Bug Summary

File:tools/clang/lib/Sema/SemaInit.cpp
Warning:line 5416, column 16
Called C++ object pointer is null

Annotated Source Code

1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ExprObjC.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Sema/Designator.h"
21#include "clang/Sema/Initialization.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38 if (Context.typesAreCompatible(Context.getWideCharType(), T))
39 return true;
40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41 return Context.typesAreCompatible(Context.Char16Ty, T) ||
42 Context.typesAreCompatible(Context.Char32Ty, T);
43 }
44 return false;
45}
46
47enum StringInitFailureKind {
48 SIF_None,
49 SIF_NarrowStringIntoWideChar,
50 SIF_WideStringIntoChar,
51 SIF_IncompatWideStringIntoWideChar,
52 SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60 ASTContext &Context) {
61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62 return SIF_Other;
63
64 // See if this is a string literal or @encode.
65 Init = Init->IgnoreParens();
66
67 // Handle @encode, which is a narrow string.
68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69 return SIF_None;
70
71 // Otherwise we can only handle string literals.
72 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73 if (!SL)
74 return SIF_Other;
75
76 const QualType ElemTy =
77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79 switch (SL->getKind()) {
80 case StringLiteral::Ascii:
81 case StringLiteral::UTF8:
82 // char array can be initialized with a narrow string.
83 // Only allow char x[] = "foo"; not char x[] = L"foo";
84 if (ElemTy->isCharType())
85 return SIF_None;
86 if (IsWideCharCompatible(ElemTy, Context))
87 return SIF_NarrowStringIntoWideChar;
88 return SIF_Other;
89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90 // "An array with element type compatible with a qualified or unqualified
91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92 // string literal with the corresponding encoding prefix (L, u, or U,
93 // respectively), optionally enclosed in braces.
94 case StringLiteral::UTF16:
95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96 return SIF_None;
97 if (ElemTy->isCharType())
98 return SIF_WideStringIntoChar;
99 if (IsWideCharCompatible(ElemTy, Context))
100 return SIF_IncompatWideStringIntoWideChar;
101 return SIF_Other;
102 case StringLiteral::UTF32:
103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104 return SIF_None;
105 if (ElemTy->isCharType())
106 return SIF_WideStringIntoChar;
107 if (IsWideCharCompatible(ElemTy, Context))
108 return SIF_IncompatWideStringIntoWideChar;
109 return SIF_Other;
110 case StringLiteral::Wide:
111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112 return SIF_None;
113 if (ElemTy->isCharType())
114 return SIF_WideStringIntoChar;
115 if (IsWideCharCompatible(ElemTy, Context))
116 return SIF_IncompatWideStringIntoWideChar;
117 return SIF_Other;
118 }
119
120 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 120)
;
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124 ASTContext &Context) {
125 const ArrayType *arrayType = Context.getAsArrayType(declType);
126 if (!arrayType)
127 return SIF_Other;
128 return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134 while (true) {
135 E->setType(Ty);
136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137 break;
138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139 E = PE->getSubExpr();
140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141 E = UO->getSubExpr();
142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143 E = GSE->getResultExpr();
144 else
145 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 145)
;
146 }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150 Sema &S) {
151 // Get the length of the string as parsed.
152 auto *ConstantArrayTy =
153 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155
156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157 // C99 6.7.8p14. We have an array of character type with unknown size
158 // being initialized to a string literal.
159 llvm::APInt ConstVal(32, StrLength);
160 // Return a new array type (C99 6.7.8p22).
161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162 ConstVal,
163 ArrayType::Normal, 0);
164 updateStringLiteralType(Str, DeclT);
165 return;
166 }
167
168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170 // We have an array of character type with known size. However,
171 // the size may be smaller or larger than the string we are initializing.
172 // FIXME: Avoid truncation for 64-bit length strings.
173 if (S.getLangOpts().CPlusPlus) {
174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175 // For Pascal strings it's OK to strip off the terminating null character,
176 // so the example below is valid:
177 //
178 // unsigned char a[2] = "\pa";
179 if (SL->isPascal())
180 StrLength--;
181 }
182
183 // [dcl.init.string]p2
184 if (StrLength > CAT->getSize().getZExtValue())
185 S.Diag(Str->getLocStart(),
186 diag::err_initializer_string_for_char_array_too_long)
187 << Str->getSourceRange();
188 } else {
189 // C99 6.7.8p14.
190 if (StrLength-1 > CAT->getSize().getZExtValue())
191 S.Diag(Str->getLocStart(),
192 diag::ext_initializer_string_for_char_array_too_long)
193 << Str->getSourceRange();
194 }
195
196 // Set the type to the actual size that we are initializing. If we have
197 // something like:
198 // char x[1] = "foo";
199 // then this will set the string literal's type to char[1].
200 updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207namespace {
208
209/// @brief Semantic checking for initializer lists.
210///
211/// The InitListChecker class contains a set of routines that each
212/// handle the initialization of a certain kind of entity, e.g.,
213/// arrays, vectors, struct/union types, scalars, etc. The
214/// InitListChecker itself performs a recursive walk of the subobject
215/// structure of the type to be initialized, while stepping through
216/// the initializer list one element at a time. The IList and Index
217/// parameters to each of the Check* routines contain the active
218/// (syntactic) initializer list and the index into that initializer
219/// list that represents the current initializer. Each routine is
220/// responsible for moving that Index forward as it consumes elements.
221///
222/// Each Check* routine also has a StructuredList/StructuredIndex
223/// arguments, which contains the current "structured" (semantic)
224/// initializer list and the index into that initializer list where we
225/// are copying initializers as we map them over to the semantic
226/// list. Once we have completed our recursive walk of the subobject
227/// structure, we will have constructed a full semantic initializer
228/// list.
229///
230/// C99 designators cause changes in the initializer list traversal,
231/// because they make the initialization "jump" into a specific
232/// subobject and then continue the initialization from that
233/// point. CheckDesignatedInitializer() recursively steps into the
234/// designated subobject and manages backing out the recursion to
235/// initialize the subobjects after the one designated.
236class InitListChecker {
237 Sema &SemaRef;
238 bool hadError;
239 bool VerifyOnly; // no diagnostics, no structure building
240 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
241 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
242 InitListExpr *FullyStructuredList;
243
244 void CheckImplicitInitList(const InitializedEntity &Entity,
245 InitListExpr *ParentIList, QualType T,
246 unsigned &Index, InitListExpr *StructuredList,
247 unsigned &StructuredIndex);
248 void CheckExplicitInitList(const InitializedEntity &Entity,
249 InitListExpr *IList, QualType &T,
250 InitListExpr *StructuredList,
251 bool TopLevelObject = false);
252 void CheckListElementTypes(const InitializedEntity &Entity,
253 InitListExpr *IList, QualType &DeclType,
254 bool SubobjectIsDesignatorContext,
255 unsigned &Index,
256 InitListExpr *StructuredList,
257 unsigned &StructuredIndex,
258 bool TopLevelObject = false);
259 void CheckSubElementType(const InitializedEntity &Entity,
260 InitListExpr *IList, QualType ElemType,
261 unsigned &Index,
262 InitListExpr *StructuredList,
263 unsigned &StructuredIndex);
264 void CheckComplexType(const InitializedEntity &Entity,
265 InitListExpr *IList, QualType DeclType,
266 unsigned &Index,
267 InitListExpr *StructuredList,
268 unsigned &StructuredIndex);
269 void CheckScalarType(const InitializedEntity &Entity,
270 InitListExpr *IList, QualType DeclType,
271 unsigned &Index,
272 InitListExpr *StructuredList,
273 unsigned &StructuredIndex);
274 void CheckReferenceType(const InitializedEntity &Entity,
275 InitListExpr *IList, QualType DeclType,
276 unsigned &Index,
277 InitListExpr *StructuredList,
278 unsigned &StructuredIndex);
279 void CheckVectorType(const InitializedEntity &Entity,
280 InitListExpr *IList, QualType DeclType, unsigned &Index,
281 InitListExpr *StructuredList,
282 unsigned &StructuredIndex);
283 void CheckStructUnionTypes(const InitializedEntity &Entity,
284 InitListExpr *IList, QualType DeclType,
285 CXXRecordDecl::base_class_range Bases,
286 RecordDecl::field_iterator Field,
287 bool SubobjectIsDesignatorContext, unsigned &Index,
288 InitListExpr *StructuredList,
289 unsigned &StructuredIndex,
290 bool TopLevelObject = false);
291 void CheckArrayType(const InitializedEntity &Entity,
292 InitListExpr *IList, QualType &DeclType,
293 llvm::APSInt elementIndex,
294 bool SubobjectIsDesignatorContext, unsigned &Index,
295 InitListExpr *StructuredList,
296 unsigned &StructuredIndex);
297 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
298 InitListExpr *IList, DesignatedInitExpr *DIE,
299 unsigned DesigIdx,
300 QualType &CurrentObjectType,
301 RecordDecl::field_iterator *NextField,
302 llvm::APSInt *NextElementIndex,
303 unsigned &Index,
304 InitListExpr *StructuredList,
305 unsigned &StructuredIndex,
306 bool FinishSubobjectInit,
307 bool TopLevelObject);
308 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
309 QualType CurrentObjectType,
310 InitListExpr *StructuredList,
311 unsigned StructuredIndex,
312 SourceRange InitRange,
313 bool IsFullyOverwritten = false);
314 void UpdateStructuredListElement(InitListExpr *StructuredList,
315 unsigned &StructuredIndex,
316 Expr *expr);
317 int numArrayElements(QualType DeclType);
318 int numStructUnionElements(QualType DeclType);
319
320 static ExprResult PerformEmptyInit(Sema &SemaRef,
321 SourceLocation Loc,
322 const InitializedEntity &Entity,
323 bool VerifyOnly,
324 bool TreatUnavailableAsInvalid);
325
326 // Explanation on the "FillWithNoInit" mode:
327 //
328 // Assume we have the following definitions (Case#1):
329 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
330 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
331 //
332 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
333 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
334 //
335 // But if we have (Case#2):
336 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
337 //
338 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
339 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
340 //
341 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
342 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
343 // initializers but with special "NoInitExpr" place holders, which tells the
344 // CodeGen not to generate any initializers for these parts.
345 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
346 const InitializedEntity &ParentEntity,
347 InitListExpr *ILE, bool &RequiresSecondPass,
348 bool FillWithNoInit);
349 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
350 const InitializedEntity &ParentEntity,
351 InitListExpr *ILE, bool &RequiresSecondPass,
352 bool FillWithNoInit = false);
353 void FillInEmptyInitializations(const InitializedEntity &Entity,
354 InitListExpr *ILE, bool &RequiresSecondPass,
355 bool FillWithNoInit = false);
356 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
357 Expr *InitExpr, FieldDecl *Field,
358 bool TopLevelObject);
359 void CheckEmptyInitializable(const InitializedEntity &Entity,
360 SourceLocation Loc);
361
362public:
363 InitListChecker(Sema &S, const InitializedEntity &Entity,
364 InitListExpr *IL, QualType &T, bool VerifyOnly,
365 bool TreatUnavailableAsInvalid);
366 bool HadError() { return hadError; }
367
368 // @brief Retrieves the fully-structured initializer list used for
369 // semantic analysis and code generation.
370 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
371};
372
373} // end anonymous namespace
374
375ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
376 SourceLocation Loc,
377 const InitializedEntity &Entity,
378 bool VerifyOnly,
379 bool TreatUnavailableAsInvalid) {
380 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
381 true);
382 MultiExprArg SubInit;
383 Expr *InitExpr;
384 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
385
386 // C++ [dcl.init.aggr]p7:
387 // If there are fewer initializer-clauses in the list than there are
388 // members in the aggregate, then each member not explicitly initialized
389 // ...
390 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
391 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
392 if (EmptyInitList) {
393 // C++1y / DR1070:
394 // shall be initialized [...] from an empty initializer list.
395 //
396 // We apply the resolution of this DR to C++11 but not C++98, since C++98
397 // does not have useful semantics for initialization from an init list.
398 // We treat this as copy-initialization, because aggregate initialization
399 // always performs copy-initialization on its elements.
400 //
401 // Only do this if we're initializing a class type, to avoid filling in
402 // the initializer list where possible.
403 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
404 InitListExpr(SemaRef.Context, Loc, None, Loc);
405 InitExpr->setType(SemaRef.Context.VoidTy);
406 SubInit = InitExpr;
407 Kind = InitializationKind::CreateCopy(Loc, Loc);
408 } else {
409 // C++03:
410 // shall be value-initialized.
411 }
412
413 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
414 // libstdc++4.6 marks the vector default constructor as explicit in
415 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
416 // stlport does so too. Look for std::__debug for libstdc++, and for
417 // std:: for stlport. This is effectively a compiler-side implementation of
418 // LWG2193.
419 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
420 InitializationSequence::FK_ExplicitConstructor) {
421 OverloadCandidateSet::iterator Best;
422 OverloadingResult O =
423 InitSeq.getFailedCandidateSet()
424 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
425 (void)O;
426 assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 426, __PRETTY_FUNCTION__))
;
427 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
428 CXXRecordDecl *R = CtorDecl->getParent();
429
430 if (CtorDecl->getMinRequiredArguments() == 0 &&
431 CtorDecl->isExplicit() && R->getDeclName() &&
432 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
433 bool IsInStd = false;
434 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
435 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
436 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
437 IsInStd = true;
438 }
439
440 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
441 .Cases("basic_string", "deque", "forward_list", true)
442 .Cases("list", "map", "multimap", "multiset", true)
443 .Cases("priority_queue", "queue", "set", "stack", true)
444 .Cases("unordered_map", "unordered_set", "vector", true)
445 .Default(false)) {
446 InitSeq.InitializeFrom(
447 SemaRef, Entity,
448 InitializationKind::CreateValue(Loc, Loc, Loc, true),
449 MultiExprArg(), /*TopLevelOfInitList=*/false,
450 TreatUnavailableAsInvalid);
451 // Emit a warning for this. System header warnings aren't shown
452 // by default, but people working on system headers should see it.
453 if (!VerifyOnly) {
454 SemaRef.Diag(CtorDecl->getLocation(),
455 diag::warn_invalid_initializer_from_system_header);
456 if (Entity.getKind() == InitializedEntity::EK_Member)
457 SemaRef.Diag(Entity.getDecl()->getLocation(),
458 diag::note_used_in_initialization_here);
459 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
460 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
461 }
462 }
463 }
464 }
465 if (!InitSeq) {
466 if (!VerifyOnly) {
467 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
468 if (Entity.getKind() == InitializedEntity::EK_Member)
469 SemaRef.Diag(Entity.getDecl()->getLocation(),
470 diag::note_in_omitted_aggregate_initializer)
471 << /*field*/1 << Entity.getDecl();
472 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
473 bool IsTrailingArrayNewMember =
474 Entity.getParent() &&
475 Entity.getParent()->isVariableLengthArrayNew();
476 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
477 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
478 << Entity.getElementIndex();
479 }
480 }
481 return ExprError();
482 }
483
484 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
485 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
486}
487
488void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
489 SourceLocation Loc) {
490 assert(VerifyOnly &&((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 491, __PRETTY_FUNCTION__))
491 "CheckEmptyInitializable is only inteded for verification mode.")((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 491, __PRETTY_FUNCTION__))
;
492 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
493 TreatUnavailableAsInvalid).isInvalid())
494 hadError = true;
495}
496
497void InitListChecker::FillInEmptyInitForBase(
498 unsigned Init, const CXXBaseSpecifier &Base,
499 const InitializedEntity &ParentEntity, InitListExpr *ILE,
500 bool &RequiresSecondPass, bool FillWithNoInit) {
501 assert(Init < ILE->getNumInits() && "should have been expanded")((Init < ILE->getNumInits() && "should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 501, __PRETTY_FUNCTION__))
;
502
503 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
504 SemaRef.Context, &Base, false, &ParentEntity);
505
506 if (!ILE->getInit(Init)) {
507 ExprResult BaseInit =
508 FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType())
509 : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity,
510 /*VerifyOnly*/ false,
511 TreatUnavailableAsInvalid);
512 if (BaseInit.isInvalid()) {
513 hadError = true;
514 return;
515 }
516
517 ILE->setInit(Init, BaseInit.getAs<Expr>());
518 } else if (InitListExpr *InnerILE =
519 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
520 FillInEmptyInitializations(BaseEntity, InnerILE,
521 RequiresSecondPass, FillWithNoInit);
522 } else if (DesignatedInitUpdateExpr *InnerDIUE =
523 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
524 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
525 RequiresSecondPass, /*FillWithNoInit =*/true);
526 }
527}
528
529void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
530 const InitializedEntity &ParentEntity,
531 InitListExpr *ILE,
532 bool &RequiresSecondPass,
533 bool FillWithNoInit) {
534 SourceLocation Loc = ILE->getLocEnd();
535 unsigned NumInits = ILE->getNumInits();
536 InitializedEntity MemberEntity
537 = InitializedEntity::InitializeMember(Field, &ParentEntity);
538
539 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
540 if (!RType->getDecl()->isUnion())
541 assert(Init < NumInits && "This ILE should have been expanded")((Init < NumInits && "This ILE should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < NumInits && \"This ILE should have been expanded\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 541, __PRETTY_FUNCTION__))
;
542
543 if (Init >= NumInits || !ILE->getInit(Init)) {
544 if (FillWithNoInit) {
545 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
546 if (Init < NumInits)
547 ILE->setInit(Init, Filler);
548 else
549 ILE->updateInit(SemaRef.Context, Init, Filler);
550 return;
551 }
552 // C++1y [dcl.init.aggr]p7:
553 // If there are fewer initializer-clauses in the list than there are
554 // members in the aggregate, then each member not explicitly initialized
555 // shall be initialized from its brace-or-equal-initializer [...]
556 if (Field->hasInClassInitializer()) {
557 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
558 if (DIE.isInvalid()) {
559 hadError = true;
560 return;
561 }
562 if (Init < NumInits)
563 ILE->setInit(Init, DIE.get());
564 else {
565 ILE->updateInit(SemaRef.Context, Init, DIE.get());
566 RequiresSecondPass = true;
567 }
568 return;
569 }
570
571 if (Field->getType()->isReferenceType()) {
572 // C++ [dcl.init.aggr]p9:
573 // If an incomplete or empty initializer-list leaves a
574 // member of reference type uninitialized, the program is
575 // ill-formed.
576 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
577 << Field->getType()
578 << ILE->getSyntacticForm()->getSourceRange();
579 SemaRef.Diag(Field->getLocation(),
580 diag::note_uninit_reference_member);
581 hadError = true;
582 return;
583 }
584
585 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
586 /*VerifyOnly*/false,
587 TreatUnavailableAsInvalid);
588 if (MemberInit.isInvalid()) {
589 hadError = true;
590 return;
591 }
592
593 if (hadError) {
594 // Do nothing
595 } else if (Init < NumInits) {
596 ILE->setInit(Init, MemberInit.getAs<Expr>());
597 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
598 // Empty initialization requires a constructor call, so
599 // extend the initializer list to include the constructor
600 // call and make a note that we'll need to take another pass
601 // through the initializer list.
602 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
603 RequiresSecondPass = true;
604 }
605 } else if (InitListExpr *InnerILE
606 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
607 FillInEmptyInitializations(MemberEntity, InnerILE,
608 RequiresSecondPass, FillWithNoInit);
609 else if (DesignatedInitUpdateExpr *InnerDIUE
610 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
611 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
612 RequiresSecondPass, /*FillWithNoInit =*/ true);
613}
614
615/// Recursively replaces NULL values within the given initializer list
616/// with expressions that perform value-initialization of the
617/// appropriate type.
618void
619InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
620 InitListExpr *ILE,
621 bool &RequiresSecondPass,
622 bool FillWithNoInit) {
623 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 624, __PRETTY_FUNCTION__))
624 "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 624, __PRETTY_FUNCTION__))
;
625
626 // A transparent ILE is not performing aggregate initialization and should
627 // not be filled in.
628 if (ILE->isTransparent())
629 return;
630
631 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
632 const RecordDecl *RDecl = RType->getDecl();
633 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
634 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
635 Entity, ILE, RequiresSecondPass, FillWithNoInit);
636 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
637 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
638 for (auto *Field : RDecl->fields()) {
639 if (Field->hasInClassInitializer()) {
640 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
641 FillWithNoInit);
642 break;
643 }
644 }
645 } else {
646 // The fields beyond ILE->getNumInits() are default initialized, so in
647 // order to leave them uninitialized, the ILE is expanded and the extra
648 // fields are then filled with NoInitExpr.
649 unsigned NumElems = numStructUnionElements(ILE->getType());
650 if (RDecl->hasFlexibleArrayMember())
651 ++NumElems;
652 if (ILE->getNumInits() < NumElems)
653 ILE->resizeInits(SemaRef.Context, NumElems);
654
655 unsigned Init = 0;
656
657 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
658 for (auto &Base : CXXRD->bases()) {
659 if (hadError)
660 return;
661
662 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
663 FillWithNoInit);
664 ++Init;
665 }
666 }
667
668 for (auto *Field : RDecl->fields()) {
669 if (Field->isUnnamedBitfield())
670 continue;
671
672 if (hadError)
673 return;
674
675 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
676 FillWithNoInit);
677 if (hadError)
678 return;
679
680 ++Init;
681
682 // Only look at the first initialization of a union.
683 if (RDecl->isUnion())
684 break;
685 }
686 }
687
688 return;
689 }
690
691 QualType ElementType;
692
693 InitializedEntity ElementEntity = Entity;
694 unsigned NumInits = ILE->getNumInits();
695 unsigned NumElements = NumInits;
696 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
697 ElementType = AType->getElementType();
698 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
699 NumElements = CAType->getSize().getZExtValue();
700 // For an array new with an unknown bound, ask for one additional element
701 // in order to populate the array filler.
702 if (Entity.isVariableLengthArrayNew())
703 ++NumElements;
704 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
705 0, Entity);
706 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
707 ElementType = VType->getElementType();
708 NumElements = VType->getNumElements();
709 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
710 0, Entity);
711 } else
712 ElementType = ILE->getType();
713
714 for (unsigned Init = 0; Init != NumElements; ++Init) {
715 if (hadError)
716 return;
717
718 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
719 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
720 ElementEntity.setElementIndex(Init);
721
722 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
723 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
724 ILE->setInit(Init, ILE->getArrayFiller());
725 else if (!InitExpr && !ILE->hasArrayFiller()) {
726 Expr *Filler = nullptr;
727
728 if (FillWithNoInit)
729 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
730 else {
731 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
732 ElementEntity,
733 /*VerifyOnly*/false,
734 TreatUnavailableAsInvalid);
735 if (ElementInit.isInvalid()) {
736 hadError = true;
737 return;
738 }
739
740 Filler = ElementInit.getAs<Expr>();
741 }
742
743 if (hadError) {
744 // Do nothing
745 } else if (Init < NumInits) {
746 // For arrays, just set the expression used for value-initialization
747 // of the "holes" in the array.
748 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
749 ILE->setArrayFiller(Filler);
750 else
751 ILE->setInit(Init, Filler);
752 } else {
753 // For arrays, just set the expression used for value-initialization
754 // of the rest of elements and exit.
755 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
756 ILE->setArrayFiller(Filler);
757 return;
758 }
759
760 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
761 // Empty initialization requires a constructor call, so
762 // extend the initializer list to include the constructor
763 // call and make a note that we'll need to take another pass
764 // through the initializer list.
765 ILE->updateInit(SemaRef.Context, Init, Filler);
766 RequiresSecondPass = true;
767 }
768 }
769 } else if (InitListExpr *InnerILE
770 = dyn_cast_or_null<InitListExpr>(InitExpr))
771 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
772 FillWithNoInit);
773 else if (DesignatedInitUpdateExpr *InnerDIUE
774 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
775 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
776 RequiresSecondPass, /*FillWithNoInit =*/ true);
777 }
778}
779
780InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
781 InitListExpr *IL, QualType &T,
782 bool VerifyOnly,
783 bool TreatUnavailableAsInvalid)
784 : SemaRef(S), VerifyOnly(VerifyOnly),
785 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
786 // FIXME: Check that IL isn't already the semantic form of some other
787 // InitListExpr. If it is, we'd create a broken AST.
788
789 hadError = false;
790
791 FullyStructuredList =
792 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
793 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
794 /*TopLevelObject=*/true);
795
796 if (!hadError && !VerifyOnly) {
797 bool RequiresSecondPass = false;
798 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
799 if (RequiresSecondPass && !hadError)
800 FillInEmptyInitializations(Entity, FullyStructuredList,
801 RequiresSecondPass);
802 }
803}
804
805int InitListChecker::numArrayElements(QualType DeclType) {
806 // FIXME: use a proper constant
807 int maxElements = 0x7FFFFFFF;
808 if (const ConstantArrayType *CAT =
809 SemaRef.Context.getAsConstantArrayType(DeclType)) {
810 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
811 }
812 return maxElements;
813}
814
815int InitListChecker::numStructUnionElements(QualType DeclType) {
816 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
817 int InitializableMembers = 0;
818 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
819 InitializableMembers += CXXRD->getNumBases();
820 for (const auto *Field : structDecl->fields())
821 if (!Field->isUnnamedBitfield())
822 ++InitializableMembers;
823
824 if (structDecl->isUnion())
825 return std::min(InitializableMembers, 1);
826 return InitializableMembers - structDecl->hasFlexibleArrayMember();
827}
828
829/// Check whether the range of the initializer \p ParentIList from element
830/// \p Index onwards can be used to initialize an object of type \p T. Update
831/// \p Index to indicate how many elements of the list were consumed.
832///
833/// This also fills in \p StructuredList, from element \p StructuredIndex
834/// onwards, with the fully-braced, desugared form of the initialization.
835void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
836 InitListExpr *ParentIList,
837 QualType T, unsigned &Index,
838 InitListExpr *StructuredList,
839 unsigned &StructuredIndex) {
840 int maxElements = 0;
841
842 if (T->isArrayType())
843 maxElements = numArrayElements(T);
844 else if (T->isRecordType())
845 maxElements = numStructUnionElements(T);
846 else if (T->isVectorType())
847 maxElements = T->getAs<VectorType>()->getNumElements();
848 else
849 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 849)
;
850
851 if (maxElements == 0) {
852 if (!VerifyOnly)
853 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
854 diag::err_implicit_empty_initializer);
855 ++Index;
856 hadError = true;
857 return;
858 }
859
860 // Build a structured initializer list corresponding to this subobject.
861 InitListExpr *StructuredSubobjectInitList
862 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
863 StructuredIndex,
864 SourceRange(ParentIList->getInit(Index)->getLocStart(),
865 ParentIList->getSourceRange().getEnd()));
866 unsigned StructuredSubobjectInitIndex = 0;
867
868 // Check the element types and build the structural subobject.
869 unsigned StartIndex = Index;
870 CheckListElementTypes(Entity, ParentIList, T,
871 /*SubobjectIsDesignatorContext=*/false, Index,
872 StructuredSubobjectInitList,
873 StructuredSubobjectInitIndex);
874
875 if (!VerifyOnly) {
876 StructuredSubobjectInitList->setType(T);
877
878 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
879 // Update the structured sub-object initializer so that it's ending
880 // range corresponds with the end of the last initializer it used.
881 if (EndIndex < ParentIList->getNumInits() &&
882 ParentIList->getInit(EndIndex)) {
883 SourceLocation EndLoc
884 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
885 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
886 }
887
888 // Complain about missing braces.
889 if (T->isArrayType() || T->isRecordType()) {
890 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
891 diag::warn_missing_braces)
892 << StructuredSubobjectInitList->getSourceRange()
893 << FixItHint::CreateInsertion(
894 StructuredSubobjectInitList->getLocStart(), "{")
895 << FixItHint::CreateInsertion(
896 SemaRef.getLocForEndOfToken(
897 StructuredSubobjectInitList->getLocEnd()),
898 "}");
899 }
900 }
901}
902
903/// Warn that \p Entity was of scalar type and was initialized by a
904/// single-element braced initializer list.
905static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
906 SourceRange Braces) {
907 // Don't warn during template instantiation. If the initialization was
908 // non-dependent, we warned during the initial parse; otherwise, the
909 // type might not be scalar in some uses of the template.
910 if (S.inTemplateInstantiation())
911 return;
912
913 unsigned DiagID = 0;
914
915 switch (Entity.getKind()) {
916 case InitializedEntity::EK_VectorElement:
917 case InitializedEntity::EK_ComplexElement:
918 case InitializedEntity::EK_ArrayElement:
919 case InitializedEntity::EK_Parameter:
920 case InitializedEntity::EK_Parameter_CF_Audited:
921 case InitializedEntity::EK_Result:
922 // Extra braces here are suspicious.
923 DiagID = diag::warn_braces_around_scalar_init;
924 break;
925
926 case InitializedEntity::EK_Member:
927 // Warn on aggregate initialization but not on ctor init list or
928 // default member initializer.
929 if (Entity.getParent())
930 DiagID = diag::warn_braces_around_scalar_init;
931 break;
932
933 case InitializedEntity::EK_Variable:
934 case InitializedEntity::EK_LambdaCapture:
935 // No warning, might be direct-list-initialization.
936 // FIXME: Should we warn for copy-list-initialization in these cases?
937 break;
938
939 case InitializedEntity::EK_New:
940 case InitializedEntity::EK_Temporary:
941 case InitializedEntity::EK_CompoundLiteralInit:
942 // No warning, braces are part of the syntax of the underlying construct.
943 break;
944
945 case InitializedEntity::EK_RelatedResult:
946 // No warning, we already warned when initializing the result.
947 break;
948
949 case InitializedEntity::EK_Exception:
950 case InitializedEntity::EK_Base:
951 case InitializedEntity::EK_Delegating:
952 case InitializedEntity::EK_BlockElement:
953 case InitializedEntity::EK_Binding:
954 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 954)
;
955 }
956
957 if (DiagID) {
958 S.Diag(Braces.getBegin(), DiagID)
959 << Braces
960 << FixItHint::CreateRemoval(Braces.getBegin())
961 << FixItHint::CreateRemoval(Braces.getEnd());
962 }
963}
964
965/// Check whether the initializer \p IList (that was written with explicit
966/// braces) can be used to initialize an object of type \p T.
967///
968/// This also fills in \p StructuredList with the fully-braced, desugared
969/// form of the initialization.
970void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
971 InitListExpr *IList, QualType &T,
972 InitListExpr *StructuredList,
973 bool TopLevelObject) {
974 if (!VerifyOnly) {
975 SyntacticToSemantic[IList] = StructuredList;
976 StructuredList->setSyntacticForm(IList);
977 }
978
979 unsigned Index = 0, StructuredIndex = 0;
980 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
981 Index, StructuredList, StructuredIndex, TopLevelObject);
982 if (!VerifyOnly) {
983 QualType ExprTy = T;
984 if (!ExprTy->isArrayType())
985 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
986 IList->setType(ExprTy);
987 StructuredList->setType(ExprTy);
988 }
989 if (hadError)
990 return;
991
992 if (Index < IList->getNumInits()) {
993 // We have leftover initializers
994 if (VerifyOnly) {
995 if (SemaRef.getLangOpts().CPlusPlus ||
996 (SemaRef.getLangOpts().OpenCL &&
997 IList->getType()->isVectorType())) {
998 hadError = true;
999 }
1000 return;
1001 }
1002
1003 if (StructuredIndex == 1 &&
1004 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1005 SIF_None) {
1006 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1007 if (SemaRef.getLangOpts().CPlusPlus) {
1008 DK = diag::err_excess_initializers_in_char_array_initializer;
1009 hadError = true;
1010 }
1011 // Special-case
1012 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1013 << IList->getInit(Index)->getSourceRange();
1014 } else if (!T->isIncompleteType()) {
1015 // Don't complain for incomplete types, since we'll get an error
1016 // elsewhere
1017 QualType CurrentObjectType = StructuredList->getType();
1018 int initKind =
1019 CurrentObjectType->isArrayType()? 0 :
1020 CurrentObjectType->isVectorType()? 1 :
1021 CurrentObjectType->isScalarType()? 2 :
1022 CurrentObjectType->isUnionType()? 3 :
1023 4;
1024
1025 unsigned DK = diag::ext_excess_initializers;
1026 if (SemaRef.getLangOpts().CPlusPlus) {
1027 DK = diag::err_excess_initializers;
1028 hadError = true;
1029 }
1030 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1031 DK = diag::err_excess_initializers;
1032 hadError = true;
1033 }
1034
1035 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1036 << initKind << IList->getInit(Index)->getSourceRange();
1037 }
1038 }
1039
1040 if (!VerifyOnly && T->isScalarType() &&
1041 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
1042 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1043}
1044
1045void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1046 InitListExpr *IList,
1047 QualType &DeclType,
1048 bool SubobjectIsDesignatorContext,
1049 unsigned &Index,
1050 InitListExpr *StructuredList,
1051 unsigned &StructuredIndex,
1052 bool TopLevelObject) {
1053 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1054 // Explicitly braced initializer for complex type can be real+imaginary
1055 // parts.
