Bug Summary

File:clang/lib/Sema/SemaInit.cpp
Warning:line 5583, column 9
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaInit.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -ffunction-sections -fdata-sections -fcoverage-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -resource-dir /usr/lib/llvm-14/lib/clang/14.0.0 -D CLANG_ROUND_TRIP_CC1_ARGS=ON -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/include -I /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/llvm/include -D NDEBUG -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /usr/lib/llvm-14/lib/clang/14.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-redundant-move -Wno-pessimizing-move -Wno-noexcept-type -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/scan-build-2021-08-28-193554-24367-1 -x c++ /build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp

1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for initializers.
10//
11//===----------------------------------------------------------------------===//
12
13#include "clang/AST/ASTContext.h"
14#include "clang/AST/DeclObjC.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/ExprObjC.h"
17#include "clang/AST/ExprOpenMP.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/CharInfo.h"
20#include "clang/Basic/SourceManager.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Sema/Designator.h"
23#include "clang/Sema/Initialization.h"
24#include "clang/Sema/Lookup.h"
25#include "clang/Sema/SemaInternal.h"
26#include "llvm/ADT/APInt.h"
27#include "llvm/ADT/PointerIntPair.h"
28#include "llvm/ADT/SmallString.h"
29#include "llvm/Support/ErrorHandling.h"
30#include "llvm/Support/raw_ostream.h"
31
32using namespace clang;
33
34//===----------------------------------------------------------------------===//
35// Sema Initialization Checking
36//===----------------------------------------------------------------------===//
37
38/// Check whether T is compatible with a wide character type (wchar_t,
39/// char16_t or char32_t).
40static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
41 if (Context.typesAreCompatible(Context.getWideCharType(), T))
42 return true;
43 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
44 return Context.typesAreCompatible(Context.Char16Ty, T) ||
45 Context.typesAreCompatible(Context.Char32Ty, T);
46 }
47 return false;
48}
49
50enum StringInitFailureKind {
51 SIF_None,
52 SIF_NarrowStringIntoWideChar,
53 SIF_WideStringIntoChar,
54 SIF_IncompatWideStringIntoWideChar,
55 SIF_UTF8StringIntoPlainChar,
56 SIF_PlainStringIntoUTF8Char,
57 SIF_Other
58};
59
60/// Check whether the array of type AT can be initialized by the Init
61/// expression by means of string initialization. Returns SIF_None if so,
62/// otherwise returns a StringInitFailureKind that describes why the
63/// initialization would not work.
64static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
65 ASTContext &Context) {
66 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
67 return SIF_Other;
68
69 // See if this is a string literal or @encode.
70 Init = Init->IgnoreParens();
71
72 // Handle @encode, which is a narrow string.
73 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
74 return SIF_None;
75
76 // Otherwise we can only handle string literals.
77 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
78 if (!SL)
79 return SIF_Other;
80
81 const QualType ElemTy =
82 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
83
84 switch (SL->getKind()) {
85 case StringLiteral::UTF8:
86 // char8_t array can be initialized with a UTF-8 string.
87 if (ElemTy->isChar8Type())
88 return SIF_None;
89 LLVM_FALLTHROUGH[[gnu::fallthrough]];
90 case StringLiteral::Ascii:
91 // char array can be initialized with a narrow string.
92 // Only allow char x[] = "foo"; not char x[] = L"foo";
93 if (ElemTy->isCharType())
94 return (SL->getKind() == StringLiteral::UTF8 &&
95 Context.getLangOpts().Char8)
96 ? SIF_UTF8StringIntoPlainChar
97 : SIF_None;
98 if (ElemTy->isChar8Type())
99 return SIF_PlainStringIntoUTF8Char;
100 if (IsWideCharCompatible(ElemTy, Context))
101 return SIF_NarrowStringIntoWideChar;
102 return SIF_Other;
103 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
104 // "An array with element type compatible with a qualified or unqualified
105 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
106 // string literal with the corresponding encoding prefix (L, u, or U,
107 // respectively), optionally enclosed in braces.
108 case StringLiteral::UTF16:
109 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
110 return SIF_None;
111 if (ElemTy->isCharType() || ElemTy->isChar8Type())
112 return SIF_WideStringIntoChar;
113 if (IsWideCharCompatible(ElemTy, Context))
114 return SIF_IncompatWideStringIntoWideChar;
115 return SIF_Other;
116 case StringLiteral::UTF32:
117 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
118 return SIF_None;
119 if (ElemTy->isCharType() || ElemTy->isChar8Type())
120 return SIF_WideStringIntoChar;
121 if (IsWideCharCompatible(ElemTy, Context))
122 return SIF_IncompatWideStringIntoWideChar;
123 return SIF_Other;
124 case StringLiteral::Wide:
125 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
126 return SIF_None;
127 if (ElemTy->isCharType() || ElemTy->isChar8Type())
128 return SIF_WideStringIntoChar;
129 if (IsWideCharCompatible(ElemTy, Context))
130 return SIF_IncompatWideStringIntoWideChar;
131 return SIF_Other;
132 }
133
134 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 134)
;
135}
136
137static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
138 ASTContext &Context) {
139 const ArrayType *arrayType = Context.getAsArrayType(declType);
140 if (!arrayType)
141 return SIF_Other;
142 return IsStringInit(init, arrayType, Context);
143}
144
145bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) {
146 return ::IsStringInit(Init, AT, Context) == SIF_None;
147}
148
149/// Update the type of a string literal, including any surrounding parentheses,
150/// to match the type of the object which it is initializing.
151static void updateStringLiteralType(Expr *E, QualType Ty) {
152 while (true) {
153 E->setType(Ty);
154 E->setValueKind(VK_PRValue);
155 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) {
156 break;
157 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
158 E = PE->getSubExpr();
159 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
160 assert(UO->getOpcode() == UO_Extension)(static_cast <bool> (UO->getOpcode() == UO_Extension
) ? void (0) : __assert_fail ("UO->getOpcode() == UO_Extension"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 160, __extension__ __PRETTY_FUNCTION__))
;
161 E = UO->getSubExpr();
162 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
163 E = GSE->getResultExpr();
164 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
165 E = CE->getChosenSubExpr();
166 } else {
167 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 167)
;
168 }
169 }
170}
171
172/// Fix a compound literal initializing an array so it's correctly marked
173/// as an rvalue.
174static void updateGNUCompoundLiteralRValue(Expr *E) {
175 while (true) {
176 E->setValueKind(VK_PRValue);
177 if (isa<CompoundLiteralExpr>(E)) {
178 break;
179 } else if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
180 E = PE->getSubExpr();
181 } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
182 assert(UO->getOpcode() == UO_Extension)(static_cast <bool> (UO->getOpcode() == UO_Extension
) ? void (0) : __assert_fail ("UO->getOpcode() == UO_Extension"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 182, __extension__ __PRETTY_FUNCTION__))
;
183 E = UO->getSubExpr();
184 } else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E)) {
185 E = GSE->getResultExpr();
186 } else if (ChooseExpr *CE = dyn_cast<ChooseExpr>(E)) {
187 E = CE->getChosenSubExpr();
188 } else {
189 llvm_unreachable("unexpected expr in array compound literal init")::llvm::llvm_unreachable_internal("unexpected expr in array compound literal init"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 189)
;
190 }
191 }
192}
193
194static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
195 Sema &S) {
196 // Get the length of the string as parsed.
197 auto *ConstantArrayTy =
198 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
199 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
200
201 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
202 // C99 6.7.8p14. We have an array of character type with unknown size
203 // being initialized to a string literal.
204 llvm::APInt ConstVal(32, StrLength);
205 // Return a new array type (C99 6.7.8p22).
206 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
207 ConstVal, nullptr,
208 ArrayType::Normal, 0);
209 updateStringLiteralType(Str, DeclT);
210 return;
211 }
212
213 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
214
215 // We have an array of character type with known size. However,
216 // the size may be smaller or larger than the string we are initializing.
217 // FIXME: Avoid truncation for 64-bit length strings.
218 if (S.getLangOpts().CPlusPlus) {
219 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
220 // For Pascal strings it's OK to strip off the terminating null character,
221 // so the example below is valid:
222 //
223 // unsigned char a[2] = "\pa";
224 if (SL->isPascal())
225 StrLength--;
226 }
227
228 // [dcl.init.string]p2
229 if (StrLength > CAT->getSize().getZExtValue())
230 S.Diag(Str->getBeginLoc(),
231 diag::err_initializer_string_for_char_array_too_long)
232 << Str->getSourceRange();
233 } else {
234 // C99 6.7.8p14.
235 if (StrLength-1 > CAT->getSize().getZExtValue())
236 S.Diag(Str->getBeginLoc(),
237 diag::ext_initializer_string_for_char_array_too_long)
238 << Str->getSourceRange();
239 }
240
241 // Set the type to the actual size that we are initializing. If we have
242 // something like:
243 // char x[1] = "foo";
244 // then this will set the string literal's type to char[1].
245 updateStringLiteralType(Str, DeclT);
246}
247
248//===----------------------------------------------------------------------===//
249// Semantic checking for initializer lists.
250//===----------------------------------------------------------------------===//
251
252namespace {
253
254/// Semantic checking for initializer lists.
255///
256/// The InitListChecker class contains a set of routines that each
257/// handle the initialization of a certain kind of entity, e.g.,
258/// arrays, vectors, struct/union types, scalars, etc. The
259/// InitListChecker itself performs a recursive walk of the subobject
260/// structure of the type to be initialized, while stepping through
261/// the initializer list one element at a time. The IList and Index
262/// parameters to each of the Check* routines contain the active
263/// (syntactic) initializer list and the index into that initializer
264/// list that represents the current initializer. Each routine is
265/// responsible for moving that Index forward as it consumes elements.
266///
267/// Each Check* routine also has a StructuredList/StructuredIndex
268/// arguments, which contains the current "structured" (semantic)
269/// initializer list and the index into that initializer list where we
270/// are copying initializers as we map them over to the semantic
271/// list. Once we have completed our recursive walk of the subobject
272/// structure, we will have constructed a full semantic initializer
273/// list.
274///
275/// C99 designators cause changes in the initializer list traversal,
276/// because they make the initialization "jump" into a specific
277/// subobject and then continue the initialization from that
278/// point. CheckDesignatedInitializer() recursively steps into the
279/// designated subobject and manages backing out the recursion to
280/// initialize the subobjects after the one designated.
281///
282/// If an initializer list contains any designators, we build a placeholder
283/// structured list even in 'verify only' mode, so that we can track which
284/// elements need 'empty' initializtion.
285class InitListChecker {
286 Sema &SemaRef;
287 bool hadError = false;
288 bool VerifyOnly; // No diagnostics.
289 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
290 bool InOverloadResolution;
291 InitListExpr *FullyStructuredList = nullptr;
292 NoInitExpr *DummyExpr = nullptr;
293
294 NoInitExpr *getDummyInit() {
295 if (!DummyExpr)
296 DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy);
297 return DummyExpr;
298 }
299
300 void CheckImplicitInitList(const InitializedEntity &Entity,
301 InitListExpr *ParentIList, QualType T,
302 unsigned &Index, InitListExpr *StructuredList,
303 unsigned &StructuredIndex);
304 void CheckExplicitInitList(const InitializedEntity &Entity,
305 InitListExpr *IList, QualType &T,
306 InitListExpr *StructuredList,
307 bool TopLevelObject = false);
308 void CheckListElementTypes(const InitializedEntity &Entity,
309 InitListExpr *IList, QualType &DeclType,
310 bool SubobjectIsDesignatorContext,
311 unsigned &Index,
312 InitListExpr *StructuredList,
313 unsigned &StructuredIndex,
314 bool TopLevelObject = false);
315 void CheckSubElementType(const InitializedEntity &Entity,
316 InitListExpr *IList, QualType ElemType,
317 unsigned &Index,
318 InitListExpr *StructuredList,
319 unsigned &StructuredIndex,
320 bool DirectlyDesignated = false);
321 void CheckComplexType(const InitializedEntity &Entity,
322 InitListExpr *IList, QualType DeclType,
323 unsigned &Index,
324 InitListExpr *StructuredList,
325 unsigned &StructuredIndex);
326 void CheckScalarType(const InitializedEntity &Entity,
327 InitListExpr *IList, QualType DeclType,
328 unsigned &Index,
329 InitListExpr *StructuredList,
330 unsigned &StructuredIndex);
331 void CheckReferenceType(const InitializedEntity &Entity,
332 InitListExpr *IList, QualType DeclType,
333 unsigned &Index,
334 InitListExpr *StructuredList,
335 unsigned &StructuredIndex);
336 void CheckVectorType(const InitializedEntity &Entity,
337 InitListExpr *IList, QualType DeclType, unsigned &Index,
338 InitListExpr *StructuredList,
339 unsigned &StructuredIndex);
340 void CheckStructUnionTypes(const InitializedEntity &Entity,
341 InitListExpr *IList, QualType DeclType,
342 CXXRecordDecl::base_class_range Bases,
343 RecordDecl::field_iterator Field,
344 bool SubobjectIsDesignatorContext, unsigned &Index,
345 InitListExpr *StructuredList,
346 unsigned &StructuredIndex,
347 bool TopLevelObject = false);
348 void CheckArrayType(const InitializedEntity &Entity,
349 InitListExpr *IList, QualType &DeclType,
350 llvm::APSInt elementIndex,
351 bool SubobjectIsDesignatorContext, unsigned &Index,
352 InitListExpr *StructuredList,
353 unsigned &StructuredIndex);
354 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
355 InitListExpr *IList, DesignatedInitExpr *DIE,
356 unsigned DesigIdx,
357 QualType &CurrentObjectType,
358 RecordDecl::field_iterator *NextField,
359 llvm::APSInt *NextElementIndex,
360 unsigned &Index,
361 InitListExpr *StructuredList,
362 unsigned &StructuredIndex,
363 bool FinishSubobjectInit,
364 bool TopLevelObject);
365 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
366 QualType CurrentObjectType,
367 InitListExpr *StructuredList,
368 unsigned StructuredIndex,
369 SourceRange InitRange,
370 bool IsFullyOverwritten = false);
371 void UpdateStructuredListElement(InitListExpr *StructuredList,
372 unsigned &StructuredIndex,
373 Expr *expr);
374 InitListExpr *createInitListExpr(QualType CurrentObjectType,
375 SourceRange InitRange,
376 unsigned ExpectedNumInits);
377 int numArrayElements(QualType DeclType);
378 int numStructUnionElements(QualType DeclType);
379
380 ExprResult PerformEmptyInit(SourceLocation Loc,
381 const InitializedEntity &Entity);
382
383 /// Diagnose that OldInit (or part thereof) has been overridden by NewInit.
384 void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange,
385 bool FullyOverwritten = true) {
386 // Overriding an initializer via a designator is valid with C99 designated
387 // initializers, but ill-formed with C++20 designated initializers.
388 unsigned DiagID = SemaRef.getLangOpts().CPlusPlus
389 ? diag::ext_initializer_overrides
390 : diag::warn_initializer_overrides;
391
392 if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) {
393 // In overload resolution, we have to strictly enforce the rules, and so
394 // don't allow any overriding of prior initializers. This matters for a
395 // case such as:
396 //
397 // union U { int a, b; };
398 // struct S { int a, b; };
399 // void f(U), f(S);
400 //
401 // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For
402 // consistency, we disallow all overriding of prior initializers in
403 // overload resolution, not only overriding of union members.
404 hadError = true;
405 } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) {
406 // If we'll be keeping around the old initializer but overwriting part of
407 // the object it initialized, and that object is not trivially
408 // destructible, this can leak. Don't allow that, not even as an
409 // extension.
410 //
411 // FIXME: It might be reasonable to allow this in cases where the part of
412 // the initializer that we're overriding has trivial destruction.
413 DiagID = diag::err_initializer_overrides_destructed;
414 } else if (!OldInit->getSourceRange().isValid()) {
415 // We need to check on source range validity because the previous
416 // initializer does not have to be an explicit initializer. e.g.,
417 //
418 // struct P { int a, b; };
419 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
420 //
421 // There is an overwrite taking place because the first braced initializer
422 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
423 //
424 // Such overwrites are harmless, so we don't diagnose them. (Note that in
425 // C++, this cannot be reached unless we've already seen and diagnosed a
426 // different conformance issue, such as a mixture of designated and
427 // non-designated initializers or a multi-level designator.)
428 return;
429 }
430
431 if (!VerifyOnly) {
432 SemaRef.Diag(NewInitRange.getBegin(), DiagID)
433 << NewInitRange << FullyOverwritten << OldInit->getType();
434 SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer)
435 << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten)
436 << OldInit->getSourceRange();
437 }
438 }
439
440 // Explanation on the "FillWithNoInit" mode:
441 //
442 // Assume we have the following definitions (Case#1):
443 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
444 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
445 //
446 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
447 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
448 //
449 // But if we have (Case#2):
450 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
451 //
452 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
453 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
454 //
455 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
456 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
457 // initializers but with special "NoInitExpr" place holders, which tells the
458 // CodeGen not to generate any initializers for these parts.
459 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
460 const InitializedEntity &ParentEntity,
461 InitListExpr *ILE, bool &RequiresSecondPass,
462 bool FillWithNoInit);
463 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
464 const InitializedEntity &ParentEntity,
465 InitListExpr *ILE, bool &RequiresSecondPass,
466 bool FillWithNoInit = false);
467 void FillInEmptyInitializations(const InitializedEntity &Entity,
468 InitListExpr *ILE, bool &RequiresSecondPass,
469 InitListExpr *OuterILE, unsigned OuterIndex,
470 bool FillWithNoInit = false);
471 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
472 Expr *InitExpr, FieldDecl *Field,
473 bool TopLevelObject);
474 void CheckEmptyInitializable(const InitializedEntity &Entity,
475 SourceLocation Loc);
476
477public:
478 InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL,
479 QualType &T, bool VerifyOnly, bool TreatUnavailableAsInvalid,
480 bool InOverloadResolution = false);
481 bool HadError() { return hadError; }
482
483 // Retrieves the fully-structured initializer list used for
484 // semantic analysis and code generation.
485 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
486};
487
488} // end anonymous namespace
489
490ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc,
491 const InitializedEntity &Entity) {
492 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
493 true);
494 MultiExprArg SubInit;
495 Expr *InitExpr;
496 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
497
498 // C++ [dcl.init.aggr]p7:
499 // If there are fewer initializer-clauses in the list than there are
500 // members in the aggregate, then each member not explicitly initialized
501 // ...
502 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
503 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
504 if (EmptyInitList) {
505 // C++1y / DR1070:
506 // shall be initialized [...] from an empty initializer list.
507 //
508 // We apply the resolution of this DR to C++11 but not C++98, since C++98
509 // does not have useful semantics for initialization from an init list.
510 // We treat this as copy-initialization, because aggregate initialization
511 // always performs copy-initialization on its elements.
512 //
513 // Only do this if we're initializing a class type, to avoid filling in
514 // the initializer list where possible.
515 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
516 InitListExpr(SemaRef.Context, Loc, None, Loc);
517 InitExpr->setType(SemaRef.Context.VoidTy);
518 SubInit = InitExpr;
519 Kind = InitializationKind::CreateCopy(Loc, Loc);
520 } else {
521 // C++03:
522 // shall be value-initialized.
523 }
524
525 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
526 // libstdc++4.6 marks the vector default constructor as explicit in
527 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
528 // stlport does so too. Look for std::__debug for libstdc++, and for
529 // std:: for stlport. This is effectively a compiler-side implementation of
530 // LWG2193.
531 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
532 InitializationSequence::FK_ExplicitConstructor) {
533 OverloadCandidateSet::iterator Best;
534 OverloadingResult O =
535 InitSeq.getFailedCandidateSet()
536 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
537 (void)O;
538 assert(O == OR_Success && "Inconsistent overload resolution")(static_cast <bool> (O == OR_Success && "Inconsistent overload resolution"
) ? void (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 538, __extension__ __PRETTY_FUNCTION__))
;
539 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
540 CXXRecordDecl *R = CtorDecl->getParent();
541
542 if (CtorDecl->getMinRequiredArguments() == 0 &&
543 CtorDecl->isExplicit() && R->getDeclName() &&
544 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
545 bool IsInStd = false;
546 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
547 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
548 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
549 IsInStd = true;
550 }
551
552 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
553 .Cases("basic_string", "deque", "forward_list", true)
554 .Cases("list", "map", "multimap", "multiset", true)
555 .Cases("priority_queue", "queue", "set", "stack", true)
556 .Cases("unordered_map", "unordered_set", "vector", true)
557 .Default(false)) {
558 InitSeq.InitializeFrom(
559 SemaRef, Entity,
560 InitializationKind::CreateValue(Loc, Loc, Loc, true),
561 MultiExprArg(), /*TopLevelOfInitList=*/false,
562 TreatUnavailableAsInvalid);
563 // Emit a warning for this. System header warnings aren't shown
564 // by default, but people working on system headers should see it.
565 if (!VerifyOnly) {
566 SemaRef.Diag(CtorDecl->getLocation(),
567 diag::warn_invalid_initializer_from_system_header);
568 if (Entity.getKind() == InitializedEntity::EK_Member)
569 SemaRef.Diag(Entity.getDecl()->getLocation(),
570 diag::note_used_in_initialization_here);
571 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
572 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
573 }
574 }
575 }
576 }
577 if (!InitSeq) {
578 if (!VerifyOnly) {
579 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
580 if (Entity.getKind() == InitializedEntity::EK_Member)
581 SemaRef.Diag(Entity.getDecl()->getLocation(),
582 diag::note_in_omitted_aggregate_initializer)
583 << /*field*/1 << Entity.getDecl();
584 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
585 bool IsTrailingArrayNewMember =
586 Entity.getParent() &&
587 Entity.getParent()->isVariableLengthArrayNew();
588 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
589 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
590 << Entity.getElementIndex();
591 }
592 }
593 hadError = true;
594 return ExprError();
595 }
596
597 return VerifyOnly ? ExprResult()
598 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
599}
600
601void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
602 SourceLocation Loc) {
603 // If we're building a fully-structured list, we'll check this at the end
604 // once we know which elements are actually initialized. Otherwise, we know
605 // that there are no designators so we can just check now.
606 if (FullyStructuredList)
607 return;
608 PerformEmptyInit(Loc, Entity);
609}
610
611void InitListChecker::FillInEmptyInitForBase(
612 unsigned Init, const CXXBaseSpecifier &Base,
613 const InitializedEntity &ParentEntity, InitListExpr *ILE,
614 bool &RequiresSecondPass, bool FillWithNoInit) {
615 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
616 SemaRef.Context, &Base, false, &ParentEntity);
617
618 if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) {
619 ExprResult BaseInit = FillWithNoInit
620 ? new (SemaRef.Context) NoInitExpr(Base.getType())
621 : PerformEmptyInit(ILE->getEndLoc(), BaseEntity);
622 if (BaseInit.isInvalid()) {
623 hadError = true;
624 return;
625 }
626
627 if (!VerifyOnly) {
628 assert(Init < ILE->getNumInits() && "should have been expanded")(static_cast <bool> (Init < ILE->getNumInits() &&
"should have been expanded") ? void (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 628, __extension__ __PRETTY_FUNCTION__))
;
629 ILE->setInit(Init, BaseInit.getAs<Expr>());
630 }
631 } else if (InitListExpr *InnerILE =
632 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
633 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
634 ILE, Init, FillWithNoInit);
635 } else if (DesignatedInitUpdateExpr *InnerDIUE =
636 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
637 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
638 RequiresSecondPass, ILE, Init,
639 /*FillWithNoInit =*/true);
640 }
641}
642
643void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
644 const InitializedEntity &ParentEntity,
645 InitListExpr *ILE,
646 bool &RequiresSecondPass,
647 bool FillWithNoInit) {
648 SourceLocation Loc = ILE->getEndLoc();
649 unsigned NumInits = ILE->getNumInits();
650 InitializedEntity MemberEntity
651 = InitializedEntity::InitializeMember(Field, &ParentEntity);
652
653 if (Init >= NumInits || !ILE->getInit(Init)) {
654 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
655 if (!RType->getDecl()->isUnion())
656 assert((Init < NumInits || VerifyOnly) &&(static_cast <bool> ((Init < NumInits || VerifyOnly)
&& "This ILE should have been expanded") ? void (0) :
__assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 657, __extension__ __PRETTY_FUNCTION__))
657 "This ILE should have been expanded")(static_cast <bool> ((Init < NumInits || VerifyOnly)
&& "This ILE should have been expanded") ? void (0) :
__assert_fail ("(Init < NumInits || VerifyOnly) && \"This ILE should have been expanded\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 657, __extension__ __PRETTY_FUNCTION__))
;
658
659 if (FillWithNoInit) {
660 assert(!VerifyOnly && "should not fill with no-init in verify-only mode")(static_cast <bool> (!VerifyOnly && "should not fill with no-init in verify-only mode"
) ? void (0) : __assert_fail ("!VerifyOnly && \"should not fill with no-init in verify-only mode\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 660, __extension__ __PRETTY_FUNCTION__))
;
661 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
662 if (Init < NumInits)
663 ILE->setInit(Init, Filler);
664 else
665 ILE->updateInit(SemaRef.Context, Init, Filler);
666 return;
667 }
668 // C++1y [dcl.init.aggr]p7:
669 // If there are fewer initializer-clauses in the list than there are
670 // members in the aggregate, then each member not explicitly initialized
671 // shall be initialized from its brace-or-equal-initializer [...]
672 if (Field->hasInClassInitializer()) {
673 if (VerifyOnly)
674 return;
675
676 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
677 if (DIE.isInvalid()) {
678 hadError = true;
679 return;
680 }
681 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
682 if (Init < NumInits)
683 ILE->setInit(Init, DIE.get());
684 else {
685 ILE->updateInit(SemaRef.Context, Init, DIE.get());
686 RequiresSecondPass = true;
687 }
688 return;
689 }
690
691 if (Field->getType()->isReferenceType()) {
692 if (!VerifyOnly) {
693 // C++ [dcl.init.aggr]p9:
694 // If an incomplete or empty initializer-list leaves a
695 // member of reference type uninitialized, the program is
696 // ill-formed.
697 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
698 << Field->getType()
699 << ILE->getSyntacticForm()->getSourceRange();
700 SemaRef.Diag(Field->getLocation(),
701 diag::note_uninit_reference_member);
702 }
703 hadError = true;
704 return;
705 }
706
707 ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity);
708 if (MemberInit.isInvalid()) {
709 hadError = true;
710 return;
711 }
712
713 if (hadError || VerifyOnly) {
714 // Do nothing
715 } else if (Init < NumInits) {
716 ILE->setInit(Init, MemberInit.getAs<Expr>());
717 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
718 // Empty initialization requires a constructor call, so
719 // extend the initializer list to include the constructor
720 // call and make a note that we'll need to take another pass
721 // through the initializer list.
722 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
723 RequiresSecondPass = true;
724 }
725 } else if (InitListExpr *InnerILE
726 = dyn_cast<InitListExpr>(ILE->getInit(Init))) {
727 FillInEmptyInitializations(MemberEntity, InnerILE,
728 RequiresSecondPass, ILE, Init, FillWithNoInit);
729 } else if (DesignatedInitUpdateExpr *InnerDIUE =
730 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
731 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
732 RequiresSecondPass, ILE, Init,
733 /*FillWithNoInit =*/true);
734 }
735}
736
737/// Recursively replaces NULL values within the given initializer list
738/// with expressions that perform value-initialization of the
739/// appropriate type, and finish off the InitListExpr formation.
740void
741InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
742 InitListExpr *ILE,
743 bool &RequiresSecondPass,
744 InitListExpr *OuterILE,
745 unsigned OuterIndex,
746 bool FillWithNoInit) {
747 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(static_cast <bool> ((ILE->getType() != SemaRef.Context
.VoidTy) && "Should not have void type") ? void (0) :
__assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 748, __extension__ __PRETTY_FUNCTION__))
748 "Should not have void type")(static_cast <bool> ((ILE->getType() != SemaRef.Context
.VoidTy) && "Should not have void type") ? void (0) :
__assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 748, __extension__ __PRETTY_FUNCTION__))
;
749
750 // We don't need to do any checks when just filling NoInitExprs; that can't
751 // fail.
752 if (FillWithNoInit && VerifyOnly)
753 return;
754
755 // If this is a nested initializer list, we might have changed its contents
756 // (and therefore some of its properties, such as instantiation-dependence)
757 // while filling it in. Inform the outer initializer list so that its state
758 // can be updated to match.
759 // FIXME: We should fully build the inner initializers before constructing
760 // the outer InitListExpr instead of mutating AST nodes after they have
761 // been used as subexpressions of other nodes.
762 struct UpdateOuterILEWithUpdatedInit {
763 InitListExpr *Outer;
764 unsigned OuterIndex;
765 ~UpdateOuterILEWithUpdatedInit() {
766 if (Outer)
767 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
768 }
769 } UpdateOuterRAII = {OuterILE, OuterIndex};
770
771 // A transparent ILE is not performing aggregate initialization and should
772 // not be filled in.
773 if (ILE->isTransparent())
774 return;
775
776 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
777 const RecordDecl *RDecl = RType->getDecl();
778 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
779 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
780 Entity, ILE, RequiresSecondPass, FillWithNoInit);
781 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
782 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
783 for (auto *Field : RDecl->fields()) {
784 if (Field->hasInClassInitializer()) {
785 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
786 FillWithNoInit);
787 break;
788 }
789 }
790 } else {
791 // The fields beyond ILE->getNumInits() are default initialized, so in
792 // order to leave them uninitialized, the ILE is expanded and the extra
793 // fields are then filled with NoInitExpr.
794 unsigned NumElems = numStructUnionElements(ILE->getType());
795 if (RDecl->hasFlexibleArrayMember())
796 ++NumElems;
797 if (!VerifyOnly && ILE->getNumInits() < NumElems)
798 ILE->resizeInits(SemaRef.Context, NumElems);
799
800 unsigned Init = 0;
801
802 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
803 for (auto &Base : CXXRD->bases()) {
804 if (hadError)
805 return;
806
807 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
808 FillWithNoInit);
809 ++Init;
810 }
811 }
812
813 for (auto *Field : RDecl->fields()) {
814 if (Field->isUnnamedBitfield())
815 continue;
816
817 if (hadError)
818 return;
819
820 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
821 FillWithNoInit);
822 if (hadError)
823 return;
824
825 ++Init;
826
827 // Only look at the first initialization of a union.
828 if (RDecl->isUnion())
829 break;
830 }
831 }
832
833 return;
834 }
835
836 QualType ElementType;
837
838 InitializedEntity ElementEntity = Entity;
839 unsigned NumInits = ILE->getNumInits();
840 unsigned NumElements = NumInits;
841 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
842 ElementType = AType->getElementType();
843 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
844 NumElements = CAType->getSize().getZExtValue();
845 // For an array new with an unknown bound, ask for one additional element
846 // in order to populate the array filler.
847 if (Entity.isVariableLengthArrayNew())
848 ++NumElements;
849 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
850 0, Entity);
851 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
852 ElementType = VType->getElementType();
853 NumElements = VType->getNumElements();
854 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
855 0, Entity);
856 } else
857 ElementType = ILE->getType();
858
859 bool SkipEmptyInitChecks = false;
860 for (unsigned Init = 0; Init != NumElements; ++Init) {
861 if (hadError)
862 return;
863
864 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
865 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
866 ElementEntity.setElementIndex(Init);
867
868 if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks))
869 return;
870
871 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
872 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
873 ILE->setInit(Init, ILE->getArrayFiller());
874 else if (!InitExpr && !ILE->hasArrayFiller()) {
875 // In VerifyOnly mode, there's no point performing empty initialization
876 // more than once.
877 if (SkipEmptyInitChecks)
878 continue;
879
880 Expr *Filler = nullptr;
881
882 if (FillWithNoInit)
883 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
884 else {
885 ExprResult ElementInit =
886 PerformEmptyInit(ILE->getEndLoc(), ElementEntity);
887 if (ElementInit.isInvalid()) {
888 hadError = true;
889 return;
890 }
891
892 Filler = ElementInit.getAs<Expr>();
893 }
894
895 if (hadError) {
896 // Do nothing
897 } else if (VerifyOnly) {
898 SkipEmptyInitChecks = true;
899 } else if (Init < NumInits) {
900 // For arrays, just set the expression used for value-initialization
901 // of the "holes" in the array.
902 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
903 ILE->setArrayFiller(Filler);
904 else
905 ILE->setInit(Init, Filler);
906 } else {
907 // For arrays, just set the expression used for value-initialization
908 // of the rest of elements and exit.
909 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
910 ILE->setArrayFiller(Filler);
911 return;
912 }
913
914 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
915 // Empty initialization requires a constructor call, so
916 // extend the initializer list to include the constructor
917 // call and make a note that we'll need to take another pass
918 // through the initializer list.
919 ILE->updateInit(SemaRef.Context, Init, Filler);
920 RequiresSecondPass = true;
921 }
922 }
923 } else if (InitListExpr *InnerILE
924 = dyn_cast_or_null<InitListExpr>(InitExpr)) {
925 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
926 ILE, Init, FillWithNoInit);
927 } else if (DesignatedInitUpdateExpr *InnerDIUE =
928 dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) {
929 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
930 RequiresSecondPass, ILE, Init,
931 /*FillWithNoInit =*/true);
932 }
933 }
934}
935
936static bool hasAnyDesignatedInits(const InitListExpr *IL) {
937 for (const Stmt *Init : *IL)
938 if (Init && isa<DesignatedInitExpr>(Init))
939 return true;
940 return false;
941}
942
943InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
944 InitListExpr *IL, QualType &T, bool VerifyOnly,
945 bool TreatUnavailableAsInvalid,
946 bool InOverloadResolution)
947 : SemaRef(S), VerifyOnly(VerifyOnly),
948 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid),
949 InOverloadResolution(InOverloadResolution) {
950 if (!VerifyOnly || hasAnyDesignatedInits(IL)) {
951 FullyStructuredList =
952 createInitListExpr(T, IL->getSourceRange(), IL->getNumInits());
953
954 // FIXME: Check that IL isn't already the semantic form of some other
955 // InitListExpr. If it is, we'd create a broken AST.
956 if (!VerifyOnly)
957 FullyStructuredList->setSyntacticForm(IL);
958 }
959
960 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
961 /*TopLevelObject=*/true);
962
963 if (!hadError && FullyStructuredList) {
964 bool RequiresSecondPass = false;
965 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
966 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
967 if (RequiresSecondPass && !hadError)
968 FillInEmptyInitializations(Entity, FullyStructuredList,
969 RequiresSecondPass, nullptr, 0);
970 }
971 if (hadError && FullyStructuredList)
972 FullyStructuredList->markError();
973}
974
975int InitListChecker::numArrayElements(QualType DeclType) {
976 // FIXME: use a proper constant
977 int maxElements = 0x7FFFFFFF;
978 if (const ConstantArrayType *CAT =
979 SemaRef.Context.getAsConstantArrayType(DeclType)) {
980 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
981 }
982 return maxElements;
983}
984
985int InitListChecker::numStructUnionElements(QualType DeclType) {
986 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
987 int InitializableMembers = 0;
988 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
989 InitializableMembers += CXXRD->getNumBases();
990 for (const auto *Field : structDecl->fields())
991 if (!Field->isUnnamedBitfield())
992 ++InitializableMembers;
993
994 if (structDecl->isUnion())
995 return std::min(InitializableMembers, 1);
996 return InitializableMembers - structDecl->hasFlexibleArrayMember();
997}
998
999/// Determine whether Entity is an entity for which it is idiomatic to elide
1000/// the braces in aggregate initialization.
1001static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
1002 // Recursive initialization of the one and only field within an aggregate
1003 // class is considered idiomatic. This case arises in particular for
1004 // initialization of std::array, where the C++ standard suggests the idiom of
1005 //
1006 // std::array<T, N> arr = {1, 2, 3};
1007 //
1008 // (where std::array is an aggregate struct containing a single array field.
1009
1010 if (!Entity.getParent())
1011 return false;
1012
1013 // Allows elide brace initialization for aggregates with empty base.
1014 if (Entity.getKind() == InitializedEntity::EK_Base) {
1015 auto *ParentRD =
1016 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1017 CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD);
1018 return CXXRD->getNumBases() == 1 && CXXRD->field_empty();
1019 }
1020
1021 // Allow brace elision if the only subobject is a field.
1022 if (Entity.getKind() == InitializedEntity::EK_Member) {
1023 auto *ParentRD =
1024 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
1025 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) {
1026 if (CXXRD->getNumBases()) {
1027 return false;
1028 }
1029 }
1030 auto FieldIt = ParentRD->field_begin();
1031 assert(FieldIt != ParentRD->field_end() &&(static_cast <bool> (FieldIt != ParentRD->field_end(
) && "no fields but have initializer for member?") ? void
(0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1032, __extension__ __PRETTY_FUNCTION__))
1032 "no fields but have initializer for member?")(static_cast <bool> (FieldIt != ParentRD->field_end(
) && "no fields but have initializer for member?") ? void
(0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1032, __extension__ __PRETTY_FUNCTION__))
;
1033 return ++FieldIt == ParentRD->field_end();
1034 }
1035
1036 return false;
1037}
1038
1039/// Check whether the range of the initializer \p ParentIList from element
1040/// \p Index onwards can be used to initialize an object of type \p T. Update
1041/// \p Index to indicate how many elements of the list were consumed.
1042///
1043/// This also fills in \p StructuredList, from element \p StructuredIndex
1044/// onwards, with the fully-braced, desugared form of the initialization.
1045void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
1046 InitListExpr *ParentIList,
1047 QualType T, unsigned &Index,
1048 InitListExpr *StructuredList,
1049 unsigned &StructuredIndex) {
1050 int maxElements = 0;
1051
1052 if (T->isArrayType())
1053 maxElements = numArrayElements(T);
1054 else if (T->isRecordType())
1055 maxElements = numStructUnionElements(T);
1056 else if (T->isVectorType())
1057 maxElements = T->castAs<VectorType>()->getNumElements();
1058 else
1059 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1059)
;
1060
1061 if (maxElements == 0) {
1062 if (!VerifyOnly)
1063 SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(),
1064 diag::err_implicit_empty_initializer);
1065 ++Index;
1066 hadError = true;
1067 return;
1068 }
1069
1070 // Build a structured initializer list corresponding to this subobject.
1071 InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit(
1072 ParentIList, Index, T, StructuredList, StructuredIndex,
1073 SourceRange(ParentIList->getInit(Index)->getBeginLoc(),
1074 ParentIList->getSourceRange().getEnd()));
1075 unsigned StructuredSubobjectInitIndex = 0;
1076
1077 // Check the element types and build the structural subobject.
1078 unsigned StartIndex = Index;
1079 CheckListElementTypes(Entity, ParentIList, T,
1080 /*SubobjectIsDesignatorContext=*/false, Index,
1081 StructuredSubobjectInitList,
1082 StructuredSubobjectInitIndex);
1083
1084 if (StructuredSubobjectInitList) {
1085 StructuredSubobjectInitList->setType(T);
1086
1087 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
1088 // Update the structured sub-object initializer so that it's ending
1089 // range corresponds with the end of the last initializer it used.
1090 if (EndIndex < ParentIList->getNumInits() &&
1091 ParentIList->getInit(EndIndex)) {
1092 SourceLocation EndLoc
1093 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
1094 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
1095 }
1096
1097 // Complain about missing braces.
1098 if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) &&
1099 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
1100 !isIdiomaticBraceElisionEntity(Entity)) {
1101 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1102 diag::warn_missing_braces)
1103 << StructuredSubobjectInitList->getSourceRange()
1104 << FixItHint::CreateInsertion(
1105 StructuredSubobjectInitList->getBeginLoc(), "{")
1106 << FixItHint::CreateInsertion(
1107 SemaRef.getLocForEndOfToken(
1108 StructuredSubobjectInitList->getEndLoc()),
1109 "}");
1110 }
1111
1112 // Warn if this type won't be an aggregate in future versions of C++.
1113 auto *CXXRD = T->getAsCXXRecordDecl();
1114 if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1115 SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(),
1116 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1117 << StructuredSubobjectInitList->getSourceRange() << T;
1118 }
1119 }
1120}
1121
1122/// Warn that \p Entity was of scalar type and was initialized by a
1123/// single-element braced initializer list.
1124static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
1125 SourceRange Braces) {
1126 // Don't warn during template instantiation. If the initialization was
1127 // non-dependent, we warned during the initial parse; otherwise, the
1128 // type might not be scalar in some uses of the template.
1129 if (S.inTemplateInstantiation())
1130 return;
1131
1132 unsigned DiagID = 0;
1133
1134 switch (Entity.getKind()) {
1135 case InitializedEntity::EK_VectorElement:
1136 case InitializedEntity::EK_ComplexElement:
1137 case InitializedEntity::EK_ArrayElement:
1138 case InitializedEntity::EK_Parameter:
1139 case InitializedEntity::EK_Parameter_CF_Audited:
1140 case InitializedEntity::EK_TemplateParameter:
1141 case InitializedEntity::EK_Result:
1142 // Extra braces here are suspicious.
