTContext &Context, RecordDecl *RD,
1038 QualType ThisTy, SourceLocation Loc,
1039 const bool ByCopy) {
1040
1041 QualType AdjustedThisTy = ThisTy;
1042 // The type of the corresponding data member (not a 'this' pointer if 'by
1043 // copy').
1044 QualType CaptureThisFieldTy = ThisTy;
1045 if (ByCopy) {
1046 // If we are capturing the object referred to by '*this' by copy, ignore any
1047 // cv qualifiers inherited from the type of the member function for the type
1048 // of the closure-type's corresponding data member and any use of 'this'.
1049 CaptureThisFieldTy = ThisTy->getPointeeType();
1050 CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1051 AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
1052 }
1053
1054 FieldDecl *Field = FieldDecl::Create(
1055 Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
1056 Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
1057 ICIS_NoInit);
1058
1059 Field->setImplicit(true);
1060 Field->setAccess(AS_private);
1061 RD->addDecl(Field);
1062 Expr *This =
1063 new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
1064 if (ByCopy) {
1065 Expr *StarThis = S.CreateBuiltinUnaryOp(Loc,
1066 UO_Deref,
1067 This).get();
1068 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1069 nullptr, CaptureThisFieldTy, Loc);
1070 InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1071 InitializationSequence Init(S, Entity, InitKind, StarThis);
1072 ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
1073 if (ER.isInvalid()) return nullptr;
1074 return ER.get();
1075 }
1076 return This;
1077}
1078
1079bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1080 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1081 const bool ByCopy) {
1082 // We don't need to capture this in an unevaluated context.
1083 if (isUnevaluatedContext() && !Explicit)
1084 return true;
1085
1086 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? static_cast<void> (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1086, __PRETTY_FUNCTION__))
;
1087
1088 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
1089 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
1090
1091 // Check that we can capture the *enclosing object* (referred to by '*this')
1092 // by the capturing-entity/closure (lambda/block/etc) at
1093 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1094
1095 // Note: The *enclosing object* can only be captured by-value by a
1096 // closure that is a lambda, using the explicit notation:
1097 // [*this] { ... }.
1098 // Every other capture of the *enclosing object* results in its by-reference
1099 // capture.
1100
1101 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1102 // stack), we can capture the *enclosing object* only if:
1103 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1104 // - or, 'L' has an implicit capture.
1105 // AND
1106 // -- there is no enclosing closure
1107 // -- or, there is some enclosing closure 'E' that has already captured the
1108 // *enclosing object*, and every intervening closure (if any) between 'E'
1109 // and 'L' can implicitly capture the *enclosing object*.
1110 // -- or, every enclosing closure can implicitly capture the
1111 // *enclosing object*
1112
1113
1114 unsigned NumCapturingClosures = 0;
1115 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
1116 if (CapturingScopeInfo *CSI =
1117 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1118 if (CSI->CXXThisCaptureIndex != 0) {
1119 // 'this' is already being captured; there isn't anything more to do.
1120 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1121 break;
1122 }
1123 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1124 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1125 // This context can't implicitly capture 'this'; fail out.
1126 if (BuildAndDiagnose)
1127 Diag(Loc, diag::err_this_capture)
1128 << (Explicit && idx == MaxFunctionScopesIndex);
1129 return true;
1130 }
1131 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1132 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1133 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1134 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1135 (Explicit && idx == MaxFunctionScopesIndex)) {
1136 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1137 // iteration through can be an explicit capture, all enclosing closures,
1138 // if any, must perform implicit captures.
1139
1140 // This closure can capture 'this'; continue looking upwards.
1141 NumCapturingClosures++;
1142 continue;
1143 }
1144 // This context can't implicitly capture 'this'; fail out.
1145 if (BuildAndDiagnose)
1146 Diag(Loc, diag::err_this_capture)
1147 << (Explicit && idx == MaxFunctionScopesIndex);
1148 return true;
1149 }
1150 break;
1151 }
1152 if (!BuildAndDiagnose) return false;
1153
1154 // If we got here, then the closure at MaxFunctionScopesIndex on the
1155 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1156 // (including implicit by-reference captures in any enclosing closures).
1157
1158 // In the loop below, respect the ByCopy flag only for the closure requesting
1159 // the capture (i.e. first iteration through the loop below). Ignore it for
1160 // all enclosing closure's up to NumCapturingClosures (since they must be
1161 // implicitly capturing the *enclosing object* by reference (see loop
1162 // above)).
1163 assert((!ByCopy ||(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1166, __PRETTY_FUNCTION__))
1164 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1166, __PRETTY_FUNCTION__))
1165 "Only a lambda can capture the enclosing object (referred to by "(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1166, __PRETTY_FUNCTION__))
1166 "*this) by copy")(((!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[
MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? static_cast<void> (0) : __assert_fail
("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1166, __PRETTY_FUNCTION__))
;
1167 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
1168 // contexts.
1169 QualType ThisTy = getCurrentThisType();
1170 for (unsigned idx = MaxFunctionScopesIndex; NumCapturingClosures;
1171 --idx, --NumCapturingClosures) {
1172 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1173 Expr *ThisExpr = nullptr;
1174
1175 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
1176 // For lambda expressions, build a field and an initializing expression,
1177 // and capture the *enclosing object* by copy only if this is the first
1178 // iteration.
1179 ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
1180 ByCopy && idx == MaxFunctionScopesIndex);
1181
1182 } else if (CapturedRegionScopeInfo *RSI
1183 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
1184 ThisExpr =
1185 captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
1186 false/*ByCopy*/);
1187
1188 bool isNested = NumCapturingClosures > 1;
1189 CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
1190 }
1191 return false;
1192}
1193
1194ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1195 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1196 /// is a non-lvalue expression whose value is the address of the object for
1197 /// which the function is called.
1198
1199 QualType ThisTy = getCurrentThisType();
1200 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
1201
1202 CheckCXXThisCapture(Loc);
1203 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1204}
1205
1206bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1207 // If we're outside the body of a member function, then we'll have a specified
1208 // type for 'this'.
1209 if (CXXThisTypeOverride.isNull())
1210 return false;
1211
1212 // Determine whether we're looking into a class that's currently being
1213 // defined.
1214 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1215 return Class && Class->isBeingDefined();
1216}
1217
1218ExprResult
1219Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1220 SourceLocation LParenLoc,
1221 MultiExprArg exprs,
1222 SourceLocation RParenLoc) {
1223 if (!TypeRep)
1224 return ExprError();
1225
1226 TypeSourceInfo *TInfo;
1227 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1228 if (!TInfo)
1229 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1230
1231 // Handle errors like: int({0})
1232 if (exprs.size() == 1 && !canInitializeWithParenthesizedList(Ty) &&
1233 LParenLoc.isValid() && RParenLoc.isValid())
1234 if (auto IList = dyn_cast<InitListExpr>(exprs[0])) {
1235 Diag(TInfo->getTypeLoc().getLocStart(), diag::err_list_init_in_parens)
1236 << Ty << IList->getSourceRange()
1237 << FixItHint::CreateRemoval(LParenLoc)
1238 << FixItHint::CreateRemoval(RParenLoc);
1239 LParenLoc = RParenLoc = SourceLocation();
1240 }
1241
1242 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
1243 // Avoid creating a non-type-dependent expression that contains typos.
1244 // Non-type-dependent expressions are liable to be discarded without
1245 // checking for embedded typos.
1246 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1247 !Result.get()->isTypeDependent())
1248 Result = CorrectDelayedTyposInExpr(Result.get());
1249 return Result;
1250}
1251
1252/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
1253/// Can be interpreted either as function-style casting ("int(x)")
1254/// or class type construction ("ClassType(x,y,z)")
1255/// or creation of a value-initialized type ("int()").
1256ExprResult
1257Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1258 SourceLocation LParenLoc,
1259 MultiExprArg Exprs,
1260 SourceLocation RParenLoc) {
1261 QualType Ty = TInfo->getType();
1262 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1263
1264 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1265 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
1266 RParenLoc);
1267 }
1268
1269 bool ListInitialization = LParenLoc.isInvalid();
1270 assert((!ListInitialization ||(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1272, __PRETTY_FUNCTION__))
1271 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1272, __PRETTY_FUNCTION__))
1272 "List initialization must have initializer list as expression.")(((!ListInitialization || (Exprs.size() == 1 && isa<
InitListExpr>(Exprs[0]))) && "List initialization must have initializer list as expression."
) ? static_cast<void> (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1272, __PRETTY_FUNCTION__))
;
1273 SourceRange FullRange = SourceRange(TyBeginLoc,
1274 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
1275
1276 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1277 InitializationKind Kind =
1278 Exprs.size()
1279 ? ListInitialization
1280 ? InitializationKind::CreateDirectList(TyBeginLoc)
1281 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc,
1282 RParenLoc)
1283 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
1284
1285 // C++1z [expr.type.conv]p1:
1286 // If the type is a placeholder for a deduced class type, [...perform class
1287 // template argument deduction...]
1288 DeducedType *Deduced = Ty->getContainedDeducedType();
1289 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1290 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1291 Kind, Exprs);
1292 if (Ty.isNull())
1293 return ExprError();
1294 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1295 }
1296
1297 // C++ [expr.type.conv]p1:
1298 // If the expression list is a single expression, the type conversion
1299 // expression is equivalent (in definedness, and if defined in meaning) to the
1300 // corresponding cast expression.
1301 if (Exprs.size() == 1 && !ListInitialization) {
1302 Expr *Arg = Exprs[0];
1303 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenLoc, Arg, RParenLoc);
1304 }
1305
1306 // C++14 [expr.type.conv]p2: The expression T(), where T is a
1307 // simple-type-specifier or typename-specifier for a non-array complete
1308 // object type or the (possibly cv-qualified) void type, creates a prvalue
1309 // of the specified type, whose value is that produced by value-initializing
1310 // an object of type T.
1311 QualType ElemTy = Ty;
1312 if (Ty->isArrayType()) {
1313 if (!ListInitialization)
1314 return ExprError(Diag(TyBeginLoc,
1315 diag::err_value_init_for_array_type) << FullRange);
1316 ElemTy = Context.getBaseElementType(Ty);
1317 }
1318
1319 if (!ListInitialization && Ty->isFunctionType())
1320 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_function_type)
1321 << FullRange);
1322
1323 if (!Ty->isVoidType() &&
1324 RequireCompleteType(TyBeginLoc, ElemTy,
1325 diag::err_invalid_incomplete_type_use, FullRange))
1326 return ExprError();
1327
1328 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1329 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1330
1331 if (Result.isInvalid() || !ListInitialization)
1332 return Result;
1333
1334 Expr *Inner = Result.get();
1335 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1336 Inner = BTE->getSubExpr();
1337 if (!isa<CXXTemporaryObjectExpr>(Inner)) {
1338 // If we created a CXXTemporaryObjectExpr, that node also represents the
1339 // functional cast. Otherwise, create an explicit cast to represent
1340 // the syntactic form of a functional-style cast that was used here.
1341 //
1342 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1343 // would give a more consistent AST representation than using a
1344 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1345 // is sometimes handled by initialization and sometimes not.
1346 QualType ResultType = Result.get()->getType();
1347 Result = CXXFunctionalCastExpr::Create(
1348 Context, ResultType, Expr::getValueKindForType(Ty), TInfo,
1349 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
1350 }
1351
1352 return Result;
1353}
1354
1355/// \brief Determine whether the given function is a non-placement
1356/// deallocation function.
1357static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1358 if (FD->isInvalidDecl())
1359 return false;
1360
1361 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1362 return Method->isUsualDeallocationFunction();
1363
1364 if (FD->getOverloadedOperator() != OO_Delete &&
1365 FD->getOverloadedOperator() != OO_Array_Delete)
1366 return false;
1367
1368 unsigned UsualParams = 1;
1369
1370 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1371 S.Context.hasSameUnqualifiedType(
1372 FD->getParamDecl(UsualParams)->getType(),
1373 S.Context.getSizeType()))
1374 ++UsualParams;
1375
1376 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1377 S.Context.hasSameUnqualifiedType(
1378 FD->getParamDecl(UsualParams)->getType(),
1379 S.Context.getTypeDeclType(S.getStdAlignValT())))
1380 ++UsualParams;
1381
1382 return UsualParams == FD->getNumParams();
1383}
1384
1385namespace {
1386 struct UsualDeallocFnInfo {
1387 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1388 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1389 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1390 HasSizeT(false), HasAlignValT(false), CUDAPref(Sema::CFP_Native) {
1391 // A function template declaration is never a usual deallocation function.
1392 if (!FD)
1393 return;
1394 if (FD->getNumParams() == 3)
1395 HasAlignValT = HasSizeT = true;
1396 else if (FD->getNumParams() == 2) {
1397 HasSizeT = FD->getParamDecl(1)->getType()->isIntegerType();
1398 HasAlignValT = !HasSizeT;
1399 }
1400
1401 // In CUDA, determine how much we'd like / dislike to call this.
1402 if (S.getLangOpts().CUDA)
1403 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1404 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1405 }
1406
1407 operator bool() const { return FD; }
1408
1409 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1410 bool WantAlign) const {
1411 // C++17 [expr.delete]p10:
1412 // If the type has new-extended alignment, a function with a parameter
1413 // of type std::align_val_t is preferred; otherwise a function without
1414 // such a parameter is preferred
1415 if (HasAlignValT != Other.HasAlignValT)
1416 return HasAlignValT == WantAlign;
1417
1418 if (HasSizeT != Other.HasSizeT)
1419 return HasSizeT == WantSize;
1420
1421 // Use CUDA call preference as a tiebreaker.
1422 return CUDAPref > Other.CUDAPref;
1423 }
1424
1425 DeclAccessPair Found;
1426 FunctionDecl *FD;
1427 bool HasSizeT, HasAlignValT;
1428 Sema::CUDAFunctionPreference CUDAPref;
1429 };
1430}
1431
1432/// Determine whether a type has new-extended alignment. This may be called when
1433/// the type is incomplete (for a delete-expression with an incomplete pointee
1434/// type), in which case it will conservatively return false if the alignment is
1435/// not known.
1436static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1437 return S.getLangOpts().AlignedAllocation &&
1438 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1439 S.getASTContext().getTargetInfo().getNewAlign();
1440}
1441
1442/// Select the correct "usual" deallocation function to use from a selection of
1443/// deallocation functions (either global or class-scope).
1444static UsualDeallocFnInfo resolveDeallocationOverload(
1445 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1446 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1447 UsualDeallocFnInfo Best;
1448
1449 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1450 UsualDeallocFnInfo Info(S, I.getPair());
1451 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1452 Info.CUDAPref == Sema::CFP_Never)
1453 continue;
1454
1455 if (!Best) {
1456 Best = Info;
1457 if (BestFns)
1458 BestFns->push_back(Info);
1459 continue;
1460 }
1461
1462 if (Best.isBetterThan(Info, WantSize, WantAlign))
1463 continue;
1464
1465 // If more than one preferred function is found, all non-preferred
1466 // functions are eliminated from further consideration.
1467 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1468 BestFns->clear();
1469
1470 Best = Info;
1471 if (BestFns)
1472 BestFns->push_back(Info);
1473 }
1474
1475 return Best;
1476}
1477
1478/// Determine whether a given type is a class for which 'delete[]' would call
1479/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1480/// we need to store the array size (even if the type is
1481/// trivially-destructible).
1482static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1483 QualType allocType) {
1484 const RecordType *record =
1485 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1486 if (!record) return false;
1487
1488 // Try to find an operator delete[] in class scope.
1489
1490 DeclarationName deleteName =
1491 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1492 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1493 S.LookupQualifiedName(ops, record->getDecl());
1494
1495 // We're just doing this for information.
1496 ops.suppressDiagnostics();
1497
1498 // Very likely: there's no operator delete[].
1499 if (ops.empty()) return false;
1500
1501 // If it's ambiguous, it should be illegal to call operator delete[]
1502 // on this thing, so it doesn't matter if we allocate extra space or not.
1503 if (ops.isAmbiguous()) return false;
1504
1505 // C++17 [expr.delete]p10:
1506 // If the deallocation functions have class scope, the one without a
1507 // parameter of type std::size_t is selected.
1508 auto Best = resolveDeallocationOverload(
1509 S, ops, /*WantSize*/false,
1510 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1511 return Best && Best.HasSizeT;
1512}
1513
1514/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1515///
1516/// E.g.:
1517/// @code new (memory) int[size][4] @endcode
1518/// or
1519/// @code ::new Foo(23, "hello") @endcode
1520///
1521/// \param StartLoc The first location of the expression.
1522/// \param UseGlobal True if 'new' was prefixed with '::'.
1523/// \param PlacementLParen Opening paren of the placement arguments.
1524/// \param PlacementArgs Placement new arguments.
1525/// \param PlacementRParen Closing paren of the placement arguments.
1526/// \param TypeIdParens If the type is in parens, the source range.
1527/// \param D The type to be allocated, as well as array dimensions.
1528/// \param Initializer The initializing expression or initializer-list, or null
1529/// if there is none.
1530ExprResult
1531Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1532 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1533 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1534 Declarator &D, Expr *Initializer) {
1535 Expr *ArraySize = nullptr;
1536 // If the specified type is an array, unwrap it and save the expression.
1537 if (D.getNumTypeObjects() > 0 &&
1538 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1539 DeclaratorChunk &Chunk = D.getTypeObject(0);
1540 if (D.getDeclSpec().hasAutoTypeSpec())
1541 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1542 << D.getSourceRange());
1543 if (Chunk.Arr.hasStatic)
1544 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1545 << D.getSourceRange());
1546 if (!Chunk.Arr.NumElts)
1547 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1548 << D.getSourceRange());
1549
1550 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1551 D.DropFirstTypeObject();
1552 }
1553
1554 // Every dimension shall be of constant size.
1555 if (ArraySize) {
1556 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1557 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1558 break;
1559
1560 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1561 if (Expr *NumElts = (Expr *)Array.NumElts) {
1562 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1563 if (getLangOpts().CPlusPlus14) {
1564 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1565 // shall be a converted constant expression (5.19) of type std::size_t
1566 // and shall evaluate to a strictly positive value.
1567 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1568 assert(IntWidth && "Builtin type of size 0?")((IntWidth && "Builtin type of size 0?") ? static_cast
<void> (0) : __assert_fail ("IntWidth && \"Builtin type of size 0?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1568, __PRETTY_FUNCTION__))
;
1569 llvm::APSInt Value(IntWidth);
1570 Array.NumElts
1571 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1572 CCEK_NewExpr)
1573 .get();
1574 } else {
1575 Array.NumElts
1576 = VerifyIntegerConstantExpression(NumElts, nullptr,
1577 diag::err_new_array_nonconst)
1578 .get();
1579 }
1580 if (!Array.NumElts)
1581 return ExprError();
1582 }
1583 }
1584 }
1585 }
1586
1587 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1588 QualType AllocType = TInfo->getType();
1589 if (D.isInvalidType())
1590 return ExprError();
1591
1592 SourceRange DirectInitRange;
1593 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1594 DirectInitRange = List->getSourceRange();
1595 // Handle errors like: new int a({0})
1596 if (List->getNumExprs() == 1 &&
1597 !canInitializeWithParenthesizedList(AllocType))
1598 if (auto IList = dyn_cast<InitListExpr>(List->getExpr(0))) {
1599 Diag(TInfo->getTypeLoc().getLocStart(), diag::err_list_init_in_parens)
1600 << AllocType << List->getSourceRange()
1601 << FixItHint::CreateRemoval(List->getLocStart())
1602 << FixItHint::CreateRemoval(List->getLocEnd());
1603 DirectInitRange = SourceRange();
1604 Initializer = IList;
1605 }
1606 }
1607
1608 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1609 PlacementLParen,
1610 PlacementArgs,
1611 PlacementRParen,
1612 TypeIdParens,
1613 AllocType,
1614 TInfo,
1615 ArraySize,
1616 DirectInitRange,
1617 Initializer);
1618}
1619
1620static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1621 Expr *Init) {
1622 if (!Init)
1623 return true;
1624 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1625 return PLE->getNumExprs() == 0;
1626 if (isa<ImplicitValueInitExpr>(Init))
1627 return true;
1628 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1629 return !CCE->isListInitialization() &&
1630 CCE->getConstructor()->isDefaultConstructor();
1631 else if (Style == CXXNewExpr::ListInit) {
1632 assert(isa<InitListExpr>(Init) &&((isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1633, __PRETTY_FUNCTION__))
1633 "Shouldn't create list CXXConstructExprs for arrays.")((isa<InitListExpr>(Init) && "Shouldn't create list CXXConstructExprs for arrays."
) ? static_cast<void> (0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1633, __PRETTY_FUNCTION__))
;
1634 return true;
1635 }
1636 return false;
1637}
1638
1639ExprResult
1640Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1641 SourceLocation PlacementLParen,
1642 MultiExprArg PlacementArgs,
1643 SourceLocation PlacementRParen,
1644 SourceRange TypeIdParens,
1645 QualType AllocType,
1646 TypeSourceInfo *AllocTypeInfo,
1647 Expr *ArraySize,
1648 SourceRange DirectInitRange,
1649 Expr *Initializer) {
1650 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1651 SourceLocation StartLoc = Range.getBegin();
1652
1653 CXXNewExpr::InitializationStyle initStyle;
1654 if (DirectInitRange.isValid()) {
1655 assert(Initializer && "Have parens but no initializer.")((Initializer && "Have parens but no initializer.") ?
static_cast<void> (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1655, __PRETTY_FUNCTION__))
;
1656 initStyle = CXXNewExpr::CallInit;
1657 } else if (Initializer && isa<InitListExpr>(Initializer))
1658 initStyle = CXXNewExpr::ListInit;
1659 else {
1660 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1662, __PRETTY_FUNCTION__))
1661 isa<CXXConstructExpr>(Initializer)) &&(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1662, __PRETTY_FUNCTION__))
1662 "Initializer expression that cannot have been implicitly created.")(((!Initializer || isa<ImplicitValueInitExpr>(Initializer
) || isa<CXXConstructExpr>(Initializer)) && "Initializer expression that cannot have been implicitly created."
) ? static_cast<void> (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1662, __PRETTY_FUNCTION__))
;
1663 initStyle = CXXNewExpr::NoInit;
1664 }
1665
1666 Expr **Inits = &Initializer;
1667 unsigned NumInits = Initializer ? 1 : 0;
1668 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1669 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")((initStyle == CXXNewExpr::CallInit && "paren init for non-call init"
) ? static_cast<void> (0) : __assert_fail ("initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1669, __PRETTY_FUNCTION__))
;
1670 Inits = List->getExprs();
1671 NumInits = List->getNumExprs();
1672 }
1673
1674 // C++11 [expr.new]p15:
1675 // A new-expression that creates an object of type T initializes that
1676 // object as follows:
1677 InitializationKind Kind
1678 // - If the new-initializer is omitted, the object is default-
1679 // initialized (8.5); if no initialization is performed,
1680 // the object has indeterminate value
1681 = initStyle == CXXNewExpr::NoInit
1682 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1683 // - Otherwise, the new-initializer is interpreted according to the
1684 // initialization rules of 8.5 for direct-initialization.
1685 : initStyle == CXXNewExpr::ListInit
1686 ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1687 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1688 DirectInitRange.getBegin(),
1689 DirectInitRange.getEnd());
1690
1691 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1692 auto *Deduced = AllocType->getContainedDeducedType();
1693 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1694 if (ArraySize)
1695 return ExprError(Diag(ArraySize->getExprLoc(),
1696 diag::err_deduced_class_template_compound_type)
1697 << /*array*/ 2 << ArraySize->getSourceRange());
1698
1699 InitializedEntity Entity
1700 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1701 AllocType = DeduceTemplateSpecializationFromInitializer(
1702 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1703 if (AllocType.isNull())
1704 return ExprError();
1705 } else if (Deduced) {
1706 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1707 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1708 << AllocType << TypeRange);
1709 if (initStyle == CXXNewExpr::ListInit ||
1710 (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1711 return ExprError(Diag(Inits[0]->getLocStart(),
1712 diag::err_auto_new_list_init)
1713 << AllocType << TypeRange);
1714 if (NumInits > 1) {
1715 Expr *FirstBad = Inits[1];
1716 return ExprError(Diag(FirstBad->getLocStart(),
1717 diag::err_auto_new_ctor_multiple_expressions)
1718 << AllocType << TypeRange);
1719 }
1720 Expr *Deduce = Inits[0];
1721 QualType DeducedType;
1722 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1723 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1724 << AllocType << Deduce->getType()
1725 << TypeRange << Deduce->getSourceRange());
1726 if (DeducedType.isNull())
1727 return ExprError();
1728 AllocType = DeducedType;
1729 }
1730
1731 // Per C++0x [expr.new]p5, the type being constructed may be a
1732 // typedef of an array type.
1733 if (!ArraySize) {
1734 if (const ConstantArrayType *Array
1735 = Context.getAsConstantArrayType(AllocType)) {
1736 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1737 Context.getSizeType(),
1738 TypeRange.getEnd());
1739 AllocType = Array->getElementType();
1740 }
1741 }
1742
1743 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1744 return ExprError();
1745
1746 if (initStyle == CXXNewExpr::ListInit &&
1747 isStdInitializerList(AllocType, nullptr)) {
1748 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1749 diag::warn_dangling_std_initializer_list)
1750 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1751 }
1752
1753 // In ARC, infer 'retaining' for the allocated
1754 if (getLangOpts().ObjCAutoRefCount &&
1755 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1756 AllocType->isObjCLifetimeType()) {
1757 AllocType = Context.getLifetimeQualifiedType(AllocType,
1758 AllocType->getObjCARCImplicitLifetime());
1759 }
1760
1761 QualType ResultType = Context.getPointerType(AllocType);
1762
1763 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1764 ExprResult result = CheckPlaceholderExpr(ArraySize);
1765 if (result.isInvalid()) return ExprError();
1766 ArraySize = result.get();
1767 }
1768 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1769 // integral or enumeration type with a non-negative value."
1770 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1771 // enumeration type, or a class type for which a single non-explicit
1772 // conversion function to integral or unscoped enumeration type exists.
1773 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1774 // std::size_t.
1775 llvm::Optional<uint64_t> KnownArraySize;
1776 if (ArraySize && !ArraySize->isTypeDependent()) {
1777 ExprResult ConvertedSize;
1778 if (getLangOpts().CPlusPlus14) {
1779 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")((Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"
) ? static_cast<void> (0) : __assert_fail ("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1779, __PRETTY_FUNCTION__))
;
1780
1781 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1782 AA_Converting);
1783
1784 if (!ConvertedSize.isInvalid() &&
1785 ArraySize->getType()->getAs<RecordType>())
1786 // Diagnose the compatibility of this conversion.
1787 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1788 << ArraySize->getType() << 0 << "'size_t'";
1789 } else {
1790 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1791 protected:
1792 Expr *ArraySize;
1793
1794 public:
1795 SizeConvertDiagnoser(Expr *ArraySize)
1796 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1797 ArraySize(ArraySize) {}
1798
1799 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1800 QualType T) override {
1801 return S.Diag(Loc, diag::err_array_size_not_integral)
1802 << S.getLangOpts().CPlusPlus11 << T;
1803 }
1804
1805 SemaDiagnosticBuilder diagnoseIncomplete(
1806 Sema &S, SourceLocation Loc, QualType T) override {
1807 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1808 << T << ArraySize->getSourceRange();
1809 }
1810
1811 SemaDiagnosticBuilder diagnoseExplicitConv(
1812 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1813 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1814 }
1815
1816 SemaDiagnosticBuilder noteExplicitConv(
1817 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1818 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1819 << ConvTy->isEnumeralType() << ConvTy;
1820 }
1821
1822 SemaDiagnosticBuilder diagnoseAmbiguous(
1823 Sema &S, SourceLocation Loc, QualType T) override {
1824 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1825 }
1826
1827 SemaDiagnosticBuilder noteAmbiguous(
1828 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1829 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1830 << ConvTy->isEnumeralType() << ConvTy;
1831 }
1832
1833 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1834 QualType T,
1835 QualType ConvTy) override {
1836 return S.Diag(Loc,
1837 S.getLangOpts().CPlusPlus11
1838 ? diag::warn_cxx98_compat_array_size_conversion
1839 : diag::ext_array_size_conversion)
1840 << T << ConvTy->isEnumeralType() << ConvTy;
1841 }
1842 } SizeDiagnoser(ArraySize);
1843
1844 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1845 SizeDiagnoser);
1846 }
1847 if (ConvertedSize.isInvalid())
1848 return ExprError();
1849
1850 ArraySize = ConvertedSize.get();
1851 QualType SizeType = ArraySize->getType();
1852
1853 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1854 return ExprError();
1855
1856 // C++98 [expr.new]p7:
1857 // The expression in a direct-new-declarator shall have integral type
1858 // with a non-negative value.
1859 //
1860 // Let's see if this is a constant < 0. If so, we reject it out of hand,
1861 // per CWG1464. Otherwise, if it's not a constant, we must have an
1862 // unparenthesized array type.
1863 if (!ArraySize->isValueDependent()) {
1864 llvm::APSInt Value;
1865 // We've already performed any required implicit conversion to integer or
1866 // unscoped enumeration type.
1867 // FIXME: Per CWG1464, we are required to check the value prior to
1868 // converting to size_t. This will never find a negative array size in
1869 // C++14 onwards, because Value is always unsigned here!
