Bug Summary

File:tools/clang/lib/Sema/SemaInit.cpp
Warning:line 5442, column 16
Called C++ object pointer is null

Annotated Source Code

1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ExprObjC.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Sema/Designator.h"
21#include "clang/Sema/Initialization.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38 if (Context.typesAreCompatible(Context.getWideCharType(), T))
39 return true;
40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41 return Context.typesAreCompatible(Context.Char16Ty, T) ||
42 Context.typesAreCompatible(Context.Char32Ty, T);
43 }
44 return false;
45}
46
47enum StringInitFailureKind {
48 SIF_None,
49 SIF_NarrowStringIntoWideChar,
50 SIF_WideStringIntoChar,
51 SIF_IncompatWideStringIntoWideChar,
52 SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60 ASTContext &Context) {
61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62 return SIF_Other;
63
64 // See if this is a string literal or @encode.
65 Init = Init->IgnoreParens();
66
67 // Handle @encode, which is a narrow string.
68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69 return SIF_None;
70
71 // Otherwise we can only handle string literals.
72 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73 if (!SL)
74 return SIF_Other;
75
76 const QualType ElemTy =
77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79 switch (SL->getKind()) {
80 case StringLiteral::Ascii:
81 case StringLiteral::UTF8:
82 // char array can be initialized with a narrow string.
83 // Only allow char x[] = "foo"; not char x[] = L"foo";
84 if (ElemTy->isCharType())
85 return SIF_None;
86 if (IsWideCharCompatible(ElemTy, Context))
87 return SIF_NarrowStringIntoWideChar;
88 return SIF_Other;
89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90 // "An array with element type compatible with a qualified or unqualified
91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92 // string literal with the corresponding encoding prefix (L, u, or U,
93 // respectively), optionally enclosed in braces.
94 case StringLiteral::UTF16:
95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96 return SIF_None;
97 if (ElemTy->isCharType())
98 return SIF_WideStringIntoChar;
99 if (IsWideCharCompatible(ElemTy, Context))
100 return SIF_IncompatWideStringIntoWideChar;
101 return SIF_Other;
102 case StringLiteral::UTF32:
103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104 return SIF_None;
105 if (ElemTy->isCharType())
106 return SIF_WideStringIntoChar;
107 if (IsWideCharCompatible(ElemTy, Context))
108 return SIF_IncompatWideStringIntoWideChar;
109 return SIF_Other;
110 case StringLiteral::Wide:
111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112 return SIF_None;
113 if (ElemTy->isCharType())
114 return SIF_WideStringIntoChar;
115 if (IsWideCharCompatible(ElemTy, Context))
116 return SIF_IncompatWideStringIntoWideChar;
117 return SIF_Other;
118 }
119
120 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 120)
;
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124 ASTContext &Context) {
125 const ArrayType *arrayType = Context.getAsArrayType(declType);
126 if (!arrayType)
127 return SIF_Other;
128 return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134 while (true) {
135 E->setType(Ty);
136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137 break;
138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139 E = PE->getSubExpr();
140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141 E = UO->getSubExpr();
142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143 E = GSE->getResultExpr();
144 else
145 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 145)
;
146 }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150 Sema &S) {
151 // Get the length of the string as parsed.
152 auto *ConstantArrayTy =
153 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155
156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157 // C99 6.7.8p14. We have an array of character type with unknown size
158 // being initialized to a string literal.
159 llvm::APInt ConstVal(32, StrLength);
160 // Return a new array type (C99 6.7.8p22).
161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162 ConstVal,
163 ArrayType::Normal, 0);
164 updateStringLiteralType(Str, DeclT);
165 return;
166 }
167
168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170 // We have an array of character type with known size. However,
171 // the size may be smaller or larger than the string we are initializing.
172 // FIXME: Avoid truncation for 64-bit length strings.
173 if (S.getLangOpts().CPlusPlus) {
174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175 // For Pascal strings it's OK to strip off the terminating null character,
176 // so the example below is valid:
177 //
178 // unsigned char a[2] = "\pa";
179 if (SL->isPascal())
180 StrLength--;
181 }
182
183 // [dcl.init.string]p2
184 if (StrLength > CAT->getSize().getZExtValue())
185 S.Diag(Str->getLocStart(),
186 diag::err_initializer_string_for_char_array_too_long)
187 << Str->getSourceRange();
188 } else {
189 // C99 6.7.8p14.
190 if (StrLength-1 > CAT->getSize().getZExtValue())
191 S.Diag(Str->getLocStart(),
192 diag::ext_initializer_string_for_char_array_too_long)
193 << Str->getSourceRange();
194 }
195
196 // Set the type to the actual size that we are initializing. If we have
197 // something like:
198 // char x[1] = "foo";
199 // then this will set the string literal's type to char[1].
200 updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207namespace {
208
209/// @brief Semantic checking for initializer lists.
210///
211/// The InitListChecker class contains a set of routines that each
212/// handle the initialization of a certain kind of entity, e.g.,
213/// arrays, vectors, struct/union types, scalars, etc. The
214/// InitListChecker itself performs a recursive walk of the subobject
215/// structure of the type to be initialized, while stepping through
216/// the initializer list one element at a time. The IList and Index
217/// parameters to each of the Check* routines contain the active
218/// (syntactic) initializer list and the index into that initializer
219/// list that represents the current initializer. Each routine is
220/// responsible for moving that Index forward as it consumes elements.
221///
222/// Each Check* routine also has a StructuredList/StructuredIndex
223/// arguments, which contains the current "structured" (semantic)
224/// initializer list and the index into that initializer list where we
225/// are copying initializers as we map them over to the semantic
226/// list. Once we have completed our recursive walk of the subobject
227/// structure, we will have constructed a full semantic initializer
228/// list.
229///
230/// C99 designators cause changes in the initializer list traversal,
231/// because they make the initialization "jump" into a specific
232/// subobject and then continue the initialization from that
233/// point. CheckDesignatedInitializer() recursively steps into the
234/// designated subobject and manages backing out the recursion to
235/// initialize the subobjects after the one designated.
236class InitListChecker {
237 Sema &SemaRef;
238 bool hadError;
239 bool VerifyOnly; // no diagnostics, no structure building
240 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
241 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
242 InitListExpr *FullyStructuredList;
243
244 void CheckImplicitInitList(const InitializedEntity &Entity,
245 InitListExpr *ParentIList, QualType T,
246 unsigned &Index, InitListExpr *StructuredList,
247 unsigned &StructuredIndex);
248 void CheckExplicitInitList(const InitializedEntity &Entity,
249 InitListExpr *IList, QualType &T,
250 InitListExpr *StructuredList,
251 bool TopLevelObject = false);
252 void CheckListElementTypes(const InitializedEntity &Entity,
253 InitListExpr *IList, QualType &DeclType,
254 bool SubobjectIsDesignatorContext,
255 unsigned &Index,
256 InitListExpr *StructuredList,
257 unsigned &StructuredIndex,
258 bool TopLevelObject = false);
259 void CheckSubElementType(const InitializedEntity &Entity,
260 InitListExpr *IList, QualType ElemType,
261 unsigned &Index,
262 InitListExpr *StructuredList,
263 unsigned &StructuredIndex);
264 void CheckComplexType(const InitializedEntity &Entity,
265 InitListExpr *IList, QualType DeclType,
266 unsigned &Index,
267 InitListExpr *StructuredList,
268 unsigned &StructuredIndex);
269 void CheckScalarType(const InitializedEntity &Entity,
270 InitListExpr *IList, QualType DeclType,
271 unsigned &Index,
272 InitListExpr *StructuredList,
273 unsigned &StructuredIndex);
274 void CheckReferenceType(const InitializedEntity &Entity,
275 InitListExpr *IList, QualType DeclType,
276 unsigned &Index,
277 InitListExpr *StructuredList,
278 unsigned &StructuredIndex);
279 void CheckVectorType(const InitializedEntity &Entity,
280 InitListExpr *IList, QualType DeclType, unsigned &Index,
281 InitListExpr *StructuredList,
282 unsigned &StructuredIndex);
283 void CheckStructUnionTypes(const InitializedEntity &Entity,
284 InitListExpr *IList, QualType DeclType,
285 CXXRecordDecl::base_class_range Bases,
286 RecordDecl::field_iterator Field,
287 bool SubobjectIsDesignatorContext, unsigned &Index,
288 InitListExpr *StructuredList,
289 unsigned &StructuredIndex,
290 bool TopLevelObject = false);
291 void CheckArrayType(const InitializedEntity &Entity,
292 InitListExpr *IList, QualType &DeclType,
293 llvm::APSInt elementIndex,
294 bool SubobjectIsDesignatorContext, unsigned &Index,
295 InitListExpr *StructuredList,
296 unsigned &StructuredIndex);
297 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
298 InitListExpr *IList, DesignatedInitExpr *DIE,
299 unsigned DesigIdx,
300 QualType &CurrentObjectType,
301 RecordDecl::field_iterator *NextField,
302 llvm::APSInt *NextElementIndex,
303 unsigned &Index,
304 InitListExpr *StructuredList,
305 unsigned &StructuredIndex,
306 bool FinishSubobjectInit,
307 bool TopLevelObject);
308 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
309 QualType CurrentObjectType,
310 InitListExpr *StructuredList,
311 unsigned StructuredIndex,
312 SourceRange InitRange,
313 bool IsFullyOverwritten = false);
314 void UpdateStructuredListElement(InitListExpr *StructuredList,
315 unsigned &StructuredIndex,
316 Expr *expr);
317 int numArrayElements(QualType DeclType);
318 int numStructUnionElements(QualType DeclType);
319
320 static ExprResult PerformEmptyInit(Sema &SemaRef,
321 SourceLocation Loc,
322 const InitializedEntity &Entity,
323 bool VerifyOnly,
324 bool TreatUnavailableAsInvalid);
325
326 // Explanation on the "FillWithNoInit" mode:
327 //
328 // Assume we have the following definitions (Case#1):
329 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
330 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
331 //
332 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
333 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
334 //
335 // But if we have (Case#2):
336 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
337 //
338 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
339 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
340 //
341 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
342 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
343 // initializers but with special "NoInitExpr" place holders, which tells the
344 // CodeGen not to generate any initializers for these parts.
345 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
346 const InitializedEntity &ParentEntity,
347 InitListExpr *ILE, bool &RequiresSecondPass,
348 bool FillWithNoInit);
349 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
350 const InitializedEntity &ParentEntity,
351 InitListExpr *ILE, bool &RequiresSecondPass,
352 bool FillWithNoInit = false);
353 void FillInEmptyInitializations(const InitializedEntity &Entity,
354 InitListExpr *ILE, bool &RequiresSecondPass,
355 bool FillWithNoInit = false);
356 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
357 Expr *InitExpr, FieldDecl *Field,
358 bool TopLevelObject);
359 void CheckEmptyInitializable(const InitializedEntity &Entity,
360 SourceLocation Loc);
361
362public:
363 InitListChecker(Sema &S, const InitializedEntity &Entity,
364 InitListExpr *IL, QualType &T, bool VerifyOnly,
365 bool TreatUnavailableAsInvalid);
366 bool HadError() { return hadError; }
367
368 // @brief Retrieves the fully-structured initializer list used for
369 // semantic analysis and code generation.
370 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
371};
372
373} // end anonymous namespace
374
375ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
376 SourceLocation Loc,
377 const InitializedEntity &Entity,
378 bool VerifyOnly,
379 bool TreatUnavailableAsInvalid) {
380 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
381 true);
382 MultiExprArg SubInit;
383 Expr *InitExpr;
384 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
385
386 // C++ [dcl.init.aggr]p7:
387 // If there are fewer initializer-clauses in the list than there are
388 // members in the aggregate, then each member not explicitly initialized
389 // ...
390 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
391 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
392 if (EmptyInitList) {
393 // C++1y / DR1070:
394 // shall be initialized [...] from an empty initializer list.
395 //
396 // We apply the resolution of this DR to C++11 but not C++98, since C++98
397 // does not have useful semantics for initialization from an init list.
398 // We treat this as copy-initialization, because aggregate initialization
399 // always performs copy-initialization on its elements.
400 //
401 // Only do this if we're initializing a class type, to avoid filling in
402 // the initializer list where possible.
403 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
404 InitListExpr(SemaRef.Context, Loc, None, Loc);
405 InitExpr->setType(SemaRef.Context.VoidTy);
406 SubInit = InitExpr;
407 Kind = InitializationKind::CreateCopy(Loc, Loc);
408 } else {
409 // C++03:
410 // shall be value-initialized.
411 }
412
413 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
414 // libstdc++4.6 marks the vector default constructor as explicit in
415 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
416 // stlport does so too. Look for std::__debug for libstdc++, and for
417 // std:: for stlport. This is effectively a compiler-side implementation of
418 // LWG2193.
419 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
420 InitializationSequence::FK_ExplicitConstructor) {
421 OverloadCandidateSet::iterator Best;
422 OverloadingResult O =
423 InitSeq.getFailedCandidateSet()
424 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
425 (void)O;
426 assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 426, __PRETTY_FUNCTION__))
;
427 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
428 CXXRecordDecl *R = CtorDecl->getParent();
429
430 if (CtorDecl->getMinRequiredArguments() == 0 &&
431 CtorDecl->isExplicit() && R->getDeclName() &&
432 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
433 bool IsInStd = false;
434 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
435 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
436 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
437 IsInStd = true;
438 }
439
440 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
441 .Cases("basic_string", "deque", "forward_list", true)
442 .Cases("list", "map", "multimap", "multiset", true)
443 .Cases("priority_queue", "queue", "set", "stack", true)
444 .Cases("unordered_map", "unordered_set", "vector", true)
445 .Default(false)) {
446 InitSeq.InitializeFrom(
447 SemaRef, Entity,
448 InitializationKind::CreateValue(Loc, Loc, Loc, true),
449 MultiExprArg(), /*TopLevelOfInitList=*/false,
450 TreatUnavailableAsInvalid);
451 // Emit a warning for this. System header warnings aren't shown
452 // by default, but people working on system headers should see it.
453 if (!VerifyOnly) {
454 SemaRef.Diag(CtorDecl->getLocation(),
455 diag::warn_invalid_initializer_from_system_header);
456 if (Entity.getKind() == InitializedEntity::EK_Member)
457 SemaRef.Diag(Entity.getDecl()->getLocation(),
458 diag::note_used_in_initialization_here);
459 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
460 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
461 }
462 }
463 }
464 }
465 if (!InitSeq) {
466 if (!VerifyOnly) {
467 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
468 if (Entity.getKind() == InitializedEntity::EK_Member)
469 SemaRef.Diag(Entity.getDecl()->getLocation(),
470 diag::note_in_omitted_aggregate_initializer)
471 << /*field*/1 << Entity.getDecl();
472 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
473 bool IsTrailingArrayNewMember =
474 Entity.getParent() &&
475 Entity.getParent()->isVariableLengthArrayNew();
476 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
477 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
478 << Entity.getElementIndex();
479 }
480 }
481 return ExprError();
482 }
483
484 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
485 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
486}
487
488void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
489 SourceLocation Loc) {
490 assert(VerifyOnly &&((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 491, __PRETTY_FUNCTION__))
491 "CheckEmptyInitializable is only inteded for verification mode.")((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 491, __PRETTY_FUNCTION__))
;
492 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
493 TreatUnavailableAsInvalid).isInvalid())
494 hadError = true;
495}
496
497void InitListChecker::FillInEmptyInitForBase(
498 unsigned Init, const CXXBaseSpecifier &Base,
499 const InitializedEntity &ParentEntity, InitListExpr *ILE,
500 bool &RequiresSecondPass, bool FillWithNoInit) {
501 assert(Init < ILE->getNumInits() && "should have been expanded")((Init < ILE->getNumInits() && "should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 501, __PRETTY_FUNCTION__))
;
502
503 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
504 SemaRef.Context, &Base, false, &ParentEntity);
505
506 if (!ILE->getInit(Init)) {
507 ExprResult BaseInit =
508 FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType())
509 : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity,
510 /*VerifyOnly*/ false,
511 TreatUnavailableAsInvalid);
512 if (BaseInit.isInvalid()) {
513 hadError = true;
514 return;
515 }
516
517 ILE->setInit(Init, BaseInit.getAs<Expr>());
518 } else if (InitListExpr *InnerILE =
519 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
520 FillInEmptyInitializations(BaseEntity, InnerILE,
521 RequiresSecondPass, FillWithNoInit);
522 } else if (DesignatedInitUpdateExpr *InnerDIUE =
523 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
524 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
525 RequiresSecondPass, /*FillWithNoInit =*/true);
526 }
527}
528
529void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
530 const InitializedEntity &ParentEntity,
531 InitListExpr *ILE,
532 bool &RequiresSecondPass,
533 bool FillWithNoInit) {
534 SourceLocation Loc = ILE->getLocEnd();
535 unsigned NumInits = ILE->getNumInits();
536 InitializedEntity MemberEntity
537 = InitializedEntity::InitializeMember(Field, &ParentEntity);
538
539 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
540 if (!RType->getDecl()->isUnion())
541 assert(Init < NumInits && "This ILE should have been expanded")((Init < NumInits && "This ILE should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < NumInits && \"This ILE should have been expanded\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 541, __PRETTY_FUNCTION__))
;
542
543 if (Init >= NumInits || !ILE->getInit(Init)) {
544 if (FillWithNoInit) {
545 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
546 if (Init < NumInits)
547 ILE->setInit(Init, Filler);
548 else
549 ILE->updateInit(SemaRef.Context, Init, Filler);
550 return;
551 }
552 // C++1y [dcl.init.aggr]p7:
553 // If there are fewer initializer-clauses in the list than there are
554 // members in the aggregate, then each member not explicitly initialized
555 // shall be initialized from its brace-or-equal-initializer [...]
556 if (Field->hasInClassInitializer()) {
557 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
558 if (DIE.isInvalid()) {
559 hadError = true;
560 return;
561 }
562 if (Init < NumInits)
563 ILE->setInit(Init, DIE.get());
564 else {
565 ILE->updateInit(SemaRef.Context, Init, DIE.get());
566 RequiresSecondPass = true;
567 }
568 return;
569 }
570
571 if (Field->getType()->isReferenceType()) {
572 // C++ [dcl.init.aggr]p9:
573 // If an incomplete or empty initializer-list leaves a
574 // member of reference type uninitialized, the program is
575 // ill-formed.
576 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
577 << Field->getType()
578 << ILE->getSyntacticForm()->getSourceRange();
579 SemaRef.Diag(Field->getLocation(),
580 diag::note_uninit_reference_member);
581 hadError = true;
582 return;
583 }
584
585 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
586 /*VerifyOnly*/false,
587 TreatUnavailableAsInvalid);
588 if (MemberInit.isInvalid()) {
589 hadError = true;
590 return;
591 }
592
593 if (hadError) {
594 // Do nothing
595 } else if (Init < NumInits) {
596 ILE->setInit(Init, MemberInit.getAs<Expr>());
597 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
598 // Empty initialization requires a constructor call, so
599 // extend the initializer list to include the constructor
600 // call and make a note that we'll need to take another pass
601 // through the initializer list.
602 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
603 RequiresSecondPass = true;
604 }
605 } else if (InitListExpr *InnerILE
606 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
607 FillInEmptyInitializations(MemberEntity, InnerILE,
608 RequiresSecondPass, FillWithNoInit);
609 else if (DesignatedInitUpdateExpr *InnerDIUE
610 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
611 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
612 RequiresSecondPass, /*FillWithNoInit =*/ true);
613}
614
615/// Recursively replaces NULL values within the given initializer list
616/// with expressions that perform value-initialization of the
617/// appropriate type.
618void
619InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
620 InitListExpr *ILE,
621 bool &RequiresSecondPass,
622 bool FillWithNoInit) {
623 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 624, __PRETTY_FUNCTION__))
624 "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 624, __PRETTY_FUNCTION__))
;
625
626 // A transparent ILE is not performing aggregate initialization and should
627 // not be filled in.
628 if (ILE->isTransparent())
629 return;
630
631 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
632 const RecordDecl *RDecl = RType->getDecl();
633 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
634 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
635 Entity, ILE, RequiresSecondPass, FillWithNoInit);
636 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
637 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
638 for (auto *Field : RDecl->fields()) {
639 if (Field->hasInClassInitializer()) {
640 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
641 FillWithNoInit);
642 break;
643 }
644 }
645 } else {
646 // The fields beyond ILE->getNumInits() are default initialized, so in
647 // order to leave them uninitialized, the ILE is expanded and the extra
648 // fields are then filled with NoInitExpr.
649 unsigned NumElems = numStructUnionElements(ILE->getType());
650 if (RDecl->hasFlexibleArrayMember())
651 ++NumElems;
652 if (ILE->getNumInits() < NumElems)
653 ILE->resizeInits(SemaRef.Context, NumElems);
654
655 unsigned Init = 0;
656
657 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
658 for (auto &Base : CXXRD->bases()) {
659 if (hadError)
660 return;
661
662 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
663 FillWithNoInit);
664 ++Init;
665 }
666 }
667
668 for (auto *Field : RDecl->fields()) {
669 if (Field->isUnnamedBitfield())
670 continue;
671
672 if (hadError)
673 return;
674
675 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
676 FillWithNoInit);
677 if (hadError)
678 return;
679
680 ++Init;
681
682 // Only look at the first initialization of a union.
683 if (RDecl->isUnion())
684 break;
685 }
686 }
687
688 return;
689 }
690
691 QualType ElementType;
692
693 InitializedEntity ElementEntity = Entity;
694 unsigned NumInits = ILE->getNumInits();
695 unsigned NumElements = NumInits;
696 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
697 ElementType = AType->getElementType();
698 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
699 NumElements = CAType->getSize().getZExtValue();
700 // For an array new with an unknown bound, ask for one additional element
701 // in order to populate the array filler.
702 if (Entity.isVariableLengthArrayNew())
703 ++NumElements;
704 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
705 0, Entity);
706 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
707 ElementType = VType->getElementType();
708 NumElements = VType->getNumElements();
709 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
710 0, Entity);
711 } else
712 ElementType = ILE->getType();
713
714 for (unsigned Init = 0; Init != NumElements; ++Init) {
715 if (hadError)
716 return;
717
718 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
719 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
720 ElementEntity.setElementIndex(Init);
721
722 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
723 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
724 ILE->setInit(Init, ILE->getArrayFiller());
725 else if (!InitExpr && !ILE->hasArrayFiller()) {
726 Expr *Filler = nullptr;
727
728 if (FillWithNoInit)
729 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
730 else {
731 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
732 ElementEntity,
733 /*VerifyOnly*/false,
734 TreatUnavailableAsInvalid);
735 if (ElementInit.isInvalid()) {
736 hadError = true;
737 return;
738 }
739
740 Filler = ElementInit.getAs<Expr>();
741 }
742
743 if (hadError) {
744 // Do nothing
745 } else if (Init < NumInits) {
746 // For arrays, just set the expression used for value-initialization
747 // of the "holes" in the array.
748 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
749 ILE->setArrayFiller(Filler);
750 else
751 ILE->setInit(Init, Filler);
752 } else {
753 // For arrays, just set the expression used for value-initialization
754 // of the rest of elements and exit.
755 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
756 ILE->setArrayFiller(Filler);
757 return;
758 }
759
760 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
761 // Empty initialization requires a constructor call, so
762 // extend the initializer list to include the constructor
763 // call and make a note that we'll need to take another pass
764 // through the initializer list.
765 ILE->updateInit(SemaRef.Context, Init, Filler);
766 RequiresSecondPass = true;
767 }
768 }
769 } else if (InitListExpr *InnerILE
770 = dyn_cast_or_null<InitListExpr>(InitExpr))
771 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
772 FillWithNoInit);
773 else if (DesignatedInitUpdateExpr *InnerDIUE
774 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
775 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
776 RequiresSecondPass, /*FillWithNoInit =*/ true);
777 }
778}
779
780InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
781 InitListExpr *IL, QualType &T,
782 bool VerifyOnly,
783 bool TreatUnavailableAsInvalid)
784 : SemaRef(S), VerifyOnly(VerifyOnly),
785 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
786 // FIXME: Check that IL isn't already the semantic form of some other
787 // InitListExpr. If it is, we'd create a broken AST.
788
789 hadError = false;
790
791 FullyStructuredList =
792 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
793 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
794 /*TopLevelObject=*/true);
795
796 if (!hadError && !VerifyOnly) {
797 bool RequiresSecondPass = false;
798 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
799 if (RequiresSecondPass && !hadError)
800 FillInEmptyInitializations(Entity, FullyStructuredList,
801 RequiresSecondPass);
802 }
803}
804
805int InitListChecker::numArrayElements(QualType DeclType) {
806 // FIXME: use a proper constant
807 int maxElements = 0x7FFFFFFF;
808 if (const ConstantArrayType *CAT =
809 SemaRef.Context.getAsConstantArrayType(DeclType)) {
810 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
811 }
812 return maxElements;
813}
814
815int InitListChecker::numStructUnionElements(QualType DeclType) {
816 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
817 int InitializableMembers = 0;
818 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
819 InitializableMembers += CXXRD->getNumBases();
820 for (const auto *Field : structDecl->fields())
821 if (!Field->isUnnamedBitfield())
822 ++InitializableMembers;
823
824 if (structDecl->isUnion())
825 return std::min(InitializableMembers, 1);
826 return InitializableMembers - structDecl->hasFlexibleArrayMember();
827}
828
829/// Check whether the range of the initializer \p ParentIList from element
830/// \p Index onwards can be used to initialize an object of type \p T. Update
831/// \p Index to indicate how many elements of the list were consumed.
832///
833/// This also fills in \p StructuredList, from element \p StructuredIndex
834/// onwards, with the fully-braced, desugared form of the initialization.
835void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
836 InitListExpr *ParentIList,
837 QualType T, unsigned &Index,
838 InitListExpr *StructuredList,
839 unsigned &StructuredIndex) {
840 int maxElements = 0;
841
842 if (T->isArrayType())
843 maxElements = numArrayElements(T);
844 else if (T->isRecordType())
845 maxElements = numStructUnionElements(T);
846 else if (T->isVectorType())
847 maxElements = T->getAs<VectorType>()->getNumElements();
848 else
849 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 849)
;
850
851 if (maxElements == 0) {
852 if (!VerifyOnly)
853 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
854 diag::err_implicit_empty_initializer);
855 ++Index;
856 hadError = true;
857 return;
858 }
859
860 // Build a structured initializer list corresponding to this subobject.
861 InitListExpr *StructuredSubobjectInitList
862 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
863 StructuredIndex,
864 SourceRange(ParentIList->getInit(Index)->getLocStart(),
865 ParentIList->getSourceRange().getEnd()));
866 unsigned StructuredSubobjectInitIndex = 0;
867
868 // Check the element types and build the structural subobject.
869 unsigned StartIndex = Index;
870 CheckListElementTypes(Entity, ParentIList, T,
871 /*SubobjectIsDesignatorContext=*/false, Index,
872 StructuredSubobjectInitList,
873 StructuredSubobjectInitIndex);
874
875 if (!VerifyOnly) {
876 StructuredSubobjectInitList->setType(T);
877
878 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
879 // Update the structured sub-object initializer so that it's ending
880 // range corresponds with the end of the last initializer it used.
881 if (EndIndex < ParentIList->getNumInits() &&
882 ParentIList->getInit(EndIndex)) {
883 SourceLocation EndLoc
884 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
885 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
886 }
887
888 // Complain about missing braces.
889 if (T->isArrayType() || T->isRecordType()) {
890 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
891 diag::warn_missing_braces)
892 << StructuredSubobjectInitList->getSourceRange()
893 << FixItHint::CreateInsertion(
894 StructuredSubobjectInitList->getLocStart(), "{")
895 << FixItHint::CreateInsertion(
896 SemaRef.getLocForEndOfToken(
897 StructuredSubobjectInitList->getLocEnd()),
898 "}");
899 }
900 }
901}
902
903/// Warn that \p Entity was of scalar type and was initialized by a
904/// single-element braced initializer list.
905static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
906 SourceRange Braces) {
907 // Don't warn during template instantiation. If the initialization was
908 // non-dependent, we warned during the initial parse; otherwise, the
909 // type might not be scalar in some uses of the template.
910 if (S.inTemplateInstantiation())
911 return;
912
913 unsigned DiagID = 0;
914
915 switch (Entity.getKind()) {
916 case InitializedEntity::EK_VectorElement:
917 case InitializedEntity::EK_ComplexElement:
918 case InitializedEntity::EK_ArrayElement:
919 case InitializedEntity::EK_Parameter:
920 case InitializedEntity::EK_Parameter_CF_Audited:
921 case InitializedEntity::EK_Result:
922 // Extra braces here are suspicious.
923 DiagID = diag::warn_braces_around_scalar_init;
924 break;
925
926 case InitializedEntity::EK_Member:
927 // Warn on aggregate initialization but not on ctor init list or
928 // default member initializer.
929 if (Entity.getParent())
930 DiagID = diag::warn_braces_around_scalar_init;
931 break;
932
933 case InitializedEntity::EK_Variable:
934 case InitializedEntity::EK_LambdaCapture:
935 // No warning, might be direct-list-initialization.
936 // FIXME: Should we warn for copy-list-initialization in these cases?
937 break;
938
939 case InitializedEntity::EK_New:
940 case InitializedEntity::EK_Temporary:
941 case InitializedEntity::EK_CompoundLiteralInit:
942 // No warning, braces are part of the syntax of the underlying construct.
943 break;
944
945 case InitializedEntity::EK_RelatedResult:
946 // No warning, we already warned when initializing the result.
947 break;
948
949 case InitializedEntity::EK_Exception:
950 case InitializedEntity::EK_Base:
951 case InitializedEntity::EK_Delegating:
952 case InitializedEntity::EK_BlockElement:
953 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
954 case InitializedEntity::EK_Binding:
955 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 955)
;
956 }
957
958 if (DiagID) {
959 S.Diag(Braces.getBegin(), DiagID)
960 << Braces
961 << FixItHint::CreateRemoval(Braces.getBegin())
962 << FixItHint::CreateRemoval(Braces.getEnd());
963 }
964}
965
966/// Check whether the initializer \p IList (that was written with explicit
967/// braces) can be used to initialize an object of type \p T.
968///
969/// This also fills in \p StructuredList with the fully-braced, desugared
970/// form of the initialization.
971void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
972 InitListExpr *IList, QualType &T,
973 InitListExpr *StructuredList,
974 bool TopLevelObject) {
975 if (!VerifyOnly) {
976 SyntacticToSemantic[IList] = StructuredList;
977 StructuredList->setSyntacticForm(IList);
978 }
979
980 unsigned Index = 0, StructuredIndex = 0;
981 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
982 Index, StructuredList, StructuredIndex, TopLevelObject);
983 if (!VerifyOnly) {
984 QualType ExprTy = T;
985 if (!ExprTy->isArrayType())
986 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
987 IList->setType(ExprTy);
988 StructuredList->setType(ExprTy);
989 }
990 if (hadError)
991 return;
992
993 if (Index < IList->getNumInits()) {
994 // We have leftover initializers
995 if (VerifyOnly) {
996 if (SemaRef.getLangOpts().CPlusPlus ||
997 (SemaRef.getLangOpts().OpenCL &&
998 IList->getType()->isVectorType())) {
999 hadError = true;
1000 }
1001 return;
1002 }
1003
1004 if (StructuredIndex == 1 &&
1005 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1006 SIF_None) {
1007 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1008 if (SemaRef.getLangOpts().CPlusPlus) {
1009 DK = diag::err_excess_initializers_in_char_array_initializer;
1010 hadError = true;
1011 }
1012 // Special-case
1013 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1014 << IList->getInit(Index)->getSourceRange();
1015 } else if (!T->isIncompleteType()) {
1016 // Don't complain for incomplete types, since we'll get an error
1017 // elsewhere
1018 QualType CurrentObjectType = StructuredList->getType();
1019 int initKind =
1020 CurrentObjectType->isArrayType()? 0 :
1021 CurrentObjectType->isVectorType()? 1 :
1022 CurrentObjectType->isScalarType()? 2 :
1023 CurrentObjectType->isUnionType()? 3 :
1024 4;
1025
1026 unsigned DK = diag::ext_excess_initializers;
1027 if (SemaRef.getLangOpts().CPlusPlus) {
1028 DK = diag::err_excess_initializers;
1029 hadError = true;
1030 }
1031 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1032 DK = diag::err_excess_initializers;
1033 hadError = true;
1034 }
1035
1036 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1037 << initKind << IList->getInit(Index)->getSourceRange();
1038 }
1039 }
1040
1041 if (!VerifyOnly && T->isScalarType() &&
1042 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
1043 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1044}
1045
1046void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1047 InitListExpr *IList,
1048 QualType &DeclType,
1049 bool SubobjectIsDesignatorContext,
1050 unsigned &Index,
1051 InitListExpr *StructuredList,
1052 unsigned &StructuredIndex,
1053 bool TopLevelObject) {
1054 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1055 // Explicitly braced initializer for complex type can be real+imaginary
1056 // parts.
