Bug Summary

File:tools/clang/lib/Sema/SemaExprCXX.cpp
Warning:line 463, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaExprCXX.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn329677/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn329677/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-04-11-031539-24776-1 -x c++ /build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TreeTransform.h"
17#include "TypeLocBuilder.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/ASTLambda.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/AlignedAllocation.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/Initialization.h"
33#include "clang/Sema/Lookup.h"
34#include "clang/Sema/ParsedTemplate.h"
35#include "clang/Sema/Scope.h"
36#include "clang/Sema/ScopeInfo.h"
37#include "clang/Sema/SemaLambda.h"
38#include "clang/Sema/TemplateDeduction.h"
39#include "llvm/ADT/APInt.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/Support/ErrorHandling.h"
42using namespace clang;
43using namespace sema;
44
45/// \brief Handle the result of the special case name lookup for inheriting
46/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
47/// constructor names in member using declarations, even if 'X' is not the
48/// name of the corresponding type.
49ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
50 SourceLocation NameLoc,
51 IdentifierInfo &Name) {
52 NestedNameSpecifier *NNS = SS.getScopeRep();
53
54 // Convert the nested-name-specifier into a type.
55 QualType Type;
56 switch (NNS->getKind()) {
57 case NestedNameSpecifier::TypeSpec:
58 case NestedNameSpecifier::TypeSpecWithTemplate:
59 Type = QualType(NNS->getAsType(), 0);
60 break;
61
62 case NestedNameSpecifier::Identifier:
63 // Strip off the last layer of the nested-name-specifier and build a
64 // typename type for it.
65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name")(static_cast <bool> (NNS->getAsIdentifier() == &
Name && "not a constructor name") ? void (0) : __assert_fail
("NNS->getAsIdentifier() == &Name && \"not a constructor name\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 65, __extension__ __PRETTY_FUNCTION__))
;
66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
67 NNS->getAsIdentifier());
68 break;
69
70 case NestedNameSpecifier::Global:
71 case NestedNameSpecifier::Super:
72 case NestedNameSpecifier::Namespace:
73 case NestedNameSpecifier::NamespaceAlias:
74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor")::llvm::llvm_unreachable_internal("Nested name specifier is not a type for inheriting ctor"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 74)
;
75 }
76
77 // This reference to the type is located entirely at the location of the
78 // final identifier in the qualified-id.
79 return CreateParsedType(Type,
80 Context.getTrivialTypeSourceInfo(Type, NameLoc));
81}
82
83ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
84 IdentifierInfo &II,
85 SourceLocation NameLoc,
86 Scope *S, CXXScopeSpec &SS,
87 ParsedType ObjectTypePtr,
88 bool EnteringContext) {
89 // Determine where to perform name lookup.
90
91 // FIXME: This area of the standard is very messy, and the current
92 // wording is rather unclear about which scopes we search for the
93 // destructor name; see core issues 399 and 555. Issue 399 in
94 // particular shows where the current description of destructor name
95 // lookup is completely out of line with existing practice, e.g.,
96 // this appears to be ill-formed:
97 //
98 // namespace N {
99 // template <typename T> struct S {
100 // ~S();
101 // };
102 // }
103 //
104 // void f(N::S<int>* s) {
105 // s->N::S<int>::~S();
106 // }
107 //
108 // See also PR6358 and PR6359.
109 // For this reason, we're currently only doing the C++03 version of this
110 // code; the C++0x version has to wait until we get a proper spec.
111 QualType SearchType;
112 DeclContext *LookupCtx = nullptr;
113 bool isDependent = false;
114 bool LookInScope = false;
115
116 if (SS.isInvalid())
117 return nullptr;
118
119 // If we have an object type, it's because we are in a
120 // pseudo-destructor-expression or a member access expression, and
121 // we know what type we're looking for.
122 if (ObjectTypePtr)
123 SearchType = GetTypeFromParser(ObjectTypePtr);
124
125 if (SS.isSet()) {
126 NestedNameSpecifier *NNS = SS.getScopeRep();
127
128 bool AlreadySearched = false;
129 bool LookAtPrefix = true;
130 // C++11 [basic.lookup.qual]p6:
131 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
132 // the type-names are looked up as types in the scope designated by the
133 // nested-name-specifier. Similarly, in a qualified-id of the form:
134 //
135 // nested-name-specifier[opt] class-name :: ~ class-name
136 //
137 // the second class-name is looked up in the same scope as the first.
138 //
139 // Here, we determine whether the code below is permitted to look at the
140 // prefix of the nested-name-specifier.
141 DeclContext *DC = computeDeclContext(SS, EnteringContext);
142 if (DC && DC->isFileContext()) {
143 AlreadySearched = true;
144 LookupCtx = DC;
145 isDependent = false;
146 } else if (DC && isa<CXXRecordDecl>(DC)) {
147 LookAtPrefix = false;
148 LookInScope = true;
149 }
150
151 // The second case from the C++03 rules quoted further above.
152 NestedNameSpecifier *Prefix = nullptr;
153 if (AlreadySearched) {
154 // Nothing left to do.
155 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
156 CXXScopeSpec PrefixSS;
157 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
158 LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
159 isDependent = isDependentScopeSpecifier(PrefixSS);
160 } else if (ObjectTypePtr) {
161 LookupCtx = computeDeclContext(SearchType);
162 isDependent = SearchType->isDependentType();
163 } else {
164 LookupCtx = computeDeclContext(SS, EnteringContext);
165 isDependent = LookupCtx && LookupCtx->isDependentContext();
166 }
167 } else if (ObjectTypePtr) {
168 // C++ [basic.lookup.classref]p3:
169 // If the unqualified-id is ~type-name, the type-name is looked up
170 // in the context of the entire postfix-expression. If the type T
171 // of the object expression is of a class type C, the type-name is
172 // also looked up in the scope of class C. At least one of the
173 // lookups shall find a name that refers to (possibly
174 // cv-qualified) T.
175 LookupCtx = computeDeclContext(SearchType);
176 isDependent = SearchType->isDependentType();
177 assert((isDependent || !SearchType->isIncompleteType()) &&(static_cast <bool> ((isDependent || !SearchType->isIncompleteType
()) && "Caller should have completed object type") ? void
(0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 178, __extension__ __PRETTY_FUNCTION__))
178 "Caller should have completed object type")(static_cast <bool> ((isDependent || !SearchType->isIncompleteType
()) && "Caller should have completed object type") ? void
(0) : __assert_fail ("(isDependent || !SearchType->isIncompleteType()) && \"Caller should have completed object type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 178, __extension__ __PRETTY_FUNCTION__))
;
179
180 LookInScope = true;
181 } else {
182 // Perform lookup into the current scope (only).
183 LookInScope = true;
184 }
185
186 TypeDecl *NonMatchingTypeDecl = nullptr;
187 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
188 for (unsigned Step = 0; Step != 2; ++Step) {
189 // Look for the name first in the computed lookup context (if we
190 // have one) and, if that fails to find a match, in the scope (if
191 // we're allowed to look there).
192 Found.clear();
193 if (Step == 0 && LookupCtx) {
194 if (RequireCompleteDeclContext(SS, LookupCtx))
195 return nullptr;
196 LookupQualifiedName(Found, LookupCtx);
197 } else if (Step == 1 && LookInScope && S) {
198 LookupName(Found, S);
199 } else {
200 continue;
201 }
202
203 // FIXME: Should we be suppressing ambiguities here?
204 if (Found.isAmbiguous())
205 return nullptr;
206
207 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
208 QualType T = Context.getTypeDeclType(Type);
209 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
210
211 if (SearchType.isNull() || SearchType->isDependentType() ||
212 Context.hasSameUnqualifiedType(T, SearchType)) {
213 // We found our type!
214
215 return CreateParsedType(T,
216 Context.getTrivialTypeSourceInfo(T, NameLoc));
217 }
218
219 if (!SearchType.isNull())
220 NonMatchingTypeDecl = Type;
221 }
222
223 // If the name that we found is a class template name, and it is
224 // the same name as the template name in the last part of the
225 // nested-name-specifier (if present) or the object type, then
226 // this is the destructor for that class.
227 // FIXME: This is a workaround until we get real drafting for core
228 // issue 399, for which there isn't even an obvious direction.
229 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
230 QualType MemberOfType;
231 if (SS.isSet()) {
232 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
233 // Figure out the type of the context, if it has one.
234 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
235 MemberOfType = Context.getTypeDeclType(Record);
236 }
237 }
238 if (MemberOfType.isNull())
239 MemberOfType = SearchType;
240
241 if (MemberOfType.isNull())
242 continue;
243
244 // We're referring into a class template specialization. If the
245 // class template we found is the same as the template being
246 // specialized, we found what we are looking for.
247 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
248 if (ClassTemplateSpecializationDecl *Spec
249 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
250 if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
251 Template->getCanonicalDecl())
252 return CreateParsedType(
253 MemberOfType,
254 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
255 }
256
257 continue;
258 }
259
260 // We're referring to an unresolved class template
261 // specialization. Determine whether we class template we found
262 // is the same as the template being specialized or, if we don't
263 // know which template is being specialized, that it at least
264 // has the same name.
265 if (const TemplateSpecializationType *SpecType
266 = MemberOfType->getAs<TemplateSpecializationType>()) {
267 TemplateName SpecName = SpecType->getTemplateName();
268
269 // The class template we found is the same template being
270 // specialized.
271 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
272 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
273 return CreateParsedType(
274 MemberOfType,
275 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
276
277 continue;
278 }
279
280 // The class template we found has the same name as the
281 // (dependent) template name being specialized.
282 if (DependentTemplateName *DepTemplate
283 = SpecName.getAsDependentTemplateName()) {
284 if (DepTemplate->isIdentifier() &&
285 DepTemplate->getIdentifier() == Template->getIdentifier())
286 return CreateParsedType(
287 MemberOfType,
288 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
289
290 continue;
291 }
292 }
293 }
294 }
295
296 if (isDependent) {
297 // We didn't find our type, but that's okay: it's dependent
298 // anyway.
299
300 // FIXME: What if we have no nested-name-specifier?
301 QualType T = CheckTypenameType(ETK_None, SourceLocation(),
302 SS.getWithLocInContext(Context),
303 II, NameLoc);
304 return ParsedType::make(T);
305 }
306
307 if (NonMatchingTypeDecl) {
308 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
309 Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
310 << T << SearchType;
311 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
312 << T;
313 } else if (ObjectTypePtr)
314 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
315 << &II;
316 else {
317 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
318 diag::err_destructor_class_name);
319 if (S) {
320 const DeclContext *Ctx = S->getEntity();
321 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
322 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
323 Class->getNameAsString());
324 }
325 }
326
327 return nullptr;
328}
329
330ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS,
331 ParsedType ObjectType) {
332 if (DS.getTypeSpecType() == DeclSpec::TST_error)
333 return nullptr;
334
335 if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) {
336 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
337 return nullptr;
338 }
339
340 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype &&(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 341, __extension__ __PRETTY_FUNCTION__))
341 "unexpected type in getDestructorType")(static_cast <bool> (DS.getTypeSpecType() == DeclSpec::
TST_decltype && "unexpected type in getDestructorType"
) ? void (0) : __assert_fail ("DS.getTypeSpecType() == DeclSpec::TST_decltype && \"unexpected type in getDestructorType\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 341, __extension__ __PRETTY_FUNCTION__))
;
342 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
343
344 // If we know the type of the object, check that the correct destructor
345 // type was named now; we can give better diagnostics this way.
346 QualType SearchType = GetTypeFromParser(ObjectType);
347 if (!SearchType.isNull() && !SearchType->isDependentType() &&
348 !Context.hasSameUnqualifiedType(T, SearchType)) {
349 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
350 << T << SearchType;
351 return nullptr;
352 }
353
354 return ParsedType::make(T);
355}
356
357bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
358 const UnqualifiedId &Name) {
359 assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId)(static_cast <bool> (Name.getKind() == UnqualifiedIdKind
::IK_LiteralOperatorId) ? void (0) : __assert_fail ("Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 359, __extension__ __PRETTY_FUNCTION__))
;
360
361 if (!SS.isValid())
362 return false;
363
364 switch (SS.getScopeRep()->getKind()) {
365 case NestedNameSpecifier::Identifier:
366 case NestedNameSpecifier::TypeSpec:
367 case NestedNameSpecifier::TypeSpecWithTemplate:
368 // Per C++11 [over.literal]p2, literal operators can only be declared at
369 // namespace scope. Therefore, this unqualified-id cannot name anything.
370 // Reject it early, because we have no AST representation for this in the
371 // case where the scope is dependent.
372 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
373 << SS.getScopeRep();
374 return true;
375
376 case NestedNameSpecifier::Global:
377 case NestedNameSpecifier::Super:
378 case NestedNameSpecifier::Namespace:
379 case NestedNameSpecifier::NamespaceAlias:
380 return false;
381 }
382
383 llvm_unreachable("unknown nested name specifier kind")::llvm::llvm_unreachable_internal("unknown nested name specifier kind"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 383)
;
384}
385
386/// \brief Build a C++ typeid expression with a type operand.
387ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
388 SourceLocation TypeidLoc,
389 TypeSourceInfo *Operand,
390 SourceLocation RParenLoc) {
391 // C++ [expr.typeid]p4:
392 // The top-level cv-qualifiers of the lvalue expression or the type-id
393 // that is the operand of typeid are always ignored.
394 // If the type of the type-id is a class type or a reference to a class
395 // type, the class shall be completely-defined.
396 Qualifiers Quals;
397 QualType T
398 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
399 Quals);
400 if (T->getAs<RecordType>() &&
401 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
402 return ExprError();
403
404 if (T->isVariablyModifiedType())
405 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T);
406
407 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
408 SourceRange(TypeidLoc, RParenLoc));
409}
410
411/// \brief Build a C++ typeid expression with an expression operand.
412ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
413 SourceLocation TypeidLoc,
414 Expr *E,
415 SourceLocation RParenLoc) {
416 bool WasEvaluated = false;
417 if (E && !E->isTypeDependent()) {
11
Assuming 'E' is null
418 if (E->getType()->isPlaceholderType()) {
419 ExprResult result = CheckPlaceholderExpr(E);
420 if (result.isInvalid()) return ExprError();
421 E = result.get();
422 }
423
424 QualType T = E->getType();
425 if (const RecordType *RecordT = T->getAs<RecordType>()) {
426 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
427 // C++ [expr.typeid]p3:
428 // [...] If the type of the expression is a class type, the class
429 // shall be completely-defined.
430 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
431 return ExprError();
432
433 // C++ [expr.typeid]p3:
434 // When typeid is applied to an expression other than an glvalue of a
435 // polymorphic class type [...] [the] expression is an unevaluated
436 // operand. [...]
437 if (RecordD->isPolymorphic() && E->isGLValue()) {
438 // The subexpression is potentially evaluated; switch the context
439 // and recheck the subexpression.
440 ExprResult Result = TransformToPotentiallyEvaluated(E);
441 if (Result.isInvalid()) return ExprError();
442 E = Result.get();
443
444 // We require a vtable to query the type at run time.
445 MarkVTableUsed(TypeidLoc, RecordD);
446 WasEvaluated = true;
447 }
448 }
449
450 // C++ [expr.typeid]p4:
451 // [...] If the type of the type-id is a reference to a possibly
452 // cv-qualified type, the result of the typeid expression refers to a
453 // std::type_info object representing the cv-unqualified referenced
454 // type.
455 Qualifiers Quals;
456 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
457 if (!Context.hasSameType(T, UnqualT)) {
458 T = UnqualT;
459 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
460 }
461 }
462
463 if (E->getType()->isVariablyModifiedType())
12
Called C++ object pointer is null
464 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid)
465 << E->getType());
466 else if (!inTemplateInstantiation() &&
467 E->HasSideEffects(Context, WasEvaluated)) {
468 // The expression operand for typeid is in an unevaluated expression
469 // context, so side effects could result in unintended consequences.
470 Diag(E->getExprLoc(), WasEvaluated
471 ? diag::warn_side_effects_typeid
472 : diag::warn_side_effects_unevaluated_context);
473 }
474
475 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
476 SourceRange(TypeidLoc, RParenLoc));
477}
478
479/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
480ExprResult
481Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
482 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
483 // Find the std::type_info type.
484 if (!getStdNamespace())
1
Assuming the condition is false
2
Taking false branch
485 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
486
487 if (!CXXTypeInfoDecl) {
3
Assuming the condition is false
4
Taking false branch
488 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
489 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
490 LookupQualifiedName(R, getStdNamespace());
491 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
492 // Microsoft's typeinfo doesn't have type_info in std but in the global
493 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
494 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
495 LookupQualifiedName(R, Context.getTranslationUnitDecl());
496 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
497 }
498 if (!CXXTypeInfoDecl)
499 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
500 }
501
502 if (!getLangOpts().RTTI) {
5
Assuming the condition is false
6
Taking false branch
503 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
504 }
505
506 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
507
508 if (isType) {
7
Assuming 'isType' is 0
8
Taking false branch
509 // The operand is a type; handle it as such.
510 TypeSourceInfo *TInfo = nullptr;
511 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
512 &TInfo);
513 if (T.isNull())
514 return ExprError();
515
516 if (!TInfo)
517 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
518
519 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
520 }
521
522 // The operand is an expression.
523 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
9
Passing value via 3rd parameter 'E'
10
Calling 'Sema::BuildCXXTypeId'
524}
525
526/// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to
527/// a single GUID.
528static void
529getUuidAttrOfType(Sema &SemaRef, QualType QT,
530 llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) {
531 // Optionally remove one level of pointer, reference or array indirection.
532 const Type *Ty = QT.getTypePtr();
533 if (QT->isPointerType() || QT->isReferenceType())
534 Ty = QT->getPointeeType().getTypePtr();
535 else if (QT->isArrayType())
536 Ty = Ty->getBaseElementTypeUnsafe();
537
538 const auto *TD = Ty->getAsTagDecl();
539 if (!TD)
540 return;
541
542 if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) {
543 UuidAttrs.insert(Uuid);
544 return;
545 }
546
547 // __uuidof can grab UUIDs from template arguments.
548 if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) {
549 const TemplateArgumentList &TAL = CTSD->getTemplateArgs();
550 for (const TemplateArgument &TA : TAL.asArray()) {
551 const UuidAttr *UuidForTA = nullptr;
552 if (TA.getKind() == TemplateArgument::Type)
553 getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs);
554 else if (TA.getKind() == TemplateArgument::Declaration)
555 getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs);
556
557 if (UuidForTA)
558 UuidAttrs.insert(UuidForTA);
559 }
560 }
561}
562
563/// \brief Build a Microsoft __uuidof expression with a type operand.
564ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
565 SourceLocation TypeidLoc,
566 TypeSourceInfo *Operand,
567 SourceLocation RParenLoc) {
568 StringRef UuidStr;
569 if (!Operand->getType()->isDependentType()) {
570 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
571 getUuidAttrOfType(*this, Operand->getType(), UuidAttrs);
572 if (UuidAttrs.empty())
573 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
574 if (UuidAttrs.size() > 1)
575 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
576 UuidStr = UuidAttrs.back()->getGuid();
577 }
578
579 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, UuidStr,
580 SourceRange(TypeidLoc, RParenLoc));
581}
582
583/// \brief Build a Microsoft __uuidof expression with an expression operand.
584ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
585 SourceLocation TypeidLoc,
586 Expr *E,
587 SourceLocation RParenLoc) {
588 StringRef UuidStr;
589 if (!E->getType()->isDependentType()) {
590 if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
591 UuidStr = "00000000-0000-0000-0000-000000000000";
592 } else {
593 llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs;
594 getUuidAttrOfType(*this, E->getType(), UuidAttrs);
595 if (UuidAttrs.empty())
596 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
597 if (UuidAttrs.size() > 1)
598 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
599 UuidStr = UuidAttrs.back()->getGuid();
600 }
601 }
602
603 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, UuidStr,
604 SourceRange(TypeidLoc, RParenLoc));
605}
606
607/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
608ExprResult
609Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
610 bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
611 // If MSVCGuidDecl has not been cached, do the lookup.
612 if (!MSVCGuidDecl) {
613 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
614 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
615 LookupQualifiedName(R, Context.getTranslationUnitDecl());
616 MSVCGuidDecl = R.getAsSingle<RecordDecl>();
617 if (!MSVCGuidDecl)
618 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
619 }
620
621 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
622
623 if (isType) {
624 // The operand is a type; handle it as such.
625 TypeSourceInfo *TInfo = nullptr;
626 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
627 &TInfo);
628 if (T.isNull())
629 return ExprError();
630
631 if (!TInfo)
632 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
633
634 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
635 }
636
637 // The operand is an expression.
638 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
639}
640
641/// ActOnCXXBoolLiteral - Parse {true,false} literals.
642ExprResult
643Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
644 assert((Kind == tok::kw_true || Kind == tok::kw_false) &&(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 645, __extension__ __PRETTY_FUNCTION__))
645 "Unknown C++ Boolean value!")(static_cast <bool> ((Kind == tok::kw_true || Kind == tok
::kw_false) && "Unknown C++ Boolean value!") ? void (
0) : __assert_fail ("(Kind == tok::kw_true || Kind == tok::kw_false) && \"Unknown C++ Boolean value!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 645, __extension__ __PRETTY_FUNCTION__))
;
646 return new (Context)
647 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
648}
649
650/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
651ExprResult
652Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
653 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
654}
655
656/// ActOnCXXThrow - Parse throw expressions.
657ExprResult
658Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
659 bool IsThrownVarInScope = false;
660 if (Ex) {
661 // C++0x [class.copymove]p31:
662 // When certain criteria are met, an implementation is allowed to omit the
663 // copy/move construction of a class object [...]
664 //
665 // - in a throw-expression, when the operand is the name of a
666 // non-volatile automatic object (other than a function or catch-
667 // clause parameter) whose scope does not extend beyond the end of the
668 // innermost enclosing try-block (if there is one), the copy/move
669 // operation from the operand to the exception object (15.1) can be
670 // omitted by constructing the automatic object directly into the
671 // exception object
672 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
673 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
674 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
675 for( ; S; S = S->getParent()) {
676 if (S->isDeclScope(Var)) {
677 IsThrownVarInScope = true;
678 break;
679 }
680
681 if (S->getFlags() &
682 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
683 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
684 Scope::TryScope))
685 break;
686 }
687 }
688 }
689 }
690
691 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
692}
693
694ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
695 bool IsThrownVarInScope) {
696 // Don't report an error if 'throw' is used in system headers.
697 if (!getLangOpts().CXXExceptions &&
698 !getSourceManager().isInSystemHeader(OpLoc))
699 Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
700
701 // Exceptions aren't allowed in CUDA device code.
702 if (getLangOpts().CUDA)
703 CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions)
704 << "throw" << CurrentCUDATarget();
705
706 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
707 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
708
709 if (Ex && !Ex->isTypeDependent()) {
710 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType());
711 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex))
712 return ExprError();
713
714 // Initialize the exception result. This implicitly weeds out
715 // abstract types or types with inaccessible copy constructors.
716
717 // C++0x [class.copymove]p31:
718 // When certain criteria are met, an implementation is allowed to omit the
719 // copy/move construction of a class object [...]
720 //
721 // - in a throw-expression, when the operand is the name of a
722 // non-volatile automatic object (other than a function or
723 // catch-clause
724 // parameter) whose scope does not extend beyond the end of the
725 // innermost enclosing try-block (if there is one), the copy/move
726 // operation from the operand to the exception object (15.1) can be
727 // omitted by constructing the automatic object directly into the
728 // exception object
729 const VarDecl *NRVOVariable = nullptr;
730 if (IsThrownVarInScope)
731 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, CES_Strict);
732
733 InitializedEntity Entity = InitializedEntity::InitializeException(
734 OpLoc, ExceptionObjectTy,
735 /*NRVO=*/NRVOVariable != nullptr);
736 ExprResult Res = PerformMoveOrCopyInitialization(
737 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope);
738 if (Res.isInvalid())
739 return ExprError();
740 Ex = Res.get();
741 }
742
743 return new (Context)
744 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
745}
746
747static void
748collectPublicBases(CXXRecordDecl *RD,
749 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen,
750 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases,
751 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen,
752 bool ParentIsPublic) {
753 for (const CXXBaseSpecifier &BS : RD->bases()) {
754 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl();
755 bool NewSubobject;
756 // Virtual bases constitute the same subobject. Non-virtual bases are
757 // always distinct subobjects.
758 if (BS.isVirtual())
759 NewSubobject = VBases.insert(BaseDecl).second;
760 else
761 NewSubobject = true;
762
763 if (NewSubobject)
764 ++SubobjectsSeen[BaseDecl];
765
766 // Only add subobjects which have public access throughout the entire chain.
767 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public;
768 if (PublicPath)
769 PublicSubobjectsSeen.insert(BaseDecl);
770
771 // Recurse on to each base subobject.
772 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen,
773 PublicPath);
774 }
775}
776
777static void getUnambiguousPublicSubobjects(
778 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) {
779 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen;
780 llvm::SmallSet<CXXRecordDecl *, 2> VBases;
781 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen;
782 SubobjectsSeen[RD] = 1;
783 PublicSubobjectsSeen.insert(RD);
784 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen,
785 /*ParentIsPublic=*/true);
786
787 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) {
788 // Skip ambiguous objects.
789 if (SubobjectsSeen[PublicSubobject] > 1)
790 continue;
791
792 Objects.push_back(PublicSubobject);
793 }
794}
795
796/// CheckCXXThrowOperand - Validate the operand of a throw.
797bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc,
798 QualType ExceptionObjectTy, Expr *E) {
799 // If the type of the exception would be an incomplete type or a pointer
800 // to an incomplete type other than (cv) void the program is ill-formed.
801 QualType Ty = ExceptionObjectTy;
802 bool isPointer = false;
803 if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
804 Ty = Ptr->getPointeeType();
805 isPointer = true;
806 }
807 if (!isPointer || !Ty->isVoidType()) {
808 if (RequireCompleteType(ThrowLoc, Ty,
809 isPointer ? diag::err_throw_incomplete_ptr
810 : diag::err_throw_incomplete,
811 E->getSourceRange()))
812 return true;
813
814 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy,
815 diag::err_throw_abstract_type, E))
816 return true;
817 }
818
819 // If the exception has class type, we need additional handling.
820 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
821 if (!RD)
822 return false;
823
824 // If we are throwing a polymorphic class type or pointer thereof,
825 // exception handling will make use of the vtable.
826 MarkVTableUsed(ThrowLoc, RD);
827
828 // If a pointer is thrown, the referenced object will not be destroyed.
829 if (isPointer)
830 return false;
831
832 // If the class has a destructor, we must be able to call it.
833 if (!RD->hasIrrelevantDestructor()) {
834 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
835 MarkFunctionReferenced(E->getExprLoc(), Destructor);
836 CheckDestructorAccess(E->getExprLoc(), Destructor,
837 PDiag(diag::err_access_dtor_exception) << Ty);
838 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
839 return true;
840 }
841 }
842
843 // The MSVC ABI creates a list of all types which can catch the exception
844 // object. This list also references the appropriate copy constructor to call
845 // if the object is caught by value and has a non-trivial copy constructor.
846 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
847 // We are only interested in the public, unambiguous bases contained within
848 // the exception object. Bases which are ambiguous or otherwise
849 // inaccessible are not catchable types.
850 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects;
851 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects);
852
853 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) {
854 // Attempt to lookup the copy constructor. Various pieces of machinery
855 // will spring into action, like template instantiation, which means this
856 // cannot be a simple walk of the class's decls. Instead, we must perform
857 // lookup and overload resolution.
858 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0);
859 if (!CD)
860 continue;
861
862 // Mark the constructor referenced as it is used by this throw expression.
863 MarkFunctionReferenced(E->getExprLoc(), CD);
864
865 // Skip this copy constructor if it is trivial, we don't need to record it
866 // in the catchable type data.