1870 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1871 if (Value.isSigned() && Value.isNegative()) {
1872 return ExprError(Diag(ArraySize->getLocStart(),
1873 diag::err_typecheck_negative_array_size)
1874 << ArraySize->getSourceRange());
1875 }
1876
1877 if (!AllocType->isDependentType()) {
1878 unsigned ActiveSizeBits =
1879 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1880 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1881 return ExprError(Diag(ArraySize->getLocStart(),
1882 diag::err_array_too_large)
1883 << Value.toString(10)
1884 << ArraySize->getSourceRange());
1885 }
1886
1887 KnownArraySize = Value.getZExtValue();
1888 } else if (TypeIdParens.isValid()) {
1889 // Can't have dynamic array size when the type-id is in parentheses.
1890 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1891 << ArraySize->getSourceRange()
1892 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1893 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1894
1895 TypeIdParens = SourceRange();
1896 }
1897 }
1898
1899 // Note that we do *not* convert the argument in any way. It can
1900 // be signed, larger than size_t, whatever.
1901 }
1902
1903 FunctionDecl *OperatorNew = nullptr;
1904 FunctionDecl *OperatorDelete = nullptr;
1905 unsigned Alignment =
1906 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
1907 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
1908 bool PassAlignment = getLangOpts().AlignedAllocation &&
1909 Alignment > NewAlignment;
1910
1911 if (!AllocType->isDependentType() &&
1912 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1913 FindAllocationFunctions(StartLoc,
1914 SourceRange(PlacementLParen, PlacementRParen),
1915 UseGlobal, AllocType, ArraySize, PassAlignment,
1916 PlacementArgs, OperatorNew, OperatorDelete))
1917 return ExprError();
1918
1919 // If this is an array allocation, compute whether the usual array
1920 // deallocation function for the type has a size_t parameter.
1921 bool UsualArrayDeleteWantsSize = false;
1922 if (ArraySize && !AllocType->isDependentType())
1923 UsualArrayDeleteWantsSize =
1924 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1925
1926 SmallVector<Expr *, 8> AllPlaceArgs;
1927 if (OperatorNew) {
1928 const FunctionProtoType *Proto =
1929 OperatorNew->getType()->getAs<FunctionProtoType>();
1930 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1931 : VariadicDoesNotApply;
1932
1933 // We've already converted the placement args, just fill in any default
1934 // arguments. Skip the first parameter because we don't have a corresponding
1935 // argument. Skip the second parameter too if we're passing in the
1936 // alignment; we've already filled it in.
1937 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
1938 PassAlignment ? 2 : 1, PlacementArgs,
1939 AllPlaceArgs, CallType))
1940 return ExprError();
1941
1942 if (!AllPlaceArgs.empty())
1943 PlacementArgs = AllPlaceArgs;
1944
1945 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1946 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1947
1948 // FIXME: Missing call to CheckFunctionCall or equivalent
1949
1950 // Warn if the type is over-aligned and is being allocated by (unaligned)
1951 // global operator new.
1952 if (PlacementArgs.empty() && !PassAlignment &&
1953 (OperatorNew->isImplicit() ||
1954 (OperatorNew->getLocStart().isValid() &&
1955 getSourceManager().isInSystemHeader(OperatorNew->getLocStart())))) {
1956 if (Alignment > NewAlignment)
1957 Diag(StartLoc, diag::warn_overaligned_type)
1958 << AllocType
1959 << unsigned(Alignment / Context.getCharWidth())
1960 << unsigned(NewAlignment / Context.getCharWidth());
1961 }
1962 }
1963
1964 // Array 'new' can't have any initializers except empty parentheses.
1965 // Initializer lists are also allowed, in C++11. Rely on the parser for the
1966 // dialect distinction.
1967 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
1968 SourceRange InitRange(Inits[0]->getLocStart(),
1969 Inits[NumInits - 1]->getLocEnd());
1970 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1971 return ExprError();
1972 }
1973
1974 // If we can perform the initialization, and we've not already done so,
1975 // do it now.
1976 if (!AllocType->isDependentType() &&
1977 !Expr::hasAnyTypeDependentArguments(
1978 llvm::makeArrayRef(Inits, NumInits))) {
1979 // The type we initialize is the complete type, including the array bound.
1980 QualType InitType;
1981 if (KnownArraySize)
1982 InitType = Context.getConstantArrayType(
1983 AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
1984 *KnownArraySize),
1985 ArrayType::Normal, 0);
1986 else if (ArraySize)
1987 InitType =
1988 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
1989 else
1990 InitType = AllocType;
1991
1992 InitializedEntity Entity
1993 = InitializedEntity::InitializeNew(StartLoc, InitType);
1994 InitializationSequence InitSeq(*this, Entity, Kind,
1995 MultiExprArg(Inits, NumInits));
1996 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1997 MultiExprArg(Inits, NumInits));
1998 if (FullInit.isInvalid())
1999 return ExprError();
2000
2001 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2002 // we don't want the initialized object to be destructed.
2003 // FIXME: We should not create these in the first place.
2004 if (CXXBindTemporaryExpr *Binder =
2005 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2006 FullInit = Binder->getSubExpr();
2007
2008 Initializer = FullInit.get();
2009 }
2010
2011 // Mark the new and delete operators as referenced.
2012 if (OperatorNew) {
2013 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2014 return ExprError();
2015 MarkFunctionReferenced(StartLoc, OperatorNew);
2016 }
2017 if (OperatorDelete) {
2018 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2019 return ExprError();
2020 MarkFunctionReferenced(StartLoc, OperatorDelete);
2021 }
2022
2023 // C++0x [expr.new]p17:
2024 // If the new expression creates an array of objects of class type,
2025 // access and ambiguity control are done for the destructor.
2026 QualType BaseAllocType = Context.getBaseElementType(AllocType);
2027 if (ArraySize && !BaseAllocType->isDependentType()) {
2028 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
2029 if (CXXDestructorDecl *dtor = LookupDestructor(
2030 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
2031 MarkFunctionReferenced(StartLoc, dtor);
2032 CheckDestructorAccess(StartLoc, dtor,
2033 PDiag(diag::err_access_dtor)
2034 << BaseAllocType);
2035 if (DiagnoseUseOfDecl(dtor, StartLoc))
2036 return ExprError();
2037 }
2038 }
2039 }
2040
2041 return new (Context)
2042 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, PassAlignment,
2043 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
2044 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
2045 Range, DirectInitRange);
2046}
2047
2048/// \brief Checks that a type is suitable as the allocated type
2049/// in a new-expression.
2050bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2051 SourceRange R) {
2052 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2053 // abstract class type or array thereof.
2054 if (AllocType->isFunctionType())
2055 return Diag(Loc, diag::err_bad_new_type)
2056 << AllocType << 0 << R;
2057 else if (AllocType->isReferenceType())
2058 return Diag(Loc, diag::err_bad_new_type)
2059 << AllocType << 1 << R;
2060 else if (!AllocType->isDependentType() &&
2061 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2062 return true;
2063 else if (RequireNonAbstractType(Loc, AllocType,
2064 diag::err_allocation_of_abstract_type))
2065 return true;
2066 else if (AllocType->isVariablyModifiedType())
2067 return Diag(Loc, diag::err_variably_modified_new_type)
2068 << AllocType;
2069 else if (unsigned AddressSpace = AllocType.getAddressSpace())
2070 return Diag(Loc, diag::err_address_space_qualified_new)
2071 << AllocType.getUnqualifiedType() << AddressSpace;
2072 else if (getLangOpts().ObjCAutoRefCount) {
2073 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2074 QualType BaseAllocType = Context.getBaseElementType(AT);
2075 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2076 BaseAllocType->isObjCLifetimeType())
2077 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2078 << BaseAllocType;
2079 }
2080 }
2081
2082 return false;
2083}
2084
2085static bool
2086resolveAllocationOverload(Sema &S, LookupResult &R, SourceRange Range,
2087 SmallVectorImpl<Expr *> &Args, bool &PassAlignment,
2088 FunctionDecl *&Operator,
2089 OverloadCandidateSet *AlignedCandidates = nullptr,
2090 Expr *AlignArg = nullptr) {
2091 OverloadCandidateSet Candidates(R.getNameLoc(),
2092 OverloadCandidateSet::CSK_Normal);
2093 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2094 Alloc != AllocEnd; ++Alloc) {
2095 // Even member operator new/delete are implicitly treated as
2096 // static, so don't use AddMemberCandidate.
2097 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2098
2099 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2100 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2101 /*ExplicitTemplateArgs=*/nullptr, Args,
2102 Candidates,
2103 /*SuppressUserConversions=*/false);
2104 continue;
2105 }
2106
2107 FunctionDecl *Fn = cast<FunctionDecl>(D);
2108 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2109 /*SuppressUserConversions=*/false);
2110 }
2111
2112 // Do the resolution.
2113 OverloadCandidateSet::iterator Best;
2114 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2115 case OR_Success: {
2116 // Got one!
2117 FunctionDecl *FnDecl = Best->Function;
2118 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2119 Best->FoundDecl) == Sema::AR_inaccessible)
2120 return true;
2121
2122 Operator = FnDecl;
2123 return false;
2124 }
2125
2126 case OR_No_Viable_Function:
2127 // C++17 [expr.new]p13:
2128 // If no matching function is found and the allocated object type has
2129 // new-extended alignment, the alignment argument is removed from the
2130 // argument list, and overload resolution is performed again.
2131 if (PassAlignment) {
2132 PassAlignment = false;
2133 AlignArg = Args[1];
2134 Args.erase(Args.begin() + 1);
2135 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2136 Operator, &Candidates, AlignArg);
2137 }
2138
2139 // MSVC will fall back on trying to find a matching global operator new
2140 // if operator new[] cannot be found. Also, MSVC will leak by not
2141 // generating a call to operator delete or operator delete[], but we
2142 // will not replicate that bug.
2143 // FIXME: Find out how this interacts with the std::align_val_t fallback
2144 // once MSVC implements it.
2145 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2146 S.Context.getLangOpts().MSVCCompat) {
2147 R.clear();
2148 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2149 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2150 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2151 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2152 Operator, nullptr);
2153 }
2154
2155 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2156 << R.getLookupName() << Range;
2157
2158 // If we have aligned candidates, only note the align_val_t candidates
2159 // from AlignedCandidates and the non-align_val_t candidates from
2160 // Candidates.
2161 if (AlignedCandidates) {
2162 auto IsAligned = [](OverloadCandidate &C) {
2163 return C.Function->getNumParams() > 1 &&
2164 C.Function->getParamDecl(1)->getType()->isAlignValT();
2165 };
2166 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2167
2168 // This was an overaligned allocation, so list the aligned candidates
2169 // first.
2170 Args.insert(Args.begin() + 1, AlignArg);
2171 AlignedCandidates->NoteCandidates(S, OCD_AllCandidates, Args, "",
2172 R.getNameLoc(), IsAligned);
2173 Args.erase(Args.begin() + 1);
2174 Candidates.NoteCandidates(S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2175 IsUnaligned);
2176 } else {
2177 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2178 }
2179 return true;
2180
2181 case OR_Ambiguous:
2182 S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
2183 << R.getLookupName() << Range;
2184 Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
2185 return true;
2186
2187 case OR_Deleted: {
2188 S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
2189 << Best->Function->isDeleted()
2190 << R.getLookupName()
2191 << S.getDeletedOrUnavailableSuffix(Best->Function)
2192 << Range;
2193 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2194 return true;
2195 }
2196 }
2197 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2197)
;
2198}
2199
2200
2201/// FindAllocationFunctions - Finds the overloads of operator new and delete
2202/// that are appropriate for the allocation.
2203bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2204 bool UseGlobal, QualType AllocType,
2205 bool IsArray, bool &PassAlignment,
2206 MultiExprArg PlaceArgs,
2207 FunctionDecl *&OperatorNew,
2208 FunctionDecl *&OperatorDelete) {
2209 // --- Choosing an allocation function ---
2210 // C++ 5.3.4p8 - 14 & 18
2211 // 1) If UseGlobal is true, only look in the global scope. Else, also look
2212 // in the scope of the allocated class.
2213 // 2) If an array size is given, look for operator new[], else look for
2214 // operator new.
2215 // 3) The first argument is always size_t. Append the arguments from the
2216 // placement form.
2217
2218 SmallVector<Expr*, 8> AllocArgs;
2219 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2220
2221 // We don't care about the actual value of these arguments.
2222 // FIXME: Should the Sema create the expression and embed it in the syntax
2223 // tree? Or should the consumer just recalculate the value?
2224 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2225 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2226 Context.getTargetInfo().getPointerWidth(0)),
2227 Context.getSizeType(),
2228 SourceLocation());
2229 AllocArgs.push_back(&Size);
2230
2231 QualType AlignValT = Context.VoidTy;
2232 if (PassAlignment) {
2233 DeclareGlobalNewDelete();
2234 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2235 }
2236 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2237 if (PassAlignment)
2238 AllocArgs.push_back(&Align);
2239
2240 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2241
2242 // C++ [expr.new]p8:
2243 // If the allocated type is a non-array type, the allocation
2244 // function's name is operator new and the deallocation function's
2245 // name is operator delete. If the allocated type is an array
2246 // type, the allocation function's name is operator new[] and the
2247 // deallocation function's name is operator delete[].
2248 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2249 IsArray ? OO_Array_New : OO_New);
2250
2251 QualType AllocElemType = Context.getBaseElementType(AllocType);
2252
2253 // Find the allocation function.
2254 {
2255 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2256
2257 // C++1z [expr.new]p9:
2258 // If the new-expression begins with a unary :: operator, the allocation
2259 // function's name is looked up in the global scope. Otherwise, if the
2260 // allocated type is a class type T or array thereof, the allocation
2261 // function's name is looked up in the scope of T.
2262 if (AllocElemType->isRecordType() && !UseGlobal)
2263 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2264
2265 // We can see ambiguity here if the allocation function is found in
2266 // multiple base classes.
2267 if (R.isAmbiguous())
2268 return true;
2269
2270 // If this lookup fails to find the name, or if the allocated type is not
2271 // a class type, the allocation function's name is looked up in the
2272 // global scope.
2273 if (R.empty())
2274 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2275
2276 assert(!R.empty() && "implicitly declared allocation functions not found")((!R.empty() && "implicitly declared allocation functions not found"
) ? static_cast<void> (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2276, __PRETTY_FUNCTION__))
;
2277 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")((!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2277, __PRETTY_FUNCTION__))
;
2278
2279 // We do our own custom access checks below.
2280 R.suppressDiagnostics();
2281
2282 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2283 OperatorNew))
2284 return true;
2285 }
2286
2287 // We don't need an operator delete if we're running under -fno-exceptions.
2288 if (!getLangOpts().Exceptions) {
2289 OperatorDelete = nullptr;
2290 return false;
2291 }
2292
2293 // Note, the name of OperatorNew might have been changed from array to
2294 // non-array by resolveAllocationOverload.
2295 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2296 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2297 ? OO_Array_Delete
2298 : OO_Delete);
2299
2300 // C++ [expr.new]p19:
2301 //
2302 // If the new-expression begins with a unary :: operator, the
2303 // deallocation function's name is looked up in the global
2304 // scope. Otherwise, if the allocated type is a class type T or an
2305 // array thereof, the deallocation function's name is looked up in
2306 // the scope of T. If this lookup fails to find the name, or if
2307 // the allocated type is not a class type or array thereof, the
2308 // deallocation function's name is looked up in the global scope.
2309 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2310 if (AllocElemType->isRecordType() && !UseGlobal) {
2311 CXXRecordDecl *RD
2312 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2313 LookupQualifiedName(FoundDelete, RD);
2314 }
2315 if (FoundDelete.isAmbiguous())
2316 return true; // FIXME: clean up expressions?
2317
2318 bool FoundGlobalDelete = FoundDelete.empty();
2319 if (FoundDelete.empty()) {
2320 DeclareGlobalNewDelete();
2321 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2322 }
2323
2324 FoundDelete.suppressDiagnostics();
2325
2326 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2327
2328 // Whether we're looking for a placement operator delete is dictated
2329 // by whether we selected a placement operator new, not by whether
2330 // we had explicit placement arguments. This matters for things like
2331 // struct A { void *operator new(size_t, int = 0); ... };
2332 // A *a = new A()
2333 //
2334 // We don't have any definition for what a "placement allocation function"
2335 // is, but we assume it's any allocation function whose
2336 // parameter-declaration-clause is anything other than (size_t).
2337 //
2338 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2339 // This affects whether an exception from the constructor of an overaligned
2340 // type uses the sized or non-sized form of aligned operator delete.
2341 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2342 OperatorNew->isVariadic();
2343
2344 if (isPlacementNew) {
2345 // C++ [expr.new]p20:
2346 // A declaration of a placement deallocation function matches the
2347 // declaration of a placement allocation function if it has the
2348 // same number of parameters and, after parameter transformations
2349 // (8.3.5), all parameter types except the first are
2350 // identical. [...]
2351 //
2352 // To perform this comparison, we compute the function type that
2353 // the deallocation function should have, and use that type both
2354 // for template argument deduction and for comparison purposes.
2355 QualType ExpectedFunctionType;
2356 {
2357 const FunctionProtoType *Proto
2358 = OperatorNew->getType()->getAs<FunctionProtoType>();
2359
2360 SmallVector<QualType, 4> ArgTypes;
2361 ArgTypes.push_back(Context.VoidPtrTy);
2362 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2363 ArgTypes.push_back(Proto->getParamType(I));
2364
2365 FunctionProtoType::ExtProtoInfo EPI;
2366 // FIXME: This is not part of the standard's rule.
2367 EPI.Variadic = Proto->isVariadic();
2368
2369 ExpectedFunctionType
2370 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2371 }
2372
2373 for (LookupResult::iterator D = FoundDelete.begin(),
2374 DEnd = FoundDelete.end();
2375 D != DEnd; ++D) {
2376 FunctionDecl *Fn = nullptr;
2377 if (FunctionTemplateDecl *FnTmpl =
2378 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2379 // Perform template argument deduction to try to match the
2380 // expected function type.
2381 TemplateDeductionInfo Info(StartLoc);
2382 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2383 Info))
2384 continue;
2385 } else
2386 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2387
2388 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2389 ExpectedFunctionType,
2390 /*AdjustExcpetionSpec*/true),
2391 ExpectedFunctionType))
2392 Matches.push_back(std::make_pair(D.getPair(), Fn));
2393 }
2394
2395 if (getLangOpts().CUDA)
2396 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2397 } else {
2398 // C++1y [expr.new]p22:
2399 // For a non-placement allocation function, the normal deallocation
2400 // function lookup is used
2401 //
2402 // Per [expr.delete]p10, this lookup prefers a member operator delete
2403 // without a size_t argument, but prefers a non-member operator delete
2404 // with a size_t where possible (which it always is in this case).
2405 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2406 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2407 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2408 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2409 &BestDeallocFns);
2410 if (Selected)
2411 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2412 else {
2413 // If we failed to select an operator, all remaining functions are viable
2414 // but ambiguous.
2415 for (auto Fn : BestDeallocFns)
2416 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2417 }
2418 }
2419
2420 // C++ [expr.new]p20:
2421 // [...] If the lookup finds a single matching deallocation
2422 // function, that function will be called; otherwise, no
2423 // deallocation function will be called.
2424 if (Matches.size() == 1) {
2425 OperatorDelete = Matches[0].second;
2426
2427 // C++1z [expr.new]p23:
2428 // If the lookup finds a usual deallocation function (3.7.4.2)
2429 // with a parameter of type std::size_t and that function, considered
2430 // as a placement deallocation function, would have been
2431 // selected as a match for the allocation function, the program
2432 // is ill-formed.
2433 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2434 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2435 UsualDeallocFnInfo Info(*this,
2436 DeclAccessPair::make(OperatorDelete, AS_public));
2437 // Core issue, per mail to core reflector, 2016-10-09:
2438 // If this is a member operator delete, and there is a corresponding
2439 // non-sized member operator delete, this isn't /really/ a sized
2440 // deallocation function, it just happens to have a size_t parameter.
2441 bool IsSizedDelete = Info.HasSizeT;
2442 if (IsSizedDelete && !FoundGlobalDelete) {
2443 auto NonSizedDelete =
2444 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2445 /*WantAlign*/Info.HasAlignValT);
2446 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2447 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2448 IsSizedDelete = false;
2449 }
2450
2451 if (IsSizedDelete) {
2452 SourceRange R = PlaceArgs.empty()
2453 ? SourceRange()
2454 : SourceRange(PlaceArgs.front()->getLocStart(),
2455 PlaceArgs.back()->getLocEnd());
2456 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2457 if (!OperatorDelete->isImplicit())
2458 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2459 << DeleteName;
2460 }
2461 }
2462
2463 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2464 Matches[0].first);
2465 } else if (!Matches.empty()) {
2466 // We found multiple suitable operators. Per [expr.new]p20, that means we
2467 // call no 'operator delete' function, but we should at least warn the user.
2468 // FIXME: Suppress this warning if the construction cannot throw.
2469 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2470 << DeleteName << AllocElemType;
2471
2472 for (auto &Match : Matches)
2473 Diag(Match.second->getLocation(),
2474 diag::note_member_declared_here) << DeleteName;
2475 }
2476
2477 return false;
2478}
2479
2480/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2481/// delete. These are:
2482/// @code
2483/// // C++03:
2484/// void* operator new(std::size_t) throw(std::bad_alloc);
2485/// void* operator new[](std::size_t) throw(std::bad_alloc);
2486/// void operator delete(void *) throw();
2487/// void operator delete[](void *) throw();
2488/// // C++11:
2489/// void* operator new(std::size_t);
2490/// void* operator new[](std::size_t);
2491/// void operator delete(void *) noexcept;
2492/// void operator delete[](void *) noexcept;
2493/// // C++1y:
2494/// void* operator new(std::size_t);
2495/// void* operator new[](std::size_t);
2496/// void operator delete(void *) noexcept;
2497/// void operator delete[](void *) noexcept;
2498/// void operator delete(void *, std::size_t) noexcept;
2499/// void operator delete[](void *, std::size_t) noexcept;
2500/// @endcode
2501/// Note that the placement and nothrow forms of new are *not* implicitly
2502/// declared. Their use requires including \<new\>.
2503void Sema::DeclareGlobalNewDelete() {
2504 if (GlobalNewDeleteDeclared)
2505 return;
2506
2507 // C++ [basic.std.dynamic]p2:
2508 // [...] The following allocation and deallocation functions (18.4) are
2509 // implicitly declared in global scope in each translation unit of a
2510 // program
2511 //
2512 // C++03:
2513 // void* operator new(std::size_t) throw(std::bad_alloc);
2514 // void* operator new[](std::size_t) throw(std::bad_alloc);
2515 // void operator delete(void*) throw();
2516 // void operator delete[](void*) throw();
2517 // C++11:
2518 // void* operator new(std::size_t);
2519 // void* operator new[](std::size_t);
2520 // void operator delete(void*) noexcept;
2521 // void operator delete[](void*) noexcept;
2522 // C++1y:
2523 // void* operator new(std::size_t);
2524 // void* operator new[](std::size_t);
2525 // void operator delete(void*) noexcept;
2526 // void operator delete[](void*) noexcept;
2527 // void operator delete(void*, std::size_t) noexcept;
2528 // void operator delete[](void*, std::size_t) noexcept;
2529 //
2530 // These implicit declarations introduce only the function names operator
2531 // new, operator new[], operator delete, operator delete[].
2532 //
2533 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2534 // "std" or "bad_alloc" as necessary to form the exception specification.
2535 // However, we do not make these implicit declarations visible to name
2536 // lookup.
2537 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2538 // The "std::bad_alloc" class has not yet been declared, so build it
2539 // implicitly.
2540 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2541 getOrCreateStdNamespace(),
2542 SourceLocation(), SourceLocation(),
2543 &PP.getIdentifierTable().get("bad_alloc"),
2544 nullptr);
2545 getStdBadAlloc()->setImplicit(true);
2546 }
2547 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2548 // The "std::align_val_t" enum class has not yet been declared, so build it
2549 // implicitly.
2550 auto *AlignValT = EnumDecl::Create(
2551 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2552 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2553 AlignValT->setIntegerType(Context.getSizeType());
2554 AlignValT->setPromotionType(Context.getSizeType());
2555 AlignValT->setImplicit(true);
2556 StdAlignValT = AlignValT;
2557 }
2558
2559 GlobalNewDeleteDeclared = true;
2560
2561 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2562 QualType SizeT = Context.getSizeType();
2563
2564 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2565 QualType Return, QualType Param) {
2566 llvm::SmallVector<QualType, 3> Params;
2567 Params.push_back(Param);
2568
2569 // Create up to four variants of the function (sized/aligned).
2570 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2571 (Kind == OO_Delete || Kind == OO_Array_Delete);
2572 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2573
2574 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2575 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2576 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2577 if (Sized)
2578 Params.push_back(SizeT);
2579
2580 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2581 if (Aligned)
2582 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2583
2584 DeclareGlobalAllocationFunction(
2585 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2586
2587 if (Aligned)
2588 Params.pop_back();
2589 }
2590 }
2591 };
2592
2593 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2594 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2595 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2596 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2597}
2598
2599/// DeclareGlobalAllocationFunction - Declares a single implicit global
2600/// allocation function if it doesn't already exist.
2601void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2602 QualType Return,
2603 ArrayRef<QualType> Params) {
2604 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2605
2606 // Check if this function is already declared.
2607 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2608 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2609 Alloc != AllocEnd; ++Alloc) {
2610 // Only look at non-template functions, as it is the predefined,
2611 // non-templated allocation function we are trying to declare here.
2612 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2613 if (Func->getNumParams() == Params.size()) {
2614 llvm::SmallVector<QualType, 3> FuncParams;
2615 for (auto *P : Func->parameters())
2616 FuncParams.push_back(
2617 Context.getCanonicalType(P->getType().getUnqualifiedType()));
2618 if (llvm::makeArrayRef(FuncParams) == Params) {
2619 // Make the function visible to name lookup, even if we found it in
2620 // an unimported module. It either is an implicitly-declared global
2621 // allocation function, or is suppressing that function.
2622 Func->setHidden(false);
2623 return;
2624 }
2625 }
2626 }
2627 }
2628
2629 FunctionProtoType::ExtProtoInfo EPI;
2630
2631 QualType BadAllocType;
2632 bool HasBadAllocExceptionSpec
2633 = (Name.getCXXOverloadedOperator() == OO_New ||
2634 Name.getCXXOverloadedOperator() == OO_Array_New);
2635 if (HasBadAllocExceptionSpec) {
2636 if (!getLangOpts().CPlusPlus11) {
2637 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2638 assert(StdBadAlloc && "Must have std::bad_alloc declared")((StdBadAlloc && "Must have std::bad_alloc declared")
? static_cast<void> (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2638, __PRETTY_FUNCTION__))
;
2639 EPI.ExceptionSpec.Type = EST_Dynamic;
2640 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2641 }
2642 } else {
2643 EPI.ExceptionSpec =
2644 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2645 }
2646
2647 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2648 QualType FnType = Context.getFunctionType(Return, Params, EPI);
2649 FunctionDecl *Alloc = FunctionDecl::Create(
2650 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2651 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2652 Alloc->setImplicit();
2653
2654 // Implicit sized deallocation functions always have default visibility.
2655 Alloc->addAttr(
2656 VisibilityAttr::CreateImplicit(Context, VisibilityAttr::Default));
2657
2658 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2659 for (QualType T : Params) {
2660 ParamDecls.push_back(ParmVarDecl::Create(
2661 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2662 /*TInfo=*/nullptr, SC_None, nullptr));
2663 ParamDecls.back()->setImplicit();
2664 }
2665 Alloc->setParams(ParamDecls);
2666 if (ExtraAttr)
2667 Alloc->addAttr(ExtraAttr);
2668 Context.getTranslationUnitDecl()->addDecl(Alloc);
2669 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2670 };
2671
2672 if (!LangOpts.CUDA)
2673 CreateAllocationFunctionDecl(nullptr);
2674 else {
2675 // Host and device get their own declaration so each can be
2676 // defined or re-declared independently.
2677 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2678 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2679 }
2680}
2681
2682FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2683 bool CanProvideSize,
2684 bool Overaligned,
2685 DeclarationName Name) {
2686 DeclareGlobalNewDelete();
2687
2688 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2689 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2690
2691 // FIXME: It's possible for this to result in ambiguity, through a
2692 // user-declared variadic operator delete or the enable_if attribute. We
2693 // should probably not consider those cases to be usual deallocation
2694 // functions. But for now we just make an arbitrary choice in that case.
2695 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2696 Overaligned);
2697 assert(Result.FD && "operator delete missing from global scope?")((Result.FD && "operator delete missing from global scope?"
) ? static_cast<void> (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2697, __PRETTY_FUNCTION__))
;
2698 return Result.FD;
2699}
2700
2701FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2702 CXXRecordDecl *RD) {
2703 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2704
2705 FunctionDecl *OperatorDelete = nullptr;
2706 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2707 return nullptr;
2708 if (OperatorDelete)
2709 return OperatorDelete;
2710
2711 // If there's no class-specific operator delete, look up the global
2712 // non-array delete.
2713 return FindUsualDeallocationFunction(
2714 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2715 Name);
2716}
2717
2718bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2719 DeclarationName Name,
2720 FunctionDecl *&Operator, bool Diagnose) {
2721 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2722 // Try to find operator delete/operator delete[] in class scope.