1056 CheckComplexType(Entity, IList, DeclType, Index,
1057 StructuredList, StructuredIndex);
1058 } else if (DeclType->isScalarType()) {
1059 CheckScalarType(Entity, IList, DeclType, Index,
1060 StructuredList, StructuredIndex);
1061 } else if (DeclType->isVectorType()) {
1062 CheckVectorType(Entity, IList, DeclType, Index,
1063 StructuredList, StructuredIndex);
1064 } else if (DeclType->isRecordType()) {
1065 assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1066, __PRETTY_FUNCTION__))
1066 "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1066, __PRETTY_FUNCTION__))
;
1067 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1068 auto Bases =
1069 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1070 CXXRecordDecl::base_class_iterator());
1071 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1072 Bases = CXXRD->bases();
1073 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1074 SubobjectIsDesignatorContext, Index, StructuredList,
1075 StructuredIndex, TopLevelObject);
1076 } else if (DeclType->isArrayType()) {
1077 llvm::APSInt Zero(
1078 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1079 false);
1080 CheckArrayType(Entity, IList, DeclType, Zero,
1081 SubobjectIsDesignatorContext, Index,
1082 StructuredList, StructuredIndex);
1083 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1084 // This type is invalid, issue a diagnostic.
1085 ++Index;
1086 if (!VerifyOnly)
1087 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1088 << DeclType;
1089 hadError = true;
1090 } else if (DeclType->isReferenceType()) {
1091 CheckReferenceType(Entity, IList, DeclType, Index,
1092 StructuredList, StructuredIndex);
1093 } else if (DeclType->isObjCObjectType()) {
1094 if (!VerifyOnly)
1095 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1096 << DeclType;
1097 hadError = true;
1098 } else {
1099 if (!VerifyOnly)
1100 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1101 << DeclType;
1102 hadError = true;
1103 }
1104}
1105
1106void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1107 InitListExpr *IList,
1108 QualType ElemType,
1109 unsigned &Index,
1110 InitListExpr *StructuredList,
1111 unsigned &StructuredIndex) {
1112 Expr *expr = IList->getInit(Index);
1113
1114 if (ElemType->isReferenceType())
1115 return CheckReferenceType(Entity, IList, ElemType, Index,
1116 StructuredList, StructuredIndex);
1117
1118 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1119 if (SubInitList->getNumInits() == 1 &&
1120 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1121 SIF_None) {
1122 expr = SubInitList->getInit(0);
1123 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1124 InitListExpr *InnerStructuredList
1125 = getStructuredSubobjectInit(IList, Index, ElemType,
1126 StructuredList, StructuredIndex,
1127 SubInitList->getSourceRange(), true);
1128 CheckExplicitInitList(Entity, SubInitList, ElemType,
1129 InnerStructuredList);
1130
1131 if (!hadError && !VerifyOnly) {
1132 bool RequiresSecondPass = false;
1133 FillInEmptyInitializations(Entity, InnerStructuredList,
1134 RequiresSecondPass);
1135 if (RequiresSecondPass && !hadError)
1136 FillInEmptyInitializations(Entity, InnerStructuredList,
1137 RequiresSecondPass);
1138 }
1139 ++StructuredIndex;
1140 ++Index;
1141 return;
1142 }
1143 // C++ initialization is handled later.
1144 } else if (isa<ImplicitValueInitExpr>(expr)) {
1145 // This happens during template instantiation when we see an InitListExpr
1146 // that we've already checked once.
1147 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1148, __PRETTY_FUNCTION__))
1148 "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1148, __PRETTY_FUNCTION__))
;
1149 if (!VerifyOnly)
1150 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1151 ++Index;
1152 return;
1153 }
1154
1155 if (SemaRef.getLangOpts().CPlusPlus) {
1156 // C++ [dcl.init.aggr]p2:
1157 // Each member is copy-initialized from the corresponding
1158 // initializer-clause.
1159
1160 // FIXME: Better EqualLoc?
1161 InitializationKind Kind =
1162 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1163 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1164 /*TopLevelOfInitList*/ true);
1165
1166 // C++14 [dcl.init.aggr]p13:
1167 // If the assignment-expression can initialize a member, the member is
1168 // initialized. Otherwise [...] brace elision is assumed
1169 //
1170 // Brace elision is never performed if the element is not an
1171 // assignment-expression.
1172 if (Seq || isa<InitListExpr>(expr)) {
1173 if (!VerifyOnly) {
1174 ExprResult Result =
1175 Seq.Perform(SemaRef, Entity, Kind, expr);
1176 if (Result.isInvalid())
1177 hadError = true;
1178
1179 UpdateStructuredListElement(StructuredList, StructuredIndex,
1180 Result.getAs<Expr>());
1181 } else if (!Seq)
1182 hadError = true;
1183 ++Index;
1184 return;
1185 }
1186
1187 // Fall through for subaggregate initialization
1188 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1189 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1190 return CheckScalarType(Entity, IList, ElemType, Index,
1191 StructuredList, StructuredIndex);
1192 } else if (const ArrayType *arrayType =
1193 SemaRef.Context.getAsArrayType(ElemType)) {
1194 // arrayType can be incomplete if we're initializing a flexible
1195 // array member. There's nothing we can do with the completed
1196 // type here, though.
1197
1198 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1199 if (!VerifyOnly) {
1200 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1201 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1202 }
1203 ++Index;
1204 return;
1205 }
1206
1207 // Fall through for subaggregate initialization.
1208
1209 } else {
1210 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isClkEventT()) && "Unexpected type")
? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isClkEventT()) && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1211, __PRETTY_FUNCTION__))
1211 ElemType->isClkEventT()) && "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isClkEventT()) && "Unexpected type")
? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isClkEventT()) && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1211, __PRETTY_FUNCTION__))
;
1212
1213 // C99 6.7.8p13:
1214 //
1215 // The initializer for a structure or union object that has
1216 // automatic storage duration shall be either an initializer
1217 // list as described below, or a single expression that has
1218 // compatible structure or union type. In the latter case, the
1219 // initial value of the object, including unnamed members, is
1220 // that of the expression.
1221 ExprResult ExprRes = expr;
1222 if (SemaRef.CheckSingleAssignmentConstraints(
1223 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1224 if (ExprRes.isInvalid())
1225 hadError = true;
1226 else {
1227 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1228 if (ExprRes.isInvalid())
1229 hadError = true;
1230 }
1231 UpdateStructuredListElement(StructuredList, StructuredIndex,
1232 ExprRes.getAs<Expr>());
1233 ++Index;
1234 return;
1235 }
1236 ExprRes.get();
1237 // Fall through for subaggregate initialization
1238 }
1239
1240 // C++ [dcl.init.aggr]p12:
1241 //
1242 // [...] Otherwise, if the member is itself a non-empty
1243 // subaggregate, brace elision is assumed and the initializer is
1244 // considered for the initialization of the first member of
1245 // the subaggregate.
1246 // OpenCL vector initializer is handled elsewhere.
1247 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1248 ElemType->isAggregateType()) {
1249 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1250 StructuredIndex);
1251 ++StructuredIndex;
1252 } else {
1253 if (!VerifyOnly) {
1254 // We cannot initialize this element, so let
1255 // PerformCopyInitialization produce the appropriate diagnostic.
1256 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1257 /*TopLevelOfInitList=*/true);
1258 }
1259 hadError = true;
1260 ++Index;
1261 ++StructuredIndex;
1262 }
1263}
1264
1265void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1266 InitListExpr *IList, QualType DeclType,
1267 unsigned &Index,
1268 InitListExpr *StructuredList,
1269 unsigned &StructuredIndex) {
1270 assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero"
) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1270, __PRETTY_FUNCTION__))
;
1271
1272 // As an extension, clang supports complex initializers, which initialize
1273 // a complex number component-wise. When an explicit initializer list for
1274 // a complex number contains two two initializers, this extension kicks in:
1275 // it exepcts the initializer list to contain two elements convertible to
1276 // the element type of the complex type. The first element initializes
1277 // the real part, and the second element intitializes the imaginary part.
1278
1279 if (IList->getNumInits() != 2)
1280 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1281 StructuredIndex);
1282
1283 // This is an extension in C. (The builtin _Complex type does not exist
1284 // in the C++ standard.)
1285 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1286 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1287 << IList->getSourceRange();
1288
1289 // Initialize the complex number.
1290 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1291 InitializedEntity ElementEntity =
1292 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1293
1294 for (unsigned i = 0; i < 2; ++i) {
1295 ElementEntity.setElementIndex(Index);
1296 CheckSubElementType(ElementEntity, IList, elementType, Index,
1297 StructuredList, StructuredIndex);
1298 }
1299}
1300
1301void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1302 InitListExpr *IList, QualType DeclType,
1303 unsigned &Index,
1304 InitListExpr *StructuredList,
1305 unsigned &StructuredIndex) {
1306 if (Index >= IList->getNumInits()) {
1307 if (!VerifyOnly)
1308 SemaRef.Diag(IList->getLocStart(),
1309 SemaRef.getLangOpts().CPlusPlus11 ?
1310 diag::warn_cxx98_compat_empty_scalar_initializer :
1311 diag::err_empty_scalar_initializer)
1312 << IList->getSourceRange();
1313 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1314 ++Index;
1315 ++StructuredIndex;
1316 return;
1317 }
1318
1319 Expr *expr = IList->getInit(Index);
1320 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1321 // FIXME: This is invalid, and accepting it causes overload resolution
1322 // to pick the wrong overload in some corner cases.
1323 if (!VerifyOnly)
1324 SemaRef.Diag(SubIList->getLocStart(),
1325 diag::ext_many_braces_around_scalar_init)
1326 << SubIList->getSourceRange();
1327
1328 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1329 StructuredIndex);
1330 return;
1331 } else if (isa<DesignatedInitExpr>(expr)) {
1332 if (!VerifyOnly)
1333 SemaRef.Diag(expr->getLocStart(),
1334 diag::err_designator_for_scalar_init)
1335 << DeclType << expr->getSourceRange();
1336 hadError = true;
1337 ++Index;
1338 ++StructuredIndex;
1339 return;
1340 }
1341
1342 if (VerifyOnly) {
1343 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1344 hadError = true;
1345 ++Index;
1346 return;
1347 }
1348
1349 ExprResult Result =
1350 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1351 /*TopLevelOfInitList=*/true);
1352
1353 Expr *ResultExpr = nullptr;
1354
1355 if (Result.isInvalid())
1356 hadError = true; // types weren't compatible.
1357 else {
1358 ResultExpr = Result.getAs<Expr>();
1359
1360 if (ResultExpr != expr) {
1361 // The type was promoted, update initializer list.
1362 IList->setInit(Index, ResultExpr);
1363 }
1364 }
1365 if (hadError)
1366 ++StructuredIndex;
1367 else
1368 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1369 ++Index;
1370}
1371
1372void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1373 InitListExpr *IList, QualType DeclType,
1374 unsigned &Index,
1375 InitListExpr *StructuredList,
1376 unsigned &StructuredIndex) {
1377 if (Index >= IList->getNumInits()) {
1378 // FIXME: It would be wonderful if we could point at the actual member. In
1379 // general, it would be useful to pass location information down the stack,
1380 // so that we know the location (or decl) of the "current object" being
1381 // initialized.
1382 if (!VerifyOnly)
1383 SemaRef.Diag(IList->getLocStart(),
1384 diag::err_init_reference_member_uninitialized)
1385 << DeclType
1386 << IList->getSourceRange();
1387 hadError = true;
1388 ++Index;
1389 ++StructuredIndex;
1390 return;
1391 }
1392
1393 Expr *expr = IList->getInit(Index);
1394 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1395 if (!VerifyOnly)
1396 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1397 << DeclType << IList->getSourceRange();
1398 hadError = true;
1399 ++Index;
1400 ++StructuredIndex;
1401 return;
1402 }
1403
1404 if (VerifyOnly) {
1405 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1406 hadError = true;
1407 ++Index;
1408 return;
1409 }
1410
1411 ExprResult Result =
1412 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1413 /*TopLevelOfInitList=*/true);
1414
1415 if (Result.isInvalid())
1416 hadError = true;
1417
1418 expr = Result.getAs<Expr>();
1419 IList->setInit(Index, expr);
1420
1421 if (hadError)
1422 ++StructuredIndex;
1423 else
1424 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1425 ++Index;
1426}
1427
1428void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1429 InitListExpr *IList, QualType DeclType,
1430 unsigned &Index,
1431 InitListExpr *StructuredList,
1432 unsigned &StructuredIndex) {
1433 const VectorType *VT = DeclType->getAs<VectorType>();
1434 unsigned maxElements = VT->getNumElements();
1435 unsigned numEltsInit = 0;
1436 QualType elementType = VT->getElementType();
1437
1438 if (Index >= IList->getNumInits()) {
1439 // Make sure the element type can be value-initialized.
1440 if (VerifyOnly)
1441 CheckEmptyInitializable(
1442 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1443 IList->getLocEnd());
1444 return;
1445 }
1446
1447 if (!SemaRef.getLangOpts().OpenCL) {
1448 // If the initializing element is a vector, try to copy-initialize
1449 // instead of breaking it apart (which is doomed to failure anyway).
1450 Expr *Init = IList->getInit(Index);
1451 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1452 if (VerifyOnly) {
1453 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1454 hadError = true;
1455 ++Index;
1456 return;
1457 }
1458
1459 ExprResult Result =
1460 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1461 /*TopLevelOfInitList=*/true);
1462
1463 Expr *ResultExpr = nullptr;
1464 if (Result.isInvalid())
1465 hadError = true; // types weren't compatible.
1466 else {
1467 ResultExpr = Result.getAs<Expr>();
1468
1469 if (ResultExpr != Init) {
1470 // The type was promoted, update initializer list.
1471 IList->setInit(Index, ResultExpr);
1472 }
1473 }
1474 if (hadError)
1475 ++StructuredIndex;
1476 else
1477 UpdateStructuredListElement(StructuredList, StructuredIndex,
1478 ResultExpr);
1479 ++Index;
1480 return;
1481 }
1482
1483 InitializedEntity ElementEntity =
1484 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1485
1486 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1487 // Don't attempt to go past the end of the init list
1488 if (Index >= IList->getNumInits()) {
1489 if (VerifyOnly)
1490 CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1491 break;
1492 }
1493
1494 ElementEntity.setElementIndex(Index);
1495 CheckSubElementType(ElementEntity, IList, elementType, Index,
1496 StructuredList, StructuredIndex);
1497 }
1498
1499 if (VerifyOnly)
1500 return;
1501
1502 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1503 const VectorType *T = Entity.getType()->getAs<VectorType>();
1504 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1505 T->getVectorKind() == VectorType::NeonPolyVector)) {
1506 // The ability to use vector initializer lists is a GNU vector extension
1507 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1508 // endian machines it works fine, however on big endian machines it
1509 // exhibits surprising behaviour:
1510 //
1511 // uint32x2_t x = {42, 64};
1512 // return vget_lane_u32(x, 0); // Will return 64.
1513 //
1514 // Because of this, explicitly call out that it is non-portable.
1515 //
1516 SemaRef.Diag(IList->getLocStart(),
1517 diag::warn_neon_vector_initializer_non_portable);
1518
1519 const char *typeCode;
1520 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1521
1522 if (elementType->isFloatingType())
1523 typeCode = "f";
1524 else if (elementType->isSignedIntegerType())
1525 typeCode = "s";
1526 else if (elementType->isUnsignedIntegerType())
1527 typeCode = "u";
1528 else
1529 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1529)
;
1530
1531 SemaRef.Diag(IList->getLocStart(),
1532 SemaRef.Context.getTypeSize(VT) > 64 ?
1533 diag::note_neon_vector_initializer_non_portable_q :
1534 diag::note_neon_vector_initializer_non_portable)
1535 << typeCode << typeSize;
1536 }
1537
1538 return;
1539 }
1540
1541 InitializedEntity ElementEntity =
1542 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1543
1544 // OpenCL initializers allows vectors to be constructed from vectors.
1545 for (unsigned i = 0; i < maxElements; ++i) {
1546 // Don't attempt to go past the end of the init list
1547 if (Index >= IList->getNumInits())
1548 break;
1549
1550 ElementEntity.setElementIndex(Index);
1551
1552 QualType IType = IList->getInit(Index)->getType();
1553 if (!IType->isVectorType()) {
1554 CheckSubElementType(ElementEntity, IList, elementType, Index,
1555 StructuredList, StructuredIndex);
1556 ++numEltsInit;
1557 } else {
1558 QualType VecType;
1559 const VectorType *IVT = IType->getAs<VectorType>();
1560 unsigned numIElts = IVT->getNumElements();
1561
1562 if (IType->isExtVectorType())
1563 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1564 else
1565 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1566 IVT->getVectorKind());
1567 CheckSubElementType(ElementEntity, IList, VecType, Index,
1568 StructuredList, StructuredIndex);
1569 numEltsInit += numIElts;
1570 }
1571 }
1572
1573 // OpenCL requires all elements to be initialized.
1574 if (numEltsInit != maxElements) {
1575 if (!VerifyOnly)
1576 SemaRef.Diag(IList->getLocStart(),
1577 diag::err_vector_incorrect_num_initializers)
1578 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1579 hadError = true;
1580 }
1581}
1582
1583void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1584 InitListExpr *IList, QualType &DeclType,
1585 llvm::APSInt elementIndex,
1586 bool SubobjectIsDesignatorContext,
1587 unsigned &Index,
1588 InitListExpr *StructuredList,
1589 unsigned &StructuredIndex) {
1590 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1591
1592 // Check for the special-case of initializing an array with a string.
1593 if (Index < IList->getNumInits()) {
1594 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1595 SIF_None) {
1596 // We place the string literal directly into the resulting
1597 // initializer list. This is the only place where the structure
1598 // of the structured initializer list doesn't match exactly,
1599 // because doing so would involve allocating one character
1600 // constant for each string.
1601 if (!VerifyOnly) {
1602 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1603 UpdateStructuredListElement(StructuredList, StructuredIndex,
1604 IList->getInit(Index));
1605 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1606 }
1607 ++Index;
1608 return;
1609 }
1610 }
1611 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1612 // Check for VLAs; in standard C it would be possible to check this
1613 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1614 // them in all sorts of strange places).
1615 if (!VerifyOnly)
1616 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1617 diag::err_variable_object_no_init)
1618 << VAT->getSizeExpr()->getSourceRange();
1619 hadError = true;
1620 ++Index;
1621 ++StructuredIndex;
1622 return;
1623 }
1624
1625 // We might know the maximum number of elements in advance.
1626 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1627 elementIndex.isUnsigned());
1628 bool maxElementsKnown = false;
1629 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1630 maxElements = CAT->getSize();
1631 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1632 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1633 maxElementsKnown = true;
1634 }
1635
1636 QualType elementType = arrayType->getElementType();
1637 while (Index < IList->getNumInits()) {
1638 Expr *Init = IList->getInit(Index);
1639 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1640 // If we're not the subobject that matches up with the '{' for
1641 // the designator, we shouldn't be handling the
1642 // designator. Return immediately.
1643 if (!SubobjectIsDesignatorContext)
1644 return;
1645
1646 // Handle this designated initializer. elementIndex will be
1647 // updated to be the next array element we'll initialize.
1648 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1649 DeclType, nullptr, &elementIndex, Index,
1650 StructuredList, StructuredIndex, true,
1651 false)) {
1652 hadError = true;
1653 continue;
1654 }
1655
1656 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1657 maxElements = maxElements.extend(elementIndex.getBitWidth());
1658 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1659 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1660 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1661
1662 // If the array is of incomplete type, keep track of the number of
1663 // elements in the initializer.
1664 if (!maxElementsKnown && elementIndex > maxElements)
1665 maxElements = elementIndex;
1666
1667 continue;
1668 }
1669
1670 // If we know the maximum number of elements, and we've already
1671 // hit it, stop consuming elements in the initializer list.
1672 if (maxElementsKnown && elementIndex == maxElements)
1673 break;
1674
1675 InitializedEntity ElementEntity =
1676 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1677 Entity);
1678 // Check this element.
1679 CheckSubElementType(ElementEntity, IList, elementType, Index,
1680 StructuredList, StructuredIndex);
1681 ++elementIndex;
1682
1683 // If the array is of incomplete type, keep track of the number of
1684 // elements in the initializer.
1685 if (!maxElementsKnown && elementIndex > maxElements)
1686 maxElements = elementIndex;
1687 }
1688 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1689 // If this is an incomplete array type, the actual type needs to
1690 // be calculated here.
1691 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1692 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1693 // Sizing an array implicitly to zero is not allowed by ISO C,
1694 // but is supported by GNU.
1695 SemaRef.Diag(IList->getLocStart(),
1696 diag::ext_typecheck_zero_array_size);
1697 }
1698
1699 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1700 ArrayType::Normal, 0);
1701 }
1702 if (!hadError && VerifyOnly) {
1703 // If there are any members of the array that get value-initialized, check
1704 // that is possible. That happens if we know the bound and don't have
1705 // enough elements, or if we're performing an array new with an unknown
1706 // bound.
1707 // FIXME: This needs to detect holes left by designated initializers too.
1708 if ((maxElementsKnown && elementIndex < maxElements) ||
1709 Entity.isVariableLengthArrayNew())
1710 CheckEmptyInitializable(InitializedEntity::InitializeElement(
1711 SemaRef.Context, 0, Entity),
1712 IList->getLocEnd());
1713 }
1714}
1715
1716bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1717 Expr *InitExpr,
1718 FieldDecl *Field,
1719 bool TopLevelObject) {
1720 // Handle GNU flexible array initializers.
1721 unsigned FlexArrayDiag;
1722 if (isa<InitListExpr>(InitExpr) &&
1723 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1724 // Empty flexible array init always allowed as an extension
1725 FlexArrayDiag = diag::ext_flexible_array_init;
1726 } else if (SemaRef.getLangOpts().CPlusPlus) {
1727 // Disallow flexible array init in C++; it is not required for gcc
1728 // compatibility, and it needs work to IRGen correctly in general.
1729 FlexArrayDiag = diag::err_flexible_array_init;
1730 } else if (!TopLevelObject) {
1731 // Disallow flexible array init on non-top-level object
1732 FlexArrayDiag = diag::err_flexible_array_init;
1733 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1734 // Disallow flexible array init on anything which is not a variable.
1735 FlexArrayDiag = diag::err_flexible_array_init;
1736 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1737 // Disallow flexible array init on local variables.
1738 FlexArrayDiag = diag::err_flexible_array_init;
1739 } else {
1740 // Allow other cases.
1741 FlexArrayDiag = diag::ext_flexible_array_init;
1742 }
1743
1744 if (!VerifyOnly) {
1745 SemaRef.Diag(InitExpr->getLocStart(),
1746 FlexArrayDiag)
1747 << InitExpr->getLocStart();
1748 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1749 << Field;
1750 }
1751
1752 return FlexArrayDiag != diag::ext_flexible_array_init;
1753}
1754
1755void InitListChecker::CheckStructUnionTypes(
1756 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1757 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1758 bool SubobjectIsDesignatorContext, unsigned &Index,
1759 InitListExpr *StructuredList, unsigned &StructuredIndex,
1760 bool TopLevelObject) {
1761 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1762
1763 // If the record is invalid, some of it's members are invalid. To avoid
1764 // confusion, we forgo checking the intializer for the entire record.
1765 if (structDecl->isInvalidDecl()) {
1766 // Assume it was supposed to consume a single initializer.
1767 ++Index;
1768 hadError = true;
1769 return;
1770 }
1771
1772 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1773 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1774
1775 // If there's a default initializer, use it.
1776 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1777 if (VerifyOnly)
1778 return;
1779 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1780 Field != FieldEnd; ++Field) {
1781 if (Field->hasInClassInitializer()) {
1782 StructuredList->setInitializedFieldInUnion(*Field);
1783 // FIXME: Actually build a CXXDefaultInitExpr?
1784 return;
1785 }
1786 }
1787 }
1788
1789 // Value-initialize the first member of the union that isn't an unnamed
1790 // bitfield.
1791 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1792 Field != FieldEnd; ++Field) {
1793 if (!Field->isUnnamedBitfield()) {
1794 if (VerifyOnly)
1795 CheckEmptyInitializable(
1796 InitializedEntity::InitializeMember(*Field, &Entity),
1797 IList->getLocEnd());
1798 else
1799 StructuredList->setInitializedFieldInUnion(*Field);
1800 break;
1801 }
1802 }
1803 return;
1804 }
1805
1806 bool InitializedSomething = false;
1807
1808 // If we have any base classes, they are initialized prior to the fields.
1809 for (auto &Base : Bases) {
1810 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1811 SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd();
1812
1813 // Designated inits always initialize fields, so if we see one, all
1814 // remaining base classes have no explicit initializer.
1815 if (Init && isa<DesignatedInitExpr>(Init))
1816 Init = nullptr;
1817
1818 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1819 SemaRef.Context, &Base, false, &Entity);
1820 if (Init) {
1821 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1822 StructuredList, StructuredIndex);
1823 InitializedSomething = true;
1824 } else if (VerifyOnly) {
1825 CheckEmptyInitializable(BaseEntity, InitLoc);
1826 }
1827 }
1828
1829 // If structDecl is a forward declaration, this loop won't do
1830 // anything except look at designated initializers; That's okay,
1831 // because an error should get printed out elsewhere. It might be
1832 // worthwhile to skip over the rest of the initializer, though.
1833 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1834 RecordDecl::field_iterator FieldEnd = RD->field_end();
1835 bool CheckForMissingFields = true;
1836 while (Index < IList->getNumInits()) {
1837 Expr *Init = IList->getInit(Index);
1838
1839 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1840 // If we're not the subobject that matches up with the '{' for
1841 // the designator, we shouldn't be handling the
1842 // designator. Return immediately.
1843 if (!SubobjectIsDesignatorContext)
1844 return;
1845
1846 // Handle this designated initializer. Field will be updated to
1847 // the next field that we'll be initializing.
1848 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1849 DeclType, &Field, nullptr, Index,
1850 StructuredList, StructuredIndex,
1851 true, TopLevelObject))
1852 hadError = true;
1853
1854 InitializedSomething = true;
1855
1856 // Disable check for missing fields when designators are used.
1857 // This matches gcc behaviour.
1858 CheckForMissingFields = false;
1859 continue;
1860 }
1861
1862 if (Field == FieldEnd) {
1863 // We've run out of fields. We're done.
1864 break;
1865 }
1866
1867 // We've already initialized a member of a union. We're done.
1868 if (InitializedSomething && DeclType->isUnionType())
1869 break;
1870
1871 // If we've hit the flexible array member at the end, we're done.
1872 if (Field->getType()->isIncompleteArrayType())
1873 break;
1874
1875 if (Field->isUnnamedBitfield()) {
1876 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1877 ++Field;
1878 continue;
1879 }
1880
1881 // Make sure we can use this declaration.
1882 bool InvalidUse;
1883 if (VerifyOnly)
1884 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
1885 else
1886 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1887 IList->getInit(Index)->getLocStart());
1888 if (InvalidUse) {
1889 ++Index;
1890 ++Field;
1891 hadError = true;
1892 continue;
1893 }
1894
1895 InitializedEntity MemberEntity =
1896 InitializedEntity::InitializeMember(*Field, &Entity);
1897 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1898 StructuredList, StructuredIndex);
1899 InitializedSomething = true;
1900
1901 if (DeclType->isUnionType() && !VerifyOnly) {
1902 // Initialize the first field within the union.
1903 StructuredList->setInitializedFieldInUnion(*Field);
1904 }
1905
1906 ++Field;
1907 }
1908
1909 // Emit warnings for missing struct field initializers.
1910 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1911 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1912 !DeclType->isUnionType()) {
1913 // It is possible we have one or more unnamed bitfields remaining.
1914 // Find first (if any) named field and emit warning.
1915 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1916 it != end; ++it) {
1917 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1918 SemaRef.Diag(IList->getSourceRange().getEnd(),
1919 diag::warn_missing_field_initializers) << *it;
1920 break;
1921 }
1922 }
1923 }
1924
1925 // Check that any remaining fields can be value-initialized.
1926 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1927 !Field->getType()->isIncompleteArrayType()) {
1928 // FIXME: Should check for holes left by designated initializers too.
1929 for (; Field != FieldEnd && !hadError; ++Field) {
1930 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1931 CheckEmptyInitializable(
1932 InitializedEntity::InitializeMember(*Field, &Entity),
1933 IList->getLocEnd());
1934 }
1935 }
1936
1937 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1938 Index >= IList->getNumInits())
1939 return;
1940
1941 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1942 TopLevelObject)) {
1943 hadError = true;
1944 ++Index;
1945 return;
1946 }
1947
1948 InitializedEntity MemberEntity =
1949 InitializedEntity::InitializeMember(*Field, &Entity);
1950
1951 if (isa<InitListExpr>(IList->getInit(Index)))
1952 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1953 StructuredList, StructuredIndex);
1954 else
1955 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1956 StructuredList, StructuredIndex);
1957}
1958
1959/// \brief Expand a field designator that refers to a member of an
1960/// anonymous struct or union into a series of field designators that
1961/// refers to the field within the appropriate subobject.
1962///
1963static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1964 DesignatedInitExpr *DIE,
1965 unsigned DesigIdx,
1966 IndirectFieldDecl *IndirectField) {
1967 typedef DesignatedInitExpr::Designator Designator;
1968
1969 // Build the replacement designators.
1970 SmallVector<Designator, 4> Replacements;
1971 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1972 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1973 if (PI + 1 == PE)
1974 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1975 DIE->getDesignator(DesigIdx)->getDotLoc(),
1976 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1977 else
1978 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1979 SourceLocation(), SourceLocation()));
1980 assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail
("isa<FieldDecl>(*PI)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 1980, __PRETTY_FUNCTION__))
;
1981 Replacements.back().setField(cast<FieldDecl>(*PI));
1982 }
1983
1984 // Expand the current designator into the set of replacement
1985 // designators, so we have a full subobject path down to where the
1986 // member of the anonymous struct/union is actually stored.
1987 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1988 &Replacements[0] + Replacements.size());
1989}
1990
1991static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1992 DesignatedInitExpr *DIE) {
1993 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1994 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1995 for (unsigned I = 0; I < NumIndexExprs; ++I)
1996 IndexExprs[I] = DIE->getSubExpr(I + 1);
1997 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
1998 IndexExprs,
1999 DIE->getEqualOrColonLoc(),
2000 DIE->usesGNUSyntax(), DIE->getInit());
2001}
2002
2003namespace {
2004
2005// Callback to only accept typo corrections that are for field members of
2006// the given struct or union.
2007class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2008 public:
2009 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2010 : Record(RD) {}
2011
2012 bool ValidateCandidate(const TypoCorrection &candidate) override {
2013 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2014 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2015 }
2016
2017 private:
2018 RecordDecl *Record;
2019};
2020
2021} // end anonymous namespace
2022
2023/// @brief Check the well-formedness of a C99 designated initializer.
2024///
2025/// Determines whether the designated initializer @p DIE, which
2026/// resides at the given @p Index within the initializer list @p
2027/// IList, is well-formed for a current object of type @p DeclType
2028/// (C99 6.7.8). The actual subobject that this designator refers to
2029/// within the current subobject is returned in either
2030/// @p NextField or @p NextElementIndex (whichever is appropriate).
2031///
2032/// @param IList The initializer list in which this designated
2033/// initializer occurs.
2034///
2035/// @param DIE The designated initializer expression.
2036///
2037/// @param DesigIdx The index of the current designator.
2038///
2039/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2040/// into which the designation in @p DIE should refer.
2041///
2042/// @param NextField If non-NULL and the first designator in @p DIE is
2043/// a field, this will be set to the field declaration corresponding
2044/// to the field named by the designator.
2045///
2046/// @param NextElementIndex If non-NULL and the first designator in @p
2047/// DIE is an array designator or GNU array-range designator, this
2048/// will be set to the last index initialized by this designator.
2049///
2050/// @param Index Index into @p IList where the designated initializer
2051/// @p DIE occurs.
2052///
2053/// @param StructuredList The initializer list expression that
2054/// describes all of the subobject initializers in the order they'll
2055/// actually be initialized.
2056///
2057/// @returns true if there was an error, false otherwise.
2058bool
2059InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2060 InitListExpr *IList,
2061 DesignatedInitExpr *DIE,
2062 unsigned DesigIdx,
2063 QualType &CurrentObjectType,
2064 RecordDecl::field_iterator *NextField,
2065 llvm::APSInt *NextElementIndex,
2066 unsigned &Index,
2067 InitListExpr *StructuredList,
2068 unsigned &StructuredIndex,
2069 bool FinishSubobjectInit,
2070 bool TopLevelObject) {
2071 if (DesigIdx == DIE->size()) {
2072 // Check the actual initialization for the designated object type.