1057 CheckComplexType(Entity, IList, DeclType, Index,
1058 StructuredList, StructuredIndex);
1059 } else if (DeclType->isScalarType()) {
1060 CheckScalarType(Entity, IList, DeclType, Index,
1061 StructuredList, StructuredIndex);
1062 } else if (DeclType->isVectorType()) {
1063 CheckVectorType(Entity, IList, DeclType, Index,
1064 StructuredList, StructuredIndex);
1065 } else if (DeclType->isRecordType()) {
1066 assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1067, __PRETTY_FUNCTION__))
1067 "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1067, __PRETTY_FUNCTION__))
;
1068 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1069 auto Bases =
1070 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1071 CXXRecordDecl::base_class_iterator());
1072 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1073 Bases = CXXRD->bases();
1074 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1075 SubobjectIsDesignatorContext, Index, StructuredList,
1076 StructuredIndex, TopLevelObject);
1077 } else if (DeclType->isArrayType()) {
1078 llvm::APSInt Zero(
1079 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1080 false);
1081 CheckArrayType(Entity, IList, DeclType, Zero,
1082 SubobjectIsDesignatorContext, Index,
1083 StructuredList, StructuredIndex);
1084 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1085 // This type is invalid, issue a diagnostic.
1086 ++Index;
1087 if (!VerifyOnly)
1088 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1089 << DeclType;
1090 hadError = true;
1091 } else if (DeclType->isReferenceType()) {
1092 CheckReferenceType(Entity, IList, DeclType, Index,
1093 StructuredList, StructuredIndex);
1094 } else if (DeclType->isObjCObjectType()) {
1095 if (!VerifyOnly)
1096 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1097 << DeclType;
1098 hadError = true;
1099 } else {
1100 if (!VerifyOnly)
1101 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1102 << DeclType;
1103 hadError = true;
1104 }
1105}
1106
1107void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1108 InitListExpr *IList,
1109 QualType ElemType,
1110 unsigned &Index,
1111 InitListExpr *StructuredList,
1112 unsigned &StructuredIndex) {
1113 Expr *expr = IList->getInit(Index);
1114
1115 if (ElemType->isReferenceType())
1116 return CheckReferenceType(Entity, IList, ElemType, Index,
1117 StructuredList, StructuredIndex);
1118
1119 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1120 if (SubInitList->getNumInits() == 1 &&
1121 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1122 SIF_None) {
1123 expr = SubInitList->getInit(0);
1124 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1125 InitListExpr *InnerStructuredList
1126 = getStructuredSubobjectInit(IList, Index, ElemType,
1127 StructuredList, StructuredIndex,
1128 SubInitList->getSourceRange(), true);
1129 CheckExplicitInitList(Entity, SubInitList, ElemType,
1130 InnerStructuredList);
1131
1132 if (!hadError && !VerifyOnly) {
1133 bool RequiresSecondPass = false;
1134 FillInEmptyInitializations(Entity, InnerStructuredList,
1135 RequiresSecondPass);
1136 if (RequiresSecondPass && !hadError)
1137 FillInEmptyInitializations(Entity, InnerStructuredList,
1138 RequiresSecondPass);
1139 }
1140 ++StructuredIndex;
1141 ++Index;
1142 return;
1143 }
1144 // C++ initialization is handled later.
1145 } else if (isa<ImplicitValueInitExpr>(expr)) {
1146 // This happens during template instantiation when we see an InitListExpr
1147 // that we've already checked once.
1148 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1149, __PRETTY_FUNCTION__))
1149 "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1149, __PRETTY_FUNCTION__))
;
1150 if (!VerifyOnly)
1151 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1152 ++Index;
1153 return;
1154 }
1155
1156 if (SemaRef.getLangOpts().CPlusPlus) {
1157 // C++ [dcl.init.aggr]p2:
1158 // Each member is copy-initialized from the corresponding
1159 // initializer-clause.
1160
1161 // FIXME: Better EqualLoc?
1162 InitializationKind Kind =
1163 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1164 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1165 /*TopLevelOfInitList*/ true);
1166
1167 // C++14 [dcl.init.aggr]p13:
1168 // If the assignment-expression can initialize a member, the member is
1169 // initialized. Otherwise [...] brace elision is assumed
1170 //
1171 // Brace elision is never performed if the element is not an
1172 // assignment-expression.
1173 if (Seq || isa<InitListExpr>(expr)) {
1174 if (!VerifyOnly) {
1175 ExprResult Result =
1176 Seq.Perform(SemaRef, Entity, Kind, expr);
1177 if (Result.isInvalid())
1178 hadError = true;
1179
1180 UpdateStructuredListElement(StructuredList, StructuredIndex,
1181 Result.getAs<Expr>());
1182 } else if (!Seq)
1183 hadError = true;
1184 ++Index;
1185 return;
1186 }
1187
1188 // Fall through for subaggregate initialization
1189 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1190 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1191 return CheckScalarType(Entity, IList, ElemType, Index,
1192 StructuredList, StructuredIndex);
1193 } else if (const ArrayType *arrayType =
1194 SemaRef.Context.getAsArrayType(ElemType)) {
1195 // arrayType can be incomplete if we're initializing a flexible
1196 // array member. There's nothing we can do with the completed
1197 // type here, though.
1198
1199 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1200 if (!VerifyOnly) {
1201 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1202 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1203 }
1204 ++Index;
1205 return;
1206 }
1207
1208 // Fall through for subaggregate initialization.
1209
1210 } else {
1211 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isOpenCLSpecificType()) && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1212, __PRETTY_FUNCTION__))
1212 ElemType->isOpenCLSpecificType()) && "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isOpenCLSpecificType()) && "Unexpected type"
) ? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1212, __PRETTY_FUNCTION__))
;
1213
1214 // C99 6.7.8p13:
1215 //
1216 // The initializer for a structure or union object that has
1217 // automatic storage duration shall be either an initializer
1218 // list as described below, or a single expression that has
1219 // compatible structure or union type. In the latter case, the
1220 // initial value of the object, including unnamed members, is
1221 // that of the expression.
1222 ExprResult ExprRes = expr;
1223 if (SemaRef.CheckSingleAssignmentConstraints(
1224 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1225 if (ExprRes.isInvalid())
1226 hadError = true;
1227 else {
1228 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1229 if (ExprRes.isInvalid())
1230 hadError = true;
1231 }
1232 UpdateStructuredListElement(StructuredList, StructuredIndex,
1233 ExprRes.getAs<Expr>());
1234 ++Index;
1235 return;
1236 }
1237 ExprRes.get();
1238 // Fall through for subaggregate initialization
1239 }
1240
1241 // C++ [dcl.init.aggr]p12:
1242 //
1243 // [...] Otherwise, if the member is itself a non-empty
1244 // subaggregate, brace elision is assumed and the initializer is
1245 // considered for the initialization of the first member of
1246 // the subaggregate.
1247 // OpenCL vector initializer is handled elsewhere.
1248 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1249 ElemType->isAggregateType()) {
1250 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1251 StructuredIndex);
1252 ++StructuredIndex;
1253 } else {
1254 if (!VerifyOnly) {
1255 // We cannot initialize this element, so let
1256 // PerformCopyInitialization produce the appropriate diagnostic.
1257 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1258 /*TopLevelOfInitList=*/true);
1259 }
1260 hadError = true;
1261 ++Index;
1262 ++StructuredIndex;
1263 }
1264}
1265
1266void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1267 InitListExpr *IList, QualType DeclType,
1268 unsigned &Index,
1269 InitListExpr *StructuredList,
1270 unsigned &StructuredIndex) {
1271 assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero"
) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1271, __PRETTY_FUNCTION__))
;
1272
1273 // As an extension, clang supports complex initializers, which initialize
1274 // a complex number component-wise. When an explicit initializer list for
1275 // a complex number contains two two initializers, this extension kicks in:
1276 // it exepcts the initializer list to contain two elements convertible to
1277 // the element type of the complex type. The first element initializes
1278 // the real part, and the second element intitializes the imaginary part.
1279
1280 if (IList->getNumInits() != 2)
1281 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1282 StructuredIndex);
1283
1284 // This is an extension in C. (The builtin _Complex type does not exist
1285 // in the C++ standard.)
1286 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1287 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1288 << IList->getSourceRange();
1289
1290 // Initialize the complex number.
1291 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1292 InitializedEntity ElementEntity =
1293 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1294
1295 for (unsigned i = 0; i < 2; ++i) {
1296 ElementEntity.setElementIndex(Index);
1297 CheckSubElementType(ElementEntity, IList, elementType, Index,
1298 StructuredList, StructuredIndex);
1299 }
1300}
1301
1302void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1303 InitListExpr *IList, QualType DeclType,
1304 unsigned &Index,
1305 InitListExpr *StructuredList,
1306 unsigned &StructuredIndex) {
1307 if (Index >= IList->getNumInits()) {
1308 if (!VerifyOnly)
1309 SemaRef.Diag(IList->getLocStart(),
1310 SemaRef.getLangOpts().CPlusPlus11 ?
1311 diag::warn_cxx98_compat_empty_scalar_initializer :
1312 diag::err_empty_scalar_initializer)
1313 << IList->getSourceRange();
1314 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1315 ++Index;
1316 ++StructuredIndex;
1317 return;
1318 }
1319
1320 Expr *expr = IList->getInit(Index);
1321 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1322 // FIXME: This is invalid, and accepting it causes overload resolution
1323 // to pick the wrong overload in some corner cases.
1324 if (!VerifyOnly)
1325 SemaRef.Diag(SubIList->getLocStart(),
1326 diag::ext_many_braces_around_scalar_init)
1327 << SubIList->getSourceRange();
1328
1329 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1330 StructuredIndex);
1331 return;
1332 } else if (isa<DesignatedInitExpr>(expr)) {
1333 if (!VerifyOnly)
1334 SemaRef.Diag(expr->getLocStart(),
1335 diag::err_designator_for_scalar_init)
1336 << DeclType << expr->getSourceRange();
1337 hadError = true;
1338 ++Index;
1339 ++StructuredIndex;
1340 return;
1341 }
1342
1343 if (VerifyOnly) {
1344 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1345 hadError = true;
1346 ++Index;
1347 return;
1348 }
1349
1350 ExprResult Result =
1351 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1352 /*TopLevelOfInitList=*/true);
1353
1354 Expr *ResultExpr = nullptr;
1355
1356 if (Result.isInvalid())
1357 hadError = true; // types weren't compatible.
1358 else {
1359 ResultExpr = Result.getAs<Expr>();
1360
1361 if (ResultExpr != expr) {
1362 // The type was promoted, update initializer list.
1363 IList->setInit(Index, ResultExpr);
1364 }
1365 }
1366 if (hadError)
1367 ++StructuredIndex;
1368 else
1369 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1370 ++Index;
1371}
1372
1373void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1374 InitListExpr *IList, QualType DeclType,
1375 unsigned &Index,
1376 InitListExpr *StructuredList,
1377 unsigned &StructuredIndex) {
1378 if (Index >= IList->getNumInits()) {
1379 // FIXME: It would be wonderful if we could point at the actual member. In
1380 // general, it would be useful to pass location information down the stack,
1381 // so that we know the location (or decl) of the "current object" being
1382 // initialized.
1383 if (!VerifyOnly)
1384 SemaRef.Diag(IList->getLocStart(),
1385 diag::err_init_reference_member_uninitialized)
1386 << DeclType
1387 << IList->getSourceRange();
1388 hadError = true;
1389 ++Index;
1390 ++StructuredIndex;
1391 return;
1392 }
1393
1394 Expr *expr = IList->getInit(Index);
1395 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1396 if (!VerifyOnly)
1397 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1398 << DeclType << IList->getSourceRange();
1399 hadError = true;
1400 ++Index;
1401 ++StructuredIndex;
1402 return;
1403 }
1404
1405 if (VerifyOnly) {
1406 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1407 hadError = true;
1408 ++Index;
1409 return;
1410 }
1411
1412 ExprResult Result =
1413 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1414 /*TopLevelOfInitList=*/true);
1415
1416 if (Result.isInvalid())
1417 hadError = true;
1418
1419 expr = Result.getAs<Expr>();
1420 IList->setInit(Index, expr);
1421
1422 if (hadError)
1423 ++StructuredIndex;
1424 else
1425 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1426 ++Index;
1427}
1428
1429void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1430 InitListExpr *IList, QualType DeclType,
1431 unsigned &Index,
1432 InitListExpr *StructuredList,
1433 unsigned &StructuredIndex) {
1434 const VectorType *VT = DeclType->getAs<VectorType>();
1435 unsigned maxElements = VT->getNumElements();
1436 unsigned numEltsInit = 0;
1437 QualType elementType = VT->getElementType();
1438
1439 if (Index >= IList->getNumInits()) {
1440 // Make sure the element type can be value-initialized.
1441 if (VerifyOnly)
1442 CheckEmptyInitializable(
1443 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1444 IList->getLocEnd());
1445 return;
1446 }
1447
1448 if (!SemaRef.getLangOpts().OpenCL) {
1449 // If the initializing element is a vector, try to copy-initialize
1450 // instead of breaking it apart (which is doomed to failure anyway).
1451 Expr *Init = IList->getInit(Index);
1452 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1453 if (VerifyOnly) {
1454 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1455 hadError = true;
1456 ++Index;
1457 return;
1458 }
1459
1460 ExprResult Result =
1461 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1462 /*TopLevelOfInitList=*/true);
1463
1464 Expr *ResultExpr = nullptr;
1465 if (Result.isInvalid())
1466 hadError = true; // types weren't compatible.
1467 else {
1468 ResultExpr = Result.getAs<Expr>();
1469
1470 if (ResultExpr != Init) {
1471 // The type was promoted, update initializer list.
1472 IList->setInit(Index, ResultExpr);
1473 }
1474 }
1475 if (hadError)
1476 ++StructuredIndex;
1477 else
1478 UpdateStructuredListElement(StructuredList, StructuredIndex,
1479 ResultExpr);
1480 ++Index;
1481 return;
1482 }
1483
1484 InitializedEntity ElementEntity =
1485 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1486
1487 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1488 // Don't attempt to go past the end of the init list
1489 if (Index >= IList->getNumInits()) {
1490 if (VerifyOnly)
1491 CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1492 break;
1493 }
1494
1495 ElementEntity.setElementIndex(Index);
1496 CheckSubElementType(ElementEntity, IList, elementType, Index,
1497 StructuredList, StructuredIndex);
1498 }
1499
1500 if (VerifyOnly)
1501 return;
1502
1503 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1504 const VectorType *T = Entity.getType()->getAs<VectorType>();
1505 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1506 T->getVectorKind() == VectorType::NeonPolyVector)) {
1507 // The ability to use vector initializer lists is a GNU vector extension
1508 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1509 // endian machines it works fine, however on big endian machines it
1510 // exhibits surprising behaviour:
1511 //
1512 // uint32x2_t x = {42, 64};
1513 // return vget_lane_u32(x, 0); // Will return 64.
1514 //
1515 // Because of this, explicitly call out that it is non-portable.
1516 //
1517 SemaRef.Diag(IList->getLocStart(),
1518 diag::warn_neon_vector_initializer_non_portable);
1519
1520 const char *typeCode;
1521 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1522
1523 if (elementType->isFloatingType())
1524 typeCode = "f";
1525 else if (elementType->isSignedIntegerType())
1526 typeCode = "s";
1527 else if (elementType->isUnsignedIntegerType())
1528 typeCode = "u";
1529 else
1530 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1530)
;
1531
1532 SemaRef.Diag(IList->getLocStart(),
1533 SemaRef.Context.getTypeSize(VT) > 64 ?
1534 diag::note_neon_vector_initializer_non_portable_q :
1535 diag::note_neon_vector_initializer_non_portable)
1536 << typeCode << typeSize;
1537 }
1538
1539 return;
1540 }
1541
1542 InitializedEntity ElementEntity =
1543 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1544
1545 // OpenCL initializers allows vectors to be constructed from vectors.
1546 for (unsigned i = 0; i < maxElements; ++i) {
1547 // Don't attempt to go past the end of the init list
1548 if (Index >= IList->getNumInits())
1549 break;
1550
1551 ElementEntity.setElementIndex(Index);
1552
1553 QualType IType = IList->getInit(Index)->getType();
1554 if (!IType->isVectorType()) {
1555 CheckSubElementType(ElementEntity, IList, elementType, Index,
1556 StructuredList, StructuredIndex);
1557 ++numEltsInit;
1558 } else {
1559 QualType VecType;
1560 const VectorType *IVT = IType->getAs<VectorType>();
1561 unsigned numIElts = IVT->getNumElements();
1562
1563 if (IType->isExtVectorType())
1564 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1565 else
1566 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1567 IVT->getVectorKind());
1568 CheckSubElementType(ElementEntity, IList, VecType, Index,
1569 StructuredList, StructuredIndex);
1570 numEltsInit += numIElts;
1571 }
1572 }
1573
1574 // OpenCL requires all elements to be initialized.
1575 if (numEltsInit != maxElements) {
1576 if (!VerifyOnly)
1577 SemaRef.Diag(IList->getLocStart(),
1578 diag::err_vector_incorrect_num_initializers)
1579 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1580 hadError = true;
1581 }
1582}
1583
1584void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1585 InitListExpr *IList, QualType &DeclType,
1586 llvm::APSInt elementIndex,
1587 bool SubobjectIsDesignatorContext,
1588 unsigned &Index,
1589 InitListExpr *StructuredList,
1590 unsigned &StructuredIndex) {
1591 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1592
1593 // Check for the special-case of initializing an array with a string.
1594 if (Index < IList->getNumInits()) {
1595 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1596 SIF_None) {
1597 // We place the string literal directly into the resulting
1598 // initializer list. This is the only place where the structure
1599 // of the structured initializer list doesn't match exactly,
1600 // because doing so would involve allocating one character
1601 // constant for each string.
1602 if (!VerifyOnly) {
1603 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1604 UpdateStructuredListElement(StructuredList, StructuredIndex,
1605 IList->getInit(Index));
1606 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1607 }
1608 ++Index;
1609 return;
1610 }
1611 }
1612 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1613 // Check for VLAs; in standard C it would be possible to check this
1614 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1615 // them in all sorts of strange places).
1616 if (!VerifyOnly)
1617 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1618 diag::err_variable_object_no_init)
1619 << VAT->getSizeExpr()->getSourceRange();
1620 hadError = true;
1621 ++Index;
1622 ++StructuredIndex;
1623 return;
1624 }
1625
1626 // We might know the maximum number of elements in advance.
1627 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1628 elementIndex.isUnsigned());
1629 bool maxElementsKnown = false;
1630 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1631 maxElements = CAT->getSize();
1632 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1633 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1634 maxElementsKnown = true;
1635 }
1636
1637 QualType elementType = arrayType->getElementType();
1638 while (Index < IList->getNumInits()) {
1639 Expr *Init = IList->getInit(Index);
1640 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1641 // If we're not the subobject that matches up with the '{' for
1642 // the designator, we shouldn't be handling the
1643 // designator. Return immediately.
1644 if (!SubobjectIsDesignatorContext)
1645 return;
1646
1647 // Handle this designated initializer. elementIndex will be
1648 // updated to be the next array element we'll initialize.
1649 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1650 DeclType, nullptr, &elementIndex, Index,
1651 StructuredList, StructuredIndex, true,
1652 false)) {
1653 hadError = true;
1654 continue;
1655 }
1656
1657 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1658 maxElements = maxElements.extend(elementIndex.getBitWidth());
1659 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1660 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1661 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1662
1663 // If the array is of incomplete type, keep track of the number of
1664 // elements in the initializer.
1665 if (!maxElementsKnown && elementIndex > maxElements)
1666 maxElements = elementIndex;
1667
1668 continue;
1669 }
1670
1671 // If we know the maximum number of elements, and we've already
1672 // hit it, stop consuming elements in the initializer list.
1673 if (maxElementsKnown && elementIndex == maxElements)
1674 break;
1675
1676 InitializedEntity ElementEntity =
1677 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1678 Entity);
1679 // Check this element.
1680 CheckSubElementType(ElementEntity, IList, elementType, Index,
1681 StructuredList, StructuredIndex);
1682 ++elementIndex;
1683
1684 // If the array is of incomplete type, keep track of the number of
1685 // elements in the initializer.
1686 if (!maxElementsKnown && elementIndex > maxElements)
1687 maxElements = elementIndex;
1688 }
1689 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1690 // If this is an incomplete array type, the actual type needs to
1691 // be calculated here.
1692 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1693 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1694 // Sizing an array implicitly to zero is not allowed by ISO C,
1695 // but is supported by GNU.
1696 SemaRef.Diag(IList->getLocStart(),
1697 diag::ext_typecheck_zero_array_size);
1698 }
1699
1700 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1701 ArrayType::Normal, 0);
1702 }
1703 if (!hadError && VerifyOnly) {
1704 // If there are any members of the array that get value-initialized, check
1705 // that is possible. That happens if we know the bound and don't have
1706 // enough elements, or if we're performing an array new with an unknown
1707 // bound.
1708 // FIXME: This needs to detect holes left by designated initializers too.
1709 if ((maxElementsKnown && elementIndex < maxElements) ||
1710 Entity.isVariableLengthArrayNew())
1711 CheckEmptyInitializable(InitializedEntity::InitializeElement(
1712 SemaRef.Context, 0, Entity),
1713 IList->getLocEnd());
1714 }
1715}
1716
1717bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1718 Expr *InitExpr,
1719 FieldDecl *Field,
1720 bool TopLevelObject) {
1721 // Handle GNU flexible array initializers.
1722 unsigned FlexArrayDiag;
1723 if (isa<InitListExpr>(InitExpr) &&
1724 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1725 // Empty flexible array init always allowed as an extension
1726 FlexArrayDiag = diag::ext_flexible_array_init;
1727 } else if (SemaRef.getLangOpts().CPlusPlus) {
1728 // Disallow flexible array init in C++; it is not required for gcc
1729 // compatibility, and it needs work to IRGen correctly in general.
1730 FlexArrayDiag = diag::err_flexible_array_init;
1731 } else if (!TopLevelObject) {
1732 // Disallow flexible array init on non-top-level object
1733 FlexArrayDiag = diag::err_flexible_array_init;
1734 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1735 // Disallow flexible array init on anything which is not a variable.
1736 FlexArrayDiag = diag::err_flexible_array_init;
1737 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1738 // Disallow flexible array init on local variables.
1739 FlexArrayDiag = diag::err_flexible_array_init;
1740 } else {
1741 // Allow other cases.
1742 FlexArrayDiag = diag::ext_flexible_array_init;
1743 }
1744
1745 if (!VerifyOnly) {
1746 SemaRef.Diag(InitExpr->getLocStart(),
1747 FlexArrayDiag)
1748 << InitExpr->getLocStart();
1749 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1750 << Field;
1751 }
1752
1753 return FlexArrayDiag != diag::ext_flexible_array_init;
1754}
1755
1756void InitListChecker::CheckStructUnionTypes(
1757 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1758 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1759 bool SubobjectIsDesignatorContext, unsigned &Index,
1760 InitListExpr *StructuredList, unsigned &StructuredIndex,
1761 bool TopLevelObject) {
1762 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1763
1764 // If the record is invalid, some of it's members are invalid. To avoid
1765 // confusion, we forgo checking the intializer for the entire record.
1766 if (structDecl->isInvalidDecl()) {
1767 // Assume it was supposed to consume a single initializer.
1768 ++Index;
1769 hadError = true;
1770 return;
1771 }
1772
1773 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1774 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1775
1776 // If there's a default initializer, use it.
1777 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1778 if (VerifyOnly)
1779 return;
1780 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1781 Field != FieldEnd; ++Field) {
1782 if (Field->hasInClassInitializer()) {
1783 StructuredList->setInitializedFieldInUnion(*Field);
1784 // FIXME: Actually build a CXXDefaultInitExpr?
1785 return;
1786 }
1787 }
1788 }
1789
1790 // Value-initialize the first member of the union that isn't an unnamed
1791 // bitfield.
1792 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1793 Field != FieldEnd; ++Field) {
1794 if (!Field->isUnnamedBitfield()) {
1795 if (VerifyOnly)
1796 CheckEmptyInitializable(
1797 InitializedEntity::InitializeMember(*Field, &Entity),
1798 IList->getLocEnd());
1799 else
1800 StructuredList->setInitializedFieldInUnion(*Field);
1801 break;
1802 }
1803 }
1804 return;
1805 }
1806
1807 bool InitializedSomething = false;
1808
1809 // If we have any base classes, they are initialized prior to the fields.
1810 for (auto &Base : Bases) {
1811 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1812 SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd();
1813
1814 // Designated inits always initialize fields, so if we see one, all
1815 // remaining base classes have no explicit initializer.
1816 if (Init && isa<DesignatedInitExpr>(Init))
1817 Init = nullptr;
1818
1819 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1820 SemaRef.Context, &Base, false, &Entity);
1821 if (Init) {
1822 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1823 StructuredList, StructuredIndex);
1824 InitializedSomething = true;
1825 } else if (VerifyOnly) {
1826 CheckEmptyInitializable(BaseEntity, InitLoc);
1827 }
1828 }
1829
1830 // If structDecl is a forward declaration, this loop won't do
1831 // anything except look at designated initializers; That's okay,
1832 // because an error should get printed out elsewhere. It might be
1833 // worthwhile to skip over the rest of the initializer, though.
1834 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1835 RecordDecl::field_iterator FieldEnd = RD->field_end();
1836 bool CheckForMissingFields = true;
1837 while (Index < IList->getNumInits()) {
1838 Expr *Init = IList->getInit(Index);
1839
1840 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1841 // If we're not the subobject that matches up with the '{' for
1842 // the designator, we shouldn't be handling the
1843 // designator. Return immediately.
1844 if (!SubobjectIsDesignatorContext)
1845 return;
1846
1847 // Handle this designated initializer. Field will be updated to
1848 // the next field that we'll be initializing.
1849 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1850 DeclType, &Field, nullptr, Index,
1851 StructuredList, StructuredIndex,
1852 true, TopLevelObject))
1853 hadError = true;
1854
1855 InitializedSomething = true;
1856
1857 // Disable check for missing fields when designators are used.
1858 // This matches gcc behaviour.
1859 CheckForMissingFields = false;
1860 continue;
1861 }
1862
1863 if (Field == FieldEnd) {
1864 // We've run out of fields. We're done.
1865 break;
1866 }
1867
1868 // We've already initialized a member of a union. We're done.
1869 if (InitializedSomething && DeclType->isUnionType())
1870 break;
1871
1872 // If we've hit the flexible array member at the end, we're done.
1873 if (Field->getType()->isIncompleteArrayType())
1874 break;
1875
1876 if (Field->isUnnamedBitfield()) {
1877 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1878 ++Field;
1879 continue;
1880 }
1881
1882 // Make sure we can use this declaration.
1883 bool InvalidUse;
1884 if (VerifyOnly)
1885 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
1886 else
1887 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1888 IList->getInit(Index)->getLocStart());
1889 if (InvalidUse) {
1890 ++Index;
1891 ++Field;
1892 hadError = true;
1893 continue;
1894 }
1895
1896 InitializedEntity MemberEntity =
1897 InitializedEntity::InitializeMember(*Field, &Entity);
1898 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1899 StructuredList, StructuredIndex);
1900 InitializedSomething = true;
1901
1902 if (DeclType->isUnionType() && !VerifyOnly) {
1903 // Initialize the first field within the union.
1904 StructuredList->setInitializedFieldInUnion(*Field);
1905 }
1906
1907 ++Field;
1908 }
1909
1910 // Emit warnings for missing struct field initializers.
1911 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1912 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1913 !DeclType->isUnionType()) {
1914 // It is possible we have one or more unnamed bitfields remaining.
1915 // Find first (if any) named field and emit warning.
1916 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1917 it != end; ++it) {
1918 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1919 SemaRef.Diag(IList->getSourceRange().getEnd(),
1920 diag::warn_missing_field_initializers) << *it;
1921 break;
1922 }
1923 }
1924 }
1925
1926 // Check that any remaining fields can be value-initialized.
1927 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1928 !Field->getType()->isIncompleteArrayType()) {
1929 // FIXME: Should check for holes left by designated initializers too.
1930 for (; Field != FieldEnd && !hadError; ++Field) {
1931 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1932 CheckEmptyInitializable(
1933 InitializedEntity::InitializeMember(*Field, &Entity),
1934 IList->getLocEnd());
1935 }
1936 }
1937
1938 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1939 Index >= IList->getNumInits())
1940 return;
1941
1942 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1943 TopLevelObject)) {
1944 hadError = true;
1945 ++Index;
1946 return;
1947 }
1948
1949 InitializedEntity MemberEntity =
1950 InitializedEntity::InitializeMember(*Field, &Entity);
1951
1952 if (isa<InitListExpr>(IList->getInit(Index)))
1953 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1954 StructuredList, StructuredIndex);
1955 else
1956 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1957 StructuredList, StructuredIndex);
1958}
1959
1960/// \brief Expand a field designator that refers to a member of an
1961/// anonymous struct or union into a series of field designators that
1962/// refers to the field within the appropriate subobject.
1963///
1964static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1965 DesignatedInitExpr *DIE,
1966 unsigned DesigIdx,
1967 IndirectFieldDecl *IndirectField) {
1968 typedef DesignatedInitExpr::Designator Designator;
1969
1970 // Build the replacement designators.
1971 SmallVector<Designator, 4> Replacements;
1972 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1973 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1974 if (PI + 1 == PE)
1975 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1976 DIE->getDesignator(DesigIdx)->getDotLoc(),
1977 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1978 else
1979 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1980 SourceLocation(), SourceLocation()));
1981 assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail
("isa<FieldDecl>(*PI)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 1981, __PRETTY_FUNCTION__))
;
1982 Replacements.back().setField(cast<FieldDecl>(*PI));
1983 }
1984
1985 // Expand the current designator into the set of replacement
1986 // designators, so we have a full subobject path down to where the
1987 // member of the anonymous struct/union is actually stored.
1988 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1989 &Replacements[0] + Replacements.size());
1990}
1991
1992static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1993 DesignatedInitExpr *DIE) {
1994 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1995 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1996 for (unsigned I = 0; I < NumIndexExprs; ++I)
1997 IndexExprs[I] = DIE->getSubExpr(I + 1);
1998 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
1999 IndexExprs,
2000 DIE->getEqualOrColonLoc(),
2001 DIE->usesGNUSyntax(), DIE->getInit());
2002}
2003
2004namespace {
2005
2006// Callback to only accept typo corrections that are for field members of
2007// the given struct or union.
2008class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2009 public:
2010 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2011 : Record(RD) {}
2012
2013 bool ValidateCandidate(const TypoCorrection &candidate) override {
2014 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2015 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2016 }
2017
2018 private:
2019 RecordDecl *Record;
2020};
2021
2022} // end anonymous namespace
2023
2024/// @brief Check the well-formedness of a C99 designated initializer.
2025///
2026/// Determines whether the designated initializer @p DIE, which
2027/// resides at the given @p Index within the initializer list @p
2028/// IList, is well-formed for a current object of type @p DeclType
2029/// (C99 6.7.8). The actual subobject that this designator refers to
2030/// within the current subobject is returned in either
2031/// @p NextField or @p NextElementIndex (whichever is appropriate).
2032///
2033/// @param IList The initializer list in which this designated
2034/// initializer occurs.
2035///
2036/// @param DIE The designated initializer expression.
2037///
2038/// @param DesigIdx The index of the current designator.
2039///
2040/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2041/// into which the designation in @p DIE should refer.
2042///
2043/// @param NextField If non-NULL and the first designator in @p DIE is
2044/// a field, this will be set to the field declaration corresponding
2045/// to the field named by the designator.
2046///
2047/// @param NextElementIndex If non-NULL and the first designator in @p
2048/// DIE is an array designator or GNU array-range designator, this
2049/// will be set to the last index initialized by this designator.
2050///
2051/// @param Index Index into @p IList where the designated initializer
2052/// @p DIE occurs.
2053///
2054/// @param StructuredList The initializer list expression that
2055/// describes all of the subobject initializers in the order they'll
2056/// actually be initialized.
2057///
2058/// @returns true if there was an error, false otherwise.
2059bool
2060InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2061 InitListExpr *IList,
2062 DesignatedInitExpr *DIE,
2063 unsigned DesigIdx,
2064 QualType &CurrentObjectType,
2065 RecordDecl::field_iterator *NextField,
2066 llvm::APSInt *NextElementIndex,
2067 unsigned &Index,
2068 InitListExpr *StructuredList,
2069 unsigned &StructuredIndex,
2070 bool FinishSubobjectInit,
2071 bool TopLevelObject) {
2072 if (DesigIdx == DIE->size()) {
2073 // Check the actual initialization for the designated object type.