2723 LookupQualifiedName(Found, RD);
2724
2725 if (Found.isAmbiguous())
2726 return true;
2727
2728 Found.suppressDiagnostics();
2729
2730 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2731
2732 // C++17 [expr.delete]p10:
2733 // If the deallocation functions have class scope, the one without a
2734 // parameter of type std::size_t is selected.
2735 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2736 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2737 /*WantAlign*/ Overaligned, &Matches);
2738
2739 // If we could find an overload, use it.
2740 if (Matches.size() == 1) {
2741 Operator = cast<CXXMethodDecl>(Matches[0].FD);
2742
2743 // FIXME: DiagnoseUseOfDecl?
2744 if (Operator->isDeleted()) {
2745 if (Diagnose) {
2746 Diag(StartLoc, diag::err_deleted_function_use);
2747 NoteDeletedFunction(Operator);
2748 }
2749 return true;
2750 }
2751
2752 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2753 Matches[0].Found, Diagnose) == AR_inaccessible)
2754 return true;
2755
2756 return false;
2757 }
2758
2759 // We found multiple suitable operators; complain about the ambiguity.
2760 // FIXME: The standard doesn't say to do this; it appears that the intent
2761 // is that this should never happen.
2762 if (!Matches.empty()) {
2763 if (Diagnose) {
2764 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2765 << Name << RD;
2766 for (auto &Match : Matches)
2767 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2768 }
2769 return true;
2770 }
2771
2772 // We did find operator delete/operator delete[] declarations, but
2773 // none of them were suitable.
2774 if (!Found.empty()) {
2775 if (Diagnose) {
2776 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2777 << Name << RD;
2778
2779 for (NamedDecl *D : Found)
2780 Diag(D->getUnderlyingDecl()->getLocation(),
2781 diag::note_member_declared_here) << Name;
2782 }
2783 return true;
2784 }
2785
2786 Operator = nullptr;
2787 return false;
2788}
2789
2790namespace {
2791/// \brief Checks whether delete-expression, and new-expression used for
2792/// initializing deletee have the same array form.
2793class MismatchingNewDeleteDetector {
2794public:
2795 enum MismatchResult {
2796 /// Indicates that there is no mismatch or a mismatch cannot be proven.
2797 NoMismatch,
2798 /// Indicates that variable is initialized with mismatching form of \a new.
2799 VarInitMismatches,
2800 /// Indicates that member is initialized with mismatching form of \a new.
2801 MemberInitMismatches,
2802 /// Indicates that 1 or more constructors' definitions could not been
2803 /// analyzed, and they will be checked again at the end of translation unit.
2804 AnalyzeLater
2805 };
2806
2807 /// \param EndOfTU True, if this is the final analysis at the end of
2808 /// translation unit. False, if this is the initial analysis at the point
2809 /// delete-expression was encountered.
2810 explicit MismatchingNewDeleteDetector(bool EndOfTU)
2811 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2812 HasUndefinedConstructors(false) {}
2813
2814 /// \brief Checks whether pointee of a delete-expression is initialized with
2815 /// matching form of new-expression.
2816 ///
2817 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2818 /// point where delete-expression is encountered, then a warning will be
2819 /// issued immediately. If return value is \c AnalyzeLater at the point where
2820 /// delete-expression is seen, then member will be analyzed at the end of
2821 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2822 /// couldn't be analyzed. If at least one constructor initializes the member
2823 /// with matching type of new, the return value is \c NoMismatch.
2824 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2825 /// \brief Analyzes a class member.
2826 /// \param Field Class member to analyze.
2827 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2828 /// for deleting the \p Field.
2829 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2830 FieldDecl *Field;
2831 /// List of mismatching new-expressions used for initialization of the pointee
2832 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2833 /// Indicates whether delete-expression was in array form.
2834 bool IsArrayForm;
2835
2836private:
2837 const bool EndOfTU;
2838 /// \brief Indicates that there is at least one constructor without body.
2839 bool HasUndefinedConstructors;
2840 /// \brief Returns \c CXXNewExpr from given initialization expression.
2841 /// \param E Expression used for initializing pointee in delete-expression.
2842 /// E can be a single-element \c InitListExpr consisting of new-expression.
2843 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
2844 /// \brief Returns whether member is initialized with mismatching form of
2845 /// \c new either by the member initializer or in-class initialization.
2846 ///
2847 /// If bodies of all constructors are not visible at the end of translation
2848 /// unit or at least one constructor initializes member with the matching
2849 /// form of \c new, mismatch cannot be proven, and this function will return
2850 /// \c NoMismatch.
2851 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
2852 /// \brief Returns whether variable is initialized with mismatching form of
2853 /// \c new.
2854 ///
2855 /// If variable is initialized with matching form of \c new or variable is not
2856 /// initialized with a \c new expression, this function will return true.
2857 /// If variable is initialized with mismatching form of \c new, returns false.
2858 /// \param D Variable to analyze.
2859 bool hasMatchingVarInit(const DeclRefExpr *D);
2860 /// \brief Checks whether the constructor initializes pointee with mismatching
2861 /// form of \c new.
2862 ///
2863 /// Returns true, if member is initialized with matching form of \c new in
2864 /// member initializer list. Returns false, if member is initialized with the
2865 /// matching form of \c new in this constructor's initializer or given
2866 /// constructor isn't defined at the point where delete-expression is seen, or
2867 /// member isn't initialized by the constructor.
2868 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
2869 /// \brief Checks whether member is initialized with matching form of
2870 /// \c new in member initializer list.
2871 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
2872 /// Checks whether member is initialized with mismatching form of \c new by
2873 /// in-class initializer.
2874 MismatchResult analyzeInClassInitializer();
2875};
2876}
2877
2878MismatchingNewDeleteDetector::MismatchResult
2879MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
2880 NewExprs.clear();
2881 assert(DE && "Expected delete-expression")((DE && "Expected delete-expression") ? static_cast<
void> (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2881, __PRETTY_FUNCTION__))
;
2882 IsArrayForm = DE->isArrayForm();
2883 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
2884 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
2885 return analyzeMemberExpr(ME);
2886 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
2887 if (!hasMatchingVarInit(D))
2888 return VarInitMismatches;
2889 }
2890 return NoMismatch;
2891}
2892
2893const CXXNewExpr *
2894MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
2895 assert(E != nullptr && "Expected a valid initializer expression")((E != nullptr && "Expected a valid initializer expression"
) ? static_cast<void> (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2895, __PRETTY_FUNCTION__))
;
2896 E = E->IgnoreParenImpCasts();
2897 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
2898 if (ILE->getNumInits() == 1)
2899 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
2900 }
2901
2902 return dyn_cast_or_null<const CXXNewExpr>(E);
2903}
2904
2905bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
2906 const CXXCtorInitializer *CI) {
2907 const CXXNewExpr *NE = nullptr;
2908 if (Field == CI->getMember() &&
2909 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
2910 if (NE->isArray() == IsArrayForm)
2911 return true;
2912 else
2913 NewExprs.push_back(NE);
2914 }
2915 return false;
2916}
2917
2918bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
2919 const CXXConstructorDecl *CD) {
2920 if (CD->isImplicit())
2921 return false;
2922 const FunctionDecl *Definition = CD;
2923 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
2924 HasUndefinedConstructors = true;
2925 return EndOfTU;
2926 }
2927 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
2928 if (hasMatchingNewInCtorInit(CI))
2929 return true;
2930 }
2931 return false;
2932}
2933
2934MismatchingNewDeleteDetector::MismatchResult
2935MismatchingNewDeleteDetector::analyzeInClassInitializer() {
2936 assert(Field != nullptr && "This should be called only for members")((Field != nullptr && "This should be called only for members"
) ? static_cast<void> (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2936, __PRETTY_FUNCTION__))
;
2937 const Expr *InitExpr = Field->getInClassInitializer();
2938 if (!InitExpr)
2939 return EndOfTU ? NoMismatch : AnalyzeLater;
2940 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
2941 if (NE->isArray() != IsArrayForm) {
2942 NewExprs.push_back(NE);
2943 return MemberInitMismatches;
2944 }
2945 }
2946 return NoMismatch;
2947}
2948
2949MismatchingNewDeleteDetector::MismatchResult
2950MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
2951 bool DeleteWasArrayForm) {
2952 assert(Field != nullptr && "Analysis requires a valid class member.")((Field != nullptr && "Analysis requires a valid class member."
) ? static_cast<void> (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2952, __PRETTY_FUNCTION__))
;
2953 this->Field = Field;
2954 IsArrayForm = DeleteWasArrayForm;
2955 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
2956 for (const auto *CD : RD->ctors()) {
2957 if (hasMatchingNewInCtor(CD))
2958 return NoMismatch;
2959 }
2960 if (HasUndefinedConstructors)
2961 return EndOfTU ? NoMismatch : AnalyzeLater;
2962 if (!NewExprs.empty())
2963 return MemberInitMismatches;
2964 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
2965 : NoMismatch;
2966}
2967
2968MismatchingNewDeleteDetector::MismatchResult
2969MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
2970 assert(ME != nullptr && "Expected a member expression")((ME != nullptr && "Expected a member expression") ? static_cast
<void> (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2970, __PRETTY_FUNCTION__))
;
2971 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2972 return analyzeField(F, IsArrayForm);
2973 return NoMismatch;
2974}
2975
2976bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
2977 const CXXNewExpr *NE = nullptr;
2978 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
2979 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
2980 NE->isArray() != IsArrayForm) {
2981 NewExprs.push_back(NE);
2982 }
2983 }
2984 return NewExprs.empty();
2985}
2986
2987static void
2988DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
2989 const MismatchingNewDeleteDetector &Detector) {
2990 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
2991 FixItHint H;
2992 if (!Detector.IsArrayForm)
2993 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
2994 else {
2995 SourceLocation RSquare = Lexer::findLocationAfterToken(
2996 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
2997 SemaRef.getLangOpts(), true);
2998 if (RSquare.isValid())
2999 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3000 }
3001 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3002 << Detector.IsArrayForm << H;
3003
3004 for (const auto *NE : Detector.NewExprs)
3005 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3006 << Detector.IsArrayForm;
3007}
3008
3009void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3010 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3011 return;
3012 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3013 switch (Detector.analyzeDeleteExpr(DE)) {
3014 case MismatchingNewDeleteDetector::VarInitMismatches:
3015 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3016 DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
3017 break;
3018 }
3019 case MismatchingNewDeleteDetector::AnalyzeLater: {
3020 DeleteExprs[Detector.Field].push_back(
3021 std::make_pair(DE->getLocStart(), DE->isArrayForm()));
3022 break;
3023 }
3024 case MismatchingNewDeleteDetector::NoMismatch:
3025 break;
3026 }
3027}
3028
3029void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3030 bool DeleteWasArrayForm) {
3031 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3032 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3033 case MismatchingNewDeleteDetector::VarInitMismatches:
3034 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3034)
;
3035 case MismatchingNewDeleteDetector::AnalyzeLater:
3036 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3037)
3037 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3037)
;
3038 case MismatchingNewDeleteDetector::MemberInitMismatches:
3039 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3040 break;
3041 case MismatchingNewDeleteDetector::NoMismatch:
3042 break;
3043 }
3044}
3045
3046/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3047/// @code ::delete ptr; @endcode
3048/// or
3049/// @code delete [] ptr; @endcode
3050ExprResult
3051Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3052 bool ArrayForm, Expr *ExE) {
3053 // C++ [expr.delete]p1:
3054 // The operand shall have a pointer type, or a class type having a single
3055 // non-explicit conversion function to a pointer type. The result has type
3056 // void.
3057 //
3058 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3059
3060 ExprResult Ex = ExE;
3061 FunctionDecl *OperatorDelete = nullptr;
3062 bool ArrayFormAsWritten = ArrayForm;
3063 bool UsualArrayDeleteWantsSize = false;
3064
3065 if (!Ex.get()->isTypeDependent()) {
3066 // Perform lvalue-to-rvalue cast, if needed.
3067 Ex = DefaultLvalueConversion(Ex.get());
3068 if (Ex.isInvalid())
3069 return ExprError();
3070
3071 QualType Type = Ex.get()->getType();
3072
3073 class DeleteConverter : public ContextualImplicitConverter {
3074 public:
3075 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3076
3077 bool match(QualType ConvType) override {
3078 // FIXME: If we have an operator T* and an operator void*, we must pick
3079 // the operator T*.
3080 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3081 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3082 return true;
3083 return false;
3084 }
3085
3086 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3087 QualType T) override {
3088 return S.Diag(Loc, diag::err_delete_operand) << T;
3089 }
3090
3091 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3092 QualType T) override {
3093 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3094 }
3095
3096 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3097 QualType T,
3098 QualType ConvTy) override {
3099 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3100 }
3101
3102 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3103 QualType ConvTy) override {
3104 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3105 << ConvTy;
3106 }
3107
3108 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3109 QualType T) override {
3110 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3111 }
3112
3113 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3114 QualType ConvTy) override {
3115 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3116 << ConvTy;
3117 }
3118
3119 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3120 QualType T,
3121 QualType ConvTy) override {
3122 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3122)
;
3123 }
3124 } Converter;
3125
3126 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3127 if (Ex.isInvalid())
3128 return ExprError();
3129 Type = Ex.get()->getType();
3130 if (!Converter.match(Type))
3131 // FIXME: PerformContextualImplicitConversion should return ExprError
3132 // itself in this case.
3133 return ExprError();
3134
3135 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3136 QualType PointeeElem = Context.getBaseElementType(Pointee);
3137
3138 if (unsigned AddressSpace = Pointee.getAddressSpace())
3139 return Diag(Ex.get()->getLocStart(),
3140 diag::err_address_space_qualified_delete)
3141 << Pointee.getUnqualifiedType() << AddressSpace;
3142
3143 CXXRecordDecl *PointeeRD = nullptr;
3144 if (Pointee->isVoidType() && !isSFINAEContext()) {
3145 // The C++ standard bans deleting a pointer to a non-object type, which
3146 // effectively bans deletion of "void*". However, most compilers support
3147 // this, so we treat it as a warning unless we're in a SFINAE context.
3148 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3149 << Type << Ex.get()->getSourceRange();
3150 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3151 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3152 << Type << Ex.get()->getSourceRange());
3153 } else if (!Pointee->isDependentType()) {
3154 // FIXME: This can result in errors if the definition was imported from a
3155 // module but is hidden.
3156 if (!RequireCompleteType(StartLoc, Pointee,
3157 diag::warn_delete_incomplete, Ex.get())) {
3158 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3159 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3160 }
3161 }
3162
3163 if (Pointee->isArrayType() && !ArrayForm) {
3164 Diag(StartLoc, diag::warn_delete_array_type)
3165 << Type << Ex.get()->getSourceRange()
3166 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3167 ArrayForm = true;
3168 }
3169
3170 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3171 ArrayForm ? OO_Array_Delete : OO_Delete);
3172
3173 if (PointeeRD) {
3174 if (!UseGlobal &&
3175 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3176 OperatorDelete))
3177 return ExprError();
3178
3179 // If we're allocating an array of records, check whether the
3180 // usual operator delete[] has a size_t parameter.
3181 if (ArrayForm) {
3182 // If the user specifically asked to use the global allocator,
3183 // we'll need to do the lookup into the class.
3184 if (UseGlobal)
3185 UsualArrayDeleteWantsSize =
3186 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3187
3188 // Otherwise, the usual operator delete[] should be the
3189 // function we just found.
3190 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3191 UsualArrayDeleteWantsSize =
3192 UsualDeallocFnInfo(*this,
3193 DeclAccessPair::make(OperatorDelete, AS_public))
3194 .HasSizeT;
3195 }
3196
3197 if (!PointeeRD->hasIrrelevantDestructor())
3198 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3199 MarkFunctionReferenced(StartLoc,
3200 const_cast<CXXDestructorDecl*>(Dtor));
3201 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3202 return ExprError();
3203 }
3204
3205 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3206 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3207 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3208 SourceLocation());
3209 }
3210
3211 if (!OperatorDelete) {
3212 bool IsComplete = isCompleteType(StartLoc, Pointee);
3213 bool CanProvideSize =
3214 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3215 Pointee.isDestructedType());
3216 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3217
3218 // Look for a global declaration.
3219 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3220 Overaligned, DeleteName);
3221 }
3222
3223 MarkFunctionReferenced(StartLoc, OperatorDelete);
3224
3225 // Check access and ambiguity of operator delete and destructor.
3226 if (PointeeRD) {
3227 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3228 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3229 PDiag(diag::err_access_dtor) << PointeeElem);
3230 }
3231 }
3232 }
3233
3234 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3235 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3236 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3237 AnalyzeDeleteExprMismatch(Result);
3238 return Result;
3239}
3240
3241void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3242 bool IsDelete, bool CallCanBeVirtual,
3243 bool WarnOnNonAbstractTypes,
3244 SourceLocation DtorLoc) {
3245 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual)
3246 return;
3247
3248 // C++ [expr.delete]p3:
3249 // In the first alternative (delete object), if the static type of the
3250 // object to be deleted is different from its dynamic type, the static
3251 // type shall be a base class of the dynamic type of the object to be
3252 // deleted and the static type shall have a virtual destructor or the
3253 // behavior is undefined.
3254 //
3255 const CXXRecordDecl *PointeeRD = dtor->getParent();
3256 // Note: a final class cannot be derived from, no issue there
3257 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3258 return;
3259
3260 QualType ClassType = dtor->getThisType(Context)->getPointeeType();
3261 if (PointeeRD->isAbstract()) {
3262 // If the class is abstract, we warn by default, because we're
3263 // sure the code has undefined behavior.
3264 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3265 << ClassType;
3266 } else if (WarnOnNonAbstractTypes) {
3267 // Otherwise, if this is not an array delete, it's a bit suspect,
3268 // but not necessarily wrong.
3269 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3270 << ClassType;
3271 }
3272 if (!IsDelete) {
3273 std::string TypeStr;
3274 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3275 Diag(DtorLoc, diag::note_delete_non_virtual)
3276 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3277 }
3278}
3279
3280Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3281 SourceLocation StmtLoc,
3282 ConditionKind CK) {
3283 ExprResult E =
3284 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3285 if (E.isInvalid())
3286 return ConditionError();
3287 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3288 CK == ConditionKind::ConstexprIf);
3289}
3290
3291/// \brief Check the use of the given variable as a C++ condition in an if,
3292/// while, do-while, or switch statement.
3293ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3294 SourceLocation StmtLoc,
3295 ConditionKind CK) {
3296 if (ConditionVar->isInvalidDecl())
3297 return ExprError();
3298
3299 QualType T = ConditionVar->getType();
3300
3301 // C++ [stmt.select]p2:
3302 // The declarator shall not specify a function or an array.
3303 if (T->isFunctionType())
3304 return ExprError(Diag(ConditionVar->getLocation(),
3305 diag::err_invalid_use_of_function_type)
3306 << ConditionVar->getSourceRange());
3307 else if (T->isArrayType())
3308 return ExprError(Diag(ConditionVar->getLocation(),
3309 diag::err_invalid_use_of_array_type)
3310 << ConditionVar->getSourceRange());
3311
3312 ExprResult Condition = DeclRefExpr::Create(
3313 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
3314 /*enclosing*/ false, ConditionVar->getLocation(),
3315 ConditionVar->getType().getNonReferenceType(), VK_LValue);
3316
3317 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
3318
3319 switch (CK) {
3320 case ConditionKind::Boolean:
3321 return CheckBooleanCondition(StmtLoc, Condition.get());
3322
3323 case ConditionKind::ConstexprIf:
3324 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3325
3326 case ConditionKind::Switch:
3327 return CheckSwitchCondition(StmtLoc, Condition.get());
3328 }
3329
3330 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3330)
;
3331}
3332
3333/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3334ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3335 // C++ 6.4p4:
3336 // The value of a condition that is an initialized declaration in a statement
3337 // other than a switch statement is the value of the declared variable
3338 // implicitly converted to type bool. If that conversion is ill-formed, the
3339 // program is ill-formed.
3340 // The value of a condition that is an expression is the value of the
3341 // expression, implicitly converted to bool.
3342 //
3343 // FIXME: Return this value to the caller so they don't need to recompute it.
3344 llvm::APSInt Value(/*BitWidth*/1);
3345 return (IsConstexpr && !CondExpr->isValueDependent())
3346 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3347 CCEK_ConstexprIf)
3348 : PerformContextuallyConvertToBool(CondExpr);
3349}
3350
3351/// Helper function to determine whether this is the (deprecated) C++
3352/// conversion from a string literal to a pointer to non-const char or
3353/// non-const wchar_t (for narrow and wide string literals,
3354/// respectively).
3355bool
3356Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3357 // Look inside the implicit cast, if it exists.
3358 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3359 From = Cast->getSubExpr();
3360
3361 // A string literal (2.13.4) that is not a wide string literal can
3362 // be converted to an rvalue of type "pointer to char"; a wide
3363 // string literal can be converted to an rvalue of type "pointer
3364 // to wchar_t" (C++ 4.2p2).
3365 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3366 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3367 if (const BuiltinType *ToPointeeType
3368 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3369 // This conversion is considered only when there is an
3370 // explicit appropriate pointer target type (C++ 4.2p2).
3371 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3372 switch (StrLit->getKind()) {
3373 case StringLiteral::UTF8:
3374 case StringLiteral::UTF16:
3375 case StringLiteral::UTF32:
3376 // We don't allow UTF literals to be implicitly converted
3377 break;
3378 case StringLiteral::Ascii:
3379 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3380 ToPointeeType->getKind() == BuiltinType::Char_S);
3381 case StringLiteral::Wide:
3382 return Context.typesAreCompatible(Context.getWideCharType(),
3383 QualType(ToPointeeType, 0));
3384 }
3385 }
3386 }
3387
3388 return false;
3389}
3390
3391static ExprResult BuildCXXCastArgument(Sema &S,
3392 SourceLocation CastLoc,
3393 QualType Ty,
3394 CastKind Kind,
3395 CXXMethodDecl *Method,
3396 DeclAccessPair FoundDecl,
3397 bool HadMultipleCandidates,
3398 Expr *From) {
3399 switch (Kind) {
3400 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3400)
;
3401 case CK_ConstructorConversion: {
3402 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3403 SmallVector<Expr*, 8> ConstructorArgs;
3404
3405 if (S.RequireNonAbstractType(CastLoc, Ty,
3406 diag::err_allocation_of_abstract_type))
3407 return ExprError();
3408
3409 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3410 return ExprError();
3411
3412 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3413 InitializedEntity::InitializeTemporary(Ty));
3414 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3415 return ExprError();
3416
3417 ExprResult Result = S.BuildCXXConstructExpr(
3418 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3419 ConstructorArgs, HadMultipleCandidates,
3420 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3421 CXXConstructExpr::CK_Complete, SourceRange());
3422 if (Result.isInvalid())
3423 return ExprError();
3424
3425 return S.MaybeBindToTemporary(Result.getAs<Expr>());
3426 }
3427
3428 case CK_UserDefinedConversion: {
3429 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")((!From->getType()->isPointerType() && "Arg can't have pointer type!"
) ? static_cast<void> (0) : __assert_fail ("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3429, __PRETTY_FUNCTION__))
;
3430
3431 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3432 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3433 return ExprError();
3434
3435 // Create an implicit call expr that calls it.
3436 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3437 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3438 HadMultipleCandidates);
3439 if (Result.isInvalid())
3440 return ExprError();
3441 // Record usage of conversion in an implicit cast.
3442 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3443 CK_UserDefinedConversion, Result.get(),
3444 nullptr, Result.get()->getValueKind());
3445
3446 return S.MaybeBindToTemporary(Result.get());
3447 }
3448 }
3449}
3450
3451/// PerformImplicitConversion - Perform an implicit conversion of the
3452/// expression From to the type ToType using the pre-computed implicit
3453/// conversion sequence ICS. Returns the converted
3454/// expression. Action is the kind of conversion we're performing,
3455/// used in the error message.
3456ExprResult
3457Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3458 const ImplicitConversionSequence &ICS,
3459 AssignmentAction Action,
3460 CheckedConversionKind CCK) {
3461 switch (ICS.getKind()) {
3462 case ImplicitConversionSequence::StandardConversion: {
3463 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3464 Action, CCK);
3465 if (Res.isInvalid())
3466 return ExprError();
3467 From = Res.get();
3468 break;
3469 }
3470
3471 case ImplicitConversionSequence::UserDefinedConversion: {
3472
3473 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3474 CastKind CastKind;
3475 QualType BeforeToType;
3476 assert(FD && "no conversion function for user-defined conversion seq")((FD && "no conversion function for user-defined conversion seq"
) ? static_cast<void> (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3476, __PRETTY_FUNCTION__))
;
3477 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3478 CastKind = CK_UserDefinedConversion;
3479
3480 // If the user-defined conversion is specified by a conversion function,
3481 // the initial standard conversion sequence converts the source type to
3482 // the implicit object parameter of the conversion function.
3483 BeforeToType = Context.getTagDeclType(Conv->getParent());
3484 } else {
3485 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3486 CastKind = CK_ConstructorConversion;
3487 // Do no conversion if dealing with ... for the first conversion.
3488 if (!ICS.UserDefined.EllipsisConversion) {
3489 // If the user-defined conversion is specified by a constructor, the
3490 // initial standard conversion sequence converts the source type to
3491 // the type required by the argument of the constructor
3492 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3493 }
3494 }
3495 // Watch out for ellipsis conversion.
3496 if (!ICS.UserDefined.EllipsisConversion) {
3497 ExprResult Res =
3498 PerformImplicitConversion(From, BeforeToType,
3499 ICS.UserDefined.Before, AA_Converting,
3500 CCK);
3501 if (Res.isInvalid())
3502 return ExprError();
3503 From = Res.get();
3504 }
3505
3506 ExprResult CastArg
3507 = BuildCXXCastArgument(*this,
3508 From->getLocStart(),
3509 ToType.getNonReferenceType(),
3510 CastKind, cast<CXXMethodDecl>(FD),
3511 ICS.UserDefined.FoundConversionFunction,
3512 ICS.UserDefined.HadMultipleCandidates,
3513 From);
3514
3515 if (CastArg.isInvalid())
3516 return ExprError();
3517
3518 From = CastArg.get();
3519
3520 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3521 AA_Converting, CCK);
3522 }
3523
3524 case ImplicitConversionSequence::AmbiguousConversion:
3525 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3526 PDiag(diag::err_typecheck_ambiguous_condition)
3527 << From->getSourceRange());
3528 return ExprError();
3529
3530 case ImplicitConversionSequence::EllipsisConversion:
3531 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3531)
;
3532
3533 case ImplicitConversionSequence::BadConversion:
3534 bool Diagnosed =
3535 DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3536 From->getType(), From, Action);
3537 assert(Diagnosed && "failed to diagnose bad conversion")((Diagnosed && "failed to diagnose bad conversion") ?
static_cast<void> (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3537, __PRETTY_FUNCTION__))
; (void)Diagnosed;
3538 return ExprError();
3539 }
3540
3541 // Everything went well.
3542 return From;
3543}
3544
3545/// PerformImplicitConversion - Perform an implicit conversion of the
3546/// expression From to the type ToType by following the standard
3547/// conversion sequence SCS. Returns the converted
3548/// expression. Flavor is the context in which we're performing this
3549/// conversion, for use in error messages.
3550ExprResult
3551Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3552 const StandardConversionSequence& SCS,
3553 AssignmentAction Action,
3554 CheckedConversionKind CCK) {
3555 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3556
3557 // Overall FIXME: we are recomputing too many types here and doing far too
3558 // much extra work. What this means is that we need to keep track of more
3559 // information that is computed when we try the implicit conversion initially,
3560 // so that we don't need to recompute anything here.
3561 QualType FromType = From->getType();
3562
3563 if (SCS.CopyConstructor) {
3564 // FIXME: When can ToType be a reference type?
3565 assert(!ToType->isReferenceType())((!ToType->isReferenceType()) ? static_cast<void> (0
) : __assert_fail ("!ToType->isReferenceType()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3565, __PRETTY_FUNCTION__))
;
3566 if (SCS.Second == ICK_Derived_To_Base) {
3567 SmallVector<Expr*, 8> ConstructorArgs;
3568 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3569 From, /*FIXME:ConstructLoc*/SourceLocation(),
3570 ConstructorArgs))
3571 return ExprError();
3572 return BuildCXXConstructExpr(
3573 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3574 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3575 ConstructorArgs, /*HadMultipleCandidates*/ false,
3576 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3577 CXXConstructExpr::CK_Complete, SourceRange());
3578 }
3579 return BuildCXXConstructExpr(
3580 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3581 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3582 From, /*HadMultipleCandidates*/ false,
3583 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3584 CXXConstructExpr::CK_Complete, SourceRange());
3585 }
3586
3587 // Resolve overloaded function references.
3588 if (Context.hasSameType(FromType, Context.OverloadTy)) {
3589 DeclAccessPair Found;
3590 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3591 true, Found);
3592 if (!Fn)
3593 return ExprError();
3594
3595 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
3596 return ExprError();
3597
3598 From = FixOverloadedFunctionReference(From, Found, Fn);
3599 FromType = From->getType();
3600 }
3601
3602 // If we're converting to an atomic type, first convert to the corresponding
3603 // non-atomic type.
3604 QualType ToAtomicType;
3605 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3606 ToAtomicType = ToType;
3607 ToType = ToAtomic->getValueType();
3608 }
3609
3610 QualType InitialFromType = FromType;
3611 // Perform the first implicit conversion.
