Bug Summary

File:tools/clang/lib/Sema/SemaInit.cpp
Location:line 5093, column 16
Description:Called C++ object pointer is null

Annotated Source Code

1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/Initialization.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/DeclObjC.h"
17#include "clang/AST/ExprCXX.h"
18#include "clang/AST/ExprObjC.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28#include <map>
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38 if (Context.typesAreCompatible(Context.getWideCharType(), T))
39 return true;
40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41 return Context.typesAreCompatible(Context.Char16Ty, T) ||
42 Context.typesAreCompatible(Context.Char32Ty, T);
43 }
44 return false;
45}
46
47enum StringInitFailureKind {
48 SIF_None,
49 SIF_NarrowStringIntoWideChar,
50 SIF_WideStringIntoChar,
51 SIF_IncompatWideStringIntoWideChar,
52 SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60 ASTContext &Context) {
61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62 return SIF_Other;
63
64 // See if this is a string literal or @encode.
65 Init = Init->IgnoreParens();
66
67 // Handle @encode, which is a narrow string.
68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69 return SIF_None;
70
71 // Otherwise we can only handle string literals.
72 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73 if (!SL)
74 return SIF_Other;
75
76 const QualType ElemTy =
77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79 switch (SL->getKind()) {
80 case StringLiteral::Ascii:
81 case StringLiteral::UTF8:
82 // char array can be initialized with a narrow string.
83 // Only allow char x[] = "foo"; not char x[] = L"foo";
84 if (ElemTy->isCharType())
85 return SIF_None;
86 if (IsWideCharCompatible(ElemTy, Context))
87 return SIF_NarrowStringIntoWideChar;
88 return SIF_Other;
89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90 // "An array with element type compatible with a qualified or unqualified
91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92 // string literal with the corresponding encoding prefix (L, u, or U,
93 // respectively), optionally enclosed in braces.
94 case StringLiteral::UTF16:
95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96 return SIF_None;
97 if (ElemTy->isCharType())
98 return SIF_WideStringIntoChar;
99 if (IsWideCharCompatible(ElemTy, Context))
100 return SIF_IncompatWideStringIntoWideChar;
101 return SIF_Other;
102 case StringLiteral::UTF32:
103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104 return SIF_None;
105 if (ElemTy->isCharType())
106 return SIF_WideStringIntoChar;
107 if (IsWideCharCompatible(ElemTy, Context))
108 return SIF_IncompatWideStringIntoWideChar;
109 return SIF_Other;
110 case StringLiteral::Wide:
111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112 return SIF_None;
113 if (ElemTy->isCharType())
114 return SIF_WideStringIntoChar;
115 if (IsWideCharCompatible(ElemTy, Context))
116 return SIF_IncompatWideStringIntoWideChar;
117 return SIF_Other;
118 }
119
120 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 120)
;
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124 ASTContext &Context) {
125 const ArrayType *arrayType = Context.getAsArrayType(declType);
126 if (!arrayType)
127 return SIF_Other;
128 return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134 while (true) {
135 E->setType(Ty);
136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137 break;
138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139 E = PE->getSubExpr();
140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141 E = UO->getSubExpr();
142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143 E = GSE->getResultExpr();
144 else
145 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 145)
;
146 }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150 Sema &S) {
151 // Get the length of the string as parsed.
152 auto *ConstantArrayTy =
153 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155
156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157 // C99 6.7.8p14. We have an array of character type with unknown size
158 // being initialized to a string literal.
159 llvm::APInt ConstVal(32, StrLength);
160 // Return a new array type (C99 6.7.8p22).
161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162 ConstVal,
163 ArrayType::Normal, 0);
164 updateStringLiteralType(Str, DeclT);
165 return;
166 }
167
168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170 // We have an array of character type with known size. However,
171 // the size may be smaller or larger than the string we are initializing.
172 // FIXME: Avoid truncation for 64-bit length strings.
173 if (S.getLangOpts().CPlusPlus) {
174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175 // For Pascal strings it's OK to strip off the terminating null character,
176 // so the example below is valid:
177 //
178 // unsigned char a[2] = "\pa";
179 if (SL->isPascal())
180 StrLength--;
181 }
182
183 // [dcl.init.string]p2
184 if (StrLength > CAT->getSize().getZExtValue())
185 S.Diag(Str->getLocStart(),
186 diag::err_initializer_string_for_char_array_too_long)
187 << Str->getSourceRange();
188 } else {
189 // C99 6.7.8p14.
190 if (StrLength-1 > CAT->getSize().getZExtValue())
191 S.Diag(Str->getLocStart(),
192 diag::ext_initializer_string_for_char_array_too_long)
193 << Str->getSourceRange();
194 }
195
196 // Set the type to the actual size that we are initializing. If we have
197 // something like:
198 // char x[1] = "foo";
199 // then this will set the string literal's type to char[1].
200 updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207/// @brief Semantic checking for initializer lists.
208///
209/// The InitListChecker class contains a set of routines that each
210/// handle the initialization of a certain kind of entity, e.g.,
211/// arrays, vectors, struct/union types, scalars, etc. The
212/// InitListChecker itself performs a recursive walk of the subobject
213/// structure of the type to be initialized, while stepping through
214/// the initializer list one element at a time. The IList and Index
215/// parameters to each of the Check* routines contain the active
216/// (syntactic) initializer list and the index into that initializer
217/// list that represents the current initializer. Each routine is
218/// responsible for moving that Index forward as it consumes elements.
219///
220/// Each Check* routine also has a StructuredList/StructuredIndex
221/// arguments, which contains the current "structured" (semantic)
222/// initializer list and the index into that initializer list where we
223/// are copying initializers as we map them over to the semantic
224/// list. Once we have completed our recursive walk of the subobject
225/// structure, we will have constructed a full semantic initializer
226/// list.
227///
228/// C99 designators cause changes in the initializer list traversal,
229/// because they make the initialization "jump" into a specific
230/// subobject and then continue the initialization from that
231/// point. CheckDesignatedInitializer() recursively steps into the
232/// designated subobject and manages backing out the recursion to
233/// initialize the subobjects after the one designated.
234namespace {
235class InitListChecker {
236 Sema &SemaRef;
237 bool hadError;
238 bool VerifyOnly; // no diagnostics, no structure building
239 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240 InitListExpr *FullyStructuredList;
241
242 void CheckImplicitInitList(const InitializedEntity &Entity,
243 InitListExpr *ParentIList, QualType T,
244 unsigned &Index, InitListExpr *StructuredList,
245 unsigned &StructuredIndex);
246 void CheckExplicitInitList(const InitializedEntity &Entity,
247 InitListExpr *IList, QualType &T,
248 InitListExpr *StructuredList,
249 bool TopLevelObject = false);
250 void CheckListElementTypes(const InitializedEntity &Entity,
251 InitListExpr *IList, QualType &DeclType,
252 bool SubobjectIsDesignatorContext,
253 unsigned &Index,
254 InitListExpr *StructuredList,
255 unsigned &StructuredIndex,
256 bool TopLevelObject = false);
257 void CheckSubElementType(const InitializedEntity &Entity,
258 InitListExpr *IList, QualType ElemType,
259 unsigned &Index,
260 InitListExpr *StructuredList,
261 unsigned &StructuredIndex);
262 void CheckComplexType(const InitializedEntity &Entity,
263 InitListExpr *IList, QualType DeclType,
264 unsigned &Index,
265 InitListExpr *StructuredList,
266 unsigned &StructuredIndex);
267 void CheckScalarType(const InitializedEntity &Entity,
268 InitListExpr *IList, QualType DeclType,
269 unsigned &Index,
270 InitListExpr *StructuredList,
271 unsigned &StructuredIndex);
272 void CheckReferenceType(const InitializedEntity &Entity,
273 InitListExpr *IList, QualType DeclType,
274 unsigned &Index,
275 InitListExpr *StructuredList,
276 unsigned &StructuredIndex);
277 void CheckVectorType(const InitializedEntity &Entity,
278 InitListExpr *IList, QualType DeclType, unsigned &Index,
279 InitListExpr *StructuredList,
280 unsigned &StructuredIndex);
281 void CheckStructUnionTypes(const InitializedEntity &Entity,
282 InitListExpr *IList, QualType DeclType,
283 RecordDecl::field_iterator Field,
284 bool SubobjectIsDesignatorContext, unsigned &Index,
285 InitListExpr *StructuredList,
286 unsigned &StructuredIndex,
287 bool TopLevelObject = false);
288 void CheckArrayType(const InitializedEntity &Entity,
289 InitListExpr *IList, QualType &DeclType,
290 llvm::APSInt elementIndex,
291 bool SubobjectIsDesignatorContext, unsigned &Index,
292 InitListExpr *StructuredList,
293 unsigned &StructuredIndex);
294 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295 InitListExpr *IList, DesignatedInitExpr *DIE,
296 unsigned DesigIdx,
297 QualType &CurrentObjectType,
298 RecordDecl::field_iterator *NextField,
299 llvm::APSInt *NextElementIndex,
300 unsigned &Index,
301 InitListExpr *StructuredList,
302 unsigned &StructuredIndex,
303 bool FinishSubobjectInit,
304 bool TopLevelObject);
305 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306 QualType CurrentObjectType,
307 InitListExpr *StructuredList,
308 unsigned StructuredIndex,
309 SourceRange InitRange,
310 bool IsFullyOverwritten = false);
311 void UpdateStructuredListElement(InitListExpr *StructuredList,
312 unsigned &StructuredIndex,
313 Expr *expr);
314 int numArrayElements(QualType DeclType);
315 int numStructUnionElements(QualType DeclType);
316
317 static ExprResult PerformEmptyInit(Sema &SemaRef,
318 SourceLocation Loc,
319 const InitializedEntity &Entity,
320 bool VerifyOnly);
321
322 // Explanation on the "FillWithNoInit" mode:
323 //
324 // Assume we have the following definitions (Case#1):
325 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
326 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
327 //
328 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
329 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
330 //
331 // But if we have (Case#2):
332 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
333 //
334 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
335 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
336 //
337 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
338 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
339 // initializers but with special "NoInitExpr" place holders, which tells the
340 // CodeGen not to generate any initializers for these parts.
341 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
342 const InitializedEntity &ParentEntity,
343 InitListExpr *ILE, bool &RequiresSecondPass,
344 bool FillWithNoInit = false);
345 void FillInEmptyInitializations(const InitializedEntity &Entity,
346 InitListExpr *ILE, bool &RequiresSecondPass,
347 bool FillWithNoInit = false);
348 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
349 Expr *InitExpr, FieldDecl *Field,
350 bool TopLevelObject);
351 void CheckEmptyInitializable(const InitializedEntity &Entity,
352 SourceLocation Loc);
353
354public:
355 InitListChecker(Sema &S, const InitializedEntity &Entity,
356 InitListExpr *IL, QualType &T, bool VerifyOnly);
357 bool HadError() { return hadError; }
358
359 // @brief Retrieves the fully-structured initializer list used for
360 // semantic analysis and code generation.
361 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
362};
363} // end anonymous namespace
364
365ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
366 SourceLocation Loc,
367 const InitializedEntity &Entity,
368 bool VerifyOnly) {
369 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
370 true);
371 MultiExprArg SubInit;
372 Expr *InitExpr;
373 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
374
375 // C++ [dcl.init.aggr]p7:
376 // If there are fewer initializer-clauses in the list than there are
377 // members in the aggregate, then each member not explicitly initialized
378 // ...
379 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
380 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
381 if (EmptyInitList) {
382 // C++1y / DR1070:
383 // shall be initialized [...] from an empty initializer list.
384 //
385 // We apply the resolution of this DR to C++11 but not C++98, since C++98
386 // does not have useful semantics for initialization from an init list.
387 // We treat this as copy-initialization, because aggregate initialization
388 // always performs copy-initialization on its elements.
389 //
390 // Only do this if we're initializing a class type, to avoid filling in
391 // the initializer list where possible.
392 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
393 InitListExpr(SemaRef.Context, Loc, None, Loc);
394 InitExpr->setType(SemaRef.Context.VoidTy);
395 SubInit = InitExpr;
396 Kind = InitializationKind::CreateCopy(Loc, Loc);
397 } else {
398 // C++03:
399 // shall be value-initialized.
400 }
401
402 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
403 // libstdc++4.6 marks the vector default constructor as explicit in
404 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
405 // stlport does so too. Look for std::__debug for libstdc++, and for
406 // std:: for stlport. This is effectively a compiler-side implementation of
407 // LWG2193.
408 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
409 InitializationSequence::FK_ExplicitConstructor) {
410 OverloadCandidateSet::iterator Best;
411 OverloadingResult O =
412 InitSeq.getFailedCandidateSet()
413 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
414 (void)O;
415 assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 415, __PRETTY_FUNCTION__))
;
416 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
417 CXXRecordDecl *R = CtorDecl->getParent();
418
419 if (CtorDecl->getMinRequiredArguments() == 0 &&
420 CtorDecl->isExplicit() && R->getDeclName() &&
421 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
422
423
424 bool IsInStd = false;
425 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
426 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
427 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
428 IsInStd = true;
429 }
430
431 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
432 .Cases("basic_string", "deque", "forward_list", true)
433 .Cases("list", "map", "multimap", "multiset", true)
434 .Cases("priority_queue", "queue", "set", "stack", true)
435 .Cases("unordered_map", "unordered_set", "vector", true)
436 .Default(false)) {
437 InitSeq.InitializeFrom(
438 SemaRef, Entity,
439 InitializationKind::CreateValue(Loc, Loc, Loc, true),
440 MultiExprArg(), /*TopLevelOfInitList=*/false);
441 // Emit a warning for this. System header warnings aren't shown
442 // by default, but people working on system headers should see it.
443 if (!VerifyOnly) {
444 SemaRef.Diag(CtorDecl->getLocation(),
445 diag::warn_invalid_initializer_from_system_header);
446 if (Entity.getKind() == InitializedEntity::EK_Member)
447 SemaRef.Diag(Entity.getDecl()->getLocation(),
448 diag::note_used_in_initialization_here);
449 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
450 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
451 }
452 }
453 }
454 }
455 if (!InitSeq) {
456 if (!VerifyOnly) {
457 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
458 if (Entity.getKind() == InitializedEntity::EK_Member)
459 SemaRef.Diag(Entity.getDecl()->getLocation(),
460 diag::note_in_omitted_aggregate_initializer)
461 << /*field*/1 << Entity.getDecl();
462 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
463 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
464 << /*array element*/0 << Entity.getElementIndex();
465 }
466 return ExprError();
467 }
468
469 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
470 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
471}
472
473void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
474 SourceLocation Loc) {
475 assert(VerifyOnly &&((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 476, __PRETTY_FUNCTION__))
476 "CheckEmptyInitializable is only inteded for verification mode.")((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 476, __PRETTY_FUNCTION__))
;
477 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
478 hadError = true;
479}
480
481void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
482 const InitializedEntity &ParentEntity,
483 InitListExpr *ILE,
484 bool &RequiresSecondPass,
485 bool FillWithNoInit) {
486 SourceLocation Loc = ILE->getLocEnd();
487 unsigned NumInits = ILE->getNumInits();
488 InitializedEntity MemberEntity
489 = InitializedEntity::InitializeMember(Field, &ParentEntity);
490
491 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
492 if (!RType->getDecl()->isUnion())
493 assert(Init < NumInits && "This ILE should have been expanded")((Init < NumInits && "This ILE should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < NumInits && \"This ILE should have been expanded\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 493, __PRETTY_FUNCTION__))
;
494
495 if (Init >= NumInits || !ILE->getInit(Init)) {
496 if (FillWithNoInit) {
497 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
498 if (Init < NumInits)
499 ILE->setInit(Init, Filler);
500 else
501 ILE->updateInit(SemaRef.Context, Init, Filler);
502 return;
503 }
504 // C++1y [dcl.init.aggr]p7:
505 // If there are fewer initializer-clauses in the list than there are
506 // members in the aggregate, then each member not explicitly initialized
507 // shall be initialized from its brace-or-equal-initializer [...]
508 if (Field->hasInClassInitializer()) {
509 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
510 if (DIE.isInvalid()) {
511 hadError = true;
512 return;
513 }
514 if (Init < NumInits)
515 ILE->setInit(Init, DIE.get());
516 else {
517 ILE->updateInit(SemaRef.Context, Init, DIE.get());
518 RequiresSecondPass = true;
519 }
520 return;
521 }
522
523 if (Field->getType()->isReferenceType()) {
524 // C++ [dcl.init.aggr]p9:
525 // If an incomplete or empty initializer-list leaves a
526 // member of reference type uninitialized, the program is
527 // ill-formed.
528 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
529 << Field->getType()
530 << ILE->getSyntacticForm()->getSourceRange();
531 SemaRef.Diag(Field->getLocation(),
532 diag::note_uninit_reference_member);
533 hadError = true;
534 return;
535 }
536
537 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
538 /*VerifyOnly*/false);
539 if (MemberInit.isInvalid()) {
540 hadError = true;
541 return;
542 }
543
544 if (hadError) {
545 // Do nothing
546 } else if (Init < NumInits) {
547 ILE->setInit(Init, MemberInit.getAs<Expr>());
548 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
549 // Empty initialization requires a constructor call, so
550 // extend the initializer list to include the constructor
551 // call and make a note that we'll need to take another pass
552 // through the initializer list.
553 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
554 RequiresSecondPass = true;
555 }
556 } else if (InitListExpr *InnerILE
557 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
558 FillInEmptyInitializations(MemberEntity, InnerILE,
559 RequiresSecondPass, FillWithNoInit);
560 else if (DesignatedInitUpdateExpr *InnerDIUE
561 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
562 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
563 RequiresSecondPass, /*FillWithNoInit =*/ true);
564}
565
566/// Recursively replaces NULL values within the given initializer list
567/// with expressions that perform value-initialization of the
568/// appropriate type.
569void
570InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
571 InitListExpr *ILE,
572 bool &RequiresSecondPass,
573 bool FillWithNoInit) {
574 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 575, __PRETTY_FUNCTION__))
575 "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 575, __PRETTY_FUNCTION__))
;
576
577 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
578 const RecordDecl *RDecl = RType->getDecl();
579 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
580 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
581 Entity, ILE, RequiresSecondPass, FillWithNoInit);
582 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
583 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
584 for (auto *Field : RDecl->fields()) {
585 if (Field->hasInClassInitializer()) {
586 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
587 FillWithNoInit);
588 break;
589 }
590 }
591 } else {
592 // The fields beyond ILE->getNumInits() are default initialized, so in
593 // order to leave them uninitialized, the ILE is expanded and the extra
594 // fields are then filled with NoInitExpr.
595 unsigned NumFields = 0;
596 for (auto *Field : RDecl->fields())
597 if (!Field->isUnnamedBitfield())
598 ++NumFields;
599 if (ILE->getNumInits() < NumFields)
600 ILE->resizeInits(SemaRef.Context, NumFields);
601
602 unsigned Init = 0;
603 for (auto *Field : RDecl->fields()) {
604 if (Field->isUnnamedBitfield())
605 continue;
606
607 if (hadError)
608 return;
609
610 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
611 FillWithNoInit);
612 if (hadError)
613 return;
614
615 ++Init;
616
617 // Only look at the first initialization of a union.
618 if (RDecl->isUnion())
619 break;
620 }
621 }
622
623 return;
624 }
625
626 QualType ElementType;
627
628 InitializedEntity ElementEntity = Entity;
629 unsigned NumInits = ILE->getNumInits();
630 unsigned NumElements = NumInits;
631 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
632 ElementType = AType->getElementType();
633 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
634 NumElements = CAType->getSize().getZExtValue();
635 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
636 0, Entity);
637 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
638 ElementType = VType->getElementType();
639 NumElements = VType->getNumElements();
640 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
641 0, Entity);
642 } else
643 ElementType = ILE->getType();
644
645 for (unsigned Init = 0; Init != NumElements; ++Init) {
646 if (hadError)
647 return;
648
649 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
650 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
651 ElementEntity.setElementIndex(Init);
652
653 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
654 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
655 ILE->setInit(Init, ILE->getArrayFiller());
656 else if (!InitExpr && !ILE->hasArrayFiller()) {
657 Expr *Filler = nullptr;
658
659 if (FillWithNoInit)
660 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
661 else {
662 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
663 ElementEntity,
664 /*VerifyOnly*/false);
665 if (ElementInit.isInvalid()) {
666 hadError = true;
667 return;
668 }
669
670 Filler = ElementInit.getAs<Expr>();
671 }
672
673 if (hadError) {
674 // Do nothing
675 } else if (Init < NumInits) {
676 // For arrays, just set the expression used for value-initialization
677 // of the "holes" in the array.
678 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
679 ILE->setArrayFiller(Filler);
680 else
681 ILE->setInit(Init, Filler);
682 } else {
683 // For arrays, just set the expression used for value-initialization
684 // of the rest of elements and exit.
685 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
686 ILE->setArrayFiller(Filler);
687 return;
688 }
689
690 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
691 // Empty initialization requires a constructor call, so
692 // extend the initializer list to include the constructor
693 // call and make a note that we'll need to take another pass
694 // through the initializer list.
695 ILE->updateInit(SemaRef.Context, Init, Filler);
696 RequiresSecondPass = true;
697 }
698 }
699 } else if (InitListExpr *InnerILE
700 = dyn_cast_or_null<InitListExpr>(InitExpr))
701 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
702 FillWithNoInit);
703 else if (DesignatedInitUpdateExpr *InnerDIUE
704 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
705 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
706 RequiresSecondPass, /*FillWithNoInit =*/ true);
707 }
708}
709
710
711InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
712 InitListExpr *IL, QualType &T,
713 bool VerifyOnly)
714 : SemaRef(S), VerifyOnly(VerifyOnly) {
715 // FIXME: Check that IL isn't already the semantic form of some other
716 // InitListExpr. If it is, we'd create a broken AST.
717
718 hadError = false;
719
720 FullyStructuredList =
721 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
722 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
723 /*TopLevelObject=*/true);
724
725 if (!hadError && !VerifyOnly) {
726 bool RequiresSecondPass = false;
727 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
728 if (RequiresSecondPass && !hadError)
729 FillInEmptyInitializations(Entity, FullyStructuredList,
730 RequiresSecondPass);
731 }
732}
733
734int InitListChecker::numArrayElements(QualType DeclType) {
735 // FIXME: use a proper constant
736 int maxElements = 0x7FFFFFFF;
737 if (const ConstantArrayType *CAT =
738 SemaRef.Context.getAsConstantArrayType(DeclType)) {
739 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
740 }
741 return maxElements;
742}
743
744int InitListChecker::numStructUnionElements(QualType DeclType) {
745 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
746 int InitializableMembers = 0;
747 for (const auto *Field : structDecl->fields())
748 if (!Field->isUnnamedBitfield())
749 ++InitializableMembers;
750
751 if (structDecl->isUnion())
752 return std::min(InitializableMembers, 1);
753 return InitializableMembers - structDecl->hasFlexibleArrayMember();
754}
755
756/// Check whether the range of the initializer \p ParentIList from element
757/// \p Index onwards can be used to initialize an object of type \p T. Update
758/// \p Index to indicate how many elements of the list were consumed.
759///
760/// This also fills in \p StructuredList, from element \p StructuredIndex
761/// onwards, with the fully-braced, desugared form of the initialization.
762void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
763 InitListExpr *ParentIList,
764 QualType T, unsigned &Index,
765 InitListExpr *StructuredList,
766 unsigned &StructuredIndex) {
767 int maxElements = 0;
768
769 if (T->isArrayType())
770 maxElements = numArrayElements(T);
771 else if (T->isRecordType())
772 maxElements = numStructUnionElements(T);
773 else if (T->isVectorType())
774 maxElements = T->getAs<VectorType>()->getNumElements();
775 else
776 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 776)
;
777
778 if (maxElements == 0) {
779 if (!VerifyOnly)
780 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
781 diag::err_implicit_empty_initializer);
782 ++Index;
783 hadError = true;
784 return;
785 }
786
787 // Build a structured initializer list corresponding to this subobject.
788 InitListExpr *StructuredSubobjectInitList
789 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
790 StructuredIndex,
791 SourceRange(ParentIList->getInit(Index)->getLocStart(),
792 ParentIList->getSourceRange().getEnd()));
793 unsigned StructuredSubobjectInitIndex = 0;
794
795 // Check the element types and build the structural subobject.
796 unsigned StartIndex = Index;
797 CheckListElementTypes(Entity, ParentIList, T,
798 /*SubobjectIsDesignatorContext=*/false, Index,
799 StructuredSubobjectInitList,
800 StructuredSubobjectInitIndex);
801
802 if (!VerifyOnly) {
803 StructuredSubobjectInitList->setType(T);
804
805 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
806 // Update the structured sub-object initializer so that it's ending
807 // range corresponds with the end of the last initializer it used.
808 if (EndIndex < ParentIList->getNumInits() &&
809 ParentIList->getInit(EndIndex)) {
810 SourceLocation EndLoc
811 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
812 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
813 }
814
815 // Complain about missing braces.
816 if (T->isArrayType() || T->isRecordType()) {
817 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
818 diag::warn_missing_braces)
819 << StructuredSubobjectInitList->getSourceRange()
820 << FixItHint::CreateInsertion(
821 StructuredSubobjectInitList->getLocStart(), "{")
822 << FixItHint::CreateInsertion(
823 SemaRef.getLocForEndOfToken(
824 StructuredSubobjectInitList->getLocEnd()),
825 "}");
826 }
827 }
828}
829
830/// Warn that \p Entity was of scalar type and was initialized by a
831/// single-element braced initializer list.
832static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
833 SourceRange Braces) {
834 // Don't warn during template instantiation. If the initialization was
835 // non-dependent, we warned during the initial parse; otherwise, the
836 // type might not be scalar in some uses of the template.
837 if (!S.ActiveTemplateInstantiations.empty())
838 return;
839
840 unsigned DiagID = 0;
841
842 switch (Entity.getKind()) {
843 case InitializedEntity::EK_VectorElement:
844 case InitializedEntity::EK_ComplexElement:
845 case InitializedEntity::EK_ArrayElement:
846 case InitializedEntity::EK_Parameter:
847 case InitializedEntity::EK_Parameter_CF_Audited:
848 case InitializedEntity::EK_Result:
849 // Extra braces here are suspicious.
850 DiagID = diag::warn_braces_around_scalar_init;
851 break;
852
853 case InitializedEntity::EK_Member:
854 // Warn on aggregate initialization but not on ctor init list or
855 // default member initializer.
856 if (Entity.getParent())
857 DiagID = diag::warn_braces_around_scalar_init;
858 break;
859
860 case InitializedEntity::EK_Variable:
861 case InitializedEntity::EK_LambdaCapture:
862 // No warning, might be direct-list-initialization.
863 // FIXME: Should we warn for copy-list-initialization in these cases?
864 break;
865
866 case InitializedEntity::EK_New:
867 case InitializedEntity::EK_Temporary:
868 case InitializedEntity::EK_CompoundLiteralInit:
869 // No warning, braces are part of the syntax of the underlying construct.
870 break;
871
872 case InitializedEntity::EK_RelatedResult:
873 // No warning, we already warned when initializing the result.
874 break;
875
876 case InitializedEntity::EK_Exception:
877 case InitializedEntity::EK_Base:
878 case InitializedEntity::EK_Delegating:
879 case InitializedEntity::EK_BlockElement:
880 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 880)
;
881 }
882
883 if (DiagID) {
884 S.Diag(Braces.getBegin(), DiagID)
885 << Braces
886 << FixItHint::CreateRemoval(Braces.getBegin())
887 << FixItHint::CreateRemoval(Braces.getEnd());
888 }
889}
890
891
892/// Check whether the initializer \p IList (that was written with explicit
893/// braces) can be used to initialize an object of type \p T.
894///
895/// This also fills in \p StructuredList with the fully-braced, desugared
896/// form of the initialization.
897void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
898 InitListExpr *IList, QualType &T,
899 InitListExpr *StructuredList,
900 bool TopLevelObject) {
901 if (!VerifyOnly) {
902 SyntacticToSemantic[IList] = StructuredList;
903 StructuredList->setSyntacticForm(IList);
904 }
905
906 unsigned Index = 0, StructuredIndex = 0;
907 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
908 Index, StructuredList, StructuredIndex, TopLevelObject);
909 if (!VerifyOnly) {
910 QualType ExprTy = T;
911 if (!ExprTy->isArrayType())
912 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
913 IList->setType(ExprTy);
914 StructuredList->setType(ExprTy);
915 }
916 if (hadError)
917 return;
918
919 if (Index < IList->getNumInits()) {
920 // We have leftover initializers
921 if (VerifyOnly) {
922 if (SemaRef.getLangOpts().CPlusPlus ||
923 (SemaRef.getLangOpts().OpenCL &&
924 IList->getType()->isVectorType())) {
925 hadError = true;
926 }
927 return;
928 }
929
930 if (StructuredIndex == 1 &&
931 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
932 SIF_None) {
933 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
934 if (SemaRef.getLangOpts().CPlusPlus) {
935 DK = diag::err_excess_initializers_in_char_array_initializer;
936 hadError = true;
937 }
938 // Special-case
939 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
940 << IList->getInit(Index)->getSourceRange();
941 } else if (!T->isIncompleteType()) {
942 // Don't complain for incomplete types, since we'll get an error
943 // elsewhere
944 QualType CurrentObjectType = StructuredList->getType();
945 int initKind =
946 CurrentObjectType->isArrayType()? 0 :
947 CurrentObjectType->isVectorType()? 1 :
948 CurrentObjectType->isScalarType()? 2 :
949 CurrentObjectType->isUnionType()? 3 :
950 4;
951
952 unsigned DK = diag::ext_excess_initializers;
953 if (SemaRef.getLangOpts().CPlusPlus) {
954 DK = diag::err_excess_initializers;
955 hadError = true;
956 }
957 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
958 DK = diag::err_excess_initializers;
959 hadError = true;
960 }
961
962 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
963 << initKind << IList->getInit(Index)->getSourceRange();
964 }
965 }
966
967 if (!VerifyOnly && T->isScalarType() &&
968 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
969 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
970}
971
972void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
973 InitListExpr *IList,
974 QualType &DeclType,
975 bool SubobjectIsDesignatorContext,
976 unsigned &Index,
977 InitListExpr *StructuredList,
978 unsigned &StructuredIndex,
979 bool TopLevelObject) {
980 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
981 // Explicitly braced initializer for complex type can be real+imaginary
982 // parts.
983 CheckComplexType(Entity, IList, DeclType, Index,
984 StructuredList, StructuredIndex);
985 } else if (DeclType->isScalarType()) {
986 CheckScalarType(Entity, IList, DeclType, Index,
987 StructuredList, StructuredIndex);
988 } else if (DeclType->isVectorType()) {
989 CheckVectorType(Entity, IList, DeclType, Index,
990 StructuredList, StructuredIndex);
991 } else if (DeclType->isRecordType()) {
992 assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 993, __PRETTY_FUNCTION__))
993 "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 993, __PRETTY_FUNCTION__))
;
994 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
995 CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
996 SubobjectIsDesignatorContext, Index,
997 StructuredList, StructuredIndex,
998 TopLevelObject);
999 } else if (DeclType->isArrayType()) {
1000 llvm::APSInt Zero(
1001 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1002 false);
1003 CheckArrayType(Entity, IList, DeclType, Zero,
1004 SubobjectIsDesignatorContext, Index,
1005 StructuredList, StructuredIndex);
1006 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1007 // This type is invalid, issue a diagnostic.