2074 bool prevHadError = hadError;
2075
2076 // Temporarily remove the designator expression from the
2077 // initializer list that the child calls see, so that we don't try
2078 // to re-process the designator.
2079 unsigned OldIndex = Index;
2080 IList->setInit(OldIndex, DIE->getInit());
2081
2082 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2083 StructuredList, StructuredIndex);
2084
2085 // Restore the designated initializer expression in the syntactic
2086 // form of the initializer list.
2087 if (IList->getInit(OldIndex) != DIE->getInit())
2088 DIE->setInit(IList->getInit(OldIndex));
2089 IList->setInit(OldIndex, DIE);
2090
2091 return hadError && !prevHadError;
2092 }
2093
2094 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2095 bool IsFirstDesignator = (DesigIdx == 0);
2096 if (!VerifyOnly) {
2097 assert((IsFirstDesignator || StructuredList) &&(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2098, __PRETTY_FUNCTION__))
2098 "Need a non-designated initializer list to start from")(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2098, __PRETTY_FUNCTION__))
;
2099
2100 // Determine the structural initializer list that corresponds to the
2101 // current subobject.
2102 if (IsFirstDesignator)
2103 StructuredList = SyntacticToSemantic.lookup(IList);
2104 else {
2105 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2106 StructuredList->getInit(StructuredIndex) : nullptr;
2107 if (!ExistingInit && StructuredList->hasArrayFiller())
2108 ExistingInit = StructuredList->getArrayFiller();
2109
2110 if (!ExistingInit)
2111 StructuredList =
2112 getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2113 StructuredList, StructuredIndex,
2114 SourceRange(D->getLocStart(),
2115 DIE->getLocEnd()));
2116 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2117 StructuredList = Result;
2118 else {
2119 if (DesignatedInitUpdateExpr *E =
2120 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2121 StructuredList = E->getUpdater();
2122 else {
2123 DesignatedInitUpdateExpr *DIUE =
2124 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2125 D->getLocStart(), ExistingInit,
2126 DIE->getLocEnd());
2127 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2128 StructuredList = DIUE->getUpdater();
2129 }
2130
2131 // We need to check on source range validity because the previous
2132 // initializer does not have to be an explicit initializer. e.g.,
2133 //
2134 // struct P { int a, b; };
2135 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2136 //
2137 // There is an overwrite taking place because the first braced initializer
2138 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2139 if (ExistingInit->getSourceRange().isValid()) {
2140 // We are creating an initializer list that initializes the
2141 // subobjects of the current object, but there was already an
2142 // initialization that completely initialized the current
2143 // subobject, e.g., by a compound literal:
2144 //
2145 // struct X { int a, b; };
2146 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2147 //
2148 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2149 // designated initializer re-initializes the whole
2150 // subobject [0], overwriting previous initializers.
2151 SemaRef.Diag(D->getLocStart(),
2152 diag::warn_subobject_initializer_overrides)
2153 << SourceRange(D->getLocStart(), DIE->getLocEnd());
2154
2155 SemaRef.Diag(ExistingInit->getLocStart(),
2156 diag::note_previous_initializer)
2157 << /*FIXME:has side effects=*/0
2158 << ExistingInit->getSourceRange();
2159 }
2160 }
2161 }
2162 assert(StructuredList && "Expected a structured initializer list")((StructuredList && "Expected a structured initializer list"
) ? static_cast<void> (0) : __assert_fail ("StructuredList && \"Expected a structured initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2162, __PRETTY_FUNCTION__))
;
2163 }
2164
2165 if (D->isFieldDesignator()) {
2166 // C99 6.7.8p7:
2167 //
2168 // If a designator has the form
2169 //
2170 // . identifier
2171 //
2172 // then the current object (defined below) shall have
2173 // structure or union type and the identifier shall be the
2174 // name of a member of that type.
2175 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2176 if (!RT) {
2177 SourceLocation Loc = D->getDotLoc();
2178 if (Loc.isInvalid())
2179 Loc = D->getFieldLoc();
2180 if (!VerifyOnly)
2181 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2182 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2183 ++Index;
2184 return true;
2185 }
2186
2187 FieldDecl *KnownField = D->getField();
2188 if (!KnownField) {
2189 IdentifierInfo *FieldName = D->getFieldName();
2190 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2191 for (NamedDecl *ND : Lookup) {
2192 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2193 KnownField = FD;
2194 break;
2195 }
2196 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2197 // In verify mode, don't modify the original.
2198 if (VerifyOnly)
2199 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2200 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2201 D = DIE->getDesignator(DesigIdx);
2202 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2203 break;
2204 }
2205 }
2206 if (!KnownField) {
2207 if (VerifyOnly) {
2208 ++Index;
2209 return true; // No typo correction when just trying this out.
2210 }
2211
2212 // Name lookup found something, but it wasn't a field.
2213 if (!Lookup.empty()) {
2214 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2215 << FieldName;
2216 SemaRef.Diag(Lookup.front()->getLocation(),
2217 diag::note_field_designator_found);
2218 ++Index;
2219 return true;
2220 }
2221
2222 // Name lookup didn't find anything.
2223 // Determine whether this was a typo for another field name.
2224 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2225 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2226 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2227 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2228 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2229 SemaRef.diagnoseTypo(
2230 Corrected,
2231 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2232 << FieldName << CurrentObjectType);
2233 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2234 hadError = true;
2235 } else {
2236 // Typo correction didn't find anything.
2237 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2238 << FieldName << CurrentObjectType;
2239 ++Index;
2240 return true;
2241 }
2242 }
2243 }
2244
2245 unsigned FieldIndex = 0;
2246
2247 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2248 FieldIndex = CXXRD->getNumBases();
2249
2250 for (auto *FI : RT->getDecl()->fields()) {
2251 if (FI->isUnnamedBitfield())
2252 continue;
2253 if (declaresSameEntity(KnownField, FI)) {
2254 KnownField = FI;
2255 break;
2256 }
2257 ++FieldIndex;
2258 }
2259
2260 RecordDecl::field_iterator Field =
2261 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2262
2263 // All of the fields of a union are located at the same place in
2264 // the initializer list.
2265 if (RT->getDecl()->isUnion()) {
2266 FieldIndex = 0;
2267 if (!VerifyOnly) {
2268 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2269 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2270 assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2271, __PRETTY_FUNCTION__))
2271 && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2271, __PRETTY_FUNCTION__))
;
2272
2273 Expr *ExistingInit = StructuredList->getInit(0);
2274 if (ExistingInit) {
2275 // We're about to throw away an initializer, emit warning.
2276 SemaRef.Diag(D->getFieldLoc(),
2277 diag::warn_initializer_overrides)
2278 << D->getSourceRange();
2279 SemaRef.Diag(ExistingInit->getLocStart(),
2280 diag::note_previous_initializer)
2281 << /*FIXME:has side effects=*/0
2282 << ExistingInit->getSourceRange();
2283 }
2284
2285 // remove existing initializer
2286 StructuredList->resizeInits(SemaRef.Context, 0);
2287 StructuredList->setInitializedFieldInUnion(nullptr);
2288 }
2289
2290 StructuredList->setInitializedFieldInUnion(*Field);
2291 }
2292 }
2293
2294 // Make sure we can use this declaration.
2295 bool InvalidUse;
2296 if (VerifyOnly)
2297 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2298 else
2299 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2300 if (InvalidUse) {
2301 ++Index;
2302 return true;
2303 }
2304
2305 if (!VerifyOnly) {
2306 // Update the designator with the field declaration.
2307 D->setField(*Field);
2308
2309 // Make sure that our non-designated initializer list has space
2310 // for a subobject corresponding to this field.
2311 if (FieldIndex >= StructuredList->getNumInits())
2312 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2313 }
2314
2315 // This designator names a flexible array member.
2316 if (Field->getType()->isIncompleteArrayType()) {
2317 bool Invalid = false;
2318 if ((DesigIdx + 1) != DIE->size()) {
2319 // We can't designate an object within the flexible array
2320 // member (because GCC doesn't allow it).
2321 if (!VerifyOnly) {
2322 DesignatedInitExpr::Designator *NextD
2323 = DIE->getDesignator(DesigIdx + 1);
2324 SemaRef.Diag(NextD->getLocStart(),
2325 diag::err_designator_into_flexible_array_member)
2326 << SourceRange(NextD->getLocStart(),
2327 DIE->getLocEnd());
2328 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2329 << *Field;
2330 }
2331 Invalid = true;
2332 }
2333
2334 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2335 !isa<StringLiteral>(DIE->getInit())) {
2336 // The initializer is not an initializer list.
2337 if (!VerifyOnly) {
2338 SemaRef.Diag(DIE->getInit()->getLocStart(),
2339 diag::err_flexible_array_init_needs_braces)
2340 << DIE->getInit()->getSourceRange();
2341 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2342 << *Field;
2343 }
2344 Invalid = true;
2345 }
2346
2347 // Check GNU flexible array initializer.
2348 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2349 TopLevelObject))
2350 Invalid = true;
2351
2352 if (Invalid) {
2353 ++Index;
2354 return true;
2355 }
2356
2357 // Initialize the array.
2358 bool prevHadError = hadError;
2359 unsigned newStructuredIndex = FieldIndex;
2360 unsigned OldIndex = Index;
2361 IList->setInit(Index, DIE->getInit());
2362
2363 InitializedEntity MemberEntity =
2364 InitializedEntity::InitializeMember(*Field, &Entity);
2365 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2366 StructuredList, newStructuredIndex);
2367
2368 IList->setInit(OldIndex, DIE);
2369 if (hadError && !prevHadError) {
2370 ++Field;
2371 ++FieldIndex;
2372 if (NextField)
2373 *NextField = Field;
2374 StructuredIndex = FieldIndex;
2375 return true;
2376 }
2377 } else {
2378 // Recurse to check later designated subobjects.
2379 QualType FieldType = Field->getType();
2380 unsigned newStructuredIndex = FieldIndex;
2381
2382 InitializedEntity MemberEntity =
2383 InitializedEntity::InitializeMember(*Field, &Entity);
2384 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2385 FieldType, nullptr, nullptr, Index,
2386 StructuredList, newStructuredIndex,
2387 FinishSubobjectInit, false))
2388 return true;
2389 }
2390
2391 // Find the position of the next field to be initialized in this
2392 // subobject.
2393 ++Field;
2394 ++FieldIndex;
2395
2396 // If this the first designator, our caller will continue checking
2397 // the rest of this struct/class/union subobject.
2398 if (IsFirstDesignator) {
2399 if (NextField)
2400 *NextField = Field;
2401 StructuredIndex = FieldIndex;
2402 return false;
2403 }
2404
2405 if (!FinishSubobjectInit)
2406 return false;
2407
2408 // We've already initialized something in the union; we're done.
2409 if (RT->getDecl()->isUnion())
2410 return hadError;
2411
2412 // Check the remaining fields within this class/struct/union subobject.
2413 bool prevHadError = hadError;
2414
2415 auto NoBases =
2416 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2417 CXXRecordDecl::base_class_iterator());
2418 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2419 false, Index, StructuredList, FieldIndex);
2420 return hadError && !prevHadError;
2421 }
2422
2423 // C99 6.7.8p6:
2424 //
2425 // If a designator has the form
2426 //
2427 // [ constant-expression ]
2428 //
2429 // then the current object (defined below) shall have array
2430 // type and the expression shall be an integer constant
2431 // expression. If the array is of unknown size, any
2432 // nonnegative value is valid.
2433 //
2434 // Additionally, cope with the GNU extension that permits
2435 // designators of the form
2436 //
2437 // [ constant-expression ... constant-expression ]
2438 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2439 if (!AT) {
2440 if (!VerifyOnly)
2441 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2442 << CurrentObjectType;
2443 ++Index;
2444 return true;
2445 }
2446
2447 Expr *IndexExpr = nullptr;
2448 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2449 if (D->isArrayDesignator()) {
2450 IndexExpr = DIE->getArrayIndex(*D);
2451 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2452 DesignatedEndIndex = DesignatedStartIndex;
2453 } else {
2454 assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator"
) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2454, __PRETTY_FUNCTION__))
;
2455
2456 DesignatedStartIndex =
2457 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2458 DesignatedEndIndex =
2459 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2460 IndexExpr = DIE->getArrayRangeEnd(*D);
2461
2462 // Codegen can't handle evaluating array range designators that have side
2463 // effects, because we replicate the AST value for each initialized element.
2464 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2465 // elements with something that has a side effect, so codegen can emit an
2466 // "error unsupported" error instead of miscompiling the app.
2467 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2468 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2469 FullyStructuredList->sawArrayRangeDesignator();
2470 }
2471
2472 if (isa<ConstantArrayType>(AT)) {
2473 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2474 DesignatedStartIndex
2475 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2476 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2477 DesignatedEndIndex
2478 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2479 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2480 if (DesignatedEndIndex >= MaxElements) {
2481 if (!VerifyOnly)
2482 SemaRef.Diag(IndexExpr->getLocStart(),
2483 diag::err_array_designator_too_large)
2484 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2485 << IndexExpr->getSourceRange();
2486 ++Index;
2487 return true;
2488 }
2489 } else {
2490 unsigned DesignatedIndexBitWidth =
2491 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2492 DesignatedStartIndex =
2493 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2494 DesignatedEndIndex =
2495 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2496 DesignatedStartIndex.setIsUnsigned(true);
2497 DesignatedEndIndex.setIsUnsigned(true);
2498 }
2499
2500 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2501 // We're modifying a string literal init; we have to decompose the string
2502 // so we can modify the individual characters.
2503 ASTContext &Context = SemaRef.Context;
2504 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2505
2506 // Compute the character type
2507 QualType CharTy = AT->getElementType();
2508
2509 // Compute the type of the integer literals.
2510 QualType PromotedCharTy = CharTy;
2511 if (CharTy->isPromotableIntegerType())
2512 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2513 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2514
2515 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2516 // Get the length of the string.
2517 uint64_t StrLen = SL->getLength();
2518 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2519 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2520 StructuredList->resizeInits(Context, StrLen);
2521
2522 // Build a literal for each character in the string, and put them into
2523 // the init list.
2524 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2525 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2526 Expr *Init = new (Context) IntegerLiteral(
2527 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2528 if (CharTy != PromotedCharTy)
2529 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2530 Init, nullptr, VK_RValue);
2531 StructuredList->updateInit(Context, i, Init);
2532 }
2533 } else {
2534 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2535 std::string Str;
2536 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2537
2538 // Get the length of the string.
2539 uint64_t StrLen = Str.size();
2540 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2541 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2542 StructuredList->resizeInits(Context, StrLen);
2543
2544 // Build a literal for each character in the string, and put them into
2545 // the init list.
2546 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2547 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2548 Expr *Init = new (Context) IntegerLiteral(
2549 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2550 if (CharTy != PromotedCharTy)
2551 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2552 Init, nullptr, VK_RValue);
2553 StructuredList->updateInit(Context, i, Init);
2554 }
2555 }
2556 }
2557
2558 // Make sure that our non-designated initializer list has space
2559 // for a subobject corresponding to this array element.
2560 if (!VerifyOnly &&
2561 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2562 StructuredList->resizeInits(SemaRef.Context,
2563 DesignatedEndIndex.getZExtValue() + 1);
2564
2565 // Repeatedly perform subobject initializations in the range
2566 // [DesignatedStartIndex, DesignatedEndIndex].
2567
2568 // Move to the next designator
2569 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2570 unsigned OldIndex = Index;
2571
2572 InitializedEntity ElementEntity =
2573 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2574
2575 while (DesignatedStartIndex <= DesignatedEndIndex) {
2576 // Recurse to check later designated subobjects.
2577 QualType ElementType = AT->getElementType();
2578 Index = OldIndex;
2579
2580 ElementEntity.setElementIndex(ElementIndex);
2581 if (CheckDesignatedInitializer(
2582 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2583 nullptr, Index, StructuredList, ElementIndex,
2584 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2585 false))
2586 return true;
2587
2588 // Move to the next index in the array that we'll be initializing.
2589 ++DesignatedStartIndex;
2590 ElementIndex = DesignatedStartIndex.getZExtValue();
2591 }
2592
2593 // If this the first designator, our caller will continue checking
2594 // the rest of this array subobject.
2595 if (IsFirstDesignator) {
2596 if (NextElementIndex)
2597 *NextElementIndex = DesignatedStartIndex;
2598 StructuredIndex = ElementIndex;
2599 return false;
2600 }
2601
2602 if (!FinishSubobjectInit)
2603 return false;
2604
2605 // Check the remaining elements within this array subobject.
2606 bool prevHadError = hadError;
2607 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2608 /*SubobjectIsDesignatorContext=*/false, Index,
2609 StructuredList, ElementIndex);
2610 return hadError && !prevHadError;
2611}
2612
2613// Get the structured initializer list for a subobject of type
2614// @p CurrentObjectType.
2615InitListExpr *
2616InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2617 QualType CurrentObjectType,
2618 InitListExpr *StructuredList,
2619 unsigned StructuredIndex,
2620 SourceRange InitRange,
2621 bool IsFullyOverwritten) {
2622 if (VerifyOnly)
2623 return nullptr; // No structured list in verification-only mode.
2624 Expr *ExistingInit = nullptr;
2625 if (!StructuredList)
2626 ExistingInit = SyntacticToSemantic.lookup(IList);
2627 else if (StructuredIndex < StructuredList->getNumInits())
2628 ExistingInit = StructuredList->getInit(StructuredIndex);
2629
2630 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2631 // There might have already been initializers for subobjects of the current
2632 // object, but a subsequent initializer list will overwrite the entirety
2633 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2634 //
2635 // struct P { char x[6]; };
2636 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2637 //
2638 // The first designated initializer is ignored, and l.x is just "f".
2639 if (!IsFullyOverwritten)
2640 return Result;
2641
2642 if (ExistingInit) {
2643 // We are creating an initializer list that initializes the
2644 // subobjects of the current object, but there was already an
2645 // initialization that completely initialized the current
2646 // subobject, e.g., by a compound literal:
2647 //
2648 // struct X { int a, b; };
2649 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2650 //
2651 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2652 // designated initializer re-initializes the whole
2653 // subobject [0], overwriting previous initializers.
2654 SemaRef.Diag(InitRange.getBegin(),
2655 diag::warn_subobject_initializer_overrides)
2656 << InitRange;
2657 SemaRef.Diag(ExistingInit->getLocStart(),
2658 diag::note_previous_initializer)
2659 << /*FIXME:has side effects=*/0
2660 << ExistingInit->getSourceRange();
2661 }
2662
2663 InitListExpr *Result
2664 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2665 InitRange.getBegin(), None,
2666 InitRange.getEnd());
2667
2668 QualType ResultType = CurrentObjectType;
2669 if (!ResultType->isArrayType())
2670 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2671 Result->setType(ResultType);
2672
2673 // Pre-allocate storage for the structured initializer list.
2674 unsigned NumElements = 0;
2675 unsigned NumInits = 0;
2676 bool GotNumInits = false;
2677 if (!StructuredList) {
2678 NumInits = IList->getNumInits();
2679 GotNumInits = true;
2680 } else if (Index < IList->getNumInits()) {
2681 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2682 NumInits = SubList->getNumInits();
2683 GotNumInits = true;
2684 }
2685 }
2686
2687 if (const ArrayType *AType
2688 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2689 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2690 NumElements = CAType->getSize().getZExtValue();
2691 // Simple heuristic so that we don't allocate a very large
2692 // initializer with many empty entries at the end.
2693 if (GotNumInits && NumElements > NumInits)
2694 NumElements = 0;
2695 }
2696 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2697 NumElements = VType->getNumElements();
2698 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2699 RecordDecl *RDecl = RType->getDecl();
2700 if (RDecl->isUnion())
2701 NumElements = 1;
2702 else
2703 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2704 }
2705
2706 Result->reserveInits(SemaRef.Context, NumElements);
2707
2708 // Link this new initializer list into the structured initializer
2709 // lists.
2710 if (StructuredList)
2711 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2712 else {
2713 Result->setSyntacticForm(IList);
2714 SyntacticToSemantic[IList] = Result;
2715 }
2716
2717 return Result;
2718}
2719
2720/// Update the initializer at index @p StructuredIndex within the
2721/// structured initializer list to the value @p expr.
2722void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2723 unsigned &StructuredIndex,
2724 Expr *expr) {
2725 // No structured initializer list to update
2726 if (!StructuredList)
2727 return;
2728
2729 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2730 StructuredIndex, expr)) {
2731 // This initializer overwrites a previous initializer. Warn.
2732 // We need to check on source range validity because the previous
2733 // initializer does not have to be an explicit initializer.
2734 // struct P { int a, b; };
2735 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2736 // There is an overwrite taking place because the first braced initializer
2737 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2738 if (PrevInit->getSourceRange().isValid()) {
2739 SemaRef.Diag(expr->getLocStart(),
2740 diag::warn_initializer_overrides)
2741 << expr->getSourceRange();
2742
2743 SemaRef.Diag(PrevInit->getLocStart(),
2744 diag::note_previous_initializer)
2745 << /*FIXME:has side effects=*/0
2746 << PrevInit->getSourceRange();
2747 }
2748 }
2749
2750 ++StructuredIndex;
2751}
2752
2753/// Check that the given Index expression is a valid array designator
2754/// value. This is essentially just a wrapper around
2755/// VerifyIntegerConstantExpression that also checks for negative values
2756/// and produces a reasonable diagnostic if there is a
2757/// failure. Returns the index expression, possibly with an implicit cast
2758/// added, on success. If everything went okay, Value will receive the
2759/// value of the constant expression.
2760static ExprResult
2761CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2762 SourceLocation Loc = Index->getLocStart();
2763
2764 // Make sure this is an integer constant expression.
2765 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2766 if (Result.isInvalid())
2767 return Result;
2768
2769 if (Value.isSigned() && Value.isNegative())
2770 return S.Diag(Loc, diag::err_array_designator_negative)
2771 << Value.toString(10) << Index->getSourceRange();
2772
2773 Value.setIsUnsigned(true);
2774 return Result;
2775}
2776
2777ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2778 SourceLocation Loc,
2779 bool GNUSyntax,
2780 ExprResult Init) {
2781 typedef DesignatedInitExpr::Designator ASTDesignator;
2782
2783 bool Invalid = false;
2784 SmallVector<ASTDesignator, 32> Designators;
2785 SmallVector<Expr *, 32> InitExpressions;
2786
2787 // Build designators and check array designator expressions.
2788 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2789 const Designator &D = Desig.getDesignator(Idx);
2790 switch (D.getKind()) {
2791 case Designator::FieldDesignator:
2792 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2793 D.getFieldLoc()));
2794 break;
2795
2796 case Designator::ArrayDesignator: {
2797 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2798 llvm::APSInt IndexValue;
2799 if (!Index->isTypeDependent() && !Index->isValueDependent())
2800 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2801 if (!Index)
2802 Invalid = true;
2803 else {
2804 Designators.push_back(ASTDesignator(InitExpressions.size(),
2805 D.getLBracketLoc(),
2806 D.getRBracketLoc()));
2807 InitExpressions.push_back(Index);
2808 }
2809 break;
2810 }
2811
2812 case Designator::ArrayRangeDesignator: {
2813 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2814 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2815 llvm::APSInt StartValue;
2816 llvm::APSInt EndValue;
2817 bool StartDependent = StartIndex->isTypeDependent() ||
2818 StartIndex->isValueDependent();
2819 bool EndDependent = EndIndex->isTypeDependent() ||
2820 EndIndex->isValueDependent();
2821 if (!StartDependent)
2822 StartIndex =
2823 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2824 if (!EndDependent)
2825 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2826
2827 if (!StartIndex || !EndIndex)
2828 Invalid = true;
2829 else {
2830 // Make sure we're comparing values with the same bit width.
2831 if (StartDependent || EndDependent) {
2832 // Nothing to compute.
2833 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2834 EndValue = EndValue.extend(StartValue.getBitWidth());
2835 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2836 StartValue = StartValue.extend(EndValue.getBitWidth());
2837
2838 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2839 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2840 << StartValue.toString(10) << EndValue.toString(10)
2841 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2842 Invalid = true;
2843 } else {
2844 Designators.push_back(ASTDesignator(InitExpressions.size(),
2845 D.getLBracketLoc(),
2846 D.getEllipsisLoc(),
2847 D.getRBracketLoc()));
2848 InitExpressions.push_back(StartIndex);
2849 InitExpressions.push_back(EndIndex);
2850 }
2851 }
2852 break;
2853 }
2854 }
2855 }
2856
2857 if (Invalid || Init.isInvalid())
2858 return ExprError();
2859
2860 // Clear out the expressions within the designation.
2861 Desig.ClearExprs(*this);
2862
2863 DesignatedInitExpr *DIE
2864 = DesignatedInitExpr::Create(Context,
2865 Designators,
2866 InitExpressions, Loc, GNUSyntax,
2867 Init.getAs<Expr>());
2868
2869 if (!getLangOpts().C99)
2870 Diag(DIE->getLocStart(), diag::ext_designated_init)
2871 << DIE->getSourceRange();
2872
2873 return DIE;
2874}
2875
2876//===----------------------------------------------------------------------===//
2877// Initialization entity
2878//===----------------------------------------------------------------------===//
2879
2880InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2881 const InitializedEntity &Parent)
2882 : Parent(&Parent), Index(Index)
2883{
2884 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2885 Kind = EK_ArrayElement;
2886 Type = AT->getElementType();
2887 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2888 Kind = EK_VectorElement;
2889 Type = VT->getElementType();
2890 } else {
2891 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2892 assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> (
0) : __assert_fail ("CT && \"Unexpected type\"", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2892, __PRETTY_FUNCTION__))
;
2893 Kind = EK_ComplexElement;
2894 Type = CT->getElementType();
2895 }
2896}
2897
2898InitializedEntity
2899InitializedEntity::InitializeBase(ASTContext &Context,
2900 const CXXBaseSpecifier *Base,
2901 bool IsInheritedVirtualBase,
2902 const InitializedEntity *Parent) {
2903 InitializedEntity Result;
2904 Result.Kind = EK_Base;
2905 Result.Parent = Parent;
2906 Result.Base = reinterpret_cast<uintptr_t>(Base);
2907 if (IsInheritedVirtualBase)
2908 Result.Base |= 0x01;
2909
2910 Result.Type = Base->getType();
2911 return Result;
2912}
2913
2914DeclarationName InitializedEntity::getName() const {
2915 switch (getKind()) {
2916 case EK_Parameter:
2917 case EK_Parameter_CF_Audited: {
2918 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2919 return (D ? D->getDeclName() : DeclarationName());
2920 }
2921
2922 case EK_Variable:
2923 case EK_Member:
2924 case EK_Binding:
2925 return Variable.VariableOrMember->getDeclName();
2926
2927 case EK_LambdaCapture:
2928 return DeclarationName(Capture.VarID);
2929
2930 case EK_Result:
2931 case EK_Exception:
2932 case EK_New:
2933 case EK_Temporary:
2934 case EK_Base:
2935 case EK_Delegating:
2936 case EK_ArrayElement:
2937 case EK_VectorElement:
2938 case EK_ComplexElement:
2939 case EK_BlockElement:
2940 case EK_LambdaToBlockConversionBlockElement:
2941 case EK_CompoundLiteralInit:
2942 case EK_RelatedResult:
2943 return DeclarationName();
2944 }
2945
2946 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2946)
;
2947}
2948
2949ValueDecl *InitializedEntity::getDecl() const {
2950 switch (getKind()) {
2951 case EK_Variable:
2952 case EK_Member:
2953 case EK_Binding:
2954 return Variable.VariableOrMember;
2955
2956 case EK_Parameter:
2957 case EK_Parameter_CF_Audited:
2958 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2959
2960 case EK_Result:
2961 case EK_Exception:
2962 case EK_New:
2963 case EK_Temporary:
2964 case EK_Base:
2965 case EK_Delegating:
2966 case EK_ArrayElement:
2967 case EK_VectorElement:
2968 case EK_ComplexElement:
2969 case EK_BlockElement:
2970 case EK_LambdaToBlockConversionBlockElement:
2971 case EK_LambdaCapture:
2972 case EK_CompoundLiteralInit:
2973 case EK_RelatedResult:
2974 return nullptr;
2975 }
2976
2977 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 2977)
;
2978}
2979
2980bool InitializedEntity::allowsNRVO() const {
2981 switch (getKind()) {
2982 case EK_Result:
2983 case EK_Exception:
2984 return LocAndNRVO.NRVO;
2985
2986 case EK_Variable:
2987 case EK_Parameter:
2988 case EK_Parameter_CF_Audited:
2989 case EK_Member:
2990 case EK_Binding:
2991 case EK_New:
2992 case EK_Temporary:
2993 case EK_CompoundLiteralInit:
2994 case EK_Base:
2995 case EK_Delegating:
2996 case EK_ArrayElement:
2997 case EK_VectorElement:
2998 case EK_ComplexElement:
2999 case EK_BlockElement:
3000 case EK_LambdaToBlockConversionBlockElement:
3001 case EK_LambdaCapture:
3002 case EK_RelatedResult:
3003 break;
3004 }
3005
3006 return false;
3007}
3008
3009unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3010 assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail
("getParent() != this", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3010, __PRETTY_FUNCTION__))
;
3011 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3012 for (unsigned I = 0; I != Depth; ++I)
3013 OS << "`-";
3014
3015 switch (getKind()) {
3016 case EK_Variable: OS << "Variable"; break;
3017 case EK_Parameter: OS << "Parameter"; break;
3018 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3019 break;
3020 case EK_Result: OS << "Result"; break;
3021 case EK_Exception: OS << "Exception"; break;
3022 case EK_Member: OS << "Member"; break;
3023 case EK_Binding: OS << "Binding"; break;
3024 case EK_New: OS << "New"; break;
3025 case EK_Temporary: OS << "Temporary"; break;
3026 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3027 case EK_RelatedResult: OS << "RelatedResult"; break;
3028 case EK_Base: OS << "Base"; break;
3029 case EK_Delegating: OS << "Delegating"; break;
3030 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3031 case EK_VectorElement: OS << "VectorElement " << Index; break;
3032 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3033 case EK_BlockElement: OS << "Block"; break;
3034 case EK_LambdaToBlockConversionBlockElement:
3035 OS << "Block (lambda)";
3036 break;
3037 case EK_LambdaCapture:
3038 OS << "LambdaCapture ";
3039 OS << DeclarationName(Capture.VarID);
3040 break;
3041 }
3042
3043 if (auto *D = getDecl()) {
3044 OS << " ";
3045 D->printQualifiedName(OS);
3046 }
3047
3048 OS << " '" << getType().getAsString() << "'\n";
3049
3050 return Depth + 1;
3051}
3052
3053LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3054 dumpImpl(llvm::errs());
3055}
3056
3057//===----------------------------------------------------------------------===//
3058// Initialization sequence
3059//===----------------------------------------------------------------------===//
3060
3061void InitializationSequence::Step::Destroy() {
3062 switch (Kind) {
3063 case SK_ResolveAddressOfOverloadedFunction:
3064 case SK_CastDerivedToBaseRValue:
3065 case SK_CastDerivedToBaseXValue:
3066 case SK_CastDerivedToBaseLValue:
3067 case SK_BindReference:
3068 case SK_BindReferenceToTemporary:
3069 case SK_FinalCopy:
3070 case SK_ExtraneousCopyToTemporary:
3071 case SK_UserConversion:
3072 case SK_QualificationConversionRValue:
3073 case SK_QualificationConversionXValue:
3074 case SK_QualificationConversionLValue:
3075 case SK_AtomicConversion:
3076 case SK_LValueToRValue:
3077 case SK_ListInitialization:
3078 case SK_UnwrapInitList:
3079 case SK_RewrapInitList:
3080 case SK_ConstructorInitialization:
3081 case SK_ConstructorInitializationFromList:
3082 case SK_ZeroInitialization:
3083 case SK_CAssignment:
3084 case SK_StringInit:
3085 case SK_ObjCObjectConversion:
3086 case SK_ArrayLoopIndex:
3087 case SK_ArrayLoopInit:
3088 case SK_ArrayInit:
3089 case SK_GNUArrayInit:
3090 case SK_ParenthesizedArrayInit:
3091 case SK_PassByIndirectCopyRestore:
3092 case SK_PassByIndirectRestore:
3093 case SK_ProduceObjCObject:
3094 case SK_StdInitializerList:
3095 case SK_StdInitializerListConstructorCall:
3096 case SK_OCLSamplerInit:
3097 case SK_OCLZeroEvent:
3098 case SK_OCLZeroQueue:
3099 break;
3100
3101 case SK_ConversionSequence:
3102 case SK_ConversionSequenceNoNarrowing:
3103 delete ICS;
3104 }
3105}
3106
3107bool InitializationSequence::isDirectReferenceBinding() const {
3108 // There can be some lvalue adjustments after the SK_BindReference step.