3612 switch (SCS.First) {
3613 case ICK_Identity:
3614 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3615 FromType = FromAtomic->getValueType().getUnqualifiedType();
3616 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3617 From, /*BasePath=*/nullptr, VK_RValue);
3618 }
3619 break;
3620
3621 case ICK_Lvalue_To_Rvalue: {
3622 assert(From->getObjectKind() != OK_ObjCProperty)((From->getObjectKind() != OK_ObjCProperty) ? static_cast<
void> (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3622, __PRETTY_FUNCTION__))
;
3623 ExprResult FromRes = DefaultLvalueConversion(From);
3624 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!")((!FromRes.isInvalid() && "Can't perform deduced conversion?!"
) ? static_cast<void> (0) : __assert_fail ("!FromRes.isInvalid() && \"Can't perform deduced conversion?!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3624, __PRETTY_FUNCTION__))
;
3625 From = FromRes.get();
3626 FromType = From->getType();
3627 break;
3628 }
3629
3630 case ICK_Array_To_Pointer:
3631 FromType = Context.getArrayDecayedType(FromType);
3632 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3633 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3634 break;
3635
3636 case ICK_Function_To_Pointer:
3637 FromType = Context.getPointerType(FromType);
3638 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3639 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3640 break;
3641
3642 default:
3643 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3643)
;
3644 }
3645
3646 // Perform the second implicit conversion
3647 switch (SCS.Second) {
3648 case ICK_Identity:
3649 // C++ [except.spec]p5:
3650 // [For] assignment to and initialization of pointers to functions,
3651 // pointers to member functions, and references to functions: the
3652 // target entity shall allow at least the exceptions allowed by the
3653 // source value in the assignment or initialization.
3654 switch (Action) {
3655 case AA_Assigning:
3656 case AA_Initializing:
3657 // Note, function argument passing and returning are initialization.
3658 case AA_Passing:
3659 case AA_Returning:
3660 case AA_Sending:
3661 case AA_Passing_CFAudited:
3662 if (CheckExceptionSpecCompatibility(From, ToType))
3663 return ExprError();
3664 break;
3665
3666 case AA_Casting:
3667 case AA_Converting:
3668 // Casts and implicit conversions are not initialization, so are not
3669 // checked for exception specification mismatches.
3670 break;
3671 }
3672 // Nothing else to do.
3673 break;
3674
3675 case ICK_Integral_Promotion:
3676 case ICK_Integral_Conversion:
3677 if (ToType->isBooleanType()) {
3678 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3680, __PRETTY_FUNCTION__))
3679 SCS.Second == ICK_Integral_Promotion &&((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3680, __PRETTY_FUNCTION__))
3680 "only enums with fixed underlying type can promote to bool")((FromType->castAs<EnumType>()->getDecl()->isFixed
() && SCS.Second == ICK_Integral_Promotion &&
"only enums with fixed underlying type can promote to bool")
? static_cast<void> (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3680, __PRETTY_FUNCTION__))
;
3681 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
3682 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3683 } else {
3684 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
3685 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3686 }
3687 break;
3688
3689 case ICK_Floating_Promotion:
3690 case ICK_Floating_Conversion:
3691 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
3692 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3693 break;
3694
3695 case ICK_Complex_Promotion:
3696 case ICK_Complex_Conversion: {
3697 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
3698 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
3699 CastKind CK;
3700 if (FromEl->isRealFloatingType()) {
3701 if (ToEl->isRealFloatingType())
3702 CK = CK_FloatingComplexCast;
3703 else
3704 CK = CK_FloatingComplexToIntegralComplex;
3705 } else if (ToEl->isRealFloatingType()) {
3706 CK = CK_IntegralComplexToFloatingComplex;
3707 } else {
3708 CK = CK_IntegralComplexCast;
3709 }
3710 From = ImpCastExprToType(From, ToType, CK,
3711 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3712 break;
3713 }
3714
3715 case ICK_Floating_Integral:
3716 if (ToType->isRealFloatingType())
3717 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
3718 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3719 else
3720 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
3721 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3722 break;
3723
3724 case ICK_Compatible_Conversion:
3725 From = ImpCastExprToType(From, ToType, CK_NoOp,
3726 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3727 break;
3728
3729 case ICK_Writeback_Conversion:
3730 case ICK_Pointer_Conversion: {
3731 if (SCS.IncompatibleObjC && Action != AA_Casting) {
3732 // Diagnose incompatible Objective-C conversions
3733 if (Action == AA_Initializing || Action == AA_Assigning)
3734 Diag(From->getLocStart(),
3735 diag::ext_typecheck_convert_incompatible_pointer)
3736 << ToType << From->getType() << Action
3737 << From->getSourceRange() << 0;
3738 else
3739 Diag(From->getLocStart(),
3740 diag::ext_typecheck_convert_incompatible_pointer)
3741 << From->getType() << ToType << Action
3742 << From->getSourceRange() << 0;
3743
3744 if (From->getType()->isObjCObjectPointerType() &&
3745 ToType->isObjCObjectPointerType())
3746 EmitRelatedResultTypeNote(From);
3747 }
3748 else if (getLangOpts().ObjCAutoRefCount &&
3749 !CheckObjCARCUnavailableWeakConversion(ToType,
3750 From->getType())) {
3751 if (Action == AA_Initializing)
3752 Diag(From->getLocStart(),
3753 diag::err_arc_weak_unavailable_assign);
3754 else
3755 Diag(From->getLocStart(),
3756 diag::err_arc_convesion_of_weak_unavailable)
3757 << (Action == AA_Casting) << From->getType() << ToType
3758 << From->getSourceRange();
3759 }
3760
3761 CastKind Kind = CK_Invalid;
3762 CXXCastPath BasePath;
3763 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
3764 return ExprError();
3765
3766 // Make sure we extend blocks if necessary.
3767 // FIXME: doing this here is really ugly.
3768 if (Kind == CK_BlockPointerToObjCPointerCast) {
3769 ExprResult E = From;
3770 (void) PrepareCastToObjCObjectPointer(E);
3771 From = E.get();
3772 }
3773 if (getLangOpts().ObjCAutoRefCount)
3774 CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
3775 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3776 .get();
3777 break;
3778 }
3779
3780 case ICK_Pointer_Member: {
3781 CastKind Kind = CK_Invalid;
3782 CXXCastPath BasePath;
3783 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
3784 return ExprError();
3785 if (CheckExceptionSpecCompatibility(From, ToType))
3786 return ExprError();
3787
3788 // We may not have been able to figure out what this member pointer resolved
3789 // to up until this exact point. Attempt to lock-in it's inheritance model.
3790 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
3791 (void)isCompleteType(From->getExprLoc(), From->getType());
3792 (void)isCompleteType(From->getExprLoc(), ToType);
3793 }
3794
3795 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
3796 .get();
3797 break;
3798 }
3799
3800 case ICK_Boolean_Conversion:
3801 // Perform half-to-boolean conversion via float.
3802 if (From->getType()->isHalfType()) {
3803 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
3804 FromType = Context.FloatTy;
3805 }
3806
3807 From = ImpCastExprToType(From, Context.BoolTy,
3808 ScalarTypeToBooleanCastKind(FromType),
3809 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3810 break;
3811
3812 case ICK_Derived_To_Base: {
3813 CXXCastPath BasePath;
3814 if (CheckDerivedToBaseConversion(From->getType(),
3815 ToType.getNonReferenceType(),
3816 From->getLocStart(),
3817 From->getSourceRange(),
3818 &BasePath,
3819 CStyle))
3820 return ExprError();
3821
3822 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
3823 CK_DerivedToBase, From->getValueKind(),
3824 &BasePath, CCK).get();
3825 break;
3826 }
3827
3828 case ICK_Vector_Conversion:
3829 From = ImpCastExprToType(From, ToType, CK_BitCast,
3830 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3831 break;
3832
3833 case ICK_Vector_Splat: {
3834 // Vector splat from any arithmetic type to a vector.
3835 Expr *Elem = prepareVectorSplat(ToType, From).get();
3836 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
3837 /*BasePath=*/nullptr, CCK).get();
3838 break;
3839 }
3840
3841 case ICK_Complex_Real:
3842 // Case 1. x -> _Complex y
3843 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
3844 QualType ElType = ToComplex->getElementType();
3845 bool isFloatingComplex = ElType->isRealFloatingType();
3846
3847 // x -> y
3848 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
3849 // do nothing
3850 } else if (From->getType()->isRealFloatingType()) {
3851 From = ImpCastExprToType(From, ElType,
3852 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
3853 } else {
3854 assert(From->getType()->isIntegerType())((From->getType()->isIntegerType()) ? static_cast<void
> (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3854, __PRETTY_FUNCTION__))
;
3855 From = ImpCastExprToType(From, ElType,
3856 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
3857 }
3858 // y -> _Complex y
3859 From = ImpCastExprToType(From, ToType,
3860 isFloatingComplex ? CK_FloatingRealToComplex
3861 : CK_IntegralRealToComplex).get();
3862
3863 // Case 2. _Complex x -> y
3864 } else {
3865 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
3866 assert(FromComplex)((FromComplex) ? static_cast<void> (0) : __assert_fail (
"FromComplex", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3866, __PRETTY_FUNCTION__))
;
3867
3868 QualType ElType = FromComplex->getElementType();
3869 bool isFloatingComplex = ElType->isRealFloatingType();
3870
3871 // _Complex x -> x
3872 From = ImpCastExprToType(From, ElType,
3873 isFloatingComplex ? CK_FloatingComplexToReal
3874 : CK_IntegralComplexToReal,
3875 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3876
3877 // x -> y
3878 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
3879 // do nothing
3880 } else if (ToType->isRealFloatingType()) {
3881 From = ImpCastExprToType(From, ToType,
3882 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
3883 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3884 } else {
3885 assert(ToType->isIntegerType())((ToType->isIntegerType()) ? static_cast<void> (0) :
__assert_fail ("ToType->isIntegerType()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3885, __PRETTY_FUNCTION__))
;
3886 From = ImpCastExprToType(From, ToType,
3887 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3888 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3889 }
3890 }
3891 break;
3892
3893 case ICK_Block_Pointer_Conversion: {
3894 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3895 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3896 break;
3897 }
3898
3899 case ICK_TransparentUnionConversion: {
3900 ExprResult FromRes = From;
3901 Sema::AssignConvertType ConvTy =
3902 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3903 if (FromRes.isInvalid())
3904 return ExprError();
3905 From = FromRes.get();
3906 assert ((ConvTy == Sema::Compatible) &&(((ConvTy == Sema::Compatible) && "Improper transparent union conversion"
) ? static_cast<void> (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3907, __PRETTY_FUNCTION__))
3907 "Improper transparent union conversion")(((ConvTy == Sema::Compatible) && "Improper transparent union conversion"
) ? static_cast<void> (0) : __assert_fail ("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3907, __PRETTY_FUNCTION__))
;
3908 (void)ConvTy;
3909 break;
3910 }
3911
3912 case ICK_Zero_Event_Conversion:
3913 From = ImpCastExprToType(From, ToType,
3914 CK_ZeroToOCLEvent,
3915 From->getValueKind()).get();
3916 break;
3917
3918 case ICK_Zero_Queue_Conversion:
3919 From = ImpCastExprToType(From, ToType,
3920 CK_ZeroToOCLQueue,
3921 From->getValueKind()).get();
3922 break;
3923
3924 case ICK_Lvalue_To_Rvalue:
3925 case ICK_Array_To_Pointer:
3926 case ICK_Function_To_Pointer:
3927 case ICK_Function_Conversion:
3928 case ICK_Qualification:
3929 case ICK_Num_Conversion_Kinds:
3930 case ICK_C_Only_Conversion:
3931 case ICK_Incompatible_Pointer_Conversion:
3932 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3932)
;
3933 }
3934
3935 switch (SCS.Third) {
3936 case ICK_Identity:
3937 // Nothing to do.
3938 break;
3939
3940 case ICK_Function_Conversion:
3941 // If both sides are functions (or pointers/references to them), there could
3942 // be incompatible exception declarations.
3943 if (CheckExceptionSpecCompatibility(From, ToType))
3944 return ExprError();
3945
3946 From = ImpCastExprToType(From, ToType, CK_NoOp,
3947 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3948 break;
3949
3950 case ICK_Qualification: {
3951 // The qualification keeps the category of the inner expression, unless the
3952 // target type isn't a reference.
3953 ExprValueKind VK = ToType->isReferenceType() ?
3954 From->getValueKind() : VK_RValue;
3955 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3956 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3957
3958 if (SCS.DeprecatedStringLiteralToCharPtr &&
3959 !getLangOpts().WritableStrings) {
3960 Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3961 ? diag::ext_deprecated_string_literal_conversion
3962 : diag::warn_deprecated_string_literal_conversion)
3963 << ToType.getNonReferenceType();
3964 }
3965
3966 break;
3967 }
3968
3969 default:
3970 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3970)
;
3971 }
3972
3973 // If this conversion sequence involved a scalar -> atomic conversion, perform
3974 // that conversion now.
3975 if (!ToAtomicType.isNull()) {
3976 assert(Context.hasSameType(((Context.hasSameType( ToAtomicType->castAs<AtomicType>
()->getValueType(), From->getType())) ? static_cast<
void> (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3977, __PRETTY_FUNCTION__))
3977 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))((Context.hasSameType( ToAtomicType->castAs<AtomicType>
()->getValueType(), From->getType())) ? static_cast<
void> (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3977, __PRETTY_FUNCTION__))
;
3978 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3979 VK_RValue, nullptr, CCK).get();
3980 }
3981
3982 // If this conversion sequence succeeded and involved implicitly converting a
3983 // _Nullable type to a _Nonnull one, complain.
3984 if (CCK == CCK_ImplicitConversion)
3985 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
3986 From->getLocStart());
3987
3988 return From;
3989}
3990
3991/// \brief Check the completeness of a type in a unary type trait.
3992///
3993/// If the particular type trait requires a complete type, tries to complete
3994/// it. If completing the type fails, a diagnostic is emitted and false
3995/// returned. If completing the type succeeds or no completion was required,
3996/// returns true.
3997static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3998 SourceLocation Loc,
3999 QualType ArgTy) {
4000 // C++0x [meta.unary.prop]p3:
4001 // For all of the class templates X declared in this Clause, instantiating
4002 // that template with a template argument that is a class template
4003 // specialization may result in the implicit instantiation of the template
4004 // argument if and only if the semantics of X require that the argument
4005 // must be a complete type.
4006 // We apply this rule to all the type trait expressions used to implement
4007 // these class templates. We also try to follow any GCC documented behavior
4008 // in these expressions to ensure portability of standard libraries.
4009 switch (UTT) {
4010 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4010)
;
4011 // is_complete_type somewhat obviously cannot require a complete type.
4012 case UTT_IsCompleteType:
4013 // Fall-through
4014
4015 // These traits are modeled on the type predicates in C++0x
4016 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4017 // requiring a complete type, as whether or not they return true cannot be
4018 // impacted by the completeness of the type.
4019 case UTT_IsVoid:
4020 case UTT_IsIntegral:
4021 case UTT_IsFloatingPoint:
4022 case UTT_IsArray:
4023 case UTT_IsPointer:
4024 case UTT_IsLvalueReference:
4025 case UTT_IsRvalueReference:
4026 case UTT_IsMemberFunctionPointer:
4027 case UTT_IsMemberObjectPointer:
4028 case UTT_IsEnum:
4029 case UTT_IsUnion:
4030 case UTT_IsClass:
4031 case UTT_IsFunction:
4032 case UTT_IsReference:
4033 case UTT_IsArithmetic:
4034 case UTT_IsFundamental:
4035 case UTT_IsObject:
4036 case UTT_IsScalar:
4037 case UTT_IsCompound:
4038 case UTT_IsMemberPointer:
4039 // Fall-through
4040
4041 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4042 // which requires some of its traits to have the complete type. However,
4043 // the completeness of the type cannot impact these traits' semantics, and
4044 // so they don't require it. This matches the comments on these traits in
4045 // Table 49.
4046 case UTT_IsConst:
4047 case UTT_IsVolatile:
4048 case UTT_IsSigned:
4049 case UTT_IsUnsigned:
4050
4051 // This type trait always returns false, checking the type is moot.
4052 case UTT_IsInterfaceClass:
4053 return true;
4054
4055 // C++14 [meta.unary.prop]:
4056 // If T is a non-union class type, T shall be a complete type.
4057 case UTT_IsEmpty:
4058 case UTT_IsPolymorphic:
4059 case UTT_IsAbstract:
4060 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4061 if (!RD->isUnion())
4062 return !S.RequireCompleteType(
4063 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4064 return true;
4065
4066 // C++14 [meta.unary.prop]:
4067 // If T is a class type, T shall be a complete type.
4068 case UTT_IsFinal:
4069 case UTT_IsSealed:
4070 if (ArgTy->getAsCXXRecordDecl())
4071 return !S.RequireCompleteType(
4072 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4073 return true;
4074
4075 // C++0x [meta.unary.prop] Table 49 requires the following traits to be
4076 // applied to a complete type.
4077 case UTT_IsTrivial:
4078 case UTT_IsTriviallyCopyable:
4079 case UTT_IsStandardLayout:
4080 case UTT_IsPOD:
4081 case UTT_IsLiteral:
4082
4083 case UTT_IsDestructible:
4084 case UTT_IsNothrowDestructible:
4085 // Fall-through
4086
4087 // These trait expressions are designed to help implement predicates in
4088 // [meta.unary.prop] despite not being named the same. They are specified
4089 // by both GCC and the Embarcadero C++ compiler, and require the complete
4090 // type due to the overarching C++0x type predicates being implemented
4091 // requiring the complete type.
4092 case UTT_HasNothrowAssign:
4093 case UTT_HasNothrowMoveAssign:
4094 case UTT_HasNothrowConstructor:
4095 case UTT_HasNothrowCopy:
4096 case UTT_HasTrivialAssign:
4097 case UTT_HasTrivialMoveAssign:
4098 case UTT_HasTrivialDefaultConstructor:
4099 case UTT_HasTrivialMoveConstructor:
4100 case UTT_HasTrivialCopy:
4101 case UTT_HasTrivialDestructor:
4102 case UTT_HasVirtualDestructor:
4103 // Arrays of unknown bound are expressly allowed.
4104 QualType ElTy = ArgTy;
4105 if (ArgTy->isIncompleteArrayType())
4106 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
4107
4108 // The void type is expressly allowed.
4109 if (ElTy->isVoidType())
4110 return true;
4111
4112 return !S.RequireCompleteType(
4113 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
4114 }
4115}
4116
4117static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4118 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4119 bool (CXXRecordDecl::*HasTrivial)() const,
4120 bool (CXXRecordDecl::*HasNonTrivial)() const,
4121 bool (CXXMethodDecl::*IsDesiredOp)() const)
4122{
4123 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4124 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4125 return true;
4126
4127 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4128 DeclarationNameInfo NameInfo(Name, KeyLoc);
4129 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4130 if (Self.LookupQualifiedName(Res, RD)) {
4131 bool FoundOperator = false;
4132 Res.suppressDiagnostics();
4133 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4134 Op != OpEnd; ++Op) {
4135 if (isa<FunctionTemplateDecl>(*Op))
4136 continue;
4137
4138 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4139 if((Operator->*IsDesiredOp)()) {
4140 FoundOperator = true;
4141 const FunctionProtoType *CPT =
4142 Operator->getType()->getAs<FunctionProtoType>();
4143 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4144 if (!CPT || !CPT->isNothrow(C))
4145 return false;
4146 }
4147 }
4148 return FoundOperator;
4149 }
4150 return false;
4151}
4152
4153static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4154 SourceLocation KeyLoc, QualType T) {
4155 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((!T->isDependentType() && "Cannot evaluate traits of dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4155, __PRETTY_FUNCTION__))
;
4156
4157 ASTContext &C = Self.Context;
4158 switch(UTT) {
4159 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4159)
;
4160 // Type trait expressions corresponding to the primary type category
4161 // predicates in C++0x [meta.unary.cat].
4162 case UTT_IsVoid:
4163 return T->isVoidType();
4164 case UTT_IsIntegral:
4165 return T->isIntegralType(C);
4166 case UTT_IsFloatingPoint:
4167 return T->isFloatingType();
4168 case UTT_IsArray:
4169 return T->isArrayType();
4170 case UTT_IsPointer:
4171 return T->isPointerType();
4172 case UTT_IsLvalueReference:
4173 return T->isLValueReferenceType();
4174 case UTT_IsRvalueReference:
4175 return T->isRValueReferenceType();
4176 case UTT_IsMemberFunctionPointer:
4177 return T->isMemberFunctionPointerType();
4178 case UTT_IsMemberObjectPointer:
4179 return T->isMemberDataPointerType();
4180 case UTT_IsEnum:
4181 return T->isEnumeralType();
4182 case UTT_IsUnion:
4183 return T->isUnionType();
4184 case UTT_IsClass:
4185 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4186 case UTT_IsFunction:
4187 return T->isFunctionType();
4188
4189 // Type trait expressions which correspond to the convenient composition
4190 // predicates in C++0x [meta.unary.comp].
4191 case UTT_IsReference:
4192 return T->isReferenceType();
4193 case UTT_IsArithmetic:
4194 return T->isArithmeticType() && !T->isEnumeralType();
4195 case UTT_IsFundamental:
4196 return T->isFundamentalType();
4197 case UTT_IsObject:
4198 return T->isObjectType();
4199 case UTT_IsScalar:
4200 // Note: semantic analysis depends on Objective-C lifetime types to be
4201 // considered scalar types. However, such types do not actually behave
4202 // like scalar types at run time (since they may require retain/release
4203 // operations), so we report them as non-scalar.
4204 if (T->isObjCLifetimeType()) {
4205 switch (T.getObjCLifetime()) {
4206 case Qualifiers::OCL_None:
4207 case Qualifiers::OCL_ExplicitNone:
4208 return true;
4209
4210 case Qualifiers::OCL_Strong:
4211 case Qualifiers::OCL_Weak:
4212 case Qualifiers::OCL_Autoreleasing:
4213 return false;
4214 }
4215 }
4216
4217 return T->isScalarType();
4218 case UTT_IsCompound:
4219 return T->isCompoundType();
4220 case UTT_IsMemberPointer:
4221 return T->isMemberPointerType();
4222
4223 // Type trait expressions which correspond to the type property predicates
4224 // in C++0x [meta.unary.prop].
4225 case UTT_IsConst:
4226 return T.isConstQualified();
4227 case UTT_IsVolatile:
4228 return T.isVolatileQualified();
4229 case UTT_IsTrivial:
4230 return T.isTrivialType(C);
4231 case UTT_IsTriviallyCopyable:
4232 return T.isTriviallyCopyableType(C);
4233 case UTT_IsStandardLayout:
4234 return T->isStandardLayoutType();
4235 case UTT_IsPOD:
4236 return T.isPODType(C);
4237 case UTT_IsLiteral:
4238 return T->isLiteralType(C);
4239 case UTT_IsEmpty:
4240 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4241 return !RD->isUnion() && RD->isEmpty();
4242 return false;
4243 case UTT_IsPolymorphic:
4244 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4245 return !RD->isUnion() && RD->isPolymorphic();
4246 return false;
4247 case UTT_IsAbstract:
4248 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4249 return !RD->isUnion() && RD->isAbstract();
4250 return false;
4251 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4252 // even then only when it is used with the 'interface struct ...' syntax
4253 // Clang doesn't support /CLR which makes this type trait moot.
4254 case UTT_IsInterfaceClass:
4255 return false;
4256 case UTT_IsFinal:
4257 case UTT_IsSealed:
4258 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4259 return RD->hasAttr<FinalAttr>();
4260 return false;
4261 case UTT_IsSigned:
4262 return T->isSignedIntegerType();
4263 case UTT_IsUnsigned:
4264 return T->isUnsignedIntegerType();
4265
4266 // Type trait expressions which query classes regarding their construction,
4267 // destruction, and copying. Rather than being based directly on the
4268 // related type predicates in the standard, they are specified by both
4269 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4270 // specifications.
4271 //
4272 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4273 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4274 //
4275 // Note that these builtins do not behave as documented in g++: if a class
4276 // has both a trivial and a non-trivial special member of a particular kind,
4277 // they return false! For now, we emulate this behavior.
4278 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4279 // does not correctly compute triviality in the presence of multiple special
4280 // members of the same kind. Revisit this once the g++ bug is fixed.
4281 case UTT_HasTrivialDefaultConstructor:
4282 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4283 // If __is_pod (type) is true then the trait is true, else if type is
4284 // a cv class or union type (or array thereof) with a trivial default
4285 // constructor ([class.ctor]) then the trait is true, else it is false.
4286 if (T.isPODType(C))
4287 return true;
4288 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4289 return RD->hasTrivialDefaultConstructor() &&
4290 !RD->hasNonTrivialDefaultConstructor();
4291 return false;
4292 case UTT_HasTrivialMoveConstructor:
4293 // This trait is implemented by MSVC 2012 and needed to parse the
4294 // standard library headers. Specifically this is used as the logic
4295 // behind std::is_trivially_move_constructible (20.9.4.3).
4296 if (T.isPODType(C))
4297 return true;
4298 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4299 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4300 return false;
4301 case UTT_HasTrivialCopy:
4302 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4303 // If __is_pod (type) is true or type is a reference type then
4304 // the trait is true, else if type is a cv class or union type
4305 // with a trivial copy constructor ([class.copy]) then the trait
4306 // is true, else it is false.
4307 if (T.isPODType(C) || T->isReferenceType())
4308 return true;
4309 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4310 return RD->hasTrivialCopyConstructor() &&
4311 !RD->hasNonTrivialCopyConstructor();
4312 return false;
4313 case UTT_HasTrivialMoveAssign:
4314 // This trait is implemented by MSVC 2012 and needed to parse the
4315 // standard library headers. Specifically it is used as the logic
4316 // behind std::is_trivially_move_assignable (20.9.4.3)
4317 if (T.isPODType(C))
4318 return true;
4319 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4320 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4321 return false;
4322 case UTT_HasTrivialAssign:
4323 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4324 // If type is const qualified or is a reference type then the
4325 // trait is false. Otherwise if __is_pod (type) is true then the
4326 // trait is true, else if type is a cv class or union type with
4327 // a trivial copy assignment ([class.copy]) then the trait is
4328 // true, else it is false.
4329 // Note: the const and reference restrictions are interesting,
4330 // given that const and reference members don't prevent a class
4331 // from having a trivial copy assignment operator (but do cause
4332 // errors if the copy assignment operator is actually used, q.v.
4333 // [class.copy]p12).
4334
4335 if (T.isConstQualified())
4336 return false;
4337 if (T.isPODType(C))
4338 return true;
4339 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4340 return RD->hasTrivialCopyAssignment() &&
4341 !RD->hasNonTrivialCopyAssignment();
4342 return false;
4343 case UTT_IsDestructible:
4344 case UTT_IsNothrowDestructible:
4345 // C++14 [meta.unary.prop]:
4346 // For reference types, is_destructible<T>::value is true.
4347 if (T->isReferenceType())
4348 return true;
4349
4350 // Objective-C++ ARC: autorelease types don't require destruction.
4351 if (T->isObjCLifetimeType() &&
4352 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4353 return true;
4354
4355 // C++14 [meta.unary.prop]:
4356 // For incomplete types and function types, is_destructible<T>::value is
4357 // false.
4358 if (T->isIncompleteType() || T->isFunctionType())
4359 return false;
4360
4361 // C++14 [meta.unary.prop]:
4362 // For object types and given U equal to remove_all_extents_t<T>, if the
4363 // expression std::declval<U&>().~U() is well-formed when treated as an
4364 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4365 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4366 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4367 if (!Destructor)
4368 return false;
4369 // C++14 [dcl.fct.def.delete]p2:
4370 // A program that refers to a deleted function implicitly or
4371 // explicitly, other than to declare it, is ill-formed.
4372 if (Destructor->isDeleted())
4373 return false;
4374 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4375 return false;
4376 if (UTT == UTT_IsNothrowDestructible) {
4377 const FunctionProtoType *CPT =
4378 Destructor->getType()->getAs<FunctionProtoType>();
4379 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4380 if (!CPT || !CPT->isNothrow(C))
4381 return false;
4382 }
4383 }
4384 return true;
4385
4386 case UTT_HasTrivialDestructor:
4387 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4388 // If __is_pod (type) is true or type is a reference type
4389 // then the trait is true, else if type is a cv class or union
4390 // type (or array thereof) with a trivial destructor
4391 // ([class.dtor]) then the trait is true, else it is
4392 // false.
4393 if (T.isPODType(C) || T->isReferenceType())
4394 return true;
4395
4396 // Objective-C++ ARC: autorelease types don't require destruction.
4397 if (T->isObjCLifetimeType() &&
4398 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4399 return true;
4400
4401 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4402 return RD->hasTrivialDestructor();
4403 return false;
4404 // TODO: Propagate nothrowness for implicitly declared special members.
4405 case UTT_HasNothrowAssign:
4406 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4407 // If type is const qualified or is a reference type then the
4408 // trait is false. Otherwise if __has_trivial_assign (type)
4409 // is true then the trait is true, else if type is a cv class
4410 // or union type with copy assignment operators that are known
4411 // not to throw an exception then the trait is true, else it is
4412 // false.