2073 bool prevHadError = hadError;
2074
2075 // Temporarily remove the designator expression from the
2076 // initializer list that the child calls see, so that we don't try
2077 // to re-process the designator.
2078 unsigned OldIndex = Index;
2079 IList->setInit(OldIndex, DIE->getInit());
2080
2081 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2082 StructuredList, StructuredIndex);
2083
2084 // Restore the designated initializer expression in the syntactic
2085 // form of the initializer list.
2086 if (IList->getInit(OldIndex) != DIE->getInit())
2087 DIE->setInit(IList->getInit(OldIndex));
2088 IList->setInit(OldIndex, DIE);
2089
2090 return hadError && !prevHadError;
2091 }
2092
2093 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2094 bool IsFirstDesignator = (DesigIdx == 0);
2095 if (!VerifyOnly) {
2096 assert((IsFirstDesignator || StructuredList) &&(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2097, __PRETTY_FUNCTION__))
2097 "Need a non-designated initializer list to start from")(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2097, __PRETTY_FUNCTION__))
;
2098
2099 // Determine the structural initializer list that corresponds to the
2100 // current subobject.
2101 if (IsFirstDesignator)
2102 StructuredList = SyntacticToSemantic.lookup(IList);
2103 else {
2104 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2105 StructuredList->getInit(StructuredIndex) : nullptr;
2106 if (!ExistingInit && StructuredList->hasArrayFiller())
2107 ExistingInit = StructuredList->getArrayFiller();
2108
2109 if (!ExistingInit)
2110 StructuredList =
2111 getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2112 StructuredList, StructuredIndex,
2113 SourceRange(D->getLocStart(),
2114 DIE->getLocEnd()));
2115 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2116 StructuredList = Result;
2117 else {
2118 if (DesignatedInitUpdateExpr *E =
2119 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2120 StructuredList = E->getUpdater();
2121 else {
2122 DesignatedInitUpdateExpr *DIUE =
2123 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2124 D->getLocStart(), ExistingInit,
2125 DIE->getLocEnd());
2126 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2127 StructuredList = DIUE->getUpdater();
2128 }
2129
2130 // We need to check on source range validity because the previous
2131 // initializer does not have to be an explicit initializer. e.g.,
2132 //
2133 // struct P { int a, b; };
2134 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2135 //
2136 // There is an overwrite taking place because the first braced initializer
2137 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2138 if (ExistingInit->getSourceRange().isValid()) {
2139 // We are creating an initializer list that initializes the
2140 // subobjects of the current object, but there was already an
2141 // initialization that completely initialized the current
2142 // subobject, e.g., by a compound literal:
2143 //
2144 // struct X { int a, b; };
2145 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2146 //
2147 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2148 // designated initializer re-initializes the whole
2149 // subobject [0], overwriting previous initializers.
2150 SemaRef.Diag(D->getLocStart(),
2151 diag::warn_subobject_initializer_overrides)
2152 << SourceRange(D->getLocStart(), DIE->getLocEnd());
2153
2154 SemaRef.Diag(ExistingInit->getLocStart(),
2155 diag::note_previous_initializer)
2156 << /*FIXME:has side effects=*/0
2157 << ExistingInit->getSourceRange();
2158 }
2159 }
2160 }
2161 assert(StructuredList && "Expected a structured initializer list")((StructuredList && "Expected a structured initializer list"
) ? static_cast<void> (0) : __assert_fail ("StructuredList && \"Expected a structured initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2161, __PRETTY_FUNCTION__))
;
2162 }
2163
2164 if (D->isFieldDesignator()) {
2165 // C99 6.7.8p7:
2166 //
2167 // If a designator has the form
2168 //
2169 // . identifier
2170 //
2171 // then the current object (defined below) shall have
2172 // structure or union type and the identifier shall be the
2173 // name of a member of that type.
2174 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2175 if (!RT) {
2176 SourceLocation Loc = D->getDotLoc();
2177 if (Loc.isInvalid())
2178 Loc = D->getFieldLoc();
2179 if (!VerifyOnly)
2180 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2181 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2182 ++Index;
2183 return true;
2184 }
2185
2186 FieldDecl *KnownField = D->getField();
2187 if (!KnownField) {
2188 IdentifierInfo *FieldName = D->getFieldName();
2189 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2190 for (NamedDecl *ND : Lookup) {
2191 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2192 KnownField = FD;
2193 break;
2194 }
2195 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2196 // In verify mode, don't modify the original.
2197 if (VerifyOnly)
2198 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2199 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2200 D = DIE->getDesignator(DesigIdx);
2201 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2202 break;
2203 }
2204 }
2205 if (!KnownField) {
2206 if (VerifyOnly) {
2207 ++Index;
2208 return true; // No typo correction when just trying this out.
2209 }
2210
2211 // Name lookup found something, but it wasn't a field.
2212 if (!Lookup.empty()) {
2213 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2214 << FieldName;
2215 SemaRef.Diag(Lookup.front()->getLocation(),
2216 diag::note_field_designator_found);
2217 ++Index;
2218 return true;
2219 }
2220
2221 // Name lookup didn't find anything.
2222 // Determine whether this was a typo for another field name.
2223 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2224 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2225 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2226 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2227 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2228 SemaRef.diagnoseTypo(
2229 Corrected,
2230 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2231 << FieldName << CurrentObjectType);
2232 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2233 hadError = true;
2234 } else {
2235 // Typo correction didn't find anything.
2236 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2237 << FieldName << CurrentObjectType;
2238 ++Index;
2239 return true;
2240 }
2241 }
2242 }
2243
2244 unsigned FieldIndex = 0;
2245
2246 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2247 FieldIndex = CXXRD->getNumBases();
2248
2249 for (auto *FI : RT->getDecl()->fields()) {
2250 if (FI->isUnnamedBitfield())
2251 continue;
2252 if (declaresSameEntity(KnownField, FI)) {
2253 KnownField = FI;
2254 break;
2255 }
2256 ++FieldIndex;
2257 }
2258
2259 RecordDecl::field_iterator Field =
2260 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2261
2262 // All of the fields of a union are located at the same place in
2263 // the initializer list.
2264 if (RT->getDecl()->isUnion()) {
2265 FieldIndex = 0;
2266 if (!VerifyOnly) {
2267 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2268 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2269 assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2270, __PRETTY_FUNCTION__))
2270 && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2270, __PRETTY_FUNCTION__))
;
2271
2272 // We're about to throw away an initializer, emit warning.
2273 SemaRef.Diag(D->getFieldLoc(),
2274 diag::warn_initializer_overrides)
2275 << D->getSourceRange();
2276 Expr *ExistingInit = StructuredList->getInit(0);
2277 SemaRef.Diag(ExistingInit->getLocStart(),
2278 diag::note_previous_initializer)
2279 << /*FIXME:has side effects=*/0
2280 << ExistingInit->getSourceRange();
2281
2282 // remove existing initializer
2283 StructuredList->resizeInits(SemaRef.Context, 0);
2284 StructuredList->setInitializedFieldInUnion(nullptr);
2285 }
2286
2287 StructuredList->setInitializedFieldInUnion(*Field);
2288 }
2289 }
2290
2291 // Make sure we can use this declaration.
2292 bool InvalidUse;
2293 if (VerifyOnly)
2294 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2295 else
2296 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2297 if (InvalidUse) {
2298 ++Index;
2299 return true;
2300 }
2301
2302 if (!VerifyOnly) {
2303 // Update the designator with the field declaration.
2304 D->setField(*Field);
2305
2306 // Make sure that our non-designated initializer list has space
2307 // for a subobject corresponding to this field.
2308 if (FieldIndex >= StructuredList->getNumInits())
2309 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2310 }
2311
2312 // This designator names a flexible array member.
2313 if (Field->getType()->isIncompleteArrayType()) {
2314 bool Invalid = false;
2315 if ((DesigIdx + 1) != DIE->size()) {
2316 // We can't designate an object within the flexible array
2317 // member (because GCC doesn't allow it).
2318 if (!VerifyOnly) {
2319 DesignatedInitExpr::Designator *NextD
2320 = DIE->getDesignator(DesigIdx + 1);
2321 SemaRef.Diag(NextD->getLocStart(),
2322 diag::err_designator_into_flexible_array_member)
2323 << SourceRange(NextD->getLocStart(),
2324 DIE->getLocEnd());
2325 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2326 << *Field;
2327 }
2328 Invalid = true;
2329 }
2330
2331 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2332 !isa<StringLiteral>(DIE->getInit())) {
2333 // The initializer is not an initializer list.
2334 if (!VerifyOnly) {
2335 SemaRef.Diag(DIE->getInit()->getLocStart(),
2336 diag::err_flexible_array_init_needs_braces)
2337 << DIE->getInit()->getSourceRange();
2338 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2339 << *Field;
2340 }
2341 Invalid = true;
2342 }
2343
2344 // Check GNU flexible array initializer.
2345 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2346 TopLevelObject))
2347 Invalid = true;
2348
2349 if (Invalid) {
2350 ++Index;
2351 return true;
2352 }
2353
2354 // Initialize the array.
2355 bool prevHadError = hadError;
2356 unsigned newStructuredIndex = FieldIndex;
2357 unsigned OldIndex = Index;
2358 IList->setInit(Index, DIE->getInit());
2359
2360 InitializedEntity MemberEntity =
2361 InitializedEntity::InitializeMember(*Field, &Entity);
2362 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2363 StructuredList, newStructuredIndex);
2364
2365 IList->setInit(OldIndex, DIE);
2366 if (hadError && !prevHadError) {
2367 ++Field;
2368 ++FieldIndex;
2369 if (NextField)
2370 *NextField = Field;
2371 StructuredIndex = FieldIndex;
2372 return true;
2373 }
2374 } else {
2375 // Recurse to check later designated subobjects.
2376 QualType FieldType = Field->getType();
2377 unsigned newStructuredIndex = FieldIndex;
2378
2379 InitializedEntity MemberEntity =
2380 InitializedEntity::InitializeMember(*Field, &Entity);
2381 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2382 FieldType, nullptr, nullptr, Index,
2383 StructuredList, newStructuredIndex,
2384 FinishSubobjectInit, false))
2385 return true;
2386 }
2387
2388 // Find the position of the next field to be initialized in this
2389 // subobject.
2390 ++Field;
2391 ++FieldIndex;
2392
2393 // If this the first designator, our caller will continue checking
2394 // the rest of this struct/class/union subobject.
2395 if (IsFirstDesignator) {
2396 if (NextField)
2397 *NextField = Field;
2398 StructuredIndex = FieldIndex;
2399 return false;
2400 }
2401
2402 if (!FinishSubobjectInit)
2403 return false;
2404
2405 // We've already initialized something in the union; we're done.
2406 if (RT->getDecl()->isUnion())
2407 return hadError;
2408
2409 // Check the remaining fields within this class/struct/union subobject.
2410 bool prevHadError = hadError;
2411
2412 auto NoBases =
2413 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2414 CXXRecordDecl::base_class_iterator());
2415 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2416 false, Index, StructuredList, FieldIndex);
2417 return hadError && !prevHadError;
2418 }
2419
2420 // C99 6.7.8p6:
2421 //
2422 // If a designator has the form
2423 //
2424 // [ constant-expression ]
2425 //
2426 // then the current object (defined below) shall have array
2427 // type and the expression shall be an integer constant
2428 // expression. If the array is of unknown size, any
2429 // nonnegative value is valid.
2430 //
2431 // Additionally, cope with the GNU extension that permits
2432 // designators of the form
2433 //
2434 // [ constant-expression ... constant-expression ]
2435 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2436 if (!AT) {
2437 if (!VerifyOnly)
2438 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2439 << CurrentObjectType;
2440 ++Index;
2441 return true;
2442 }
2443
2444 Expr *IndexExpr = nullptr;
2445 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2446 if (D->isArrayDesignator()) {
2447 IndexExpr = DIE->getArrayIndex(*D);
2448 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2449 DesignatedEndIndex = DesignatedStartIndex;
2450 } else {
2451 assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator"
) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2451, __PRETTY_FUNCTION__))
;
2452
2453 DesignatedStartIndex =
2454 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2455 DesignatedEndIndex =
2456 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2457 IndexExpr = DIE->getArrayRangeEnd(*D);
2458
2459 // Codegen can't handle evaluating array range designators that have side
2460 // effects, because we replicate the AST value for each initialized element.
2461 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2462 // elements with something that has a side effect, so codegen can emit an
2463 // "error unsupported" error instead of miscompiling the app.
2464 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2465 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2466 FullyStructuredList->sawArrayRangeDesignator();
2467 }
2468
2469 if (isa<ConstantArrayType>(AT)) {
2470 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2471 DesignatedStartIndex
2472 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2473 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2474 DesignatedEndIndex
2475 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2476 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2477 if (DesignatedEndIndex >= MaxElements) {
2478 if (!VerifyOnly)
2479 SemaRef.Diag(IndexExpr->getLocStart(),
2480 diag::err_array_designator_too_large)
2481 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2482 << IndexExpr->getSourceRange();
2483 ++Index;
2484 return true;
2485 }
2486 } else {
2487 unsigned DesignatedIndexBitWidth =
2488 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2489 DesignatedStartIndex =
2490 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2491 DesignatedEndIndex =
2492 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2493 DesignatedStartIndex.setIsUnsigned(true);
2494 DesignatedEndIndex.setIsUnsigned(true);
2495 }
2496
2497 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2498 // We're modifying a string literal init; we have to decompose the string
2499 // so we can modify the individual characters.
2500 ASTContext &Context = SemaRef.Context;
2501 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2502
2503 // Compute the character type
2504 QualType CharTy = AT->getElementType();
2505
2506 // Compute the type of the integer literals.
2507 QualType PromotedCharTy = CharTy;
2508 if (CharTy->isPromotableIntegerType())
2509 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2510 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2511
2512 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2513 // Get the length of the string.
2514 uint64_t StrLen = SL->getLength();
2515 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2516 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2517 StructuredList->resizeInits(Context, StrLen);
2518
2519 // Build a literal for each character in the string, and put them into
2520 // the init list.
2521 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2522 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2523 Expr *Init = new (Context) IntegerLiteral(
2524 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2525 if (CharTy != PromotedCharTy)
2526 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2527 Init, nullptr, VK_RValue);
2528 StructuredList->updateInit(Context, i, Init);
2529 }
2530 } else {
2531 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2532 std::string Str;
2533 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2534
2535 // Get the length of the string.
2536 uint64_t StrLen = Str.size();
2537 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2538 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2539 StructuredList->resizeInits(Context, StrLen);
2540
2541 // Build a literal for each character in the string, and put them into
2542 // the init list.
2543 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2544 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2545 Expr *Init = new (Context) IntegerLiteral(
2546 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2547 if (CharTy != PromotedCharTy)
2548 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2549 Init, nullptr, VK_RValue);
2550 StructuredList->updateInit(Context, i, Init);
2551 }
2552 }
2553 }
2554
2555 // Make sure that our non-designated initializer list has space
2556 // for a subobject corresponding to this array element.
2557 if (!VerifyOnly &&
2558 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2559 StructuredList->resizeInits(SemaRef.Context,
2560 DesignatedEndIndex.getZExtValue() + 1);
2561
2562 // Repeatedly perform subobject initializations in the range
2563 // [DesignatedStartIndex, DesignatedEndIndex].
2564
2565 // Move to the next designator
2566 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2567 unsigned OldIndex = Index;
2568
2569 InitializedEntity ElementEntity =
2570 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2571
2572 while (DesignatedStartIndex <= DesignatedEndIndex) {
2573 // Recurse to check later designated subobjects.
2574 QualType ElementType = AT->getElementType();
2575 Index = OldIndex;
2576
2577 ElementEntity.setElementIndex(ElementIndex);
2578 if (CheckDesignatedInitializer(
2579 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2580 nullptr, Index, StructuredList, ElementIndex,
2581 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2582 false))
2583 return true;
2584
2585 // Move to the next index in the array that we'll be initializing.
2586 ++DesignatedStartIndex;
2587 ElementIndex = DesignatedStartIndex.getZExtValue();
2588 }
2589
2590 // If this the first designator, our caller will continue checking
2591 // the rest of this array subobject.
2592 if (IsFirstDesignator) {
2593 if (NextElementIndex)
2594 *NextElementIndex = DesignatedStartIndex;
2595 StructuredIndex = ElementIndex;
2596 return false;
2597 }
2598
2599 if (!FinishSubobjectInit)
2600 return false;
2601
2602 // Check the remaining elements within this array subobject.
2603 bool prevHadError = hadError;
2604 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2605 /*SubobjectIsDesignatorContext=*/false, Index,
2606 StructuredList, ElementIndex);
2607 return hadError && !prevHadError;
2608}
2609
2610// Get the structured initializer list for a subobject of type
2611// @p CurrentObjectType.
2612InitListExpr *
2613InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2614 QualType CurrentObjectType,
2615 InitListExpr *StructuredList,
2616 unsigned StructuredIndex,
2617 SourceRange InitRange,
2618 bool IsFullyOverwritten) {
2619 if (VerifyOnly)
2620 return nullptr; // No structured list in verification-only mode.
2621 Expr *ExistingInit = nullptr;
2622 if (!StructuredList)
2623 ExistingInit = SyntacticToSemantic.lookup(IList);
2624 else if (StructuredIndex < StructuredList->getNumInits())
2625 ExistingInit = StructuredList->getInit(StructuredIndex);
2626
2627 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2628 // There might have already been initializers for subobjects of the current
2629 // object, but a subsequent initializer list will overwrite the entirety
2630 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2631 //
2632 // struct P { char x[6]; };
2633 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2634 //
2635 // The first designated initializer is ignored, and l.x is just "f".
2636 if (!IsFullyOverwritten)
2637 return Result;
2638
2639 if (ExistingInit) {
2640 // We are creating an initializer list that initializes the
2641 // subobjects of the current object, but there was already an
2642 // initialization that completely initialized the current
2643 // subobject, e.g., by a compound literal:
2644 //
2645 // struct X { int a, b; };
2646 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2647 //
2648 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2649 // designated initializer re-initializes the whole
2650 // subobject [0], overwriting previous initializers.
2651 SemaRef.Diag(InitRange.getBegin(),
2652 diag::warn_subobject_initializer_overrides)
2653 << InitRange;
2654 SemaRef.Diag(ExistingInit->getLocStart(),
2655 diag::note_previous_initializer)
2656 << /*FIXME:has side effects=*/0
2657 << ExistingInit->getSourceRange();
2658 }
2659
2660 InitListExpr *Result
2661 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2662 InitRange.getBegin(), None,
2663 InitRange.getEnd());
2664
2665 QualType ResultType = CurrentObjectType;
2666 if (!ResultType->isArrayType())
2667 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2668 Result->setType(ResultType);
2669
2670 // Pre-allocate storage for the structured initializer list.
2671 unsigned NumElements = 0;
2672 unsigned NumInits = 0;
2673 bool GotNumInits = false;
2674 if (!StructuredList) {
2675 NumInits = IList->getNumInits();
2676 GotNumInits = true;
2677 } else if (Index < IList->getNumInits()) {
2678 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2679 NumInits = SubList->getNumInits();
2680 GotNumInits = true;
2681 }
2682 }
2683
2684 if (const ArrayType *AType
2685 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2686 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2687 NumElements = CAType->getSize().getZExtValue();
2688 // Simple heuristic so that we don't allocate a very large
2689 // initializer with many empty entries at the end.
2690 if (GotNumInits && NumElements > NumInits)
2691 NumElements = 0;
2692 }
2693 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2694 NumElements = VType->getNumElements();
2695 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2696 RecordDecl *RDecl = RType->getDecl();
2697 if (RDecl->isUnion())
2698 NumElements = 1;
2699 else
2700 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2701 }
2702
2703 Result->reserveInits(SemaRef.Context, NumElements);
2704
2705 // Link this new initializer list into the structured initializer
2706 // lists.
2707 if (StructuredList)
2708 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2709 else {
2710 Result->setSyntacticForm(IList);
2711 SyntacticToSemantic[IList] = Result;
2712 }
2713
2714 return Result;
2715}
2716
2717/// Update the initializer at index @p StructuredIndex within the
2718/// structured initializer list to the value @p expr.
2719void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2720 unsigned &StructuredIndex,
2721 Expr *expr) {
2722 // No structured initializer list to update
2723 if (!StructuredList)
2724 return;
2725
2726 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2727 StructuredIndex, expr)) {
2728 // This initializer overwrites a previous initializer. Warn.
2729 // We need to check on source range validity because the previous
2730 // initializer does not have to be an explicit initializer.
2731 // struct P { int a, b; };
2732 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2733 // There is an overwrite taking place because the first braced initializer
2734 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2735 if (PrevInit->getSourceRange().isValid()) {
2736 SemaRef.Diag(expr->getLocStart(),
2737 diag::warn_initializer_overrides)
2738 << expr->getSourceRange();
2739
2740 SemaRef.Diag(PrevInit->getLocStart(),
2741 diag::note_previous_initializer)
2742 << /*FIXME:has side effects=*/0
2743 << PrevInit->getSourceRange();
2744 }
2745 }
2746
2747 ++StructuredIndex;
2748}
2749
2750/// Check that the given Index expression is a valid array designator
2751/// value. This is essentially just a wrapper around
2752/// VerifyIntegerConstantExpression that also checks for negative values
2753/// and produces a reasonable diagnostic if there is a
2754/// failure. Returns the index expression, possibly with an implicit cast
2755/// added, on success. If everything went okay, Value will receive the
2756/// value of the constant expression.
2757static ExprResult
2758CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2759 SourceLocation Loc = Index->getLocStart();
2760
2761 // Make sure this is an integer constant expression.
2762 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2763 if (Result.isInvalid())
2764 return Result;
2765
2766 if (Value.isSigned() && Value.isNegative())
2767 return S.Diag(Loc, diag::err_array_designator_negative)
2768 << Value.toString(10) << Index->getSourceRange();
2769
2770 Value.setIsUnsigned(true);
2771 return Result;
2772}
2773
2774ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2775 SourceLocation Loc,
2776 bool GNUSyntax,
2777 ExprResult Init) {
2778 typedef DesignatedInitExpr::Designator ASTDesignator;
2779
2780 bool Invalid = false;
2781 SmallVector<ASTDesignator, 32> Designators;
2782 SmallVector<Expr *, 32> InitExpressions;
2783
2784 // Build designators and check array designator expressions.
2785 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2786 const Designator &D = Desig.getDesignator(Idx);
2787 switch (D.getKind()) {
2788 case Designator::FieldDesignator:
2789 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2790 D.getFieldLoc()));
2791 break;
2792
2793 case Designator::ArrayDesignator: {
2794 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2795 llvm::APSInt IndexValue;
2796 if (!Index->isTypeDependent() && !Index->isValueDependent())
2797 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2798 if (!Index)
2799 Invalid = true;
2800 else {
2801 Designators.push_back(ASTDesignator(InitExpressions.size(),
2802 D.getLBracketLoc(),
2803 D.getRBracketLoc()));
2804 InitExpressions.push_back(Index);
2805 }
2806 break;
2807 }
2808
2809 case Designator::ArrayRangeDesignator: {
2810 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2811 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2812 llvm::APSInt StartValue;
2813 llvm::APSInt EndValue;
2814 bool StartDependent = StartIndex->isTypeDependent() ||
2815 StartIndex->isValueDependent();
2816 bool EndDependent = EndIndex->isTypeDependent() ||
2817 EndIndex->isValueDependent();
2818 if (!StartDependent)
2819 StartIndex =
2820 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2821 if (!EndDependent)
2822 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2823
2824 if (!StartIndex || !EndIndex)
2825 Invalid = true;
2826 else {
2827 // Make sure we're comparing values with the same bit width.
2828 if (StartDependent || EndDependent) {
2829 // Nothing to compute.
2830 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2831 EndValue = EndValue.extend(StartValue.getBitWidth());
2832 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2833 StartValue = StartValue.extend(EndValue.getBitWidth());
2834
2835 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2836 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2837 << StartValue.toString(10) << EndValue.toString(10)
2838 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2839 Invalid = true;
2840 } else {
2841 Designators.push_back(ASTDesignator(InitExpressions.size(),
2842 D.getLBracketLoc(),
2843 D.getEllipsisLoc(),
2844 D.getRBracketLoc()));
2845 InitExpressions.push_back(StartIndex);
2846 InitExpressions.push_back(EndIndex);
2847 }
2848 }
2849 break;
2850 }
2851 }
2852 }
2853
2854 if (Invalid || Init.isInvalid())
2855 return ExprError();
2856
2857 // Clear out the expressions within the designation.
2858 Desig.ClearExprs(*this);
2859
2860 DesignatedInitExpr *DIE
2861 = DesignatedInitExpr::Create(Context,
2862 Designators,
2863 InitExpressions, Loc, GNUSyntax,
2864 Init.getAs<Expr>());
2865
2866 if (!getLangOpts().C99)
2867 Diag(DIE->getLocStart(), diag::ext_designated_init)
2868 << DIE->getSourceRange();
2869
2870 return DIE;
2871}
2872
2873//===----------------------------------------------------------------------===//
2874// Initialization entity
2875//===----------------------------------------------------------------------===//
2876
2877InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2878 const InitializedEntity &Parent)
2879 : Parent(&Parent), Index(Index)
2880{
2881 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2882 Kind = EK_ArrayElement;
2883 Type = AT->getElementType();
2884 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2885 Kind = EK_VectorElement;
2886 Type = VT->getElementType();
2887 } else {
2888 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2889 assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> (
0) : __assert_fail ("CT && \"Unexpected type\"", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2889, __PRETTY_FUNCTION__))
;
2890 Kind = EK_ComplexElement;
2891 Type = CT->getElementType();
2892 }
2893}
2894
2895InitializedEntity
2896InitializedEntity::InitializeBase(ASTContext &Context,
2897 const CXXBaseSpecifier *Base,
2898 bool IsInheritedVirtualBase,
2899 const InitializedEntity *Parent) {
2900 InitializedEntity Result;
2901 Result.Kind = EK_Base;
2902 Result.Parent = Parent;
2903 Result.Base = reinterpret_cast<uintptr_t>(Base);
2904 if (IsInheritedVirtualBase)
2905 Result.Base |= 0x01;
2906
2907 Result.Type = Base->getType();
2908 return Result;
2909}
2910
2911DeclarationName InitializedEntity::getName() const {
2912 switch (getKind()) {
2913 case EK_Parameter:
2914 case EK_Parameter_CF_Audited: {
2915 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2916 return (D ? D->getDeclName() : DeclarationName());
2917 }
2918
2919 case EK_Variable:
2920 case EK_Member:
2921 case EK_Binding:
2922 return Variable.VariableOrMember->getDeclName();
2923
2924 case EK_LambdaCapture:
2925 return DeclarationName(Capture.VarID);
2926
2927 case EK_Result:
2928 case EK_Exception:
2929 case EK_New:
2930 case EK_Temporary:
2931 case EK_Base:
2932 case EK_Delegating:
2933 case EK_ArrayElement:
2934 case EK_VectorElement:
2935 case EK_ComplexElement:
2936 case EK_BlockElement:
2937 case EK_CompoundLiteralInit:
2938 case EK_RelatedResult:
2939 return DeclarationName();
2940 }
2941
2942 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2942)
;
2943}
2944
2945ValueDecl *InitializedEntity::getDecl() const {
2946 switch (getKind()) {
2947 case EK_Variable:
2948 case EK_Member:
2949 case EK_Binding:
2950 return Variable.VariableOrMember;
2951
2952 case EK_Parameter:
2953 case EK_Parameter_CF_Audited:
2954 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2955
2956 case EK_Result:
2957 case EK_Exception:
2958 case EK_New:
2959 case EK_Temporary:
2960 case EK_Base:
2961 case EK_Delegating:
2962 case EK_ArrayElement:
2963 case EK_VectorElement:
2964 case EK_ComplexElement:
2965 case EK_BlockElement:
2966 case EK_LambdaCapture:
2967 case EK_CompoundLiteralInit:
2968 case EK_RelatedResult:
2969 return nullptr;
2970 }
2971
2972 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 2972)
;
2973}
2974
2975bool InitializedEntity::allowsNRVO() const {
2976 switch (getKind()) {
2977 case EK_Result:
2978 case EK_Exception:
2979 return LocAndNRVO.NRVO;
2980
2981 case EK_Variable:
2982 case EK_Parameter:
2983 case EK_Parameter_CF_Audited:
2984 case EK_Member:
2985 case EK_Binding:
2986 case EK_New:
2987 case EK_Temporary:
2988 case EK_CompoundLiteralInit:
2989 case EK_Base:
2990 case EK_Delegating:
2991 case EK_ArrayElement:
2992 case EK_VectorElement:
2993 case EK_ComplexElement:
2994 case EK_BlockElement:
2995 case EK_LambdaCapture:
2996 case EK_RelatedResult:
2997 break;
2998 }
2999
3000 return false;
3001}
3002
3003unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3004 assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail
("getParent() != this", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3004, __PRETTY_FUNCTION__))
;
3005 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3006 for (unsigned I = 0; I != Depth; ++I)
3007 OS << "`-";
3008
3009 switch (getKind()) {
3010 case EK_Variable: OS << "Variable"; break;
3011 case EK_Parameter: OS << "Parameter"; break;
3012 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3013 break;
3014 case EK_Result: OS << "Result"; break;
3015 case EK_Exception: OS << "Exception"; break;
3016 case EK_Member: OS << "Member"; break;
3017 case EK_Binding: OS << "Binding"; break;
3018 case EK_New: OS << "New"; break;
3019 case EK_Temporary: OS << "Temporary"; break;
3020 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3021 case EK_RelatedResult: OS << "RelatedResult"; break;
3022 case EK_Base: OS << "Base"; break;
3023 case EK_Delegating: OS << "Delegating"; break;
3024 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3025 case EK_VectorElement: OS << "VectorElement " << Index; break;
3026 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3027 case EK_BlockElement: OS << "Block"; break;
3028 case EK_LambdaCapture:
3029 OS << "LambdaCapture ";
3030 OS << DeclarationName(Capture.VarID);
3031 break;
3032 }
3033
3034 if (auto *D = getDecl()) {
3035 OS << " ";
3036 D->printQualifiedName(OS);
3037 }
3038
3039 OS << " '" << getType().getAsString() << "'\n";
3040
3041 return Depth + 1;
3042}
3043
3044LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3045 dumpImpl(llvm::errs());
3046}
3047
3048//===----------------------------------------------------------------------===//
3049// Initialization sequence
3050//===----------------------------------------------------------------------===//
3051
3052void InitializationSequence::Step::Destroy() {
3053 switch (Kind) {
3054 case SK_ResolveAddressOfOverloadedFunction:
3055 case SK_CastDerivedToBaseRValue:
3056 case SK_CastDerivedToBaseXValue:
3057 case SK_CastDerivedToBaseLValue:
3058 case SK_BindReference:
3059 case SK_BindReferenceToTemporary:
3060 case SK_FinalCopy:
3061 case SK_ExtraneousCopyToTemporary:
3062 case SK_UserConversion:
3063 case SK_QualificationConversionRValue:
3064 case SK_QualificationConversionXValue:
3065 case SK_QualificationConversionLValue:
3066 case SK_AtomicConversion:
3067 case SK_LValueToRValue:
3068 case SK_ListInitialization:
3069 case SK_UnwrapInitList:
3070 case SK_RewrapInitList:
3071 case SK_ConstructorInitialization:
3072 case SK_ConstructorInitializationFromList:
3073 case SK_ZeroInitialization:
3074 case SK_CAssignment:
3075 case SK_StringInit:
3076 case SK_ObjCObjectConversion:
3077 case SK_ArrayLoopIndex:
3078 case SK_ArrayLoopInit:
3079 case SK_ArrayInit:
3080 case SK_GNUArrayInit:
3081 case SK_ParenthesizedArrayInit:
3082 case SK_PassByIndirectCopyRestore:
3083 case SK_PassByIndirectRestore:
3084 case SK_ProduceObjCObject:
3085 case SK_StdInitializerList:
3086 case SK_StdInitializerListConstructorCall:
3087 case SK_OCLSamplerInit:
3088 case SK_OCLZeroEvent:
3089 case SK_OCLZeroQueue:
3090 break;
3091
3092 case SK_ConversionSequence:
3093 case SK_ConversionSequenceNoNarrowing:
3094 delete ICS;
3095 }
3096}
3097
3098bool InitializationSequence::isDirectReferenceBinding() const {
3099 // There can be some lvalue adjustments after the SK_BindReference step.