3109 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3110 if (I->Kind == SK_BindReference)
3111 return true;
3112 if (I->Kind == SK_BindReferenceToTemporary)
3113 return false;
3114 }
3115 return false;
3116}
3117
3118bool InitializationSequence::isAmbiguous() const {
3119 if (!Failed())
3120 return false;
3121
3122 switch (getFailureKind()) {
3123 case FK_TooManyInitsForReference:
3124 case FK_ParenthesizedListInitForReference:
3125 case FK_ArrayNeedsInitList:
3126 case FK_ArrayNeedsInitListOrStringLiteral:
3127 case FK_ArrayNeedsInitListOrWideStringLiteral:
3128 case FK_NarrowStringIntoWideCharArray:
3129 case FK_WideStringIntoCharArray:
3130 case FK_IncompatWideStringIntoWideChar:
3131 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3132 case FK_NonConstLValueReferenceBindingToTemporary:
3133 case FK_NonConstLValueReferenceBindingToBitfield:
3134 case FK_NonConstLValueReferenceBindingToVectorElement:
3135 case FK_NonConstLValueReferenceBindingToUnrelated:
3136 case FK_RValueReferenceBindingToLValue:
3137 case FK_ReferenceInitDropsQualifiers:
3138 case FK_ReferenceInitFailed:
3139 case FK_ConversionFailed:
3140 case FK_ConversionFromPropertyFailed:
3141 case FK_TooManyInitsForScalar:
3142 case FK_ParenthesizedListInitForScalar:
3143 case FK_ReferenceBindingToInitList:
3144 case FK_InitListBadDestinationType:
3145 case FK_DefaultInitOfConst:
3146 case FK_Incomplete:
3147 case FK_ArrayTypeMismatch:
3148 case FK_NonConstantArrayInit:
3149 case FK_ListInitializationFailed:
3150 case FK_VariableLengthArrayHasInitializer:
3151 case FK_PlaceholderType:
3152 case FK_ExplicitConstructor:
3153 case FK_AddressOfUnaddressableFunction:
3154 return false;
3155
3156 case FK_ReferenceInitOverloadFailed:
3157 case FK_UserConversionOverloadFailed:
3158 case FK_ConstructorOverloadFailed:
3159 case FK_ListConstructorOverloadFailed:
3160 return FailedOverloadResult == OR_Ambiguous;
3161 }
3162
3163 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3163)
;
3164}
3165
3166bool InitializationSequence::isConstructorInitialization() const {
3167 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3168}
3169
3170void
3171InitializationSequence
3172::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3173 DeclAccessPair Found,
3174 bool HadMultipleCandidates) {
3175 Step S;
3176 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3177 S.Type = Function->getType();
3178 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3179 S.Function.Function = Function;
3180 S.Function.FoundDecl = Found;
3181 Steps.push_back(S);
3182}
3183
3184void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3185 ExprValueKind VK) {
3186 Step S;
3187 switch (VK) {
3188 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3189 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3190 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3191 }
3192 S.Type = BaseType;
3193 Steps.push_back(S);
3194}
3195
3196void InitializationSequence::AddReferenceBindingStep(QualType T,
3197 bool BindingTemporary) {
3198 Step S;
3199 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3200 S.Type = T;
3201 Steps.push_back(S);
3202}
3203
3204void InitializationSequence::AddFinalCopy(QualType T) {
3205 Step S;
3206 S.Kind = SK_FinalCopy;
3207 S.Type = T;
3208 Steps.push_back(S);
3209}
3210
3211void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3212 Step S;
3213 S.Kind = SK_ExtraneousCopyToTemporary;
3214 S.Type = T;
3215 Steps.push_back(S);
3216}
3217
3218void
3219InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3220 DeclAccessPair FoundDecl,
3221 QualType T,
3222 bool HadMultipleCandidates) {
3223 Step S;
3224 S.Kind = SK_UserConversion;
3225 S.Type = T;
3226 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3227 S.Function.Function = Function;
3228 S.Function.FoundDecl = FoundDecl;
3229 Steps.push_back(S);
3230}
3231
3232void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3233 ExprValueKind VK) {
3234 Step S;
3235 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3236 switch (VK) {
3237 case VK_RValue:
3238 S.Kind = SK_QualificationConversionRValue;
3239 break;
3240 case VK_XValue:
3241 S.Kind = SK_QualificationConversionXValue;
3242 break;
3243 case VK_LValue:
3244 S.Kind = SK_QualificationConversionLValue;
3245 break;
3246 }
3247 S.Type = Ty;
3248 Steps.push_back(S);
3249}
3250
3251void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3252 Step S;
3253 S.Kind = SK_AtomicConversion;
3254 S.Type = Ty;
3255 Steps.push_back(S);
3256}
3257
3258void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3259 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")((!Ty.hasQualifiers() && "rvalues may not have qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3259, __PRETTY_FUNCTION__))
;
3260
3261 Step S;
3262 S.Kind = SK_LValueToRValue;
3263 S.Type = Ty;
3264 Steps.push_back(S);
3265}
3266
3267void InitializationSequence::AddConversionSequenceStep(
3268 const ImplicitConversionSequence &ICS, QualType T,
3269 bool TopLevelOfInitList) {
3270 Step S;
3271 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3272 : SK_ConversionSequence;
3273 S.Type = T;
3274 S.ICS = new ImplicitConversionSequence(ICS);
3275 Steps.push_back(S);
3276}
3277
3278void InitializationSequence::AddListInitializationStep(QualType T) {
3279 Step S;
3280 S.Kind = SK_ListInitialization;
3281 S.Type = T;
3282 Steps.push_back(S);
3283}
3284
3285void InitializationSequence::AddConstructorInitializationStep(
3286 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3287 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3288 Step S;
3289 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3290 : SK_ConstructorInitializationFromList
3291 : SK_ConstructorInitialization;
3292 S.Type = T;
3293 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3294 S.Function.Function = Constructor;
3295 S.Function.FoundDecl = FoundDecl;
3296 Steps.push_back(S);
3297}
3298
3299void InitializationSequence::AddZeroInitializationStep(QualType T) {
3300 Step S;
3301 S.Kind = SK_ZeroInitialization;
3302 S.Type = T;
3303 Steps.push_back(S);
3304}
3305
3306void InitializationSequence::AddCAssignmentStep(QualType T) {
3307 Step S;
3308 S.Kind = SK_CAssignment;
3309 S.Type = T;
3310 Steps.push_back(S);
3311}
3312
3313void InitializationSequence::AddStringInitStep(QualType T) {
3314 Step S;
3315 S.Kind = SK_StringInit;
3316 S.Type = T;
3317 Steps.push_back(S);
3318}
3319
3320void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3321 Step S;
3322 S.Kind = SK_ObjCObjectConversion;
3323 S.Type = T;
3324 Steps.push_back(S);
3325}
3326
3327void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3328 Step S;
3329 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3330 S.Type = T;
3331 Steps.push_back(S);
3332}
3333
3334void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3335 Step S;
3336 S.Kind = SK_ArrayLoopIndex;
3337 S.Type = EltT;
3338 Steps.insert(Steps.begin(), S);
3339
3340 S.Kind = SK_ArrayLoopInit;
3341 S.Type = T;
3342 Steps.push_back(S);
3343}
3344
3345void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3346 Step S;
3347 S.Kind = SK_ParenthesizedArrayInit;
3348 S.Type = T;
3349 Steps.push_back(S);
3350}
3351
3352void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3353 bool shouldCopy) {
3354 Step s;
3355 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3356 : SK_PassByIndirectRestore);
3357 s.Type = type;
3358 Steps.push_back(s);
3359}
3360
3361void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3362 Step S;
3363 S.Kind = SK_ProduceObjCObject;
3364 S.Type = T;
3365 Steps.push_back(S);
3366}
3367
3368void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3369 Step S;
3370 S.Kind = SK_StdInitializerList;
3371 S.Type = T;
3372 Steps.push_back(S);
3373}
3374
3375void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3376 Step S;
3377 S.Kind = SK_OCLSamplerInit;
3378 S.Type = T;
3379 Steps.push_back(S);
3380}
3381
3382void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3383 Step S;
3384 S.Kind = SK_OCLZeroEvent;
3385 S.Type = T;
3386 Steps.push_back(S);
3387}
3388
3389void InitializationSequence::AddOCLZeroQueueStep(QualType T) {
3390 Step S;
3391 S.Kind = SK_OCLZeroQueue;
3392 S.Type = T;
3393 Steps.push_back(S);
3394}
3395
3396void InitializationSequence::RewrapReferenceInitList(QualType T,
3397 InitListExpr *Syntactic) {
3398 assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3399, __PRETTY_FUNCTION__))
3399 "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3399, __PRETTY_FUNCTION__))
;
3400 Step S;
3401 S.Kind = SK_UnwrapInitList;
3402 S.Type = Syntactic->getInit(0)->getType();
3403 Steps.insert(Steps.begin(), S);
3404
3405 S.Kind = SK_RewrapInitList;
3406 S.Type = T;
3407 S.WrappingSyntacticList = Syntactic;
3408 Steps.push_back(S);
3409}
3410
3411void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3412 OverloadingResult Result) {
3413 setSequenceKind(FailedSequence);
3414 this->Failure = Failure;
3415 this->FailedOverloadResult = Result;
3416}
3417
3418//===----------------------------------------------------------------------===//
3419// Attempt initialization
3420//===----------------------------------------------------------------------===//
3421
3422/// Tries to add a zero initializer. Returns true if that worked.
3423static bool
3424maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3425 const InitializedEntity &Entity) {
3426 if (Entity.getKind() != InitializedEntity::EK_Variable)
3427 return false;
3428
3429 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3430 if (VD->getInit() || VD->getLocEnd().isMacroID())
3431 return false;
3432
3433 QualType VariableTy = VD->getType().getCanonicalType();
3434 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3435 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3436 if (!Init.empty()) {
3437 Sequence.AddZeroInitializationStep(Entity.getType());
3438 Sequence.SetZeroInitializationFixit(Init, Loc);
3439 return true;
3440 }
3441 return false;
3442}
3443
3444static void MaybeProduceObjCObject(Sema &S,
3445 InitializationSequence &Sequence,
3446 const InitializedEntity &Entity) {
3447 if (!S.getLangOpts().ObjCAutoRefCount) return;
3448
3449 /// When initializing a parameter, produce the value if it's marked
3450 /// __attribute__((ns_consumed)).
3451 if (Entity.isParameterKind()) {
3452 if (!Entity.isParameterConsumed())
3453 return;
3454
3455 assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3456, __PRETTY_FUNCTION__))
3456 "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3456, __PRETTY_FUNCTION__))
;
3457 Sequence.AddProduceObjCObjectStep(Entity.getType());
3458
3459 /// When initializing a return value, if the return type is a
3460 /// retainable type, then returns need to immediately retain the
3461 /// object. If an autorelease is required, it will be done at the
3462 /// last instant.
3463 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3464 if (!Entity.getType()->isObjCRetainableType())
3465 return;
3466
3467 Sequence.AddProduceObjCObjectStep(Entity.getType());
3468 }
3469}
3470
3471static void TryListInitialization(Sema &S,
3472 const InitializedEntity &Entity,
3473 const InitializationKind &Kind,
3474 InitListExpr *InitList,
3475 InitializationSequence &Sequence,
3476 bool TreatUnavailableAsInvalid);
3477
3478/// \brief When initializing from init list via constructor, handle
3479/// initialization of an object of type std::initializer_list<T>.
3480///
3481/// \return true if we have handled initialization of an object of type
3482/// std::initializer_list<T>, false otherwise.
3483static bool TryInitializerListConstruction(Sema &S,
3484 InitListExpr *List,
3485 QualType DestType,
3486 InitializationSequence &Sequence,
3487 bool TreatUnavailableAsInvalid) {
3488 QualType E;
3489 if (!S.isStdInitializerList(DestType, &E))
3490 return false;
3491
3492 if (!S.isCompleteType(List->getExprLoc(), E)) {
3493 Sequence.setIncompleteTypeFailure(E);
3494 return true;
3495 }
3496
3497 // Try initializing a temporary array from the init list.
3498 QualType ArrayType = S.Context.getConstantArrayType(
3499 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3500 List->getNumInits()),
3501 clang::ArrayType::Normal, 0);
3502 InitializedEntity HiddenArray =
3503 InitializedEntity::InitializeTemporary(ArrayType);
3504 InitializationKind Kind =
3505 InitializationKind::CreateDirectList(List->getExprLoc());
3506 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3507 TreatUnavailableAsInvalid);
3508 if (Sequence)
3509 Sequence.AddStdInitializerListConstructionStep(DestType);
3510 return true;
3511}
3512
3513/// Determine if the constructor has the signature of a copy or move
3514/// constructor for the type T of the class in which it was found. That is,
3515/// determine if its first parameter is of type T or reference to (possibly
3516/// cv-qualified) T.
3517static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3518 const ConstructorInfo &Info) {
3519 if (Info.Constructor->getNumParams() == 0)
3520 return false;
3521
3522 QualType ParmT =
3523 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3524 QualType ClassT =
3525 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3526
3527 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3528}
3529
3530static OverloadingResult
3531ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3532 MultiExprArg Args,
3533 OverloadCandidateSet &CandidateSet,
3534 DeclContext::lookup_result Ctors,
3535 OverloadCandidateSet::iterator &Best,
3536 bool CopyInitializing, bool AllowExplicit,
3537 bool OnlyListConstructors, bool IsListInit,
3538 bool SecondStepOfCopyInit = false) {
3539 CandidateSet.clear();
3540
3541 for (NamedDecl *D : Ctors) {
3542 auto Info = getConstructorInfo(D);
3543 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3544 continue;
3545
3546 if (!AllowExplicit && Info.Constructor->isExplicit())
3547 continue;
3548
3549 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3550 continue;
3551
3552 // C++11 [over.best.ics]p4:
3553 // ... and the constructor or user-defined conversion function is a
3554 // candidate by
3555 // - 13.3.1.3, when the argument is the temporary in the second step
3556 // of a class copy-initialization, or
3557 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3558 // - the second phase of 13.3.1.7 when the initializer list has exactly
3559 // one element that is itself an initializer list, and the target is
3560 // the first parameter of a constructor of class X, and the conversion
3561 // is to X or reference to (possibly cv-qualified X),
3562 // user-defined conversion sequences are not considered.
3563 bool SuppressUserConversions =
3564 SecondStepOfCopyInit ||
3565 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3566 hasCopyOrMoveCtorParam(S.Context, Info));
3567
3568 if (Info.ConstructorTmpl)
3569 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3570 /*ExplicitArgs*/ nullptr, Args,
3571 CandidateSet, SuppressUserConversions);
3572 else {
3573 // C++ [over.match.copy]p1:
3574 // - When initializing a temporary to be bound to the first parameter
3575 // of a constructor [for type T] that takes a reference to possibly
3576 // cv-qualified T as its first argument, called with a single
3577 // argument in the context of direct-initialization, explicit
3578 // conversion functions are also considered.
3579 // FIXME: What if a constructor template instantiates to such a signature?
3580 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3581 Args.size() == 1 &&
3582 hasCopyOrMoveCtorParam(S.Context, Info);
3583 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3584 CandidateSet, SuppressUserConversions,
3585 /*PartialOverloading=*/false,
3586 /*AllowExplicit=*/AllowExplicitConv);
3587 }
3588 }
3589
3590 // Perform overload resolution and return the result.
3591 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3592}
3593
3594/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3595/// enumerates the constructors of the initialized entity and performs overload
3596/// resolution to select the best.
3597/// \param DestType The destination class type.
3598/// \param DestArrayType The destination type, which is either DestType or
3599/// a (possibly multidimensional) array of DestType.
3600/// \param IsListInit Is this list-initialization?
3601/// \param IsInitListCopy Is this non-list-initialization resulting from a
3602/// list-initialization from {x} where x is the same
3603/// type as the entity?
3604static void TryConstructorInitialization(Sema &S,
3605 const InitializedEntity &Entity,
3606 const InitializationKind &Kind,
3607 MultiExprArg Args, QualType DestType,
3608 QualType DestArrayType,
3609 InitializationSequence &Sequence,
3610 bool IsListInit = false,
3611 bool IsInitListCopy = false) {
3612 assert(((!IsListInit && !IsInitListCopy) ||((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3615, __PRETTY_FUNCTION__))
3613 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3615, __PRETTY_FUNCTION__))
3614 "IsListInit/IsInitListCopy must come with a single initializer list "((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3615, __PRETTY_FUNCTION__))
3615 "argument.")((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3615, __PRETTY_FUNCTION__))
;
3616 InitListExpr *ILE =
3617 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3618 MultiExprArg UnwrappedArgs =
3619 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3620
3621 // The type we're constructing needs to be complete.
3622 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3623 Sequence.setIncompleteTypeFailure(DestType);
3624 return;
3625 }
3626
3627 // C++1z [dcl.init]p17:
3628 // - If the initializer expression is a prvalue and the cv-unqualified
3629 // version of the source type is the same class as the class of the
3630 // destination, the initializer expression is used to initialize the
3631 // destination object.
3632 // Per DR (no number yet), this does not apply when initializing a base
3633 // class or delegating to another constructor from a mem-initializer.
3634 // ObjC++: Lambda captured by the block in the lambda to block conversion
3635 // should avoid copy elision.
3636 if (S.getLangOpts().CPlusPlus1z &&
3637 Entity.getKind() != InitializedEntity::EK_Base &&
3638 Entity.getKind() != InitializedEntity::EK_Delegating &&
3639 Entity.getKind() !=
3640 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3641 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3642 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3643 // Convert qualifications if necessary.
3644 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3645 if (ILE)
3646 Sequence.RewrapReferenceInitList(DestType, ILE);
3647 return;
3648 }
3649
3650 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3651 assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type"
) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 3651, __PRETTY_FUNCTION__))
;
3652 CXXRecordDecl *DestRecordDecl
3653 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3654
3655 // Build the candidate set directly in the initialization sequence
3656 // structure, so that it will persist if we fail.
3657 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3658
3659 // Determine whether we are allowed to call explicit constructors or
3660 // explicit conversion operators.
3661 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3662 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3663
3664 // - Otherwise, if T is a class type, constructors are considered. The
3665 // applicable constructors are enumerated, and the best one is chosen
3666 // through overload resolution.
3667 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3668
3669 OverloadingResult Result = OR_No_Viable_Function;
3670 OverloadCandidateSet::iterator Best;
3671 bool AsInitializerList = false;
3672
3673 // C++11 [over.match.list]p1, per DR1467:
3674 // When objects of non-aggregate type T are list-initialized, such that
3675 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3676 // according to the rules in this section, overload resolution selects
3677 // the constructor in two phases:
3678 //
3679 // - Initially, the candidate functions are the initializer-list
3680 // constructors of the class T and the argument list consists of the
3681 // initializer list as a single argument.
3682 if (IsListInit) {
3683 AsInitializerList = true;
3684
3685 // If the initializer list has no elements and T has a default constructor,
3686 // the first phase is omitted.
3687 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3688 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3689 CandidateSet, Ctors, Best,
3690 CopyInitialization, AllowExplicit,
3691 /*OnlyListConstructor=*/true,
3692 IsListInit);
3693 }
3694
3695 // C++11 [over.match.list]p1:
3696 // - If no viable initializer-list constructor is found, overload resolution
3697 // is performed again, where the candidate functions are all the
3698 // constructors of the class T and the argument list consists of the
3699 // elements of the initializer list.
3700 if (Result == OR_No_Viable_Function) {
3701 AsInitializerList = false;
3702 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3703 CandidateSet, Ctors, Best,
3704 CopyInitialization, AllowExplicit,
3705 /*OnlyListConstructors=*/false,
3706 IsListInit);
3707 }
3708 if (Result) {
3709 Sequence.SetOverloadFailure(IsListInit ?
3710 InitializationSequence::FK_ListConstructorOverloadFailed :
3711 InitializationSequence::FK_ConstructorOverloadFailed,
3712 Result);
3713 return;
3714 }
3715
3716 // C++11 [dcl.init]p6:
3717 // If a program calls for the default initialization of an object
3718 // of a const-qualified type T, T shall be a class type with a
3719 // user-provided default constructor.
3720 // C++ core issue 253 proposal:
3721 // If the implicit default constructor initializes all subobjects, no
3722 // initializer should be required.
3723 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3724 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3725 if (Kind.getKind() == InitializationKind::IK_Default &&
3726 Entity.getType().isConstQualified()) {
3727 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3728 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3729 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3730 return;
3731 }
3732 }
3733
3734 // C++11 [over.match.list]p1:
3735 // In copy-list-initialization, if an explicit constructor is chosen, the
3736 // initializer is ill-formed.
3737 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3738 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3739 return;
3740 }
3741
3742 // Add the constructor initialization step. Any cv-qualification conversion is
3743 // subsumed by the initialization.
3744 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3745 Sequence.AddConstructorInitializationStep(
3746 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3747 IsListInit | IsInitListCopy, AsInitializerList);
3748}
3749
3750static bool
3751ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3752 Expr *Initializer,
3753 QualType &SourceType,
3754 QualType &UnqualifiedSourceType,
3755 QualType UnqualifiedTargetType,
3756 InitializationSequence &Sequence) {
3757 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3758 S.Context.OverloadTy) {
3759 DeclAccessPair Found;
3760 bool HadMultipleCandidates = false;
3761 if (FunctionDecl *Fn
3762 = S.ResolveAddressOfOverloadedFunction(Initializer,
3763 UnqualifiedTargetType,
3764 false, Found,
3765 &HadMultipleCandidates)) {
3766 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3767 HadMultipleCandidates);
3768 SourceType = Fn->getType();
3769 UnqualifiedSourceType = SourceType.getUnqualifiedType();
3770 } else if (!UnqualifiedTargetType->isRecordType()) {
3771 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3772 return true;
3773 }
3774 }
3775 return false;
3776}
3777
3778static void TryReferenceInitializationCore(Sema &S,
3779 const InitializedEntity &Entity,
3780 const InitializationKind &Kind,
3781 Expr *Initializer,
3782 QualType cv1T1, QualType T1,
3783 Qualifiers T1Quals,
3784 QualType cv2T2, QualType T2,
3785 Qualifiers T2Quals,
3786 InitializationSequence &Sequence);
3787
3788static void TryValueInitialization(Sema &S,
3789 const InitializedEntity &Entity,
3790 const InitializationKind &Kind,
3791 InitializationSequence &Sequence,
3792 InitListExpr *InitList = nullptr);
3793
3794/// \brief Attempt list initialization of a reference.
3795static void TryReferenceListInitialization(Sema &S,
3796 const InitializedEntity &Entity,
3797 const InitializationKind &Kind,
3798 InitListExpr *InitList,
3799 InitializationSequence &Sequence,
3800 bool TreatUnavailableAsInvalid) {
3801 // First, catch C++03 where this isn't possible.
3802 if (!S.getLangOpts().CPlusPlus11) {
3803 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3804 return;
3805 }
3806 // Can't reference initialize a compound literal.
3807 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3808 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3809 return;
3810 }
3811
3812 QualType DestType = Entity.getType();
3813 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3814 Qualifiers T1Quals;
3815 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3816
3817 // Reference initialization via an initializer list works thus:
3818 // If the initializer list consists of a single element that is
3819 // reference-related to the referenced type, bind directly to that element
3820 // (possibly creating temporaries).
3821 // Otherwise, initialize a temporary with the initializer list and
3822 // bind to that.
3823 if (InitList->getNumInits() == 1) {
3824 Expr *Initializer = InitList->getInit(0);
3825 QualType cv2T2 = Initializer->getType();
3826 Qualifiers T2Quals;
3827 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3828
3829 // If this fails, creating a temporary wouldn't work either.
3830 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3831 T1, Sequence))
3832 return;
3833
3834 SourceLocation DeclLoc = Initializer->getLocStart();
3835 bool dummy1, dummy2, dummy3;
3836 Sema::ReferenceCompareResult RefRelationship
3837 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3838 dummy2, dummy3);
3839 if (RefRelationship >= Sema::Ref_Related) {
3840 // Try to bind the reference here.
3841 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3842 T1Quals, cv2T2, T2, T2Quals, Sequence);
3843 if (Sequence)
3844 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3845 return;
3846 }
3847
3848 // Update the initializer if we've resolved an overloaded function.
3849 if (Sequence.step_begin() != Sequence.step_end())
3850 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3851 }
3852
3853 // Not reference-related. Create a temporary and bind to that.
3854 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3855
3856 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
3857 TreatUnavailableAsInvalid);
3858 if (Sequence) {
3859 if (DestType->isRValueReferenceType() ||
3860 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3861 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3862 else
3863 Sequence.SetFailed(
3864 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3865 }
3866}
3867
3868/// \brief Attempt list initialization (C++0x [dcl.init.list])
3869static void TryListInitialization(Sema &S,
3870 const InitializedEntity &Entity,
3871 const InitializationKind &Kind,
3872 InitListExpr *InitList,
3873 InitializationSequence &Sequence,
3874 bool TreatUnavailableAsInvalid) {
3875 QualType DestType = Entity.getType();
3876
3877 // C++ doesn't allow scalar initialization with more than one argument.
3878 // But C99 complex numbers are scalars and it makes sense there.
3879 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3880 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3881 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3882 return;
3883 }
3884 if (DestType->isReferenceType()) {
3885 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
3886 TreatUnavailableAsInvalid);
3887 return;
3888 }
3889
3890 if (DestType->isRecordType() &&
3891 !S.isCompleteType(InitList->getLocStart(), DestType)) {
3892 Sequence.setIncompleteTypeFailure(DestType);
3893 return;
3894 }
3895
3896 // C++11 [dcl.init.list]p3, per DR1467:
3897 // - If T is a class type and the initializer list has a single element of
3898 // type cv U, where U is T or a class derived from T, the object is
3899 // initialized from that element (by copy-initialization for
3900 // copy-list-initialization, or by direct-initialization for
3901 // direct-list-initialization).
3902 // - Otherwise, if T is a character array and the initializer list has a
3903 // single element that is an appropriately-typed string literal
3904 // (8.5.2 [dcl.init.string]), initialization is performed as described
3905 // in that section.
3906 // - Otherwise, if T is an aggregate, [...] (continue below).
3907 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3908 if (DestType->isRecordType()) {
3909 QualType InitType = InitList->getInit(0)->getType();
3910 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3911 S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
3912 Expr *InitListAsExpr = InitList;
3913 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3914 DestType, Sequence,
3915 /*InitListSyntax*/false,
3916 /*IsInitListCopy*/true);
3917 return;
3918 }
3919 }
3920 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3921 Expr *SubInit[1] = {InitList->getInit(0)};
3922 if (!isa<VariableArrayType>(DestAT) &&
3923 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3924 InitializationKind SubKind =
3925 Kind.getKind() == InitializationKind::IK_DirectList
3926 ? InitializationKind::CreateDirect(Kind.getLocation(),
3927 InitList->getLBraceLoc(),
3928 InitList->getRBraceLoc())
3929 : Kind;
3930 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3931 /*TopLevelOfInitList*/ true,
3932 TreatUnavailableAsInvalid);
3933
3934 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3935 // the element is not an appropriately-typed string literal, in which
3936 // case we should proceed as in C++11 (below).
3937 if (Sequence) {
3938 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3939 return;
3940 }
3941 }
3942 }
3943 }
3944
3945 // C++11 [dcl.init.list]p3:
3946 // - If T is an aggregate, aggregate initialization is performed.
3947 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
3948 (S.getLangOpts().CPlusPlus11 &&
3949 S.isStdInitializerList(DestType, nullptr))) {
3950 if (S.getLangOpts().CPlusPlus11) {
3951 // - Otherwise, if the initializer list has no elements and T is a
3952 // class type with a default constructor, the object is
3953 // value-initialized.
3954 if (InitList->getNumInits() == 0) {
3955 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3956 if (RD->hasDefaultConstructor()) {
3957 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3958 return;
3959 }
3960 }
3961
3962 // - Otherwise, if T is a specialization of std::initializer_list<E>,
3963 // an initializer_list object constructed [...]
3964 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
3965 TreatUnavailableAsInvalid))
3966 return;
3967
3968 // - Otherwise, if T is a class type, constructors are considered.
3969 Expr *InitListAsExpr = InitList;
3970 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3971 DestType, Sequence, /*InitListSyntax*/true);
3972 } else
3973 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3974 return;
3975 }
3976
3977 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3978 InitList->getNumInits() == 1) {
3979 Expr *E = InitList->getInit(0);
3980
3981 // - Otherwise, if T is an enumeration with a fixed underlying type,
3982 // the initializer-list has a single element v, and the initialization
3983 // is direct-list-initialization, the object is initialized with the
3984 // value T(v); if a narrowing conversion is required to convert v to
3985 // the underlying type of T, the program is ill-formed.
3986 auto *ET = DestType->getAs<EnumType>();
3987 if (S.getLangOpts().CPlusPlus1z &&
3988 Kind.getKind() == InitializationKind::IK_DirectList &&
3989 ET && ET->getDecl()->isFixed() &&
3990 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
3991 (E->getType()->isIntegralOrEnumerationType() ||
3992 E->getType()->isFloatingType())) {
3993 // There are two ways that T(v) can work when T is an enumeration type.
3994 // If there is either an implicit conversion sequence from v to T or
3995 // a conversion function that can convert from v to T, then we use that.
3996 // Otherwise, if v is of integral, enumeration, or floating-point type,
3997 // it is converted to the enumeration type via its underlying type.
3998 // There is no overlap possible between these two cases (except when the
3999 // source value is already of the destination type), and the first
4000 // case is handled by the general case for single-element lists below.
4001 ImplicitConversionSequence ICS;
4002 ICS.setStandard();
4003 ICS.Standard.setAsIdentityConversion();
4004 if (!E->isRValue())
4005 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4006 // If E is of a floating-point type, then the conversion is ill-formed
4007 // due to narrowing, but go through the motions in order to produce the
4008 // right diagnostic.
4009 ICS.Standard.Second = E->getType()->isFloatingType()
4010 ? ICK_Floating_Integral
4011 : ICK_Integral_Conversion;
4012 ICS.Standard.setFromType(E->getType());
4013 ICS.Standard.setToType(0, E->getType());
4014 ICS.Standard.setToType(1, DestType);
4015 ICS.Standard.setToType(2, DestType);
4016 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4017 /*TopLevelOfInitList*/true);
4018 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4019 return;
4020 }
4021
4022 // - Otherwise, if the initializer list has a single element of type E
4023 // [...references are handled above...], the object or reference is
4024 // initialized from that element (by copy-initialization for
4025 // copy-list-initialization, or by direct-initialization for
4026 // direct-list-initialization); if a narrowing conversion is required
4027 // to convert the element to T, the program is ill-formed.
4028 //
4029 // Per core-24034, this is direct-initialization if we were performing
4030 // direct-list-initialization and copy-initialization otherwise.
4031 // We can't use InitListChecker for this, because it always performs
4032 // copy-initialization. This only matters if we might use an 'explicit'
4033 // conversion operator, so we only need to handle the cases where the source
4034 // is of record type.
4035 if (InitList->getInit(0)->getType()->isRecordType()) {
4036 InitializationKind SubKind =
4037 Kind.getKind() == InitializationKind::IK_DirectList
4038 ? InitializationKind::CreateDirect(Kind.getLocation(),
4039 InitList->getLBraceLoc(),
4040 InitList->getRBraceLoc())
4041 : Kind;
4042 Expr *SubInit[1] = { InitList->getInit(0) };
4043 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4044 /*TopLevelOfInitList*/true,
4045 TreatUnavailableAsInvalid);
4046 if (Sequence)
4047 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4048 return;
4049 }
4050 }
4051
4052 InitListChecker CheckInitList(S, Entity, InitList,
4053 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4054 if (CheckInitList.HadError()) {
4055 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4056 return;
4057 }
4058
4059 // Add the list initialization step with the built init list.
4060 Sequence.AddListInitializationStep(DestType);
4061}
4062
4063/// \brief Try a reference initialization that involves calling a conversion
4064/// function.
4065static OverloadingResult TryRefInitWithConversionFunction(
4066 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4067 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4068 InitializationSequence &Sequence) {
4069 QualType DestType = Entity.getType();
4070 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4071 QualType T1 = cv1T1.getUnqualifiedType();
4072 QualType cv2T2 = Initializer->getType();
4073 QualType T2 = cv2T2.getUnqualifiedType();
4074
4075 bool DerivedToBase;
4076 bool ObjCConversion;
4077 bool ObjCLifetimeConversion;
4078 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4082, __PRETTY_FUNCTION__))
4079 T1, T2, DerivedToBase,((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4082, __PRETTY_FUNCTION__))
4080 ObjCConversion,((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4082, __PRETTY_FUNCTION__))
4081 ObjCLifetimeConversion) &&((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4082, __PRETTY_FUNCTION__))
4082 "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4082, __PRETTY_FUNCTION__))
;
4083 (void)DerivedToBase;
4084 (void)ObjCConversion;
4085 (void)ObjCLifetimeConversion;
4086
4087 // Build the candidate set directly in the initialization sequence
4088 // structure, so that it will persist if we fail.