867 if (CD->isTrivial())
868 continue;
869
870 // The copy constructor is non-trivial, create a mapping from this class
871 // type to this constructor.
872 // N.B. The selection of copy constructor is not sensitive to this
873 // particular throw-site. Lookup will be performed at the catch-site to
874 // ensure that the copy constructor is, in fact, accessible (via
875 // friendship or any other means).
876 Context.addCopyConstructorForExceptionObject(Subobject, CD);
877
878 // We don't keep the instantiated default argument expressions around so
879 // we must rebuild them here.
880 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) {
881 if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)))
882 return true;
883 }
884 }
885 }
886
887 return false;
888}
889
890static QualType adjustCVQualifiersForCXXThisWithinLambda(
891 ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy,
892 DeclContext *CurSemaContext, ASTContext &ASTCtx) {
893
894 QualType ClassType = ThisTy->getPointeeType();
895 LambdaScopeInfo *CurLSI = nullptr;
896 DeclContext *CurDC = CurSemaContext;
897
898 // Iterate through the stack of lambdas starting from the innermost lambda to
899 // the outermost lambda, checking if '*this' is ever captured by copy - since
900 // that could change the cv-qualifiers of the '*this' object.
901 // The object referred to by '*this' starts out with the cv-qualifiers of its
902 // member function. We then start with the innermost lambda and iterate
903 // outward checking to see if any lambda performs a by-copy capture of '*this'
904 // - and if so, any nested lambda must respect the 'constness' of that
905 // capturing lamdbda's call operator.
906 //
907
908 // Since the FunctionScopeInfo stack is representative of the lexical
909 // nesting of the lambda expressions during initial parsing (and is the best
910 // place for querying information about captures about lambdas that are
911 // partially processed) and perhaps during instantiation of function templates
912 // that contain lambda expressions that need to be transformed BUT not
913 // necessarily during instantiation of a nested generic lambda's function call
914 // operator (which might even be instantiated at the end of the TU) - at which
915 // time the DeclContext tree is mature enough to query capture information
916 // reliably - we use a two pronged approach to walk through all the lexically
917 // enclosing lambda expressions:
918 //
919 // 1) Climb down the FunctionScopeInfo stack as long as each item represents
920 // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically
921 // enclosed by the call-operator of the LSI below it on the stack (while
922 // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on
923 // the stack represents the innermost lambda.
924 //
925 // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext
926 // represents a lambda's call operator. If it does, we must be instantiating
927 // a generic lambda's call operator (represented by the Current LSI, and
928 // should be the only scenario where an inconsistency between the LSI and the
929 // DeclContext should occur), so climb out the DeclContexts if they
930 // represent lambdas, while querying the corresponding closure types
931 // regarding capture information.
932
933 // 1) Climb down the function scope info stack.
934 for (int I = FunctionScopes.size();
935 I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) &&
936 (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() ==
937 cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator);
938 CurDC = getLambdaAwareParentOfDeclContext(CurDC)) {
939 CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]);
940
941 if (!CurLSI->isCXXThisCaptured())
942 continue;
943
944 auto C = CurLSI->getCXXThisCapture();
945
946 if (C.isCopyCapture()) {
947 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
948 if (CurLSI->CallOperator->isConst())
949 ClassType.addConst();
950 return ASTCtx.getPointerType(ClassType);
951 }
952 }
953
954 // 2) We've run out of ScopeInfos but check if CurDC is a lambda (which can
955 // happen during instantiation of its nested generic lambda call operator)
956 if (isLambdaCallOperator(CurDC)) {
957 assert(CurLSI && "While computing 'this' capture-type for a generic "(static_cast <bool> (CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? void
(0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 958, __extension__ __PRETTY_FUNCTION__))
958 "lambda, we must have a corresponding LambdaScopeInfo")(static_cast <bool> (CurLSI && "While computing 'this' capture-type for a generic "
"lambda, we must have a corresponding LambdaScopeInfo") ? void
(0) : __assert_fail ("CurLSI && \"While computing 'this' capture-type for a generic \" \"lambda, we must have a corresponding LambdaScopeInfo\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 958, __extension__ __PRETTY_FUNCTION__))
;
959 assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) &&(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
960 "While computing 'this' capture-type for a generic lambda, when we "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
961 "run out of enclosing LSI's, yet the enclosing DC is a "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
962 "lambda-call-operator we must be (i.e. Current LSI) in a generic "(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
963 "lambda call oeprator")(static_cast <bool> (isGenericLambdaCallOperatorSpecialization
(CurLSI->CallOperator) && "While computing 'this' capture-type for a generic lambda, when we "
"run out of enclosing LSI's, yet the enclosing DC is a " "lambda-call-operator we must be (i.e. Current LSI) in a generic "
"lambda call oeprator") ? void (0) : __assert_fail ("isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && \"While computing 'this' capture-type for a generic lambda, when we \" \"run out of enclosing LSI's, yet the enclosing DC is a \" \"lambda-call-operator we must be (i.e. Current LSI) in a generic \" \"lambda call oeprator\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 963, __extension__ __PRETTY_FUNCTION__))
;
964 assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator))(static_cast <bool> (CurDC == getLambdaAwareParentOfDeclContext
(CurLSI->CallOperator)) ? void (0) : __assert_fail ("CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 964, __extension__ __PRETTY_FUNCTION__))
;
965
966 auto IsThisCaptured =
967 [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) {
968 IsConst = false;
969 IsByCopy = false;
970 for (auto &&C : Closure->captures()) {
971 if (C.capturesThis()) {
972 if (C.getCaptureKind() == LCK_StarThis)
973 IsByCopy = true;
974 if (Closure->getLambdaCallOperator()->isConst())
975 IsConst = true;
976 return true;
977 }
978 }
979 return false;
980 };
981
982 bool IsByCopyCapture = false;
983 bool IsConstCapture = false;
984 CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent());
985 while (Closure &&
986 IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) {
987 if (IsByCopyCapture) {
988 ClassType.removeLocalCVRQualifiers(Qualifiers::CVRMask);
989 if (IsConstCapture)
990 ClassType.addConst();
991 return ASTCtx.getPointerType(ClassType);
992 }
993 Closure = isLambdaCallOperator(Closure->getParent())
994 ? cast<CXXRecordDecl>(Closure->getParent()->getParent())
995 : nullptr;
996 }
997 }
998 return ASTCtx.getPointerType(ClassType);
999}
1000
1001QualType Sema::getCurrentThisType() {
1002 DeclContext *DC = getFunctionLevelDeclContext();
1003 QualType ThisTy = CXXThisTypeOverride;
1004
1005 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
1006 if (method && method->isInstance())
1007 ThisTy = method->getThisType(Context);
1008 }
1009
1010 if (ThisTy.isNull() && isLambdaCallOperator(CurContext) &&
1011 inTemplateInstantiation()) {
1012
1013 assert(isa<CXXRecordDecl>(DC) &&(static_cast <bool> (isa<CXXRecordDecl>(DC) &&
"Trying to get 'this' type from static method?") ? void (0) :
__assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1014, __extension__ __PRETTY_FUNCTION__))
1014 "Trying to get 'this' type from static method?")(static_cast <bool> (isa<CXXRecordDecl>(DC) &&
"Trying to get 'this' type from static method?") ? void (0) :
__assert_fail ("isa<CXXRecordDecl>(DC) && \"Trying to get 'this' type from static method?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1014, __extension__ __PRETTY_FUNCTION__))
;
1015
1016 // This is a lambda call operator that is being instantiated as a default
1017 // initializer. DC must point to the enclosing class type, so we can recover
1018 // the 'this' type from it.
1019
1020 QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC));
1021 // There are no cv-qualifiers for 'this' within default initializers,
1022 // per [expr.prim.general]p4.
1023 ThisTy = Context.getPointerType(ClassTy);
1024 }
1025
1026 // If we are within a lambda's call operator, the cv-qualifiers of 'this'
1027 // might need to be adjusted if the lambda or any of its enclosing lambda's
1028 // captures '*this' by copy.
1029 if (!ThisTy.isNull() && isLambdaCallOperator(CurContext))
1030 return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy,
1031 CurContext, Context);
1032 return ThisTy;
1033}
1034
1035Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
1036 Decl *ContextDecl,
1037 unsigned CXXThisTypeQuals,
1038 bool Enabled)
1039 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
1040{
1041 if (!Enabled || !ContextDecl)
1042 return;
1043
1044 CXXRecordDecl *Record = nullptr;
1045 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
1046 Record = Template->getTemplatedDecl();
1047 else
1048 Record = cast<CXXRecordDecl>(ContextDecl);
1049
1050 // We care only for CVR qualifiers here, so cut everything else.
1051 CXXThisTypeQuals &= Qualifiers::FastMask;
1052 S.CXXThisTypeOverride
1053 = S.Context.getPointerType(
1054 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
1055
1056 this->Enabled = true;
1057}
1058
1059
1060Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
1061 if (Enabled) {
1062 S.CXXThisTypeOverride = OldCXXThisTypeOverride;
1063 }
1064}
1065
1066static Expr *captureThis(Sema &S, ASTContext &Context, RecordDecl *RD,
1067 QualType ThisTy, SourceLocation Loc,
1068 const bool ByCopy) {
1069
1070 QualType AdjustedThisTy = ThisTy;
1071 // The type of the corresponding data member (not a 'this' pointer if 'by
1072 // copy').
1073 QualType CaptureThisFieldTy = ThisTy;
1074 if (ByCopy) {
1075 // If we are capturing the object referred to by '*this' by copy, ignore any
1076 // cv qualifiers inherited from the type of the member function for the type
1077 // of the closure-type's corresponding data member and any use of 'this'.
1078 CaptureThisFieldTy = ThisTy->getPointeeType();
1079 CaptureThisFieldTy.removeLocalCVRQualifiers(Qualifiers::CVRMask);
1080 AdjustedThisTy = Context.getPointerType(CaptureThisFieldTy);
1081 }
1082
1083 FieldDecl *Field = FieldDecl::Create(
1084 Context, RD, Loc, Loc, nullptr, CaptureThisFieldTy,
1085 Context.getTrivialTypeSourceInfo(CaptureThisFieldTy, Loc), nullptr, false,
1086 ICIS_NoInit);
1087
1088 Field->setImplicit(true);
1089 Field->setAccess(AS_private);
1090 RD->addDecl(Field);
1091 Expr *This =
1092 new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/ true);
1093 if (ByCopy) {
1094 Expr *StarThis = S.CreateBuiltinUnaryOp(Loc,
1095 UO_Deref,
1096 This).get();
1097 InitializedEntity Entity = InitializedEntity::InitializeLambdaCapture(
1098 nullptr, CaptureThisFieldTy, Loc);
1099 InitializationKind InitKind = InitializationKind::CreateDirect(Loc, Loc, Loc);
1100 InitializationSequence Init(S, Entity, InitKind, StarThis);
1101 ExprResult ER = Init.Perform(S, Entity, InitKind, StarThis);
1102 if (ER.isInvalid()) return nullptr;
1103 return ER.get();
1104 }
1105 return This;
1106}
1107
1108bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit,
1109 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt,
1110 const bool ByCopy) {
1111 // We don't need to capture this in an unevaluated context.
1112 if (isUnevaluatedContext() && !Explicit)
1113 return true;
1114
1115 assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value")(static_cast <bool> ((!ByCopy || Explicit) && "cannot implicitly capture *this by value"
) ? void (0) : __assert_fail ("(!ByCopy || Explicit) && \"cannot implicitly capture *this by value\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1115, __extension__ __PRETTY_FUNCTION__))
;
1116
1117 const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
1118 ? *FunctionScopeIndexToStopAt
1119 : FunctionScopes.size() - 1;
1120
1121 // Check that we can capture the *enclosing object* (referred to by '*this')
1122 // by the capturing-entity/closure (lambda/block/etc) at
1123 // MaxFunctionScopesIndex-deep on the FunctionScopes stack.
1124
1125 // Note: The *enclosing object* can only be captured by-value by a
1126 // closure that is a lambda, using the explicit notation:
1127 // [*this] { ... }.
1128 // Every other capture of the *enclosing object* results in its by-reference
1129 // capture.
1130
1131 // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes
1132 // stack), we can capture the *enclosing object* only if:
1133 // - 'L' has an explicit byref or byval capture of the *enclosing object*
1134 // - or, 'L' has an implicit capture.
1135 // AND
1136 // -- there is no enclosing closure
1137 // -- or, there is some enclosing closure 'E' that has already captured the
1138 // *enclosing object*, and every intervening closure (if any) between 'E'
1139 // and 'L' can implicitly capture the *enclosing object*.
1140 // -- or, every enclosing closure can implicitly capture the
1141 // *enclosing object*
1142
1143
1144 unsigned NumCapturingClosures = 0;
1145 for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) {
1146 if (CapturingScopeInfo *CSI =
1147 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
1148 if (CSI->CXXThisCaptureIndex != 0) {
1149 // 'this' is already being captured; there isn't anything more to do.
1150 CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose);
1151 break;
1152 }
1153 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
1154 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
1155 // This context can't implicitly capture 'this'; fail out.
1156 if (BuildAndDiagnose)
1157 Diag(Loc, diag::err_this_capture)
1158 << (Explicit && idx == MaxFunctionScopesIndex);
1159 return true;
1160 }
1161 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
1162 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
1163 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
1164 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
1165 (Explicit && idx == MaxFunctionScopesIndex)) {
1166 // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first
1167 // iteration through can be an explicit capture, all enclosing closures,
1168 // if any, must perform implicit captures.
1169
1170 // This closure can capture 'this'; continue looking upwards.
1171 NumCapturingClosures++;
1172 continue;
1173 }
1174 // This context can't implicitly capture 'this'; fail out.
1175 if (BuildAndDiagnose)
1176 Diag(Loc, diag::err_this_capture)
1177 << (Explicit && idx == MaxFunctionScopesIndex);
1178 return true;
1179 }
1180 break;
1181 }
1182 if (!BuildAndDiagnose) return false;
1183
1184 // If we got here, then the closure at MaxFunctionScopesIndex on the
1185 // FunctionScopes stack, can capture the *enclosing object*, so capture it
1186 // (including implicit by-reference captures in any enclosing closures).
1187
1188 // In the loop below, respect the ByCopy flag only for the closure requesting
1189 // the capture (i.e. first iteration through the loop below). Ignore it for
1190 // all enclosing closure's up to NumCapturingClosures (since they must be
1191 // implicitly capturing the *enclosing object* by reference (see loop
1192 // above)).
1193 assert((!ByCopy ||(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1196, __extension__ __PRETTY_FUNCTION__))
1194 dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) &&(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1196, __extension__ __PRETTY_FUNCTION__))
1195 "Only a lambda can capture the enclosing object (referred to by "(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1196, __extension__ __PRETTY_FUNCTION__))
1196 "*this) by copy")(static_cast <bool> ((!ByCopy || dyn_cast<LambdaScopeInfo
>(FunctionScopes[MaxFunctionScopesIndex])) && "Only a lambda can capture the enclosing object (referred to by "
"*this) by copy") ? void (0) : __assert_fail ("(!ByCopy || dyn_cast<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && \"Only a lambda can capture the enclosing object (referred to by \" \"*this) by copy\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1196, __extension__ __PRETTY_FUNCTION__))
;
1197 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
1198 // contexts.
1199 QualType ThisTy = getCurrentThisType();
1200 for (int idx = MaxFunctionScopesIndex; NumCapturingClosures;
1201 --idx, --NumCapturingClosures) {
1202 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
1203 Expr *ThisExpr = nullptr;
1204
1205 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
1206 // For lambda expressions, build a field and an initializing expression,
1207 // and capture the *enclosing object* by copy only if this is the first
1208 // iteration.
1209 ThisExpr = captureThis(*this, Context, LSI->Lambda, ThisTy, Loc,
1210 ByCopy && idx == MaxFunctionScopesIndex);
1211
1212 } else if (CapturedRegionScopeInfo *RSI
1213 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
1214 ThisExpr =
1215 captureThis(*this, Context, RSI->TheRecordDecl, ThisTy, Loc,
1216 false/*ByCopy*/);
1217
1218 bool isNested = NumCapturingClosures > 1;
1219 CSI->addThisCapture(isNested, Loc, ThisExpr, ByCopy);
1220 }
1221 return false;
1222}
1223
1224ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
1225 /// C++ 9.3.2: In the body of a non-static member function, the keyword this
1226 /// is a non-lvalue expression whose value is the address of the object for
1227 /// which the function is called.
1228
1229 QualType ThisTy = getCurrentThisType();
1230 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
1231
1232 CheckCXXThisCapture(Loc);
1233 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
1234}
1235
1236bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
1237 // If we're outside the body of a member function, then we'll have a specified
1238 // type for 'this'.
1239 if (CXXThisTypeOverride.isNull())
1240 return false;
1241
1242 // Determine whether we're looking into a class that's currently being
1243 // defined.
1244 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
1245 return Class && Class->isBeingDefined();
1246}
1247
1248/// Parse construction of a specified type.
1249/// Can be interpreted either as function-style casting ("int(x)")
1250/// or class type construction ("ClassType(x,y,z)")
1251/// or creation of a value-initialized type ("int()").
1252ExprResult
1253Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
1254 SourceLocation LParenOrBraceLoc,
1255 MultiExprArg exprs,
1256 SourceLocation RParenOrBraceLoc,
1257 bool ListInitialization) {
1258 if (!TypeRep)
1259 return ExprError();
1260
1261 TypeSourceInfo *TInfo;
1262 QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
1263 if (!TInfo)
1264 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
1265
1266 auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs,
1267 RParenOrBraceLoc, ListInitialization);
1268 // Avoid creating a non-type-dependent expression that contains typos.
1269 // Non-type-dependent expressions are liable to be discarded without
1270 // checking for embedded typos.
1271 if (!Result.isInvalid() && Result.get()->isInstantiationDependent() &&
1272 !Result.get()->isTypeDependent())
1273 Result = CorrectDelayedTyposInExpr(Result.get());
1274 return Result;
1275}
1276
1277ExprResult
1278Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
1279 SourceLocation LParenOrBraceLoc,
1280 MultiExprArg Exprs,
1281 SourceLocation RParenOrBraceLoc,
1282 bool ListInitialization) {
1283 QualType Ty = TInfo->getType();
1284 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
1285
1286 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
1287 // FIXME: CXXUnresolvedConstructExpr does not model list-initialization
1288 // directly. We work around this by dropping the locations of the braces.
1289 SourceRange Locs = ListInitialization
1290 ? SourceRange()
1291 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1292 return CXXUnresolvedConstructExpr::Create(Context, TInfo, Locs.getBegin(),
1293 Exprs, Locs.getEnd());
1294 }
1295
1296 assert((!ListInitialization ||(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1298, __extension__ __PRETTY_FUNCTION__))
1297 (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) &&(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1298, __extension__ __PRETTY_FUNCTION__))
1298 "List initialization must have initializer list as expression.")(static_cast <bool> ((!ListInitialization || (Exprs.size
() == 1 && isa<InitListExpr>(Exprs[0]))) &&
"List initialization must have initializer list as expression."
) ? void (0) : __assert_fail ("(!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) && \"List initialization must have initializer list as expression.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1298, __extension__ __PRETTY_FUNCTION__))
;
1299 SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc);
1300
1301 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
1302 InitializationKind Kind =
1303 Exprs.size()
1304 ? ListInitialization
1305 ? InitializationKind::CreateDirectList(
1306 TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc)
1307 : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc,
1308 RParenOrBraceLoc)
1309 : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc,
1310 RParenOrBraceLoc);
1311
1312 // C++1z [expr.type.conv]p1:
1313 // If the type is a placeholder for a deduced class type, [...perform class
1314 // template argument deduction...]
1315 DeducedType *Deduced = Ty->getContainedDeducedType();
1316 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1317 Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity,
1318 Kind, Exprs);
1319 if (Ty.isNull())
1320 return ExprError();
1321 Entity = InitializedEntity::InitializeTemporary(TInfo, Ty);
1322 }
1323
1324 // C++ [expr.type.conv]p1:
1325 // If the expression list is a parenthesized single expression, the type
1326 // conversion expression is equivalent (in definedness, and if defined in
1327 // meaning) to the corresponding cast expression.
1328 if (Exprs.size() == 1 && !ListInitialization &&
1329 !isa<InitListExpr>(Exprs[0])) {
1330 Expr *Arg = Exprs[0];
1331 return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg,
1332 RParenOrBraceLoc);
1333 }
1334
1335 // For an expression of the form T(), T shall not be an array type.
1336 QualType ElemTy = Ty;
1337 if (Ty->isArrayType()) {
1338 if (!ListInitialization)
1339 return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type)
1340 << FullRange);
1341 ElemTy = Context.getBaseElementType(Ty);
1342 }
1343
1344 // There doesn't seem to be an explicit rule against this but sanity demands
1345 // we only construct objects with object types.
1346 if (Ty->isFunctionType())
1347 return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type)
1348 << Ty << FullRange);
1349
1350 // C++17 [expr.type.conv]p2:
1351 // If the type is cv void and the initializer is (), the expression is a
1352 // prvalue of the specified type that performs no initialization.
1353 if (!Ty->isVoidType() &&
1354 RequireCompleteType(TyBeginLoc, ElemTy,
1355 diag::err_invalid_incomplete_type_use, FullRange))
1356 return ExprError();
1357
1358 // Otherwise, the expression is a prvalue of the specified type whose
1359 // result object is direct-initialized (11.6) with the initializer.
1360 InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
1361 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
1362
1363 if (Result.isInvalid())
1364 return Result;
1365
1366 Expr *Inner = Result.get();
1367 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
1368 Inner = BTE->getSubExpr();
1369 if (!isa<CXXTemporaryObjectExpr>(Inner) &&
1370 !isa<CXXScalarValueInitExpr>(Inner)) {
1371 // If we created a CXXTemporaryObjectExpr, that node also represents the
1372 // functional cast. Otherwise, create an explicit cast to represent
1373 // the syntactic form of a functional-style cast that was used here.
1374 //
1375 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr
1376 // would give a more consistent AST representation than using a
1377 // CXXTemporaryObjectExpr. It's also weird that the functional cast
1378 // is sometimes handled by initialization and sometimes not.
1379 QualType ResultType = Result.get()->getType();
1380 SourceRange Locs = ListInitialization
1381 ? SourceRange()
1382 : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc);
1383 Result = CXXFunctionalCastExpr::Create(
1384 Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp,
1385 Result.get(), /*Path=*/nullptr, Locs.getBegin(), Locs.getEnd());
1386 }
1387
1388 return Result;
1389}
1390
1391/// \brief Determine whether the given function is a non-placement
1392/// deallocation function.
1393static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1394 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1395 return Method->isUsualDeallocationFunction();
1396
1397 if (FD->getOverloadedOperator() != OO_Delete &&
1398 FD->getOverloadedOperator() != OO_Array_Delete)
1399 return false;
1400
1401 unsigned UsualParams = 1;
1402
1403 if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() &&
1404 S.Context.hasSameUnqualifiedType(
1405 FD->getParamDecl(UsualParams)->getType(),
1406 S.Context.getSizeType()))
1407 ++UsualParams;
1408
1409 if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() &&
1410 S.Context.hasSameUnqualifiedType(
1411 FD->getParamDecl(UsualParams)->getType(),
1412 S.Context.getTypeDeclType(S.getStdAlignValT())))
1413 ++UsualParams;
1414
1415 return UsualParams == FD->getNumParams();
1416}
1417
1418namespace {
1419 struct UsualDeallocFnInfo {
1420 UsualDeallocFnInfo() : Found(), FD(nullptr) {}
1421 UsualDeallocFnInfo(Sema &S, DeclAccessPair Found)
1422 : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())),
1423 Destroying(false), HasSizeT(false), HasAlignValT(false),
1424 CUDAPref(Sema::CFP_Native) {
1425 // A function template declaration is never a usual deallocation function.
1426 if (!FD)
1427 return;
1428 unsigned NumBaseParams = 1;
1429 if (FD->isDestroyingOperatorDelete()) {
1430 Destroying = true;
1431 ++NumBaseParams;
1432 }
1433 if (FD->getNumParams() == NumBaseParams + 2)
1434 HasAlignValT = HasSizeT = true;
1435 else if (FD->getNumParams() == NumBaseParams + 1) {
1436 HasSizeT = FD->getParamDecl(NumBaseParams)->getType()->isIntegerType();
1437 HasAlignValT = !HasSizeT;
1438 }
1439
1440 // In CUDA, determine how much we'd like / dislike to call this.
1441 if (S.getLangOpts().CUDA)
1442 if (auto *Caller = dyn_cast<FunctionDecl>(S.CurContext))
1443 CUDAPref = S.IdentifyCUDAPreference(Caller, FD);
1444 }
1445
1446 explicit operator bool() const { return FD; }
1447
1448 bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize,
1449 bool WantAlign) const {
1450 // C++ P0722:
1451 // A destroying operator delete is preferred over a non-destroying
1452 // operator delete.
1453 if (Destroying != Other.Destroying)
1454 return Destroying;
1455
1456 // C++17 [expr.delete]p10:
1457 // If the type has new-extended alignment, a function with a parameter
1458 // of type std::align_val_t is preferred; otherwise a function without
1459 // such a parameter is preferred
1460 if (HasAlignValT != Other.HasAlignValT)
1461 return HasAlignValT == WantAlign;
1462
1463 if (HasSizeT != Other.HasSizeT)
1464 return HasSizeT == WantSize;
1465
1466 // Use CUDA call preference as a tiebreaker.
1467 return CUDAPref > Other.CUDAPref;
1468 }
1469
1470 DeclAccessPair Found;
1471 FunctionDecl *FD;
1472 bool Destroying, HasSizeT, HasAlignValT;
1473 Sema::CUDAFunctionPreference CUDAPref;
1474 };
1475}
1476
1477/// Determine whether a type has new-extended alignment. This may be called when
1478/// the type is incomplete (for a delete-expression with an incomplete pointee
1479/// type), in which case it will conservatively return false if the alignment is
1480/// not known.
1481static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) {
1482 return S.getLangOpts().AlignedAllocation &&
1483 S.getASTContext().getTypeAlignIfKnown(AllocType) >
1484 S.getASTContext().getTargetInfo().getNewAlign();
1485}
1486
1487/// Select the correct "usual" deallocation function to use from a selection of
1488/// deallocation functions (either global or class-scope).
1489static UsualDeallocFnInfo resolveDeallocationOverload(
1490 Sema &S, LookupResult &R, bool WantSize, bool WantAlign,
1491 llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) {
1492 UsualDeallocFnInfo Best;
1493
1494 for (auto I = R.begin(), E = R.end(); I != E; ++I) {
1495 UsualDeallocFnInfo Info(S, I.getPair());
1496 if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) ||
1497 Info.CUDAPref == Sema::CFP_Never)
1498 continue;
1499
1500 if (!Best) {
1501 Best = Info;
1502 if (BestFns)
1503 BestFns->push_back(Info);
1504 continue;
1505 }
1506
1507 if (Best.isBetterThan(Info, WantSize, WantAlign))
1508 continue;
1509
1510 // If more than one preferred function is found, all non-preferred
1511 // functions are eliminated from further consideration.
1512 if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign))
1513 BestFns->clear();
1514
1515 Best = Info;
1516 if (BestFns)
1517 BestFns->push_back(Info);
1518 }
1519
1520 return Best;
1521}
1522
1523/// Determine whether a given type is a class for which 'delete[]' would call
1524/// a member 'operator delete[]' with a 'size_t' parameter. This implies that
1525/// we need to store the array size (even if the type is
1526/// trivially-destructible).
1527static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
1528 QualType allocType) {
1529 const RecordType *record =
1530 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
1531 if (!record) return false;
1532
1533 // Try to find an operator delete[] in class scope.