1143 DiagID = diag::warn_braces_around_init;
1144 break;
1145
1146 case InitializedEntity::EK_Member:
1147 // Warn on aggregate initialization but not on ctor init list or
1148 // default member initializer.
1149 if (Entity.getParent())
1150 DiagID = diag::warn_braces_around_init;
1151 break;
1152
1153 case InitializedEntity::EK_Variable:
1154 case InitializedEntity::EK_LambdaCapture:
1155 // No warning, might be direct-list-initialization.
1156 // FIXME: Should we warn for copy-list-initialization in these cases?
1157 break;
1158
1159 case InitializedEntity::EK_New:
1160 case InitializedEntity::EK_Temporary:
1161 case InitializedEntity::EK_CompoundLiteralInit:
1162 // No warning, braces are part of the syntax of the underlying construct.
1163 break;
1164
1165 case InitializedEntity::EK_RelatedResult:
1166 // No warning, we already warned when initializing the result.
1167 break;
1168
1169 case InitializedEntity::EK_Exception:
1170 case InitializedEntity::EK_Base:
1171 case InitializedEntity::EK_Delegating:
1172 case InitializedEntity::EK_BlockElement:
1173 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1174 case InitializedEntity::EK_Binding:
1175 case InitializedEntity::EK_StmtExprResult:
1176 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1176)
;
1177 }
1178
1179 if (DiagID) {
1180 S.Diag(Braces.getBegin(), DiagID)
1181 << Entity.getType()->isSizelessBuiltinType() << Braces
1182 << FixItHint::CreateRemoval(Braces.getBegin())
1183 << FixItHint::CreateRemoval(Braces.getEnd());
1184 }
1185}
1186
1187/// Check whether the initializer \p IList (that was written with explicit
1188/// braces) can be used to initialize an object of type \p T.
1189///
1190/// This also fills in \p StructuredList with the fully-braced, desugared
1191/// form of the initialization.
1192void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1193 InitListExpr *IList, QualType &T,
1194 InitListExpr *StructuredList,
1195 bool TopLevelObject) {
1196 unsigned Index = 0, StructuredIndex = 0;
1197 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1198 Index, StructuredList, StructuredIndex, TopLevelObject);
1199 if (StructuredList) {
1200 QualType ExprTy = T;
1201 if (!ExprTy->isArrayType())
1202 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1203 if (!VerifyOnly)
1204 IList->setType(ExprTy);
1205 StructuredList->setType(ExprTy);
1206 }
1207 if (hadError)
1208 return;
1209
1210 // Don't complain for incomplete types, since we'll get an error elsewhere.
1211 if (Index < IList->getNumInits() && !T->isIncompleteType()) {
1212 // We have leftover initializers
1213 bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus ||
1214 (SemaRef.getLangOpts().OpenCL && T->isVectorType());
1215 hadError = ExtraInitsIsError;
1216 if (VerifyOnly) {
1217 return;
1218 } else if (StructuredIndex == 1 &&
1219 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1220 SIF_None) {
1221 unsigned DK =
1222 ExtraInitsIsError
1223 ? diag::err_excess_initializers_in_char_array_initializer
1224 : diag::ext_excess_initializers_in_char_array_initializer;
1225 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1226 << IList->getInit(Index)->getSourceRange();
1227 } else if (T->isSizelessBuiltinType()) {
1228 unsigned DK = ExtraInitsIsError
1229 ? diag::err_excess_initializers_for_sizeless_type
1230 : diag::ext_excess_initializers_for_sizeless_type;
1231 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1232 << T << IList->getInit(Index)->getSourceRange();
1233 } else {
1234 int initKind = T->isArrayType() ? 0 :
1235 T->isVectorType() ? 1 :
1236 T->isScalarType() ? 2 :
1237 T->isUnionType() ? 3 :
1238 4;
1239
1240 unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers
1241 : diag::ext_excess_initializers;
1242 SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK)
1243 << initKind << IList->getInit(Index)->getSourceRange();
1244 }
1245 }
1246
1247 if (!VerifyOnly) {
1248 if (T->isScalarType() && IList->getNumInits() == 1 &&
1249 !isa<InitListExpr>(IList->getInit(0)))
1250 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1251
1252 // Warn if this is a class type that won't be an aggregate in future
1253 // versions of C++.
1254 auto *CXXRD = T->getAsCXXRecordDecl();
1255 if (CXXRD && CXXRD->hasUserDeclaredConstructor()) {
1256 // Don't warn if there's an equivalent default constructor that would be
1257 // used instead.
1258 bool HasEquivCtor = false;
1259 if (IList->getNumInits() == 0) {
1260 auto *CD = SemaRef.LookupDefaultConstructor(CXXRD);
1261 HasEquivCtor = CD && !CD->isDeleted();
1262 }
1263
1264 if (!HasEquivCtor) {
1265 SemaRef.Diag(IList->getBeginLoc(),
1266 diag::warn_cxx20_compat_aggregate_init_with_ctors)
1267 << IList->getSourceRange() << T;
1268 }
1269 }
1270 }
1271}
1272
1273void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1274 InitListExpr *IList,
1275 QualType &DeclType,
1276 bool SubobjectIsDesignatorContext,
1277 unsigned &Index,
1278 InitListExpr *StructuredList,
1279 unsigned &StructuredIndex,
1280 bool TopLevelObject) {
1281 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1282 // Explicitly braced initializer for complex type can be real+imaginary
1283 // parts.
1284 CheckComplexType(Entity, IList, DeclType, Index,
1285 StructuredList, StructuredIndex);
1286 } else if (DeclType->isScalarType()) {
1287 CheckScalarType(Entity, IList, DeclType, Index,
1288 StructuredList, StructuredIndex);
1289 } else if (DeclType->isVectorType()) {
1290 CheckVectorType(Entity, IList, DeclType, Index,
1291 StructuredList, StructuredIndex);
1292 } else if (DeclType->isRecordType()) {
1293 assert(DeclType->isAggregateType() &&(static_cast <bool> (DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
) ? void (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1294, __extension__ __PRETTY_FUNCTION__))
1294 "non-aggregate records should be handed in CheckSubElementType")(static_cast <bool> (DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
) ? void (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1294, __extension__ __PRETTY_FUNCTION__))
;
1295 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
1296 auto Bases =
1297 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1298 CXXRecordDecl::base_class_iterator());
1299 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1300 Bases = CXXRD->bases();
1301 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1302 SubobjectIsDesignatorContext, Index, StructuredList,
1303 StructuredIndex, TopLevelObject);
1304 } else if (DeclType->isArrayType()) {
1305 llvm::APSInt Zero(
1306 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1307 false);
1308 CheckArrayType(Entity, IList, DeclType, Zero,
1309 SubobjectIsDesignatorContext, Index,
1310 StructuredList, StructuredIndex);
1311 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1312 // This type is invalid, issue a diagnostic.
1313 ++Index;
1314 if (!VerifyOnly)
1315 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1316 << DeclType;
1317 hadError = true;
1318 } else if (DeclType->isReferenceType()) {
1319 CheckReferenceType(Entity, IList, DeclType, Index,
1320 StructuredList, StructuredIndex);
1321 } else if (DeclType->isObjCObjectType()) {
1322 if (!VerifyOnly)
1323 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType;
1324 hadError = true;
1325 } else if (DeclType->isOCLIntelSubgroupAVCType() ||
1326 DeclType->isSizelessBuiltinType()) {
1327 // Checks for scalar type are sufficient for these types too.
1328 CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1329 StructuredIndex);
1330 } else {
1331 if (!VerifyOnly)
1332 SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type)
1333 << DeclType;
1334 hadError = true;
1335 }
1336}
1337
1338void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1339 InitListExpr *IList,
1340 QualType ElemType,
1341 unsigned &Index,
1342 InitListExpr *StructuredList,
1343 unsigned &StructuredIndex,
1344 bool DirectlyDesignated) {
1345 Expr *expr = IList->getInit(Index);
1346
1347 if (ElemType->isReferenceType())
1348 return CheckReferenceType(Entity, IList, ElemType, Index,
1349 StructuredList, StructuredIndex);
1350
1351 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1352 if (SubInitList->getNumInits() == 1 &&
1353 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1354 SIF_None) {
1355 // FIXME: It would be more faithful and no less correct to include an
1356 // InitListExpr in the semantic form of the initializer list in this case.
1357 expr = SubInitList->getInit(0);
1358 }
1359 // Nested aggregate initialization and C++ initialization are handled later.
1360 } else if (isa<ImplicitValueInitExpr>(expr)) {
1361 // This happens during template instantiation when we see an InitListExpr
1362 // that we've already checked once.
1363 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&(static_cast <bool> (SemaRef.Context.hasSameType(expr->
getType(), ElemType) && "found implicit initialization for the wrong type"
) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1364, __extension__ __PRETTY_FUNCTION__))
1364 "found implicit initialization for the wrong type")(static_cast <bool> (SemaRef.Context.hasSameType(expr->
getType(), ElemType) && "found implicit initialization for the wrong type"
) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1364, __extension__ __PRETTY_FUNCTION__))
;
1365 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1366 ++Index;
1367 return;
1368 }
1369
1370 if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) {
1371 // C++ [dcl.init.aggr]p2:
1372 // Each member is copy-initialized from the corresponding
1373 // initializer-clause.
1374
1375 // FIXME: Better EqualLoc?
1376 InitializationKind Kind =
1377 InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation());
1378
1379 // Vector elements can be initialized from other vectors in which case
1380 // we need initialization entity with a type of a vector (and not a vector
1381 // element!) initializing multiple vector elements.
1382 auto TmpEntity =
1383 (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType())
1384 ? InitializedEntity::InitializeTemporary(ElemType)
1385 : Entity;
1386
1387 InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr,
1388 /*TopLevelOfInitList*/ true);
1389
1390 // C++14 [dcl.init.aggr]p13:
1391 // If the assignment-expression can initialize a member, the member is
1392 // initialized. Otherwise [...] brace elision is assumed
1393 //
1394 // Brace elision is never performed if the element is not an
1395 // assignment-expression.
1396 if (Seq || isa<InitListExpr>(expr)) {
1397 if (!VerifyOnly) {
1398 ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr);
1399 if (Result.isInvalid())
1400 hadError = true;
1401
1402 UpdateStructuredListElement(StructuredList, StructuredIndex,
1403 Result.getAs<Expr>());
1404 } else if (!Seq) {
1405 hadError = true;
1406 } else if (StructuredList) {
1407 UpdateStructuredListElement(StructuredList, StructuredIndex,
1408 getDummyInit());
1409 }
1410 ++Index;
1411 return;
1412 }
1413
1414 // Fall through for subaggregate initialization
1415 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1416 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1417 return CheckScalarType(Entity, IList, ElemType, Index,
1418 StructuredList, StructuredIndex);
1419 } else if (const ArrayType *arrayType =
1420 SemaRef.Context.getAsArrayType(ElemType)) {
1421 // arrayType can be incomplete if we're initializing a flexible
1422 // array member. There's nothing we can do with the completed
1423 // type here, though.
1424
1425 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1426 // FIXME: Should we do this checking in verify-only mode?
1427 if (!VerifyOnly)
1428 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1429 if (StructuredList)
1430 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1431 ++Index;
1432 return;
1433 }
1434
1435 // Fall through for subaggregate initialization.
1436
1437 } else {
1438 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(static_cast <bool> ((ElemType->isRecordType() || ElemType
->isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1439, __extension__ __PRETTY_FUNCTION__))
1439 ElemType->isOpenCLSpecificType()) && "Unexpected type")(static_cast <bool> ((ElemType->isRecordType() || ElemType
->isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1439, __extension__ __PRETTY_FUNCTION__))
;
1440
1441 // C99 6.7.8p13:
1442 //
1443 // The initializer for a structure or union object that has
1444 // automatic storage duration shall be either an initializer
1445 // list as described below, or a single expression that has
1446 // compatible structure or union type. In the latter case, the
1447 // initial value of the object, including unnamed members, is
1448 // that of the expression.
1449 ExprResult ExprRes = expr;
1450 if (SemaRef.CheckSingleAssignmentConstraints(
1451 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1452 if (ExprRes.isInvalid())
1453 hadError = true;
1454 else {
1455 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1456 if (ExprRes.isInvalid())
1457 hadError = true;
1458 }
1459 UpdateStructuredListElement(StructuredList, StructuredIndex,
1460 ExprRes.getAs<Expr>());
1461 ++Index;
1462 return;
1463 }
1464 ExprRes.get();
1465 // Fall through for subaggregate initialization
1466 }
1467
1468 // C++ [dcl.init.aggr]p12:
1469 //
1470 // [...] Otherwise, if the member is itself a non-empty
1471 // subaggregate, brace elision is assumed and the initializer is
1472 // considered for the initialization of the first member of
1473 // the subaggregate.
1474 // OpenCL vector initializer is handled elsewhere.
1475 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1476 ElemType->isAggregateType()) {
1477 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1478 StructuredIndex);
1479 ++StructuredIndex;
1480
1481 // In C++20, brace elision is not permitted for a designated initializer.
1482 if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) {
1483 if (InOverloadResolution)
1484 hadError = true;
1485 if (!VerifyOnly) {
1486 SemaRef.Diag(expr->getBeginLoc(),
1487 diag::ext_designated_init_brace_elision)
1488 << expr->getSourceRange()
1489 << FixItHint::CreateInsertion(expr->getBeginLoc(), "{")
1490 << FixItHint::CreateInsertion(
1491 SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}");
1492 }
1493 }
1494 } else {
1495 if (!VerifyOnly) {
1496 // We cannot initialize this element, so let PerformCopyInitialization
1497 // produce the appropriate diagnostic. We already checked that this
1498 // initialization will fail.
1499 ExprResult Copy =
1500 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1501 /*TopLevelOfInitList=*/true);
1502 (void)Copy;
1503 assert(Copy.isInvalid() &&(static_cast <bool> (Copy.isInvalid() && "expected non-aggregate initialization to fail"
) ? void (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1504, __extension__ __PRETTY_FUNCTION__))
1504 "expected non-aggregate initialization to fail")(static_cast <bool> (Copy.isInvalid() && "expected non-aggregate initialization to fail"
) ? void (0) : __assert_fail ("Copy.isInvalid() && \"expected non-aggregate initialization to fail\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1504, __extension__ __PRETTY_FUNCTION__))
;
1505 }
1506 hadError = true;
1507 ++Index;
1508 ++StructuredIndex;
1509 }
1510}
1511
1512void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1513 InitListExpr *IList, QualType DeclType,
1514 unsigned &Index,
1515 InitListExpr *StructuredList,
1516 unsigned &StructuredIndex) {
1517 assert(Index == 0 && "Index in explicit init list must be zero")(static_cast <bool> (Index == 0 && "Index in explicit init list must be zero"
) ? void (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1517, __extension__ __PRETTY_FUNCTION__))
;
1518
1519 // As an extension, clang supports complex initializers, which initialize
1520 // a complex number component-wise. When an explicit initializer list for
1521 // a complex number contains two two initializers, this extension kicks in:
1522 // it exepcts the initializer list to contain two elements convertible to
1523 // the element type of the complex type. The first element initializes
1524 // the real part, and the second element intitializes the imaginary part.
1525
1526 if (IList->getNumInits() != 2)
1527 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1528 StructuredIndex);
1529
1530 // This is an extension in C. (The builtin _Complex type does not exist
1531 // in the C++ standard.)
1532 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1533 SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init)
1534 << IList->getSourceRange();
1535
1536 // Initialize the complex number.
1537 QualType elementType = DeclType->castAs<ComplexType>()->getElementType();
1538 InitializedEntity ElementEntity =
1539 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1540
1541 for (unsigned i = 0; i < 2; ++i) {
1542 ElementEntity.setElementIndex(Index);
1543 CheckSubElementType(ElementEntity, IList, elementType, Index,
1544 StructuredList, StructuredIndex);
1545 }
1546}
1547
1548void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1549 InitListExpr *IList, QualType DeclType,
1550 unsigned &Index,
1551 InitListExpr *StructuredList,
1552 unsigned &StructuredIndex) {
1553 if (Index >= IList->getNumInits()) {
1554 if (!VerifyOnly) {
1555 if (DeclType->isSizelessBuiltinType())
1556 SemaRef.Diag(IList->getBeginLoc(),
1557 SemaRef.getLangOpts().CPlusPlus11
1558 ? diag::warn_cxx98_compat_empty_sizeless_initializer
1559 : diag::err_empty_sizeless_initializer)
1560 << DeclType << IList->getSourceRange();
1561 else
1562 SemaRef.Diag(IList->getBeginLoc(),
1563 SemaRef.getLangOpts().CPlusPlus11
1564 ? diag::warn_cxx98_compat_empty_scalar_initializer
1565 : diag::err_empty_scalar_initializer)
1566 << IList->getSourceRange();
1567 }
1568 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1569 ++Index;
1570 ++StructuredIndex;
1571 return;
1572 }
1573
1574 Expr *expr = IList->getInit(Index);
1575 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1576 // FIXME: This is invalid, and accepting it causes overload resolution
1577 // to pick the wrong overload in some corner cases.
1578 if (!VerifyOnly)
1579 SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init)
1580 << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange();
1581
1582 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1583 StructuredIndex);
1584 return;
1585 } else if (isa<DesignatedInitExpr>(expr)) {
1586 if (!VerifyOnly)
1587 SemaRef.Diag(expr->getBeginLoc(),
1588 diag::err_designator_for_scalar_or_sizeless_init)
1589 << DeclType->isSizelessBuiltinType() << DeclType
1590 << expr->getSourceRange();
1591 hadError = true;
1592 ++Index;
1593 ++StructuredIndex;
1594 return;
1595 }
1596
1597 ExprResult Result;
1598 if (VerifyOnly) {
1599 if (SemaRef.CanPerformCopyInitialization(Entity, expr))
1600 Result = getDummyInit();
1601 else
1602 Result = ExprError();
1603 } else {
1604 Result =
1605 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1606 /*TopLevelOfInitList=*/true);
1607 }
1608
1609 Expr *ResultExpr = nullptr;
1610
1611 if (Result.isInvalid())
1612 hadError = true; // types weren't compatible.
1613 else {
1614 ResultExpr = Result.getAs<Expr>();
1615
1616 if (ResultExpr != expr && !VerifyOnly) {
1617 // The type was promoted, update initializer list.
1618 // FIXME: Why are we updating the syntactic init list?
1619 IList->setInit(Index, ResultExpr);
1620 }
1621 }
1622 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1623 ++Index;
1624}
1625
1626void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1627 InitListExpr *IList, QualType DeclType,
1628 unsigned &Index,
1629 InitListExpr *StructuredList,
1630 unsigned &StructuredIndex) {
1631 if (Index >= IList->getNumInits()) {
1632 // FIXME: It would be wonderful if we could point at the actual member. In
1633 // general, it would be useful to pass location information down the stack,
1634 // so that we know the location (or decl) of the "current object" being
1635 // initialized.
1636 if (!VerifyOnly)
1637 SemaRef.Diag(IList->getBeginLoc(),
1638 diag::err_init_reference_member_uninitialized)
1639 << DeclType << IList->getSourceRange();
1640 hadError = true;
1641 ++Index;
1642 ++StructuredIndex;
1643 return;
1644 }
1645
1646 Expr *expr = IList->getInit(Index);
1647 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1648 if (!VerifyOnly)
1649 SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list)
1650 << DeclType << IList->getSourceRange();
1651 hadError = true;
1652 ++Index;
1653 ++StructuredIndex;
1654 return;
1655 }
1656
1657 ExprResult Result;
1658 if (VerifyOnly) {
1659 if (SemaRef.CanPerformCopyInitialization(Entity,expr))
1660 Result = getDummyInit();
1661 else
1662 Result = ExprError();
1663 } else {
1664 Result =
1665 SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr,
1666 /*TopLevelOfInitList=*/true);
1667 }
1668
1669 if (Result.isInvalid())
1670 hadError = true;
1671
1672 expr = Result.getAs<Expr>();
1673 // FIXME: Why are we updating the syntactic init list?
1674 if (!VerifyOnly && expr)
1675 IList->setInit(Index, expr);
1676
1677 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1678 ++Index;
1679}
1680
1681void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1682 InitListExpr *IList, QualType DeclType,
1683 unsigned &Index,
1684 InitListExpr *StructuredList,
1685 unsigned &StructuredIndex) {
1686 const VectorType *VT = DeclType->castAs<VectorType>();
1687 unsigned maxElements = VT->getNumElements();
1688 unsigned numEltsInit = 0;
1689 QualType elementType = VT->getElementType();
1690
1691 if (Index >= IList->getNumInits()) {
1692 // Make sure the element type can be value-initialized.
1693 CheckEmptyInitializable(
1694 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1695 IList->getEndLoc());
1696 return;
1697 }
1698
1699 if (!SemaRef.getLangOpts().OpenCL) {
1700 // If the initializing element is a vector, try to copy-initialize
1701 // instead of breaking it apart (which is doomed to failure anyway).
1702 Expr *Init = IList->getInit(Index);
1703 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1704 ExprResult Result;
1705 if (VerifyOnly) {
1706 if (SemaRef.CanPerformCopyInitialization(Entity, Init))
1707 Result = getDummyInit();
1708 else
1709 Result = ExprError();
1710 } else {
1711 Result =
1712 SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init,
1713 /*TopLevelOfInitList=*/true);
1714 }
1715
1716 Expr *ResultExpr = nullptr;
1717 if (Result.isInvalid())
1718 hadError = true; // types weren't compatible.
1719 else {
1720 ResultExpr = Result.getAs<Expr>();
1721
1722 if (ResultExpr != Init && !VerifyOnly) {
1723 // The type was promoted, update initializer list.
1724 // FIXME: Why are we updating the syntactic init list?
1725 IList->setInit(Index, ResultExpr);
1726 }
1727 }
1728 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1729 ++Index;
1730 return;
1731 }
1732
1733 InitializedEntity ElementEntity =
1734 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1735
1736 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1737 // Don't attempt to go past the end of the init list
1738 if (Index >= IList->getNumInits()) {
1739 CheckEmptyInitializable(ElementEntity, IList->getEndLoc());
1740 break;
1741 }
1742
1743 ElementEntity.setElementIndex(Index);
1744 CheckSubElementType(ElementEntity, IList, elementType, Index,
1745 StructuredList, StructuredIndex);
1746 }
1747
1748 if (VerifyOnly)
1749 return;
1750
1751 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1752 const VectorType *T = Entity.getType()->castAs<VectorType>();
1753 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1754 T->getVectorKind() == VectorType::NeonPolyVector)) {
1755 // The ability to use vector initializer lists is a GNU vector extension
1756 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1757 // endian machines it works fine, however on big endian machines it
1758 // exhibits surprising behaviour:
1759 //
1760 // uint32x2_t x = {42, 64};
1761 // return vget_lane_u32(x, 0); // Will return 64.
1762 //
1763 // Because of this, explicitly call out that it is non-portable.
1764 //
1765 SemaRef.Diag(IList->getBeginLoc(),
1766 diag::warn_neon_vector_initializer_non_portable);
1767
1768 const char *typeCode;
1769 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1770
1771 if (elementType->isFloatingType())
1772 typeCode = "f";
1773 else if (elementType->isSignedIntegerType())
1774 typeCode = "s";
1775 else if (elementType->isUnsignedIntegerType())
1776 typeCode = "u";
1777 else
1778 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 1778)
;
1779
1780 SemaRef.Diag(IList->getBeginLoc(),
1781 SemaRef.Context.getTypeSize(VT) > 64
1782 ? diag::note_neon_vector_initializer_non_portable_q
1783 : diag::note_neon_vector_initializer_non_portable)
1784 << typeCode << typeSize;
1785 }
1786
1787 return;
1788 }
1789
1790 InitializedEntity ElementEntity =
1791 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1792
1793 // OpenCL initializers allows vectors to be constructed from vectors.
1794 for (unsigned i = 0; i < maxElements; ++i) {
1795 // Don't attempt to go past the end of the init list
1796 if (Index >= IList->getNumInits())
1797 break;
1798
1799 ElementEntity.setElementIndex(Index);
1800
1801 QualType IType = IList->getInit(Index)->getType();
1802 if (!IType->isVectorType()) {
1803 CheckSubElementType(ElementEntity, IList, elementType, Index,
1804 StructuredList, StructuredIndex);
1805 ++numEltsInit;
1806 } else {
1807 QualType VecType;
1808 const VectorType *IVT = IType->castAs<VectorType>();
1809 unsigned numIElts = IVT->getNumElements();
1810
1811 if (IType->isExtVectorType())
1812 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1813 else
1814 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1815 IVT->getVectorKind());
1816 CheckSubElementType(ElementEntity, IList, VecType, Index,
1817 StructuredList, StructuredIndex);
1818 numEltsInit += numIElts;
1819 }
1820 }
1821
1822 // OpenCL requires all elements to be initialized.
1823 if (numEltsInit != maxElements) {
1824 if (!VerifyOnly)
1825 SemaRef.Diag(IList->getBeginLoc(),
1826 diag::err_vector_incorrect_num_initializers)
1827 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1828 hadError = true;
1829 }
1830}
1831
1832/// Check if the type of a class element has an accessible destructor, and marks
1833/// it referenced. Returns true if we shouldn't form a reference to the
1834/// destructor.
1835///
1836/// Aggregate initialization requires a class element's destructor be
1837/// accessible per 11.6.1 [dcl.init.aggr]:
1838///
1839/// The destructor for each element of class type is potentially invoked
1840/// (15.4 [class.dtor]) from the context where the aggregate initialization
1841/// occurs.
1842static bool checkDestructorReference(QualType ElementType, SourceLocation Loc,
1843 Sema &SemaRef) {
1844 auto *CXXRD = ElementType->getAsCXXRecordDecl();
1845 if (!CXXRD)
1846 return false;
1847
1848 CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD);
1849 SemaRef.CheckDestructorAccess(Loc, Destructor,
1850 SemaRef.PDiag(diag::err_access_dtor_temp)
1851 << ElementType);
1852 SemaRef.MarkFunctionReferenced(Loc, Destructor);
1853 return SemaRef.DiagnoseUseOfDecl(Destructor, Loc);
1854}
1855
1856void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1857 InitListExpr *IList, QualType &DeclType,
1858 llvm::APSInt elementIndex,
1859 bool SubobjectIsDesignatorContext,
1860 unsigned &Index,
1861 InitListExpr *StructuredList,
1862 unsigned &StructuredIndex) {
1863 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1864
1865 if (!VerifyOnly) {
1866 if (checkDestructorReference(arrayType->getElementType(),
1867 IList->getEndLoc(), SemaRef)) {
1868 hadError = true;
1869 return;
1870 }
1871 }
1872
1873 // Check for the special-case of initializing an array with a string.
1874 if (Index < IList->getNumInits()) {
1875 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1876 SIF_None) {
1877 // We place the string literal directly into the resulting
1878 // initializer list. This is the only place where the structure
1879 // of the structured initializer list doesn't match exactly,
1880 // because doing so would involve allocating one character
1881 // constant for each string.
1882 // FIXME: Should we do these checks in verify-only mode too?
1883 if (!VerifyOnly)
1884 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1885 if (StructuredList) {
1886 UpdateStructuredListElement(StructuredList, StructuredIndex,
1887 IList->getInit(Index));
1888 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1889 }
1890 ++Index;
1891 return;
1892 }
1893 }
1894 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1895 // Check for VLAs; in standard C it would be possible to check this
1896 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1897 // them in all sorts of strange places).
1898 if (!VerifyOnly)
1899 SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(),
1900 diag::err_variable_object_no_init)
1901 << VAT->getSizeExpr()->getSourceRange();
1902 hadError = true;
1903 ++Index;
1904 ++StructuredIndex;
1905 return;
1906 }
1907
1908 // We might know the maximum number of elements in advance.
1909 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1910 elementIndex.isUnsigned());
1911 bool maxElementsKnown = false;
1912 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1913 maxElements = CAT->getSize();
1914 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1915 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1916 maxElementsKnown = true;
1917 }
1918
1919 QualType elementType = arrayType->getElementType();
1920 while (Index < IList->getNumInits()) {
1921 Expr *Init = IList->getInit(Index);
1922 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1923 // If we're not the subobject that matches up with the '{' for
1924 // the designator, we shouldn't be handling the
1925 // designator. Return immediately.
1926 if (!SubobjectIsDesignatorContext)
1927 return;
1928
1929 // Handle this designated initializer. elementIndex will be
1930 // updated to be the next array element we'll initialize.
1931 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1932 DeclType, nullptr, &elementIndex, Index,
1933 StructuredList, StructuredIndex, true,
1934 false)) {
1935 hadError = true;
1936 continue;
1937 }
1938
1939 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1940 maxElements = maxElements.extend(elementIndex.getBitWidth());
1941 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1942 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1943 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1944
1945 // If the array is of incomplete type, keep track of the number of
1946 // elements in the initializer.
1947 if (!maxElementsKnown && elementIndex > maxElements)
1948 maxElements = elementIndex;
1949
1950 continue;
1951 }
1952
1953 // If we know the maximum number of elements, and we've already
1954 // hit it, stop consuming elements in the initializer list.
1955 if (maxElementsKnown && elementIndex == maxElements)
1956 break;
1957
1958 InitializedEntity ElementEntity =
1959 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1960 Entity);
1961 // Check this element.
1962 CheckSubElementType(ElementEntity, IList, elementType, Index,
1963 StructuredList, StructuredIndex);
1964 ++elementIndex;
1965
1966 // If the array is of incomplete type, keep track of the number of
1967 // elements in the initializer.
1968 if (!maxElementsKnown && elementIndex > maxElements)
1969 maxElements = elementIndex;
1970 }
1971 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1972 // If this is an incomplete array type, the actual type needs to
1973 // be calculated here.
1974 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1975 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1976 // Sizing an array implicitly to zero is not allowed by ISO C,
1977 // but is supported by GNU.
1978 SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size);
1979 }
1980
1981 DeclType = SemaRef.Context.getConstantArrayType(
1982 elementType, maxElements, nullptr, ArrayType::Normal, 0);
1983 }
1984 if (!hadError) {
1985 // If there are any members of the array that get value-initialized, check
1986 // that is possible. That happens if we know the bound and don't have
1987 // enough elements, or if we're performing an array new with an unknown
1988 // bound.
1989 if ((maxElementsKnown && elementIndex < maxElements) ||
1990 Entity.isVariableLengthArrayNew())
1991 CheckEmptyInitializable(
1992 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1993 IList->getEndLoc());
1994 }
1995}
1996
1997bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1998 Expr *InitExpr,
1999 FieldDecl *Field,
2000 bool TopLevelObject) {
2001 // Handle GNU flexible array initializers.
2002 unsigned FlexArrayDiag;
2003 if (isa<InitListExpr>(InitExpr) &&
2004 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
2005 // Empty flexible array init always allowed as an extension
2006 FlexArrayDiag = diag::ext_flexible_array_init;
2007 } else if (SemaRef.getLangOpts().CPlusPlus) {
2008 // Disallow flexible array init in C++; it is not required for gcc
2009 // compatibility, and it needs work to IRGen correctly in general.
2010 FlexArrayDiag = diag::err_flexible_array_init;
2011 } else if (!TopLevelObject) {
2012 // Disallow flexible array init on non-top-level object
2013 FlexArrayDiag = diag::err_flexible_array_init;
2014 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
2015 // Disallow flexible array init on anything which is not a variable.
2016 FlexArrayDiag = diag::err_flexible_array_init;
2017 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
2018 // Disallow flexible array init on local variables.
2019 FlexArrayDiag = diag::err_flexible_array_init;
2020 } else {
2021 // Allow other cases.
2022 FlexArrayDiag = diag::ext_flexible_array_init;
2023 }
2024
2025 if (!VerifyOnly) {
2026 SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag)
2027 << InitExpr->getBeginLoc();
2028 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2029 << Field;
2030 }
2031
2032 return FlexArrayDiag != diag::ext_flexible_array_init;
2033}
2034
2035void InitListChecker::CheckStructUnionTypes(
2036 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
2037 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
2038 bool SubobjectIsDesignatorContext, unsigned &Index,
2039 InitListExpr *StructuredList, unsigned &StructuredIndex,
2040 bool TopLevelObject) {
2041 RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl();
2042
2043 // If the record is invalid, some of it's members are invalid. To avoid
2044 // confusion, we forgo checking the intializer for the entire record.
2045 if (structDecl->isInvalidDecl()) {
2046 // Assume it was supposed to consume a single initializer.
2047 ++Index;
2048 hadError = true;
2049 return;
2050 }
2051
2052 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
2053 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2054
2055 if (!VerifyOnly)
2056 for (FieldDecl *FD : RD->fields()) {
2057 QualType ET = SemaRef.Context.getBaseElementType(FD->getType());
2058 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2059 hadError = true;
2060 return;
2061 }
2062 }
2063
2064 // If there's a default initializer, use it.
2065 if (isa<CXXRecordDecl>(RD) &&
2066 cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
2067 if (!StructuredList)
2068 return;
2069 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2070 Field != FieldEnd; ++Field) {
2071 if (Field->hasInClassInitializer()) {
2072 StructuredList->setInitializedFieldInUnion(*Field);
2073 // FIXME: Actually build a CXXDefaultInitExpr?
2074 return;
2075 }
2076 }
2077 }
2078
2079 // Value-initialize the first member of the union that isn't an unnamed
2080 // bitfield.
2081 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
2082 Field != FieldEnd; ++Field) {
2083 if (!Field->isUnnamedBitfield()) {
2084 CheckEmptyInitializable(
2085 InitializedEntity::InitializeMember(*Field, &Entity),
2086 IList->getEndLoc());
2087 if (StructuredList)
2088 StructuredList->setInitializedFieldInUnion(*Field);
2089 break;
2090 }
2091 }
2092 return;
2093 }
2094
2095 bool InitializedSomething = false;
2096
2097 // If we have any base classes, they are initialized prior to the fields.
2098 for (auto &Base : Bases) {
2099 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
2100
2101 // Designated inits always initialize fields, so if we see one, all
2102 // remaining base classes have no explicit initializer.
2103 if (Init && isa<DesignatedInitExpr>(Init))
2104 Init = nullptr;
2105
2106 SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc();
2107 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
2108 SemaRef.Context, &Base, false, &Entity);
2109 if (Init) {
2110 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
2111 StructuredList, StructuredIndex);
2112 InitializedSomething = true;
2113 } else {
2114 CheckEmptyInitializable(BaseEntity, InitLoc);
2115 }
2116
2117 if (!VerifyOnly)
2118 if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) {
2119 hadError = true;
2120 return;
2121 }
2122 }
2123
2124 // If structDecl is a forward declaration, this loop won't do
2125 // anything except look at designated initializers; That's okay,
2126 // because an error should get printed out elsewhere. It might be
2127 // worthwhile to skip over the rest of the initializer, though.
2128 RecordDecl *RD = DeclType->castAs<RecordType>()->getDecl();
2129 RecordDecl::field_iterator FieldEnd = RD->field_end();
2130 bool CheckForMissingFields =
2131 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
2132 bool HasDesignatedInit = false;
2133
2134 while (Index < IList->getNumInits()) {
2135 Expr *Init = IList->getInit(Index);
2136 SourceLocation InitLoc = Init->getBeginLoc();
2137
2138 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
2139 // If we're not the subobject that matches up with the '{' for
2140 // the designator, we shouldn't be handling the
2141 // designator. Return immediately.
2142 if (!SubobjectIsDesignatorContext)
2143 return;
2144
2145 HasDesignatedInit = true;
2146
2147 // Handle this designated initializer. Field will be updated to
2148 // the next field that we'll be initializing.
2149 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
2150 DeclType, &Field, nullptr, Index,
2151 StructuredList, StructuredIndex,
2152 true, TopLevelObject))
2153 hadError = true;
2154 else if (!VerifyOnly) {
2155 // Find the field named by the designated initializer.
2156 RecordDecl::field_iterator F = RD->field_begin();
2157 while (std::next(F) != Field)
2158 ++F;
2159 QualType ET = SemaRef.Context.getBaseElementType(F->getType());
2160 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2161 hadError = true;
2162 return;
2163 }
2164 }
2165
2166 InitializedSomething = true;
2167
2168 // Disable check for missing fields when designators are used.
2169 // This matches gcc behaviour.
2170 CheckForMissingFields = false;
2171 continue;
2172 }
2173
2174 if (Field == FieldEnd) {
2175 // We've run out of fields. We're done.
2176 break;
2177 }
2178
2179 // We've already initialized a member of a union. We're done.
2180 if (InitializedSomething && DeclType->isUnionType())
2181 break;
2182
2183 // If we've hit the flexible array member at the end, we're done.
2184 if (Field->getType()->isIncompleteArrayType())
2185 break;
2186
2187 if (Field->isUnnamedBitfield()) {
2188 // Don't initialize unnamed bitfields, e.g. "int : 20;"
2189 ++Field;
2190 continue;
2191 }
2192
2193 // Make sure we can use this declaration.
2194 bool InvalidUse;
2195 if (VerifyOnly)
2196 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2197 else
2198 InvalidUse = SemaRef.DiagnoseUseOfDecl(
2199 *Field, IList->getInit(Index)->getBeginLoc());
2200 if (InvalidUse) {
2201 ++Index;
2202 ++Field;
2203 hadError = true;
2204 continue;
2205 }
2206
2207 if (!VerifyOnly) {
2208 QualType ET = SemaRef.Context.getBaseElementType(Field->getType());
2209 if (checkDestructorReference(ET, InitLoc, SemaRef)) {
2210 hadError = true;
2211 return;
2212 }
2213 }
2214
2215 InitializedEntity MemberEntity =
2216 InitializedEntity::InitializeMember(*Field, &Entity);
2217 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2218 StructuredList, StructuredIndex);
2219 InitializedSomething = true;
2220
2221 if (DeclType->isUnionType() && StructuredList) {
2222 // Initialize the first field within the union.
2223 StructuredList->setInitializedFieldInUnion(*Field);
2224 }
2225
2226 ++Field;
2227 }
2228
2229 // Emit warnings for missing struct field initializers.
2230 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
2231 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
2232 !DeclType->isUnionType()) {
2233 // It is possible we have one or more unnamed bitfields remaining.
2234 // Find first (if any) named field and emit warning.
2235 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
2236 it != end; ++it) {
2237 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
2238 SemaRef.Diag(IList->getSourceRange().getEnd(),
2239 diag::warn_missing_field_initializers) << *it;
2240 break;
2241 }
2242 }
2243 }
2244
2245 // Check that any remaining fields can be value-initialized if we're not
2246 // building a structured list. (If we are, we'll check this later.)
2247 if (!StructuredList && Field != FieldEnd && !DeclType->isUnionType() &&
2248 !Field->getType()->isIncompleteArrayType()) {
2249 for (; Field != FieldEnd && !hadError; ++Field) {
2250 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2251 CheckEmptyInitializable(
2252 InitializedEntity::InitializeMember(*Field, &Entity),
2253 IList->getEndLoc());
2254 }
2255 }
2256
2257 // Check that the types of the remaining fields have accessible destructors.
2258 if (!VerifyOnly) {
2259 // If the initializer expression has a designated initializer, check the
2260 // elements for which a designated initializer is not provided too.
2261 RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin()
2262 : Field;
2263 for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) {
2264 QualType ET = SemaRef.Context.getBaseElementType(I->getType());
2265 if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) {
2266 hadError = true;
2267 return;
2268 }
2269 }
2270 }
2271
2272 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2273 Index >= IList->getNumInits())
2274 return;
2275
2276 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2277 TopLevelObject)) {
2278 hadError = true;
2279 ++Index;
2280 return;
2281 }
2282
2283 InitializedEntity MemberEntity =
2284 InitializedEntity::InitializeMember(*Field, &Entity);
2285
2286 if (isa<InitListExpr>(IList->getInit(Index)))
2287 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2288 StructuredList, StructuredIndex);
2289 else
2290 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2291 StructuredList, StructuredIndex);
2292}
2293
2294/// Expand a field designator that refers to a member of an
2295/// anonymous struct or union into a series of field designators that
2296/// refers to the field within the appropriate subobject.
2297///
2298static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2299 DesignatedInitExpr *DIE,
2300 unsigned DesigIdx,
2301 IndirectFieldDecl *IndirectField) {
2302 typedef DesignatedInitExpr::Designator Designator;
2303
2304 // Build the replacement designators.
2305 SmallVector<Designator, 4> Replacements;
2306 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2307 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2308 if (PI + 1 == PE)
2309 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2310 DIE->getDesignator(DesigIdx)->getDotLoc(),
2311 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2312 else
2313 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2314 SourceLocation(), SourceLocation()));
2315 assert(isa<FieldDecl>(*PI))(static_cast <bool> (isa<FieldDecl>(*PI)) ? void (
0) : __assert_fail ("isa<FieldDecl>(*PI)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 2315, __extension__ __PRETTY_FUNCTION__))
;
2316 Replacements.back().setField(cast<FieldDecl>(*PI));
2317 }
2318
2319 // Expand the current designator into the set of replacement
2320 // designators, so we have a full subobject path down to where the
2321 // member of the anonymous struct/union is actually stored.