4089 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4090 CandidateSet.clear();
4091
4092 // Determine whether we are allowed to call explicit constructors or
4093 // explicit conversion operators.
4094 bool AllowExplicit = Kind.AllowExplicit();
4095 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4096
4097 const RecordType *T1RecordType = nullptr;
4098 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4099 S.isCompleteType(Kind.getLocation(), T1)) {
4100 // The type we're converting to is a class type. Enumerate its constructors
4101 // to see if there is a suitable conversion.
4102 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4103
4104 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4105 auto Info = getConstructorInfo(D);
4106 if (!Info.Constructor)
4107 continue;
4108
4109 if (!Info.Constructor->isInvalidDecl() &&
4110 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4111 if (Info.ConstructorTmpl)
4112 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4113 /*ExplicitArgs*/ nullptr,
4114 Initializer, CandidateSet,
4115 /*SuppressUserConversions=*/true);
4116 else
4117 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4118 Initializer, CandidateSet,
4119 /*SuppressUserConversions=*/true);
4120 }
4121 }
4122 }
4123 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4124 return OR_No_Viable_Function;
4125
4126 const RecordType *T2RecordType = nullptr;
4127 if ((T2RecordType = T2->getAs<RecordType>()) &&
4128 S.isCompleteType(Kind.getLocation(), T2)) {
4129 // The type we're converting from is a class type, enumerate its conversion
4130 // functions.
4131 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4132
4133 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4134 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4135 NamedDecl *D = *I;
4136 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4137 if (isa<UsingShadowDecl>(D))
4138 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4139
4140 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4141 CXXConversionDecl *Conv;
4142 if (ConvTemplate)
4143 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4144 else
4145 Conv = cast<CXXConversionDecl>(D);
4146
4147 // If the conversion function doesn't return a reference type,
4148 // it can't be considered for this conversion unless we're allowed to
4149 // consider rvalues.
4150 // FIXME: Do we need to make sure that we only consider conversion
4151 // candidates with reference-compatible results? That might be needed to
4152 // break recursion.
4153 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4154 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4155 if (ConvTemplate)
4156 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4157 ActingDC, Initializer,
4158 DestType, CandidateSet,
4159 /*AllowObjCConversionOnExplicit=*/
4160 false);
4161 else
4162 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4163 Initializer, DestType, CandidateSet,
4164 /*AllowObjCConversionOnExplicit=*/false);
4165 }
4166 }
4167 }
4168 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4169 return OR_No_Viable_Function;
4170
4171 SourceLocation DeclLoc = Initializer->getLocStart();
4172
4173 // Perform overload resolution. If it fails, return the failed result.
4174 OverloadCandidateSet::iterator Best;
4175 if (OverloadingResult Result
4176 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
4177 return Result;
4178
4179 FunctionDecl *Function = Best->Function;
4180 // This is the overload that will be used for this initialization step if we
4181 // use this initialization. Mark it as referenced.
4182 Function->setReferenced();
4183
4184 // Compute the returned type and value kind of the conversion.
4185 QualType cv3T3;
4186 if (isa<CXXConversionDecl>(Function))
4187 cv3T3 = Function->getReturnType();
4188 else
4189 cv3T3 = T1;
4190
4191 ExprValueKind VK = VK_RValue;
4192 if (cv3T3->isLValueReferenceType())
4193 VK = VK_LValue;
4194 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4195 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4196 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4197
4198 // Add the user-defined conversion step.
4199 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4200 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4201 HadMultipleCandidates);
4202
4203 // Determine whether we'll need to perform derived-to-base adjustments or
4204 // other conversions.
4205 bool NewDerivedToBase = false;
4206 bool NewObjCConversion = false;
4207 bool NewObjCLifetimeConversion = false;
4208 Sema::ReferenceCompareResult NewRefRelationship
4209 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4210 NewDerivedToBase, NewObjCConversion,
4211 NewObjCLifetimeConversion);
4212
4213 // Add the final conversion sequence, if necessary.
4214 if (NewRefRelationship == Sema::Ref_Incompatible) {
4215 assert(!isa<CXXConstructorDecl>(Function) &&((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4216, __PRETTY_FUNCTION__))
4216 "should not have conversion after constructor")((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4216, __PRETTY_FUNCTION__))
;
4217
4218 ImplicitConversionSequence ICS;
4219 ICS.setStandard();
4220 ICS.Standard = Best->FinalConversion;
4221 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4222
4223 // Every implicit conversion results in a prvalue, except for a glvalue
4224 // derived-to-base conversion, which we handle below.
4225 cv3T3 = ICS.Standard.getToType(2);
4226 VK = VK_RValue;
4227 }
4228
4229 // If the converted initializer is a prvalue, its type T4 is adjusted to
4230 // type "cv1 T4" and the temporary materialization conversion is applied.
4231 //
4232 // We adjust the cv-qualifications to match the reference regardless of
4233 // whether we have a prvalue so that the AST records the change. In this
4234 // case, T4 is "cv3 T3".
4235 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4236 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4237 Sequence.AddQualificationConversionStep(cv1T4, VK);
4238 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4239 VK = IsLValueRef ? VK_LValue : VK_XValue;
4240
4241 if (NewDerivedToBase)
4242 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4243 else if (NewObjCConversion)
4244 Sequence.AddObjCObjectConversionStep(cv1T1);
4245
4246 return OR_Success;
4247}
4248
4249static void CheckCXX98CompatAccessibleCopy(Sema &S,
4250 const InitializedEntity &Entity,
4251 Expr *CurInitExpr);
4252
4253/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
4254static void TryReferenceInitialization(Sema &S,
4255 const InitializedEntity &Entity,
4256 const InitializationKind &Kind,
4257 Expr *Initializer,
4258 InitializationSequence &Sequence) {
4259 QualType DestType = Entity.getType();
4260 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4261 Qualifiers T1Quals;
4262 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4263 QualType cv2T2 = Initializer->getType();
4264 Qualifiers T2Quals;
4265 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4266
4267 // If the initializer is the address of an overloaded function, try
4268 // to resolve the overloaded function. If all goes well, T2 is the
4269 // type of the resulting function.
4270 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4271 T1, Sequence))
4272 return;
4273
4274 // Delegate everything else to a subfunction.
4275 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4276 T1Quals, cv2T2, T2, T2Quals, Sequence);
4277}
4278
4279/// Determine whether an expression is a non-referenceable glvalue (one to
4280/// which a reference can never bind). Attemting to bind a reference to
4281/// such a glvalue will always create a temporary.
4282static bool isNonReferenceableGLValue(Expr *E) {
4283 return E->refersToBitField() || E->refersToVectorElement();
4284}
4285
4286/// \brief Reference initialization without resolving overloaded functions.
4287static void TryReferenceInitializationCore(Sema &S,
4288 const InitializedEntity &Entity,
4289 const InitializationKind &Kind,
4290 Expr *Initializer,
4291 QualType cv1T1, QualType T1,
4292 Qualifiers T1Quals,
4293 QualType cv2T2, QualType T2,
4294 Qualifiers T2Quals,
4295 InitializationSequence &Sequence) {
4296 QualType DestType = Entity.getType();
4297 SourceLocation DeclLoc = Initializer->getLocStart();
4298 // Compute some basic properties of the types and the initializer.
4299 bool isLValueRef = DestType->isLValueReferenceType();
4300 bool isRValueRef = !isLValueRef;
4301 bool DerivedToBase = false;
4302 bool ObjCConversion = false;
4303 bool ObjCLifetimeConversion = false;
4304 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4305 Sema::ReferenceCompareResult RefRelationship
4306 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4307 ObjCConversion, ObjCLifetimeConversion);
4308
4309 // C++0x [dcl.init.ref]p5:
4310 // A reference to type "cv1 T1" is initialized by an expression of type
4311 // "cv2 T2" as follows:
4312 //
4313 // - If the reference is an lvalue reference and the initializer
4314 // expression
4315 // Note the analogous bullet points for rvalue refs to functions. Because
4316 // there are no function rvalues in C++, rvalue refs to functions are treated
4317 // like lvalue refs.
4318 OverloadingResult ConvOvlResult = OR_Success;
4319 bool T1Function = T1->isFunctionType();
4320 if (isLValueRef || T1Function) {
4321 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4322 (RefRelationship == Sema::Ref_Compatible ||
4323 (Kind.isCStyleOrFunctionalCast() &&
4324 RefRelationship == Sema::Ref_Related))) {
4325 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4326 // reference-compatible with "cv2 T2," or
4327 if (T1Quals != T2Quals)
4328 // Convert to cv1 T2. This should only add qualifiers unless this is a
4329 // c-style cast. The removal of qualifiers in that case notionally
4330 // happens after the reference binding, but that doesn't matter.
4331 Sequence.AddQualificationConversionStep(
4332 S.Context.getQualifiedType(T2, T1Quals),
4333 Initializer->getValueKind());
4334 if (DerivedToBase)
4335 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4336 else if (ObjCConversion)
4337 Sequence.AddObjCObjectConversionStep(cv1T1);
4338
4339 // We only create a temporary here when binding a reference to a
4340 // bit-field or vector element. Those cases are't supposed to be
4341 // handled by this bullet, but the outcome is the same either way.
4342 Sequence.AddReferenceBindingStep(cv1T1, false);
4343 return;
4344 }
4345
4346 // - has a class type (i.e., T2 is a class type), where T1 is not
4347 // reference-related to T2, and can be implicitly converted to an
4348 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4349 // with "cv3 T3" (this conversion is selected by enumerating the
4350 // applicable conversion functions (13.3.1.6) and choosing the best
4351 // one through overload resolution (13.3)),
4352 // If we have an rvalue ref to function type here, the rhs must be
4353 // an rvalue. DR1287 removed the "implicitly" here.
4354 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4355 (isLValueRef || InitCategory.isRValue())) {
4356 ConvOvlResult = TryRefInitWithConversionFunction(
4357 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4358 /*IsLValueRef*/ isLValueRef, Sequence);
4359 if (ConvOvlResult == OR_Success)
4360 return;
4361 if (ConvOvlResult != OR_No_Viable_Function)
4362 Sequence.SetOverloadFailure(
4363 InitializationSequence::FK_ReferenceInitOverloadFailed,
4364 ConvOvlResult);
4365 }
4366 }
4367
4368 // - Otherwise, the reference shall be an lvalue reference to a
4369 // non-volatile const type (i.e., cv1 shall be const), or the reference
4370 // shall be an rvalue reference.
4371 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4372 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4373 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4374 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4375 Sequence.SetOverloadFailure(
4376 InitializationSequence::FK_ReferenceInitOverloadFailed,
4377 ConvOvlResult);
4378 else if (!InitCategory.isLValue())
4379 Sequence.SetFailed(
4380 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4381 else {
4382 InitializationSequence::FailureKind FK;
4383 switch (RefRelationship) {
4384 case Sema::Ref_Compatible:
4385 if (Initializer->refersToBitField())
4386 FK = InitializationSequence::
4387 FK_NonConstLValueReferenceBindingToBitfield;
4388 else if (Initializer->refersToVectorElement())
4389 FK = InitializationSequence::
4390 FK_NonConstLValueReferenceBindingToVectorElement;
4391 else
4392 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4392)
;
4393 break;
4394 case Sema::Ref_Related:
4395 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4396 break;
4397 case Sema::Ref_Incompatible:
4398 FK = InitializationSequence::
4399 FK_NonConstLValueReferenceBindingToUnrelated;
4400 break;
4401 }
4402 Sequence.SetFailed(FK);
4403 }
4404 return;
4405 }
4406
4407 // - If the initializer expression
4408 // - is an
4409 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4410 // [1z] rvalue (but not a bit-field) or
4411 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4412 //
4413 // Note: functions are handled above and below rather than here...
4414 if (!T1Function &&
4415 (RefRelationship == Sema::Ref_Compatible ||
4416 (Kind.isCStyleOrFunctionalCast() &&
4417 RefRelationship == Sema::Ref_Related)) &&
4418 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4419 (InitCategory.isPRValue() &&
4420 (S.getLangOpts().CPlusPlus1z || T2->isRecordType() ||
4421 T2->isArrayType())))) {
4422 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4423 if (InitCategory.isPRValue() && T2->isRecordType()) {
4424 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4425 // compiler the freedom to perform a copy here or bind to the
4426 // object, while C++0x requires that we bind directly to the
4427 // object. Hence, we always bind to the object without making an
4428 // extra copy. However, in C++03 requires that we check for the
4429 // presence of a suitable copy constructor:
4430 //
4431 // The constructor that would be used to make the copy shall
4432 // be callable whether or not the copy is actually done.
4433 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4434 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4435 else if (S.getLangOpts().CPlusPlus11)
4436 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4437 }
4438
4439 // C++1z [dcl.init.ref]/5.2.1.2:
4440 // If the converted initializer is a prvalue, its type T4 is adjusted
4441 // to type "cv1 T4" and the temporary materialization conversion is
4442 // applied.
4443 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4444 if (T1Quals != T2Quals)
4445 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4446 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4447 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4448
4449 // In any case, the reference is bound to the resulting glvalue (or to
4450 // an appropriate base class subobject).
4451 if (DerivedToBase)
4452 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4453 else if (ObjCConversion)
4454 Sequence.AddObjCObjectConversionStep(cv1T1);
4455 return;
4456 }
4457
4458 // - has a class type (i.e., T2 is a class type), where T1 is not
4459 // reference-related to T2, and can be implicitly converted to an
4460 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4461 // where "cv1 T1" is reference-compatible with "cv3 T3",
4462 //
4463 // DR1287 removes the "implicitly" here.
4464 if (T2->isRecordType()) {
4465 if (RefRelationship == Sema::Ref_Incompatible) {
4466 ConvOvlResult = TryRefInitWithConversionFunction(
4467 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4468 /*IsLValueRef*/ isLValueRef, Sequence);
4469 if (ConvOvlResult)
4470 Sequence.SetOverloadFailure(
4471 InitializationSequence::FK_ReferenceInitOverloadFailed,
4472 ConvOvlResult);
4473
4474 return;
4475 }
4476
4477 if (RefRelationship == Sema::Ref_Compatible &&
4478 isRValueRef && InitCategory.isLValue()) {
4479 Sequence.SetFailed(
4480 InitializationSequence::FK_RValueReferenceBindingToLValue);
4481 return;
4482 }
4483
4484 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4485 return;
4486 }
4487
4488 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4489 // from the initializer expression using the rules for a non-reference
4490 // copy-initialization (8.5). The reference is then bound to the
4491 // temporary. [...]
4492
4493 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4494
4495 // FIXME: Why do we use an implicit conversion here rather than trying
4496 // copy-initialization?
4497 ImplicitConversionSequence ICS
4498 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4499 /*SuppressUserConversions=*/false,
4500 /*AllowExplicit=*/false,
4501 /*FIXME:InOverloadResolution=*/false,
4502 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4503 /*AllowObjCWritebackConversion=*/false);
4504
4505 if (ICS.isBad()) {
4506 // FIXME: Use the conversion function set stored in ICS to turn
4507 // this into an overloading ambiguity diagnostic. However, we need
4508 // to keep that set as an OverloadCandidateSet rather than as some
4509 // other kind of set.
4510 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4511 Sequence.SetOverloadFailure(
4512 InitializationSequence::FK_ReferenceInitOverloadFailed,
4513 ConvOvlResult);
4514 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4515 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4516 else
4517 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4518 return;
4519 } else {
4520 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4521 }
4522
4523 // [...] If T1 is reference-related to T2, cv1 must be the
4524 // same cv-qualification as, or greater cv-qualification
4525 // than, cv2; otherwise, the program is ill-formed.
4526 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4527 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4528 if (RefRelationship == Sema::Ref_Related &&
4529 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4530 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4531 return;
4532 }
4533
4534 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4535 // reference, the initializer expression shall not be an lvalue.
4536 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4537 InitCategory.isLValue()) {
4538 Sequence.SetFailed(
4539 InitializationSequence::FK_RValueReferenceBindingToLValue);
4540 return;
4541 }
4542
4543 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4544}
4545
4546/// \brief Attempt character array initialization from a string literal
4547/// (C++ [dcl.init.string], C99 6.7.8).
4548static void TryStringLiteralInitialization(Sema &S,
4549 const InitializedEntity &Entity,
4550 const InitializationKind &Kind,
4551 Expr *Initializer,
4552 InitializationSequence &Sequence) {
4553 Sequence.AddStringInitStep(Entity.getType());
4554}
4555
4556/// \brief Attempt value initialization (C++ [dcl.init]p7).
4557static void TryValueInitialization(Sema &S,
4558 const InitializedEntity &Entity,
4559 const InitializationKind &Kind,
4560 InitializationSequence &Sequence,
4561 InitListExpr *InitList) {
4562 assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4563, __PRETTY_FUNCTION__))
4563 "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4563, __PRETTY_FUNCTION__))
;
4564
4565 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4566 //
4567 // To value-initialize an object of type T means:
4568 QualType T = Entity.getType();
4569
4570 // -- if T is an array type, then each element is value-initialized;
4571 T = S.Context.getBaseElementType(T);
4572
4573 if (const RecordType *RT = T->getAs<RecordType>()) {
4574 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4575 bool NeedZeroInitialization = true;
4576 // C++98:
4577 // -- if T is a class type (clause 9) with a user-declared constructor
4578 // (12.1), then the default constructor for T is called (and the
4579 // initialization is ill-formed if T has no accessible default
4580 // constructor);
4581 // C++11:
4582 // -- if T is a class type (clause 9) with either no default constructor
4583 // (12.1 [class.ctor]) or a default constructor that is user-provided
4584 // or deleted, then the object is default-initialized;
4585 //
4586 // Note that the C++11 rule is the same as the C++98 rule if there are no
4587 // defaulted or deleted constructors, so we just use it unconditionally.
4588 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4589 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4590 NeedZeroInitialization = false;
4591
4592 // -- if T is a (possibly cv-qualified) non-union class type without a
4593 // user-provided or deleted default constructor, then the object is
4594 // zero-initialized and, if T has a non-trivial default constructor,
4595 // default-initialized;
4596 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4597 // constructor' part was removed by DR1507.
4598 if (NeedZeroInitialization)
4599 Sequence.AddZeroInitializationStep(Entity.getType());
4600
4601 // C++03:
4602 // -- if T is a non-union class type without a user-declared constructor,
4603 // then every non-static data member and base class component of T is
4604 // value-initialized;
4605 // [...] A program that calls for [...] value-initialization of an
4606 // entity of reference type is ill-formed.
4607 //
4608 // C++11 doesn't need this handling, because value-initialization does not
4609 // occur recursively there, and the implicit default constructor is
4610 // defined as deleted in the problematic cases.
4611 if (!S.getLangOpts().CPlusPlus11 &&
4612 ClassDecl->hasUninitializedReferenceMember()) {
4613 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4614 return;
4615 }
4616
4617 // If this is list-value-initialization, pass the empty init list on when
4618 // building the constructor call. This affects the semantics of a few
4619 // things (such as whether an explicit default constructor can be called).
4620 Expr *InitListAsExpr = InitList;
4621 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4622 bool InitListSyntax = InitList;
4623
4624 // FIXME: Instead of creating a CXXConstructExpr of array type here,
4625 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4626 return TryConstructorInitialization(
4627 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4628 }
4629 }
4630
4631 Sequence.AddZeroInitializationStep(Entity.getType());
4632}
4633
4634/// \brief Attempt default initialization (C++ [dcl.init]p6).
4635static void TryDefaultInitialization(Sema &S,
4636 const InitializedEntity &Entity,
4637 const InitializationKind &Kind,
4638 InitializationSequence &Sequence) {
4639 assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4639, __PRETTY_FUNCTION__))
;
4640
4641 // C++ [dcl.init]p6:
4642 // To default-initialize an object of type T means:
4643 // - if T is an array type, each element is default-initialized;
4644 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4645
4646 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4647 // constructor for T is called (and the initialization is ill-formed if
4648 // T has no accessible default constructor);
4649 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4650 TryConstructorInitialization(S, Entity, Kind, None, DestType,
4651 Entity.getType(), Sequence);
4652 return;
4653 }
4654
4655 // - otherwise, no initialization is performed.
4656
4657 // If a program calls for the default initialization of an object of
4658 // a const-qualified type T, T shall be a class type with a user-provided
4659 // default constructor.
4660 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4661 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4662 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4663 return;
4664 }
4665
4666 // If the destination type has a lifetime property, zero-initialize it.
4667 if (DestType.getQualifiers().hasObjCLifetime()) {
4668 Sequence.AddZeroInitializationStep(Entity.getType());
4669 return;
4670 }
4671}
4672
4673/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4674/// which enumerates all conversion functions and performs overload resolution
4675/// to select the best.
4676static void TryUserDefinedConversion(Sema &S,
4677 QualType DestType,
4678 const InitializationKind &Kind,
4679 Expr *Initializer,
4680 InitializationSequence &Sequence,
4681 bool TopLevelOfInitList) {
4682 assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4682, __PRETTY_FUNCTION__))
;
4683 QualType SourceType = Initializer->getType();
4684 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4685, __PRETTY_FUNCTION__))
4685 "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4685, __PRETTY_FUNCTION__))
;
4686
4687 // Build the candidate set directly in the initialization sequence
4688 // structure, so that it will persist if we fail.
4689 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4690 CandidateSet.clear();
4691
4692 // Determine whether we are allowed to call explicit constructors or
4693 // explicit conversion operators.
4694 bool AllowExplicit = Kind.AllowExplicit();
4695
4696 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4697 // The type we're converting to is a class type. Enumerate its constructors
4698 // to see if there is a suitable conversion.
4699 CXXRecordDecl *DestRecordDecl
4700 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4701
4702 // Try to complete the type we're converting to.
4703 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4704 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4705 auto Info = getConstructorInfo(D);
4706 if (!Info.Constructor)
4707 continue;
4708
4709 if (!Info.Constructor->isInvalidDecl() &&
4710 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4711 if (Info.ConstructorTmpl)
4712 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4713 /*ExplicitArgs*/ nullptr,
4714 Initializer, CandidateSet,
4715 /*SuppressUserConversions=*/true);
4716 else
4717 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4718 Initializer, CandidateSet,
4719 /*SuppressUserConversions=*/true);
4720 }
4721 }
4722 }
4723 }
4724
4725 SourceLocation DeclLoc = Initializer->getLocStart();
4726
4727 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4728 // The type we're converting from is a class type, enumerate its conversion
4729 // functions.
4730
4731 // We can only enumerate the conversion functions for a complete type; if
4732 // the type isn't complete, simply skip this step.
4733 if (S.isCompleteType(DeclLoc, SourceType)) {
4734 CXXRecordDecl *SourceRecordDecl
4735 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4736
4737 const auto &Conversions =
4738 SourceRecordDecl->getVisibleConversionFunctions();
4739 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4740 NamedDecl *D = *I;
4741 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4742 if (isa<UsingShadowDecl>(D))
4743 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4744
4745 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4746 CXXConversionDecl *Conv;
4747 if (ConvTemplate)
4748 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4749 else
4750 Conv = cast<CXXConversionDecl>(D);
4751
4752 if (AllowExplicit || !Conv->isExplicit()) {
4753 if (ConvTemplate)
4754 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4755 ActingDC, Initializer, DestType,
4756 CandidateSet, AllowExplicit);
4757 else
4758 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4759 Initializer, DestType, CandidateSet,
4760 AllowExplicit);
4761 }
4762 }
4763 }
4764 }
4765
4766 // Perform overload resolution. If it fails, return the failed result.
4767 OverloadCandidateSet::iterator Best;
4768 if (OverloadingResult Result
4769 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4770 Sequence.SetOverloadFailure(
4771 InitializationSequence::FK_UserConversionOverloadFailed,
4772 Result);
4773 return;
4774 }
4775
4776 FunctionDecl *Function = Best->Function;
4777 Function->setReferenced();
4778 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4779
4780 if (isa<CXXConstructorDecl>(Function)) {
4781 // Add the user-defined conversion step. Any cv-qualification conversion is
4782 // subsumed by the initialization. Per DR5, the created temporary is of the
4783 // cv-unqualified type of the destination.
4784 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4785 DestType.getUnqualifiedType(),
4786 HadMultipleCandidates);
4787
4788 // C++14 and before:
4789 // - if the function is a constructor, the call initializes a temporary
4790 // of the cv-unqualified version of the destination type. The [...]
4791 // temporary [...] is then used to direct-initialize, according to the
4792 // rules above, the object that is the destination of the
4793 // copy-initialization.
4794 // Note that this just performs a simple object copy from the temporary.
4795 //
4796 // C++1z:
4797 // - if the function is a constructor, the call is a prvalue of the
4798 // cv-unqualified version of the destination type whose return object
4799 // is initialized by the constructor. The call is used to
4800 // direct-initialize, according to the rules above, the object that
4801 // is the destination of the copy-initialization.
4802 // Therefore we need to do nothing further.
4803 //
4804 // FIXME: Mark this copy as extraneous.
4805 if (!S.getLangOpts().CPlusPlus1z)
4806 Sequence.AddFinalCopy(DestType);
4807 else if (DestType.hasQualifiers())
4808 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4809 return;
4810 }
4811
4812 // Add the user-defined conversion step that calls the conversion function.
4813 QualType ConvType = Function->getCallResultType();
4814 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4815 HadMultipleCandidates);
4816
4817 if (ConvType->getAs<RecordType>()) {
4818 // The call is used to direct-initialize [...] the object that is the
4819 // destination of the copy-initialization.
4820 //
4821 // In C++1z, this does not call a constructor if we enter /17.6.1:
4822 // - If the initializer expression is a prvalue and the cv-unqualified
4823 // version of the source type is the same as the class of the
4824 // destination [... do not make an extra copy]
4825 //
4826 // FIXME: Mark this copy as extraneous.
4827 if (!S.getLangOpts().CPlusPlus1z ||
4828 Function->getReturnType()->isReferenceType() ||
4829 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
4830 Sequence.AddFinalCopy(DestType);
4831 else if (!S.Context.hasSameType(ConvType, DestType))
4832 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4833 return;
4834 }
4835
4836 // If the conversion following the call to the conversion function
4837 // is interesting, add it as a separate step.
4838 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4839 Best->FinalConversion.Third) {
4840 ImplicitConversionSequence ICS;
4841 ICS.setStandard();
4842 ICS.Standard = Best->FinalConversion;
4843 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4844 }
4845}
4846
4847/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4848/// a function with a pointer return type contains a 'return false;' statement.
4849/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4850/// code using that header.
4851///
4852/// Work around this by treating 'return false;' as zero-initializing the result
4853/// if it's used in a pointer-returning function in a system header.
4854static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4855 const InitializedEntity &Entity,
4856 const Expr *Init) {
4857 return S.getLangOpts().CPlusPlus11 &&
4858 Entity.getKind() == InitializedEntity::EK_Result &&
4859 Entity.getType()->isPointerType() &&
4860 isa<CXXBoolLiteralExpr>(Init) &&
4861 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4862 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4863}
4864
4865/// The non-zero enum values here are indexes into diagnostic alternatives.
4866enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4867
4868/// Determines whether this expression is an acceptable ICR source.
4869static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4870 bool isAddressOf, bool &isWeakAccess) {
4871 // Skip parens.
4872 e = e->IgnoreParens();
4873
4874 // Skip address-of nodes.
4875 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4876 if (op->getOpcode() == UO_AddrOf)
4877 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4878 isWeakAccess);
4879
4880 // Skip certain casts.
4881 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4882 switch (ce->getCastKind()) {
4883 case CK_Dependent:
4884 case CK_BitCast:
4885 case CK_LValueBitCast:
4886 case CK_NoOp:
4887 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4888
4889 case CK_ArrayToPointerDecay:
4890 return IIK_nonscalar;
4891
4892 case CK_NullToPointer:
4893 return IIK_okay;
4894
4895 default:
4896 break;
4897 }
4898
4899 // If we have a declaration reference, it had better be a local variable.
4900 } else if (isa<DeclRefExpr>(e)) {
4901 // set isWeakAccess to true, to mean that there will be an implicit
4902 // load which requires a cleanup.
4903 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4904 isWeakAccess = true;
4905
4906 if (!isAddressOf) return IIK_nonlocal;
4907
4908 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4909 if (!var) return IIK_nonlocal;
4910
4911 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4912
4913 // If we have a conditional operator, check both sides.
4914 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4915 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4916 isWeakAccess))
4917 return iik;
4918
4919 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4920
4921 // These are never scalar.
4922 } else if (isa<ArraySubscriptExpr>(e)) {
4923 return IIK_nonscalar;
4924
4925 // Otherwise, it needs to be a null pointer constant.
4926 } else {
4927 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4928 ? IIK_okay : IIK_nonlocal);
4929 }
4930
4931 return IIK_nonlocal;
4932}
4933
4934/// Check whether the given expression is a valid operand for an
4935/// indirect copy/restore.
4936static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4937 assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail
("src->isRValue()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 4937, __PRETTY_FUNCTION__))
;
4938 bool isWeakAccess = false;
4939 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4940 // If isWeakAccess to true, there will be an implicit
4941 // load which requires a cleanup.
4942 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4943 S.Cleanup.setExprNeedsCleanups(true);
4944
4945 if (iik == IIK_okay) return;
4946
4947 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4948 << ((unsigned) iik - 1) // shift index into diagnostic explanations
4949 << src->getSourceRange();
4950}
4951
4952/// \brief Determine whether we have compatible array types for the
4953/// purposes of GNU by-copy array initialization.
4954static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4955 const ArrayType *Source) {
4956 // If the source and destination array types are equivalent, we're
4957 // done.
4958 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4959 return true;
4960
4961 // Make sure that the element types are the same.
4962 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4963 return false;
4964
4965 // The only mismatch we allow is when the destination is an
4966 // incomplete array type and the source is a constant array type.
4967 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4968}
4969
4970static bool tryObjCWritebackConversion(Sema &S,
4971 InitializationSequence &Sequence,
4972 const InitializedEntity &Entity,
4973 Expr *Initializer) {
4974 bool ArrayDecay = false;
4975 QualType ArgType = Initializer->getType();
4976 QualType ArgPointee;
4977 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4978 ArrayDecay = true;
4979 ArgPointee = ArgArrayType->getElementType();
4980 ArgType = S.Context.getPointerType(ArgPointee);
4981 }
4982
4983 // Handle write-back conversion.
4984 QualType ConvertedArgType;
4985 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4986 ConvertedArgType))
4987 return false;
4988
4989 // We should copy unless we're passing to an argument explicitly
4990 // marked 'out'.
4991 bool ShouldCopy = true;
4992 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4993 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4994
4995 // Do we need an lvalue conversion?
4996 if (ArrayDecay || Initializer->isGLValue()) {
4997 ImplicitConversionSequence ICS;
4998 ICS.setStandard();
4999 ICS.Standard.setAsIdentityConversion();
5000
5001 QualType ResultType;
5002 if (ArrayDecay) {
5003 ICS.Standard.First = ICK_Array_To_Pointer;
5004 ResultType = S.Context.getPointerType(ArgPointee);
5005 } else {
5006 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5007 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5008 }
5009
5010 Sequence.AddConversionSequenceStep(ICS, ResultType);
5011 }
5012
5013 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5014 return true;
5015}
5016
5017static bool TryOCLSamplerInitialization(Sema &S,
5018 InitializationSequence &Sequence,
5019 QualType DestType,
5020 Expr *Initializer) {
5021 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5022 (!Initializer->isIntegerConstantExpr(S.Context) &&
5023 !Initializer->getType()->isSamplerT()))
5024 return false;
5025
5026 Sequence.AddOCLSamplerInitStep(DestType);
5027 return true;
5028}
5029
5030//
5031// OpenCL 1.2 spec, s6.12.10
5032//
5033// The event argument can also be used to associate the
5034// async_work_group_copy with a previous async copy allowing
5035// an event to be shared by multiple async copies; otherwise
5036// event should be zero.
5037//
5038static bool TryOCLZeroEventInitialization(Sema &S,
5039 InitializationSequence &Sequence,
5040 QualType DestType,
5041 Expr *Initializer) {
5042 if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
5043 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5044 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5045 return false;
5046
5047 Sequence.AddOCLZeroEventStep(DestType);
5048 return true;
5049}
5050
5051static bool TryOCLZeroQueueInitialization(Sema &S,
5052 InitializationSequence &Sequence,
5053 QualType DestType,
5054 Expr *Initializer) {
5055 if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 ||
5056 !DestType->isQueueT() ||
5057 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5058 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5059 return false;
5060
5061 Sequence.AddOCLZeroQueueStep(DestType);
5062 return true;
5063}
5064
5065InitializationSequence::InitializationSequence(Sema &S,
5066 const InitializedEntity &Entity,
5067 const InitializationKind &Kind,
5068 MultiExprArg Args,
5069 bool TopLevelOfInitList,
5070 bool TreatUnavailableAsInvalid)
5071 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5072 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5073 TreatUnavailableAsInvalid);
5074}
5075
5076/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5077/// address of that function, this returns true. Otherwise, it returns false.