1534
1535 DeclarationName deleteName =
1536 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
1537 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
1538 S.LookupQualifiedName(ops, record->getDecl());
1539
1540 // We're just doing this for information.
1541 ops.suppressDiagnostics();
1542
1543 // Very likely: there's no operator delete[].
1544 if (ops.empty()) return false;
1545
1546 // If it's ambiguous, it should be illegal to call operator delete[]
1547 // on this thing, so it doesn't matter if we allocate extra space or not.
1548 if (ops.isAmbiguous()) return false;
1549
1550 // C++17 [expr.delete]p10:
1551 // If the deallocation functions have class scope, the one without a
1552 // parameter of type std::size_t is selected.
1553 auto Best = resolveDeallocationOverload(
1554 S, ops, /*WantSize*/false,
1555 /*WantAlign*/hasNewExtendedAlignment(S, allocType));
1556 return Best && Best.HasSizeT;
1557}
1558
1559/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1560///
1561/// E.g.:
1562/// @code new (memory) int[size][4] @endcode
1563/// or
1564/// @code ::new Foo(23, "hello") @endcode
1565///
1566/// \param StartLoc The first location of the expression.
1567/// \param UseGlobal True if 'new' was prefixed with '::'.
1568/// \param PlacementLParen Opening paren of the placement arguments.
1569/// \param PlacementArgs Placement new arguments.
1570/// \param PlacementRParen Closing paren of the placement arguments.
1571/// \param TypeIdParens If the type is in parens, the source range.
1572/// \param D The type to be allocated, as well as array dimensions.
1573/// \param Initializer The initializing expression or initializer-list, or null
1574/// if there is none.
1575ExprResult
1576Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1577 SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1578 SourceLocation PlacementRParen, SourceRange TypeIdParens,
1579 Declarator &D, Expr *Initializer) {
1580 Expr *ArraySize = nullptr;
1581 // If the specified type is an array, unwrap it and save the expression.
1582 if (D.getNumTypeObjects() > 0 &&
1583 D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1584 DeclaratorChunk &Chunk = D.getTypeObject(0);
1585 if (D.getDeclSpec().hasAutoTypeSpec())
1586 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1587 << D.getSourceRange());
1588 if (Chunk.Arr.hasStatic)
1589 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1590 << D.getSourceRange());
1591 if (!Chunk.Arr.NumElts)
1592 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1593 << D.getSourceRange());
1594
1595 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1596 D.DropFirstTypeObject();
1597 }
1598
1599 // Every dimension shall be of constant size.
1600 if (ArraySize) {
1601 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1602 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1603 break;
1604
1605 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1606 if (Expr *NumElts = (Expr *)Array.NumElts) {
1607 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1608 if (getLangOpts().CPlusPlus14) {
1609 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1610 // shall be a converted constant expression (5.19) of type std::size_t
1611 // and shall evaluate to a strictly positive value.
1612 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1613 assert(IntWidth && "Builtin type of size 0?")(static_cast <bool> (IntWidth && "Builtin type of size 0?"
) ? void (0) : __assert_fail ("IntWidth && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1613, __extension__ __PRETTY_FUNCTION__))
;
1614 llvm::APSInt Value(IntWidth);
1615 Array.NumElts
1616 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1617 CCEK_NewExpr)
1618 .get();
1619 } else {
1620 Array.NumElts
1621 = VerifyIntegerConstantExpression(NumElts, nullptr,
1622 diag::err_new_array_nonconst)
1623 .get();
1624 }
1625 if (!Array.NumElts)
1626 return ExprError();
1627 }
1628 }
1629 }
1630 }
1631
1632 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1633 QualType AllocType = TInfo->getType();
1634 if (D.isInvalidType())
1635 return ExprError();
1636
1637 SourceRange DirectInitRange;
1638 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1639 DirectInitRange = List->getSourceRange();
1640
1641 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1642 PlacementLParen,
1643 PlacementArgs,
1644 PlacementRParen,
1645 TypeIdParens,
1646 AllocType,
1647 TInfo,
1648 ArraySize,
1649 DirectInitRange,
1650 Initializer);
1651}
1652
1653static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1654 Expr *Init) {
1655 if (!Init)
1656 return true;
1657 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1658 return PLE->getNumExprs() == 0;
1659 if (isa<ImplicitValueInitExpr>(Init))
1660 return true;
1661 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1662 return !CCE->isListInitialization() &&
1663 CCE->getConstructor()->isDefaultConstructor();
1664 else if (Style == CXXNewExpr::ListInit) {
1665 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1666, __extension__ __PRETTY_FUNCTION__))
1666 "Shouldn't create list CXXConstructExprs for arrays.")(static_cast <bool> (isa<InitListExpr>(Init) &&
"Shouldn't create list CXXConstructExprs for arrays.") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"Shouldn't create list CXXConstructExprs for arrays.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1666, __extension__ __PRETTY_FUNCTION__))
;
1667 return true;
1668 }
1669 return false;
1670}
1671
1672// Emit a diagnostic if an aligned allocation/deallocation function that is not
1673// implemented in the standard library is selected.
1674static void diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD,
1675 SourceLocation Loc, bool IsDelete,
1676 Sema &S) {
1677 if (!S.getLangOpts().AlignedAllocationUnavailable)
1678 return;
1679
1680 // Return if there is a definition.
1681 if (FD.isDefined())
1682 return;
1683
1684 bool IsAligned = false;
1685 if (FD.isReplaceableGlobalAllocationFunction(&IsAligned) && IsAligned) {
1686 const llvm::Triple &T = S.getASTContext().getTargetInfo().getTriple();
1687 StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling(
1688 S.getASTContext().getTargetInfo().getPlatformName());
1689
1690 S.Diag(Loc, diag::warn_aligned_allocation_unavailable)
1691 << IsDelete << FD.getType().getAsString() << OSName
1692 << alignedAllocMinVersion(T.getOS()).getAsString();
1693 S.Diag(Loc, diag::note_silence_unligned_allocation_unavailable);
1694 }
1695}
1696
1697ExprResult
1698Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1699 SourceLocation PlacementLParen,
1700 MultiExprArg PlacementArgs,
1701 SourceLocation PlacementRParen,
1702 SourceRange TypeIdParens,
1703 QualType AllocType,
1704 TypeSourceInfo *AllocTypeInfo,
1705 Expr *ArraySize,
1706 SourceRange DirectInitRange,
1707 Expr *Initializer) {
1708 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1709 SourceLocation StartLoc = Range.getBegin();
1710
1711 CXXNewExpr::InitializationStyle initStyle;
1712 if (DirectInitRange.isValid()) {
1713 assert(Initializer && "Have parens but no initializer.")(static_cast <bool> (Initializer && "Have parens but no initializer."
) ? void (0) : __assert_fail ("Initializer && \"Have parens but no initializer.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1713, __extension__ __PRETTY_FUNCTION__))
;
1714 initStyle = CXXNewExpr::CallInit;
1715 } else if (Initializer && isa<InitListExpr>(Initializer))
1716 initStyle = CXXNewExpr::ListInit;
1717 else {
1718 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1720, __extension__ __PRETTY_FUNCTION__))
1719 isa<CXXConstructExpr>(Initializer)) &&(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1720, __extension__ __PRETTY_FUNCTION__))
1720 "Initializer expression that cannot have been implicitly created.")(static_cast <bool> ((!Initializer || isa<ImplicitValueInitExpr
>(Initializer) || isa<CXXConstructExpr>(Initializer)
) && "Initializer expression that cannot have been implicitly created."
) ? void (0) : __assert_fail ("(!Initializer || isa<ImplicitValueInitExpr>(Initializer) || isa<CXXConstructExpr>(Initializer)) && \"Initializer expression that cannot have been implicitly created.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1720, __extension__ __PRETTY_FUNCTION__))
;
1721 initStyle = CXXNewExpr::NoInit;
1722 }
1723
1724 Expr **Inits = &Initializer;
1725 unsigned NumInits = Initializer ? 1 : 0;
1726 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1727 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init")(static_cast <bool> (initStyle == CXXNewExpr::CallInit &&
"paren init for non-call init") ? void (0) : __assert_fail (
"initStyle == CXXNewExpr::CallInit && \"paren init for non-call init\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1727, __extension__ __PRETTY_FUNCTION__))
;
1728 Inits = List->getExprs();
1729 NumInits = List->getNumExprs();
1730 }
1731
1732 // C++11 [expr.new]p15:
1733 // A new-expression that creates an object of type T initializes that
1734 // object as follows:
1735 InitializationKind Kind
1736 // - If the new-initializer is omitted, the object is default-
1737 // initialized (8.5); if no initialization is performed,
1738 // the object has indeterminate value
1739 = initStyle == CXXNewExpr::NoInit
1740 ? InitializationKind::CreateDefault(TypeRange.getBegin())
1741 // - Otherwise, the new-initializer is interpreted according to the
1742 // initialization rules of 8.5 for direct-initialization.
1743 : initStyle == CXXNewExpr::ListInit
1744 ? InitializationKind::CreateDirectList(TypeRange.getBegin(),
1745 Initializer->getLocStart(),
1746 Initializer->getLocEnd())
1747 : InitializationKind::CreateDirect(TypeRange.getBegin(),
1748 DirectInitRange.getBegin(),
1749 DirectInitRange.getEnd());
1750
1751 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1752 auto *Deduced = AllocType->getContainedDeducedType();
1753 if (Deduced && isa<DeducedTemplateSpecializationType>(Deduced)) {
1754 if (ArraySize)
1755 return ExprError(Diag(ArraySize->getExprLoc(),
1756 diag::err_deduced_class_template_compound_type)
1757 << /*array*/ 2 << ArraySize->getSourceRange());
1758
1759 InitializedEntity Entity
1760 = InitializedEntity::InitializeNew(StartLoc, AllocType);
1761 AllocType = DeduceTemplateSpecializationFromInitializer(
1762 AllocTypeInfo, Entity, Kind, MultiExprArg(Inits, NumInits));
1763 if (AllocType.isNull())
1764 return ExprError();
1765 } else if (Deduced) {
1766 bool Braced = (initStyle == CXXNewExpr::ListInit);
1767 if (NumInits == 1) {
1768 if (auto p = dyn_cast_or_null<InitListExpr>(Inits[0])) {
1769 Inits = p->getInits();
1770 NumInits = p->getNumInits();
1771 Braced = true;
1772 }
1773 }
1774
1775 if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1776 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1777 << AllocType << TypeRange);
1778 if (NumInits > 1) {
1779 Expr *FirstBad = Inits[1];
1780 return ExprError(Diag(FirstBad->getLocStart(),
1781 diag::err_auto_new_ctor_multiple_expressions)
1782 << AllocType << TypeRange);
1783 }
1784 if (Braced && !getLangOpts().CPlusPlus17)
1785 Diag(Initializer->getLocStart(), diag::ext_auto_new_list_init)
1786 << AllocType << TypeRange;
1787 Expr *Deduce = Inits[0];
1788 QualType DeducedType;
1789 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1790 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1791 << AllocType << Deduce->getType()
1792 << TypeRange << Deduce->getSourceRange());
1793 if (DeducedType.isNull())
1794 return ExprError();
1795 AllocType = DeducedType;
1796 }
1797
1798 // Per C++0x [expr.new]p5, the type being constructed may be a
1799 // typedef of an array type.
1800 if (!ArraySize) {
1801 if (const ConstantArrayType *Array
1802 = Context.getAsConstantArrayType(AllocType)) {
1803 ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1804 Context.getSizeType(),
1805 TypeRange.getEnd());
1806 AllocType = Array->getElementType();
1807 }
1808 }
1809
1810 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1811 return ExprError();
1812
1813 if (initStyle == CXXNewExpr::ListInit &&
1814 isStdInitializerList(AllocType, nullptr)) {
1815 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1816 diag::warn_dangling_std_initializer_list)
1817 << /*at end of FE*/0 << Inits[0]->getSourceRange();
1818 }
1819
1820 // In ARC, infer 'retaining' for the allocated
1821 if (getLangOpts().ObjCAutoRefCount &&
1822 AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1823 AllocType->isObjCLifetimeType()) {
1824 AllocType = Context.getLifetimeQualifiedType(AllocType,
1825 AllocType->getObjCARCImplicitLifetime());
1826 }
1827
1828 QualType ResultType = Context.getPointerType(AllocType);
1829
1830 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1831 ExprResult result = CheckPlaceholderExpr(ArraySize);
1832 if (result.isInvalid()) return ExprError();
1833 ArraySize = result.get();
1834 }
1835 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1836 // integral or enumeration type with a non-negative value."
1837 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1838 // enumeration type, or a class type for which a single non-explicit
1839 // conversion function to integral or unscoped enumeration type exists.
1840 // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1841 // std::size_t.
1842 llvm::Optional<uint64_t> KnownArraySize;
1843 if (ArraySize && !ArraySize->isTypeDependent()) {
1844 ExprResult ConvertedSize;
1845 if (getLangOpts().CPlusPlus14) {
1846 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?")(static_cast <bool> (Context.getTargetInfo().getIntWidth
() && "Builtin type of size 0?") ? void (0) : __assert_fail
("Context.getTargetInfo().getIntWidth() && \"Builtin type of size 0?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 1846, __extension__ __PRETTY_FUNCTION__))
;
1847
1848 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1849 AA_Converting);
1850
1851 if (!ConvertedSize.isInvalid() &&
1852 ArraySize->getType()->getAs<RecordType>())
1853 // Diagnose the compatibility of this conversion.
1854 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1855 << ArraySize->getType() << 0 << "'size_t'";
1856 } else {
1857 class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1858 protected:
1859 Expr *ArraySize;
1860
1861 public:
1862 SizeConvertDiagnoser(Expr *ArraySize)
1863 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1864 ArraySize(ArraySize) {}
1865
1866 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1867 QualType T) override {
1868 return S.Diag(Loc, diag::err_array_size_not_integral)
1869 << S.getLangOpts().CPlusPlus11 << T;
1870 }
1871
1872 SemaDiagnosticBuilder diagnoseIncomplete(
1873 Sema &S, SourceLocation Loc, QualType T) override {
1874 return S.Diag(Loc, diag::err_array_size_incomplete_type)
1875 << T << ArraySize->getSourceRange();
1876 }
1877
1878 SemaDiagnosticBuilder diagnoseExplicitConv(
1879 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1880 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1881 }
1882
1883 SemaDiagnosticBuilder noteExplicitConv(
1884 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1885 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1886 << ConvTy->isEnumeralType() << ConvTy;
1887 }
1888
1889 SemaDiagnosticBuilder diagnoseAmbiguous(
1890 Sema &S, SourceLocation Loc, QualType T) override {
1891 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1892 }
1893
1894 SemaDiagnosticBuilder noteAmbiguous(
1895 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1896 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1897 << ConvTy->isEnumeralType() << ConvTy;
1898 }
1899
1900 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1901 QualType T,
1902 QualType ConvTy) override {
1903 return S.Diag(Loc,
1904 S.getLangOpts().CPlusPlus11
1905 ? diag::warn_cxx98_compat_array_size_conversion
1906 : diag::ext_array_size_conversion)
1907 << T << ConvTy->isEnumeralType() << ConvTy;
1908 }
1909 } SizeDiagnoser(ArraySize);
1910
1911 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1912 SizeDiagnoser);
1913 }
1914 if (ConvertedSize.isInvalid())
1915 return ExprError();
1916
1917 ArraySize = ConvertedSize.get();
1918 QualType SizeType = ArraySize->getType();
1919
1920 if (!SizeType->isIntegralOrUnscopedEnumerationType())
1921 return ExprError();
1922
1923 // C++98 [expr.new]p7:
1924 // The expression in a direct-new-declarator shall have integral type
1925 // with a non-negative value.
1926 //
1927 // Let's see if this is a constant < 0. If so, we reject it out of hand,
1928 // per CWG1464. Otherwise, if it's not a constant, we must have an
1929 // unparenthesized array type.
1930 if (!ArraySize->isValueDependent()) {
1931 llvm::APSInt Value;
1932 // We've already performed any required implicit conversion to integer or
1933 // unscoped enumeration type.
1934 // FIXME: Per CWG1464, we are required to check the value prior to
1935 // converting to size_t. This will never find a negative array size in
1936 // C++14 onwards, because Value is always unsigned here!
1937 if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1938 if (Value.isSigned() && Value.isNegative()) {
1939 return ExprError(Diag(ArraySize->getLocStart(),
1940 diag::err_typecheck_negative_array_size)
1941 << ArraySize->getSourceRange());
1942 }
1943
1944 if (!AllocType->isDependentType()) {
1945 unsigned ActiveSizeBits =
1946 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1947 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context))
1948 return ExprError(Diag(ArraySize->getLocStart(),
1949 diag::err_array_too_large)
1950 << Value.toString(10)
1951 << ArraySize->getSourceRange());
1952 }
1953
1954 KnownArraySize = Value.getZExtValue();
1955 } else if (TypeIdParens.isValid()) {
1956 // Can't have dynamic array size when the type-id is in parentheses.
1957 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1958 << ArraySize->getSourceRange()
1959 << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1960 << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1961
1962 TypeIdParens = SourceRange();
1963 }
1964 }
1965
1966 // Note that we do *not* convert the argument in any way. It can
1967 // be signed, larger than size_t, whatever.
1968 }
1969
1970 FunctionDecl *OperatorNew = nullptr;
1971 FunctionDecl *OperatorDelete = nullptr;
1972 unsigned Alignment =
1973 AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType);
1974 unsigned NewAlignment = Context.getTargetInfo().getNewAlign();
1975 bool PassAlignment = getLangOpts().AlignedAllocation &&
1976 Alignment > NewAlignment;
1977
1978 AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both;
1979 if (!AllocType->isDependentType() &&
1980 !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1981 FindAllocationFunctions(StartLoc,
1982 SourceRange(PlacementLParen, PlacementRParen),
1983 Scope, Scope, AllocType, ArraySize, PassAlignment,
1984 PlacementArgs, OperatorNew, OperatorDelete))
1985 return ExprError();
1986
1987 // If this is an array allocation, compute whether the usual array
1988 // deallocation function for the type has a size_t parameter.
1989 bool UsualArrayDeleteWantsSize = false;
1990 if (ArraySize && !AllocType->isDependentType())
1991 UsualArrayDeleteWantsSize =
1992 doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1993
1994 SmallVector<Expr *, 8> AllPlaceArgs;
1995 if (OperatorNew) {
1996 const FunctionProtoType *Proto =
1997 OperatorNew->getType()->getAs<FunctionProtoType>();
1998 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1999 : VariadicDoesNotApply;
2000
2001 // We've already converted the placement args, just fill in any default
2002 // arguments. Skip the first parameter because we don't have a corresponding
2003 // argument. Skip the second parameter too if we're passing in the
2004 // alignment; we've already filled it in.
2005 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto,
2006 PassAlignment ? 2 : 1, PlacementArgs,
2007 AllPlaceArgs, CallType))
2008 return ExprError();
2009
2010 if (!AllPlaceArgs.empty())
2011 PlacementArgs = AllPlaceArgs;
2012
2013 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
2014 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
2015
2016 // FIXME: Missing call to CheckFunctionCall or equivalent
2017
2018 // Warn if the type is over-aligned and is being allocated by (unaligned)
2019 // global operator new.
2020 if (PlacementArgs.empty() && !PassAlignment &&
2021 (OperatorNew->isImplicit() ||
2022 (OperatorNew->getLocStart().isValid() &&
2023 getSourceManager().isInSystemHeader(OperatorNew->getLocStart())))) {
2024 if (Alignment > NewAlignment)
2025 Diag(StartLoc, diag::warn_overaligned_type)
2026 << AllocType
2027 << unsigned(Alignment / Context.getCharWidth())
2028 << unsigned(NewAlignment / Context.getCharWidth());
2029 }
2030 }
2031
2032 // Array 'new' can't have any initializers except empty parentheses.
2033 // Initializer lists are also allowed, in C++11. Rely on the parser for the
2034 // dialect distinction.
2035 if (ArraySize && !isLegalArrayNewInitializer(initStyle, Initializer)) {
2036 SourceRange InitRange(Inits[0]->getLocStart(),
2037 Inits[NumInits - 1]->getLocEnd());
2038 Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
2039 return ExprError();
2040 }
2041
2042 // If we can perform the initialization, and we've not already done so,
2043 // do it now.
2044 if (!AllocType->isDependentType() &&
2045 !Expr::hasAnyTypeDependentArguments(
2046 llvm::makeArrayRef(Inits, NumInits))) {
2047 // The type we initialize is the complete type, including the array bound.
2048 QualType InitType;
2049 if (KnownArraySize)
2050 InitType = Context.getConstantArrayType(
2051 AllocType, llvm::APInt(Context.getTypeSize(Context.getSizeType()),
2052 *KnownArraySize),
2053 ArrayType::Normal, 0);
2054 else if (ArraySize)
2055 InitType =
2056 Context.getIncompleteArrayType(AllocType, ArrayType::Normal, 0);
2057 else
2058 InitType = AllocType;
2059
2060 InitializedEntity Entity
2061 = InitializedEntity::InitializeNew(StartLoc, InitType);
2062 InitializationSequence InitSeq(*this, Entity, Kind,
2063 MultiExprArg(Inits, NumInits));
2064 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
2065 MultiExprArg(Inits, NumInits));
2066 if (FullInit.isInvalid())
2067 return ExprError();
2068
2069 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
2070 // we don't want the initialized object to be destructed.
2071 // FIXME: We should not create these in the first place.
2072 if (CXXBindTemporaryExpr *Binder =
2073 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
2074 FullInit = Binder->getSubExpr();
2075
2076 Initializer = FullInit.get();
2077 }
2078
2079 // Mark the new and delete operators as referenced.
2080 if (OperatorNew) {
2081 if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
2082 return ExprError();
2083 MarkFunctionReferenced(StartLoc, OperatorNew);
2084 diagnoseUnavailableAlignedAllocation(*OperatorNew, StartLoc, false, *this);
2085 }
2086 if (OperatorDelete) {
2087 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
2088 return ExprError();
2089 MarkFunctionReferenced(StartLoc, OperatorDelete);
2090 diagnoseUnavailableAlignedAllocation(*OperatorDelete, StartLoc, true, *this);
2091 }
2092
2093 // C++0x [expr.new]p17:
2094 // If the new expression creates an array of objects of class type,
2095 // access and ambiguity control are done for the destructor.
2096 QualType BaseAllocType = Context.getBaseElementType(AllocType);
2097 if (ArraySize && !BaseAllocType->isDependentType()) {
2098 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
2099 if (CXXDestructorDecl *dtor = LookupDestructor(
2100 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
2101 MarkFunctionReferenced(StartLoc, dtor);
2102 CheckDestructorAccess(StartLoc, dtor,
2103 PDiag(diag::err_access_dtor)
2104 << BaseAllocType);
2105 if (DiagnoseUseOfDecl(dtor, StartLoc))
2106 return ExprError();
2107 }
2108 }
2109 }
2110
2111 return new (Context)
2112 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, PassAlignment,
2113 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
2114 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
2115 Range, DirectInitRange);
2116}
2117
2118/// \brief Checks that a type is suitable as the allocated type
2119/// in a new-expression.
2120bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
2121 SourceRange R) {
2122 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
2123 // abstract class type or array thereof.
2124 if (AllocType->isFunctionType())
2125 return Diag(Loc, diag::err_bad_new_type)
2126 << AllocType << 0 << R;
2127 else if (AllocType->isReferenceType())
2128 return Diag(Loc, diag::err_bad_new_type)
2129 << AllocType << 1 << R;
2130 else if (!AllocType->isDependentType() &&
2131 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
2132 return true;
2133 else if (RequireNonAbstractType(Loc, AllocType,
2134 diag::err_allocation_of_abstract_type))
2135 return true;
2136 else if (AllocType->isVariablyModifiedType())
2137 return Diag(Loc, diag::err_variably_modified_new_type)
2138 << AllocType;
2139 else if (AllocType.getAddressSpace() != LangAS::Default)
2140 return Diag(Loc, diag::err_address_space_qualified_new)
2141 << AllocType.getUnqualifiedType()
2142 << AllocType.getQualifiers().getAddressSpaceAttributePrintValue();
2143 else if (getLangOpts().ObjCAutoRefCount) {
2144 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
2145 QualType BaseAllocType = Context.getBaseElementType(AT);
2146 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
2147 BaseAllocType->isObjCLifetimeType())
2148 return Diag(Loc, diag::err_arc_new_array_without_ownership)
2149 << BaseAllocType;
2150 }
2151 }
2152
2153 return false;
2154}
2155
2156static bool resolveAllocationOverload(
2157 Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args,
2158 bool &PassAlignment, FunctionDecl *&Operator,
2159 OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) {
2160 OverloadCandidateSet Candidates(R.getNameLoc(),
2161 OverloadCandidateSet::CSK_Normal);
2162 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
2163 Alloc != AllocEnd; ++Alloc) {
2164 // Even member operator new/delete are implicitly treated as
2165 // static, so don't use AddMemberCandidate.
2166 NamedDecl *D = (*Alloc)->getUnderlyingDecl();
2167
2168 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
2169 S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
2170 /*ExplicitTemplateArgs=*/nullptr, Args,
2171 Candidates,
2172 /*SuppressUserConversions=*/false);
2173 continue;
2174 }
2175
2176 FunctionDecl *Fn = cast<FunctionDecl>(D);
2177 S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
2178 /*SuppressUserConversions=*/false);
2179 }
2180
2181 // Do the resolution.
2182 OverloadCandidateSet::iterator Best;
2183 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
2184 case OR_Success: {
2185 // Got one!
2186 FunctionDecl *FnDecl = Best->Function;
2187 if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(),
2188 Best->FoundDecl) == Sema::AR_inaccessible)
2189 return true;
2190
2191 Operator = FnDecl;
2192 return false;
2193 }
2194
2195 case OR_No_Viable_Function:
2196 // C++17 [expr.new]p13:
2197 // If no matching function is found and the allocated object type has
2198 // new-extended alignment, the alignment argument is removed from the
2199 // argument list, and overload resolution is performed again.
2200 if (PassAlignment) {
2201 PassAlignment = false;
2202 AlignArg = Args[1];
2203 Args.erase(Args.begin() + 1);
2204 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2205 Operator, &Candidates, AlignArg,
2206 Diagnose);
2207 }
2208
2209 // MSVC will fall back on trying to find a matching global operator new
2210 // if operator new[] cannot be found. Also, MSVC will leak by not
2211 // generating a call to operator delete or operator delete[], but we
2212 // will not replicate that bug.
2213 // FIXME: Find out how this interacts with the std::align_val_t fallback
2214 // once MSVC implements it.
2215 if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New &&
2216 S.Context.getLangOpts().MSVCCompat) {
2217 R.clear();
2218 R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New));
2219 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
2220 // FIXME: This will give bad diagnostics pointing at the wrong functions.
2221 return resolveAllocationOverload(S, R, Range, Args, PassAlignment,
2222 Operator, /*Candidates=*/nullptr,
2223 /*AlignArg=*/nullptr, Diagnose);
2224 }
2225
2226 if (Diagnose) {
2227 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
2228 << R.getLookupName() << Range;
2229
2230 // If we have aligned candidates, only note the align_val_t candidates
2231 // from AlignedCandidates and the non-align_val_t candidates from
2232 // Candidates.
2233 if (AlignedCandidates) {
2234 auto IsAligned = [](OverloadCandidate &C) {
2235 return C.Function->getNumParams() > 1 &&
2236 C.Function->getParamDecl(1)->getType()->isAlignValT();
2237 };
2238 auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); };
2239
2240 // This was an overaligned allocation, so list the aligned candidates
2241 // first.