1008 ++Index;
1009 if (!VerifyOnly)
1010 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1011 << DeclType;
1012 hadError = true;
1013 } else if (DeclType->isReferenceType()) {
1014 CheckReferenceType(Entity, IList, DeclType, Index,
1015 StructuredList, StructuredIndex);
1016 } else if (DeclType->isObjCObjectType()) {
1017 if (!VerifyOnly)
1018 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1019 << DeclType;
1020 hadError = true;
1021 } else {
1022 if (!VerifyOnly)
1023 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1024 << DeclType;
1025 hadError = true;
1026 }
1027}
1028
1029void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1030 InitListExpr *IList,
1031 QualType ElemType,
1032 unsigned &Index,
1033 InitListExpr *StructuredList,
1034 unsigned &StructuredIndex) {
1035 Expr *expr = IList->getInit(Index);
1036
1037 if (ElemType->isReferenceType())
1038 return CheckReferenceType(Entity, IList, ElemType, Index,
1039 StructuredList, StructuredIndex);
1040
1041 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1042 if (SubInitList->getNumInits() == 1 &&
1043 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1044 SIF_None) {
1045 expr = SubInitList->getInit(0);
1046 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1047 InitListExpr *InnerStructuredList
1048 = getStructuredSubobjectInit(IList, Index, ElemType,
1049 StructuredList, StructuredIndex,
1050 SubInitList->getSourceRange(), true);
1051 CheckExplicitInitList(Entity, SubInitList, ElemType,
1052 InnerStructuredList);
1053
1054 if (!hadError && !VerifyOnly) {
1055 bool RequiresSecondPass = false;
1056 FillInEmptyInitializations(Entity, InnerStructuredList,
1057 RequiresSecondPass);
1058 if (RequiresSecondPass && !hadError)
1059 FillInEmptyInitializations(Entity, InnerStructuredList,
1060 RequiresSecondPass);
1061 }
1062 ++StructuredIndex;
1063 ++Index;
1064 return;
1065 }
1066 // C++ initialization is handled later.
1067 } else if (isa<ImplicitValueInitExpr>(expr)) {
1068 // This happens during template instantiation when we see an InitListExpr
1069 // that we've already checked once.
1070 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1071, __PRETTY_FUNCTION__))
1071 "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1071, __PRETTY_FUNCTION__))
;
1072 if (!VerifyOnly)
1073 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1074 ++Index;
1075 return;
1076 }
1077
1078 if (SemaRef.getLangOpts().CPlusPlus) {
1079 // C++ [dcl.init.aggr]p2:
1080 // Each member is copy-initialized from the corresponding
1081 // initializer-clause.
1082
1083 // FIXME: Better EqualLoc?
1084 InitializationKind Kind =
1085 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1086 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1087 /*TopLevelOfInitList*/ true);
1088
1089 // C++14 [dcl.init.aggr]p13:
1090 // If the assignment-expression can initialize a member, the member is
1091 // initialized. Otherwise [...] brace elision is assumed
1092 //
1093 // Brace elision is never performed if the element is not an
1094 // assignment-expression.
1095 if (Seq || isa<InitListExpr>(expr)) {
1096 if (!VerifyOnly) {
1097 ExprResult Result =
1098 Seq.Perform(SemaRef, Entity, Kind, expr);
1099 if (Result.isInvalid())
1100 hadError = true;
1101
1102 UpdateStructuredListElement(StructuredList, StructuredIndex,
1103 Result.getAs<Expr>());
1104 } else if (!Seq)
1105 hadError = true;
1106 ++Index;
1107 return;
1108 }
1109
1110 // Fall through for subaggregate initialization
1111 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1112 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1113 return CheckScalarType(Entity, IList, ElemType, Index,
1114 StructuredList, StructuredIndex);
1115 } else if (const ArrayType *arrayType =
1116 SemaRef.Context.getAsArrayType(ElemType)) {
1117 // arrayType can be incomplete if we're initializing a flexible
1118 // array member. There's nothing we can do with the completed
1119 // type here, though.
1120
1121 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1122 if (!VerifyOnly) {
1123 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1124 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1125 }
1126 ++Index;
1127 return;
1128 }
1129
1130 // Fall through for subaggregate initialization.
1131
1132 } else {
1133 assert((ElemType->isRecordType() || ElemType->isVectorType()) &&(((ElemType->isRecordType() || ElemType->isVectorType()
) && "Unexpected type") ? static_cast<void> (0)
: __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType()) && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1134, __PRETTY_FUNCTION__))
1134 "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType()
) && "Unexpected type") ? static_cast<void> (0)
: __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType()) && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1134, __PRETTY_FUNCTION__))
;
1135
1136 // C99 6.7.8p13:
1137 //
1138 // The initializer for a structure or union object that has
1139 // automatic storage duration shall be either an initializer
1140 // list as described below, or a single expression that has
1141 // compatible structure or union type. In the latter case, the
1142 // initial value of the object, including unnamed members, is
1143 // that of the expression.
1144 ExprResult ExprRes = expr;
1145 if (SemaRef.CheckSingleAssignmentConstraints(
1146 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1147 if (ExprRes.isInvalid())
1148 hadError = true;
1149 else {
1150 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1151 if (ExprRes.isInvalid())
1152 hadError = true;
1153 }
1154 UpdateStructuredListElement(StructuredList, StructuredIndex,
1155 ExprRes.getAs<Expr>());
1156 ++Index;
1157 return;
1158 }
1159 ExprRes.get();
1160 // Fall through for subaggregate initialization
1161 }
1162
1163 // C++ [dcl.init.aggr]p12:
1164 //
1165 // [...] Otherwise, if the member is itself a non-empty
1166 // subaggregate, brace elision is assumed and the initializer is
1167 // considered for the initialization of the first member of
1168 // the subaggregate.
1169 if (!SemaRef.getLangOpts().OpenCL &&
1170 (ElemType->isAggregateType() || ElemType->isVectorType())) {
1171 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1172 StructuredIndex);
1173 ++StructuredIndex;
1174 } else {
1175 if (!VerifyOnly) {
1176 // We cannot initialize this element, so let
1177 // PerformCopyInitialization produce the appropriate diagnostic.
1178 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1179 /*TopLevelOfInitList=*/true);
1180 }
1181 hadError = true;
1182 ++Index;
1183 ++StructuredIndex;
1184 }
1185}
1186
1187void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1188 InitListExpr *IList, QualType DeclType,
1189 unsigned &Index,
1190 InitListExpr *StructuredList,
1191 unsigned &StructuredIndex) {
1192 assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero"
) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1192, __PRETTY_FUNCTION__))
;
1193
1194 // As an extension, clang supports complex initializers, which initialize
1195 // a complex number component-wise. When an explicit initializer list for
1196 // a complex number contains two two initializers, this extension kicks in:
1197 // it exepcts the initializer list to contain two elements convertible to
1198 // the element type of the complex type. The first element initializes
1199 // the real part, and the second element intitializes the imaginary part.
1200
1201 if (IList->getNumInits() != 2)
1202 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1203 StructuredIndex);
1204
1205 // This is an extension in C. (The builtin _Complex type does not exist
1206 // in the C++ standard.)
1207 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1208 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1209 << IList->getSourceRange();
1210
1211 // Initialize the complex number.
1212 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1213 InitializedEntity ElementEntity =
1214 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1215
1216 for (unsigned i = 0; i < 2; ++i) {
1217 ElementEntity.setElementIndex(Index);
1218 CheckSubElementType(ElementEntity, IList, elementType, Index,
1219 StructuredList, StructuredIndex);
1220 }
1221}
1222
1223
1224void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1225 InitListExpr *IList, QualType DeclType,
1226 unsigned &Index,
1227 InitListExpr *StructuredList,
1228 unsigned &StructuredIndex) {
1229 if (Index >= IList->getNumInits()) {
1230 if (!VerifyOnly)
1231 SemaRef.Diag(IList->getLocStart(),
1232 SemaRef.getLangOpts().CPlusPlus11 ?
1233 diag::warn_cxx98_compat_empty_scalar_initializer :
1234 diag::err_empty_scalar_initializer)
1235 << IList->getSourceRange();
1236 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1237 ++Index;
1238 ++StructuredIndex;
1239 return;
1240 }
1241
1242 Expr *expr = IList->getInit(Index);
1243 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1244 // FIXME: This is invalid, and accepting it causes overload resolution
1245 // to pick the wrong overload in some corner cases.
1246 if (!VerifyOnly)
1247 SemaRef.Diag(SubIList->getLocStart(),
1248 diag::ext_many_braces_around_scalar_init)
1249 << SubIList->getSourceRange();
1250
1251 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1252 StructuredIndex);
1253 return;
1254 } else if (isa<DesignatedInitExpr>(expr)) {
1255 if (!VerifyOnly)
1256 SemaRef.Diag(expr->getLocStart(),
1257 diag::err_designator_for_scalar_init)
1258 << DeclType << expr->getSourceRange();
1259 hadError = true;
1260 ++Index;
1261 ++StructuredIndex;
1262 return;
1263 }
1264
1265 if (VerifyOnly) {
1266 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1267 hadError = true;
1268 ++Index;
1269 return;
1270 }
1271
1272 ExprResult Result =
1273 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1274 /*TopLevelOfInitList=*/true);
1275
1276 Expr *ResultExpr = nullptr;
1277
1278 if (Result.isInvalid())
1279 hadError = true; // types weren't compatible.
1280 else {
1281 ResultExpr = Result.getAs<Expr>();
1282
1283 if (ResultExpr != expr) {
1284 // The type was promoted, update initializer list.
1285 IList->setInit(Index, ResultExpr);
1286 }
1287 }
1288 if (hadError)
1289 ++StructuredIndex;
1290 else
1291 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1292 ++Index;
1293}
1294
1295void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1296 InitListExpr *IList, QualType DeclType,
1297 unsigned &Index,
1298 InitListExpr *StructuredList,
1299 unsigned &StructuredIndex) {
1300 if (Index >= IList->getNumInits()) {
1301 // FIXME: It would be wonderful if we could point at the actual member. In
1302 // general, it would be useful to pass location information down the stack,
1303 // so that we know the location (or decl) of the "current object" being
1304 // initialized.
1305 if (!VerifyOnly)
1306 SemaRef.Diag(IList->getLocStart(),
1307 diag::err_init_reference_member_uninitialized)
1308 << DeclType
1309 << IList->getSourceRange();
1310 hadError = true;
1311 ++Index;
1312 ++StructuredIndex;
1313 return;
1314 }
1315
1316 Expr *expr = IList->getInit(Index);
1317 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1318 if (!VerifyOnly)
1319 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1320 << DeclType << IList->getSourceRange();
1321 hadError = true;
1322 ++Index;
1323 ++StructuredIndex;
1324 return;
1325 }
1326
1327 if (VerifyOnly) {
1328 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1329 hadError = true;
1330 ++Index;
1331 return;
1332 }
1333
1334 ExprResult Result =
1335 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1336 /*TopLevelOfInitList=*/true);
1337
1338 if (Result.isInvalid())
1339 hadError = true;
1340
1341 expr = Result.getAs<Expr>();
1342 IList->setInit(Index, expr);
1343
1344 if (hadError)
1345 ++StructuredIndex;
1346 else
1347 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1348 ++Index;
1349}
1350
1351void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1352 InitListExpr *IList, QualType DeclType,
1353 unsigned &Index,
1354 InitListExpr *StructuredList,
1355 unsigned &StructuredIndex) {
1356 const VectorType *VT = DeclType->getAs<VectorType>();
1357 unsigned maxElements = VT->getNumElements();
1358 unsigned numEltsInit = 0;
1359 QualType elementType = VT->getElementType();
1360
1361 if (Index >= IList->getNumInits()) {
1362 // Make sure the element type can be value-initialized.
1363 if (VerifyOnly)
1364 CheckEmptyInitializable(
1365 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1366 IList->getLocEnd());
1367 return;
1368 }
1369
1370 if (!SemaRef.getLangOpts().OpenCL) {
1371 // If the initializing element is a vector, try to copy-initialize
1372 // instead of breaking it apart (which is doomed to failure anyway).
1373 Expr *Init = IList->getInit(Index);
1374 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1375 if (VerifyOnly) {
1376 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1377 hadError = true;
1378 ++Index;
1379 return;
1380 }
1381
1382 ExprResult Result =
1383 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1384 /*TopLevelOfInitList=*/true);
1385
1386 Expr *ResultExpr = nullptr;
1387 if (Result.isInvalid())
1388 hadError = true; // types weren't compatible.
1389 else {
1390 ResultExpr = Result.getAs<Expr>();
1391
1392 if (ResultExpr != Init) {
1393 // The type was promoted, update initializer list.
1394 IList->setInit(Index, ResultExpr);
1395 }
1396 }
1397 if (hadError)
1398 ++StructuredIndex;
1399 else
1400 UpdateStructuredListElement(StructuredList, StructuredIndex,
1401 ResultExpr);
1402 ++Index;
1403 return;
1404 }
1405
1406 InitializedEntity ElementEntity =
1407 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1408
1409 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1410 // Don't attempt to go past the end of the init list
1411 if (Index >= IList->getNumInits()) {
1412 if (VerifyOnly)
1413 CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1414 break;
1415 }
1416
1417 ElementEntity.setElementIndex(Index);
1418 CheckSubElementType(ElementEntity, IList, elementType, Index,
1419 StructuredList, StructuredIndex);
1420 }
1421
1422 if (VerifyOnly)
1423 return;
1424
1425 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1426 const VectorType *T = Entity.getType()->getAs<VectorType>();
1427 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1428 T->getVectorKind() == VectorType::NeonPolyVector)) {
1429 // The ability to use vector initializer lists is a GNU vector extension
1430 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1431 // endian machines it works fine, however on big endian machines it
1432 // exhibits surprising behaviour:
1433 //
1434 // uint32x2_t x = {42, 64};
1435 // return vget_lane_u32(x, 0); // Will return 64.
1436 //
1437 // Because of this, explicitly call out that it is non-portable.
1438 //
1439 SemaRef.Diag(IList->getLocStart(),
1440 diag::warn_neon_vector_initializer_non_portable);
1441
1442 const char *typeCode;
1443 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1444
1445 if (elementType->isFloatingType())
1446 typeCode = "f";
1447 else if (elementType->isSignedIntegerType())
1448 typeCode = "s";
1449 else if (elementType->isUnsignedIntegerType())
1450 typeCode = "u";
1451 else
1452 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1452)
;
1453
1454 SemaRef.Diag(IList->getLocStart(),
1455 SemaRef.Context.getTypeSize(VT) > 64 ?
1456 diag::note_neon_vector_initializer_non_portable_q :
1457 diag::note_neon_vector_initializer_non_portable)
1458 << typeCode << typeSize;
1459 }
1460
1461 return;
1462 }
1463
1464 InitializedEntity ElementEntity =
1465 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1466
1467 // OpenCL initializers allows vectors to be constructed from vectors.
1468 for (unsigned i = 0; i < maxElements; ++i) {
1469 // Don't attempt to go past the end of the init list
1470 if (Index >= IList->getNumInits())
1471 break;
1472
1473 ElementEntity.setElementIndex(Index);
1474
1475 QualType IType = IList->getInit(Index)->getType();
1476 if (!IType->isVectorType()) {
1477 CheckSubElementType(ElementEntity, IList, elementType, Index,
1478 StructuredList, StructuredIndex);
1479 ++numEltsInit;
1480 } else {
1481 QualType VecType;
1482 const VectorType *IVT = IType->getAs<VectorType>();
1483 unsigned numIElts = IVT->getNumElements();
1484
1485 if (IType->isExtVectorType())
1486 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1487 else
1488 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1489 IVT->getVectorKind());
1490 CheckSubElementType(ElementEntity, IList, VecType, Index,
1491 StructuredList, StructuredIndex);
1492 numEltsInit += numIElts;
1493 }
1494 }
1495
1496 // OpenCL requires all elements to be initialized.
1497 if (numEltsInit != maxElements) {
1498 if (!VerifyOnly)
1499 SemaRef.Diag(IList->getLocStart(),
1500 diag::err_vector_incorrect_num_initializers)
1501 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1502 hadError = true;
1503 }
1504}
1505
1506void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1507 InitListExpr *IList, QualType &DeclType,
1508 llvm::APSInt elementIndex,
1509 bool SubobjectIsDesignatorContext,
1510 unsigned &Index,
1511 InitListExpr *StructuredList,
1512 unsigned &StructuredIndex) {
1513 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1514
1515 // Check for the special-case of initializing an array with a string.
1516 if (Index < IList->getNumInits()) {
1517 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1518 SIF_None) {
1519 // We place the string literal directly into the resulting
1520 // initializer list. This is the only place where the structure
1521 // of the structured initializer list doesn't match exactly,
1522 // because doing so would involve allocating one character
1523 // constant for each string.
1524 if (!VerifyOnly) {
1525 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1526 UpdateStructuredListElement(StructuredList, StructuredIndex,
1527 IList->getInit(Index));
1528 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1529 }
1530 ++Index;
1531 return;
1532 }
1533 }
1534 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1535 // Check for VLAs; in standard C it would be possible to check this
1536 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1537 // them in all sorts of strange places).
1538 if (!VerifyOnly)
1539 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1540 diag::err_variable_object_no_init)
1541 << VAT->getSizeExpr()->getSourceRange();
1542 hadError = true;
1543 ++Index;
1544 ++StructuredIndex;
1545 return;
1546 }
1547
1548 // We might know the maximum number of elements in advance.
1549 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1550 elementIndex.isUnsigned());
1551 bool maxElementsKnown = false;
1552 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1553 maxElements = CAT->getSize();
1554 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1555 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1556 maxElementsKnown = true;
1557 }
1558
1559 QualType elementType = arrayType->getElementType();
1560 while (Index < IList->getNumInits()) {
1561 Expr *Init = IList->getInit(Index);
1562 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1563 // If we're not the subobject that matches up with the '{' for
1564 // the designator, we shouldn't be handling the
1565 // designator. Return immediately.
1566 if (!SubobjectIsDesignatorContext)
1567 return;
1568
1569 // Handle this designated initializer. elementIndex will be
1570 // updated to be the next array element we'll initialize.
1571 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1572 DeclType, nullptr, &elementIndex, Index,
1573 StructuredList, StructuredIndex, true,
1574 false)) {
1575 hadError = true;
1576 continue;
1577 }
1578
1579 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1580 maxElements = maxElements.extend(elementIndex.getBitWidth());
1581 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1582 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1583 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1584
1585 // If the array is of incomplete type, keep track of the number of
1586 // elements in the initializer.
1587 if (!maxElementsKnown && elementIndex > maxElements)
1588 maxElements = elementIndex;
1589
1590 continue;
1591 }
1592
1593 // If we know the maximum number of elements, and we've already
1594 // hit it, stop consuming elements in the initializer list.
1595 if (maxElementsKnown && elementIndex == maxElements)
1596 break;
1597
1598 InitializedEntity ElementEntity =
1599 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1600 Entity);
1601 // Check this element.
1602 CheckSubElementType(ElementEntity, IList, elementType, Index,
1603 StructuredList, StructuredIndex);
1604 ++elementIndex;
1605
1606 // If the array is of incomplete type, keep track of the number of
1607 // elements in the initializer.
1608 if (!maxElementsKnown && elementIndex > maxElements)
1609 maxElements = elementIndex;
1610 }
1611 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1612 // If this is an incomplete array type, the actual type needs to
1613 // be calculated here.
1614 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1615 if (maxElements == Zero) {
1616 // Sizing an array implicitly to zero is not allowed by ISO C,
1617 // but is supported by GNU.
1618 SemaRef.Diag(IList->getLocStart(),
1619 diag::ext_typecheck_zero_array_size);
1620 }
1621
1622 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1623 ArrayType::Normal, 0);
1624 }
1625 if (!hadError && VerifyOnly) {
1626 // Check if there are any members of the array that get value-initialized.
1627 // If so, check if doing that is possible.
1628 // FIXME: This needs to detect holes left by designated initializers too.
1629 if (maxElementsKnown && elementIndex < maxElements)
1630 CheckEmptyInitializable(InitializedEntity::InitializeElement(
1631 SemaRef.Context, 0, Entity),
1632 IList->getLocEnd());
1633 }
1634}
1635
1636bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1637 Expr *InitExpr,
1638 FieldDecl *Field,
1639 bool TopLevelObject) {
1640 // Handle GNU flexible array initializers.
1641 unsigned FlexArrayDiag;
1642 if (isa<InitListExpr>(InitExpr) &&
1643 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1644 // Empty flexible array init always allowed as an extension
1645 FlexArrayDiag = diag::ext_flexible_array_init;
1646 } else if (SemaRef.getLangOpts().CPlusPlus) {
1647 // Disallow flexible array init in C++; it is not required for gcc
1648 // compatibility, and it needs work to IRGen correctly in general.
1649 FlexArrayDiag = diag::err_flexible_array_init;
1650 } else if (!TopLevelObject) {
1651 // Disallow flexible array init on non-top-level object
1652 FlexArrayDiag = diag::err_flexible_array_init;
1653 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1654 // Disallow flexible array init on anything which is not a variable.
1655 FlexArrayDiag = diag::err_flexible_array_init;
1656 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1657 // Disallow flexible array init on local variables.
1658 FlexArrayDiag = diag::err_flexible_array_init;
1659 } else {
1660 // Allow other cases.
1661 FlexArrayDiag = diag::ext_flexible_array_init;
1662 }
1663
1664 if (!VerifyOnly) {
1665 SemaRef.Diag(InitExpr->getLocStart(),
1666 FlexArrayDiag)
1667 << InitExpr->getLocStart();
1668 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1669 << Field;
1670 }
1671
1672 return FlexArrayDiag != diag::ext_flexible_array_init;
1673}
1674
1675void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1676 InitListExpr *IList,
1677 QualType DeclType,
1678 RecordDecl::field_iterator Field,
1679 bool SubobjectIsDesignatorContext,
1680 unsigned &Index,
1681 InitListExpr *StructuredList,
1682 unsigned &StructuredIndex,
1683 bool TopLevelObject) {
1684 RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1685
1686 // If the record is invalid, some of it's members are invalid. To avoid
1687 // confusion, we forgo checking the intializer for the entire record.
1688 if (structDecl->isInvalidDecl()) {
1689 // Assume it was supposed to consume a single initializer.
1690 ++Index;
1691 hadError = true;
1692 return;
1693 }
1694
1695 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1696 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1697
1698 // If there's a default initializer, use it.
1699 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1700 if (VerifyOnly)
1701 return;
1702 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1703 Field != FieldEnd; ++Field) {
1704 if (Field->hasInClassInitializer()) {
1705 StructuredList->setInitializedFieldInUnion(*Field);
1706 // FIXME: Actually build a CXXDefaultInitExpr?
1707 return;
1708 }
1709 }
1710 }
1711
1712 // Value-initialize the first member of the union that isn't an unnamed
1713 // bitfield.
1714 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1715 Field != FieldEnd; ++Field) {
1716 if (!Field->isUnnamedBitfield()) {
1717 if (VerifyOnly)
1718 CheckEmptyInitializable(
1719 InitializedEntity::InitializeMember(*Field, &Entity),
1720 IList->getLocEnd());
1721 else
1722 StructuredList->setInitializedFieldInUnion(*Field);
1723 break;
1724 }
1725 }
1726 return;
1727 }
1728
1729 // If structDecl is a forward declaration, this loop won't do
1730 // anything except look at designated initializers; That's okay,
1731 // because an error should get printed out elsewhere. It might be
1732 // worthwhile to skip over the rest of the initializer, though.
1733 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1734 RecordDecl::field_iterator FieldEnd = RD->field_end();
1735 bool InitializedSomething = false;
1736 bool CheckForMissingFields = true;
1737 while (Index < IList->getNumInits()) {
1738 Expr *Init = IList->getInit(Index);
1739
1740 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1741 // If we're not the subobject that matches up with the '{' for
1742 // the designator, we shouldn't be handling the
1743 // designator. Return immediately.
1744 if (!SubobjectIsDesignatorContext)
1745 return;
1746
1747 // Handle this designated initializer. Field will be updated to
1748 // the next field that we'll be initializing.
1749 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1750 DeclType, &Field, nullptr, Index,
1751 StructuredList, StructuredIndex,
1752 true, TopLevelObject))
1753 hadError = true;
1754
1755 InitializedSomething = true;
1756
1757 // Disable check for missing fields when designators are used.
1758 // This matches gcc behaviour.
1759 CheckForMissingFields = false;
1760 continue;
1761 }
1762
1763 if (Field == FieldEnd) {
1764 // We've run out of fields. We're done.
1765 break;
1766 }
1767
1768 // We've already initialized a member of a union. We're done.
1769 if (InitializedSomething && DeclType->isUnionType())
1770 break;
1771
1772 // If we've hit the flexible array member at the end, we're done.
1773 if (Field->getType()->isIncompleteArrayType())
1774 break;
1775
1776 if (Field->isUnnamedBitfield()) {
1777 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1778 ++Field;
1779 continue;
1780 }
1781
1782 // Make sure we can use this declaration.
1783 bool InvalidUse;
1784 if (VerifyOnly)
1785 InvalidUse = !SemaRef.CanUseDecl(*Field);
1786 else
1787 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1788 IList->getInit(Index)->getLocStart());
1789 if (InvalidUse) {
1790 ++Index;
1791 ++Field;
1792 hadError = true;
1793 continue;
1794 }
1795
1796 InitializedEntity MemberEntity =
1797 InitializedEntity::InitializeMember(*Field, &Entity);
1798 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1799 StructuredList, StructuredIndex);
1800 InitializedSomething = true;
1801
1802 if (DeclType->isUnionType() && !VerifyOnly) {
1803 // Initialize the first field within the union.
1804 StructuredList->setInitializedFieldInUnion(*Field);
1805 }
1806
1807 ++Field;
1808 }
1809
1810 // Emit warnings for missing struct field initializers.
1811 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1812 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1813 !DeclType->isUnionType()) {
1814 // It is possible we have one or more unnamed bitfields remaining.
1815 // Find first (if any) named field and emit warning.
1816 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1817 it != end; ++it) {
1818 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1819 SemaRef.Diag(IList->getSourceRange().getEnd(),
1820 diag::warn_missing_field_initializers) << *it;
1821 break;
1822 }
1823 }
1824 }
1825
1826 // Check that any remaining fields can be value-initialized.
1827 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1828 !Field->getType()->isIncompleteArrayType()) {
1829 // FIXME: Should check for holes left by designated initializers too.
1830 for (; Field != FieldEnd && !hadError; ++Field) {
1831 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1832 CheckEmptyInitializable(
1833 InitializedEntity::InitializeMember(*Field, &Entity),
1834 IList->getLocEnd());
1835 }
1836 }
1837
1838 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1839 Index >= IList->getNumInits())
1840 return;
1841
1842 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1843 TopLevelObject)) {
1844 hadError = true;
1845 ++Index;
1846 return;
1847 }
1848
1849 InitializedEntity MemberEntity =
1850 InitializedEntity::InitializeMember(*Field, &Entity);
1851
1852 if (isa<InitListExpr>(IList->getInit(Index)))
1853 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1854 StructuredList, StructuredIndex);
1855 else
1856 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1857 StructuredList, StructuredIndex);
1858}
1859
1860/// \brief Expand a field designator that refers to a member of an
1861/// anonymous struct or union into a series of field designators that
1862/// refers to the field within the appropriate subobject.
1863///
1864static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1865 DesignatedInitExpr *DIE,
1866 unsigned DesigIdx,
1867 IndirectFieldDecl *IndirectField) {
1868 typedef DesignatedInitExpr::Designator Designator;
1869
1870 // Build the replacement designators.
1871 SmallVector<Designator, 4> Replacements;
1872 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1873 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1874 if (PI + 1 == PE)
1875 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1876 DIE->getDesignator(DesigIdx)->getDotLoc(),
1877 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1878 else
1879 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1880 SourceLocation(), SourceLocation()));
1881 assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail
("isa<FieldDecl>(*PI)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1881, __PRETTY_FUNCTION__))
;
1882 Replacements.back().setField(cast<FieldDecl>(*PI));
1883 }
1884
1885 // Expand the current designator into the set of replacement
1886 // designators, so we have a full subobject path down to where the
1887 // member of the anonymous struct/union is actually stored.
1888 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1889 &Replacements[0] + Replacements.size());
1890}
1891
1892static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1893 DesignatedInitExpr *DIE) {
1894 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1895 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1896 for (unsigned I = 0; I < NumIndexExprs; ++I)
1897 IndexExprs[I] = DIE->getSubExpr(I + 1);
1898 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1899 DIE->size(), IndexExprs,
1900 DIE->getEqualOrColonLoc(),
1901 DIE->usesGNUSyntax(), DIE->getInit());
1902}
1903
1904namespace {
1905
1906// Callback to only accept typo corrections that are for field members of
1907// the given struct or union.
1908class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1909 public:
1910 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1911 : Record(RD) {}
1912
1913 bool ValidateCandidate(const TypoCorrection &candidate) override {
1914 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1915 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1916 }
1917
1918 private:
1919 RecordDecl *Record;
1920};
1921
1922}
1923
1924/// @brief Check the well-formedness of a C99 designated initializer.
1925///
1926/// Determines whether the designated initializer @p DIE, which
1927/// resides at the given @p Index within the initializer list @p
1928/// IList, is well-formed for a current object of type @p DeclType
1929/// (C99 6.7.8). The actual subobject that this designator refers to
1930/// within the current subobject is returned in either
1931/// @p NextField or @p NextElementIndex (whichever is appropriate).
1932///
1933/// @param IList The initializer list in which this designated
1934/// initializer occurs.
1935///
1936/// @param DIE The designated initializer expression.
1937///
1938/// @param DesigIdx The index of the current designator.
1939///
1940/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1941/// into which the designation in @p DIE should refer.
1942///
1943/// @param NextField If non-NULL and the first designator in @p DIE is
1944/// a field, this will be set to the field declaration corresponding
1945/// to the field named by the designator.
1946///
1947/// @param NextElementIndex If non-NULL and the first designator in @p
1948/// DIE is an array designator or GNU array-range designator, this
1949/// will be set to the last index initialized by this designator.
1950///
1951/// @param Index Index into @p IList where the designated initializer
1952/// @p DIE occurs.
1953///
1954/// @param StructuredList The initializer list expression that
1955/// describes all of the subobject initializers in the order they'll
1956/// actually be initialized.
1957///
1958/// @returns true if there was an error, false otherwise.
1959bool
1960InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1961 InitListExpr *IList,
1962 DesignatedInitExpr *DIE,
1963 unsigned DesigIdx,
1964 QualType &CurrentObjectType,
1965 RecordDecl::field_iterator *NextField,
1966 llvm::APSInt *NextElementIndex,
1967 unsigned &Index,
1968 InitListExpr *StructuredList,
1969 unsigned &StructuredIndex,
1970 bool FinishSubobjectInit,
1971 bool TopLevelObject) {
1972 if (DesigIdx == DIE->size()) {
1973 // Check the actual initialization for the designated object type.
1974 bool prevHadError = hadError;
1975
1976 // Temporarily remove the designator expression from the
1977 // initializer list that the child calls see, so that we don't try
1978 // to re-process the designator.
1979 unsigned OldIndex = Index;
1980 IList->setInit(OldIndex, DIE->getInit());
1981
1982 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1983 StructuredList, StructuredIndex);
1984
1985 // Restore the designated initializer expression in the syntactic
1986 // form of the initializer list.
1987 if (IList->getInit(OldIndex) != DIE->getInit())
1988 DIE->setInit(IList->getInit(OldIndex));
1989 IList->setInit(OldIndex, DIE);
1990
1991 return hadError && !prevHadError;
1992 }
1993
1994 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1995 bool IsFirstDesignator = (DesigIdx == 0);
1996 if (!VerifyOnly) {
1997 assert((IsFirstDesignator || StructuredList) &&(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1998, __PRETTY_FUNCTION__))
1998 "Need a non-designated initializer list to start from")(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 1998, __PRETTY_FUNCTION__))
;
1999
2000 // Determine the structural initializer list that corresponds to the
2001 // current subobject.