2322 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2323 &Replacements[0] + Replacements.size());
2324}
2325
2326static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2327 DesignatedInitExpr *DIE) {
2328 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2329 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2330 for (unsigned I = 0; I < NumIndexExprs; ++I)
2331 IndexExprs[I] = DIE->getSubExpr(I + 1);
2332 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2333 IndexExprs,
2334 DIE->getEqualOrColonLoc(),
2335 DIE->usesGNUSyntax(), DIE->getInit());
2336}
2337
2338namespace {
2339
2340// Callback to only accept typo corrections that are for field members of
2341// the given struct or union.
2342class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback {
2343 public:
2344 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2345 : Record(RD) {}
2346
2347 bool ValidateCandidate(const TypoCorrection &candidate) override {
2348 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2349 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2350 }
2351
2352 std::unique_ptr<CorrectionCandidateCallback> clone() override {
2353 return std::make_unique<FieldInitializerValidatorCCC>(*this);
2354 }
2355
2356 private:
2357 RecordDecl *Record;
2358};
2359
2360} // end anonymous namespace
2361
2362/// Check the well-formedness of a C99 designated initializer.
2363///
2364/// Determines whether the designated initializer @p DIE, which
2365/// resides at the given @p Index within the initializer list @p
2366/// IList, is well-formed for a current object of type @p DeclType
2367/// (C99 6.7.8). The actual subobject that this designator refers to
2368/// within the current subobject is returned in either
2369/// @p NextField or @p NextElementIndex (whichever is appropriate).
2370///
2371/// @param IList The initializer list in which this designated
2372/// initializer occurs.
2373///
2374/// @param DIE The designated initializer expression.
2375///
2376/// @param DesigIdx The index of the current designator.
2377///
2378/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2379/// into which the designation in @p DIE should refer.
2380///
2381/// @param NextField If non-NULL and the first designator in @p DIE is
2382/// a field, this will be set to the field declaration corresponding
2383/// to the field named by the designator. On input, this is expected to be
2384/// the next field that would be initialized in the absence of designation,
2385/// if the complete object being initialized is a struct.
2386///
2387/// @param NextElementIndex If non-NULL and the first designator in @p
2388/// DIE is an array designator or GNU array-range designator, this
2389/// will be set to the last index initialized by this designator.
2390///
2391/// @param Index Index into @p IList where the designated initializer
2392/// @p DIE occurs.
2393///
2394/// @param StructuredList The initializer list expression that
2395/// describes all of the subobject initializers in the order they'll
2396/// actually be initialized.
2397///
2398/// @returns true if there was an error, false otherwise.
2399bool
2400InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2401 InitListExpr *IList,
2402 DesignatedInitExpr *DIE,
2403 unsigned DesigIdx,
2404 QualType &CurrentObjectType,
2405 RecordDecl::field_iterator *NextField,
2406 llvm::APSInt *NextElementIndex,
2407 unsigned &Index,
2408 InitListExpr *StructuredList,
2409 unsigned &StructuredIndex,
2410 bool FinishSubobjectInit,
2411 bool TopLevelObject) {
2412 if (DesigIdx == DIE->size()) {
2413 // C++20 designated initialization can result in direct-list-initialization
2414 // of the designated subobject. This is the only way that we can end up
2415 // performing direct initialization as part of aggregate initialization, so
2416 // it needs special handling.
2417 if (DIE->isDirectInit()) {
2418 Expr *Init = DIE->getInit();
2419 assert(isa<InitListExpr>(Init) &&(static_cast <bool> (isa<InitListExpr>(Init) &&
"designator result in direct non-list initialization?") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 2420, __extension__ __PRETTY_FUNCTION__))
2420 "designator result in direct non-list initialization?")(static_cast <bool> (isa<InitListExpr>(Init) &&
"designator result in direct non-list initialization?") ? void
(0) : __assert_fail ("isa<InitListExpr>(Init) && \"designator result in direct non-list initialization?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 2420, __extension__ __PRETTY_FUNCTION__))
;
2421 InitializationKind Kind = InitializationKind::CreateDirectList(
2422 DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc());
2423 InitializationSequence Seq(SemaRef, Entity, Kind, Init,
2424 /*TopLevelOfInitList*/ true);
2425 if (StructuredList) {
2426 ExprResult Result = VerifyOnly
2427 ? getDummyInit()
2428 : Seq.Perform(SemaRef, Entity, Kind, Init);
2429 UpdateStructuredListElement(StructuredList, StructuredIndex,
2430 Result.get());
2431 }
2432 ++Index;
2433 return !Seq;
2434 }
2435
2436 // Check the actual initialization for the designated object type.
2437 bool prevHadError = hadError;
2438
2439 // Temporarily remove the designator expression from the
2440 // initializer list that the child calls see, so that we don't try
2441 // to re-process the designator.
2442 unsigned OldIndex = Index;
2443 IList->setInit(OldIndex, DIE->getInit());
2444
2445 CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList,
2446 StructuredIndex, /*DirectlyDesignated=*/true);
2447
2448 // Restore the designated initializer expression in the syntactic
2449 // form of the initializer list.
2450 if (IList->getInit(OldIndex) != DIE->getInit())
2451 DIE->setInit(IList->getInit(OldIndex));
2452 IList->setInit(OldIndex, DIE);
2453
2454 return hadError && !prevHadError;
2455 }
2456
2457 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2458 bool IsFirstDesignator = (DesigIdx == 0);
2459 if (IsFirstDesignator ? FullyStructuredList : StructuredList) {
2460 // Determine the structural initializer list that corresponds to the
2461 // current subobject.
2462 if (IsFirstDesignator)
2463 StructuredList = FullyStructuredList;
2464 else {
2465 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2466 StructuredList->getInit(StructuredIndex) : nullptr;
2467 if (!ExistingInit && StructuredList->hasArrayFiller())
2468 ExistingInit = StructuredList->getArrayFiller();
2469
2470 if (!ExistingInit)
2471 StructuredList = getStructuredSubobjectInit(
2472 IList, Index, CurrentObjectType, StructuredList, StructuredIndex,
2473 SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2474 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2475 StructuredList = Result;
2476 else {
2477 // We are creating an initializer list that initializes the
2478 // subobjects of the current object, but there was already an
2479 // initialization that completely initialized the current
2480 // subobject, e.g., by a compound literal:
2481 //
2482 // struct X { int a, b; };
2483 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2484 //
2485 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
2486 // designated initializer re-initializes only its current object
2487 // subobject [0].b.
2488 diagnoseInitOverride(ExistingInit,
2489 SourceRange(D->getBeginLoc(), DIE->getEndLoc()),
2490 /*FullyOverwritten=*/false);
2491
2492 if (!VerifyOnly) {
2493 if (DesignatedInitUpdateExpr *E =
2494 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2495 StructuredList = E->getUpdater();
2496 else {
2497 DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context)
2498 DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(),
2499 ExistingInit, DIE->getEndLoc());
2500 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2501 StructuredList = DIUE->getUpdater();
2502 }
2503 } else {
2504 // We don't need to track the structured representation of a
2505 // designated init update of an already-fully-initialized object in
2506 // verify-only mode. The only reason we would need the structure is
2507 // to determine where the uninitialized "holes" are, and in this
2508 // case, we know there aren't any and we can't introduce any.
2509 StructuredList = nullptr;
2510 }
2511 }
2512 }
2513 }
2514
2515 if (D->isFieldDesignator()) {
2516 // C99 6.7.8p7:
2517 //
2518 // If a designator has the form
2519 //
2520 // . identifier
2521 //
2522 // then the current object (defined below) shall have
2523 // structure or union type and the identifier shall be the
2524 // name of a member of that type.
2525 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2526 if (!RT) {
2527 SourceLocation Loc = D->getDotLoc();
2528 if (Loc.isInvalid())
2529 Loc = D->getFieldLoc();
2530 if (!VerifyOnly)
2531 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2532 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2533 ++Index;
2534 return true;
2535 }
2536
2537 FieldDecl *KnownField = D->getField();
2538 if (!KnownField) {
2539 IdentifierInfo *FieldName = D->getFieldName();
2540 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2541 for (NamedDecl *ND : Lookup) {
2542 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2543 KnownField = FD;
2544 break;
2545 }
2546 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2547 // In verify mode, don't modify the original.
2548 if (VerifyOnly)
2549 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2550 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2551 D = DIE->getDesignator(DesigIdx);
2552 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2553 break;
2554 }
2555 }
2556 if (!KnownField) {
2557 if (VerifyOnly) {
2558 ++Index;
2559 return true; // No typo correction when just trying this out.
2560 }
2561
2562 // Name lookup found something, but it wasn't a field.
2563 if (!Lookup.empty()) {
2564 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2565 << FieldName;
2566 SemaRef.Diag(Lookup.front()->getLocation(),
2567 diag::note_field_designator_found);
2568 ++Index;
2569 return true;
2570 }
2571
2572 // Name lookup didn't find anything.
2573 // Determine whether this was a typo for another field name.
2574 FieldInitializerValidatorCCC CCC(RT->getDecl());
2575 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2576 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2577 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC,
2578 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2579 SemaRef.diagnoseTypo(
2580 Corrected,
2581 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2582 << FieldName << CurrentObjectType);
2583 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2584 hadError = true;
2585 } else {
2586 // Typo correction didn't find anything.
2587 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2588 << FieldName << CurrentObjectType;
2589 ++Index;
2590 return true;
2591 }
2592 }
2593 }
2594
2595 unsigned NumBases = 0;
2596 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2597 NumBases = CXXRD->getNumBases();
2598
2599 unsigned FieldIndex = NumBases;
2600
2601 for (auto *FI : RT->getDecl()->fields()) {
2602 if (FI->isUnnamedBitfield())
2603 continue;
2604 if (declaresSameEntity(KnownField, FI)) {
2605 KnownField = FI;
2606 break;
2607 }
2608 ++FieldIndex;
2609 }
2610
2611 RecordDecl::field_iterator Field =
2612 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2613
2614 // All of the fields of a union are located at the same place in
2615 // the initializer list.
2616 if (RT->getDecl()->isUnion()) {
2617 FieldIndex = 0;
2618 if (StructuredList) {
2619 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2620 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2621 assert(StructuredList->getNumInits() == 1(static_cast <bool> (StructuredList->getNumInits() ==
1 && "A union should never have more than one initializer!"
) ? void (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 2622, __extension__ __PRETTY_FUNCTION__))
2622 && "A union should never have more than one initializer!")(static_cast <bool> (StructuredList->getNumInits() ==
1 && "A union should never have more than one initializer!"
) ? void (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 2622, __extension__ __PRETTY_FUNCTION__))
;
2623
2624 Expr *ExistingInit = StructuredList->getInit(0);
2625 if (ExistingInit) {
2626 // We're about to throw away an initializer, emit warning.
2627 diagnoseInitOverride(
2628 ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()));
2629 }
2630
2631 // remove existing initializer
2632 StructuredList->resizeInits(SemaRef.Context, 0);
2633 StructuredList->setInitializedFieldInUnion(nullptr);
2634 }
2635
2636 StructuredList->setInitializedFieldInUnion(*Field);
2637 }
2638 }
2639
2640 // Make sure we can use this declaration.
2641 bool InvalidUse;
2642 if (VerifyOnly)
2643 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2644 else
2645 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2646 if (InvalidUse) {
2647 ++Index;
2648 return true;
2649 }
2650
2651 // C++20 [dcl.init.list]p3:
2652 // The ordered identifiers in the designators of the designated-
2653 // initializer-list shall form a subsequence of the ordered identifiers
2654 // in the direct non-static data members of T.
2655 //
2656 // Note that this is not a condition on forming the aggregate
2657 // initialization, only on actually performing initialization,
2658 // so it is not checked in VerifyOnly mode.
2659 //
2660 // FIXME: This is the only reordering diagnostic we produce, and it only
2661 // catches cases where we have a top-level field designator that jumps
2662 // backwards. This is the only such case that is reachable in an
2663 // otherwise-valid C++20 program, so is the only case that's required for
2664 // conformance, but for consistency, we should diagnose all the other
2665 // cases where a designator takes us backwards too.
2666 if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus &&
2667 NextField &&
2668 (*NextField == RT->getDecl()->field_end() ||
2669 (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) {
2670 // Find the field that we just initialized.
2671 FieldDecl *PrevField = nullptr;
2672 for (auto FI = RT->getDecl()->field_begin();
2673 FI != RT->getDecl()->field_end(); ++FI) {
2674 if (FI->isUnnamedBitfield())
2675 continue;
2676 if (*NextField != RT->getDecl()->field_end() &&
2677 declaresSameEntity(*FI, **NextField))
2678 break;
2679 PrevField = *FI;
2680 }
2681
2682 if (PrevField &&
2683 PrevField->getFieldIndex() > KnownField->getFieldIndex()) {
2684 SemaRef.Diag(DIE->getBeginLoc(), diag::ext_designated_init_reordered)
2685 << KnownField << PrevField << DIE->getSourceRange();
2686
2687 unsigned OldIndex = NumBases + PrevField->getFieldIndex();
2688 if (StructuredList && OldIndex <= StructuredList->getNumInits()) {
2689 if (Expr *PrevInit = StructuredList->getInit(OldIndex)) {
2690 SemaRef.Diag(PrevInit->getBeginLoc(),
2691 diag::note_previous_field_init)
2692 << PrevField << PrevInit->getSourceRange();
2693 }
2694 }
2695 }
2696 }
2697
2698
2699 // Update the designator with the field declaration.
2700 if (!VerifyOnly)
2701 D->setField(*Field);
2702
2703 // Make sure that our non-designated initializer list has space
2704 // for a subobject corresponding to this field.
2705 if (StructuredList && FieldIndex >= StructuredList->getNumInits())
2706 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2707
2708 // This designator names a flexible array member.
2709 if (Field->getType()->isIncompleteArrayType()) {
2710 bool Invalid = false;
2711 if ((DesigIdx + 1) != DIE->size()) {
2712 // We can't designate an object within the flexible array
2713 // member (because GCC doesn't allow it).
2714 if (!VerifyOnly) {
2715 DesignatedInitExpr::Designator *NextD
2716 = DIE->getDesignator(DesigIdx + 1);
2717 SemaRef.Diag(NextD->getBeginLoc(),
2718 diag::err_designator_into_flexible_array_member)
2719 << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc());
2720 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2721 << *Field;
2722 }
2723 Invalid = true;
2724 }
2725
2726 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2727 !isa<StringLiteral>(DIE->getInit())) {
2728 // The initializer is not an initializer list.
2729 if (!VerifyOnly) {
2730 SemaRef.Diag(DIE->getInit()->getBeginLoc(),
2731 diag::err_flexible_array_init_needs_braces)
2732 << DIE->getInit()->getSourceRange();
2733 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2734 << *Field;
2735 }
2736 Invalid = true;
2737 }
2738
2739 // Check GNU flexible array initializer.
2740 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2741 TopLevelObject))
2742 Invalid = true;
2743
2744 if (Invalid) {
2745 ++Index;
2746 return true;
2747 }
2748
2749 // Initialize the array.
2750 bool prevHadError = hadError;
2751 unsigned newStructuredIndex = FieldIndex;
2752 unsigned OldIndex = Index;
2753 IList->setInit(Index, DIE->getInit());
2754
2755 InitializedEntity MemberEntity =
2756 InitializedEntity::InitializeMember(*Field, &Entity);
2757 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2758 StructuredList, newStructuredIndex);
2759
2760 IList->setInit(OldIndex, DIE);
2761 if (hadError && !prevHadError) {
2762 ++Field;
2763 ++FieldIndex;
2764 if (NextField)
2765 *NextField = Field;
2766 StructuredIndex = FieldIndex;
2767 return true;
2768 }
2769 } else {
2770 // Recurse to check later designated subobjects.
2771 QualType FieldType = Field->getType();
2772 unsigned newStructuredIndex = FieldIndex;
2773
2774 InitializedEntity MemberEntity =
2775 InitializedEntity::InitializeMember(*Field, &Entity);
2776 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2777 FieldType, nullptr, nullptr, Index,
2778 StructuredList, newStructuredIndex,
2779 FinishSubobjectInit, false))
2780 return true;
2781 }
2782
2783 // Find the position of the next field to be initialized in this
2784 // subobject.
2785 ++Field;
2786 ++FieldIndex;
2787
2788 // If this the first designator, our caller will continue checking
2789 // the rest of this struct/class/union subobject.
2790 if (IsFirstDesignator) {
2791 if (NextField)
2792 *NextField = Field;
2793 StructuredIndex = FieldIndex;
2794 return false;
2795 }
2796
2797 if (!FinishSubobjectInit)
2798 return false;
2799
2800 // We've already initialized something in the union; we're done.
2801 if (RT->getDecl()->isUnion())
2802 return hadError;
2803
2804 // Check the remaining fields within this class/struct/union subobject.
2805 bool prevHadError = hadError;
2806
2807 auto NoBases =
2808 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2809 CXXRecordDecl::base_class_iterator());
2810 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2811 false, Index, StructuredList, FieldIndex);
2812 return hadError && !prevHadError;
2813 }
2814
2815 // C99 6.7.8p6:
2816 //
2817 // If a designator has the form
2818 //
2819 // [ constant-expression ]
2820 //
2821 // then the current object (defined below) shall have array
2822 // type and the expression shall be an integer constant
2823 // expression. If the array is of unknown size, any
2824 // nonnegative value is valid.
2825 //
2826 // Additionally, cope with the GNU extension that permits
2827 // designators of the form
2828 //
2829 // [ constant-expression ... constant-expression ]
2830 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2831 if (!AT) {
2832 if (!VerifyOnly)
2833 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2834 << CurrentObjectType;
2835 ++Index;
2836 return true;
2837 }
2838
2839 Expr *IndexExpr = nullptr;
2840 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2841 if (D->isArrayDesignator()) {
2842 IndexExpr = DIE->getArrayIndex(*D);
2843 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2844 DesignatedEndIndex = DesignatedStartIndex;
2845 } else {
2846 assert(D->isArrayRangeDesignator() && "Need array-range designator")(static_cast <bool> (D->isArrayRangeDesignator() &&
"Need array-range designator") ? void (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 2846, __extension__ __PRETTY_FUNCTION__))
;
2847
2848 DesignatedStartIndex =
2849 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2850 DesignatedEndIndex =
2851 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2852 IndexExpr = DIE->getArrayRangeEnd(*D);
2853
2854 // Codegen can't handle evaluating array range designators that have side
2855 // effects, because we replicate the AST value for each initialized element.
2856 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2857 // elements with something that has a side effect, so codegen can emit an
2858 // "error unsupported" error instead of miscompiling the app.
2859 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2860 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2861 FullyStructuredList->sawArrayRangeDesignator();
2862 }
2863
2864 if (isa<ConstantArrayType>(AT)) {
2865 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2866 DesignatedStartIndex
2867 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2868 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2869 DesignatedEndIndex
2870 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2871 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2872 if (DesignatedEndIndex >= MaxElements) {
2873 if (!VerifyOnly)
2874 SemaRef.Diag(IndexExpr->getBeginLoc(),
2875 diag::err_array_designator_too_large)
2876 << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10)
2877 << IndexExpr->getSourceRange();
2878 ++Index;
2879 return true;
2880 }
2881 } else {
2882 unsigned DesignatedIndexBitWidth =
2883 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2884 DesignatedStartIndex =
2885 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2886 DesignatedEndIndex =
2887 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2888 DesignatedStartIndex.setIsUnsigned(true);
2889 DesignatedEndIndex.setIsUnsigned(true);
2890 }
2891
2892 bool IsStringLiteralInitUpdate =
2893 StructuredList && StructuredList->isStringLiteralInit();
2894 if (IsStringLiteralInitUpdate && VerifyOnly) {
2895 // We're just verifying an update to a string literal init. We don't need
2896 // to split the string up into individual characters to do that.
2897 StructuredList = nullptr;
2898 } else if (IsStringLiteralInitUpdate) {
2899 // We're modifying a string literal init; we have to decompose the string
2900 // so we can modify the individual characters.
2901 ASTContext &Context = SemaRef.Context;
2902 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts();
2903
2904 // Compute the character type
2905 QualType CharTy = AT->getElementType();
2906
2907 // Compute the type of the integer literals.
2908 QualType PromotedCharTy = CharTy;
2909 if (CharTy->isPromotableIntegerType())
2910 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2911 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2912
2913 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2914 // Get the length of the string.
2915 uint64_t StrLen = SL->getLength();
2916 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2917 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2918 StructuredList->resizeInits(Context, StrLen);
2919
2920 // Build a literal for each character in the string, and put them into
2921 // the init list.
2922 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2923 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2924 Expr *Init = new (Context) IntegerLiteral(
2925 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2926 if (CharTy != PromotedCharTy)
2927 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2928 Init, nullptr, VK_PRValue,
2929 FPOptionsOverride());
2930 StructuredList->updateInit(Context, i, Init);
2931 }
2932 } else {
2933 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2934 std::string Str;
2935 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2936
2937 // Get the length of the string.
2938 uint64_t StrLen = Str.size();
2939 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2940 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2941 StructuredList->resizeInits(Context, StrLen);
2942
2943 // Build a literal for each character in the string, and put them into
2944 // the init list.
2945 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2946 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2947 Expr *Init = new (Context) IntegerLiteral(
2948 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2949 if (CharTy != PromotedCharTy)
2950 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2951 Init, nullptr, VK_PRValue,
2952 FPOptionsOverride());
2953 StructuredList->updateInit(Context, i, Init);
2954 }
2955 }
2956 }
2957
2958 // Make sure that our non-designated initializer list has space
2959 // for a subobject corresponding to this array element.
2960 if (StructuredList &&
2961 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2962 StructuredList->resizeInits(SemaRef.Context,
2963 DesignatedEndIndex.getZExtValue() + 1);
2964
2965 // Repeatedly perform subobject initializations in the range
2966 // [DesignatedStartIndex, DesignatedEndIndex].
2967
2968 // Move to the next designator
2969 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2970 unsigned OldIndex = Index;
2971
2972 InitializedEntity ElementEntity =
2973 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2974
2975 while (DesignatedStartIndex <= DesignatedEndIndex) {
2976 // Recurse to check later designated subobjects.
2977 QualType ElementType = AT->getElementType();
2978 Index = OldIndex;
2979
2980 ElementEntity.setElementIndex(ElementIndex);
2981 if (CheckDesignatedInitializer(
2982 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2983 nullptr, Index, StructuredList, ElementIndex,
2984 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2985 false))
2986 return true;
2987
2988 // Move to the next index in the array that we'll be initializing.
2989 ++DesignatedStartIndex;
2990 ElementIndex = DesignatedStartIndex.getZExtValue();
2991 }
2992
2993 // If this the first designator, our caller will continue checking
2994 // the rest of this array subobject.
2995 if (IsFirstDesignator) {
2996 if (NextElementIndex)
2997 *NextElementIndex = DesignatedStartIndex;
2998 StructuredIndex = ElementIndex;
2999 return false;
3000 }
3001
3002 if (!FinishSubobjectInit)
3003 return false;
3004
3005 // Check the remaining elements within this array subobject.
3006 bool prevHadError = hadError;
3007 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
3008 /*SubobjectIsDesignatorContext=*/false, Index,
3009 StructuredList, ElementIndex);
3010 return hadError && !prevHadError;
3011}
3012
3013// Get the structured initializer list for a subobject of type
3014// @p CurrentObjectType.
3015InitListExpr *
3016InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
3017 QualType CurrentObjectType,
3018 InitListExpr *StructuredList,
3019 unsigned StructuredIndex,
3020 SourceRange InitRange,
3021 bool IsFullyOverwritten) {
3022 if (!StructuredList)
3023 return nullptr;
3024
3025 Expr *ExistingInit = nullptr;
3026 if (StructuredIndex < StructuredList->getNumInits())
3027 ExistingInit = StructuredList->getInit(StructuredIndex);
3028
3029 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
3030 // There might have already been initializers for subobjects of the current
3031 // object, but a subsequent initializer list will overwrite the entirety
3032 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
3033 //
3034 // struct P { char x[6]; };
3035 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
3036 //
3037 // The first designated initializer is ignored, and l.x is just "f".
3038 if (!IsFullyOverwritten)
3039 return Result;
3040
3041 if (ExistingInit) {
3042 // We are creating an initializer list that initializes the
3043 // subobjects of the current object, but there was already an
3044 // initialization that completely initialized the current
3045 // subobject:
3046 //
3047 // struct X { int a, b; };
3048 // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 };
3049 //
3050 // Here, xs[0].a == 1 and xs[0].b == 3, since the second,
3051 // designated initializer overwrites the [0].b initializer
3052 // from the prior initialization.
3053 //
3054 // When the existing initializer is an expression rather than an
3055 // initializer list, we cannot decompose and update it in this way.
3056 // For example:
3057 //
3058 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
3059 //
3060 // This case is handled by CheckDesignatedInitializer.
3061 diagnoseInitOverride(ExistingInit, InitRange);
3062 }
3063
3064 unsigned ExpectedNumInits = 0;
3065 if (Index < IList->getNumInits()) {
3066 if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index)))
3067 ExpectedNumInits = Init->getNumInits();
3068 else
3069 ExpectedNumInits = IList->getNumInits() - Index;
3070 }
3071
3072 InitListExpr *Result =
3073 createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits);
3074
3075 // Link this new initializer list into the structured initializer
3076 // lists.
3077 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
3078 return Result;
3079}
3080
3081InitListExpr *
3082InitListChecker::createInitListExpr(QualType CurrentObjectType,
3083 SourceRange InitRange,
3084 unsigned ExpectedNumInits) {
3085 InitListExpr *Result
3086 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
3087 InitRange.getBegin(), None,
3088 InitRange.getEnd());
3089
3090 QualType ResultType = CurrentObjectType;
3091 if (!ResultType->isArrayType())
3092 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
3093 Result->setType(ResultType);
3094
3095 // Pre-allocate storage for the structured initializer list.
3096 unsigned NumElements = 0;
3097
3098 if (const ArrayType *AType
3099 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
3100 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
3101 NumElements = CAType->getSize().getZExtValue();
3102 // Simple heuristic so that we don't allocate a very large
3103 // initializer with many empty entries at the end.
3104 if (NumElements > ExpectedNumInits)
3105 NumElements = 0;
3106 }
3107 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) {
3108 NumElements = VType->getNumElements();
3109 } else if (CurrentObjectType->isRecordType()) {
3110 NumElements = numStructUnionElements(CurrentObjectType);
3111 }
3112
3113 Result->reserveInits(SemaRef.Context, NumElements);
3114
3115 return Result;
3116}
3117
3118/// Update the initializer at index @p StructuredIndex within the
3119/// structured initializer list to the value @p expr.
3120void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
3121 unsigned &StructuredIndex,
3122 Expr *expr) {
3123 // No structured initializer list to update
3124 if (!StructuredList)
3125 return;
3126
3127 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
3128 StructuredIndex, expr)) {
3129 // This initializer overwrites a previous initializer.
3130 // No need to diagnose when `expr` is nullptr because a more relevant
3131 // diagnostic has already been issued and this diagnostic is potentially
3132 // noise.
3133 if (expr)
3134 diagnoseInitOverride(PrevInit, expr->getSourceRange());
3135 }
3136
3137 ++StructuredIndex;
3138}
3139
3140/// Determine whether we can perform aggregate initialization for the purposes
3141/// of overload resolution.
3142bool Sema::CanPerformAggregateInitializationForOverloadResolution(
3143 const InitializedEntity &Entity, InitListExpr *From) {
3144 QualType Type = Entity.getType();
3145 InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true,
3146 /*TreatUnavailableAsInvalid=*/false,
3147 /*InOverloadResolution=*/true);
3148 return !Check.HadError();
3149}
3150
3151/// Check that the given Index expression is a valid array designator
3152/// value. This is essentially just a wrapper around
3153/// VerifyIntegerConstantExpression that also checks for negative values
3154/// and produces a reasonable diagnostic if there is a
3155/// failure. Returns the index expression, possibly with an implicit cast
3156/// added, on success. If everything went okay, Value will receive the
3157/// value of the constant expression.
3158static ExprResult
3159CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
3160 SourceLocation Loc = Index->getBeginLoc();
3161
3162 // Make sure this is an integer constant expression.
3163 ExprResult Result =
3164 S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold);
3165 if (Result.isInvalid())
3166 return Result;
3167
3168 if (Value.isSigned() && Value.isNegative())
3169 return S.Diag(Loc, diag::err_array_designator_negative)
3170 << toString(Value, 10) << Index->getSourceRange();
3171
3172 Value.setIsUnsigned(true);
3173 return Result;
3174}
3175
3176ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
3177 SourceLocation EqualOrColonLoc,
3178 bool GNUSyntax,
3179 ExprResult Init) {
3180 typedef DesignatedInitExpr::Designator ASTDesignator;
3181
3182 bool Invalid = false;
3183 SmallVector<ASTDesignator, 32> Designators;
3184 SmallVector<Expr *, 32> InitExpressions;
3185
3186 // Build designators and check array designator expressions.
3187 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
3188 const Designator &D = Desig.getDesignator(Idx);
3189 switch (D.getKind()) {
3190 case Designator::FieldDesignator:
3191 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
3192 D.getFieldLoc()));
3193 break;
3194
3195 case Designator::ArrayDesignator: {
3196 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
3197 llvm::APSInt IndexValue;
3198 if (!Index->isTypeDependent() && !Index->isValueDependent())
3199 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
3200 if (!Index)
3201 Invalid = true;
3202 else {
3203 Designators.push_back(ASTDesignator(InitExpressions.size(),
3204 D.getLBracketLoc(),
3205 D.getRBracketLoc()));
3206 InitExpressions.push_back(Index);
3207 }
3208 break;
3209 }
3210
3211 case Designator::ArrayRangeDesignator: {
3212 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
3213 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
3214 llvm::APSInt StartValue;
3215 llvm::APSInt EndValue;
3216 bool StartDependent = StartIndex->isTypeDependent() ||
3217 StartIndex->isValueDependent();
3218 bool EndDependent = EndIndex->isTypeDependent() ||
3219 EndIndex->isValueDependent();
3220 if (!StartDependent)
3221 StartIndex =
3222 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
3223 if (!EndDependent)
3224 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
3225
3226 if (!StartIndex || !EndIndex)
3227 Invalid = true;
3228 else {
3229 // Make sure we're comparing values with the same bit width.
3230 if (StartDependent || EndDependent) {
3231 // Nothing to compute.
3232 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
3233 EndValue = EndValue.extend(StartValue.getBitWidth());
3234 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
3235 StartValue = StartValue.extend(EndValue.getBitWidth());
3236
3237 if (!StartDependent && !EndDependent && EndValue < StartValue) {
3238 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
3239 << toString(StartValue, 10) << toString(EndValue, 10)
3240 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
3241 Invalid = true;
3242 } else {
3243 Designators.push_back(ASTDesignator(InitExpressions.size(),
3244 D.getLBracketLoc(),
3245 D.getEllipsisLoc(),
3246 D.getRBracketLoc()));
3247 InitExpressions.push_back(StartIndex);
3248 InitExpressions.push_back(EndIndex);
3249 }
3250 }
3251 break;
3252 }
3253 }
3254 }
3255
3256 if (Invalid || Init.isInvalid())
3257 return ExprError();
3258
3259 // Clear out the expressions within the designation.
3260 Desig.ClearExprs(*this);
3261
3262 return DesignatedInitExpr::Create(Context, Designators, InitExpressions,
3263 EqualOrColonLoc, GNUSyntax,
3264 Init.getAs<Expr>());
3265}
3266
3267//===----------------------------------------------------------------------===//
3268// Initialization entity
3269//===----------------------------------------------------------------------===//
3270
3271InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
3272 const InitializedEntity &Parent)
3273 : Parent(&Parent), Index(Index)
3274{
3275 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
3276 Kind = EK_ArrayElement;
3277 Type = AT->getElementType();
3278 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
3279 Kind = EK_VectorElement;
3280 Type = VT->getElementType();
3281 } else {
3282 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
3283 assert(CT && "Unexpected type")(static_cast <bool> (CT && "Unexpected type") ?
void (0) : __assert_fail ("CT && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3283, __extension__ __PRETTY_FUNCTION__))
;
3284 Kind = EK_ComplexElement;
3285 Type = CT->getElementType();
3286 }
3287}
3288
3289InitializedEntity
3290InitializedEntity::InitializeBase(ASTContext &Context,
3291 const CXXBaseSpecifier *Base,
3292 bool IsInheritedVirtualBase,
3293 const InitializedEntity *Parent) {
3294 InitializedEntity Result;
3295 Result.Kind = EK_Base;
3296 Result.Parent = Parent;
3297 Result.Base = {Base, IsInheritedVirtualBase};
3298 Result.Type = Base->getType();
3299 return Result;
3300}
3301
3302DeclarationName InitializedEntity::getName() const {
3303 switch (getKind()) {
3304 case EK_Parameter:
3305 case EK_Parameter_CF_Audited: {
3306 ParmVarDecl *D = Parameter.getPointer();
3307 return (D ? D->getDeclName() : DeclarationName());
3308 }
3309
3310 case EK_Variable:
3311 case EK_Member:
3312 case EK_Binding:
3313 case EK_TemplateParameter:
3314 return Variable.VariableOrMember->getDeclName();
3315
3316 case EK_LambdaCapture:
3317 return DeclarationName(Capture.VarID);
3318
3319 case EK_Result:
3320 case EK_StmtExprResult:
3321 case EK_Exception:
3322 case EK_New:
3323 case EK_Temporary:
3324 case EK_Base:
3325 case EK_Delegating:
3326 case EK_ArrayElement:
3327 case EK_VectorElement:
3328 case EK_ComplexElement:
3329 case EK_BlockElement:
3330 case EK_LambdaToBlockConversionBlockElement:
3331 case EK_CompoundLiteralInit:
3332 case EK_RelatedResult:
3333 return DeclarationName();
3334 }
3335
3336 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3336)
;
3337}
3338
3339ValueDecl *InitializedEntity::getDecl() const {
3340 switch (getKind()) {
3341 case EK_Variable:
3342 case EK_Member:
3343 case EK_Binding:
3344 case EK_TemplateParameter:
3345 return Variable.VariableOrMember;
3346
3347 case EK_Parameter:
3348 case EK_Parameter_CF_Audited:
3349 return Parameter.getPointer();
3350
3351 case EK_Result:
3352 case EK_StmtExprResult:
3353 case EK_Exception:
3354 case EK_New:
3355 case EK_Temporary:
3356 case EK_Base:
3357 case EK_Delegating:
3358 case EK_ArrayElement:
3359 case EK_VectorElement:
3360 case EK_ComplexElement:
3361 case EK_BlockElement:
3362 case EK_LambdaToBlockConversionBlockElement:
3363 case EK_LambdaCapture:
3364 case EK_CompoundLiteralInit:
3365 case EK_RelatedResult:
3366 return nullptr;
3367 }
3368
3369 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3369)
;
3370}
3371
3372bool InitializedEntity::allowsNRVO() const {
3373 switch (getKind()) {
3374 case EK_Result:
3375 case EK_Exception:
3376 return LocAndNRVO.NRVO;
3377
3378 case EK_StmtExprResult:
3379 case EK_Variable:
3380 case EK_Parameter:
3381 case EK_Parameter_CF_Audited:
3382 case EK_TemplateParameter:
3383 case EK_Member:
3384 case EK_Binding:
3385 case EK_New:
3386 case EK_Temporary:
3387 case EK_CompoundLiteralInit:
3388 case EK_Base:
3389 case EK_Delegating:
3390 case EK_ArrayElement:
3391 case EK_VectorElement:
3392 case EK_ComplexElement:
3393 case EK_BlockElement:
3394 case EK_LambdaToBlockConversionBlockElement:
3395 case EK_LambdaCapture:
3396 case EK_RelatedResult:
3397 break;
3398 }
3399
3400 return false;
3401}
3402
3403unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3404 assert(getParent() != this)(static_cast <bool> (getParent() != this) ? void (0) : __assert_fail
("getParent() != this", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3404, __extension__ __PRETTY_FUNCTION__))
;
3405 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3406 for (unsigned I = 0; I != Depth; ++I)
3407 OS << "`-";
3408
3409 switch (getKind()) {
3410 case EK_Variable: OS << "Variable"; break;
3411 case EK_Parameter: OS << "Parameter"; break;
3412 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3413 break;
3414 case EK_TemplateParameter: OS << "TemplateParameter"; break;
3415 case EK_Result: OS << "Result"; break;
3416 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3417 case EK_Exception: OS << "Exception"; break;
3418 case EK_Member: OS << "Member"; break;
3419 case EK_Binding: OS << "Binding"; break;
3420 case EK_New: OS << "New"; break;
3421 case EK_Temporary: OS << "Temporary"; break;
3422 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3423 case EK_RelatedResult: OS << "RelatedResult"; break;
3424 case EK_Base: OS << "Base"; break;
3425 case EK_Delegating: OS << "Delegating"; break;
3426 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3427 case EK_VectorElement: OS << "VectorElement " << Index; break;
3428 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3429 case EK_BlockElement: OS << "Block"; break;
3430 case EK_LambdaToBlockConversionBlockElement:
3431 OS << "Block (lambda)";
3432 break;
3433 case EK_LambdaCapture:
3434 OS << "LambdaCapture ";
3435 OS << DeclarationName(Capture.VarID);
3436 break;
3437 }
3438
3439 if (auto *D = getDecl()) {
3440 OS << " ";
3441 D->printQualifiedName(OS);
3442 }
3443
3444 OS << " '" << getType().getAsString() << "'\n";
3445
3446 return Depth + 1;
3447}
3448
3449LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3450 dumpImpl(llvm::errs());
3451}
3452
3453//===----------------------------------------------------------------------===//
3454// Initialization sequence
3455//===----------------------------------------------------------------------===//
3456
3457void InitializationSequence::Step::Destroy() {
3458 switch (Kind) {
3459 case SK_ResolveAddressOfOverloadedFunction:
3460 case SK_CastDerivedToBasePRValue:
3461 case SK_CastDerivedToBaseXValue:
3462 case SK_CastDerivedToBaseLValue:
3463 case SK_BindReference:
3464 case SK_BindReferenceToTemporary:
3465 case SK_FinalCopy:
3466 case SK_ExtraneousCopyToTemporary:
3467 case SK_UserConversion:
3468 case SK_QualificationConversionPRValue:
3469 case SK_QualificationConversionXValue:
3470 case SK_QualificationConversionLValue:
3471 case SK_FunctionReferenceConversion:
3472 case SK_AtomicConversion:
3473 case SK_ListInitialization:
3474 case SK_UnwrapInitList:
3475 case SK_RewrapInitList:
3476 case SK_ConstructorInitialization:
3477 case SK_ConstructorInitializationFromList:
3478 case SK_ZeroInitialization:
3479 case SK_CAssignment:
3480 case SK_StringInit:
3481 case SK_ObjCObjectConversion:
3482 case SK_ArrayLoopIndex:
3483 case SK_ArrayLoopInit:
3484 case SK_ArrayInit:
3485 case SK_GNUArrayInit:
3486 case SK_ParenthesizedArrayInit:
3487 case SK_PassByIndirectCopyRestore:
3488 case SK_PassByIndirectRestore:
3489 case SK_ProduceObjCObject:
3490 case SK_StdInitializerList:
3491 case SK_StdInitializerListConstructorCall:
3492 case SK_OCLSamplerInit:
3493 case SK_OCLZeroOpaqueType:
3494 break;
3495
3496 case SK_ConversionSequence:
3497 case SK_ConversionSequenceNoNarrowing:
3498 delete ICS;
3499 }
3500}
3501
3502bool InitializationSequence::isDirectReferenceBinding() const {
3503 // There can be some lvalue adjustments after the SK_BindReference step.