2242 Args.insert(Args.begin() + 1, AlignArg);
2243 AlignedCandidates->NoteCandidates(S, OCD_AllCandidates, Args, "",
2244 R.getNameLoc(), IsAligned);
2245 Args.erase(Args.begin() + 1);
2246 Candidates.NoteCandidates(S, OCD_AllCandidates, Args, "", R.getNameLoc(),
2247 IsUnaligned);
2248 } else {
2249 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2250 }
2251 }
2252 return true;
2253
2254 case OR_Ambiguous:
2255 if (Diagnose) {
2256 S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
2257 << R.getLookupName() << Range;
2258 Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
2259 }
2260 return true;
2261
2262 case OR_Deleted: {
2263 if (Diagnose) {
2264 S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
2265 << Best->Function->isDeleted() << R.getLookupName()
2266 << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
2267 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
2268 }
2269 return true;
2270 }
2271 }
2272 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2272)
;
2273}
2274
2275bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
2276 AllocationFunctionScope NewScope,
2277 AllocationFunctionScope DeleteScope,
2278 QualType AllocType, bool IsArray,
2279 bool &PassAlignment, MultiExprArg PlaceArgs,
2280 FunctionDecl *&OperatorNew,
2281 FunctionDecl *&OperatorDelete,
2282 bool Diagnose) {
2283 // --- Choosing an allocation function ---
2284 // C++ 5.3.4p8 - 14 & 18
2285 // 1) If looking in AFS_Global scope for allocation functions, only look in
2286 // the global scope. Else, if AFS_Class, only look in the scope of the
2287 // allocated class. If AFS_Both, look in both.
2288 // 2) If an array size is given, look for operator new[], else look for
2289 // operator new.
2290 // 3) The first argument is always size_t. Append the arguments from the
2291 // placement form.
2292
2293 SmallVector<Expr*, 8> AllocArgs;
2294 AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size());
2295
2296 // We don't care about the actual value of these arguments.
2297 // FIXME: Should the Sema create the expression and embed it in the syntax
2298 // tree? Or should the consumer just recalculate the value?
2299 // FIXME: Using a dummy value will interact poorly with attribute enable_if.
2300 IntegerLiteral Size(Context, llvm::APInt::getNullValue(
2301 Context.getTargetInfo().getPointerWidth(0)),
2302 Context.getSizeType(),
2303 SourceLocation());
2304 AllocArgs.push_back(&Size);
2305
2306 QualType AlignValT = Context.VoidTy;
2307 if (PassAlignment) {
2308 DeclareGlobalNewDelete();
2309 AlignValT = Context.getTypeDeclType(getStdAlignValT());
2310 }
2311 CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation());
2312 if (PassAlignment)
2313 AllocArgs.push_back(&Align);
2314
2315 AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end());
2316
2317 // C++ [expr.new]p8:
2318 // If the allocated type is a non-array type, the allocation
2319 // function's name is operator new and the deallocation function's
2320 // name is operator delete. If the allocated type is an array
2321 // type, the allocation function's name is operator new[] and the
2322 // deallocation function's name is operator delete[].
2323 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
2324 IsArray ? OO_Array_New : OO_New);
2325
2326 QualType AllocElemType = Context.getBaseElementType(AllocType);
2327
2328 // Find the allocation function.
2329 {
2330 LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName);
2331
2332 // C++1z [expr.new]p9:
2333 // If the new-expression begins with a unary :: operator, the allocation
2334 // function's name is looked up in the global scope. Otherwise, if the
2335 // allocated type is a class type T or array thereof, the allocation
2336 // function's name is looked up in the scope of T.
2337 if (AllocElemType->isRecordType() && NewScope != AFS_Global)
2338 LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl());
2339
2340 // We can see ambiguity here if the allocation function is found in
2341 // multiple base classes.
2342 if (R.isAmbiguous())
2343 return true;
2344
2345 // If this lookup fails to find the name, or if the allocated type is not
2346 // a class type, the allocation function's name is looked up in the
2347 // global scope.
2348 if (R.empty()) {
2349 if (NewScope == AFS_Class)
2350 return true;
2351
2352 LookupQualifiedName(R, Context.getTranslationUnitDecl());
2353 }
2354
2355 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2355, __extension__ __PRETTY_FUNCTION__))
;
2356 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2356, __extension__ __PRETTY_FUNCTION__))
;
2357
2358 // We do our own custom access checks below.
2359 R.suppressDiagnostics();
2360
2361 if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment,
2362 OperatorNew, /*Candidates=*/nullptr,
2363 /*AlignArg=*/nullptr, Diagnose))
2364 return true;
2365 }
2366
2367 // We don't need an operator delete if we're running under -fno-exceptions.
2368 if (!getLangOpts().Exceptions) {
2369 OperatorDelete = nullptr;
2370 return false;
2371 }
2372
2373 // Note, the name of OperatorNew might have been changed from array to
2374 // non-array by resolveAllocationOverload.
2375 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2376 OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New
2377 ? OO_Array_Delete
2378 : OO_Delete);
2379
2380 // C++ [expr.new]p19:
2381 //
2382 // If the new-expression begins with a unary :: operator, the
2383 // deallocation function's name is looked up in the global
2384 // scope. Otherwise, if the allocated type is a class type T or an
2385 // array thereof, the deallocation function's name is looked up in
2386 // the scope of T. If this lookup fails to find the name, or if
2387 // the allocated type is not a class type or array thereof, the
2388 // deallocation function's name is looked up in the global scope.
2389 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
2390 if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) {
2391 CXXRecordDecl *RD
2392 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
2393 LookupQualifiedName(FoundDelete, RD);
2394 }
2395 if (FoundDelete.isAmbiguous())
2396 return true; // FIXME: clean up expressions?
2397
2398 bool FoundGlobalDelete = FoundDelete.empty();
2399 if (FoundDelete.empty()) {
2400 if (DeleteScope == AFS_Class)
2401 return true;
2402
2403 DeclareGlobalNewDelete();
2404 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2405 }
2406
2407 FoundDelete.suppressDiagnostics();
2408
2409 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
2410
2411 // Whether we're looking for a placement operator delete is dictated
2412 // by whether we selected a placement operator new, not by whether
2413 // we had explicit placement arguments. This matters for things like
2414 // struct A { void *operator new(size_t, int = 0); ... };
2415 // A *a = new A()
2416 //
2417 // We don't have any definition for what a "placement allocation function"
2418 // is, but we assume it's any allocation function whose
2419 // parameter-declaration-clause is anything other than (size_t).
2420 //
2421 // FIXME: Should (size_t, std::align_val_t) also be considered non-placement?
2422 // This affects whether an exception from the constructor of an overaligned
2423 // type uses the sized or non-sized form of aligned operator delete.
2424 bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 ||
2425 OperatorNew->isVariadic();
2426
2427 if (isPlacementNew) {
2428 // C++ [expr.new]p20:
2429 // A declaration of a placement deallocation function matches the
2430 // declaration of a placement allocation function if it has the
2431 // same number of parameters and, after parameter transformations
2432 // (8.3.5), all parameter types except the first are
2433 // identical. [...]
2434 //
2435 // To perform this comparison, we compute the function type that
2436 // the deallocation function should have, and use that type both
2437 // for template argument deduction and for comparison purposes.
2438 QualType ExpectedFunctionType;
2439 {
2440 const FunctionProtoType *Proto
2441 = OperatorNew->getType()->getAs<FunctionProtoType>();
2442
2443 SmallVector<QualType, 4> ArgTypes;
2444 ArgTypes.push_back(Context.VoidPtrTy);
2445 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
2446 ArgTypes.push_back(Proto->getParamType(I));
2447
2448 FunctionProtoType::ExtProtoInfo EPI;
2449 // FIXME: This is not part of the standard's rule.
2450 EPI.Variadic = Proto->isVariadic();
2451
2452 ExpectedFunctionType
2453 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
2454 }
2455
2456 for (LookupResult::iterator D = FoundDelete.begin(),
2457 DEnd = FoundDelete.end();
2458 D != DEnd; ++D) {
2459 FunctionDecl *Fn = nullptr;
2460 if (FunctionTemplateDecl *FnTmpl =
2461 dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
2462 // Perform template argument deduction to try to match the
2463 // expected function type.
2464 TemplateDeductionInfo Info(StartLoc);
2465 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
2466 Info))
2467 continue;
2468 } else
2469 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
2470
2471 if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(),
2472 ExpectedFunctionType,
2473 /*AdjustExcpetionSpec*/true),
2474 ExpectedFunctionType))
2475 Matches.push_back(std::make_pair(D.getPair(), Fn));
2476 }
2477
2478 if (getLangOpts().CUDA)
2479 EraseUnwantedCUDAMatches(dyn_cast<FunctionDecl>(CurContext), Matches);
2480 } else {
2481 // C++1y [expr.new]p22:
2482 // For a non-placement allocation function, the normal deallocation
2483 // function lookup is used
2484 //
2485 // Per [expr.delete]p10, this lookup prefers a member operator delete
2486 // without a size_t argument, but prefers a non-member operator delete
2487 // with a size_t where possible (which it always is in this case).
2488 llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns;
2489 UsualDeallocFnInfo Selected = resolveDeallocationOverload(
2490 *this, FoundDelete, /*WantSize*/ FoundGlobalDelete,
2491 /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType),
2492 &BestDeallocFns);
2493 if (Selected)
2494 Matches.push_back(std::make_pair(Selected.Found, Selected.FD));
2495 else {
2496 // If we failed to select an operator, all remaining functions are viable
2497 // but ambiguous.
2498 for (auto Fn : BestDeallocFns)
2499 Matches.push_back(std::make_pair(Fn.Found, Fn.FD));
2500 }
2501 }
2502
2503 // C++ [expr.new]p20:
2504 // [...] If the lookup finds a single matching deallocation
2505 // function, that function will be called; otherwise, no
2506 // deallocation function will be called.
2507 if (Matches.size() == 1) {
2508 OperatorDelete = Matches[0].second;
2509
2510 // C++1z [expr.new]p23:
2511 // If the lookup finds a usual deallocation function (3.7.4.2)
2512 // with a parameter of type std::size_t and that function, considered
2513 // as a placement deallocation function, would have been
2514 // selected as a match for the allocation function, the program
2515 // is ill-formed.
2516 if (getLangOpts().CPlusPlus11 && isPlacementNew &&
2517 isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
2518 UsualDeallocFnInfo Info(*this,
2519 DeclAccessPair::make(OperatorDelete, AS_public));
2520 // Core issue, per mail to core reflector, 2016-10-09:
2521 // If this is a member operator delete, and there is a corresponding
2522 // non-sized member operator delete, this isn't /really/ a sized
2523 // deallocation function, it just happens to have a size_t parameter.
2524 bool IsSizedDelete = Info.HasSizeT;
2525 if (IsSizedDelete && !FoundGlobalDelete) {
2526 auto NonSizedDelete =
2527 resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false,
2528 /*WantAlign*/Info.HasAlignValT);
2529 if (NonSizedDelete && !NonSizedDelete.HasSizeT &&
2530 NonSizedDelete.HasAlignValT == Info.HasAlignValT)
2531 IsSizedDelete = false;
2532 }
2533
2534 if (IsSizedDelete) {
2535 SourceRange R = PlaceArgs.empty()
2536 ? SourceRange()
2537 : SourceRange(PlaceArgs.front()->getLocStart(),
2538 PlaceArgs.back()->getLocEnd());
2539 Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R;
2540 if (!OperatorDelete->isImplicit())
2541 Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
2542 << DeleteName;
2543 }
2544 }
2545
2546 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
2547 Matches[0].first);
2548 } else if (!Matches.empty()) {
2549 // We found multiple suitable operators. Per [expr.new]p20, that means we
2550 // call no 'operator delete' function, but we should at least warn the user.
2551 // FIXME: Suppress this warning if the construction cannot throw.
2552 Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found)
2553 << DeleteName << AllocElemType;
2554
2555 for (auto &Match : Matches)
2556 Diag(Match.second->getLocation(),
2557 diag::note_member_declared_here) << DeleteName;
2558 }
2559
2560 return false;
2561}
2562
2563/// DeclareGlobalNewDelete - Declare the global forms of operator new and
2564/// delete. These are:
2565/// @code
2566/// // C++03:
2567/// void* operator new(std::size_t) throw(std::bad_alloc);
2568/// void* operator new[](std::size_t) throw(std::bad_alloc);
2569/// void operator delete(void *) throw();
2570/// void operator delete[](void *) throw();
2571/// // C++11:
2572/// void* operator new(std::size_t);
2573/// void* operator new[](std::size_t);
2574/// void operator delete(void *) noexcept;
2575/// void operator delete[](void *) noexcept;
2576/// // C++1y:
2577/// void* operator new(std::size_t);
2578/// void* operator new[](std::size_t);
2579/// void operator delete(void *) noexcept;
2580/// void operator delete[](void *) noexcept;
2581/// void operator delete(void *, std::size_t) noexcept;
2582/// void operator delete[](void *, std::size_t) noexcept;
2583/// @endcode
2584/// Note that the placement and nothrow forms of new are *not* implicitly
2585/// declared. Their use requires including \<new\>.
2586void Sema::DeclareGlobalNewDelete() {
2587 if (GlobalNewDeleteDeclared)
2588 return;
2589
2590 // C++ [basic.std.dynamic]p2:
2591 // [...] The following allocation and deallocation functions (18.4) are
2592 // implicitly declared in global scope in each translation unit of a
2593 // program
2594 //
2595 // C++03:
2596 // void* operator new(std::size_t) throw(std::bad_alloc);
2597 // void* operator new[](std::size_t) throw(std::bad_alloc);
2598 // void operator delete(void*) throw();
2599 // void operator delete[](void*) throw();
2600 // C++11:
2601 // void* operator new(std::size_t);
2602 // void* operator new[](std::size_t);
2603 // void operator delete(void*) noexcept;
2604 // void operator delete[](void*) noexcept;
2605 // C++1y:
2606 // void* operator new(std::size_t);
2607 // void* operator new[](std::size_t);
2608 // void operator delete(void*) noexcept;
2609 // void operator delete[](void*) noexcept;
2610 // void operator delete(void*, std::size_t) noexcept;
2611 // void operator delete[](void*, std::size_t) noexcept;
2612 //
2613 // These implicit declarations introduce only the function names operator
2614 // new, operator new[], operator delete, operator delete[].
2615 //
2616 // Here, we need to refer to std::bad_alloc, so we will implicitly declare
2617 // "std" or "bad_alloc" as necessary to form the exception specification.
2618 // However, we do not make these implicit declarations visible to name
2619 // lookup.
2620 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
2621 // The "std::bad_alloc" class has not yet been declared, so build it
2622 // implicitly.
2623 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
2624 getOrCreateStdNamespace(),
2625 SourceLocation(), SourceLocation(),
2626 &PP.getIdentifierTable().get("bad_alloc"),
2627 nullptr);
2628 getStdBadAlloc()->setImplicit(true);
2629 }
2630 if (!StdAlignValT && getLangOpts().AlignedAllocation) {
2631 // The "std::align_val_t" enum class has not yet been declared, so build it
2632 // implicitly.
2633 auto *AlignValT = EnumDecl::Create(
2634 Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(),
2635 &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true);
2636 AlignValT->setIntegerType(Context.getSizeType());
2637 AlignValT->setPromotionType(Context.getSizeType());
2638 AlignValT->setImplicit(true);
2639 StdAlignValT = AlignValT;
2640 }
2641
2642 GlobalNewDeleteDeclared = true;
2643
2644 QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2645 QualType SizeT = Context.getSizeType();
2646
2647 auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind,
2648 QualType Return, QualType Param) {
2649 llvm::SmallVector<QualType, 3> Params;
2650 Params.push_back(Param);
2651
2652 // Create up to four variants of the function (sized/aligned).
2653 bool HasSizedVariant = getLangOpts().SizedDeallocation &&
2654 (Kind == OO_Delete || Kind == OO_Array_Delete);
2655 bool HasAlignedVariant = getLangOpts().AlignedAllocation;
2656
2657 int NumSizeVariants = (HasSizedVariant ? 2 : 1);
2658 int NumAlignVariants = (HasAlignedVariant ? 2 : 1);
2659 for (int Sized = 0; Sized < NumSizeVariants; ++Sized) {
2660 if (Sized)
2661 Params.push_back(SizeT);
2662
2663 for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) {
2664 if (Aligned)
2665 Params.push_back(Context.getTypeDeclType(getStdAlignValT()));
2666
2667 DeclareGlobalAllocationFunction(
2668 Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params);
2669
2670 if (Aligned)
2671 Params.pop_back();
2672 }
2673 }
2674 };
2675
2676 DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT);
2677 DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT);
2678 DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr);
2679 DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr);
2680}
2681
2682/// DeclareGlobalAllocationFunction - Declares a single implicit global
2683/// allocation function if it doesn't already exist.
2684void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2685 QualType Return,
2686 ArrayRef<QualType> Params) {
2687 DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2688
2689 // Check if this function is already declared.
2690 DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2691 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2692 Alloc != AllocEnd; ++Alloc) {
2693 // Only look at non-template functions, as it is the predefined,
2694 // non-templated allocation function we are trying to declare here.
2695 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2696 if (Func->getNumParams() == Params.size()) {
2697 llvm::SmallVector<QualType, 3> FuncParams;
2698 for (auto *P : Func->parameters())
2699 FuncParams.push_back(
2700 Context.getCanonicalType(P->getType().getUnqualifiedType()));
2701 if (llvm::makeArrayRef(FuncParams) == Params) {
2702 // Make the function visible to name lookup, even if we found it in
2703 // an unimported module. It either is an implicitly-declared global
2704 // allocation function, or is suppressing that function.
2705 Func->setVisibleDespiteOwningModule();
2706 return;
2707 }
2708 }
2709 }
2710 }
2711
2712 FunctionProtoType::ExtProtoInfo EPI;
2713
2714 QualType BadAllocType;
2715 bool HasBadAllocExceptionSpec
2716 = (Name.getCXXOverloadedOperator() == OO_New ||
2717 Name.getCXXOverloadedOperator() == OO_Array_New);
2718 if (HasBadAllocExceptionSpec) {
2719 if (!getLangOpts().CPlusPlus11) {
2720 BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2721 assert(StdBadAlloc && "Must have std::bad_alloc declared")(static_cast <bool> (StdBadAlloc && "Must have std::bad_alloc declared"
) ? void (0) : __assert_fail ("StdBadAlloc && \"Must have std::bad_alloc declared\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2721, __extension__ __PRETTY_FUNCTION__))
;
2722 EPI.ExceptionSpec.Type = EST_Dynamic;
2723 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType);
2724 }
2725 } else {
2726 EPI.ExceptionSpec =
2727 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone;
2728 }
2729
2730 auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) {
2731 QualType FnType = Context.getFunctionType(Return, Params, EPI);
2732 FunctionDecl *Alloc = FunctionDecl::Create(
2733 Context, GlobalCtx, SourceLocation(), SourceLocation(), Name,
2734 FnType, /*TInfo=*/nullptr, SC_None, false, true);
2735 Alloc->setImplicit();
2736 // Global allocation functions should always be visible.
2737 Alloc->setVisibleDespiteOwningModule();
2738
2739 // Implicit sized deallocation functions always have default visibility.
2740 Alloc->addAttr(
2741 VisibilityAttr::CreateImplicit(Context, VisibilityAttr::Default));
2742
2743 llvm::SmallVector<ParmVarDecl *, 3> ParamDecls;
2744 for (QualType T : Params) {
2745 ParamDecls.push_back(ParmVarDecl::Create(
2746 Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T,
2747 /*TInfo=*/nullptr, SC_None, nullptr));
2748 ParamDecls.back()->setImplicit();
2749 }
2750 Alloc->setParams(ParamDecls);
2751 if (ExtraAttr)
2752 Alloc->addAttr(ExtraAttr);
2753 Context.getTranslationUnitDecl()->addDecl(Alloc);
2754 IdResolver.tryAddTopLevelDecl(Alloc, Name);
2755 };
2756
2757 if (!LangOpts.CUDA)
2758 CreateAllocationFunctionDecl(nullptr);
2759 else {
2760 // Host and device get their own declaration so each can be
2761 // defined or re-declared independently.
2762 CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context));
2763 CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context));
2764 }
2765}
2766
2767FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2768 bool CanProvideSize,
2769 bool Overaligned,
2770 DeclarationName Name) {
2771 DeclareGlobalNewDelete();
2772
2773 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2774 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2775
2776 // FIXME: It's possible for this to result in ambiguity, through a
2777 // user-declared variadic operator delete or the enable_if attribute. We
2778 // should probably not consider those cases to be usual deallocation
2779 // functions. But for now we just make an arbitrary choice in that case.
2780 auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize,
2781 Overaligned);
2782 assert(Result.FD && "operator delete missing from global scope?")(static_cast <bool> (Result.FD && "operator delete missing from global scope?"
) ? void (0) : __assert_fail ("Result.FD && \"operator delete missing from global scope?\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2782, __extension__ __PRETTY_FUNCTION__))
;
2783 return Result.FD;
2784}
2785
2786FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc,
2787 CXXRecordDecl *RD) {
2788 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2789
2790 FunctionDecl *OperatorDelete = nullptr;
2791 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2792 return nullptr;
2793 if (OperatorDelete)
2794 return OperatorDelete;
2795
2796 // If there's no class-specific operator delete, look up the global
2797 // non-array delete.
2798 return FindUsualDeallocationFunction(
2799 Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)),
2800 Name);
2801}
2802
2803bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2804 DeclarationName Name,
2805 FunctionDecl *&Operator, bool Diagnose) {
2806 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2807 // Try to find operator delete/operator delete[] in class scope.
2808 LookupQualifiedName(Found, RD);
2809
2810 if (Found.isAmbiguous())
2811 return true;
2812
2813 Found.suppressDiagnostics();
2814
2815 bool Overaligned = hasNewExtendedAlignment(*this, Context.getRecordType(RD));
2816
2817 // C++17 [expr.delete]p10:
2818 // If the deallocation functions have class scope, the one without a
2819 // parameter of type std::size_t is selected.
2820 llvm::SmallVector<UsualDeallocFnInfo, 4> Matches;
2821 resolveDeallocationOverload(*this, Found, /*WantSize*/ false,
2822 /*WantAlign*/ Overaligned, &Matches);
2823
2824 // If we could find an overload, use it.
2825 if (Matches.size() == 1) {
2826 Operator = cast<CXXMethodDecl>(Matches[0].FD);
2827
2828 // FIXME: DiagnoseUseOfDecl?
2829 if (Operator->isDeleted()) {
2830 if (Diagnose) {
2831 Diag(StartLoc, diag::err_deleted_function_use);
2832 NoteDeletedFunction(Operator);
2833 }
2834 return true;
2835 }
2836
2837 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2838 Matches[0].Found, Diagnose) == AR_inaccessible)
2839 return true;
2840
2841 return false;
2842 }
2843
2844 // We found multiple suitable operators; complain about the ambiguity.
2845 // FIXME: The standard doesn't say to do this; it appears that the intent
2846 // is that this should never happen.
2847 if (!Matches.empty()) {
2848 if (Diagnose) {
2849 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2850 << Name << RD;
2851 for (auto &Match : Matches)
2852 Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name;
2853 }
2854 return true;
2855 }
2856
2857 // We did find operator delete/operator delete[] declarations, but
2858 // none of them were suitable.
2859 if (!Found.empty()) {
2860 if (Diagnose) {
2861 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2862 << Name << RD;
2863
2864 for (NamedDecl *D : Found)
2865 Diag(D->getUnderlyingDecl()->getLocation(),
2866 diag::note_member_declared_here) << Name;
2867 }
2868 return true;
2869 }
2870
2871 Operator = nullptr;
2872 return false;
2873}
2874
2875namespace {
2876/// \brief Checks whether delete-expression, and new-expression used for
2877/// initializing deletee have the same array form.
2878class MismatchingNewDeleteDetector {
2879public:
2880 enum MismatchResult {
2881 /// Indicates that there is no mismatch or a mismatch cannot be proven.
2882 NoMismatch,
2883 /// Indicates that variable is initialized with mismatching form of \a new.
2884 VarInitMismatches,
2885 /// Indicates that member is initialized with mismatching form of \a new.
2886 MemberInitMismatches,
2887 /// Indicates that 1 or more constructors' definitions could not been
2888 /// analyzed, and they will be checked again at the end of translation unit.
2889 AnalyzeLater
2890 };
2891
2892 /// \param EndOfTU True, if this is the final analysis at the end of
2893 /// translation unit. False, if this is the initial analysis at the point
2894 /// delete-expression was encountered.
2895 explicit MismatchingNewDeleteDetector(bool EndOfTU)
2896 : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU),
2897 HasUndefinedConstructors(false) {}
2898
2899 /// \brief Checks whether pointee of a delete-expression is initialized with
2900 /// matching form of new-expression.
2901 ///
2902 /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the
2903 /// point where delete-expression is encountered, then a warning will be
2904 /// issued immediately. If return value is \c AnalyzeLater at the point where
2905 /// delete-expression is seen, then member will be analyzed at the end of
2906 /// translation unit. \c AnalyzeLater is returned iff at least one constructor
2907 /// couldn't be analyzed. If at least one constructor initializes the member
2908 /// with matching type of new, the return value is \c NoMismatch.
2909 MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE);
2910 /// \brief Analyzes a class member.
2911 /// \param Field Class member to analyze.
2912 /// \param DeleteWasArrayForm Array form-ness of the delete-expression used
2913 /// for deleting the \p Field.
2914 MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm);
2915 FieldDecl *Field;
2916 /// List of mismatching new-expressions used for initialization of the pointee
2917 llvm::SmallVector<const CXXNewExpr *, 4> NewExprs;
2918 /// Indicates whether delete-expression was in array form.
2919 bool IsArrayForm;
2920
2921private:
2922 const bool EndOfTU;
2923 /// \brief Indicates that there is at least one constructor without body.
2924 bool HasUndefinedConstructors;
2925 /// \brief Returns \c CXXNewExpr from given initialization expression.
2926 /// \param E Expression used for initializing pointee in delete-expression.
2927 /// E can be a single-element \c InitListExpr consisting of new-expression.
2928 const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E);
2929 /// \brief Returns whether member is initialized with mismatching form of
2930 /// \c new either by the member initializer or in-class initialization.
2931 ///
2932 /// If bodies of all constructors are not visible at the end of translation
2933 /// unit or at least one constructor initializes member with the matching
2934 /// form of \c new, mismatch cannot be proven, and this function will return
2935 /// \c NoMismatch.
2936 MismatchResult analyzeMemberExpr(const MemberExpr *ME);
2937 /// \brief Returns whether variable is initialized with mismatching form of
2938 /// \c new.
2939 ///
2940 /// If variable is initialized with matching form of \c new or variable is not
2941 /// initialized with a \c new expression, this function will return true.
2942 /// If variable is initialized with mismatching form of \c new, returns false.
2943 /// \param D Variable to analyze.
2944 bool hasMatchingVarInit(const DeclRefExpr *D);
2945 /// \brief Checks whether the constructor initializes pointee with mismatching
2946 /// form of \c new.
2947 ///
2948 /// Returns true, if member is initialized with matching form of \c new in
2949 /// member initializer list. Returns false, if member is initialized with the
2950 /// matching form of \c new in this constructor's initializer or given
2951 /// constructor isn't defined at the point where delete-expression is seen, or
2952 /// member isn't initialized by the constructor.
2953 bool hasMatchingNewInCtor(const CXXConstructorDecl *CD);
2954 /// \brief Checks whether member is initialized with matching form of
2955 /// \c new in member initializer list.
2956 bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI);
2957 /// Checks whether member is initialized with mismatching form of \c new by
2958 /// in-class initializer.