2002 if (IsFirstDesignator)
2003 StructuredList = SyntacticToSemantic.lookup(IList);
2004 else {
2005 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2006 StructuredList->getInit(StructuredIndex) : nullptr;
2007 if (!ExistingInit && StructuredList->hasArrayFiller())
2008 ExistingInit = StructuredList->getArrayFiller();
2009
2010 if (!ExistingInit)
2011 StructuredList =
2012 getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2013 StructuredList, StructuredIndex,
2014 SourceRange(D->getLocStart(),
2015 DIE->getLocEnd()));
2016 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2017 StructuredList = Result;
2018 else {
2019 if (DesignatedInitUpdateExpr *E =
2020 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2021 StructuredList = E->getUpdater();
2022 else {
2023 DesignatedInitUpdateExpr *DIUE =
2024 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2025 D->getLocStart(), ExistingInit,
2026 DIE->getLocEnd());
2027 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2028 StructuredList = DIUE->getUpdater();
2029 }
2030
2031 // We need to check on source range validity because the previous
2032 // initializer does not have to be an explicit initializer. e.g.,
2033 //
2034 // struct P { int a, b; };
2035 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2036 //
2037 // There is an overwrite taking place because the first braced initializer
2038 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2039 if (ExistingInit->getSourceRange().isValid()) {
2040 // We are creating an initializer list that initializes the
2041 // subobjects of the current object, but there was already an
2042 // initialization that completely initialized the current
2043 // subobject, e.g., by a compound literal:
2044 //
2045 // struct X { int a, b; };
2046 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2047 //
2048 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2049 // designated initializer re-initializes the whole
2050 // subobject [0], overwriting previous initializers.
2051 SemaRef.Diag(D->getLocStart(),
2052 diag::warn_subobject_initializer_overrides)
2053 << SourceRange(D->getLocStart(), DIE->getLocEnd());
2054
2055 SemaRef.Diag(ExistingInit->getLocStart(),
2056 diag::note_previous_initializer)
2057 << /*FIXME:has side effects=*/0
2058 << ExistingInit->getSourceRange();
2059 }
2060 }
2061 }
2062 assert(StructuredList && "Expected a structured initializer list")((StructuredList && "Expected a structured initializer list"
) ? static_cast<void> (0) : __assert_fail ("StructuredList && \"Expected a structured initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 2062, __PRETTY_FUNCTION__))
;
2063 }
2064
2065 if (D->isFieldDesignator()) {
2066 // C99 6.7.8p7:
2067 //
2068 // If a designator has the form
2069 //
2070 // . identifier
2071 //
2072 // then the current object (defined below) shall have
2073 // structure or union type and the identifier shall be the
2074 // name of a member of that type.
2075 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2076 if (!RT) {
2077 SourceLocation Loc = D->getDotLoc();
2078 if (Loc.isInvalid())
2079 Loc = D->getFieldLoc();
2080 if (!VerifyOnly)
2081 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2082 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2083 ++Index;
2084 return true;
2085 }
2086
2087 FieldDecl *KnownField = D->getField();
2088 if (!KnownField) {
2089 IdentifierInfo *FieldName = D->getFieldName();
2090 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2091 for (NamedDecl *ND : Lookup) {
2092 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2093 KnownField = FD;
2094 break;
2095 }
2096 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2097 // In verify mode, don't modify the original.
2098 if (VerifyOnly)
2099 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2100 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2101 D = DIE->getDesignator(DesigIdx);
2102 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2103 break;
2104 }
2105 }
2106 if (!KnownField) {
2107 if (VerifyOnly) {
2108 ++Index;
2109 return true; // No typo correction when just trying this out.
2110 }
2111
2112 // Name lookup found something, but it wasn't a field.
2113 if (!Lookup.empty()) {
2114 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2115 << FieldName;
2116 SemaRef.Diag(Lookup.front()->getLocation(),
2117 diag::note_field_designator_found);
2118 ++Index;
2119 return true;
2120 }
2121
2122 // Name lookup didn't find anything.
2123 // Determine whether this was a typo for another field name.
2124 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2125 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2126 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2127 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2128 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2129 SemaRef.diagnoseTypo(
2130 Corrected,
2131 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2132 << FieldName << CurrentObjectType);
2133 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2134 hadError = true;
2135 } else {
2136 // Typo correction didn't find anything.
2137 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2138 << FieldName << CurrentObjectType;
2139 ++Index;
2140 return true;
2141 }
2142 }
2143 }
2144
2145 unsigned FieldIndex = 0;
2146 for (auto *FI : RT->getDecl()->fields()) {
2147 if (FI->isUnnamedBitfield())
2148 continue;
2149 if (KnownField == FI)
2150 break;
2151 ++FieldIndex;
2152 }
2153
2154 RecordDecl::field_iterator Field =
2155 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2156
2157 // All of the fields of a union are located at the same place in
2158 // the initializer list.
2159 if (RT->getDecl()->isUnion()) {
2160 FieldIndex = 0;
2161 if (!VerifyOnly) {
2162 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2163 if (CurrentField && CurrentField != *Field) {
2164 assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 2165, __PRETTY_FUNCTION__))
2165 && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 2165, __PRETTY_FUNCTION__))
;
2166
2167 // we're about to throw away an initializer, emit warning
2168 SemaRef.Diag(D->getFieldLoc(),
2169 diag::warn_initializer_overrides)
2170 << D->getSourceRange();
2171 Expr *ExistingInit = StructuredList->getInit(0);
2172 SemaRef.Diag(ExistingInit->getLocStart(),
2173 diag::note_previous_initializer)
2174 << /*FIXME:has side effects=*/0
2175 << ExistingInit->getSourceRange();
2176
2177 // remove existing initializer
2178 StructuredList->resizeInits(SemaRef.Context, 0);
2179 StructuredList->setInitializedFieldInUnion(nullptr);
2180 }
2181
2182 StructuredList->setInitializedFieldInUnion(*Field);
2183 }
2184 }
2185
2186 // Make sure we can use this declaration.
2187 bool InvalidUse;
2188 if (VerifyOnly)
2189 InvalidUse = !SemaRef.CanUseDecl(*Field);
2190 else
2191 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2192 if (InvalidUse) {
2193 ++Index;
2194 return true;
2195 }
2196
2197 if (!VerifyOnly) {
2198 // Update the designator with the field declaration.
2199 D->setField(*Field);
2200
2201 // Make sure that our non-designated initializer list has space
2202 // for a subobject corresponding to this field.
2203 if (FieldIndex >= StructuredList->getNumInits())
2204 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2205 }
2206
2207 // This designator names a flexible array member.
2208 if (Field->getType()->isIncompleteArrayType()) {
2209 bool Invalid = false;
2210 if ((DesigIdx + 1) != DIE->size()) {
2211 // We can't designate an object within the flexible array
2212 // member (because GCC doesn't allow it).
2213 if (!VerifyOnly) {
2214 DesignatedInitExpr::Designator *NextD
2215 = DIE->getDesignator(DesigIdx + 1);
2216 SemaRef.Diag(NextD->getLocStart(),
2217 diag::err_designator_into_flexible_array_member)
2218 << SourceRange(NextD->getLocStart(),
2219 DIE->getLocEnd());
2220 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2221 << *Field;
2222 }
2223 Invalid = true;
2224 }
2225
2226 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2227 !isa<StringLiteral>(DIE->getInit())) {
2228 // The initializer is not an initializer list.
2229 if (!VerifyOnly) {
2230 SemaRef.Diag(DIE->getInit()->getLocStart(),
2231 diag::err_flexible_array_init_needs_braces)
2232 << DIE->getInit()->getSourceRange();
2233 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2234 << *Field;
2235 }
2236 Invalid = true;
2237 }
2238
2239 // Check GNU flexible array initializer.
2240 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2241 TopLevelObject))
2242 Invalid = true;
2243
2244 if (Invalid) {
2245 ++Index;
2246 return true;
2247 }
2248
2249 // Initialize the array.
2250 bool prevHadError = hadError;
2251 unsigned newStructuredIndex = FieldIndex;
2252 unsigned OldIndex = Index;
2253 IList->setInit(Index, DIE->getInit());
2254
2255 InitializedEntity MemberEntity =
2256 InitializedEntity::InitializeMember(*Field, &Entity);
2257 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2258 StructuredList, newStructuredIndex);
2259
2260 IList->setInit(OldIndex, DIE);
2261 if (hadError && !prevHadError) {
2262 ++Field;
2263 ++FieldIndex;
2264 if (NextField)
2265 *NextField = Field;
2266 StructuredIndex = FieldIndex;
2267 return true;
2268 }
2269 } else {
2270 // Recurse to check later designated subobjects.
2271 QualType FieldType = Field->getType();
2272 unsigned newStructuredIndex = FieldIndex;
2273
2274 InitializedEntity MemberEntity =
2275 InitializedEntity::InitializeMember(*Field, &Entity);
2276 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2277 FieldType, nullptr, nullptr, Index,
2278 StructuredList, newStructuredIndex,
2279 true, false))
2280 return true;
2281 }
2282
2283 // Find the position of the next field to be initialized in this
2284 // subobject.
2285 ++Field;
2286 ++FieldIndex;
2287
2288 // If this the first designator, our caller will continue checking
2289 // the rest of this struct/class/union subobject.
2290 if (IsFirstDesignator) {
2291 if (NextField)
2292 *NextField = Field;
2293 StructuredIndex = FieldIndex;
2294 return false;
2295 }
2296
2297 if (!FinishSubobjectInit)
2298 return false;
2299
2300 // We've already initialized something in the union; we're done.
2301 if (RT->getDecl()->isUnion())
2302 return hadError;
2303
2304 // Check the remaining fields within this class/struct/union subobject.
2305 bool prevHadError = hadError;
2306
2307 CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2308 StructuredList, FieldIndex);
2309 return hadError && !prevHadError;
2310 }
2311
2312 // C99 6.7.8p6:
2313 //
2314 // If a designator has the form
2315 //
2316 // [ constant-expression ]
2317 //
2318 // then the current object (defined below) shall have array
2319 // type and the expression shall be an integer constant
2320 // expression. If the array is of unknown size, any
2321 // nonnegative value is valid.
2322 //
2323 // Additionally, cope with the GNU extension that permits
2324 // designators of the form
2325 //
2326 // [ constant-expression ... constant-expression ]
2327 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2328 if (!AT) {
2329 if (!VerifyOnly)
2330 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2331 << CurrentObjectType;
2332 ++Index;
2333 return true;
2334 }
2335
2336 Expr *IndexExpr = nullptr;
2337 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2338 if (D->isArrayDesignator()) {
2339 IndexExpr = DIE->getArrayIndex(*D);
2340 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2341 DesignatedEndIndex = DesignatedStartIndex;
2342 } else {
2343 assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator"
) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 2343, __PRETTY_FUNCTION__))
;
2344
2345 DesignatedStartIndex =
2346 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2347 DesignatedEndIndex =
2348 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2349 IndexExpr = DIE->getArrayRangeEnd(*D);
2350
2351 // Codegen can't handle evaluating array range designators that have side
2352 // effects, because we replicate the AST value for each initialized element.
2353 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2354 // elements with something that has a side effect, so codegen can emit an
2355 // "error unsupported" error instead of miscompiling the app.
2356 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2357 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2358 FullyStructuredList->sawArrayRangeDesignator();
2359 }
2360
2361 if (isa<ConstantArrayType>(AT)) {
2362 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2363 DesignatedStartIndex
2364 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2365 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2366 DesignatedEndIndex
2367 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2368 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2369 if (DesignatedEndIndex >= MaxElements) {
2370 if (!VerifyOnly)
2371 SemaRef.Diag(IndexExpr->getLocStart(),
2372 diag::err_array_designator_too_large)
2373 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2374 << IndexExpr->getSourceRange();
2375 ++Index;
2376 return true;
2377 }
2378 } else {
2379 unsigned DesignatedIndexBitWidth =
2380 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2381 DesignatedStartIndex =
2382 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2383 DesignatedEndIndex =
2384 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2385 DesignatedStartIndex.setIsUnsigned(true);
2386 DesignatedEndIndex.setIsUnsigned(true);
2387 }
2388
2389 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2390 // We're modifying a string literal init; we have to decompose the string
2391 // so we can modify the individual characters.
2392 ASTContext &Context = SemaRef.Context;
2393 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2394
2395 // Compute the character type
2396 QualType CharTy = AT->getElementType();
2397
2398 // Compute the type of the integer literals.
2399 QualType PromotedCharTy = CharTy;
2400 if (CharTy->isPromotableIntegerType())
2401 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2402 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2403
2404 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2405 // Get the length of the string.
2406 uint64_t StrLen = SL->getLength();
2407 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2408 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2409 StructuredList->resizeInits(Context, StrLen);
2410
2411 // Build a literal for each character in the string, and put them into
2412 // the init list.
2413 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2414 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2415 Expr *Init = new (Context) IntegerLiteral(
2416 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2417 if (CharTy != PromotedCharTy)
2418 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2419 Init, nullptr, VK_RValue);
2420 StructuredList->updateInit(Context, i, Init);
2421 }
2422 } else {
2423 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2424 std::string Str;
2425 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2426
2427 // Get the length of the string.
2428 uint64_t StrLen = Str.size();
2429 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2430 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2431 StructuredList->resizeInits(Context, StrLen);
2432
2433 // Build a literal for each character in the string, and put them into
2434 // the init list.
2435 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2436 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2437 Expr *Init = new (Context) IntegerLiteral(
2438 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2439 if (CharTy != PromotedCharTy)
2440 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2441 Init, nullptr, VK_RValue);
2442 StructuredList->updateInit(Context, i, Init);
2443 }
2444 }
2445 }
2446
2447 // Make sure that our non-designated initializer list has space
2448 // for a subobject corresponding to this array element.
2449 if (!VerifyOnly &&
2450 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2451 StructuredList->resizeInits(SemaRef.Context,
2452 DesignatedEndIndex.getZExtValue() + 1);
2453
2454 // Repeatedly perform subobject initializations in the range
2455 // [DesignatedStartIndex, DesignatedEndIndex].
2456
2457 // Move to the next designator
2458 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2459 unsigned OldIndex = Index;
2460
2461 InitializedEntity ElementEntity =
2462 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2463
2464 while (DesignatedStartIndex <= DesignatedEndIndex) {
2465 // Recurse to check later designated subobjects.
2466 QualType ElementType = AT->getElementType();
2467 Index = OldIndex;
2468
2469 ElementEntity.setElementIndex(ElementIndex);
2470 if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2471 ElementType, nullptr, nullptr, Index,
2472 StructuredList, ElementIndex,
2473 (DesignatedStartIndex == DesignatedEndIndex),
2474 false))
2475 return true;
2476
2477 // Move to the next index in the array that we'll be initializing.
2478 ++DesignatedStartIndex;
2479 ElementIndex = DesignatedStartIndex.getZExtValue();
2480 }
2481
2482 // If this the first designator, our caller will continue checking
2483 // the rest of this array subobject.
2484 if (IsFirstDesignator) {
2485 if (NextElementIndex)
2486 *NextElementIndex = DesignatedStartIndex;
2487 StructuredIndex = ElementIndex;
2488 return false;
2489 }
2490
2491 if (!FinishSubobjectInit)
2492 return false;
2493
2494 // Check the remaining elements within this array subobject.
2495 bool prevHadError = hadError;
2496 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2497 /*SubobjectIsDesignatorContext=*/false, Index,
2498 StructuredList, ElementIndex);
2499 return hadError && !prevHadError;
2500}
2501
2502// Get the structured initializer list for a subobject of type
2503// @p CurrentObjectType.
2504InitListExpr *
2505InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2506 QualType CurrentObjectType,
2507 InitListExpr *StructuredList,
2508 unsigned StructuredIndex,
2509 SourceRange InitRange,
2510 bool IsFullyOverwritten) {
2511 if (VerifyOnly)
2512 return nullptr; // No structured list in verification-only mode.
2513 Expr *ExistingInit = nullptr;
2514 if (!StructuredList)
2515 ExistingInit = SyntacticToSemantic.lookup(IList);
2516 else if (StructuredIndex < StructuredList->getNumInits())
2517 ExistingInit = StructuredList->getInit(StructuredIndex);
2518
2519 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2520 // There might have already been initializers for subobjects of the current
2521 // object, but a subsequent initializer list will overwrite the entirety
2522 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2523 //
2524 // struct P { char x[6]; };
2525 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2526 //
2527 // The first designated initializer is ignored, and l.x is just "f".
2528 if (!IsFullyOverwritten)
2529 return Result;
2530
2531 if (ExistingInit) {
2532 // We are creating an initializer list that initializes the
2533 // subobjects of the current object, but there was already an
2534 // initialization that completely initialized the current
2535 // subobject, e.g., by a compound literal:
2536 //
2537 // struct X { int a, b; };
2538 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2539 //
2540 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2541 // designated initializer re-initializes the whole
2542 // subobject [0], overwriting previous initializers.
2543 SemaRef.Diag(InitRange.getBegin(),
2544 diag::warn_subobject_initializer_overrides)
2545 << InitRange;
2546 SemaRef.Diag(ExistingInit->getLocStart(),
2547 diag::note_previous_initializer)
2548 << /*FIXME:has side effects=*/0
2549 << ExistingInit->getSourceRange();
2550 }
2551
2552 InitListExpr *Result
2553 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2554 InitRange.getBegin(), None,
2555 InitRange.getEnd());
2556
2557 QualType ResultType = CurrentObjectType;
2558 if (!ResultType->isArrayType())
2559 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2560 Result->setType(ResultType);
2561
2562 // Pre-allocate storage for the structured initializer list.
2563 unsigned NumElements = 0;
2564 unsigned NumInits = 0;
2565 bool GotNumInits = false;
2566 if (!StructuredList) {
2567 NumInits = IList->getNumInits();
2568 GotNumInits = true;
2569 } else if (Index < IList->getNumInits()) {
2570 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2571 NumInits = SubList->getNumInits();
2572 GotNumInits = true;
2573 }
2574 }
2575
2576 if (const ArrayType *AType
2577 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2578 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2579 NumElements = CAType->getSize().getZExtValue();
2580 // Simple heuristic so that we don't allocate a very large
2581 // initializer with many empty entries at the end.
2582 if (GotNumInits && NumElements > NumInits)
2583 NumElements = 0;
2584 }
2585 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2586 NumElements = VType->getNumElements();
2587 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2588 RecordDecl *RDecl = RType->getDecl();
2589 if (RDecl->isUnion())
2590 NumElements = 1;
2591 else
2592 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2593 }
2594
2595 Result->reserveInits(SemaRef.Context, NumElements);
2596
2597 // Link this new initializer list into the structured initializer
2598 // lists.
2599 if (StructuredList)
2600 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2601 else {
2602 Result->setSyntacticForm(IList);
2603 SyntacticToSemantic[IList] = Result;
2604 }
2605
2606 return Result;
2607}
2608
2609/// Update the initializer at index @p StructuredIndex within the
2610/// structured initializer list to the value @p expr.
2611void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2612 unsigned &StructuredIndex,
2613 Expr *expr) {
2614 // No structured initializer list to update
2615 if (!StructuredList)
2616 return;
2617
2618 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2619 StructuredIndex, expr)) {
2620 // This initializer overwrites a previous initializer. Warn.
2621 // We need to check on source range validity because the previous
2622 // initializer does not have to be an explicit initializer.
2623 // struct P { int a, b; };
2624 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2625 // There is an overwrite taking place because the first braced initializer
2626 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2627 if (PrevInit->getSourceRange().isValid()) {
2628 SemaRef.Diag(expr->getLocStart(),
2629 diag::warn_initializer_overrides)
2630 << expr->getSourceRange();
2631
2632 SemaRef.Diag(PrevInit->getLocStart(),
2633 diag::note_previous_initializer)
2634 << /*FIXME:has side effects=*/0
2635 << PrevInit->getSourceRange();
2636 }
2637 }
2638
2639 ++StructuredIndex;
2640}
2641
2642/// Check that the given Index expression is a valid array designator
2643/// value. This is essentially just a wrapper around
2644/// VerifyIntegerConstantExpression that also checks for negative values
2645/// and produces a reasonable diagnostic if there is a
2646/// failure. Returns the index expression, possibly with an implicit cast
2647/// added, on success. If everything went okay, Value will receive the
2648/// value of the constant expression.
2649static ExprResult
2650CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2651 SourceLocation Loc = Index->getLocStart();
2652
2653 // Make sure this is an integer constant expression.
2654 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2655 if (Result.isInvalid())
2656 return Result;
2657
2658 if (Value.isSigned() && Value.isNegative())
2659 return S.Diag(Loc, diag::err_array_designator_negative)
2660 << Value.toString(10) << Index->getSourceRange();
2661
2662 Value.setIsUnsigned(true);
2663 return Result;
2664}
2665
2666ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2667 SourceLocation Loc,
2668 bool GNUSyntax,
2669 ExprResult Init) {
2670 typedef DesignatedInitExpr::Designator ASTDesignator;
2671
2672 bool Invalid = false;
2673 SmallVector<ASTDesignator, 32> Designators;
2674 SmallVector<Expr *, 32> InitExpressions;
2675
2676 // Build designators and check array designator expressions.
2677 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2678 const Designator &D = Desig.getDesignator(Idx);
2679 switch (D.getKind()) {
2680 case Designator::FieldDesignator:
2681 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2682 D.getFieldLoc()));
2683 break;
2684
2685 case Designator::ArrayDesignator: {
2686 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2687 llvm::APSInt IndexValue;
2688 if (!Index->isTypeDependent() && !Index->isValueDependent())
2689 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2690 if (!Index)
2691 Invalid = true;
2692 else {
2693 Designators.push_back(ASTDesignator(InitExpressions.size(),
2694 D.getLBracketLoc(),
2695 D.getRBracketLoc()));
2696 InitExpressions.push_back(Index);
2697 }
2698 break;
2699 }
2700
2701 case Designator::ArrayRangeDesignator: {
2702 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2703 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2704 llvm::APSInt StartValue;
2705 llvm::APSInt EndValue;
2706 bool StartDependent = StartIndex->isTypeDependent() ||
2707 StartIndex->isValueDependent();
2708 bool EndDependent = EndIndex->isTypeDependent() ||
2709 EndIndex->isValueDependent();
2710 if (!StartDependent)
2711 StartIndex =
2712 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2713 if (!EndDependent)
2714 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2715
2716 if (!StartIndex || !EndIndex)
2717 Invalid = true;
2718 else {
2719 // Make sure we're comparing values with the same bit width.
2720 if (StartDependent || EndDependent) {
2721 // Nothing to compute.
2722 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2723 EndValue = EndValue.extend(StartValue.getBitWidth());
2724 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2725 StartValue = StartValue.extend(EndValue.getBitWidth());
2726
2727 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2728 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2729 << StartValue.toString(10) << EndValue.toString(10)
2730 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2731 Invalid = true;
2732 } else {
2733 Designators.push_back(ASTDesignator(InitExpressions.size(),
2734 D.getLBracketLoc(),
2735 D.getEllipsisLoc(),
2736 D.getRBracketLoc()));
2737 InitExpressions.push_back(StartIndex);
2738 InitExpressions.push_back(EndIndex);
2739 }
2740 }
2741 break;
2742 }
2743 }
2744 }
2745
2746 if (Invalid || Init.isInvalid())
2747 return ExprError();
2748
2749 // Clear out the expressions within the designation.
2750 Desig.ClearExprs(*this);
2751
2752 DesignatedInitExpr *DIE
2753 = DesignatedInitExpr::Create(Context,
2754 Designators.data(), Designators.size(),
2755 InitExpressions, Loc, GNUSyntax,
2756 Init.getAs<Expr>());
2757
2758 if (!getLangOpts().C99)
2759 Diag(DIE->getLocStart(), diag::ext_designated_init)
2760 << DIE->getSourceRange();
2761
2762 return DIE;
2763}
2764
2765//===----------------------------------------------------------------------===//
2766// Initialization entity
2767//===----------------------------------------------------------------------===//
2768
2769InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2770 const InitializedEntity &Parent)
2771 : Parent(&Parent), Index(Index)
2772{
2773 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2774 Kind = EK_ArrayElement;
2775 Type = AT->getElementType();
2776 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2777 Kind = EK_VectorElement;
2778 Type = VT->getElementType();
2779 } else {
2780 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2781 assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> (
0) : __assert_fail ("CT && \"Unexpected type\"", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 2781, __PRETTY_FUNCTION__))
;
2782 Kind = EK_ComplexElement;
2783 Type = CT->getElementType();
2784 }
2785}
2786
2787InitializedEntity
2788InitializedEntity::InitializeBase(ASTContext &Context,
2789 const CXXBaseSpecifier *Base,
2790 bool IsInheritedVirtualBase) {
2791 InitializedEntity Result;
2792 Result.Kind = EK_Base;
2793 Result.Parent = nullptr;
2794 Result.Base = reinterpret_cast<uintptr_t>(Base);
2795 if (IsInheritedVirtualBase)
2796 Result.Base |= 0x01;
2797
2798 Result.Type = Base->getType();
2799 return Result;
2800}
2801
2802DeclarationName InitializedEntity::getName() const {
2803 switch (getKind()) {
2804 case EK_Parameter:
2805 case EK_Parameter_CF_Audited: {
2806 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2807 return (D ? D->getDeclName() : DeclarationName());
2808 }
2809
2810 case EK_Variable:
2811 case EK_Member:
2812 return VariableOrMember->getDeclName();
2813
2814 case EK_LambdaCapture:
2815 return DeclarationName(Capture.VarID);
2816
2817 case EK_Result:
2818 case EK_Exception:
2819 case EK_New:
2820 case EK_Temporary:
2821 case EK_Base:
2822 case EK_Delegating:
2823 case EK_ArrayElement:
2824 case EK_VectorElement:
2825 case EK_ComplexElement:
2826 case EK_BlockElement:
2827 case EK_CompoundLiteralInit:
2828 case EK_RelatedResult:
2829 return DeclarationName();
2830 }
2831
2832 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 2832)
;
2833}
2834
2835DeclaratorDecl *InitializedEntity::getDecl() const {
2836 switch (getKind()) {
2837 case EK_Variable:
2838 case EK_Member:
2839 return VariableOrMember;
2840
2841 case EK_Parameter:
2842 case EK_Parameter_CF_Audited:
2843 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2844
2845 case EK_Result:
2846 case EK_Exception:
2847 case EK_New:
2848 case EK_Temporary:
2849 case EK_Base:
2850 case EK_Delegating:
2851 case EK_ArrayElement:
2852 case EK_VectorElement:
2853 case EK_ComplexElement:
2854 case EK_BlockElement:
2855 case EK_LambdaCapture:
2856 case EK_CompoundLiteralInit:
2857 case EK_RelatedResult:
2858 return nullptr;
2859 }
2860
2861 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 2861)
;
2862}
2863
2864bool InitializedEntity::allowsNRVO() const {
2865 switch (getKind()) {
2866 case EK_Result:
2867 case EK_Exception:
2868 return LocAndNRVO.NRVO;
2869
2870 case EK_Variable:
2871 case EK_Parameter:
2872 case EK_Parameter_CF_Audited:
2873 case EK_Member:
2874 case EK_New:
2875 case EK_Temporary:
2876 case EK_CompoundLiteralInit:
2877 case EK_Base:
2878 case EK_Delegating:
2879 case EK_ArrayElement:
2880 case EK_VectorElement:
2881 case EK_ComplexElement:
2882 case EK_BlockElement:
2883 case EK_LambdaCapture:
2884 case EK_RelatedResult:
2885 break;
2886 }
2887
2888 return false;
2889}
2890
2891unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2892 assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail
("getParent() != this", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 2892, __PRETTY_FUNCTION__))
;
2893 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2894 for (unsigned I = 0; I != Depth; ++I)
2895 OS << "`-";
2896
2897 switch (getKind()) {
2898 case EK_Variable: OS << "Variable"; break;
2899 case EK_Parameter: OS << "Parameter"; break;
2900 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2901 break;
2902 case EK_Result: OS << "Result"; break;
2903 case EK_Exception: OS << "Exception"; break;
2904 case EK_Member: OS << "Member"; break;
2905 case EK_New: OS << "New"; break;
2906 case EK_Temporary: OS << "Temporary"; break;
2907 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2908 case EK_RelatedResult: OS << "RelatedResult"; break;
2909 case EK_Base: OS << "Base"; break;
2910 case EK_Delegating: OS << "Delegating"; break;
2911 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2912 case EK_VectorElement: OS << "VectorElement " << Index; break;
2913 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2914 case EK_BlockElement: OS << "Block"; break;
2915 case EK_LambdaCapture:
2916 OS << "LambdaCapture ";
2917 OS << DeclarationName(Capture.VarID);
2918 break;
2919 }
2920
2921 if (Decl *D = getDecl()) {
2922 OS << " ";
2923 cast<NamedDecl>(D)->printQualifiedName(OS);
2924 }
2925
2926 OS << " '" << getType().getAsString() << "'\n";
2927
2928 return Depth + 1;
2929}
2930
2931void InitializedEntity::dump() const {
2932 dumpImpl(llvm::errs());
2933}
2934
2935//===----------------------------------------------------------------------===//
2936// Initialization sequence
2937//===----------------------------------------------------------------------===//
2938
2939void InitializationSequence::Step::Destroy() {
2940 switch (Kind) {
2941 case SK_ResolveAddressOfOverloadedFunction:
2942 case SK_CastDerivedToBaseRValue:
2943 case SK_CastDerivedToBaseXValue:
2944 case SK_CastDerivedToBaseLValue:
2945 case SK_BindReference:
2946 case SK_BindReferenceToTemporary:
2947 case SK_ExtraneousCopyToTemporary:
2948 case SK_UserConversion:
2949 case SK_QualificationConversionRValue:
2950 case SK_QualificationConversionXValue:
2951 case SK_QualificationConversionLValue:
2952 case SK_AtomicConversion:
2953 case SK_LValueToRValue:
2954 case SK_ListInitialization:
2955 case SK_UnwrapInitList:
2956 case SK_RewrapInitList:
2957 case SK_ConstructorInitialization:
2958 case SK_ConstructorInitializationFromList:
2959 case SK_ZeroInitialization:
2960 case SK_CAssignment:
2961 case SK_StringInit:
2962 case SK_ObjCObjectConversion:
2963 case SK_ArrayInit:
2964 case SK_ParenthesizedArrayInit:
2965 case SK_PassByIndirectCopyRestore:
2966 case SK_PassByIndirectRestore:
2967 case SK_ProduceObjCObject:
2968 case SK_StdInitializerList:
2969 case SK_StdInitializerListConstructorCall:
2970 case SK_OCLSamplerInit:
2971 case SK_OCLZeroEvent:
2972 break;
2973
2974 case SK_ConversionSequence:
2975 case SK_ConversionSequenceNoNarrowing:
2976 delete ICS;
2977 }
2978}
2979
2980bool InitializationSequence::isDirectReferenceBinding() const {
2981 return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2982}
2983
2984bool InitializationSequence::isAmbiguous() const {
2985 if (!Failed())
2986 return false;
2987
2988 switch (getFailureKind()) {
2989 case FK_TooManyInitsForReference:
2990 case FK_ArrayNeedsInitList:
2991 case FK_ArrayNeedsInitListOrStringLiteral:
2992 case FK_ArrayNeedsInitListOrWideStringLiteral:
2993 case FK_NarrowStringIntoWideCharArray:
2994 case FK_WideStringIntoCharArray:
2995 case FK_IncompatWideStringIntoWideChar:
2996 case FK_AddressOfOverloadFailed: // FIXME: Could do better
2997 case FK_NonConstLValueReferenceBindingToTemporary:
2998 case FK_NonConstLValueReferenceBindingToUnrelated:
2999 case FK_RValueReferenceBindingToLValue:
3000 case FK_ReferenceInitDropsQualifiers:
3001 case FK_ReferenceInitFailed:
3002 case FK_ConversionFailed:
3003 case FK_ConversionFromPropertyFailed:
3004 case FK_TooManyInitsForScalar:
3005 case FK_ReferenceBindingToInitList:
3006 case FK_InitListBadDestinationType:
3007 case FK_DefaultInitOfConst:
3008 case FK_Incomplete:
3009 case FK_ArrayTypeMismatch:
3010 case FK_NonConstantArrayInit:
3011 case FK_ListInitializationFailed:
3012 case FK_VariableLengthArrayHasInitializer:
3013 case FK_PlaceholderType:
3014 case FK_ExplicitConstructor:
3015 case FK_AddressOfUnaddressableFunction:
3016 return false;
3017
3018 case FK_ReferenceInitOverloadFailed:
3019 case FK_UserConversionOverloadFailed:
3020 case FK_ConstructorOverloadFailed:
3021 case FK_ListConstructorOverloadFailed:
3022 return FailedOverloadResult == OR_Ambiguous;
3023 }
3024
3025 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3025)
;
3026}
3027
3028bool InitializationSequence::isConstructorInitialization() const {
3029 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3030}
3031
3032void
3033InitializationSequence
3034::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3035 DeclAccessPair Found,
3036 bool HadMultipleCandidates) {
3037 Step S;
3038 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3039 S.Type = Function->getType();
3040 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3041 S.Function.Function = Function;
3042 S.Function.FoundDecl = Found;
3043 Steps.push_back(S);
3044}
3045
3046void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3047 ExprValueKind VK) {
3048 Step S;
3049 switch (VK) {
3050 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3051 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3052 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3053 }
3054 S.Type = BaseType;
3055 Steps.push_back(S);
3056}
3057
3058void InitializationSequence::AddReferenceBindingStep(QualType T,
3059 bool BindingTemporary) {
3060 Step S;
3061 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3062 S.Type = T;
3063 Steps.push_back(S);
3064}
3065
3066void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3067 Step S;
3068 S.Kind = SK_ExtraneousCopyToTemporary;
3069 S.Type = T;
3070 Steps.push_back(S);
3071}
3072
3073void
3074InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3075 DeclAccessPair FoundDecl,
3076 QualType T,
3077 bool HadMultipleCandidates) {
3078 Step S;
3079 S.Kind = SK_UserConversion;
3080 S.Type = T;
3081 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3082 S.Function.Function = Function;
3083 S.Function.FoundDecl = FoundDecl;
3084 Steps.push_back(S);
3085}
3086
3087void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3088 ExprValueKind VK) {
3089 Step S;
3090 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3091 switch (VK) {
3092 case VK_RValue:
3093 S.Kind = SK_QualificationConversionRValue;
3094 break;
3095 case VK_XValue:
3096 S.Kind = SK_QualificationConversionXValue;
3097 break;
3098 case VK_LValue:
3099 S.Kind = SK_QualificationConversionLValue;
3100 break;
3101 }
3102 S.Type = Ty;
3103 Steps.push_back(S);
3104}
3105
3106void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3107 Step S;
3108 S.Kind = SK_AtomicConversion;
3109 S.Type = Ty;
3110 Steps.push_back(S);
3111}
3112
3113void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3114 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")((!Ty.hasQualifiers() && "rvalues may not have qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3114, __PRETTY_FUNCTION__))
;
3115
3116 Step S;
3117 S.Kind = SK_LValueToRValue;
3118 S.Type = Ty;
3119 Steps.push_back(S);
3120}
3121
3122void InitializationSequence::AddConversionSequenceStep(
3123 const ImplicitConversionSequence &ICS, QualType T,
3124 bool TopLevelOfInitList) {
3125 Step S;
3126 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3127 : SK_ConversionSequence;
3128 S.Type = T;
3129 S.ICS = new ImplicitConversionSequence(ICS);
3130 Steps.push_back(S);
3131}
3132
3133void InitializationSequence::AddListInitializationStep(QualType T) {
3134 Step S;
3135 S.Kind = SK_ListInitialization;
3136 S.Type = T;
3137 Steps.push_back(S);
3138}
3139
3140void
3141InitializationSequence
3142::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
3143 AccessSpecifier Access,
3144 QualType T,
3145 bool HadMultipleCandidates,
3146 bool FromInitList, bool AsInitList) {
3147 Step S;
3148 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3149 : SK_ConstructorInitializationFromList
3150 : SK_ConstructorInitialization;
3151 S.Type = T;
3152 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3153 S.Function.Function = Constructor;
3154 S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
3155 Steps.push_back(S);
3156}
3157
3158void InitializationSequence::AddZeroInitializationStep(QualType T) {
3159 Step S;
3160 S.Kind = SK_ZeroInitialization;
3161 S.Type = T;
3162 Steps.push_back(S);
3163}
3164
3165void InitializationSequence::AddCAssignmentStep(QualType T) {
3166 Step S;
3167 S.Kind = SK_CAssignment;
3168 S.Type = T;
3169 Steps.push_back(S);
3170}
3171
3172void InitializationSequence::AddStringInitStep(QualType T) {
3173 Step S;
3174 S.Kind = SK_StringInit;
3175 S.Type = T;
3176 Steps.push_back(S);
3177}
3178
3179void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3180 Step S;
3181 S.Kind = SK_ObjCObjectConversion;
3182 S.Type = T;
3183 Steps.push_back(S);
3184}
3185
3186void InitializationSequence::AddArrayInitStep(QualType T) {
3187 Step S;
3188 S.Kind = SK_ArrayInit;
3189 S.Type = T;
3190 Steps.push_back(S);
3191}
3192
3193void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3194 Step S;
3195 S.Kind = SK_ParenthesizedArrayInit;
3196 S.Type = T;
3197 Steps.push_back(S);
3198}
3199
3200void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3201 bool shouldCopy) {
3202 Step s;
3203 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3204 : SK_PassByIndirectRestore);
3205 s.Type = type;
3206 Steps.push_back(s);
3207}
3208
3209void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3210 Step S;
3211 S.Kind = SK_ProduceObjCObject;
3212 S.Type = T;
3213 Steps.push_back(S);
3214}
3215
3216void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3217 Step S;
3218 S.Kind = SK_StdInitializerList;
3219 S.Type = T;
3220 Steps.push_back(S);
3221}
3222
3223void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3224 Step S;
3225 S.Kind = SK_OCLSamplerInit;
3226 S.Type = T;
3227 Steps.push_back(S);
3228}
3229
3230void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3231 Step S;
3232 S.Kind = SK_OCLZeroEvent;
3233 S.Type = T;
3234 Steps.push_back(S);
3235}
3236
3237void InitializationSequence::RewrapReferenceInitList(QualType T,
3238 InitListExpr *Syntactic) {
3239 assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3240, __PRETTY_FUNCTION__))
3240 "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3240, __PRETTY_FUNCTION__))
;
3241 Step S;
3242 S.Kind = SK_UnwrapInitList;
3243 S.Type = Syntactic->getInit(0)->getType();
3244 Steps.insert(Steps.begin(), S);
3245
3246 S.Kind = SK_RewrapInitList;
3247 S.Type = T;
3248 S.WrappingSyntacticList = Syntactic;
3249 Steps.push_back(S);
3250}
3251
3252void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3253 OverloadingResult Result) {
3254 setSequenceKind(FailedSequence);
3255 this->Failure = Failure;
3256 this->FailedOverloadResult = Result;
3257}
3258
3259//===----------------------------------------------------------------------===//
3260// Attempt initialization
3261//===----------------------------------------------------------------------===//
3262
3263/// Tries to add a zero initializer. Returns true if that worked.