4413 if (C.getBaseElementType(T).isConstQualified())
4414 return false;
4415 if (T->isReferenceType())
4416 return false;
4417 if (T.isPODType(C) || T->isObjCLifetimeType())
4418 return true;
4419
4420 if (const RecordType *RT = T->getAs<RecordType>())
4421 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4422 &CXXRecordDecl::hasTrivialCopyAssignment,
4423 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4424 &CXXMethodDecl::isCopyAssignmentOperator);
4425 return false;
4426 case UTT_HasNothrowMoveAssign:
4427 // This trait is implemented by MSVC 2012 and needed to parse the
4428 // standard library headers. Specifically this is used as the logic
4429 // behind std::is_nothrow_move_assignable (20.9.4.3).
4430 if (T.isPODType(C))
4431 return true;
4432
4433 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4434 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4435 &CXXRecordDecl::hasTrivialMoveAssignment,
4436 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4437 &CXXMethodDecl::isMoveAssignmentOperator);
4438 return false;
4439 case UTT_HasNothrowCopy:
4440 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4441 // If __has_trivial_copy (type) is true then the trait is true, else
4442 // if type is a cv class or union type with copy constructors that are
4443 // known not to throw an exception then the trait is true, else it is
4444 // false.
4445 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4446 return true;
4447 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4448 if (RD->hasTrivialCopyConstructor() &&
4449 !RD->hasNonTrivialCopyConstructor())
4450 return true;
4451
4452 bool FoundConstructor = false;
4453 unsigned FoundTQs;
4454 for (const auto *ND : Self.LookupConstructors(RD)) {
4455 // A template constructor is never a copy constructor.
4456 // FIXME: However, it may actually be selected at the actual overload
4457 // resolution point.
4458 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4459 continue;
4460 // UsingDecl itself is not a constructor
4461 if (isa<UsingDecl>(ND))
4462 continue;
4463 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4464 if (Constructor->isCopyConstructor(FoundTQs)) {
4465 FoundConstructor = true;
4466 const FunctionProtoType *CPT
4467 = Constructor->getType()->getAs<FunctionProtoType>();
4468 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4469 if (!CPT)
4470 return false;
4471 // TODO: check whether evaluating default arguments can throw.
4472 // For now, we'll be conservative and assume that they can throw.
4473 if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
4474 return false;
4475 }
4476 }
4477
4478 return FoundConstructor;
4479 }
4480 return false;
4481 case UTT_HasNothrowConstructor:
4482 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4483 // If __has_trivial_constructor (type) is true then the trait is
4484 // true, else if type is a cv class or union type (or array
4485 // thereof) with a default constructor that is known not to
4486 // throw an exception then the trait is true, else it is false.
4487 if (T.isPODType(C) || T->isObjCLifetimeType())
4488 return true;
4489 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4490 if (RD->hasTrivialDefaultConstructor() &&
4491 !RD->hasNonTrivialDefaultConstructor())
4492 return true;
4493
4494 bool FoundConstructor = false;
4495 for (const auto *ND : Self.LookupConstructors(RD)) {
4496 // FIXME: In C++0x, a constructor template can be a default constructor.
4497 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4498 continue;
4499 // UsingDecl itself is not a constructor
4500 if (isa<UsingDecl>(ND))
4501 continue;
4502 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4503 if (Constructor->isDefaultConstructor()) {
4504 FoundConstructor = true;
4505 const FunctionProtoType *CPT
4506 = Constructor->getType()->getAs<FunctionProtoType>();
4507 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4508 if (!CPT)
4509 return false;
4510 // FIXME: check whether evaluating default arguments can throw.
4511 // For now, we'll be conservative and assume that they can throw.
4512 if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
4513 return false;
4514 }
4515 }
4516 return FoundConstructor;
4517 }
4518 return false;
4519 case UTT_HasVirtualDestructor:
4520 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4521 // If type is a class type with a virtual destructor ([class.dtor])
4522 // then the trait is true, else it is false.
4523 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4524 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4525 return Destructor->isVirtual();
4526 return false;
4527
4528 // These type trait expressions are modeled on the specifications for the
4529 // Embarcadero C++0x type trait functions:
4530 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4531 case UTT_IsCompleteType:
4532 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4533 // Returns True if and only if T is a complete type at the point of the
4534 // function call.
4535 return !T->isIncompleteType();
4536 }
4537}
4538
4539/// \brief Determine whether T has a non-trivial Objective-C lifetime in
4540/// ARC mode.
4541static bool hasNontrivialObjCLifetime(QualType T) {
4542 switch (T.getObjCLifetime()) {
4543 case Qualifiers::OCL_ExplicitNone:
4544 return false;
4545
4546 case Qualifiers::OCL_Strong:
4547 case Qualifiers::OCL_Weak:
4548 case Qualifiers::OCL_Autoreleasing:
4549 return true;
4550
4551 case Qualifiers::OCL_None:
4552 return T->isObjCLifetimeType();
4553 }
4554
4555 llvm_unreachable("Unknown ObjC lifetime qualifier")::llvm::llvm_unreachable_internal("Unknown ObjC lifetime qualifier"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4555)
;
4556}
4557
4558static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4559 QualType RhsT, SourceLocation KeyLoc);
4560
4561static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4562 ArrayRef<TypeSourceInfo *> Args,
4563 SourceLocation RParenLoc) {
4564 if (Kind <= UTT_Last)
4565 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4566
4567 if (Kind <= BTT_Last)
4568 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4569 Args[1]->getType(), RParenLoc);
4570
4571 switch (Kind) {
4572 case clang::TT_IsConstructible:
4573 case clang::TT_IsNothrowConstructible:
4574 case clang::TT_IsTriviallyConstructible: {
4575 // C++11 [meta.unary.prop]:
4576 // is_trivially_constructible is defined as:
4577 //
4578 // is_constructible<T, Args...>::value is true and the variable
4579 // definition for is_constructible, as defined below, is known to call
4580 // no operation that is not trivial.
4581 //
4582 // The predicate condition for a template specialization
4583 // is_constructible<T, Args...> shall be satisfied if and only if the
4584 // following variable definition would be well-formed for some invented
4585 // variable t:
4586 //
4587 // T t(create<Args>()...);
4588 assert(!Args.empty())((!Args.empty()) ? static_cast<void> (0) : __assert_fail
("!Args.empty()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4588, __PRETTY_FUNCTION__))
;
4589
4590 // Precondition: T and all types in the parameter pack Args shall be
4591 // complete types, (possibly cv-qualified) void, or arrays of
4592 // unknown bound.
4593 for (const auto *TSI : Args) {
4594 QualType ArgTy = TSI->getType();
4595 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4596 continue;
4597
4598 if (S.RequireCompleteType(KWLoc, ArgTy,
4599 diag::err_incomplete_type_used_in_type_trait_expr))
4600 return false;
4601 }
4602
4603 // Make sure the first argument is not incomplete nor a function type.
4604 QualType T = Args[0]->getType();
4605 if (T->isIncompleteType() || T->isFunctionType())
4606 return false;
4607
4608 // Make sure the first argument is not an abstract type.
4609 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4610 if (RD && RD->isAbstract())
4611 return false;
4612
4613 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4614 SmallVector<Expr *, 2> ArgExprs;
4615 ArgExprs.reserve(Args.size() - 1);
4616 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4617 QualType ArgTy = Args[I]->getType();
4618 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4619 ArgTy = S.Context.getRValueReferenceType(ArgTy);
4620 OpaqueArgExprs.push_back(
4621 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
4622 ArgTy.getNonLValueExprType(S.Context),
4623 Expr::getValueKindForType(ArgTy)));
4624 }
4625 for (Expr &E : OpaqueArgExprs)
4626 ArgExprs.push_back(&E);
4627
4628 // Perform the initialization in an unevaluated context within a SFINAE
4629 // trap at translation unit scope.
4630 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
4631 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4632 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4633 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4634 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4635 RParenLoc));
4636 InitializationSequence Init(S, To, InitKind, ArgExprs);
4637 if (Init.Failed())
4638 return false;
4639
4640 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4641 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4642 return false;
4643
4644 if (Kind == clang::TT_IsConstructible)
4645 return true;
4646
4647 if (Kind == clang::TT_IsNothrowConstructible)
4648 return S.canThrow(Result.get()) == CT_Cannot;
4649
4650 if (Kind == clang::TT_IsTriviallyConstructible) {
4651 // Under Objective-C ARC, if the destination has non-trivial Objective-C
4652 // lifetime, this is a non-trivial construction.
4653 if (S.getLangOpts().ObjCAutoRefCount &&
4654 hasNontrivialObjCLifetime(T.getNonReferenceType()))
4655 return false;
4656
4657 // The initialization succeeded; now make sure there are no non-trivial
4658 // calls.
4659 return !Result.get()->hasNonTrivialCall(S.Context);
4660 }
4661
4662 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4662)
;
4663 return false;
4664 }
4665 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4665)
;
4666 }
4667
4668 return false;
4669}
4670
4671ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4672 ArrayRef<TypeSourceInfo *> Args,
4673 SourceLocation RParenLoc) {
4674 QualType ResultType = Context.getLogicalOperationType();
4675
4676 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
4677 *this, Kind, KWLoc, Args[0]->getType()))
4678 return ExprError();
4679
4680 bool Dependent = false;
4681 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4682 if (Args[I]->getType()->isDependentType()) {
4683 Dependent = true;
4684 break;
4685 }
4686 }
4687
4688 bool Result = false;
4689 if (!Dependent)
4690 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
4691
4692 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
4693 RParenLoc, Result);
4694}
4695
4696ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4697 ArrayRef<ParsedType> Args,
4698 SourceLocation RParenLoc) {
4699 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
4700 ConvertedArgs.reserve(Args.size());
4701
4702 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4703 TypeSourceInfo *TInfo;
4704 QualType T = GetTypeFromParser(Args[I], &TInfo);
4705 if (!TInfo)
4706 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
4707
4708 ConvertedArgs.push_back(TInfo);
4709 }
4710
4711 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
4712}
4713
4714static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4715 QualType RhsT, SourceLocation KeyLoc) {
4716 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&((!LhsT->isDependentType() && !RhsT->isDependentType
() && "Cannot evaluate traits of dependent types") ? static_cast
<void> (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4717, __PRETTY_FUNCTION__))
4717 "Cannot evaluate traits of dependent types")((!LhsT->isDependentType() && !RhsT->isDependentType
() && "Cannot evaluate traits of dependent types") ? static_cast
<void> (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4717, __PRETTY_FUNCTION__))
;
4718
4719 switch(BTT) {
4720 case BTT_IsBaseOf: {
4721 // C++0x [meta.rel]p2
4722 // Base is a base class of Derived without regard to cv-qualifiers or
4723 // Base and Derived are not unions and name the same class type without
4724 // regard to cv-qualifiers.
4725
4726 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
4727 if (!lhsRecord) return false;
4728
4729 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
4730 if (!rhsRecord) return false;
4731
4732 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)((Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord
== rhsRecord)) ? static_cast<void> (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4733, __PRETTY_FUNCTION__))
4733 == (lhsRecord == rhsRecord))((Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord
== rhsRecord)) ? static_cast<void> (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4733, __PRETTY_FUNCTION__))
;
4734
4735 if (lhsRecord == rhsRecord)
4736 return !lhsRecord->getDecl()->isUnion();
4737
4738 // C++0x [meta.rel]p2:
4739 // If Base and Derived are class types and are different types
4740 // (ignoring possible cv-qualifiers) then Derived shall be a
4741 // complete type.
4742 if (Self.RequireCompleteType(KeyLoc, RhsT,
4743 diag::err_incomplete_type_used_in_type_trait_expr))
4744 return false;
4745
4746 return cast<CXXRecordDecl>(rhsRecord->getDecl())
4747 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
4748 }
4749 case BTT_IsSame:
4750 return Self.Context.hasSameType(LhsT, RhsT);
4751 case BTT_TypeCompatible:
4752 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
4753 RhsT.getUnqualifiedType());
4754 case BTT_IsConvertible:
4755 case BTT_IsConvertibleTo: {
4756 // C++0x [meta.rel]p4:
4757 // Given the following function prototype:
4758 //
4759 // template <class T>
4760 // typename add_rvalue_reference<T>::type create();
4761 //
4762 // the predicate condition for a template specialization
4763 // is_convertible<From, To> shall be satisfied if and only if
4764 // the return expression in the following code would be
4765 // well-formed, including any implicit conversions to the return
4766 // type of the function:
4767 //
4768 // To test() {
4769 // return create<From>();
4770 // }
4771 //
4772 // Access checking is performed as if in a context unrelated to To and
4773 // From. Only the validity of the immediate context of the expression
4774 // of the return-statement (including conversions to the return type)
4775 // is considered.
4776 //
4777 // We model the initialization as a copy-initialization of a temporary
4778 // of the appropriate type, which for this expression is identical to the
4779 // return statement (since NRVO doesn't apply).
4780
4781 // Functions aren't allowed to return function or array types.
4782 if (RhsT->isFunctionType() || RhsT->isArrayType())
4783 return false;
4784
4785 // A return statement in a void function must have void type.
4786 if (RhsT->isVoidType())
4787 return LhsT->isVoidType();
4788
4789 // A function definition requires a complete, non-abstract return type.
4790 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
4791 return false;
4792
4793 // Compute the result of add_rvalue_reference.
4794 if (LhsT->isObjectType() || LhsT->isFunctionType())
4795 LhsT = Self.Context.getRValueReferenceType(LhsT);
4796
4797 // Build a fake source and destination for initialization.
4798 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
4799 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4800 Expr::getValueKindForType(LhsT));
4801 Expr *FromPtr = &From;
4802 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
4803 SourceLocation()));
4804
4805 // Perform the initialization in an unevaluated context within a SFINAE
4806 // trap at translation unit scope.
4807 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4808 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4809 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4810 InitializationSequence Init(Self, To, Kind, FromPtr);
4811 if (Init.Failed())
4812 return false;
4813
4814 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
4815 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
4816 }
4817
4818 case BTT_IsAssignable:
4819 case BTT_IsNothrowAssignable:
4820 case BTT_IsTriviallyAssignable: {
4821 // C++11 [meta.unary.prop]p3:
4822 // is_trivially_assignable is defined as:
4823 // is_assignable<T, U>::value is true and the assignment, as defined by
4824 // is_assignable, is known to call no operation that is not trivial
4825 //
4826 // is_assignable is defined as:
4827 // The expression declval<T>() = declval<U>() is well-formed when
4828 // treated as an unevaluated operand (Clause 5).
4829 //
4830 // For both, T and U shall be complete types, (possibly cv-qualified)
4831 // void, or arrays of unknown bound.
4832 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
4833 Self.RequireCompleteType(KeyLoc, LhsT,
4834 diag::err_incomplete_type_used_in_type_trait_expr))
4835 return false;
4836 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
4837 Self.RequireCompleteType(KeyLoc, RhsT,
4838 diag::err_incomplete_type_used_in_type_trait_expr))
4839 return false;
4840
4841 // cv void is never assignable.
4842 if (LhsT->isVoidType() || RhsT->isVoidType())
4843 return false;
4844
4845 // Build expressions that emulate the effect of declval<T>() and
4846 // declval<U>().
4847 if (LhsT->isObjectType() || LhsT->isFunctionType())
4848 LhsT = Self.Context.getRValueReferenceType(LhsT);
4849 if (RhsT->isObjectType() || RhsT->isFunctionType())
4850 RhsT = Self.Context.getRValueReferenceType(RhsT);
4851 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
4852 Expr::getValueKindForType(LhsT));
4853 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
4854 Expr::getValueKindForType(RhsT));
4855
4856 // Attempt the assignment in an unevaluated context within a SFINAE
4857 // trap at translation unit scope.
4858 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
4859 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
4860 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
4861 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
4862 &Rhs);
4863 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4864 return false;
4865
4866 if (BTT == BTT_IsAssignable)
4867 return true;
4868
4869 if (BTT == BTT_IsNothrowAssignable)
4870 return Self.canThrow(Result.get()) == CT_Cannot;
4871
4872 if (BTT == BTT_IsTriviallyAssignable) {
4873 // Under Objective-C ARC, if the destination has non-trivial Objective-C
4874 // lifetime, this is a non-trivial assignment.
4875 if (Self.getLangOpts().ObjCAutoRefCount &&
4876 hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
4877 return false;
4878
4879 return !Result.get()->hasNonTrivialCall(Self.Context);
4880 }
4881
4882 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4882)
;
4883 return false;
4884 }
4885 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4885)
;
4886 }
4887 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4887)
;
4888}
4889
4890ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
4891 SourceLocation KWLoc,
4892 ParsedType Ty,
4893 Expr* DimExpr,
4894 SourceLocation RParen) {
4895 TypeSourceInfo *TSInfo;
4896 QualType T = GetTypeFromParser(Ty, &TSInfo);
4897 if (!TSInfo)
4898 TSInfo = Context.getTrivialTypeSourceInfo(T);
4899
4900 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
4901}
4902
4903static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
4904 QualType T, Expr *DimExpr,
4905 SourceLocation KeyLoc) {
4906 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")((!T->isDependentType() && "Cannot evaluate traits of dependent type"
) ? static_cast<void> (0) : __assert_fail ("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4906, __PRETTY_FUNCTION__))
;
4907
4908 switch(ATT) {
4909 case ATT_ArrayRank:
4910 if (T->isArrayType()) {
4911 unsigned Dim = 0;
4912 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4913 ++Dim;
4914 T = AT->getElementType();
4915 }
4916 return Dim;
4917 }
4918 return 0;
4919
4920 case ATT_ArrayExtent: {
4921 llvm::APSInt Value;
4922 uint64_t Dim;
4923 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
4924 diag::err_dimension_expr_not_constant_integer,
4925 false).isInvalid())
4926 return 0;
4927 if (Value.isSigned() && Value.isNegative()) {
4928 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
4929 << DimExpr->getSourceRange();
4930 return 0;
4931 }
4932 Dim = Value.getLimitedValue();
4933
4934 if (T->isArrayType()) {
4935 unsigned D = 0;
4936 bool Matched = false;
4937 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
4938 if (Dim == D) {
4939 Matched = true;
4940 break;
4941 }
4942 ++D;
4943 T = AT->getElementType();
4944 }
4945
4946 if (Matched && T->isArrayType()) {
4947 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
4948 return CAT->getSize().getLimitedValue();
4949 }
4950 }
4951 return 0;
4952 }
4953 }
4954 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4954)
;
4955}
4956
4957ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
4958 SourceLocation KWLoc,
4959 TypeSourceInfo *TSInfo,
4960 Expr* DimExpr,
4961 SourceLocation RParen) {
4962 QualType T = TSInfo->getType();
4963
4964 // FIXME: This should likely be tracked as an APInt to remove any host
4965 // assumptions about the width of size_t on the target.
4966 uint64_t Value = 0;
4967 if (!T->isDependentType())
4968 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4969
4970 // While the specification for these traits from the Embarcadero C++
4971 // compiler's documentation says the return type is 'unsigned int', Clang
4972 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4973 // compiler, there is no difference. On several other platforms this is an
4974 // important distinction.
4975 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4976 RParen, Context.getSizeType());
4977}
4978
4979ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4980 SourceLocation KWLoc,
4981 Expr *Queried,
4982 SourceLocation RParen) {
4983 // If error parsing the expression, ignore.
4984 if (!Queried)
4985 return ExprError();
4986
4987 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4988
4989 return Result;
4990}
4991
4992static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4993 switch (ET) {
4994 case ET_IsLValueExpr: return E->isLValue();
4995 case ET_IsRValueExpr: return E->isRValue();
4996 }
4997 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4997)
;
4998}
4999
5000ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5001 SourceLocation KWLoc,
5002 Expr *Queried,
5003 SourceLocation RParen) {
5004 if (Queried->isTypeDependent()) {
5005 // Delay type-checking for type-dependent expressions.
5006 } else if (Queried->getType()->isPlaceholderType()) {
5007 ExprResult PE = CheckPlaceholderExpr(Queried);
5008 if (PE.isInvalid()) return ExprError();
5009 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5010 }
5011
5012 bool Value = EvaluateExpressionTrait(ET, Queried);
5013
5014 return new (Context)
5015 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5016}
5017
5018QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5019 ExprValueKind &VK,
5020 SourceLocation Loc,
5021 bool isIndirect) {
5022 assert(!LHS.get()->getType()->isPlaceholderType() &&((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5024, __PRETTY_FUNCTION__))
5023 !RHS.get()->getType()->isPlaceholderType() &&((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5024, __PRETTY_FUNCTION__))
5024 "placeholders should have been weeded out by now")((!LHS.get()->getType()->isPlaceholderType() &&
!RHS.get()->getType()->isPlaceholderType() && "placeholders should have been weeded out by now"
) ? static_cast<void> (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5024, __PRETTY_FUNCTION__))
;
5025
5026 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5027 // temporary materialization conversion otherwise.
5028 if (isIndirect)
5029 LHS = DefaultLvalueConversion(LHS.get());
5030 else if (LHS.get()->isRValue())
5031 LHS = TemporaryMaterializationConversion(LHS.get());
5032 if (LHS.isInvalid())
5033 return QualType();
5034
5035 // The RHS always undergoes lvalue conversions.
5036 RHS = DefaultLvalueConversion(RHS.get());
5037 if (RHS.isInvalid()) return QualType();
5038
5039 const char *OpSpelling = isIndirect ? "->*" : ".*";
5040 // C++ 5.5p2
5041 // The binary operator .* [p3: ->*] binds its second operand, which shall
5042 // be of type "pointer to member of T" (where T is a completely-defined
5043 // class type) [...]
5044 QualType RHSType = RHS.get()->getType();
5045 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5046 if (!MemPtr) {
5047 Diag(Loc, diag::err_bad_memptr_rhs)
5048 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5049 return QualType();
5050 }
5051
5052 QualType Class(MemPtr->getClass(), 0);
5053
5054 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5055 // member pointer points must be completely-defined. However, there is no
5056 // reason for this semantic distinction, and the rule is not enforced by
5057 // other compilers. Therefore, we do not check this property, as it is
5058 // likely to be considered a defect.
5059
5060 // C++ 5.5p2
5061 // [...] to its first operand, which shall be of class T or of a class of
5062 // which T is an unambiguous and accessible base class. [p3: a pointer to
5063 // such a class]
5064 QualType LHSType = LHS.get()->getType();
5065 if (isIndirect) {
5066 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5067 LHSType = Ptr->getPointeeType();
5068 else {
5069 Diag(Loc, diag::err_bad_memptr_lhs)
5070 << OpSpelling << 1 << LHSType
5071 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5072 return QualType();
5073 }
5074 }
5075
5076 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5077 // If we want to check the hierarchy, we need a complete type.
5078 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5079 OpSpelling, (int)isIndirect)) {
5080 return QualType();
5081 }
5082
5083 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5084 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5085 << (int)isIndirect << LHS.get()->getType();
5086 return QualType();
5087 }
5088
5089 CXXCastPath BasePath;
5090 if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
5091 SourceRange(LHS.get()->getLocStart(),
5092 RHS.get()->getLocEnd()),
5093 &BasePath))
5094 return QualType();
5095
5096 // Cast LHS to type of use.
5097 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
5098 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5099 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5100 &BasePath);
5101 }
5102
5103 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5104 // Diagnose use of pointer-to-member type which when used as
5105 // the functional cast in a pointer-to-member expression.
5106 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5107 return QualType();
5108 }
5109
5110 // C++ 5.5p2
5111 // The result is an object or a function of the type specified by the
5112 // second operand.
5113 // The cv qualifiers are the union of those in the pointer and the left side,
5114 // in accordance with 5.5p5 and 5.2.5.
5115 QualType Result = MemPtr->getPointeeType();
5116 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5117
5118 // C++0x [expr.mptr.oper]p6:
5119 // In a .* expression whose object expression is an rvalue, the program is
5120 // ill-formed if the second operand is a pointer to member function with
5121 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5122 // expression is an lvalue, the program is ill-formed if the second operand
5123 // is a pointer to member function with ref-qualifier &&.
5124 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5125 switch (Proto->getRefQualifier()) {
5126 case RQ_None:
5127 // Do nothing
5128 break;
5129
5130 case RQ_LValue:
5131 if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
5132 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5133 << RHSType << 1 << LHS.get()->getSourceRange();
5134 break;
5135
5136 case RQ_RValue:
5137 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5138 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5139 << RHSType << 0 << LHS.get()->getSourceRange();
5140 break;
5141 }
5142 }
5143
5144 // C++ [expr.mptr.oper]p6:
5145 // The result of a .* expression whose second operand is a pointer
5146 // to a data member is of the same value category as its
5147 // first operand. The result of a .* expression whose second
5148 // operand is a pointer to a member function is a prvalue. The
5149 // result of an ->* expression is an lvalue if its second operand
5150 // is a pointer to data member and a prvalue otherwise.
5151 if (Result->isFunctionType()) {
5152 VK = VK_RValue;
5153 return Context.BoundMemberTy;
5154 } else if (isIndirect) {
5155 VK = VK_LValue;
5156 } else {
5157 VK = LHS.get()->getValueKind();
5158 }
5159
5160 return Result;
5161}
5162
5163/// \brief Try to convert a type to another according to C++11 5.16p3.
5164///
5165/// This is part of the parameter validation for the ? operator. If either
5166/// value operand is a class type, the two operands are attempted to be
5167/// converted to each other. This function does the conversion in one direction.
5168/// It returns true if the program is ill-formed and has already been diagnosed
5169/// as such.
5170static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5171 SourceLocation QuestionLoc,
5172 bool &HaveConversion,
5173 QualType &ToType) {
5174 HaveConversion = false;
5175 ToType = To->getType();
5176
5177 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
5178 SourceLocation());
5179 // C++11 5.16p3
5180 // The process for determining whether an operand expression E1 of type T1
5181 // can be converted to match an operand expression E2 of type T2 is defined
5182 // as follows:
5183 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5184 // implicitly converted to type "lvalue reference to T2", subject to the
5185 // constraint that in the conversion the reference must bind directly to
5186 // an lvalue.
5187 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5188 // implicitly conveted to the type "rvalue reference to R2", subject to
5189 // the constraint that the reference must bind directly.
5190 if (To->isLValue() || To->isXValue()) {
5191 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5192 : Self.Context.getRValueReferenceType(ToType);
5193
5194 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5195
5196 InitializationSequence InitSeq(Self, Entity, Kind, From);
5197 if (InitSeq.isDirectReferenceBinding()) {
5198 ToType = T;
5199 HaveConversion = true;
5200 return false;
5201 }
5202
5203 if (InitSeq.isAmbiguous())
5204 return InitSeq.Diagnose(Self, Entity, Kind, From);
5205 }
5206
5207 // -- If E2 is an rvalue, or if the conversion above cannot be done:
5208 // -- if E1 and E2 have class type, and the underlying class types are
5209 // the same or one is a base class of the other:
5210 QualType FTy = From->getType();
5211 QualType TTy = To->getType();
5212 const RecordType *FRec = FTy->getAs<RecordType>();
5213 const RecordType *TRec = TTy->getAs<RecordType>();
5214 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5215 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5216 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5217 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5218 // E1 can be converted to match E2 if the class of T2 is the
5219 // same type as, or a base class of, the class of T1, and
5220 // [cv2 > cv1].
5221 if (FRec == TRec || FDerivedFromT) {
5222 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5223 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5224 InitializationSequence InitSeq(Self, Entity, Kind, From);
5225 if (InitSeq) {
5226 HaveConversion = true;
5227 return false;
5228 }
5229
5230 if (InitSeq.isAmbiguous())
5231 return InitSeq.Diagnose(Self, Entity, Kind, From);
5232 }
5233 }
5234
5235 return false;
5236 }
5237
5238 // -- Otherwise: E1 can be converted to match E2 if E1 can be
5239 // implicitly converted to the type that expression E2 would have
5240 // if E2 were converted to an rvalue (or the type it has, if E2 is
5241 // an rvalue).
5242 //
5243 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5244 // to the array-to-pointer or function-to-pointer conversions.
5245 TTy = TTy.getNonLValueExprType(Self.Context);
5246
5247 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5248 InitializationSequence InitSeq(Self, Entity, Kind, From);
5249 HaveConversion = !InitSeq.Failed();
5250 ToType = TTy;
5251 if (InitSeq.isAmbiguous())
5252 return InitSeq.Diagnose(Self, Entity, Kind, From);
5253
5254 return false;
5255}
5256
5257/// \brief Try to find a common type for two according to C++0x 5.16p5.
5258///
5259/// This is part of the parameter validation for the ? operator. If either
5260/// value operand is a class type, overload resolution is used to find a
5261/// conversion to a common type.
5262static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5263 SourceLocation QuestionLoc) {
5264 Expr *Args[2] = { LHS.get(), RHS.get() };
5265 OverloadCandidateSet CandidateSet(QuestionLoc,
5266 OverloadCandidateSet::CSK_Operator);
5267 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5268 CandidateSet);
5269
5270 OverloadCandidateSet::iterator Best;
5271 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5272 case OR_Success: {
5273 // We found a match. Perform the conversions on the arguments and move on.