2959 MismatchResult analyzeInClassInitializer();
2960};
2961}
2962
2963MismatchingNewDeleteDetector::MismatchResult
2964MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) {
2965 NewExprs.clear();
2966 assert(DE && "Expected delete-expression")(static_cast <bool> (DE && "Expected delete-expression"
) ? void (0) : __assert_fail ("DE && \"Expected delete-expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2966, __extension__ __PRETTY_FUNCTION__))
;
2967 IsArrayForm = DE->isArrayForm();
2968 const Expr *E = DE->getArgument()->IgnoreParenImpCasts();
2969 if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) {
2970 return analyzeMemberExpr(ME);
2971 } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) {
2972 if (!hasMatchingVarInit(D))
2973 return VarInitMismatches;
2974 }
2975 return NoMismatch;
2976}
2977
2978const CXXNewExpr *
2979MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) {
2980 assert(E != nullptr && "Expected a valid initializer expression")(static_cast <bool> (E != nullptr && "Expected a valid initializer expression"
) ? void (0) : __assert_fail ("E != nullptr && \"Expected a valid initializer expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 2980, __extension__ __PRETTY_FUNCTION__))
;
2981 E = E->IgnoreParenImpCasts();
2982 if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) {
2983 if (ILE->getNumInits() == 1)
2984 E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts());
2985 }
2986
2987 return dyn_cast_or_null<const CXXNewExpr>(E);
2988}
2989
2990bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit(
2991 const CXXCtorInitializer *CI) {
2992 const CXXNewExpr *NE = nullptr;
2993 if (Field == CI->getMember() &&
2994 (NE = getNewExprFromInitListOrExpr(CI->getInit()))) {
2995 if (NE->isArray() == IsArrayForm)
2996 return true;
2997 else
2998 NewExprs.push_back(NE);
2999 }
3000 return false;
3001}
3002
3003bool MismatchingNewDeleteDetector::hasMatchingNewInCtor(
3004 const CXXConstructorDecl *CD) {
3005 if (CD->isImplicit())
3006 return false;
3007 const FunctionDecl *Definition = CD;
3008 if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) {
3009 HasUndefinedConstructors = true;
3010 return EndOfTU;
3011 }
3012 for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) {
3013 if (hasMatchingNewInCtorInit(CI))
3014 return true;
3015 }
3016 return false;
3017}
3018
3019MismatchingNewDeleteDetector::MismatchResult
3020MismatchingNewDeleteDetector::analyzeInClassInitializer() {
3021 assert(Field != nullptr && "This should be called only for members")(static_cast <bool> (Field != nullptr && "This should be called only for members"
) ? void (0) : __assert_fail ("Field != nullptr && \"This should be called only for members\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3021, __extension__ __PRETTY_FUNCTION__))
;
3022 const Expr *InitExpr = Field->getInClassInitializer();
3023 if (!InitExpr)
3024 return EndOfTU ? NoMismatch : AnalyzeLater;
3025 if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) {
3026 if (NE->isArray() != IsArrayForm) {
3027 NewExprs.push_back(NE);
3028 return MemberInitMismatches;
3029 }
3030 }
3031 return NoMismatch;
3032}
3033
3034MismatchingNewDeleteDetector::MismatchResult
3035MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field,
3036 bool DeleteWasArrayForm) {
3037 assert(Field != nullptr && "Analysis requires a valid class member.")(static_cast <bool> (Field != nullptr && "Analysis requires a valid class member."
) ? void (0) : __assert_fail ("Field != nullptr && \"Analysis requires a valid class member.\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3037, __extension__ __PRETTY_FUNCTION__))
;
3038 this->Field = Field;
3039 IsArrayForm = DeleteWasArrayForm;
3040 const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent());
3041 for (const auto *CD : RD->ctors()) {
3042 if (hasMatchingNewInCtor(CD))
3043 return NoMismatch;
3044 }
3045 if (HasUndefinedConstructors)
3046 return EndOfTU ? NoMismatch : AnalyzeLater;
3047 if (!NewExprs.empty())
3048 return MemberInitMismatches;
3049 return Field->hasInClassInitializer() ? analyzeInClassInitializer()
3050 : NoMismatch;
3051}
3052
3053MismatchingNewDeleteDetector::MismatchResult
3054MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) {
3055 assert(ME != nullptr && "Expected a member expression")(static_cast <bool> (ME != nullptr && "Expected a member expression"
) ? void (0) : __assert_fail ("ME != nullptr && \"Expected a member expression\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3055, __extension__ __PRETTY_FUNCTION__))
;
3056 if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3057 return analyzeField(F, IsArrayForm);
3058 return NoMismatch;
3059}
3060
3061bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) {
3062 const CXXNewExpr *NE = nullptr;
3063 if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) {
3064 if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) &&
3065 NE->isArray() != IsArrayForm) {
3066 NewExprs.push_back(NE);
3067 }
3068 }
3069 return NewExprs.empty();
3070}
3071
3072static void
3073DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc,
3074 const MismatchingNewDeleteDetector &Detector) {
3075 SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc);
3076 FixItHint H;
3077 if (!Detector.IsArrayForm)
3078 H = FixItHint::CreateInsertion(EndOfDelete, "[]");
3079 else {
3080 SourceLocation RSquare = Lexer::findLocationAfterToken(
3081 DeleteLoc, tok::l_square, SemaRef.getSourceManager(),
3082 SemaRef.getLangOpts(), true);
3083 if (RSquare.isValid())
3084 H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare));
3085 }
3086 SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new)
3087 << Detector.IsArrayForm << H;
3088
3089 for (const auto *NE : Detector.NewExprs)
3090 SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here)
3091 << Detector.IsArrayForm;
3092}
3093
3094void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) {
3095 if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation()))
3096 return;
3097 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false);
3098 switch (Detector.analyzeDeleteExpr(DE)) {
3099 case MismatchingNewDeleteDetector::VarInitMismatches:
3100 case MismatchingNewDeleteDetector::MemberInitMismatches: {
3101 DiagnoseMismatchedNewDelete(*this, DE->getLocStart(), Detector);
3102 break;
3103 }
3104 case MismatchingNewDeleteDetector::AnalyzeLater: {
3105 DeleteExprs[Detector.Field].push_back(
3106 std::make_pair(DE->getLocStart(), DE->isArrayForm()));
3107 break;
3108 }
3109 case MismatchingNewDeleteDetector::NoMismatch:
3110 break;
3111 }
3112}
3113
3114void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc,
3115 bool DeleteWasArrayForm) {
3116 MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true);
3117 switch (Detector.analyzeField(Field, DeleteWasArrayForm)) {
3118 case MismatchingNewDeleteDetector::VarInitMismatches:
3119 llvm_unreachable("This analysis should have been done for class members.")::llvm::llvm_unreachable_internal("This analysis should have been done for class members."
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3119)
;
3120 case MismatchingNewDeleteDetector::AnalyzeLater:
3121 llvm_unreachable("Analysis cannot be postponed any point beyond end of "::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3122)
3122 "translation unit.")::llvm::llvm_unreachable_internal("Analysis cannot be postponed any point beyond end of "
"translation unit.", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3122)
;
3123 case MismatchingNewDeleteDetector::MemberInitMismatches:
3124 DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector);
3125 break;
3126 case MismatchingNewDeleteDetector::NoMismatch:
3127 break;
3128 }
3129}
3130
3131/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
3132/// @code ::delete ptr; @endcode
3133/// or
3134/// @code delete [] ptr; @endcode
3135ExprResult
3136Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
3137 bool ArrayForm, Expr *ExE) {
3138 // C++ [expr.delete]p1:
3139 // The operand shall have a pointer type, or a class type having a single
3140 // non-explicit conversion function to a pointer type. The result has type
3141 // void.
3142 //
3143 // DR599 amends "pointer type" to "pointer to object type" in both cases.
3144
3145 ExprResult Ex = ExE;
3146 FunctionDecl *OperatorDelete = nullptr;
3147 bool ArrayFormAsWritten = ArrayForm;
3148 bool UsualArrayDeleteWantsSize = false;
3149
3150 if (!Ex.get()->isTypeDependent()) {
3151 // Perform lvalue-to-rvalue cast, if needed.
3152 Ex = DefaultLvalueConversion(Ex.get());
3153 if (Ex.isInvalid())
3154 return ExprError();
3155
3156 QualType Type = Ex.get()->getType();
3157
3158 class DeleteConverter : public ContextualImplicitConverter {
3159 public:
3160 DeleteConverter() : ContextualImplicitConverter(false, true) {}
3161
3162 bool match(QualType ConvType) override {
3163 // FIXME: If we have an operator T* and an operator void*, we must pick
3164 // the operator T*.
3165 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
3166 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
3167 return true;
3168 return false;
3169 }
3170
3171 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
3172 QualType T) override {
3173 return S.Diag(Loc, diag::err_delete_operand) << T;
3174 }
3175
3176 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
3177 QualType T) override {
3178 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
3179 }
3180
3181 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
3182 QualType T,
3183 QualType ConvTy) override {
3184 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
3185 }
3186
3187 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
3188 QualType ConvTy) override {
3189 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3190 << ConvTy;
3191 }
3192
3193 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
3194 QualType T) override {
3195 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
3196 }
3197
3198 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
3199 QualType ConvTy) override {
3200 return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
3201 << ConvTy;
3202 }
3203
3204 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
3205 QualType T,
3206 QualType ConvTy) override {
3207 llvm_unreachable("conversion functions are permitted")::llvm::llvm_unreachable_internal("conversion functions are permitted"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3207)
;
3208 }
3209 } Converter;
3210
3211 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
3212 if (Ex.isInvalid())
3213 return ExprError();
3214 Type = Ex.get()->getType();
3215 if (!Converter.match(Type))
3216 // FIXME: PerformContextualImplicitConversion should return ExprError
3217 // itself in this case.
3218 return ExprError();
3219
3220 QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
3221 QualType PointeeElem = Context.getBaseElementType(Pointee);
3222
3223 if (Pointee.getAddressSpace() != LangAS::Default)
3224 return Diag(Ex.get()->getLocStart(),
3225 diag::err_address_space_qualified_delete)
3226 << Pointee.getUnqualifiedType()
3227 << Pointee.getQualifiers().getAddressSpaceAttributePrintValue();
3228
3229 CXXRecordDecl *PointeeRD = nullptr;
3230 if (Pointee->isVoidType() && !isSFINAEContext()) {
3231 // The C++ standard bans deleting a pointer to a non-object type, which
3232 // effectively bans deletion of "void*". However, most compilers support
3233 // this, so we treat it as a warning unless we're in a SFINAE context.
3234 Diag(StartLoc, diag::ext_delete_void_ptr_operand)
3235 << Type << Ex.get()->getSourceRange();
3236 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
3237 return ExprError(Diag(StartLoc, diag::err_delete_operand)
3238 << Type << Ex.get()->getSourceRange());
3239 } else if (!Pointee->isDependentType()) {
3240 // FIXME: This can result in errors if the definition was imported from a
3241 // module but is hidden.
3242 if (!RequireCompleteType(StartLoc, Pointee,
3243 diag::warn_delete_incomplete, Ex.get())) {
3244 if (const RecordType *RT = PointeeElem->getAs<RecordType>())
3245 PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
3246 }
3247 }
3248
3249 if (Pointee->isArrayType() && !ArrayForm) {
3250 Diag(StartLoc, diag::warn_delete_array_type)
3251 << Type << Ex.get()->getSourceRange()
3252 << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]");
3253 ArrayForm = true;
3254 }
3255
3256 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
3257 ArrayForm ? OO_Array_Delete : OO_Delete);
3258
3259 if (PointeeRD) {
3260 if (!UseGlobal &&
3261 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
3262 OperatorDelete))
3263 return ExprError();
3264
3265 // If we're allocating an array of records, check whether the
3266 // usual operator delete[] has a size_t parameter.
3267 if (ArrayForm) {
3268 // If the user specifically asked to use the global allocator,
3269 // we'll need to do the lookup into the class.
3270 if (UseGlobal)
3271 UsualArrayDeleteWantsSize =
3272 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
3273
3274 // Otherwise, the usual operator delete[] should be the
3275 // function we just found.
3276 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
3277 UsualArrayDeleteWantsSize =
3278 UsualDeallocFnInfo(*this,
3279 DeclAccessPair::make(OperatorDelete, AS_public))
3280 .HasSizeT;
3281 }
3282
3283 if (!PointeeRD->hasIrrelevantDestructor())
3284 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3285 MarkFunctionReferenced(StartLoc,
3286 const_cast<CXXDestructorDecl*>(Dtor));
3287 if (DiagnoseUseOfDecl(Dtor, StartLoc))
3288 return ExprError();
3289 }
3290
3291 CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc,
3292 /*IsDelete=*/true, /*CallCanBeVirtual=*/true,
3293 /*WarnOnNonAbstractTypes=*/!ArrayForm,
3294 SourceLocation());
3295 }
3296
3297 if (!OperatorDelete) {
3298 bool IsComplete = isCompleteType(StartLoc, Pointee);
3299 bool CanProvideSize =
3300 IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize ||
3301 Pointee.isDestructedType());
3302 bool Overaligned = hasNewExtendedAlignment(*this, Pointee);
3303
3304 // Look for a global declaration.
3305 OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize,
3306 Overaligned, DeleteName);
3307 }
3308
3309 MarkFunctionReferenced(StartLoc, OperatorDelete);
3310
3311 // Check access and ambiguity of destructor if we're going to call it.
3312 // Note that this is required even for a virtual delete.
3313 bool IsVirtualDelete = false;
3314 if (PointeeRD) {
3315 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
3316 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
3317 PDiag(diag::err_access_dtor) << PointeeElem);
3318 IsVirtualDelete = Dtor->isVirtual();
3319 }
3320 }
3321
3322 diagnoseUnavailableAlignedAllocation(*OperatorDelete, StartLoc, true,
3323 *this);
3324
3325 // Convert the operand to the type of the first parameter of operator
3326 // delete. This is only necessary if we selected a destroying operator
3327 // delete that we are going to call (non-virtually); converting to void*
3328 // is trivial and left to AST consumers to handle.
3329 QualType ParamType = OperatorDelete->getParamDecl(0)->getType();
3330 if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) {
3331 Qualifiers Qs = Pointee.getQualifiers();
3332 if (Qs.hasCVRQualifiers()) {
3333 // Qualifiers are irrelevant to this conversion; we're only looking
3334 // for access and ambiguity.
3335 Qs.removeCVRQualifiers();
3336 QualType Unqual = Context.getPointerType(
3337 Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs));
3338 Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp);
3339 }
3340 Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing);
3341 if (Ex.isInvalid())
3342 return ExprError();
3343 }
3344 }
3345
3346 CXXDeleteExpr *Result = new (Context) CXXDeleteExpr(
3347 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
3348 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
3349 AnalyzeDeleteExprMismatch(Result);
3350 return Result;
3351}
3352
3353static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall,
3354 bool IsDelete,
3355 FunctionDecl *&Operator) {
3356
3357 DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName(
3358 IsDelete ? OO_Delete : OO_New);
3359
3360 LookupResult R(S, NewName, TheCall->getLocStart(), Sema::LookupOrdinaryName);
3361 S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl());
3362 assert(!R.empty() && "implicitly declared allocation functions not found")(static_cast <bool> (!R.empty() && "implicitly declared allocation functions not found"
) ? void (0) : __assert_fail ("!R.empty() && \"implicitly declared allocation functions not found\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3362, __extension__ __PRETTY_FUNCTION__))
;
3363 assert(!R.isAmbiguous() && "global allocation functions are ambiguous")(static_cast <bool> (!R.isAmbiguous() && "global allocation functions are ambiguous"
) ? void (0) : __assert_fail ("!R.isAmbiguous() && \"global allocation functions are ambiguous\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3363, __extension__ __PRETTY_FUNCTION__))
;
3364
3365 // We do our own custom access checks below.
3366 R.suppressDiagnostics();
3367
3368 SmallVector<Expr *, 8> Args(TheCall->arg_begin(), TheCall->arg_end());
3369 OverloadCandidateSet Candidates(R.getNameLoc(),
3370 OverloadCandidateSet::CSK_Normal);
3371 for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end();
3372 FnOvl != FnOvlEnd; ++FnOvl) {
3373 // Even member operator new/delete are implicitly treated as
3374 // static, so don't use AddMemberCandidate.
3375 NamedDecl *D = (*FnOvl)->getUnderlyingDecl();
3376
3377 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
3378 S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(),
3379 /*ExplicitTemplateArgs=*/nullptr, Args,
3380 Candidates,
3381 /*SuppressUserConversions=*/false);
3382 continue;
3383 }
3384
3385 FunctionDecl *Fn = cast<FunctionDecl>(D);
3386 S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates,
3387 /*SuppressUserConversions=*/false);
3388 }
3389
3390 SourceRange Range = TheCall->getSourceRange();
3391
3392 // Do the resolution.
3393 OverloadCandidateSet::iterator Best;
3394 switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) {
3395 case OR_Success: {
3396 // Got one!
3397 FunctionDecl *FnDecl = Best->Function;
3398 assert(R.getNamingClass() == nullptr &&(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3399, __extension__ __PRETTY_FUNCTION__))
3399 "class members should not be considered")(static_cast <bool> (R.getNamingClass() == nullptr &&
"class members should not be considered") ? void (0) : __assert_fail
("R.getNamingClass() == nullptr && \"class members should not be considered\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3399, __extension__ __PRETTY_FUNCTION__))
;
3400
3401 if (!FnDecl->isReplaceableGlobalAllocationFunction()) {
3402 S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual)
3403 << (IsDelete ? 1 : 0) << Range;
3404 S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here)
3405 << R.getLookupName() << FnDecl->getSourceRange();
3406 return true;
3407 }
3408
3409 Operator = FnDecl;
3410 return false;
3411 }
3412
3413 case OR_No_Viable_Function:
3414 S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call)
3415 << R.getLookupName() << Range;
3416 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3417 return true;
3418
3419 case OR_Ambiguous:
3420 S.Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call)
3421 << R.getLookupName() << Range;
3422 Candidates.NoteCandidates(S, OCD_ViableCandidates, Args);
3423 return true;
3424
3425 case OR_Deleted: {
3426 S.Diag(R.getNameLoc(), diag::err_ovl_deleted_call)
3427 << Best->Function->isDeleted() << R.getLookupName()
3428 << S.getDeletedOrUnavailableSuffix(Best->Function) << Range;
3429 Candidates.NoteCandidates(S, OCD_AllCandidates, Args);
3430 return true;
3431 }
3432 }
3433 llvm_unreachable("Unreachable, bad result from BestViableFunction")::llvm::llvm_unreachable_internal("Unreachable, bad result from BestViableFunction"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3433)
;
3434}
3435
3436ExprResult
3437Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult,
3438 bool IsDelete) {
3439 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
3440 if (!getLangOpts().CPlusPlus) {
3441 Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
3442 << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new")
3443 << "C++";
3444 return ExprError();
3445 }
3446 // CodeGen assumes it can find the global new and delete to call,
3447 // so ensure that they are declared.
3448 DeclareGlobalNewDelete();
3449
3450 FunctionDecl *OperatorNewOrDelete = nullptr;
3451 if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete,
3452 OperatorNewOrDelete))
3453 return ExprError();
3454 assert(OperatorNewOrDelete && "should be found")(static_cast <bool> (OperatorNewOrDelete && "should be found"
) ? void (0) : __assert_fail ("OperatorNewOrDelete && \"should be found\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3454, __extension__ __PRETTY_FUNCTION__))
;
3455
3456 TheCall->setType(OperatorNewOrDelete->getReturnType());
3457 for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) {
3458 QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType();
3459 InitializedEntity Entity =
3460 InitializedEntity::InitializeParameter(Context, ParamTy, false);
3461 ExprResult Arg = PerformCopyInitialization(
3462 Entity, TheCall->getArg(i)->getLocStart(), TheCall->getArg(i));
3463 if (Arg.isInvalid())
3464 return ExprError();
3465 TheCall->setArg(i, Arg.get());
3466 }
3467 auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee());
3468 assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr &&(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3469, __extension__ __PRETTY_FUNCTION__))
3469 "Callee expected to be implicit cast to a builtin function pointer")(static_cast <bool> (Callee && Callee->getCastKind
() == CK_BuiltinFnToFnPtr && "Callee expected to be implicit cast to a builtin function pointer"
) ? void (0) : __assert_fail ("Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && \"Callee expected to be implicit cast to a builtin function pointer\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3469, __extension__ __PRETTY_FUNCTION__))
;
3470 Callee->setType(OperatorNewOrDelete->getType());
3471
3472 return TheCallResult;
3473}
3474
3475void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc,
3476 bool IsDelete, bool CallCanBeVirtual,
3477 bool WarnOnNonAbstractTypes,
3478 SourceLocation DtorLoc) {
3479 if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext())
3480 return;
3481
3482 // C++ [expr.delete]p3:
3483 // In the first alternative (delete object), if the static type of the
3484 // object to be deleted is different from its dynamic type, the static
3485 // type shall be a base class of the dynamic type of the object to be
3486 // deleted and the static type shall have a virtual destructor or the
3487 // behavior is undefined.
3488 //
3489 const CXXRecordDecl *PointeeRD = dtor->getParent();
3490 // Note: a final class cannot be derived from, no issue there
3491 if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>())
3492 return;
3493
3494 // If the superclass is in a system header, there's nothing that can be done.
3495 // The `delete` (where we emit the warning) can be in a system header,
3496 // what matters for this warning is where the deleted type is defined.
3497 if (getSourceManager().isInSystemHeader(PointeeRD->getLocation()))
3498 return;
3499
3500 QualType ClassType = dtor->getThisType(Context)->getPointeeType();
3501 if (PointeeRD->isAbstract()) {
3502 // If the class is abstract, we warn by default, because we're
3503 // sure the code has undefined behavior.
3504 Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1)
3505 << ClassType;
3506 } else if (WarnOnNonAbstractTypes) {
3507 // Otherwise, if this is not an array delete, it's a bit suspect,
3508 // but not necessarily wrong.
3509 Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1)
3510 << ClassType;
3511 }
3512 if (!IsDelete) {
3513 std::string TypeStr;
3514 ClassType.getAsStringInternal(TypeStr, getPrintingPolicy());
3515 Diag(DtorLoc, diag::note_delete_non_virtual)
3516 << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::");
3517 }
3518}
3519
3520Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar,
3521 SourceLocation StmtLoc,
3522 ConditionKind CK) {
3523 ExprResult E =
3524 CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK);
3525 if (E.isInvalid())
3526 return ConditionError();
3527 return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc),
3528 CK == ConditionKind::ConstexprIf);
3529}
3530
3531/// \brief Check the use of the given variable as a C++ condition in an if,
3532/// while, do-while, or switch statement.
3533ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
3534 SourceLocation StmtLoc,
3535 ConditionKind CK) {
3536 if (ConditionVar->isInvalidDecl())
3537 return ExprError();
3538
3539 QualType T = ConditionVar->getType();
3540
3541 // C++ [stmt.select]p2:
3542 // The declarator shall not specify a function or an array.
3543 if (T->isFunctionType())
3544 return ExprError(Diag(ConditionVar->getLocation(),
3545 diag::err_invalid_use_of_function_type)
3546 << ConditionVar->getSourceRange());
3547 else if (T->isArrayType())
3548 return ExprError(Diag(ConditionVar->getLocation(),
3549 diag::err_invalid_use_of_array_type)
3550 << ConditionVar->getSourceRange());
3551
3552 ExprResult Condition = DeclRefExpr::Create(
3553 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
3554 /*enclosing*/ false, ConditionVar->getLocation(),
3555 ConditionVar->getType().getNonReferenceType(), VK_LValue);
3556
3557 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
3558
3559 switch (CK) {
3560 case ConditionKind::Boolean:
3561 return CheckBooleanCondition(StmtLoc, Condition.get());
3562
3563 case ConditionKind::ConstexprIf:
3564 return CheckBooleanCondition(StmtLoc, Condition.get(), true);
3565
3566 case ConditionKind::Switch:
3567 return CheckSwitchCondition(StmtLoc, Condition.get());
3568 }
3569
3570 llvm_unreachable("unexpected condition kind")::llvm::llvm_unreachable_internal("unexpected condition kind"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3570)
;
3571}
3572
3573/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
3574ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) {
3575 // C++ 6.4p4:
3576 // The value of a condition that is an initialized declaration in a statement
3577 // other than a switch statement is the value of the declared variable
3578 // implicitly converted to type bool. If that conversion is ill-formed, the
3579 // program is ill-formed.
3580 // The value of a condition that is an expression is the value of the
3581 // expression, implicitly converted to bool.
3582 //
3583 // FIXME: Return this value to the caller so they don't need to recompute it.
3584 llvm::APSInt Value(/*BitWidth*/1);
3585 return (IsConstexpr && !CondExpr->isValueDependent())
3586 ? CheckConvertedConstantExpression(CondExpr, Context.BoolTy, Value,
3587 CCEK_ConstexprIf)
3588 : PerformContextuallyConvertToBool(CondExpr);
3589}
3590
3591/// Helper function to determine whether this is the (deprecated) C++
3592/// conversion from a string literal to a pointer to non-const char or
3593/// non-const wchar_t (for narrow and wide string literals,
3594/// respectively).
3595bool
3596Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
3597 // Look inside the implicit cast, if it exists.
3598 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
3599 From = Cast->getSubExpr();
3600
3601 // A string literal (2.13.4) that is not a wide string literal can
3602 // be converted to an rvalue of type "pointer to char"; a wide
3603 // string literal can be converted to an rvalue of type "pointer
3604 // to wchar_t" (C++ 4.2p2).
3605 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
3606 if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
3607 if (const BuiltinType *ToPointeeType
3608 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
3609 // This conversion is considered only when there is an
3610 // explicit appropriate pointer target type (C++ 4.2p2).
3611 if (!ToPtrType->getPointeeType().hasQualifiers()) {
3612 switch (StrLit->getKind()) {
3613 case StringLiteral::UTF8:
3614 case StringLiteral::UTF16:
3615 case StringLiteral::UTF32:
3616 // We don't allow UTF literals to be implicitly converted
3617 break;
3618 case StringLiteral::Ascii:
3619 return (ToPointeeType->getKind() == BuiltinType::Char_U ||
3620 ToPointeeType->getKind() == BuiltinType::Char_S);
3621 case StringLiteral::Wide:
3622 return Context.typesAreCompatible(Context.getWideCharType(),
3623 QualType(ToPointeeType, 0));
3624 }
3625 }
3626 }
3627
3628 return false;
3629}
3630
3631static ExprResult BuildCXXCastArgument(Sema &S,
3632 SourceLocation CastLoc,
3633 QualType Ty,
3634 CastKind Kind,
3635 CXXMethodDecl *Method,
3636 DeclAccessPair FoundDecl,
3637 bool HadMultipleCandidates,
3638 Expr *From) {
3639 switch (Kind) {
3640 default: llvm_unreachable("Unhandled cast kind!")::llvm::llvm_unreachable_internal("Unhandled cast kind!", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3640)
;
3641 case CK_ConstructorConversion: {
3642 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
3643 SmallVector<Expr*, 8> ConstructorArgs;
3644
3645 if (S.RequireNonAbstractType(CastLoc, Ty,
3646 diag::err_allocation_of_abstract_type))
3647 return ExprError();
3648
3649 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
3650 return ExprError();
3651
3652 S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl,
3653 InitializedEntity::InitializeTemporary(Ty));
3654 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3655 return ExprError();
3656
3657 ExprResult Result = S.BuildCXXConstructExpr(
3658 CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method),
3659 ConstructorArgs, HadMultipleCandidates,
3660 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3661 CXXConstructExpr::CK_Complete, SourceRange());
3662 if (Result.isInvalid())
3663 return ExprError();
3664
3665 return S.MaybeBindToTemporary(Result.getAs<Expr>());
3666 }
3667
3668 case CK_UserDefinedConversion: {
3669 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!")(static_cast <bool> (!From->getType()->isPointerType
() && "Arg can't have pointer type!") ? void (0) : __assert_fail
("!From->getType()->isPointerType() && \"Arg can't have pointer type!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3669, __extension__ __PRETTY_FUNCTION__))
;
3670
3671 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
3672 if (S.DiagnoseUseOfDecl(Method, CastLoc))
3673 return ExprError();
3674
3675 // Create an implicit call expr that calls it.