3264static bool
3265maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3266 const InitializedEntity &Entity) {
3267 if (Entity.getKind() != InitializedEntity::EK_Variable)
3268 return false;
3269
3270 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3271 if (VD->getInit() || VD->getLocEnd().isMacroID())
3272 return false;
3273
3274 QualType VariableTy = VD->getType().getCanonicalType();
3275 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3276 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3277 if (!Init.empty()) {
3278 Sequence.AddZeroInitializationStep(Entity.getType());
3279 Sequence.SetZeroInitializationFixit(Init, Loc);
3280 return true;
3281 }
3282 return false;
3283}
3284
3285static void MaybeProduceObjCObject(Sema &S,
3286 InitializationSequence &Sequence,
3287 const InitializedEntity &Entity) {
3288 if (!S.getLangOpts().ObjCAutoRefCount) return;
3289
3290 /// When initializing a parameter, produce the value if it's marked
3291 /// __attribute__((ns_consumed)).
3292 if (Entity.isParameterKind()) {
3293 if (!Entity.isParameterConsumed())
3294 return;
3295
3296 assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3297, __PRETTY_FUNCTION__))
3297 "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3297, __PRETTY_FUNCTION__))
;
3298 Sequence.AddProduceObjCObjectStep(Entity.getType());
3299
3300 /// When initializing a return value, if the return type is a
3301 /// retainable type, then returns need to immediately retain the
3302 /// object. If an autorelease is required, it will be done at the
3303 /// last instant.
3304 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3305 if (!Entity.getType()->isObjCRetainableType())
3306 return;
3307
3308 Sequence.AddProduceObjCObjectStep(Entity.getType());
3309 }
3310}
3311
3312static void TryListInitialization(Sema &S,
3313 const InitializedEntity &Entity,
3314 const InitializationKind &Kind,
3315 InitListExpr *InitList,
3316 InitializationSequence &Sequence);
3317
3318/// \brief When initializing from init list via constructor, handle
3319/// initialization of an object of type std::initializer_list<T>.
3320///
3321/// \return true if we have handled initialization of an object of type
3322/// std::initializer_list<T>, false otherwise.
3323static bool TryInitializerListConstruction(Sema &S,
3324 InitListExpr *List,
3325 QualType DestType,
3326 InitializationSequence &Sequence) {
3327 QualType E;
3328 if (!S.isStdInitializerList(DestType, &E))
3329 return false;
3330
3331 if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
3332 Sequence.setIncompleteTypeFailure(E);
3333 return true;
3334 }
3335
3336 // Try initializing a temporary array from the init list.
3337 QualType ArrayType = S.Context.getConstantArrayType(
3338 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3339 List->getNumInits()),
3340 clang::ArrayType::Normal, 0);
3341 InitializedEntity HiddenArray =
3342 InitializedEntity::InitializeTemporary(ArrayType);
3343 InitializationKind Kind =
3344 InitializationKind::CreateDirectList(List->getExprLoc());
3345 TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3346 if (Sequence)
3347 Sequence.AddStdInitializerListConstructionStep(DestType);
3348 return true;
3349}
3350
3351static OverloadingResult
3352ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3353 MultiExprArg Args,
3354 OverloadCandidateSet &CandidateSet,
3355 DeclContext::lookup_result Ctors,
3356 OverloadCandidateSet::iterator &Best,
3357 bool CopyInitializing, bool AllowExplicit,
3358 bool OnlyListConstructors, bool IsListInit) {
3359 CandidateSet.clear();
3360
3361 for (NamedDecl *D : Ctors) {
3362 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3363 bool SuppressUserConversions = false;
3364
3365 // Find the constructor (which may be a template).
3366 CXXConstructorDecl *Constructor = nullptr;
3367 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3368 if (ConstructorTmpl)
3369 Constructor = cast<CXXConstructorDecl>(
3370 ConstructorTmpl->getTemplatedDecl());
3371 else {
3372 Constructor = cast<CXXConstructorDecl>(D);
3373
3374 // C++11 [over.best.ics]p4:
3375 // ... and the constructor or user-defined conversion function is a
3376 // candidate by
3377 // - 13.3.1.3, when the argument is the temporary in the second step
3378 // of a class copy-initialization, or
3379 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases),
3380 // user-defined conversion sequences are not considered.
3381 // FIXME: This breaks backward compatibility, e.g. PR12117. As a
3382 // temporary fix, let's re-instate the third bullet above until
3383 // there is a resolution in the standard, i.e.,
3384 // - 13.3.1.7 when the initializer list has exactly one element that is
3385 // itself an initializer list and a conversion to some class X or
3386 // reference to (possibly cv-qualified) X is considered for the first
3387 // parameter of a constructor of X.
3388 if ((CopyInitializing ||
3389 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3390 Constructor->isCopyOrMoveConstructor())
3391 SuppressUserConversions = true;
3392 }
3393
3394 if (!Constructor->isInvalidDecl() &&
3395 (AllowExplicit || !Constructor->isExplicit()) &&
3396 (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3397 if (ConstructorTmpl)
3398 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3399 /*ExplicitArgs*/ nullptr, Args,
3400 CandidateSet, SuppressUserConversions);
3401 else {
3402 // C++ [over.match.copy]p1:
3403 // - When initializing a temporary to be bound to the first parameter
3404 // of a constructor that takes a reference to possibly cv-qualified
3405 // T as its first argument, called with a single argument in the
3406 // context of direct-initialization, explicit conversion functions
3407 // are also considered.
3408 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3409 Args.size() == 1 &&
3410 Constructor->isCopyOrMoveConstructor();
3411 S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3412 SuppressUserConversions,
3413 /*PartialOverloading=*/false,
3414 /*AllowExplicit=*/AllowExplicitConv);
3415 }
3416 }
3417 }
3418
3419 // Perform overload resolution and return the result.
3420 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3421}
3422
3423/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3424/// enumerates the constructors of the initialized entity and performs overload
3425/// resolution to select the best.
3426/// \param IsListInit Is this list-initialization?
3427/// \param IsInitListCopy Is this non-list-initialization resulting from a
3428/// list-initialization from {x} where x is the same
3429/// type as the entity?
3430static void TryConstructorInitialization(Sema &S,
3431 const InitializedEntity &Entity,
3432 const InitializationKind &Kind,
3433 MultiExprArg Args, QualType DestType,
3434 InitializationSequence &Sequence,
3435 bool IsListInit = false,
3436 bool IsInitListCopy = false) {
3437 assert((!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&(((!IsListInit || (Args.size() == 1 && isa<InitListExpr
>(Args[0]))) && "IsListInit must come with a single initializer list argument."
) ? static_cast<void> (0) : __assert_fail ("(!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit must come with a single initializer list argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3438, __PRETTY_FUNCTION__))
3438 "IsListInit must come with a single initializer list argument.")(((!IsListInit || (Args.size() == 1 && isa<InitListExpr
>(Args[0]))) && "IsListInit must come with a single initializer list argument."
) ? static_cast<void> (0) : __assert_fail ("(!IsListInit || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit must come with a single initializer list argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3438, __PRETTY_FUNCTION__))
;
3439
3440 // The type we're constructing needs to be complete.
3441 if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3442 Sequence.setIncompleteTypeFailure(DestType);
3443 return;
3444 }
3445
3446 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3447 assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type"
) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3447, __PRETTY_FUNCTION__))
;
3448 CXXRecordDecl *DestRecordDecl
3449 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3450
3451 // Build the candidate set directly in the initialization sequence
3452 // structure, so that it will persist if we fail.
3453 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3454
3455 // Determine whether we are allowed to call explicit constructors or
3456 // explicit conversion operators.
3457 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3458 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3459
3460 // - Otherwise, if T is a class type, constructors are considered. The
3461 // applicable constructors are enumerated, and the best one is chosen
3462 // through overload resolution.
3463 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3464
3465 OverloadingResult Result = OR_No_Viable_Function;
3466 OverloadCandidateSet::iterator Best;
3467 bool AsInitializerList = false;
3468
3469 // C++11 [over.match.list]p1, per DR1467:
3470 // When objects of non-aggregate type T are list-initialized, such that
3471 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3472 // according to the rules in this section, overload resolution selects
3473 // the constructor in two phases:
3474 //
3475 // - Initially, the candidate functions are the initializer-list
3476 // constructors of the class T and the argument list consists of the
3477 // initializer list as a single argument.
3478 if (IsListInit) {
3479 InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3480 AsInitializerList = true;
3481
3482 // If the initializer list has no elements and T has a default constructor,
3483 // the first phase is omitted.
3484 if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3485 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3486 CandidateSet, Ctors, Best,
3487 CopyInitialization, AllowExplicit,
3488 /*OnlyListConstructor=*/true,
3489 IsListInit);
3490
3491 // Time to unwrap the init list.
3492 Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3493 }
3494
3495 // C++11 [over.match.list]p1:
3496 // - If no viable initializer-list constructor is found, overload resolution
3497 // is performed again, where the candidate functions are all the
3498 // constructors of the class T and the argument list consists of the
3499 // elements of the initializer list.
3500 if (Result == OR_No_Viable_Function) {
3501 AsInitializerList = false;
3502 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3503 CandidateSet, Ctors, Best,
3504 CopyInitialization, AllowExplicit,
3505 /*OnlyListConstructors=*/false,
3506 IsListInit);
3507 }
3508 if (Result) {
3509 Sequence.SetOverloadFailure(IsListInit ?
3510 InitializationSequence::FK_ListConstructorOverloadFailed :
3511 InitializationSequence::FK_ConstructorOverloadFailed,
3512 Result);
3513 return;
3514 }
3515
3516 // C++11 [dcl.init]p6:
3517 // If a program calls for the default initialization of an object
3518 // of a const-qualified type T, T shall be a class type with a
3519 // user-provided default constructor.
3520 if (Kind.getKind() == InitializationKind::IK_Default &&
3521 Entity.getType().isConstQualified() &&
3522 !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3523 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3524 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3525 return;
3526 }
3527
3528 // C++11 [over.match.list]p1:
3529 // In copy-list-initialization, if an explicit constructor is chosen, the
3530 // initializer is ill-formed.
3531 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3532 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3533 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3534 return;
3535 }
3536
3537 // Add the constructor initialization step. Any cv-qualification conversion is
3538 // subsumed by the initialization.
3539 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3540 Sequence.AddConstructorInitializationStep(
3541 CtorDecl, Best->FoundDecl.getAccess(), DestType, HadMultipleCandidates,
3542 IsListInit | IsInitListCopy, AsInitializerList);
3543}
3544
3545static bool
3546ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3547 Expr *Initializer,
3548 QualType &SourceType,
3549 QualType &UnqualifiedSourceType,
3550 QualType UnqualifiedTargetType,
3551 InitializationSequence &Sequence) {
3552 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3553 S.Context.OverloadTy) {
3554 DeclAccessPair Found;
3555 bool HadMultipleCandidates = false;
3556 if (FunctionDecl *Fn
3557 = S.ResolveAddressOfOverloadedFunction(Initializer,
3558 UnqualifiedTargetType,
3559 false, Found,
3560 &HadMultipleCandidates)) {
3561 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3562 HadMultipleCandidates);
3563 SourceType = Fn->getType();
3564 UnqualifiedSourceType = SourceType.getUnqualifiedType();
3565 } else if (!UnqualifiedTargetType->isRecordType()) {
3566 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3567 return true;
3568 }
3569 }
3570 return false;
3571}
3572
3573static void TryReferenceInitializationCore(Sema &S,
3574 const InitializedEntity &Entity,
3575 const InitializationKind &Kind,
3576 Expr *Initializer,
3577 QualType cv1T1, QualType T1,
3578 Qualifiers T1Quals,
3579 QualType cv2T2, QualType T2,
3580 Qualifiers T2Quals,
3581 InitializationSequence &Sequence);
3582
3583static void TryValueInitialization(Sema &S,
3584 const InitializedEntity &Entity,
3585 const InitializationKind &Kind,
3586 InitializationSequence &Sequence,
3587 InitListExpr *InitList = nullptr);
3588
3589/// \brief Attempt list initialization of a reference.
3590static void TryReferenceListInitialization(Sema &S,
3591 const InitializedEntity &Entity,
3592 const InitializationKind &Kind,
3593 InitListExpr *InitList,
3594 InitializationSequence &Sequence) {
3595 // First, catch C++03 where this isn't possible.
3596 if (!S.getLangOpts().CPlusPlus11) {
3597 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3598 return;
3599 }
3600 // Can't reference initialize a compound literal.
3601 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3602 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3603 return;
3604 }
3605
3606 QualType DestType = Entity.getType();
3607 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3608 Qualifiers T1Quals;
3609 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3610
3611 // Reference initialization via an initializer list works thus:
3612 // If the initializer list consists of a single element that is
3613 // reference-related to the referenced type, bind directly to that element
3614 // (possibly creating temporaries).
3615 // Otherwise, initialize a temporary with the initializer list and
3616 // bind to that.
3617 if (InitList->getNumInits() == 1) {
3618 Expr *Initializer = InitList->getInit(0);
3619 QualType cv2T2 = Initializer->getType();
3620 Qualifiers T2Quals;
3621 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3622
3623 // If this fails, creating a temporary wouldn't work either.
3624 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3625 T1, Sequence))
3626 return;
3627
3628 SourceLocation DeclLoc = Initializer->getLocStart();
3629 bool dummy1, dummy2, dummy3;
3630 Sema::ReferenceCompareResult RefRelationship
3631 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3632 dummy2, dummy3);
3633 if (RefRelationship >= Sema::Ref_Related) {
3634 // Try to bind the reference here.
3635 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3636 T1Quals, cv2T2, T2, T2Quals, Sequence);
3637 if (Sequence)
3638 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3639 return;
3640 }
3641
3642 // Update the initializer if we've resolved an overloaded function.
3643 if (Sequence.step_begin() != Sequence.step_end())
3644 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3645 }
3646
3647 // Not reference-related. Create a temporary and bind to that.
3648 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3649
3650 TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3651 if (Sequence) {
3652 if (DestType->isRValueReferenceType() ||
3653 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3654 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3655 else
3656 Sequence.SetFailed(
3657 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3658 }
3659}
3660
3661/// \brief Attempt list initialization (C++0x [dcl.init.list])
3662static void TryListInitialization(Sema &S,
3663 const InitializedEntity &Entity,
3664 const InitializationKind &Kind,
3665 InitListExpr *InitList,
3666 InitializationSequence &Sequence) {
3667 QualType DestType = Entity.getType();
3668
3669 // C++ doesn't allow scalar initialization with more than one argument.
3670 // But C99 complex numbers are scalars and it makes sense there.
3671 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3672 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3673 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3674 return;
3675 }
3676 if (DestType->isReferenceType()) {
3677 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3678 return;
3679 }
3680
3681 if (DestType->isRecordType() &&
3682 S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3683 Sequence.setIncompleteTypeFailure(DestType);
3684 return;
3685 }
3686
3687 // C++11 [dcl.init.list]p3, per DR1467:
3688 // - If T is a class type and the initializer list has a single element of
3689 // type cv U, where U is T or a class derived from T, the object is
3690 // initialized from that element (by copy-initialization for
3691 // copy-list-initialization, or by direct-initialization for
3692 // direct-list-initialization).
3693 // - Otherwise, if T is a character array and the initializer list has a
3694 // single element that is an appropriately-typed string literal
3695 // (8.5.2 [dcl.init.string]), initialization is performed as described
3696 // in that section.
3697 // - Otherwise, if T is an aggregate, [...] (continue below).
3698 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3699 if (DestType->isRecordType()) {
3700 QualType InitType = InitList->getInit(0)->getType();
3701 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3702 S.IsDerivedFrom(InitType, DestType)) {
3703 Expr *InitAsExpr = InitList->getInit(0);
3704 TryConstructorInitialization(S, Entity, Kind, InitAsExpr, DestType,
3705 Sequence, /*InitListSyntax*/ false,
3706 /*IsInitListCopy*/ true);
3707 return;
3708 }
3709 }
3710 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3711 Expr *SubInit[1] = {InitList->getInit(0)};
3712 if (!isa<VariableArrayType>(DestAT) &&
3713 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3714 InitializationKind SubKind =
3715 Kind.getKind() == InitializationKind::IK_DirectList
3716 ? InitializationKind::CreateDirect(Kind.getLocation(),
3717 InitList->getLBraceLoc(),
3718 InitList->getRBraceLoc())
3719 : Kind;
3720 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3721 /*TopLevelOfInitList*/ true);
3722
3723 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3724 // the element is not an appropriately-typed string literal, in which
3725 // case we should proceed as in C++11 (below).
3726 if (Sequence) {
3727 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3728 return;
3729 }
3730 }
3731 }
3732 }
3733
3734 // C++11 [dcl.init.list]p3:
3735 // - If T is an aggregate, aggregate initialization is performed.
3736 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
3737 (S.getLangOpts().CPlusPlus11 &&
3738 S.isStdInitializerList(DestType, nullptr))) {
3739 if (S.getLangOpts().CPlusPlus11) {
3740 // - Otherwise, if the initializer list has no elements and T is a
3741 // class type with a default constructor, the object is
3742 // value-initialized.
3743 if (InitList->getNumInits() == 0) {
3744 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3745 if (RD->hasDefaultConstructor()) {
3746 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3747 return;
3748 }
3749 }
3750
3751 // - Otherwise, if T is a specialization of std::initializer_list<E>,
3752 // an initializer_list object constructed [...]
3753 if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3754 return;
3755
3756 // - Otherwise, if T is a class type, constructors are considered.
3757 Expr *InitListAsExpr = InitList;
3758 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3759 Sequence, /*InitListSyntax*/ true);
3760 } else
3761 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3762 return;
3763 }
3764
3765 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3766 InitList->getNumInits() == 1 &&
3767 InitList->getInit(0)->getType()->isRecordType()) {
3768 // - Otherwise, if the initializer list has a single element of type E
3769 // [...references are handled above...], the object or reference is
3770 // initialized from that element (by copy-initialization for
3771 // copy-list-initialization, or by direct-initialization for
3772 // direct-list-initialization); if a narrowing conversion is required
3773 // to convert the element to T, the program is ill-formed.
3774 //
3775 // Per core-24034, this is direct-initialization if we were performing
3776 // direct-list-initialization and copy-initialization otherwise.
3777 // We can't use InitListChecker for this, because it always performs
3778 // copy-initialization. This only matters if we might use an 'explicit'
3779 // conversion operator, so we only need to handle the cases where the source
3780 // is of record type.
3781 InitializationKind SubKind =
3782 Kind.getKind() == InitializationKind::IK_DirectList
3783 ? InitializationKind::CreateDirect(Kind.getLocation(),
3784 InitList->getLBraceLoc(),
3785 InitList->getRBraceLoc())
3786 : Kind;
3787 Expr *SubInit[1] = { InitList->getInit(0) };
3788 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3789 /*TopLevelOfInitList*/true);
3790 if (Sequence)
3791 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3792 return;
3793 }
3794
3795 InitListChecker CheckInitList(S, Entity, InitList,
3796 DestType, /*VerifyOnly=*/true);
3797 if (CheckInitList.HadError()) {
3798 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3799 return;
3800 }
3801
3802 // Add the list initialization step with the built init list.
3803 Sequence.AddListInitializationStep(DestType);
3804}
3805
3806/// \brief Try a reference initialization that involves calling a conversion
3807/// function.
3808static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3809 const InitializedEntity &Entity,
3810 const InitializationKind &Kind,
3811 Expr *Initializer,
3812 bool AllowRValues,
3813 InitializationSequence &Sequence) {
3814 QualType DestType = Entity.getType();
3815 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3816 QualType T1 = cv1T1.getUnqualifiedType();
3817 QualType cv2T2 = Initializer->getType();
3818 QualType T2 = cv2T2.getUnqualifiedType();
3819
3820 bool DerivedToBase;
3821 bool ObjCConversion;
3822 bool ObjCLifetimeConversion;
3823 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3827, __PRETTY_FUNCTION__))
3824 T1, T2, DerivedToBase,((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3827, __PRETTY_FUNCTION__))
3825 ObjCConversion,((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3827, __PRETTY_FUNCTION__))
3826 ObjCLifetimeConversion) &&((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3827, __PRETTY_FUNCTION__))
3827 "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 3827, __PRETTY_FUNCTION__))
;
3828 (void)DerivedToBase;
3829 (void)ObjCConversion;
3830 (void)ObjCLifetimeConversion;
3831
3832 // Build the candidate set directly in the initialization sequence
3833 // structure, so that it will persist if we fail.
3834 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3835 CandidateSet.clear();
3836
3837 // Determine whether we are allowed to call explicit constructors or
3838 // explicit conversion operators.
3839 bool AllowExplicit = Kind.AllowExplicit();
3840 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3841
3842 const RecordType *T1RecordType = nullptr;
3843 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3844 !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3845 // The type we're converting to is a class type. Enumerate its constructors
3846 // to see if there is a suitable conversion.
3847 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3848
3849 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
3850 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3851
3852 // Find the constructor (which may be a template).
3853 CXXConstructorDecl *Constructor = nullptr;
3854 FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3855 if (ConstructorTmpl)
3856 Constructor = cast<CXXConstructorDecl>(
3857 ConstructorTmpl->getTemplatedDecl());
3858 else
3859 Constructor = cast<CXXConstructorDecl>(D);
3860
3861 if (!Constructor->isInvalidDecl() &&
3862 Constructor->isConvertingConstructor(AllowExplicit)) {
3863 if (ConstructorTmpl)
3864 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3865 /*ExplicitArgs*/ nullptr,
3866 Initializer, CandidateSet,
3867 /*SuppressUserConversions=*/true);
3868 else
3869 S.AddOverloadCandidate(Constructor, FoundDecl,
3870 Initializer, CandidateSet,
3871 /*SuppressUserConversions=*/true);
3872 }
3873 }
3874 }
3875 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3876 return OR_No_Viable_Function;
3877
3878 const RecordType *T2RecordType = nullptr;
3879 if ((T2RecordType = T2->getAs<RecordType>()) &&
3880 !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3881 // The type we're converting from is a class type, enumerate its conversion
3882 // functions.
3883 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3884
3885 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
3886 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3887 NamedDecl *D = *I;
3888 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3889 if (isa<UsingShadowDecl>(D))
3890 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3891
3892 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3893 CXXConversionDecl *Conv;
3894 if (ConvTemplate)
3895 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3896 else
3897 Conv = cast<CXXConversionDecl>(D);
3898
3899 // If the conversion function doesn't return a reference type,
3900 // it can't be considered for this conversion unless we're allowed to
3901 // consider rvalues.
3902 // FIXME: Do we need to make sure that we only consider conversion
3903 // candidates with reference-compatible results? That might be needed to
3904 // break recursion.
3905 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3906 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3907 if (ConvTemplate)
3908 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3909 ActingDC, Initializer,
3910 DestType, CandidateSet,
3911 /*AllowObjCConversionOnExplicit=*/
3912 false);
3913 else
3914 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3915 Initializer, DestType, CandidateSet,
3916 /*AllowObjCConversionOnExplicit=*/false);
3917 }
3918 }
3919 }
3920 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3921 return OR_No_Viable_Function;
3922
3923 SourceLocation DeclLoc = Initializer->getLocStart();
3924
3925 // Perform overload resolution. If it fails, return the failed result.
3926 OverloadCandidateSet::iterator Best;
3927 if (OverloadingResult Result
3928 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3929 return Result;
3930
3931 FunctionDecl *Function = Best->Function;
3932 // This is the overload that will be used for this initialization step if we
3933 // use this initialization. Mark it as referenced.
3934 Function->setReferenced();
3935
3936 // Compute the returned type of the conversion.
3937 if (isa<CXXConversionDecl>(Function))
3938 T2 = Function->getReturnType();
3939 else
3940 T2 = cv1T1;
3941
3942 // Add the user-defined conversion step.
3943 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3944 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3945 T2.getNonLValueExprType(S.Context),
3946 HadMultipleCandidates);
3947
3948 // Determine whether we need to perform derived-to-base or
3949 // cv-qualification adjustments.
3950 ExprValueKind VK = VK_RValue;
3951 if (T2->isLValueReferenceType())
3952 VK = VK_LValue;
3953 else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3954 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3955
3956 bool NewDerivedToBase = false;
3957 bool NewObjCConversion = false;
3958 bool NewObjCLifetimeConversion = false;
3959 Sema::ReferenceCompareResult NewRefRelationship
3960 = S.CompareReferenceRelationship(DeclLoc, T1,
3961 T2.getNonLValueExprType(S.Context),
3962 NewDerivedToBase, NewObjCConversion,
3963 NewObjCLifetimeConversion);
3964 if (NewRefRelationship == Sema::Ref_Incompatible) {
3965 // If the type we've converted to is not reference-related to the
3966 // type we're looking for, then there is another conversion step
3967 // we need to perform to produce a temporary of the right type
3968 // that we'll be binding to.