3504 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3505 if (I->Kind == SK_BindReference)
3506 return true;
3507 if (I->Kind == SK_BindReferenceToTemporary)
3508 return false;
3509 }
3510 return false;
3511}
3512
3513bool InitializationSequence::isAmbiguous() const {
3514 if (!Failed())
3515 return false;
3516
3517 switch (getFailureKind()) {
3518 case FK_TooManyInitsForReference:
3519 case FK_ParenthesizedListInitForReference:
3520 case FK_ArrayNeedsInitList:
3521 case FK_ArrayNeedsInitListOrStringLiteral:
3522 case FK_ArrayNeedsInitListOrWideStringLiteral:
3523 case FK_NarrowStringIntoWideCharArray:
3524 case FK_WideStringIntoCharArray:
3525 case FK_IncompatWideStringIntoWideChar:
3526 case FK_PlainStringIntoUTF8Char:
3527 case FK_UTF8StringIntoPlainChar:
3528 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3529 case FK_NonConstLValueReferenceBindingToTemporary:
3530 case FK_NonConstLValueReferenceBindingToBitfield:
3531 case FK_NonConstLValueReferenceBindingToVectorElement:
3532 case FK_NonConstLValueReferenceBindingToMatrixElement:
3533 case FK_NonConstLValueReferenceBindingToUnrelated:
3534 case FK_RValueReferenceBindingToLValue:
3535 case FK_ReferenceAddrspaceMismatchTemporary:
3536 case FK_ReferenceInitDropsQualifiers:
3537 case FK_ReferenceInitFailed:
3538 case FK_ConversionFailed:
3539 case FK_ConversionFromPropertyFailed:
3540 case FK_TooManyInitsForScalar:
3541 case FK_ParenthesizedListInitForScalar:
3542 case FK_ReferenceBindingToInitList:
3543 case FK_InitListBadDestinationType:
3544 case FK_DefaultInitOfConst:
3545 case FK_Incomplete:
3546 case FK_ArrayTypeMismatch:
3547 case FK_NonConstantArrayInit:
3548 case FK_ListInitializationFailed:
3549 case FK_VariableLengthArrayHasInitializer:
3550 case FK_PlaceholderType:
3551 case FK_ExplicitConstructor:
3552 case FK_AddressOfUnaddressableFunction:
3553 return false;
3554
3555 case FK_ReferenceInitOverloadFailed:
3556 case FK_UserConversionOverloadFailed:
3557 case FK_ConstructorOverloadFailed:
3558 case FK_ListConstructorOverloadFailed:
3559 return FailedOverloadResult == OR_Ambiguous;
3560 }
3561
3562 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3562)
;
3563}
3564
3565bool InitializationSequence::isConstructorInitialization() const {
3566 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3567}
3568
3569void
3570InitializationSequence
3571::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3572 DeclAccessPair Found,
3573 bool HadMultipleCandidates) {
3574 Step S;
3575 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3576 S.Type = Function->getType();
3577 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3578 S.Function.Function = Function;
3579 S.Function.FoundDecl = Found;
3580 Steps.push_back(S);
3581}
3582
3583void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3584 ExprValueKind VK) {
3585 Step S;
3586 switch (VK) {
3587 case VK_PRValue:
3588 S.Kind = SK_CastDerivedToBasePRValue;
3589 break;
3590 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3591 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3592 }
3593 S.Type = BaseType;
3594 Steps.push_back(S);
3595}
3596
3597void InitializationSequence::AddReferenceBindingStep(QualType T,
3598 bool BindingTemporary) {
3599 Step S;
3600 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3601 S.Type = T;
3602 Steps.push_back(S);
3603}
3604
3605void InitializationSequence::AddFinalCopy(QualType T) {
3606 Step S;
3607 S.Kind = SK_FinalCopy;
3608 S.Type = T;
3609 Steps.push_back(S);
3610}
3611
3612void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3613 Step S;
3614 S.Kind = SK_ExtraneousCopyToTemporary;
3615 S.Type = T;
3616 Steps.push_back(S);
3617}
3618
3619void
3620InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3621 DeclAccessPair FoundDecl,
3622 QualType T,
3623 bool HadMultipleCandidates) {
3624 Step S;
3625 S.Kind = SK_UserConversion;
3626 S.Type = T;
3627 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3628 S.Function.Function = Function;
3629 S.Function.FoundDecl = FoundDecl;
3630 Steps.push_back(S);
3631}
3632
3633void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3634 ExprValueKind VK) {
3635 Step S;
3636 S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning
3637 switch (VK) {
3638 case VK_PRValue:
3639 S.Kind = SK_QualificationConversionPRValue;
3640 break;
3641 case VK_XValue:
3642 S.Kind = SK_QualificationConversionXValue;
3643 break;
3644 case VK_LValue:
3645 S.Kind = SK_QualificationConversionLValue;
3646 break;
3647 }
3648 S.Type = Ty;
3649 Steps.push_back(S);
3650}
3651
3652void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) {
3653 Step S;
3654 S.Kind = SK_FunctionReferenceConversion;
3655 S.Type = Ty;
3656 Steps.push_back(S);
3657}
3658
3659void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3660 Step S;
3661 S.Kind = SK_AtomicConversion;
3662 S.Type = Ty;
3663 Steps.push_back(S);
3664}
3665
3666void InitializationSequence::AddConversionSequenceStep(
3667 const ImplicitConversionSequence &ICS, QualType T,
3668 bool TopLevelOfInitList) {
3669 Step S;
3670 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3671 : SK_ConversionSequence;
3672 S.Type = T;
3673 S.ICS = new ImplicitConversionSequence(ICS);
3674 Steps.push_back(S);
3675}
3676
3677void InitializationSequence::AddListInitializationStep(QualType T) {
3678 Step S;
3679 S.Kind = SK_ListInitialization;
3680 S.Type = T;
3681 Steps.push_back(S);
3682}
3683
3684void InitializationSequence::AddConstructorInitializationStep(
3685 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3686 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3687 Step S;
3688 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3689 : SK_ConstructorInitializationFromList
3690 : SK_ConstructorInitialization;
3691 S.Type = T;
3692 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3693 S.Function.Function = Constructor;
3694 S.Function.FoundDecl = FoundDecl;
3695 Steps.push_back(S);
3696}
3697
3698void InitializationSequence::AddZeroInitializationStep(QualType T) {
3699 Step S;
3700 S.Kind = SK_ZeroInitialization;
3701 S.Type = T;
3702 Steps.push_back(S);
3703}
3704
3705void InitializationSequence::AddCAssignmentStep(QualType T) {
3706 Step S;
3707 S.Kind = SK_CAssignment;
3708 S.Type = T;
3709 Steps.push_back(S);
3710}
3711
3712void InitializationSequence::AddStringInitStep(QualType T) {
3713 Step S;
3714 S.Kind = SK_StringInit;
3715 S.Type = T;
3716 Steps.push_back(S);
3717}
3718
3719void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3720 Step S;
3721 S.Kind = SK_ObjCObjectConversion;
3722 S.Type = T;
3723 Steps.push_back(S);
3724}
3725
3726void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3727 Step S;
3728 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3729 S.Type = T;
3730 Steps.push_back(S);
3731}
3732
3733void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3734 Step S;
3735 S.Kind = SK_ArrayLoopIndex;
3736 S.Type = EltT;
3737 Steps.insert(Steps.begin(), S);
3738
3739 S.Kind = SK_ArrayLoopInit;
3740 S.Type = T;
3741 Steps.push_back(S);
3742}
3743
3744void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3745 Step S;
3746 S.Kind = SK_ParenthesizedArrayInit;
3747 S.Type = T;
3748 Steps.push_back(S);
3749}
3750
3751void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3752 bool shouldCopy) {
3753 Step s;
3754 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3755 : SK_PassByIndirectRestore);
3756 s.Type = type;
3757 Steps.push_back(s);
3758}
3759
3760void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3761 Step S;
3762 S.Kind = SK_ProduceObjCObject;
3763 S.Type = T;
3764 Steps.push_back(S);
3765}
3766
3767void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3768 Step S;
3769 S.Kind = SK_StdInitializerList;
3770 S.Type = T;
3771 Steps.push_back(S);
3772}
3773
3774void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3775 Step S;
3776 S.Kind = SK_OCLSamplerInit;
3777 S.Type = T;
3778 Steps.push_back(S);
3779}
3780
3781void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) {
3782 Step S;
3783 S.Kind = SK_OCLZeroOpaqueType;
3784 S.Type = T;
3785 Steps.push_back(S);
3786}
3787
3788void InitializationSequence::RewrapReferenceInitList(QualType T,
3789 InitListExpr *Syntactic) {
3790 assert(Syntactic->getNumInits() == 1 &&(static_cast <bool> (Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists.") ? void (0) : __assert_fail
("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3791, __extension__ __PRETTY_FUNCTION__))
3791 "Can only rewrap trivial init lists.")(static_cast <bool> (Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists.") ? void (0) : __assert_fail
("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3791, __extension__ __PRETTY_FUNCTION__))
;
3792 Step S;
3793 S.Kind = SK_UnwrapInitList;
3794 S.Type = Syntactic->getInit(0)->getType();
3795 Steps.insert(Steps.begin(), S);
3796
3797 S.Kind = SK_RewrapInitList;
3798 S.Type = T;
3799 S.WrappingSyntacticList = Syntactic;
3800 Steps.push_back(S);
3801}
3802
3803void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3804 OverloadingResult Result) {
3805 setSequenceKind(FailedSequence);
3806 this->Failure = Failure;
3807 this->FailedOverloadResult = Result;
3808}
3809
3810//===----------------------------------------------------------------------===//
3811// Attempt initialization
3812//===----------------------------------------------------------------------===//
3813
3814/// Tries to add a zero initializer. Returns true if that worked.
3815static bool
3816maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3817 const InitializedEntity &Entity) {
3818 if (Entity.getKind() != InitializedEntity::EK_Variable)
3819 return false;
3820
3821 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3822 if (VD->getInit() || VD->getEndLoc().isMacroID())
3823 return false;
3824
3825 QualType VariableTy = VD->getType().getCanonicalType();
3826 SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc());
3827 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3828 if (!Init.empty()) {
3829 Sequence.AddZeroInitializationStep(Entity.getType());
3830 Sequence.SetZeroInitializationFixit(Init, Loc);
3831 return true;
3832 }
3833 return false;
3834}
3835
3836static void MaybeProduceObjCObject(Sema &S,
3837 InitializationSequence &Sequence,
3838 const InitializedEntity &Entity) {
3839 if (!S.getLangOpts().ObjCAutoRefCount) return;
3840
3841 /// When initializing a parameter, produce the value if it's marked
3842 /// __attribute__((ns_consumed)).
3843 if (Entity.isParameterKind()) {
3844 if (!Entity.isParameterConsumed())
3845 return;
3846
3847 assert(Entity.getType()->isObjCRetainableType() &&(static_cast <bool> (Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?") ? void
(0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3848, __extension__ __PRETTY_FUNCTION__))
3848 "consuming an object of unretainable type?")(static_cast <bool> (Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?") ? void
(0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 3848, __extension__ __PRETTY_FUNCTION__))
;
3849 Sequence.AddProduceObjCObjectStep(Entity.getType());
3850
3851 /// When initializing a return value, if the return type is a
3852 /// retainable type, then returns need to immediately retain the
3853 /// object. If an autorelease is required, it will be done at the
3854 /// last instant.
3855 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3856 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3857 if (!Entity.getType()->isObjCRetainableType())
3858 return;
3859
3860 Sequence.AddProduceObjCObjectStep(Entity.getType());
3861 }
3862}
3863
3864static void TryListInitialization(Sema &S,
3865 const InitializedEntity &Entity,
3866 const InitializationKind &Kind,
3867 InitListExpr *InitList,
3868 InitializationSequence &Sequence,
3869 bool TreatUnavailableAsInvalid);
3870
3871/// When initializing from init list via constructor, handle
3872/// initialization of an object of type std::initializer_list<T>.
3873///
3874/// \return true if we have handled initialization of an object of type
3875/// std::initializer_list<T>, false otherwise.
3876static bool TryInitializerListConstruction(Sema &S,
3877 InitListExpr *List,
3878 QualType DestType,
3879 InitializationSequence &Sequence,
3880 bool TreatUnavailableAsInvalid) {
3881 QualType E;
3882 if (!S.isStdInitializerList(DestType, &E))
3883 return false;
3884
3885 if (!S.isCompleteType(List->getExprLoc(), E)) {
3886 Sequence.setIncompleteTypeFailure(E);
3887 return true;
3888 }
3889
3890 // Try initializing a temporary array from the init list.
3891 QualType ArrayType = S.Context.getConstantArrayType(
3892 E.withConst(),
3893 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3894 List->getNumInits()),
3895 nullptr, clang::ArrayType::Normal, 0);
3896 InitializedEntity HiddenArray =
3897 InitializedEntity::InitializeTemporary(ArrayType);
3898 InitializationKind Kind = InitializationKind::CreateDirectList(
3899 List->getExprLoc(), List->getBeginLoc(), List->getEndLoc());
3900 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3901 TreatUnavailableAsInvalid);
3902 if (Sequence)
3903 Sequence.AddStdInitializerListConstructionStep(DestType);
3904 return true;
3905}
3906
3907/// Determine if the constructor has the signature of a copy or move
3908/// constructor for the type T of the class in which it was found. That is,
3909/// determine if its first parameter is of type T or reference to (possibly
3910/// cv-qualified) T.
3911static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3912 const ConstructorInfo &Info) {
3913 if (Info.Constructor->getNumParams() == 0)
3914 return false;
3915
3916 QualType ParmT =
3917 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3918 QualType ClassT =
3919 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3920
3921 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3922}
3923
3924static OverloadingResult
3925ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3926 MultiExprArg Args,
3927 OverloadCandidateSet &CandidateSet,
3928 QualType DestType,
3929 DeclContext::lookup_result Ctors,
3930 OverloadCandidateSet::iterator &Best,
3931 bool CopyInitializing, bool AllowExplicit,
3932 bool OnlyListConstructors, bool IsListInit,
3933 bool SecondStepOfCopyInit = false) {
3934 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3935 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
3936
3937 for (NamedDecl *D : Ctors) {
3938 auto Info = getConstructorInfo(D);
3939 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3940 continue;
3941
3942 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3943 continue;
3944
3945 // C++11 [over.best.ics]p4:
3946 // ... and the constructor or user-defined conversion function is a
3947 // candidate by
3948 // - 13.3.1.3, when the argument is the temporary in the second step
3949 // of a class copy-initialization, or
3950 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3951 // - the second phase of 13.3.1.7 when the initializer list has exactly
3952 // one element that is itself an initializer list, and the target is
3953 // the first parameter of a constructor of class X, and the conversion
3954 // is to X or reference to (possibly cv-qualified X),
3955 // user-defined conversion sequences are not considered.
3956 bool SuppressUserConversions =
3957 SecondStepOfCopyInit ||
3958 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3959 hasCopyOrMoveCtorParam(S.Context, Info));
3960
3961 if (Info.ConstructorTmpl)
3962 S.AddTemplateOverloadCandidate(
3963 Info.ConstructorTmpl, Info.FoundDecl,
3964 /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions,
3965 /*PartialOverloading=*/false, AllowExplicit);
3966 else {
3967 // C++ [over.match.copy]p1:
3968 // - When initializing a temporary to be bound to the first parameter
3969 // of a constructor [for type T] that takes a reference to possibly
3970 // cv-qualified T as its first argument, called with a single
3971 // argument in the context of direct-initialization, explicit
3972 // conversion functions are also considered.
3973 // FIXME: What if a constructor template instantiates to such a signature?
3974 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3975 Args.size() == 1 &&
3976 hasCopyOrMoveCtorParam(S.Context, Info);
3977 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3978 CandidateSet, SuppressUserConversions,
3979 /*PartialOverloading=*/false, AllowExplicit,
3980 AllowExplicitConv);
3981 }
3982 }
3983
3984 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3985 //
3986 // When initializing an object of class type T by constructor
3987 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3988 // from a single expression of class type U, conversion functions of
3989 // U that convert to the non-reference type cv T are candidates.
3990 // Explicit conversion functions are only candidates during
3991 // direct-initialization.
3992 //
3993 // Note: SecondStepOfCopyInit is only ever true in this case when
3994 // evaluating whether to produce a C++98 compatibility warning.
3995 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3996 !SecondStepOfCopyInit) {
3997 Expr *Initializer = Args[0];
3998 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3999 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
4000 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
4001 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4002 NamedDecl *D = *I;
4003 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4004 D = D->getUnderlyingDecl();
4005
4006 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4007 CXXConversionDecl *Conv;
4008 if (ConvTemplate)
4009 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4010 else
4011 Conv = cast<CXXConversionDecl>(D);
4012
4013 if (ConvTemplate)
4014 S.AddTemplateConversionCandidate(
4015 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4016 CandidateSet, AllowExplicit, AllowExplicit,
4017 /*AllowResultConversion*/ false);
4018 else
4019 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
4020 DestType, CandidateSet, AllowExplicit,
4021 AllowExplicit,
4022 /*AllowResultConversion*/ false);
4023 }
4024 }
4025 }
4026
4027 // Perform overload resolution and return the result.
4028 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
4029}
4030
4031/// Attempt initialization by constructor (C++ [dcl.init]), which
4032/// enumerates the constructors of the initialized entity and performs overload
4033/// resolution to select the best.
4034/// \param DestType The destination class type.
4035/// \param DestArrayType The destination type, which is either DestType or
4036/// a (possibly multidimensional) array of DestType.
4037/// \param IsListInit Is this list-initialization?
4038/// \param IsInitListCopy Is this non-list-initialization resulting from a
4039/// list-initialization from {x} where x is the same
4040/// type as the entity?
4041static void TryConstructorInitialization(Sema &S,
4042 const InitializedEntity &Entity,
4043 const InitializationKind &Kind,
4044 MultiExprArg Args, QualType DestType,
4045 QualType DestArrayType,
4046 InitializationSequence &Sequence,
4047 bool IsListInit = false,
4048 bool IsInitListCopy = false) {
4049 assert(((!IsListInit && !IsInitListCopy) ||(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4052, __extension__ __PRETTY_FUNCTION__))
4050 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4052, __extension__ __PRETTY_FUNCTION__))
4051 "IsListInit/IsInitListCopy must come with a single initializer list "(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4052, __extension__ __PRETTY_FUNCTION__))
4052 "argument.")(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4052, __extension__ __PRETTY_FUNCTION__))
;
4053 InitListExpr *ILE =
4054 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
4055 MultiExprArg UnwrappedArgs =
4056 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
4057
4058 // The type we're constructing needs to be complete.
4059 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
4060 Sequence.setIncompleteTypeFailure(DestType);
4061 return;
4062 }
4063
4064 // C++17 [dcl.init]p17:
4065 // - If the initializer expression is a prvalue and the cv-unqualified
4066 // version of the source type is the same class as the class of the
4067 // destination, the initializer expression is used to initialize the
4068 // destination object.
4069 // Per DR (no number yet), this does not apply when initializing a base
4070 // class or delegating to another constructor from a mem-initializer.
4071 // ObjC++: Lambda captured by the block in the lambda to block conversion
4072 // should avoid copy elision.
4073 if (S.getLangOpts().CPlusPlus17 &&
4074 Entity.getKind() != InitializedEntity::EK_Base &&
4075 Entity.getKind() != InitializedEntity::EK_Delegating &&
4076 Entity.getKind() !=
4077 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
4078 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() &&
4079 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
4080 // Convert qualifications if necessary.
4081 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4082 if (ILE)
4083 Sequence.RewrapReferenceInitList(DestType, ILE);
4084 return;
4085 }
4086
4087 const RecordType *DestRecordType = DestType->getAs<RecordType>();
4088 assert(DestRecordType && "Constructor initialization requires record type")(static_cast <bool> (DestRecordType && "Constructor initialization requires record type"
) ? void (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4088, __extension__ __PRETTY_FUNCTION__))
;
4089 CXXRecordDecl *DestRecordDecl
4090 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4091
4092 // Build the candidate set directly in the initialization sequence
4093 // structure, so that it will persist if we fail.
4094 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4095
4096 // Determine whether we are allowed to call explicit constructors or
4097 // explicit conversion operators.
4098 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
4099 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
4100
4101 // - Otherwise, if T is a class type, constructors are considered. The
4102 // applicable constructors are enumerated, and the best one is chosen
4103 // through overload resolution.
4104 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
4105
4106 OverloadingResult Result = OR_No_Viable_Function;
4107 OverloadCandidateSet::iterator Best;
4108 bool AsInitializerList = false;
4109
4110 // C++11 [over.match.list]p1, per DR1467:
4111 // When objects of non-aggregate type T are list-initialized, such that
4112 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
4113 // according to the rules in this section, overload resolution selects
4114 // the constructor in two phases:
4115 //
4116 // - Initially, the candidate functions are the initializer-list
4117 // constructors of the class T and the argument list consists of the
4118 // initializer list as a single argument.
4119 if (IsListInit) {
4120 AsInitializerList = true;
4121
4122 // If the initializer list has no elements and T has a default constructor,
4123 // the first phase is omitted.
4124 if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl)))
4125 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
4126 CandidateSet, DestType, Ctors, Best,
4127 CopyInitialization, AllowExplicit,
4128 /*OnlyListConstructors=*/true,
4129 IsListInit);
4130 }
4131
4132 // C++11 [over.match.list]p1:
4133 // - If no viable initializer-list constructor is found, overload resolution
4134 // is performed again, where the candidate functions are all the
4135 // constructors of the class T and the argument list consists of the
4136 // elements of the initializer list.
4137 if (Result == OR_No_Viable_Function) {
4138 AsInitializerList = false;
4139 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
4140 CandidateSet, DestType, Ctors, Best,
4141 CopyInitialization, AllowExplicit,
4142 /*OnlyListConstructors=*/false,
4143 IsListInit);
4144 }
4145 if (Result) {
4146 Sequence.SetOverloadFailure(
4147 IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed
4148 : InitializationSequence::FK_ConstructorOverloadFailed,
4149 Result);
4150
4151 if (Result != OR_Deleted)
4152 return;
4153 }
4154
4155 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4156
4157 // In C++17, ResolveConstructorOverload can select a conversion function
4158 // instead of a constructor.
4159 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
4160 // Add the user-defined conversion step that calls the conversion function.
4161 QualType ConvType = CD->getConversionType();
4162 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&(static_cast <bool> (S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
) ? void (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4163, __extension__ __PRETTY_FUNCTION__))
4163 "should not have selected this conversion function")(static_cast <bool> (S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
) ? void (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4163, __extension__ __PRETTY_FUNCTION__))
;
4164 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
4165 HadMultipleCandidates);
4166 if (!S.Context.hasSameType(ConvType, DestType))
4167 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
4168 if (IsListInit)
4169 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
4170 return;
4171 }
4172
4173 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
4174 if (Result != OR_Deleted) {
4175 // C++11 [dcl.init]p6:
4176 // If a program calls for the default initialization of an object
4177 // of a const-qualified type T, T shall be a class type with a
4178 // user-provided default constructor.
4179 // C++ core issue 253 proposal:
4180 // If the implicit default constructor initializes all subobjects, no
4181 // initializer should be required.
4182 // The 253 proposal is for example needed to process libstdc++ headers
4183 // in 5.x.
4184 if (Kind.getKind() == InitializationKind::IK_Default &&
4185 Entity.getType().isConstQualified()) {
4186 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
4187 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4188 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4189 return;
4190 }
4191 }
4192
4193 // C++11 [over.match.list]p1:
4194 // In copy-list-initialization, if an explicit constructor is chosen, the
4195 // initializer is ill-formed.
4196 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
4197 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
4198 return;
4199 }
4200 }
4201
4202 // [class.copy.elision]p3:
4203 // In some copy-initialization contexts, a two-stage overload resolution
4204 // is performed.
4205 // If the first overload resolution selects a deleted function, we also
4206 // need the initialization sequence to decide whether to perform the second
4207 // overload resolution.
4208 // For deleted functions in other contexts, there is no need to get the
4209 // initialization sequence.
4210 if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy)
4211 return;
4212
4213 // Add the constructor initialization step. Any cv-qualification conversion is
4214 // subsumed by the initialization.
4215 Sequence.AddConstructorInitializationStep(
4216 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
4217 IsListInit | IsInitListCopy, AsInitializerList);
4218}
4219
4220static bool
4221ResolveOverloadedFunctionForReferenceBinding(Sema &S,
4222 Expr *Initializer,
4223 QualType &SourceType,
4224 QualType &UnqualifiedSourceType,
4225 QualType UnqualifiedTargetType,
4226 InitializationSequence &Sequence) {
4227 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
4228 S.Context.OverloadTy) {
4229 DeclAccessPair Found;
4230 bool HadMultipleCandidates = false;
4231 if (FunctionDecl *Fn
4232 = S.ResolveAddressOfOverloadedFunction(Initializer,
4233 UnqualifiedTargetType,
4234 false, Found,
4235 &HadMultipleCandidates)) {
4236 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
4237 HadMultipleCandidates);
4238 SourceType = Fn->getType();
4239 UnqualifiedSourceType = SourceType.getUnqualifiedType();
4240 } else if (!UnqualifiedTargetType->isRecordType()) {
4241 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4242 return true;
4243 }
4244 }
4245 return false;
4246}
4247
4248static void TryReferenceInitializationCore(Sema &S,
4249 const InitializedEntity &Entity,
4250 const InitializationKind &Kind,
4251 Expr *Initializer,
4252 QualType cv1T1, QualType T1,
4253 Qualifiers T1Quals,
4254 QualType cv2T2, QualType T2,
4255 Qualifiers T2Quals,
4256 InitializationSequence &Sequence);
4257
4258static void TryValueInitialization(Sema &S,
4259 const InitializedEntity &Entity,
4260 const InitializationKind &Kind,
4261 InitializationSequence &Sequence,
4262 InitListExpr *InitList = nullptr);
4263
4264/// Attempt list initialization of a reference.
4265static void TryReferenceListInitialization(Sema &S,
4266 const InitializedEntity &Entity,
4267 const InitializationKind &Kind,
4268 InitListExpr *InitList,
4269 InitializationSequence &Sequence,
4270 bool TreatUnavailableAsInvalid) {
4271 // First, catch C++03 where this isn't possible.
4272 if (!S.getLangOpts().CPlusPlus11) {
4273 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4274 return;
4275 }
4276 // Can't reference initialize a compound literal.
4277 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
4278 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
4279 return;
4280 }
4281
4282 QualType DestType = Entity.getType();
4283 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4284 Qualifiers T1Quals;
4285 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4286
4287 // Reference initialization via an initializer list works thus:
4288 // If the initializer list consists of a single element that is
4289 // reference-related to the referenced type, bind directly to that element
4290 // (possibly creating temporaries).
4291 // Otherwise, initialize a temporary with the initializer list and
4292 // bind to that.
4293 if (InitList->getNumInits() == 1) {
4294 Expr *Initializer = InitList->getInit(0);
4295 QualType cv2T2 = S.getCompletedType(Initializer);
4296 Qualifiers T2Quals;
4297 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4298
4299 // If this fails, creating a temporary wouldn't work either.
4300 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4301 T1, Sequence))
4302 return;
4303
4304 SourceLocation DeclLoc = Initializer->getBeginLoc();
4305 Sema::ReferenceCompareResult RefRelationship
4306 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2);
4307 if (RefRelationship >= Sema::Ref_Related) {
4308 // Try to bind the reference here.
4309 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4310 T1Quals, cv2T2, T2, T2Quals, Sequence);
4311 if (Sequence)
4312 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4313 return;
4314 }
4315
4316 // Update the initializer if we've resolved an overloaded function.
4317 if (Sequence.step_begin() != Sequence.step_end())
4318 Sequence.RewrapReferenceInitList(cv1T1, InitList);
4319 }
4320 // Perform address space compatibility check.
4321 QualType cv1T1IgnoreAS = cv1T1;
4322 if (T1Quals.hasAddressSpace()) {
4323 Qualifiers T2Quals;
4324 (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals);
4325 if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) {
4326 Sequence.SetFailed(
4327 InitializationSequence::FK_ReferenceInitDropsQualifiers);
4328 return;
4329 }
4330 // Ignore address space of reference type at this point and perform address
4331 // space conversion after the reference binding step.
4332 cv1T1IgnoreAS =
4333 S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace());
4334 }
4335 // Not reference-related. Create a temporary and bind to that.
4336 InitializedEntity TempEntity =
4337 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
4338
4339 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4340 TreatUnavailableAsInvalid);
4341 if (Sequence) {
4342 if (DestType->isRValueReferenceType() ||
4343 (T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4344 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS,
4345 /*BindingTemporary=*/true);
4346 if (T1Quals.hasAddressSpace())
4347 Sequence.AddQualificationConversionStep(
4348 cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue);
4349 } else
4350 Sequence.SetFailed(
4351 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4352 }
4353}
4354
4355/// Attempt list initialization (C++0x [dcl.init.list])
4356static void TryListInitialization(Sema &S,
4357 const InitializedEntity &Entity,
4358 const InitializationKind &Kind,
4359 InitListExpr *InitList,
4360 InitializationSequence &Sequence,
4361 bool TreatUnavailableAsInvalid) {
4362 QualType DestType = Entity.getType();
4363
4364 // C++ doesn't allow scalar initialization with more than one argument.
4365 // But C99 complex numbers are scalars and it makes sense there.
4366 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4367 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4368 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4369 return;
4370 }
4371 if (DestType->isReferenceType()) {
4372 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4373 TreatUnavailableAsInvalid);
4374 return;
4375 }
4376
4377 if (DestType->isRecordType() &&
4378 !S.isCompleteType(InitList->getBeginLoc(), DestType)) {
4379 Sequence.setIncompleteTypeFailure(DestType);
4380 return;
4381 }
4382
4383 // C++11 [dcl.init.list]p3, per DR1467:
4384 // - If T is a class type and the initializer list has a single element of
4385 // type cv U, where U is T or a class derived from T, the object is
4386 // initialized from that element (by copy-initialization for
4387 // copy-list-initialization, or by direct-initialization for
4388 // direct-list-initialization).
4389 // - Otherwise, if T is a character array and the initializer list has a
4390 // single element that is an appropriately-typed string literal
4391 // (8.5.2 [dcl.init.string]), initialization is performed as described
4392 // in that section.
4393 // - Otherwise, if T is an aggregate, [...] (continue below).
4394 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4395 if (DestType->isRecordType()) {
4396 QualType InitType = InitList->getInit(0)->getType();
4397 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4398 S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) {
4399 Expr *InitListAsExpr = InitList;
4400 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4401 DestType, Sequence,
4402 /*InitListSyntax*/false,
4403 /*IsInitListCopy*/true);
4404 return;
4405 }
4406 }
4407 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4408 Expr *SubInit[1] = {InitList->getInit(0)};
4409 if (!isa<VariableArrayType>(DestAT) &&
4410 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4411 InitializationKind SubKind =
4412 Kind.getKind() == InitializationKind::IK_DirectList
4413 ? InitializationKind::CreateDirect(Kind.getLocation(),
4414 InitList->getLBraceLoc(),
4415 InitList->getRBraceLoc())
4416 : Kind;
4417 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4418 /*TopLevelOfInitList*/ true,
4419 TreatUnavailableAsInvalid);
4420
4421 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4422 // the element is not an appropriately-typed string literal, in which
4423 // case we should proceed as in C++11 (below).
4424 if (Sequence) {
4425 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4426 return;
4427 }
4428 }
4429 }
4430 }
4431
4432 // C++11 [dcl.init.list]p3:
4433 // - If T is an aggregate, aggregate initialization is performed.
4434 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4435 (S.getLangOpts().CPlusPlus11 &&
4436 S.isStdInitializerList(DestType, nullptr))) {
4437 if (S.getLangOpts().CPlusPlus11) {
4438 // - Otherwise, if the initializer list has no elements and T is a
4439 // class type with a default constructor, the object is
4440 // value-initialized.
4441 if (InitList->getNumInits() == 0) {
4442 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4443 if (S.LookupDefaultConstructor(RD)) {
4444 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4445 return;
4446 }
4447 }
4448
4449 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4450 // an initializer_list object constructed [...]
4451 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4452 TreatUnavailableAsInvalid))
4453 return;
4454
4455 // - Otherwise, if T is a class type, constructors are considered.
4456 Expr *InitListAsExpr = InitList;
4457 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4458 DestType, Sequence, /*InitListSyntax*/true);
4459 } else
4460 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4461 return;
4462 }
4463
4464 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4465 InitList->getNumInits() == 1) {
4466 Expr *E = InitList->getInit(0);
4467
4468 // - Otherwise, if T is an enumeration with a fixed underlying type,
4469 // the initializer-list has a single element v, and the initialization
4470 // is direct-list-initialization, the object is initialized with the
4471 // value T(v); if a narrowing conversion is required to convert v to
4472 // the underlying type of T, the program is ill-formed.
4473 auto *ET = DestType->getAs<EnumType>();
4474 if (S.getLangOpts().CPlusPlus17 &&
4475 Kind.getKind() == InitializationKind::IK_DirectList &&
4476 ET && ET->getDecl()->isFixed() &&
4477 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4478 (E->getType()->isIntegralOrEnumerationType() ||
4479 E->getType()->isFloatingType())) {
4480 // There are two ways that T(v) can work when T is an enumeration type.
4481 // If there is either an implicit conversion sequence from v to T or
4482 // a conversion function that can convert from v to T, then we use that.
4483 // Otherwise, if v is of integral, enumeration, or floating-point type,
4484 // it is converted to the enumeration type via its underlying type.
4485 // There is no overlap possible between these two cases (except when the
4486 // source value is already of the destination type), and the first
4487 // case is handled by the general case for single-element lists below.
4488 ImplicitConversionSequence ICS;
4489 ICS.setStandard();
4490 ICS.Standard.setAsIdentityConversion();
4491 if (!E->isPRValue())
4492 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4493 // If E is of a floating-point type, then the conversion is ill-formed
4494 // due to narrowing, but go through the motions in order to produce the
4495 // right diagnostic.
4496 ICS.Standard.Second = E->getType()->isFloatingType()
4497 ? ICK_Floating_Integral
4498 : ICK_Integral_Conversion;
4499 ICS.Standard.setFromType(E->getType());
4500 ICS.Standard.setToType(0, E->getType());
4501 ICS.Standard.setToType(1, DestType);
4502 ICS.Standard.setToType(2, DestType);
4503 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4504 /*TopLevelOfInitList*/true);
4505 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4506 return;
4507 }
4508
4509 // - Otherwise, if the initializer list has a single element of type E
4510 // [...references are handled above...], the object or reference is
4511 // initialized from that element (by copy-initialization for
4512 // copy-list-initialization, or by direct-initialization for
4513 // direct-list-initialization); if a narrowing conversion is required
4514 // to convert the element to T, the program is ill-formed.
4515 //
4516 // Per core-24034, this is direct-initialization if we were performing
4517 // direct-list-initialization and copy-initialization otherwise.
4518 // We can't use InitListChecker for this, because it always performs
4519 // copy-initialization. This only matters if we might use an 'explicit'
4520 // conversion operator, or for the special case conversion of nullptr_t to
4521 // bool, so we only need to handle those cases.
4522 //
4523 // FIXME: Why not do this in all cases?
4524 Expr *Init = InitList->getInit(0);
4525 if (Init->getType()->isRecordType() ||
4526 (Init->getType()->isNullPtrType() && DestType->isBooleanType())) {
4527 InitializationKind SubKind =
4528 Kind.getKind() == InitializationKind::IK_DirectList
4529 ? InitializationKind::CreateDirect(Kind.getLocation(),
4530 InitList->getLBraceLoc(),
4531 InitList->getRBraceLoc())
4532 : Kind;
4533 Expr *SubInit[1] = { Init };
4534 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4535 /*TopLevelOfInitList*/true,
4536 TreatUnavailableAsInvalid);
4537 if (Sequence)
4538 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4539 return;
4540 }
4541 }
4542
4543 InitListChecker CheckInitList(S, Entity, InitList,
4544 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4545 if (CheckInitList.HadError()) {
4546 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4547 return;
4548 }
4549
4550 // Add the list initialization step with the built init list.
4551 Sequence.AddListInitializationStep(DestType);
4552}
4553
4554/// Try a reference initialization that involves calling a conversion
4555/// function.
4556static OverloadingResult TryRefInitWithConversionFunction(
4557 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4558 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4559 InitializationSequence &Sequence) {
4560 QualType DestType = Entity.getType();
4561 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4562 QualType T1 = cv1T1.getUnqualifiedType();
4563 QualType cv2T2 = Initializer->getType();
4564 QualType T2 = cv2T2.getUnqualifiedType();
4565
4566 assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) &&(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getBeginLoc(), T1, T2) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4567, __extension__ __PRETTY_FUNCTION__))
4567 "Must have incompatible references when binding via conversion")(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getBeginLoc(), T1, T2) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4567, __extension__ __PRETTY_FUNCTION__))
;
4568
4569 // Build the candidate set directly in the initialization sequence
4570 // structure, so that it will persist if we fail.
4571 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4572 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4573
4574 // Determine whether we are allowed to call explicit conversion operators.
4575 // Note that none of [over.match.copy], [over.match.conv], nor
4576 // [over.match.ref] permit an explicit constructor to be chosen when
4577 // initializing a reference, not even for direct-initialization.
4578 bool AllowExplicitCtors = false;
4579 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4580
4581 const RecordType *T1RecordType = nullptr;
4582 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4583 S.isCompleteType(Kind.getLocation(), T1)) {
4584 // The type we're converting to is a class type. Enumerate its constructors
4585 // to see if there is a suitable conversion.
4586 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4587
4588 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4589 auto Info = getConstructorInfo(D);
4590 if (!Info.Constructor)
4591 continue;
4592
4593 if (!Info.Constructor->isInvalidDecl() &&
4594 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
4595 if (Info.ConstructorTmpl)
4596 S.AddTemplateOverloadCandidate(
4597 Info.ConstructorTmpl, Info.FoundDecl,
4598 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
4599 /*SuppressUserConversions=*/true,
4600 /*PartialOverloading*/ false, AllowExplicitCtors);
4601 else
4602 S.AddOverloadCandidate(
4603 Info.Constructor, Info.FoundDecl, Initializer, CandidateSet,
4604 /*SuppressUserConversions=*/true,
4605 /*PartialOverloading*/ false, AllowExplicitCtors);
4606 }
4607 }
4608 }
4609 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4610 return OR_No_Viable_Function;
4611
4612 const RecordType *T2RecordType = nullptr;
4613 if ((T2RecordType = T2->getAs<RecordType>()) &&
4614 S.isCompleteType(Kind.getLocation(), T2)) {
4615 // The type we're converting from is a class type, enumerate its conversion
4616 // functions.
4617 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4618
4619 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4620 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4621 NamedDecl *D = *I;
4622 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4623 if (isa<UsingShadowDecl>(D))
4624 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4625
4626 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4627 CXXConversionDecl *Conv;
4628 if (ConvTemplate)
4629 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4630 else
4631 Conv = cast<CXXConversionDecl>(D);
4632
4633 // If the conversion function doesn't return a reference type,
4634 // it can't be considered for this conversion unless we're allowed to
4635 // consider rvalues.
4636 // FIXME: Do we need to make sure that we only consider conversion
4637 // candidates with reference-compatible results? That might be needed to
4638 // break recursion.
4639 if ((AllowRValues ||
4640 Conv->getConversionType()->isLValueReferenceType())) {
4641 if (ConvTemplate)
4642 S.AddTemplateConversionCandidate(
4643 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
4644 CandidateSet,
4645 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4646 else
4647 S.AddConversionCandidate(
4648 Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet,
4649 /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs);
4650 }
4651 }
4652 }
4653 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4654 return OR_No_Viable_Function;
4655
4656 SourceLocation DeclLoc = Initializer->getBeginLoc();
4657
4658 // Perform overload resolution. If it fails, return the failed result.
4659 OverloadCandidateSet::iterator Best;
4660 if (OverloadingResult Result
4661 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4662 return Result;
4663
4664 FunctionDecl *Function = Best->Function;
4665 // This is the overload that will be used for this initialization step if we
4666 // use this initialization. Mark it as referenced.
4667 Function->setReferenced();
4668
4669 // Compute the returned type and value kind of the conversion.
4670 QualType cv3T3;
4671 if (isa<CXXConversionDecl>(Function))
4672 cv3T3 = Function->getReturnType();
4673 else
4674 cv3T3 = T1;
4675
4676 ExprValueKind VK = VK_PRValue;
4677 if (cv3T3->isLValueReferenceType())
4678 VK = VK_LValue;
4679 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4680 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4681 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4682
4683 // Add the user-defined conversion step.
4684 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4685 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4686 HadMultipleCandidates);
4687
4688 // Determine whether we'll need to perform derived-to-base adjustments or
4689 // other conversions.
4690 Sema::ReferenceConversions RefConv;
4691 Sema::ReferenceCompareResult NewRefRelationship =
4692 S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv);
4693
4694 // Add the final conversion sequence, if necessary.
4695 if (NewRefRelationship == Sema::Ref_Incompatible) {
4696 assert(!isa<CXXConstructorDecl>(Function) &&(static_cast <bool> (!isa<CXXConstructorDecl>(Function
) && "should not have conversion after constructor") ?
void (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4697, __extension__ __PRETTY_FUNCTION__))
4697 "should not have conversion after constructor")(static_cast <bool> (!isa<CXXConstructorDecl>(Function
) && "should not have conversion after constructor") ?
void (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4697, __extension__ __PRETTY_FUNCTION__))
;
4698
4699 ImplicitConversionSequence ICS;
4700 ICS.setStandard();
4701 ICS.Standard = Best->FinalConversion;
4702 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4703
4704 // Every implicit conversion results in a prvalue, except for a glvalue
4705 // derived-to-base conversion, which we handle below.
4706 cv3T3 = ICS.Standard.getToType(2);
4707 VK = VK_PRValue;
4708 }
4709
4710 // If the converted initializer is a prvalue, its type T4 is adjusted to
4711 // type "cv1 T4" and the temporary materialization conversion is applied.
4712 //
4713 // We adjust the cv-qualifications to match the reference regardless of
4714 // whether we have a prvalue so that the AST records the change. In this
4715 // case, T4 is "cv3 T3".