3100 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3101 if (I->Kind == SK_BindReference)
3102 return true;
3103 if (I->Kind == SK_BindReferenceToTemporary)
3104 return false;
3105 }
3106 return false;
3107}
3108
3109bool InitializationSequence::isAmbiguous() const {
3110 if (!Failed())
3111 return false;
3112
3113 switch (getFailureKind()) {
3114 case FK_TooManyInitsForReference:
3115 case FK_ArrayNeedsInitList:
3116 case FK_ArrayNeedsInitListOrStringLiteral:
3117 case FK_ArrayNeedsInitListOrWideStringLiteral:
3118 case FK_NarrowStringIntoWideCharArray:
3119 case FK_WideStringIntoCharArray:
3120 case FK_IncompatWideStringIntoWideChar:
3121 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3122 case FK_NonConstLValueReferenceBindingToTemporary:
3123 case FK_NonConstLValueReferenceBindingToBitfield:
3124 case FK_NonConstLValueReferenceBindingToVectorElement:
3125 case FK_NonConstLValueReferenceBindingToUnrelated:
3126 case FK_RValueReferenceBindingToLValue:
3127 case FK_ReferenceInitDropsQualifiers:
3128 case FK_ReferenceInitFailed:
3129 case FK_ConversionFailed:
3130 case FK_ConversionFromPropertyFailed:
3131 case FK_TooManyInitsForScalar:
3132 case FK_ReferenceBindingToInitList:
3133 case FK_InitListBadDestinationType:
3134 case FK_DefaultInitOfConst:
3135 case FK_Incomplete:
3136 case FK_ArrayTypeMismatch:
3137 case FK_NonConstantArrayInit:
3138 case FK_ListInitializationFailed:
3139 case FK_VariableLengthArrayHasInitializer:
3140 case FK_PlaceholderType:
3141 case FK_ExplicitConstructor:
3142 case FK_AddressOfUnaddressableFunction:
3143 return false;
3144
3145 case FK_ReferenceInitOverloadFailed:
3146 case FK_UserConversionOverloadFailed:
3147 case FK_ConstructorOverloadFailed:
3148 case FK_ListConstructorOverloadFailed:
3149 return FailedOverloadResult == OR_Ambiguous;
3150 }
3151
3152 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3152)
;
3153}
3154
3155bool InitializationSequence::isConstructorInitialization() const {
3156 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3157}
3158
3159void
3160InitializationSequence
3161::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3162 DeclAccessPair Found,
3163 bool HadMultipleCandidates) {
3164 Step S;
3165 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3166 S.Type = Function->getType();
3167 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3168 S.Function.Function = Function;
3169 S.Function.FoundDecl = Found;
3170 Steps.push_back(S);
3171}
3172
3173void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3174 ExprValueKind VK) {
3175 Step S;
3176 switch (VK) {
3177 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3178 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3179 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3180 }
3181 S.Type = BaseType;
3182 Steps.push_back(S);
3183}
3184
3185void InitializationSequence::AddReferenceBindingStep(QualType T,
3186 bool BindingTemporary) {
3187 Step S;
3188 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3189 S.Type = T;
3190 Steps.push_back(S);
3191}
3192
3193void InitializationSequence::AddFinalCopy(QualType T) {
3194 Step S;
3195 S.Kind = SK_FinalCopy;
3196 S.Type = T;
3197 Steps.push_back(S);
3198}
3199
3200void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3201 Step S;
3202 S.Kind = SK_ExtraneousCopyToTemporary;
3203 S.Type = T;
3204 Steps.push_back(S);
3205}
3206
3207void
3208InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3209 DeclAccessPair FoundDecl,
3210 QualType T,
3211 bool HadMultipleCandidates) {
3212 Step S;
3213 S.Kind = SK_UserConversion;
3214 S.Type = T;
3215 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3216 S.Function.Function = Function;
3217 S.Function.FoundDecl = FoundDecl;
3218 Steps.push_back(S);
3219}
3220
3221void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3222 ExprValueKind VK) {
3223 Step S;
3224 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3225 switch (VK) {
3226 case VK_RValue:
3227 S.Kind = SK_QualificationConversionRValue;
3228 break;
3229 case VK_XValue:
3230 S.Kind = SK_QualificationConversionXValue;
3231 break;
3232 case VK_LValue:
3233 S.Kind = SK_QualificationConversionLValue;
3234 break;
3235 }
3236 S.Type = Ty;
3237 Steps.push_back(S);
3238}
3239
3240void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3241 Step S;
3242 S.Kind = SK_AtomicConversion;
3243 S.Type = Ty;
3244 Steps.push_back(S);
3245}
3246
3247void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3248 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")((!Ty.hasQualifiers() && "rvalues may not have qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3248, __PRETTY_FUNCTION__))
;
3249
3250 Step S;
3251 S.Kind = SK_LValueToRValue;
3252 S.Type = Ty;
3253 Steps.push_back(S);
3254}
3255
3256void InitializationSequence::AddConversionSequenceStep(
3257 const ImplicitConversionSequence &ICS, QualType T,
3258 bool TopLevelOfInitList) {
3259 Step S;
3260 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3261 : SK_ConversionSequence;
3262 S.Type = T;
3263 S.ICS = new ImplicitConversionSequence(ICS);
3264 Steps.push_back(S);
3265}
3266
3267void InitializationSequence::AddListInitializationStep(QualType T) {
3268 Step S;
3269 S.Kind = SK_ListInitialization;
3270 S.Type = T;
3271 Steps.push_back(S);
3272}
3273
3274void InitializationSequence::AddConstructorInitializationStep(
3275 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3276 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3277 Step S;
3278 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3279 : SK_ConstructorInitializationFromList
3280 : SK_ConstructorInitialization;
3281 S.Type = T;
3282 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3283 S.Function.Function = Constructor;
3284 S.Function.FoundDecl = FoundDecl;
3285 Steps.push_back(S);
3286}
3287
3288void InitializationSequence::AddZeroInitializationStep(QualType T) {
3289 Step S;
3290 S.Kind = SK_ZeroInitialization;
3291 S.Type = T;
3292 Steps.push_back(S);
3293}
3294
3295void InitializationSequence::AddCAssignmentStep(QualType T) {
3296 Step S;
3297 S.Kind = SK_CAssignment;
3298 S.Type = T;
3299 Steps.push_back(S);
3300}
3301
3302void InitializationSequence::AddStringInitStep(QualType T) {
3303 Step S;
3304 S.Kind = SK_StringInit;
3305 S.Type = T;
3306 Steps.push_back(S);
3307}
3308
3309void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3310 Step S;
3311 S.Kind = SK_ObjCObjectConversion;
3312 S.Type = T;
3313 Steps.push_back(S);
3314}
3315
3316void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3317 Step S;
3318 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3319 S.Type = T;
3320 Steps.push_back(S);
3321}
3322
3323void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3324 Step S;
3325 S.Kind = SK_ArrayLoopIndex;
3326 S.Type = EltT;
3327 Steps.insert(Steps.begin(), S);
3328
3329 S.Kind = SK_ArrayLoopInit;
3330 S.Type = T;
3331 Steps.push_back(S);
3332}
3333
3334void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3335 Step S;
3336 S.Kind = SK_ParenthesizedArrayInit;
3337 S.Type = T;
3338 Steps.push_back(S);
3339}
3340
3341void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3342 bool shouldCopy) {
3343 Step s;
3344 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3345 : SK_PassByIndirectRestore);
3346 s.Type = type;
3347 Steps.push_back(s);
3348}
3349
3350void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3351 Step S;
3352 S.Kind = SK_ProduceObjCObject;
3353 S.Type = T;
3354 Steps.push_back(S);
3355}
3356
3357void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3358 Step S;
3359 S.Kind = SK_StdInitializerList;
3360 S.Type = T;
3361 Steps.push_back(S);
3362}
3363
3364void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3365 Step S;
3366 S.Kind = SK_OCLSamplerInit;
3367 S.Type = T;
3368 Steps.push_back(S);
3369}
3370
3371void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3372 Step S;
3373 S.Kind = SK_OCLZeroEvent;
3374 S.Type = T;
3375 Steps.push_back(S);
3376}
3377
3378void InitializationSequence::AddOCLZeroQueueStep(QualType T) {
3379 Step S;
3380 S.Kind = SK_OCLZeroQueue;
3381 S.Type = T;
3382 Steps.push_back(S);
3383}
3384
3385void InitializationSequence::RewrapReferenceInitList(QualType T,
3386 InitListExpr *Syntactic) {
3387 assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3388, __PRETTY_FUNCTION__))
3388 "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3388, __PRETTY_FUNCTION__))
;
3389 Step S;
3390 S.Kind = SK_UnwrapInitList;
3391 S.Type = Syntactic->getInit(0)->getType();
3392 Steps.insert(Steps.begin(), S);
3393
3394 S.Kind = SK_RewrapInitList;
3395 S.Type = T;
3396 S.WrappingSyntacticList = Syntactic;
3397 Steps.push_back(S);
3398}
3399
3400void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3401 OverloadingResult Result) {
3402 setSequenceKind(FailedSequence);
3403 this->Failure = Failure;
3404 this->FailedOverloadResult = Result;
3405}
3406
3407//===----------------------------------------------------------------------===//
3408// Attempt initialization
3409//===----------------------------------------------------------------------===//
3410
3411/// Tries to add a zero initializer. Returns true if that worked.
3412static bool
3413maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3414 const InitializedEntity &Entity) {
3415 if (Entity.getKind() != InitializedEntity::EK_Variable)
3416 return false;
3417
3418 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3419 if (VD->getInit() || VD->getLocEnd().isMacroID())
3420 return false;
3421
3422 QualType VariableTy = VD->getType().getCanonicalType();
3423 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3424 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3425 if (!Init.empty()) {
3426 Sequence.AddZeroInitializationStep(Entity.getType());
3427 Sequence.SetZeroInitializationFixit(Init, Loc);
3428 return true;
3429 }
3430 return false;
3431}
3432
3433static void MaybeProduceObjCObject(Sema &S,
3434 InitializationSequence &Sequence,
3435 const InitializedEntity &Entity) {
3436 if (!S.getLangOpts().ObjCAutoRefCount) return;
3437
3438 /// When initializing a parameter, produce the value if it's marked
3439 /// __attribute__((ns_consumed)).
3440 if (Entity.isParameterKind()) {
3441 if (!Entity.isParameterConsumed())
3442 return;
3443
3444 assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3445, __PRETTY_FUNCTION__))
3445 "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3445, __PRETTY_FUNCTION__))
;
3446 Sequence.AddProduceObjCObjectStep(Entity.getType());
3447
3448 /// When initializing a return value, if the return type is a
3449 /// retainable type, then returns need to immediately retain the
3450 /// object. If an autorelease is required, it will be done at the
3451 /// last instant.
3452 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3453 if (!Entity.getType()->isObjCRetainableType())
3454 return;
3455
3456 Sequence.AddProduceObjCObjectStep(Entity.getType());
3457 }
3458}
3459
3460static void TryListInitialization(Sema &S,
3461 const InitializedEntity &Entity,
3462 const InitializationKind &Kind,
3463 InitListExpr *InitList,
3464 InitializationSequence &Sequence,
3465 bool TreatUnavailableAsInvalid);
3466
3467/// \brief When initializing from init list via constructor, handle
3468/// initialization of an object of type std::initializer_list<T>.
3469///
3470/// \return true if we have handled initialization of an object of type
3471/// std::initializer_list<T>, false otherwise.
3472static bool TryInitializerListConstruction(Sema &S,
3473 InitListExpr *List,
3474 QualType DestType,
3475 InitializationSequence &Sequence,
3476 bool TreatUnavailableAsInvalid) {
3477 QualType E;
3478 if (!S.isStdInitializerList(DestType, &E))
3479 return false;
3480
3481 if (!S.isCompleteType(List->getExprLoc(), E)) {
3482 Sequence.setIncompleteTypeFailure(E);
3483 return true;
3484 }
3485
3486 // Try initializing a temporary array from the init list.
3487 QualType ArrayType = S.Context.getConstantArrayType(
3488 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3489 List->getNumInits()),
3490 clang::ArrayType::Normal, 0);
3491 InitializedEntity HiddenArray =
3492 InitializedEntity::InitializeTemporary(ArrayType);
3493 InitializationKind Kind =
3494 InitializationKind::CreateDirectList(List->getExprLoc());
3495 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3496 TreatUnavailableAsInvalid);
3497 if (Sequence)
3498 Sequence.AddStdInitializerListConstructionStep(DestType);
3499 return true;
3500}
3501
3502/// Determine if the constructor has the signature of a copy or move
3503/// constructor for the type T of the class in which it was found. That is,
3504/// determine if its first parameter is of type T or reference to (possibly
3505/// cv-qualified) T.
3506static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3507 const ConstructorInfo &Info) {
3508 if (Info.Constructor->getNumParams() == 0)
3509 return false;
3510
3511 QualType ParmT =
3512 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3513 QualType ClassT =
3514 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3515
3516 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3517}
3518
3519static OverloadingResult
3520ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3521 MultiExprArg Args,
3522 OverloadCandidateSet &CandidateSet,
3523 DeclContext::lookup_result Ctors,
3524 OverloadCandidateSet::iterator &Best,
3525 bool CopyInitializing, bool AllowExplicit,
3526 bool OnlyListConstructors, bool IsListInit,
3527 bool SecondStepOfCopyInit = false) {
3528 CandidateSet.clear();
3529
3530 for (NamedDecl *D : Ctors) {
3531 auto Info = getConstructorInfo(D);
3532 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3533 continue;
3534
3535 if (!AllowExplicit && Info.Constructor->isExplicit())
3536 continue;
3537
3538 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3539 continue;
3540
3541 // C++11 [over.best.ics]p4:
3542 // ... and the constructor or user-defined conversion function is a
3543 // candidate by
3544 // - 13.3.1.3, when the argument is the temporary in the second step
3545 // of a class copy-initialization, or
3546 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3547 // - the second phase of 13.3.1.7 when the initializer list has exactly
3548 // one element that is itself an initializer list, and the target is
3549 // the first parameter of a constructor of class X, and the conversion
3550 // is to X or reference to (possibly cv-qualified X),
3551 // user-defined conversion sequences are not considered.
3552 bool SuppressUserConversions =
3553 SecondStepOfCopyInit ||
3554 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3555 hasCopyOrMoveCtorParam(S.Context, Info));
3556
3557 if (Info.ConstructorTmpl)
3558 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3559 /*ExplicitArgs*/ nullptr, Args,
3560 CandidateSet, SuppressUserConversions);
3561 else {
3562 // C++ [over.match.copy]p1:
3563 // - When initializing a temporary to be bound to the first parameter
3564 // of a constructor [for type T] that takes a reference to possibly
3565 // cv-qualified T as its first argument, called with a single
3566 // argument in the context of direct-initialization, explicit
3567 // conversion functions are also considered.
3568 // FIXME: What if a constructor template instantiates to such a signature?
3569 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3570 Args.size() == 1 &&
3571 hasCopyOrMoveCtorParam(S.Context, Info);
3572 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3573 CandidateSet, SuppressUserConversions,
3574 /*PartialOverloading=*/false,
3575 /*AllowExplicit=*/AllowExplicitConv);
3576 }
3577 }
3578
3579 // Perform overload resolution and return the result.
3580 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3581}
3582
3583/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3584/// enumerates the constructors of the initialized entity and performs overload
3585/// resolution to select the best.
3586/// \param DestType The destination class type.
3587/// \param DestArrayType The destination type, which is either DestType or
3588/// a (possibly multidimensional) array of DestType.
3589/// \param IsListInit Is this list-initialization?
3590/// \param IsInitListCopy Is this non-list-initialization resulting from a
3591/// list-initialization from {x} where x is the same
3592/// type as the entity?
3593static void TryConstructorInitialization(Sema &S,
3594 const InitializedEntity &Entity,
3595 const InitializationKind &Kind,
3596 MultiExprArg Args, QualType DestType,
3597 QualType DestArrayType,
3598 InitializationSequence &Sequence,
3599 bool IsListInit = false,
3600 bool IsInitListCopy = false) {
3601 assert(((!IsListInit && !IsInitListCopy) ||((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3604, __PRETTY_FUNCTION__))
3602 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3604, __PRETTY_FUNCTION__))
3603 "IsListInit/IsInitListCopy must come with a single initializer list "((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3604, __PRETTY_FUNCTION__))
3604 "argument.")((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3604, __PRETTY_FUNCTION__))
;
3605 InitListExpr *ILE =
3606 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3607 MultiExprArg UnwrappedArgs =
3608 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3609
3610 // The type we're constructing needs to be complete.
3611 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3612 Sequence.setIncompleteTypeFailure(DestType);
3613 return;
3614 }
3615
3616 // C++1z [dcl.init]p17:
3617 // - If the initializer expression is a prvalue and the cv-unqualified
3618 // version of the source type is the same class as the class of the
3619 // destination, the initializer expression is used to initialize the
3620 // destination object.
3621 // Per DR (no number yet), this does not apply when initializing a base
3622 // class or delegating to another constructor from a mem-initializer.
3623 if (S.getLangOpts().CPlusPlus1z &&
3624 Entity.getKind() != InitializedEntity::EK_Base &&
3625 Entity.getKind() != InitializedEntity::EK_Delegating &&
3626 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3627 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3628 // Convert qualifications if necessary.
3629 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3630 if (ILE)
3631 Sequence.RewrapReferenceInitList(DestType, ILE);
3632 return;
3633 }
3634
3635 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3636 assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type"
) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 3636, __PRETTY_FUNCTION__))
;
3637 CXXRecordDecl *DestRecordDecl
3638 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3639
3640 // Build the candidate set directly in the initialization sequence
3641 // structure, so that it will persist if we fail.
3642 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3643
3644 // Determine whether we are allowed to call explicit constructors or
3645 // explicit conversion operators.
3646 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3647 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3648
3649 // - Otherwise, if T is a class type, constructors are considered. The
3650 // applicable constructors are enumerated, and the best one is chosen
3651 // through overload resolution.
3652 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3653
3654 OverloadingResult Result = OR_No_Viable_Function;
3655 OverloadCandidateSet::iterator Best;
3656 bool AsInitializerList = false;
3657
3658 // C++11 [over.match.list]p1, per DR1467:
3659 // When objects of non-aggregate type T are list-initialized, such that
3660 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3661 // according to the rules in this section, overload resolution selects
3662 // the constructor in two phases:
3663 //
3664 // - Initially, the candidate functions are the initializer-list
3665 // constructors of the class T and the argument list consists of the
3666 // initializer list as a single argument.
3667 if (IsListInit) {
3668 AsInitializerList = true;
3669
3670 // If the initializer list has no elements and T has a default constructor,
3671 // the first phase is omitted.
3672 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3673 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3674 CandidateSet, Ctors, Best,
3675 CopyInitialization, AllowExplicit,
3676 /*OnlyListConstructor=*/true,
3677 IsListInit);
3678 }
3679
3680 // C++11 [over.match.list]p1:
3681 // - If no viable initializer-list constructor is found, overload resolution
3682 // is performed again, where the candidate functions are all the
3683 // constructors of the class T and the argument list consists of the
3684 // elements of the initializer list.
3685 if (Result == OR_No_Viable_Function) {
3686 AsInitializerList = false;
3687 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3688 CandidateSet, Ctors, Best,
3689 CopyInitialization, AllowExplicit,
3690 /*OnlyListConstructors=*/false,
3691 IsListInit);
3692 }
3693 if (Result) {
3694 Sequence.SetOverloadFailure(IsListInit ?
3695 InitializationSequence::FK_ListConstructorOverloadFailed :
3696 InitializationSequence::FK_ConstructorOverloadFailed,
3697 Result);
3698 return;
3699 }
3700
3701 // C++11 [dcl.init]p6:
3702 // If a program calls for the default initialization of an object
3703 // of a const-qualified type T, T shall be a class type with a
3704 // user-provided default constructor.
3705 // C++ core issue 253 proposal:
3706 // If the implicit default constructor initializes all subobjects, no
3707 // initializer should be required.
3708 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3709 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3710 if (Kind.getKind() == InitializationKind::IK_Default &&
3711 Entity.getType().isConstQualified()) {
3712 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3713 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3714 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3715 return;
3716 }
3717 }
3718
3719 // C++11 [over.match.list]p1:
3720 // In copy-list-initialization, if an explicit constructor is chosen, the
3721 // initializer is ill-formed.
3722 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3723 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3724 return;
3725 }
3726
3727 // Add the constructor initialization step. Any cv-qualification conversion is
3728 // subsumed by the initialization.
3729 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3730 Sequence.AddConstructorInitializationStep(
3731 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3732 IsListInit | IsInitListCopy, AsInitializerList);
3733}
3734
3735static bool
3736ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3737 Expr *Initializer,
3738 QualType &SourceType,
3739 QualType &UnqualifiedSourceType,
3740 QualType UnqualifiedTargetType,
3741 InitializationSequence &Sequence) {
3742 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3743 S.Context.OverloadTy) {
3744 DeclAccessPair Found;
3745 bool HadMultipleCandidates = false;
3746 if (FunctionDecl *Fn
3747 = S.ResolveAddressOfOverloadedFunction(Initializer,
3748 UnqualifiedTargetType,
3749 false, Found,
3750 &HadMultipleCandidates)) {
3751 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3752 HadMultipleCandidates);
3753 SourceType = Fn->getType();
3754 UnqualifiedSourceType = SourceType.getUnqualifiedType();
3755 } else if (!UnqualifiedTargetType->isRecordType()) {
3756 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3757 return true;
3758 }
3759 }
3760 return false;
3761}
3762
3763static void TryReferenceInitializationCore(Sema &S,
3764 const InitializedEntity &Entity,
3765 const InitializationKind &Kind,
3766 Expr *Initializer,
3767 QualType cv1T1, QualType T1,
3768 Qualifiers T1Quals,
3769 QualType cv2T2, QualType T2,
3770 Qualifiers T2Quals,
3771 InitializationSequence &Sequence);
3772
3773static void TryValueInitialization(Sema &S,
3774 const InitializedEntity &Entity,
3775 const InitializationKind &Kind,
3776 InitializationSequence &Sequence,
3777 InitListExpr *InitList = nullptr);
3778
3779/// \brief Attempt list initialization of a reference.
3780static void TryReferenceListInitialization(Sema &S,
3781 const InitializedEntity &Entity,
3782 const InitializationKind &Kind,
3783 InitListExpr *InitList,
3784 InitializationSequence &Sequence,
3785 bool TreatUnavailableAsInvalid) {
3786 // First, catch C++03 where this isn't possible.
3787 if (!S.getLangOpts().CPlusPlus11) {
3788 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3789 return;
3790 }
3791 // Can't reference initialize a compound literal.
3792 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3793 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3794 return;
3795 }
3796
3797 QualType DestType = Entity.getType();
3798 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3799 Qualifiers T1Quals;
3800 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3801
3802 // Reference initialization via an initializer list works thus:
3803 // If the initializer list consists of a single element that is
3804 // reference-related to the referenced type, bind directly to that element
3805 // (possibly creating temporaries).
3806 // Otherwise, initialize a temporary with the initializer list and
3807 // bind to that.
3808 if (InitList->getNumInits() == 1) {
3809 Expr *Initializer = InitList->getInit(0);
3810 QualType cv2T2 = Initializer->getType();
3811 Qualifiers T2Quals;
3812 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3813
3814 // If this fails, creating a temporary wouldn't work either.
3815 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3816 T1, Sequence))
3817 return;
3818
3819 SourceLocation DeclLoc = Initializer->getLocStart();
3820 bool dummy1, dummy2, dummy3;
3821 Sema::ReferenceCompareResult RefRelationship
3822 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3823 dummy2, dummy3);
3824 if (RefRelationship >= Sema::Ref_Related) {
3825 // Try to bind the reference here.
3826 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3827 T1Quals, cv2T2, T2, T2Quals, Sequence);
3828 if (Sequence)
3829 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3830 return;
3831 }
3832
3833 // Update the initializer if we've resolved an overloaded function.
3834 if (Sequence.step_begin() != Sequence.step_end())
3835 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3836 }
3837
3838 // Not reference-related. Create a temporary and bind to that.
3839 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3840
3841 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
3842 TreatUnavailableAsInvalid);
3843 if (Sequence) {
3844 if (DestType->isRValueReferenceType() ||
3845 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3846 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3847 else
3848 Sequence.SetFailed(
3849 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3850 }
3851}
3852
3853/// \brief Attempt list initialization (C++0x [dcl.init.list])
3854static void TryListInitialization(Sema &S,
3855 const InitializedEntity &Entity,
3856 const InitializationKind &Kind,
3857 InitListExpr *InitList,
3858 InitializationSequence &Sequence,
3859 bool TreatUnavailableAsInvalid) {
3860 QualType DestType = Entity.getType();
3861
3862 // C++ doesn't allow scalar initialization with more than one argument.
3863 // But C99 complex numbers are scalars and it makes sense there.
3864 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3865 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3866 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3867 return;
3868 }
3869 if (DestType->isReferenceType()) {
3870 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
3871 TreatUnavailableAsInvalid);
3872 return;
3873 }
3874
3875 if (DestType->isRecordType() &&
3876 !S.isCompleteType(InitList->getLocStart(), DestType)) {
3877 Sequence.setIncompleteTypeFailure(DestType);
3878 return;
3879 }
3880
3881 // C++11 [dcl.init.list]p3, per DR1467:
3882 // - If T is a class type and the initializer list has a single element of
3883 // type cv U, where U is T or a class derived from T, the object is
3884 // initialized from that element (by copy-initialization for
3885 // copy-list-initialization, or by direct-initialization for
3886 // direct-list-initialization).
3887 // - Otherwise, if T is a character array and the initializer list has a
3888 // single element that is an appropriately-typed string literal
3889 // (8.5.2 [dcl.init.string]), initialization is performed as described
3890 // in that section.
3891 // - Otherwise, if T is an aggregate, [...] (continue below).
3892 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3893 if (DestType->isRecordType()) {
3894 QualType InitType = InitList->getInit(0)->getType();
3895 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3896 S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
3897 Expr *InitListAsExpr = InitList;
3898 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3899 DestType, Sequence,
3900 /*InitListSyntax*/false,
3901 /*IsInitListCopy*/true);
3902 return;
3903 }
3904 }
3905 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3906 Expr *SubInit[1] = {InitList->getInit(0)};
3907 if (!isa<VariableArrayType>(DestAT) &&
3908 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3909 InitializationKind SubKind =
3910 Kind.getKind() == InitializationKind::IK_DirectList
3911 ? InitializationKind::CreateDirect(Kind.getLocation(),
3912 InitList->getLBraceLoc(),
3913 InitList->getRBraceLoc())
3914 : Kind;
3915 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3916 /*TopLevelOfInitList*/ true,
3917 TreatUnavailableAsInvalid);
3918
3919 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3920 // the element is not an appropriately-typed string literal, in which
3921 // case we should proceed as in C++11 (below).
3922 if (Sequence) {
3923 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3924 return;
3925 }
3926 }
3927 }
3928 }
3929
3930 // C++11 [dcl.init.list]p3:
3931 // - If T is an aggregate, aggregate initialization is performed.
3932 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
3933 (S.getLangOpts().CPlusPlus11 &&
3934 S.isStdInitializerList(DestType, nullptr))) {
3935 if (S.getLangOpts().CPlusPlus11) {
3936 // - Otherwise, if the initializer list has no elements and T is a
3937 // class type with a default constructor, the object is
3938 // value-initialized.
3939 if (InitList->getNumInits() == 0) {
3940 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3941 if (RD->hasDefaultConstructor()) {
3942 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3943 return;
3944 }
3945 }
3946
3947 // - Otherwise, if T is a specialization of std::initializer_list<E>,
3948 // an initializer_list object constructed [...]
3949 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
3950 TreatUnavailableAsInvalid))
3951 return;
3952
3953 // - Otherwise, if T is a class type, constructors are considered.
3954 Expr *InitListAsExpr = InitList;
3955 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3956 DestType, Sequence, /*InitListSyntax*/true);
3957 } else
3958 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3959 return;
3960 }
3961
3962 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3963 InitList->getNumInits() == 1) {
3964 Expr *E = InitList->getInit(0);
3965
3966 // - Otherwise, if T is an enumeration with a fixed underlying type,
3967 // the initializer-list has a single element v, and the initialization
3968 // is direct-list-initialization, the object is initialized with the
3969 // value T(v); if a narrowing conversion is required to convert v to
3970 // the underlying type of T, the program is ill-formed.
3971 auto *ET = DestType->getAs<EnumType>();
3972 if (S.getLangOpts().CPlusPlus1z &&
3973 Kind.getKind() == InitializationKind::IK_DirectList &&
3974 ET && ET->getDecl()->isFixed() &&
3975 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
3976 (E->getType()->isIntegralOrEnumerationType() ||
3977 E->getType()->isFloatingType())) {
3978 // There are two ways that T(v) can work when T is an enumeration type.
3979 // If there is either an implicit conversion sequence from v to T or
3980 // a conversion function that can convert from v to T, then we use that.
3981 // Otherwise, if v is of integral, enumeration, or floating-point type,
3982 // it is converted to the enumeration type via its underlying type.
3983 // There is no overlap possible between these two cases (except when the
3984 // source value is already of the destination type), and the first
3985 // case is handled by the general case for single-element lists below.
3986 ImplicitConversionSequence ICS;
3987 ICS.setStandard();
3988 ICS.Standard.setAsIdentityConversion();
3989 if (!E->isRValue())
3990 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
3991 // If E is of a floating-point type, then the conversion is ill-formed
3992 // due to narrowing, but go through the motions in order to produce the
3993 // right diagnostic.
3994 ICS.Standard.Second = E->getType()->isFloatingType()
3995 ? ICK_Floating_Integral
3996 : ICK_Integral_Conversion;
3997 ICS.Standard.setFromType(E->getType());
3998 ICS.Standard.setToType(0, E->getType());
3999 ICS.Standard.setToType(1, DestType);
4000 ICS.Standard.setToType(2, DestType);
4001 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4002 /*TopLevelOfInitList*/true);
4003 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4004 return;
4005 }
4006
4007 // - Otherwise, if the initializer list has a single element of type E
4008 // [...references are handled above...], the object or reference is
4009 // initialized from that element (by copy-initialization for
4010 // copy-list-initialization, or by direct-initialization for
4011 // direct-list-initialization); if a narrowing conversion is required
4012 // to convert the element to T, the program is ill-formed.
4013 //
4014 // Per core-24034, this is direct-initialization if we were performing
4015 // direct-list-initialization and copy-initialization otherwise.
4016 // We can't use InitListChecker for this, because it always performs
4017 // copy-initialization. This only matters if we might use an 'explicit'
4018 // conversion operator, so we only need to handle the cases where the source
4019 // is of record type.
4020 if (InitList->getInit(0)->getType()->isRecordType()) {
4021 InitializationKind SubKind =
4022 Kind.getKind() == InitializationKind::IK_DirectList
4023 ? InitializationKind::CreateDirect(Kind.getLocation(),
4024 InitList->getLBraceLoc(),
4025 InitList->getRBraceLoc())
4026 : Kind;
4027 Expr *SubInit[1] = { InitList->getInit(0) };
4028 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4029 /*TopLevelOfInitList*/true,
4030 TreatUnavailableAsInvalid);
4031 if (Sequence)
4032 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4033 return;
4034 }
4035 }
4036
4037 InitListChecker CheckInitList(S, Entity, InitList,
4038 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4039 if (CheckInitList.HadError()) {
4040 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4041 return;
4042 }
4043
4044 // Add the list initialization step with the built init list.
4045 Sequence.AddListInitializationStep(DestType);
4046}
4047
4048/// \brief Try a reference initialization that involves calling a conversion
4049/// function.
4050static OverloadingResult TryRefInitWithConversionFunction(
4051 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4052 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4053 InitializationSequence &Sequence) {
4054 QualType DestType = Entity.getType();
4055 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4056 QualType T1 = cv1T1.getUnqualifiedType();
4057 QualType cv2T2 = Initializer->getType();
4058 QualType T2 = cv2T2.getUnqualifiedType();
4059
4060 bool DerivedToBase;
4061 bool ObjCConversion;
4062 bool ObjCLifetimeConversion;
4063 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4067, __PRETTY_FUNCTION__))
4064 T1, T2, DerivedToBase,((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4067, __PRETTY_FUNCTION__))
4065 ObjCConversion,((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4067, __PRETTY_FUNCTION__))
4066 ObjCLifetimeConversion) &&((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4067, __PRETTY_FUNCTION__))
4067 "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4067, __PRETTY_FUNCTION__))
;
4068 (void)DerivedToBase;
4069 (void)ObjCConversion;
4070 (void)ObjCLifetimeConversion;
4071
4072 // Build the candidate set directly in the initialization sequence
4073 // structure, so that it will persist if we fail.
4074 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4075 CandidateSet.clear();
4076
4077 // Determine whether we are allowed to call explicit constructors or
4078 // explicit conversion operators.
4079 bool AllowExplicit = Kind.AllowExplicit();
4080 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4081
4082 const RecordType *T1RecordType = nullptr;
4083 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4084 S.isCompleteType(Kind.getLocation(), T1)) {
4085 // The type we're converting to is a class type. Enumerate its constructors
4086 // to see if there is a suitable conversion.