3969 ImplicitConversionSequence ICS;
3970 ICS.setStandard();
3971 ICS.Standard = Best->FinalConversion;
3972 T2 = ICS.Standard.getToType(2);
3973 Sequence.AddConversionSequenceStep(ICS, T2);
3974 } else if (NewDerivedToBase)
3975 Sequence.AddDerivedToBaseCastStep(
3976 S.Context.getQualifiedType(T1,
3977 T2.getNonReferenceType().getQualifiers()),
3978 VK);
3979 else if (NewObjCConversion)
3980 Sequence.AddObjCObjectConversionStep(
3981 S.Context.getQualifiedType(T1,
3982 T2.getNonReferenceType().getQualifiers()));
3983
3984 if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3985 Sequence.AddQualificationConversionStep(cv1T1, VK);
3986
3987 Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3988 return OR_Success;
3989}
3990
3991static void CheckCXX98CompatAccessibleCopy(Sema &S,
3992 const InitializedEntity &Entity,
3993 Expr *CurInitExpr);
3994
3995/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
3996static void TryReferenceInitialization(Sema &S,
3997 const InitializedEntity &Entity,
3998 const InitializationKind &Kind,
3999 Expr *Initializer,
4000 InitializationSequence &Sequence) {
4001 QualType DestType = Entity.getType();
4002 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4003 Qualifiers T1Quals;
4004 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4005 QualType cv2T2 = Initializer->getType();
4006 Qualifiers T2Quals;
4007 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4008
4009 // If the initializer is the address of an overloaded function, try
4010 // to resolve the overloaded function. If all goes well, T2 is the
4011 // type of the resulting function.
4012 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4013 T1, Sequence))
4014 return;
4015
4016 // Delegate everything else to a subfunction.
4017 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4018 T1Quals, cv2T2, T2, T2Quals, Sequence);
4019}
4020
4021/// Converts the target of reference initialization so that it has the
4022/// appropriate qualifiers and value kind.
4023///
4024/// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
4025/// \code
4026/// int x;
4027/// const int &r = x;
4028/// \endcode
4029///
4030/// In this case the reference is binding to a bitfield lvalue, which isn't
4031/// valid. Perform a load to create a lifetime-extended temporary instead.
4032/// \code
4033/// const int &r = someStruct.bitfield;
4034/// \endcode
4035static ExprValueKind
4036convertQualifiersAndValueKindIfNecessary(Sema &S,
4037 InitializationSequence &Sequence,
4038 Expr *Initializer,
4039 QualType cv1T1,
4040 Qualifiers T1Quals,
4041 Qualifiers T2Quals,
4042 bool IsLValueRef) {
4043 bool IsNonAddressableType = Initializer->refersToBitField() ||
4044 Initializer->refersToVectorElement();
4045
4046 if (IsNonAddressableType) {
4047 // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
4048 // lvalue reference to a non-volatile const type, or the reference shall be
4049 // an rvalue reference.
4050 //
4051 // If not, we can't make a temporary and bind to that. Give up and allow the
4052 // error to be diagnosed later.
4053 if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
4054 assert(Initializer->isGLValue())((Initializer->isGLValue()) ? static_cast<void> (0) :
__assert_fail ("Initializer->isGLValue()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4054, __PRETTY_FUNCTION__))
;
4055 return Initializer->getValueKind();
4056 }
4057
4058 // Force a load so we can materialize a temporary.
4059 Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
4060 return VK_RValue;
4061 }
4062
4063 if (T1Quals != T2Quals) {
4064 Sequence.AddQualificationConversionStep(cv1T1,
4065 Initializer->getValueKind());
4066 }
4067
4068 return Initializer->getValueKind();
4069}
4070
4071
4072/// \brief Reference initialization without resolving overloaded functions.
4073static void TryReferenceInitializationCore(Sema &S,
4074 const InitializedEntity &Entity,
4075 const InitializationKind &Kind,
4076 Expr *Initializer,
4077 QualType cv1T1, QualType T1,
4078 Qualifiers T1Quals,
4079 QualType cv2T2, QualType T2,
4080 Qualifiers T2Quals,
4081 InitializationSequence &Sequence) {
4082 QualType DestType = Entity.getType();
4083 SourceLocation DeclLoc = Initializer->getLocStart();
4084 // Compute some basic properties of the types and the initializer.
4085 bool isLValueRef = DestType->isLValueReferenceType();
4086 bool isRValueRef = !isLValueRef;
4087 bool DerivedToBase = false;
4088 bool ObjCConversion = false;
4089 bool ObjCLifetimeConversion = false;
4090 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4091 Sema::ReferenceCompareResult RefRelationship
4092 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4093 ObjCConversion, ObjCLifetimeConversion);
4094
4095 // C++0x [dcl.init.ref]p5:
4096 // A reference to type "cv1 T1" is initialized by an expression of type
4097 // "cv2 T2" as follows:
4098 //
4099 // - If the reference is an lvalue reference and the initializer
4100 // expression
4101 // Note the analogous bullet points for rvalue refs to functions. Because
4102 // there are no function rvalues in C++, rvalue refs to functions are treated
4103 // like lvalue refs.
4104 OverloadingResult ConvOvlResult = OR_Success;
4105 bool T1Function = T1->isFunctionType();
4106 if (isLValueRef || T1Function) {
4107 if (InitCategory.isLValue() &&
4108 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
4109 (Kind.isCStyleOrFunctionalCast() &&
4110 RefRelationship == Sema::Ref_Related))) {
4111 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4112 // reference-compatible with "cv2 T2," or
4113 //
4114 // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
4115 // bit-field when we're determining whether the reference initialization
4116 // can occur. However, we do pay attention to whether it is a bit-field
4117 // to decide whether we're actually binding to a temporary created from
4118 // the bit-field.
4119 if (DerivedToBase)
4120 Sequence.AddDerivedToBaseCastStep(
4121 S.Context.getQualifiedType(T1, T2Quals),
4122 VK_LValue);
4123 else if (ObjCConversion)
4124 Sequence.AddObjCObjectConversionStep(
4125 S.Context.getQualifiedType(T1, T2Quals));
4126
4127 ExprValueKind ValueKind =
4128 convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
4129 cv1T1, T1Quals, T2Quals,
4130 isLValueRef);
4131 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
4132 return;
4133 }
4134
4135 // - has a class type (i.e., T2 is a class type), where T1 is not
4136 // reference-related to T2, and can be implicitly converted to an
4137 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4138 // with "cv3 T3" (this conversion is selected by enumerating the
4139 // applicable conversion functions (13.3.1.6) and choosing the best
4140 // one through overload resolution (13.3)),
4141 // If we have an rvalue ref to function type here, the rhs must be
4142 // an rvalue. DR1287 removed the "implicitly" here.
4143 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4144 (isLValueRef || InitCategory.isRValue())) {
4145 ConvOvlResult = TryRefInitWithConversionFunction(
4146 S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
4147 if (ConvOvlResult == OR_Success)
4148 return;
4149 if (ConvOvlResult != OR_No_Viable_Function)
4150 Sequence.SetOverloadFailure(
4151 InitializationSequence::FK_ReferenceInitOverloadFailed,
4152 ConvOvlResult);
4153 }
4154 }
4155
4156 // - Otherwise, the reference shall be an lvalue reference to a
4157 // non-volatile const type (i.e., cv1 shall be const), or the reference
4158 // shall be an rvalue reference.
4159 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4160 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4161 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4162 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4163 Sequence.SetOverloadFailure(
4164 InitializationSequence::FK_ReferenceInitOverloadFailed,
4165 ConvOvlResult);
4166 else
4167 Sequence.SetFailed(InitCategory.isLValue()
4168 ? (RefRelationship == Sema::Ref_Related
4169 ? InitializationSequence::FK_ReferenceInitDropsQualifiers
4170 : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
4171 : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4172
4173 return;
4174 }
4175
4176 // - If the initializer expression
4177 // - is an xvalue, class prvalue, array prvalue, or function lvalue and
4178 // "cv1 T1" is reference-compatible with "cv2 T2"
4179 // Note: functions are handled below.
4180 if (!T1Function &&
4181 (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
4182 (Kind.isCStyleOrFunctionalCast() &&
4183 RefRelationship == Sema::Ref_Related)) &&
4184 (InitCategory.isXValue() ||
4185 (InitCategory.isPRValue() && T2->isRecordType()) ||
4186 (InitCategory.isPRValue() && T2->isArrayType()))) {
4187 ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
4188 if (InitCategory.isPRValue() && T2->isRecordType()) {
4189 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4190 // compiler the freedom to perform a copy here or bind to the
4191 // object, while C++0x requires that we bind directly to the
4192 // object. Hence, we always bind to the object without making an
4193 // extra copy. However, in C++03 requires that we check for the
4194 // presence of a suitable copy constructor:
4195 //
4196 // The constructor that would be used to make the copy shall
4197 // be callable whether or not the copy is actually done.
4198 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4199 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4200 else if (S.getLangOpts().CPlusPlus11)
4201 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4202 }
4203
4204 if (DerivedToBase)
4205 Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
4206 ValueKind);
4207 else if (ObjCConversion)
4208 Sequence.AddObjCObjectConversionStep(
4209 S.Context.getQualifiedType(T1, T2Quals));
4210
4211 ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
4212 Initializer, cv1T1,
4213 T1Quals, T2Quals,
4214 isLValueRef);
4215
4216 Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
4217 return;
4218 }
4219
4220 // - has a class type (i.e., T2 is a class type), where T1 is not
4221 // reference-related to T2, and can be implicitly converted to an
4222 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4223 // where "cv1 T1" is reference-compatible with "cv3 T3",
4224 //
4225 // DR1287 removes the "implicitly" here.
4226 if (T2->isRecordType()) {
4227 if (RefRelationship == Sema::Ref_Incompatible) {
4228 ConvOvlResult = TryRefInitWithConversionFunction(
4229 S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
4230 if (ConvOvlResult)
4231 Sequence.SetOverloadFailure(
4232 InitializationSequence::FK_ReferenceInitOverloadFailed,
4233 ConvOvlResult);
4234
4235 return;
4236 }
4237
4238 if ((RefRelationship == Sema::Ref_Compatible ||
4239 RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
4240 isRValueRef && InitCategory.isLValue()) {
4241 Sequence.SetFailed(
4242 InitializationSequence::FK_RValueReferenceBindingToLValue);
4243 return;
4244 }
4245
4246 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4247 return;
4248 }
4249
4250 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4251 // from the initializer expression using the rules for a non-reference
4252 // copy-initialization (8.5). The reference is then bound to the
4253 // temporary. [...]
4254
4255 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4256
4257 // FIXME: Why do we use an implicit conversion here rather than trying
4258 // copy-initialization?
4259 ImplicitConversionSequence ICS
4260 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4261 /*SuppressUserConversions=*/false,
4262 /*AllowExplicit=*/false,
4263 /*FIXME:InOverloadResolution=*/false,
4264 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4265 /*AllowObjCWritebackConversion=*/false);
4266
4267 if (ICS.isBad()) {
4268 // FIXME: Use the conversion function set stored in ICS to turn
4269 // this into an overloading ambiguity diagnostic. However, we need
4270 // to keep that set as an OverloadCandidateSet rather than as some
4271 // other kind of set.
4272 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4273 Sequence.SetOverloadFailure(
4274 InitializationSequence::FK_ReferenceInitOverloadFailed,
4275 ConvOvlResult);
4276 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4277 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4278 else
4279 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4280 return;
4281 } else {
4282 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4283 }
4284
4285 // [...] If T1 is reference-related to T2, cv1 must be the
4286 // same cv-qualification as, or greater cv-qualification
4287 // than, cv2; otherwise, the program is ill-formed.
4288 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4289 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4290 if (RefRelationship == Sema::Ref_Related &&
4291 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4292 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4293 return;
4294 }
4295
4296 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4297 // reference, the initializer expression shall not be an lvalue.
4298 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4299 InitCategory.isLValue()) {
4300 Sequence.SetFailed(
4301 InitializationSequence::FK_RValueReferenceBindingToLValue);
4302 return;
4303 }
4304
4305 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4306 return;
4307}
4308
4309/// \brief Attempt character array initialization from a string literal
4310/// (C++ [dcl.init.string], C99 6.7.8).
4311static void TryStringLiteralInitialization(Sema &S,
4312 const InitializedEntity &Entity,
4313 const InitializationKind &Kind,
4314 Expr *Initializer,
4315 InitializationSequence &Sequence) {
4316 Sequence.AddStringInitStep(Entity.getType());
4317}
4318
4319/// \brief Attempt value initialization (C++ [dcl.init]p7).
4320static void TryValueInitialization(Sema &S,
4321 const InitializedEntity &Entity,
4322 const InitializationKind &Kind,
4323 InitializationSequence &Sequence,
4324 InitListExpr *InitList) {
4325 assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4326, __PRETTY_FUNCTION__))
4326 "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4326, __PRETTY_FUNCTION__))
;
4327
4328 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4329 //
4330 // To value-initialize an object of type T means:
4331 QualType T = Entity.getType();
4332
4333 // -- if T is an array type, then each element is value-initialized;
4334 T = S.Context.getBaseElementType(T);
4335
4336 if (const RecordType *RT = T->getAs<RecordType>()) {
4337 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4338 bool NeedZeroInitialization = true;
4339 if (!S.getLangOpts().CPlusPlus11) {
4340 // C++98:
4341 // -- if T is a class type (clause 9) with a user-declared constructor
4342 // (12.1), then the default constructor for T is called (and the
4343 // initialization is ill-formed if T has no accessible default
4344 // constructor);
4345 if (ClassDecl->hasUserDeclaredConstructor())
4346 NeedZeroInitialization = false;
4347 } else {
4348 // C++11:
4349 // -- if T is a class type (clause 9) with either no default constructor
4350 // (12.1 [class.ctor]) or a default constructor that is user-provided
4351 // or deleted, then the object is default-initialized;
4352 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4353 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4354 NeedZeroInitialization = false;
4355 }
4356
4357 // -- if T is a (possibly cv-qualified) non-union class type without a
4358 // user-provided or deleted default constructor, then the object is
4359 // zero-initialized and, if T has a non-trivial default constructor,
4360 // default-initialized;
4361 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4362 // constructor' part was removed by DR1507.
4363 if (NeedZeroInitialization)
4364 Sequence.AddZeroInitializationStep(Entity.getType());
4365
4366 // C++03:
4367 // -- if T is a non-union class type without a user-declared constructor,
4368 // then every non-static data member and base class component of T is
4369 // value-initialized;
4370 // [...] A program that calls for [...] value-initialization of an
4371 // entity of reference type is ill-formed.
4372 //
4373 // C++11 doesn't need this handling, because value-initialization does not
4374 // occur recursively there, and the implicit default constructor is
4375 // defined as deleted in the problematic cases.
4376 if (!S.getLangOpts().CPlusPlus11 &&
4377 ClassDecl->hasUninitializedReferenceMember()) {
4378 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4379 return;
4380 }
4381
4382 // If this is list-value-initialization, pass the empty init list on when
4383 // building the constructor call. This affects the semantics of a few
4384 // things (such as whether an explicit default constructor can be called).
4385 Expr *InitListAsExpr = InitList;
4386 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4387 bool InitListSyntax = InitList;
4388
4389 return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
4390 InitListSyntax);
4391 }
4392 }
4393
4394 Sequence.AddZeroInitializationStep(Entity.getType());
4395}
4396
4397/// \brief Attempt default initialization (C++ [dcl.init]p6).
4398static void TryDefaultInitialization(Sema &S,
4399 const InitializedEntity &Entity,
4400 const InitializationKind &Kind,
4401 InitializationSequence &Sequence) {
4402 assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4402, __PRETTY_FUNCTION__))
;
4403
4404 // C++ [dcl.init]p6:
4405 // To default-initialize an object of type T means:
4406 // - if T is an array type, each element is default-initialized;
4407 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4408
4409 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4410 // constructor for T is called (and the initialization is ill-formed if
4411 // T has no accessible default constructor);
4412 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4413 TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4414 return;
4415 }
4416
4417 // - otherwise, no initialization is performed.
4418
4419 // If a program calls for the default initialization of an object of
4420 // a const-qualified type T, T shall be a class type with a user-provided
4421 // default constructor.
4422 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4423 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4424 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4425 return;
4426 }
4427
4428 // If the destination type has a lifetime property, zero-initialize it.
4429 if (DestType.getQualifiers().hasObjCLifetime()) {
4430 Sequence.AddZeroInitializationStep(Entity.getType());
4431 return;
4432 }
4433}
4434
4435/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4436/// which enumerates all conversion functions and performs overload resolution
4437/// to select the best.
4438static void TryUserDefinedConversion(Sema &S,
4439 QualType DestType,
4440 const InitializationKind &Kind,
4441 Expr *Initializer,
4442 InitializationSequence &Sequence,
4443 bool TopLevelOfInitList) {
4444 assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4444, __PRETTY_FUNCTION__))
;
4445 QualType SourceType = Initializer->getType();
4446 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4447, __PRETTY_FUNCTION__))
4447 "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4447, __PRETTY_FUNCTION__))
;
4448
4449 // Build the candidate set directly in the initialization sequence
4450 // structure, so that it will persist if we fail.
4451 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4452 CandidateSet.clear();
4453
4454 // Determine whether we are allowed to call explicit constructors or
4455 // explicit conversion operators.
4456 bool AllowExplicit = Kind.AllowExplicit();
4457
4458 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4459 // The type we're converting to is a class type. Enumerate its constructors
4460 // to see if there is a suitable conversion.
4461 CXXRecordDecl *DestRecordDecl
4462 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4463
4464 // Try to complete the type we're converting to.
4465 if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4466 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4467 // The container holding the constructors can under certain conditions
4468 // be changed while iterating. To be safe we copy the lookup results
4469 // to a new container.
4470 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4471 for (SmallVectorImpl<NamedDecl *>::iterator
4472 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4473 Con != ConEnd; ++Con) {
4474 NamedDecl *D = *Con;
4475 DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4476
4477 // Find the constructor (which may be a template).
4478 CXXConstructorDecl *Constructor = nullptr;
4479 FunctionTemplateDecl *ConstructorTmpl
4480 = dyn_cast<FunctionTemplateDecl>(D);
4481 if (ConstructorTmpl)
4482 Constructor = cast<CXXConstructorDecl>(
4483 ConstructorTmpl->getTemplatedDecl());
4484 else
4485 Constructor = cast<CXXConstructorDecl>(D);
4486
4487 if (!Constructor->isInvalidDecl() &&
4488 Constructor->isConvertingConstructor(AllowExplicit)) {
4489 if (ConstructorTmpl)
4490 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4491 /*ExplicitArgs*/ nullptr,
4492 Initializer, CandidateSet,
4493 /*SuppressUserConversions=*/true);
4494 else
4495 S.AddOverloadCandidate(Constructor, FoundDecl,
4496 Initializer, CandidateSet,
4497 /*SuppressUserConversions=*/true);
4498 }
4499 }
4500 }
4501 }
4502
4503 SourceLocation DeclLoc = Initializer->getLocStart();
4504
4505 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4506 // The type we're converting from is a class type, enumerate its conversion
4507 // functions.
4508
4509 // We can only enumerate the conversion functions for a complete type; if
4510 // the type isn't complete, simply skip this step.
4511 if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4512 CXXRecordDecl *SourceRecordDecl
4513 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4514
4515 const auto &Conversions =
4516 SourceRecordDecl->getVisibleConversionFunctions();
4517 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4518 NamedDecl *D = *I;
4519 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4520 if (isa<UsingShadowDecl>(D))
4521 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4522
4523 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4524 CXXConversionDecl *Conv;
4525 if (ConvTemplate)
4526 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4527 else
4528 Conv = cast<CXXConversionDecl>(D);
4529
4530 if (AllowExplicit || !Conv->isExplicit()) {
4531 if (ConvTemplate)
4532 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4533 ActingDC, Initializer, DestType,
4534 CandidateSet, AllowExplicit);
4535 else
4536 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4537 Initializer, DestType, CandidateSet,
4538 AllowExplicit);
4539 }
4540 }
4541 }
4542 }
4543
4544 // Perform overload resolution. If it fails, return the failed result.
4545 OverloadCandidateSet::iterator Best;
4546 if (OverloadingResult Result
4547 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4548 Sequence.SetOverloadFailure(
4549 InitializationSequence::FK_UserConversionOverloadFailed,
4550 Result);
4551 return;
4552 }
4553
4554 FunctionDecl *Function = Best->Function;
4555 Function->setReferenced();
4556 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4557
4558 if (isa<CXXConstructorDecl>(Function)) {
4559 // Add the user-defined conversion step. Any cv-qualification conversion is
4560 // subsumed by the initialization. Per DR5, the created temporary is of the
4561 // cv-unqualified type of the destination.
4562 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4563 DestType.getUnqualifiedType(),
4564 HadMultipleCandidates);
4565 return;
4566 }
4567
4568 // Add the user-defined conversion step that calls the conversion function.
4569 QualType ConvType = Function->getCallResultType();
4570 if (ConvType->getAs<RecordType>()) {
4571 // If we're converting to a class type, there may be an copy of
4572 // the resulting temporary object (possible to create an object of
4573 // a base class type). That copy is not a separate conversion, so
4574 // we just make a note of the actual destination type (possibly a
4575 // base class of the type returned by the conversion function) and
4576 // let the user-defined conversion step handle the conversion.
4577 Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4578 HadMultipleCandidates);
4579 return;
4580 }
4581
4582 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4583 HadMultipleCandidates);
4584
4585 // If the conversion following the call to the conversion function
4586 // is interesting, add it as a separate step.
4587 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4588 Best->FinalConversion.Third) {
4589 ImplicitConversionSequence ICS;
4590 ICS.setStandard();
4591 ICS.Standard = Best->FinalConversion;
4592 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4593 }
4594}
4595
4596/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4597/// a function with a pointer return type contains a 'return false;' statement.
4598/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4599/// code using that header.
4600///
4601/// Work around this by treating 'return false;' as zero-initializing the result
4602/// if it's used in a pointer-returning function in a system header.
4603static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4604 const InitializedEntity &Entity,
4605 const Expr *Init) {
4606 return S.getLangOpts().CPlusPlus11 &&
4607 Entity.getKind() == InitializedEntity::EK_Result &&
4608 Entity.getType()->isPointerType() &&
4609 isa<CXXBoolLiteralExpr>(Init) &&
4610 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4611 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4612}
4613
4614/// The non-zero enum values here are indexes into diagnostic alternatives.
4615enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4616
4617/// Determines whether this expression is an acceptable ICR source.
4618static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4619 bool isAddressOf, bool &isWeakAccess) {
4620 // Skip parens.
4621 e = e->IgnoreParens();
4622
4623 // Skip address-of nodes.
4624 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4625 if (op->getOpcode() == UO_AddrOf)
4626 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4627 isWeakAccess);
4628
4629 // Skip certain casts.
4630 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4631 switch (ce->getCastKind()) {
4632 case CK_Dependent:
4633 case CK_BitCast:
4634 case CK_LValueBitCast:
4635 case CK_NoOp:
4636 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4637
4638 case CK_ArrayToPointerDecay:
4639 return IIK_nonscalar;
4640
4641 case CK_NullToPointer:
4642 return IIK_okay;
4643
4644 default:
4645 break;
4646 }
4647
4648 // If we have a declaration reference, it had better be a local variable.
4649 } else if (isa<DeclRefExpr>(e)) {
4650 // set isWeakAccess to true, to mean that there will be an implicit
4651 // load which requires a cleanup.
4652 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4653 isWeakAccess = true;
4654
4655 if (!isAddressOf) return IIK_nonlocal;
4656
4657 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4658 if (!var) return IIK_nonlocal;
4659
4660 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4661
4662 // If we have a conditional operator, check both sides.
4663 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4664 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4665 isWeakAccess))
4666 return iik;
4667
4668 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4669
4670 // These are never scalar.
4671 } else if (isa<ArraySubscriptExpr>(e)) {
4672 return IIK_nonscalar;
4673
4674 // Otherwise, it needs to be a null pointer constant.
4675 } else {
4676 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4677 ? IIK_okay : IIK_nonlocal);
4678 }
4679
4680 return IIK_nonlocal;
4681}
4682
4683/// Check whether the given expression is a valid operand for an
4684/// indirect copy/restore.
4685static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4686 assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail
("src->isRValue()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4686, __PRETTY_FUNCTION__))
;
4687 bool isWeakAccess = false;
4688 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4689 // If isWeakAccess to true, there will be an implicit
4690 // load which requires a cleanup.
4691 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4692 S.ExprNeedsCleanups = true;
4693
4694 if (iik == IIK_okay) return;
4695
4696 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4697 << ((unsigned) iik - 1) // shift index into diagnostic explanations
4698 << src->getSourceRange();
4699}
4700
4701/// \brief Determine whether we have compatible array types for the
4702/// purposes of GNU by-copy array initialization.
4703static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4704 const ArrayType *Source) {
4705 // If the source and destination array types are equivalent, we're
4706 // done.
4707 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4708 return true;
4709
4710 // Make sure that the element types are the same.
4711 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4712 return false;
4713
4714 // The only mismatch we allow is when the destination is an
4715 // incomplete array type and the source is a constant array type.
4716 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4717}
4718
4719static bool tryObjCWritebackConversion(Sema &S,
4720 InitializationSequence &Sequence,
4721 const InitializedEntity &Entity,
4722 Expr *Initializer) {
4723 bool ArrayDecay = false;
4724 QualType ArgType = Initializer->getType();
4725 QualType ArgPointee;
4726 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4727 ArrayDecay = true;
4728 ArgPointee = ArgArrayType->getElementType();
4729 ArgType = S.Context.getPointerType(ArgPointee);
4730 }
4731
4732 // Handle write-back conversion.
4733 QualType ConvertedArgType;
4734 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4735 ConvertedArgType))
4736 return false;
4737
4738 // We should copy unless we're passing to an argument explicitly
4739 // marked 'out'.
4740 bool ShouldCopy = true;
4741 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4742 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4743
4744 // Do we need an lvalue conversion?
4745 if (ArrayDecay || Initializer->isGLValue()) {
4746 ImplicitConversionSequence ICS;
4747 ICS.setStandard();
4748 ICS.Standard.setAsIdentityConversion();
4749
4750 QualType ResultType;
4751 if (ArrayDecay) {
4752 ICS.Standard.First = ICK_Array_To_Pointer;
4753 ResultType = S.Context.getPointerType(ArgPointee);
4754 } else {
4755 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4756 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4757 }
4758
4759 Sequence.AddConversionSequenceStep(ICS, ResultType);
4760 }
4761
4762 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4763 return true;
4764}
4765
4766static bool TryOCLSamplerInitialization(Sema &S,
4767 InitializationSequence &Sequence,
4768 QualType DestType,
4769 Expr *Initializer) {
4770 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4771 !Initializer->isIntegerConstantExpr(S.getASTContext()))
4772 return false;
4773
4774 Sequence.AddOCLSamplerInitStep(DestType);
4775 return true;
4776}
4777
4778//
4779// OpenCL 1.2 spec, s6.12.10
4780//
4781// The event argument can also be used to associate the
4782// async_work_group_copy with a previous async copy allowing
4783// an event to be shared by multiple async copies; otherwise
4784// event should be zero.
4785//
4786static bool TryOCLZeroEventInitialization(Sema &S,
4787 InitializationSequence &Sequence,
4788 QualType DestType,
4789 Expr *Initializer) {
4790 if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4791 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4792 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4793 return false;
4794
4795 Sequence.AddOCLZeroEventStep(DestType);
4796 return true;
4797}
4798
4799InitializationSequence::InitializationSequence(Sema &S,
4800 const InitializedEntity &Entity,
4801 const InitializationKind &Kind,
4802 MultiExprArg Args,
4803 bool TopLevelOfInitList)
4804 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
4805 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4806}
4807
4808/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
4809/// address of that function, this returns true. Otherwise, it returns false.
4810static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
4811 auto *DRE = dyn_cast<DeclRefExpr>(E);
4812 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
4813 return false;
4814
4815 return !S.checkAddressOfFunctionIsAvailable(
4816 cast<FunctionDecl>(DRE->getDecl()));
4817}
4818
4819void InitializationSequence::InitializeFrom(Sema &S,
4820 const InitializedEntity &Entity,
4821 const InitializationKind &Kind,
4822 MultiExprArg Args,
4823 bool TopLevelOfInitList) {
4824 ASTContext &Context = S.Context;
4825
4826 // Eliminate non-overload placeholder types in the arguments. We
4827 // need to do this before checking whether types are dependent
4828 // because lowering a pseudo-object expression might well give us
4829 // something of dependent type.
4830 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1
Assuming 'I' is equal to 'E'
2
Loop condition is false. Execution continues on line 4847
4831 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4832 // FIXME: should we be doing this here?
4833 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4834 if (result.isInvalid()) {
4835 SetFailed(FK_PlaceholderType);
4836 return;
4837 }
4838 Args[I] = result.get();
4839 }
4840
4841 // C++0x [dcl.init]p16:
4842 // The semantics of initializers are as follows. The destination type is
4843 // the type of the object or reference being initialized and the source
4844 // type is the type of the initializer expression. The source type is not
4845 // defined when the initializer is a braced-init-list or when it is a
4846 // parenthesized list of expressions.
4847 QualType DestType = Entity.getType();
4848
4849 if (DestType->isDependentType() ||
3
Taking false branch
4850 Expr::hasAnyTypeDependentArguments(Args)) {
4851 SequenceKind = DependentSequence;
4852 return;
4853 }
4854
4855 // Almost everything is a normal sequence.
4856 setSequenceKind(NormalSequence);
4857
4858 QualType SourceType;
4859 Expr *Initializer = nullptr;
4
'Initializer' initialized to a null pointer value
4860 if (Args.size() == 1) {
5
Taking false branch
4861 Initializer = Args[0];
4862 if (S.getLangOpts().ObjC1) {
4863 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
4864 DestType, Initializer->getType(),
4865 Initializer) ||
4866 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
4867 Args[0] = Initializer;
4868 }
4869 if (!isa<InitListExpr>(Initializer))
4870 SourceType = Initializer->getType();
4871 }
4872
4873 // - If the initializer is a (non-parenthesized) braced-init-list, the
4874 // object is list-initialized (8.5.4).
4875 if (Kind.getKind() != InitializationKind::IK_Direct) {
6
Taking false branch
4876 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4877 TryListInitialization(S, Entity, Kind, InitList, *this);
4878 return;
4879 }
4880 }
4881
4882 // - If the destination type is a reference type, see 8.5.3.
4883 if (DestType->isReferenceType()) {
7
Taking false branch
4884 // C++0x [dcl.init.ref]p1:
4885 // A variable declared to be a T& or T&&, that is, "reference to type T"
4886 // (8.3.2), shall be initialized by an object, or function, of type T or
4887 // by an object that can be converted into a T.
4888 // (Therefore, multiple arguments are not permitted.)
4889 if (Args.size() != 1)
4890 SetFailed(FK_TooManyInitsForReference);
4891 else
4892 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4893 return;
4894 }
4895
4896 // - If the initializer is (), the object is value-initialized.
4897 if (Kind.getKind() == InitializationKind::IK_Value ||
8
Taking false branch
4898 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4899 TryValueInitialization(S, Entity, Kind, *this);
4900 return;
4901 }
4902
4903 // Handle default initialization.
4904 if (Kind.getKind() == InitializationKind::IK_Default) {
9
Taking false branch
4905 TryDefaultInitialization(S, Entity, Kind, *this);
4906 return;
4907 }
4908
4909 // - If the destination type is an array of characters, an array of
4910 // char16_t, an array of char32_t, or an array of wchar_t, and the
4911 // initializer is a string literal, see 8.5.2.
4912 // - Otherwise, if the destination type is an array, the program is
4913 // ill-formed.