4716 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4717 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4718 Sequence.AddQualificationConversionStep(cv1T4, VK);
4719 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue);
4720 VK = IsLValueRef ? VK_LValue : VK_XValue;
4721
4722 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4723 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4724 else if (RefConv & Sema::ReferenceConversions::ObjC)
4725 Sequence.AddObjCObjectConversionStep(cv1T1);
4726 else if (RefConv & Sema::ReferenceConversions::Function)
4727 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4728 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4729 if (!S.Context.hasSameType(cv1T4, cv1T1))
4730 Sequence.AddQualificationConversionStep(cv1T1, VK);
4731 }
4732
4733 return OR_Success;
4734}
4735
4736static void CheckCXX98CompatAccessibleCopy(Sema &S,
4737 const InitializedEntity &Entity,
4738 Expr *CurInitExpr);
4739
4740/// Attempt reference initialization (C++0x [dcl.init.ref])
4741static void TryReferenceInitialization(Sema &S,
4742 const InitializedEntity &Entity,
4743 const InitializationKind &Kind,
4744 Expr *Initializer,
4745 InitializationSequence &Sequence) {
4746 QualType DestType = Entity.getType();
4747 QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType();
4748 Qualifiers T1Quals;
4749 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4750 QualType cv2T2 = S.getCompletedType(Initializer);
4751 Qualifiers T2Quals;
4752 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4753
4754 // If the initializer is the address of an overloaded function, try
4755 // to resolve the overloaded function. If all goes well, T2 is the
4756 // type of the resulting function.
4757 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4758 T1, Sequence))
4759 return;
4760
4761 // Delegate everything else to a subfunction.
4762 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4763 T1Quals, cv2T2, T2, T2Quals, Sequence);
4764}
4765
4766/// Determine whether an expression is a non-referenceable glvalue (one to
4767/// which a reference can never bind). Attempting to bind a reference to
4768/// such a glvalue will always create a temporary.
4769static bool isNonReferenceableGLValue(Expr *E) {
4770 return E->refersToBitField() || E->refersToVectorElement() ||
4771 E->refersToMatrixElement();
4772}
4773
4774/// Reference initialization without resolving overloaded functions.
4775///
4776/// We also can get here in C if we call a builtin which is declared as
4777/// a function with a parameter of reference type (such as __builtin_va_end()).
4778static void TryReferenceInitializationCore(Sema &S,
4779 const InitializedEntity &Entity,
4780 const InitializationKind &Kind,
4781 Expr *Initializer,
4782 QualType cv1T1, QualType T1,
4783 Qualifiers T1Quals,
4784 QualType cv2T2, QualType T2,
4785 Qualifiers T2Quals,
4786 InitializationSequence &Sequence) {
4787 QualType DestType = Entity.getType();
4788 SourceLocation DeclLoc = Initializer->getBeginLoc();
4789
4790 // Compute some basic properties of the types and the initializer.
4791 bool isLValueRef = DestType->isLValueReferenceType();
4792 bool isRValueRef = !isLValueRef;
4793 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4794
4795 Sema::ReferenceConversions RefConv;
4796 Sema::ReferenceCompareResult RefRelationship =
4797 S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv);
4798
4799 // C++0x [dcl.init.ref]p5:
4800 // A reference to type "cv1 T1" is initialized by an expression of type
4801 // "cv2 T2" as follows:
4802 //
4803 // - If the reference is an lvalue reference and the initializer
4804 // expression
4805 // Note the analogous bullet points for rvalue refs to functions. Because
4806 // there are no function rvalues in C++, rvalue refs to functions are treated
4807 // like lvalue refs.
4808 OverloadingResult ConvOvlResult = OR_Success;
4809 bool T1Function = T1->isFunctionType();
4810 if (isLValueRef || T1Function) {
4811 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4812 (RefRelationship == Sema::Ref_Compatible ||
4813 (Kind.isCStyleOrFunctionalCast() &&
4814 RefRelationship == Sema::Ref_Related))) {
4815 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4816 // reference-compatible with "cv2 T2," or
4817 if (RefConv & (Sema::ReferenceConversions::DerivedToBase |
4818 Sema::ReferenceConversions::ObjC)) {
4819 // If we're converting the pointee, add any qualifiers first;
4820 // these qualifiers must all be top-level, so just convert to "cv1 T2".
4821 if (RefConv & (Sema::ReferenceConversions::Qualification))
4822 Sequence.AddQualificationConversionStep(
4823 S.Context.getQualifiedType(T2, T1Quals),
4824 Initializer->getValueKind());
4825 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4826 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4827 else
4828 Sequence.AddObjCObjectConversionStep(cv1T1);
4829 } else if (RefConv & Sema::ReferenceConversions::Qualification) {
4830 // Perform a (possibly multi-level) qualification conversion.
4831 Sequence.AddQualificationConversionStep(cv1T1,
4832 Initializer->getValueKind());
4833 } else if (RefConv & Sema::ReferenceConversions::Function) {
4834 Sequence.AddFunctionReferenceConversionStep(cv1T1);
4835 }
4836
4837 // We only create a temporary here when binding a reference to a
4838 // bit-field or vector element. Those cases are't supposed to be
4839 // handled by this bullet, but the outcome is the same either way.
4840 Sequence.AddReferenceBindingStep(cv1T1, false);
4841 return;
4842 }
4843
4844 // - has a class type (i.e., T2 is a class type), where T1 is not
4845 // reference-related to T2, and can be implicitly converted to an
4846 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4847 // with "cv3 T3" (this conversion is selected by enumerating the
4848 // applicable conversion functions (13.3.1.6) and choosing the best
4849 // one through overload resolution (13.3)),
4850 // If we have an rvalue ref to function type here, the rhs must be
4851 // an rvalue. DR1287 removed the "implicitly" here.
4852 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4853 (isLValueRef || InitCategory.isRValue())) {
4854 if (S.getLangOpts().CPlusPlus) {
4855 // Try conversion functions only for C++.
4856 ConvOvlResult = TryRefInitWithConversionFunction(
4857 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4858 /*IsLValueRef*/ isLValueRef, Sequence);
4859 if (ConvOvlResult == OR_Success)
4860 return;
4861 if (ConvOvlResult != OR_No_Viable_Function)
4862 Sequence.SetOverloadFailure(
4863 InitializationSequence::FK_ReferenceInitOverloadFailed,
4864 ConvOvlResult);
4865 } else {
4866 ConvOvlResult = OR_No_Viable_Function;
4867 }
4868 }
4869 }
4870
4871 // - Otherwise, the reference shall be an lvalue reference to a
4872 // non-volatile const type (i.e., cv1 shall be const), or the reference
4873 // shall be an rvalue reference.
4874 // For address spaces, we interpret this to mean that an addr space
4875 // of a reference "cv1 T1" is a superset of addr space of "cv2 T2".
4876 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() &&
4877 T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
4878 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4879 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4880 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4881 Sequence.SetOverloadFailure(
4882 InitializationSequence::FK_ReferenceInitOverloadFailed,
4883 ConvOvlResult);
4884 else if (!InitCategory.isLValue())
4885 Sequence.SetFailed(
4886 T1Quals.isAddressSpaceSupersetOf(T2Quals)
4887 ? InitializationSequence::
4888 FK_NonConstLValueReferenceBindingToTemporary
4889 : InitializationSequence::FK_ReferenceInitDropsQualifiers);
4890 else {
4891 InitializationSequence::FailureKind FK;
4892 switch (RefRelationship) {
4893 case Sema::Ref_Compatible:
4894 if (Initializer->refersToBitField())
4895 FK = InitializationSequence::
4896 FK_NonConstLValueReferenceBindingToBitfield;
4897 else if (Initializer->refersToVectorElement())
4898 FK = InitializationSequence::
4899 FK_NonConstLValueReferenceBindingToVectorElement;
4900 else if (Initializer->refersToMatrixElement())
4901 FK = InitializationSequence::
4902 FK_NonConstLValueReferenceBindingToMatrixElement;
4903 else
4904 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 4904)
;
4905 break;
4906 case Sema::Ref_Related:
4907 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4908 break;
4909 case Sema::Ref_Incompatible:
4910 FK = InitializationSequence::
4911 FK_NonConstLValueReferenceBindingToUnrelated;
4912 break;
4913 }
4914 Sequence.SetFailed(FK);
4915 }
4916 return;
4917 }
4918
4919 // - If the initializer expression
4920 // - is an
4921 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4922 // [1z] rvalue (but not a bit-field) or
4923 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4924 //
4925 // Note: functions are handled above and below rather than here...
4926 if (!T1Function &&
4927 (RefRelationship == Sema::Ref_Compatible ||
4928 (Kind.isCStyleOrFunctionalCast() &&
4929 RefRelationship == Sema::Ref_Related)) &&
4930 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4931 (InitCategory.isPRValue() &&
4932 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4933 T2->isArrayType())))) {
4934 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue;
4935 if (InitCategory.isPRValue() && T2->isRecordType()) {
4936 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4937 // compiler the freedom to perform a copy here or bind to the
4938 // object, while C++0x requires that we bind directly to the
4939 // object. Hence, we always bind to the object without making an
4940 // extra copy. However, in C++03 requires that we check for the
4941 // presence of a suitable copy constructor:
4942 //
4943 // The constructor that would be used to make the copy shall
4944 // be callable whether or not the copy is actually done.
4945 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4946 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4947 else if (S.getLangOpts().CPlusPlus11)
4948 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4949 }
4950
4951 // C++1z [dcl.init.ref]/5.2.1.2:
4952 // If the converted initializer is a prvalue, its type T4 is adjusted
4953 // to type "cv1 T4" and the temporary materialization conversion is
4954 // applied.
4955 // Postpone address space conversions to after the temporary materialization
4956 // conversion to allow creating temporaries in the alloca address space.
4957 auto T1QualsIgnoreAS = T1Quals;
4958 auto T2QualsIgnoreAS = T2Quals;
4959 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4960 T1QualsIgnoreAS.removeAddressSpace();
4961 T2QualsIgnoreAS.removeAddressSpace();
4962 }
4963 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS);
4964 if (T1QualsIgnoreAS != T2QualsIgnoreAS)
4965 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4966 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue);
4967 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4968 // Add addr space conversion if required.
4969 if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) {
4970 auto T4Quals = cv1T4.getQualifiers();
4971 T4Quals.addAddressSpace(T1Quals.getAddressSpace());
4972 QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals);
4973 Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind);
4974 cv1T4 = cv1T4WithAS;
4975 }
4976
4977 // In any case, the reference is bound to the resulting glvalue (or to
4978 // an appropriate base class subobject).
4979 if (RefConv & Sema::ReferenceConversions::DerivedToBase)
4980 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4981 else if (RefConv & Sema::ReferenceConversions::ObjC)
4982 Sequence.AddObjCObjectConversionStep(cv1T1);
4983 else if (RefConv & Sema::ReferenceConversions::Qualification) {
4984 if (!S.Context.hasSameType(cv1T4, cv1T1))
4985 Sequence.AddQualificationConversionStep(cv1T1, ValueKind);
4986 }
4987 return;
4988 }
4989
4990 // - has a class type (i.e., T2 is a class type), where T1 is not
4991 // reference-related to T2, and can be implicitly converted to an
4992 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4993 // where "cv1 T1" is reference-compatible with "cv3 T3",
4994 //
4995 // DR1287 removes the "implicitly" here.
4996 if (T2->isRecordType()) {
4997 if (RefRelationship == Sema::Ref_Incompatible) {
4998 ConvOvlResult = TryRefInitWithConversionFunction(
4999 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
5000 /*IsLValueRef*/ isLValueRef, Sequence);
5001 if (ConvOvlResult)
5002 Sequence.SetOverloadFailure(
5003 InitializationSequence::FK_ReferenceInitOverloadFailed,
5004 ConvOvlResult);
5005
5006 return;
5007 }
5008
5009 if (RefRelationship == Sema::Ref_Compatible &&
5010 isRValueRef && InitCategory.isLValue()) {
5011 Sequence.SetFailed(
5012 InitializationSequence::FK_RValueReferenceBindingToLValue);
5013 return;
5014 }
5015
5016 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5017 return;
5018 }
5019
5020 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
5021 // from the initializer expression using the rules for a non-reference
5022 // copy-initialization (8.5). The reference is then bound to the
5023 // temporary. [...]
5024
5025 // Ignore address space of reference type at this point and perform address
5026 // space conversion after the reference binding step.
5027 QualType cv1T1IgnoreAS =
5028 T1Quals.hasAddressSpace()
5029 ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace())
5030 : cv1T1;
5031
5032 InitializedEntity TempEntity =
5033 InitializedEntity::InitializeTemporary(cv1T1IgnoreAS);
5034
5035 // FIXME: Why do we use an implicit conversion here rather than trying
5036 // copy-initialization?
5037 ImplicitConversionSequence ICS
5038 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
5039 /*SuppressUserConversions=*/false,
5040 Sema::AllowedExplicit::None,
5041 /*FIXME:InOverloadResolution=*/false,
5042 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5043 /*AllowObjCWritebackConversion=*/false);
5044
5045 if (ICS.isBad()) {
5046 // FIXME: Use the conversion function set stored in ICS to turn
5047 // this into an overloading ambiguity diagnostic. However, we need
5048 // to keep that set as an OverloadCandidateSet rather than as some
5049 // other kind of set.
5050 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
5051 Sequence.SetOverloadFailure(
5052 InitializationSequence::FK_ReferenceInitOverloadFailed,
5053 ConvOvlResult);
5054 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
5055 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5056 else
5057 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
5058 return;
5059 } else {
5060 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
5061 }
5062
5063 // [...] If T1 is reference-related to T2, cv1 must be the
5064 // same cv-qualification as, or greater cv-qualification
5065 // than, cv2; otherwise, the program is ill-formed.
5066 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
5067 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
5068 if (RefRelationship == Sema::Ref_Related &&
5069 ((T1CVRQuals | T2CVRQuals) != T1CVRQuals ||
5070 !T1Quals.isAddressSpaceSupersetOf(T2Quals))) {
5071 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
5072 return;
5073 }
5074
5075 // [...] If T1 is reference-related to T2 and the reference is an rvalue
5076 // reference, the initializer expression shall not be an lvalue.
5077 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
5078 InitCategory.isLValue()) {
5079 Sequence.SetFailed(
5080 InitializationSequence::FK_RValueReferenceBindingToLValue);
5081 return;
5082 }
5083
5084 Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true);
5085
5086 if (T1Quals.hasAddressSpace()) {
5087 if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(),
5088 LangAS::Default)) {
5089 Sequence.SetFailed(
5090 InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary);
5091 return;
5092 }
5093 Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue
5094 : VK_XValue);
5095 }
5096}
5097
5098/// Attempt character array initialization from a string literal
5099/// (C++ [dcl.init.string], C99 6.7.8).
5100static void TryStringLiteralInitialization(Sema &S,
5101 const InitializedEntity &Entity,
5102 const InitializationKind &Kind,
5103 Expr *Initializer,
5104 InitializationSequence &Sequence) {
5105 Sequence.AddStringInitStep(Entity.getType());
5106}
5107
5108/// Attempt value initialization (C++ [dcl.init]p7).
5109static void TryValueInitialization(Sema &S,
5110 const InitializedEntity &Entity,
5111 const InitializationKind &Kind,
5112 InitializationSequence &Sequence,
5113 InitListExpr *InitList) {
5114 assert((!InitList || InitList->getNumInits() == 0) &&(static_cast <bool> ((!InitList || InitList->getNumInits
() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? void (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5115, __extension__ __PRETTY_FUNCTION__))
5115 "Shouldn't use value-init for non-empty init lists")(static_cast <bool> ((!InitList || InitList->getNumInits
() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? void (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5115, __extension__ __PRETTY_FUNCTION__))
;
5116
5117 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
5118 //
5119 // To value-initialize an object of type T means:
5120 QualType T = Entity.getType();
5121
5122 // -- if T is an array type, then each element is value-initialized;
5123 T = S.Context.getBaseElementType(T);
5124
5125 if (const RecordType *RT = T->getAs<RecordType>()) {
5126 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
5127 bool NeedZeroInitialization = true;
5128 // C++98:
5129 // -- if T is a class type (clause 9) with a user-declared constructor
5130 // (12.1), then the default constructor for T is called (and the
5131 // initialization is ill-formed if T has no accessible default
5132 // constructor);
5133 // C++11:
5134 // -- if T is a class type (clause 9) with either no default constructor
5135 // (12.1 [class.ctor]) or a default constructor that is user-provided
5136 // or deleted, then the object is default-initialized;
5137 //
5138 // Note that the C++11 rule is the same as the C++98 rule if there are no
5139 // defaulted or deleted constructors, so we just use it unconditionally.
5140 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
5141 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
5142 NeedZeroInitialization = false;
5143
5144 // -- if T is a (possibly cv-qualified) non-union class type without a
5145 // user-provided or deleted default constructor, then the object is
5146 // zero-initialized and, if T has a non-trivial default constructor,
5147 // default-initialized;
5148 // The 'non-union' here was removed by DR1502. The 'non-trivial default
5149 // constructor' part was removed by DR1507.
5150 if (NeedZeroInitialization)
5151 Sequence.AddZeroInitializationStep(Entity.getType());
5152
5153 // C++03:
5154 // -- if T is a non-union class type without a user-declared constructor,
5155 // then every non-static data member and base class component of T is
5156 // value-initialized;
5157 // [...] A program that calls for [...] value-initialization of an
5158 // entity of reference type is ill-formed.
5159 //
5160 // C++11 doesn't need this handling, because value-initialization does not
5161 // occur recursively there, and the implicit default constructor is
5162 // defined as deleted in the problematic cases.
5163 if (!S.getLangOpts().CPlusPlus11 &&
5164 ClassDecl->hasUninitializedReferenceMember()) {
5165 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
5166 return;
5167 }
5168
5169 // If this is list-value-initialization, pass the empty init list on when
5170 // building the constructor call. This affects the semantics of a few
5171 // things (such as whether an explicit default constructor can be called).
5172 Expr *InitListAsExpr = InitList;
5173 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
5174 bool InitListSyntax = InitList;
5175
5176 // FIXME: Instead of creating a CXXConstructExpr of array type here,
5177 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
5178 return TryConstructorInitialization(
5179 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
5180 }
5181 }
5182
5183 Sequence.AddZeroInitializationStep(Entity.getType());
5184}
5185
5186/// Attempt default initialization (C++ [dcl.init]p6).
5187static void TryDefaultInitialization(Sema &S,
5188 const InitializedEntity &Entity,
5189 const InitializationKind &Kind,
5190 InitializationSequence &Sequence) {
5191 assert(Kind.getKind() == InitializationKind::IK_Default)(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Default) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5191, __extension__ __PRETTY_FUNCTION__))
;
5192
5193 // C++ [dcl.init]p6:
5194 // To default-initialize an object of type T means:
5195 // - if T is an array type, each element is default-initialized;
5196 QualType DestType = S.Context.getBaseElementType(Entity.getType());
5197
5198 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
5199 // constructor for T is called (and the initialization is ill-formed if
5200 // T has no accessible default constructor);
5201 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
5202 TryConstructorInitialization(S, Entity, Kind, None, DestType,
5203 Entity.getType(), Sequence);
5204 return;
5205 }
5206
5207 // - otherwise, no initialization is performed.
5208
5209 // If a program calls for the default initialization of an object of
5210 // a const-qualified type T, T shall be a class type with a user-provided
5211 // default constructor.
5212 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
5213 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
5214 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
5215 return;
5216 }
5217
5218 // If the destination type has a lifetime property, zero-initialize it.
5219 if (DestType.getQualifiers().hasObjCLifetime()) {
5220 Sequence.AddZeroInitializationStep(Entity.getType());
5221 return;
5222 }
5223}
5224
5225/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
5226/// which enumerates all conversion functions and performs overload resolution
5227/// to select the best.
5228static void TryUserDefinedConversion(Sema &S,
5229 QualType DestType,
5230 const InitializationKind &Kind,
5231 Expr *Initializer,
5232 InitializationSequence &Sequence,
5233 bool TopLevelOfInitList) {
5234 assert(!DestType->isReferenceType() && "References are handled elsewhere")(static_cast <bool> (!DestType->isReferenceType() &&
"References are handled elsewhere") ? void (0) : __assert_fail
("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5234, __extension__ __PRETTY_FUNCTION__))
;
5235 QualType SourceType = Initializer->getType();
5236 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(static_cast <bool> ((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
) ? void (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5237, __extension__ __PRETTY_FUNCTION__))
5237 "Must have a class type to perform a user-defined conversion")(static_cast <bool> ((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
) ? void (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5237, __extension__ __PRETTY_FUNCTION__))
;
5238
5239 // Build the candidate set directly in the initialization sequence
5240 // structure, so that it will persist if we fail.
5241 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
5242 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
5243 CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace());
5244
5245 // Determine whether we are allowed to call explicit constructors or
5246 // explicit conversion operators.
5247 bool AllowExplicit = Kind.AllowExplicit();
5248
5249 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
5250 // The type we're converting to is a class type. Enumerate its constructors
5251 // to see if there is a suitable conversion.
5252 CXXRecordDecl *DestRecordDecl
5253 = cast<CXXRecordDecl>(DestRecordType->getDecl());
5254
5255 // Try to complete the type we're converting to.
5256 if (S.isCompleteType(Kind.getLocation(), DestType)) {
5257 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
5258 auto Info = getConstructorInfo(D);
5259 if (!Info.Constructor)
5260 continue;
5261
5262 if (!Info.Constructor->isInvalidDecl() &&
5263 Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) {
5264 if (Info.ConstructorTmpl)
5265 S.AddTemplateOverloadCandidate(
5266 Info.ConstructorTmpl, Info.FoundDecl,
5267 /*ExplicitArgs*/ nullptr, Initializer, CandidateSet,
5268 /*SuppressUserConversions=*/true,
5269 /*PartialOverloading*/ false, AllowExplicit);
5270 else
5271 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
5272 Initializer, CandidateSet,
5273 /*SuppressUserConversions=*/true,
5274 /*PartialOverloading*/ false, AllowExplicit);
5275 }
5276 }
5277 }
5278 }
5279
5280 SourceLocation DeclLoc = Initializer->getBeginLoc();
5281
5282 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
5283 // The type we're converting from is a class type, enumerate its conversion
5284 // functions.
5285
5286 // We can only enumerate the conversion functions for a complete type; if
5287 // the type isn't complete, simply skip this step.
5288 if (S.isCompleteType(DeclLoc, SourceType)) {
5289 CXXRecordDecl *SourceRecordDecl
5290 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
5291
5292 const auto &Conversions =
5293 SourceRecordDecl->getVisibleConversionFunctions();
5294 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
5295 NamedDecl *D = *I;
5296 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
5297 if (isa<UsingShadowDecl>(D))
5298 D = cast<UsingShadowDecl>(D)->getTargetDecl();
5299
5300 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
5301 CXXConversionDecl *Conv;
5302 if (ConvTemplate)
5303 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
5304 else
5305 Conv = cast<CXXConversionDecl>(D);
5306
5307 if (ConvTemplate)
5308 S.AddTemplateConversionCandidate(
5309 ConvTemplate, I.getPair(), ActingDC, Initializer, DestType,
5310 CandidateSet, AllowExplicit, AllowExplicit);
5311 else
5312 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
5313 DestType, CandidateSet, AllowExplicit,
5314 AllowExplicit);
5315 }
5316 }
5317 }
5318
5319 // Perform overload resolution. If it fails, return the failed result.
5320 OverloadCandidateSet::iterator Best;
5321 if (OverloadingResult Result
5322 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
5323 Sequence.SetOverloadFailure(
5324 InitializationSequence::FK_UserConversionOverloadFailed, Result);
5325
5326 // [class.copy.elision]p3:
5327 // In some copy-initialization contexts, a two-stage overload resolution
5328 // is performed.
5329 // If the first overload resolution selects a deleted function, we also
5330 // need the initialization sequence to decide whether to perform the second
5331 // overload resolution.
5332 if (!(Result == OR_Deleted &&
5333 Kind.getKind() == InitializationKind::IK_Copy))
5334 return;
5335 }
5336
5337 FunctionDecl *Function = Best->Function;
5338 Function->setReferenced();
5339 bool HadMultipleCandidates = (CandidateSet.size() > 1);
5340
5341 if (isa<CXXConstructorDecl>(Function)) {
5342 // Add the user-defined conversion step. Any cv-qualification conversion is
5343 // subsumed by the initialization. Per DR5, the created temporary is of the
5344 // cv-unqualified type of the destination.
5345 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
5346 DestType.getUnqualifiedType(),
5347 HadMultipleCandidates);
5348
5349 // C++14 and before:
5350 // - if the function is a constructor, the call initializes a temporary
5351 // of the cv-unqualified version of the destination type. The [...]
5352 // temporary [...] is then used to direct-initialize, according to the
5353 // rules above, the object that is the destination of the
5354 // copy-initialization.
5355 // Note that this just performs a simple object copy from the temporary.
5356 //
5357 // C++17:
5358 // - if the function is a constructor, the call is a prvalue of the
5359 // cv-unqualified version of the destination type whose return object
5360 // is initialized by the constructor. The call is used to
5361 // direct-initialize, according to the rules above, the object that
5362 // is the destination of the copy-initialization.
5363 // Therefore we need to do nothing further.
5364 //
5365 // FIXME: Mark this copy as extraneous.
5366 if (!S.getLangOpts().CPlusPlus17)
5367 Sequence.AddFinalCopy(DestType);
5368 else if (DestType.hasQualifiers())
5369 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5370 return;
5371 }
5372
5373 // Add the user-defined conversion step that calls the conversion function.
5374 QualType ConvType = Function->getCallResultType();
5375 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
5376 HadMultipleCandidates);
5377
5378 if (ConvType->getAs<RecordType>()) {
5379 // The call is used to direct-initialize [...] the object that is the
5380 // destination of the copy-initialization.
5381 //
5382 // In C++17, this does not call a constructor if we enter /17.6.1:
5383 // - If the initializer expression is a prvalue and the cv-unqualified
5384 // version of the source type is the same as the class of the
5385 // destination [... do not make an extra copy]
5386 //
5387 // FIXME: Mark this copy as extraneous.
5388 if (!S.getLangOpts().CPlusPlus17 ||
5389 Function->getReturnType()->isReferenceType() ||
5390 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
5391 Sequence.AddFinalCopy(DestType);
5392 else if (!S.Context.hasSameType(ConvType, DestType))
5393 Sequence.AddQualificationConversionStep(DestType, VK_PRValue);
5394 return;
5395 }
5396
5397 // If the conversion following the call to the conversion function
5398 // is interesting, add it as a separate step.
5399 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
5400 Best->FinalConversion.Third) {
5401 ImplicitConversionSequence ICS;
5402 ICS.setStandard();
5403 ICS.Standard = Best->FinalConversion;
5404 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5405 }
5406}
5407
5408/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
5409/// a function with a pointer return type contains a 'return false;' statement.
5410/// In C++11, 'false' is not a null pointer, so this breaks the build of any
5411/// code using that header.
5412///
5413/// Work around this by treating 'return false;' as zero-initializing the result
5414/// if it's used in a pointer-returning function in a system header.
5415static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5416 const InitializedEntity &Entity,
5417 const Expr *Init) {
5418 return S.getLangOpts().CPlusPlus11 &&
5419 Entity.getKind() == InitializedEntity::EK_Result &&
5420 Entity.getType()->isPointerType() &&
5421 isa<CXXBoolLiteralExpr>(Init) &&
5422 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5423 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5424}
5425
5426/// The non-zero enum values here are indexes into diagnostic alternatives.
5427enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5428
5429/// Determines whether this expression is an acceptable ICR source.
5430static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5431 bool isAddressOf, bool &isWeakAccess) {
5432 // Skip parens.
5433 e = e->IgnoreParens();
5434
5435 // Skip address-of nodes.
5436 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5437 if (op->getOpcode() == UO_AddrOf)
5438 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5439 isWeakAccess);
5440
5441 // Skip certain casts.
5442 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5443 switch (ce->getCastKind()) {
5444 case CK_Dependent:
5445 case CK_BitCast:
5446 case CK_LValueBitCast:
5447 case CK_NoOp:
5448 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5449
5450 case CK_ArrayToPointerDecay:
5451 return IIK_nonscalar;
5452
5453 case CK_NullToPointer:
5454 return IIK_okay;
5455
5456 default:
5457 break;
5458 }
5459
5460 // If we have a declaration reference, it had better be a local variable.
5461 } else if (isa<DeclRefExpr>(e)) {
5462 // set isWeakAccess to true, to mean that there will be an implicit
5463 // load which requires a cleanup.
5464 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5465 isWeakAccess = true;
5466
5467 if (!isAddressOf) return IIK_nonlocal;
5468
5469 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5470 if (!var) return IIK_nonlocal;
5471
5472 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5473
5474 // If we have a conditional operator, check both sides.
5475 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5476 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5477 isWeakAccess))
5478 return iik;
5479
5480 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5481
5482 // These are never scalar.
5483 } else if (isa<ArraySubscriptExpr>(e)) {
5484 return IIK_nonscalar;
5485
5486 // Otherwise, it needs to be a null pointer constant.
5487 } else {
5488 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5489 ? IIK_okay : IIK_nonlocal);
5490 }
5491
5492 return IIK_nonlocal;
5493}
5494
5495/// Check whether the given expression is a valid operand for an
5496/// indirect copy/restore.
5497static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5498 assert(src->isPRValue())(static_cast <bool> (src->isPRValue()) ? void (0) : __assert_fail
("src->isPRValue()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5498, __extension__ __PRETTY_FUNCTION__))
;
5499 bool isWeakAccess = false;
5500 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5501 // If isWeakAccess to true, there will be an implicit
5502 // load which requires a cleanup.
5503 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5504 S.Cleanup.setExprNeedsCleanups(true);
5505
5506 if (iik == IIK_okay) return;
5507
5508 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5509 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5510 << src->getSourceRange();
5511}
5512
5513/// Determine whether we have compatible array types for the
5514/// purposes of GNU by-copy array initialization.
5515static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5516 const ArrayType *Source) {
5517 // If the source and destination array types are equivalent, we're
5518 // done.
5519 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5520 return true;
5521
5522 // Make sure that the element types are the same.
5523 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5524 return false;
5525
5526 // The only mismatch we allow is when the destination is an
5527 // incomplete array type and the source is a constant array type.
5528 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5529}
5530
5531static bool tryObjCWritebackConversion(Sema &S,
5532 InitializationSequence &Sequence,
5533 const InitializedEntity &Entity,
5534 Expr *Initializer) {
5535 bool ArrayDecay = false;
5536 QualType ArgType = Initializer->getType();
5537 QualType ArgPointee;
5538 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5539 ArrayDecay = true;
5540 ArgPointee = ArgArrayType->getElementType();
5541 ArgType = S.Context.getPointerType(ArgPointee);
5542 }
5543
5544 // Handle write-back conversion.
5545 QualType ConvertedArgType;
5546 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5547 ConvertedArgType))
5548 return false;
5549
5550 // We should copy unless we're passing to an argument explicitly
5551 // marked 'out'.
5552 bool ShouldCopy = true;
5553 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5554 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5555
5556 // Do we need an lvalue conversion?
5557 if (ArrayDecay || Initializer->isGLValue()) {
5558 ImplicitConversionSequence ICS;
5559 ICS.setStandard();
5560 ICS.Standard.setAsIdentityConversion();
5561
5562 QualType ResultType;
5563 if (ArrayDecay) {
5564 ICS.Standard.First = ICK_Array_To_Pointer;
5565 ResultType = S.Context.getPointerType(ArgPointee);
5566 } else {
5567 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5568 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5569 }
5570
5571 Sequence.AddConversionSequenceStep(ICS, ResultType);
5572 }
5573
5574 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5575 return true;
5576}
5577
5578static bool TryOCLSamplerInitialization(Sema &S,
5579 InitializationSequence &Sequence,
5580 QualType DestType,
5581 Expr *Initializer) {
5582 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
22
Assuming field 'OpenCL' is not equal to 0
23
Calling 'Type::isSamplerT'
31
Returning from 'Type::isSamplerT'
5583 (!Initializer->isIntegerConstantExpr(S.Context) &&
32
Called C++ object pointer is null
5584 !Initializer->getType()->isSamplerT()))
5585 return false;
5586
5587 Sequence.AddOCLSamplerInitStep(DestType);
5588 return true;
5589}
5590
5591static bool IsZeroInitializer(Expr *Initializer, Sema &S) {
5592 return Initializer->isIntegerConstantExpr(S.getASTContext()) &&
5593 (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0);
5594}
5595
5596static bool TryOCLZeroOpaqueTypeInitialization(Sema &S,
5597 InitializationSequence &Sequence,
5598 QualType DestType,
5599 Expr *Initializer) {
5600 if (!S.getLangOpts().OpenCL)
5601 return false;
5602
5603 //
5604 // OpenCL 1.2 spec, s6.12.10
5605 //
5606 // The event argument can also be used to associate the
5607 // async_work_group_copy with a previous async copy allowing
5608 // an event to be shared by multiple async copies; otherwise
5609 // event should be zero.
5610 //
5611 if (DestType->isEventT() || DestType->isQueueT()) {
5612 if (!IsZeroInitializer(Initializer, S))
5613 return false;
5614
5615 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5616 return true;
5617 }
5618
5619 // We should allow zero initialization for all types defined in the
5620 // cl_intel_device_side_avc_motion_estimation extension, except
5621 // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t.
5622 if (S.getOpenCLOptions().isAvailableOption(
5623 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) &&
5624 DestType->isOCLIntelSubgroupAVCType()) {
5625 if (DestType->isOCLIntelSubgroupAVCMcePayloadType() ||
5626 DestType->isOCLIntelSubgroupAVCMceResultType())
5627 return false;
5628 if (!IsZeroInitializer(Initializer, S))
5629 return false;
5630
5631 Sequence.AddOCLZeroOpaqueTypeStep(DestType);
5632 return true;
5633 }
5634
5635 return false;
5636}
5637
5638InitializationSequence::InitializationSequence(
5639 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
5640 MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid)
5641 : FailedOverloadResult(OR_Success),
5642 FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5643 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5644 TreatUnavailableAsInvalid);
5645}
5646
5647/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5648/// address of that function, this returns true. Otherwise, it returns false.
5649static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5650 auto *DRE = dyn_cast<DeclRefExpr>(E);
5651 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5652 return false;
5653
5654 return !S.checkAddressOfFunctionIsAvailable(
5655 cast<FunctionDecl>(DRE->getDecl()));
5656}
5657
5658/// Determine whether we can perform an elementwise array copy for this kind
5659/// of entity.
5660static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5661 switch (Entity.getKind()) {
5662 case InitializedEntity::EK_LambdaCapture:
5663 // C++ [expr.prim.lambda]p24:
5664 // For array members, the array elements are direct-initialized in
5665 // increasing subscript order.
5666 return true;
5667
5668 case InitializedEntity::EK_Variable:
5669 // C++ [dcl.decomp]p1:
5670 // [...] each element is copy-initialized or direct-initialized from the
5671 // corresponding element of the assignment-expression [...]
5672 return isa<DecompositionDecl>(Entity.getDecl());
5673
5674 case InitializedEntity::EK_Member:
5675 // C++ [class.copy.ctor]p14:
5676 // - if the member is an array, each element is direct-initialized with
5677 // the corresponding subobject of x
5678 return Entity.isImplicitMemberInitializer();
5679
5680 case InitializedEntity::EK_ArrayElement:
5681 // All the above cases are intended to apply recursively, even though none
5682 // of them actually say that.
5683 if (auto *E = Entity.getParent())
5684 return canPerformArrayCopy(*E);
5685 break;
5686
5687 default:
5688 break;
5689 }
5690
5691 return false;
5692}
5693
5694void InitializationSequence::InitializeFrom(Sema &S,
5695 const InitializedEntity &Entity,
5696 const InitializationKind &Kind,
5697 MultiExprArg Args,
5698 bool TopLevelOfInitList,
5699 bool TreatUnavailableAsInvalid) {
5700 ASTContext &Context = S.Context;
5701
5702 // Eliminate non-overload placeholder types in the arguments. We
5703 // need to do this before checking whether types are dependent
5704 // because lowering a pseudo-object expression might well give us
5705 // something of dependent type.
5706 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1
Assuming 'I' is equal to 'E'
2
Loop condition is false. Execution continues on line 5723
5707 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5708 // FIXME: should we be doing this here?
5709 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5710 if (result.isInvalid()) {
5711 SetFailed(FK_PlaceholderType);
5712 return;
5713 }
5714 Args[I] = result.get();
5715 }
5716
5717 // C++0x [dcl.init]p16:
5718 // The semantics of initializers are as follows. The destination type is
5719 // the type of the object or reference being initialized and the source
5720 // type is the type of the initializer expression. The source type is not
5721 // defined when the initializer is a braced-init-list or when it is a
5722 // parenthesized list of expressions.
5723 QualType DestType = Entity.getType();
5724
5725 if (DestType->isDependentType() ||
3
Assuming the condition is false
5
Taking false branch
5726 Expr::hasAnyTypeDependentArguments(Args)) {
4
Assuming the condition is false
5727 SequenceKind = DependentSequence;
5728 return;
5729 }
5730
5731 // Almost everything is a normal sequence.
5732 setSequenceKind(NormalSequence);
5733
5734 QualType SourceType;
5735 Expr *Initializer = nullptr;
6
'Initializer' initialized to a null pointer value
5736 if (Args.size() == 1) {
7
Assuming the condition is false
8
Taking false branch
5737 Initializer = Args[0];
5738 if (S.getLangOpts().ObjC) {
5739 if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(),
5740 DestType, Initializer->getType(),
5741 Initializer) ||
5742 S.CheckConversionToObjCLiteral(DestType, Initializer))
5743 Args[0] = Initializer;
5744 }
5745 if (!isa<InitListExpr>(Initializer))
5746 SourceType = Initializer->getType();
5747 }
5748
5749 // - If the initializer is a (non-parenthesized) braced-init-list, the
5750 // object is list-initialized (8.5.4).
5751 if (Kind.getKind() != InitializationKind::IK_Direct) {
9
Assuming the condition is false
10
Taking false branch
5752 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5753 TryListInitialization(S, Entity, Kind, InitList, *this,
5754 TreatUnavailableAsInvalid);
5755 return;
5756 }
5757 }
5758
5759 // - If the destination type is a reference type, see 8.5.3.
5760 if (DestType->isReferenceType()) {
11
Calling 'Type::isReferenceType'
14
Returning from 'Type::isReferenceType'
5761 // C++0x [dcl.init.ref]p1:
5762 // A variable declared to be a T& or T&&, that is, "reference to type T"
5763 // (8.3.2), shall be initialized by an object, or function, of type T or
5764 // by an object that can be converted into a T.
5765 // (Therefore, multiple arguments are not permitted.)
5766 if (Args.size() != 1)
5767 SetFailed(FK_TooManyInitsForReference);
5768 // C++17 [dcl.init.ref]p5:
5769 // A reference [...] is initialized by an expression [...] as follows:
5770 // If the initializer is not an expression, presumably we should reject,
5771 // but the standard fails to actually say so.
5772 else if (isa<InitListExpr>(Args[0]))
5773 SetFailed(FK_ParenthesizedListInitForReference);
5774 else
5775 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5776 return;
5777 }
5778
5779 // - If the initializer is (), the object is value-initialized.
5780 if (Kind.getKind() == InitializationKind::IK_Value ||
16
Taking false branch
5781 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
15
Assuming the condition is false
5782 TryValueInitialization(S, Entity, Kind, *this);
5783 return;
5784 }
5785
5786 // Handle default initialization.
5787 if (Kind.getKind() == InitializationKind::IK_Default) {
17
Taking false branch
5788 TryDefaultInitialization(S, Entity, Kind, *this);
5789 return;
5790 }
5791
5792 // - If the destination type is an array of characters, an array of
5793 // char16_t, an array of char32_t, or an array of wchar_t, and the
5794 // initializer is a string literal, see 8.5.2.
5795 // - Otherwise, if the destination type is an array, the program is
5796 // ill-formed.
5797 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
18
Assuming 'DestAT' is null
5798 if (Initializer && isa<VariableArrayType>(DestAT)) {
5799 SetFailed(FK_VariableLengthArrayHasInitializer);
5800 return;
5801 }
5802
5803 if (Initializer) {
5804 switch (IsStringInit(Initializer, DestAT, Context)) {
5805 case SIF_None:
5806 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5807 return;
5808 case SIF_NarrowStringIntoWideChar:
5809 SetFailed(FK_NarrowStringIntoWideCharArray);
5810 return;
5811 case SIF_WideStringIntoChar:
5812 SetFailed(FK_WideStringIntoCharArray);
5813 return;
5814 case SIF_IncompatWideStringIntoWideChar:
5815 SetFailed(FK_IncompatWideStringIntoWideChar);
5816 return;
5817 case SIF_PlainStringIntoUTF8Char:
5818 SetFailed(FK_PlainStringIntoUTF8Char);
5819 return;
5820 case SIF_UTF8StringIntoPlainChar:
5821 SetFailed(FK_UTF8StringIntoPlainChar);
5822 return;
5823 case SIF_Other:
5824 break;
5825 }
5826 }
5827
5828 // Some kinds of initialization permit an array to be initialized from
5829 // another array of the same type, and perform elementwise initialization.