5078static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5079 auto *DRE = dyn_cast<DeclRefExpr>(E);
5080 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5081 return false;
5082
5083 return !S.checkAddressOfFunctionIsAvailable(
5084 cast<FunctionDecl>(DRE->getDecl()));
5085}
5086
5087/// Determine whether we can perform an elementwise array copy for this kind
5088/// of entity.
5089static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5090 switch (Entity.getKind()) {
5091 case InitializedEntity::EK_LambdaCapture:
5092 // C++ [expr.prim.lambda]p24:
5093 // For array members, the array elements are direct-initialized in
5094 // increasing subscript order.
5095 return true;
5096
5097 case InitializedEntity::EK_Variable:
5098 // C++ [dcl.decomp]p1:
5099 // [...] each element is copy-initialized or direct-initialized from the
5100 // corresponding element of the assignment-expression [...]
5101 return isa<DecompositionDecl>(Entity.getDecl());
5102
5103 case InitializedEntity::EK_Member:
5104 // C++ [class.copy.ctor]p14:
5105 // - if the member is an array, each element is direct-initialized with
5106 // the corresponding subobject of x
5107 return Entity.isImplicitMemberInitializer();
5108
5109 case InitializedEntity::EK_ArrayElement:
5110 // All the above cases are intended to apply recursively, even though none
5111 // of them actually say that.
5112 if (auto *E = Entity.getParent())
5113 return canPerformArrayCopy(*E);
5114 break;
5115
5116 default:
5117 break;
5118 }
5119
5120 return false;
5121}
5122
5123void InitializationSequence::InitializeFrom(Sema &S,
5124 const InitializedEntity &Entity,
5125 const InitializationKind &Kind,
5126 MultiExprArg Args,
5127 bool TopLevelOfInitList,
5128 bool TreatUnavailableAsInvalid) {
5129 ASTContext &Context = S.Context;
5130
5131 // Eliminate non-overload placeholder types in the arguments. We
5132 // need to do this before checking whether types are dependent
5133 // because lowering a pseudo-object expression might well give us
5134 // something of dependent type.
5135 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1
Assuming 'I' is equal to 'E'
2
Loop condition is false. Execution continues on line 5152
5136 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5137 // FIXME: should we be doing this here?
5138 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5139 if (result.isInvalid()) {
5140 SetFailed(FK_PlaceholderType);
5141 return;
5142 }
5143 Args[I] = result.get();
5144 }
5145
5146 // C++0x [dcl.init]p16:
5147 // The semantics of initializers are as follows. The destination type is
5148 // the type of the object or reference being initialized and the source
5149 // type is the type of the initializer expression. The source type is not
5150 // defined when the initializer is a braced-init-list or when it is a
5151 // parenthesized list of expressions.
5152 QualType DestType = Entity.getType();
5153
5154 if (DestType->isDependentType() ||
4
Taking false branch
5155 Expr::hasAnyTypeDependentArguments(Args)) {
3
Assuming the condition is false
5156 SequenceKind = DependentSequence;
5157 return;
5158 }
5159
5160 // Almost everything is a normal sequence.
5161 setSequenceKind(NormalSequence);
5162
5163 QualType SourceType;
5164 Expr *Initializer = nullptr;
5
'Initializer' initialized to a null pointer value
5165 if (Args.size() == 1) {
6
Assuming the condition is false
7
Taking false branch
5166 Initializer = Args[0];
5167 if (S.getLangOpts().ObjC1) {
5168 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
5169 DestType, Initializer->getType(),
5170 Initializer) ||
5171 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5172 Args[0] = Initializer;
5173 }
5174 if (!isa<InitListExpr>(Initializer))
5175 SourceType = Initializer->getType();
5176 }
5177
5178 // - If the initializer is a (non-parenthesized) braced-init-list, the
5179 // object is list-initialized (8.5.4).
5180 if (Kind.getKind() != InitializationKind::IK_Direct) {
8
Assuming the condition is false
9
Taking false branch
5181 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5182 TryListInitialization(S, Entity, Kind, InitList, *this,
5183 TreatUnavailableAsInvalid);
5184 return;
5185 }
5186 }
5187
5188 // - If the destination type is a reference type, see 8.5.3.
5189 if (DestType->isReferenceType()) {
10
Taking false branch
5190 // C++0x [dcl.init.ref]p1:
5191 // A variable declared to be a T& or T&&, that is, "reference to type T"
5192 // (8.3.2), shall be initialized by an object, or function, of type T or
5193 // by an object that can be converted into a T.
5194 // (Therefore, multiple arguments are not permitted.)
5195 if (Args.size() != 1)
5196 SetFailed(FK_TooManyInitsForReference);
5197 // C++17 [dcl.init.ref]p5:
5198 // A reference [...] is initialized by an expression [...] as follows:
5199 // If the initializer is not an expression, presumably we should reject,
5200 // but the standard fails to actually say so.
5201 else if (isa<InitListExpr>(Args[0]))
5202 SetFailed(FK_ParenthesizedListInitForReference);
5203 else
5204 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5205 return;
5206 }
5207
5208 // - If the initializer is (), the object is value-initialized.
5209 if (Kind.getKind() == InitializationKind::IK_Value ||
12
Taking false branch
5210 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
11
Assuming the condition is false
5211 TryValueInitialization(S, Entity, Kind, *this);
5212 return;
5213 }
5214
5215 // Handle default initialization.
5216 if (Kind.getKind() == InitializationKind::IK_Default) {
13
Taking false branch
5217 TryDefaultInitialization(S, Entity, Kind, *this);
5218 return;
5219 }
5220
5221 // - If the destination type is an array of characters, an array of
5222 // char16_t, an array of char32_t, or an array of wchar_t, and the
5223 // initializer is a string literal, see 8.5.2.
5224 // - Otherwise, if the destination type is an array, the program is
5225 // ill-formed.
5226 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
14
Assuming 'DestAT' is null
15
Taking false branch
5227 if (Initializer && isa<VariableArrayType>(DestAT)) {
5228 SetFailed(FK_VariableLengthArrayHasInitializer);
5229 return;
5230 }
5231
5232 if (Initializer) {
5233 switch (IsStringInit(Initializer, DestAT, Context)) {
5234 case SIF_None:
5235 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5236 return;
5237 case SIF_NarrowStringIntoWideChar:
5238 SetFailed(FK_NarrowStringIntoWideCharArray);
5239 return;
5240 case SIF_WideStringIntoChar:
5241 SetFailed(FK_WideStringIntoCharArray);
5242 return;
5243 case SIF_IncompatWideStringIntoWideChar:
5244 SetFailed(FK_IncompatWideStringIntoWideChar);
5245 return;
5246 case SIF_Other:
5247 break;
5248 }
5249 }
5250
5251 // Some kinds of initialization permit an array to be initialized from
5252 // another array of the same type, and perform elementwise initialization.
5253 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5254 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5255 Entity.getType()) &&
5256 canPerformArrayCopy(Entity)) {
5257 // If source is a prvalue, use it directly.
5258 if (Initializer->getValueKind() == VK_RValue) {
5259 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5260 return;
5261 }
5262
5263 // Emit element-at-a-time copy loop.
5264 InitializedEntity Element =
5265 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5266 QualType InitEltT =
5267 Context.getAsArrayType(Initializer->getType())->getElementType();
5268 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5269 Initializer->getValueKind(),
5270 Initializer->getObjectKind());
5271 Expr *OVEAsExpr = &OVE;
5272 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5273 TreatUnavailableAsInvalid);
5274 if (!Failed())
5275 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5276 return;
5277 }
5278
5279 // Note: as an GNU C extension, we allow initialization of an
5280 // array from a compound literal that creates an array of the same
5281 // type, so long as the initializer has no side effects.
5282 if (!S.getLangOpts().CPlusPlus && Initializer &&
5283 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5284 Initializer->getType()->isArrayType()) {
5285 const ArrayType *SourceAT
5286 = Context.getAsArrayType(Initializer->getType());
5287 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5288 SetFailed(FK_ArrayTypeMismatch);
5289 else if (Initializer->HasSideEffects(S.Context))
5290 SetFailed(FK_NonConstantArrayInit);
5291 else {
5292 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5293 }
5294 }
5295 // Note: as a GNU C++ extension, we allow list-initialization of a
5296 // class member of array type from a parenthesized initializer list.
5297 else if (S.getLangOpts().CPlusPlus &&
5298 Entity.getKind() == InitializedEntity::EK_Member &&
5299 Initializer && isa<InitListExpr>(Initializer)) {
5300 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5301 *this, TreatUnavailableAsInvalid);
5302 AddParenthesizedArrayInitStep(DestType);
5303 } else if (DestAT->getElementType()->isCharType())
5304 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5305 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5306 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5307 else
5308 SetFailed(FK_ArrayNeedsInitList);
5309
5310 return;
5311 }
5312
5313 // Determine whether we should consider writeback conversions for
5314 // Objective-C ARC.
5315 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
16
Assuming the condition is false
5316 Entity.isParameterKind();
5317
5318 // We're at the end of the line for C: it's either a write-back conversion
5319 // or it's a C assignment. There's no need to check anything else.
5320 if (!S.getLangOpts().CPlusPlus) {
17
Assuming the condition is false
18
Taking false branch
5321 // If allowed, check whether this is an Objective-C writeback conversion.
5322 if (allowObjCWritebackConversion &&
5323 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5324 return;
5325 }
5326
5327 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5328 return;
5329
5330 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
5331 return;
5332
5333 if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer))
5334 return;
5335
5336 // Handle initialization in C
5337 AddCAssignmentStep(DestType);
5338 MaybeProduceObjCObject(S, *this, Entity);
5339 return;
5340 }
5341
5342 assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("S.getLangOpts().CPlusPlus", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 5342, __PRETTY_FUNCTION__))
;
5343
5344 // - If the destination type is a (possibly cv-qualified) class type:
5345 if (DestType->isRecordType()) {
19
Taking false branch
5346 // - If the initialization is direct-initialization, or if it is
5347 // copy-initialization where the cv-unqualified version of the
5348 // source type is the same class as, or a derived class of, the
5349 // class of the destination, constructors are considered. [...]
5350 if (Kind.getKind() == InitializationKind::IK_Direct ||
5351 (Kind.getKind() == InitializationKind::IK_Copy &&
5352 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5353 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5354 TryConstructorInitialization(S, Entity, Kind, Args,
5355 DestType, DestType, *this);
5356 // - Otherwise (i.e., for the remaining copy-initialization cases),
5357 // user-defined conversion sequences that can convert from the source
5358 // type to the destination type or (when a conversion function is
5359 // used) to a derived class thereof are enumerated as described in
5360 // 13.3.1.4, and the best one is chosen through overload resolution
5361 // (13.3).
5362 else
5363 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5364 TopLevelOfInitList);
5365 return;
5366 }
5367
5368 assert(Args.size() >= 1 && "Zero-argument case handled above")((Args.size() >= 1 && "Zero-argument case handled above"
) ? static_cast<void> (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 5368, __PRETTY_FUNCTION__))
;
5369
5370 // The remaining cases all need a source type.
5371 if (Args.size() > 1) {
20
Assuming the condition is false
21
Taking false branch
5372 SetFailed(FK_TooManyInitsForScalar);
5373 return;
5374 } else if (isa<InitListExpr>(Args[0])) {
22
Assuming the condition is false
23
Taking false branch
5375 SetFailed(FK_ParenthesizedListInitForScalar);
5376 return;
5377 }
5378
5379 // - Otherwise, if the source type is a (possibly cv-qualified) class
5380 // type, conversion functions are considered.
5381 if (!SourceType.isNull() && SourceType->isRecordType()) {
5382 // For a conversion to _Atomic(T) from either T or a class type derived
5383 // from T, initialize the T object then convert to _Atomic type.
5384 bool NeedAtomicConversion = false;
5385 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5386 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5387 S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5388 Atomic->getValueType())) {
5389 DestType = Atomic->getValueType();
5390 NeedAtomicConversion = true;
5391 }
5392 }
5393
5394 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5395 TopLevelOfInitList);
5396 MaybeProduceObjCObject(S, *this, Entity);
5397 if (!Failed() && NeedAtomicConversion)
5398 AddAtomicConversionStep(Entity.getType());
5399 return;
5400 }
5401
5402 // - Otherwise, the initial value of the object being initialized is the
5403 // (possibly converted) value of the initializer expression. Standard
5404 // conversions (Clause 4) will be used, if necessary, to convert the
5405 // initializer expression to the cv-unqualified version of the
5406 // destination type; no user-defined conversions are considered.
5407
5408 ImplicitConversionSequence ICS
5409 = S.TryImplicitConversion(Initializer, DestType,
5410 /*SuppressUserConversions*/true,
5411 /*AllowExplicitConversions*/ false,
5412 /*InOverloadResolution*/ false,
5413 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5414 allowObjCWritebackConversion);
5415
5416 if (ICS.isStandard() &&
5417 ICS.Standard.Second == ICK_Writeback_Conversion) {
5418 // Objective-C ARC writeback conversion.
5419
5420 // We should copy unless we're passing to an argument explicitly
5421 // marked 'out'.
5422 bool ShouldCopy = true;
5423 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5424 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5425
5426 // If there was an lvalue adjustment, add it as a separate conversion.
5427 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5428 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5429 ImplicitConversionSequence LvalueICS;
5430 LvalueICS.setStandard();
5431 LvalueICS.Standard.setAsIdentityConversion();
5432 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5433 LvalueICS.Standard.First = ICS.Standard.First;
5434 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5435 }
5436
5437 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5438 } else if (ICS.isBad()) {
24
Taking true branch
5439 DeclAccessPair dap;
5440 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
25
Taking false branch
5441 AddZeroInitializationStep(Entity.getType());
5442 } else if (Initializer->getType() == Context.OverloadTy &&
26
Called C++ object pointer is null
5443 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5444 false, dap))
5445 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5446 else if (Initializer->getType()->isFunctionType() &&
5447 isExprAnUnaddressableFunction(S, Initializer))
5448 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5449 else
5450 SetFailed(InitializationSequence::FK_ConversionFailed);
5451 } else {
5452 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5453
5454 MaybeProduceObjCObject(S, *this, Entity);
5455 }
5456}
5457
5458InitializationSequence::~InitializationSequence() {
5459 for (auto &S : Steps)
5460 S.Destroy();
5461}
5462
5463//===----------------------------------------------------------------------===//
5464// Perform initialization
5465//===----------------------------------------------------------------------===//
5466static Sema::AssignmentAction
5467getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5468 switch(Entity.getKind()) {
5469 case InitializedEntity::EK_Variable:
5470 case InitializedEntity::EK_New:
5471 case InitializedEntity::EK_Exception:
5472 case InitializedEntity::EK_Base:
5473 case InitializedEntity::EK_Delegating:
5474 return Sema::AA_Initializing;
5475
5476 case InitializedEntity::EK_Parameter:
5477 if (Entity.getDecl() &&
5478 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5479 return Sema::AA_Sending;
5480
5481 return Sema::AA_Passing;
5482
5483 case InitializedEntity::EK_Parameter_CF_Audited:
5484 if (Entity.getDecl() &&
5485 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5486 return Sema::AA_Sending;
5487
5488 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5489
5490 case InitializedEntity::EK_Result:
5491 return Sema::AA_Returning;
5492
5493 case InitializedEntity::EK_Temporary:
5494 case InitializedEntity::EK_RelatedResult:
5495 // FIXME: Can we tell apart casting vs. converting?
5496 return Sema::AA_Casting;
5497
5498 case InitializedEntity::EK_Member:
5499 case InitializedEntity::EK_Binding:
5500 case InitializedEntity::EK_ArrayElement:
5501 case InitializedEntity::EK_VectorElement:
5502 case InitializedEntity::EK_ComplexElement:
5503 case InitializedEntity::EK_BlockElement:
5504 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5505 case InitializedEntity::EK_LambdaCapture:
5506 case InitializedEntity::EK_CompoundLiteralInit:
5507 return Sema::AA_Initializing;
5508 }
5509
5510 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 5510)
;
5511}
5512
5513/// \brief Whether we should bind a created object as a temporary when
5514/// initializing the given entity.
5515static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5516 switch (Entity.getKind()) {
5517 case InitializedEntity::EK_ArrayElement:
5518 case InitializedEntity::EK_Member:
5519 case InitializedEntity::EK_Result:
5520 case InitializedEntity::EK_New:
5521 case InitializedEntity::EK_Variable:
5522 case InitializedEntity::EK_Base:
5523 case InitializedEntity::EK_Delegating:
5524 case InitializedEntity::EK_VectorElement:
5525 case InitializedEntity::EK_ComplexElement:
5526 case InitializedEntity::EK_Exception:
5527 case InitializedEntity::EK_BlockElement:
5528 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5529 case InitializedEntity::EK_LambdaCapture:
5530 case InitializedEntity::EK_CompoundLiteralInit:
5531 return false;
5532
5533 case InitializedEntity::EK_Parameter:
5534 case InitializedEntity::EK_Parameter_CF_Audited:
5535 case InitializedEntity::EK_Temporary:
5536 case InitializedEntity::EK_RelatedResult:
5537 case InitializedEntity::EK_Binding:
5538 return true;
5539 }
5540
5541 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 5541)
;
5542}
5543
5544/// \brief Whether the given entity, when initialized with an object
5545/// created for that initialization, requires destruction.
5546static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5547 switch (Entity.getKind()) {
5548 case InitializedEntity::EK_Result:
5549 case InitializedEntity::EK_New:
5550 case InitializedEntity::EK_Base:
5551 case InitializedEntity::EK_Delegating:
5552 case InitializedEntity::EK_VectorElement:
5553 case InitializedEntity::EK_ComplexElement:
5554 case InitializedEntity::EK_BlockElement:
5555 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5556 case InitializedEntity::EK_LambdaCapture:
5557 return false;
5558
5559 case InitializedEntity::EK_Member:
5560 case InitializedEntity::EK_Binding:
5561 case InitializedEntity::EK_Variable:
5562 case InitializedEntity::EK_Parameter:
5563 case InitializedEntity::EK_Parameter_CF_Audited:
5564 case InitializedEntity::EK_Temporary:
5565 case InitializedEntity::EK_ArrayElement:
5566 case InitializedEntity::EK_Exception:
5567 case InitializedEntity::EK_CompoundLiteralInit:
5568 case InitializedEntity::EK_RelatedResult:
5569 return true;
5570 }
5571
5572 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 5572)
;
5573}
5574
5575/// \brief Get the location at which initialization diagnostics should appear.
5576static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5577 Expr *Initializer) {
5578 switch (Entity.getKind()) {
5579 case InitializedEntity::EK_Result:
5580 return Entity.getReturnLoc();
5581
5582 case InitializedEntity::EK_Exception:
5583 return Entity.getThrowLoc();
5584
5585 case InitializedEntity::EK_Variable:
5586 case InitializedEntity::EK_Binding:
5587 return Entity.getDecl()->getLocation();
5588
5589 case InitializedEntity::EK_LambdaCapture:
5590 return Entity.getCaptureLoc();
5591
5592 case InitializedEntity::EK_ArrayElement:
5593 case InitializedEntity::EK_Member:
5594 case InitializedEntity::EK_Parameter:
5595 case InitializedEntity::EK_Parameter_CF_Audited:
5596 case InitializedEntity::EK_Temporary:
5597 case InitializedEntity::EK_New:
5598 case InitializedEntity::EK_Base:
5599 case InitializedEntity::EK_Delegating:
5600 case InitializedEntity::EK_VectorElement:
5601 case InitializedEntity::EK_ComplexElement:
5602 case InitializedEntity::EK_BlockElement:
5603 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5604 case InitializedEntity::EK_CompoundLiteralInit:
5605 case InitializedEntity::EK_RelatedResult:
5606 return Initializer->getLocStart();
5607 }
5608 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 5608)
;
5609}
5610
5611/// \brief Make a (potentially elidable) temporary copy of the object
5612/// provided by the given initializer by calling the appropriate copy
5613/// constructor.
5614///
5615/// \param S The Sema object used for type-checking.
5616///
5617/// \param T The type of the temporary object, which must either be
5618/// the type of the initializer expression or a superclass thereof.
5619///
5620/// \param Entity The entity being initialized.
5621///
5622/// \param CurInit The initializer expression.
5623///
5624/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5625/// is permitted in C++03 (but not C++0x) when binding a reference to
5626/// an rvalue.
5627///
5628/// \returns An expression that copies the initializer expression into
5629/// a temporary object, or an error expression if a copy could not be
5630/// created.
5631static ExprResult CopyObject(Sema &S,
5632 QualType T,
5633 const InitializedEntity &Entity,
5634 ExprResult CurInit,
5635 bool IsExtraneousCopy) {
5636 if (CurInit.isInvalid())
5637 return CurInit;
5638 // Determine which class type we're copying to.
5639 Expr *CurInitExpr = (Expr *)CurInit.get();
5640 CXXRecordDecl *Class = nullptr;
5641 if (const RecordType *Record = T->getAs<RecordType>())
5642 Class = cast<CXXRecordDecl>(Record->getDecl());
5643 if (!Class)
5644 return CurInit;
5645
5646 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5647
5648 // Make sure that the type we are copying is complete.
5649 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5650 return CurInit;
5651
5652 // Perform overload resolution using the class's constructors. Per
5653 // C++11 [dcl.init]p16, second bullet for class types, this initialization
5654 // is direct-initialization.
5655 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5656 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5657
5658 OverloadCandidateSet::iterator Best;
5659 switch (ResolveConstructorOverload(
5660 S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5661 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5662 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5663 /*SecondStepOfCopyInit=*/true)) {
5664 case OR_Success:
5665 break;
5666
5667 case OR_No_Viable_Function:
5668 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5669 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5670 : diag::err_temp_copy_no_viable)
5671 << (int)Entity.getKind() << CurInitExpr->getType()
5672 << CurInitExpr->getSourceRange();
5673 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5674 if (!IsExtraneousCopy || S.isSFINAEContext())
5675 return ExprError();
5676 return CurInit;
5677
5678 case OR_Ambiguous:
5679 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5680 << (int)Entity.getKind() << CurInitExpr->getType()
5681 << CurInitExpr->getSourceRange();
5682 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5683 return ExprError();
5684
5685 case OR_Deleted:
5686 S.Diag(Loc, diag::err_temp_copy_deleted)
5687 << (int)Entity.getKind() << CurInitExpr->getType()
5688 << CurInitExpr->getSourceRange();
5689 S.NoteDeletedFunction(Best->Function);
5690 return ExprError();
5691 }
5692
5693 bool HadMultipleCandidates = CandidateSet.size() > 1;
5694
5695 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5696 SmallVector<Expr*, 8> ConstructorArgs;
5697 CurInit.get(); // Ownership transferred into MultiExprArg, below.
5698
5699 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5700 IsExtraneousCopy);
5701
5702 if (IsExtraneousCopy) {
5703 // If this is a totally extraneous copy for C++03 reference
5704 // binding purposes, just return the original initialization
5705 // expression. We don't generate an (elided) copy operation here
5706 // because doing so would require us to pass down a flag to avoid
5707 // infinite recursion, where each step adds another extraneous,
5708 // elidable copy.
5709
5710 // Instantiate the default arguments of any extra parameters in
5711 // the selected copy constructor, as if we were going to create a
5712 // proper call to the copy constructor.
5713 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5714 ParmVarDecl *Parm = Constructor->getParamDecl(I);
5715 if (S.RequireCompleteType(Loc, Parm->getType(),
5716 diag::err_call_incomplete_argument))
5717 break;
5718
5719 // Build the default argument expression; we don't actually care
5720 // if this succeeds or not, because this routine will complain
5721 // if there was a problem.
5722 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5723 }
5724
5725 return CurInitExpr;
5726 }
5727
5728 // Determine the arguments required to actually perform the
5729 // constructor call (we might have derived-to-base conversions, or
5730 // the copy constructor may have default arguments).
5731 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5732 return ExprError();
5733
5734 // C++0x [class.copy]p32:
5735 // When certain criteria are met, an implementation is allowed to
5736 // omit the copy/move construction of a class object, even if the
5737 // copy/move constructor and/or destructor for the object have
5738 // side effects. [...]
5739 // - when a temporary class object that has not been bound to a
5740 // reference (12.2) would be copied/moved to a class object
5741 // with the same cv-unqualified type, the copy/move operation
5742 // can be omitted by constructing the temporary object
5743 // directly into the target of the omitted copy/move
5744 //
5745 // Note that the other three bullets are handled elsewhere. Copy
5746 // elision for return statements and throw expressions are handled as part
5747 // of constructor initialization, while copy elision for exception handlers
5748 // is handled by the run-time.
5749 //
5750 // FIXME: If the function parameter is not the same type as the temporary, we
5751 // should still be able to elide the copy, but we don't have a way to
5752 // represent in the AST how much should be elided in this case.
5753 bool Elidable =
5754 CurInitExpr->isTemporaryObject(S.Context, Class) &&
5755 S.Context.hasSameUnqualifiedType(
5756 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5757 CurInitExpr->getType());
5758
5759 // Actually perform the constructor call.
5760 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5761 Elidable,
5762 ConstructorArgs,
5763 HadMultipleCandidates,
5764 /*ListInit*/ false,
5765 /*StdInitListInit*/ false,
5766 /*ZeroInit*/ false,
5767 CXXConstructExpr::CK_Complete,
5768 SourceRange());
5769
5770 // If we're supposed to bind temporaries, do so.
5771 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5772 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5773 return CurInit;
5774}
5775
5776/// \brief Check whether elidable copy construction for binding a reference to
5777/// a temporary would have succeeded if we were building in C++98 mode, for
5778/// -Wc++98-compat.
5779static void CheckCXX98CompatAccessibleCopy(Sema &S,
5780 const InitializedEntity &Entity,
5781 Expr *CurInitExpr) {
5782 assert(S.getLangOpts().CPlusPlus11)((S.getLangOpts().CPlusPlus11) ? static_cast<void> (0) :
__assert_fail ("S.getLangOpts().CPlusPlus11", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 5782, __PRETTY_FUNCTION__))
;
5783
5784 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5785 if (!Record)
5786 return;
5787
5788 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5789 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5790 return;
5791
5792 // Find constructors which would have been considered.
5793 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5794 DeclContext::lookup_result Ctors =
5795 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
5796
5797 // Perform overload resolution.
5798 OverloadCandidateSet::iterator Best;
5799 OverloadingResult OR = ResolveConstructorOverload(
5800 S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5801 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5802 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5803 /*SecondStepOfCopyInit=*/true);
5804
5805 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5806 << OR << (int)Entity.getKind() << CurInitExpr->getType()
5807 << CurInitExpr->getSourceRange();
5808
5809 switch (OR) {
5810 case OR_Success:
5811 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5812 Best->FoundDecl, Entity, Diag);
5813 // FIXME: Check default arguments as far as that's possible.
5814 break;
5815
5816 case OR_No_Viable_Function:
5817 S.Diag(Loc, Diag);
5818 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5819 break;
5820
5821 case OR_Ambiguous:
5822 S.Diag(Loc, Diag);
5823 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5824 break;
5825
5826 case OR_Deleted:
5827 S.Diag(Loc, Diag);
5828 S.NoteDeletedFunction(Best->Function);
5829 break;
5830 }
5831}
5832
5833void InitializationSequence::PrintInitLocationNote(Sema &S,
5834 const InitializedEntity &Entity) {
5835 if (Entity.isParameterKind() && Entity.getDecl()) {
5836 if (Entity.getDecl()->getLocation().isInvalid())
5837 return;
5838
5839 if (Entity.getDecl()->getDeclName())
5840 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5841 << Entity.getDecl()->getDeclName();
5842 else
5843 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5844 }
5845 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5846 Entity.getMethodDecl())
5847 S.Diag(Entity.getMethodDecl()->getLocation(),
5848 diag::note_method_return_type_change)
5849 << Entity.getMethodDecl()->getDeclName();
5850}
5851
5852/// Returns true if the parameters describe a constructor initialization of
5853/// an explicit temporary object, e.g. "Point(x, y)".
5854static bool isExplicitTemporary(const InitializedEntity &Entity,
5855 const InitializationKind &Kind,
5856 unsigned NumArgs) {
5857 switch (Entity.getKind()) {
5858 case InitializedEntity::EK_Temporary:
5859 case InitializedEntity::EK_CompoundLiteralInit:
5860 case InitializedEntity::EK_RelatedResult:
5861 break;
5862 default:
5863 return false;
5864 }
5865
5866 switch (Kind.getKind()) {
5867 case InitializationKind::IK_DirectList:
5868 return true;
5869 // FIXME: Hack to work around cast weirdness.
5870 case InitializationKind::IK_Direct:
5871 case InitializationKind::IK_Value:
5872 return NumArgs != 1;
5873 default:
5874 return false;
5875 }
5876}
5877
5878static ExprResult
5879PerformConstructorInitialization(Sema &S,
5880 const InitializedEntity &Entity,
5881 const InitializationKind &Kind,
5882 MultiExprArg Args,
5883 const InitializationSequence::Step& Step,
5884 bool &ConstructorInitRequiresZeroInit,
5885 bool IsListInitialization,
5886 bool IsStdInitListInitialization,
5887 SourceLocation LBraceLoc,
5888 SourceLocation RBraceLoc) {
5889 unsigned NumArgs = Args.size();
5890 CXXConstructorDecl *Constructor
5891 = cast<CXXConstructorDecl>(Step.Function.Function);
5892 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5893
5894 // Build a call to the selected constructor.
5895 SmallVector<Expr*, 8> ConstructorArgs;
5896 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5897 ? Kind.getEqualLoc()
5898 : Kind.getLocation();
5899
5900 if (Kind.getKind() == InitializationKind::IK_Default) {
5901 // Force even a trivial, implicit default constructor to be
5902 // semantically checked. We do this explicitly because we don't build
5903 // the definition for completely trivial constructors.
5904 assert(Constructor->getParent() && "No parent class for constructor.")((Constructor->getParent() && "No parent class for constructor."
) ? static_cast<void> (0) : __assert_fail ("Constructor->getParent() && \"No parent class for constructor.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 5904, __PRETTY_FUNCTION__))
;
5905 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5906 Constructor->isTrivial() && !Constructor->isUsed(false))
5907 S.DefineImplicitDefaultConstructor(Loc, Constructor);
5908 }
5909
5910 ExprResult CurInit((Expr *)nullptr);
5911
5912 // C++ [over.match.copy]p1:
5913 // - When initializing a temporary to be bound to the first parameter
5914 // of a constructor that takes a reference to possibly cv-qualified
5915 // T as its first argument, called with a single argument in the
5916 // context of direct-initialization, explicit conversion functions
5917 // are also considered.
5918 bool AllowExplicitConv =
5919 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
5920 hasCopyOrMoveCtorParam(S.Context,
5921 getConstructorInfo(Step.Function.FoundDecl));
5922
5923 // Determine the arguments required to actually perform the constructor
5924 // call.
5925 if (S.CompleteConstructorCall(Constructor, Args,
5926 Loc, ConstructorArgs,
5927 AllowExplicitConv,
5928 IsListInitialization))
5929 return ExprError();
5930
5931
5932 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5933 // An explicitly-constructed temporary, e.g., X(1, 2).
5934 if (S.DiagnoseUseOfDecl(Constructor, Loc))
5935 return ExprError();
5936
5937 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5938 if (!TSInfo)
5939 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5940 SourceRange ParenOrBraceRange =
5941 (Kind.getKind() == InitializationKind::IK_DirectList)
5942 ? SourceRange(LBraceLoc, RBraceLoc)
5943 : Kind.getParenRange();
5944
5945 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
5946 Step.Function.FoundDecl.getDecl())) {
5947 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
5948 if (S.DiagnoseUseOfDecl(Constructor, Loc))
5949 return ExprError();
5950 }
5951 S.MarkFunctionReferenced(Loc, Constructor);
5952
5953 CurInit = new (S.Context) CXXTemporaryObjectExpr(
5954 S.Context, Constructor,
5955 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
5956 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
5957 IsListInitialization, IsStdInitListInitialization,
5958 ConstructorInitRequiresZeroInit);
5959 } else {
5960 CXXConstructExpr::ConstructionKind ConstructKind =
5961 CXXConstructExpr::CK_Complete;
5962
5963 if (Entity.getKind() == InitializedEntity::EK_Base) {
5964 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5965 CXXConstructExpr::CK_VirtualBase :
5966 CXXConstructExpr::CK_NonVirtualBase;
5967 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5968 ConstructKind = CXXConstructExpr::CK_Delegating;
5969 }
5970
5971 // Only get the parenthesis or brace range if it is a list initialization or
5972 // direct construction.