4087 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4088
4089 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4090 auto Info = getConstructorInfo(D);
4091 if (!Info.Constructor)
4092 continue;
4093
4094 if (!Info.Constructor->isInvalidDecl() &&
4095 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4096 if (Info.ConstructorTmpl)
4097 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4098 /*ExplicitArgs*/ nullptr,
4099 Initializer, CandidateSet,
4100 /*SuppressUserConversions=*/true);
4101 else
4102 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4103 Initializer, CandidateSet,
4104 /*SuppressUserConversions=*/true);
4105 }
4106 }
4107 }
4108 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4109 return OR_No_Viable_Function;
4110
4111 const RecordType *T2RecordType = nullptr;
4112 if ((T2RecordType = T2->getAs<RecordType>()) &&
4113 S.isCompleteType(Kind.getLocation(), T2)) {
4114 // The type we're converting from is a class type, enumerate its conversion
4115 // functions.
4116 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4117
4118 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4119 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4120 NamedDecl *D = *I;
4121 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4122 if (isa<UsingShadowDecl>(D))
4123 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4124
4125 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4126 CXXConversionDecl *Conv;
4127 if (ConvTemplate)
4128 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4129 else
4130 Conv = cast<CXXConversionDecl>(D);
4131
4132 // If the conversion function doesn't return a reference type,
4133 // it can't be considered for this conversion unless we're allowed to
4134 // consider rvalues.
4135 // FIXME: Do we need to make sure that we only consider conversion
4136 // candidates with reference-compatible results? That might be needed to
4137 // break recursion.
4138 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4139 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4140 if (ConvTemplate)
4141 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4142 ActingDC, Initializer,
4143 DestType, CandidateSet,
4144 /*AllowObjCConversionOnExplicit=*/
4145 false);
4146 else
4147 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4148 Initializer, DestType, CandidateSet,
4149 /*AllowObjCConversionOnExplicit=*/false);
4150 }
4151 }
4152 }
4153 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4154 return OR_No_Viable_Function;
4155
4156 SourceLocation DeclLoc = Initializer->getLocStart();
4157
4158 // Perform overload resolution. If it fails, return the failed result.
4159 OverloadCandidateSet::iterator Best;
4160 if (OverloadingResult Result
4161 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
4162 return Result;
4163
4164 FunctionDecl *Function = Best->Function;
4165 // This is the overload that will be used for this initialization step if we
4166 // use this initialization. Mark it as referenced.
4167 Function->setReferenced();
4168
4169 // Compute the returned type and value kind of the conversion.
4170 QualType cv3T3;
4171 if (isa<CXXConversionDecl>(Function))
4172 cv3T3 = Function->getReturnType();
4173 else
4174 cv3T3 = T1;
4175
4176 ExprValueKind VK = VK_RValue;
4177 if (cv3T3->isLValueReferenceType())
4178 VK = VK_LValue;
4179 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4180 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4181 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4182
4183 // Add the user-defined conversion step.
4184 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4185 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4186 HadMultipleCandidates);
4187
4188 // Determine whether we'll need to perform derived-to-base adjustments or
4189 // other conversions.
4190 bool NewDerivedToBase = false;
4191 bool NewObjCConversion = false;
4192 bool NewObjCLifetimeConversion = false;
4193 Sema::ReferenceCompareResult NewRefRelationship
4194 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4195 NewDerivedToBase, NewObjCConversion,
4196 NewObjCLifetimeConversion);
4197
4198 // Add the final conversion sequence, if necessary.
4199 if (NewRefRelationship == Sema::Ref_Incompatible) {
4200 assert(!isa<CXXConstructorDecl>(Function) &&((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4201, __PRETTY_FUNCTION__))
4201 "should not have conversion after constructor")((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4201, __PRETTY_FUNCTION__))
;
4202
4203 ImplicitConversionSequence ICS;
4204 ICS.setStandard();
4205 ICS.Standard = Best->FinalConversion;
4206 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4207
4208 // Every implicit conversion results in a prvalue, except for a glvalue
4209 // derived-to-base conversion, which we handle below.
4210 cv3T3 = ICS.Standard.getToType(2);
4211 VK = VK_RValue;
4212 }
4213
4214 // If the converted initializer is a prvalue, its type T4 is adjusted to
4215 // type "cv1 T4" and the temporary materialization conversion is applied.
4216 //
4217 // We adjust the cv-qualifications to match the reference regardless of
4218 // whether we have a prvalue so that the AST records the change. In this
4219 // case, T4 is "cv3 T3".
4220 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4221 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4222 Sequence.AddQualificationConversionStep(cv1T4, VK);
4223 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4224 VK = IsLValueRef ? VK_LValue : VK_XValue;
4225
4226 if (NewDerivedToBase)
4227 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4228 else if (NewObjCConversion)
4229 Sequence.AddObjCObjectConversionStep(cv1T1);
4230
4231 return OR_Success;
4232}
4233
4234static void CheckCXX98CompatAccessibleCopy(Sema &S,
4235 const InitializedEntity &Entity,
4236 Expr *CurInitExpr);
4237
4238/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
4239static void TryReferenceInitialization(Sema &S,
4240 const InitializedEntity &Entity,
4241 const InitializationKind &Kind,
4242 Expr *Initializer,
4243 InitializationSequence &Sequence) {
4244 QualType DestType = Entity.getType();
4245 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4246 Qualifiers T1Quals;
4247 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4248 QualType cv2T2 = Initializer->getType();
4249 Qualifiers T2Quals;
4250 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4251
4252 // If the initializer is the address of an overloaded function, try
4253 // to resolve the overloaded function. If all goes well, T2 is the
4254 // type of the resulting function.
4255 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4256 T1, Sequence))
4257 return;
4258
4259 // Delegate everything else to a subfunction.
4260 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4261 T1Quals, cv2T2, T2, T2Quals, Sequence);
4262}
4263
4264/// Determine whether an expression is a non-referenceable glvalue (one to
4265/// which a reference can never bind). Attemting to bind a reference to
4266/// such a glvalue will always create a temporary.
4267static bool isNonReferenceableGLValue(Expr *E) {
4268 return E->refersToBitField() || E->refersToVectorElement();
4269}
4270
4271/// \brief Reference initialization without resolving overloaded functions.
4272static void TryReferenceInitializationCore(Sema &S,
4273 const InitializedEntity &Entity,
4274 const InitializationKind &Kind,
4275 Expr *Initializer,
4276 QualType cv1T1, QualType T1,
4277 Qualifiers T1Quals,
4278 QualType cv2T2, QualType T2,
4279 Qualifiers T2Quals,
4280 InitializationSequence &Sequence) {
4281 QualType DestType = Entity.getType();
4282 SourceLocation DeclLoc = Initializer->getLocStart();
4283 // Compute some basic properties of the types and the initializer.
4284 bool isLValueRef = DestType->isLValueReferenceType();
4285 bool isRValueRef = !isLValueRef;
4286 bool DerivedToBase = false;
4287 bool ObjCConversion = false;
4288 bool ObjCLifetimeConversion = false;
4289 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4290 Sema::ReferenceCompareResult RefRelationship
4291 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4292 ObjCConversion, ObjCLifetimeConversion);
4293
4294 // C++0x [dcl.init.ref]p5:
4295 // A reference to type "cv1 T1" is initialized by an expression of type
4296 // "cv2 T2" as follows:
4297 //
4298 // - If the reference is an lvalue reference and the initializer
4299 // expression
4300 // Note the analogous bullet points for rvalue refs to functions. Because
4301 // there are no function rvalues in C++, rvalue refs to functions are treated
4302 // like lvalue refs.
4303 OverloadingResult ConvOvlResult = OR_Success;
4304 bool T1Function = T1->isFunctionType();
4305 if (isLValueRef || T1Function) {
4306 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4307 (RefRelationship == Sema::Ref_Compatible ||
4308 (Kind.isCStyleOrFunctionalCast() &&
4309 RefRelationship == Sema::Ref_Related))) {
4310 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4311 // reference-compatible with "cv2 T2," or
4312 if (T1Quals != T2Quals)
4313 // Convert to cv1 T2. This should only add qualifiers unless this is a
4314 // c-style cast. The removal of qualifiers in that case notionally
4315 // happens after the reference binding, but that doesn't matter.
4316 Sequence.AddQualificationConversionStep(
4317 S.Context.getQualifiedType(T2, T1Quals),
4318 Initializer->getValueKind());
4319 if (DerivedToBase)
4320 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4321 else if (ObjCConversion)
4322 Sequence.AddObjCObjectConversionStep(cv1T1);
4323
4324 // We only create a temporary here when binding a reference to a
4325 // bit-field or vector element. Those cases are't supposed to be
4326 // handled by this bullet, but the outcome is the same either way.
4327 Sequence.AddReferenceBindingStep(cv1T1, false);
4328 return;
4329 }
4330
4331 // - has a class type (i.e., T2 is a class type), where T1 is not
4332 // reference-related to T2, and can be implicitly converted to an
4333 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4334 // with "cv3 T3" (this conversion is selected by enumerating the
4335 // applicable conversion functions (13.3.1.6) and choosing the best
4336 // one through overload resolution (13.3)),
4337 // If we have an rvalue ref to function type here, the rhs must be
4338 // an rvalue. DR1287 removed the "implicitly" here.
4339 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4340 (isLValueRef || InitCategory.isRValue())) {
4341 ConvOvlResult = TryRefInitWithConversionFunction(
4342 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4343 /*IsLValueRef*/ isLValueRef, Sequence);
4344 if (ConvOvlResult == OR_Success)
4345 return;
4346 if (ConvOvlResult != OR_No_Viable_Function)
4347 Sequence.SetOverloadFailure(
4348 InitializationSequence::FK_ReferenceInitOverloadFailed,
4349 ConvOvlResult);
4350 }
4351 }
4352
4353 // - Otherwise, the reference shall be an lvalue reference to a
4354 // non-volatile const type (i.e., cv1 shall be const), or the reference
4355 // shall be an rvalue reference.
4356 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4357 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4358 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4359 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4360 Sequence.SetOverloadFailure(
4361 InitializationSequence::FK_ReferenceInitOverloadFailed,
4362 ConvOvlResult);
4363 else if (!InitCategory.isLValue())
4364 Sequence.SetFailed(
4365 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4366 else {
4367 InitializationSequence::FailureKind FK;
4368 switch (RefRelationship) {
4369 case Sema::Ref_Compatible:
4370 if (Initializer->refersToBitField())
4371 FK = InitializationSequence::
4372 FK_NonConstLValueReferenceBindingToBitfield;
4373 else if (Initializer->refersToVectorElement())
4374 FK = InitializationSequence::
4375 FK_NonConstLValueReferenceBindingToVectorElement;
4376 else
4377 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4377)
;
4378 break;
4379 case Sema::Ref_Related:
4380 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4381 break;
4382 case Sema::Ref_Incompatible:
4383 FK = InitializationSequence::
4384 FK_NonConstLValueReferenceBindingToUnrelated;
4385 break;
4386 }
4387 Sequence.SetFailed(FK);
4388 }
4389 return;
4390 }
4391
4392 // - If the initializer expression
4393 // - is an
4394 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4395 // [1z] rvalue (but not a bit-field) or
4396 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4397 //
4398 // Note: functions are handled above and below rather than here...
4399 if (!T1Function &&
4400 (RefRelationship == Sema::Ref_Compatible ||
4401 (Kind.isCStyleOrFunctionalCast() &&
4402 RefRelationship == Sema::Ref_Related)) &&
4403 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4404 (InitCategory.isPRValue() &&
4405 (S.getLangOpts().CPlusPlus1z || T2->isRecordType() ||
4406 T2->isArrayType())))) {
4407 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4408 if (InitCategory.isPRValue() && T2->isRecordType()) {
4409 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4410 // compiler the freedom to perform a copy here or bind to the
4411 // object, while C++0x requires that we bind directly to the
4412 // object. Hence, we always bind to the object without making an
4413 // extra copy. However, in C++03 requires that we check for the
4414 // presence of a suitable copy constructor:
4415 //
4416 // The constructor that would be used to make the copy shall
4417 // be callable whether or not the copy is actually done.
4418 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4419 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4420 else if (S.getLangOpts().CPlusPlus11)
4421 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4422 }
4423
4424 // C++1z [dcl.init.ref]/5.2.1.2:
4425 // If the converted initializer is a prvalue, its type T4 is adjusted
4426 // to type "cv1 T4" and the temporary materialization conversion is
4427 // applied.
4428 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4429 if (T1Quals != T2Quals)
4430 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4431 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4432 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4433
4434 // In any case, the reference is bound to the resulting glvalue (or to
4435 // an appropriate base class subobject).
4436 if (DerivedToBase)
4437 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4438 else if (ObjCConversion)
4439 Sequence.AddObjCObjectConversionStep(cv1T1);
4440 return;
4441 }
4442
4443 // - has a class type (i.e., T2 is a class type), where T1 is not
4444 // reference-related to T2, and can be implicitly converted to an
4445 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4446 // where "cv1 T1" is reference-compatible with "cv3 T3",
4447 //
4448 // DR1287 removes the "implicitly" here.
4449 if (T2->isRecordType()) {
4450 if (RefRelationship == Sema::Ref_Incompatible) {
4451 ConvOvlResult = TryRefInitWithConversionFunction(
4452 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4453 /*IsLValueRef*/ isLValueRef, Sequence);
4454 if (ConvOvlResult)
4455 Sequence.SetOverloadFailure(
4456 InitializationSequence::FK_ReferenceInitOverloadFailed,
4457 ConvOvlResult);
4458
4459 return;
4460 }
4461
4462 if (RefRelationship == Sema::Ref_Compatible &&
4463 isRValueRef && InitCategory.isLValue()) {
4464 Sequence.SetFailed(
4465 InitializationSequence::FK_RValueReferenceBindingToLValue);
4466 return;
4467 }
4468
4469 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4470 return;
4471 }
4472
4473 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4474 // from the initializer expression using the rules for a non-reference
4475 // copy-initialization (8.5). The reference is then bound to the
4476 // temporary. [...]
4477
4478 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4479
4480 // FIXME: Why do we use an implicit conversion here rather than trying
4481 // copy-initialization?
4482 ImplicitConversionSequence ICS
4483 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4484 /*SuppressUserConversions=*/false,
4485 /*AllowExplicit=*/false,
4486 /*FIXME:InOverloadResolution=*/false,
4487 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4488 /*AllowObjCWritebackConversion=*/false);
4489
4490 if (ICS.isBad()) {
4491 // FIXME: Use the conversion function set stored in ICS to turn
4492 // this into an overloading ambiguity diagnostic. However, we need
4493 // to keep that set as an OverloadCandidateSet rather than as some
4494 // other kind of set.
4495 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4496 Sequence.SetOverloadFailure(
4497 InitializationSequence::FK_ReferenceInitOverloadFailed,
4498 ConvOvlResult);
4499 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4500 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4501 else
4502 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4503 return;
4504 } else {
4505 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4506 }
4507
4508 // [...] If T1 is reference-related to T2, cv1 must be the
4509 // same cv-qualification as, or greater cv-qualification
4510 // than, cv2; otherwise, the program is ill-formed.
4511 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4512 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4513 if (RefRelationship == Sema::Ref_Related &&
4514 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4515 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4516 return;
4517 }
4518
4519 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4520 // reference, the initializer expression shall not be an lvalue.
4521 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4522 InitCategory.isLValue()) {
4523 Sequence.SetFailed(
4524 InitializationSequence::FK_RValueReferenceBindingToLValue);
4525 return;
4526 }
4527
4528 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4529}
4530
4531/// \brief Attempt character array initialization from a string literal
4532/// (C++ [dcl.init.string], C99 6.7.8).
4533static void TryStringLiteralInitialization(Sema &S,
4534 const InitializedEntity &Entity,
4535 const InitializationKind &Kind,
4536 Expr *Initializer,
4537 InitializationSequence &Sequence) {
4538 Sequence.AddStringInitStep(Entity.getType());
4539}
4540
4541/// \brief Attempt value initialization (C++ [dcl.init]p7).
4542static void TryValueInitialization(Sema &S,
4543 const InitializedEntity &Entity,
4544 const InitializationKind &Kind,
4545 InitializationSequence &Sequence,
4546 InitListExpr *InitList) {
4547 assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4548, __PRETTY_FUNCTION__))
4548 "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4548, __PRETTY_FUNCTION__))
;
4549
4550 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4551 //
4552 // To value-initialize an object of type T means:
4553 QualType T = Entity.getType();
4554
4555 // -- if T is an array type, then each element is value-initialized;
4556 T = S.Context.getBaseElementType(T);
4557
4558 if (const RecordType *RT = T->getAs<RecordType>()) {
4559 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4560 bool NeedZeroInitialization = true;
4561 // C++98:
4562 // -- if T is a class type (clause 9) with a user-declared constructor
4563 // (12.1), then the default constructor for T is called (and the
4564 // initialization is ill-formed if T has no accessible default
4565 // constructor);
4566 // C++11:
4567 // -- if T is a class type (clause 9) with either no default constructor
4568 // (12.1 [class.ctor]) or a default constructor that is user-provided
4569 // or deleted, then the object is default-initialized;
4570 //
4571 // Note that the C++11 rule is the same as the C++98 rule if there are no
4572 // defaulted or deleted constructors, so we just use it unconditionally.
4573 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4574 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4575 NeedZeroInitialization = false;
4576
4577 // -- if T is a (possibly cv-qualified) non-union class type without a
4578 // user-provided or deleted default constructor, then the object is
4579 // zero-initialized and, if T has a non-trivial default constructor,
4580 // default-initialized;
4581 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4582 // constructor' part was removed by DR1507.
4583 if (NeedZeroInitialization)
4584 Sequence.AddZeroInitializationStep(Entity.getType());
4585
4586 // C++03:
4587 // -- if T is a non-union class type without a user-declared constructor,
4588 // then every non-static data member and base class component of T is
4589 // value-initialized;
4590 // [...] A program that calls for [...] value-initialization of an
4591 // entity of reference type is ill-formed.
4592 //
4593 // C++11 doesn't need this handling, because value-initialization does not
4594 // occur recursively there, and the implicit default constructor is
4595 // defined as deleted in the problematic cases.
4596 if (!S.getLangOpts().CPlusPlus11 &&
4597 ClassDecl->hasUninitializedReferenceMember()) {
4598 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4599 return;
4600 }
4601
4602 // If this is list-value-initialization, pass the empty init list on when
4603 // building the constructor call. This affects the semantics of a few
4604 // things (such as whether an explicit default constructor can be called).
4605 Expr *InitListAsExpr = InitList;
4606 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4607 bool InitListSyntax = InitList;
4608
4609 // FIXME: Instead of creating a CXXConstructExpr of array type here,
4610 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4611 return TryConstructorInitialization(
4612 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4613 }
4614 }
4615
4616 Sequence.AddZeroInitializationStep(Entity.getType());
4617}
4618
4619/// \brief Attempt default initialization (C++ [dcl.init]p6).
4620static void TryDefaultInitialization(Sema &S,
4621 const InitializedEntity &Entity,
4622 const InitializationKind &Kind,
4623 InitializationSequence &Sequence) {
4624 assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4624, __PRETTY_FUNCTION__))
;
4625
4626 // C++ [dcl.init]p6:
4627 // To default-initialize an object of type T means:
4628 // - if T is an array type, each element is default-initialized;
4629 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4630
4631 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4632 // constructor for T is called (and the initialization is ill-formed if
4633 // T has no accessible default constructor);
4634 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4635 TryConstructorInitialization(S, Entity, Kind, None, DestType,
4636 Entity.getType(), Sequence);
4637 return;
4638 }
4639
4640 // - otherwise, no initialization is performed.
4641
4642 // If a program calls for the default initialization of an object of
4643 // a const-qualified type T, T shall be a class type with a user-provided
4644 // default constructor.
4645 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4646 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4647 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4648 return;
4649 }
4650
4651 // If the destination type has a lifetime property, zero-initialize it.
4652 if (DestType.getQualifiers().hasObjCLifetime()) {
4653 Sequence.AddZeroInitializationStep(Entity.getType());
4654 return;
4655 }
4656}
4657
4658/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4659/// which enumerates all conversion functions and performs overload resolution
4660/// to select the best.
4661static void TryUserDefinedConversion(Sema &S,
4662 QualType DestType,
4663 const InitializationKind &Kind,
4664 Expr *Initializer,
4665 InitializationSequence &Sequence,
4666 bool TopLevelOfInitList) {
4667 assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4667, __PRETTY_FUNCTION__))
;
4668 QualType SourceType = Initializer->getType();
4669 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4670, __PRETTY_FUNCTION__))
4670 "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4670, __PRETTY_FUNCTION__))
;
4671
4672 // Build the candidate set directly in the initialization sequence
4673 // structure, so that it will persist if we fail.
4674 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4675 CandidateSet.clear();
4676
4677 // Determine whether we are allowed to call explicit constructors or
4678 // explicit conversion operators.
4679 bool AllowExplicit = Kind.AllowExplicit();
4680
4681 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4682 // The type we're converting to is a class type. Enumerate its constructors
4683 // to see if there is a suitable conversion.
4684 CXXRecordDecl *DestRecordDecl
4685 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4686
4687 // Try to complete the type we're converting to.
4688 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4689 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4690 auto Info = getConstructorInfo(D);
4691 if (!Info.Constructor)
4692 continue;
4693
4694 if (!Info.Constructor->isInvalidDecl() &&
4695 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4696 if (Info.ConstructorTmpl)
4697 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4698 /*ExplicitArgs*/ nullptr,
4699 Initializer, CandidateSet,
4700 /*SuppressUserConversions=*/true);
4701 else
4702 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4703 Initializer, CandidateSet,
4704 /*SuppressUserConversions=*/true);
4705 }
4706 }
4707 }
4708 }
4709
4710 SourceLocation DeclLoc = Initializer->getLocStart();
4711
4712 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4713 // The type we're converting from is a class type, enumerate its conversion
4714 // functions.
4715
4716 // We can only enumerate the conversion functions for a complete type; if
4717 // the type isn't complete, simply skip this step.
4718 if (S.isCompleteType(DeclLoc, SourceType)) {
4719 CXXRecordDecl *SourceRecordDecl
4720 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4721
4722 const auto &Conversions =
4723 SourceRecordDecl->getVisibleConversionFunctions();
4724 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4725 NamedDecl *D = *I;
4726 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4727 if (isa<UsingShadowDecl>(D))
4728 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4729
4730 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4731 CXXConversionDecl *Conv;
4732 if (ConvTemplate)
4733 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4734 else
4735 Conv = cast<CXXConversionDecl>(D);
4736
4737 if (AllowExplicit || !Conv->isExplicit()) {
4738 if (ConvTemplate)
4739 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4740 ActingDC, Initializer, DestType,
4741 CandidateSet, AllowExplicit);
4742 else
4743 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4744 Initializer, DestType, CandidateSet,
4745 AllowExplicit);
4746 }
4747 }
4748 }
4749 }
4750
4751 // Perform overload resolution. If it fails, return the failed result.
4752 OverloadCandidateSet::iterator Best;
4753 if (OverloadingResult Result
4754 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4755 Sequence.SetOverloadFailure(
4756 InitializationSequence::FK_UserConversionOverloadFailed,
4757 Result);
4758 return;
4759 }
4760
4761 FunctionDecl *Function = Best->Function;
4762 Function->setReferenced();
4763 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4764
4765 if (isa<CXXConstructorDecl>(Function)) {
4766 // Add the user-defined conversion step. Any cv-qualification conversion is
4767 // subsumed by the initialization. Per DR5, the created temporary is of the
4768 // cv-unqualified type of the destination.
4769 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4770 DestType.getUnqualifiedType(),
4771 HadMultipleCandidates);
4772
4773 // C++14 and before:
4774 // - if the function is a constructor, the call initializes a temporary
4775 // of the cv-unqualified version of the destination type. The [...]
4776 // temporary [...] is then used to direct-initialize, according to the
4777 // rules above, the object that is the destination of the
4778 // copy-initialization.
4779 // Note that this just performs a simple object copy from the temporary.
4780 //
4781 // C++1z:
4782 // - if the function is a constructor, the call is a prvalue of the
4783 // cv-unqualified version of the destination type whose return object
4784 // is initialized by the constructor. The call is used to
4785 // direct-initialize, according to the rules above, the object that
4786 // is the destination of the copy-initialization.
4787 // Therefore we need to do nothing further.
4788 //
4789 // FIXME: Mark this copy as extraneous.
4790 if (!S.getLangOpts().CPlusPlus1z)
4791 Sequence.AddFinalCopy(DestType);
4792 else if (DestType.hasQualifiers())
4793 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4794 return;
4795 }
4796
4797 // Add the user-defined conversion step that calls the conversion function.
4798 QualType ConvType = Function->getCallResultType();
4799 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4800 HadMultipleCandidates);
4801
4802 if (ConvType->getAs<RecordType>()) {
4803 // The call is used to direct-initialize [...] the object that is the
4804 // destination of the copy-initialization.
4805 //
4806 // In C++1z, this does not call a constructor if we enter /17.6.1:
4807 // - If the initializer expression is a prvalue and the cv-unqualified
4808 // version of the source type is the same as the class of the
4809 // destination [... do not make an extra copy]
4810 //
4811 // FIXME: Mark this copy as extraneous.
4812 if (!S.getLangOpts().CPlusPlus1z ||
4813 Function->getReturnType()->isReferenceType() ||
4814 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
4815 Sequence.AddFinalCopy(DestType);
4816 else if (!S.Context.hasSameType(ConvType, DestType))
4817 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4818 return;
4819 }
4820
4821 // If the conversion following the call to the conversion function
4822 // is interesting, add it as a separate step.
4823 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4824 Best->FinalConversion.Third) {
4825 ImplicitConversionSequence ICS;
4826 ICS.setStandard();
4827 ICS.Standard = Best->FinalConversion;
4828 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4829 }
4830}
4831
4832/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4833/// a function with a pointer return type contains a 'return false;' statement.
4834/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4835/// code using that header.
4836///
4837/// Work around this by treating 'return false;' as zero-initializing the result
4838/// if it's used in a pointer-returning function in a system header.
4839static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4840 const InitializedEntity &Entity,
4841 const Expr *Init) {
4842 return S.getLangOpts().CPlusPlus11 &&
4843 Entity.getKind() == InitializedEntity::EK_Result &&
4844 Entity.getType()->isPointerType() &&
4845 isa<CXXBoolLiteralExpr>(Init) &&
4846 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4847 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4848}
4849
4850/// The non-zero enum values here are indexes into diagnostic alternatives.
4851enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4852
4853/// Determines whether this expression is an acceptable ICR source.
4854static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4855 bool isAddressOf, bool &isWeakAccess) {
4856 // Skip parens.
4857 e = e->IgnoreParens();
4858
4859 // Skip address-of nodes.
4860 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4861 if (op->getOpcode() == UO_AddrOf)
4862 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4863 isWeakAccess);
4864
4865 // Skip certain casts.
4866 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4867 switch (ce->getCastKind()) {
4868 case CK_Dependent:
4869 case CK_BitCast:
4870 case CK_LValueBitCast:
4871 case CK_NoOp:
4872 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4873
4874 case CK_ArrayToPointerDecay:
4875 return IIK_nonscalar;
4876
4877 case CK_NullToPointer:
4878 return IIK_okay;
4879
4880 default:
4881 break;
4882 }
4883
4884 // If we have a declaration reference, it had better be a local variable.
4885 } else if (isa<DeclRefExpr>(e)) {
4886 // set isWeakAccess to true, to mean that there will be an implicit
4887 // load which requires a cleanup.
4888 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4889 isWeakAccess = true;
4890
4891 if (!isAddressOf) return IIK_nonlocal;
4892
4893 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4894 if (!var) return IIK_nonlocal;
4895
4896 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4897
4898 // If we have a conditional operator, check both sides.
4899 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4900 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4901 isWeakAccess))
4902 return iik;
4903
4904 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4905
4906 // These are never scalar.
4907 } else if (isa<ArraySubscriptExpr>(e)) {
4908 return IIK_nonscalar;
4909
4910 // Otherwise, it needs to be a null pointer constant.
4911 } else {
4912 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4913 ? IIK_okay : IIK_nonlocal);
4914 }
4915
4916 return IIK_nonlocal;
4917}
4918
4919/// Check whether the given expression is a valid operand for an
4920/// indirect copy/restore.
4921static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4922 assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail
("src->isRValue()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 4922, __PRETTY_FUNCTION__))
;
4923 bool isWeakAccess = false;
4924 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4925 // If isWeakAccess to true, there will be an implicit
4926 // load which requires a cleanup.
4927 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4928 S.Cleanup.setExprNeedsCleanups(true);
4929
4930 if (iik == IIK_okay) return;
4931
4932 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4933 << ((unsigned) iik - 1) // shift index into diagnostic explanations
4934 << src->getSourceRange();
4935}
4936
4937/// \brief Determine whether we have compatible array types for the
4938/// purposes of GNU by-copy array initialization.
4939static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4940 const ArrayType *Source) {
4941 // If the source and destination array types are equivalent, we're
4942 // done.
4943 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4944 return true;
4945
4946 // Make sure that the element types are the same.
4947 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4948 return false;
4949
4950 // The only mismatch we allow is when the destination is an
4951 // incomplete array type and the source is a constant array type.
4952 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4953}
4954
4955static bool tryObjCWritebackConversion(Sema &S,
4956 InitializationSequence &Sequence,
4957 const InitializedEntity &Entity,
4958 Expr *Initializer) {
4959 bool ArrayDecay = false;
4960 QualType ArgType = Initializer->getType();
4961 QualType ArgPointee;
4962 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4963 ArrayDecay = true;
4964 ArgPointee = ArgArrayType->getElementType();
4965 ArgType = S.Context.getPointerType(ArgPointee);
4966 }
4967
4968 // Handle write-back conversion.
4969 QualType ConvertedArgType;
4970 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4971 ConvertedArgType))
4972 return false;
4973
4974 // We should copy unless we're passing to an argument explicitly
4975 // marked 'out'.
4976 bool ShouldCopy = true;
4977 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4978 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4979
4980 // Do we need an lvalue conversion?
4981 if (ArrayDecay || Initializer->isGLValue()) {
4982 ImplicitConversionSequence ICS;
4983 ICS.setStandard();
4984 ICS.Standard.setAsIdentityConversion();
4985
4986 QualType ResultType;
4987 if (ArrayDecay) {
4988 ICS.Standard.First = ICK_Array_To_Pointer;
4989 ResultType = S.Context.getPointerType(ArgPointee);
4990 } else {
4991 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4992 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4993 }
4994
4995 Sequence.AddConversionSequenceStep(ICS, ResultType);
4996 }
4997
4998 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4999 return true;
5000}
5001
5002static bool TryOCLSamplerInitialization(Sema &S,
5003 InitializationSequence &Sequence,
5004 QualType DestType,
5005 Expr *Initializer) {
5006 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5007 (!Initializer->isIntegerConstantExpr(S.Context) &&
5008 !Initializer->getType()->isSamplerT()))
5009 return false;
5010
5011 Sequence.AddOCLSamplerInitStep(DestType);
5012 return true;
5013}
5014
5015//
5016// OpenCL 1.2 spec, s6.12.10
5017//
5018// The event argument can also be used to associate the
5019// async_work_group_copy with a previous async copy allowing
5020// an event to be shared by multiple async copies; otherwise
5021// event should be zero.
5022//
5023static bool TryOCLZeroEventInitialization(Sema &S,
5024 InitializationSequence &Sequence,
5025 QualType DestType,
5026 Expr *Initializer) {
5027 if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
5028 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5029 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5030 return false;
5031
5032 Sequence.AddOCLZeroEventStep(DestType);
5033 return true;
5034}
5035
5036static bool TryOCLZeroQueueInitialization(Sema &S,
5037 InitializationSequence &Sequence,
5038 QualType DestType,
5039 Expr *Initializer) {
5040 if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 ||
5041 !DestType->isQueueT() ||
5042 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5043 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5044 return false;
5045
5046 Sequence.AddOCLZeroQueueStep(DestType);
5047 return true;
5048}
5049
5050InitializationSequence::InitializationSequence(Sema &S,
5051 const InitializedEntity &Entity,
5052 const InitializationKind &Kind,
5053 MultiExprArg Args,
5054 bool TopLevelOfInitList,
5055 bool TreatUnavailableAsInvalid)
5056 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5057 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5058 TreatUnavailableAsInvalid);
5059}
5060
5061/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5062/// address of that function, this returns true. Otherwise, it returns false.
5063static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5064 auto *DRE = dyn_cast<DeclRefExpr>(E);
5065 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5066 return false;
5067
5068 return !S.checkAddressOfFunctionIsAvailable(
5069 cast<FunctionDecl>(DRE->getDecl()));
5070}
5071
5072/// Determine whether we can perform an elementwise array copy for this kind
5073/// of entity.