5830 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5831 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5832 Entity.getType()) &&
5833 canPerformArrayCopy(Entity)) {
5834 // If source is a prvalue, use it directly.
5835 if (Initializer->isPRValue()) {
5836 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5837 return;
5838 }
5839
5840 // Emit element-at-a-time copy loop.
5841 InitializedEntity Element =
5842 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5843 QualType InitEltT =
5844 Context.getAsArrayType(Initializer->getType())->getElementType();
5845 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5846 Initializer->getValueKind(),
5847 Initializer->getObjectKind());
5848 Expr *OVEAsExpr = &OVE;
5849 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5850 TreatUnavailableAsInvalid);
5851 if (!Failed())
5852 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5853 return;
5854 }
5855
5856 // Note: as an GNU C extension, we allow initialization of an
5857 // array from a compound literal that creates an array of the same
5858 // type, so long as the initializer has no side effects.
5859 if (!S.getLangOpts().CPlusPlus && Initializer &&
5860 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5861 Initializer->getType()->isArrayType()) {
5862 const ArrayType *SourceAT
5863 = Context.getAsArrayType(Initializer->getType());
5864 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5865 SetFailed(FK_ArrayTypeMismatch);
5866 else if (Initializer->HasSideEffects(S.Context))
5867 SetFailed(FK_NonConstantArrayInit);
5868 else {
5869 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5870 }
5871 }
5872 // Note: as a GNU C++ extension, we allow list-initialization of a
5873 // class member of array type from a parenthesized initializer list.
5874 else if (S.getLangOpts().CPlusPlus &&
5875 Entity.getKind() == InitializedEntity::EK_Member &&
5876 Initializer && isa<InitListExpr>(Initializer)) {
5877 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5878 *this, TreatUnavailableAsInvalid);
5879 AddParenthesizedArrayInitStep(DestType);
5880 } else if (DestAT->getElementType()->isCharType())
5881 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5882 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5883 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5884 else
5885 SetFailed(FK_ArrayNeedsInitList);
5886
5887 return;
5888 }
5889
5890 // Determine whether we should consider writeback conversions for
5891 // Objective-C ARC.
5892 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
19
Assuming field 'ObjCAutoRefCount' is 0
5893 Entity.isParameterKind();
5894
5895 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
20
Passing null pointer value via 4th parameter 'Initializer'
21
Calling 'TryOCLSamplerInitialization'
5896 return;
5897
5898 // We're at the end of the line for C: it's either a write-back conversion
5899 // or it's a C assignment. There's no need to check anything else.
5900 if (!S.getLangOpts().CPlusPlus) {
5901 // If allowed, check whether this is an Objective-C writeback conversion.
5902 if (allowObjCWritebackConversion &&
5903 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5904 return;
5905 }
5906
5907 if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer))
5908 return;
5909
5910 // Handle initialization in C
5911 AddCAssignmentStep(DestType);
5912 MaybeProduceObjCObject(S, *this, Entity);
5913 return;
5914 }
5915
5916 assert(S.getLangOpts().CPlusPlus)(static_cast <bool> (S.getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("S.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5916, __extension__ __PRETTY_FUNCTION__))
;
5917
5918 // - If the destination type is a (possibly cv-qualified) class type:
5919 if (DestType->isRecordType()) {
5920 // - If the initialization is direct-initialization, or if it is
5921 // copy-initialization where the cv-unqualified version of the
5922 // source type is the same class as, or a derived class of, the
5923 // class of the destination, constructors are considered. [...]
5924 if (Kind.getKind() == InitializationKind::IK_Direct ||
5925 (Kind.getKind() == InitializationKind::IK_Copy &&
5926 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5927 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, DestType))))
5928 TryConstructorInitialization(S, Entity, Kind, Args,
5929 DestType, DestType, *this);
5930 // - Otherwise (i.e., for the remaining copy-initialization cases),
5931 // user-defined conversion sequences that can convert from the source
5932 // type to the destination type or (when a conversion function is
5933 // used) to a derived class thereof are enumerated as described in
5934 // 13.3.1.4, and the best one is chosen through overload resolution
5935 // (13.3).
5936 else
5937 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5938 TopLevelOfInitList);
5939 return;
5940 }
5941
5942 assert(Args.size() >= 1 && "Zero-argument case handled above")(static_cast <bool> (Args.size() >= 1 && "Zero-argument case handled above"
) ? void (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 5942, __extension__ __PRETTY_FUNCTION__))
;
5943
5944 // The remaining cases all need a source type.
5945 if (Args.size() > 1) {
5946 SetFailed(FK_TooManyInitsForScalar);
5947 return;
5948 } else if (isa<InitListExpr>(Args[0])) {
5949 SetFailed(FK_ParenthesizedListInitForScalar);
5950 return;
5951 }
5952
5953 // - Otherwise, if the source type is a (possibly cv-qualified) class
5954 // type, conversion functions are considered.
5955 if (!SourceType.isNull() && SourceType->isRecordType()) {
5956 // For a conversion to _Atomic(T) from either T or a class type derived
5957 // from T, initialize the T object then convert to _Atomic type.
5958 bool NeedAtomicConversion = false;
5959 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5960 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5961 S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType,
5962 Atomic->getValueType())) {
5963 DestType = Atomic->getValueType();
5964 NeedAtomicConversion = true;
5965 }
5966 }
5967
5968 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5969 TopLevelOfInitList);
5970 MaybeProduceObjCObject(S, *this, Entity);
5971 if (!Failed() && NeedAtomicConversion)
5972 AddAtomicConversionStep(Entity.getType());
5973 return;
5974 }
5975
5976 // - Otherwise, if the initialization is direct-initialization, the source
5977 // type is std::nullptr_t, and the destination type is bool, the initial
5978 // value of the object being initialized is false.
5979 if (!SourceType.isNull() && SourceType->isNullPtrType() &&
5980 DestType->isBooleanType() &&
5981 Kind.getKind() == InitializationKind::IK_Direct) {
5982 AddConversionSequenceStep(
5983 ImplicitConversionSequence::getNullptrToBool(SourceType, DestType,
5984 Initializer->isGLValue()),
5985 DestType);
5986 return;
5987 }
5988
5989 // - Otherwise, the initial value of the object being initialized is the
5990 // (possibly converted) value of the initializer expression. Standard
5991 // conversions (Clause 4) will be used, if necessary, to convert the
5992 // initializer expression to the cv-unqualified version of the
5993 // destination type; no user-defined conversions are considered.
5994
5995 ImplicitConversionSequence ICS
5996 = S.TryImplicitConversion(Initializer, DestType,
5997 /*SuppressUserConversions*/true,
5998 Sema::AllowedExplicit::None,
5999 /*InOverloadResolution*/ false,
6000 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
6001 allowObjCWritebackConversion);
6002
6003 if (ICS.isStandard() &&
6004 ICS.Standard.Second == ICK_Writeback_Conversion) {
6005 // Objective-C ARC writeback conversion.
6006
6007 // We should copy unless we're passing to an argument explicitly
6008 // marked 'out'.
6009 bool ShouldCopy = true;
6010 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
6011 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
6012
6013 // If there was an lvalue adjustment, add it as a separate conversion.
6014 if (ICS.Standard.First == ICK_Array_To_Pointer ||
6015 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
6016 ImplicitConversionSequence LvalueICS;
6017 LvalueICS.setStandard();
6018 LvalueICS.Standard.setAsIdentityConversion();
6019 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
6020 LvalueICS.Standard.First = ICS.Standard.First;
6021 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
6022 }
6023
6024 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
6025 } else if (ICS.isBad()) {
6026 DeclAccessPair dap;
6027 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
6028 AddZeroInitializationStep(Entity.getType());
6029 } else if (Initializer->getType() == Context.OverloadTy &&
6030 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
6031 false, dap))
6032 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
6033 else if (Initializer->getType()->isFunctionType() &&
6034 isExprAnUnaddressableFunction(S, Initializer))
6035 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
6036 else
6037 SetFailed(InitializationSequence::FK_ConversionFailed);
6038 } else {
6039 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
6040
6041 MaybeProduceObjCObject(S, *this, Entity);
6042 }
6043}
6044
6045InitializationSequence::~InitializationSequence() {
6046 for (auto &S : Steps)
6047 S.Destroy();
6048}
6049
6050//===----------------------------------------------------------------------===//
6051// Perform initialization
6052//===----------------------------------------------------------------------===//
6053static Sema::AssignmentAction
6054getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
6055 switch(Entity.getKind()) {
6056 case InitializedEntity::EK_Variable:
6057 case InitializedEntity::EK_New:
6058 case InitializedEntity::EK_Exception:
6059 case InitializedEntity::EK_Base:
6060 case InitializedEntity::EK_Delegating:
6061 return Sema::AA_Initializing;
6062
6063 case InitializedEntity::EK_Parameter:
6064 if (Entity.getDecl() &&
6065 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6066 return Sema::AA_Sending;
6067
6068 return Sema::AA_Passing;
6069
6070 case InitializedEntity::EK_Parameter_CF_Audited:
6071 if (Entity.getDecl() &&
6072 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
6073 return Sema::AA_Sending;
6074
6075 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
6076
6077 case InitializedEntity::EK_Result:
6078 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
6079 return Sema::AA_Returning;
6080
6081 case InitializedEntity::EK_Temporary:
6082 case InitializedEntity::EK_RelatedResult:
6083 // FIXME: Can we tell apart casting vs. converting?
6084 return Sema::AA_Casting;
6085
6086 case InitializedEntity::EK_TemplateParameter:
6087 // This is really initialization, but refer to it as conversion for
6088 // consistency with CheckConvertedConstantExpression.
6089 return Sema::AA_Converting;
6090
6091 case InitializedEntity::EK_Member:
6092 case InitializedEntity::EK_Binding:
6093 case InitializedEntity::EK_ArrayElement:
6094 case InitializedEntity::EK_VectorElement:
6095 case InitializedEntity::EK_ComplexElement:
6096 case InitializedEntity::EK_BlockElement:
6097 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6098 case InitializedEntity::EK_LambdaCapture:
6099 case InitializedEntity::EK_CompoundLiteralInit:
6100 return Sema::AA_Initializing;
6101 }
6102
6103 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 6103)
;
6104}
6105
6106/// Whether we should bind a created object as a temporary when
6107/// initializing the given entity.
6108static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
6109 switch (Entity.getKind()) {
6110 case InitializedEntity::EK_ArrayElement:
6111 case InitializedEntity::EK_Member:
6112 case InitializedEntity::EK_Result:
6113 case InitializedEntity::EK_StmtExprResult:
6114 case InitializedEntity::EK_New:
6115 case InitializedEntity::EK_Variable:
6116 case InitializedEntity::EK_Base:
6117 case InitializedEntity::EK_Delegating:
6118 case InitializedEntity::EK_VectorElement:
6119 case InitializedEntity::EK_ComplexElement:
6120 case InitializedEntity::EK_Exception:
6121 case InitializedEntity::EK_BlockElement:
6122 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6123 case InitializedEntity::EK_LambdaCapture:
6124 case InitializedEntity::EK_CompoundLiteralInit:
6125 case InitializedEntity::EK_TemplateParameter:
6126 return false;
6127
6128 case InitializedEntity::EK_Parameter:
6129 case InitializedEntity::EK_Parameter_CF_Audited:
6130 case InitializedEntity::EK_Temporary:
6131 case InitializedEntity::EK_RelatedResult:
6132 case InitializedEntity::EK_Binding:
6133 return true;
6134 }
6135
6136 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 6136)
;
6137}
6138
6139/// Whether the given entity, when initialized with an object
6140/// created for that initialization, requires destruction.
6141static bool shouldDestroyEntity(const InitializedEntity &Entity) {
6142 switch (Entity.getKind()) {
6143 case InitializedEntity::EK_Result:
6144 case InitializedEntity::EK_StmtExprResult:
6145 case InitializedEntity::EK_New:
6146 case InitializedEntity::EK_Base:
6147 case InitializedEntity::EK_Delegating:
6148 case InitializedEntity::EK_VectorElement:
6149 case InitializedEntity::EK_ComplexElement:
6150 case InitializedEntity::EK_BlockElement:
6151 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6152 case InitializedEntity::EK_LambdaCapture:
6153 return false;
6154
6155 case InitializedEntity::EK_Member:
6156 case InitializedEntity::EK_Binding:
6157 case InitializedEntity::EK_Variable:
6158 case InitializedEntity::EK_Parameter:
6159 case InitializedEntity::EK_Parameter_CF_Audited:
6160 case InitializedEntity::EK_TemplateParameter:
6161 case InitializedEntity::EK_Temporary:
6162 case InitializedEntity::EK_ArrayElement:
6163 case InitializedEntity::EK_Exception:
6164 case InitializedEntity::EK_CompoundLiteralInit:
6165 case InitializedEntity::EK_RelatedResult:
6166 return true;
6167 }
6168
6169 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 6169)
;
6170}
6171
6172/// Get the location at which initialization diagnostics should appear.
6173static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
6174 Expr *Initializer) {
6175 switch (Entity.getKind()) {
6176 case InitializedEntity::EK_Result:
6177 case InitializedEntity::EK_StmtExprResult:
6178 return Entity.getReturnLoc();
6179
6180 case InitializedEntity::EK_Exception:
6181 return Entity.getThrowLoc();
6182
6183 case InitializedEntity::EK_Variable:
6184 case InitializedEntity::EK_Binding:
6185 return Entity.getDecl()->getLocation();
6186
6187 case InitializedEntity::EK_LambdaCapture:
6188 return Entity.getCaptureLoc();
6189
6190 case InitializedEntity::EK_ArrayElement:
6191 case InitializedEntity::EK_Member:
6192 case InitializedEntity::EK_Parameter:
6193 case InitializedEntity::EK_Parameter_CF_Audited:
6194 case InitializedEntity::EK_TemplateParameter:
6195 case InitializedEntity::EK_Temporary:
6196 case InitializedEntity::EK_New:
6197 case InitializedEntity::EK_Base:
6198 case InitializedEntity::EK_Delegating:
6199 case InitializedEntity::EK_VectorElement:
6200 case InitializedEntity::EK_ComplexElement:
6201 case InitializedEntity::EK_BlockElement:
6202 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6203 case InitializedEntity::EK_CompoundLiteralInit:
6204 case InitializedEntity::EK_RelatedResult:
6205 return Initializer->getBeginLoc();
6206 }
6207 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 6207)
;
6208}
6209
6210/// Make a (potentially elidable) temporary copy of the object
6211/// provided by the given initializer by calling the appropriate copy
6212/// constructor.
6213///
6214/// \param S The Sema object used for type-checking.
6215///
6216/// \param T The type of the temporary object, which must either be
6217/// the type of the initializer expression or a superclass thereof.
6218///
6219/// \param Entity The entity being initialized.
6220///
6221/// \param CurInit The initializer expression.
6222///
6223/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
6224/// is permitted in C++03 (but not C++0x) when binding a reference to
6225/// an rvalue.
6226///
6227/// \returns An expression that copies the initializer expression into
6228/// a temporary object, or an error expression if a copy could not be
6229/// created.
6230static ExprResult CopyObject(Sema &S,
6231 QualType T,
6232 const InitializedEntity &Entity,
6233 ExprResult CurInit,
6234 bool IsExtraneousCopy) {
6235 if (CurInit.isInvalid())
6236 return CurInit;
6237 // Determine which class type we're copying to.
6238 Expr *CurInitExpr = (Expr *)CurInit.get();
6239 CXXRecordDecl *Class = nullptr;
6240 if (const RecordType *Record = T->getAs<RecordType>())
6241 Class = cast<CXXRecordDecl>(Record->getDecl());
6242 if (!Class)
6243 return CurInit;
6244
6245 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
6246
6247 // Make sure that the type we are copying is complete.
6248 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
6249 return CurInit;
6250
6251 // Perform overload resolution using the class's constructors. Per
6252 // C++11 [dcl.init]p16, second bullet for class types, this initialization
6253 // is direct-initialization.
6254 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6255 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
6256
6257 OverloadCandidateSet::iterator Best;
6258 switch (ResolveConstructorOverload(
6259 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
6260 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6261 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6262 /*SecondStepOfCopyInit=*/true)) {
6263 case OR_Success:
6264 break;
6265
6266 case OR_No_Viable_Function:
6267 CandidateSet.NoteCandidates(
6268 PartialDiagnosticAt(
6269 Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext()
6270 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
6271 : diag::err_temp_copy_no_viable)
6272 << (int)Entity.getKind() << CurInitExpr->getType()
6273 << CurInitExpr->getSourceRange()),
6274 S, OCD_AllCandidates, CurInitExpr);
6275 if (!IsExtraneousCopy || S.isSFINAEContext())
6276 return ExprError();
6277 return CurInit;
6278
6279 case OR_Ambiguous:
6280 CandidateSet.NoteCandidates(
6281 PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous)
6282 << (int)Entity.getKind()
6283 << CurInitExpr->getType()
6284 << CurInitExpr->getSourceRange()),
6285 S, OCD_AmbiguousCandidates, CurInitExpr);
6286 return ExprError();
6287
6288 case OR_Deleted:
6289 S.Diag(Loc, diag::err_temp_copy_deleted)
6290 << (int)Entity.getKind() << CurInitExpr->getType()
6291 << CurInitExpr->getSourceRange();
6292 S.NoteDeletedFunction(Best->Function);
6293 return ExprError();
6294 }
6295
6296 bool HadMultipleCandidates = CandidateSet.size() > 1;
6297
6298 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
6299 SmallVector<Expr*, 8> ConstructorArgs;
6300 CurInit.get(); // Ownership transferred into MultiExprArg, below.
6301
6302 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
6303 IsExtraneousCopy);
6304
6305 if (IsExtraneousCopy) {
6306 // If this is a totally extraneous copy for C++03 reference
6307 // binding purposes, just return the original initialization
6308 // expression. We don't generate an (elided) copy operation here
6309 // because doing so would require us to pass down a flag to avoid
6310 // infinite recursion, where each step adds another extraneous,
6311 // elidable copy.
6312
6313 // Instantiate the default arguments of any extra parameters in
6314 // the selected copy constructor, as if we were going to create a
6315 // proper call to the copy constructor.
6316 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
6317 ParmVarDecl *Parm = Constructor->getParamDecl(I);
6318 if (S.RequireCompleteType(Loc, Parm->getType(),
6319 diag::err_call_incomplete_argument))
6320 break;
6321
6322 // Build the default argument expression; we don't actually care
6323 // if this succeeds or not, because this routine will complain
6324 // if there was a problem.
6325 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
6326 }
6327
6328 return CurInitExpr;
6329 }
6330
6331 // Determine the arguments required to actually perform the
6332 // constructor call (we might have derived-to-base conversions, or
6333 // the copy constructor may have default arguments).
6334 if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc,
6335 ConstructorArgs))
6336 return ExprError();
6337
6338 // C++0x [class.copy]p32:
6339 // When certain criteria are met, an implementation is allowed to
6340 // omit the copy/move construction of a class object, even if the
6341 // copy/move constructor and/or destructor for the object have
6342 // side effects. [...]
6343 // - when a temporary class object that has not been bound to a
6344 // reference (12.2) would be copied/moved to a class object
6345 // with the same cv-unqualified type, the copy/move operation
6346 // can be omitted by constructing the temporary object
6347 // directly into the target of the omitted copy/move
6348 //
6349 // Note that the other three bullets are handled elsewhere. Copy
6350 // elision for return statements and throw expressions are handled as part
6351 // of constructor initialization, while copy elision for exception handlers
6352 // is handled by the run-time.
6353 //
6354 // FIXME: If the function parameter is not the same type as the temporary, we
6355 // should still be able to elide the copy, but we don't have a way to
6356 // represent in the AST how much should be elided in this case.
6357 bool Elidable =
6358 CurInitExpr->isTemporaryObject(S.Context, Class) &&
6359 S.Context.hasSameUnqualifiedType(
6360 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
6361 CurInitExpr->getType());
6362
6363 // Actually perform the constructor call.
6364 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
6365 Elidable,
6366 ConstructorArgs,
6367 HadMultipleCandidates,
6368 /*ListInit*/ false,
6369 /*StdInitListInit*/ false,
6370 /*ZeroInit*/ false,
6371 CXXConstructExpr::CK_Complete,
6372 SourceRange());
6373
6374 // If we're supposed to bind temporaries, do so.
6375 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
6376 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6377 return CurInit;
6378}
6379
6380/// Check whether elidable copy construction for binding a reference to
6381/// a temporary would have succeeded if we were building in C++98 mode, for
6382/// -Wc++98-compat.
6383static void CheckCXX98CompatAccessibleCopy(Sema &S,
6384 const InitializedEntity &Entity,
6385 Expr *CurInitExpr) {
6386 assert(S.getLangOpts().CPlusPlus11)(static_cast <bool> (S.getLangOpts().CPlusPlus11) ? void
(0) : __assert_fail ("S.getLangOpts().CPlusPlus11", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 6386, __extension__ __PRETTY_FUNCTION__))
;
6387
6388 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
6389 if (!Record)
6390 return;
6391
6392 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
6393 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
6394 return;
6395
6396 // Find constructors which would have been considered.
6397 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
6398 DeclContext::lookup_result Ctors =
6399 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
6400
6401 // Perform overload resolution.
6402 OverloadCandidateSet::iterator Best;
6403 OverloadingResult OR = ResolveConstructorOverload(
6404 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
6405 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
6406 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
6407 /*SecondStepOfCopyInit=*/true);
6408
6409 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
6410 << OR << (int)Entity.getKind() << CurInitExpr->getType()
6411 << CurInitExpr->getSourceRange();
6412
6413 switch (OR) {
6414 case OR_Success:
6415 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
6416 Best->FoundDecl, Entity, Diag);
6417 // FIXME: Check default arguments as far as that's possible.
6418 break;
6419
6420 case OR_No_Viable_Function:
6421 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6422 OCD_AllCandidates, CurInitExpr);
6423 break;
6424
6425 case OR_Ambiguous:
6426 CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S,
6427 OCD_AmbiguousCandidates, CurInitExpr);
6428 break;
6429
6430 case OR_Deleted:
6431 S.Diag(Loc, Diag);
6432 S.NoteDeletedFunction(Best->Function);
6433 break;
6434 }
6435}
6436
6437void InitializationSequence::PrintInitLocationNote(Sema &S,
6438 const InitializedEntity &Entity) {
6439 if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) {
6440 if (Entity.getDecl()->getLocation().isInvalid())
6441 return;
6442
6443 if (Entity.getDecl()->getDeclName())
6444 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
6445 << Entity.getDecl()->getDeclName();
6446 else
6447 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
6448 }
6449 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6450 Entity.getMethodDecl())
6451 S.Diag(Entity.getMethodDecl()->getLocation(),
6452 diag::note_method_return_type_change)
6453 << Entity.getMethodDecl()->getDeclName();
6454}
6455
6456/// Returns true if the parameters describe a constructor initialization of
6457/// an explicit temporary object, e.g. "Point(x, y)".
6458static bool isExplicitTemporary(const InitializedEntity &Entity,
6459 const InitializationKind &Kind,
6460 unsigned NumArgs) {
6461 switch (Entity.getKind()) {
6462 case InitializedEntity::EK_Temporary:
6463 case InitializedEntity::EK_CompoundLiteralInit:
6464 case InitializedEntity::EK_RelatedResult:
6465 break;
6466 default:
6467 return false;
6468 }
6469
6470 switch (Kind.getKind()) {
6471 case InitializationKind::IK_DirectList:
6472 return true;
6473 // FIXME: Hack to work around cast weirdness.
6474 case InitializationKind::IK_Direct:
6475 case InitializationKind::IK_Value:
6476 return NumArgs != 1;
6477 default:
6478 return false;
6479 }
6480}
6481
6482static ExprResult
6483PerformConstructorInitialization(Sema &S,
6484 const InitializedEntity &Entity,
6485 const InitializationKind &Kind,
6486 MultiExprArg Args,
6487 const InitializationSequence::Step& Step,
6488 bool &ConstructorInitRequiresZeroInit,
6489 bool IsListInitialization,
6490 bool IsStdInitListInitialization,
6491 SourceLocation LBraceLoc,
6492 SourceLocation RBraceLoc) {
6493 unsigned NumArgs = Args.size();
6494 CXXConstructorDecl *Constructor
6495 = cast<CXXConstructorDecl>(Step.Function.Function);
6496 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6497
6498 // Build a call to the selected constructor.
6499 SmallVector<Expr*, 8> ConstructorArgs;
6500 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6501 ? Kind.getEqualLoc()
6502 : Kind.getLocation();
6503
6504 if (Kind.getKind() == InitializationKind::IK_Default) {
6505 // Force even a trivial, implicit default constructor to be
6506 // semantically checked. We do this explicitly because we don't build
6507 // the definition for completely trivial constructors.
6508 assert(Constructor->getParent() && "No parent class for constructor.")(static_cast <bool> (Constructor->getParent() &&
"No parent class for constructor.") ? void (0) : __assert_fail
("Constructor->getParent() && \"No parent class for constructor.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 6508, __extension__ __PRETTY_FUNCTION__))
;
6509 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6510 Constructor->isTrivial() && !Constructor->isUsed(false)) {
6511 S.runWithSufficientStackSpace(Loc, [&] {
6512 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6513 });
6514 }
6515 }
6516
6517 ExprResult CurInit((Expr *)nullptr);
6518
6519 // C++ [over.match.copy]p1:
6520 // - When initializing a temporary to be bound to the first parameter
6521 // of a constructor that takes a reference to possibly cv-qualified
6522 // T as its first argument, called with a single argument in the
6523 // context of direct-initialization, explicit conversion functions
6524 // are also considered.
6525 bool AllowExplicitConv =
6526 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6527 hasCopyOrMoveCtorParam(S.Context,
6528 getConstructorInfo(Step.Function.FoundDecl));
6529
6530 // Determine the arguments required to actually perform the constructor
6531 // call.
6532 if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc,
6533 ConstructorArgs, AllowExplicitConv,
6534 IsListInitialization))
6535 return ExprError();
6536
6537 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6538 // An explicitly-constructed temporary, e.g., X(1, 2).
6539 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6540 return ExprError();
6541
6542 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6543 if (!TSInfo)
6544 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6545 SourceRange ParenOrBraceRange =
6546 (Kind.getKind() == InitializationKind::IK_DirectList)
6547 ? SourceRange(LBraceLoc, RBraceLoc)
6548 : Kind.getParenOrBraceRange();
6549
6550 CXXConstructorDecl *CalleeDecl = Constructor;
6551 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6552 Step.Function.FoundDecl.getDecl())) {
6553 CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow);
6554 if (S.DiagnoseUseOfDecl(CalleeDecl, Loc))
6555 return ExprError();
6556 }
6557 S.MarkFunctionReferenced(Loc, CalleeDecl);
6558
6559 CurInit = S.CheckForImmediateInvocation(
6560 CXXTemporaryObjectExpr::Create(
6561 S.Context, CalleeDecl,
6562 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6563 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6564 IsListInitialization, IsStdInitListInitialization,
6565 ConstructorInitRequiresZeroInit),
6566 CalleeDecl);
6567 } else {
6568 CXXConstructExpr::ConstructionKind ConstructKind =
6569 CXXConstructExpr::CK_Complete;
6570
6571 if (Entity.getKind() == InitializedEntity::EK_Base) {
6572 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6573 CXXConstructExpr::CK_VirtualBase :
6574 CXXConstructExpr::CK_NonVirtualBase;
6575 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6576 ConstructKind = CXXConstructExpr::CK_Delegating;
6577 }
6578
6579 // Only get the parenthesis or brace range if it is a list initialization or
6580 // direct construction.
6581 SourceRange ParenOrBraceRange;
6582 if (IsListInitialization)
6583 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6584 else if (Kind.getKind() == InitializationKind::IK_Direct)
6585 ParenOrBraceRange = Kind.getParenOrBraceRange();
6586
6587 // If the entity allows NRVO, mark the construction as elidable
6588 // unconditionally.
6589 if (Entity.allowsNRVO())
6590 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6591 Step.Function.FoundDecl,
6592 Constructor, /*Elidable=*/true,
6593 ConstructorArgs,
6594 HadMultipleCandidates,
6595 IsListInitialization,
6596 IsStdInitListInitialization,
6597 ConstructorInitRequiresZeroInit,
6598 ConstructKind,
6599 ParenOrBraceRange);
6600 else
6601 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6602 Step.Function.FoundDecl,
6603 Constructor,
6604 ConstructorArgs,
6605 HadMultipleCandidates,
6606 IsListInitialization,
6607 IsStdInitListInitialization,
6608 ConstructorInitRequiresZeroInit,
6609 ConstructKind,
6610 ParenOrBraceRange);
6611 }
6612 if (CurInit.isInvalid())
6613 return ExprError();
6614
6615 // Only check access if all of that succeeded.
6616 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6617 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6618 return ExprError();
6619
6620 if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType()))
6621 if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S))
6622 return ExprError();
6623
6624 if (shouldBindAsTemporary(Entity))
6625 CurInit = S.MaybeBindToTemporary(CurInit.get());
6626
6627 return CurInit;
6628}
6629
6630namespace {
6631enum LifetimeKind {
6632 /// The lifetime of a temporary bound to this entity ends at the end of the
6633 /// full-expression, and that's (probably) fine.
6634 LK_FullExpression,
6635
6636 /// The lifetime of a temporary bound to this entity is extended to the
6637 /// lifeitme of the entity itself.
6638 LK_Extended,
6639
6640 /// The lifetime of a temporary bound to this entity probably ends too soon,
6641 /// because the entity is allocated in a new-expression.
6642 LK_New,
6643
6644 /// The lifetime of a temporary bound to this entity ends too soon, because
6645 /// the entity is a return object.
6646 LK_Return,
6647
6648 /// The lifetime of a temporary bound to this entity ends too soon, because
6649 /// the entity is the result of a statement expression.
6650 LK_StmtExprResult,
6651
6652 /// This is a mem-initializer: if it would extend a temporary (other than via
6653 /// a default member initializer), the program is ill-formed.
6654 LK_MemInitializer,
6655};
6656using LifetimeResult =
6657 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6658}
6659
6660/// Determine the declaration which an initialized entity ultimately refers to,
6661/// for the purpose of lifetime-extending a temporary bound to a reference in
6662/// the initialization of \p Entity.
6663static LifetimeResult getEntityLifetime(
6664 const InitializedEntity *Entity,
6665 const InitializedEntity *InitField = nullptr) {
6666 // C++11 [class.temporary]p5:
6667 switch (Entity->getKind()) {
6668 case InitializedEntity::EK_Variable:
6669 // The temporary [...] persists for the lifetime of the reference
6670 return {Entity, LK_Extended};
6671
6672 case InitializedEntity::EK_Member:
6673 // For subobjects, we look at the complete object.
6674 if (Entity->getParent())
6675 return getEntityLifetime(Entity->getParent(), Entity);
6676
6677 // except:
6678 // C++17 [class.base.init]p8:
6679 // A temporary expression bound to a reference member in a
6680 // mem-initializer is ill-formed.
6681 // C++17 [class.base.init]p11:
6682 // A temporary expression bound to a reference member from a
6683 // default member initializer is ill-formed.
6684 //
6685 // The context of p11 and its example suggest that it's only the use of a
6686 // default member initializer from a constructor that makes the program
6687 // ill-formed, not its mere existence, and that it can even be used by
6688 // aggregate initialization.
6689 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6690 : LK_MemInitializer};
6691
6692 case InitializedEntity::EK_Binding:
6693 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6694 // type.
6695 return {Entity, LK_Extended};
6696
6697 case InitializedEntity::EK_Parameter:
6698 case InitializedEntity::EK_Parameter_CF_Audited:
6699 // -- A temporary bound to a reference parameter in a function call
6700 // persists until the completion of the full-expression containing
6701 // the call.
6702 return {nullptr, LK_FullExpression};
6703
6704 case InitializedEntity::EK_TemplateParameter:
6705 // FIXME: This will always be ill-formed; should we eagerly diagnose it here?
6706 return {nullptr, LK_FullExpression};
6707
6708 case InitializedEntity::EK_Result:
6709 // -- The lifetime of a temporary bound to the returned value in a
6710 // function return statement is not extended; the temporary is
6711 // destroyed at the end of the full-expression in the return statement.
6712 return {nullptr, LK_Return};
6713
6714 case InitializedEntity::EK_StmtExprResult:
6715 // FIXME: Should we lifetime-extend through the result of a statement
6716 // expression?
6717 return {nullptr, LK_StmtExprResult};
6718
6719 case InitializedEntity::EK_New:
6720 // -- A temporary bound to a reference in a new-initializer persists
6721 // until the completion of the full-expression containing the
6722 // new-initializer.
6723 return {nullptr, LK_New};
6724
6725 case InitializedEntity::EK_Temporary:
6726 case InitializedEntity::EK_CompoundLiteralInit:
6727 case InitializedEntity::EK_RelatedResult:
6728 // We don't yet know the storage duration of the surrounding temporary.
6729 // Assume it's got full-expression duration for now, it will patch up our
6730 // storage duration if that's not correct.
6731 return {nullptr, LK_FullExpression};
6732
6733 case InitializedEntity::EK_ArrayElement:
6734 // For subobjects, we look at the complete object.
6735 return getEntityLifetime(Entity->getParent(), InitField);
6736
6737 case InitializedEntity::EK_Base:
6738 // For subobjects, we look at the complete object.
6739 if (Entity->getParent())
6740 return getEntityLifetime(Entity->getParent(), InitField);
6741 return {InitField, LK_MemInitializer};
6742
6743 case InitializedEntity::EK_Delegating:
6744 // We can reach this case for aggregate initialization in a constructor:
6745 // struct A { int &&r; };
6746 // struct B : A { B() : A{0} {} };
6747 // In this case, use the outermost field decl as the context.
6748 return {InitField, LK_MemInitializer};
6749
6750 case InitializedEntity::EK_BlockElement:
6751 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6752 case InitializedEntity::EK_LambdaCapture:
6753 case InitializedEntity::EK_VectorElement:
6754 case InitializedEntity::EK_ComplexElement:
6755 return {nullptr, LK_FullExpression};
6756
6757 case InitializedEntity::EK_Exception:
6758 // FIXME: Can we diagnose lifetime problems with exceptions?
6759 return {nullptr, LK_FullExpression};
6760 }
6761 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 6761)
;
6762}
6763
6764namespace {
6765enum ReferenceKind {
6766 /// Lifetime would be extended by a reference binding to a temporary.
6767 RK_ReferenceBinding,
6768 /// Lifetime would be extended by a std::initializer_list object binding to
6769 /// its backing array.
6770 RK_StdInitializerList,
6771};
6772
6773/// A temporary or local variable. This will be one of:
6774/// * A MaterializeTemporaryExpr.
6775/// * A DeclRefExpr whose declaration is a local.
6776/// * An AddrLabelExpr.
6777/// * A BlockExpr for a block with captures.
6778using Local = Expr*;
6779
6780/// Expressions we stepped over when looking for the local state. Any steps
6781/// that would inhibit lifetime extension or take us out of subexpressions of
6782/// the initializer are included.
6783struct IndirectLocalPathEntry {
6784 enum EntryKind {
6785 DefaultInit,
6786 AddressOf,
6787 VarInit,
6788 LValToRVal,
6789 LifetimeBoundCall,
6790 TemporaryCopy,
6791 LambdaCaptureInit,
6792 GslReferenceInit,
6793 GslPointerInit
6794 } Kind;
6795 Expr *E;
6796 union {
6797 const Decl *D = nullptr;
6798 const LambdaCapture *Capture;
6799 };
6800 IndirectLocalPathEntry() {}
6801 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6802 IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D)
6803 : Kind(K), E(E), D(D) {}
6804 IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture)
6805 : Kind(K), E(E), Capture(Capture) {}
6806};
6807
6808using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6809
6810struct RevertToOldSizeRAII {
6811 IndirectLocalPath &Path;
6812 unsigned OldSize = Path.size();
6813 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6814 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6815};
6816
6817using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6818 ReferenceKind RK)>;
6819}
6820
6821static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6822 for (auto E : Path)
6823 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6824 return true;
6825 return false;
6826}
6827
6828static bool pathContainsInit(IndirectLocalPath &Path) {
6829 return llvm::any_of(Path, [=](IndirectLocalPathEntry E) {
6830 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6831 E.Kind == IndirectLocalPathEntry::VarInit;
6832 });
6833}
6834
6835static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6836 Expr *Init, LocalVisitor Visit,
6837 bool RevisitSubinits,
6838 bool EnableLifetimeWarnings);
6839
6840static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6841 Expr *Init, ReferenceKind RK,
6842 LocalVisitor Visit,
6843 bool EnableLifetimeWarnings);
6844
6845template <typename T> static bool isRecordWithAttr(QualType Type) {
6846 if (auto *RD = Type->getAsCXXRecordDecl())
6847 return RD->hasAttr<T>();
6848 return false;
6849}
6850
6851// Decl::isInStdNamespace will return false for iterators in some STL
6852// implementations due to them being defined in a namespace outside of the std
6853// namespace.
6854static bool isInStlNamespace(const Decl *D) {
6855 const DeclContext *DC = D->getDeclContext();
6856 if (!DC)
6857 return false;
6858 if (const auto *ND = dyn_cast<NamespaceDecl>(DC))
6859 if (const IdentifierInfo *II = ND->getIdentifier()) {
6860 StringRef Name = II->getName();
6861 if (Name.size() >= 2 && Name.front() == '_' &&
6862 (Name[1] == '_' || isUppercase(Name[1])))
6863 return true;
6864 }
6865
6866 return DC->isStdNamespace();
6867}
6868
6869static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) {
6870 if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee))
6871 if (isRecordWithAttr<PointerAttr>(Conv->getConversionType()))
6872 return true;
6873 if (!isInStlNamespace(Callee->getParent()))
6874 return false;
6875 if (!isRecordWithAttr<PointerAttr>(Callee->getThisObjectType()) &&
6876 !isRecordWithAttr<OwnerAttr>(Callee->getThisObjectType()))
6877 return false;
6878 if (Callee->getReturnType()->isPointerType() ||
6879 isRecordWithAttr<PointerAttr>(Callee->getReturnType())) {
6880 if (!Callee->getIdentifier())
6881 return false;
6882 return llvm::StringSwitch<bool>(Callee->getName())
6883 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6884 .Cases("end", "rend", "cend", "crend", true)
6885 .Cases("c_str", "data", "get", true)
6886 // Map and set types.
6887 .Cases("find", "equal_range", "lower_bound", "upper_bound", true)
6888 .Default(false);
6889 } else if (Callee->getReturnType()->isReferenceType()) {
6890 if (!Callee->getIdentifier()) {
6891 auto OO = Callee->getOverloadedOperator();
6892 return OO == OverloadedOperatorKind::OO_Subscript ||
6893 OO == OverloadedOperatorKind::OO_Star;
6894 }
6895 return llvm::StringSwitch<bool>(Callee->getName())
6896 .Cases("front", "back", "at", "top", "value", true)
6897 .Default(false);
6898 }
6899 return false;
6900}
6901
6902static bool shouldTrackFirstArgument(const FunctionDecl *FD) {
6903 if (!FD->getIdentifier() || FD->getNumParams() != 1)
6904 return false;
6905 const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl();
6906 if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace())
6907 return false;
6908 if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) &&
6909 !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0)))
6910 return false;
6911 if (FD->getReturnType()->isPointerType() ||
6912 isRecordWithAttr<PointerAttr>(FD->getReturnType())) {
6913 return llvm::StringSwitch<bool>(FD->getName())
6914 .Cases("begin", "rbegin", "cbegin", "crbegin", true)
6915 .Cases("end", "rend", "cend", "crend", true)
6916 .Case("data", true)
6917 .Default(false);
6918 } else if (FD->getReturnType()->isReferenceType()) {
6919 return llvm::StringSwitch<bool>(FD->getName())
6920 .Cases("get", "any_cast", true)
6921 .Default(false);
6922 }
6923 return false;
6924}
6925
6926static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call,
6927 LocalVisitor Visit) {
6928 auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) {
6929 // We are not interested in the temporary base objects of gsl Pointers:
6930 // Temp().ptr; // Here ptr might not dangle.
6931 if (isa<MemberExpr>(Arg->IgnoreImpCasts()))
6932 return;
6933 // Once we initialized a value with a reference, it can no longer dangle.