5274 ExprResult LHSRes =
5275 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
5276 Best->Conversions[0], Sema::AA_Converting);
5277 if (LHSRes.isInvalid())
5278 break;
5279 LHS = LHSRes;
5280
5281 ExprResult RHSRes =
5282 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
5283 Best->Conversions[1], Sema::AA_Converting);
5284 if (RHSRes.isInvalid())
5285 break;
5286 RHS = RHSRes;
5287 if (Best->Function)
5288 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5289 return false;
5290 }
5291
5292 case OR_No_Viable_Function:
5293
5294 // Emit a better diagnostic if one of the expressions is a null pointer
5295 // constant and the other is a pointer type. In this case, the user most
5296 // likely forgot to take the address of the other expression.
5297 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5298 return true;
5299
5300 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5301 << LHS.get()->getType() << RHS.get()->getType()
5302 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5303 return true;
5304
5305 case OR_Ambiguous:
5306 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5307 << LHS.get()->getType() << RHS.get()->getType()
5308 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5309 // FIXME: Print the possible common types by printing the return types of
5310 // the viable candidates.
5311 break;
5312
5313 case OR_Deleted:
5314 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5314)
;
5315 }
5316 return true;
5317}
5318
5319/// \brief Perform an "extended" implicit conversion as returned by
5320/// TryClassUnification.
5321static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5322 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5323 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
5324 SourceLocation());
5325 Expr *Arg = E.get();
5326 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5327 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5328 if (Result.isInvalid())
5329 return true;
5330
5331 E = Result;
5332 return false;
5333}
5334
5335/// \brief Check the operands of ?: under C++ semantics.
5336///
5337/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5338/// extension. In this case, LHS == Cond. (But they're not aliases.)
5339QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5340 ExprResult &RHS, ExprValueKind &VK,
5341 ExprObjectKind &OK,
5342 SourceLocation QuestionLoc) {
5343 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5344 // interface pointers.
5345
5346 // C++11 [expr.cond]p1
5347 // The first expression is contextually converted to bool.
5348 if (!Cond.get()->isTypeDependent()) {
5349 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5350 if (CondRes.isInvalid())
5351 return QualType();
5352 Cond = CondRes;
5353 }
5354
5355 // Assume r-value.
5356 VK = VK_RValue;
5357 OK = OK_Ordinary;
5358
5359 // Either of the arguments dependent?
5360 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5361 return Context.DependentTy;
5362
5363 // C++11 [expr.cond]p2
5364 // If either the second or the third operand has type (cv) void, ...
5365 QualType LTy = LHS.get()->getType();
5366 QualType RTy = RHS.get()->getType();
5367 bool LVoid = LTy->isVoidType();
5368 bool RVoid = RTy->isVoidType();
5369 if (LVoid || RVoid) {
5370 // ... one of the following shall hold:
5371 // -- The second or the third operand (but not both) is a (possibly
5372 // parenthesized) throw-expression; the result is of the type
5373 // and value category of the other.
5374 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5375 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5376 if (LThrow != RThrow) {
5377 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5378 VK = NonThrow->getValueKind();
5379 // DR (no number yet): the result is a bit-field if the
5380 // non-throw-expression operand is a bit-field.
5381 OK = NonThrow->getObjectKind();
5382 return NonThrow->getType();
5383 }
5384
5385 // -- Both the second and third operands have type void; the result is of
5386 // type void and is a prvalue.
5387 if (LVoid && RVoid)
5388 return Context.VoidTy;
5389
5390 // Neither holds, error.
5391 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5392 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5393 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5394 return QualType();
5395 }
5396
5397 // Neither is void.
5398
5399 // C++11 [expr.cond]p3
5400 // Otherwise, if the second and third operand have different types, and
5401 // either has (cv) class type [...] an attempt is made to convert each of
5402 // those operands to the type of the other.
5403 if (!Context.hasSameType(LTy, RTy) &&
5404 (LTy->isRecordType() || RTy->isRecordType())) {
5405 // These return true if a single direction is already ambiguous.
5406 QualType L2RType, R2LType;
5407 bool HaveL2R, HaveR2L;
5408 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5409 return QualType();
5410 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5411 return QualType();
5412
5413 // If both can be converted, [...] the program is ill-formed.
5414 if (HaveL2R && HaveR2L) {
5415 Diag(QuestionLoc, diag::err_conditional_ambiguous)
5416 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5417 return QualType();
5418 }
5419
5420 // If exactly one conversion is possible, that conversion is applied to
5421 // the chosen operand and the converted operands are used in place of the
5422 // original operands for the remainder of this section.
5423 if (HaveL2R) {
5424 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5425 return QualType();
5426 LTy = LHS.get()->getType();
5427 } else if (HaveR2L) {
5428 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5429 return QualType();
5430 RTy = RHS.get()->getType();
5431 }
5432 }
5433
5434 // C++11 [expr.cond]p3
5435 // if both are glvalues of the same value category and the same type except
5436 // for cv-qualification, an attempt is made to convert each of those
5437 // operands to the type of the other.
5438 // FIXME:
5439 // Resolving a defect in P0012R1: we extend this to cover all cases where
5440 // one of the operands is reference-compatible with the other, in order
5441 // to support conditionals between functions differing in noexcept.
5442 ExprValueKind LVK = LHS.get()->getValueKind();
5443 ExprValueKind RVK = RHS.get()->getValueKind();
5444 if (!Context.hasSameType(LTy, RTy) &&
5445 LVK == RVK && LVK != VK_RValue) {
5446 // DerivedToBase was already handled by the class-specific case above.
5447 // FIXME: Should we allow ObjC conversions here?
5448 bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
5449 if (CompareReferenceRelationship(
5450 QuestionLoc, LTy, RTy, DerivedToBase,
5451 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5452 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5453 // [...] subject to the constraint that the reference must bind
5454 // directly [...]
5455 !RHS.get()->refersToBitField() &&
5456 !RHS.get()->refersToVectorElement()) {
5457 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5458 RTy = RHS.get()->getType();
5459 } else if (CompareReferenceRelationship(
5460 QuestionLoc, RTy, LTy, DerivedToBase,
5461 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5462 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5463 !LHS.get()->refersToBitField() &&
5464 !LHS.get()->refersToVectorElement()) {
5465 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5466 LTy = LHS.get()->getType();
5467 }
5468 }
5469
5470 // C++11 [expr.cond]p4
5471 // If the second and third operands are glvalues of the same value
5472 // category and have the same type, the result is of that type and
5473 // value category and it is a bit-field if the second or the third
5474 // operand is a bit-field, or if both are bit-fields.
5475 // We only extend this to bitfields, not to the crazy other kinds of
5476 // l-values.
5477 bool Same = Context.hasSameType(LTy, RTy);
5478 if (Same && LVK == RVK && LVK != VK_RValue &&
5479 LHS.get()->isOrdinaryOrBitFieldObject() &&
5480 RHS.get()->isOrdinaryOrBitFieldObject()) {
5481 VK = LHS.get()->getValueKind();
5482 if (LHS.get()->getObjectKind() == OK_BitField ||
5483 RHS.get()->getObjectKind() == OK_BitField)
5484 OK = OK_BitField;
5485
5486 // If we have function pointer types, unify them anyway to unify their
5487 // exception specifications, if any.
5488 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5489 Qualifiers Qs = LTy.getQualifiers();
5490 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
5491 /*ConvertArgs*/false);
5492 LTy = Context.getQualifiedType(LTy, Qs);
5493
5494 assert(!LTy.isNull() && "failed to find composite pointer type for "((!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? static_cast<
void> (0) : __assert_fail ("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5495, __PRETTY_FUNCTION__))
5495 "canonically equivalent function ptr types")((!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? static_cast<
void> (0) : __assert_fail ("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5495, __PRETTY_FUNCTION__))
;
5496 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type")((Context.hasSameType(LTy, RTy) && "bad composite pointer type"
) ? static_cast<void> (0) : __assert_fail ("Context.hasSameType(LTy, RTy) && \"bad composite pointer type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5496, __PRETTY_FUNCTION__))
;
5497 }
5498
5499 return LTy;
5500 }
5501
5502 // C++11 [expr.cond]p5
5503 // Otherwise, the result is a prvalue. If the second and third operands
5504 // do not have the same type, and either has (cv) class type, ...
5505 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5506 // ... overload resolution is used to determine the conversions (if any)
5507 // to be applied to the operands. If the overload resolution fails, the
5508 // program is ill-formed.
5509 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5510 return QualType();
5511 }
5512
5513 // C++11 [expr.cond]p6
5514 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5515 // conversions are performed on the second and third operands.
5516 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5517 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5518 if (LHS.isInvalid() || RHS.isInvalid())
5519 return QualType();
5520 LTy = LHS.get()->getType();
5521 RTy = RHS.get()->getType();
5522
5523 // After those conversions, one of the following shall hold:
5524 // -- The second and third operands have the same type; the result
5525 // is of that type. If the operands have class type, the result
5526 // is a prvalue temporary of the result type, which is
5527 // copy-initialized from either the second operand or the third
5528 // operand depending on the value of the first operand.
5529 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5530 if (LTy->isRecordType()) {
5531 // The operands have class type. Make a temporary copy.
5532 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5533
5534 ExprResult LHSCopy = PerformCopyInitialization(Entity,
5535 SourceLocation(),
5536 LHS);
5537 if (LHSCopy.isInvalid())
5538 return QualType();
5539
5540 ExprResult RHSCopy = PerformCopyInitialization(Entity,
5541 SourceLocation(),
5542 RHS);
5543 if (RHSCopy.isInvalid())
5544 return QualType();
5545
5546 LHS = LHSCopy;
5547 RHS = RHSCopy;
5548 }
5549
5550 // If we have function pointer types, unify them anyway to unify their
5551 // exception specifications, if any.
5552 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5553 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
5554 assert(!LTy.isNull() && "failed to find composite pointer type for "((!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? static_cast<
void> (0) : __assert_fail ("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5555, __PRETTY_FUNCTION__))
5555 "canonically equivalent function ptr types")((!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? static_cast<
void> (0) : __assert_fail ("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5555, __PRETTY_FUNCTION__))
;
5556 }
5557
5558 return LTy;
5559 }
5560
5561 // Extension: conditional operator involving vector types.
5562 if (LTy->isVectorType() || RTy->isVectorType())
5563 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5564 /*AllowBothBool*/true,
5565 /*AllowBoolConversions*/false);
5566
5567 // -- The second and third operands have arithmetic or enumeration type;
5568 // the usual arithmetic conversions are performed to bring them to a
5569 // common type, and the result is of that type.
5570 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5571 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5572 if (LHS.isInvalid() || RHS.isInvalid())
5573 return QualType();
5574 if (ResTy.isNull()) {
5575 Diag(QuestionLoc,
5576 diag::err_typecheck_cond_incompatible_operands) << LTy << RTy
5577 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5578 return QualType();
5579 }
5580
5581 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
5582 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
5583
5584 return ResTy;
5585 }
5586
5587 // -- The second and third operands have pointer type, or one has pointer
5588 // type and the other is a null pointer constant, or both are null
5589 // pointer constants, at least one of which is non-integral; pointer
5590 // conversions and qualification conversions are performed to bring them
5591 // to their composite pointer type. The result is of the composite
5592 // pointer type.
5593 // -- The second and third operands have pointer to member type, or one has
5594 // pointer to member type and the other is a null pointer constant;
5595 // pointer to member conversions and qualification conversions are
5596 // performed to bring them to a common type, whose cv-qualification
5597 // shall match the cv-qualification of either the second or the third
5598 // operand. The result is of the common type.
5599 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS);
5600 if (!Composite.isNull())
5601 return Composite;
5602
5603 // Similarly, attempt to find composite type of two objective-c pointers.
5604 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
5605 if (!Composite.isNull())
5606 return Composite;
5607
5608 // Check if we are using a null with a non-pointer type.
5609 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5610 return QualType();
5611
5612 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5613 << LHS.get()->getType() << RHS.get()->getType()
5614 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5615 return QualType();
5616}
5617
5618static FunctionProtoType::ExceptionSpecInfo
5619mergeExceptionSpecs(Sema &S, FunctionProtoType::ExceptionSpecInfo ESI1,
5620 FunctionProtoType::ExceptionSpecInfo ESI2,
5621 SmallVectorImpl<QualType> &ExceptionTypeStorage) {
5622 ExceptionSpecificationType EST1 = ESI1.Type;
5623 ExceptionSpecificationType EST2 = ESI2.Type;
5624
5625 // If either of them can throw anything, that is the result.
5626 if (EST1 == EST_None) return ESI1;
5627 if (EST2 == EST_None) return ESI2;
5628 if (EST1 == EST_MSAny) return ESI1;
5629 if (EST2 == EST_MSAny) return ESI2;
5630
5631 // If either of them is non-throwing, the result is the other.
5632 if (EST1 == EST_DynamicNone) return ESI2;
5633 if (EST2 == EST_DynamicNone) return ESI1;
5634 if (EST1 == EST_BasicNoexcept) return ESI2;
5635 if (EST2 == EST_BasicNoexcept) return ESI1;
5636
5637 // If either of them is a non-value-dependent computed noexcept, that
5638 // determines the result.
5639 if (EST2 == EST_ComputedNoexcept && ESI2.NoexceptExpr &&
5640 !ESI2.NoexceptExpr->isValueDependent())
5641 return !ESI2.NoexceptExpr->EvaluateKnownConstInt(S.Context) ? ESI2 : ESI1;
5642 if (EST1 == EST_ComputedNoexcept && ESI1.NoexceptExpr &&
5643 !ESI1.NoexceptExpr->isValueDependent())
5644 return !ESI1.NoexceptExpr->EvaluateKnownConstInt(S.Context) ? ESI1 : ESI2;
5645 // If we're left with value-dependent computed noexcept expressions, we're
5646 // stuck. Before C++17, we can just drop the exception specification entirely,
5647 // since it's not actually part of the canonical type. And this should never
5648 // happen in C++17, because it would mean we were computing the composite
5649 // pointer type of dependent types, which should never happen.
5650 if (EST1 == EST_ComputedNoexcept || EST2 == EST_ComputedNoexcept) {
5651 assert(!S.getLangOpts().CPlusPlus1z &&((!S.getLangOpts().CPlusPlus1z && "computing composite pointer type of dependent types"
) ? static_cast<void> (0) : __assert_fail ("!S.getLangOpts().CPlusPlus1z && \"computing composite pointer type of dependent types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5652, __PRETTY_FUNCTION__))
5652 "computing composite pointer type of dependent types")((!S.getLangOpts().CPlusPlus1z && "computing composite pointer type of dependent types"
) ? static_cast<void> (0) : __assert_fail ("!S.getLangOpts().CPlusPlus1z && \"computing composite pointer type of dependent types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5652, __PRETTY_FUNCTION__))
;
5653 return FunctionProtoType::ExceptionSpecInfo();
5654 }
5655
5656 // Switch over the possibilities so that people adding new values know to
5657 // update this function.
5658 switch (EST1) {
5659 case EST_None:
5660 case EST_DynamicNone:
5661 case EST_MSAny:
5662 case EST_BasicNoexcept:
5663 case EST_ComputedNoexcept:
5664 llvm_unreachable("handled above")::llvm::llvm_unreachable_internal("handled above", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5664)
;
5665
5666 case EST_Dynamic: {
5667 // This is the fun case: both exception specifications are dynamic. Form
5668 // the union of the two lists.
5669 assert(EST2 == EST_Dynamic && "other cases should already be handled")((EST2 == EST_Dynamic && "other cases should already be handled"
) ? static_cast<void> (0) : __assert_fail ("EST2 == EST_Dynamic && \"other cases should already be handled\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5669, __PRETTY_FUNCTION__))
;
5670 llvm::SmallPtrSet<QualType, 8> Found;
5671 for (auto &Exceptions : {ESI1.Exceptions, ESI2.Exceptions})
5672 for (QualType E : Exceptions)
5673 if (Found.insert(S.Context.getCanonicalType(E)).second)
5674 ExceptionTypeStorage.push_back(E);
5675
5676 FunctionProtoType::ExceptionSpecInfo Result(EST_Dynamic);
5677 Result.Exceptions = ExceptionTypeStorage;
5678 return Result;
5679 }
5680
5681 case EST_Unevaluated:
5682 case EST_Uninstantiated:
5683 case EST_Unparsed:
5684 llvm_unreachable("shouldn't see unresolved exception specifications here")::llvm::llvm_unreachable_internal("shouldn't see unresolved exception specifications here"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5684)
;
5685 }
5686
5687 llvm_unreachable("invalid ExceptionSpecificationType")::llvm::llvm_unreachable_internal("invalid ExceptionSpecificationType"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5687)
;
5688}
5689
5690/// \brief Find a merged pointer type and convert the two expressions to it.
5691///
5692/// This finds the composite pointer type (or member pointer type) for @p E1
5693/// and @p E2 according to C++1z 5p14. It converts both expressions to this
5694/// type and returns it.
5695/// It does not emit diagnostics.
5696///
5697/// \param Loc The location of the operator requiring these two expressions to
5698/// be converted to the composite pointer type.
5699///
5700/// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type.
5701QualType Sema::FindCompositePointerType(SourceLocation Loc,
5702 Expr *&E1, Expr *&E2,
5703 bool ConvertArgs) {
5704 assert(getLangOpts().CPlusPlus && "This function assumes C++")((getLangOpts().CPlusPlus && "This function assumes C++"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"This function assumes C++\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5704, __PRETTY_FUNCTION__))
;
5705
5706 // C++1z [expr]p14:
5707 // The composite pointer type of two operands p1 and p2 having types T1
5708 // and T2
5709 QualType T1 = E1->getType(), T2 = E2->getType();
5710
5711 // where at least one is a pointer or pointer to member type or
5712 // std::nullptr_t is:
5713 bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() ||
5714 T1->isNullPtrType();
5715 bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() ||
5716 T2->isNullPtrType();
5717 if (!T1IsPointerLike && !T2IsPointerLike)
5718 return QualType();
5719
5720 // - if both p1 and p2 are null pointer constants, std::nullptr_t;
5721 // This can't actually happen, following the standard, but we also use this
5722 // to implement the end of [expr.conv], which hits this case.
5723 //
5724 // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively;
5725 if (T1IsPointerLike &&
5726 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5727 if (ConvertArgs)
5728 E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType()
5729 ? CK_NullToMemberPointer
5730 : CK_NullToPointer).get();
5731 return T1;
5732 }
5733 if (T2IsPointerLike &&
5734 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
5735 if (ConvertArgs)
5736 E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType()
5737 ? CK_NullToMemberPointer
5738 : CK_NullToPointer).get();
5739 return T2;
5740 }
5741
5742 // Now both have to be pointers or member pointers.
5743 if (!T1IsPointerLike || !T2IsPointerLike)
5744 return QualType();
5745 assert(!T1->isNullPtrType() && !T2->isNullPtrType() &&((!T1->isNullPtrType() && !T2->isNullPtrType() &&
"nullptr_t should be a null pointer constant") ? static_cast
<void> (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5746, __PRETTY_FUNCTION__))
5746 "nullptr_t should be a null pointer constant")((!T1->isNullPtrType() && !T2->isNullPtrType() &&
"nullptr_t should be a null pointer constant") ? static_cast
<void> (0) : __assert_fail ("!T1->isNullPtrType() && !T2->isNullPtrType() && \"nullptr_t should be a null pointer constant\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5746, __PRETTY_FUNCTION__))
;
5747
5748 // - if T1 or T2 is "pointer to cv1 void" and the other type is
5749 // "pointer to cv2 T", "pointer to cv12 void", where cv12 is
5750 // the union of cv1 and cv2;
5751 // - if T1 or T2 is "pointer to noexcept function" and the other type is
5752 // "pointer to function", where the function types are otherwise the same,
5753 // "pointer to function";
5754 // FIXME: This rule is defective: it should also permit removing noexcept
5755 // from a pointer to member function. As a Clang extension, we also
5756 // permit removing 'noreturn', so we generalize this rule to;
5757 // - [Clang] If T1 and T2 are both of type "pointer to function" or
5758 // "pointer to member function" and the pointee types can be unified
5759 // by a function pointer conversion, that conversion is applied
5760 // before checking the following rules.
5761 // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1
5762 // is reference-related to C2 or C2 is reference-related to C1 (8.6.3),
5763 // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1,
5764 // respectively;
5765 // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer
5766 // to member of C2 of type cv2 U2" where C1 is reference-related to C2 or
5767 // C2 is reference-related to C1 (8.6.3), the cv-combined type of T2 and
5768 // T1 or the cv-combined type of T1 and T2, respectively;
5769 // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and
5770 // T2;
5771 //
5772 // If looked at in the right way, these bullets all do the same thing.
5773 // What we do here is, we build the two possible cv-combined types, and try
5774 // the conversions in both directions. If only one works, or if the two
5775 // composite types are the same, we have succeeded.
5776 // FIXME: extended qualifiers?
5777 //
5778 // Note that this will fail to find a composite pointer type for "pointer
5779 // to void" and "pointer to function". We can't actually perform the final
5780 // conversion in this case, even though a composite pointer type formally
5781 // exists.
5782 SmallVector<unsigned, 4> QualifierUnion;
5783 SmallVector<std::pair<const Type *, const Type *>, 4> MemberOfClass;
5784 QualType Composite1 = T1;
5785 QualType Composite2 = T2;
5786 unsigned NeedConstBefore = 0;
5787 while (true) {
5788 const PointerType *Ptr1, *Ptr2;
5789 if ((Ptr1 = Composite1->getAs<PointerType>()) &&
5790 (Ptr2 = Composite2->getAs<PointerType>())) {
5791 Composite1 = Ptr1->getPointeeType();
5792 Composite2 = Ptr2->getPointeeType();
5793
5794 // If we're allowed to create a non-standard composite type, keep track
5795 // of where we need to fill in additional 'const' qualifiers.
5796 if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5797 NeedConstBefore = QualifierUnion.size();
5798
5799 QualifierUnion.push_back(
5800 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5801 MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
5802 continue;
5803 }
5804
5805 const MemberPointerType *MemPtr1, *MemPtr2;
5806 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
5807 (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
5808 Composite1 = MemPtr1->getPointeeType();
5809 Composite2 = MemPtr2->getPointeeType();
5810
5811 // If we're allowed to create a non-standard composite type, keep track
5812 // of where we need to fill in additional 'const' qualifiers.
5813 if (Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
5814 NeedConstBefore = QualifierUnion.size();
5815
5816 QualifierUnion.push_back(
5817 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
5818 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
5819 MemPtr2->getClass()));
5820 continue;
5821 }
5822
5823 // FIXME: block pointer types?
5824
5825 // Cannot unwrap any more types.
5826 break;
5827 }
5828
5829 // Apply the function pointer conversion to unify the types. We've already
5830 // unwrapped down to the function types, and we want to merge rather than
5831 // just convert, so do this ourselves rather than calling
5832 // IsFunctionConversion.
5833 //
5834 // FIXME: In order to match the standard wording as closely as possible, we
5835 // currently only do this under a single level of pointers. Ideally, we would
5836 // allow this in general, and set NeedConstBefore to the relevant depth on
5837 // the side(s) where we changed anything.
5838 if (QualifierUnion.size() == 1) {
5839 if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) {
5840 if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) {
5841 FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo();
5842 FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo();
5843
5844 // The result is noreturn if both operands are.
5845 bool Noreturn =
5846 EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn();
5847 EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn);
5848 EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn);
5849
5850 // The result is nothrow if both operands are.
5851 SmallVector<QualType, 8> ExceptionTypeStorage;
5852 EPI1.ExceptionSpec = EPI2.ExceptionSpec =
5853 mergeExceptionSpecs(*this, EPI1.ExceptionSpec, EPI2.ExceptionSpec,
5854 ExceptionTypeStorage);
5855
5856 Composite1 = Context.getFunctionType(FPT1->getReturnType(),
5857 FPT1->getParamTypes(), EPI1);
5858 Composite2 = Context.getFunctionType(FPT2->getReturnType(),
5859 FPT2->getParamTypes(), EPI2);
5860 }
5861 }
5862 }
5863
5864 if (NeedConstBefore) {
5865 // Extension: Add 'const' to qualifiers that come before the first qualifier
5866 // mismatch, so that our (non-standard!) composite type meets the
5867 // requirements of C++ [conv.qual]p4 bullet 3.
5868 for (unsigned I = 0; I != NeedConstBefore; ++I)
5869 if ((QualifierUnion[I] & Qualifiers::Const) == 0)
5870 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
5871 }
5872
5873 // Rewrap the composites as pointers or member pointers with the union CVRs.
5874 auto MOC = MemberOfClass.rbegin();
5875 for (unsigned CVR : llvm::reverse(QualifierUnion)) {
5876 Qualifiers Quals = Qualifiers::fromCVRMask(CVR);
5877 auto Classes = *MOC++;
5878 if (Classes.first && Classes.second) {
5879 // Rebuild member pointer type
5880 Composite1 = Context.getMemberPointerType(
5881 Context.getQualifiedType(Composite1, Quals), Classes.first);
5882 Composite2 = Context.getMemberPointerType(
5883 Context.getQualifiedType(Composite2, Quals), Classes.second);
5884 } else {
5885 // Rebuild pointer type
5886 Composite1 =
5887 Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
5888 Composite2 =
5889 Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
5890 }
5891 }
5892
5893 struct Conversion {
5894 Sema &S;
5895 Expr *&E1, *&E2;
5896 QualType Composite;
5897 InitializedEntity Entity;
5898 InitializationKind Kind;
5899 InitializationSequence E1ToC, E2ToC;
5900 bool Viable;
5901
5902 Conversion(Sema &S, SourceLocation Loc, Expr *&E1, Expr *&E2,
5903 QualType Composite)
5904 : S(S), E1(E1), E2(E2), Composite(Composite),
5905 Entity(InitializedEntity::InitializeTemporary(Composite)),
5906 Kind(InitializationKind::CreateCopy(Loc, SourceLocation())),
5907 E1ToC(S, Entity, Kind, E1), E2ToC(S, Entity, Kind, E2),
5908 Viable(E1ToC && E2ToC) {}
5909
5910 bool perform() {
5911 ExprResult E1Result = E1ToC.Perform(S, Entity, Kind, E1);
5912 if (E1Result.isInvalid())
5913 return true;
5914 E1 = E1Result.getAs<Expr>();
5915
5916 ExprResult E2Result = E2ToC.Perform(S, Entity, Kind, E2);
5917 if (E2Result.isInvalid())
5918 return true;
5919 E2 = E2Result.getAs<Expr>();
5920
5921 return false;
5922 }
5923 };
5924
5925 // Try to convert to each composite pointer type.
5926 Conversion C1(*this, Loc, E1, E2, Composite1);
5927 if (C1.Viable && Context.hasSameType(Composite1, Composite2)) {
5928 if (ConvertArgs && C1.perform())
5929 return QualType();
5930 return C1.Composite;
5931 }
5932 Conversion C2(*this, Loc, E1, E2, Composite2);
5933
5934 if (C1.Viable == C2.Viable) {
5935 // Either Composite1 and Composite2 are viable and are different, or
5936 // neither is viable.
5937 // FIXME: How both be viable and different?
5938 return QualType();
5939 }
5940
5941 // Convert to the chosen type.
5942 if (ConvertArgs && (C1.Viable ? C1 : C2).perform())
5943 return QualType();
5944
5945 return C1.Viable ? C1.Composite : C2.Composite;
5946}
5947
5948ExprResult Sema::MaybeBindToTemporary(Expr *E) {
5949 if (!E)
5950 return ExprError();
5951
5952 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?")((!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXBindTemporaryExpr>(E) && \"Double-bound temporary?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5952, __PRETTY_FUNCTION__))
;
5953
5954 // If the result is a glvalue, we shouldn't bind it.
5955 if (!E->isRValue())
5956 return E;
5957
5958 // In ARC, calls that return a retainable type can return retained,
5959 // in which case we have to insert a consuming cast.
5960 if (getLangOpts().ObjCAutoRefCount &&
5961 E->getType()->isObjCRetainableType()) {
5962
5963 bool ReturnsRetained;
5964
5965 // For actual calls, we compute this by examining the type of the
5966 // called value.
5967 if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
5968 Expr *Callee = Call->getCallee()->IgnoreParens();
5969 QualType T = Callee->getType();
5970
5971 if (T == Context.BoundMemberTy) {
5972 // Handle pointer-to-members.
5973 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
5974 T = BinOp->getRHS()->getType();
5975 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
5976 T = Mem->getMemberDecl()->getType();
5977 }
5978
5979 if (const PointerType *Ptr = T->getAs<PointerType>())
5980 T = Ptr->getPointeeType();
5981 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
5982 T = Ptr->getPointeeType();
5983 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
5984 T = MemPtr->getPointeeType();
5985
5986 const FunctionType *FTy = T->getAs<FunctionType>();
5987 assert(FTy && "call to value not of function type?")((FTy && "call to value not of function type?") ? static_cast
<void> (0) : __assert_fail ("FTy && \"call to value not of function type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5987, __PRETTY_FUNCTION__))
;
5988 ReturnsRetained = FTy->getExtInfo().getProducesResult();
5989
5990 // ActOnStmtExpr arranges things so that StmtExprs of retainable
5991 // type always produce a +1 object.
5992 } else if (isa<StmtExpr>(E)) {
5993 ReturnsRetained = true;
5994
5995 // We hit this case with the lambda conversion-to-block optimization;
5996 // we don't want any extra casts here.
5997 } else if (isa<CastExpr>(E) &&
5998 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
5999 return E;
6000
6001 // For message sends and property references, we try to find an
6002 // actual method. FIXME: we should infer retention by selector in
6003 // cases where we don't have an actual method.