5074static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5075 switch (Entity.getKind()) {
5076 case InitializedEntity::EK_LambdaCapture:
5077 // C++ [expr.prim.lambda]p24:
5078 // For array members, the array elements are direct-initialized in
5079 // increasing subscript order.
5080 return true;
5081
5082 case InitializedEntity::EK_Variable:
5083 // C++ [dcl.decomp]p1:
5084 // [...] each element is copy-initialized or direct-initialized from the
5085 // corresponding element of the assignment-expression [...]
5086 return isa<DecompositionDecl>(Entity.getDecl());
5087
5088 case InitializedEntity::EK_Member:
5089 // C++ [class.copy.ctor]p14:
5090 // - if the member is an array, each element is direct-initialized with
5091 // the corresponding subobject of x
5092 return Entity.isImplicitMemberInitializer();
5093
5094 case InitializedEntity::EK_ArrayElement:
5095 // All the above cases are intended to apply recursively, even though none
5096 // of them actually say that.
5097 if (auto *E = Entity.getParent())
5098 return canPerformArrayCopy(*E);
5099 break;
5100
5101 default:
5102 break;
5103 }
5104
5105 return false;
5106}
5107
5108void InitializationSequence::InitializeFrom(Sema &S,
5109 const InitializedEntity &Entity,
5110 const InitializationKind &Kind,
5111 MultiExprArg Args,
5112 bool TopLevelOfInitList,
5113 bool TreatUnavailableAsInvalid) {
5114 ASTContext &Context = S.Context;
5115
5116 // Eliminate non-overload placeholder types in the arguments. We
5117 // need to do this before checking whether types are dependent
5118 // because lowering a pseudo-object expression might well give us
5119 // something of dependent type.
5120 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1
Assuming 'I' is equal to 'E'
2
Loop condition is false. Execution continues on line 5137
5121 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5122 // FIXME: should we be doing this here?
5123 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5124 if (result.isInvalid()) {
5125 SetFailed(FK_PlaceholderType);
5126 return;
5127 }
5128 Args[I] = result.get();
5129 }
5130
5131 // C++0x [dcl.init]p16:
5132 // The semantics of initializers are as follows. The destination type is
5133 // the type of the object or reference being initialized and the source
5134 // type is the type of the initializer expression. The source type is not
5135 // defined when the initializer is a braced-init-list or when it is a
5136 // parenthesized list of expressions.
5137 QualType DestType = Entity.getType();
5138
5139 if (DestType->isDependentType() ||
4
Taking false branch
5140 Expr::hasAnyTypeDependentArguments(Args)) {
3
Assuming the condition is false
5141 SequenceKind = DependentSequence;
5142 return;
5143 }
5144
5145 // Almost everything is a normal sequence.
5146 setSequenceKind(NormalSequence);
5147
5148 QualType SourceType;
5149 Expr *Initializer = nullptr;
5
'Initializer' initialized to a null pointer value
5150 if (Args.size() == 1) {
6
Assuming the condition is false
7
Taking false branch
5151 Initializer = Args[0];
5152 if (S.getLangOpts().ObjC1) {
5153 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
5154 DestType, Initializer->getType(),
5155 Initializer) ||
5156 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5157 Args[0] = Initializer;
5158 }
5159 if (!isa<InitListExpr>(Initializer))
5160 SourceType = Initializer->getType();
5161 }
5162
5163 // - If the initializer is a (non-parenthesized) braced-init-list, the
5164 // object is list-initialized (8.5.4).
5165 if (Kind.getKind() != InitializationKind::IK_Direct) {
8
Assuming the condition is false
9
Taking false branch
5166 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5167 TryListInitialization(S, Entity, Kind, InitList, *this,
5168 TreatUnavailableAsInvalid);
5169 return;
5170 }
5171 }
5172
5173 // - If the destination type is a reference type, see 8.5.3.
5174 if (DestType->isReferenceType()) {
10
Taking false branch
5175 // C++0x [dcl.init.ref]p1:
5176 // A variable declared to be a T& or T&&, that is, "reference to type T"
5177 // (8.3.2), shall be initialized by an object, or function, of type T or
5178 // by an object that can be converted into a T.
5179 // (Therefore, multiple arguments are not permitted.)
5180 if (Args.size() != 1)
5181 SetFailed(FK_TooManyInitsForReference);
5182 else
5183 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5184 return;
5185 }
5186
5187 // - If the initializer is (), the object is value-initialized.
5188 if (Kind.getKind() == InitializationKind::IK_Value ||
12
Taking false branch
5189 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
11
Assuming the condition is false
5190 TryValueInitialization(S, Entity, Kind, *this);
5191 return;
5192 }
5193
5194 // Handle default initialization.
5195 if (Kind.getKind() == InitializationKind::IK_Default) {
13
Taking false branch
5196 TryDefaultInitialization(S, Entity, Kind, *this);
5197 return;
5198 }
5199
5200 // - If the destination type is an array of characters, an array of
5201 // char16_t, an array of char32_t, or an array of wchar_t, and the
5202 // initializer is a string literal, see 8.5.2.
5203 // - Otherwise, if the destination type is an array, the program is
5204 // ill-formed.
5205 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
14
Assuming 'DestAT' is null
15
Taking false branch
5206 if (Initializer && isa<VariableArrayType>(DestAT)) {
5207 SetFailed(FK_VariableLengthArrayHasInitializer);
5208 return;
5209 }
5210
5211 if (Initializer) {
5212 switch (IsStringInit(Initializer, DestAT, Context)) {
5213 case SIF_None:
5214 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5215 return;
5216 case SIF_NarrowStringIntoWideChar:
5217 SetFailed(FK_NarrowStringIntoWideCharArray);
5218 return;
5219 case SIF_WideStringIntoChar:
5220 SetFailed(FK_WideStringIntoCharArray);
5221 return;
5222 case SIF_IncompatWideStringIntoWideChar:
5223 SetFailed(FK_IncompatWideStringIntoWideChar);
5224 return;
5225 case SIF_Other:
5226 break;
5227 }
5228 }
5229
5230 // Some kinds of initialization permit an array to be initialized from
5231 // another array of the same type, and perform elementwise initialization.
5232 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5233 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5234 Entity.getType()) &&
5235 canPerformArrayCopy(Entity)) {
5236 // If source is a prvalue, use it directly.
5237 if (Initializer->getValueKind() == VK_RValue) {
5238 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5239 return;
5240 }
5241
5242 // Emit element-at-a-time copy loop.
5243 InitializedEntity Element =
5244 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5245 QualType InitEltT =
5246 Context.getAsArrayType(Initializer->getType())->getElementType();
5247 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5248 Initializer->getValueKind(),
5249 Initializer->getObjectKind());
5250 Expr *OVEAsExpr = &OVE;
5251 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5252 TreatUnavailableAsInvalid);
5253 if (!Failed())
5254 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5255 return;
5256 }
5257
5258 // Note: as an GNU C extension, we allow initialization of an
5259 // array from a compound literal that creates an array of the same
5260 // type, so long as the initializer has no side effects.
5261 if (!S.getLangOpts().CPlusPlus && Initializer &&
5262 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5263 Initializer->getType()->isArrayType()) {
5264 const ArrayType *SourceAT
5265 = Context.getAsArrayType(Initializer->getType());
5266 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5267 SetFailed(FK_ArrayTypeMismatch);
5268 else if (Initializer->HasSideEffects(S.Context))
5269 SetFailed(FK_NonConstantArrayInit);
5270 else {
5271 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5272 }
5273 }
5274 // Note: as a GNU C++ extension, we allow list-initialization of a
5275 // class member of array type from a parenthesized initializer list.
5276 else if (S.getLangOpts().CPlusPlus &&
5277 Entity.getKind() == InitializedEntity::EK_Member &&
5278 Initializer && isa<InitListExpr>(Initializer)) {
5279 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5280 *this, TreatUnavailableAsInvalid);
5281 AddParenthesizedArrayInitStep(DestType);
5282 } else if (DestAT->getElementType()->isCharType())
5283 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5284 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5285 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5286 else
5287 SetFailed(FK_ArrayNeedsInitList);
5288
5289 return;
5290 }
5291
5292 // Determine whether we should consider writeback conversions for
5293 // Objective-C ARC.
5294 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
16
Assuming the condition is false
5295 Entity.isParameterKind();
5296
5297 // We're at the end of the line for C: it's either a write-back conversion
5298 // or it's a C assignment. There's no need to check anything else.
5299 if (!S.getLangOpts().CPlusPlus) {
17
Assuming the condition is false
18
Taking false branch
5300 // If allowed, check whether this is an Objective-C writeback conversion.
5301 if (allowObjCWritebackConversion &&
5302 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5303 return;
5304 }
5305
5306 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5307 return;
5308
5309 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
5310 return;
5311
5312 if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer))
5313 return;
5314
5315 // Handle initialization in C
5316 AddCAssignmentStep(DestType);
5317 MaybeProduceObjCObject(S, *this, Entity);
5318 return;
5319 }
5320
5321 assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("S.getLangOpts().CPlusPlus", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 5321, __PRETTY_FUNCTION__))
;
5322
5323 // - If the destination type is a (possibly cv-qualified) class type:
5324 if (DestType->isRecordType()) {
19
Taking false branch
5325 // - If the initialization is direct-initialization, or if it is
5326 // copy-initialization where the cv-unqualified version of the
5327 // source type is the same class as, or a derived class of, the
5328 // class of the destination, constructors are considered. [...]
5329 if (Kind.getKind() == InitializationKind::IK_Direct ||
5330 (Kind.getKind() == InitializationKind::IK_Copy &&
5331 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5332 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5333 TryConstructorInitialization(S, Entity, Kind, Args,
5334 DestType, DestType, *this);
5335 // - Otherwise (i.e., for the remaining copy-initialization cases),
5336 // user-defined conversion sequences that can convert from the source
5337 // type to the destination type or (when a conversion function is
5338 // used) to a derived class thereof are enumerated as described in
5339 // 13.3.1.4, and the best one is chosen through overload resolution
5340 // (13.3).
5341 else
5342 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5343 TopLevelOfInitList);
5344 return;
5345 }
5346
5347 if (Args.size() > 1) {
20
Assuming the condition is false
21
Taking false branch
5348 SetFailed(FK_TooManyInitsForScalar);
5349 return;
5350 }
5351 assert(Args.size() == 1 && "Zero-argument case handled above")((Args.size() == 1 && "Zero-argument case handled above"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"Zero-argument case handled above\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 5351, __PRETTY_FUNCTION__))
;
5352
5353 // - Otherwise, if the source type is a (possibly cv-qualified) class
5354 // type, conversion functions are considered.
5355 if (!SourceType.isNull() && SourceType->isRecordType()) {
5356 // For a conversion to _Atomic(T) from either T or a class type derived
5357 // from T, initialize the T object then convert to _Atomic type.
5358 bool NeedAtomicConversion = false;
5359 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5360 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5361 S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5362 Atomic->getValueType())) {
5363 DestType = Atomic->getValueType();
5364 NeedAtomicConversion = true;
5365 }
5366 }
5367
5368 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5369 TopLevelOfInitList);
5370 MaybeProduceObjCObject(S, *this, Entity);
5371 if (!Failed() && NeedAtomicConversion)
5372 AddAtomicConversionStep(Entity.getType());
5373 return;
5374 }
5375
5376 // - Otherwise, the initial value of the object being initialized is the
5377 // (possibly converted) value of the initializer expression. Standard
5378 // conversions (Clause 4) will be used, if necessary, to convert the
5379 // initializer expression to the cv-unqualified version of the
5380 // destination type; no user-defined conversions are considered.
5381
5382 ImplicitConversionSequence ICS
5383 = S.TryImplicitConversion(Initializer, DestType,
5384 /*SuppressUserConversions*/true,
5385 /*AllowExplicitConversions*/ false,
5386 /*InOverloadResolution*/ false,
5387 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5388 allowObjCWritebackConversion);
5389
5390 if (ICS.isStandard() &&
5391 ICS.Standard.Second == ICK_Writeback_Conversion) {
5392 // Objective-C ARC writeback conversion.
5393
5394 // We should copy unless we're passing to an argument explicitly
5395 // marked 'out'.
5396 bool ShouldCopy = true;
5397 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5398 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5399
5400 // If there was an lvalue adjustment, add it as a separate conversion.
5401 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5402 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5403 ImplicitConversionSequence LvalueICS;
5404 LvalueICS.setStandard();
5405 LvalueICS.Standard.setAsIdentityConversion();
5406 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5407 LvalueICS.Standard.First = ICS.Standard.First;
5408 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5409 }
5410
5411 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5412 } else if (ICS.isBad()) {
22
Taking true branch
5413 DeclAccessPair dap;
5414 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
23
Taking false branch
5415 AddZeroInitializationStep(Entity.getType());
5416 } else if (Initializer->getType() == Context.OverloadTy &&
24
Called C++ object pointer is null
5417 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5418 false, dap))
5419 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5420 else if (Initializer->getType()->isFunctionType() &&
5421 isExprAnUnaddressableFunction(S, Initializer))
5422 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5423 else
5424 SetFailed(InitializationSequence::FK_ConversionFailed);
5425 } else {
5426 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5427
5428 MaybeProduceObjCObject(S, *this, Entity);
5429 }
5430}
5431
5432InitializationSequence::~InitializationSequence() {
5433 for (auto &S : Steps)
5434 S.Destroy();
5435}
5436
5437//===----------------------------------------------------------------------===//
5438// Perform initialization
5439//===----------------------------------------------------------------------===//
5440static Sema::AssignmentAction
5441getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5442 switch(Entity.getKind()) {
5443 case InitializedEntity::EK_Variable:
5444 case InitializedEntity::EK_New:
5445 case InitializedEntity::EK_Exception:
5446 case InitializedEntity::EK_Base:
5447 case InitializedEntity::EK_Delegating:
5448 return Sema::AA_Initializing;
5449
5450 case InitializedEntity::EK_Parameter:
5451 if (Entity.getDecl() &&
5452 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5453 return Sema::AA_Sending;
5454
5455 return Sema::AA_Passing;
5456
5457 case InitializedEntity::EK_Parameter_CF_Audited:
5458 if (Entity.getDecl() &&
5459 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5460 return Sema::AA_Sending;
5461
5462 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5463
5464 case InitializedEntity::EK_Result:
5465 return Sema::AA_Returning;
5466
5467 case InitializedEntity::EK_Temporary:
5468 case InitializedEntity::EK_RelatedResult:
5469 // FIXME: Can we tell apart casting vs. converting?
5470 return Sema::AA_Casting;
5471
5472 case InitializedEntity::EK_Member:
5473 case InitializedEntity::EK_Binding:
5474 case InitializedEntity::EK_ArrayElement:
5475 case InitializedEntity::EK_VectorElement:
5476 case InitializedEntity::EK_ComplexElement:
5477 case InitializedEntity::EK_BlockElement:
5478 case InitializedEntity::EK_LambdaCapture:
5479 case InitializedEntity::EK_CompoundLiteralInit:
5480 return Sema::AA_Initializing;
5481 }
5482
5483 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 5483)
;
5484}
5485
5486/// \brief Whether we should bind a created object as a temporary when
5487/// initializing the given entity.
5488static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5489 switch (Entity.getKind()) {
5490 case InitializedEntity::EK_ArrayElement:
5491 case InitializedEntity::EK_Member:
5492 case InitializedEntity::EK_Result:
5493 case InitializedEntity::EK_New:
5494 case InitializedEntity::EK_Variable:
5495 case InitializedEntity::EK_Base:
5496 case InitializedEntity::EK_Delegating:
5497 case InitializedEntity::EK_VectorElement:
5498 case InitializedEntity::EK_ComplexElement:
5499 case InitializedEntity::EK_Exception:
5500 case InitializedEntity::EK_BlockElement:
5501 case InitializedEntity::EK_LambdaCapture:
5502 case InitializedEntity::EK_CompoundLiteralInit:
5503 return false;
5504
5505 case InitializedEntity::EK_Parameter:
5506 case InitializedEntity::EK_Parameter_CF_Audited:
5507 case InitializedEntity::EK_Temporary:
5508 case InitializedEntity::EK_RelatedResult:
5509 case InitializedEntity::EK_Binding:
5510 return true;
5511 }
5512
5513 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 5513)
;
5514}
5515
5516/// \brief Whether the given entity, when initialized with an object
5517/// created for that initialization, requires destruction.
5518static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5519 switch (Entity.getKind()) {
5520 case InitializedEntity::EK_Result:
5521 case InitializedEntity::EK_New:
5522 case InitializedEntity::EK_Base:
5523 case InitializedEntity::EK_Delegating:
5524 case InitializedEntity::EK_VectorElement:
5525 case InitializedEntity::EK_ComplexElement:
5526 case InitializedEntity::EK_BlockElement:
5527 case InitializedEntity::EK_LambdaCapture:
5528 return false;
5529
5530 case InitializedEntity::EK_Member:
5531 case InitializedEntity::EK_Binding:
5532 case InitializedEntity::EK_Variable:
5533 case InitializedEntity::EK_Parameter:
5534 case InitializedEntity::EK_Parameter_CF_Audited:
5535 case InitializedEntity::EK_Temporary:
5536 case InitializedEntity::EK_ArrayElement:
5537 case InitializedEntity::EK_Exception:
5538 case InitializedEntity::EK_CompoundLiteralInit:
5539 case InitializedEntity::EK_RelatedResult:
5540 return true;
5541 }
5542
5543 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 5543)
;
5544}
5545
5546/// \brief Get the location at which initialization diagnostics should appear.
5547static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5548 Expr *Initializer) {
5549 switch (Entity.getKind()) {
5550 case InitializedEntity::EK_Result:
5551 return Entity.getReturnLoc();
5552
5553 case InitializedEntity::EK_Exception:
5554 return Entity.getThrowLoc();
5555
5556 case InitializedEntity::EK_Variable:
5557 case InitializedEntity::EK_Binding:
5558 return Entity.getDecl()->getLocation();
5559
5560 case InitializedEntity::EK_LambdaCapture:
5561 return Entity.getCaptureLoc();
5562
5563 case InitializedEntity::EK_ArrayElement:
5564 case InitializedEntity::EK_Member:
5565 case InitializedEntity::EK_Parameter:
5566 case InitializedEntity::EK_Parameter_CF_Audited:
5567 case InitializedEntity::EK_Temporary:
5568 case InitializedEntity::EK_New:
5569 case InitializedEntity::EK_Base:
5570 case InitializedEntity::EK_Delegating:
5571 case InitializedEntity::EK_VectorElement:
5572 case InitializedEntity::EK_ComplexElement:
5573 case InitializedEntity::EK_BlockElement:
5574 case InitializedEntity::EK_CompoundLiteralInit:
5575 case InitializedEntity::EK_RelatedResult:
5576 return Initializer->getLocStart();
5577 }
5578 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 5578)
;
5579}
5580
5581/// \brief Make a (potentially elidable) temporary copy of the object
5582/// provided by the given initializer by calling the appropriate copy
5583/// constructor.
5584///
5585/// \param S The Sema object used for type-checking.
5586///
5587/// \param T The type of the temporary object, which must either be
5588/// the type of the initializer expression or a superclass thereof.
5589///
5590/// \param Entity The entity being initialized.
5591///
5592/// \param CurInit The initializer expression.
5593///
5594/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5595/// is permitted in C++03 (but not C++0x) when binding a reference to
5596/// an rvalue.
5597///
5598/// \returns An expression that copies the initializer expression into
5599/// a temporary object, or an error expression if a copy could not be
5600/// created.
5601static ExprResult CopyObject(Sema &S,
5602 QualType T,
5603 const InitializedEntity &Entity,
5604 ExprResult CurInit,
5605 bool IsExtraneousCopy) {
5606 if (CurInit.isInvalid())
5607 return CurInit;
5608 // Determine which class type we're copying to.
5609 Expr *CurInitExpr = (Expr *)CurInit.get();
5610 CXXRecordDecl *Class = nullptr;
5611 if (const RecordType *Record = T->getAs<RecordType>())
5612 Class = cast<CXXRecordDecl>(Record->getDecl());
5613 if (!Class)
5614 return CurInit;
5615
5616 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5617
5618 // Make sure that the type we are copying is complete.
5619 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5620 return CurInit;
5621
5622 // Perform overload resolution using the class's constructors. Per
5623 // C++11 [dcl.init]p16, second bullet for class types, this initialization
5624 // is direct-initialization.
5625 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5626 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5627
5628 OverloadCandidateSet::iterator Best;
5629 switch (ResolveConstructorOverload(
5630 S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5631 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5632 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5633 /*SecondStepOfCopyInit=*/true)) {
5634 case OR_Success:
5635 break;
5636
5637 case OR_No_Viable_Function:
5638 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5639 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5640 : diag::err_temp_copy_no_viable)
5641 << (int)Entity.getKind() << CurInitExpr->getType()
5642 << CurInitExpr->getSourceRange();
5643 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5644 if (!IsExtraneousCopy || S.isSFINAEContext())
5645 return ExprError();
5646 return CurInit;
5647
5648 case OR_Ambiguous:
5649 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5650 << (int)Entity.getKind() << CurInitExpr->getType()
5651 << CurInitExpr->getSourceRange();
5652 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5653 return ExprError();
5654
5655 case OR_Deleted:
5656 S.Diag(Loc, diag::err_temp_copy_deleted)
5657 << (int)Entity.getKind() << CurInitExpr->getType()
5658 << CurInitExpr->getSourceRange();
5659 S.NoteDeletedFunction(Best->Function);
5660 return ExprError();
5661 }
5662
5663 bool HadMultipleCandidates = CandidateSet.size() > 1;
5664
5665 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5666 SmallVector<Expr*, 8> ConstructorArgs;
5667 CurInit.get(); // Ownership transferred into MultiExprArg, below.
5668
5669 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5670 IsExtraneousCopy);
5671
5672 if (IsExtraneousCopy) {
5673 // If this is a totally extraneous copy for C++03 reference
5674 // binding purposes, just return the original initialization
5675 // expression. We don't generate an (elided) copy operation here
5676 // because doing so would require us to pass down a flag to avoid
5677 // infinite recursion, where each step adds another extraneous,
5678 // elidable copy.
5679
5680 // Instantiate the default arguments of any extra parameters in
5681 // the selected copy constructor, as if we were going to create a
5682 // proper call to the copy constructor.
5683 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5684 ParmVarDecl *Parm = Constructor->getParamDecl(I);
5685 if (S.RequireCompleteType(Loc, Parm->getType(),
5686 diag::err_call_incomplete_argument))
5687 break;
5688
5689 // Build the default argument expression; we don't actually care
5690 // if this succeeds or not, because this routine will complain
5691 // if there was a problem.
5692 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5693 }
5694
5695 return CurInitExpr;
5696 }
5697
5698 // Determine the arguments required to actually perform the
5699 // constructor call (we might have derived-to-base conversions, or
5700 // the copy constructor may have default arguments).
5701 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5702 return ExprError();
5703
5704 // C++0x [class.copy]p32:
5705 // When certain criteria are met, an implementation is allowed to
5706 // omit the copy/move construction of a class object, even if the
5707 // copy/move constructor and/or destructor for the object have
5708 // side effects. [...]
5709 // - when a temporary class object that has not been bound to a
5710 // reference (12.2) would be copied/moved to a class object
5711 // with the same cv-unqualified type, the copy/move operation
5712 // can be omitted by constructing the temporary object
5713 // directly into the target of the omitted copy/move
5714 //
5715 // Note that the other three bullets are handled elsewhere. Copy
5716 // elision for return statements and throw expressions are handled as part
5717 // of constructor initialization, while copy elision for exception handlers
5718 // is handled by the run-time.
5719 //
5720 // FIXME: If the function parameter is not the same type as the temporary, we
5721 // should still be able to elide the copy, but we don't have a way to
5722 // represent in the AST how much should be elided in this case.
5723 bool Elidable =
5724 CurInitExpr->isTemporaryObject(S.Context, Class) &&
5725 S.Context.hasSameUnqualifiedType(
5726 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5727 CurInitExpr->getType());
5728
5729 // Actually perform the constructor call.
5730 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5731 Elidable,
5732 ConstructorArgs,
5733 HadMultipleCandidates,
5734 /*ListInit*/ false,
5735 /*StdInitListInit*/ false,
5736 /*ZeroInit*/ false,
5737 CXXConstructExpr::CK_Complete,
5738 SourceRange());
5739
5740 // If we're supposed to bind temporaries, do so.
5741 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5742 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5743 return CurInit;
5744}
5745
5746/// \brief Check whether elidable copy construction for binding a reference to
5747/// a temporary would have succeeded if we were building in C++98 mode, for
5748/// -Wc++98-compat.
5749static void CheckCXX98CompatAccessibleCopy(Sema &S,
5750 const InitializedEntity &Entity,
5751 Expr *CurInitExpr) {
5752 assert(S.getLangOpts().CPlusPlus11)((S.getLangOpts().CPlusPlus11) ? static_cast<void> (0) :
__assert_fail ("S.getLangOpts().CPlusPlus11", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 5752, __PRETTY_FUNCTION__))
;
5753
5754 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5755 if (!Record)
5756 return;
5757
5758 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5759 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5760 return;
5761
5762 // Find constructors which would have been considered.
5763 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5764 DeclContext::lookup_result Ctors =
5765 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
5766
5767 // Perform overload resolution.
5768 OverloadCandidateSet::iterator Best;
5769 OverloadingResult OR = ResolveConstructorOverload(
5770 S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5771 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5772 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5773 /*SecondStepOfCopyInit=*/true);
5774
5775 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5776 << OR << (int)Entity.getKind() << CurInitExpr->getType()
5777 << CurInitExpr->getSourceRange();
5778
5779 switch (OR) {
5780 case OR_Success:
5781 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5782 Best->FoundDecl, Entity, Diag);
5783 // FIXME: Check default arguments as far as that's possible.
5784 break;
5785
5786 case OR_No_Viable_Function:
5787 S.Diag(Loc, Diag);
5788 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5789 break;
5790
5791 case OR_Ambiguous:
5792 S.Diag(Loc, Diag);
5793 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5794 break;
5795
5796 case OR_Deleted:
5797 S.Diag(Loc, Diag);
5798 S.NoteDeletedFunction(Best->Function);
5799 break;
5800 }
5801}
5802
5803void InitializationSequence::PrintInitLocationNote(Sema &S,
5804 const InitializedEntity &Entity) {
5805 if (Entity.isParameterKind() && Entity.getDecl()) {
5806 if (Entity.getDecl()->getLocation().isInvalid())
5807 return;
5808
5809 if (Entity.getDecl()->getDeclName())
5810 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5811 << Entity.getDecl()->getDeclName();
5812 else
5813 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5814 }
5815 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5816 Entity.getMethodDecl())
5817 S.Diag(Entity.getMethodDecl()->getLocation(),
5818 diag::note_method_return_type_change)
5819 << Entity.getMethodDecl()->getDeclName();
5820}
5821
5822/// Returns true if the parameters describe a constructor initialization of
5823/// an explicit temporary object, e.g. "Point(x, y)".
5824static bool isExplicitTemporary(const InitializedEntity &Entity,
5825 const InitializationKind &Kind,
5826 unsigned NumArgs) {
5827 switch (Entity.getKind()) {
5828 case InitializedEntity::EK_Temporary:
5829 case InitializedEntity::EK_CompoundLiteralInit:
5830 case InitializedEntity::EK_RelatedResult:
5831 break;
5832 default:
5833 return false;
5834 }
5835
5836 switch (Kind.getKind()) {
5837 case InitializationKind::IK_DirectList:
5838 return true;
5839 // FIXME: Hack to work around cast weirdness.
5840 case InitializationKind::IK_Direct:
5841 case InitializationKind::IK_Value:
5842 return NumArgs != 1;
5843 default:
5844 return false;
5845 }
5846}
5847
5848static ExprResult
5849PerformConstructorInitialization(Sema &S,
5850 const InitializedEntity &Entity,
5851 const InitializationKind &Kind,
5852 MultiExprArg Args,
5853 const InitializationSequence::Step& Step,
5854 bool &ConstructorInitRequiresZeroInit,
5855 bool IsListInitialization,
5856 bool IsStdInitListInitialization,
5857 SourceLocation LBraceLoc,
5858 SourceLocation RBraceLoc) {
5859 unsigned NumArgs = Args.size();
5860 CXXConstructorDecl *Constructor
5861 = cast<CXXConstructorDecl>(Step.Function.Function);
5862 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5863
5864 // Build a call to the selected constructor.
5865 SmallVector<Expr*, 8> ConstructorArgs;
5866 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5867 ? Kind.getEqualLoc()
5868 : Kind.getLocation();
5869
5870 if (Kind.getKind() == InitializationKind::IK_Default) {
5871 // Force even a trivial, implicit default constructor to be
5872 // semantically checked. We do this explicitly because we don't build
5873 // the definition for completely trivial constructors.
5874 assert(Constructor->getParent() && "No parent class for constructor.")((Constructor->getParent() && "No parent class for constructor."
) ? static_cast<void> (0) : __assert_fail ("Constructor->getParent() && \"No parent class for constructor.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 5874, __PRETTY_FUNCTION__))
;
5875 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5876 Constructor->isTrivial() && !Constructor->isUsed(false))
5877 S.DefineImplicitDefaultConstructor(Loc, Constructor);
5878 }
5879
5880 ExprResult CurInit((Expr *)nullptr);
5881
5882 // C++ [over.match.copy]p1:
5883 // - When initializing a temporary to be bound to the first parameter
5884 // of a constructor that takes a reference to possibly cv-qualified
5885 // T as its first argument, called with a single argument in the
5886 // context of direct-initialization, explicit conversion functions
5887 // are also considered.
5888 bool AllowExplicitConv =
5889 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
5890 hasCopyOrMoveCtorParam(S.Context,
5891 getConstructorInfo(Step.Function.FoundDecl));
5892
5893 // Determine the arguments required to actually perform the constructor
5894 // call.
5895 if (S.CompleteConstructorCall(Constructor, Args,
5896 Loc, ConstructorArgs,
5897 AllowExplicitConv,
5898 IsListInitialization))
5899 return ExprError();
5900
5901
5902 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5903 // An explicitly-constructed temporary, e.g., X(1, 2).
5904 if (S.DiagnoseUseOfDecl(Constructor, Loc))
5905 return ExprError();
5906
5907 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5908 if (!TSInfo)
5909 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5910 SourceRange ParenOrBraceRange =
5911 (Kind.getKind() == InitializationKind::IK_DirectList)
5912 ? SourceRange(LBraceLoc, RBraceLoc)
5913 : Kind.getParenRange();
5914
5915 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
5916 Step.Function.FoundDecl.getDecl())) {
5917 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
5918 if (S.DiagnoseUseOfDecl(Constructor, Loc))
5919 return ExprError();
5920 }
5921 S.MarkFunctionReferenced(Loc, Constructor);
5922
5923 CurInit = new (S.Context) CXXTemporaryObjectExpr(
5924 S.Context, Constructor,
5925 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
5926 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
5927 IsListInitialization, IsStdInitListInitialization,
5928 ConstructorInitRequiresZeroInit);
5929 } else {
5930 CXXConstructExpr::ConstructionKind ConstructKind =
5931 CXXConstructExpr::CK_Complete;
5932
5933 if (Entity.getKind() == InitializedEntity::EK_Base) {
5934 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5935 CXXConstructExpr::CK_VirtualBase :
5936 CXXConstructExpr::CK_NonVirtualBase;
5937 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5938 ConstructKind = CXXConstructExpr::CK_Delegating;
5939 }
5940
5941 // Only get the parenthesis or brace range if it is a list initialization or
5942 // direct construction.
5943 SourceRange ParenOrBraceRange;
5944 if (IsListInitialization)
5945 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5946 else if (Kind.getKind() == InitializationKind::IK_Direct)
5947 ParenOrBraceRange = Kind.getParenRange();
5948
5949 // If the entity allows NRVO, mark the construction as elidable
5950 // unconditionally.
5951 if (Entity.allowsNRVO())
5952 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5953 Step.Function.FoundDecl,
5954 Constructor, /*Elidable=*/true,
5955 ConstructorArgs,
5956 HadMultipleCandidates,
5957 IsListInitialization,
5958 IsStdInitListInitialization,
5959 ConstructorInitRequiresZeroInit,
5960 ConstructKind,
5961 ParenOrBraceRange);
5962 else
5963 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5964 Step.Function.FoundDecl,
5965 Constructor,
5966 ConstructorArgs,
5967 HadMultipleCandidates,
5968 IsListInitialization,
5969 IsStdInitListInitialization,
5970 ConstructorInitRequiresZeroInit,
5971 ConstructKind,
5972 ParenOrBraceRange);
5973 }
5974 if (CurInit.isInvalid())
5975 return ExprError();
5976
5977 // Only check access if all of that succeeded.