4914 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
10
Assuming 'DestAT' is null
11
Taking false branch
4915 if (Initializer && isa<VariableArrayType>(DestAT)) {
4916 SetFailed(FK_VariableLengthArrayHasInitializer);
4917 return;
4918 }
4919
4920 if (Initializer) {
4921 switch (IsStringInit(Initializer, DestAT, Context)) {
4922 case SIF_None:
4923 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4924 return;
4925 case SIF_NarrowStringIntoWideChar:
4926 SetFailed(FK_NarrowStringIntoWideCharArray);
4927 return;
4928 case SIF_WideStringIntoChar:
4929 SetFailed(FK_WideStringIntoCharArray);
4930 return;
4931 case SIF_IncompatWideStringIntoWideChar:
4932 SetFailed(FK_IncompatWideStringIntoWideChar);
4933 return;
4934 case SIF_Other:
4935 break;
4936 }
4937 }
4938
4939 // Note: as an GNU C extension, we allow initialization of an
4940 // array from a compound literal that creates an array of the same
4941 // type, so long as the initializer has no side effects.
4942 if (!S.getLangOpts().CPlusPlus && Initializer &&
4943 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4944 Initializer->getType()->isArrayType()) {
4945 const ArrayType *SourceAT
4946 = Context.getAsArrayType(Initializer->getType());
4947 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4948 SetFailed(FK_ArrayTypeMismatch);
4949 else if (Initializer->HasSideEffects(S.Context))
4950 SetFailed(FK_NonConstantArrayInit);
4951 else {
4952 AddArrayInitStep(DestType);
4953 }
4954 }
4955 // Note: as a GNU C++ extension, we allow list-initialization of a
4956 // class member of array type from a parenthesized initializer list.
4957 else if (S.getLangOpts().CPlusPlus &&
4958 Entity.getKind() == InitializedEntity::EK_Member &&
4959 Initializer && isa<InitListExpr>(Initializer)) {
4960 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4961 *this);
4962 AddParenthesizedArrayInitStep(DestType);
4963 } else if (DestAT->getElementType()->isCharType())
4964 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4965 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4966 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4967 else
4968 SetFailed(FK_ArrayNeedsInitList);
4969
4970 return;
4971 }
4972
4973 // Determine whether we should consider writeback conversions for
4974 // Objective-C ARC.
4975 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4976 Entity.isParameterKind();
4977
4978 // We're at the end of the line for C: it's either a write-back conversion
4979 // or it's a C assignment. There's no need to check anything else.
4980 if (!S.getLangOpts().CPlusPlus) {
12
Taking false branch
4981 // If allowed, check whether this is an Objective-C writeback conversion.
4982 if (allowObjCWritebackConversion &&
4983 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4984 return;
4985 }
4986
4987 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4988 return;
4989
4990 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4991 return;
4992
4993 // Handle initialization in C
4994 AddCAssignmentStep(DestType);
4995 MaybeProduceObjCObject(S, *this, Entity);
4996 return;
4997 }
4998
4999 assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("S.getLangOpts().CPlusPlus", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 4999, __PRETTY_FUNCTION__))
;
5000
5001 // - If the destination type is a (possibly cv-qualified) class type:
5002 if (DestType->isRecordType()) {
13
Taking false branch
5003 // - If the initialization is direct-initialization, or if it is
5004 // copy-initialization where the cv-unqualified version of the
5005 // source type is the same class as, or a derived class of, the
5006 // class of the destination, constructors are considered. [...]
5007 if (Kind.getKind() == InitializationKind::IK_Direct ||
5008 (Kind.getKind() == InitializationKind::IK_Copy &&
5009 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5010 S.IsDerivedFrom(SourceType, DestType))))
5011 TryConstructorInitialization(S, Entity, Kind, Args,
5012 DestType, *this);
5013 // - Otherwise (i.e., for the remaining copy-initialization cases),
5014 // user-defined conversion sequences that can convert from the source
5015 // type to the destination type or (when a conversion function is
5016 // used) to a derived class thereof are enumerated as described in
5017 // 13.3.1.4, and the best one is chosen through overload resolution
5018 // (13.3).
5019 else
5020 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5021 TopLevelOfInitList);
5022 return;
5023 }
5024
5025 if (Args.size() > 1) {
14
Taking false branch
5026 SetFailed(FK_TooManyInitsForScalar);
5027 return;
5028 }
5029 assert(Args.size() == 1 && "Zero-argument case handled above")((Args.size() == 1 && "Zero-argument case handled above"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"Zero-argument case handled above\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5029, __PRETTY_FUNCTION__))
;
5030
5031 // - Otherwise, if the source type is a (possibly cv-qualified) class
5032 // type, conversion functions are considered.
5033 if (!SourceType.isNull() && SourceType->isRecordType()) {
5034 // For a conversion to _Atomic(T) from either T or a class type derived
5035 // from T, initialize the T object then convert to _Atomic type.
5036 bool NeedAtomicConversion = false;
5037 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5038 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5039 S.IsDerivedFrom(SourceType, Atomic->getValueType())) {
5040 DestType = Atomic->getValueType();
5041 NeedAtomicConversion = true;
5042 }
5043 }
5044
5045 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5046 TopLevelOfInitList);
5047 MaybeProduceObjCObject(S, *this, Entity);
5048 if (!Failed() && NeedAtomicConversion)
5049 AddAtomicConversionStep(Entity.getType());
5050 return;
5051 }
5052
5053 // - Otherwise, the initial value of the object being initialized is the
5054 // (possibly converted) value of the initializer expression. Standard
5055 // conversions (Clause 4) will be used, if necessary, to convert the
5056 // initializer expression to the cv-unqualified version of the
5057 // destination type; no user-defined conversions are considered.
5058
5059 ImplicitConversionSequence ICS
5060 = S.TryImplicitConversion(Initializer, DestType,
5061 /*SuppressUserConversions*/true,
5062 /*AllowExplicitConversions*/ false,
5063 /*InOverloadResolution*/ false,
5064 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5065 allowObjCWritebackConversion);
5066
5067 if (ICS.isStandard() &&
5068 ICS.Standard.Second == ICK_Writeback_Conversion) {
5069 // Objective-C ARC writeback conversion.
5070
5071 // We should copy unless we're passing to an argument explicitly
5072 // marked 'out'.
5073 bool ShouldCopy = true;
5074 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5075 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5076
5077 // If there was an lvalue adjustment, add it as a separate conversion.
5078 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5079 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5080 ImplicitConversionSequence LvalueICS;
5081 LvalueICS.setStandard();
5082 LvalueICS.Standard.setAsIdentityConversion();
5083 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5084 LvalueICS.Standard.First = ICS.Standard.First;
5085 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5086 }
5087
5088 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5089 } else if (ICS.isBad()) {
15
Taking true branch
5090 DeclAccessPair dap;
5091 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
16
Taking false branch
5092 AddZeroInitializationStep(Entity.getType());
5093 } else if (Initializer->getType() == Context.OverloadTy &&
17
Called C++ object pointer is null
5094 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5095 false, dap))
5096 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5097 else if (Initializer->getType()->isFunctionType() &&
5098 isExprAnUnaddressableFunction(S, Initializer))
5099 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5100 else
5101 SetFailed(InitializationSequence::FK_ConversionFailed);
5102 } else {
5103 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5104
5105 MaybeProduceObjCObject(S, *this, Entity);
5106 }
5107}
5108
5109InitializationSequence::~InitializationSequence() {
5110 for (auto &S : Steps)
5111 S.Destroy();
5112}
5113
5114//===----------------------------------------------------------------------===//
5115// Perform initialization
5116//===----------------------------------------------------------------------===//
5117static Sema::AssignmentAction
5118getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5119 switch(Entity.getKind()) {
5120 case InitializedEntity::EK_Variable:
5121 case InitializedEntity::EK_New:
5122 case InitializedEntity::EK_Exception:
5123 case InitializedEntity::EK_Base:
5124 case InitializedEntity::EK_Delegating:
5125 return Sema::AA_Initializing;
5126
5127 case InitializedEntity::EK_Parameter:
5128 if (Entity.getDecl() &&
5129 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5130 return Sema::AA_Sending;
5131
5132 return Sema::AA_Passing;
5133
5134 case InitializedEntity::EK_Parameter_CF_Audited:
5135 if (Entity.getDecl() &&
5136 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5137 return Sema::AA_Sending;
5138
5139 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5140
5141 case InitializedEntity::EK_Result:
5142 return Sema::AA_Returning;
5143
5144 case InitializedEntity::EK_Temporary:
5145 case InitializedEntity::EK_RelatedResult:
5146 // FIXME: Can we tell apart casting vs. converting?
5147 return Sema::AA_Casting;
5148
5149 case InitializedEntity::EK_Member:
5150 case InitializedEntity::EK_ArrayElement:
5151 case InitializedEntity::EK_VectorElement:
5152 case InitializedEntity::EK_ComplexElement:
5153 case InitializedEntity::EK_BlockElement:
5154 case InitializedEntity::EK_LambdaCapture:
5155 case InitializedEntity::EK_CompoundLiteralInit:
5156 return Sema::AA_Initializing;
5157 }
5158
5159 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5159)
;
5160}
5161
5162/// \brief Whether we should bind a created object as a temporary when
5163/// initializing the given entity.
5164static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5165 switch (Entity.getKind()) {
5166 case InitializedEntity::EK_ArrayElement:
5167 case InitializedEntity::EK_Member:
5168 case InitializedEntity::EK_Result:
5169 case InitializedEntity::EK_New:
5170 case InitializedEntity::EK_Variable:
5171 case InitializedEntity::EK_Base:
5172 case InitializedEntity::EK_Delegating:
5173 case InitializedEntity::EK_VectorElement:
5174 case InitializedEntity::EK_ComplexElement:
5175 case InitializedEntity::EK_Exception:
5176 case InitializedEntity::EK_BlockElement:
5177 case InitializedEntity::EK_LambdaCapture:
5178 case InitializedEntity::EK_CompoundLiteralInit:
5179 return false;
5180
5181 case InitializedEntity::EK_Parameter:
5182 case InitializedEntity::EK_Parameter_CF_Audited:
5183 case InitializedEntity::EK_Temporary:
5184 case InitializedEntity::EK_RelatedResult:
5185 return true;
5186 }
5187
5188 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5188)
;
5189}
5190
5191/// \brief Whether the given entity, when initialized with an object
5192/// created for that initialization, requires destruction.
5193static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
5194 switch (Entity.getKind()) {
5195 case InitializedEntity::EK_Result:
5196 case InitializedEntity::EK_New:
5197 case InitializedEntity::EK_Base:
5198 case InitializedEntity::EK_Delegating:
5199 case InitializedEntity::EK_VectorElement:
5200 case InitializedEntity::EK_ComplexElement:
5201 case InitializedEntity::EK_BlockElement:
5202 case InitializedEntity::EK_LambdaCapture:
5203 return false;
5204
5205 case InitializedEntity::EK_Member:
5206 case InitializedEntity::EK_Variable:
5207 case InitializedEntity::EK_Parameter:
5208 case InitializedEntity::EK_Parameter_CF_Audited:
5209 case InitializedEntity::EK_Temporary:
5210 case InitializedEntity::EK_ArrayElement:
5211 case InitializedEntity::EK_Exception:
5212 case InitializedEntity::EK_CompoundLiteralInit:
5213 case InitializedEntity::EK_RelatedResult:
5214 return true;
5215 }
5216
5217 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5217)
;
5218}
5219
5220/// \brief Look for copy and move constructors and constructor templates, for
5221/// copying an object via direct-initialization (per C++11 [dcl.init]p16).
5222static void LookupCopyAndMoveConstructors(Sema &S,
5223 OverloadCandidateSet &CandidateSet,
5224 CXXRecordDecl *Class,
5225 Expr *CurInitExpr) {
5226 DeclContext::lookup_result R = S.LookupConstructors(Class);
5227 // The container holding the constructors can under certain conditions
5228 // be changed while iterating (e.g. because of deserialization).
5229 // To be safe we copy the lookup results to a new container.
5230 SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
5231 for (SmallVectorImpl<NamedDecl *>::iterator
5232 CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
5233 NamedDecl *D = *CI;
5234 CXXConstructorDecl *Constructor = nullptr;
5235
5236 if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
5237 // Handle copy/moveconstructors, only.
5238 if (!Constructor || Constructor->isInvalidDecl() ||
5239 !Constructor->isCopyOrMoveConstructor() ||
5240 !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5241 continue;
5242
5243 DeclAccessPair FoundDecl
5244 = DeclAccessPair::make(Constructor, Constructor->getAccess());
5245 S.AddOverloadCandidate(Constructor, FoundDecl,
5246 CurInitExpr, CandidateSet);
5247 continue;
5248 }
5249
5250 // Handle constructor templates.
5251 FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
5252 if (ConstructorTmpl->isInvalidDecl())
5253 continue;
5254
5255 Constructor = cast<CXXConstructorDecl>(
5256 ConstructorTmpl->getTemplatedDecl());
5257 if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
5258 continue;
5259
5260 // FIXME: Do we need to limit this to copy-constructor-like
5261 // candidates?
5262 DeclAccessPair FoundDecl
5263 = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
5264 S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
5265 CurInitExpr, CandidateSet, true);
5266 }
5267}
5268
5269/// \brief Get the location at which initialization diagnostics should appear.
5270static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5271 Expr *Initializer) {
5272 switch (Entity.getKind()) {
5273 case InitializedEntity::EK_Result:
5274 return Entity.getReturnLoc();
5275
5276 case InitializedEntity::EK_Exception:
5277 return Entity.getThrowLoc();
5278
5279 case InitializedEntity::EK_Variable:
5280 return Entity.getDecl()->getLocation();
5281
5282 case InitializedEntity::EK_LambdaCapture:
5283 return Entity.getCaptureLoc();
5284
5285 case InitializedEntity::EK_ArrayElement:
5286 case InitializedEntity::EK_Member:
5287 case InitializedEntity::EK_Parameter:
5288 case InitializedEntity::EK_Parameter_CF_Audited:
5289 case InitializedEntity::EK_Temporary:
5290 case InitializedEntity::EK_New:
5291 case InitializedEntity::EK_Base:
5292 case InitializedEntity::EK_Delegating:
5293 case InitializedEntity::EK_VectorElement:
5294 case InitializedEntity::EK_ComplexElement:
5295 case InitializedEntity::EK_BlockElement:
5296 case InitializedEntity::EK_CompoundLiteralInit:
5297 case InitializedEntity::EK_RelatedResult:
5298 return Initializer->getLocStart();
5299 }
5300 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5300)
;
5301}
5302
5303/// \brief Make a (potentially elidable) temporary copy of the object
5304/// provided by the given initializer by calling the appropriate copy
5305/// constructor.
5306///
5307/// \param S The Sema object used for type-checking.
5308///
5309/// \param T The type of the temporary object, which must either be
5310/// the type of the initializer expression or a superclass thereof.
5311///
5312/// \param Entity The entity being initialized.
5313///
5314/// \param CurInit The initializer expression.
5315///
5316/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5317/// is permitted in C++03 (but not C++0x) when binding a reference to
5318/// an rvalue.
5319///
5320/// \returns An expression that copies the initializer expression into
5321/// a temporary object, or an error expression if a copy could not be
5322/// created.
5323static ExprResult CopyObject(Sema &S,
5324 QualType T,
5325 const InitializedEntity &Entity,
5326 ExprResult CurInit,
5327 bool IsExtraneousCopy) {
5328 if (CurInit.isInvalid())
5329 return CurInit;
5330 // Determine which class type we're copying to.
5331 Expr *CurInitExpr = (Expr *)CurInit.get();
5332 CXXRecordDecl *Class = nullptr;
5333 if (const RecordType *Record = T->getAs<RecordType>())
5334 Class = cast<CXXRecordDecl>(Record->getDecl());
5335 if (!Class)
5336 return CurInit;
5337
5338 // C++0x [class.copy]p32:
5339 // When certain criteria are met, an implementation is allowed to
5340 // omit the copy/move construction of a class object, even if the
5341 // copy/move constructor and/or destructor for the object have
5342 // side effects. [...]
5343 // - when a temporary class object that has not been bound to a
5344 // reference (12.2) would be copied/moved to a class object
5345 // with the same cv-unqualified type, the copy/move operation
5346 // can be omitted by constructing the temporary object
5347 // directly into the target of the omitted copy/move
5348 //
5349 // Note that the other three bullets are handled elsewhere. Copy
5350 // elision for return statements and throw expressions are handled as part
5351 // of constructor initialization, while copy elision for exception handlers
5352 // is handled by the run-time.
5353 bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
5354 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5355
5356 // Make sure that the type we are copying is complete.
5357 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5358 return CurInit;
5359
5360 // Perform overload resolution using the class's copy/move constructors.
5361 // Only consider constructors and constructor templates. Per
5362 // C++0x [dcl.init]p16, second bullet to class types, this initialization
5363 // is direct-initialization.
5364 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5365 LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
5366
5367 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5368
5369 OverloadCandidateSet::iterator Best;
5370 switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
5371 case OR_Success:
5372 break;
5373
5374 case OR_No_Viable_Function:
5375 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5376 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5377 : diag::err_temp_copy_no_viable)
5378 << (int)Entity.getKind() << CurInitExpr->getType()
5379 << CurInitExpr->getSourceRange();
5380 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5381 if (!IsExtraneousCopy || S.isSFINAEContext())
5382 return ExprError();
5383 return CurInit;
5384
5385 case OR_Ambiguous:
5386 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5387 << (int)Entity.getKind() << CurInitExpr->getType()
5388 << CurInitExpr->getSourceRange();
5389 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5390 return ExprError();
5391
5392 case OR_Deleted:
5393 S.Diag(Loc, diag::err_temp_copy_deleted)
5394 << (int)Entity.getKind() << CurInitExpr->getType()
5395 << CurInitExpr->getSourceRange();
5396 S.NoteDeletedFunction(Best->Function);
5397 return ExprError();
5398 }
5399
5400 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5401 SmallVector<Expr*, 8> ConstructorArgs;
5402 CurInit.get(); // Ownership transferred into MultiExprArg, below.
5403
5404 S.CheckConstructorAccess(Loc, Constructor, Entity,
5405 Best->FoundDecl.getAccess(), IsExtraneousCopy);
5406
5407 if (IsExtraneousCopy) {
5408 // If this is a totally extraneous copy for C++03 reference
5409 // binding purposes, just return the original initialization
5410 // expression. We don't generate an (elided) copy operation here
5411 // because doing so would require us to pass down a flag to avoid
5412 // infinite recursion, where each step adds another extraneous,
5413 // elidable copy.
5414
5415 // Instantiate the default arguments of any extra parameters in
5416 // the selected copy constructor, as if we were going to create a
5417 // proper call to the copy constructor.
5418 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5419 ParmVarDecl *Parm = Constructor->getParamDecl(I);
5420 if (S.RequireCompleteType(Loc, Parm->getType(),
5421 diag::err_call_incomplete_argument))
5422 break;
5423
5424 // Build the default argument expression; we don't actually care
5425 // if this succeeds or not, because this routine will complain
5426 // if there was a problem.
5427 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5428 }
5429
5430 return CurInitExpr;
5431 }
5432
5433 // Determine the arguments required to actually perform the
5434 // constructor call (we might have derived-to-base conversions, or
5435 // the copy constructor may have default arguments).
5436 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5437 return ExprError();
5438
5439 // Actually perform the constructor call.
5440 CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5441 ConstructorArgs,
5442 HadMultipleCandidates,
5443 /*ListInit*/ false,
5444 /*StdInitListInit*/ false,
5445 /*ZeroInit*/ false,
5446 CXXConstructExpr::CK_Complete,
5447 SourceRange());
5448
5449 // If we're supposed to bind temporaries, do so.
5450 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5451 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5452 return CurInit;
5453}
5454
5455/// \brief Check whether elidable copy construction for binding a reference to
5456/// a temporary would have succeeded if we were building in C++98 mode, for
5457/// -Wc++98-compat.
5458static void CheckCXX98CompatAccessibleCopy(Sema &S,
5459 const InitializedEntity &Entity,
5460 Expr *CurInitExpr) {
5461 assert(S.getLangOpts().CPlusPlus11)((S.getLangOpts().CPlusPlus11) ? static_cast<void> (0) :
__assert_fail ("S.getLangOpts().CPlusPlus11", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5461, __PRETTY_FUNCTION__))
;
5462
5463 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5464 if (!Record)
5465 return;
5466
5467 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5468 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5469 return;
5470
5471 // Find constructors which would have been considered.
5472 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5473 LookupCopyAndMoveConstructors(
5474 S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5475
5476 // Perform overload resolution.
5477 OverloadCandidateSet::iterator Best;
5478 OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5479
5480 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5481 << OR << (int)Entity.getKind() << CurInitExpr->getType()
5482 << CurInitExpr->getSourceRange();
5483
5484 switch (OR) {
5485 case OR_Success:
5486 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5487 Entity, Best->FoundDecl.getAccess(), Diag);
5488 // FIXME: Check default arguments as far as that's possible.
5489 break;
5490
5491 case OR_No_Viable_Function:
5492 S.Diag(Loc, Diag);
5493 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5494 break;
5495
5496 case OR_Ambiguous:
5497 S.Diag(Loc, Diag);
5498 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5499 break;
5500
5501 case OR_Deleted:
5502 S.Diag(Loc, Diag);
5503 S.NoteDeletedFunction(Best->Function);
5504 break;
5505 }
5506}
5507
5508void InitializationSequence::PrintInitLocationNote(Sema &S,
5509 const InitializedEntity &Entity) {
5510 if (Entity.isParameterKind() && Entity.getDecl()) {
5511 if (Entity.getDecl()->getLocation().isInvalid())
5512 return;
5513
5514 if (Entity.getDecl()->getDeclName())
5515 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5516 << Entity.getDecl()->getDeclName();
5517 else
5518 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5519 }
5520 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5521 Entity.getMethodDecl())
5522 S.Diag(Entity.getMethodDecl()->getLocation(),
5523 diag::note_method_return_type_change)
5524 << Entity.getMethodDecl()->getDeclName();
5525}
5526
5527static bool isReferenceBinding(const InitializationSequence::Step &s) {
5528 return s.Kind == InitializationSequence::SK_BindReference ||
5529 s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5530}
5531
5532/// Returns true if the parameters describe a constructor initialization of
5533/// an explicit temporary object, e.g. "Point(x, y)".
5534static bool isExplicitTemporary(const InitializedEntity &Entity,
5535 const InitializationKind &Kind,
5536 unsigned NumArgs) {
5537 switch (Entity.getKind()) {
5538 case InitializedEntity::EK_Temporary:
5539 case InitializedEntity::EK_CompoundLiteralInit:
5540 case InitializedEntity::EK_RelatedResult:
5541 break;
5542 default:
5543 return false;
5544 }
5545
5546 switch (Kind.getKind()) {
5547 case InitializationKind::IK_DirectList:
5548 return true;
5549 // FIXME: Hack to work around cast weirdness.
5550 case InitializationKind::IK_Direct:
5551 case InitializationKind::IK_Value:
5552 return NumArgs != 1;
5553 default:
5554 return false;
5555 }
5556}
5557
5558static ExprResult
5559PerformConstructorInitialization(Sema &S,
5560 const InitializedEntity &Entity,
5561 const InitializationKind &Kind,
5562 MultiExprArg Args,
5563 const InitializationSequence::Step& Step,
5564 bool &ConstructorInitRequiresZeroInit,
5565 bool IsListInitialization,
5566 bool IsStdInitListInitialization,
5567 SourceLocation LBraceLoc,
5568 SourceLocation RBraceLoc) {
5569 unsigned NumArgs = Args.size();
5570 CXXConstructorDecl *Constructor
5571 = cast<CXXConstructorDecl>(Step.Function.Function);
5572 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5573
5574 // Build a call to the selected constructor.
5575 SmallVector<Expr*, 8> ConstructorArgs;
5576 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5577 ? Kind.getEqualLoc()
5578 : Kind.getLocation();
5579
5580 if (Kind.getKind() == InitializationKind::IK_Default) {
5581 // Force even a trivial, implicit default constructor to be
5582 // semantically checked. We do this explicitly because we don't build
5583 // the definition for completely trivial constructors.
5584 assert(Constructor->getParent() && "No parent class for constructor.")((Constructor->getParent() && "No parent class for constructor."
) ? static_cast<void> (0) : __assert_fail ("Constructor->getParent() && \"No parent class for constructor.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5584, __PRETTY_FUNCTION__))
;
5585 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5586 Constructor->isTrivial() && !Constructor->isUsed(false))
5587 S.DefineImplicitDefaultConstructor(Loc, Constructor);
5588 }
5589
5590 ExprResult CurInit((Expr *)nullptr);
5591
5592 // C++ [over.match.copy]p1:
5593 // - When initializing a temporary to be bound to the first parameter
5594 // of a constructor that takes a reference to possibly cv-qualified
5595 // T as its first argument, called with a single argument in the
5596 // context of direct-initialization, explicit conversion functions
5597 // are also considered.
5598 bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5599 Args.size() == 1 &&
5600 Constructor->isCopyOrMoveConstructor();
5601
5602 // Determine the arguments required to actually perform the constructor
5603 // call.
5604 if (S.CompleteConstructorCall(Constructor, Args,
5605 Loc, ConstructorArgs,
5606 AllowExplicitConv,
5607 IsListInitialization))
5608 return ExprError();
5609
5610
5611 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5612 // An explicitly-constructed temporary, e.g., X(1, 2).
5613 S.MarkFunctionReferenced(Loc, Constructor);
5614 if (S.DiagnoseUseOfDecl(Constructor, Loc))
5615 return ExprError();
5616
5617 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5618 if (!TSInfo)
5619 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5620 SourceRange ParenOrBraceRange =
5621 (Kind.getKind() == InitializationKind::IK_DirectList)
5622 ? SourceRange(LBraceLoc, RBraceLoc)
5623 : Kind.getParenRange();
5624
5625 CurInit = new (S.Context) CXXTemporaryObjectExpr(
5626 S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
5627 HadMultipleCandidates, IsListInitialization,
5628 IsStdInitListInitialization, ConstructorInitRequiresZeroInit);
5629 } else {
5630 CXXConstructExpr::ConstructionKind ConstructKind =
5631 CXXConstructExpr::CK_Complete;
5632
5633 if (Entity.getKind() == InitializedEntity::EK_Base) {
5634 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5635 CXXConstructExpr::CK_VirtualBase :
5636 CXXConstructExpr::CK_NonVirtualBase;
5637 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5638 ConstructKind = CXXConstructExpr::CK_Delegating;
5639 }
5640
5641 // Only get the parenthesis or brace range if it is a list initialization or
5642 // direct construction.
5643 SourceRange ParenOrBraceRange;
5644 if (IsListInitialization)
5645 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5646 else if (Kind.getKind() == InitializationKind::IK_Direct)
5647 ParenOrBraceRange = Kind.getParenRange();
5648
5649 // If the entity allows NRVO, mark the construction as elidable
5650 // unconditionally.
5651 if (Entity.allowsNRVO())
5652 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5653 Constructor, /*Elidable=*/true,
5654 ConstructorArgs,
5655 HadMultipleCandidates,
5656 IsListInitialization,
5657 IsStdInitListInitialization,
5658 ConstructorInitRequiresZeroInit,
5659 ConstructKind,
5660 ParenOrBraceRange);
5661 else
5662 CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5663 Constructor,
5664 ConstructorArgs,
5665 HadMultipleCandidates,
5666 IsListInitialization,
5667 IsStdInitListInitialization,
5668 ConstructorInitRequiresZeroInit,
5669 ConstructKind,
5670 ParenOrBraceRange);
5671 }
5672 if (CurInit.isInvalid())
5673 return ExprError();
5674
5675 // Only check access if all of that succeeded.
5676 S.CheckConstructorAccess(Loc, Constructor, Entity,
5677 Step.Function.FoundDecl.getAccess());
5678 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5679 return ExprError();
5680
5681 if (shouldBindAsTemporary(Entity))
5682 CurInit = S.MaybeBindToTemporary(CurInit.get());
5683
5684 return CurInit;
5685}
5686
5687/// Determine whether the specified InitializedEntity definitely has a lifetime
5688/// longer than the current full-expression. Conservatively returns false if
5689/// it's unclear.
5690static bool
5691InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5692 const InitializedEntity *Top = &Entity;
5693 while (Top->getParent())
5694 Top = Top->getParent();
5695
5696 switch (Top->getKind()) {
5697 case InitializedEntity::EK_Variable:
5698 case InitializedEntity::EK_Result:
5699 case InitializedEntity::EK_Exception:
5700 case InitializedEntity::EK_Member:
5701 case InitializedEntity::EK_New:
5702 case InitializedEntity::EK_Base:
5703 case InitializedEntity::EK_Delegating:
5704 return true;
5705
5706 case InitializedEntity::EK_ArrayElement:
5707 case InitializedEntity::EK_VectorElement:
5708 case InitializedEntity::EK_BlockElement:
5709 case InitializedEntity::EK_ComplexElement:
5710 // Could not determine what the full initialization is. Assume it might not
5711 // outlive the full-expression.
5712 return false;
5713
5714 case InitializedEntity::EK_Parameter:
5715 case InitializedEntity::EK_Parameter_CF_Audited:
5716 case InitializedEntity::EK_Temporary:
5717 case InitializedEntity::EK_LambdaCapture:
5718 case InitializedEntity::EK_CompoundLiteralInit:
5719 case InitializedEntity::EK_RelatedResult:
5720 // The entity being initialized might not outlive the full-expression.
5721 return false;
5722 }
5723
5724 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5724)
;
5725}
5726
5727/// Determine the declaration which an initialized entity ultimately refers to,
5728/// for the purpose of lifetime-extending a temporary bound to a reference in
5729/// the initialization of \p Entity.
5730static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
5731 const InitializedEntity *Entity,
5732 const InitializedEntity *FallbackDecl = nullptr) {
5733 // C++11 [class.temporary]p5:
5734 switch (Entity->getKind()) {
5735 case InitializedEntity::EK_Variable:
5736 // The temporary [...] persists for the lifetime of the reference
5737 return Entity;
5738
5739 case InitializedEntity::EK_Member:
5740 // For subobjects, we look at the complete object.
5741 if (Entity->getParent())
5742 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5743 Entity);
5744
5745 // except:
5746 // -- A temporary bound to a reference member in a constructor's
5747 // ctor-initializer persists until the constructor exits.
5748 return Entity;
5749
5750 case InitializedEntity::EK_Parameter:
5751 case InitializedEntity::EK_Parameter_CF_Audited:
5752 // -- A temporary bound to a reference parameter in a function call
5753 // persists until the completion of the full-expression containing
5754 // the call.
5755 case InitializedEntity::EK_Result:
5756 // -- The lifetime of a temporary bound to the returned value in a
5757 // function return statement is not extended; the temporary is
5758 // destroyed at the end of the full-expression in the return statement.
5759 case InitializedEntity::EK_New:
5760 // -- A temporary bound to a reference in a new-initializer persists
5761 // until the completion of the full-expression containing the
5762 // new-initializer.
5763 return nullptr;
5764
5765 case InitializedEntity::EK_Temporary:
5766 case InitializedEntity::EK_CompoundLiteralInit:
5767 case InitializedEntity::EK_RelatedResult:
5768 // We don't yet know the storage duration of the surrounding temporary.
5769 // Assume it's got full-expression duration for now, it will patch up our
5770 // storage duration if that's not correct.
5771 return nullptr;
5772
5773 case InitializedEntity::EK_ArrayElement:
5774 // For subobjects, we look at the complete object.
5775 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5776 FallbackDecl);
5777
5778 case InitializedEntity::EK_Base:
5779 case InitializedEntity::EK_Delegating:
5780 // We can reach this case for aggregate initialization in a constructor:
5781 // struct A { int &&r; };
5782 // struct B : A { B() : A{0} {} };
5783 // In this case, use the innermost field decl as the context.