5973 SourceRange ParenOrBraceRange;
5974 if (IsListInitialization)
5975 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5976 else if (Kind.getKind() == InitializationKind::IK_Direct)
5977 ParenOrBraceRange = Kind.getParenRange();
5978
5979 // If the entity allows NRVO, mark the construction as elidable
5980 // unconditionally.
5981 if (Entity.allowsNRVO())
5982 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5983 Step.Function.FoundDecl,
5984 Constructor, /*Elidable=*/true,
5985 ConstructorArgs,
5986 HadMultipleCandidates,
5987 IsListInitialization,
5988 IsStdInitListInitialization,
5989 ConstructorInitRequiresZeroInit,
5990 ConstructKind,
5991 ParenOrBraceRange);
5992 else
5993 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5994 Step.Function.FoundDecl,
5995 Constructor,
5996 ConstructorArgs,
5997 HadMultipleCandidates,
5998 IsListInitialization,
5999 IsStdInitListInitialization,
6000 ConstructorInitRequiresZeroInit,
6001 ConstructKind,
6002 ParenOrBraceRange);
6003 }
6004 if (CurInit.isInvalid())
6005 return ExprError();
6006
6007 // Only check access if all of that succeeded.
6008 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6009 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6010 return ExprError();
6011
6012 if (shouldBindAsTemporary(Entity))
6013 CurInit = S.MaybeBindToTemporary(CurInit.get());
6014
6015 return CurInit;
6016}
6017
6018/// Determine whether the specified InitializedEntity definitely has a lifetime
6019/// longer than the current full-expression. Conservatively returns false if
6020/// it's unclear.
6021static bool
6022InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
6023 const InitializedEntity *Top = &Entity;
6024 while (Top->getParent())
6025 Top = Top->getParent();
6026
6027 switch (Top->getKind()) {
6028 case InitializedEntity::EK_Variable:
6029 case InitializedEntity::EK_Result:
6030 case InitializedEntity::EK_Exception:
6031 case InitializedEntity::EK_Member:
6032 case InitializedEntity::EK_Binding:
6033 case InitializedEntity::EK_New:
6034 case InitializedEntity::EK_Base:
6035 case InitializedEntity::EK_Delegating:
6036 return true;
6037
6038 case InitializedEntity::EK_ArrayElement:
6039 case InitializedEntity::EK_VectorElement:
6040 case InitializedEntity::EK_BlockElement:
6041 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6042 case InitializedEntity::EK_ComplexElement:
6043 // Could not determine what the full initialization is. Assume it might not
6044 // outlive the full-expression.
6045 return false;
6046
6047 case InitializedEntity::EK_Parameter:
6048 case InitializedEntity::EK_Parameter_CF_Audited:
6049 case InitializedEntity::EK_Temporary:
6050 case InitializedEntity::EK_LambdaCapture:
6051 case InitializedEntity::EK_CompoundLiteralInit:
6052 case InitializedEntity::EK_RelatedResult:
6053 // The entity being initialized might not outlive the full-expression.
6054 return false;
6055 }
6056
6057 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6057)
;
6058}
6059
6060/// Determine the declaration which an initialized entity ultimately refers to,
6061/// for the purpose of lifetime-extending a temporary bound to a reference in
6062/// the initialization of \p Entity.
6063static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
6064 const InitializedEntity *Entity,
6065 const InitializedEntity *FallbackDecl = nullptr) {
6066 // C++11 [class.temporary]p5:
6067 switch (Entity->getKind()) {
6068 case InitializedEntity::EK_Variable:
6069 // The temporary [...] persists for the lifetime of the reference
6070 return Entity;
6071
6072 case InitializedEntity::EK_Member:
6073 // For subobjects, we look at the complete object.
6074 if (Entity->getParent())
6075 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6076 Entity);
6077
6078 // except:
6079 // -- A temporary bound to a reference member in a constructor's
6080 // ctor-initializer persists until the constructor exits.
6081 return Entity;
6082
6083 case InitializedEntity::EK_Binding:
6084 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6085 // type.
6086 return Entity;
6087
6088 case InitializedEntity::EK_Parameter:
6089 case InitializedEntity::EK_Parameter_CF_Audited:
6090 // -- A temporary bound to a reference parameter in a function call
6091 // persists until the completion of the full-expression containing
6092 // the call.
6093 case InitializedEntity::EK_Result:
6094 // -- The lifetime of a temporary bound to the returned value in a
6095 // function return statement is not extended; the temporary is
6096 // destroyed at the end of the full-expression in the return statement.
6097 case InitializedEntity::EK_New:
6098 // -- A temporary bound to a reference in a new-initializer persists
6099 // until the completion of the full-expression containing the
6100 // new-initializer.
6101 return nullptr;
6102
6103 case InitializedEntity::EK_Temporary:
6104 case InitializedEntity::EK_CompoundLiteralInit:
6105 case InitializedEntity::EK_RelatedResult:
6106 // We don't yet know the storage duration of the surrounding temporary.
6107 // Assume it's got full-expression duration for now, it will patch up our
6108 // storage duration if that's not correct.
6109 return nullptr;
6110
6111 case InitializedEntity::EK_ArrayElement:
6112 // For subobjects, we look at the complete object.
6113 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6114 FallbackDecl);
6115
6116 case InitializedEntity::EK_Base:
6117 // For subobjects, we look at the complete object.
6118 if (Entity->getParent())
6119 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6120 Entity);
6121 // Fall through.
6122 case InitializedEntity::EK_Delegating:
6123 // We can reach this case for aggregate initialization in a constructor:
6124 // struct A { int &&r; };
6125 // struct B : A { B() : A{0} {} };
6126 // In this case, use the innermost field decl as the context.
6127 return FallbackDecl;
6128
6129 case InitializedEntity::EK_BlockElement:
6130 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6131 case InitializedEntity::EK_LambdaCapture:
6132 case InitializedEntity::EK_Exception:
6133 case InitializedEntity::EK_VectorElement:
6134 case InitializedEntity::EK_ComplexElement:
6135 return nullptr;
6136 }
6137 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6137)
;
6138}
6139
6140static void performLifetimeExtension(Expr *Init,
6141 const InitializedEntity *ExtendingEntity);
6142
6143/// Update a glvalue expression that is used as the initializer of a reference
6144/// to note that its lifetime is extended.
6145/// \return \c true if any temporary had its lifetime extended.
6146static bool
6147performReferenceExtension(Expr *Init,
6148 const InitializedEntity *ExtendingEntity) {
6149 // Walk past any constructs which we can lifetime-extend across.
6150 Expr *Old;
6151 do {
6152 Old = Init;
6153
6154 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6155 if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
6156 // This is just redundant braces around an initializer. Step over it.
6157 Init = ILE->getInit(0);
6158 }
6159 }
6160
6161 // Step over any subobject adjustments; we may have a materialized
6162 // temporary inside them.
6163 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6164
6165 // Per current approach for DR1376, look through casts to reference type
6166 // when performing lifetime extension.
6167 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6168 if (CE->getSubExpr()->isGLValue())
6169 Init = CE->getSubExpr();
6170
6171 // Per the current approach for DR1299, look through array element access
6172 // when performing lifetime extension.
6173 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init))
6174 Init = ASE->getBase();
6175 } while (Init != Old);
6176
6177 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6178 // Update the storage duration of the materialized temporary.
6179 // FIXME: Rebuild the expression instead of mutating it.
6180 ME->setExtendingDecl(ExtendingEntity->getDecl(),
6181 ExtendingEntity->allocateManglingNumber());
6182 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
6183 return true;
6184 }
6185
6186 return false;
6187}
6188
6189/// Update a prvalue expression that is going to be materialized as a
6190/// lifetime-extended temporary.
6191static void performLifetimeExtension(Expr *Init,
6192 const InitializedEntity *ExtendingEntity) {
6193 // Dig out the expression which constructs the extended temporary.
6194 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6195
6196 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6197 Init = BTE->getSubExpr();
6198
6199 if (CXXStdInitializerListExpr *ILE =
6200 dyn_cast<CXXStdInitializerListExpr>(Init)) {
6201 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
6202 return;
6203 }
6204
6205 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6206 if (ILE->getType()->isArrayType()) {
6207 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6208 performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
6209 return;
6210 }
6211
6212 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6213 assert(RD->isAggregate() && "aggregate init on non-aggregate")((RD->isAggregate() && "aggregate init on non-aggregate"
) ? static_cast<void> (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6213, __PRETTY_FUNCTION__))
;
6214
6215 // If we lifetime-extend a braced initializer which is initializing an
6216 // aggregate, and that aggregate contains reference members which are
6217 // bound to temporaries, those temporaries are also lifetime-extended.
6218 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6219 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6220 performReferenceExtension(ILE->getInit(0), ExtendingEntity);
6221 else {
6222 unsigned Index = 0;
6223 for (const auto *I : RD->fields()) {
6224 if (Index >= ILE->getNumInits())
6225 break;
6226 if (I->isUnnamedBitfield())
6227 continue;
6228 Expr *SubInit = ILE->getInit(Index);
6229 if (I->getType()->isReferenceType())
6230 performReferenceExtension(SubInit, ExtendingEntity);
6231 else if (isa<InitListExpr>(SubInit) ||
6232 isa<CXXStdInitializerListExpr>(SubInit))
6233 // This may be either aggregate-initialization of a member or
6234 // initialization of a std::initializer_list object. Either way,
6235 // we should recursively lifetime-extend that initializer.
6236 performLifetimeExtension(SubInit, ExtendingEntity);
6237 ++Index;
6238 }
6239 }
6240 }
6241 }
6242}
6243
6244static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
6245 const Expr *Init, bool IsInitializerList,
6246 const ValueDecl *ExtendingDecl) {
6247 // Warn if a field lifetime-extends a temporary.
6248 if (isa<FieldDecl>(ExtendingDecl)) {
6249 if (IsInitializerList) {
6250 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
6251 << /*at end of constructor*/true;
6252 return;
6253 }
6254
6255 bool IsSubobjectMember = false;
6256 for (const InitializedEntity *Ent = Entity.getParent(); Ent;
6257 Ent = Ent->getParent()) {
6258 if (Ent->getKind() != InitializedEntity::EK_Base) {
6259 IsSubobjectMember = true;
6260 break;
6261 }
6262 }
6263 S.Diag(Init->getExprLoc(),
6264 diag::warn_bind_ref_member_to_temporary)
6265 << ExtendingDecl << Init->getSourceRange()
6266 << IsSubobjectMember << IsInitializerList;
6267 if (IsSubobjectMember)
6268 S.Diag(ExtendingDecl->getLocation(),
6269 diag::note_ref_subobject_of_member_declared_here);
6270 else
6271 S.Diag(ExtendingDecl->getLocation(),
6272 diag::note_ref_or_ptr_member_declared_here)
6273 << /*is pointer*/false;
6274 }
6275}
6276
6277static void DiagnoseNarrowingInInitList(Sema &S,
6278 const ImplicitConversionSequence &ICS,
6279 QualType PreNarrowingType,
6280 QualType EntityType,
6281 const Expr *PostInit);
6282
6283/// Provide warnings when std::move is used on construction.
6284static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
6285 bool IsReturnStmt) {
6286 if (!InitExpr)
6287 return;
6288
6289 if (S.inTemplateInstantiation())
6290 return;
6291
6292 QualType DestType = InitExpr->getType();
6293 if (!DestType->isRecordType())
6294 return;
6295
6296 unsigned DiagID = 0;
6297 if (IsReturnStmt) {
6298 const CXXConstructExpr *CCE =
6299 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
6300 if (!CCE || CCE->getNumArgs() != 1)
6301 return;
6302
6303 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
6304 return;
6305
6306 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
6307 }
6308
6309 // Find the std::move call and get the argument.
6310 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
6311 if (!CE || CE->getNumArgs() != 1)
6312 return;
6313
6314 const FunctionDecl *MoveFunction = CE->getDirectCallee();
6315 if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
6316 !MoveFunction->getIdentifier() ||
6317 !MoveFunction->getIdentifier()->isStr("move"))
6318 return;
6319
6320 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
6321
6322 if (IsReturnStmt) {
6323 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
6324 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
6325 return;
6326
6327 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
6328 if (!VD || !VD->hasLocalStorage())
6329 return;
6330
6331 QualType SourceType = VD->getType();
6332 if (!SourceType->isRecordType())
6333 return;
6334
6335 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
6336 return;
6337 }
6338
6339 // If we're returning a function parameter, copy elision
6340 // is not possible.
6341 if (isa<ParmVarDecl>(VD))
6342 DiagID = diag::warn_redundant_move_on_return;
6343 else
6344 DiagID = diag::warn_pessimizing_move_on_return;
6345 } else {
6346 DiagID = diag::warn_pessimizing_move_on_initialization;
6347 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6348 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6349 return;
6350 }
6351
6352 S.Diag(CE->getLocStart(), DiagID);
6353
6354 // Get all the locations for a fix-it. Don't emit the fix-it if any location
6355 // is within a macro.
6356 SourceLocation CallBegin = CE->getCallee()->getLocStart();
6357 if (CallBegin.isMacroID())
6358 return;
6359 SourceLocation RParen = CE->getRParenLoc();
6360 if (RParen.isMacroID())
6361 return;
6362 SourceLocation LParen;
6363 SourceLocation ArgLoc = Arg->getLocStart();
6364
6365 // Special testing for the argument location. Since the fix-it needs the
6366 // location right before the argument, the argument location can be in a
6367 // macro only if it is at the beginning of the macro.
6368 while (ArgLoc.isMacroID() &&
6369 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6370 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6371 }
6372
6373 if (LParen.isMacroID())
6374 return;
6375
6376 LParen = ArgLoc.getLocWithOffset(-1);
6377
6378 S.Diag(CE->getLocStart(), diag::note_remove_move)
6379 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6380 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6381}
6382
6383static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
6384 // Check to see if we are dereferencing a null pointer. If so, this is
6385 // undefined behavior, so warn about it. This only handles the pattern
6386 // "*null", which is a very syntactic check.
6387 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
6388 if (UO->getOpcode() == UO_Deref &&
6389 UO->getSubExpr()->IgnoreParenCasts()->
6390 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
6391 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
6392 S.PDiag(diag::warn_binding_null_to_reference)
6393 << UO->getSubExpr()->getSourceRange());
6394 }
6395}
6396
6397MaterializeTemporaryExpr *
6398Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6399 bool BoundToLvalueReference) {
6400 auto MTE = new (Context)
6401 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
6402
6403 // Order an ExprWithCleanups for lifetime marks.
6404 //
6405 // TODO: It'll be good to have a single place to check the access of the
6406 // destructor and generate ExprWithCleanups for various uses. Currently these
6407 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
6408 // but there may be a chance to merge them.
6409 Cleanup.setExprNeedsCleanups(false);
6410 return MTE;
6411}
6412
6413ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
6414 // In C++98, we don't want to implicitly create an xvalue.
6415 // FIXME: This means that AST consumers need to deal with "prvalues" that
6416 // denote materialized temporaries. Maybe we should add another ValueKind
6417 // for "xvalue pretending to be a prvalue" for C++98 support.
6418 if (!E->isRValue() || !getLangOpts().CPlusPlus11)
6419 return E;
6420
6421 // C++1z [conv.rval]/1: T shall be a complete type.
6422 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
6423 // If so, we should check for a non-abstract class type here too.
6424 QualType T = E->getType();
6425 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
6426 return ExprError();
6427
6428 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
6429}
6430
6431ExprResult
6432InitializationSequence::Perform(Sema &S,
6433 const InitializedEntity &Entity,
6434 const InitializationKind &Kind,
6435 MultiExprArg Args,
6436 QualType *ResultType) {
6437 if (Failed()) {
6438 Diagnose(S, Entity, Kind, Args);
6439 return ExprError();
6440 }
6441 if (!ZeroInitializationFixit.empty()) {
6442 unsigned DiagID = diag::err_default_init_const;
6443 if (Decl *D = Entity.getDecl())
6444 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6445 DiagID = diag::ext_default_init_const;
6446
6447 // The initialization would have succeeded with this fixit. Since the fixit
6448 // is on the error, we need to build a valid AST in this case, so this isn't
6449 // handled in the Failed() branch above.
6450 QualType DestType = Entity.getType();
6451 S.Diag(Kind.getLocation(), DiagID)
6452 << DestType << (bool)DestType->getAs<RecordType>()
6453 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6454 ZeroInitializationFixit);
6455 }
6456
6457 if (getKind() == DependentSequence) {
6458 // If the declaration is a non-dependent, incomplete array type
6459 // that has an initializer, then its type will be completed once
6460 // the initializer is instantiated.
6461 if (ResultType && !Entity.getType()->isDependentType() &&
6462 Args.size() == 1) {
6463 QualType DeclType = Entity.getType();
6464 if (const IncompleteArrayType *ArrayT
6465 = S.Context.getAsIncompleteArrayType(DeclType)) {
6466 // FIXME: We don't currently have the ability to accurately
6467 // compute the length of an initializer list without
6468 // performing full type-checking of the initializer list
6469 // (since we have to determine where braces are implicitly
6470 // introduced and such). So, we fall back to making the array
6471 // type a dependently-sized array type with no specified
6472 // bound.
6473 if (isa<InitListExpr>((Expr *)Args[0])) {
6474 SourceRange Brackets;
6475
6476 // Scavange the location of the brackets from the entity, if we can.
6477 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
6478 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6479 TypeLoc TL = TInfo->getTypeLoc();
6480 if (IncompleteArrayTypeLoc ArrayLoc =
6481 TL.getAs<IncompleteArrayTypeLoc>())
6482 Brackets = ArrayLoc.getBracketsRange();
6483 }
6484 }
6485
6486 *ResultType
6487 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6488 /*NumElts=*/nullptr,
6489 ArrayT->getSizeModifier(),
6490 ArrayT->getIndexTypeCVRQualifiers(),
6491 Brackets);
6492 }
6493
6494 }
6495 }
6496 if (Kind.getKind() == InitializationKind::IK_Direct &&
6497 !Kind.isExplicitCast()) {
6498 // Rebuild the ParenListExpr.
6499 SourceRange ParenRange = Kind.getParenRange();
6500 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6501 Args);
6502 }
6503 assert(Kind.getKind() == InitializationKind::IK_Copy ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6505, __PRETTY_FUNCTION__))
6504 Kind.isExplicitCast() ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6505, __PRETTY_FUNCTION__))
6505 Kind.getKind() == InitializationKind::IK_DirectList)((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6505, __PRETTY_FUNCTION__))
;
6506 return ExprResult(Args[0]);
6507 }
6508
6509 // No steps means no initialization.
6510 if (Steps.empty())
6511 return ExprResult((Expr *)nullptr);
6512
6513 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6514 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6515 !Entity.isParameterKind()) {
6516 // Produce a C++98 compatibility warning if we are initializing a reference
6517 // from an initializer list. For parameters, we produce a better warning
6518 // elsewhere.
6519 Expr *Init = Args[0];
6520 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6521 << Init->getSourceRange();
6522 }
6523
6524 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
6525 QualType ETy = Entity.getType();
6526 Qualifiers TyQualifiers = ETy.getQualifiers();
6527 bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
6528 TyQualifiers.getAddressSpace() == LangAS::opencl_global;
6529
6530 if (S.getLangOpts().OpenCLVersion >= 200 &&
6531 ETy->isAtomicType() && !HasGlobalAS &&
6532 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
6533 S.Diag(Args[0]->getLocStart(), diag::err_opencl_atomic_init) << 1 <<
6534 SourceRange(Entity.getDecl()->getLocStart(), Args[0]->getLocEnd());
6535 return ExprError();
6536 }
6537
6538 // Diagnose cases where we initialize a pointer to an array temporary, and the
6539 // pointer obviously outlives the temporary.
6540 if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6541 Entity.getType()->isPointerType() &&
6542 InitializedEntityOutlivesFullExpression(Entity)) {
6543 const Expr *Init = Args[0]->skipRValueSubobjectAdjustments();
6544 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
6545 Init = MTE->GetTemporaryExpr();
6546 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6547 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6548 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6549 << Init->getSourceRange();
6550 }
6551
6552 QualType DestType = Entity.getType().getNonReferenceType();
6553 // FIXME: Ugly hack around the fact that Entity.getType() is not
6554 // the same as Entity.getDecl()->getType() in cases involving type merging,
6555 // and we want latter when it makes sense.
6556 if (ResultType)
6557 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6558 Entity.getType();
6559
6560 ExprResult CurInit((Expr *)nullptr);
6561 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
6562
6563 // For initialization steps that start with a single initializer,
6564 // grab the only argument out the Args and place it into the "current"
6565 // initializer.
6566 switch (Steps.front().Kind) {
6567 case SK_ResolveAddressOfOverloadedFunction:
6568 case SK_CastDerivedToBaseRValue:
6569 case SK_CastDerivedToBaseXValue:
6570 case SK_CastDerivedToBaseLValue:
6571 case SK_BindReference:
6572 case SK_BindReferenceToTemporary:
6573 case SK_FinalCopy:
6574 case SK_ExtraneousCopyToTemporary:
6575 case SK_UserConversion:
6576 case SK_QualificationConversionLValue:
6577 case SK_QualificationConversionXValue:
6578 case SK_QualificationConversionRValue:
6579 case SK_AtomicConversion:
6580 case SK_LValueToRValue:
6581 case SK_ConversionSequence:
6582 case SK_ConversionSequenceNoNarrowing:
6583 case SK_ListInitialization:
6584 case SK_UnwrapInitList:
6585 case SK_RewrapInitList:
6586 case SK_CAssignment:
6587 case SK_StringInit:
6588 case SK_ObjCObjectConversion:
6589 case SK_ArrayLoopIndex:
6590 case SK_ArrayLoopInit:
6591 case SK_ArrayInit:
6592 case SK_GNUArrayInit:
6593 case SK_ParenthesizedArrayInit:
6594 case SK_PassByIndirectCopyRestore:
6595 case SK_PassByIndirectRestore:
6596 case SK_ProduceObjCObject:
6597 case SK_StdInitializerList:
6598 case SK_OCLSamplerInit:
6599 case SK_OCLZeroEvent:
6600 case SK_OCLZeroQueue: {
6601 assert(Args.size() == 1)((Args.size() == 1) ? static_cast<void> (0) : __assert_fail
("Args.size() == 1", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6601, __PRETTY_FUNCTION__))
;
6602 CurInit = Args[0];
6603 if (!CurInit.get()) return ExprError();
6604 break;
6605 }
6606
6607 case SK_ConstructorInitialization:
6608 case SK_ConstructorInitializationFromList:
6609 case SK_StdInitializerListConstructorCall:
6610 case SK_ZeroInitialization:
6611 break;
6612 }
6613
6614 // Promote from an unevaluated context to an unevaluated list context in
6615 // C++11 list-initialization; we need to instantiate entities usable in
6616 // constant expressions here in order to perform narrowing checks =(
6617 EnterExpressionEvaluationContext Evaluated(
6618 S, EnterExpressionEvaluationContext::InitList,
6619 CurInit.get() && isa<InitListExpr>(CurInit.get()));
6620
6621 // C++ [class.abstract]p2:
6622 // no objects of an abstract class can be created except as subobjects
6623 // of a class derived from it
6624 auto checkAbstractType = [&](QualType T) -> bool {
6625 if (Entity.getKind() == InitializedEntity::EK_Base ||
6626 Entity.getKind() == InitializedEntity::EK_Delegating)
6627 return false;
6628 return S.RequireNonAbstractType(Kind.getLocation(), T,
6629 diag::err_allocation_of_abstract_type);
6630 };
6631
6632 // Walk through the computed steps for the initialization sequence,
6633 // performing the specified conversions along the way.
6634 bool ConstructorInitRequiresZeroInit = false;
6635 for (step_iterator Step = step_begin(), StepEnd = step_end();
6636 Step != StepEnd; ++Step) {
6637 if (CurInit.isInvalid())
6638 return ExprError();
6639
6640 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6641
6642 switch (Step->Kind) {
6643 case SK_ResolveAddressOfOverloadedFunction:
6644 // Overload resolution determined which function invoke; update the
6645 // initializer to reflect that choice.
6646 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6647 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6648 return ExprError();
6649 CurInit = S.FixOverloadedFunctionReference(CurInit,
6650 Step->Function.FoundDecl,
6651 Step->Function.Function);
6652 break;
6653
6654 case SK_CastDerivedToBaseRValue:
6655 case SK_CastDerivedToBaseXValue:
6656 case SK_CastDerivedToBaseLValue: {
6657 // We have a derived-to-base cast that produces either an rvalue or an
6658 // lvalue. Perform that cast.
6659
6660 CXXCastPath BasePath;
6661
6662 // Casts to inaccessible base classes are allowed with C-style casts.
6663 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6664 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6665 CurInit.get()->getLocStart(),
6666 CurInit.get()->getSourceRange(),
6667 &BasePath, IgnoreBaseAccess))
6668 return ExprError();
6669
6670 ExprValueKind VK =
6671 Step->Kind == SK_CastDerivedToBaseLValue ?
6672 VK_LValue :
6673 (Step->Kind == SK_CastDerivedToBaseXValue ?
6674 VK_XValue :
6675 VK_RValue);
6676 CurInit =
6677 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6678 CurInit.get(), &BasePath, VK);
6679 break;
6680 }
6681
6682 case SK_BindReference:
6683 // Reference binding does not have any corresponding ASTs.
6684
6685 // Check exception specifications
6686 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6687 return ExprError();
6688
6689 // We don't check for e.g. function pointers here, since address
6690 // availability checks should only occur when the function first decays
6691 // into a pointer or reference.
6692 if (CurInit.get()->getType()->isFunctionProtoType()) {
6693 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
6694 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
6695 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
6696 DRE->getLocStart()))
6697 return ExprError();
6698 }
6699 }
6700 }
6701
6702 // Even though we didn't materialize a temporary, the binding may still
6703 // extend the lifetime of a temporary. This happens if we bind a reference
6704 // to the result of a cast to reference type.
6705 if (const InitializedEntity *ExtendingEntity =
6706 getEntityForTemporaryLifetimeExtension(&Entity))
6707 if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6708 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6709 /*IsInitializerList=*/false,
6710 ExtendingEntity->getDecl());
6711
6712 CheckForNullPointerDereference(S, CurInit.get());
6713 break;
6714
6715 case SK_BindReferenceToTemporary: {
6716 // Make sure the "temporary" is actually an rvalue.
6717 assert(CurInit.get()->isRValue() && "not a temporary")((CurInit.get()->isRValue() && "not a temporary") ?
static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"not a temporary\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6717, __PRETTY_FUNCTION__))
;
6718
6719 // Check exception specifications
6720 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6721 return ExprError();
6722
6723 // Materialize the temporary into memory.
6724 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
6725 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
6726
6727 // Maybe lifetime-extend the temporary's subobjects to match the
6728 // entity's lifetime.
6729 if (const InitializedEntity *ExtendingEntity =
6730 getEntityForTemporaryLifetimeExtension(&Entity))
6731 if (performReferenceExtension(MTE, ExtendingEntity))
6732 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6733 /*IsInitializerList=*/false,
6734 ExtendingEntity->getDecl());
6735
6736 // If we're extending this temporary to automatic storage duration -- we
6737 // need to register its cleanup during the full-expression's cleanups.
6738 if (MTE->getStorageDuration() == SD_Automatic &&
6739 MTE->getType().isDestructedType())
6740 S.Cleanup.setExprNeedsCleanups(true);
6741
6742 CurInit = MTE;
6743 break;
6744 }
6745
6746 case SK_FinalCopy:
6747 if (checkAbstractType(Step->Type))
6748 return ExprError();
6749
6750 // If the overall initialization is initializing a temporary, we already
6751 // bound our argument if it was necessary to do so. If not (if we're
6752 // ultimately initializing a non-temporary), our argument needs to be
6753 // bound since it's initializing a function parameter.
6754 // FIXME: This is a mess. Rationalize temporary destruction.
6755 if (!shouldBindAsTemporary(Entity))
6756 CurInit = S.MaybeBindToTemporary(CurInit.get());
6757 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6758 /*IsExtraneousCopy=*/false);
6759 break;
6760
6761 case SK_ExtraneousCopyToTemporary:
6762 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6763 /*IsExtraneousCopy=*/true);
6764 break;
6765
6766 case SK_UserConversion: {
6767 // We have a user-defined conversion that invokes either a constructor
6768 // or a conversion function.
6769 CastKind CastKind;
6770 FunctionDecl *Fn = Step->Function.Function;
6771 DeclAccessPair FoundFn = Step->Function.FoundDecl;
6772 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6773 bool CreatedObject = false;
6774 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6775 // Build a call to the selected constructor.
6776 SmallVector<Expr*, 8> ConstructorArgs;
6777 SourceLocation Loc = CurInit.get()->getLocStart();
6778
6779 // Determine the arguments required to actually perform the constructor
6780 // call.
6781 Expr *Arg = CurInit.get();
6782 if (S.CompleteConstructorCall(Constructor,
6783 MultiExprArg(&Arg, 1),
6784 Loc, ConstructorArgs))
6785 return ExprError();
6786
6787 // Build an expression that constructs a temporary.
6788 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
6789 FoundFn, Constructor,
6790 ConstructorArgs,
6791 HadMultipleCandidates,
6792 /*ListInit*/ false,
6793 /*StdInitListInit*/ false,
6794 /*ZeroInit*/ false,
6795 CXXConstructExpr::CK_Complete,
6796 SourceRange());
6797 if (CurInit.isInvalid())
6798 return ExprError();
6799
6800 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
6801 Entity);
6802 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6803 return ExprError();
6804
6805 CastKind = CK_ConstructorConversion;
6806 CreatedObject = true;
6807 } else {
6808 // Build a call to the conversion function.
6809 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6810 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6811 FoundFn);
6812 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6813 return ExprError();
6814
6815 // FIXME: Should we move this initialization into a separate
6816 // derived-to-base conversion? I believe the answer is "no", because
6817 // we don't want to turn off access control here for c-style casts.
6818 CurInit = S.PerformObjectArgumentInitialization(CurInit.get(),
6819 /*Qualifier=*/nullptr,
6820 FoundFn, Conversion);
6821 if (CurInit.isInvalid())
6822 return ExprError();
6823
6824 // Build the actual call to the conversion function.
6825 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6826 HadMultipleCandidates);
6827 if (CurInit.isInvalid())
6828 return ExprError();
6829
6830 CastKind = CK_UserDefinedConversion;
6831 CreatedObject = Conversion->getReturnType()->isRecordType();
6832 }
6833
6834 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
6835 return ExprError();
6836
6837 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6838 CastKind, CurInit.get(), nullptr,
6839 CurInit.get()->getValueKind());
6840
6841 if (shouldBindAsTemporary(Entity))
6842 // The overall entity is temporary, so this expression should be
6843 // destroyed at the end of its full-expression.
6844 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6845 else if (CreatedObject && shouldDestroyEntity(Entity)) {
6846 // The object outlasts the full-expression, but we need to prepare for
6847 // a destructor being run on it.
6848 // FIXME: It makes no sense to do this here. This should happen
6849 // regardless of how we initialized the entity.
6850 QualType T = CurInit.get()->getType();
6851 if (const RecordType *Record = T->getAs<RecordType>()) {
6852 CXXDestructorDecl *Destructor
6853 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6854 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6855 S.PDiag(diag::err_access_dtor_temp) << T);
6856 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6857 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6858 return ExprError();
6859 }
6860 }
6861 break;
6862 }
6863
6864 case SK_QualificationConversionLValue:
6865 case SK_QualificationConversionXValue:
6866 case SK_QualificationConversionRValue: {
6867 // Perform a qualification conversion; these can never go wrong.
6868 ExprValueKind VK =
6869 Step->Kind == SK_QualificationConversionLValue ?
6870 VK_LValue :
6871 (Step->Kind == SK_QualificationConversionXValue ?