3676 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
3677 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
3678 HadMultipleCandidates);
3679 if (Result.isInvalid())
3680 return ExprError();
3681 // Record usage of conversion in an implicit cast.
3682 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
3683 CK_UserDefinedConversion, Result.get(),
3684 nullptr, Result.get()->getValueKind());
3685
3686 return S.MaybeBindToTemporary(Result.get());
3687 }
3688 }
3689}
3690
3691/// PerformImplicitConversion - Perform an implicit conversion of the
3692/// expression From to the type ToType using the pre-computed implicit
3693/// conversion sequence ICS. Returns the converted
3694/// expression. Action is the kind of conversion we're performing,
3695/// used in the error message.
3696ExprResult
3697Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3698 const ImplicitConversionSequence &ICS,
3699 AssignmentAction Action,
3700 CheckedConversionKind CCK) {
3701 switch (ICS.getKind()) {
3702 case ImplicitConversionSequence::StandardConversion: {
3703 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
3704 Action, CCK);
3705 if (Res.isInvalid())
3706 return ExprError();
3707 From = Res.get();
3708 break;
3709 }
3710
3711 case ImplicitConversionSequence::UserDefinedConversion: {
3712
3713 FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
3714 CastKind CastKind;
3715 QualType BeforeToType;
3716 assert(FD && "no conversion function for user-defined conversion seq")(static_cast <bool> (FD && "no conversion function for user-defined conversion seq"
) ? void (0) : __assert_fail ("FD && \"no conversion function for user-defined conversion seq\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3716, __extension__ __PRETTY_FUNCTION__))
;
3717 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
3718 CastKind = CK_UserDefinedConversion;
3719
3720 // If the user-defined conversion is specified by a conversion function,
3721 // the initial standard conversion sequence converts the source type to
3722 // the implicit object parameter of the conversion function.
3723 BeforeToType = Context.getTagDeclType(Conv->getParent());
3724 } else {
3725 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
3726 CastKind = CK_ConstructorConversion;
3727 // Do no conversion if dealing with ... for the first conversion.
3728 if (!ICS.UserDefined.EllipsisConversion) {
3729 // If the user-defined conversion is specified by a constructor, the
3730 // initial standard conversion sequence converts the source type to
3731 // the type required by the argument of the constructor
3732 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
3733 }
3734 }
3735 // Watch out for ellipsis conversion.
3736 if (!ICS.UserDefined.EllipsisConversion) {
3737 ExprResult Res =
3738 PerformImplicitConversion(From, BeforeToType,
3739 ICS.UserDefined.Before, AA_Converting,
3740 CCK);
3741 if (Res.isInvalid())
3742 return ExprError();
3743 From = Res.get();
3744 }
3745
3746 ExprResult CastArg
3747 = BuildCXXCastArgument(*this,
3748 From->getLocStart(),
3749 ToType.getNonReferenceType(),
3750 CastKind, cast<CXXMethodDecl>(FD),
3751 ICS.UserDefined.FoundConversionFunction,
3752 ICS.UserDefined.HadMultipleCandidates,
3753 From);
3754
3755 if (CastArg.isInvalid())
3756 return ExprError();
3757
3758 From = CastArg.get();
3759
3760 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
3761 AA_Converting, CCK);
3762 }
3763
3764 case ImplicitConversionSequence::AmbiguousConversion:
3765 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
3766 PDiag(diag::err_typecheck_ambiguous_condition)
3767 << From->getSourceRange());
3768 return ExprError();
3769
3770 case ImplicitConversionSequence::EllipsisConversion:
3771 llvm_unreachable("Cannot perform an ellipsis conversion")::llvm::llvm_unreachable_internal("Cannot perform an ellipsis conversion"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3771)
;
3772
3773 case ImplicitConversionSequence::BadConversion:
3774 bool Diagnosed =
3775 DiagnoseAssignmentResult(Incompatible, From->getExprLoc(), ToType,
3776 From->getType(), From, Action);
3777 assert(Diagnosed && "failed to diagnose bad conversion")(static_cast <bool> (Diagnosed && "failed to diagnose bad conversion"
) ? void (0) : __assert_fail ("Diagnosed && \"failed to diagnose bad conversion\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3777, __extension__ __PRETTY_FUNCTION__))
; (void)Diagnosed;
3778 return ExprError();
3779 }
3780
3781 // Everything went well.
3782 return From;
3783}
3784
3785/// PerformImplicitConversion - Perform an implicit conversion of the
3786/// expression From to the type ToType by following the standard
3787/// conversion sequence SCS. Returns the converted
3788/// expression. Flavor is the context in which we're performing this
3789/// conversion, for use in error messages.
3790ExprResult
3791Sema::PerformImplicitConversion(Expr *From, QualType ToType,
3792 const StandardConversionSequence& SCS,
3793 AssignmentAction Action,
3794 CheckedConversionKind CCK) {
3795 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
3796
3797 // Overall FIXME: we are recomputing too many types here and doing far too
3798 // much extra work. What this means is that we need to keep track of more
3799 // information that is computed when we try the implicit conversion initially,
3800 // so that we don't need to recompute anything here.
3801 QualType FromType = From->getType();
3802
3803 if (SCS.CopyConstructor) {
3804 // FIXME: When can ToType be a reference type?
3805 assert(!ToType->isReferenceType())(static_cast <bool> (!ToType->isReferenceType()) ? void
(0) : __assert_fail ("!ToType->isReferenceType()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3805, __extension__ __PRETTY_FUNCTION__))
;
3806 if (SCS.Second == ICK_Derived_To_Base) {
3807 SmallVector<Expr*, 8> ConstructorArgs;
3808 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
3809 From, /*FIXME:ConstructLoc*/SourceLocation(),
3810 ConstructorArgs))
3811 return ExprError();
3812 return BuildCXXConstructExpr(
3813 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3814 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3815 ConstructorArgs, /*HadMultipleCandidates*/ false,
3816 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3817 CXXConstructExpr::CK_Complete, SourceRange());
3818 }
3819 return BuildCXXConstructExpr(
3820 /*FIXME:ConstructLoc*/ SourceLocation(), ToType,
3821 SCS.FoundCopyConstructor, SCS.CopyConstructor,
3822 From, /*HadMultipleCandidates*/ false,
3823 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false,
3824 CXXConstructExpr::CK_Complete, SourceRange());
3825 }
3826
3827 // Resolve overloaded function references.
3828 if (Context.hasSameType(FromType, Context.OverloadTy)) {
3829 DeclAccessPair Found;
3830 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
3831 true, Found);
3832 if (!Fn)
3833 return ExprError();
3834
3835 if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
3836 return ExprError();
3837
3838 From = FixOverloadedFunctionReference(From, Found, Fn);
3839 FromType = From->getType();
3840 }
3841
3842 // If we're converting to an atomic type, first convert to the corresponding
3843 // non-atomic type.
3844 QualType ToAtomicType;
3845 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
3846 ToAtomicType = ToType;
3847 ToType = ToAtomic->getValueType();
3848 }
3849
3850 QualType InitialFromType = FromType;
3851 // Perform the first implicit conversion.
3852 switch (SCS.First) {
3853 case ICK_Identity:
3854 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) {
3855 FromType = FromAtomic->getValueType().getUnqualifiedType();
3856 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic,
3857 From, /*BasePath=*/nullptr, VK_RValue);
3858 }
3859 break;
3860
3861 case ICK_Lvalue_To_Rvalue: {
3862 assert(From->getObjectKind() != OK_ObjCProperty)(static_cast <bool> (From->getObjectKind() != OK_ObjCProperty
) ? void (0) : __assert_fail ("From->getObjectKind() != OK_ObjCProperty"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3862, __extension__ __PRETTY_FUNCTION__))
;
3863 ExprResult FromRes = DefaultLvalueConversion(From);
3864 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!")(static_cast <bool> (!FromRes.isInvalid() && "Can't perform deduced conversion?!"
) ? void (0) : __assert_fail ("!FromRes.isInvalid() && \"Can't perform deduced conversion?!\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3864, __extension__ __PRETTY_FUNCTION__))
;
3865 From = FromRes.get();
3866 FromType = From->getType();
3867 break;
3868 }
3869
3870 case ICK_Array_To_Pointer:
3871 FromType = Context.getArrayDecayedType(FromType);
3872 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
3873 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3874 break;
3875
3876 case ICK_Function_To_Pointer:
3877 FromType = Context.getPointerType(FromType);
3878 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
3879 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3880 break;
3881
3882 default:
3883 llvm_unreachable("Improper first standard conversion")::llvm::llvm_unreachable_internal("Improper first standard conversion"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3883)
;
3884 }
3885
3886 // Perform the second implicit conversion
3887 switch (SCS.Second) {
3888 case ICK_Identity:
3889 // C++ [except.spec]p5:
3890 // [For] assignment to and initialization of pointers to functions,
3891 // pointers to member functions, and references to functions: the
3892 // target entity shall allow at least the exceptions allowed by the
3893 // source value in the assignment or initialization.
3894 switch (Action) {
3895 case AA_Assigning:
3896 case AA_Initializing:
3897 // Note, function argument passing and returning are initialization.
3898 case AA_Passing:
3899 case AA_Returning:
3900 case AA_Sending:
3901 case AA_Passing_CFAudited:
3902 if (CheckExceptionSpecCompatibility(From, ToType))
3903 return ExprError();
3904 break;
3905
3906 case AA_Casting:
3907 case AA_Converting:
3908 // Casts and implicit conversions are not initialization, so are not
3909 // checked for exception specification mismatches.
3910 break;
3911 }
3912 // Nothing else to do.
3913 break;
3914
3915 case ICK_Integral_Promotion:
3916 case ICK_Integral_Conversion:
3917 if (ToType->isBooleanType()) {
3918 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3920, __extension__ __PRETTY_FUNCTION__))
3919 SCS.Second == ICK_Integral_Promotion &&(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3920, __extension__ __PRETTY_FUNCTION__))
3920 "only enums with fixed underlying type can promote to bool")(static_cast <bool> (FromType->castAs<EnumType>
()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion
&& "only enums with fixed underlying type can promote to bool"
) ? void (0) : __assert_fail ("FromType->castAs<EnumType>()->getDecl()->isFixed() && SCS.Second == ICK_Integral_Promotion && \"only enums with fixed underlying type can promote to bool\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 3920, __extension__ __PRETTY_FUNCTION__))
;
3921 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
3922 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3923 } else {
3924 From = ImpCastExprToType(From, ToType, CK_IntegralCast,
3925 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3926 }
3927 break;
3928
3929 case ICK_Floating_Promotion:
3930 case ICK_Floating_Conversion:
3931 From = ImpCastExprToType(From, ToType, CK_FloatingCast,
3932 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3933 break;
3934
3935 case ICK_Complex_Promotion:
3936 case ICK_Complex_Conversion: {
3937 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
3938 QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
3939 CastKind CK;
3940 if (FromEl->isRealFloatingType()) {
3941 if (ToEl->isRealFloatingType())
3942 CK = CK_FloatingComplexCast;
3943 else
3944 CK = CK_FloatingComplexToIntegralComplex;
3945 } else if (ToEl->isRealFloatingType()) {
3946 CK = CK_IntegralComplexToFloatingComplex;
3947 } else {
3948 CK = CK_IntegralComplexCast;
3949 }
3950 From = ImpCastExprToType(From, ToType, CK,
3951 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3952 break;
3953 }
3954
3955 case ICK_Floating_Integral:
3956 if (ToType->isRealFloatingType())
3957 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
3958 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3959 else
3960 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
3961 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3962 break;
3963
3964 case ICK_Compatible_Conversion:
3965 From = ImpCastExprToType(From, ToType, CK_NoOp,
3966 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3967 break;
3968
3969 case ICK_Writeback_Conversion:
3970 case ICK_Pointer_Conversion: {
3971 if (SCS.IncompatibleObjC && Action != AA_Casting) {
3972 // Diagnose incompatible Objective-C conversions
3973 if (Action == AA_Initializing || Action == AA_Assigning)
3974 Diag(From->getLocStart(),
3975 diag::ext_typecheck_convert_incompatible_pointer)
3976 << ToType << From->getType() << Action
3977 << From->getSourceRange() << 0;
3978 else
3979 Diag(From->getLocStart(),
3980 diag::ext_typecheck_convert_incompatible_pointer)
3981 << From->getType() << ToType << Action
3982 << From->getSourceRange() << 0;
3983
3984 if (From->getType()->isObjCObjectPointerType() &&
3985 ToType->isObjCObjectPointerType())
3986 EmitRelatedResultTypeNote(From);
3987 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
3988 !CheckObjCARCUnavailableWeakConversion(ToType,
3989 From->getType())) {
3990 if (Action == AA_Initializing)
3991 Diag(From->getLocStart(),
3992 diag::err_arc_weak_unavailable_assign);
3993 else
3994 Diag(From->getLocStart(),
3995 diag::err_arc_convesion_of_weak_unavailable)
3996 << (Action == AA_Casting) << From->getType() << ToType
3997 << From->getSourceRange();
3998 }
3999
4000 CastKind Kind;
4001 CXXCastPath BasePath;
4002 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
4003 return ExprError();
4004
4005 // Make sure we extend blocks if necessary.
4006 // FIXME: doing this here is really ugly.
4007 if (Kind == CK_BlockPointerToObjCPointerCast) {
4008 ExprResult E = From;
4009 (void) PrepareCastToObjCObjectPointer(E);
4010 From = E.get();
4011 }
4012 if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers())
4013 CheckObjCConversion(SourceRange(), ToType, From, CCK);
4014 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4015 .get();
4016 break;
4017 }
4018
4019 case ICK_Pointer_Member: {
4020 CastKind Kind;
4021 CXXCastPath BasePath;
4022 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
4023 return ExprError();
4024 if (CheckExceptionSpecCompatibility(From, ToType))
4025 return ExprError();
4026
4027 // We may not have been able to figure out what this member pointer resolved
4028 // to up until this exact point. Attempt to lock-in it's inheritance model.
4029 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
4030 (void)isCompleteType(From->getExprLoc(), From->getType());
4031 (void)isCompleteType(From->getExprLoc(), ToType);
4032 }
4033
4034 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
4035 .get();
4036 break;
4037 }
4038
4039 case ICK_Boolean_Conversion:
4040 // Perform half-to-boolean conversion via float.
4041 if (From->getType()->isHalfType()) {
4042 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
4043 FromType = Context.FloatTy;
4044 }
4045
4046 From = ImpCastExprToType(From, Context.BoolTy,
4047 ScalarTypeToBooleanCastKind(FromType),
4048 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4049 break;
4050
4051 case ICK_Derived_To_Base: {
4052 CXXCastPath BasePath;
4053 if (CheckDerivedToBaseConversion(From->getType(),
4054 ToType.getNonReferenceType(),
4055 From->getLocStart(),
4056 From->getSourceRange(),
4057 &BasePath,
4058 CStyle))
4059 return ExprError();
4060
4061 From = ImpCastExprToType(From, ToType.getNonReferenceType(),
4062 CK_DerivedToBase, From->getValueKind(),
4063 &BasePath, CCK).get();
4064 break;
4065 }
4066
4067 case ICK_Vector_Conversion:
4068 From = ImpCastExprToType(From, ToType, CK_BitCast,
4069 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4070 break;
4071
4072 case ICK_Vector_Splat: {
4073 // Vector splat from any arithmetic type to a vector.
4074 Expr *Elem = prepareVectorSplat(ToType, From).get();
4075 From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_RValue,
4076 /*BasePath=*/nullptr, CCK).get();
4077 break;
4078 }
4079
4080 case ICK_Complex_Real:
4081 // Case 1. x -> _Complex y
4082 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
4083 QualType ElType = ToComplex->getElementType();
4084 bool isFloatingComplex = ElType->isRealFloatingType();
4085
4086 // x -> y
4087 if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
4088 // do nothing
4089 } else if (From->getType()->isRealFloatingType()) {
4090 From = ImpCastExprToType(From, ElType,
4091 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
4092 } else {
4093 assert(From->getType()->isIntegerType())(static_cast <bool> (From->getType()->isIntegerType
()) ? void (0) : __assert_fail ("From->getType()->isIntegerType()"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4093, __extension__ __PRETTY_FUNCTION__))
;
4094 From = ImpCastExprToType(From, ElType,
4095 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
4096 }
4097 // y -> _Complex y
4098 From = ImpCastExprToType(From, ToType,
4099 isFloatingComplex ? CK_FloatingRealToComplex
4100 : CK_IntegralRealToComplex).get();
4101
4102 // Case 2. _Complex x -> y
4103 } else {
4104 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
4105 assert(FromComplex)(static_cast <bool> (FromComplex) ? void (0) : __assert_fail
("FromComplex", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4105, __extension__ __PRETTY_FUNCTION__))
;
4106
4107 QualType ElType = FromComplex->getElementType();
4108 bool isFloatingComplex = ElType->isRealFloatingType();
4109
4110 // _Complex x -> x
4111 From = ImpCastExprToType(From, ElType,
4112 isFloatingComplex ? CK_FloatingComplexToReal
4113 : CK_IntegralComplexToReal,
4114 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4115
4116 // x -> y
4117 if (Context.hasSameUnqualifiedType(ElType, ToType)) {
4118 // do nothing
4119 } else if (ToType->isRealFloatingType()) {
4120 From = ImpCastExprToType(From, ToType,
4121 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
4122 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4123 } else {
4124 assert(ToType->isIntegerType())(static_cast <bool> (ToType->isIntegerType()) ? void
(0) : __assert_fail ("ToType->isIntegerType()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4124, __extension__ __PRETTY_FUNCTION__))
;
4125 From = ImpCastExprToType(From, ToType,
4126 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
4127 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4128 }
4129 }
4130 break;
4131
4132 case ICK_Block_Pointer_Conversion: {
4133 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
4134 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4135 break;
4136 }
4137
4138 case ICK_TransparentUnionConversion: {
4139 ExprResult FromRes = From;
4140 Sema::AssignConvertType ConvTy =
4141 CheckTransparentUnionArgumentConstraints(ToType, FromRes);
4142 if (FromRes.isInvalid())
4143 return ExprError();
4144 From = FromRes.get();
4145 assert ((ConvTy == Sema::Compatible) &&(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4146, __extension__ __PRETTY_FUNCTION__))
4146 "Improper transparent union conversion")(static_cast <bool> ((ConvTy == Sema::Compatible) &&
"Improper transparent union conversion") ? void (0) : __assert_fail
("(ConvTy == Sema::Compatible) && \"Improper transparent union conversion\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4146, __extension__ __PRETTY_FUNCTION__))
;
4147 (void)ConvTy;
4148 break;
4149 }
4150
4151 case ICK_Zero_Event_Conversion:
4152 From = ImpCastExprToType(From, ToType,
4153 CK_ZeroToOCLEvent,
4154 From->getValueKind()).get();
4155 break;
4156
4157 case ICK_Zero_Queue_Conversion:
4158 From = ImpCastExprToType(From, ToType,
4159 CK_ZeroToOCLQueue,
4160 From->getValueKind()).get();
4161 break;
4162
4163 case ICK_Lvalue_To_Rvalue:
4164 case ICK_Array_To_Pointer:
4165 case ICK_Function_To_Pointer:
4166 case ICK_Function_Conversion:
4167 case ICK_Qualification:
4168 case ICK_Num_Conversion_Kinds:
4169 case ICK_C_Only_Conversion:
4170 case ICK_Incompatible_Pointer_Conversion:
4171 llvm_unreachable("Improper second standard conversion")::llvm::llvm_unreachable_internal("Improper second standard conversion"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4171)
;
4172 }
4173
4174 switch (SCS.Third) {
4175 case ICK_Identity:
4176 // Nothing to do.
4177 break;
4178
4179 case ICK_Function_Conversion:
4180 // If both sides are functions (or pointers/references to them), there could
4181 // be incompatible exception declarations.
4182 if (CheckExceptionSpecCompatibility(From, ToType))
4183 return ExprError();
4184
4185 From = ImpCastExprToType(From, ToType, CK_NoOp,
4186 VK_RValue, /*BasePath=*/nullptr, CCK).get();
4187 break;
4188
4189 case ICK_Qualification: {
4190 // The qualification keeps the category of the inner expression, unless the
4191 // target type isn't a reference.
4192 ExprValueKind VK = ToType->isReferenceType() ?
4193 From->getValueKind() : VK_RValue;
4194 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
4195 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
4196
4197 if (SCS.DeprecatedStringLiteralToCharPtr &&
4198 !getLangOpts().WritableStrings) {
4199 Diag(From->getLocStart(), getLangOpts().CPlusPlus11
4200 ? diag::ext_deprecated_string_literal_conversion
4201 : diag::warn_deprecated_string_literal_conversion)
4202 << ToType.getNonReferenceType();
4203 }
4204
4205 break;
4206 }
4207
4208 default:
4209 llvm_unreachable("Improper third standard conversion")::llvm::llvm_unreachable_internal("Improper third standard conversion"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4209)
;
4210 }
4211
4212 // If this conversion sequence involved a scalar -> atomic conversion, perform
4213 // that conversion now.
4214 if (!ToAtomicType.isNull()) {
4215 assert(Context.hasSameType((static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4216, __extension__ __PRETTY_FUNCTION__))
4216 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()))(static_cast <bool> (Context.hasSameType( ToAtomicType->
castAs<AtomicType>()->getValueType(), From->getType
())) ? void (0) : __assert_fail ("Context.hasSameType( ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4216, __extension__ __PRETTY_FUNCTION__))
;
4217 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
4218 VK_RValue, nullptr, CCK).get();
4219 }
4220
4221 // If this conversion sequence succeeded and involved implicitly converting a
4222 // _Nullable type to a _Nonnull one, complain.
4223 if (CCK == CCK_ImplicitConversion)
4224 diagnoseNullableToNonnullConversion(ToType, InitialFromType,
4225 From->getLocStart());
4226
4227 return From;
4228}
4229
4230/// \brief Check the completeness of a type in a unary type trait.
4231///
4232/// If the particular type trait requires a complete type, tries to complete
4233/// it. If completing the type fails, a diagnostic is emitted and false
4234/// returned. If completing the type succeeds or no completion was required,
4235/// returns true.
4236static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
4237 SourceLocation Loc,
4238 QualType ArgTy) {
4239 // C++0x [meta.unary.prop]p3:
4240 // For all of the class templates X declared in this Clause, instantiating
4241 // that template with a template argument that is a class template
4242 // specialization may result in the implicit instantiation of the template
4243 // argument if and only if the semantics of X require that the argument
4244 // must be a complete type.
4245 // We apply this rule to all the type trait expressions used to implement
4246 // these class templates. We also try to follow any GCC documented behavior
4247 // in these expressions to ensure portability of standard libraries.
4248 switch (UTT) {
4249 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4249)
;
4250 // is_complete_type somewhat obviously cannot require a complete type.
4251 case UTT_IsCompleteType:
4252 // Fall-through
4253
4254 // These traits are modeled on the type predicates in C++0x
4255 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
4256 // requiring a complete type, as whether or not they return true cannot be
4257 // impacted by the completeness of the type.
4258 case UTT_IsVoid:
4259 case UTT_IsIntegral:
4260 case UTT_IsFloatingPoint:
4261 case UTT_IsArray:
4262 case UTT_IsPointer:
4263 case UTT_IsLvalueReference:
4264 case UTT_IsRvalueReference:
4265 case UTT_IsMemberFunctionPointer:
4266 case UTT_IsMemberObjectPointer:
4267 case UTT_IsEnum:
4268 case UTT_IsUnion:
4269 case UTT_IsClass:
4270 case UTT_IsFunction:
4271 case UTT_IsReference:
4272 case UTT_IsArithmetic:
4273 case UTT_IsFundamental:
4274 case UTT_IsObject:
4275 case UTT_IsScalar:
4276 case UTT_IsCompound:
4277 case UTT_IsMemberPointer:
4278 // Fall-through
4279
4280 // These traits are modeled on type predicates in C++0x [meta.unary.prop]
4281 // which requires some of its traits to have the complete type. However,
4282 // the completeness of the type cannot impact these traits' semantics, and
4283 // so they don't require it. This matches the comments on these traits in
4284 // Table 49.
4285 case UTT_IsConst:
4286 case UTT_IsVolatile:
4287 case UTT_IsSigned:
4288 case UTT_IsUnsigned:
4289
4290 // This type trait always returns false, checking the type is moot.
4291 case UTT_IsInterfaceClass:
4292 return true;
4293
4294 // C++14 [meta.unary.prop]:
4295 // If T is a non-union class type, T shall be a complete type.
4296 case UTT_IsEmpty:
4297 case UTT_IsPolymorphic:
4298 case UTT_IsAbstract:
4299 if (const auto *RD = ArgTy->getAsCXXRecordDecl())
4300 if (!RD->isUnion())
4301 return !S.RequireCompleteType(
4302 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4303 return true;
4304
4305 // C++14 [meta.unary.prop]:
4306 // If T is a class type, T shall be a complete type.
4307 case UTT_IsFinal:
4308 case UTT_IsSealed:
4309 if (ArgTy->getAsCXXRecordDecl())
4310 return !S.RequireCompleteType(
4311 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4312 return true;
4313
4314 // C++1z [meta.unary.prop]:
4315 // remove_all_extents_t<T> shall be a complete type or cv void.
4316 case UTT_IsAggregate:
4317 case UTT_IsTrivial:
4318 case UTT_IsTriviallyCopyable:
4319 case UTT_IsStandardLayout:
4320 case UTT_IsPOD:
4321 case UTT_IsLiteral:
4322 // Per the GCC type traits documentation, T shall be a complete type, cv void,
4323 // or an array of unknown bound. But GCC actually imposes the same constraints
4324 // as above.
4325 case UTT_HasNothrowAssign:
4326 case UTT_HasNothrowMoveAssign:
4327 case UTT_HasNothrowConstructor:
4328 case UTT_HasNothrowCopy:
4329 case UTT_HasTrivialAssign:
4330 case UTT_HasTrivialMoveAssign:
4331 case UTT_HasTrivialDefaultConstructor:
4332 case UTT_HasTrivialMoveConstructor:
4333 case UTT_HasTrivialCopy:
4334 case UTT_HasTrivialDestructor:
4335 case UTT_HasVirtualDestructor:
4336 ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0);
4337 LLVM_FALLTHROUGH[[clang::fallthrough]];
4338
4339 // C++1z [meta.unary.prop]:
4340 // T shall be a complete type, cv void, or an array of unknown bound.
4341 case UTT_IsDestructible:
4342 case UTT_IsNothrowDestructible:
4343 case UTT_IsTriviallyDestructible:
4344 case UTT_HasUniqueObjectRepresentations:
4345 if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType())
4346 return true;
4347
4348 return !S.RequireCompleteType(
4349 Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr);
4350 }
4351}
4352
4353static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
4354 Sema &Self, SourceLocation KeyLoc, ASTContext &C,
4355 bool (CXXRecordDecl::*HasTrivial)() const,
4356 bool (CXXRecordDecl::*HasNonTrivial)() const,
4357 bool (CXXMethodDecl::*IsDesiredOp)() const)
4358{
4359 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4360 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
4361 return true;
4362
4363 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
4364 DeclarationNameInfo NameInfo(Name, KeyLoc);
4365 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
4366 if (Self.LookupQualifiedName(Res, RD)) {
4367 bool FoundOperator = false;
4368 Res.suppressDiagnostics();
4369 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
4370 Op != OpEnd; ++Op) {
4371 if (isa<FunctionTemplateDecl>(*Op))
4372 continue;
4373
4374 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
4375 if((Operator->*IsDesiredOp)()) {
4376 FoundOperator = true;
4377 const FunctionProtoType *CPT =
4378 Operator->getType()->getAs<FunctionProtoType>();
4379 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4380 if (!CPT || !CPT->isNothrow(C))
4381 return false;
4382 }
4383 }
4384 return FoundOperator;
4385 }
4386 return false;
4387}
4388
4389static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
4390 SourceLocation KeyLoc, QualType T) {
4391 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4391, __extension__ __PRETTY_FUNCTION__))
;
4392
4393 ASTContext &C = Self.Context;
4394 switch(UTT) {
4395 default: llvm_unreachable("not a UTT")::llvm::llvm_unreachable_internal("not a UTT", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4395)
;
4396 // Type trait expressions corresponding to the primary type category
4397 // predicates in C++0x [meta.unary.cat].