6004 } else {
6005 ObjCMethodDecl *D = nullptr;
6006 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
6007 D = Send->getMethodDecl();
6008 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
6009 D = BoxedExpr->getBoxingMethod();
6010 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
6011 D = ArrayLit->getArrayWithObjectsMethod();
6012 } else if (ObjCDictionaryLiteral *DictLit
6013 = dyn_cast<ObjCDictionaryLiteral>(E)) {
6014 D = DictLit->getDictWithObjectsMethod();
6015 }
6016
6017 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
6018
6019 // Don't do reclaims on performSelector calls; despite their
6020 // return type, the invoked method doesn't necessarily actually
6021 // return an object.
6022 if (!ReturnsRetained &&
6023 D && D->getMethodFamily() == OMF_performSelector)
6024 return E;
6025 }
6026
6027 // Don't reclaim an object of Class type.
6028 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
6029 return E;
6030
6031 Cleanup.setExprNeedsCleanups(true);
6032
6033 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
6034 : CK_ARCReclaimReturnedObject);
6035 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
6036 VK_RValue);
6037 }
6038
6039 if (!getLangOpts().CPlusPlus)
6040 return E;
6041
6042 // Search for the base element type (cf. ASTContext::getBaseElementType) with
6043 // a fast path for the common case that the type is directly a RecordType.
6044 const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
6045 const RecordType *RT = nullptr;
6046 while (!RT) {
6047 switch (T->getTypeClass()) {
6048 case Type::Record:
6049 RT = cast<RecordType>(T);
6050 break;
6051 case Type::ConstantArray:
6052 case Type::IncompleteArray:
6053 case Type::VariableArray:
6054 case Type::DependentSizedArray:
6055 T = cast<ArrayType>(T)->getElementType().getTypePtr();
6056 break;
6057 default:
6058 return E;
6059 }
6060 }
6061
6062 // That should be enough to guarantee that this type is complete, if we're
6063 // not processing a decltype expression.
6064 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
6065 if (RD->isInvalidDecl() || RD->isDependentContext())
6066 return E;
6067
6068 bool IsDecltype = ExprEvalContexts.back().IsDecltype;
6069 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
6070
6071 if (Destructor) {
6072 MarkFunctionReferenced(E->getExprLoc(), Destructor);
6073 CheckDestructorAccess(E->getExprLoc(), Destructor,
6074 PDiag(diag::err_access_dtor_temp)
6075 << E->getType());
6076 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
6077 return ExprError();
6078
6079 // If destructor is trivial, we can avoid the extra copy.
6080 if (Destructor->isTrivial())
6081 return E;
6082
6083 // We need a cleanup, but we don't need to remember the temporary.
6084 Cleanup.setExprNeedsCleanups(true);
6085 }
6086
6087 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
6088 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
6089
6090 if (IsDecltype)
6091 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
6092
6093 return Bind;
6094}
6095
6096ExprResult
6097Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
6098 if (SubExpr.isInvalid())
6099 return ExprError();
6100
6101 return MaybeCreateExprWithCleanups(SubExpr.get());
6102}
6103
6104Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
6105 assert(SubExpr && "subexpression can't be null!")((SubExpr && "subexpression can't be null!") ? static_cast
<void> (0) : __assert_fail ("SubExpr && \"subexpression can't be null!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6105, __PRETTY_FUNCTION__))
;
6106
6107 CleanupVarDeclMarking();
6108
6109 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
6110 assert(ExprCleanupObjects.size() >= FirstCleanup)((ExprCleanupObjects.size() >= FirstCleanup) ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() >= FirstCleanup"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6110, __PRETTY_FUNCTION__))
;
6111 assert(Cleanup.exprNeedsCleanups() ||((Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() ==
FirstCleanup) ? static_cast<void> (0) : __assert_fail (
"Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6112, __PRETTY_FUNCTION__))
6112 ExprCleanupObjects.size() == FirstCleanup)((Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() ==
FirstCleanup) ? static_cast<void> (0) : __assert_fail (
"Cleanup.exprNeedsCleanups() || ExprCleanupObjects.size() == FirstCleanup"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6112, __PRETTY_FUNCTION__))
;
6113 if (!Cleanup.exprNeedsCleanups())
6114 return SubExpr;
6115
6116 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
6117 ExprCleanupObjects.size() - FirstCleanup);
6118
6119 auto *E = ExprWithCleanups::Create(
6120 Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups);
6121 DiscardCleanupsInEvaluationContext();
6122
6123 return E;
6124}
6125
6126Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
6127 assert(SubStmt && "sub-statement can't be null!")((SubStmt && "sub-statement can't be null!") ? static_cast
<void> (0) : __assert_fail ("SubStmt && \"sub-statement can't be null!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6127, __PRETTY_FUNCTION__))
;
6128
6129 CleanupVarDeclMarking();
6130
6131 if (!Cleanup.exprNeedsCleanups())
6132 return SubStmt;
6133
6134 // FIXME: In order to attach the temporaries, wrap the statement into
6135 // a StmtExpr; currently this is only used for asm statements.
6136 // This is hacky, either create a new CXXStmtWithTemporaries statement or
6137 // a new AsmStmtWithTemporaries.
6138 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
6139 SourceLocation(),
6140 SourceLocation());
6141 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
6142 SourceLocation());
6143 return MaybeCreateExprWithCleanups(E);
6144}
6145
6146/// Process the expression contained within a decltype. For such expressions,
6147/// certain semantic checks on temporaries are delayed until this point, and
6148/// are omitted for the 'topmost' call in the decltype expression. If the
6149/// topmost call bound a temporary, strip that temporary off the expression.
6150ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
6151 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression")((ExprEvalContexts.back().IsDecltype && "not in a decltype expression"
) ? static_cast<void> (0) : __assert_fail ("ExprEvalContexts.back().IsDecltype && \"not in a decltype expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6151, __PRETTY_FUNCTION__))
;
6152
6153 // C++11 [expr.call]p11:
6154 // If a function call is a prvalue of object type,
6155 // -- if the function call is either
6156 // -- the operand of a decltype-specifier, or
6157 // -- the right operand of a comma operator that is the operand of a
6158 // decltype-specifier,
6159 // a temporary object is not introduced for the prvalue.
6160
6161 // Recursively rebuild ParenExprs and comma expressions to strip out the
6162 // outermost CXXBindTemporaryExpr, if any.
6163 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
6164 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
6165 if (SubExpr.isInvalid())
6166 return ExprError();
6167 if (SubExpr.get() == PE->getSubExpr())
6168 return E;
6169 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
6170 }
6171 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6172 if (BO->getOpcode() == BO_Comma) {
6173 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
6174 if (RHS.isInvalid())
6175 return ExprError();
6176 if (RHS.get() == BO->getRHS())
6177 return E;
6178 return new (Context) BinaryOperator(
6179 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
6180 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
6181 }
6182 }
6183
6184 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
6185 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
6186 : nullptr;
6187 if (TopCall)
6188 E = TopCall;
6189 else
6190 TopBind = nullptr;
6191
6192 // Disable the special decltype handling now.
6193 ExprEvalContexts.back().IsDecltype = false;
6194
6195 // In MS mode, don't perform any extra checking of call return types within a
6196 // decltype expression.
6197 if (getLangOpts().MSVCCompat)
6198 return E;
6199
6200 // Perform the semantic checks we delayed until this point.
6201 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
6202 I != N; ++I) {
6203 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
6204 if (Call == TopCall)
6205 continue;
6206
6207 if (CheckCallReturnType(Call->getCallReturnType(Context),
6208 Call->getLocStart(),
6209 Call, Call->getDirectCallee()))
6210 return ExprError();
6211 }
6212
6213 // Now all relevant types are complete, check the destructors are accessible
6214 // and non-deleted, and annotate them on the temporaries.
6215 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
6216 I != N; ++I) {
6217 CXXBindTemporaryExpr *Bind =
6218 ExprEvalContexts.back().DelayedDecltypeBinds[I];
6219 if (Bind == TopBind)
6220 continue;
6221
6222 CXXTemporary *Temp = Bind->getTemporary();
6223
6224 CXXRecordDecl *RD =
6225 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6226 CXXDestructorDecl *Destructor = LookupDestructor(RD);
6227 Temp->setDestructor(Destructor);
6228
6229 MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
6230 CheckDestructorAccess(Bind->getExprLoc(), Destructor,
6231 PDiag(diag::err_access_dtor_temp)
6232 << Bind->getType());
6233 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
6234 return ExprError();
6235
6236 // We need a cleanup, but we don't need to remember the temporary.
6237 Cleanup.setExprNeedsCleanups(true);
6238 }
6239
6240 // Possibly strip off the top CXXBindTemporaryExpr.
6241 return E;
6242}
6243
6244/// Note a set of 'operator->' functions that were used for a member access.
6245static void noteOperatorArrows(Sema &S,
6246 ArrayRef<FunctionDecl *> OperatorArrows) {
6247 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
6248 // FIXME: Make this configurable?
6249 unsigned Limit = 9;
6250 if (OperatorArrows.size() > Limit) {
6251 // Produce Limit-1 normal notes and one 'skipping' note.
6252 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
6253 SkipCount = OperatorArrows.size() - (Limit - 1);
6254 }
6255
6256 for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
6257 if (I == SkipStart) {
6258 S.Diag(OperatorArrows[I]->getLocation(),
6259 diag::note_operator_arrows_suppressed)
6260 << SkipCount;
6261 I += SkipCount;
6262 } else {
6263 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
6264 << OperatorArrows[I]->getCallResultType();
6265 ++I;
6266 }
6267 }
6268}
6269
6270ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base,
6271 SourceLocation OpLoc,
6272 tok::TokenKind OpKind,
6273 ParsedType &ObjectType,
6274 bool &MayBePseudoDestructor) {
6275 // Since this might be a postfix expression, get rid of ParenListExprs.
6276 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
6277 if (Result.isInvalid()) return ExprError();
6278 Base = Result.get();
6279
6280 Result = CheckPlaceholderExpr(Base);
6281 if (Result.isInvalid()) return ExprError();
6282 Base = Result.get();
6283
6284 QualType BaseType = Base->getType();
6285 MayBePseudoDestructor = false;
6286 if (BaseType->isDependentType()) {
6287 // If we have a pointer to a dependent type and are using the -> operator,
6288 // the object type is the type that the pointer points to. We might still
6289 // have enough information about that type to do something useful.
6290 if (OpKind == tok::arrow)
6291 if (const PointerType *Ptr = BaseType->getAs<PointerType>())
6292 BaseType = Ptr->getPointeeType();
6293
6294 ObjectType = ParsedType::make(BaseType);
6295 MayBePseudoDestructor = true;
6296 return Base;
6297 }
6298
6299 // C++ [over.match.oper]p8:
6300 // [...] When operator->returns, the operator-> is applied to the value
6301 // returned, with the original second operand.
6302 if (OpKind == tok::arrow) {
6303 QualType StartingType = BaseType;
6304 bool NoArrowOperatorFound = false;
6305 bool FirstIteration = true;
6306 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
6307 // The set of types we've considered so far.
6308 llvm::SmallPtrSet<CanQualType,8> CTypes;
6309 SmallVector<FunctionDecl*, 8> OperatorArrows;
6310 CTypes.insert(Context.getCanonicalType(BaseType));
6311
6312 while (BaseType->isRecordType()) {
6313 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
6314 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
6315 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
6316 noteOperatorArrows(*this, OperatorArrows);
6317 Diag(OpLoc, diag::note_operator_arrow_depth)
6318 << getLangOpts().ArrowDepth;
6319 return ExprError();
6320 }
6321
6322 Result = BuildOverloadedArrowExpr(
6323 S, Base, OpLoc,
6324 // When in a template specialization and on the first loop iteration,
6325 // potentially give the default diagnostic (with the fixit in a
6326 // separate note) instead of having the error reported back to here
6327 // and giving a diagnostic with a fixit attached to the error itself.
6328 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
6329 ? nullptr
6330 : &NoArrowOperatorFound);
6331 if (Result.isInvalid()) {
6332 if (NoArrowOperatorFound) {
6333 if (FirstIteration) {
6334 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6335 << BaseType << 1 << Base->getSourceRange()
6336 << FixItHint::CreateReplacement(OpLoc, ".");
6337 OpKind = tok::period;
6338 break;
6339 }
6340 Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
6341 << BaseType << Base->getSourceRange();
6342 CallExpr *CE = dyn_cast<CallExpr>(Base);
6343 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
6344 Diag(CD->getLocStart(),
6345 diag::note_member_reference_arrow_from_operator_arrow);
6346 }
6347 }
6348 return ExprError();
6349 }
6350 Base = Result.get();
6351 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
6352 OperatorArrows.push_back(OpCall->getDirectCallee());
6353 BaseType = Base->getType();
6354 CanQualType CBaseType = Context.getCanonicalType(BaseType);
6355 if (!CTypes.insert(CBaseType).second) {
6356 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
6357 noteOperatorArrows(*this, OperatorArrows);
6358 return ExprError();
6359 }
6360 FirstIteration = false;
6361 }
6362
6363 if (OpKind == tok::arrow &&
6364 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
6365 BaseType = BaseType->getPointeeType();
6366 }
6367
6368 // Objective-C properties allow "." access on Objective-C pointer types,
6369 // so adjust the base type to the object type itself.
6370 if (BaseType->isObjCObjectPointerType())
6371 BaseType = BaseType->getPointeeType();
6372
6373 // C++ [basic.lookup.classref]p2:
6374 // [...] If the type of the object expression is of pointer to scalar
6375 // type, the unqualified-id is looked up in the context of the complete
6376 // postfix-expression.
6377 //
6378 // This also indicates that we could be parsing a pseudo-destructor-name.
6379 // Note that Objective-C class and object types can be pseudo-destructor
6380 // expressions or normal member (ivar or property) access expressions, and
6381 // it's legal for the type to be incomplete if this is a pseudo-destructor
6382 // call. We'll do more incomplete-type checks later in the lookup process,
6383 // so just skip this check for ObjC types.
6384 if (BaseType->isObjCObjectOrInterfaceType()) {
6385 ObjectType = ParsedType::make(BaseType);
6386 MayBePseudoDestructor = true;
6387 return Base;
6388 } else if (!BaseType->isRecordType()) {
6389 ObjectType = nullptr;
6390 MayBePseudoDestructor = true;
6391 return Base;
6392 }
6393
6394 // The object type must be complete (or dependent), or
6395 // C++11 [expr.prim.general]p3:
6396 // Unlike the object expression in other contexts, *this is not required to
6397 // be of complete type for purposes of class member access (5.2.5) outside
6398 // the member function body.
6399 if (!BaseType->isDependentType() &&
6400 !isThisOutsideMemberFunctionBody(BaseType) &&
6401 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
6402 return ExprError();
6403
6404 // C++ [basic.lookup.classref]p2:
6405 // If the id-expression in a class member access (5.2.5) is an
6406 // unqualified-id, and the type of the object expression is of a class
6407 // type C (or of pointer to a class type C), the unqualified-id is looked
6408 // up in the scope of class C. [...]
6409 ObjectType = ParsedType::make(BaseType);
6410 return Base;
6411}
6412
6413static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
6414 tok::TokenKind& OpKind, SourceLocation OpLoc) {
6415 if (Base->hasPlaceholderType()) {
6416 ExprResult result = S.CheckPlaceholderExpr(Base);
6417 if (result.isInvalid()) return true;
6418 Base = result.get();
6419 }
6420 ObjectType = Base->getType();
6421
6422 // C++ [expr.pseudo]p2:
6423 // The left-hand side of the dot operator shall be of scalar type. The
6424 // left-hand side of the arrow operator shall be of pointer to scalar type.
6425 // This scalar type is the object type.
6426 // Note that this is rather different from the normal handling for the
6427 // arrow operator.
6428 if (OpKind == tok::arrow) {
6429 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
6430 ObjectType = Ptr->getPointeeType();
6431 } else if (!Base->isTypeDependent()) {
6432 // The user wrote "p->" when they probably meant "p."; fix it.
6433 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6434 << ObjectType << true
6435 << FixItHint::CreateReplacement(OpLoc, ".");
6436 if (S.isSFINAEContext())
6437 return true;
6438
6439 OpKind = tok::period;
6440 }
6441 }
6442
6443 return false;
6444}
6445
6446/// \brief Check if it's ok to try and recover dot pseudo destructor calls on
6447/// pointer objects.
6448static bool
6449canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef,
6450 QualType DestructedType) {
6451 // If this is a record type, check if its destructor is callable.
6452 if (auto *RD = DestructedType->getAsCXXRecordDecl()) {
6453 if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD))
6454 return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false);
6455 return false;
6456 }
6457
6458 // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor.
6459 return DestructedType->isDependentType() || DestructedType->isScalarType() ||
6460 DestructedType->isVectorType();
6461}
6462
6463ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
6464 SourceLocation OpLoc,
6465 tok::TokenKind OpKind,
6466 const CXXScopeSpec &SS,
6467 TypeSourceInfo *ScopeTypeInfo,
6468 SourceLocation CCLoc,
6469 SourceLocation TildeLoc,
6470 PseudoDestructorTypeStorage Destructed) {
6471 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
6472
6473 QualType ObjectType;
6474 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6475 return ExprError();
6476
6477 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
6478 !ObjectType->isVectorType()) {
6479 if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
6480 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
6481 else {
6482 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
6483 << ObjectType << Base->getSourceRange();
6484 return ExprError();
6485 }
6486 }
6487
6488 // C++ [expr.pseudo]p2:
6489 // [...] The cv-unqualified versions of the object type and of the type
6490 // designated by the pseudo-destructor-name shall be the same type.
6491 if (DestructedTypeInfo) {
6492 QualType DestructedType = DestructedTypeInfo->getType();
6493 SourceLocation DestructedTypeStart
6494 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
6495 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
6496 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
6497 // Detect dot pseudo destructor calls on pointer objects, e.g.:
6498 // Foo *foo;
6499 // foo.~Foo();
6500 if (OpKind == tok::period && ObjectType->isPointerType() &&
6501 Context.hasSameUnqualifiedType(DestructedType,
6502 ObjectType->getPointeeType())) {
6503 auto Diagnostic =
6504 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
6505 << ObjectType << /*IsArrow=*/0 << Base->getSourceRange();
6506
6507 // Issue a fixit only when the destructor is valid.
6508 if (canRecoverDotPseudoDestructorCallsOnPointerObjects(
6509 *this, DestructedType))
6510 Diagnostic << FixItHint::CreateReplacement(OpLoc, "->");
6511
6512 // Recover by setting the object type to the destructed type and the
6513 // operator to '->'.
6514 ObjectType = DestructedType;
6515 OpKind = tok::arrow;
6516 } else {
6517 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
6518 << ObjectType << DestructedType << Base->getSourceRange()
6519 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6520
6521 // Recover by setting the destructed type to the object type.
6522 DestructedType = ObjectType;
6523 DestructedTypeInfo =
6524 Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart);
6525 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6526 }
6527 } else if (DestructedType.getObjCLifetime() !=
6528 ObjectType.getObjCLifetime()) {
6529
6530 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
6531 // Okay: just pretend that the user provided the correctly-qualified
6532 // type.
6533 } else {
6534 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
6535 << ObjectType << DestructedType << Base->getSourceRange()
6536 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
6537 }
6538
6539 // Recover by setting the destructed type to the object type.
6540 DestructedType = ObjectType;
6541 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
6542 DestructedTypeStart);
6543 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6544 }
6545 }
6546 }
6547
6548 // C++ [expr.pseudo]p2:
6549 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the
6550 // form
6551 //
6552 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
6553 //
6554 // shall designate the same scalar type.
6555 if (ScopeTypeInfo) {
6556 QualType ScopeType = ScopeTypeInfo->getType();
6557 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
6558 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
6559
6560 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
6561 diag::err_pseudo_dtor_type_mismatch)
6562 << ObjectType << ScopeType << Base->getSourceRange()
6563 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
6564
6565 ScopeType = QualType();
6566 ScopeTypeInfo = nullptr;
6567 }
6568 }
6569
6570 Expr *Result
6571 = new (Context) CXXPseudoDestructorExpr(Context, Base,
6572 OpKind == tok::arrow, OpLoc,
6573 SS.getWithLocInContext(Context),
6574 ScopeTypeInfo,
6575 CCLoc,
6576 TildeLoc,
6577 Destructed);
6578
6579 return Result;
6580}
6581
6582ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6583 SourceLocation OpLoc,
6584 tok::TokenKind OpKind,
6585 CXXScopeSpec &SS,
6586 UnqualifiedId &FirstTypeName,
6587 SourceLocation CCLoc,
6588 SourceLocation TildeLoc,
6589 UnqualifiedId &SecondTypeName) {
6590 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||(((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid first type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6592, __PRETTY_FUNCTION__))
6591 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&(((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid first type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6592, __PRETTY_FUNCTION__))
6592 "Invalid first type name in pseudo-destructor")(((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid first type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid first type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6592, __PRETTY_FUNCTION__))
;
6593 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||(((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid second type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6595, __PRETTY_FUNCTION__))
6594 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&(((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid second type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6595, __PRETTY_FUNCTION__))
6595 "Invalid second type name in pseudo-destructor")(((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
"Invalid second type name in pseudo-destructor") ? static_cast
<void> (0) : __assert_fail ("(SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && \"Invalid second type name in pseudo-destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6595, __PRETTY_FUNCTION__))
;
6596
6597 QualType ObjectType;
6598 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6599 return ExprError();
6600
6601 // Compute the object type that we should use for name lookup purposes. Only
6602 // record types and dependent types matter.
6603 ParsedType ObjectTypePtrForLookup;
6604 if (!SS.isSet()) {
6605 if (ObjectType->isRecordType())
6606 ObjectTypePtrForLookup = ParsedType::make(ObjectType);
6607 else if (ObjectType->isDependentType())
6608 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
6609 }
6610
6611 // Convert the name of the type being destructed (following the ~) into a
6612 // type (with source-location information).
6613 QualType DestructedType;
6614 TypeSourceInfo *DestructedTypeInfo = nullptr;
6615 PseudoDestructorTypeStorage Destructed;
6616 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
6617 ParsedType T = getTypeName(*SecondTypeName.Identifier,
6618 SecondTypeName.StartLocation,
6619 S, &SS, true, false, ObjectTypePtrForLookup,
6620 /*IsCtorOrDtorName*/true);
6621 if (!T &&
6622 ((SS.isSet() && !computeDeclContext(SS, false)) ||
6623 (!SS.isSet() && ObjectType->isDependentType()))) {
6624 // The name of the type being destroyed is a dependent name, and we
6625 // couldn't find anything useful in scope. Just store the identifier and
6626 // it's location, and we'll perform (qualified) name lookup again at
6627 // template instantiation time.
6628 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
6629 SecondTypeName.StartLocation);
6630 } else if (!T) {
6631 Diag(SecondTypeName.StartLocation,
6632 diag::err_pseudo_dtor_destructor_non_type)
6633 << SecondTypeName.Identifier << ObjectType;
6634 if (isSFINAEContext())
6635 return ExprError();
6636
6637 // Recover by assuming we had the right type all along.
6638 DestructedType = ObjectType;
6639 } else
6640 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
6641 } else {
6642 // Resolve the template-id to a type.
6643 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
6644 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6645 TemplateId->NumArgs);
6646 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
6647 TemplateId->TemplateKWLoc,
6648 TemplateId->Template,
6649 TemplateId->Name,
6650 TemplateId->TemplateNameLoc,
6651 TemplateId->LAngleLoc,
6652 TemplateArgsPtr,
6653 TemplateId->RAngleLoc,
6654 /*IsCtorOrDtorName*/true);
6655 if (T.isInvalid() || !T.get()) {
6656 // Recover by assuming we had the right type all along.
6657 DestructedType = ObjectType;
6658 } else
6659 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
6660 }
6661
6662 // If we've performed some kind of recovery, (re-)build the type source
6663 // information.
6664 if (!DestructedType.isNull()) {
6665 if (!DestructedTypeInfo)
6666 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
6667 SecondTypeName.StartLocation);
6668 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
6669 }
6670
6671 // Convert the name of the scope type (the type prior to '::') into a type.
6672 TypeSourceInfo *ScopeTypeInfo = nullptr;
6673 QualType ScopeType;
6674 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
6675 FirstTypeName.Identifier) {
6676 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
6677 ParsedType T = getTypeName(*FirstTypeName.Identifier,
6678 FirstTypeName.StartLocation,
6679 S, &SS, true, false, ObjectTypePtrForLookup,
6680 /*IsCtorOrDtorName*/true);
6681 if (!T) {
6682 Diag(FirstTypeName.StartLocation,
6683 diag::err_pseudo_dtor_destructor_non_type)
6684 << FirstTypeName.Identifier << ObjectType;
6685
6686 if (isSFINAEContext())
6687 return ExprError();
6688
6689 // Just drop this type. It's unnecessary anyway.
6690 ScopeType = QualType();
6691 } else
6692 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
6693 } else {
6694 // Resolve the template-id to a type.
6695 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
6696 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6697 TemplateId->NumArgs);
6698 TypeResult T = ActOnTemplateIdType(TemplateId->SS,
6699 TemplateId->TemplateKWLoc,
6700 TemplateId->Template,
6701 TemplateId->Name,
6702 TemplateId->TemplateNameLoc,
6703 TemplateId->LAngleLoc,
6704 TemplateArgsPtr,
6705 TemplateId->RAngleLoc,
6706 /*IsCtorOrDtorName*/true);
6707 if (T.isInvalid() || !T.get()) {
6708 // Recover by dropping this type.
6709 ScopeType = QualType();
6710 } else
6711 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
6712 }
6713 }
6714
6715 if (!ScopeType.isNull() && !ScopeTypeInfo)
6716 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
6717 FirstTypeName.StartLocation);
6718
6719
6720 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
6721 ScopeTypeInfo, CCLoc, TildeLoc,
6722 Destructed);
6723}
6724
6725ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
6726 SourceLocation OpLoc,
6727 tok::TokenKind OpKind,
6728 SourceLocation TildeLoc,
6729 const DeclSpec& DS) {
6730 QualType ObjectType;
6731 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
6732 return ExprError();
6733
6734 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(),
6735 false);
6736
6737 TypeLocBuilder TLB;
6738 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
6739 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
6740 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
6741 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
6742
6743 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
6744 nullptr, SourceLocation(), TildeLoc,
6745 Destructed);
6746}
6747
6748ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
6749 CXXConversionDecl *Method,
6750 bool HadMultipleCandidates) {
6751 if (Method->getParent()->isLambda() &&
6752 Method->getConversionType()->isBlockPointerType()) {
6753 // This is a lambda coversion to block pointer; check if the argument
6754 // is a LambdaExpr.
6755 Expr *SubE = E;
6756 CastExpr *CE = dyn_cast<CastExpr>(SubE);
6757 if (CE && CE->getCastKind() == CK_NoOp)
6758 SubE = CE->getSubExpr();
6759 SubE = SubE->IgnoreParens();
6760 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
6761 SubE = BE->getSubExpr();
6762 if (isa<LambdaExpr>(SubE)) {
6763 // For the conversion to block pointer on a lambda expression, we
6764 // construct a special BlockLiteral instead; this doesn't really make
6765 // a difference in ARC, but outside of ARC the resulting block literal
6766 // follows the normal lifetime rules for block literals instead of being
6767 // autoreleased.
6768 DiagnosticErrorTrap Trap(Diags);
6769 PushExpressionEvaluationContext(PotentiallyEvaluated);
6770 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
6771 E->getExprLoc(),
6772 Method, E);
6773 PopExpressionEvaluationContext();
6774
6775 if (Exp.isInvalid())
6776 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
6777 return Exp;
6778 }
6779 }
6780
6781 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
6782 FoundDecl, Method);
6783 if (Exp.isInvalid())
6784 return true;
6785
6786 MemberExpr *ME = new (Context) MemberExpr(
6787 Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(),
6788 Context.BoundMemberTy, VK_RValue, OK_Ordinary);
6789 if (HadMultipleCandidates)
6790 ME->setHadMultipleCandidates(true);
6791 MarkMemberReferenced(ME);
6792
6793 QualType ResultType = Method->getReturnType();
6794 ExprValueKind VK = Expr::getValueKindForType(ResultType);
6795 ResultType = ResultType.getNonLValueExprType(Context);
6796
6797 CXXMemberCallExpr *CE =
6798 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
6799 Exp.get()->getLocEnd());
6800
6801 if (CheckFunctionCall(Method, CE,
6802 Method->getType()->castAs<FunctionProtoType>()))
6803 return ExprError();
6804
6805 return CE;
6806}
6807
6808ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
6809 SourceLocation RParen) {
6810 // If the operand is an unresolved lookup expression, the expression is ill-
6811 // formed per [over.over]p1, because overloaded function names cannot be used
6812 // without arguments except in explicit contexts.
6813 ExprResult R = CheckPlaceholderExpr(Operand);
6814 if (R.isInvalid())
6815 return R;
6816
6817 // The operand may have been modified when checking the placeholder type.
6818 Operand = R.get();
6819
6820 if (!inTemplateInstantiation() && Operand->HasSideEffects(Context, false)) {
6821 // The expression operand for noexcept is in an unevaluated expression
6822 // context, so side effects could result in unintended consequences.