5784 return FallbackDecl;
5785
5786 case InitializedEntity::EK_BlockElement:
5787 case InitializedEntity::EK_LambdaCapture:
5788 case InitializedEntity::EK_Exception:
5789 case InitializedEntity::EK_VectorElement:
5790 case InitializedEntity::EK_ComplexElement:
5791 return nullptr;
5792 }
5793 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5793)
;
5794}
5795
5796static void performLifetimeExtension(Expr *Init,
5797 const InitializedEntity *ExtendingEntity);
5798
5799/// Update a glvalue expression that is used as the initializer of a reference
5800/// to note that its lifetime is extended.
5801/// \return \c true if any temporary had its lifetime extended.
5802static bool
5803performReferenceExtension(Expr *Init,
5804 const InitializedEntity *ExtendingEntity) {
5805 // Walk past any constructs which we can lifetime-extend across.
5806 Expr *Old;
5807 do {
5808 Old = Init;
5809
5810 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5811 if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5812 // This is just redundant braces around an initializer. Step over it.
5813 Init = ILE->getInit(0);
5814 }
5815 }
5816
5817 // Step over any subobject adjustments; we may have a materialized
5818 // temporary inside them.
5819 SmallVector<const Expr *, 2> CommaLHSs;
5820 SmallVector<SubobjectAdjustment, 2> Adjustments;
5821 Init = const_cast<Expr *>(
5822 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5823
5824 // Per current approach for DR1376, look through casts to reference type
5825 // when performing lifetime extension.
5826 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5827 if (CE->getSubExpr()->isGLValue())
5828 Init = CE->getSubExpr();
5829
5830 // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5831 // It's unclear if binding a reference to that xvalue extends the array
5832 // temporary.
5833 } while (Init != Old);
5834
5835 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5836 // Update the storage duration of the materialized temporary.
5837 // FIXME: Rebuild the expression instead of mutating it.
5838 ME->setExtendingDecl(ExtendingEntity->getDecl(),
5839 ExtendingEntity->allocateManglingNumber());
5840 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
5841 return true;
5842 }
5843
5844 return false;
5845}
5846
5847/// Update a prvalue expression that is going to be materialized as a
5848/// lifetime-extended temporary.
5849static void performLifetimeExtension(Expr *Init,
5850 const InitializedEntity *ExtendingEntity) {
5851 // Dig out the expression which constructs the extended temporary.
5852 SmallVector<const Expr *, 2> CommaLHSs;
5853 SmallVector<SubobjectAdjustment, 2> Adjustments;
5854 Init = const_cast<Expr *>(
5855 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5856
5857 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5858 Init = BTE->getSubExpr();
5859
5860 if (CXXStdInitializerListExpr *ILE =
5861 dyn_cast<CXXStdInitializerListExpr>(Init)) {
5862 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
5863 return;
5864 }
5865
5866 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5867 if (ILE->getType()->isArrayType()) {
5868 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5869 performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
5870 return;
5871 }
5872
5873 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5874 assert(RD->isAggregate() && "aggregate init on non-aggregate")((RD->isAggregate() && "aggregate init on non-aggregate"
) ? static_cast<void> (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 5874, __PRETTY_FUNCTION__))
;
5875
5876 // If we lifetime-extend a braced initializer which is initializing an
5877 // aggregate, and that aggregate contains reference members which are
5878 // bound to temporaries, those temporaries are also lifetime-extended.
5879 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5880 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5881 performReferenceExtension(ILE->getInit(0), ExtendingEntity);
5882 else {
5883 unsigned Index = 0;
5884 for (const auto *I : RD->fields()) {
5885 if (Index >= ILE->getNumInits())
5886 break;
5887 if (I->isUnnamedBitfield())
5888 continue;
5889 Expr *SubInit = ILE->getInit(Index);
5890 if (I->getType()->isReferenceType())
5891 performReferenceExtension(SubInit, ExtendingEntity);
5892 else if (isa<InitListExpr>(SubInit) ||
5893 isa<CXXStdInitializerListExpr>(SubInit))
5894 // This may be either aggregate-initialization of a member or
5895 // initialization of a std::initializer_list object. Either way,
5896 // we should recursively lifetime-extend that initializer.
5897 performLifetimeExtension(SubInit, ExtendingEntity);
5898 ++Index;
5899 }
5900 }
5901 }
5902 }
5903}
5904
5905static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5906 const Expr *Init, bool IsInitializerList,
5907 const ValueDecl *ExtendingDecl) {
5908 // Warn if a field lifetime-extends a temporary.
5909 if (isa<FieldDecl>(ExtendingDecl)) {
5910 if (IsInitializerList) {
5911 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5912 << /*at end of constructor*/true;
5913 return;
5914 }
5915
5916 bool IsSubobjectMember = false;
5917 for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5918 Ent = Ent->getParent()) {
5919 if (Ent->getKind() != InitializedEntity::EK_Base) {
5920 IsSubobjectMember = true;
5921 break;
5922 }
5923 }
5924 S.Diag(Init->getExprLoc(),
5925 diag::warn_bind_ref_member_to_temporary)
5926 << ExtendingDecl << Init->getSourceRange()
5927 << IsSubobjectMember << IsInitializerList;
5928 if (IsSubobjectMember)
5929 S.Diag(ExtendingDecl->getLocation(),
5930 diag::note_ref_subobject_of_member_declared_here);
5931 else
5932 S.Diag(ExtendingDecl->getLocation(),
5933 diag::note_ref_or_ptr_member_declared_here)
5934 << /*is pointer*/false;
5935 }
5936}
5937
5938static void DiagnoseNarrowingInInitList(Sema &S,
5939 const ImplicitConversionSequence &ICS,
5940 QualType PreNarrowingType,
5941 QualType EntityType,
5942 const Expr *PostInit);
5943
5944/// Provide warnings when std::move is used on construction.
5945static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
5946 bool IsReturnStmt) {
5947 if (!InitExpr)
5948 return;
5949
5950 if (!S.ActiveTemplateInstantiations.empty())
5951 return;
5952
5953 QualType DestType = InitExpr->getType();
5954 if (!DestType->isRecordType())
5955 return;
5956
5957 unsigned DiagID = 0;
5958 if (IsReturnStmt) {
5959 const CXXConstructExpr *CCE =
5960 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
5961 if (!CCE || CCE->getNumArgs() != 1)
5962 return;
5963
5964 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
5965 return;
5966
5967 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
5968 }
5969
5970 // Find the std::move call and get the argument.
5971 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
5972 if (!CE || CE->getNumArgs() != 1)
5973 return;
5974
5975 const FunctionDecl *MoveFunction = CE->getDirectCallee();
5976 if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
5977 !MoveFunction->getIdentifier() ||
5978 !MoveFunction->getIdentifier()->isStr("move"))
5979 return;
5980
5981 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
5982
5983 if (IsReturnStmt) {
5984 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
5985 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
5986 return;
5987
5988 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
5989 if (!VD || !VD->hasLocalStorage())
5990 return;
5991
5992 QualType SourceType = VD->getType();
5993 if (!SourceType->isRecordType())
5994 return;
5995
5996 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
5997 return;
5998 }
5999
6000 // If we're returning a function parameter, copy elision
6001 // is not possible.
6002 if (isa<ParmVarDecl>(VD))
6003 DiagID = diag::warn_redundant_move_on_return;
6004 else
6005 DiagID = diag::warn_pessimizing_move_on_return;
6006 } else {
6007 DiagID = diag::warn_pessimizing_move_on_initialization;
6008 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6009 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6010 return;
6011 }
6012
6013 S.Diag(CE->getLocStart(), DiagID);
6014
6015 // Get all the locations for a fix-it. Don't emit the fix-it if any location
6016 // is within a macro.
6017 SourceLocation CallBegin = CE->getCallee()->getLocStart();
6018 if (CallBegin.isMacroID())
6019 return;
6020 SourceLocation RParen = CE->getRParenLoc();
6021 if (RParen.isMacroID())
6022 return;
6023 SourceLocation LParen;
6024 SourceLocation ArgLoc = Arg->getLocStart();
6025
6026 // Special testing for the argument location. Since the fix-it needs the
6027 // location right before the argument, the argument location can be in a
6028 // macro only if it is at the beginning of the macro.
6029 while (ArgLoc.isMacroID() &&
6030 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6031 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6032 }
6033
6034 if (LParen.isMacroID())
6035 return;
6036
6037 LParen = ArgLoc.getLocWithOffset(-1);
6038
6039 S.Diag(CE->getLocStart(), diag::note_remove_move)
6040 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6041 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6042}
6043
6044ExprResult
6045InitializationSequence::Perform(Sema &S,
6046 const InitializedEntity &Entity,
6047 const InitializationKind &Kind,
6048 MultiExprArg Args,
6049 QualType *ResultType) {
6050 if (Failed()) {
6051 Diagnose(S, Entity, Kind, Args);
6052 return ExprError();
6053 }
6054 if (!ZeroInitializationFixit.empty()) {
6055 unsigned DiagID = diag::err_default_init_const;
6056 if (Decl *D = Entity.getDecl())
6057 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6058 DiagID = diag::ext_default_init_const;
6059
6060 // The initialization would have succeeded with this fixit. Since the fixit
6061 // is on the error, we need to build a valid AST in this case, so this isn't
6062 // handled in the Failed() branch above.
6063 QualType DestType = Entity.getType();
6064 S.Diag(Kind.getLocation(), DiagID)
6065 << DestType << (bool)DestType->getAs<RecordType>()
6066 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6067 ZeroInitializationFixit);
6068 }
6069
6070 if (getKind() == DependentSequence) {
6071 // If the declaration is a non-dependent, incomplete array type
6072 // that has an initializer, then its type will be completed once
6073 // the initializer is instantiated.
6074 if (ResultType && !Entity.getType()->isDependentType() &&
6075 Args.size() == 1) {
6076 QualType DeclType = Entity.getType();
6077 if (const IncompleteArrayType *ArrayT
6078 = S.Context.getAsIncompleteArrayType(DeclType)) {
6079 // FIXME: We don't currently have the ability to accurately
6080 // compute the length of an initializer list without
6081 // performing full type-checking of the initializer list
6082 // (since we have to determine where braces are implicitly
6083 // introduced and such). So, we fall back to making the array
6084 // type a dependently-sized array type with no specified
6085 // bound.
6086 if (isa<InitListExpr>((Expr *)Args[0])) {
6087 SourceRange Brackets;
6088
6089 // Scavange the location of the brackets from the entity, if we can.
6090 if (DeclaratorDecl *DD = Entity.getDecl()) {
6091 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6092 TypeLoc TL = TInfo->getTypeLoc();
6093 if (IncompleteArrayTypeLoc ArrayLoc =
6094 TL.getAs<IncompleteArrayTypeLoc>())
6095 Brackets = ArrayLoc.getBracketsRange();
6096 }
6097 }
6098
6099 *ResultType
6100 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6101 /*NumElts=*/nullptr,
6102 ArrayT->getSizeModifier(),
6103 ArrayT->getIndexTypeCVRQualifiers(),
6104 Brackets);
6105 }
6106
6107 }
6108 }
6109 if (Kind.getKind() == InitializationKind::IK_Direct &&
6110 !Kind.isExplicitCast()) {
6111 // Rebuild the ParenListExpr.
6112 SourceRange ParenRange = Kind.getParenRange();
6113 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6114 Args);
6115 }
6116 assert(Kind.getKind() == InitializationKind::IK_Copy ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6118, __PRETTY_FUNCTION__))
6117 Kind.isExplicitCast() ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6118, __PRETTY_FUNCTION__))
6118 Kind.getKind() == InitializationKind::IK_DirectList)((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6118, __PRETTY_FUNCTION__))
;
6119 return ExprResult(Args[0]);
6120 }
6121
6122 // No steps means no initialization.
6123 if (Steps.empty())
6124 return ExprResult((Expr *)nullptr);
6125
6126 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6127 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6128 !Entity.isParameterKind()) {
6129 // Produce a C++98 compatibility warning if we are initializing a reference
6130 // from an initializer list. For parameters, we produce a better warning
6131 // elsewhere.
6132 Expr *Init = Args[0];
6133 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6134 << Init->getSourceRange();
6135 }
6136
6137 // Diagnose cases where we initialize a pointer to an array temporary, and the
6138 // pointer obviously outlives the temporary.
6139 if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6140 Entity.getType()->isPointerType() &&
6141 InitializedEntityOutlivesFullExpression(Entity)) {
6142 Expr *Init = Args[0];
6143 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6144 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6145 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6146 << Init->getSourceRange();
6147 }
6148
6149 QualType DestType = Entity.getType().getNonReferenceType();
6150 // FIXME: Ugly hack around the fact that Entity.getType() is not
6151 // the same as Entity.getDecl()->getType() in cases involving type merging,
6152 // and we want latter when it makes sense.
6153 if (ResultType)
6154 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6155 Entity.getType();
6156
6157 ExprResult CurInit((Expr *)nullptr);
6158
6159 // For initialization steps that start with a single initializer,
6160 // grab the only argument out the Args and place it into the "current"
6161 // initializer.
6162 switch (Steps.front().Kind) {
6163 case SK_ResolveAddressOfOverloadedFunction:
6164 case SK_CastDerivedToBaseRValue:
6165 case SK_CastDerivedToBaseXValue:
6166 case SK_CastDerivedToBaseLValue:
6167 case SK_BindReference:
6168 case SK_BindReferenceToTemporary:
6169 case SK_ExtraneousCopyToTemporary:
6170 case SK_UserConversion:
6171 case SK_QualificationConversionLValue:
6172 case SK_QualificationConversionXValue:
6173 case SK_QualificationConversionRValue:
6174 case SK_AtomicConversion:
6175 case SK_LValueToRValue:
6176 case SK_ConversionSequence:
6177 case SK_ConversionSequenceNoNarrowing:
6178 case SK_ListInitialization:
6179 case SK_UnwrapInitList:
6180 case SK_RewrapInitList:
6181 case SK_CAssignment:
6182 case SK_StringInit:
6183 case SK_ObjCObjectConversion:
6184 case SK_ArrayInit:
6185 case SK_ParenthesizedArrayInit:
6186 case SK_PassByIndirectCopyRestore:
6187 case SK_PassByIndirectRestore:
6188 case SK_ProduceObjCObject:
6189 case SK_StdInitializerList:
6190 case SK_OCLSamplerInit:
6191 case SK_OCLZeroEvent: {
6192 assert(Args.size() == 1)((Args.size() == 1) ? static_cast<void> (0) : __assert_fail
("Args.size() == 1", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6192, __PRETTY_FUNCTION__))
;
6193 CurInit = Args[0];
6194 if (!CurInit.get()) return ExprError();
6195 break;
6196 }
6197
6198 case SK_ConstructorInitialization:
6199 case SK_ConstructorInitializationFromList:
6200 case SK_StdInitializerListConstructorCall:
6201 case SK_ZeroInitialization:
6202 break;
6203 }
6204
6205 // Walk through the computed steps for the initialization sequence,
6206 // performing the specified conversions along the way.
6207 bool ConstructorInitRequiresZeroInit = false;
6208 for (step_iterator Step = step_begin(), StepEnd = step_end();
6209 Step != StepEnd; ++Step) {
6210 if (CurInit.isInvalid())
6211 return ExprError();
6212
6213 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6214
6215 switch (Step->Kind) {
6216 case SK_ResolveAddressOfOverloadedFunction:
6217 // Overload resolution determined which function invoke; update the
6218 // initializer to reflect that choice.
6219 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6220 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6221 return ExprError();
6222 CurInit = S.FixOverloadedFunctionReference(CurInit,
6223 Step->Function.FoundDecl,
6224 Step->Function.Function);
6225 break;
6226
6227 case SK_CastDerivedToBaseRValue:
6228 case SK_CastDerivedToBaseXValue:
6229 case SK_CastDerivedToBaseLValue: {
6230 // We have a derived-to-base cast that produces either an rvalue or an
6231 // lvalue. Perform that cast.
6232
6233 CXXCastPath BasePath;
6234
6235 // Casts to inaccessible base classes are allowed with C-style casts.
6236 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6237 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6238 CurInit.get()->getLocStart(),
6239 CurInit.get()->getSourceRange(),
6240 &BasePath, IgnoreBaseAccess))
6241 return ExprError();
6242
6243 ExprValueKind VK =
6244 Step->Kind == SK_CastDerivedToBaseLValue ?
6245 VK_LValue :
6246 (Step->Kind == SK_CastDerivedToBaseXValue ?
6247 VK_XValue :
6248 VK_RValue);
6249 CurInit =
6250 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6251 CurInit.get(), &BasePath, VK);
6252 break;
6253 }
6254
6255 case SK_BindReference:
6256 // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
6257 if (CurInit.get()->refersToBitField()) {
6258 // We don't necessarily have an unambiguous source bit-field.
6259 FieldDecl *BitField = CurInit.get()->getSourceBitField();
6260 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
6261 << Entity.getType().isVolatileQualified()
6262 << (BitField ? BitField->getDeclName() : DeclarationName())
6263 << (BitField != nullptr)
6264 << CurInit.get()->getSourceRange();
6265 if (BitField)
6266 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
6267
6268 return ExprError();
6269 }
6270
6271 if (CurInit.get()->refersToVectorElement()) {
6272 // References cannot bind to vector elements.
6273 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
6274 << Entity.getType().isVolatileQualified()
6275 << CurInit.get()->getSourceRange();
6276 PrintInitLocationNote(S, Entity);
6277 return ExprError();
6278 }
6279
6280 // Reference binding does not have any corresponding ASTs.
6281
6282 // Check exception specifications
6283 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6284 return ExprError();
6285
6286 // Even though we didn't materialize a temporary, the binding may still
6287 // extend the lifetime of a temporary. This happens if we bind a reference
6288 // to the result of a cast to reference type.
6289 if (const InitializedEntity *ExtendingEntity =
6290 getEntityForTemporaryLifetimeExtension(&Entity))
6291 if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6292 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6293 /*IsInitializerList=*/false,
6294 ExtendingEntity->getDecl());
6295
6296 break;
6297
6298 case SK_BindReferenceToTemporary: {
6299 // Make sure the "temporary" is actually an rvalue.
6300 assert(CurInit.get()->isRValue() && "not a temporary")((CurInit.get()->isRValue() && "not a temporary") ?
static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"not a temporary\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6300, __PRETTY_FUNCTION__))
;
6301
6302 // Check exception specifications
6303 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6304 return ExprError();
6305
6306 // Materialize the temporary into memory.
6307 MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
6308 Entity.getType().getNonReferenceType(), CurInit.get(),
6309 Entity.getType()->isLValueReferenceType());
6310
6311 // Maybe lifetime-extend the temporary's subobjects to match the
6312 // entity's lifetime.
6313 if (const InitializedEntity *ExtendingEntity =
6314 getEntityForTemporaryLifetimeExtension(&Entity))
6315 if (performReferenceExtension(MTE, ExtendingEntity))
6316 warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
6317 ExtendingEntity->getDecl());
6318
6319 // If we're binding to an Objective-C object that has lifetime, we
6320 // need cleanups. Likewise if we're extending this temporary to automatic
6321 // storage duration -- we need to register its cleanup during the
6322 // full-expression's cleanups.
6323 if ((S.getLangOpts().ObjCAutoRefCount &&
6324 MTE->getType()->isObjCLifetimeType()) ||
6325 (MTE->getStorageDuration() == SD_Automatic &&
6326 MTE->getType().isDestructedType()))
6327 S.ExprNeedsCleanups = true;
6328
6329 CurInit = MTE;
6330 break;
6331 }
6332
6333 case SK_ExtraneousCopyToTemporary:
6334 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6335 /*IsExtraneousCopy=*/true);
6336 break;
6337
6338 case SK_UserConversion: {
6339 // We have a user-defined conversion that invokes either a constructor
6340 // or a conversion function.
6341 CastKind CastKind;
6342 bool IsCopy = false;
6343 FunctionDecl *Fn = Step->Function.Function;
6344 DeclAccessPair FoundFn = Step->Function.FoundDecl;
6345 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6346 bool CreatedObject = false;
6347 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6348 // Build a call to the selected constructor.
6349 SmallVector<Expr*, 8> ConstructorArgs;
6350 SourceLocation Loc = CurInit.get()->getLocStart();
6351 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6352
6353 // Determine the arguments required to actually perform the constructor
6354 // call.
6355 Expr *Arg = CurInit.get();
6356 if (S.CompleteConstructorCall(Constructor,
6357 MultiExprArg(&Arg, 1),
6358 Loc, ConstructorArgs))
6359 return ExprError();
6360
6361 // Build an expression that constructs a temporary.
6362 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
6363 ConstructorArgs,
6364 HadMultipleCandidates,
6365 /*ListInit*/ false,
6366 /*StdInitListInit*/ false,
6367 /*ZeroInit*/ false,
6368 CXXConstructExpr::CK_Complete,
6369 SourceRange());
6370 if (CurInit.isInvalid())
6371 return ExprError();
6372
6373 S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
6374 FoundFn.getAccess());
6375 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6376 return ExprError();
6377
6378 CastKind = CK_ConstructorConversion;
6379 QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
6380 if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
6381 S.IsDerivedFrom(SourceType, Class))
6382 IsCopy = true;
6383
6384 CreatedObject = true;
6385 } else {
6386 // Build a call to the conversion function.
6387 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6388 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6389 FoundFn);
6390 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6391 return ExprError();
6392
6393 // FIXME: Should we move this initialization into a separate
6394 // derived-to-base conversion? I believe the answer is "no", because
6395 // we don't want to turn off access control here for c-style casts.
6396 ExprResult CurInitExprRes =
6397 S.PerformObjectArgumentInitialization(CurInit.get(),
6398 /*Qualifier=*/nullptr,
6399 FoundFn, Conversion);
6400 if(CurInitExprRes.isInvalid())
6401 return ExprError();
6402 CurInit = CurInitExprRes;
6403
6404 // Build the actual call to the conversion function.
6405 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6406 HadMultipleCandidates);
6407 if (CurInit.isInvalid() || !CurInit.get())
6408 return ExprError();
6409
6410 CastKind = CK_UserDefinedConversion;
6411
6412 CreatedObject = Conversion->getReturnType()->isRecordType();
6413 }
6414
6415 bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
6416 bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
6417
6418 if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
6419 QualType T = CurInit.get()->getType();
6420 if (const RecordType *Record = T->getAs<RecordType>()) {
6421 CXXDestructorDecl *Destructor
6422 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6423 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6424 S.PDiag(diag::err_access_dtor_temp) << T);
6425 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6426 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6427 return ExprError();
6428 }
6429 }
6430
6431 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6432 CastKind, CurInit.get(), nullptr,
6433 CurInit.get()->getValueKind());
6434 if (MaybeBindToTemp)
6435 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6436 if (RequiresCopy)
6437 CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
6438 CurInit, /*IsExtraneousCopy=*/false);
6439 break;
6440 }
6441
6442 case SK_QualificationConversionLValue:
6443 case SK_QualificationConversionXValue:
6444 case SK_QualificationConversionRValue: {
6445 // Perform a qualification conversion; these can never go wrong.
6446 ExprValueKind VK =
6447 Step->Kind == SK_QualificationConversionLValue ?
6448 VK_LValue :
6449 (Step->Kind == SK_QualificationConversionXValue ?
6450 VK_XValue :
6451 VK_RValue);
6452 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6453 break;
6454 }
6455
6456 case SK_AtomicConversion: {
6457 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic")((CurInit.get()->isRValue() && "cannot convert glvalue to atomic"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"cannot convert glvalue to atomic\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6457, __PRETTY_FUNCTION__))
;
6458 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6459 CK_NonAtomicToAtomic, VK_RValue);
6460 break;
6461 }
6462
6463 case SK_LValueToRValue: {
6464 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue")((CurInit.get()->isGLValue() && "cannot load from a prvalue"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isGLValue() && \"cannot load from a prvalue\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6464, __PRETTY_FUNCTION__))
;
6465 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6466 CK_LValueToRValue, CurInit.get(),
6467 /*BasePath=*/nullptr, VK_RValue);
6468 break;
6469 }
6470
6471 case SK_ConversionSequence:
6472 case SK_ConversionSequenceNoNarrowing: {
6473 Sema::CheckedConversionKind CCK
6474 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6475 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6476 : Kind.isExplicitCast()? Sema::CCK_OtherCast
6477 : Sema::CCK_ImplicitConversion;
6478 ExprResult CurInitExprRes =
6479 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6480 getAssignmentAction(Entity), CCK);
6481 if (CurInitExprRes.isInvalid())
6482 return ExprError();
6483 CurInit = CurInitExprRes;
6484
6485 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6486 S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
6487 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6488 CurInit.get());
6489 break;
6490 }
6491
6492 case SK_ListInitialization: {
6493 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6494 // If we're not initializing the top-level entity, we need to create an
6495 // InitializeTemporary entity for our target type.
6496 QualType Ty = Step->Type;
6497 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6498 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6499 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6500 InitListChecker PerformInitList(S, InitEntity,
6501 InitList, Ty, /*VerifyOnly=*/false);
6502 if (PerformInitList.HadError())
6503 return ExprError();
6504
6505 // Hack: We must update *ResultType if available in order to set the
6506 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6507 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6508 if (ResultType &&
6509 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6510 if ((*ResultType)->isRValueReferenceType())
6511 Ty = S.Context.getRValueReferenceType(Ty);
6512 else if ((*ResultType)->isLValueReferenceType())
6513 Ty = S.Context.getLValueReferenceType(Ty,
6514 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6515 *ResultType = Ty;
6516 }
6517
6518 InitListExpr *StructuredInitList =
6519 PerformInitList.getFullyStructuredList();
6520 CurInit.get();
6521 CurInit = shouldBindAsTemporary(InitEntity)
6522 ? S.MaybeBindToTemporary(StructuredInitList)
6523 : StructuredInitList;
6524 break;
6525 }
6526
6527 case SK_ConstructorInitializationFromList: {
6528 // When an initializer list is passed for a parameter of type "reference
6529 // to object", we don't get an EK_Temporary entity, but instead an
6530 // EK_Parameter entity with reference type.
6531 // FIXME: This is a hack. What we really should do is create a user
6532 // conversion step for this case, but this makes it considerably more
6533 // complicated. For now, this will do.
6534 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6535 Entity.getType().getNonReferenceType());
6536 bool UseTemporary = Entity.getType()->isReferenceType();
6537 assert(Args.size() == 1 && "expected a single argument for list init")((Args.size() == 1 && "expected a single argument for list init"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6537, __PRETTY_FUNCTION__))
;
6538 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6539 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6540 << InitList->getSourceRange();
6541 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6542 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6543 Entity,
6544 Kind, Arg, *Step,
6545 ConstructorInitRequiresZeroInit,
6546 /*IsListInitialization*/true,
6547 /*IsStdInitListInit*/false,
6548 InitList->getLBraceLoc(),
6549 InitList->getRBraceLoc());
6550 break;
6551 }
6552
6553 case SK_UnwrapInitList:
6554 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6555 break;
6556
6557 case SK_RewrapInitList: {
6558 Expr *E = CurInit.get();
6559 InitListExpr *Syntactic = Step->WrappingSyntacticList;
6560 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6561 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6562 ILE->setSyntacticForm(Syntactic);
6563 ILE->setType(E->getType());
6564 ILE->setValueKind(E->getValueKind());
6565 CurInit = ILE;
6566 break;
6567 }
6568
6569 case SK_ConstructorInitialization:
6570 case SK_StdInitializerListConstructorCall: {
6571 // When an initializer list is passed for a parameter of type "reference
6572 // to object", we don't get an EK_Temporary entity, but instead an
6573 // EK_Parameter entity with reference type.
6574 // FIXME: This is a hack. What we really should do is create a user
6575 // conversion step for this case, but this makes it considerably more
6576 // complicated. For now, this will do.
6577 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6578 Entity.getType().getNonReferenceType());
6579 bool UseTemporary = Entity.getType()->isReferenceType();
6580 bool IsStdInitListInit =
6581 Step->Kind == SK_StdInitializerListConstructorCall;
6582 CurInit = PerformConstructorInitialization(
6583 S, UseTemporary ? TempEntity : Entity, Kind, Args, *Step,
6584 ConstructorInitRequiresZeroInit,
6585 /*IsListInitialization*/IsStdInitListInit,
6586 /*IsStdInitListInitialization*/IsStdInitListInit,
6587 /*LBraceLoc*/SourceLocation(),
6588 /*RBraceLoc*/SourceLocation());
6589 break;
6590 }
6591
6592 case SK_ZeroInitialization: {
6593 step_iterator NextStep = Step;
6594 ++NextStep;
6595 if (NextStep != StepEnd &&
6596 (NextStep->Kind == SK_ConstructorInitialization ||
6597 NextStep->Kind == SK_ConstructorInitializationFromList)) {
6598 // The need for zero-initialization is recorded directly into
6599 // the call to the object's constructor within the next step.
6600 ConstructorInitRequiresZeroInit = true;
6601 } else if (Kind.getKind() == InitializationKind::IK_Value &&
6602 S.getLangOpts().CPlusPlus &&
6603 !Kind.isImplicitValueInit()) {
6604 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6605 if (!TSInfo)
6606 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6607 Kind.getRange().getBegin());
6608
6609 CurInit = new (S.Context) CXXScalarValueInitExpr(
6610 TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6611 Kind.getRange().getEnd());
6612 } else {
6613 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6614 }
6615 break;
6616 }
6617
6618 case SK_CAssignment: {
6619 QualType SourceType = CurInit.get()->getType();
6620 // Save off the initial CurInit in case we need to emit a diagnostic
6621 ExprResult InitialCurInit = CurInit;
6622 ExprResult Result = CurInit;
6623 Sema::AssignConvertType ConvTy =
6624 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6625 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6626 if (Result.isInvalid())
6627 return ExprError();
6628 CurInit = Result;
6629
6630 // If this is a call, allow conversion to a transparent union.
6631 ExprResult CurInitExprRes = CurInit;
6632 if (ConvTy != Sema::Compatible &&
6633 Entity.isParameterKind() &&
6634 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6635 == Sema::Compatible)
6636 ConvTy = Sema::Compatible;
6637 if (CurInitExprRes.isInvalid())
6638 return ExprError();
6639 CurInit = CurInitExprRes;
6640
6641 bool Complained;
6642 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6643 Step->Type, SourceType,
6644 InitialCurInit.get(),
6645 getAssignmentAction(Entity, true),
6646 &Complained)) {
6647 PrintInitLocationNote(S, Entity);
6648 return ExprError();
6649 } else if (Complained)
6650 PrintInitLocationNote(S, Entity);
6651 break;
6652 }
6653
6654 case SK_StringInit: {
6655 QualType Ty = Step->Type;
6656 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6657 S.Context.getAsArrayType(Ty), S);
6658 break;
6659 }
6660
6661 case SK_ObjCObjectConversion:
6662 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6663 CK_ObjCObjectLValueCast,
6664 CurInit.get()->getValueKind());
6665 break;
6666
6667 case SK_ArrayInit:
6668 // Okay: we checked everything before creating this step. Note that
6669 // this is a GNU extension.
6670 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6671 << Step->Type << CurInit.get()->getType()
6672 << CurInit.get()->getSourceRange();
6673
6674 // If the destination type is an incomplete array type, update the
6675 // type accordingly.
6676 if (ResultType) {
6677 if (const IncompleteArrayType *IncompleteDest
6678 = S.Context.getAsIncompleteArrayType(Step->Type)) {
6679 if (const ConstantArrayType *ConstantSource
6680 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6681 *ResultType = S.Context.getConstantArrayType(
6682 IncompleteDest->getElementType(),
6683 ConstantSource->getSize(),
6684 ArrayType::Normal, 0);
6685 }
6686 }
6687 }
6688 break;
6689
6690 case SK_ParenthesizedArrayInit:
6691 // Okay: we checked everything before creating this step. Note that
6692 // this is a GNU extension.