4398 case UTT_IsVoid:
4399 return T->isVoidType();
4400 case UTT_IsIntegral:
4401 return T->isIntegralType(C);
4402 case UTT_IsFloatingPoint:
4403 return T->isFloatingType();
4404 case UTT_IsArray:
4405 return T->isArrayType();
4406 case UTT_IsPointer:
4407 return T->isPointerType();
4408 case UTT_IsLvalueReference:
4409 return T->isLValueReferenceType();
4410 case UTT_IsRvalueReference:
4411 return T->isRValueReferenceType();
4412 case UTT_IsMemberFunctionPointer:
4413 return T->isMemberFunctionPointerType();
4414 case UTT_IsMemberObjectPointer:
4415 return T->isMemberDataPointerType();
4416 case UTT_IsEnum:
4417 return T->isEnumeralType();
4418 case UTT_IsUnion:
4419 return T->isUnionType();
4420 case UTT_IsClass:
4421 return T->isClassType() || T->isStructureType() || T->isInterfaceType();
4422 case UTT_IsFunction:
4423 return T->isFunctionType();
4424
4425 // Type trait expressions which correspond to the convenient composition
4426 // predicates in C++0x [meta.unary.comp].
4427 case UTT_IsReference:
4428 return T->isReferenceType();
4429 case UTT_IsArithmetic:
4430 return T->isArithmeticType() && !T->isEnumeralType();
4431 case UTT_IsFundamental:
4432 return T->isFundamentalType();
4433 case UTT_IsObject:
4434 return T->isObjectType();
4435 case UTT_IsScalar:
4436 // Note: semantic analysis depends on Objective-C lifetime types to be
4437 // considered scalar types. However, such types do not actually behave
4438 // like scalar types at run time (since they may require retain/release
4439 // operations), so we report them as non-scalar.
4440 if (T->isObjCLifetimeType()) {
4441 switch (T.getObjCLifetime()) {
4442 case Qualifiers::OCL_None:
4443 case Qualifiers::OCL_ExplicitNone:
4444 return true;
4445
4446 case Qualifiers::OCL_Strong:
4447 case Qualifiers::OCL_Weak:
4448 case Qualifiers::OCL_Autoreleasing:
4449 return false;
4450 }
4451 }
4452
4453 return T->isScalarType();
4454 case UTT_IsCompound:
4455 return T->isCompoundType();
4456 case UTT_IsMemberPointer:
4457 return T->isMemberPointerType();
4458
4459 // Type trait expressions which correspond to the type property predicates
4460 // in C++0x [meta.unary.prop].
4461 case UTT_IsConst:
4462 return T.isConstQualified();
4463 case UTT_IsVolatile:
4464 return T.isVolatileQualified();
4465 case UTT_IsTrivial:
4466 return T.isTrivialType(C);
4467 case UTT_IsTriviallyCopyable:
4468 return T.isTriviallyCopyableType(C);
4469 case UTT_IsStandardLayout:
4470 return T->isStandardLayoutType();
4471 case UTT_IsPOD:
4472 return T.isPODType(C);
4473 case UTT_IsLiteral:
4474 return T->isLiteralType(C);
4475 case UTT_IsEmpty:
4476 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4477 return !RD->isUnion() && RD->isEmpty();
4478 return false;
4479 case UTT_IsPolymorphic:
4480 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4481 return !RD->isUnion() && RD->isPolymorphic();
4482 return false;
4483 case UTT_IsAbstract:
4484 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4485 return !RD->isUnion() && RD->isAbstract();
4486 return false;
4487 case UTT_IsAggregate:
4488 // Report vector extensions and complex types as aggregates because they
4489 // support aggregate initialization. GCC mirrors this behavior for vectors
4490 // but not _Complex.
4491 return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() ||
4492 T->isAnyComplexType();
4493 // __is_interface_class only returns true when CL is invoked in /CLR mode and
4494 // even then only when it is used with the 'interface struct ...' syntax
4495 // Clang doesn't support /CLR which makes this type trait moot.
4496 case UTT_IsInterfaceClass:
4497 return false;
4498 case UTT_IsFinal:
4499 case UTT_IsSealed:
4500 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4501 return RD->hasAttr<FinalAttr>();
4502 return false;
4503 case UTT_IsSigned:
4504 return T->isSignedIntegerType();
4505 case UTT_IsUnsigned:
4506 return T->isUnsignedIntegerType();
4507
4508 // Type trait expressions which query classes regarding their construction,
4509 // destruction, and copying. Rather than being based directly on the
4510 // related type predicates in the standard, they are specified by both
4511 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
4512 // specifications.
4513 //
4514 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
4515 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4516 //
4517 // Note that these builtins do not behave as documented in g++: if a class
4518 // has both a trivial and a non-trivial special member of a particular kind,
4519 // they return false! For now, we emulate this behavior.
4520 // FIXME: This appears to be a g++ bug: more complex cases reveal that it
4521 // does not correctly compute triviality in the presence of multiple special
4522 // members of the same kind. Revisit this once the g++ bug is fixed.
4523 case UTT_HasTrivialDefaultConstructor:
4524 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4525 // If __is_pod (type) is true then the trait is true, else if type is
4526 // a cv class or union type (or array thereof) with a trivial default
4527 // constructor ([class.ctor]) then the trait is true, else it is false.
4528 if (T.isPODType(C))
4529 return true;
4530 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4531 return RD->hasTrivialDefaultConstructor() &&
4532 !RD->hasNonTrivialDefaultConstructor();
4533 return false;
4534 case UTT_HasTrivialMoveConstructor:
4535 // This trait is implemented by MSVC 2012 and needed to parse the
4536 // standard library headers. Specifically this is used as the logic
4537 // behind std::is_trivially_move_constructible (20.9.4.3).
4538 if (T.isPODType(C))
4539 return true;
4540 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4541 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
4542 return false;
4543 case UTT_HasTrivialCopy:
4544 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4545 // If __is_pod (type) is true or type is a reference type then
4546 // the trait is true, else if type is a cv class or union type
4547 // with a trivial copy constructor ([class.copy]) then the trait
4548 // is true, else it is false.
4549 if (T.isPODType(C) || T->isReferenceType())
4550 return true;
4551 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4552 return RD->hasTrivialCopyConstructor() &&
4553 !RD->hasNonTrivialCopyConstructor();
4554 return false;
4555 case UTT_HasTrivialMoveAssign:
4556 // This trait is implemented by MSVC 2012 and needed to parse the
4557 // standard library headers. Specifically it is used as the logic
4558 // behind std::is_trivially_move_assignable (20.9.4.3)
4559 if (T.isPODType(C))
4560 return true;
4561 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4562 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
4563 return false;
4564 case UTT_HasTrivialAssign:
4565 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4566 // If type is const qualified or is a reference type then the
4567 // trait is false. Otherwise if __is_pod (type) is true then the
4568 // trait is true, else if type is a cv class or union type with
4569 // a trivial copy assignment ([class.copy]) then the trait is
4570 // true, else it is false.
4571 // Note: the const and reference restrictions are interesting,
4572 // given that const and reference members don't prevent a class
4573 // from having a trivial copy assignment operator (but do cause
4574 // errors if the copy assignment operator is actually used, q.v.
4575 // [class.copy]p12).
4576
4577 if (T.isConstQualified())
4578 return false;
4579 if (T.isPODType(C))
4580 return true;
4581 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4582 return RD->hasTrivialCopyAssignment() &&
4583 !RD->hasNonTrivialCopyAssignment();
4584 return false;
4585 case UTT_IsDestructible:
4586 case UTT_IsTriviallyDestructible:
4587 case UTT_IsNothrowDestructible:
4588 // C++14 [meta.unary.prop]:
4589 // For reference types, is_destructible<T>::value is true.
4590 if (T->isReferenceType())
4591 return true;
4592
4593 // Objective-C++ ARC: autorelease types don't require destruction.
4594 if (T->isObjCLifetimeType() &&
4595 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4596 return true;
4597
4598 // C++14 [meta.unary.prop]:
4599 // For incomplete types and function types, is_destructible<T>::value is
4600 // false.
4601 if (T->isIncompleteType() || T->isFunctionType())
4602 return false;
4603
4604 // A type that requires destruction (via a non-trivial destructor or ARC
4605 // lifetime semantics) is not trivially-destructible.
4606 if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType())
4607 return false;
4608
4609 // C++14 [meta.unary.prop]:
4610 // For object types and given U equal to remove_all_extents_t<T>, if the
4611 // expression std::declval<U&>().~U() is well-formed when treated as an
4612 // unevaluated operand (Clause 5), then is_destructible<T>::value is true
4613 if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4614 CXXDestructorDecl *Destructor = Self.LookupDestructor(RD);
4615 if (!Destructor)
4616 return false;
4617 // C++14 [dcl.fct.def.delete]p2:
4618 // A program that refers to a deleted function implicitly or
4619 // explicitly, other than to declare it, is ill-formed.
4620 if (Destructor->isDeleted())
4621 return false;
4622 if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public)
4623 return false;
4624 if (UTT == UTT_IsNothrowDestructible) {
4625 const FunctionProtoType *CPT =
4626 Destructor->getType()->getAs<FunctionProtoType>();
4627 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4628 if (!CPT || !CPT->isNothrow(C))
4629 return false;
4630 }
4631 }
4632 return true;
4633
4634 case UTT_HasTrivialDestructor:
4635 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4636 // If __is_pod (type) is true or type is a reference type
4637 // then the trait is true, else if type is a cv class or union
4638 // type (or array thereof) with a trivial destructor
4639 // ([class.dtor]) then the trait is true, else it is
4640 // false.
4641 if (T.isPODType(C) || T->isReferenceType())
4642 return true;
4643
4644 // Objective-C++ ARC: autorelease types don't require destruction.
4645 if (T->isObjCLifetimeType() &&
4646 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
4647 return true;
4648
4649 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
4650 return RD->hasTrivialDestructor();
4651 return false;
4652 // TODO: Propagate nothrowness for implicitly declared special members.
4653 case UTT_HasNothrowAssign:
4654 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4655 // If type is const qualified or is a reference type then the
4656 // trait is false. Otherwise if __has_trivial_assign (type)
4657 // is true then the trait is true, else if type is a cv class
4658 // or union type with copy assignment operators that are known
4659 // not to throw an exception then the trait is true, else it is
4660 // false.
4661 if (C.getBaseElementType(T).isConstQualified())
4662 return false;
4663 if (T->isReferenceType())
4664 return false;
4665 if (T.isPODType(C) || T->isObjCLifetimeType())
4666 return true;
4667
4668 if (const RecordType *RT = T->getAs<RecordType>())
4669 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4670 &CXXRecordDecl::hasTrivialCopyAssignment,
4671 &CXXRecordDecl::hasNonTrivialCopyAssignment,
4672 &CXXMethodDecl::isCopyAssignmentOperator);
4673 return false;
4674 case UTT_HasNothrowMoveAssign:
4675 // This trait is implemented by MSVC 2012 and needed to parse the
4676 // standard library headers. Specifically this is used as the logic
4677 // behind std::is_nothrow_move_assignable (20.9.4.3).
4678 if (T.isPODType(C))
4679 return true;
4680
4681 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
4682 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
4683 &CXXRecordDecl::hasTrivialMoveAssignment,
4684 &CXXRecordDecl::hasNonTrivialMoveAssignment,
4685 &CXXMethodDecl::isMoveAssignmentOperator);
4686 return false;
4687 case UTT_HasNothrowCopy:
4688 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4689 // If __has_trivial_copy (type) is true then the trait is true, else
4690 // if type is a cv class or union type with copy constructors that are
4691 // known not to throw an exception then the trait is true, else it is
4692 // false.
4693 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
4694 return true;
4695 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
4696 if (RD->hasTrivialCopyConstructor() &&
4697 !RD->hasNonTrivialCopyConstructor())
4698 return true;
4699
4700 bool FoundConstructor = false;
4701 unsigned FoundTQs;
4702 for (const auto *ND : Self.LookupConstructors(RD)) {
4703 // A template constructor is never a copy constructor.
4704 // FIXME: However, it may actually be selected at the actual overload
4705 // resolution point.
4706 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4707 continue;
4708 // UsingDecl itself is not a constructor
4709 if (isa<UsingDecl>(ND))
4710 continue;
4711 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4712 if (Constructor->isCopyConstructor(FoundTQs)) {
4713 FoundConstructor = true;
4714 const FunctionProtoType *CPT
4715 = Constructor->getType()->getAs<FunctionProtoType>();
4716 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4717 if (!CPT)
4718 return false;
4719 // TODO: check whether evaluating default arguments can throw.
4720 // For now, we'll be conservative and assume that they can throw.
4721 if (!CPT->isNothrow(C) || CPT->getNumParams() > 1)
4722 return false;
4723 }
4724 }
4725
4726 return FoundConstructor;
4727 }
4728 return false;
4729 case UTT_HasNothrowConstructor:
4730 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
4731 // If __has_trivial_constructor (type) is true then the trait is
4732 // true, else if type is a cv class or union type (or array
4733 // thereof) with a default constructor that is known not to
4734 // throw an exception then the trait is true, else it is false.
4735 if (T.isPODType(C) || T->isObjCLifetimeType())
4736 return true;
4737 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
4738 if (RD->hasTrivialDefaultConstructor() &&
4739 !RD->hasNonTrivialDefaultConstructor())
4740 return true;
4741
4742 bool FoundConstructor = false;
4743 for (const auto *ND : Self.LookupConstructors(RD)) {
4744 // FIXME: In C++0x, a constructor template can be a default constructor.
4745 if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl()))
4746 continue;
4747 // UsingDecl itself is not a constructor
4748 if (isa<UsingDecl>(ND))
4749 continue;
4750 auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl());
4751 if (Constructor->isDefaultConstructor()) {
4752 FoundConstructor = true;
4753 const FunctionProtoType *CPT
4754 = Constructor->getType()->getAs<FunctionProtoType>();
4755 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
4756 if (!CPT)
4757 return false;
4758 // FIXME: check whether evaluating default arguments can throw.
4759 // For now, we'll be conservative and assume that they can throw.
4760 if (!CPT->isNothrow(C) || CPT->getNumParams() > 0)
4761 return false;
4762 }
4763 }
4764 return FoundConstructor;
4765 }
4766 return false;
4767 case UTT_HasVirtualDestructor:
4768 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
4769 // If type is a class type with a virtual destructor ([class.dtor])
4770 // then the trait is true, else it is false.
4771 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4772 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
4773 return Destructor->isVirtual();
4774 return false;
4775
4776 // These type trait expressions are modeled on the specifications for the
4777 // Embarcadero C++0x type trait functions:
4778 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
4779 case UTT_IsCompleteType:
4780 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
4781 // Returns True if and only if T is a complete type at the point of the
4782 // function call.
4783 return !T->isIncompleteType();
4784 case UTT_HasUniqueObjectRepresentations:
4785 return C.hasUniqueObjectRepresentations(T);
4786 }
4787}
4788
4789static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4790 QualType RhsT, SourceLocation KeyLoc);
4791
4792static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
4793 ArrayRef<TypeSourceInfo *> Args,
4794 SourceLocation RParenLoc) {
4795 if (Kind <= UTT_Last)
4796 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
4797
4798 // Evaluate BTT_ReferenceBindsToTemporary alongside the IsConstructible
4799 // traits to avoid duplication.
4800 if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary)
4801 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
4802 Args[1]->getType(), RParenLoc);
4803
4804 switch (Kind) {
4805 case clang::BTT_ReferenceBindsToTemporary:
4806 case clang::TT_IsConstructible:
4807 case clang::TT_IsNothrowConstructible:
4808 case clang::TT_IsTriviallyConstructible: {
4809 // C++11 [meta.unary.prop]:
4810 // is_trivially_constructible is defined as:
4811 //
4812 // is_constructible<T, Args...>::value is true and the variable
4813 // definition for is_constructible, as defined below, is known to call
4814 // no operation that is not trivial.
4815 //
4816 // The predicate condition for a template specialization
4817 // is_constructible<T, Args...> shall be satisfied if and only if the
4818 // following variable definition would be well-formed for some invented
4819 // variable t:
4820 //
4821 // T t(create<Args>()...);
4822 assert(!Args.empty())(static_cast <bool> (!Args.empty()) ? void (0) : __assert_fail
("!Args.empty()", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4822, __extension__ __PRETTY_FUNCTION__))
;
4823
4824 // Precondition: T and all types in the parameter pack Args shall be
4825 // complete types, (possibly cv-qualified) void, or arrays of
4826 // unknown bound.
4827 for (const auto *TSI : Args) {
4828 QualType ArgTy = TSI->getType();
4829 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
4830 continue;
4831
4832 if (S.RequireCompleteType(KWLoc, ArgTy,
4833 diag::err_incomplete_type_used_in_type_trait_expr))
4834 return false;
4835 }
4836
4837 // Make sure the first argument is not incomplete nor a function type.
4838 QualType T = Args[0]->getType();
4839 if (T->isIncompleteType() || T->isFunctionType())
4840 return false;
4841
4842 // Make sure the first argument is not an abstract type.
4843 CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4844 if (RD && RD->isAbstract())
4845 return false;
4846
4847 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
4848 SmallVector<Expr *, 2> ArgExprs;
4849 ArgExprs.reserve(Args.size() - 1);
4850 for (unsigned I = 1, N = Args.size(); I != N; ++I) {
4851 QualType ArgTy = Args[I]->getType();
4852 if (ArgTy->isObjectType() || ArgTy->isFunctionType())
4853 ArgTy = S.Context.getRValueReferenceType(ArgTy);
4854 OpaqueArgExprs.push_back(
4855 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
4856 ArgTy.getNonLValueExprType(S.Context),
4857 Expr::getValueKindForType(ArgTy)));
4858 }
4859 for (Expr &E : OpaqueArgExprs)
4860 ArgExprs.push_back(&E);
4861
4862 // Perform the initialization in an unevaluated context within a SFINAE
4863 // trap at translation unit scope.
4864 EnterExpressionEvaluationContext Unevaluated(
4865 S, Sema::ExpressionEvaluationContext::Unevaluated);
4866 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
4867 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
4868 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
4869 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
4870 RParenLoc));
4871 InitializationSequence Init(S, To, InitKind, ArgExprs);
4872 if (Init.Failed())
4873 return false;
4874
4875 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
4876 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
4877 return false;
4878
4879 if (Kind == clang::TT_IsConstructible)
4880 return true;
4881
4882 if (Kind == clang::BTT_ReferenceBindsToTemporary) {
4883 if (!T->isReferenceType())
4884 return false;
4885
4886 return !Init.isDirectReferenceBinding();
4887 }
4888
4889 if (Kind == clang::TT_IsNothrowConstructible)
4890 return S.canThrow(Result.get()) == CT_Cannot;
4891
4892 if (Kind == clang::TT_IsTriviallyConstructible) {
4893 // Under Objective-C ARC and Weak, if the destination has non-trivial
4894 // Objective-C lifetime, this is a non-trivial construction.
4895 if (T.getNonReferenceType().hasNonTrivialObjCLifetime())
4896 return false;
4897
4898 // The initialization succeeded; now make sure there are no non-trivial
4899 // calls.
4900 return !Result.get()->hasNonTrivialCall(S.Context);
4901 }
4902
4903 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4903)
;
4904 return false;
4905 }
4906 default: llvm_unreachable("not a TT")::llvm::llvm_unreachable_internal("not a TT", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4906)
;
4907 }
4908
4909 return false;
4910}
4911
4912ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4913 ArrayRef<TypeSourceInfo *> Args,
4914 SourceLocation RParenLoc) {
4915 QualType ResultType = Context.getLogicalOperationType();
4916
4917 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
4918 *this, Kind, KWLoc, Args[0]->getType()))
4919 return ExprError();
4920
4921 bool Dependent = false;
4922 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4923 if (Args[I]->getType()->isDependentType()) {
4924 Dependent = true;
4925 break;
4926 }
4927 }
4928
4929 bool Result = false;
4930 if (!Dependent)
4931 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
4932
4933 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
4934 RParenLoc, Result);
4935}
4936
4937ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
4938 ArrayRef<ParsedType> Args,
4939 SourceLocation RParenLoc) {
4940 SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
4941 ConvertedArgs.reserve(Args.size());
4942
4943 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
4944 TypeSourceInfo *TInfo;
4945 QualType T = GetTypeFromParser(Args[I], &TInfo);
4946 if (!TInfo)
4947 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
4948
4949 ConvertedArgs.push_back(TInfo);
4950 }
4951
4952 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
4953}
4954
4955static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
4956 QualType RhsT, SourceLocation KeyLoc) {
4957 assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4958, __extension__ __PRETTY_FUNCTION__))
4958 "Cannot evaluate traits of dependent types")(static_cast <bool> (!LhsT->isDependentType() &&
!RhsT->isDependentType() && "Cannot evaluate traits of dependent types"
) ? void (0) : __assert_fail ("!LhsT->isDependentType() && !RhsT->isDependentType() && \"Cannot evaluate traits of dependent types\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4958, __extension__ __PRETTY_FUNCTION__))
;
4959
4960 switch(BTT) {
4961 case BTT_IsBaseOf: {
4962 // C++0x [meta.rel]p2
4963 // Base is a base class of Derived without regard to cv-qualifiers or
4964 // Base and Derived are not unions and name the same class type without
4965 // regard to cv-qualifiers.
4966
4967 const RecordType *lhsRecord = LhsT->getAs<RecordType>();
4968 const RecordType *rhsRecord = RhsT->getAs<RecordType>();
4969 if (!rhsRecord || !lhsRecord) {
4970 const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>();
4971 const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>();
4972 if (!LHSObjTy || !RHSObjTy)
4973 return false;
4974
4975 ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface();
4976 ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface();
4977 if (!BaseInterface || !DerivedInterface)
4978 return false;
4979
4980 if (Self.RequireCompleteType(
4981 KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr))
4982 return false;
4983
4984 return BaseInterface->isSuperClassOf(DerivedInterface);
4985 }
4986
4987 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4988, __extension__ __PRETTY_FUNCTION__))
4988 == (lhsRecord == rhsRecord))(static_cast <bool> (Self.Context.hasSameUnqualifiedType
(LhsT, RhsT) == (lhsRecord == rhsRecord)) ? void (0) : __assert_fail
("Self.Context.hasSameUnqualifiedType(LhsT, RhsT) == (lhsRecord == rhsRecord)"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 4988, __extension__ __PRETTY_FUNCTION__))
;
4989
4990 if (lhsRecord == rhsRecord)
4991 return !lhsRecord->getDecl()->isUnion();
4992
4993 // C++0x [meta.rel]p2:
4994 // If Base and Derived are class types and are different types
4995 // (ignoring possible cv-qualifiers) then Derived shall be a
4996 // complete type.
4997 if (Self.RequireCompleteType(KeyLoc, RhsT,
4998 diag::err_incomplete_type_used_in_type_trait_expr))
4999 return false;
5000
5001 return cast<CXXRecordDecl>(rhsRecord->getDecl())
5002 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
5003 }
5004 case BTT_IsSame:
5005 return Self.Context.hasSameType(LhsT, RhsT);
5006 case BTT_TypeCompatible: {
5007 // GCC ignores cv-qualifiers on arrays for this builtin.
5008 Qualifiers LhsQuals, RhsQuals;
5009 QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals);
5010 QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals);
5011 return Self.Context.typesAreCompatible(Lhs, Rhs);
5012 }
5013 case BTT_IsConvertible:
5014 case BTT_IsConvertibleTo: {
5015 // C++0x [meta.rel]p4:
5016 // Given the following function prototype:
5017 //
5018 // template <class T>
5019 // typename add_rvalue_reference<T>::type create();
5020 //
5021 // the predicate condition for a template specialization
5022 // is_convertible<From, To> shall be satisfied if and only if
5023 // the return expression in the following code would be
5024 // well-formed, including any implicit conversions to the return
5025 // type of the function:
5026 //
5027 // To test() {
5028 // return create<From>();
5029 // }
5030 //
5031 // Access checking is performed as if in a context unrelated to To and
5032 // From. Only the validity of the immediate context of the expression
5033 // of the return-statement (including conversions to the return type)
5034 // is considered.
5035 //
5036 // We model the initialization as a copy-initialization of a temporary
5037 // of the appropriate type, which for this expression is identical to the
5038 // return statement (since NRVO doesn't apply).
5039
5040 // Functions aren't allowed to return function or array types.
5041 if (RhsT->isFunctionType() || RhsT->isArrayType())
5042 return false;
5043
5044 // A return statement in a void function must have void type.
5045 if (RhsT->isVoidType())
5046 return LhsT->isVoidType();
5047
5048 // A function definition requires a complete, non-abstract return type.
5049 if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT))
5050 return false;
5051
5052 // Compute the result of add_rvalue_reference.
5053 if (LhsT->isObjectType() || LhsT->isFunctionType())
5054 LhsT = Self.Context.getRValueReferenceType(LhsT);
5055
5056 // Build a fake source and destination for initialization.
5057 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
5058 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5059 Expr::getValueKindForType(LhsT));
5060 Expr *FromPtr = &From;
5061 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
5062 SourceLocation()));
5063
5064 // Perform the initialization in an unevaluated context within a SFINAE
5065 // trap at translation unit scope.
5066 EnterExpressionEvaluationContext Unevaluated(
5067 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5068 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5069 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5070 InitializationSequence Init(Self, To, Kind, FromPtr);
5071 if (Init.Failed())
5072 return false;
5073
5074 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
5075 return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
5076 }
5077
5078 case BTT_IsAssignable:
5079 case BTT_IsNothrowAssignable:
5080 case BTT_IsTriviallyAssignable: {
5081 // C++11 [meta.unary.prop]p3:
5082 // is_trivially_assignable is defined as:
5083 // is_assignable<T, U>::value is true and the assignment, as defined by
5084 // is_assignable, is known to call no operation that is not trivial
5085 //
5086 // is_assignable is defined as:
5087 // The expression declval<T>() = declval<U>() is well-formed when
5088 // treated as an unevaluated operand (Clause 5).
5089 //
5090 // For both, T and U shall be complete types, (possibly cv-qualified)
5091 // void, or arrays of unknown bound.
5092 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
5093 Self.RequireCompleteType(KeyLoc, LhsT,
5094 diag::err_incomplete_type_used_in_type_trait_expr))
5095 return false;
5096 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
5097 Self.RequireCompleteType(KeyLoc, RhsT,
5098 diag::err_incomplete_type_used_in_type_trait_expr))
5099 return false;
5100
5101 // cv void is never assignable.
5102 if (LhsT->isVoidType() || RhsT->isVoidType())
5103 return false;
5104
5105 // Build expressions that emulate the effect of declval<T>() and
5106 // declval<U>().
5107 if (LhsT->isObjectType() || LhsT->isFunctionType())
5108 LhsT = Self.Context.getRValueReferenceType(LhsT);
5109 if (RhsT->isObjectType() || RhsT->isFunctionType())
5110 RhsT = Self.Context.getRValueReferenceType(RhsT);
5111 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
5112 Expr::getValueKindForType(LhsT));
5113 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
5114 Expr::getValueKindForType(RhsT));
5115
5116 // Attempt the assignment in an unevaluated context within a SFINAE
5117 // trap at translation unit scope.