6823 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context);
6824 }
6825
6826 CanThrowResult CanThrow = canThrow(Operand);
6827 return new (Context)
6828 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
6829}
6830
6831ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
6832 Expr *Operand, SourceLocation RParen) {
6833 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
6834}
6835
6836static bool IsSpecialDiscardedValue(Expr *E) {
6837 // In C++11, discarded-value expressions of a certain form are special,
6838 // according to [expr]p10:
6839 // The lvalue-to-rvalue conversion (4.1) is applied only if the
6840 // expression is an lvalue of volatile-qualified type and it has
6841 // one of the following forms:
6842 E = E->IgnoreParens();
6843
6844 // - id-expression (5.1.1),
6845 if (isa<DeclRefExpr>(E))
6846 return true;
6847
6848 // - subscripting (5.2.1),
6849 if (isa<ArraySubscriptExpr>(E))
6850 return true;
6851
6852 // - class member access (5.2.5),
6853 if (isa<MemberExpr>(E))
6854 return true;
6855
6856 // - indirection (5.3.1),
6857 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
6858 if (UO->getOpcode() == UO_Deref)
6859 return true;
6860
6861 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
6862 // - pointer-to-member operation (5.5),
6863 if (BO->isPtrMemOp())
6864 return true;
6865
6866 // - comma expression (5.18) where the right operand is one of the above.
6867 if (BO->getOpcode() == BO_Comma)
6868 return IsSpecialDiscardedValue(BO->getRHS());
6869 }
6870
6871 // - conditional expression (5.16) where both the second and the third
6872 // operands are one of the above, or
6873 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
6874 return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
6875 IsSpecialDiscardedValue(CO->getFalseExpr());
6876 // The related edge case of "*x ?: *x".
6877 if (BinaryConditionalOperator *BCO =
6878 dyn_cast<BinaryConditionalOperator>(E)) {
6879 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
6880 return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
6881 IsSpecialDiscardedValue(BCO->getFalseExpr());
6882 }
6883
6884 // Objective-C++ extensions to the rule.
6885 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
6886 return true;
6887
6888 return false;
6889}
6890
6891/// Perform the conversions required for an expression used in a
6892/// context that ignores the result.
6893ExprResult Sema::IgnoredValueConversions(Expr *E) {
6894 if (E->hasPlaceholderType()) {
6895 ExprResult result = CheckPlaceholderExpr(E);
6896 if (result.isInvalid()) return E;
6897 E = result.get();
6898 }
6899
6900 // C99 6.3.2.1:
6901 // [Except in specific positions,] an lvalue that does not have
6902 // array type is converted to the value stored in the
6903 // designated object (and is no longer an lvalue).
6904 if (E->isRValue()) {
6905 // In C, function designators (i.e. expressions of function type)
6906 // are r-values, but we still want to do function-to-pointer decay
6907 // on them. This is both technically correct and convenient for
6908 // some clients.
6909 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
6910 return DefaultFunctionArrayConversion(E);
6911
6912 return E;
6913 }
6914
6915 if (getLangOpts().CPlusPlus) {
6916 // The C++11 standard defines the notion of a discarded-value expression;
6917 // normally, we don't need to do anything to handle it, but if it is a
6918 // volatile lvalue with a special form, we perform an lvalue-to-rvalue
6919 // conversion.
6920 if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
6921 E->getType().isVolatileQualified() &&
6922 IsSpecialDiscardedValue(E)) {
6923 ExprResult Res = DefaultLvalueConversion(E);
6924 if (Res.isInvalid())
6925 return E;
6926 E = Res.get();
6927 }
6928
6929 // C++1z:
6930 // If the expression is a prvalue after this optional conversion, the
6931 // temporary materialization conversion is applied.
6932 //
6933 // We skip this step: IR generation is able to synthesize the storage for
6934 // itself in the aggregate case, and adding the extra node to the AST is
6935 // just clutter.
6936 // FIXME: We don't emit lifetime markers for the temporaries due to this.
6937 // FIXME: Do any other AST consumers care about this?
6938 return E;
6939 }
6940
6941 // GCC seems to also exclude expressions of incomplete enum type.
6942 if (const EnumType *T = E->getType()->getAs<EnumType>()) {
6943 if (!T->getDecl()->isComplete()) {
6944 // FIXME: stupid workaround for a codegen bug!
6945 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
6946 return E;
6947 }
6948 }
6949
6950 ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
6951 if (Res.isInvalid())
6952 return E;
6953 E = Res.get();
6954
6955 if (!E->getType()->isVoidType())
6956 RequireCompleteType(E->getExprLoc(), E->getType(),
6957 diag::err_incomplete_type);
6958 return E;
6959}
6960
6961// If we can unambiguously determine whether Var can never be used
6962// in a constant expression, return true.
6963// - if the variable and its initializer are non-dependent, then
6964// we can unambiguously check if the variable is a constant expression.
6965// - if the initializer is not value dependent - we can determine whether
6966// it can be used to initialize a constant expression. If Init can not
6967// be used to initialize a constant expression we conclude that Var can
6968// never be a constant expression.
6969// - FXIME: if the initializer is dependent, we can still do some analysis and
6970// identify certain cases unambiguously as non-const by using a Visitor:
6971// - such as those that involve odr-use of a ParmVarDecl, involve a new
6972// delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
6973static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
6974 ASTContext &Context) {
6975 if (isa<ParmVarDecl>(Var)) return true;
6976 const VarDecl *DefVD = nullptr;
6977
6978 // If there is no initializer - this can not be a constant expression.
6979 if (!Var->getAnyInitializer(DefVD)) return true;
6980 assert(DefVD)((DefVD) ? static_cast<void> (0) : __assert_fail ("DefVD"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 6980, __PRETTY_FUNCTION__))
;
6981 if (DefVD->isWeak()) return false;
6982 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
6983
6984 Expr *Init = cast<Expr>(Eval->Value);
6985
6986 if (Var->getType()->isDependentType() || Init->isValueDependent()) {
6987 // FIXME: Teach the constant evaluator to deal with the non-dependent parts
6988 // of value-dependent expressions, and use it here to determine whether the
6989 // initializer is a potential constant expression.
6990 return false;
6991 }
6992
6993 return !IsVariableAConstantExpression(Var, Context);
6994}
6995
6996/// \brief Check if the current lambda has any potential captures
6997/// that must be captured by any of its enclosing lambdas that are ready to
6998/// capture. If there is a lambda that can capture a nested
6999/// potential-capture, go ahead and do so. Also, check to see if any
7000/// variables are uncaptureable or do not involve an odr-use so do not
7001/// need to be captured.
7002
7003static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
7004 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
7005
7006 assert(!S.isUnevaluatedContext())((!S.isUnevaluatedContext()) ? static_cast<void> (0) : __assert_fail
("!S.isUnevaluatedContext()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7006, __PRETTY_FUNCTION__))
;
7007 assert(S.CurContext->isDependentContext())((S.CurContext->isDependentContext()) ? static_cast<void
> (0) : __assert_fail ("S.CurContext->isDependentContext()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7007, __PRETTY_FUNCTION__))
;
7008#ifndef NDEBUG
7009 DeclContext *DC = S.CurContext;
7010 while (DC && isa<CapturedDecl>(DC))
7011 DC = DC->getParent();
7012 assert(((CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext"
) ? static_cast<void> (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7014, __PRETTY_FUNCTION__))
7013 CurrentLSI->CallOperator == DC &&((CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext"
) ? static_cast<void> (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7014, __PRETTY_FUNCTION__))
7014 "The current call operator must be synchronized with Sema's CurContext")((CurrentLSI->CallOperator == DC && "The current call operator must be synchronized with Sema's CurContext"
) ? static_cast<void> (0) : __assert_fail ("CurrentLSI->CallOperator == DC && \"The current call operator must be synchronized with Sema's CurContext\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7014, __PRETTY_FUNCTION__))
;
7015#endif // NDEBUG
7016
7017 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
7018
7019 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
7020 S.FunctionScopes.data(), S.FunctionScopes.size());
7021
7022 // All the potentially captureable variables in the current nested
7023 // lambda (within a generic outer lambda), must be captured by an
7024 // outer lambda that is enclosed within a non-dependent context.
7025 const unsigned NumPotentialCaptures =
7026 CurrentLSI->getNumPotentialVariableCaptures();
7027 for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
7028 Expr *VarExpr = nullptr;
7029 VarDecl *Var = nullptr;
7030 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
7031 // If the variable is clearly identified as non-odr-used and the full
7032 // expression is not instantiation dependent, only then do we not
7033 // need to check enclosing lambda's for speculative captures.
7034 // For e.g.:
7035 // Even though 'x' is not odr-used, it should be captured.
7036 // int test() {
7037 // const int x = 10;
7038 // auto L = [=](auto a) {
7039 // (void) +x + a;
7040 // };
7041 // }
7042 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
7043 !IsFullExprInstantiationDependent)
7044 continue;
7045
7046 // If we have a capture-capable lambda for the variable, go ahead and
7047 // capture the variable in that lambda (and all its enclosing lambdas).
7048 if (const Optional<unsigned> Index =
7049 getStackIndexOfNearestEnclosingCaptureCapableLambda(
7050 FunctionScopesArrayRef, Var, S)) {
7051 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7052 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
7053 &FunctionScopeIndexOfCapturableLambda);
7054 }
7055 const bool IsVarNeverAConstantExpression =
7056 VariableCanNeverBeAConstantExpression(Var, S.Context);
7057 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
7058 // This full expression is not instantiation dependent or the variable
7059 // can not be used in a constant expression - which means
7060 // this variable must be odr-used here, so diagnose a
7061 // capture violation early, if the variable is un-captureable.
7062 // This is purely for diagnosing errors early. Otherwise, this
7063 // error would get diagnosed when the lambda becomes capture ready.
7064 QualType CaptureType, DeclRefType;
7065 SourceLocation ExprLoc = VarExpr->getExprLoc();
7066 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7067 /*EllipsisLoc*/ SourceLocation(),
7068 /*BuildAndDiagnose*/false, CaptureType,
7069 DeclRefType, nullptr)) {
7070 // We will never be able to capture this variable, and we need
7071 // to be able to in any and all instantiations, so diagnose it.
7072 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
7073 /*EllipsisLoc*/ SourceLocation(),
7074 /*BuildAndDiagnose*/true, CaptureType,
7075 DeclRefType, nullptr);
7076 }
7077 }
7078 }
7079
7080 // Check if 'this' needs to be captured.
7081 if (CurrentLSI->hasPotentialThisCapture()) {
7082 // If we have a capture-capable lambda for 'this', go ahead and capture
7083 // 'this' in that lambda (and all its enclosing lambdas).
7084 if (const Optional<unsigned> Index =
7085 getStackIndexOfNearestEnclosingCaptureCapableLambda(
7086 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
7087 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
7088 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
7089 /*Explicit*/ false, /*BuildAndDiagnose*/ true,
7090 &FunctionScopeIndexOfCapturableLambda);
7091 }
7092 }
7093
7094 // Reset all the potential captures at the end of each full-expression.
7095 CurrentLSI->clearPotentialCaptures();
7096}
7097
7098static ExprResult attemptRecovery(Sema &SemaRef,
7099 const TypoCorrectionConsumer &Consumer,
7100 const TypoCorrection &TC) {
7101 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(),
7102 Consumer.getLookupResult().getLookupKind());
7103 const CXXScopeSpec *SS = Consumer.getSS();
7104 CXXScopeSpec NewSS;
7105
7106 // Use an approprate CXXScopeSpec for building the expr.
7107 if (auto *NNS = TC.getCorrectionSpecifier())
7108 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange());
7109 else if (SS && !TC.WillReplaceSpecifier())
7110 NewSS = *SS;
7111
7112 if (auto *ND = TC.getFoundDecl()) {
7113 R.setLookupName(ND->getDeclName());
7114 R.addDecl(ND);
7115 if (ND->isCXXClassMember()) {
7116 // Figure out the correct naming class to add to the LookupResult.
7117 CXXRecordDecl *Record = nullptr;
7118 if (auto *NNS = TC.getCorrectionSpecifier())
7119 Record = NNS->getAsType()->getAsCXXRecordDecl();
7120 if (!Record)
7121 Record =
7122 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext());
7123 if (Record)
7124 R.setNamingClass(Record);
7125
7126 // Detect and handle the case where the decl might be an implicit
7127 // member.
7128 bool MightBeImplicitMember;
7129 if (!Consumer.isAddressOfOperand())
7130 MightBeImplicitMember = true;
7131 else if (!NewSS.isEmpty())
7132 MightBeImplicitMember = false;
7133 else if (R.isOverloadedResult())
7134 MightBeImplicitMember = false;
7135 else if (R.isUnresolvableResult())
7136 MightBeImplicitMember = true;
7137 else
7138 MightBeImplicitMember = isa<FieldDecl>(ND) ||
7139 isa<IndirectFieldDecl>(ND) ||
7140 isa<MSPropertyDecl>(ND);
7141
7142 if (MightBeImplicitMember)
7143 return SemaRef.BuildPossibleImplicitMemberExpr(
7144 NewSS, /*TemplateKWLoc*/ SourceLocation(), R,
7145 /*TemplateArgs*/ nullptr, /*S*/ nullptr);
7146 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) {
7147 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(),
7148 Ivar->getIdentifier());
7149 }
7150 }
7151
7152 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false,
7153 /*AcceptInvalidDecl*/ true);
7154}
7155
7156namespace {
7157class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> {
7158 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs;
7159
7160public:
7161 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs)
7162 : TypoExprs(TypoExprs) {}
7163 bool VisitTypoExpr(TypoExpr *TE) {
7164 TypoExprs.insert(TE);
7165 return true;
7166 }
7167};
7168
7169class TransformTypos : public TreeTransform<TransformTypos> {
7170 typedef TreeTransform<TransformTypos> BaseTransform;
7171
7172 VarDecl *InitDecl; // A decl to avoid as a correction because it is in the
7173 // process of being initialized.
7174 llvm::function_ref<ExprResult(Expr *)> ExprFilter;
7175 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs;
7176 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache;
7177 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution;
7178
7179 /// \brief Emit diagnostics for all of the TypoExprs encountered.
7180 /// If the TypoExprs were successfully corrected, then the diagnostics should
7181 /// suggest the corrections. Otherwise the diagnostics will not suggest
7182 /// anything (having been passed an empty TypoCorrection).
7183 void EmitAllDiagnostics() {
7184 for (auto E : TypoExprs) {
7185 TypoExpr *TE = cast<TypoExpr>(E);
7186 auto &State = SemaRef.getTypoExprState(TE);
7187 if (State.DiagHandler) {
7188 TypoCorrection TC = State.Consumer->getCurrentCorrection();
7189 ExprResult Replacement = TransformCache[TE];
7190
7191 // Extract the NamedDecl from the transformed TypoExpr and add it to the
7192 // TypoCorrection, replacing the existing decls. This ensures the right
7193 // NamedDecl is used in diagnostics e.g. in the case where overload
7194 // resolution was used to select one from several possible decls that
7195 // had been stored in the TypoCorrection.
7196 if (auto *ND = getDeclFromExpr(
7197 Replacement.isInvalid() ? nullptr : Replacement.get()))
7198 TC.setCorrectionDecl(ND);
7199
7200 State.DiagHandler(TC);
7201 }
7202 SemaRef.clearDelayedTypo(TE);
7203 }
7204 }
7205
7206 /// \brief If corrections for the first TypoExpr have been exhausted for a
7207 /// given combination of the other TypoExprs, retry those corrections against
7208 /// the next combination of substitutions for the other TypoExprs by advancing
7209 /// to the next potential correction of the second TypoExpr. For the second
7210 /// and subsequent TypoExprs, if its stream of corrections has been exhausted,
7211 /// the stream is reset and the next TypoExpr's stream is advanced by one (a
7212 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the
7213 /// TransformCache). Returns true if there is still any untried combinations
7214 /// of corrections.
7215 bool CheckAndAdvanceTypoExprCorrectionStreams() {
7216 for (auto TE : TypoExprs) {
7217 auto &State = SemaRef.getTypoExprState(TE);
7218 TransformCache.erase(TE);
7219 if (!State.Consumer->finished())
7220 return true;
7221 State.Consumer->resetCorrectionStream();
7222 }
7223 return false;
7224 }
7225
7226 NamedDecl *getDeclFromExpr(Expr *E) {
7227 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E))
7228 E = OverloadResolution[OE];
7229
7230 if (!E)
7231 return nullptr;
7232 if (auto *DRE = dyn_cast<DeclRefExpr>(E))
7233 return DRE->getFoundDecl();
7234 if (auto *ME = dyn_cast<MemberExpr>(E))
7235 return ME->getFoundDecl();
7236 // FIXME: Add any other expr types that could be be seen by the delayed typo
7237 // correction TreeTransform for which the corresponding TypoCorrection could
7238 // contain multiple decls.
7239 return nullptr;
7240 }
7241
7242 ExprResult TryTransform(Expr *E) {
7243 Sema::SFINAETrap Trap(SemaRef);
7244 ExprResult Res = TransformExpr(E);
7245 if (Trap.hasErrorOccurred() || Res.isInvalid())
7246 return ExprError();
7247
7248 return ExprFilter(Res.get());
7249 }
7250
7251public:
7252 TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter)
7253 : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {}
7254
7255 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc,
7256 MultiExprArg Args,
7257 SourceLocation RParenLoc,
7258 Expr *ExecConfig = nullptr) {
7259 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args,
7260 RParenLoc, ExecConfig);
7261 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) {
7262 if (Result.isUsable()) {
7263 Expr *ResultCall = Result.get();
7264 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall))
7265 ResultCall = BE->getSubExpr();
7266 if (auto *CE = dyn_cast<CallExpr>(ResultCall))
7267 OverloadResolution[OE] = CE->getCallee();
7268 }
7269 }
7270 return Result;
7271 }
7272
7273 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); }
7274
7275 ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); }
7276
7277 ExprResult Transform(Expr *E) {
7278 ExprResult Res;
7279 while (true) {
7280 Res = TryTransform(E);
7281
7282 // Exit if either the transform was valid or if there were no TypoExprs
7283 // to transform that still have any untried correction candidates..
7284 if (!Res.isInvalid() ||
7285 !CheckAndAdvanceTypoExprCorrectionStreams())
7286 break;
7287 }
7288
7289 // Ensure none of the TypoExprs have multiple typo correction candidates
7290 // with the same edit length that pass all the checks and filters.
7291 // TODO: Properly handle various permutations of possible corrections when
7292 // there is more than one potentially ambiguous typo correction.
7293 // Also, disable typo correction while attempting the transform when
7294 // handling potentially ambiguous typo corrections as any new TypoExprs will
7295 // have been introduced by the application of one of the correction
7296 // candidates and add little to no value if corrected.
7297 SemaRef.DisableTypoCorrection = true;
7298 while (!AmbiguousTypoExprs.empty()) {
7299 auto TE = AmbiguousTypoExprs.back();
7300 auto Cached = TransformCache[TE];
7301 auto &State = SemaRef.getTypoExprState(TE);
7302 State.Consumer->saveCurrentPosition();
7303 TransformCache.erase(TE);
7304 if (!TryTransform(E).isInvalid()) {
7305 State.Consumer->resetCorrectionStream();
7306 TransformCache.erase(TE);
7307 Res = ExprError();
7308 break;
7309 }
7310 AmbiguousTypoExprs.remove(TE);
7311 State.Consumer->restoreSavedPosition();
7312 TransformCache[TE] = Cached;
7313 }
7314 SemaRef.DisableTypoCorrection = false;
7315
7316 // Ensure that all of the TypoExprs within the current Expr have been found.
7317 if (!Res.isUsable())
7318 FindTypoExprs(TypoExprs).TraverseStmt(E);
7319
7320 EmitAllDiagnostics();
7321
7322 return Res;
7323 }
7324
7325 ExprResult TransformTypoExpr(TypoExpr *E) {
7326 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the
7327 // cached transformation result if there is one and the TypoExpr isn't the
7328 // first one that was encountered.
7329 auto &CacheEntry = TransformCache[E];
7330 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) {
7331 return CacheEntry;
7332 }
7333
7334 auto &State = SemaRef.getTypoExprState(E);
7335 assert(State.Consumer && "Cannot transform a cleared TypoExpr")((State.Consumer && "Cannot transform a cleared TypoExpr"
) ? static_cast<void> (0) : __assert_fail ("State.Consumer && \"Cannot transform a cleared TypoExpr\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7335, __PRETTY_FUNCTION__))
;
7336
7337 // For the first TypoExpr and an uncached TypoExpr, find the next likely
7338 // typo correction and return it.
7339 while (TypoCorrection TC = State.Consumer->getNextCorrection()) {
7340 if (InitDecl && TC.getFoundDecl() == InitDecl)
7341 continue;
7342 // FIXME: If we would typo-correct to an invalid declaration, it's
7343 // probably best to just suppress all errors from this typo correction.
7344 ExprResult NE = State.RecoveryHandler ?
7345 State.RecoveryHandler(SemaRef, E, TC) :
7346 attemptRecovery(SemaRef, *State.Consumer, TC);
7347 if (!NE.isInvalid()) {
7348 // Check whether there may be a second viable correction with the same
7349 // edit distance; if so, remember this TypoExpr may have an ambiguous
7350 // correction so it can be more thoroughly vetted later.
7351 TypoCorrection Next;
7352 if ((Next = State.Consumer->peekNextCorrection()) &&
7353 Next.getEditDistance(false) == TC.getEditDistance(false)) {
7354 AmbiguousTypoExprs.insert(E);
7355 } else {
7356 AmbiguousTypoExprs.remove(E);
7357 }
7358 assert(!NE.isUnset() &&((!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? static_cast<void> (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7359, __PRETTY_FUNCTION__))
7359 "Typo was transformed into a valid-but-null ExprResult")((!NE.isUnset() && "Typo was transformed into a valid-but-null ExprResult"
) ? static_cast<void> (0) : __assert_fail ("!NE.isUnset() && \"Typo was transformed into a valid-but-null ExprResult\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7359, __PRETTY_FUNCTION__))
;
7360 return CacheEntry = NE;
7361 }
7362 }
7363 return CacheEntry = ExprError();
7364 }
7365};
7366}
7367
7368ExprResult
7369Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl,
7370 llvm::function_ref<ExprResult(Expr *)> Filter) {
7371 // If the current evaluation context indicates there are uncorrected typos
7372 // and the current expression isn't guaranteed to not have typos, try to
7373 // resolve any TypoExpr nodes that might be in the expression.
7374 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos &&
7375 (E->isTypeDependent() || E->isValueDependent() ||
7376 E->isInstantiationDependent())) {
7377 auto TyposInContext = ExprEvalContexts.back().NumTypos;
7378 assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr")((TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr"
) ? static_cast<void> (0) : __assert_fail ("TyposInContext < ~0U && \"Recursive call of CorrectDelayedTyposInExpr\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7378, __PRETTY_FUNCTION__))
;
7379 ExprEvalContexts.back().NumTypos = ~0U;
7380 auto TyposResolved = DelayedTypos.size();
7381 auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E);
7382 ExprEvalContexts.back().NumTypos = TyposInContext;
7383 TyposResolved -= DelayedTypos.size();
7384 if (Result.isInvalid() || Result.get() != E) {
7385 ExprEvalContexts.back().NumTypos -= TyposResolved;
7386 return Result;
7387 }
7388 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?")((TyposResolved == 0 && "Corrected typo but got same Expr back?"
) ? static_cast<void> (0) : __assert_fail ("TyposResolved == 0 && \"Corrected typo but got same Expr back?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7388, __PRETTY_FUNCTION__))
;
7389 }
7390 return E;
7391}
7392
7393ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
7394 bool DiscardedValue,
7395 bool IsConstexpr,
7396 bool IsLambdaInitCaptureInitializer) {
7397 ExprResult FullExpr = FE;
7398
7399 if (!FullExpr.get())
7400 return ExprError();
7401
7402 // If we are an init-expression in a lambdas init-capture, we should not
7403 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
7404 // containing full-expression is done).
7405 // template<class ... Ts> void test(Ts ... t) {
7406 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
7407 // return a;
7408 // }() ...);
7409 // }
7410 // FIXME: This is a hack. It would be better if we pushed the lambda scope
7411 // when we parse the lambda introducer, and teach capturing (but not
7412 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
7413 // corresponding class yet (that is, have LambdaScopeInfo either represent a
7414 // lambda where we've entered the introducer but not the body, or represent a
7415 // lambda where we've entered the body, depending on where the
7416 // parser/instantiation has got to).
7417 if (!IsLambdaInitCaptureInitializer &&
7418 DiagnoseUnexpandedParameterPack(FullExpr.get()))
7419 return ExprError();
7420
7421 // Top-level expressions default to 'id' when we're in a debugger.
7422 if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
7423 FullExpr.get()->getType() == Context.UnknownAnyTy) {
7424 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
7425 if (FullExpr.isInvalid())
7426 return ExprError();
7427 }
7428
7429 if (DiscardedValue) {
7430 FullExpr = CheckPlaceholderExpr(FullExpr.get());
7431 if (FullExpr.isInvalid())
7432 return ExprError();
7433
7434 FullExpr = IgnoredValueConversions(FullExpr.get());
7435 if (FullExpr.isInvalid())
7436 return ExprError();
7437 }
7438
7439 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get());
7440 if (FullExpr.isInvalid())
7441 return ExprError();
7442
7443 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
7444
7445 // At the end of this full expression (which could be a deeply nested
7446 // lambda), if there is a potential capture within the nested lambda,
7447 // have the outer capture-able lambda try and capture it.
7448 // Consider the following code:
7449 // void f(int, int);
7450 // void f(const int&, double);
7451 // void foo() {
7452 // const int x = 10, y = 20;
7453 // auto L = [=](auto a) {
7454 // auto M = [=](auto b) {
7455 // f(x, b); <-- requires x to be captured by L and M
7456 // f(y, a); <-- requires y to be captured by L, but not all Ms
7457 // };
7458 // };
7459 // }
7460
7461 // FIXME: Also consider what happens for something like this that involves
7462 // the gnu-extension statement-expressions or even lambda-init-captures:
7463 // void f() {
7464 // const int n = 0;
7465 // auto L = [&](auto a) {
7466 // +n + ({ 0; a; });
7467 // };
7468 // }
7469 //
7470 // Here, we see +n, and then the full-expression 0; ends, so we don't
7471 // capture n (and instead remove it from our list of potential captures),
7472 // and then the full-expression +n + ({ 0; }); ends, but it's too late
7473 // for us to see that we need to capture n after all.
7474
7475 LambdaScopeInfo *const CurrentLSI =
7476 getCurLambda(/*IgnoreCapturedRegions=*/true);
7477 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
7478 // even if CurContext is not a lambda call operator. Refer to that Bug Report
7479 // for an example of the code that might cause this asynchrony.
7480 // By ensuring we are in the context of a lambda's call operator
7481 // we can fix the bug (we only need to check whether we need to capture
7482 // if we are within a lambda's body); but per the comments in that
7483 // PR, a proper fix would entail :
7484 // "Alternative suggestion:
7485 // - Add to Sema an integer holding the smallest (outermost) scope
7486 // index that we are *lexically* within, and save/restore/set to
7487 // FunctionScopes.size() in InstantiatingTemplate's
7488 // constructor/destructor.
7489 // - Teach the handful of places that iterate over FunctionScopes to
7490 // stop at the outermost enclosing lexical scope."
7491 DeclContext *DC = CurContext;
7492 while (DC && isa<CapturedDecl>(DC))
7493 DC = DC->getParent();
7494 const bool IsInLambdaDeclContext = isLambdaCallOperator(DC);
7495 if (IsInLambdaDeclContext && CurrentLSI &&
7496 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
7497 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
7498 *this);
7499 return MaybeCreateExprWithCleanups(FullExpr);
7500}
7501
7502StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
7503 if (!FullStmt) return StmtError();
7504
7505 return MaybeCreateStmtWithCleanups(FullStmt);
7506}
7507
7508Sema::IfExistsResult
7509Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
7510 CXXScopeSpec &SS,
7511 const DeclarationNameInfo &TargetNameInfo) {
7512 DeclarationName TargetName = TargetNameInfo.getName();
7513 if (!TargetName)
7514 return IER_DoesNotExist;
7515
7516 // If the name itself is dependent, then the result is dependent.
7517 if (TargetName.isDependentName())
7518 return IER_Dependent;
7519
7520 // Do the redeclaration lookup in the current scope.
7521 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
7522 Sema::NotForRedeclaration);
7523 LookupParsedName(R, S, &SS);
7524 R.suppressDiagnostics();
7525
7526 switch (R.getResultKind()) {
7527 case LookupResult::Found:
7528 case LookupResult::FoundOverloaded:
7529 case LookupResult::FoundUnresolvedValue:
7530 case LookupResult::Ambiguous:
7531 return IER_Exists;
7532
7533 case LookupResult::NotFound:
7534 return IER_DoesNotExist;
7535
7536 case LookupResult::NotFoundInCurrentInstantiation:
7537 return IER_Dependent;
7538 }
7539
7540 llvm_unreachable("Invalid LookupResult Kind!")::llvm::llvm_unreachable_internal("Invalid LookupResult Kind!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 7540)
;
7541}
7542
7543Sema::IfExistsResult
7544Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
7545 bool IsIfExists, CXXScopeSpec &SS,
7546 UnqualifiedId &Name) {
7547 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7548
7549 // Check for an unexpanded parameter pack.
7550 auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists;
7551 if (DiagnoseUnexpandedParameterPack(SS, UPPC) ||
7552 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC))
7553 return IER_Error;
7554
7555 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
7556}