6693 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6694 << CurInit.get()->getSourceRange();
6695 break;
6696
6697 case SK_PassByIndirectCopyRestore:
6698 case SK_PassByIndirectRestore:
6699 checkIndirectCopyRestoreSource(S, CurInit.get());
6700 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
6701 CurInit.get(), Step->Type,
6702 Step->Kind == SK_PassByIndirectCopyRestore);
6703 break;
6704
6705 case SK_ProduceObjCObject:
6706 CurInit =
6707 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
6708 CurInit.get(), nullptr, VK_RValue);
6709 break;
6710
6711 case SK_StdInitializerList: {
6712 S.Diag(CurInit.get()->getExprLoc(),
6713 diag::warn_cxx98_compat_initializer_list_init)
6714 << CurInit.get()->getSourceRange();
6715
6716 // Materialize the temporary into memory.
6717 MaterializeTemporaryExpr *MTE = new (S.Context)
6718 MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6719 /*BoundToLvalueReference=*/false);
6720
6721 // Maybe lifetime-extend the array temporary's subobjects to match the
6722 // entity's lifetime.
6723 if (const InitializedEntity *ExtendingEntity =
6724 getEntityForTemporaryLifetimeExtension(&Entity))
6725 if (performReferenceExtension(MTE, ExtendingEntity))
6726 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6727 /*IsInitializerList=*/true,
6728 ExtendingEntity->getDecl());
6729
6730 // Wrap it in a construction of a std::initializer_list<T>.
6731 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
6732
6733 // Bind the result, in case the library has given initializer_list a
6734 // non-trivial destructor.
6735 if (shouldBindAsTemporary(Entity))
6736 CurInit = S.MaybeBindToTemporary(CurInit.get());
6737 break;
6738 }
6739
6740 case SK_OCLSamplerInit: {
6741 assert(Step->Type->isSamplerT() &&((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6742, __PRETTY_FUNCTION__))
6742 "Sampler initialization on non-sampler type.")((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6742, __PRETTY_FUNCTION__))
;
6743
6744 QualType SourceType = CurInit.get()->getType();
6745
6746 if (Entity.isParameterKind()) {
6747 if (!SourceType->isSamplerT())
6748 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6749 << SourceType;
6750 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6751 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6751)
;
6752 }
6753
6754 break;
6755 }
6756 case SK_OCLZeroEvent: {
6757 assert(Step->Type->isEventT() &&((Step->Type->isEventT() && "Event initialization on non-event type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6758, __PRETTY_FUNCTION__))
6758 "Event initialization on non-event type.")((Step->Type->isEventT() && "Event initialization on non-event type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6758, __PRETTY_FUNCTION__))
;
6759
6760 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6761 CK_ZeroToOCLEvent,
6762 CurInit.get()->getValueKind());
6763 break;
6764 }
6765 }
6766 }
6767
6768 // Diagnose non-fatal problems with the completed initialization.
6769 if (Entity.getKind() == InitializedEntity::EK_Member &&
6770 cast<FieldDecl>(Entity.getDecl())->isBitField())
6771 S.CheckBitFieldInitialization(Kind.getLocation(),
6772 cast<FieldDecl>(Entity.getDecl()),
6773 CurInit.get());
6774
6775 // Check for std::move on construction.
6776 if (const Expr *E = CurInit.get()) {
6777 CheckMoveOnConstruction(S, E,
6778 Entity.getKind() == InitializedEntity::EK_Result);
6779 }
6780
6781 return CurInit;
6782}
6783
6784/// Somewhere within T there is an uninitialized reference subobject.
6785/// Dig it out and diagnose it.
6786static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6787 QualType T) {
6788 if (T->isReferenceType()) {
6789 S.Diag(Loc, diag::err_reference_without_init)
6790 << T.getNonReferenceType();
6791 return true;
6792 }
6793
6794 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6795 if (!RD || !RD->hasUninitializedReferenceMember())
6796 return false;
6797
6798 for (const auto *FI : RD->fields()) {
6799 if (FI->isUnnamedBitfield())
6800 continue;
6801
6802 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6803 S.Diag(Loc, diag::note_value_initialization_here) << RD;
6804 return true;
6805 }
6806 }
6807
6808 for (const auto &BI : RD->bases()) {
6809 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
6810 S.Diag(Loc, diag::note_value_initialization_here) << RD;
6811 return true;
6812 }
6813 }
6814
6815 return false;
6816}
6817
6818
6819//===----------------------------------------------------------------------===//
6820// Diagnose initialization failures
6821//===----------------------------------------------------------------------===//
6822
6823/// Emit notes associated with an initialization that failed due to a
6824/// "simple" conversion failure.
6825static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6826 Expr *op) {
6827 QualType destType = entity.getType();
6828 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6829 op->getType()->isObjCObjectPointerType()) {
6830
6831 // Emit a possible note about the conversion failing because the
6832 // operand is a message send with a related result type.
6833 S.EmitRelatedResultTypeNote(op);
6834
6835 // Emit a possible note about a return failing because we're
6836 // expecting a related result type.
6837 if (entity.getKind() == InitializedEntity::EK_Result)
6838 S.EmitRelatedResultTypeNoteForReturn(destType);
6839 }
6840}
6841
6842static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6843 InitListExpr *InitList) {
6844 QualType DestType = Entity.getType();
6845
6846 QualType E;
6847 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6848 QualType ArrayType = S.Context.getConstantArrayType(
6849 E.withConst(),
6850 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6851 InitList->getNumInits()),
6852 clang::ArrayType::Normal, 0);
6853 InitializedEntity HiddenArray =
6854 InitializedEntity::InitializeTemporary(ArrayType);
6855 return diagnoseListInit(S, HiddenArray, InitList);
6856 }
6857
6858 if (DestType->isReferenceType()) {
6859 // A list-initialization failure for a reference means that we tried to
6860 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
6861 // inner initialization failed.
6862 QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
6863 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
6864 SourceLocation Loc = InitList->getLocStart();
6865 if (auto *D = Entity.getDecl())
6866 Loc = D->getLocation();
6867 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
6868 return;
6869 }
6870
6871 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6872 /*VerifyOnly=*/false);
6873 assert(DiagnoseInitList.HadError() &&((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6874, __PRETTY_FUNCTION__))
6874 "Inconsistent init list check result.")((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6874, __PRETTY_FUNCTION__))
;
6875}
6876
6877bool InitializationSequence::Diagnose(Sema &S,
6878 const InitializedEntity &Entity,
6879 const InitializationKind &Kind,
6880 ArrayRef<Expr *> Args) {
6881 if (!Failed())
6882 return false;
6883
6884 QualType DestType = Entity.getType();
6885 switch (Failure) {
6886 case FK_TooManyInitsForReference:
6887 // FIXME: Customize for the initialized entity?
6888 if (Args.empty()) {
6889 // Dig out the reference subobject which is uninitialized and diagnose it.
6890 // If this is value-initialization, this could be nested some way within
6891 // the target type.
6892 assert(Kind.getKind() == InitializationKind::IK_Value ||((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6893, __PRETTY_FUNCTION__))
6893 DestType->isReferenceType())((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6893, __PRETTY_FUNCTION__))
;
6894 bool Diagnosed =
6895 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6896 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")((Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6896, __PRETTY_FUNCTION__))
;
6897 (void)Diagnosed;
6898 } else // FIXME: diagnostic below could be better!
6899 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6900 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6901 break;
6902
6903 case FK_ArrayNeedsInitList:
6904 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6905 break;
6906 case FK_ArrayNeedsInitListOrStringLiteral:
6907 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6908 break;
6909 case FK_ArrayNeedsInitListOrWideStringLiteral:
6910 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6911 break;
6912 case FK_NarrowStringIntoWideCharArray:
6913 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6914 break;
6915 case FK_WideStringIntoCharArray:
6916 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6917 break;
6918 case FK_IncompatWideStringIntoWideChar:
6919 S.Diag(Kind.getLocation(),
6920 diag::err_array_init_incompat_wide_string_into_wchar);
6921 break;
6922 case FK_ArrayTypeMismatch:
6923 case FK_NonConstantArrayInit:
6924 S.Diag(Kind.getLocation(),
6925 (Failure == FK_ArrayTypeMismatch
6926 ? diag::err_array_init_different_type
6927 : diag::err_array_init_non_constant_array))
6928 << DestType.getNonReferenceType()
6929 << Args[0]->getType()
6930 << Args[0]->getSourceRange();
6931 break;
6932
6933 case FK_VariableLengthArrayHasInitializer:
6934 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6935 << Args[0]->getSourceRange();
6936 break;
6937
6938 case FK_AddressOfOverloadFailed: {
6939 DeclAccessPair Found;
6940 S.ResolveAddressOfOverloadedFunction(Args[0],
6941 DestType.getNonReferenceType(),
6942 true,
6943 Found);
6944 break;
6945 }
6946
6947 case FK_AddressOfUnaddressableFunction: {
6948 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
6949 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
6950 Args[0]->getLocStart());
6951 break;
6952 }
6953
6954 case FK_ReferenceInitOverloadFailed:
6955 case FK_UserConversionOverloadFailed:
6956 switch (FailedOverloadResult) {
6957 case OR_Ambiguous:
6958 if (Failure == FK_UserConversionOverloadFailed)
6959 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6960 << Args[0]->getType() << DestType
6961 << Args[0]->getSourceRange();
6962 else
6963 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6964 << DestType << Args[0]->getType()
6965 << Args[0]->getSourceRange();
6966
6967 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6968 break;
6969
6970 case OR_No_Viable_Function:
6971 if (!S.RequireCompleteType(Kind.getLocation(),
6972 DestType.getNonReferenceType(),
6973 diag::err_typecheck_nonviable_condition_incomplete,
6974 Args[0]->getType(), Args[0]->getSourceRange()))
6975 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6976 << (Entity.getKind() == InitializedEntity::EK_Result)
6977 << Args[0]->getType() << Args[0]->getSourceRange()
6978 << DestType.getNonReferenceType();
6979
6980 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6981 break;
6982
6983 case OR_Deleted: {
6984 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6985 << Args[0]->getType() << DestType.getNonReferenceType()
6986 << Args[0]->getSourceRange();
6987 OverloadCandidateSet::iterator Best;
6988 OverloadingResult Ovl
6989 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6990 true);
6991 if (Ovl == OR_Deleted) {
6992 S.NoteDeletedFunction(Best->Function);
6993 } else {
6994 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 6994)
;
6995 }
6996 break;
6997 }
6998
6999 case OR_Success:
7000 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7000)
;
7001 }
7002 break;
7003
7004 case FK_NonConstLValueReferenceBindingToTemporary:
7005 if (isa<InitListExpr>(Args[0])) {
7006 S.Diag(Kind.getLocation(),
7007 diag::err_lvalue_reference_bind_to_initlist)
7008 << DestType.getNonReferenceType().isVolatileQualified()
7009 << DestType.getNonReferenceType()
7010 << Args[0]->getSourceRange();
7011 break;
7012 }
7013 // Intentional fallthrough
7014
7015 case FK_NonConstLValueReferenceBindingToUnrelated:
7016 S.Diag(Kind.getLocation(),
7017 Failure == FK_NonConstLValueReferenceBindingToTemporary
7018 ? diag::err_lvalue_reference_bind_to_temporary
7019 : diag::err_lvalue_reference_bind_to_unrelated)
7020 << DestType.getNonReferenceType().isVolatileQualified()
7021 << DestType.getNonReferenceType()
7022 << Args[0]->getType()
7023 << Args[0]->getSourceRange();
7024 break;
7025
7026 case FK_RValueReferenceBindingToLValue:
7027 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7028 << DestType.getNonReferenceType() << Args[0]->getType()
7029 << Args[0]->getSourceRange();
7030 break;
7031
7032 case FK_ReferenceInitDropsQualifiers: {
7033 QualType SourceType = Args[0]->getType();
7034 QualType NonRefType = DestType.getNonReferenceType();
7035 Qualifiers DroppedQualifiers =
7036 SourceType.getQualifiers() - NonRefType.getQualifiers();
7037
7038 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7039 << SourceType
7040 << NonRefType
7041 << DroppedQualifiers.getCVRQualifiers()
7042 << Args[0]->getSourceRange();
7043 break;
7044 }
7045
7046 case FK_ReferenceInitFailed:
7047 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7048 << DestType.getNonReferenceType()
7049 << Args[0]->isLValue()
7050 << Args[0]->getType()
7051 << Args[0]->getSourceRange();
7052 emitBadConversionNotes(S, Entity, Args[0]);
7053 break;
7054
7055 case FK_ConversionFailed: {
7056 QualType FromType = Args[0]->getType();
7057 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7058 << (int)Entity.getKind()
7059 << DestType
7060 << Args[0]->isLValue()
7061 << FromType
7062 << Args[0]->getSourceRange();
7063 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7064 S.Diag(Kind.getLocation(), PDiag);
7065 emitBadConversionNotes(S, Entity, Args[0]);
7066 break;
7067 }
7068
7069 case FK_ConversionFromPropertyFailed:
7070 // No-op. This error has already been reported.
7071 break;
7072
7073 case FK_TooManyInitsForScalar: {
7074 SourceRange R;
7075
7076 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7077 if (InitList && InitList->getNumInits() >= 1) {
7078 R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7079 } else {
7080 assert(Args.size() > 1 && "Expected multiple initializers!")((Args.size() > 1 && "Expected multiple initializers!"
) ? static_cast<void> (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7080, __PRETTY_FUNCTION__))
;
7081 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7082 }
7083
7084 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7085 if (Kind.isCStyleOrFunctionalCast())
7086 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7087 << R;
7088 else
7089 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7090 << /*scalar=*/2 << R;
7091 break;
7092 }
7093
7094 case FK_ReferenceBindingToInitList:
7095 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7096 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7097 break;
7098
7099 case FK_InitListBadDestinationType:
7100 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7101 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7102 break;
7103
7104 case FK_ListConstructorOverloadFailed:
7105 case FK_ConstructorOverloadFailed: {
7106 SourceRange ArgsRange;
7107 if (Args.size())
7108 ArgsRange = SourceRange(Args.front()->getLocStart(),
7109 Args.back()->getLocEnd());
7110
7111 if (Failure == FK_ListConstructorOverloadFailed) {
7112 assert(Args.size() == 1 &&((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7113, __PRETTY_FUNCTION__))
7113 "List construction from other than 1 argument.")((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7113, __PRETTY_FUNCTION__))
;
7114 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7115 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7116 }
7117
7118 // FIXME: Using "DestType" for the entity we're printing is probably
7119 // bad.
7120 switch (FailedOverloadResult) {
7121 case OR_Ambiguous:
7122 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7123 << DestType << ArgsRange;
7124 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7125 break;
7126
7127 case OR_No_Viable_Function:
7128 if (Kind.getKind() == InitializationKind::IK_Default &&
7129 (Entity.getKind() == InitializedEntity::EK_Base ||
7130 Entity.getKind() == InitializedEntity::EK_Member) &&
7131 isa<CXXConstructorDecl>(S.CurContext)) {
7132 // This is implicit default initialization of a member or
7133 // base within a constructor. If no viable function was
7134 // found, notify the user that she needs to explicitly
7135 // initialize this base/member.
7136 CXXConstructorDecl *Constructor
7137 = cast<CXXConstructorDecl>(S.CurContext);
7138 if (Entity.getKind() == InitializedEntity::EK_Base) {
7139 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7140 << (Constructor->getInheritedConstructor() ? 2 :
7141 Constructor->isImplicit() ? 1 : 0)
7142 << S.Context.getTypeDeclType(Constructor->getParent())
7143 << /*base=*/0
7144 << Entity.getType();
7145
7146 RecordDecl *BaseDecl
7147 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7148 ->getDecl();
7149 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7150 << S.Context.getTagDeclType(BaseDecl);
7151 } else {
7152 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7153 << (Constructor->getInheritedConstructor() ? 2 :
7154 Constructor->isImplicit() ? 1 : 0)
7155 << S.Context.getTypeDeclType(Constructor->getParent())
7156 << /*member=*/1
7157 << Entity.getName();
7158 S.Diag(Entity.getDecl()->getLocation(),
7159 diag::note_member_declared_at);
7160
7161 if (const RecordType *Record
7162 = Entity.getType()->getAs<RecordType>())
7163 S.Diag(Record->getDecl()->getLocation(),
7164 diag::note_previous_decl)
7165 << S.Context.getTagDeclType(Record->getDecl());
7166 }
7167 break;
7168 }
7169
7170 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7171 << DestType << ArgsRange;
7172 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7173 break;
7174
7175 case OR_Deleted: {
7176 OverloadCandidateSet::iterator Best;
7177 OverloadingResult Ovl
7178 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7179 if (Ovl != OR_Deleted) {
7180 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7181 << true << DestType << ArgsRange;
7182 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7182)
;
7183 break;
7184 }
7185
7186 // If this is a defaulted or implicitly-declared function, then
7187 // it was implicitly deleted. Make it clear that the deletion was
7188 // implicit.
7189 if (S.isImplicitlyDeleted(Best->Function))
7190 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7191 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7192 << DestType << ArgsRange;
7193 else
7194 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7195 << true << DestType << ArgsRange;
7196
7197 S.NoteDeletedFunction(Best->Function);
7198 break;
7199 }
7200
7201 case OR_Success:
7202 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7202)
;
7203 }
7204 }
7205 break;
7206
7207 case FK_DefaultInitOfConst:
7208 if (Entity.getKind() == InitializedEntity::EK_Member &&
7209 isa<CXXConstructorDecl>(S.CurContext)) {
7210 // This is implicit default-initialization of a const member in
7211 // a constructor. Complain that it needs to be explicitly
7212 // initialized.
7213 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7214 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7215 << (Constructor->getInheritedConstructor() ? 2 :
7216 Constructor->isImplicit() ? 1 : 0)
7217 << S.Context.getTypeDeclType(Constructor->getParent())
7218 << /*const=*/1
7219 << Entity.getName();
7220 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7221 << Entity.getName();
7222 } else {
7223 S.Diag(Kind.getLocation(), diag::err_default_init_const)
7224 << DestType << (bool)DestType->getAs<RecordType>();
7225 }
7226 break;
7227
7228 case FK_Incomplete:
7229 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7230 diag::err_init_incomplete_type);
7231 break;
7232
7233 case FK_ListInitializationFailed: {
7234 // Run the init list checker again to emit diagnostics.
7235 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7236 diagnoseListInit(S, Entity, InitList);
7237 break;
7238 }
7239
7240 case FK_PlaceholderType: {
7241 // FIXME: Already diagnosed!
7242 break;
7243 }
7244
7245 case FK_ExplicitConstructor: {
7246 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7247 << Args[0]->getSourceRange();
7248 OverloadCandidateSet::iterator Best;
7249 OverloadingResult Ovl
7250 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7251 (void)Ovl;
7252 assert(Ovl == OR_Success && "Inconsistent overload resolution")((Ovl == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7252, __PRETTY_FUNCTION__))
;
7253 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7254 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
7255 break;
7256 }
7257 }
7258
7259 PrintInitLocationNote(S, Entity);
7260 return true;
7261}
7262
7263void InitializationSequence::dump(raw_ostream &OS) const {
7264 switch (SequenceKind) {
7265 case FailedSequence: {
7266 OS << "Failed sequence: ";
7267 switch (Failure) {
7268 case FK_TooManyInitsForReference:
7269 OS << "too many initializers for reference";
7270 break;
7271
7272 case FK_ArrayNeedsInitList:
7273 OS << "array requires initializer list";
7274 break;
7275
7276 case FK_AddressOfUnaddressableFunction:
7277 OS << "address of unaddressable function was taken";
7278 break;
7279
7280 case FK_ArrayNeedsInitListOrStringLiteral:
7281 OS << "array requires initializer list or string literal";
7282 break;
7283
7284 case FK_ArrayNeedsInitListOrWideStringLiteral:
7285 OS << "array requires initializer list or wide string literal";
7286 break;
7287
7288 case FK_NarrowStringIntoWideCharArray:
7289 OS << "narrow string into wide char array";
7290 break;
7291
7292 case FK_WideStringIntoCharArray:
7293 OS << "wide string into char array";
7294 break;
7295
7296 case FK_IncompatWideStringIntoWideChar:
7297 OS << "incompatible wide string into wide char array";
7298 break;
7299
7300 case FK_ArrayTypeMismatch:
7301 OS << "array type mismatch";
7302 break;
7303
7304 case FK_NonConstantArrayInit:
7305 OS << "non-constant array initializer";
7306 break;
7307
7308 case FK_AddressOfOverloadFailed:
7309 OS << "address of overloaded function failed";
7310 break;
7311
7312 case FK_ReferenceInitOverloadFailed:
7313 OS << "overload resolution for reference initialization failed";
7314 break;
7315
7316 case FK_NonConstLValueReferenceBindingToTemporary:
7317 OS << "non-const lvalue reference bound to temporary";
7318 break;
7319
7320 case FK_NonConstLValueReferenceBindingToUnrelated:
7321 OS << "non-const lvalue reference bound to unrelated type";
7322 break;
7323
7324 case FK_RValueReferenceBindingToLValue:
7325 OS << "rvalue reference bound to an lvalue";
7326 break;
7327
7328 case FK_ReferenceInitDropsQualifiers:
7329 OS << "reference initialization drops qualifiers";
7330 break;
7331
7332 case FK_ReferenceInitFailed:
7333 OS << "reference initialization failed";
7334 break;
7335
7336 case FK_ConversionFailed:
7337 OS << "conversion failed";
7338 break;
7339
7340 case FK_ConversionFromPropertyFailed:
7341 OS << "conversion from property failed";
7342 break;
7343
7344 case FK_TooManyInitsForScalar:
7345 OS << "too many initializers for scalar";
7346 break;
7347
7348 case FK_ReferenceBindingToInitList:
7349 OS << "referencing binding to initializer list";
7350 break;
7351
7352 case FK_InitListBadDestinationType:
7353 OS << "initializer list for non-aggregate, non-scalar type";
7354 break;
7355
7356 case FK_UserConversionOverloadFailed:
7357 OS << "overloading failed for user-defined conversion";
7358 break;
7359
7360 case FK_ConstructorOverloadFailed:
7361 OS << "constructor overloading failed";
7362 break;
7363
7364 case FK_DefaultInitOfConst:
7365 OS << "default initialization of a const variable";
7366 break;
7367
7368 case FK_Incomplete:
7369 OS << "initialization of incomplete type";
7370 break;
7371
7372 case FK_ListInitializationFailed:
7373 OS << "list initialization checker failure";
7374 break;
7375
7376 case FK_VariableLengthArrayHasInitializer:
7377 OS << "variable length array has an initializer";
7378 break;
7379
7380 case FK_PlaceholderType:
7381 OS << "initializer expression isn't contextually valid";
7382 break;
7383
7384 case FK_ListConstructorOverloadFailed:
7385 OS << "list constructor overloading failed";
7386 break;
7387
7388 case FK_ExplicitConstructor:
7389 OS << "list copy initialization chose explicit constructor";
7390 break;
7391 }
7392 OS << '\n';
7393 return;
7394 }
7395
7396 case DependentSequence:
7397 OS << "Dependent sequence\n";
7398 return;
7399
7400 case NormalSequence:
7401 OS << "Normal sequence: ";
7402 break;
7403 }
7404
7405 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
7406 if (S != step_begin()) {
7407 OS << " -> ";
7408 }
7409
7410 switch (S->Kind) {
7411 case SK_ResolveAddressOfOverloadedFunction:
7412 OS << "resolve address of overloaded function";
7413 break;
7414
7415 case SK_CastDerivedToBaseRValue:
7416 OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
7417 break;
7418
7419 case SK_CastDerivedToBaseXValue:
7420 OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
7421 break;
7422
7423 case SK_CastDerivedToBaseLValue:
7424 OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
7425 break;
7426
7427 case SK_BindReference:
7428 OS << "bind reference to lvalue";
7429 break;
7430
7431 case SK_BindReferenceToTemporary:
7432 OS << "bind reference to a temporary";
7433 break;
7434
7435 case SK_ExtraneousCopyToTemporary:
7436 OS << "extraneous C++03 copy to temporary";
7437 break;
7438
7439 case SK_UserConversion:
7440 OS << "user-defined conversion via " << *S->Function.Function;
7441 break;
7442
7443 case SK_QualificationConversionRValue:
7444 OS << "qualification conversion (rvalue)";
7445 break;
7446
7447 case SK_QualificationConversionXValue:
7448 OS << "qualification conversion (xvalue)";
7449 break;
7450
7451 case SK_QualificationConversionLValue:
7452 OS << "qualification conversion (lvalue)";
7453 break;
7454
7455 case SK_AtomicConversion:
7456 OS << "non-atomic-to-atomic conversion";
7457 break;
7458
7459 case SK_LValueToRValue:
7460 OS << "load (lvalue to rvalue)";
7461 break;
7462
7463 case SK_ConversionSequence:
7464 OS << "implicit conversion sequence (";
7465 S->ICS->dump(); // FIXME: use OS
7466 OS << ")";
7467 break;
7468
7469 case SK_ConversionSequenceNoNarrowing:
7470 OS << "implicit conversion sequence with narrowing prohibited (";
7471 S->ICS->dump(); // FIXME: use OS
7472 OS << ")";
7473 break;
7474
7475 case SK_ListInitialization:
7476 OS << "list aggregate initialization";
7477 break;
7478
7479 case SK_UnwrapInitList:
7480 OS << "unwrap reference initializer list";
7481 break;
7482
7483 case SK_RewrapInitList:
7484 OS << "rewrap reference initializer list";
7485 break;
7486
7487 case SK_ConstructorInitialization:
7488 OS << "constructor initialization";
7489 break;
7490
7491 case SK_ConstructorInitializationFromList:
7492 OS << "list initialization via constructor";
7493 break;
7494
7495 case SK_ZeroInitialization:
7496 OS << "zero initialization";
7497 break;
7498
7499 case SK_CAssignment:
7500 OS << "C assignment";
7501 break;
7502
7503 case SK_StringInit:
7504 OS << "string initialization";
7505 break;
7506
7507 case SK_ObjCObjectConversion:
7508 OS << "Objective-C object conversion";
7509 break;
7510
7511 case SK_ArrayInit:
7512 OS << "array initialization";
7513 break;
7514
7515 case SK_ParenthesizedArrayInit:
7516 OS << "parenthesized array initialization";
7517 break;
7518
7519 case SK_PassByIndirectCopyRestore:
7520 OS << "pass by indirect copy and restore";
7521 break;
7522
7523 case SK_PassByIndirectRestore:
7524 OS << "pass by indirect restore";
7525 break;
7526
7527 case SK_ProduceObjCObject:
7528 OS << "Objective-C object retension";
7529 break;
7530
7531 case SK_StdInitializerList:
7532 OS << "std::initializer_list from initializer list";
7533 break;
7534
7535 case SK_StdInitializerListConstructorCall:
7536 OS << "list initialization from std::initializer_list";
7537 break;
7538
7539 case SK_OCLSamplerInit:
7540 OS << "OpenCL sampler_t from integer constant";
7541 break;
7542
7543 case SK_OCLZeroEvent:
7544 OS << "OpenCL event_t from zero";
7545 break;
7546 }
7547
7548 OS << " [" << S->Type.getAsString() << ']';
7549 }
7550
7551 OS << '\n';
7552}
7553
7554void InitializationSequence::dump() const {
7555 dump(llvm::errs());
7556}
7557
7558static void DiagnoseNarrowingInInitList(Sema &S,
7559 const ImplicitConversionSequence &ICS,
7560 QualType PreNarrowingType,
7561 QualType EntityType,
7562 const Expr *PostInit) {
7563 const StandardConversionSequence *SCS = nullptr;
7564 switch (ICS.getKind()) {
7565 case ImplicitConversionSequence::StandardConversion:
7566 SCS = &ICS.Standard;
7567 break;
7568 case ImplicitConversionSequence::UserDefinedConversion:
7569 SCS = &ICS.UserDefined.After;
7570 break;
7571 case ImplicitConversionSequence::AmbiguousConversion:
7572 case ImplicitConversionSequence::EllipsisConversion:
7573 case ImplicitConversionSequence::BadConversion:
7574 return;
7575 }
7576
7577 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
7578 APValue ConstantValue;
7579 QualType ConstantType;
7580 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
7581 ConstantType)) {
7582 case NK_Not_Narrowing:
7583 // No narrowing occurred.
7584 return;
7585
7586 case NK_Type_Narrowing:
7587 // This was a floating-to-integer conversion, which is always considered a
7588 // narrowing conversion even if the value is a constant and can be
7589 // represented exactly as an integer.
7590 S.Diag(PostInit->getLocStart(),
7591 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7592 ? diag::warn_init_list_type_narrowing
7593 : diag::ext_init_list_type_narrowing)
7594 << PostInit->getSourceRange()
7595 << PreNarrowingType.getLocalUnqualifiedType()
7596 << EntityType.getLocalUnqualifiedType();
7597 break;
7598
7599 case NK_Constant_Narrowing:
7600 // A constant value was narrowed.
7601 S.Diag(PostInit->getLocStart(),
7602 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7603 ? diag::warn_init_list_constant_narrowing
7604 : diag::ext_init_list_constant_narrowing)
7605 << PostInit->getSourceRange()
7606 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7607 << EntityType.getLocalUnqualifiedType();
7608 break;
7609
7610 case NK_Variable_Narrowing:
7611 // A variable's value may have been narrowed.
7612 S.Diag(PostInit->getLocStart(),
7613 (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7614 ? diag::warn_init_list_variable_narrowing
7615 : diag::ext_init_list_variable_narrowing)
7616 << PostInit->getSourceRange()
7617 << PreNarrowingType.getLocalUnqualifiedType()
7618 << EntityType.getLocalUnqualifiedType();
7619 break;
7620 }
7621
7622 SmallString<128> StaticCast;
7623 llvm::raw_svector_ostream OS(StaticCast);
7624 OS << "static_cast<";
7625 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7626 // It's important to use the typedef's name if there is one so that the
7627 // fixit doesn't break code using types like int64_t.
7628 //
7629 // FIXME: This will break if the typedef requires qualification. But
7630 // getQualifiedNameAsString() includes non-machine-parsable components.
7631 OS << *TT->getDecl();
7632 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7633 OS << BT->getName(S.getLangOpts());
7634 else {
7635 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
7636 // with a broken cast.
7637 return;
7638 }
7639 OS << ">(";
7640 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
7641 << PostInit->getSourceRange()
7642 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7643 << FixItHint::CreateInsertion(
7644 S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
7645}
7646
7647//===----------------------------------------------------------------------===//
7648// Initialization helper functions
7649//===----------------------------------------------------------------------===//
7650bool
7651Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7652 ExprResult Init) {
7653 if (Init.isInvalid())
7654 return false;
7655
7656 Expr *InitE = Init.get();
7657 assert(InitE && "No initialization expression")((InitE && "No initialization expression") ? static_cast
<void> (0) : __assert_fail ("InitE && \"No initialization expression\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7657, __PRETTY_FUNCTION__))
;
7658
7659 InitializationKind Kind
7660 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7661 InitializationSequence Seq(*this, Entity, Kind, InitE);
7662 return !Seq.Failed();
7663}
7664
7665ExprResult
7666Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7667 SourceLocation EqualLoc,
7668 ExprResult Init,
7669 bool TopLevelOfInitList,
7670 bool AllowExplicit) {
7671 if (Init.isInvalid())
7672 return ExprError();
7673
7674 Expr *InitE = Init.get();
7675 assert(InitE && "No initialization expression?")((InitE && "No initialization expression?") ? static_cast
<void> (0) : __assert_fail ("InitE && \"No initialization expression?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn255820/tools/clang/lib/Sema/SemaInit.cpp"
, 7675, __PRETTY_FUNCTION__))
;
7676
7677 if (EqualLoc.isInvalid())
7678 EqualLoc = InitE->getLocStart();
7679
7680 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7681 EqualLoc,
7682 AllowExplicit);
7683 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7684
7685 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7686
7687 return Result;
7688}