5118 EnterExpressionEvaluationContext Unevaluated(
5119 Self, Sema::ExpressionEvaluationContext::Unevaluated);
5120 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
5121 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
5122 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
5123 &Rhs);
5124 if (Result.isInvalid() || SFINAE.hasErrorOccurred())
5125 return false;
5126
5127 if (BTT == BTT_IsAssignable)
5128 return true;
5129
5130 if (BTT == BTT_IsNothrowAssignable)
5131 return Self.canThrow(Result.get()) == CT_Cannot;
5132
5133 if (BTT == BTT_IsTriviallyAssignable) {
5134 // Under Objective-C ARC and Weak, if the destination has non-trivial
5135 // Objective-C lifetime, this is a non-trivial assignment.
5136 if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime())
5137 return false;
5138
5139 return !Result.get()->hasNonTrivialCall(Self.Context);
5140 }
5141
5142 llvm_unreachable("unhandled type trait")::llvm::llvm_unreachable_internal("unhandled type trait", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5142)
;
5143 return false;
5144 }
5145 default: llvm_unreachable("not a BTT")::llvm::llvm_unreachable_internal("not a BTT", "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5145)
;
5146 }
5147 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5147)
;
5148}
5149
5150ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
5151 SourceLocation KWLoc,
5152 ParsedType Ty,
5153 Expr* DimExpr,
5154 SourceLocation RParen) {
5155 TypeSourceInfo *TSInfo;
5156 QualType T = GetTypeFromParser(Ty, &TSInfo);
5157 if (!TSInfo)
5158 TSInfo = Context.getTrivialTypeSourceInfo(T);
5159
5160 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
5161}
5162
5163static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
5164 QualType T, Expr *DimExpr,
5165 SourceLocation KeyLoc) {
5166 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type")(static_cast <bool> (!T->isDependentType() &&
"Cannot evaluate traits of dependent type") ? void (0) : __assert_fail
("!T->isDependentType() && \"Cannot evaluate traits of dependent type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5166, __extension__ __PRETTY_FUNCTION__))
;
5167
5168 switch(ATT) {
5169 case ATT_ArrayRank:
5170 if (T->isArrayType()) {
5171 unsigned Dim = 0;
5172 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5173 ++Dim;
5174 T = AT->getElementType();
5175 }
5176 return Dim;
5177 }
5178 return 0;
5179
5180 case ATT_ArrayExtent: {
5181 llvm::APSInt Value;
5182 uint64_t Dim;
5183 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
5184 diag::err_dimension_expr_not_constant_integer,
5185 false).isInvalid())
5186 return 0;
5187 if (Value.isSigned() && Value.isNegative()) {
5188 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
5189 << DimExpr->getSourceRange();
5190 return 0;
5191 }
5192 Dim = Value.getLimitedValue();
5193
5194 if (T->isArrayType()) {
5195 unsigned D = 0;
5196 bool Matched = false;
5197 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
5198 if (Dim == D) {
5199 Matched = true;
5200 break;
5201 }
5202 ++D;
5203 T = AT->getElementType();
5204 }
5205
5206 if (Matched && T->isArrayType()) {
5207 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
5208 return CAT->getSize().getLimitedValue();
5209 }
5210 }
5211 return 0;
5212 }
5213 }
5214 llvm_unreachable("Unknown type trait or not implemented")::llvm::llvm_unreachable_internal("Unknown type trait or not implemented"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5214)
;
5215}
5216
5217ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
5218 SourceLocation KWLoc,
5219 TypeSourceInfo *TSInfo,
5220 Expr* DimExpr,
5221 SourceLocation RParen) {
5222 QualType T = TSInfo->getType();
5223
5224 // FIXME: This should likely be tracked as an APInt to remove any host
5225 // assumptions about the width of size_t on the target.
5226 uint64_t Value = 0;
5227 if (!T->isDependentType())
5228 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
5229
5230 // While the specification for these traits from the Embarcadero C++
5231 // compiler's documentation says the return type is 'unsigned int', Clang
5232 // returns 'size_t'. On Windows, the primary platform for the Embarcadero
5233 // compiler, there is no difference. On several other platforms this is an
5234 // important distinction.
5235 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
5236 RParen, Context.getSizeType());
5237}
5238
5239ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
5240 SourceLocation KWLoc,
5241 Expr *Queried,
5242 SourceLocation RParen) {
5243 // If error parsing the expression, ignore.
5244 if (!Queried)
5245 return ExprError();
5246
5247 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
5248
5249 return Result;
5250}
5251
5252static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
5253 switch (ET) {
5254 case ET_IsLValueExpr: return E->isLValue();
5255 case ET_IsRValueExpr: return E->isRValue();
5256 }
5257 llvm_unreachable("Expression trait not covered by switch")::llvm::llvm_unreachable_internal("Expression trait not covered by switch"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5257)
;
5258}
5259
5260ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
5261 SourceLocation KWLoc,
5262 Expr *Queried,
5263 SourceLocation RParen) {
5264 if (Queried->isTypeDependent()) {
5265 // Delay type-checking for type-dependent expressions.
5266 } else if (Queried->getType()->isPlaceholderType()) {
5267 ExprResult PE = CheckPlaceholderExpr(Queried);
5268 if (PE.isInvalid()) return ExprError();
5269 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
5270 }
5271
5272 bool Value = EvaluateExpressionTrait(ET, Queried);
5273
5274 return new (Context)
5275 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
5276}
5277
5278QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
5279 ExprValueKind &VK,
5280 SourceLocation Loc,
5281 bool isIndirect) {
5282 assert(!LHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5284, __extension__ __PRETTY_FUNCTION__))
5283 !RHS.get()->getType()->isPlaceholderType() &&(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5284, __extension__ __PRETTY_FUNCTION__))
5284 "placeholders should have been weeded out by now")(static_cast <bool> (!LHS.get()->getType()->isPlaceholderType
() && !RHS.get()->getType()->isPlaceholderType(
) && "placeholders should have been weeded out by now"
) ? void (0) : __assert_fail ("!LHS.get()->getType()->isPlaceholderType() && !RHS.get()->getType()->isPlaceholderType() && \"placeholders should have been weeded out by now\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5284, __extension__ __PRETTY_FUNCTION__))
;
5285
5286 // The LHS undergoes lvalue conversions if this is ->*, and undergoes the
5287 // temporary materialization conversion otherwise.
5288 if (isIndirect)
5289 LHS = DefaultLvalueConversion(LHS.get());
5290 else if (LHS.get()->isRValue())
5291 LHS = TemporaryMaterializationConversion(LHS.get());
5292 if (LHS.isInvalid())
5293 return QualType();
5294
5295 // The RHS always undergoes lvalue conversions.
5296 RHS = DefaultLvalueConversion(RHS.get());
5297 if (RHS.isInvalid()) return QualType();
5298
5299 const char *OpSpelling = isIndirect ? "->*" : ".*";
5300 // C++ 5.5p2
5301 // The binary operator .* [p3: ->*] binds its second operand, which shall
5302 // be of type "pointer to member of T" (where T is a completely-defined
5303 // class type) [...]
5304 QualType RHSType = RHS.get()->getType();
5305 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
5306 if (!MemPtr) {
5307 Diag(Loc, diag::err_bad_memptr_rhs)
5308 << OpSpelling << RHSType << RHS.get()->getSourceRange();
5309 return QualType();
5310 }
5311
5312 QualType Class(MemPtr->getClass(), 0);
5313
5314 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
5315 // member pointer points must be completely-defined. However, there is no
5316 // reason for this semantic distinction, and the rule is not enforced by
5317 // other compilers. Therefore, we do not check this property, as it is
5318 // likely to be considered a defect.
5319
5320 // C++ 5.5p2
5321 // [...] to its first operand, which shall be of class T or of a class of
5322 // which T is an unambiguous and accessible base class. [p3: a pointer to
5323 // such a class]
5324 QualType LHSType = LHS.get()->getType();
5325 if (isIndirect) {
5326 if (const PointerType *Ptr = LHSType->getAs<PointerType>())
5327 LHSType = Ptr->getPointeeType();
5328 else {
5329 Diag(Loc, diag::err_bad_memptr_lhs)
5330 << OpSpelling << 1 << LHSType
5331 << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
5332 return QualType();
5333 }
5334 }
5335
5336 if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
5337 // If we want to check the hierarchy, we need a complete type.
5338 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
5339 OpSpelling, (int)isIndirect)) {
5340 return QualType();
5341 }
5342
5343 if (!IsDerivedFrom(Loc, LHSType, Class)) {
5344 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
5345 << (int)isIndirect << LHS.get()->getType();
5346 return QualType();
5347 }
5348
5349 CXXCastPath BasePath;
5350 if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
5351 SourceRange(LHS.get()->getLocStart(),
5352 RHS.get()->getLocEnd()),
5353 &BasePath))
5354 return QualType();
5355
5356 // Cast LHS to type of use.
5357 QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers());
5358 if (isIndirect)
5359 UseType = Context.getPointerType(UseType);
5360 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
5361 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
5362 &BasePath);
5363 }
5364
5365 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
5366 // Diagnose use of pointer-to-member type which when used as
5367 // the functional cast in a pointer-to-member expression.
5368 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
5369 return QualType();
5370 }
5371
5372 // C++ 5.5p2
5373 // The result is an object or a function of the type specified by the
5374 // second operand.
5375 // The cv qualifiers are the union of those in the pointer and the left side,
5376 // in accordance with 5.5p5 and 5.2.5.
5377 QualType Result = MemPtr->getPointeeType();
5378 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
5379
5380 // C++0x [expr.mptr.oper]p6:
5381 // In a .* expression whose object expression is an rvalue, the program is
5382 // ill-formed if the second operand is a pointer to member function with
5383 // ref-qualifier &. In a ->* expression or in a .* expression whose object
5384 // expression is an lvalue, the program is ill-formed if the second operand
5385 // is a pointer to member function with ref-qualifier &&.
5386 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
5387 switch (Proto->getRefQualifier()) {
5388 case RQ_None:
5389 // Do nothing
5390 break;
5391
5392 case RQ_LValue:
5393 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) {
5394 // C++2a allows functions with ref-qualifier & if they are also 'const'.
5395 if (Proto->isConst())
5396 Diag(Loc, getLangOpts().CPlusPlus2a
5397 ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue
5398 : diag::ext_pointer_to_const_ref_member_on_rvalue);
5399 else
5400 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5401 << RHSType << 1 << LHS.get()->getSourceRange();
5402 }
5403 break;
5404
5405 case RQ_RValue:
5406 if (isIndirect || !LHS.get()->Classify(Context).isRValue())
5407 Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
5408 << RHSType << 0 << LHS.get()->getSourceRange();
5409 break;
5410 }
5411 }
5412
5413 // C++ [expr.mptr.oper]p6:
5414 // The result of a .* expression whose second operand is a pointer
5415 // to a data member is of the same value category as its
5416 // first operand. The result of a .* expression whose second
5417 // operand is a pointer to a member function is a prvalue. The
5418 // result of an ->* expression is an lvalue if its second operand
5419 // is a pointer to data member and a prvalue otherwise.
5420 if (Result->isFunctionType()) {
5421 VK = VK_RValue;
5422 return Context.BoundMemberTy;
5423 } else if (isIndirect) {
5424 VK = VK_LValue;
5425 } else {
5426 VK = LHS.get()->getValueKind();
5427 }
5428
5429 return Result;
5430}
5431
5432/// \brief Try to convert a type to another according to C++11 5.16p3.
5433///
5434/// This is part of the parameter validation for the ? operator. If either
5435/// value operand is a class type, the two operands are attempted to be
5436/// converted to each other. This function does the conversion in one direction.
5437/// It returns true if the program is ill-formed and has already been diagnosed
5438/// as such.
5439static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
5440 SourceLocation QuestionLoc,
5441 bool &HaveConversion,
5442 QualType &ToType) {
5443 HaveConversion = false;
5444 ToType = To->getType();
5445
5446 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
5447 SourceLocation());
5448 // C++11 5.16p3
5449 // The process for determining whether an operand expression E1 of type T1
5450 // can be converted to match an operand expression E2 of type T2 is defined
5451 // as follows:
5452 // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
5453 // implicitly converted to type "lvalue reference to T2", subject to the
5454 // constraint that in the conversion the reference must bind directly to
5455 // an lvalue.
5456 // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be
5457 // implicitly converted to the type "rvalue reference to R2", subject to
5458 // the constraint that the reference must bind directly.
5459 if (To->isLValue() || To->isXValue()) {
5460 QualType T = To->isLValue() ? Self.Context.getLValueReferenceType(ToType)
5461 : Self.Context.getRValueReferenceType(ToType);
5462
5463 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5464
5465 InitializationSequence InitSeq(Self, Entity, Kind, From);
5466 if (InitSeq.isDirectReferenceBinding()) {
5467 ToType = T;
5468 HaveConversion = true;
5469 return false;
5470 }
5471
5472 if (InitSeq.isAmbiguous())
5473 return InitSeq.Diagnose(Self, Entity, Kind, From);
5474 }
5475
5476 // -- If E2 is an rvalue, or if the conversion above cannot be done:
5477 // -- if E1 and E2 have class type, and the underlying class types are
5478 // the same or one is a base class of the other:
5479 QualType FTy = From->getType();
5480 QualType TTy = To->getType();
5481 const RecordType *FRec = FTy->getAs<RecordType>();
5482 const RecordType *TRec = TTy->getAs<RecordType>();
5483 bool FDerivedFromT = FRec && TRec && FRec != TRec &&
5484 Self.IsDerivedFrom(QuestionLoc, FTy, TTy);
5485 if (FRec && TRec && (FRec == TRec || FDerivedFromT ||
5486 Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) {
5487 // E1 can be converted to match E2 if the class of T2 is the
5488 // same type as, or a base class of, the class of T1, and
5489 // [cv2 > cv1].
5490 if (FRec == TRec || FDerivedFromT) {
5491 if (TTy.isAtLeastAsQualifiedAs(FTy)) {
5492 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5493 InitializationSequence InitSeq(Self, Entity, Kind, From);
5494 if (InitSeq) {
5495 HaveConversion = true;
5496 return false;
5497 }
5498
5499 if (InitSeq.isAmbiguous())
5500 return InitSeq.Diagnose(Self, Entity, Kind, From);
5501 }
5502 }
5503
5504 return false;
5505 }
5506
5507 // -- Otherwise: E1 can be converted to match E2 if E1 can be
5508 // implicitly converted to the type that expression E2 would have
5509 // if E2 were converted to an rvalue (or the type it has, if E2 is
5510 // an rvalue).
5511 //
5512 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
5513 // to the array-to-pointer or function-to-pointer conversions.
5514 TTy = TTy.getNonLValueExprType(Self.Context);
5515
5516 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
5517 InitializationSequence InitSeq(Self, Entity, Kind, From);
5518 HaveConversion = !InitSeq.Failed();
5519 ToType = TTy;
5520 if (InitSeq.isAmbiguous())
5521 return InitSeq.Diagnose(Self, Entity, Kind, From);
5522
5523 return false;
5524}
5525
5526/// \brief Try to find a common type for two according to C++0x 5.16p5.
5527///
5528/// This is part of the parameter validation for the ? operator. If either
5529/// value operand is a class type, overload resolution is used to find a
5530/// conversion to a common type.
5531static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
5532 SourceLocation QuestionLoc) {
5533 Expr *Args[2] = { LHS.get(), RHS.get() };
5534 OverloadCandidateSet CandidateSet(QuestionLoc,
5535 OverloadCandidateSet::CSK_Operator);
5536 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
5537 CandidateSet);
5538
5539 OverloadCandidateSet::iterator Best;
5540 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
5541 case OR_Success: {
5542 // We found a match. Perform the conversions on the arguments and move on.
5543 ExprResult LHSRes = Self.PerformImplicitConversion(
5544 LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0],
5545 Sema::AA_Converting);
5546 if (LHSRes.isInvalid())
5547 break;
5548 LHS = LHSRes;
5549
5550 ExprResult RHSRes = Self.PerformImplicitConversion(
5551 RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1],
5552 Sema::AA_Converting);
5553 if (RHSRes.isInvalid())
5554 break;
5555 RHS = RHSRes;
5556 if (Best->Function)
5557 Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
5558 return false;
5559 }
5560
5561 case OR_No_Viable_Function:
5562
5563 // Emit a better diagnostic if one of the expressions is a null pointer
5564 // constant and the other is a pointer type. In this case, the user most
5565 // likely forgot to take the address of the other expression.
5566 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
5567 return true;
5568
5569 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
5570 << LHS.get()->getType() << RHS.get()->getType()
5571 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5572 return true;
5573
5574 case OR_Ambiguous:
5575 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
5576 << LHS.get()->getType() << RHS.get()->getType()
5577 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5578 // FIXME: Print the possible common types by printing the return types of
5579 // the viable candidates.
5580 break;
5581
5582 case OR_Deleted:
5583 llvm_unreachable("Conditional operator has only built-in overloads")::llvm::llvm_unreachable_internal("Conditional operator has only built-in overloads"
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5583)
;
5584 }
5585 return true;
5586}
5587
5588/// \brief Perform an "extended" implicit conversion as returned by
5589/// TryClassUnification.
5590static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
5591 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
5592 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
5593 SourceLocation());
5594 Expr *Arg = E.get();
5595 InitializationSequence InitSeq(Self, Entity, Kind, Arg);
5596 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
5597 if (Result.isInvalid())
5598 return true;
5599
5600 E = Result;
5601 return false;
5602}
5603
5604/// \brief Check the operands of ?: under C++ semantics.
5605///
5606/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
5607/// extension. In this case, LHS == Cond. (But they're not aliases.)
5608QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
5609 ExprResult &RHS, ExprValueKind &VK,
5610 ExprObjectKind &OK,
5611 SourceLocation QuestionLoc) {
5612 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
5613 // interface pointers.
5614
5615 // C++11 [expr.cond]p1
5616 // The first expression is contextually converted to bool.
5617 //
5618 // FIXME; GCC's vector extension permits the use of a?b:c where the type of
5619 // a is that of a integer vector with the same number of elements and
5620 // size as the vectors of b and c. If one of either b or c is a scalar
5621 // it is implicitly converted to match the type of the vector.
5622 // Otherwise the expression is ill-formed. If both b and c are scalars,
5623 // then b and c are checked and converted to the type of a if possible.
5624 // Unlike the OpenCL ?: operator, the expression is evaluated as
5625 // (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]).
5626 if (!Cond.get()->isTypeDependent()) {
5627 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
5628 if (CondRes.isInvalid())
5629 return QualType();
5630 Cond = CondRes;
5631 }
5632
5633 // Assume r-value.
5634 VK = VK_RValue;
5635 OK = OK_Ordinary;
5636
5637 // Either of the arguments dependent?
5638 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
5639 return Context.DependentTy;
5640
5641 // C++11 [expr.cond]p2
5642 // If either the second or the third operand has type (cv) void, ...
5643 QualType LTy = LHS.get()->getType();
5644 QualType RTy = RHS.get()->getType();
5645 bool LVoid = LTy->isVoidType();
5646 bool RVoid = RTy->isVoidType();
5647 if (LVoid || RVoid) {
5648 // ... one of the following shall hold:
5649 // -- The second or the third operand (but not both) is a (possibly
5650 // parenthesized) throw-expression; the result is of the type
5651 // and value category of the other.
5652 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
5653 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
5654 if (LThrow != RThrow) {
5655 Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
5656 VK = NonThrow->getValueKind();
5657 // DR (no number yet): the result is a bit-field if the
5658 // non-throw-expression operand is a bit-field.
5659 OK = NonThrow->getObjectKind();
5660 return NonThrow->getType();
5661 }
5662
5663 // -- Both the second and third operands have type void; the result is of
5664 // type void and is a prvalue.
5665 if (LVoid && RVoid)
5666 return Context.VoidTy;
5667
5668 // Neither holds, error.
5669 Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
5670 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
5671 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5672 return QualType();
5673 }
5674
5675 // Neither is void.
5676
5677 // C++11 [expr.cond]p3
5678 // Otherwise, if the second and third operand have different types, and
5679 // either has (cv) class type [...] an attempt is made to convert each of
5680 // those operands to the type of the other.
5681 if (!Context.hasSameType(LTy, RTy) &&
5682 (LTy->isRecordType() || RTy->isRecordType())) {
5683 // These return true if a single direction is already ambiguous.
5684 QualType L2RType, R2LType;
5685 bool HaveL2R, HaveR2L;
5686 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
5687 return QualType();
5688 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
5689 return QualType();
5690
5691 // If both can be converted, [...] the program is ill-formed.
5692 if (HaveL2R && HaveR2L) {
5693 Diag(QuestionLoc, diag::err_conditional_ambiguous)
5694 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
5695 return QualType();
5696 }
5697
5698 // If exactly one conversion is possible, that conversion is applied to
5699 // the chosen operand and the converted operands are used in place of the
5700 // original operands for the remainder of this section.
5701 if (HaveL2R) {
5702 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
5703 return QualType();
5704 LTy = LHS.get()->getType();
5705 } else if (HaveR2L) {
5706 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
5707 return QualType();
5708 RTy = RHS.get()->getType();
5709 }
5710 }
5711
5712 // C++11 [expr.cond]p3
5713 // if both are glvalues of the same value category and the same type except
5714 // for cv-qualification, an attempt is made to convert each of those
5715 // operands to the type of the other.
5716 // FIXME:
5717 // Resolving a defect in P0012R1: we extend this to cover all cases where
5718 // one of the operands is reference-compatible with the other, in order
5719 // to support conditionals between functions differing in noexcept.
5720 ExprValueKind LVK = LHS.get()->getValueKind();
5721 ExprValueKind RVK = RHS.get()->getValueKind();
5722 if (!Context.hasSameType(LTy, RTy) &&
5723 LVK == RVK && LVK != VK_RValue) {
5724 // DerivedToBase was already handled by the class-specific case above.
5725 // FIXME: Should we allow ObjC conversions here?
5726 bool DerivedToBase, ObjCConversion, ObjCLifetimeConversion;
5727 if (CompareReferenceRelationship(
5728 QuestionLoc, LTy, RTy, DerivedToBase,
5729 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5730 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5731 // [...] subject to the constraint that the reference must bind
5732 // directly [...]
5733 !RHS.get()->refersToBitField() &&
5734 !RHS.get()->refersToVectorElement()) {
5735 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
5736 RTy = RHS.get()->getType();
5737 } else if (CompareReferenceRelationship(
5738 QuestionLoc, RTy, LTy, DerivedToBase,
5739 ObjCConversion, ObjCLifetimeConversion) == Ref_Compatible &&
5740 !DerivedToBase && !ObjCConversion && !ObjCLifetimeConversion &&
5741 !LHS.get()->refersToBitField() &&
5742 !LHS.get()->refersToVectorElement()) {
5743 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
5744 LTy = LHS.get()->getType();
5745 }
5746 }
5747
5748 // C++11 [expr.cond]p4
5749 // If the second and third operands are glvalues of the same value
5750 // category and have the same type, the result is of that type and
5751 // value category and it is a bit-field if the second or the third
5752 // operand is a bit-field, or if both are bit-fields.
5753 // We only extend this to bitfields, not to the crazy other kinds of
5754 // l-values.
5755 bool Same = Context.hasSameType(LTy, RTy);
5756 if (Same && LVK == RVK && LVK != VK_RValue &&
5757 LHS.get()->isOrdinaryOrBitFieldObject() &&
5758 RHS.get()->isOrdinaryOrBitFieldObject()) {
5759 VK = LHS.get()->getValueKind();
5760 if (LHS.get()->getObjectKind() == OK_BitField ||
5761 RHS.get()->getObjectKind() == OK_BitField)
5762 OK = OK_BitField;
5763
5764 // If we have function pointer types, unify them anyway to unify their
5765 // exception specifications, if any.
5766 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5767 Qualifiers Qs = LTy.getQualifiers();
5768 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS,
5769 /*ConvertArgs*/false);
5770 LTy = Context.getQualifiedType(LTy, Qs);
5771
5772 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5773, __extension__ __PRETTY_FUNCTION__))
5773 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5773, __extension__ __PRETTY_FUNCTION__))
;
5774 assert(Context.hasSameType(LTy, RTy) && "bad composite pointer type")(static_cast <bool> (Context.hasSameType(LTy, RTy) &&
"bad composite pointer type") ? void (0) : __assert_fail ("Context.hasSameType(LTy, RTy) && \"bad composite pointer type\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5774, __extension__ __PRETTY_FUNCTION__))
;
5775 }
5776
5777 return LTy;
5778 }
5779
5780 // C++11 [expr.cond]p5
5781 // Otherwise, the result is a prvalue. If the second and third operands
5782 // do not have the same type, and either has (cv) class type, ...
5783 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
5784 // ... overload resolution is used to determine the conversions (if any)
5785 // to be applied to the operands. If the overload resolution fails, the
5786 // program is ill-formed.
5787 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
5788 return QualType();
5789 }
5790
5791 // C++11 [expr.cond]p6
5792 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
5793 // conversions are performed on the second and third operands.
5794 LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
5795 RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
5796 if (LHS.isInvalid() || RHS.isInvalid())
5797 return QualType();
5798 LTy = LHS.get()->getType();
5799 RTy = RHS.get()->getType();
5800
5801 // After those conversions, one of the following shall hold:
5802 // -- The second and third operands have the same type; the result
5803 // is of that type. If the operands have class type, the result
5804 // is a prvalue temporary of the result type, which is
5805 // copy-initialized from either the second operand or the third
5806 // operand depending on the value of the first operand.
5807 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
5808 if (LTy->isRecordType()) {
5809 // The operands have class type. Make a temporary copy.
5810 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
5811
5812 ExprResult LHSCopy = PerformCopyInitialization(Entity,
5813 SourceLocation(),
5814 LHS);
5815 if (LHSCopy.isInvalid())
5816 return QualType();
5817
5818 ExprResult RHSCopy = PerformCopyInitialization(Entity,
5819 SourceLocation(),
5820 RHS);
5821 if (RHSCopy.isInvalid())
5822 return QualType();
5823
5824 LHS = LHSCopy;
5825 RHS = RHSCopy;
5826 }
5827
5828 // If we have function pointer types, unify them anyway to unify their
5829 // exception specifications, if any.
5830 if (LTy->isFunctionPointerType() || LTy->isMemberFunctionPointerType()) {
5831 LTy = FindCompositePointerType(QuestionLoc, LHS, RHS);
5832 assert(!LTy.isNull() && "failed to find composite pointer type for "(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5833, __extension__ __PRETTY_FUNCTION__))
5833 "canonically equivalent function ptr types")(static_cast <bool> (!LTy.isNull() && "failed to find composite pointer type for "
"canonically equivalent function ptr types") ? void (0) : __assert_fail
("!LTy.isNull() && \"failed to find composite pointer type for \" \"canonically equivalent function ptr types\""
, "/build/llvm-toolchain-snapshot-7~svn329677/tools/clang/lib/Sema/SemaExprCXX.cpp"
, 5833, __extension__ __PRETTY_FUNCTION__))
;
5834 }
5835
5836 return LTy;
5837 }
5838
5839 // Extension: conditional operator involving vector types.
5840 if (LTy->isVectorType() || RTy->isVectorType())
5841 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
5842 /*AllowBothBool*/true,
5843 /*AllowBoolConversions*/false);
5844
5845 // -- The second and third operands have arithmetic or enumeration type;
5846 // the usual arithmetic conversions are performed to bring them to a
5847 // common type, and the result is of that type.
5848 if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
5849 QualType ResTy = UsualArithmeticConversions(LHS, RHS);
5850 if (LHS.isInvalid() || RHS.isInvalid())
58