5978 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
5979 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5980 return ExprError();
5981
5982 if (shouldBindAsTemporary(Entity))
5983 CurInit = S.MaybeBindToTemporary(CurInit.get());
5984
5985 return CurInit;
5986}
5987
5988/// Determine whether the specified InitializedEntity definitely has a lifetime
5989/// longer than the current full-expression. Conservatively returns false if
5990/// it's unclear.
5991static bool
5992InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5993 const InitializedEntity *Top = &Entity;
5994 while (Top->getParent())
5995 Top = Top->getParent();
5996
5997 switch (Top->getKind()) {
5998 case InitializedEntity::EK_Variable:
5999 case InitializedEntity::EK_Result:
6000 case InitializedEntity::EK_Exception:
6001 case InitializedEntity::EK_Member:
6002 case InitializedEntity::EK_Binding:
6003 case InitializedEntity::EK_New:
6004 case InitializedEntity::EK_Base:
6005 case InitializedEntity::EK_Delegating:
6006 return true;
6007
6008 case InitializedEntity::EK_ArrayElement:
6009 case InitializedEntity::EK_VectorElement:
6010 case InitializedEntity::EK_BlockElement:
6011 case InitializedEntity::EK_ComplexElement:
6012 // Could not determine what the full initialization is. Assume it might not
6013 // outlive the full-expression.
6014 return false;
6015
6016 case InitializedEntity::EK_Parameter:
6017 case InitializedEntity::EK_Parameter_CF_Audited:
6018 case InitializedEntity::EK_Temporary:
6019 case InitializedEntity::EK_LambdaCapture:
6020 case InitializedEntity::EK_CompoundLiteralInit:
6021 case InitializedEntity::EK_RelatedResult:
6022 // The entity being initialized might not outlive the full-expression.
6023 return false;
6024 }
6025
6026 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6026)
;
6027}
6028
6029/// Determine the declaration which an initialized entity ultimately refers to,
6030/// for the purpose of lifetime-extending a temporary bound to a reference in
6031/// the initialization of \p Entity.
6032static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
6033 const InitializedEntity *Entity,
6034 const InitializedEntity *FallbackDecl = nullptr) {
6035 // C++11 [class.temporary]p5:
6036 switch (Entity->getKind()) {
6037 case InitializedEntity::EK_Variable:
6038 // The temporary [...] persists for the lifetime of the reference
6039 return Entity;
6040
6041 case InitializedEntity::EK_Member:
6042 // For subobjects, we look at the complete object.
6043 if (Entity->getParent())
6044 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6045 Entity);
6046
6047 // except:
6048 // -- A temporary bound to a reference member in a constructor's
6049 // ctor-initializer persists until the constructor exits.
6050 return Entity;
6051
6052 case InitializedEntity::EK_Binding:
6053 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6054 // type.
6055 return Entity;
6056
6057 case InitializedEntity::EK_Parameter:
6058 case InitializedEntity::EK_Parameter_CF_Audited:
6059 // -- A temporary bound to a reference parameter in a function call
6060 // persists until the completion of the full-expression containing
6061 // the call.
6062 case InitializedEntity::EK_Result:
6063 // -- The lifetime of a temporary bound to the returned value in a
6064 // function return statement is not extended; the temporary is
6065 // destroyed at the end of the full-expression in the return statement.
6066 case InitializedEntity::EK_New:
6067 // -- A temporary bound to a reference in a new-initializer persists
6068 // until the completion of the full-expression containing the
6069 // new-initializer.
6070 return nullptr;
6071
6072 case InitializedEntity::EK_Temporary:
6073 case InitializedEntity::EK_CompoundLiteralInit:
6074 case InitializedEntity::EK_RelatedResult:
6075 // We don't yet know the storage duration of the surrounding temporary.
6076 // Assume it's got full-expression duration for now, it will patch up our
6077 // storage duration if that's not correct.
6078 return nullptr;
6079
6080 case InitializedEntity::EK_ArrayElement:
6081 // For subobjects, we look at the complete object.
6082 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6083 FallbackDecl);
6084
6085 case InitializedEntity::EK_Base:
6086 // For subobjects, we look at the complete object.
6087 if (Entity->getParent())
6088 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6089 Entity);
6090 // Fall through.
6091 case InitializedEntity::EK_Delegating:
6092 // We can reach this case for aggregate initialization in a constructor:
6093 // struct A { int &&r; };
6094 // struct B : A { B() : A{0} {} };
6095 // In this case, use the innermost field decl as the context.
6096 return FallbackDecl;
6097
6098 case InitializedEntity::EK_BlockElement:
6099 case InitializedEntity::EK_LambdaCapture:
6100 case InitializedEntity::EK_Exception:
6101 case InitializedEntity::EK_VectorElement:
6102 case InitializedEntity::EK_ComplexElement:
6103 return nullptr;
6104 }
6105 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6105)
;
6106}
6107
6108static void performLifetimeExtension(Expr *Init,
6109 const InitializedEntity *ExtendingEntity);
6110
6111/// Update a glvalue expression that is used as the initializer of a reference
6112/// to note that its lifetime is extended.
6113/// \return \c true if any temporary had its lifetime extended.
6114static bool
6115performReferenceExtension(Expr *Init,
6116 const InitializedEntity *ExtendingEntity) {
6117 // Walk past any constructs which we can lifetime-extend across.
6118 Expr *Old;
6119 do {
6120 Old = Init;
6121
6122 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6123 if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
6124 // This is just redundant braces around an initializer. Step over it.
6125 Init = ILE->getInit(0);
6126 }
6127 }
6128
6129 // Step over any subobject adjustments; we may have a materialized
6130 // temporary inside them.
6131 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6132
6133 // Per current approach for DR1376, look through casts to reference type
6134 // when performing lifetime extension.
6135 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6136 if (CE->getSubExpr()->isGLValue())
6137 Init = CE->getSubExpr();
6138
6139 // Per the current approach for DR1299, look through array element access
6140 // when performing lifetime extension.
6141 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init))
6142 Init = ASE->getBase();
6143 } while (Init != Old);
6144
6145 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6146 // Update the storage duration of the materialized temporary.
6147 // FIXME: Rebuild the expression instead of mutating it.
6148 ME->setExtendingDecl(ExtendingEntity->getDecl(),
6149 ExtendingEntity->allocateManglingNumber());
6150 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
6151 return true;
6152 }
6153
6154 return false;
6155}
6156
6157/// Update a prvalue expression that is going to be materialized as a
6158/// lifetime-extended temporary.
6159static void performLifetimeExtension(Expr *Init,
6160 const InitializedEntity *ExtendingEntity) {
6161 // Dig out the expression which constructs the extended temporary.
6162 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6163
6164 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6165 Init = BTE->getSubExpr();
6166
6167 if (CXXStdInitializerListExpr *ILE =
6168 dyn_cast<CXXStdInitializerListExpr>(Init)) {
6169 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
6170 return;
6171 }
6172
6173 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6174 if (ILE->getType()->isArrayType()) {
6175 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6176 performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
6177 return;
6178 }
6179
6180 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6181 assert(RD->isAggregate() && "aggregate init on non-aggregate")((RD->isAggregate() && "aggregate init on non-aggregate"
) ? static_cast<void> (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6181, __PRETTY_FUNCTION__))
;
6182
6183 // If we lifetime-extend a braced initializer which is initializing an
6184 // aggregate, and that aggregate contains reference members which are
6185 // bound to temporaries, those temporaries are also lifetime-extended.
6186 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6187 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6188 performReferenceExtension(ILE->getInit(0), ExtendingEntity);
6189 else {
6190 unsigned Index = 0;
6191 for (const auto *I : RD->fields()) {
6192 if (Index >= ILE->getNumInits())
6193 break;
6194 if (I->isUnnamedBitfield())
6195 continue;
6196 Expr *SubInit = ILE->getInit(Index);
6197 if (I->getType()->isReferenceType())
6198 performReferenceExtension(SubInit, ExtendingEntity);
6199 else if (isa<InitListExpr>(SubInit) ||
6200 isa<CXXStdInitializerListExpr>(SubInit))
6201 // This may be either aggregate-initialization of a member or
6202 // initialization of a std::initializer_list object. Either way,
6203 // we should recursively lifetime-extend that initializer.
6204 performLifetimeExtension(SubInit, ExtendingEntity);
6205 ++Index;
6206 }
6207 }
6208 }
6209 }
6210}
6211
6212static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
6213 const Expr *Init, bool IsInitializerList,
6214 const ValueDecl *ExtendingDecl) {
6215 // Warn if a field lifetime-extends a temporary.
6216 if (isa<FieldDecl>(ExtendingDecl)) {
6217 if (IsInitializerList) {
6218 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
6219 << /*at end of constructor*/true;
6220 return;
6221 }
6222
6223 bool IsSubobjectMember = false;
6224 for (const InitializedEntity *Ent = Entity.getParent(); Ent;
6225 Ent = Ent->getParent()) {
6226 if (Ent->getKind() != InitializedEntity::EK_Base) {
6227 IsSubobjectMember = true;
6228 break;
6229 }
6230 }
6231 S.Diag(Init->getExprLoc(),
6232 diag::warn_bind_ref_member_to_temporary)
6233 << ExtendingDecl << Init->getSourceRange()
6234 << IsSubobjectMember << IsInitializerList;
6235 if (IsSubobjectMember)
6236 S.Diag(ExtendingDecl->getLocation(),
6237 diag::note_ref_subobject_of_member_declared_here);
6238 else
6239 S.Diag(ExtendingDecl->getLocation(),
6240 diag::note_ref_or_ptr_member_declared_here)
6241 << /*is pointer*/false;
6242 }
6243}
6244
6245static void DiagnoseNarrowingInInitList(Sema &S,
6246 const ImplicitConversionSequence &ICS,
6247 QualType PreNarrowingType,
6248 QualType EntityType,
6249 const Expr *PostInit);
6250
6251/// Provide warnings when std::move is used on construction.
6252static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
6253 bool IsReturnStmt) {
6254 if (!InitExpr)
6255 return;
6256
6257 if (S.inTemplateInstantiation())
6258 return;
6259
6260 QualType DestType = InitExpr->getType();
6261 if (!DestType->isRecordType())
6262 return;
6263
6264 unsigned DiagID = 0;
6265 if (IsReturnStmt) {
6266 const CXXConstructExpr *CCE =
6267 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
6268 if (!CCE || CCE->getNumArgs() != 1)
6269 return;
6270
6271 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
6272 return;
6273
6274 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
6275 }
6276
6277 // Find the std::move call and get the argument.
6278 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
6279 if (!CE || CE->getNumArgs() != 1)
6280 return;
6281
6282 const FunctionDecl *MoveFunction = CE->getDirectCallee();
6283 if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
6284 !MoveFunction->getIdentifier() ||
6285 !MoveFunction->getIdentifier()->isStr("move"))
6286 return;
6287
6288 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
6289
6290 if (IsReturnStmt) {
6291 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
6292 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
6293 return;
6294
6295 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
6296 if (!VD || !VD->hasLocalStorage())
6297 return;
6298
6299 QualType SourceType = VD->getType();
6300 if (!SourceType->isRecordType())
6301 return;
6302
6303 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
6304 return;
6305 }
6306
6307 // If we're returning a function parameter, copy elision
6308 // is not possible.
6309 if (isa<ParmVarDecl>(VD))
6310 DiagID = diag::warn_redundant_move_on_return;
6311 else
6312 DiagID = diag::warn_pessimizing_move_on_return;
6313 } else {
6314 DiagID = diag::warn_pessimizing_move_on_initialization;
6315 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6316 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6317 return;
6318 }
6319
6320 S.Diag(CE->getLocStart(), DiagID);
6321
6322 // Get all the locations for a fix-it. Don't emit the fix-it if any location
6323 // is within a macro.
6324 SourceLocation CallBegin = CE->getCallee()->getLocStart();
6325 if (CallBegin.isMacroID())
6326 return;
6327 SourceLocation RParen = CE->getRParenLoc();
6328 if (RParen.isMacroID())
6329 return;
6330 SourceLocation LParen;
6331 SourceLocation ArgLoc = Arg->getLocStart();
6332
6333 // Special testing for the argument location. Since the fix-it needs the
6334 // location right before the argument, the argument location can be in a
6335 // macro only if it is at the beginning of the macro.
6336 while (ArgLoc.isMacroID() &&
6337 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6338 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6339 }
6340
6341 if (LParen.isMacroID())
6342 return;
6343
6344 LParen = ArgLoc.getLocWithOffset(-1);
6345
6346 S.Diag(CE->getLocStart(), diag::note_remove_move)
6347 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6348 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6349}
6350
6351static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
6352 // Check to see if we are dereferencing a null pointer. If so, this is
6353 // undefined behavior, so warn about it. This only handles the pattern
6354 // "*null", which is a very syntactic check.
6355 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
6356 if (UO->getOpcode() == UO_Deref &&
6357 UO->getSubExpr()->IgnoreParenCasts()->
6358 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
6359 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
6360 S.PDiag(diag::warn_binding_null_to_reference)
6361 << UO->getSubExpr()->getSourceRange());
6362 }
6363}
6364
6365MaterializeTemporaryExpr *
6366Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6367 bool BoundToLvalueReference) {
6368 auto MTE = new (Context)
6369 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
6370
6371 // Order an ExprWithCleanups for lifetime marks.
6372 //
6373 // TODO: It'll be good to have a single place to check the access of the
6374 // destructor and generate ExprWithCleanups for various uses. Currently these
6375 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
6376 // but there may be a chance to merge them.
6377 Cleanup.setExprNeedsCleanups(false);
6378 return MTE;
6379}
6380
6381ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
6382 // In C++98, we don't want to implicitly create an xvalue.
6383 // FIXME: This means that AST consumers need to deal with "prvalues" that
6384 // denote materialized temporaries. Maybe we should add another ValueKind
6385 // for "xvalue pretending to be a prvalue" for C++98 support.
6386 if (!E->isRValue() || !getLangOpts().CPlusPlus11)
6387 return E;
6388
6389 // C++1z [conv.rval]/1: T shall be a complete type.
6390 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
6391 // If so, we should check for a non-abstract class type here too.
6392 QualType T = E->getType();
6393 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
6394 return ExprError();
6395
6396 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
6397}
6398
6399ExprResult
6400InitializationSequence::Perform(Sema &S,
6401 const InitializedEntity &Entity,
6402 const InitializationKind &Kind,
6403 MultiExprArg Args,
6404 QualType *ResultType) {
6405 if (Failed()) {
6406 Diagnose(S, Entity, Kind, Args);
6407 return ExprError();
6408 }
6409 if (!ZeroInitializationFixit.empty()) {
6410 unsigned DiagID = diag::err_default_init_const;
6411 if (Decl *D = Entity.getDecl())
6412 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6413 DiagID = diag::ext_default_init_const;
6414
6415 // The initialization would have succeeded with this fixit. Since the fixit
6416 // is on the error, we need to build a valid AST in this case, so this isn't
6417 // handled in the Failed() branch above.
6418 QualType DestType = Entity.getType();
6419 S.Diag(Kind.getLocation(), DiagID)
6420 << DestType << (bool)DestType->getAs<RecordType>()
6421 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6422 ZeroInitializationFixit);
6423 }
6424
6425 if (getKind() == DependentSequence) {
6426 // If the declaration is a non-dependent, incomplete array type
6427 // that has an initializer, then its type will be completed once
6428 // the initializer is instantiated.
6429 if (ResultType && !Entity.getType()->isDependentType() &&
6430 Args.size() == 1) {
6431 QualType DeclType = Entity.getType();
6432 if (const IncompleteArrayType *ArrayT
6433 = S.Context.getAsIncompleteArrayType(DeclType)) {
6434 // FIXME: We don't currently have the ability to accurately
6435 // compute the length of an initializer list without
6436 // performing full type-checking of the initializer list
6437 // (since we have to determine where braces are implicitly
6438 // introduced and such). So, we fall back to making the array
6439 // type a dependently-sized array type with no specified
6440 // bound.
6441 if (isa<InitListExpr>((Expr *)Args[0])) {
6442 SourceRange Brackets;
6443
6444 // Scavange the location of the brackets from the entity, if we can.
6445 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
6446 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6447 TypeLoc TL = TInfo->getTypeLoc();
6448 if (IncompleteArrayTypeLoc ArrayLoc =
6449 TL.getAs<IncompleteArrayTypeLoc>())
6450 Brackets = ArrayLoc.getBracketsRange();
6451 }
6452 }
6453
6454 *ResultType
6455 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6456 /*NumElts=*/nullptr,
6457 ArrayT->getSizeModifier(),
6458 ArrayT->getIndexTypeCVRQualifiers(),
6459 Brackets);
6460 }
6461
6462 }
6463 }
6464 if (Kind.getKind() == InitializationKind::IK_Direct &&
6465 !Kind.isExplicitCast()) {
6466 // Rebuild the ParenListExpr.
6467 SourceRange ParenRange = Kind.getParenRange();
6468 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6469 Args);
6470 }
6471 assert(Kind.getKind() == InitializationKind::IK_Copy ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6473, __PRETTY_FUNCTION__))
6472 Kind.isExplicitCast() ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6473, __PRETTY_FUNCTION__))
6473 Kind.getKind() == InitializationKind::IK_DirectList)((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6473, __PRETTY_FUNCTION__))
;
6474 return ExprResult(Args[0]);
6475 }
6476
6477 // No steps means no initialization.
6478 if (Steps.empty())
6479 return ExprResult((Expr *)nullptr);
6480
6481 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6482 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6483 !Entity.isParameterKind()) {
6484 // Produce a C++98 compatibility warning if we are initializing a reference
6485 // from an initializer list. For parameters, we produce a better warning
6486 // elsewhere.
6487 Expr *Init = Args[0];
6488 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6489 << Init->getSourceRange();
6490 }
6491
6492 // Diagnose cases where we initialize a pointer to an array temporary, and the
6493 // pointer obviously outlives the temporary.
6494 if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6495 Entity.getType()->isPointerType() &&
6496 InitializedEntityOutlivesFullExpression(Entity)) {
6497 const Expr *Init = Args[0]->skipRValueSubobjectAdjustments();
6498 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
6499 Init = MTE->GetTemporaryExpr();
6500 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6501 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6502 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6503 << Init->getSourceRange();
6504 }
6505
6506 QualType DestType = Entity.getType().getNonReferenceType();
6507 // FIXME: Ugly hack around the fact that Entity.getType() is not
6508 // the same as Entity.getDecl()->getType() in cases involving type merging,
6509 // and we want latter when it makes sense.
6510 if (ResultType)
6511 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6512 Entity.getType();
6513
6514 ExprResult CurInit((Expr *)nullptr);
6515 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
6516
6517 // For initialization steps that start with a single initializer,
6518 // grab the only argument out the Args and place it into the "current"
6519 // initializer.
6520 switch (Steps.front().Kind) {
6521 case SK_ResolveAddressOfOverloadedFunction:
6522 case SK_CastDerivedToBaseRValue:
6523 case SK_CastDerivedToBaseXValue:
6524 case SK_CastDerivedToBaseLValue:
6525 case SK_BindReference:
6526 case SK_BindReferenceToTemporary:
6527 case SK_FinalCopy:
6528 case SK_ExtraneousCopyToTemporary:
6529 case SK_UserConversion:
6530 case SK_QualificationConversionLValue:
6531 case SK_QualificationConversionXValue:
6532 case SK_QualificationConversionRValue:
6533 case SK_AtomicConversion:
6534 case SK_LValueToRValue:
6535 case SK_ConversionSequence:
6536 case SK_ConversionSequenceNoNarrowing:
6537 case SK_ListInitialization:
6538 case SK_UnwrapInitList:
6539 case SK_RewrapInitList:
6540 case SK_CAssignment:
6541 case SK_StringInit:
6542 case SK_ObjCObjectConversion:
6543 case SK_ArrayLoopIndex:
6544 case SK_ArrayLoopInit:
6545 case SK_ArrayInit:
6546 case SK_GNUArrayInit:
6547 case SK_ParenthesizedArrayInit:
6548 case SK_PassByIndirectCopyRestore:
6549 case SK_PassByIndirectRestore:
6550 case SK_ProduceObjCObject:
6551 case SK_StdInitializerList:
6552 case SK_OCLSamplerInit:
6553 case SK_OCLZeroEvent:
6554 case SK_OCLZeroQueue: {
6555 assert(Args.size() == 1)((Args.size() == 1) ? static_cast<void> (0) : __assert_fail
("Args.size() == 1", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6555, __PRETTY_FUNCTION__))
;
6556 CurInit = Args[0];
6557 if (!CurInit.get()) return ExprError();
6558 break;
6559 }
6560
6561 case SK_ConstructorInitialization:
6562 case SK_ConstructorInitializationFromList:
6563 case SK_StdInitializerListConstructorCall:
6564 case SK_ZeroInitialization:
6565 break;
6566 }
6567
6568 // Promote from an unevaluated context to an unevaluated list context in
6569 // C++11 list-initialization; we need to instantiate entities usable in
6570 // constant expressions here in order to perform narrowing checks =(
6571 EnterExpressionEvaluationContext Evaluated(
6572 S, EnterExpressionEvaluationContext::InitList,
6573 CurInit.get() && isa<InitListExpr>(CurInit.get()));
6574
6575 // C++ [class.abstract]p2:
6576 // no objects of an abstract class can be created except as subobjects
6577 // of a class derived from it
6578 auto checkAbstractType = [&](QualType T) -> bool {
6579 if (Entity.getKind() == InitializedEntity::EK_Base ||
6580 Entity.getKind() == InitializedEntity::EK_Delegating)
6581 return false;
6582 return S.RequireNonAbstractType(Kind.getLocation(), T,
6583 diag::err_allocation_of_abstract_type);
6584 };
6585
6586 // Walk through the computed steps for the initialization sequence,
6587 // performing the specified conversions along the way.
6588 bool ConstructorInitRequiresZeroInit = false;
6589 for (step_iterator Step = step_begin(), StepEnd = step_end();
6590 Step != StepEnd; ++Step) {
6591 if (CurInit.isInvalid())
6592 return ExprError();
6593
6594 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6595
6596 switch (Step->Kind) {
6597 case SK_ResolveAddressOfOverloadedFunction:
6598 // Overload resolution determined which function invoke; update the
6599 // initializer to reflect that choice.
6600 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6601 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6602 return ExprError();
6603 CurInit = S.FixOverloadedFunctionReference(CurInit,
6604 Step->Function.FoundDecl,
6605 Step->Function.Function);
6606 break;
6607
6608 case SK_CastDerivedToBaseRValue:
6609 case SK_CastDerivedToBaseXValue:
6610 case SK_CastDerivedToBaseLValue: {
6611 // We have a derived-to-base cast that produces either an rvalue or an
6612 // lvalue. Perform that cast.
6613
6614 CXXCastPath BasePath;
6615
6616 // Casts to inaccessible base classes are allowed with C-style casts.
6617 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6618 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6619 CurInit.get()->getLocStart(),
6620 CurInit.get()->getSourceRange(),
6621 &BasePath, IgnoreBaseAccess))
6622 return ExprError();
6623
6624 ExprValueKind VK =
6625 Step->Kind == SK_CastDerivedToBaseLValue ?
6626 VK_LValue :
6627 (Step->Kind == SK_CastDerivedToBaseXValue ?
6628 VK_XValue :
6629 VK_RValue);
6630 CurInit =
6631 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6632 CurInit.get(), &BasePath, VK);
6633 break;
6634 }
6635
6636 case SK_BindReference:
6637 // Reference binding does not have any corresponding ASTs.
6638
6639 // Check exception specifications
6640 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6641 return ExprError();
6642
6643 // Even though we didn't materialize a temporary, the binding may still
6644 // extend the lifetime of a temporary. This happens if we bind a reference
6645 // to the result of a cast to reference type.
6646 if (const InitializedEntity *ExtendingEntity =
6647 getEntityForTemporaryLifetimeExtension(&Entity))
6648 if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6649 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6650 /*IsInitializerList=*/false,
6651 ExtendingEntity->getDecl());
6652
6653 CheckForNullPointerDereference(S, CurInit.get());
6654 break;
6655
6656 case SK_BindReferenceToTemporary: {
6657 // Make sure the "temporary" is actually an rvalue.
6658 assert(CurInit.get()->isRValue() && "not a temporary")((CurInit.get()->isRValue() && "not a temporary") ?
static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"not a temporary\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6658, __PRETTY_FUNCTION__))
;
6659
6660 // Check exception specifications
6661 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6662 return ExprError();
6663
6664 // Materialize the temporary into memory.
6665 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
6666 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
6667
6668 // Maybe lifetime-extend the temporary's subobjects to match the
6669 // entity's lifetime.
6670 if (const InitializedEntity *ExtendingEntity =
6671 getEntityForTemporaryLifetimeExtension(&Entity))
6672 if (performReferenceExtension(MTE, ExtendingEntity))
6673 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6674 /*IsInitializerList=*/false,
6675 ExtendingEntity->getDecl());
6676
6677 // If we're binding to an Objective-C object that has lifetime, we
6678 // need cleanups. Likewise if we're extending this temporary to automatic
6679 // storage duration -- we need to register its cleanup during the
6680 // full-expression's cleanups.
6681 if ((S.getLangOpts().ObjCAutoRefCount &&
6682 MTE->getType()->isObjCLifetimeType()) ||
6683 (MTE->getStorageDuration() == SD_Automatic &&
6684 MTE->getType().isDestructedType()))
6685 S.Cleanup.setExprNeedsCleanups(true);
6686
6687 CurInit = MTE;
6688 break;
6689 }
6690
6691 case SK_FinalCopy:
6692 if (checkAbstractType(Step->Type))
6693 return ExprError();
6694
6695 // If the overall initialization is initializing a temporary, we already
6696 // bound our argument if it was necessary to do so. If not (if we're
6697 // ultimately initializing a non-temporary), our argument needs to be
6698 // bound since it's initializing a function parameter.
6699 // FIXME: This is a mess. Rationalize temporary destruction.
6700 if (!shouldBindAsTemporary(Entity))
6701 CurInit = S.MaybeBindToTemporary(CurInit.get());
6702 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6703 /*IsExtraneousCopy=*/false);
6704 break;
6705
6706 case SK_ExtraneousCopyToTemporary:
6707 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6708 /*IsExtraneousCopy=*/true);
6709 break;
6710
6711 case SK_UserConversion: {
6712 // We have a user-defined conversion that invokes either a constructor
6713 // or a conversion function.
6714 CastKind CastKind;
6715 FunctionDecl *Fn = Step->Function.Function;
6716 DeclAccessPair FoundFn = Step->Function.FoundDecl;
6717 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6718 bool CreatedObject = false;
6719 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6720 // Build a call to the selected constructor.
6721 SmallVector<Expr*, 8> ConstructorArgs;
6722 SourceLocation Loc = CurInit.get()->getLocStart();
6723
6724 // Determine the arguments required to actually perform the constructor
6725 // call.
6726 Expr *Arg = CurInit.get();
6727 if (S.CompleteConstructorCall(Constructor,
6728 MultiExprArg(&Arg, 1),
6729 Loc, ConstructorArgs))
6730 return ExprError();
6731
6732 // Build an expression that constructs a temporary.
6733 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
6734 FoundFn, Constructor,
6735 ConstructorArgs,
6736 HadMultipleCandidates,
6737 /*ListInit*/ false,
6738 /*StdInitListInit*/ false,
6739 /*ZeroInit*/ false,
6740 CXXConstructExpr::CK_Complete,
6741 SourceRange());
6742 if (CurInit.isInvalid())
6743 return ExprError();
6744
6745 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
6746 Entity);
6747 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6748 return ExprError();
6749
6750 CastKind = CK_ConstructorConversion;
6751 CreatedObject = true;
6752 } else {
6753 // Build a call to the conversion function.
6754 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6755 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6756 FoundFn);
6757 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6758 return ExprError();
6759
6760 // FIXME: Should we move this initialization into a separate
6761 // derived-to-base conversion? I believe the answer is "no", because
6762 // we don't want to turn off access control here for c-style casts.
6763 CurInit = S.PerformObjectArgumentInitialization(CurInit.get(),
6764 /*Qualifier=*/nullptr,
6765 FoundFn, Conversion);
6766 if (CurInit.isInvalid())
6767 return ExprError();
6768
6769 // Build the actual call to the conversion function.
6770 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6771 HadMultipleCandidates);
6772 if (CurInit.isInvalid())
6773 return ExprError();
6774
6775 CastKind = CK_UserDefinedConversion;
6776 CreatedObject = Conversion->getReturnType()->isRecordType();
6777 }
6778
6779 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
6780 return ExprError();
6781
6782 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6783 CastKind, CurInit.get(), nullptr,
6784 CurInit.get()->getValueKind());
6785
6786 if (shouldBindAsTemporary(Entity))
6787 // The overall entity is temporary, so this expression should be
6788 // destroyed at the end of its full-expression.
6789 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6790 else if (CreatedObject && shouldDestroyEntity(Entity)) {
6791 // The object outlasts the full-expression, but we need to prepare for
6792 // a destructor being run on it.
6793 // FIXME: It makes no sense to do this here. This should happen
6794 // regardless of how we initialized the entity.
6795 QualType T = CurInit.get()->getType();
6796 if (const RecordType *Record = T->getAs<RecordType>()) {
6797 CXXDestructorDecl *Destructor
6798 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6799 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6800 S.PDiag(diag::err_access_dtor_temp) << T);
6801 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6802 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6803 return ExprError();
6804 }
6805 }
6806 break;
6807 }
6808
6809 case SK_QualificationConversionLValue:
6810 case SK_QualificationConversionXValue:
6811 case SK_QualificationConversionRValue: {
6812 // Perform a qualification conversion; these can never go wrong.
6813 ExprValueKind VK =
6814 Step->Kind == SK_QualificationConversionLValue ?
6815 VK_LValue :
6816 (Step->Kind == SK_QualificationConversionXValue ?
6817 VK_XValue :
6818 VK_RValue);
6819 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6820 break;
6821 }
6822
6823 case SK_AtomicConversion: {
6824 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic")((CurInit.get()->isRValue() && "cannot convert glvalue to atomic"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"cannot convert glvalue to atomic\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6824, __PRETTY_FUNCTION__))
;
6825 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6826 CK_NonAtomicToAtomic, VK_RValue);
6827 break;
6828 }
6829
6830 case SK_LValueToRValue: {
6831 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue")((CurInit.get()->isGLValue() && "cannot load from a prvalue"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isGLValue() && \"cannot load from a prvalue\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6831, __PRETTY_FUNCTION__))
;
6832 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6833 CK_LValueToRValue, CurInit.get(),
6834 /*BasePath=*/nullptr, VK_RValue);
6835 break;
6836 }
6837
6838 case SK_ConversionSequence:
6839 case SK_ConversionSequenceNoNarrowing: {
6840 Sema::CheckedConversionKind CCK
6841 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6842 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6843 : Kind.isExplicitCast()? Sema::CCK_OtherCast
6844 : Sema::CCK_ImplicitConversion;
6845 ExprResult CurInitExprRes =
6846 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6847 getAssignmentAction(Entity), CCK);
6848 if (CurInitExprRes.isInvalid())
6849 return ExprError();
6850
6851 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
6852
6853 CurInit = CurInitExprRes;
6854
6855 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6856 S.getLangOpts().CPlusPlus)
6857 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6858 CurInit.get());
6859
6860 break;
6861 }
6862
6863 case SK_ListInitialization: {
6864 if (checkAbstractType(Step->Type))
6865 return ExprError();
6866
6867 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6868 // If we're not initializing the top-level entity, we need to create an
6869 // InitializeTemporary entity for our target type.
6870 QualType Ty = Step->Type;
6871 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6872 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6873 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6874 InitListChecker PerformInitList(S, InitEntity,
6875 InitList, Ty, /*VerifyOnly=*/false,
6876 /*TreatUnavailableAsInvalid=*/false);
6877 if (PerformInitList.HadError())
6878 return ExprError();
6879
6880 // Hack: We must update *ResultType if available in order to set the
6881 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6882 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6883 if (ResultType &&
6884 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6885 if ((*ResultType)->isRValueReferenceType())
6886 Ty = S.Context.getRValueReferenceType(Ty);
6887 else if ((*ResultType)->isLValueReferenceType())
6888 Ty = S.Context.getLValueReferenceType(Ty,
6889 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6890 *ResultType = Ty;
6891 }
6892
6893 InitListExpr *StructuredInitList =
6894 PerformInitList.getFullyStructuredList();
6895 CurInit.get();
6896 CurInit = shouldBindAsTemporary(InitEntity)
6897 ? S.MaybeBindToTemporary(StructuredInitList)
6898 : StructuredInitList;
6899 break;
6900 }
6901
6902 case SK_ConstructorInitializationFromList: {
6903 if (checkAbstractType(Step->Type))
6904 return ExprError();
6905
6906 // When an initializer list is passed for a parameter of type "reference
6907 // to object", we don't get an EK_Temporary entity, but instead an
6908 // EK_Parameter entity with reference type.