6872 VK_XValue :
6873 VK_RValue);
6874 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6875 break;
6876 }
6877
6878 case SK_AtomicConversion: {
6879 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic")((CurInit.get()->isRValue() && "cannot convert glvalue to atomic"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"cannot convert glvalue to atomic\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6879, __PRETTY_FUNCTION__))
;
6880 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6881 CK_NonAtomicToAtomic, VK_RValue);
6882 break;
6883 }
6884
6885 case SK_LValueToRValue: {
6886 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue")((CurInit.get()->isGLValue() && "cannot load from a prvalue"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isGLValue() && \"cannot load from a prvalue\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6886, __PRETTY_FUNCTION__))
;
6887 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6888 CK_LValueToRValue, CurInit.get(),
6889 /*BasePath=*/nullptr, VK_RValue);
6890 break;
6891 }
6892
6893 case SK_ConversionSequence:
6894 case SK_ConversionSequenceNoNarrowing: {
6895 Sema::CheckedConversionKind CCK
6896 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6897 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6898 : Kind.isExplicitCast()? Sema::CCK_OtherCast
6899 : Sema::CCK_ImplicitConversion;
6900 ExprResult CurInitExprRes =
6901 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6902 getAssignmentAction(Entity), CCK);
6903 if (CurInitExprRes.isInvalid())
6904 return ExprError();
6905
6906 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
6907
6908 CurInit = CurInitExprRes;
6909
6910 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6911 S.getLangOpts().CPlusPlus)
6912 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6913 CurInit.get());
6914
6915 break;
6916 }
6917
6918 case SK_ListInitialization: {
6919 if (checkAbstractType(Step->Type))
6920 return ExprError();
6921
6922 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6923 // If we're not initializing the top-level entity, we need to create an
6924 // InitializeTemporary entity for our target type.
6925 QualType Ty = Step->Type;
6926 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6927 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6928 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6929 InitListChecker PerformInitList(S, InitEntity,
6930 InitList, Ty, /*VerifyOnly=*/false,
6931 /*TreatUnavailableAsInvalid=*/false);
6932 if (PerformInitList.HadError())
6933 return ExprError();
6934
6935 // Hack: We must update *ResultType if available in order to set the
6936 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6937 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6938 if (ResultType &&
6939 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6940 if ((*ResultType)->isRValueReferenceType())
6941 Ty = S.Context.getRValueReferenceType(Ty);
6942 else if ((*ResultType)->isLValueReferenceType())
6943 Ty = S.Context.getLValueReferenceType(Ty,
6944 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6945 *ResultType = Ty;
6946 }
6947
6948 InitListExpr *StructuredInitList =
6949 PerformInitList.getFullyStructuredList();
6950 CurInit.get();
6951 CurInit = shouldBindAsTemporary(InitEntity)
6952 ? S.MaybeBindToTemporary(StructuredInitList)
6953 : StructuredInitList;
6954 break;
6955 }
6956
6957 case SK_ConstructorInitializationFromList: {
6958 if (checkAbstractType(Step->Type))
6959 return ExprError();
6960
6961 // When an initializer list is passed for a parameter of type "reference
6962 // to object", we don't get an EK_Temporary entity, but instead an
6963 // EK_Parameter entity with reference type.
6964 // FIXME: This is a hack. What we really should do is create a user
6965 // conversion step for this case, but this makes it considerably more
6966 // complicated. For now, this will do.
6967 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6968 Entity.getType().getNonReferenceType());
6969 bool UseTemporary = Entity.getType()->isReferenceType();
6970 assert(Args.size() == 1 && "expected a single argument for list init")((Args.size() == 1 && "expected a single argument for list init"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 6970, __PRETTY_FUNCTION__))
;
6971 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6972 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6973 << InitList->getSourceRange();
6974 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6975 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6976 Entity,
6977 Kind, Arg, *Step,
6978 ConstructorInitRequiresZeroInit,
6979 /*IsListInitialization*/true,
6980 /*IsStdInitListInit*/false,
6981 InitList->getLBraceLoc(),
6982 InitList->getRBraceLoc());
6983 break;
6984 }
6985
6986 case SK_UnwrapInitList:
6987 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6988 break;
6989
6990 case SK_RewrapInitList: {
6991 Expr *E = CurInit.get();
6992 InitListExpr *Syntactic = Step->WrappingSyntacticList;
6993 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6994 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6995 ILE->setSyntacticForm(Syntactic);
6996 ILE->setType(E->getType());
6997 ILE->setValueKind(E->getValueKind());
6998 CurInit = ILE;
6999 break;
7000 }
7001
7002 case SK_ConstructorInitialization:
7003 case SK_StdInitializerListConstructorCall: {
7004 if (checkAbstractType(Step->Type))
7005 return ExprError();
7006
7007 // When an initializer list is passed for a parameter of type "reference
7008 // to object", we don't get an EK_Temporary entity, but instead an
7009 // EK_Parameter entity with reference type.
7010 // FIXME: This is a hack. What we really should do is create a user
7011 // conversion step for this case, but this makes it considerably more
7012 // complicated. For now, this will do.
7013 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7014 Entity.getType().getNonReferenceType());
7015 bool UseTemporary = Entity.getType()->isReferenceType();
7016 bool IsStdInitListInit =
7017 Step->Kind == SK_StdInitializerListConstructorCall;
7018 Expr *Source = CurInit.get();
7019 CurInit = PerformConstructorInitialization(
7020 S, UseTemporary ? TempEntity : Entity, Kind,
7021 Source ? MultiExprArg(Source) : Args, *Step,
7022 ConstructorInitRequiresZeroInit,
7023 /*IsListInitialization*/ IsStdInitListInit,
7024 /*IsStdInitListInitialization*/ IsStdInitListInit,
7025 /*LBraceLoc*/ SourceLocation(),
7026 /*RBraceLoc*/ SourceLocation());
7027 break;
7028 }
7029
7030 case SK_ZeroInitialization: {
7031 step_iterator NextStep = Step;
7032 ++NextStep;
7033 if (NextStep != StepEnd &&
7034 (NextStep->Kind == SK_ConstructorInitialization ||
7035 NextStep->Kind == SK_ConstructorInitializationFromList)) {
7036 // The need for zero-initialization is recorded directly into
7037 // the call to the object's constructor within the next step.
7038 ConstructorInitRequiresZeroInit = true;
7039 } else if (Kind.getKind() == InitializationKind::IK_Value &&
7040 S.getLangOpts().CPlusPlus &&
7041 !Kind.isImplicitValueInit()) {
7042 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7043 if (!TSInfo)
7044 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7045 Kind.getRange().getBegin());
7046
7047 CurInit = new (S.Context) CXXScalarValueInitExpr(
7048 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7049 Kind.getRange().getEnd());
7050 } else {
7051 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7052 }
7053 break;
7054 }
7055
7056 case SK_CAssignment: {
7057 QualType SourceType = CurInit.get()->getType();
7058 // Save off the initial CurInit in case we need to emit a diagnostic
7059 ExprResult InitialCurInit = CurInit;
7060 ExprResult Result = CurInit;
7061 Sema::AssignConvertType ConvTy =
7062 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7063 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7064 if (Result.isInvalid())
7065 return ExprError();
7066 CurInit = Result;
7067
7068 // If this is a call, allow conversion to a transparent union.
7069 ExprResult CurInitExprRes = CurInit;
7070 if (ConvTy != Sema::Compatible &&
7071 Entity.isParameterKind() &&
7072 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7073 == Sema::Compatible)
7074 ConvTy = Sema::Compatible;
7075 if (CurInitExprRes.isInvalid())
7076 return ExprError();
7077 CurInit = CurInitExprRes;
7078
7079 bool Complained;
7080 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7081 Step->Type, SourceType,
7082 InitialCurInit.get(),
7083 getAssignmentAction(Entity, true),
7084 &Complained)) {
7085 PrintInitLocationNote(S, Entity);
7086 return ExprError();
7087 } else if (Complained)
7088 PrintInitLocationNote(S, Entity);
7089 break;
7090 }
7091
7092 case SK_StringInit: {
7093 QualType Ty = Step->Type;
7094 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7095 S.Context.getAsArrayType(Ty), S);
7096 break;
7097 }
7098
7099 case SK_ObjCObjectConversion:
7100 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7101 CK_ObjCObjectLValueCast,
7102 CurInit.get()->getValueKind());
7103 break;
7104
7105 case SK_ArrayLoopIndex: {
7106 Expr *Cur = CurInit.get();
7107 Expr *BaseExpr = new (S.Context)
7108 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7109 Cur->getValueKind(), Cur->getObjectKind(), Cur);
7110 Expr *IndexExpr =
7111 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7112 CurInit = S.CreateBuiltinArraySubscriptExpr(
7113 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7114 ArrayLoopCommonExprs.push_back(BaseExpr);
7115 break;
7116 }
7117
7118 case SK_ArrayLoopInit: {
7119 assert(!ArrayLoopCommonExprs.empty() &&((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7120, __PRETTY_FUNCTION__))
7120 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7120, __PRETTY_FUNCTION__))
;
7121 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7122 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7123 CurInit.get());
7124 break;
7125 }
7126
7127 case SK_GNUArrayInit:
7128 // Okay: we checked everything before creating this step. Note that
7129 // this is a GNU extension.
7130 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7131 << Step->Type << CurInit.get()->getType()
7132 << CurInit.get()->getSourceRange();
7133 LLVM_FALLTHROUGH[[clang::fallthrough]];
7134 case SK_ArrayInit:
7135 // If the destination type is an incomplete array type, update the
7136 // type accordingly.
7137 if (ResultType) {
7138 if (const IncompleteArrayType *IncompleteDest
7139 = S.Context.getAsIncompleteArrayType(Step->Type)) {
7140 if (const ConstantArrayType *ConstantSource
7141 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7142 *ResultType = S.Context.getConstantArrayType(
7143 IncompleteDest->getElementType(),
7144 ConstantSource->getSize(),
7145 ArrayType::Normal, 0);
7146 }
7147 }
7148 }
7149 break;
7150
7151 case SK_ParenthesizedArrayInit:
7152 // Okay: we checked everything before creating this step. Note that
7153 // this is a GNU extension.
7154 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7155 << CurInit.get()->getSourceRange();
7156 break;
7157
7158 case SK_PassByIndirectCopyRestore:
7159 case SK_PassByIndirectRestore:
7160 checkIndirectCopyRestoreSource(S, CurInit.get());
7161 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7162 CurInit.get(), Step->Type,
7163 Step->Kind == SK_PassByIndirectCopyRestore);
7164 break;
7165
7166 case SK_ProduceObjCObject:
7167 CurInit =
7168 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7169 CurInit.get(), nullptr, VK_RValue);
7170 break;
7171
7172 case SK_StdInitializerList: {
7173 S.Diag(CurInit.get()->getExprLoc(),
7174 diag::warn_cxx98_compat_initializer_list_init)
7175 << CurInit.get()->getSourceRange();
7176
7177 // Materialize the temporary into memory.
7178 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7179 CurInit.get()->getType(), CurInit.get(),
7180 /*BoundToLvalueReference=*/false);
7181
7182 // Maybe lifetime-extend the array temporary's subobjects to match the
7183 // entity's lifetime.
7184 if (const InitializedEntity *ExtendingEntity =
7185 getEntityForTemporaryLifetimeExtension(&Entity))
7186 if (performReferenceExtension(MTE, ExtendingEntity))
7187 warnOnLifetimeExtension(S, Entity, CurInit.get(),
7188 /*IsInitializerList=*/true,
7189 ExtendingEntity->getDecl());
7190
7191 // Wrap it in a construction of a std::initializer_list<T>.
7192 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7193
7194 // Bind the result, in case the library has given initializer_list a
7195 // non-trivial destructor.
7196 if (shouldBindAsTemporary(Entity))
7197 CurInit = S.MaybeBindToTemporary(CurInit.get());
7198 break;
7199 }
7200
7201 case SK_OCLSamplerInit: {
7202 // Sampler initialzation have 5 cases:
7203 // 1. function argument passing
7204 // 1a. argument is a file-scope variable
7205 // 1b. argument is a function-scope variable
7206 // 1c. argument is one of caller function's parameters
7207 // 2. variable initialization
7208 // 2a. initializing a file-scope variable
7209 // 2b. initializing a function-scope variable
7210 //
7211 // For file-scope variables, since they cannot be initialized by function
7212 // call of __translate_sampler_initializer in LLVM IR, their references
7213 // need to be replaced by a cast from their literal initializers to
7214 // sampler type. Since sampler variables can only be used in function
7215 // calls as arguments, we only need to replace them when handling the
7216 // argument passing.
7217 assert(Step->Type->isSamplerT() &&((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7218, __PRETTY_FUNCTION__))
7218 "Sampler initialization on non-sampler type.")((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7218, __PRETTY_FUNCTION__))
;
7219 Expr *Init = CurInit.get();
7220 QualType SourceType = Init->getType();
7221 // Case 1
7222 if (Entity.isParameterKind()) {
7223 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
7224 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
7225 << SourceType;
7226 break;
7227 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
7228 auto Var = cast<VarDecl>(DRE->getDecl());
7229 // Case 1b and 1c
7230 // No cast from integer to sampler is needed.
7231 if (!Var->hasGlobalStorage()) {
7232 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7233 CK_LValueToRValue, Init,
7234 /*BasePath=*/nullptr, VK_RValue);
7235 break;
7236 }
7237 // Case 1a
7238 // For function call with a file-scope sampler variable as argument,
7239 // get the integer literal.
7240 // Do not diagnose if the file-scope variable does not have initializer
7241 // since this has already been diagnosed when parsing the variable
7242 // declaration.
7243 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
7244 break;
7245 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
7246 Var->getInit()))->getSubExpr();
7247 SourceType = Init->getType();
7248 }
7249 } else {
7250 // Case 2
7251 // Check initializer is 32 bit integer constant.
7252 // If the initializer is taken from global variable, do not diagnose since
7253 // this has already been done when parsing the variable declaration.
7254 if (!Init->isConstantInitializer(S.Context, false))
7255 break;
7256
7257 if (!SourceType->isIntegerType() ||
7258 32 != S.Context.getIntWidth(SourceType)) {
7259 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
7260 << SourceType;
7261 break;
7262 }
7263
7264 llvm::APSInt Result;
7265 Init->EvaluateAsInt(Result, S.Context);
7266 const uint64_t SamplerValue = Result.getLimitedValue();
7267 // 32-bit value of sampler's initializer is interpreted as
7268 // bit-field with the following structure:
7269 // |unspecified|Filter|Addressing Mode| Normalized Coords|
7270 // |31 6|5 4|3 1| 0|
7271 // This structure corresponds to enum values of sampler properties
7272 // defined in SPIR spec v1.2 and also opencl-c.h
7273 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
7274 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
7275 if (FilterMode != 1 && FilterMode != 2)
7276 S.Diag(Kind.getLocation(),
7277 diag::warn_sampler_initializer_invalid_bits)
7278 << "Filter Mode";
7279 if (AddressingMode > 4)
7280 S.Diag(Kind.getLocation(),
7281 diag::warn_sampler_initializer_invalid_bits)
7282 << "Addressing Mode";
7283 }
7284
7285 // Cases 1a, 2a and 2b
7286 // Insert cast from integer to sampler.
7287 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
7288 CK_IntToOCLSampler);
7289 break;
7290 }
7291 case SK_OCLZeroEvent: {
7292 assert(Step->Type->isEventT() &&((Step->Type->isEventT() && "Event initialization on non-event type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7293, __PRETTY_FUNCTION__))
7293 "Event initialization on non-event type.")((Step->Type->isEventT() && "Event initialization on non-event type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7293, __PRETTY_FUNCTION__))
;
7294
7295 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7296 CK_ZeroToOCLEvent,
7297 CurInit.get()->getValueKind());
7298 break;
7299 }
7300 case SK_OCLZeroQueue: {
7301 assert(Step->Type->isQueueT() &&((Step->Type->isQueueT() && "Event initialization on non queue type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isQueueT() && \"Event initialization on non queue type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7302, __PRETTY_FUNCTION__))
7302 "Event initialization on non queue type.")((Step->Type->isQueueT() && "Event initialization on non queue type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isQueueT() && \"Event initialization on non queue type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7302, __PRETTY_FUNCTION__))
;
7303
7304 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7305 CK_ZeroToOCLQueue,
7306 CurInit.get()->getValueKind());
7307 break;
7308 }
7309 }
7310 }
7311
7312 // Diagnose non-fatal problems with the completed initialization.
7313 if (Entity.getKind() == InitializedEntity::EK_Member &&
7314 cast<FieldDecl>(Entity.getDecl())->isBitField())
7315 S.CheckBitFieldInitialization(Kind.getLocation(),
7316 cast<FieldDecl>(Entity.getDecl()),
7317 CurInit.get());
7318
7319 // Check for std::move on construction.
7320 if (const Expr *E = CurInit.get()) {
7321 CheckMoveOnConstruction(S, E,
7322 Entity.getKind() == InitializedEntity::EK_Result);
7323 }
7324
7325 return CurInit;
7326}
7327
7328/// Somewhere within T there is an uninitialized reference subobject.
7329/// Dig it out and diagnose it.
7330static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
7331 QualType T) {
7332 if (T->isReferenceType()) {
7333 S.Diag(Loc, diag::err_reference_without_init)
7334 << T.getNonReferenceType();
7335 return true;
7336 }
7337
7338 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7339 if (!RD || !RD->hasUninitializedReferenceMember())
7340 return false;
7341
7342 for (const auto *FI : RD->fields()) {
7343 if (FI->isUnnamedBitfield())
7344 continue;
7345
7346 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
7347 S.Diag(Loc, diag::note_value_initialization_here) << RD;
7348 return true;
7349 }
7350 }
7351
7352 for (const auto &BI : RD->bases()) {
7353 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
7354 S.Diag(Loc, diag::note_value_initialization_here) << RD;
7355 return true;
7356 }
7357 }
7358
7359 return false;
7360}
7361
7362
7363//===----------------------------------------------------------------------===//
7364// Diagnose initialization failures
7365//===----------------------------------------------------------------------===//
7366
7367/// Emit notes associated with an initialization that failed due to a
7368/// "simple" conversion failure.
7369static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
7370 Expr *op) {
7371 QualType destType = entity.getType();
7372 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
7373 op->getType()->isObjCObjectPointerType()) {
7374
7375 // Emit a possible note about the conversion failing because the
7376 // operand is a message send with a related result type.
7377 S.EmitRelatedResultTypeNote(op);
7378
7379 // Emit a possible note about a return failing because we're
7380 // expecting a related result type.
7381 if (entity.getKind() == InitializedEntity::EK_Result)
7382 S.EmitRelatedResultTypeNoteForReturn(destType);
7383 }
7384}
7385
7386static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
7387 InitListExpr *InitList) {
7388 QualType DestType = Entity.getType();
7389
7390 QualType E;
7391 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
7392 QualType ArrayType = S.Context.getConstantArrayType(
7393 E.withConst(),
7394 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
7395 InitList->getNumInits()),
7396 clang::ArrayType::Normal, 0);
7397 InitializedEntity HiddenArray =
7398 InitializedEntity::InitializeTemporary(ArrayType);
7399 return diagnoseListInit(S, HiddenArray, InitList);
7400 }
7401
7402 if (DestType->isReferenceType()) {
7403 // A list-initialization failure for a reference means that we tried to
7404 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
7405 // inner initialization failed.
7406 QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
7407 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
7408 SourceLocation Loc = InitList->getLocStart();
7409 if (auto *D = Entity.getDecl())
7410 Loc = D->getLocation();
7411 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
7412 return;
7413 }
7414
7415 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
7416 /*VerifyOnly=*/false,
7417 /*TreatUnavailableAsInvalid=*/false);
7418 assert(DiagnoseInitList.HadError() &&((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7419, __PRETTY_FUNCTION__))
7419 "Inconsistent init list check result.")((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7419, __PRETTY_FUNCTION__))
;
7420}
7421
7422bool InitializationSequence::Diagnose(Sema &S,
7423 const InitializedEntity &Entity,
7424 const InitializationKind &Kind,
7425 ArrayRef<Expr *> Args) {
7426 if (!Failed())
7427 return false;
7428
7429 QualType DestType = Entity.getType();
7430 switch (Failure) {
7431 case FK_TooManyInitsForReference:
7432 // FIXME: Customize for the initialized entity?
7433 if (Args.empty()) {
7434 // Dig out the reference subobject which is uninitialized and diagnose it.
7435 // If this is value-initialization, this could be nested some way within
7436 // the target type.
7437 assert(Kind.getKind() == InitializationKind::IK_Value ||((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7438, __PRETTY_FUNCTION__))
7438 DestType->isReferenceType())((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7438, __PRETTY_FUNCTION__))
;
7439 bool Diagnosed =
7440 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
7441 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")((Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7441, __PRETTY_FUNCTION__))
;
7442 (void)Diagnosed;
7443 } else // FIXME: diagnostic below could be better!
7444 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
7445 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
7446 break;
7447 case FK_ParenthesizedListInitForReference:
7448 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
7449 << 1 << Entity.getType() << Args[0]->getSourceRange();
7450 break;
7451
7452 case FK_ArrayNeedsInitList:
7453 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
7454 break;
7455 case FK_ArrayNeedsInitListOrStringLiteral:
7456 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
7457 break;
7458 case FK_ArrayNeedsInitListOrWideStringLiteral:
7459 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
7460 break;
7461 case FK_NarrowStringIntoWideCharArray:
7462 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
7463 break;
7464 case FK_WideStringIntoCharArray:
7465 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
7466 break;
7467 case FK_IncompatWideStringIntoWideChar:
7468 S.Diag(Kind.getLocation(),
7469 diag::err_array_init_incompat_wide_string_into_wchar);
7470 break;
7471 case FK_ArrayTypeMismatch:
7472 case FK_NonConstantArrayInit:
7473 S.Diag(Kind.getLocation(),
7474 (Failure == FK_ArrayTypeMismatch
7475 ? diag::err_array_init_different_type
7476 : diag::err_array_init_non_constant_array))
7477 << DestType.getNonReferenceType()
7478 << Args[0]->getType()
7479 << Args[0]->getSourceRange();
7480 break;
7481
7482 case FK_VariableLengthArrayHasInitializer:
7483 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
7484 << Args[0]->getSourceRange();
7485 break;
7486
7487 case FK_AddressOfOverloadFailed: {
7488 DeclAccessPair Found;
7489 S.ResolveAddressOfOverloadedFunction(Args[0],
7490 DestType.getNonReferenceType(),
7491 true,
7492 Found);
7493 break;
7494 }
7495
7496 case FK_AddressOfUnaddressableFunction: {
7497 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
7498 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7499 Args[0]->getLocStart());
7500 break;
7501 }
7502
7503 case FK_ReferenceInitOverloadFailed:
7504 case FK_UserConversionOverloadFailed:
7505 switch (FailedOverloadResult) {
7506 case OR_Ambiguous:
7507 if (Failure == FK_UserConversionOverloadFailed)
7508 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
7509 << Args[0]->getType() << DestType
7510 << Args[0]->getSourceRange();
7511 else
7512 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
7513 << DestType << Args[0]->getType()
7514 << Args[0]->getSourceRange();
7515
7516 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7517 break;
7518
7519 case OR_No_Viable_Function:
7520 if (!S.RequireCompleteType(Kind.getLocation(),
7521 DestType.getNonReferenceType(),
7522 diag::err_typecheck_nonviable_condition_incomplete,
7523 Args[0]->getType(), Args[0]->getSourceRange()))
7524 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
7525 << (Entity.getKind() == InitializedEntity::EK_Result)
7526 << Args[0]->getType() << Args[0]->getSourceRange()
7527 << DestType.getNonReferenceType();
7528
7529 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7530 break;
7531
7532 case OR_Deleted: {
7533 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
7534 << Args[0]->getType() << DestType.getNonReferenceType()
7535 << Args[0]->getSourceRange();
7536 OverloadCandidateSet::iterator Best;
7537 OverloadingResult Ovl
7538 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
7539 true);
7540 if (Ovl == OR_Deleted) {
7541 S.NoteDeletedFunction(Best->Function);
7542 } else {
7543 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7543)
;
7544 }
7545 break;
7546 }
7547
7548 case OR_Success:
7549 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7549)
;
7550 }
7551 break;
7552
7553 case FK_NonConstLValueReferenceBindingToTemporary:
7554 if (isa<InitListExpr>(Args[0])) {
7555 S.Diag(Kind.getLocation(),
7556 diag::err_lvalue_reference_bind_to_initlist)
7557 << DestType.getNonReferenceType().isVolatileQualified()
7558 << DestType.getNonReferenceType()
7559 << Args[0]->getSourceRange();
7560 break;
7561 }
7562 // Intentional fallthrough
7563
7564 case FK_NonConstLValueReferenceBindingToUnrelated:
7565 S.Diag(Kind.getLocation(),
7566 Failure == FK_NonConstLValueReferenceBindingToTemporary
7567 ? diag::err_lvalue_reference_bind_to_temporary
7568 : diag::err_lvalue_reference_bind_to_unrelated)
7569 << DestType.getNonReferenceType().isVolatileQualified()
7570 << DestType.getNonReferenceType()
7571 << Args[0]->getType()
7572 << Args[0]->getSourceRange();
7573 break;
7574
7575 case FK_NonConstLValueReferenceBindingToBitfield: {
7576 // We don't necessarily have an unambiguous source bit-field.
7577 FieldDecl *BitField = Args[0]->getSourceBitField();
7578 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
7579 << DestType.isVolatileQualified()
7580 << (BitField ? BitField->getDeclName() : DeclarationName())
7581 << (BitField != nullptr)
7582 << Args[0]->getSourceRange();
7583 if (BitField)
7584 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
7585 break;
7586 }
7587
7588 case FK_NonConstLValueReferenceBindingToVectorElement:
7589 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
7590 << DestType.isVolatileQualified()
7591 << Args[0]->getSourceRange();
7592 break;
7593
7594 case FK_RValueReferenceBindingToLValue:
7595 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7596 << DestType.getNonReferenceType() << Args[0]->getType()
7597 << Args[0]->getSourceRange();
7598 break;
7599
7600 case FK_ReferenceInitDropsQualifiers: {
7601 QualType SourceType = Args[0]->getType();
7602 QualType NonRefType = DestType.getNonReferenceType();
7603 Qualifiers DroppedQualifiers =
7604 SourceType.getQualifiers() - NonRefType.getQualifiers();
7605
7606 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7607 << SourceType
7608 << NonRefType
7609 << DroppedQualifiers.getCVRQualifiers()
7610 << Args[0]->getSourceRange();
7611 break;
7612 }
7613
7614 case FK_ReferenceInitFailed:
7615 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7616 << DestType.getNonReferenceType()
7617 << Args[0]->isLValue()
7618 << Args[0]->getType()
7619 << Args[0]->getSourceRange();
7620 emitBadConversionNotes(S, Entity, Args[0]);
7621 break;
7622
7623 case FK_ConversionFailed: {
7624 QualType FromType = Args[0]->getType();
7625 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7626 << (int)Entity.getKind()
7627 << DestType
7628 << Args[0]->isLValue()
7629 << FromType
7630 << Args[0]->getSourceRange();
7631 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7632 S.Diag(Kind.getLocation(), PDiag);
7633 emitBadConversionNotes(S, Entity, Args[0]);
7634 break;
7635 }
7636
7637 case FK_ConversionFromPropertyFailed:
7638 // No-op. This error has already been reported.
7639 break;
7640
7641 case FK_TooManyInitsForScalar: {
7642 SourceRange R;
7643
7644 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7645 if (InitList && InitList->getNumInits() >= 1) {
7646 R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7647 } else {
7648 assert(Args.size() > 1 && "Expected multiple initializers!")((Args.size() > 1 && "Expected multiple initializers!"
) ? static_cast<void> (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7648, __PRETTY_FUNCTION__))
;
7649 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7650 }
7651
7652 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7653 if (Kind.isCStyleOrFunctionalCast())
7654 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7655 << R;
7656 else
7657 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7658 << /*scalar=*/2 << R;
7659 break;
7660 }
7661
7662 case FK_ParenthesizedListInitForScalar:
7663 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
7664 << 0 << Entity.getType() << Args[0]->getSourceRange();
7665 break;
7666
7667 case FK_ReferenceBindingToInitList:
7668 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7669 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7670 break;
7671
7672 case FK_InitListBadDestinationType:
7673 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7674 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7675 break;
7676
7677 case FK_ListConstructorOverloadFailed:
7678 case FK_ConstructorOverloadFailed: {
7679 SourceRange ArgsRange;
7680 if (Args.size())
7681 ArgsRange = SourceRange(Args.front()->getLocStart(),
7682 Args.back()->getLocEnd());
7683
7684 if (Failure == FK_ListConstructorOverloadFailed) {
7685 assert(Args.size() == 1 &&((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7686, __PRETTY_FUNCTION__))
7686 "List construction from other than 1 argument.")((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7686, __PRETTY_FUNCTION__))
;
7687 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7688 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7689 }
7690
7691 // FIXME: Using "DestType" for the entity we're printing is probably
7692 // bad.
7693 switch (FailedOverloadResult) {
7694 case OR_Ambiguous:
7695 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7696 << DestType << ArgsRange;
7697 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7698 break;
7699
7700 case OR_No_Viable_Function:
7701 if (Kind.getKind() == InitializationKind::IK_Default &&
7702 (Entity.getKind() == InitializedEntity::EK_Base ||
7703 Entity.getKind() == InitializedEntity::EK_Member) &&
7704 isa<CXXConstructorDecl>(S.CurContext)) {
7705 // This is implicit default initialization of a member or
7706 // base within a constructor. If no viable function was
7707 // found, notify the user that they need to explicitly
7708 // initialize this base/member.
7709 CXXConstructorDecl *Constructor
7710 = cast<CXXConstructorDecl>(S.CurContext);
7711 const CXXRecordDecl *InheritedFrom = nullptr;
7712 if (auto Inherited = Constructor->getInheritedConstructor())
7713 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
7714 if (Entity.getKind() == InitializedEntity::EK_Base) {
7715 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7716 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7717 << S.Context.getTypeDeclType(Constructor->getParent())
7718 << /*base=*/0
7719 << Entity.getType()
7720 << InheritedFrom;
7721
7722 RecordDecl *BaseDecl
7723 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7724 ->getDecl();
7725 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7726 << S.Context.getTagDeclType(BaseDecl);
7727 } else {
7728 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7729 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7730 << S.Context.getTypeDeclType(Constructor->getParent())
7731 << /*member=*/1
7732 << Entity.getName()
7733 << InheritedFrom;
7734 S.Diag(Entity.getDecl()->getLocation(),
7735 diag::note_member_declared_at);
7736
7737 if (const RecordType *Record
7738 = Entity.getType()->getAs<RecordType>())
7739 S.Diag(Record->getDecl()->getLocation(),
7740 diag::note_previous_decl)
7741 << S.Context.getTagDeclType(Record->getDecl());
7742 }
7743 break;
7744 }
7745
7746 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7747 << DestType << ArgsRange;
7748 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7749 break;
7750
7751 case OR_Deleted: {
7752 OverloadCandidateSet::iterator Best;
7753 OverloadingResult Ovl
7754 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7755 if (Ovl != OR_Deleted) {
7756 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7757 << true << DestType << ArgsRange;
7758 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7758)
;
7759 break;
7760 }
7761
7762 // If this is a defaulted or implicitly-declared function, then
7763 // it was implicitly deleted. Make it clear that the deletion was
7764 // implicit.
7765 if (S.isImplicitlyDeleted(Best->Function))
7766 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7767 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7768 << DestType << ArgsRange;
7769 else
7770 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7771 << true << DestType << ArgsRange;
7772
7773 S.NoteDeletedFunction(Best->Function);
7774 break;
7775 }
7776
7777 case OR_Success:
7778 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7778)
;
7779 }
7780 }
7781 break;
7782
7783 case FK_DefaultInitOfConst:
7784 if (Entity.getKind() == InitializedEntity::EK_Member &&
7785 isa<CXXConstructorDecl>(S.CurContext)) {
7786 // This is implicit default-initialization of a const member in
7787 // a constructor. Complain that it needs to be explicitly
7788 // initialized.
7789 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7790 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7791 << (Constructor->getInheritedConstructor() ? 2 :
7792 Constructor->isImplicit() ? 1 : 0)
7793 << S.Context.getTypeDeclType(Constructor->getParent())
7794 << /*const=*/1
7795 << Entity.getName();
7796 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7797 << Entity.getName();
7798 } else {
7799 S.Diag(Kind.getLocation(), diag::err_default_init_const)
7800 << DestType << (bool)DestType->getAs<RecordType>();
7801 }
7802 break;
7803
7804 case FK_Incomplete:
7805 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7806 diag::err_init_incomplete_type);
7807 break;
7808
7809 case FK_ListInitializationFailed: {
7810 // Run the init list checker again to emit diagnostics.
7811 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7812 diagnoseListInit(S, Entity, InitList);
7813 break;
7814 }
7815
7816 case FK_PlaceholderType: {
7817 // FIXME: Already diagnosed!
7818 break;
7819 }
7820
7821 case FK_ExplicitConstructor: {
7822 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7823 << Args[0]->getSourceRange();
7824 OverloadCandidateSet::iterator Best;
7825 OverloadingResult Ovl
7826 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7827 (void)Ovl;
7828 assert(Ovl == OR_Success && "Inconsistent overload resolution")((Ovl == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaInit.cpp"
, 7828, __PRETTY_FUNCTION__))
;
7829 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7830 S.Diag(CtorDecl->getLocation(),
7831 diag::note_explicit_ctor_deduction_guide_here) << false;