6934 if (!Value) {
6935 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
6936 if (It->Kind == IndirectLocalPathEntry::GslReferenceInit)
6937 continue;
6938 if (It->Kind == IndirectLocalPathEntry::GslPointerInit)
6939 return;
6940 break;
6941 }
6942 }
6943 Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit
6944 : IndirectLocalPathEntry::GslReferenceInit,
6945 Arg, D});
6946 if (Arg->isGLValue())
6947 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
6948 Visit,
6949 /*EnableLifetimeWarnings=*/true);
6950 else
6951 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
6952 /*EnableLifetimeWarnings=*/true);
6953 Path.pop_back();
6954 };
6955
6956 if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
6957 const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee());
6958 if (MD && shouldTrackImplicitObjectArg(MD))
6959 VisitPointerArg(MD, MCE->getImplicitObjectArgument(),
6960 !MD->getReturnType()->isReferenceType());
6961 return;
6962 } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) {
6963 FunctionDecl *Callee = OCE->getDirectCallee();
6964 if (Callee && Callee->isCXXInstanceMember() &&
6965 shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee)))
6966 VisitPointerArg(Callee, OCE->getArg(0),
6967 !Callee->getReturnType()->isReferenceType());
6968 return;
6969 } else if (auto *CE = dyn_cast<CallExpr>(Call)) {
6970 FunctionDecl *Callee = CE->getDirectCallee();
6971 if (Callee && shouldTrackFirstArgument(Callee))
6972 VisitPointerArg(Callee, CE->getArg(0),
6973 !Callee->getReturnType()->isReferenceType());
6974 return;
6975 }
6976
6977 if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) {
6978 const auto *Ctor = CCE->getConstructor();
6979 const CXXRecordDecl *RD = Ctor->getParent();
6980 if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>())
6981 VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true);
6982 }
6983}
6984
6985static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) {
6986 const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6987 if (!TSI)
6988 return false;
6989 // Don't declare this variable in the second operand of the for-statement;
6990 // GCC miscompiles that by ending its lifetime before evaluating the
6991 // third operand. See gcc.gnu.org/PR86769.
6992 AttributedTypeLoc ATL;
6993 for (TypeLoc TL = TSI->getTypeLoc();
6994 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6995 TL = ATL.getModifiedLoc()) {
6996 if (ATL.getAttrAs<LifetimeBoundAttr>())
6997 return true;
6998 }
6999
7000 // Assume that all assignment operators with a "normal" return type return
7001 // *this, that is, an lvalue reference that is the same type as the implicit
7002 // object parameter (or the LHS for a non-member operator$=).
7003 OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator();
7004 if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) {
7005 QualType RetT = FD->getReturnType();
7006 if (RetT->isLValueReferenceType()) {
7007 ASTContext &Ctx = FD->getASTContext();
7008 QualType LHST;
7009 auto *MD = dyn_cast<CXXMethodDecl>(FD);
7010 if (MD && MD->isCXXInstanceMember())
7011 LHST = Ctx.getLValueReferenceType(MD->getThisObjectType());
7012 else
7013 LHST = MD->getParamDecl(0)->getType();
7014 if (Ctx.hasSameType(RetT, LHST))
7015 return true;
7016 }
7017 }
7018
7019 return false;
7020}
7021
7022static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call,
7023 LocalVisitor Visit) {
7024 const FunctionDecl *Callee;
7025 ArrayRef<Expr*> Args;
7026
7027 if (auto *CE = dyn_cast<CallExpr>(Call)) {
7028 Callee = CE->getDirectCallee();
7029 Args = llvm::makeArrayRef(CE->getArgs(), CE->getNumArgs());
7030 } else {
7031 auto *CCE = cast<CXXConstructExpr>(Call);
7032 Callee = CCE->getConstructor();
7033 Args = llvm::makeArrayRef(CCE->getArgs(), CCE->getNumArgs());
7034 }
7035 if (!Callee)
7036 return;
7037
7038 Expr *ObjectArg = nullptr;
7039 if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) {
7040 ObjectArg = Args[0];
7041 Args = Args.slice(1);
7042 } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) {
7043 ObjectArg = MCE->getImplicitObjectArgument();
7044 }
7045
7046 auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) {
7047 Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D});
7048 if (Arg->isGLValue())
7049 visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding,
7050 Visit,
7051 /*EnableLifetimeWarnings=*/false);
7052 else
7053 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7054 /*EnableLifetimeWarnings=*/false);
7055 Path.pop_back();
7056 };
7057
7058 if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee))
7059 VisitLifetimeBoundArg(Callee, ObjectArg);
7060
7061 for (unsigned I = 0,
7062 N = std::min<unsigned>(Callee->getNumParams(), Args.size());
7063 I != N; ++I) {
7064 if (Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>())
7065 VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]);
7066 }
7067}
7068
7069/// Visit the locals that would be reachable through a reference bound to the
7070/// glvalue expression \c Init.
7071static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
7072 Expr *Init, ReferenceKind RK,
7073 LocalVisitor Visit,
7074 bool EnableLifetimeWarnings) {
7075 RevertToOldSizeRAII RAII(Path);
7076
7077 // Walk past any constructs which we can lifetime-extend across.
7078 Expr *Old;
7079 do {
7080 Old = Init;
7081
7082 if (auto *FE = dyn_cast<FullExpr>(Init))
7083 Init = FE->getSubExpr();
7084
7085 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7086 // If this is just redundant braces around an initializer, step over it.
7087 if (ILE->isTransparent())
7088 Init = ILE->getInit(0);
7089 }
7090
7091 // Step over any subobject adjustments; we may have a materialized
7092 // temporary inside them.
7093 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7094
7095 // Per current approach for DR1376, look through casts to reference type
7096 // when performing lifetime extension.
7097 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
7098 if (CE->getSubExpr()->isGLValue())
7099 Init = CE->getSubExpr();
7100
7101 // Per the current approach for DR1299, look through array element access
7102 // on array glvalues when performing lifetime extension.
7103 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
7104 Init = ASE->getBase();
7105 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
7106 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
7107 Init = ICE->getSubExpr();
7108 else
7109 // We can't lifetime extend through this but we might still find some
7110 // retained temporaries.
7111 return visitLocalsRetainedByInitializer(Path, Init, Visit, true,
7112 EnableLifetimeWarnings);
7113 }
7114
7115 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7116 // constructor inherits one as an implicit mem-initializer.
7117 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7118 Path.push_back(
7119 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7120 Init = DIE->getExpr();
7121 }
7122 } while (Init != Old);
7123
7124 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
7125 if (Visit(Path, Local(MTE), RK))
7126 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true,
7127 EnableLifetimeWarnings);
7128 }
7129
7130 if (isa<CallExpr>(Init)) {
7131 if (EnableLifetimeWarnings)
7132 handleGslAnnotatedTypes(Path, Init, Visit);
7133 return visitLifetimeBoundArguments(Path, Init, Visit);
7134 }
7135
7136 switch (Init->getStmtClass()) {
7137 case Stmt::DeclRefExprClass: {
7138 // If we find the name of a local non-reference parameter, we could have a
7139 // lifetime problem.
7140 auto *DRE = cast<DeclRefExpr>(Init);
7141 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7142 if (VD && VD->hasLocalStorage() &&
7143 !DRE->refersToEnclosingVariableOrCapture()) {
7144 if (!VD->getType()->isReferenceType()) {
7145 Visit(Path, Local(DRE), RK);
7146 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
7147 // The lifetime of a reference parameter is unknown; assume it's OK
7148 // for now.
7149 break;
7150 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
7151 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7152 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
7153 RK_ReferenceBinding, Visit,
7154 EnableLifetimeWarnings);
7155 }
7156 }
7157 break;
7158 }
7159
7160 case Stmt::UnaryOperatorClass: {
7161 // The only unary operator that make sense to handle here
7162 // is Deref. All others don't resolve to a "name." This includes
7163 // handling all sorts of rvalues passed to a unary operator.
7164 const UnaryOperator *U = cast<UnaryOperator>(Init);
7165 if (U->getOpcode() == UO_Deref)
7166 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true,
7167 EnableLifetimeWarnings);
7168 break;
7169 }
7170
7171 case Stmt::OMPArraySectionExprClass: {
7172 visitLocalsRetainedByInitializer(Path,
7173 cast<OMPArraySectionExpr>(Init)->getBase(),
7174 Visit, true, EnableLifetimeWarnings);
7175 break;
7176 }
7177
7178 case Stmt::ConditionalOperatorClass:
7179 case Stmt::BinaryConditionalOperatorClass: {
7180 auto *C = cast<AbstractConditionalOperator>(Init);
7181 if (!C->getTrueExpr()->getType()->isVoidType())
7182 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit,
7183 EnableLifetimeWarnings);
7184 if (!C->getFalseExpr()->getType()->isVoidType())
7185 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit,
7186 EnableLifetimeWarnings);
7187 break;
7188 }
7189
7190 // FIXME: Visit the left-hand side of an -> or ->*.
7191
7192 default:
7193 break;
7194 }
7195}
7196
7197/// Visit the locals that would be reachable through an object initialized by
7198/// the prvalue expression \c Init.
7199static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
7200 Expr *Init, LocalVisitor Visit,
7201 bool RevisitSubinits,
7202 bool EnableLifetimeWarnings) {
7203 RevertToOldSizeRAII RAII(Path);
7204
7205 Expr *Old;
7206 do {
7207 Old = Init;
7208
7209 // Step into CXXDefaultInitExprs so we can diagnose cases where a
7210 // constructor inherits one as an implicit mem-initializer.
7211 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
7212 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
7213 Init = DIE->getExpr();
7214 }
7215
7216 if (auto *FE = dyn_cast<FullExpr>(Init))
7217 Init = FE->getSubExpr();
7218
7219 // Dig out the expression which constructs the extended temporary.
7220 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
7221
7222 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
7223 Init = BTE->getSubExpr();
7224
7225 Init = Init->IgnoreParens();
7226
7227 // Step over value-preserving rvalue casts.
7228 if (auto *CE = dyn_cast<CastExpr>(Init)) {
7229 switch (CE->getCastKind()) {
7230 case CK_LValueToRValue:
7231 // If we can match the lvalue to a const object, we can look at its
7232 // initializer.
7233 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
7234 return visitLocalsRetainedByReferenceBinding(
7235 Path, Init, RK_ReferenceBinding,
7236 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
7237 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7238 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
7239 if (VD && VD->getType().isConstQualified() && VD->getInit() &&
7240 !isVarOnPath(Path, VD)) {
7241 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
7242 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true,
7243 EnableLifetimeWarnings);
7244 }
7245 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
7246 if (MTE->getType().isConstQualified())
7247 visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit,
7248 true, EnableLifetimeWarnings);
7249 }
7250 return false;
7251 }, EnableLifetimeWarnings);
7252
7253 // We assume that objects can be retained by pointers cast to integers,
7254 // but not if the integer is cast to floating-point type or to _Complex.
7255 // We assume that casts to 'bool' do not preserve enough information to
7256 // retain a local object.
7257 case CK_NoOp:
7258 case CK_BitCast:
7259 case CK_BaseToDerived:
7260 case CK_DerivedToBase:
7261 case CK_UncheckedDerivedToBase:
7262 case CK_Dynamic:
7263 case CK_ToUnion:
7264 case CK_UserDefinedConversion:
7265 case CK_ConstructorConversion:
7266 case CK_IntegralToPointer:
7267 case CK_PointerToIntegral:
7268 case CK_VectorSplat:
7269 case CK_IntegralCast:
7270 case CK_CPointerToObjCPointerCast:
7271 case CK_BlockPointerToObjCPointerCast:
7272 case CK_AnyPointerToBlockPointerCast:
7273 case CK_AddressSpaceConversion:
7274 break;
7275
7276 case CK_ArrayToPointerDecay:
7277 // Model array-to-pointer decay as taking the address of the array
7278 // lvalue.
7279 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
7280 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
7281 RK_ReferenceBinding, Visit,
7282 EnableLifetimeWarnings);
7283
7284 default:
7285 return;
7286 }
7287
7288 Init = CE->getSubExpr();
7289 }
7290 } while (Old != Init);
7291
7292 // C++17 [dcl.init.list]p6:
7293 // initializing an initializer_list object from the array extends the
7294 // lifetime of the array exactly like binding a reference to a temporary.
7295 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
7296 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
7297 RK_StdInitializerList, Visit,
7298 EnableLifetimeWarnings);
7299
7300 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
7301 // We already visited the elements of this initializer list while
7302 // performing the initialization. Don't visit them again unless we've
7303 // changed the lifetime of the initialized entity.
7304 if (!RevisitSubinits)
7305 return;
7306
7307 if (ILE->isTransparent())
7308 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
7309 RevisitSubinits,
7310 EnableLifetimeWarnings);
7311
7312 if (ILE->getType()->isArrayType()) {
7313 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
7314 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
7315 RevisitSubinits,
7316 EnableLifetimeWarnings);
7317 return;
7318 }
7319
7320 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
7321 assert(RD->isAggregate() && "aggregate init on non-aggregate")(static_cast <bool> (RD->isAggregate() && "aggregate init on non-aggregate"
) ? void (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 7321, __extension__ __PRETTY_FUNCTION__))
;
7322
7323 // If we lifetime-extend a braced initializer which is initializing an
7324 // aggregate, and that aggregate contains reference members which are
7325 // bound to temporaries, those temporaries are also lifetime-extended.
7326 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
7327 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
7328 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
7329 RK_ReferenceBinding, Visit,
7330 EnableLifetimeWarnings);
7331 else {
7332 unsigned Index = 0;
7333 for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index)
7334 visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit,
7335 RevisitSubinits,
7336 EnableLifetimeWarnings);
7337 for (const auto *I : RD->fields()) {
7338 if (Index >= ILE->getNumInits())
7339 break;
7340 if (I->isUnnamedBitfield())
7341 continue;
7342 Expr *SubInit = ILE->getInit(Index);
7343 if (I->getType()->isReferenceType())
7344 visitLocalsRetainedByReferenceBinding(Path, SubInit,
7345 RK_ReferenceBinding, Visit,
7346 EnableLifetimeWarnings);
7347 else
7348 // This might be either aggregate-initialization of a member or
7349 // initialization of a std::initializer_list object. Regardless,
7350 // we should recursively lifetime-extend that initializer.
7351 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
7352 RevisitSubinits,
7353 EnableLifetimeWarnings);
7354 ++Index;
7355 }
7356 }
7357 }
7358 return;
7359 }
7360
7361 // The lifetime of an init-capture is that of the closure object constructed
7362 // by a lambda-expression.
7363 if (auto *LE = dyn_cast<LambdaExpr>(Init)) {
7364 LambdaExpr::capture_iterator CapI = LE->capture_begin();
7365 for (Expr *E : LE->capture_inits()) {
7366 assert(CapI != LE->capture_end())(static_cast <bool> (CapI != LE->capture_end()) ? void
(0) : __assert_fail ("CapI != LE->capture_end()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 7366, __extension__ __PRETTY_FUNCTION__))
;
7367 const LambdaCapture &Cap = *CapI++;
7368 if (!E)
7369 continue;
7370 if (Cap.capturesVariable())
7371 Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap});
7372 if (E->isGLValue())
7373 visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding,
7374 Visit, EnableLifetimeWarnings);
7375 else
7376 visitLocalsRetainedByInitializer(Path, E, Visit, true,
7377 EnableLifetimeWarnings);
7378 if (Cap.capturesVariable())
7379 Path.pop_back();
7380 }
7381 }
7382
7383 // Assume that a copy or move from a temporary references the same objects
7384 // that the temporary does.
7385 if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) {
7386 if (CCE->getConstructor()->isCopyOrMoveConstructor()) {
7387 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) {
7388 Expr *Arg = MTE->getSubExpr();
7389 Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg,
7390 CCE->getConstructor()});
7391 visitLocalsRetainedByInitializer(Path, Arg, Visit, true,
7392 /*EnableLifetimeWarnings*/false);
7393 Path.pop_back();
7394 }
7395 }
7396 }
7397
7398 if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) {
7399 if (EnableLifetimeWarnings)
7400 handleGslAnnotatedTypes(Path, Init, Visit);
7401 return visitLifetimeBoundArguments(Path, Init, Visit);
7402 }
7403
7404 switch (Init->getStmtClass()) {
7405 case Stmt::UnaryOperatorClass: {
7406 auto *UO = cast<UnaryOperator>(Init);
7407 // If the initializer is the address of a local, we could have a lifetime
7408 // problem.
7409 if (UO->getOpcode() == UO_AddrOf) {
7410 // If this is &rvalue, then it's ill-formed and we have already diagnosed
7411 // it. Don't produce a redundant warning about the lifetime of the
7412 // temporary.
7413 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
7414 return;
7415
7416 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
7417 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
7418 RK_ReferenceBinding, Visit,
7419 EnableLifetimeWarnings);
7420 }
7421 break;
7422 }
7423
7424 case Stmt::BinaryOperatorClass: {
7425 // Handle pointer arithmetic.
7426 auto *BO = cast<BinaryOperator>(Init);
7427 BinaryOperatorKind BOK = BO->getOpcode();
7428 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
7429 break;
7430
7431 if (BO->getLHS()->getType()->isPointerType())
7432 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true,
7433 EnableLifetimeWarnings);
7434 else if (BO->getRHS()->getType()->isPointerType())
7435 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true,
7436 EnableLifetimeWarnings);
7437 break;
7438 }
7439
7440 case Stmt::ConditionalOperatorClass:
7441 case Stmt::BinaryConditionalOperatorClass: {
7442 auto *C = cast<AbstractConditionalOperator>(Init);
7443 // In C++, we can have a throw-expression operand, which has 'void' type
7444 // and isn't interesting from a lifetime perspective.
7445 if (!C->getTrueExpr()->getType()->isVoidType())
7446 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true,
7447 EnableLifetimeWarnings);
7448 if (!C->getFalseExpr()->getType()->isVoidType())
7449 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true,
7450 EnableLifetimeWarnings);
7451 break;
7452 }
7453
7454 case Stmt::BlockExprClass:
7455 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
7456 // This is a local block, whose lifetime is that of the function.
7457 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
7458 }
7459 break;
7460
7461 case Stmt::AddrLabelExprClass:
7462 // We want to warn if the address of a label would escape the function.
7463 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
7464 break;
7465
7466 default:
7467 break;
7468 }
7469}
7470
7471/// Whether a path to an object supports lifetime extension.
7472enum PathLifetimeKind {
7473 /// Lifetime-extend along this path.
7474 Extend,
7475 /// We should lifetime-extend, but we don't because (due to technical
7476 /// limitations) we can't. This happens for default member initializers,
7477 /// which we don't clone for every use, so we don't have a unique
7478 /// MaterializeTemporaryExpr to update.
7479 ShouldExtend,
7480 /// Do not lifetime extend along this path.
7481 NoExtend
7482};
7483
7484/// Determine whether this is an indirect path to a temporary that we are
7485/// supposed to lifetime-extend along.
7486static PathLifetimeKind
7487shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
7488 PathLifetimeKind Kind = PathLifetimeKind::Extend;
7489 for (auto Elem : Path) {
7490 if (Elem.Kind == IndirectLocalPathEntry::DefaultInit)
7491 Kind = PathLifetimeKind::ShouldExtend;
7492 else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit)
7493 return PathLifetimeKind::NoExtend;
7494 }
7495 return Kind;
7496}
7497
7498/// Find the range for the first interesting entry in the path at or after I.
7499static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
7500 Expr *E) {
7501 for (unsigned N = Path.size(); I != N; ++I) {
7502 switch (Path[I].Kind) {
7503 case IndirectLocalPathEntry::AddressOf:
7504 case IndirectLocalPathEntry::LValToRVal:
7505 case IndirectLocalPathEntry::LifetimeBoundCall:
7506 case IndirectLocalPathEntry::TemporaryCopy:
7507 case IndirectLocalPathEntry::GslReferenceInit:
7508 case IndirectLocalPathEntry::GslPointerInit:
7509 // These exist primarily to mark the path as not permitting or
7510 // supporting lifetime extension.
7511 break;
7512
7513 case IndirectLocalPathEntry::VarInit:
7514 if (cast<VarDecl>(Path[I].D)->isImplicit())
7515 return SourceRange();
7516 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7517 case IndirectLocalPathEntry::DefaultInit:
7518 return Path[I].E->getSourceRange();
7519
7520 case IndirectLocalPathEntry::LambdaCaptureInit:
7521 if (!Path[I].Capture->capturesVariable())
7522 continue;
7523 return Path[I].E->getSourceRange();
7524 }
7525 }
7526 return E->getSourceRange();
7527}
7528
7529static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) {
7530 for (auto It = Path.rbegin(), End = Path.rend(); It != End; ++It) {
7531 if (It->Kind == IndirectLocalPathEntry::VarInit)
7532 continue;
7533 if (It->Kind == IndirectLocalPathEntry::AddressOf)
7534 continue;
7535 if (It->Kind == IndirectLocalPathEntry::LifetimeBoundCall)
7536 continue;
7537 return It->Kind == IndirectLocalPathEntry::GslPointerInit ||
7538 It->Kind == IndirectLocalPathEntry::GslReferenceInit;
7539 }
7540 return false;
7541}
7542
7543void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
7544 Expr *Init) {
7545 LifetimeResult LR = getEntityLifetime(&Entity);
7546 LifetimeKind LK = LR.getInt();
7547 const InitializedEntity *ExtendingEntity = LR.getPointer();
7548
7549 // If this entity doesn't have an interesting lifetime, don't bother looking
7550 // for temporaries within its initializer.
7551 if (LK == LK_FullExpression)
7552 return;
7553
7554 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
7555 ReferenceKind RK) -> bool {
7556 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
7557 SourceLocation DiagLoc = DiagRange.getBegin();
7558
7559 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
7560
7561 bool IsGslPtrInitWithGslTempOwner = false;
7562 bool IsLocalGslOwner = false;
7563 if (pathOnlyInitializesGslPointer(Path)) {
7564 if (isa<DeclRefExpr>(L)) {
7565 // We do not want to follow the references when returning a pointer originating
7566 // from a local owner to avoid the following false positive:
7567 // int &p = *localUniquePtr;
7568 // someContainer.add(std::move(localUniquePtr));
7569 // return p;
7570 IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType());
7571 if (pathContainsInit(Path) || !IsLocalGslOwner)
7572 return false;
7573 } else {
7574 IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() &&
7575 isRecordWithAttr<OwnerAttr>(MTE->getType());
7576 // Skipping a chain of initializing gsl::Pointer annotated objects.
7577 // We are looking only for the final source to find out if it was
7578 // a local or temporary owner or the address of a local variable/param.
7579 if (!IsGslPtrInitWithGslTempOwner)
7580 return true;
7581 }
7582 }
7583
7584 switch (LK) {
7585 case LK_FullExpression:
7586 llvm_unreachable("already handled this")::llvm::llvm_unreachable_internal("already handled this", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 7586)
;
7587
7588 case LK_Extended: {
7589 if (!MTE) {
7590 // The initialized entity has lifetime beyond the full-expression,
7591 // and the local entity does too, so don't warn.
7592 //
7593 // FIXME: We should consider warning if a static / thread storage
7594 // duration variable retains an automatic storage duration local.
7595 return false;
7596 }
7597
7598 if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) {
7599 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7600 return false;
7601 }
7602
7603 switch (shouldLifetimeExtendThroughPath(Path)) {
7604 case PathLifetimeKind::Extend:
7605 // Update the storage duration of the materialized temporary.
7606 // FIXME: Rebuild the expression instead of mutating it.
7607 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
7608 ExtendingEntity->allocateManglingNumber());
7609 // Also visit the temporaries lifetime-extended by this initializer.
7610 return true;
7611
7612 case PathLifetimeKind::ShouldExtend:
7613 // We're supposed to lifetime-extend the temporary along this path (per
7614 // the resolution of DR1815), but we don't support that yet.
7615 //
7616 // FIXME: Properly handle this situation. Perhaps the easiest approach
7617 // would be to clone the initializer expression on each use that would
7618 // lifetime extend its temporaries.
7619 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
7620 << RK << DiagRange;
7621 break;
7622
7623 case PathLifetimeKind::NoExtend:
7624 // If the path goes through the initialization of a variable or field,
7625 // it can't possibly reach a temporary created in this full-expression.
7626 // We will have already diagnosed any problems with the initializer.
7627 if (pathContainsInit(Path))
7628 return false;
7629
7630 Diag(DiagLoc, diag::warn_dangling_variable)
7631 << RK << !Entity.getParent()
7632 << ExtendingEntity->getDecl()->isImplicit()
7633 << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange;
7634 break;
7635 }
7636 break;
7637 }
7638
7639 case LK_MemInitializer: {
7640 if (isa<MaterializeTemporaryExpr>(L)) {
7641 // Under C++ DR1696, if a mem-initializer (or a default member
7642 // initializer used by the absence of one) would lifetime-extend a
7643 // temporary, the program is ill-formed.
7644 if (auto *ExtendingDecl =
7645 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7646 if (IsGslPtrInitWithGslTempOwner) {
7647 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member)
7648 << ExtendingDecl << DiagRange;
7649 Diag(ExtendingDecl->getLocation(),
7650 diag::note_ref_or_ptr_member_declared_here)
7651 << true;
7652 return false;
7653 }
7654 bool IsSubobjectMember = ExtendingEntity != &Entity;
7655 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) !=
7656 PathLifetimeKind::NoExtend
7657 ? diag::err_dangling_member
7658 : diag::warn_dangling_member)
7659 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
7660 // Don't bother adding a note pointing to the field if we're inside
7661 // its default member initializer; our primary diagnostic points to
7662 // the same place in that case.
7663 if (Path.empty() ||
7664 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
7665 Diag(ExtendingDecl->getLocation(),
7666 diag::note_lifetime_extending_member_declared_here)
7667 << RK << IsSubobjectMember;
7668 }
7669 } else {
7670 // We have a mem-initializer but no particular field within it; this
7671 // is either a base class or a delegating initializer directly
7672 // initializing the base-class from something that doesn't live long
7673 // enough.
7674 //
7675 // FIXME: Warn on this.
7676 return false;
7677 }
7678 } else {
7679 // Paths via a default initializer can only occur during error recovery
7680 // (there's no other way that a default initializer can refer to a
7681 // local). Don't produce a bogus warning on those cases.
7682 if (pathContainsInit(Path))
7683 return false;
7684
7685 // Suppress false positives for code like the one below:
7686 // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {}
7687 if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path))
7688 return false;
7689
7690 auto *DRE = dyn_cast<DeclRefExpr>(L);
7691 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
7692 if (!VD) {
7693 // A member was initialized to a local block.
7694 // FIXME: Warn on this.
7695 return false;
7696 }
7697
7698 if (auto *Member =
7699 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
7700 bool IsPointer = !Member->getType()->isReferenceType();
7701 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
7702 : diag::warn_bind_ref_member_to_parameter)
7703 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
7704 Diag(Member->getLocation(),
7705 diag::note_ref_or_ptr_member_declared_here)
7706 << (unsigned)IsPointer;
7707 }
7708 }
7709 break;
7710 }
7711
7712 case LK_New:
7713 if (isa<MaterializeTemporaryExpr>(L)) {
7714 if (IsGslPtrInitWithGslTempOwner)
7715 Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange;
7716 else
7717 Diag(DiagLoc, RK == RK_ReferenceBinding
7718 ? diag::warn_new_dangling_reference
7719 : diag::warn_new_dangling_initializer_list)
7720 << !Entity.getParent() << DiagRange;
7721 } else {
7722 // We can't determine if the allocation outlives the local declaration.
7723 return false;
7724 }
7725 break;
7726
7727 case LK_Return:
7728 case LK_StmtExprResult:
7729 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
7730 // We can't determine if the local variable outlives the statement
7731 // expression.
7732 if (LK == LK_StmtExprResult)
7733 return false;
7734 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
7735 << Entity.getType()->isReferenceType() << DRE->getDecl()
7736 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
7737 } else if (isa<BlockExpr>(L)) {
7738 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
7739 } else if (isa<AddrLabelExpr>(L)) {
7740 // Don't warn when returning a label from a statement expression.
7741 // Leaving the scope doesn't end its lifetime.
7742 if (LK == LK_StmtExprResult)
7743 return false;
7744 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
7745 } else {
7746 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
7747 << Entity.getType()->isReferenceType() << DiagRange;
7748 }
7749 break;
7750 }
7751
7752 for (unsigned I = 0; I != Path.size(); ++I) {
7753 auto Elem = Path[I];
7754
7755 switch (Elem.Kind) {
7756 case IndirectLocalPathEntry::AddressOf:
7757 case IndirectLocalPathEntry::LValToRVal:
7758 // These exist primarily to mark the path as not permitting or
7759 // supporting lifetime extension.
7760 break;
7761
7762 case IndirectLocalPathEntry::LifetimeBoundCall:
7763 case IndirectLocalPathEntry::TemporaryCopy:
7764 case IndirectLocalPathEntry::GslPointerInit:
7765 case IndirectLocalPathEntry::GslReferenceInit:
7766 // FIXME: Consider adding a note for these.
7767 break;
7768
7769 case IndirectLocalPathEntry::DefaultInit: {
7770 auto *FD = cast<FieldDecl>(Elem.D);
7771 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
7772 << FD << nextPathEntryRange(Path, I + 1, L);
7773 break;
7774 }
7775
7776 case IndirectLocalPathEntry::VarInit: {
7777 const VarDecl *VD = cast<VarDecl>(Elem.D);
7778 Diag(VD->getLocation(), diag::note_local_var_initializer)
7779 << VD->getType()->isReferenceType()
7780 << VD->isImplicit() << VD->getDeclName()
7781 << nextPathEntryRange(Path, I + 1, L);
7782 break;
7783 }
7784
7785 case IndirectLocalPathEntry::LambdaCaptureInit:
7786 if (!Elem.Capture->capturesVariable())
7787 break;
7788 // FIXME: We can't easily tell apart an init-capture from a nested
7789 // capture of an init-capture.
7790 const VarDecl *VD = Elem.Capture->getCapturedVar();
7791 Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer)
7792 << VD << VD->isInitCapture() << Elem.Capture->isExplicit()
7793 << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD
7794 << nextPathEntryRange(Path, I + 1, L);
7795 break;
7796 }
7797 }
7798
7799 // We didn't lifetime-extend, so don't go any further; we don't need more
7800 // warnings or errors on inner temporaries within this one's initializer.
7801 return false;
7802 };
7803
7804 bool EnableLifetimeWarnings = !getDiagnostics().isIgnored(
7805 diag::warn_dangling_lifetime_pointer, SourceLocation());
7806 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
7807 if (Init->isGLValue())
7808 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
7809 TemporaryVisitor,
7810 EnableLifetimeWarnings);
7811 else
7812 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false,
7813 EnableLifetimeWarnings);
7814}
7815
7816static void DiagnoseNarrowingInInitList(Sema &S,
7817 const ImplicitConversionSequence &ICS,
7818 QualType PreNarrowingType,
7819 QualType EntityType,
7820 const Expr *PostInit);
7821
7822/// Provide warnings when std::move is used on construction.
7823static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
7824 bool IsReturnStmt) {
7825 if (!InitExpr)
7826 return;
7827
7828 if (S.inTemplateInstantiation())
7829 return;
7830
7831 QualType DestType = InitExpr->getType();
7832 if (!DestType->isRecordType())
7833 return;
7834
7835 unsigned DiagID = 0;
7836 if (IsReturnStmt) {
7837 const CXXConstructExpr *CCE =
7838 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
7839 if (!CCE || CCE->getNumArgs() != 1)
7840 return;
7841
7842 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
7843 return;
7844
7845 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
7846 }
7847
7848 // Find the std::move call and get the argument.
7849 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
7850 if (!CE || !CE->isCallToStdMove())
7851 return;
7852
7853 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
7854
7855 if (IsReturnStmt) {
7856 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
7857 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
7858 return;
7859
7860 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
7861 if (!VD || !VD->hasLocalStorage())
7862 return;
7863
7864 // __block variables are not moved implicitly.
7865 if (VD->hasAttr<BlocksAttr>())
7866 return;
7867
7868 QualType SourceType = VD->getType();
7869 if (!SourceType->isRecordType())
7870 return;
7871
7872 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
7873 return;
7874 }
7875
7876 // If we're returning a function parameter, copy elision
7877 // is not possible.
7878 if (isa<ParmVarDecl>(VD))
7879 DiagID = diag::warn_redundant_move_on_return;
7880 else
7881 DiagID = diag::warn_pessimizing_move_on_return;
7882 } else {
7883 DiagID = diag::warn_pessimizing_move_on_initialization;
7884 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
7885 if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType())
7886 return;
7887 }
7888
7889 S.Diag(CE->getBeginLoc(), DiagID);
7890
7891 // Get all the locations for a fix-it. Don't emit the fix-it if any location
7892 // is within a macro.
7893 SourceLocation CallBegin = CE->getCallee()->getBeginLoc();
7894 if (CallBegin.isMacroID())
7895 return;
7896 SourceLocation RParen = CE->getRParenLoc();
7897 if (RParen.isMacroID())
7898 return;
7899 SourceLocation LParen;
7900 SourceLocation ArgLoc = Arg->getBeginLoc();
7901
7902 // Special testing for the argument location. Since the fix-it needs the
7903 // location right before the argument, the argument location can be in a
7904 // macro only if it is at the beginning of the macro.
7905 while (ArgLoc.isMacroID() &&
7906 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
7907 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
7908 }
7909
7910 if (LParen.isMacroID())
7911 return;
7912
7913 LParen = ArgLoc.getLocWithOffset(-1);
7914
7915 S.Diag(CE->getBeginLoc(), diag::note_remove_move)
7916 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7917 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7918}
7919
7920static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7921 // Check to see if we are dereferencing a null pointer. If so, this is
7922 // undefined behavior, so warn about it. This only handles the pattern
7923 // "*null", which is a very syntactic check.
7924 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7925 if (UO->getOpcode() == UO_Deref &&
7926 UO->getSubExpr()->IgnoreParenCasts()->
7927 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7928 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7929 S.PDiag(diag::warn_binding_null_to_reference)
7930 << UO->getSubExpr()->getSourceRange());
7931 }
7932}
7933
7934MaterializeTemporaryExpr *
7935Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7936 bool BoundToLvalueReference) {
7937 auto MTE = new (Context)
7938 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7939
7940 // Order an ExprWithCleanups for lifetime marks.
7941 //
7942 // TODO: It'll be good to have a single place to check the access of the
7943 // destructor and generate ExprWithCleanups for various uses. Currently these
7944 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7945 // but there may be a chance to merge them.
7946 Cleanup.setExprNeedsCleanups(false);
7947 return MTE;
7948}
7949
7950ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7951 // In C++98, we don't want to implicitly create an xvalue.
7952 // FIXME: This means that AST consumers need to deal with "prvalues" that
7953 // denote materialized temporaries. Maybe we should add another ValueKind
7954 // for "xvalue pretending to be a prvalue" for C++98 support.
7955 if (!E->isPRValue() || !getLangOpts().CPlusPlus11)
7956 return E;
7957
7958 // C++1z [conv.rval]/1: T shall be a complete type.
7959 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7960 // If so, we should check for a non-abstract class type here too.
7961 QualType T = E->getType();
7962 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7963 return ExprError();
7964
7965 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7966}
7967
7968ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty,
7969 ExprValueKind VK,
7970 CheckedConversionKind CCK) {
7971
7972 CastKind CK = CK_NoOp;
7973
7974 if (VK == VK_PRValue) {
7975 auto PointeeTy = Ty->getPointeeType();
7976 auto ExprPointeeTy = E->getType()->getPointeeType();
7977 if (!PointeeTy.isNull() &&
7978 PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace())
7979 CK = CK_AddressSpaceConversion;
7980 } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) {
7981 CK = CK_AddressSpaceConversion;
7982 }
7983
7984 return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK);
7985}
7986
7987ExprResult InitializationSequence::Perform(Sema &S,
7988 const InitializedEntity &Entity,
7989 const InitializationKind &Kind,
7990 MultiExprArg Args,
7991 QualType *ResultType) {
7992 if (Failed()) {
7993 Diagnose(S, Entity, Kind, Args);
7994 return ExprError();
7995 }
7996 if (!ZeroInitializationFixit.empty()) {
7997 unsigned DiagID = diag::err_default_init_const;
7998 if (Decl *D = Entity.getDecl())
7999 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
8000 DiagID = diag::ext_default_init_const;
8001
8002 // The initialization would have succeeded with this fixit. Since the fixit
8003 // is on the error, we need to build a valid AST in this case, so this isn't
8004 // handled in the Failed() branch above.
8005 QualType DestType = Entity.getType();
8006 S.Diag(Kind.getLocation(), DiagID)
8007 << DestType << (bool)DestType->getAs<RecordType>()
8008 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
8009 ZeroInitializationFixit);
8010 }
8011
8012 if (getKind() == DependentSequence) {
8013 // If the declaration is a non-dependent, incomplete array type
8014 // that has an initializer, then its type will be completed once
8015 // the initializer is instantiated.
8016 if (ResultType && !Entity.getType()->isDependentType() &&
8017 Args.size() == 1) {
8018 QualType DeclType = Entity.getType();
8019 if (const IncompleteArrayType *ArrayT
8020 = S.Context.getAsIncompleteArrayType(DeclType)) {
8021 // FIXME: We don't currently have the ability to accurately
8022 // compute the length of an initializer list without
8023 // performing full type-checking of the initializer list
8024 // (since we have to determine where braces are implicitly
8025 // introduced and such). So, we fall back to making the array
8026 // type a dependently-sized array type with no specified
8027 // bound.
8028 if (isa<InitListExpr>((Expr *)Args[0])) {
8029 SourceRange Brackets;
8030
8031 // Scavange the location of the brackets from the entity, if we can.
8032 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
8033 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
8034 TypeLoc TL = TInfo->getTypeLoc();
8035 if (IncompleteArrayTypeLoc ArrayLoc =
8036 TL.getAs<IncompleteArrayTypeLoc>())
8037 Brackets = ArrayLoc.getBracketsRange();
8038 }
8039 }
8040
8041 *ResultType
8042 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
8043 /*NumElts=*/nullptr,
8044 ArrayT->getSizeModifier(),
8045 ArrayT->getIndexTypeCVRQualifiers(),
8046 Brackets);
8047 }
8048
8049 }
8050 }
8051 if (Kind.getKind() == InitializationKind::IK_Direct &&
8052 !Kind.isExplicitCast()) {
8053 // Rebuild the ParenListExpr.
8054 SourceRange ParenRange = Kind.getParenOrBraceRange();
8055 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
8056 Args);
8057 }
8058 assert(Kind.getKind() == InitializationKind::IK_Copy ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8060, __extension__ __PRETTY_FUNCTION__))
8059 Kind.isExplicitCast() ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8060, __extension__ __PRETTY_FUNCTION__))
8060 Kind.getKind() == InitializationKind::IK_DirectList)(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8060, __extension__ __PRETTY_FUNCTION__))
;
8061 return ExprResult(Args[0]);
8062 }
8063
8064 // No steps means no initialization.
8065 if (Steps.empty())
8066 return ExprResult((Expr *)nullptr);
8067
8068 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
8069 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
8070 !Entity.isParamOrTemplateParamKind()) {
8071 // Produce a C++98 compatibility warning if we are initializing a reference
8072 // from an initializer list. For parameters, we produce a better warning
8073 // elsewhere.
8074 Expr *Init = Args[0];
8075 S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init)
8076 << Init->getSourceRange();
8077 }
8078
8079 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
8080 QualType ETy = Entity.getType();
8081 bool HasGlobalAS = ETy.hasAddressSpace() &&
8082 ETy.getAddressSpace() == LangAS::opencl_global;
8083
8084 if (S.getLangOpts().OpenCLVersion >= 200 &&
8085 ETy->isAtomicType() && !HasGlobalAS &&
8086 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
8087 S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init)
8088 << 1
8089 << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc());
8090 return ExprError();
8091 }
8092
8093 QualType DestType = Entity.getType().getNonReferenceType();
8094 // FIXME: Ugly hack around the fact that Entity.getType() is not
8095 // the same as Entity.getDecl()->getType() in cases involving type merging,
8096 // and we want latter when it makes sense.
8097 if (ResultType)
8098 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
8099 Entity.getType();
8100
8101 ExprResult CurInit((Expr *)nullptr);
8102 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
8103
8104 // For initialization steps that start with a single initializer,
8105 // grab the only argument out the Args and place it into the "current"
8106 // initializer.