6909 // FIXME: This is a hack. What we really should do is create a user
6910 // conversion step for this case, but this makes it considerably more
6911 // complicated. For now, this will do.
6912 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6913 Entity.getType().getNonReferenceType());
6914 bool UseTemporary = Entity.getType()->isReferenceType();
6915 assert(Args.size() == 1 && "expected a single argument for list init")((Args.size() == 1 && "expected a single argument for list init"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 6915, __PRETTY_FUNCTION__))
;
6916 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6917 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6918 << InitList->getSourceRange();
6919 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6920 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6921 Entity,
6922 Kind, Arg, *Step,
6923 ConstructorInitRequiresZeroInit,
6924 /*IsListInitialization*/true,
6925 /*IsStdInitListInit*/false,
6926 InitList->getLBraceLoc(),
6927 InitList->getRBraceLoc());
6928 break;
6929 }
6930
6931 case SK_UnwrapInitList:
6932 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6933 break;
6934
6935 case SK_RewrapInitList: {
6936 Expr *E = CurInit.get();
6937 InitListExpr *Syntactic = Step->WrappingSyntacticList;
6938 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6939 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6940 ILE->setSyntacticForm(Syntactic);
6941 ILE->setType(E->getType());
6942 ILE->setValueKind(E->getValueKind());
6943 CurInit = ILE;
6944 break;
6945 }
6946
6947 case SK_ConstructorInitialization:
6948 case SK_StdInitializerListConstructorCall: {
6949 if (checkAbstractType(Step->Type))
6950 return ExprError();
6951
6952 // When an initializer list is passed for a parameter of type "reference
6953 // to object", we don't get an EK_Temporary entity, but instead an
6954 // EK_Parameter entity with reference type.
6955 // FIXME: This is a hack. What we really should do is create a user
6956 // conversion step for this case, but this makes it considerably more
6957 // complicated. For now, this will do.
6958 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6959 Entity.getType().getNonReferenceType());
6960 bool UseTemporary = Entity.getType()->isReferenceType();
6961 bool IsStdInitListInit =
6962 Step->Kind == SK_StdInitializerListConstructorCall;
6963 Expr *Source = CurInit.get();
6964 CurInit = PerformConstructorInitialization(
6965 S, UseTemporary ? TempEntity : Entity, Kind,
6966 Source ? MultiExprArg(Source) : Args, *Step,
6967 ConstructorInitRequiresZeroInit,
6968 /*IsListInitialization*/ IsStdInitListInit,
6969 /*IsStdInitListInitialization*/ IsStdInitListInit,
6970 /*LBraceLoc*/ SourceLocation(),
6971 /*RBraceLoc*/ SourceLocation());
6972 break;
6973 }
6974
6975 case SK_ZeroInitialization: {
6976 step_iterator NextStep = Step;
6977 ++NextStep;
6978 if (NextStep != StepEnd &&
6979 (NextStep->Kind == SK_ConstructorInitialization ||
6980 NextStep->Kind == SK_ConstructorInitializationFromList)) {
6981 // The need for zero-initialization is recorded directly into
6982 // the call to the object's constructor within the next step.
6983 ConstructorInitRequiresZeroInit = true;
6984 } else if (Kind.getKind() == InitializationKind::IK_Value &&
6985 S.getLangOpts().CPlusPlus &&
6986 !Kind.isImplicitValueInit()) {
6987 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6988 if (!TSInfo)
6989 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6990 Kind.getRange().getBegin());
6991
6992 CurInit = new (S.Context) CXXScalarValueInitExpr(
6993 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6994 Kind.getRange().getEnd());
6995 } else {
6996 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6997 }
6998 break;
6999 }
7000
7001 case SK_CAssignment: {
7002 QualType SourceType = CurInit.get()->getType();
7003 // Save off the initial CurInit in case we need to emit a diagnostic
7004 ExprResult InitialCurInit = CurInit;
7005 ExprResult Result = CurInit;
7006 Sema::AssignConvertType ConvTy =
7007 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7008 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7009 if (Result.isInvalid())
7010 return ExprError();
7011 CurInit = Result;
7012
7013 // If this is a call, allow conversion to a transparent union.
7014 ExprResult CurInitExprRes = CurInit;
7015 if (ConvTy != Sema::Compatible &&
7016 Entity.isParameterKind() &&
7017 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7018 == Sema::Compatible)
7019 ConvTy = Sema::Compatible;
7020 if (CurInitExprRes.isInvalid())
7021 return ExprError();
7022 CurInit = CurInitExprRes;
7023
7024 bool Complained;
7025 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7026 Step->Type, SourceType,
7027 InitialCurInit.get(),
7028 getAssignmentAction(Entity, true),
7029 &Complained)) {
7030 PrintInitLocationNote(S, Entity);
7031 return ExprError();
7032 } else if (Complained)
7033 PrintInitLocationNote(S, Entity);
7034 break;
7035 }
7036
7037 case SK_StringInit: {
7038 QualType Ty = Step->Type;
7039 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7040 S.Context.getAsArrayType(Ty), S);
7041 break;
7042 }
7043
7044 case SK_ObjCObjectConversion:
7045 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7046 CK_ObjCObjectLValueCast,
7047 CurInit.get()->getValueKind());
7048 break;
7049
7050 case SK_ArrayLoopIndex: {
7051 Expr *Cur = CurInit.get();
7052 Expr *BaseExpr = new (S.Context)
7053 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7054 Cur->getValueKind(), Cur->getObjectKind(), Cur);
7055 Expr *IndexExpr =
7056 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7057 CurInit = S.CreateBuiltinArraySubscriptExpr(
7058 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7059 ArrayLoopCommonExprs.push_back(BaseExpr);
7060 break;
7061 }
7062
7063 case SK_ArrayLoopInit: {
7064 assert(!ArrayLoopCommonExprs.empty() &&((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7065, __PRETTY_FUNCTION__))
7065 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7065, __PRETTY_FUNCTION__))
;
7066 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7067 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7068 CurInit.get());
7069 break;
7070 }
7071
7072 case SK_GNUArrayInit:
7073 // Okay: we checked everything before creating this step. Note that
7074 // this is a GNU extension.
7075 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7076 << Step->Type << CurInit.get()->getType()
7077 << CurInit.get()->getSourceRange();
7078 LLVM_FALLTHROUGH[[clang::fallthrough]];
7079 case SK_ArrayInit:
7080 // If the destination type is an incomplete array type, update the
7081 // type accordingly.
7082 if (ResultType) {
7083 if (const IncompleteArrayType *IncompleteDest
7084 = S.Context.getAsIncompleteArrayType(Step->Type)) {
7085 if (const ConstantArrayType *ConstantSource
7086 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7087 *ResultType = S.Context.getConstantArrayType(
7088 IncompleteDest->getElementType(),
7089 ConstantSource->getSize(),
7090 ArrayType::Normal, 0);
7091 }
7092 }
7093 }
7094 break;
7095
7096 case SK_ParenthesizedArrayInit:
7097 // Okay: we checked everything before creating this step. Note that
7098 // this is a GNU extension.
7099 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7100 << CurInit.get()->getSourceRange();
7101 break;
7102
7103 case SK_PassByIndirectCopyRestore:
7104 case SK_PassByIndirectRestore:
7105 checkIndirectCopyRestoreSource(S, CurInit.get());
7106 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7107 CurInit.get(), Step->Type,
7108 Step->Kind == SK_PassByIndirectCopyRestore);
7109 break;
7110
7111 case SK_ProduceObjCObject:
7112 CurInit =
7113 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7114 CurInit.get(), nullptr, VK_RValue);
7115 break;
7116
7117 case SK_StdInitializerList: {
7118 S.Diag(CurInit.get()->getExprLoc(),
7119 diag::warn_cxx98_compat_initializer_list_init)
7120 << CurInit.get()->getSourceRange();
7121
7122 // Materialize the temporary into memory.
7123 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7124 CurInit.get()->getType(), CurInit.get(),
7125 /*BoundToLvalueReference=*/false);
7126
7127 // Maybe lifetime-extend the array temporary's subobjects to match the
7128 // entity's lifetime.
7129 if (const InitializedEntity *ExtendingEntity =
7130 getEntityForTemporaryLifetimeExtension(&Entity))
7131 if (performReferenceExtension(MTE, ExtendingEntity))
7132 warnOnLifetimeExtension(S, Entity, CurInit.get(),
7133 /*IsInitializerList=*/true,
7134 ExtendingEntity->getDecl());
7135
7136 // Wrap it in a construction of a std::initializer_list<T>.
7137 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7138
7139 // Bind the result, in case the library has given initializer_list a
7140 // non-trivial destructor.
7141 if (shouldBindAsTemporary(Entity))
7142 CurInit = S.MaybeBindToTemporary(CurInit.get());
7143 break;
7144 }
7145
7146 case SK_OCLSamplerInit: {
7147 // Sampler initialzation have 5 cases:
7148 // 1. function argument passing
7149 // 1a. argument is a file-scope variable
7150 // 1b. argument is a function-scope variable
7151 // 1c. argument is one of caller function's parameters
7152 // 2. variable initialization
7153 // 2a. initializing a file-scope variable
7154 // 2b. initializing a function-scope variable
7155 //
7156 // For file-scope variables, since they cannot be initialized by function
7157 // call of __translate_sampler_initializer in LLVM IR, their references
7158 // need to be replaced by a cast from their literal initializers to
7159 // sampler type. Since sampler variables can only be used in function
7160 // calls as arguments, we only need to replace them when handling the
7161 // argument passing.
7162 assert(Step->Type->isSamplerT() &&((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7163, __PRETTY_FUNCTION__))
7163 "Sampler initialization on non-sampler type.")((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7163, __PRETTY_FUNCTION__))
;
7164 Expr *Init = CurInit.get();
7165 QualType SourceType = Init->getType();
7166 // Case 1
7167 if (Entity.isParameterKind()) {
7168 if (!SourceType->isSamplerT()) {
7169 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
7170 << SourceType;
7171 break;
7172 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
7173 auto Var = cast<VarDecl>(DRE->getDecl());
7174 // Case 1b and 1c
7175 // No cast from integer to sampler is needed.
7176 if (!Var->hasGlobalStorage()) {
7177 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7178 CK_LValueToRValue, Init,
7179 /*BasePath=*/nullptr, VK_RValue);
7180 break;
7181 }
7182 // Case 1a
7183 // For function call with a file-scope sampler variable as argument,
7184 // get the integer literal.
7185 // Do not diagnose if the file-scope variable does not have initializer
7186 // since this has already been diagnosed when parsing the variable
7187 // declaration.
7188 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
7189 break;
7190 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
7191 Var->getInit()))->getSubExpr();
7192 SourceType = Init->getType();
7193 }
7194 } else {
7195 // Case 2
7196 // Check initializer is 32 bit integer constant.
7197 // If the initializer is taken from global variable, do not diagnose since
7198 // this has already been done when parsing the variable declaration.
7199 if (!Init->isConstantInitializer(S.Context, false))
7200 break;
7201
7202 if (!SourceType->isIntegerType() ||
7203 32 != S.Context.getIntWidth(SourceType)) {
7204 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
7205 << SourceType;
7206 break;
7207 }
7208
7209 llvm::APSInt Result;
7210 Init->EvaluateAsInt(Result, S.Context);
7211 const uint64_t SamplerValue = Result.getLimitedValue();
7212 // 32-bit value of sampler's initializer is interpreted as
7213 // bit-field with the following structure:
7214 // |unspecified|Filter|Addressing Mode| Normalized Coords|
7215 // |31 6|5 4|3 1| 0|
7216 // This structure corresponds to enum values of sampler properties
7217 // defined in SPIR spec v1.2 and also opencl-c.h
7218 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
7219 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
7220 if (FilterMode != 1 && FilterMode != 2)
7221 S.Diag(Kind.getLocation(),
7222 diag::warn_sampler_initializer_invalid_bits)
7223 << "Filter Mode";
7224 if (AddressingMode > 4)
7225 S.Diag(Kind.getLocation(),
7226 diag::warn_sampler_initializer_invalid_bits)
7227 << "Addressing Mode";
7228 }
7229
7230 // Cases 1a, 2a and 2b
7231 // Insert cast from integer to sampler.
7232 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
7233 CK_IntToOCLSampler);
7234 break;
7235 }
7236 case SK_OCLZeroEvent: {
7237 assert(Step->Type->isEventT() &&((Step->Type->isEventT() && "Event initialization on non-event type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7238, __PRETTY_FUNCTION__))
7238 "Event initialization on non-event type.")((Step->Type->isEventT() && "Event initialization on non-event type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7238, __PRETTY_FUNCTION__))
;
7239
7240 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7241 CK_ZeroToOCLEvent,
7242 CurInit.get()->getValueKind());
7243 break;
7244 }
7245 case SK_OCLZeroQueue: {
7246 assert(Step->Type->isQueueT() &&((Step->Type->isQueueT() && "Event initialization on non queue type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isQueueT() && \"Event initialization on non queue type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7247, __PRETTY_FUNCTION__))
7247 "Event initialization on non queue type.")((Step->Type->isQueueT() && "Event initialization on non queue type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isQueueT() && \"Event initialization on non queue type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7247, __PRETTY_FUNCTION__))
;
7248
7249 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7250 CK_ZeroToOCLQueue,
7251 CurInit.get()->getValueKind());
7252 break;
7253 }
7254 }
7255 }
7256
7257 // Diagnose non-fatal problems with the completed initialization.
7258 if (Entity.getKind() == InitializedEntity::EK_Member &&
7259 cast<FieldDecl>(Entity.getDecl())->isBitField())
7260 S.CheckBitFieldInitialization(Kind.getLocation(),
7261 cast<FieldDecl>(Entity.getDecl()),
7262 CurInit.get());
7263
7264 // Check for std::move on construction.
7265 if (const Expr *E = CurInit.get()) {
7266 CheckMoveOnConstruction(S, E,
7267 Entity.getKind() == InitializedEntity::EK_Result);
7268 }
7269
7270 return CurInit;
7271}
7272
7273/// Somewhere within T there is an uninitialized reference subobject.
7274/// Dig it out and diagnose it.
7275static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
7276 QualType T) {
7277 if (T->isReferenceType()) {
7278 S.Diag(Loc, diag::err_reference_without_init)
7279 << T.getNonReferenceType();
7280 return true;
7281 }
7282
7283 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7284 if (!RD || !RD->hasUninitializedReferenceMember())
7285 return false;
7286
7287 for (const auto *FI : RD->fields()) {
7288 if (FI->isUnnamedBitfield())
7289 continue;
7290
7291 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
7292 S.Diag(Loc, diag::note_value_initialization_here) << RD;
7293 return true;
7294 }
7295 }
7296
7297 for (const auto &BI : RD->bases()) {
7298 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
7299 S.Diag(Loc, diag::note_value_initialization_here) << RD;
7300 return true;
7301 }
7302 }
7303
7304 return false;
7305}
7306
7307
7308//===----------------------------------------------------------------------===//
7309// Diagnose initialization failures
7310//===----------------------------------------------------------------------===//
7311
7312/// Emit notes associated with an initialization that failed due to a
7313/// "simple" conversion failure.
7314static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
7315 Expr *op) {
7316 QualType destType = entity.getType();
7317 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
7318 op->getType()->isObjCObjectPointerType()) {
7319
7320 // Emit a possible note about the conversion failing because the
7321 // operand is a message send with a related result type.
7322 S.EmitRelatedResultTypeNote(op);
7323
7324 // Emit a possible note about a return failing because we're
7325 // expecting a related result type.
7326 if (entity.getKind() == InitializedEntity::EK_Result)
7327 S.EmitRelatedResultTypeNoteForReturn(destType);
7328 }
7329}
7330
7331static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
7332 InitListExpr *InitList) {
7333 QualType DestType = Entity.getType();
7334
7335 QualType E;
7336 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
7337 QualType ArrayType = S.Context.getConstantArrayType(
7338 E.withConst(),
7339 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
7340 InitList->getNumInits()),
7341 clang::ArrayType::Normal, 0);
7342 InitializedEntity HiddenArray =
7343 InitializedEntity::InitializeTemporary(ArrayType);
7344 return diagnoseListInit(S, HiddenArray, InitList);
7345 }
7346
7347 if (DestType->isReferenceType()) {
7348 // A list-initialization failure for a reference means that we tried to
7349 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
7350 // inner initialization failed.
7351 QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
7352 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
7353 SourceLocation Loc = InitList->getLocStart();
7354 if (auto *D = Entity.getDecl())
7355 Loc = D->getLocation();
7356 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
7357 return;
7358 }
7359
7360 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
7361 /*VerifyOnly=*/false,
7362 /*TreatUnavailableAsInvalid=*/false);
7363 assert(DiagnoseInitList.HadError() &&((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7364, __PRETTY_FUNCTION__))
7364 "Inconsistent init list check result.")((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7364, __PRETTY_FUNCTION__))
;
7365}
7366
7367bool InitializationSequence::Diagnose(Sema &S,
7368 const InitializedEntity &Entity,
7369 const InitializationKind &Kind,
7370 ArrayRef<Expr *> Args) {
7371 if (!Failed())
7372 return false;
7373
7374 QualType DestType = Entity.getType();
7375 switch (Failure) {
7376 case FK_TooManyInitsForReference:
7377 // FIXME: Customize for the initialized entity?
7378 if (Args.empty()) {
7379 // Dig out the reference subobject which is uninitialized and diagnose it.
7380 // If this is value-initialization, this could be nested some way within
7381 // the target type.
7382 assert(Kind.getKind() == InitializationKind::IK_Value ||((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7383, __PRETTY_FUNCTION__))
7383 DestType->isReferenceType())((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7383, __PRETTY_FUNCTION__))
;
7384 bool Diagnosed =
7385 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
7386 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")((Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7386, __PRETTY_FUNCTION__))
;
7387 (void)Diagnosed;
7388 } else // FIXME: diagnostic below could be better!
7389 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
7390 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
7391 break;
7392
7393 case FK_ArrayNeedsInitList:
7394 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
7395 break;
7396 case FK_ArrayNeedsInitListOrStringLiteral:
7397 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
7398 break;
7399 case FK_ArrayNeedsInitListOrWideStringLiteral:
7400 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
7401 break;
7402 case FK_NarrowStringIntoWideCharArray:
7403 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
7404 break;
7405 case FK_WideStringIntoCharArray:
7406 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
7407 break;
7408 case FK_IncompatWideStringIntoWideChar:
7409 S.Diag(Kind.getLocation(),
7410 diag::err_array_init_incompat_wide_string_into_wchar);
7411 break;
7412 case FK_ArrayTypeMismatch:
7413 case FK_NonConstantArrayInit:
7414 S.Diag(Kind.getLocation(),
7415 (Failure == FK_ArrayTypeMismatch
7416 ? diag::err_array_init_different_type
7417 : diag::err_array_init_non_constant_array))
7418 << DestType.getNonReferenceType()
7419 << Args[0]->getType()
7420 << Args[0]->getSourceRange();
7421 break;
7422
7423 case FK_VariableLengthArrayHasInitializer:
7424 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
7425 << Args[0]->getSourceRange();
7426 break;
7427
7428 case FK_AddressOfOverloadFailed: {
7429 DeclAccessPair Found;
7430 S.ResolveAddressOfOverloadedFunction(Args[0],
7431 DestType.getNonReferenceType(),
7432 true,
7433 Found);
7434 break;
7435 }
7436
7437 case FK_AddressOfUnaddressableFunction: {
7438 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
7439 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7440 Args[0]->getLocStart());
7441 break;
7442 }
7443
7444 case FK_ReferenceInitOverloadFailed:
7445 case FK_UserConversionOverloadFailed:
7446 switch (FailedOverloadResult) {
7447 case OR_Ambiguous:
7448 if (Failure == FK_UserConversionOverloadFailed)
7449 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
7450 << Args[0]->getType() << DestType
7451 << Args[0]->getSourceRange();
7452 else
7453 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
7454 << DestType << Args[0]->getType()
7455 << Args[0]->getSourceRange();
7456
7457 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7458 break;
7459
7460 case OR_No_Viable_Function:
7461 if (!S.RequireCompleteType(Kind.getLocation(),
7462 DestType.getNonReferenceType(),
7463 diag::err_typecheck_nonviable_condition_incomplete,
7464 Args[0]->getType(), Args[0]->getSourceRange()))
7465 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
7466 << (Entity.getKind() == InitializedEntity::EK_Result)
7467 << Args[0]->getType() << Args[0]->getSourceRange()
7468 << DestType.getNonReferenceType();
7469
7470 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7471 break;
7472
7473 case OR_Deleted: {
7474 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
7475 << Args[0]->getType() << DestType.getNonReferenceType()
7476 << Args[0]->getSourceRange();
7477 OverloadCandidateSet::iterator Best;
7478 OverloadingResult Ovl
7479 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
7480 true);
7481 if (Ovl == OR_Deleted) {
7482 S.NoteDeletedFunction(Best->Function);
7483 } else {
7484 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7484)
;
7485 }
7486 break;
7487 }
7488
7489 case OR_Success:
7490 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7490)
;
7491 }
7492 break;
7493
7494 case FK_NonConstLValueReferenceBindingToTemporary:
7495 if (isa<InitListExpr>(Args[0])) {
7496 S.Diag(Kind.getLocation(),
7497 diag::err_lvalue_reference_bind_to_initlist)
7498 << DestType.getNonReferenceType().isVolatileQualified()
7499 << DestType.getNonReferenceType()
7500 << Args[0]->getSourceRange();
7501 break;
7502 }
7503 // Intentional fallthrough
7504
7505 case FK_NonConstLValueReferenceBindingToUnrelated:
7506 S.Diag(Kind.getLocation(),
7507 Failure == FK_NonConstLValueReferenceBindingToTemporary
7508 ? diag::err_lvalue_reference_bind_to_temporary
7509 : diag::err_lvalue_reference_bind_to_unrelated)
7510 << DestType.getNonReferenceType().isVolatileQualified()
7511 << DestType.getNonReferenceType()
7512 << Args[0]->getType()
7513 << Args[0]->getSourceRange();
7514 break;
7515
7516 case FK_NonConstLValueReferenceBindingToBitfield: {
7517 // We don't necessarily have an unambiguous source bit-field.
7518 FieldDecl *BitField = Args[0]->getSourceBitField();
7519 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
7520 << DestType.isVolatileQualified()
7521 << (BitField ? BitField->getDeclName() : DeclarationName())
7522 << (BitField != nullptr)
7523 << Args[0]->getSourceRange();
7524 if (BitField)
7525 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
7526 break;
7527 }
7528
7529 case FK_NonConstLValueReferenceBindingToVectorElement:
7530 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
7531 << DestType.isVolatileQualified()
7532 << Args[0]->getSourceRange();
7533 break;
7534
7535 case FK_RValueReferenceBindingToLValue:
7536 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7537 << DestType.getNonReferenceType() << Args[0]->getType()
7538 << Args[0]->getSourceRange();
7539 break;
7540
7541 case FK_ReferenceInitDropsQualifiers: {
7542 QualType SourceType = Args[0]->getType();
7543 QualType NonRefType = DestType.getNonReferenceType();
7544 Qualifiers DroppedQualifiers =
7545 SourceType.getQualifiers() - NonRefType.getQualifiers();
7546
7547 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7548 << SourceType
7549 << NonRefType
7550 << DroppedQualifiers.getCVRQualifiers()
7551 << Args[0]->getSourceRange();
7552 break;
7553 }
7554
7555 case FK_ReferenceInitFailed:
7556 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7557 << DestType.getNonReferenceType()
7558 << Args[0]->isLValue()
7559 << Args[0]->getType()
7560 << Args[0]->getSourceRange();
7561 emitBadConversionNotes(S, Entity, Args[0]);
7562 break;
7563
7564 case FK_ConversionFailed: {
7565 QualType FromType = Args[0]->getType();
7566 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7567 << (int)Entity.getKind()
7568 << DestType
7569 << Args[0]->isLValue()
7570 << FromType
7571 << Args[0]->getSourceRange();
7572 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7573 S.Diag(Kind.getLocation(), PDiag);
7574 emitBadConversionNotes(S, Entity, Args[0]);
7575 break;
7576 }
7577
7578 case FK_ConversionFromPropertyFailed:
7579 // No-op. This error has already been reported.
7580 break;
7581
7582 case FK_TooManyInitsForScalar: {
7583 SourceRange R;
7584
7585 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7586 if (InitList && InitList->getNumInits() >= 1) {
7587 R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7588 } else {
7589 assert(Args.size() > 1 && "Expected multiple initializers!")((Args.size() > 1 && "Expected multiple initializers!"
) ? static_cast<void> (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7589, __PRETTY_FUNCTION__))
;
7590 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7591 }
7592
7593 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7594 if (Kind.isCStyleOrFunctionalCast())
7595 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7596 << R;
7597 else
7598 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7599 << /*scalar=*/2 << R;
7600 break;
7601 }
7602
7603 case FK_ReferenceBindingToInitList:
7604 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7605 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7606 break;
7607
7608 case FK_InitListBadDestinationType:
7609 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7610 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7611 break;
7612
7613 case FK_ListConstructorOverloadFailed:
7614 case FK_ConstructorOverloadFailed: {
7615 SourceRange ArgsRange;
7616 if (Args.size())
7617 ArgsRange = SourceRange(Args.front()->getLocStart(),
7618 Args.back()->getLocEnd());
7619
7620 if (Failure == FK_ListConstructorOverloadFailed) {
7621 assert(Args.size() == 1 &&((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7622, __PRETTY_FUNCTION__))
7622 "List construction from other than 1 argument.")((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7622, __PRETTY_FUNCTION__))
;
7623 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7624 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7625 }
7626
7627 // FIXME: Using "DestType" for the entity we're printing is probably
7628 // bad.
7629 switch (FailedOverloadResult) {
7630 case OR_Ambiguous:
7631 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7632 << DestType << ArgsRange;
7633 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7634 break;
7635
7636 case OR_No_Viable_Function:
7637 if (Kind.getKind() == InitializationKind::IK_Default &&
7638 (Entity.getKind() == InitializedEntity::EK_Base ||
7639 Entity.getKind() == InitializedEntity::EK_Member) &&
7640 isa<CXXConstructorDecl>(S.CurContext)) {
7641 // This is implicit default initialization of a member or
7642 // base within a constructor. If no viable function was
7643 // found, notify the user that they need to explicitly
7644 // initialize this base/member.
7645 CXXConstructorDecl *Constructor
7646 = cast<CXXConstructorDecl>(S.CurContext);
7647 const CXXRecordDecl *InheritedFrom = nullptr;
7648 if (auto Inherited = Constructor->getInheritedConstructor())
7649 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
7650 if (Entity.getKind() == InitializedEntity::EK_Base) {
7651 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7652 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7653 << S.Context.getTypeDeclType(Constructor->getParent())
7654 << /*base=*/0
7655 << Entity.getType()
7656 << InheritedFrom;
7657
7658 RecordDecl *BaseDecl
7659 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7660 ->getDecl();
7661 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7662 << S.Context.getTagDeclType(BaseDecl);
7663 } else {
7664 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7665 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7666 << S.Context.getTypeDeclType(Constructor->getParent())
7667 << /*member=*/1
7668 << Entity.getName()
7669 << InheritedFrom;
7670 S.Diag(Entity.getDecl()->getLocation(),
7671 diag::note_member_declared_at);
7672
7673 if (const RecordType *Record
7674 = Entity.getType()->getAs<RecordType>())
7675 S.Diag(Record->getDecl()->getLocation(),
7676 diag::note_previous_decl)
7677 << S.Context.getTagDeclType(Record->getDecl());
7678 }
7679 break;
7680 }
7681
7682 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7683 << DestType << ArgsRange;
7684 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7685 break;
7686
7687 case OR_Deleted: {
7688 OverloadCandidateSet::iterator Best;
7689 OverloadingResult Ovl
7690 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7691 if (Ovl != OR_Deleted) {
7692 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7693 << true << DestType << ArgsRange;
7694 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7694)
;
7695 break;
7696 }
7697
7698 // If this is a defaulted or implicitly-declared function, then
7699 // it was implicitly deleted. Make it clear that the deletion was
7700 // implicit.
7701 if (S.isImplicitlyDeleted(Best->Function))
7702 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7703 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7704 << DestType << ArgsRange;
7705 else
7706 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7707 << true << DestType << ArgsRange;
7708
7709 S.NoteDeletedFunction(Best->Function);
7710 break;
7711 }
7712
7713 case OR_Success:
7714 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7714)
;
7715 }
7716 }
7717 break;
7718
7719 case FK_DefaultInitOfConst:
7720 if (Entity.getKind() == InitializedEntity::EK_Member &&
7721 isa<CXXConstructorDecl>(S.CurContext)) {
7722 // This is implicit default-initialization of a const member in
7723 // a constructor. Complain that it needs to be explicitly
7724 // initialized.
7725 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7726 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7727 << (Constructor->getInheritedConstructor() ? 2 :
7728 Constructor->isImplicit() ? 1 : 0)
7729 << S.Context.getTypeDeclType(Constructor->getParent())
7730 << /*const=*/1
7731 << Entity.getName();
7732 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7733 << Entity.getName();
7734 } else {
7735 S.Diag(Kind.getLocation(), diag::err_default_init_const)
7736 << DestType << (bool)DestType->getAs<RecordType>();
7737 }
7738 break;
7739
7740 case FK_Incomplete:
7741 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7742 diag::err_init_incomplete_type);
7743 break;
7744
7745 case FK_ListInitializationFailed: {
7746 // Run the init list checker again to emit diagnostics.
7747 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7748 diagnoseListInit(S, Entity, InitList);
7749 break;
7750 }
7751
7752 case FK_PlaceholderType: {
7753 // FIXME: Already diagnosed!
7754 break;
7755 }
7756
7757 case FK_ExplicitConstructor: {
7758 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7759 << Args[0]->getSourceRange();
7760 OverloadCandidateSet::iterator Best;
7761 OverloadingResult Ovl
7762 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7763 (void)Ovl;
7764 assert(Ovl == OR_Success && "Inconsistent overload resolution")((Ovl == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaInit.cpp"
, 7764, __PRETTY_FUNCTION__))
;
7765 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7766 S.Diag(CtorDecl->getLocation(),
7767 diag::note_explicit_ctor_deduction_guide_here) << false;
7768 break;
7769 }
7770 }
7771
7772 PrintInitLocationNote(S, Entity);
7773 return true;
7774}
7775
7776void InitializationSequence::dump(raw_ostream &OS) const {
7777 switch (SequenceKind) {
7778 case FailedSequence: {
7779 OS << "Failed sequence: ";
7780 switch (Failure) {
7781 case FK_TooManyInitsForReference:
7782 OS << "too many initializers for reference";
7783 break;
7784
7785 case FK_ArrayNeedsInitList:
7786 OS << "array requires initializer list";
7787 break;
7788
7789 case FK_AddressOfUnaddressableFunction:
7790 OS << "address of unaddressable function was taken";
7791 break;
7792
7793 case FK_ArrayNeedsInitListOrStringLiteral:
7794 OS << "array requires initializer list or string literal";
7795 break;
7796
7797 case FK_ArrayNeedsInitListOrWideStringLiteral:
7798 OS << "array requires initializer list or wide string literal";
7799 break;
7800
7801 case FK_NarrowStringIntoWideCharArray:
7802 OS << "narrow string into wide char array";
7803 break;
7804
7805 case FK_WideStringIntoCharArray:
7806 OS << "wide string into char array";
7807 break;
7808
7809 case FK_IncompatWideStringIntoWideChar:
7810 OS << "incompatible wide string into wide char array";
7811 break;
7812
7813 case FK_ArrayTypeMismatch:
7814 OS << "array type mismatch";
7815 break;
7816
7817 case FK_NonConstantArrayInit:
7818 OS << "non-constant array initializer";
7819 break;
7820
7821 case FK_AddressOfOverloadFailed:
7822 OS << "address of overloaded function failed";
7823 break;
7824
7825 case FK_ReferenceInitOverloadFailed:
7826 OS << "overload resolution for reference initialization failed";
7827 break;
7828
7829 case FK_NonConstLValueReferenceBindingToTemporary:
7830 OS << "non-const lvalue reference bound to temporary";
7831 break;
7832
7833 case FK_NonConstLValueReferenceBindingToBitfield:
7834 OS << "non-const lvalue reference bound to bit-field";
7835 break;
7836
7837 case FK_NonConstLValueReferenceBindingToVectorElement:
7838 OS << "non-const lvalue reference bound to vector element";
7839 break;
7840
7841 case FK_NonConstLValueReferenceBindingToUnrelated:
7842 OS << "non-const lvalue reference bound to unrelated type";
7843 break;
7844
7845 case FK_RValueReferenceBindingToLValue:
7846 OS << "rvalue reference bound to an lvalue";
7847 break;
7848
7849 case FK_ReferenceInitDropsQualif