8107 switch (Steps.front().Kind) {
8108 case SK_ResolveAddressOfOverloadedFunction:
8109 case SK_CastDerivedToBasePRValue:
8110 case SK_CastDerivedToBaseXValue:
8111 case SK_CastDerivedToBaseLValue:
8112 case SK_BindReference:
8113 case SK_BindReferenceToTemporary:
8114 case SK_FinalCopy:
8115 case SK_ExtraneousCopyToTemporary:
8116 case SK_UserConversion:
8117 case SK_QualificationConversionLValue:
8118 case SK_QualificationConversionXValue:
8119 case SK_QualificationConversionPRValue:
8120 case SK_FunctionReferenceConversion:
8121 case SK_AtomicConversion:
8122 case SK_ConversionSequence:
8123 case SK_ConversionSequenceNoNarrowing:
8124 case SK_ListInitialization:
8125 case SK_UnwrapInitList:
8126 case SK_RewrapInitList:
8127 case SK_CAssignment:
8128 case SK_StringInit:
8129 case SK_ObjCObjectConversion:
8130 case SK_ArrayLoopIndex:
8131 case SK_ArrayLoopInit:
8132 case SK_ArrayInit:
8133 case SK_GNUArrayInit:
8134 case SK_ParenthesizedArrayInit:
8135 case SK_PassByIndirectCopyRestore:
8136 case SK_PassByIndirectRestore:
8137 case SK_ProduceObjCObject:
8138 case SK_StdInitializerList:
8139 case SK_OCLSamplerInit:
8140 case SK_OCLZeroOpaqueType: {
8141 assert(Args.size() == 1)(static_cast <bool> (Args.size() == 1) ? void (0) : __assert_fail
("Args.size() == 1", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8141, __extension__ __PRETTY_FUNCTION__))
;
8142 CurInit = Args[0];
8143 if (!CurInit.get()) return ExprError();
8144 break;
8145 }
8146
8147 case SK_ConstructorInitialization:
8148 case SK_ConstructorInitializationFromList:
8149 case SK_StdInitializerListConstructorCall:
8150 case SK_ZeroInitialization:
8151 break;
8152 }
8153
8154 // Promote from an unevaluated context to an unevaluated list context in
8155 // C++11 list-initialization; we need to instantiate entities usable in
8156 // constant expressions here in order to perform narrowing checks =(
8157 EnterExpressionEvaluationContext Evaluated(
8158 S, EnterExpressionEvaluationContext::InitList,
8159 CurInit.get() && isa<InitListExpr>(CurInit.get()));
8160
8161 // C++ [class.abstract]p2:
8162 // no objects of an abstract class can be created except as subobjects
8163 // of a class derived from it
8164 auto checkAbstractType = [&](QualType T) -> bool {
8165 if (Entity.getKind() == InitializedEntity::EK_Base ||
8166 Entity.getKind() == InitializedEntity::EK_Delegating)
8167 return false;
8168 return S.RequireNonAbstractType(Kind.getLocation(), T,
8169 diag::err_allocation_of_abstract_type);
8170 };
8171
8172 // Walk through the computed steps for the initialization sequence,
8173 // performing the specified conversions along the way.
8174 bool ConstructorInitRequiresZeroInit = false;
8175 for (step_iterator Step = step_begin(), StepEnd = step_end();
8176 Step != StepEnd; ++Step) {
8177 if (CurInit.isInvalid())
8178 return ExprError();
8179
8180 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
8181
8182 switch (Step->Kind) {
8183 case SK_ResolveAddressOfOverloadedFunction:
8184 // Overload resolution determined which function invoke; update the
8185 // initializer to reflect that choice.
8186 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
8187 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
8188 return ExprError();
8189 CurInit = S.FixOverloadedFunctionReference(CurInit,
8190 Step->Function.FoundDecl,
8191 Step->Function.Function);
8192 break;
8193
8194 case SK_CastDerivedToBasePRValue:
8195 case SK_CastDerivedToBaseXValue:
8196 case SK_CastDerivedToBaseLValue: {
8197 // We have a derived-to-base cast that produces either an rvalue or an
8198 // lvalue. Perform that cast.
8199
8200 CXXCastPath BasePath;
8201
8202 // Casts to inaccessible base classes are allowed with C-style casts.
8203 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
8204 if (S.CheckDerivedToBaseConversion(
8205 SourceType, Step->Type, CurInit.get()->getBeginLoc(),
8206 CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess))
8207 return ExprError();
8208
8209 ExprValueKind VK =
8210 Step->Kind == SK_CastDerivedToBaseLValue
8211 ? VK_LValue
8212 : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue
8213 : VK_PRValue);
8214 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
8215 CK_DerivedToBase, CurInit.get(),
8216 &BasePath, VK, FPOptionsOverride());
8217 break;
8218 }
8219
8220 case SK_BindReference:
8221 // Reference binding does not have any corresponding ASTs.
8222
8223 // Check exception specifications
8224 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8225 return ExprError();
8226
8227 // We don't check for e.g. function pointers here, since address
8228 // availability checks should only occur when the function first decays
8229 // into a pointer or reference.
8230 if (CurInit.get()->getType()->isFunctionProtoType()) {
8231 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
8232 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
8233 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8234 DRE->getBeginLoc()))
8235 return ExprError();
8236 }
8237 }
8238 }
8239
8240 CheckForNullPointerDereference(S, CurInit.get());
8241 break;
8242
8243 case SK_BindReferenceToTemporary: {
8244 // Make sure the "temporary" is actually an rvalue.
8245 assert(CurInit.get()->isPRValue() && "not a temporary")(static_cast <bool> (CurInit.get()->isPRValue() &&
"not a temporary") ? void (0) : __assert_fail ("CurInit.get()->isPRValue() && \"not a temporary\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8245, __extension__ __PRETTY_FUNCTION__))
;
8246
8247 // Check exception specifications
8248 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
8249 return ExprError();
8250
8251 QualType MTETy = Step->Type;
8252
8253 // When this is an incomplete array type (such as when this is
8254 // initializing an array of unknown bounds from an init list), use THAT
8255 // type instead so that we propogate the array bounds.
8256 if (MTETy->isIncompleteArrayType() &&
8257 !CurInit.get()->getType()->isIncompleteArrayType() &&
8258 S.Context.hasSameType(
8259 MTETy->getPointeeOrArrayElementType(),
8260 CurInit.get()->getType()->getPointeeOrArrayElementType()))
8261 MTETy = CurInit.get()->getType();
8262
8263 // Materialize the temporary into memory.
8264 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8265 MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType());
8266 CurInit = MTE;
8267
8268 // If we're extending this temporary to automatic storage duration -- we
8269 // need to register its cleanup during the full-expression's cleanups.
8270 if (MTE->getStorageDuration() == SD_Automatic &&
8271 MTE->getType().isDestructedType())
8272 S.Cleanup.setExprNeedsCleanups(true);
8273 break;
8274 }
8275
8276 case SK_FinalCopy:
8277 if (checkAbstractType(Step->Type))
8278 return ExprError();
8279
8280 // If the overall initialization is initializing a temporary, we already
8281 // bound our argument if it was necessary to do so. If not (if we're
8282 // ultimately initializing a non-temporary), our argument needs to be
8283 // bound since it's initializing a function parameter.
8284 // FIXME: This is a mess. Rationalize temporary destruction.
8285 if (!shouldBindAsTemporary(Entity))
8286 CurInit = S.MaybeBindToTemporary(CurInit.get());
8287 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8288 /*IsExtraneousCopy=*/false);
8289 break;
8290
8291 case SK_ExtraneousCopyToTemporary:
8292 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
8293 /*IsExtraneousCopy=*/true);
8294 break;
8295
8296 case SK_UserConversion: {
8297 // We have a user-defined conversion that invokes either a constructor
8298 // or a conversion function.
8299 CastKind CastKind;
8300 FunctionDecl *Fn = Step->Function.Function;
8301 DeclAccessPair FoundFn = Step->Function.FoundDecl;
8302 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
8303 bool CreatedObject = false;
8304 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
8305 // Build a call to the selected constructor.
8306 SmallVector<Expr*, 8> ConstructorArgs;
8307 SourceLocation Loc = CurInit.get()->getBeginLoc();
8308
8309 // Determine the arguments required to actually perform the constructor
8310 // call.
8311 Expr *Arg = CurInit.get();
8312 if (S.CompleteConstructorCall(Constructor, Step->Type,
8313 MultiExprArg(&Arg, 1), Loc,
8314 ConstructorArgs))
8315 return ExprError();
8316
8317 // Build an expression that constructs a temporary.
8318 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
8319 FoundFn, Constructor,
8320 ConstructorArgs,
8321 HadMultipleCandidates,
8322 /*ListInit*/ false,
8323 /*StdInitListInit*/ false,
8324 /*ZeroInit*/ false,
8325 CXXConstructExpr::CK_Complete,
8326 SourceRange());
8327 if (CurInit.isInvalid())
8328 return ExprError();
8329
8330 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
8331 Entity);
8332 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8333 return ExprError();
8334
8335 CastKind = CK_ConstructorConversion;
8336 CreatedObject = true;
8337 } else {
8338 // Build a call to the conversion function.
8339 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
8340 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
8341 FoundFn);
8342 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
8343 return ExprError();
8344
8345 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
8346 HadMultipleCandidates);
8347 if (CurInit.isInvalid())
8348 return ExprError();
8349
8350 CastKind = CK_UserDefinedConversion;
8351 CreatedObject = Conversion->getReturnType()->isRecordType();
8352 }
8353
8354 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
8355 return ExprError();
8356
8357 CurInit = ImplicitCastExpr::Create(
8358 S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr,
8359 CurInit.get()->getValueKind(), S.CurFPFeatureOverrides());
8360
8361 if (shouldBindAsTemporary(Entity))
8362 // The overall entity is temporary, so this expression should be
8363 // destroyed at the end of its full-expression.
8364 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
8365 else if (CreatedObject && shouldDestroyEntity(Entity)) {
8366 // The object outlasts the full-expression, but we need to prepare for
8367 // a destructor being run on it.
8368 // FIXME: It makes no sense to do this here. This should happen
8369 // regardless of how we initialized the entity.
8370 QualType T = CurInit.get()->getType();
8371 if (const RecordType *Record = T->getAs<RecordType>()) {
8372 CXXDestructorDecl *Destructor
8373 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
8374 S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor,
8375 S.PDiag(diag::err_access_dtor_temp) << T);
8376 S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor);
8377 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc()))
8378 return ExprError();
8379 }
8380 }
8381 break;
8382 }
8383
8384 case SK_QualificationConversionLValue:
8385 case SK_QualificationConversionXValue:
8386 case SK_QualificationConversionPRValue: {
8387 // Perform a qualification conversion; these can never go wrong.
8388 ExprValueKind VK =
8389 Step->Kind == SK_QualificationConversionLValue
8390 ? VK_LValue
8391 : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue
8392 : VK_PRValue);
8393 CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK);
8394 break;
8395 }
8396
8397 case SK_FunctionReferenceConversion:
8398 assert(CurInit.get()->isLValue() &&(static_cast <bool> (CurInit.get()->isLValue() &&
"function reference should be lvalue") ? void (0) : __assert_fail
("CurInit.get()->isLValue() && \"function reference should be lvalue\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8399, __extension__ __PRETTY_FUNCTION__))
8399 "function reference should be lvalue")(static_cast <bool> (CurInit.get()->isLValue() &&
"function reference should be lvalue") ? void (0) : __assert_fail
("CurInit.get()->isLValue() && \"function reference should be lvalue\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8399, __extension__ __PRETTY_FUNCTION__))
;
8400 CurInit =
8401 S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue);
8402 break;
8403
8404 case SK_AtomicConversion: {
8405 assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic")(static_cast <bool> (CurInit.get()->isPRValue() &&
"cannot convert glvalue to atomic") ? void (0) : __assert_fail
("CurInit.get()->isPRValue() && \"cannot convert glvalue to atomic\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8405, __extension__ __PRETTY_FUNCTION__))
;
8406 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8407 CK_NonAtomicToAtomic, VK_PRValue);
8408 break;
8409 }
8410
8411 case SK_ConversionSequence:
8412 case SK_ConversionSequenceNoNarrowing: {
8413 if (const auto *FromPtrType =
8414 CurInit.get()->getType()->getAs<PointerType>()) {
8415 if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) {
8416 if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) &&
8417 !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) {
8418 // Do not check static casts here because they are checked earlier
8419 // in Sema::ActOnCXXNamedCast()
8420 if (!Kind.isStaticCast()) {
8421 S.Diag(CurInit.get()->getExprLoc(),
8422 diag::warn_noderef_to_dereferenceable_pointer)
8423 << CurInit.get()->getSourceRange();
8424 }
8425 }
8426 }
8427 }
8428
8429 Sema::CheckedConversionKind CCK
8430 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
8431 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
8432 : Kind.isExplicitCast()? Sema::CCK_OtherCast
8433 : Sema::CCK_ImplicitConversion;
8434 ExprResult CurInitExprRes =
8435 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
8436 getAssignmentAction(Entity), CCK);
8437 if (CurInitExprRes.isInvalid())
8438 return ExprError();
8439
8440 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
8441
8442 CurInit = CurInitExprRes;
8443
8444 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
8445 S.getLangOpts().CPlusPlus)
8446 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
8447 CurInit.get());
8448
8449 break;
8450 }
8451
8452 case SK_ListInitialization: {
8453 if (checkAbstractType(Step->Type))
8454 return ExprError();
8455
8456 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
8457 // If we're not initializing the top-level entity, we need to create an
8458 // InitializeTemporary entity for our target type.
8459 QualType Ty = Step->Type;
8460 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
8461 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
8462 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
8463 InitListChecker PerformInitList(S, InitEntity,
8464 InitList, Ty, /*VerifyOnly=*/false,
8465 /*TreatUnavailableAsInvalid=*/false);
8466 if (PerformInitList.HadError())
8467 return ExprError();
8468
8469 // Hack: We must update *ResultType if available in order to set the
8470 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
8471 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
8472 if (ResultType &&
8473 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
8474 if ((*ResultType)->isRValueReferenceType())
8475 Ty = S.Context.getRValueReferenceType(Ty);
8476 else if ((*ResultType)->isLValueReferenceType())
8477 Ty = S.Context.getLValueReferenceType(Ty,
8478 (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue());
8479 *ResultType = Ty;
8480 }
8481
8482 InitListExpr *StructuredInitList =
8483 PerformInitList.getFullyStructuredList();
8484 CurInit.get();
8485 CurInit = shouldBindAsTemporary(InitEntity)
8486 ? S.MaybeBindToTemporary(StructuredInitList)
8487 : StructuredInitList;
8488 break;
8489 }
8490
8491 case SK_ConstructorInitializationFromList: {
8492 if (checkAbstractType(Step->Type))
8493 return ExprError();
8494
8495 // When an initializer list is passed for a parameter of type "reference
8496 // to object", we don't get an EK_Temporary entity, but instead an
8497 // EK_Parameter entity with reference type.
8498 // FIXME: This is a hack. What we really should do is create a user
8499 // conversion step for this case, but this makes it considerably more
8500 // complicated. For now, this will do.
8501 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8502 Entity.getType().getNonReferenceType());
8503 bool UseTemporary = Entity.getType()->isReferenceType();
8504 assert(Args.size() == 1 && "expected a single argument for list init")(static_cast <bool> (Args.size() == 1 && "expected a single argument for list init"
) ? void (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8504, __extension__ __PRETTY_FUNCTION__))
;
8505 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8506 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
8507 << InitList->getSourceRange();
8508 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
8509 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
8510 Entity,
8511 Kind, Arg, *Step,
8512 ConstructorInitRequiresZeroInit,
8513 /*IsListInitialization*/true,
8514 /*IsStdInitListInit*/false,
8515 InitList->getLBraceLoc(),
8516 InitList->getRBraceLoc());
8517 break;
8518 }
8519
8520 case SK_UnwrapInitList:
8521 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
8522 break;
8523
8524 case SK_RewrapInitList: {
8525 Expr *E = CurInit.get();
8526 InitListExpr *Syntactic = Step->WrappingSyntacticList;
8527 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
8528 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
8529 ILE->setSyntacticForm(Syntactic);
8530 ILE->setType(E->getType());
8531 ILE->setValueKind(E->getValueKind());
8532 CurInit = ILE;
8533 break;
8534 }
8535
8536 case SK_ConstructorInitialization:
8537 case SK_StdInitializerListConstructorCall: {
8538 if (checkAbstractType(Step->Type))
8539 return ExprError();
8540
8541 // When an initializer list is passed for a parameter of type "reference
8542 // to object", we don't get an EK_Temporary entity, but instead an
8543 // EK_Parameter entity with reference type.
8544 // FIXME: This is a hack. What we really should do is create a user
8545 // conversion step for this case, but this makes it considerably more
8546 // complicated. For now, this will do.
8547 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
8548 Entity.getType().getNonReferenceType());
8549 bool UseTemporary = Entity.getType()->isReferenceType();
8550 bool IsStdInitListInit =
8551 Step->Kind == SK_StdInitializerListConstructorCall;
8552 Expr *Source = CurInit.get();
8553 SourceRange Range = Kind.hasParenOrBraceRange()
8554 ? Kind.getParenOrBraceRange()
8555 : SourceRange();
8556 CurInit = PerformConstructorInitialization(
8557 S, UseTemporary ? TempEntity : Entity, Kind,
8558 Source ? MultiExprArg(Source) : Args, *Step,
8559 ConstructorInitRequiresZeroInit,
8560 /*IsListInitialization*/ IsStdInitListInit,
8561 /*IsStdInitListInitialization*/ IsStdInitListInit,
8562 /*LBraceLoc*/ Range.getBegin(),
8563 /*RBraceLoc*/ Range.getEnd());
8564 break;
8565 }
8566
8567 case SK_ZeroInitialization: {
8568 step_iterator NextStep = Step;
8569 ++NextStep;
8570 if (NextStep != StepEnd &&
8571 (NextStep->Kind == SK_ConstructorInitialization ||
8572 NextStep->Kind == SK_ConstructorInitializationFromList)) {
8573 // The need for zero-initialization is recorded directly into
8574 // the call to the object's constructor within the next step.
8575 ConstructorInitRequiresZeroInit = true;
8576 } else if (Kind.getKind() == InitializationKind::IK_Value &&
8577 S.getLangOpts().CPlusPlus &&
8578 !Kind.isImplicitValueInit()) {
8579 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
8580 if (!TSInfo)
8581 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
8582 Kind.getRange().getBegin());
8583
8584 CurInit = new (S.Context) CXXScalarValueInitExpr(
8585 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
8586 Kind.getRange().getEnd());
8587 } else {
8588 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
8589 }
8590 break;
8591 }
8592
8593 case SK_CAssignment: {
8594 QualType SourceType = CurInit.get()->getType();
8595
8596 // Save off the initial CurInit in case we need to emit a diagnostic
8597 ExprResult InitialCurInit = CurInit;
8598 ExprResult Result = CurInit;
8599 Sema::AssignConvertType ConvTy =
8600 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
8601 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
8602 if (Result.isInvalid())
8603 return ExprError();
8604 CurInit = Result;
8605
8606 // If this is a call, allow conversion to a transparent union.
8607 ExprResult CurInitExprRes = CurInit;
8608 if (ConvTy != Sema::Compatible &&
8609 Entity.isParameterKind() &&
8610 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
8611 == Sema::Compatible)
8612 ConvTy = Sema::Compatible;
8613 if (CurInitExprRes.isInvalid())
8614 return ExprError();
8615 CurInit = CurInitExprRes;
8616
8617 bool Complained;
8618 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
8619 Step->Type, SourceType,
8620 InitialCurInit.get(),
8621 getAssignmentAction(Entity, true),
8622 &Complained)) {
8623 PrintInitLocationNote(S, Entity);
8624 return ExprError();
8625 } else if (Complained)
8626 PrintInitLocationNote(S, Entity);
8627 break;
8628 }
8629
8630 case SK_StringInit: {
8631 QualType Ty = Step->Type;
8632 bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType();
8633 CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty,
8634 S.Context.getAsArrayType(Ty), S);
8635 break;
8636 }
8637
8638 case SK_ObjCObjectConversion:
8639 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8640 CK_ObjCObjectLValueCast,
8641 CurInit.get()->getValueKind());
8642 break;
8643
8644 case SK_ArrayLoopIndex: {
8645 Expr *Cur = CurInit.get();
8646 Expr *BaseExpr = new (S.Context)
8647 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
8648 Cur->getValueKind(), Cur->getObjectKind(), Cur);
8649 Expr *IndexExpr =
8650 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
8651 CurInit = S.CreateBuiltinArraySubscriptExpr(
8652 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
8653 ArrayLoopCommonExprs.push_back(BaseExpr);
8654 break;
8655 }
8656
8657 case SK_ArrayLoopInit: {
8658 assert(!ArrayLoopCommonExprs.empty() &&(static_cast <bool> (!ArrayLoopCommonExprs.empty() &&
"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit") ? void (
0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8659, __extension__ __PRETTY_FUNCTION__))
8659 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")(static_cast <bool> (!ArrayLoopCommonExprs.empty() &&
"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit") ? void (
0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8659, __extension__ __PRETTY_FUNCTION__))
;
8660 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
8661 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
8662 CurInit.get());
8663 break;
8664 }
8665
8666 case SK_GNUArrayInit:
8667 // Okay: we checked everything before creating this step. Note that
8668 // this is a GNU extension.
8669 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
8670 << Step->Type << CurInit.get()->getType()
8671 << CurInit.get()->getSourceRange();
8672 updateGNUCompoundLiteralRValue(CurInit.get());
8673 LLVM_FALLTHROUGH[[gnu::fallthrough]];
8674 case SK_ArrayInit:
8675 // If the destination type is an incomplete array type, update the
8676 // type accordingly.
8677 if (ResultType) {
8678 if (const IncompleteArrayType *IncompleteDest
8679 = S.Context.getAsIncompleteArrayType(Step->Type)) {
8680 if (const ConstantArrayType *ConstantSource
8681 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
8682 *ResultType = S.Context.getConstantArrayType(
8683 IncompleteDest->getElementType(),
8684 ConstantSource->getSize(),
8685 ConstantSource->getSizeExpr(),
8686 ArrayType::Normal, 0);
8687 }
8688 }
8689 }
8690 break;
8691
8692 case SK_ParenthesizedArrayInit:
8693 // Okay: we checked everything before creating this step. Note that
8694 // this is a GNU extension.
8695 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
8696 << CurInit.get()->getSourceRange();
8697 break;
8698
8699 case SK_PassByIndirectCopyRestore:
8700 case SK_PassByIndirectRestore:
8701 checkIndirectCopyRestoreSource(S, CurInit.get());
8702 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
8703 CurInit.get(), Step->Type,
8704 Step->Kind == SK_PassByIndirectCopyRestore);
8705 break;
8706
8707 case SK_ProduceObjCObject:
8708 CurInit = ImplicitCastExpr::Create(
8709 S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr,
8710 VK_PRValue, FPOptionsOverride());
8711 break;
8712
8713 case SK_StdInitializerList: {
8714 S.Diag(CurInit.get()->getExprLoc(),
8715 diag::warn_cxx98_compat_initializer_list_init)
8716 << CurInit.get()->getSourceRange();
8717
8718 // Materialize the temporary into memory.
8719 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
8720 CurInit.get()->getType(), CurInit.get(),
8721 /*BoundToLvalueReference=*/false);
8722
8723 // Wrap it in a construction of a std::initializer_list<T>.
8724 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
8725
8726 // Bind the result, in case the library has given initializer_list a
8727 // non-trivial destructor.
8728 if (shouldBindAsTemporary(Entity))
8729 CurInit = S.MaybeBindToTemporary(CurInit.get());
8730 break;
8731 }
8732
8733 case SK_OCLSamplerInit: {
8734 // Sampler initialization have 5 cases:
8735 // 1. function argument passing
8736 // 1a. argument is a file-scope variable
8737 // 1b. argument is a function-scope variable
8738 // 1c. argument is one of caller function's parameters
8739 // 2. variable initialization
8740 // 2a. initializing a file-scope variable
8741 // 2b. initializing a function-scope variable
8742 //
8743 // For file-scope variables, since they cannot be initialized by function
8744 // call of __translate_sampler_initializer in LLVM IR, their references
8745 // need to be replaced by a cast from their literal initializers to
8746 // sampler type. Since sampler variables can only be used in function
8747 // calls as arguments, we only need to replace them when handling the
8748 // argument passing.
8749 assert(Step->Type->isSamplerT() &&(static_cast <bool> (Step->Type->isSamplerT() &&
"Sampler initialization on non-sampler type.") ? void (0) : __assert_fail
("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8750, __extension__ __PRETTY_FUNCTION__))
8750 "Sampler initialization on non-sampler type.")(static_cast <bool> (Step->Type->isSamplerT() &&
"Sampler initialization on non-sampler type.") ? void (0) : __assert_fail
("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8750, __extension__ __PRETTY_FUNCTION__))
;
8751 Expr *Init = CurInit.get()->IgnoreParens();
8752 QualType SourceType = Init->getType();
8753 // Case 1
8754 if (Entity.isParameterKind()) {
8755 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
8756 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
8757 << SourceType;
8758 break;
8759 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
8760 auto Var = cast<VarDecl>(DRE->getDecl());
8761 // Case 1b and 1c
8762 // No cast from integer to sampler is needed.
8763 if (!Var->hasGlobalStorage()) {
8764 CurInit = ImplicitCastExpr::Create(
8765 S.Context, Step->Type, CK_LValueToRValue, Init,
8766 /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride());
8767 break;
8768 }
8769 // Case 1a
8770 // For function call with a file-scope sampler variable as argument,
8771 // get the integer literal.
8772 // Do not diagnose if the file-scope variable does not have initializer
8773 // since this has already been diagnosed when parsing the variable
8774 // declaration.
8775 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
8776 break;
8777 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
8778 Var->getInit()))->getSubExpr();
8779 SourceType = Init->getType();
8780 }
8781 } else {
8782 // Case 2
8783 // Check initializer is 32 bit integer constant.
8784 // If the initializer is taken from global variable, do not diagnose since
8785 // this has already been done when parsing the variable declaration.
8786 if (!Init->isConstantInitializer(S.Context, false))
8787 break;
8788
8789 if (!SourceType->isIntegerType() ||
8790 32 != S.Context.getIntWidth(SourceType)) {
8791 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
8792 << SourceType;
8793 break;
8794 }
8795
8796 Expr::EvalResult EVResult;
8797 Init->EvaluateAsInt(EVResult, S.Context);
8798 llvm::APSInt Result = EVResult.Val.getInt();
8799 const uint64_t SamplerValue = Result.getLimitedValue();
8800 // 32-bit value of sampler's initializer is interpreted as
8801 // bit-field with the following structure:
8802 // |unspecified|Filter|Addressing Mode| Normalized Coords|
8803 // |31 6|5 4|3 1| 0|
8804 // This structure corresponds to enum values of sampler properties
8805 // defined in SPIR spec v1.2 and also opencl-c.h
8806 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
8807 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
8808 if (FilterMode != 1 && FilterMode != 2 &&
8809 !S.getOpenCLOptions().isAvailableOption(
8810 "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()))
8811 S.Diag(Kind.getLocation(),
8812 diag::warn_sampler_initializer_invalid_bits)
8813 << "Filter Mode";
8814 if (AddressingMode > 4)
8815 S.Diag(Kind.getLocation(),
8816 diag::warn_sampler_initializer_invalid_bits)
8817 << "Addressing Mode";
8818 }
8819
8820 // Cases 1a, 2a and 2b
8821 // Insert cast from integer to sampler.
8822 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
8823 CK_IntToOCLSampler);
8824 break;
8825 }
8826 case SK_OCLZeroOpaqueType: {
8827 assert((Step->Type->isEventT() || Step->Type->isQueueT() ||(static_cast <bool> ((Step->Type->isEventT() || Step
->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType
()) && "Wrong type for initialization of OpenCL opaque type."
) ? void (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8829, __extension__ __PRETTY_FUNCTION__))
8828 Step->Type->isOCLIntelSubgroupAVCType()) &&(static_cast <bool> ((Step->Type->isEventT() || Step
->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType
()) && "Wrong type for initialization of OpenCL opaque type."
) ? void (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8829, __extension__ __PRETTY_FUNCTION__))
8829 "Wrong type for initialization of OpenCL opaque type.")(static_cast <bool> ((Step->Type->isEventT() || Step
->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType
()) && "Wrong type for initialization of OpenCL opaque type."
) ? void (0) : __assert_fail ("(Step->Type->isEventT() || Step->Type->isQueueT() || Step->Type->isOCLIntelSubgroupAVCType()) && \"Wrong type for initialization of OpenCL opaque type.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8829, __extension__ __PRETTY_FUNCTION__))
;
8830
8831 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
8832 CK_ZeroToOCLOpaqueType,
8833 CurInit.get()->getValueKind());
8834 break;
8835 }
8836 }
8837 }
8838
8839 // Check whether the initializer has a shorter lifetime than the initialized
8840 // entity, and if not, either lifetime-extend or warn as appropriate.
8841 if (auto *Init = CurInit.get())
8842 S.checkInitializerLifetime(Entity, Init);
8843
8844 // Diagnose non-fatal problems with the completed initialization.
8845 if (Entity.getKind() == InitializedEntity::EK_Member &&
8846 cast<FieldDecl>(Entity.getDecl())->isBitField())
8847 S.CheckBitFieldInitialization(Kind.getLocation(),
8848 cast<FieldDecl>(Entity.getDecl()),
8849 CurInit.get());
8850
8851 // Check for std::move on construction.
8852 if (const Expr *E = CurInit.get()) {
8853 CheckMoveOnConstruction(S, E,
8854 Entity.getKind() == InitializedEntity::EK_Result);
8855 }
8856
8857 return CurInit;
8858}
8859
8860/// Somewhere within T there is an uninitialized reference subobject.
8861/// Dig it out and diagnose it.
8862static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
8863 QualType T) {
8864 if (T->isReferenceType()) {
8865 S.Diag(Loc, diag::err_reference_without_init)
8866 << T.getNonReferenceType();
8867 return true;
8868 }
8869
8870 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
8871 if (!RD || !RD->hasUninitializedReferenceMember())
8872 return false;
8873
8874 for (const auto *FI : RD->fields()) {
8875 if (FI->isUnnamedBitfield())
8876 continue;
8877
8878 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
8879 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8880 return true;
8881 }
8882 }
8883
8884 for (const auto &BI : RD->bases()) {
8885 if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) {
8886 S.Diag(Loc, diag::note_value_initialization_here) << RD;
8887 return true;
8888 }
8889 }
8890
8891 return false;
8892}
8893
8894
8895//===----------------------------------------------------------------------===//
8896// Diagnose initialization failures
8897//===----------------------------------------------------------------------===//
8898
8899/// Emit notes associated with an initialization that failed due to a
8900/// "simple" conversion failure.
8901static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
8902 Expr *op) {
8903 QualType destType = entity.getType();
8904 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
8905 op->getType()->isObjCObjectPointerType()) {
8906
8907 // Emit a possible note about the conversion failing because the
8908 // operand is a message send with a related result type.
8909 S.EmitRelatedResultTypeNote(op);
8910
8911 // Emit a possible note about a return failing because we're
8912 // expecting a related result type.
8913 if (entity.getKind() == InitializedEntity::EK_Result)
8914 S.EmitRelatedResultTypeNoteForReturn(destType);
8915 }
8916 QualType fromType = op->getType();
8917 auto *fromDecl = fromType.getTypePtr()->getPointeeCXXRecordDecl();
8918 auto *destDecl = destType.getTypePtr()->getPointeeCXXRecordDecl();
8919 if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord &&
8920 destDecl->getDeclKind() == Decl::CXXRecord &&
8921 !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() &&
8922 !fromDecl->hasDefinition())
8923 S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion)
8924 << S.getASTContext().getTagDeclType(fromDecl)
8925 << S.getASTContext().getTagDeclType(destDecl);
8926}
8927
8928static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
8929 InitListExpr *InitList) {
8930 QualType DestType = Entity.getType();
8931
8932 QualType E;
8933 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
8934 QualType ArrayType = S.Context.getConstantArrayType(
8935 E.withConst(),
8936 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
8937 InitList->getNumInits()),
8938 nullptr, clang::ArrayType::Normal, 0);
8939 InitializedEntity HiddenArray =
8940 InitializedEntity::InitializeTemporary(ArrayType);
8941 return diagnoseListInit(S, HiddenArray, InitList);
8942 }
8943
8944 if (DestType->isReferenceType()) {
8945 // A list-initialization failure for a reference means that we tried to
8946 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
8947 // inner initialization failed.
8948 QualType T = DestType->castAs<ReferenceType>()->getPointeeType();
8949 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
8950 SourceLocation Loc = InitList->getBeginLoc();
8951 if (auto *D = Entity.getDecl())
8952 Loc = D->getLocation();
8953 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
8954 return;
8955 }
8956
8957 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
8958 /*VerifyOnly=*/false,
8959 /*TreatUnavailableAsInvalid=*/false);
8960 assert(DiagnoseInitList.HadError() &&(static_cast <bool> (DiagnoseInitList.HadError() &&
"Inconsistent init list check result.") ? void (0) : __assert_fail
("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8961, __extension__ __PRETTY_FUNCTION__))
8961 "Inconsistent init list check result.")(static_cast <bool> (DiagnoseInitList.HadError() &&
"Inconsistent init list check result.") ? void (0) : __assert_fail
("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8961, __extension__ __PRETTY_FUNCTION__))
;
8962}
8963
8964bool InitializationSequence::Diagnose(Sema &S,
8965 const InitializedEntity &Entity,
8966 const InitializationKind &Kind,
8967 ArrayRef<Expr *> Args) {
8968 if (!Failed())
8969 return false;
8970
8971 // When we want to diagnose only one element of a braced-init-list,
8972 // we need to factor it out.
8973 Expr *OnlyArg;
8974 if (Args.size() == 1) {
8975 auto *List = dyn_cast<InitListExpr>(Args[0]);
8976 if (List && List->getNumInits() == 1)
8977 OnlyArg = List->getInit(0);
8978 else
8979 OnlyArg = Args[0];
8980 }
8981 else
8982 OnlyArg = nullptr;
8983
8984 QualType DestType = Entity.getType();
8985 switch (Failure) {
8986 case FK_TooManyInitsForReference:
8987 // FIXME: Customize for the initialized entity?
8988 if (Args.empty()) {
8989 // Dig out the reference subobject which is uninitialized and diagnose it.
8990 // If this is value-initialization, this could be nested some way within
8991 // the target type.
8992 assert(Kind.getKind() == InitializationKind::IK_Value ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Value || DestType->isReferenceType()) ? void (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8993, __extension__ __PRETTY_FUNCTION__))
8993 DestType->isReferenceType())(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Value || DestType->isReferenceType()) ? void (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8993, __extension__ __PRETTY_FUNCTION__))
;
8994 bool Diagnosed =
8995 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8996 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")(static_cast <bool> (Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? void (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 8996, __extension__ __PRETTY_FUNCTION__))
;
8997 (void)Diagnosed;
8998 } else // FIXME: diagnostic below could be better!
8999 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
9000 << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9001 break;
9002 case FK_ParenthesizedListInitForReference:
9003 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9004 << 1 << Entity.getType() << Args[0]->getSourceRange();
9005 break;
9006
9007 case FK_ArrayNeedsInitList:
9008 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
9009 break;
9010 case FK_ArrayNeedsInitListOrStringLiteral:
9011 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
9012 break;
9013 case FK_ArrayNeedsInitListOrWideStringLiteral:
9014 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
9015 break;
9016 case FK_NarrowStringIntoWideCharArray:
9017 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
9018 break;
9019 case FK_WideStringIntoCharArray:
9020 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
9021 break;
9022 case FK_IncompatWideStringIntoWideChar:
9023 S.Diag(Kind.getLocation(),
9024 diag::err_array_init_incompat_wide_string_into_wchar);
9025 break;
9026 case FK_PlainStringIntoUTF8Char:
9027 S.Diag(Kind.getLocation(),
9028 diag::err_array_init_plain_string_into_char8_t);
9029 S.Diag(Args.front()->getBeginLoc(),
9030 diag::note_array_init_plain_string_into_char8_t)
9031 << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8");
9032 break;
9033 case FK_UTF8StringIntoPlainChar:
9034 S.Diag(Kind.getLocation(),
9035 diag::err_array_init_utf8_string_into_char)
9036 << S.getLangOpts().CPlusPlus20;
9037 break;
9038 case FK_ArrayTypeMismatch:
9039 case FK_NonConstantArrayInit:
9040 S.Diag(Kind.getLocation(),
9041 (Failure == FK_ArrayTypeMismatch
9042 ? diag::err_array_init_different_type
9043 : diag::err_array_init_non_constant_array))
9044 << DestType.getNonReferenceType()
9045 << OnlyArg->getType()
9046 << Args[0]->getSourceRange();
9047 break;
9048
9049 case FK_VariableLengthArrayHasInitializer:
9050 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
9051 << Args[0]->getSourceRange();
9052 break;
9053
9054 case FK_AddressOfOverloadFailed: {
9055 DeclAccessPair Found;
9056 S.ResolveAddressOfOverloadedFunction(OnlyArg,
9057 DestType.getNonReferenceType(),
9058 true,
9059 Found);
9060 break;
9061 }
9062
9063 case FK_AddressOfUnaddressableFunction: {
9064 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
9065 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
9066 OnlyArg->getBeginLoc());
9067 break;
9068 }
9069
9070 case FK_ReferenceInitOverloadFailed:
9071 case FK_UserConversionOverloadFailed:
9072 switch (FailedOverloadResult) {
9073 case OR_Ambiguous:
9074
9075 FailedCandidateSet.NoteCandidates(
9076 PartialDiagnosticAt(
9077 Kind.getLocation(),
9078 Failure == FK_UserConversionOverloadFailed
9079 ? (S.PDiag(diag::err_typecheck_ambiguous_condition)
9080 << OnlyArg->getType() << DestType
9081 << Args[0]->getSourceRange())
9082 : (S.PDiag(diag::err_ref_init_ambiguous)
9083 << DestType << OnlyArg->getType()
9084 << Args[0]->getSourceRange())),
9085 S, OCD_AmbiguousCandidates, Args);
9086 break;
9087
9088 case OR_No_Viable_Function: {
9089 auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args);
9090 if (!S.RequireCompleteType(Kind.getLocation(),
9091 DestType.getNonReferenceType(),
9092 diag::err_typecheck_nonviable_condition_incomplete,
9093 OnlyArg->getType(), Args[0]->getSourceRange()))
9094 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
9095 << (Entity.getKind() == InitializedEntity::EK_Result)
9096 << OnlyArg->getType() << Args[0]->getSourceRange()
9097 << DestType.getNonReferenceType();
9098
9099 FailedCandidateSet.NoteCandidates(S, Args, Cands);
9100 break;
9101 }
9102 case OR_Deleted: {
9103 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
9104 << OnlyArg->getType() << DestType.getNonReferenceType()
9105 << Args[0]->getSourceRange();
9106 OverloadCandidateSet::iterator Best;
9107 OverloadingResult Ovl
9108 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9109 if (Ovl == OR_Deleted) {
9110 S.NoteDeletedFunction(Best->Function);
9111 } else {
9112 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9112)
;
9113 }
9114 break;
9115 }
9116
9117 case OR_Success:
9118 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9118)
;
9119 }
9120 break;
9121
9122 case FK_NonConstLValueReferenceBindingToTemporary:
9123 if (isa<InitListExpr>(Args[0])) {
9124 S.Diag(Kind.getLocation(),
9125 diag::err_lvalue_reference_bind_to_initlist)
9126 << DestType.getNonReferenceType().isVolatileQualified()
9127 << DestType.getNonReferenceType()
9128 << Args[0]->getSourceRange();
9129 break;
9130 }
9131 LLVM_FALLTHROUGH[[gnu::fallthrough]];
9132
9133 case FK_NonConstLValueReferenceBindingToUnrelated:
9134 S.Diag(Kind.getLocation(),
9135 Failure == FK_NonConstLValueReferenceBindingToTemporary
9136 ? diag::err_lvalue_reference_bind_to_temporary
9137 : diag::err_lvalue_reference_bind_to_unrelated)
9138 << DestType.getNonReferenceType().isVolatileQualified()
9139 << DestType.getNonReferenceType()
9140 << OnlyArg->getType()
9141 << Args[0]->getSourceRange();
9142 break;
9143
9144 case FK_NonConstLValueReferenceBindingToBitfield: {
9145 // We don't necessarily have an unambiguous source bit-field.
9146 FieldDecl *BitField = Args[0]->getSourceBitField();
9147 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
9148 << DestType.isVolatileQualified()
9149 << (BitField ? BitField->getDeclName() : DeclarationName())
9150 << (BitField != nullptr)
9151 << Args[0]->getSourceRange();
9152 if (BitField)
9153 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
9154 break;
9155 }
9156
9157 case FK_NonConstLValueReferenceBindingToVectorElement:
9158 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
9159 << DestType.isVolatileQualified()
9160 << Args[0]->getSourceRange();
9161 break;
9162
9163 case FK_NonConstLValueReferenceBindingToMatrixElement:
9164 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element)
9165 << DestType.isVolatileQualified() << Args[0]->getSourceRange();
9166 break;
9167
9168 case FK_RValueReferenceBindingToLValue:
9169 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
9170 << DestType.getNonReferenceType() << OnlyArg->getType()
9171 << Args[0]->getSourceRange();
9172 break;
9173
9174 case FK_ReferenceAddrspaceMismatchTemporary:
9175 S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace)
9176 << DestType << Args[0]->getSourceRange();
9177 break;
9178
9179 case FK_ReferenceInitDropsQualifiers: {
9180 QualType SourceType = OnlyArg->getType();
9181 QualType NonRefType = DestType.getNonReferenceType();
9182 Qualifiers DroppedQualifiers =
9183 SourceType.getQualifiers() - NonRefType.getQualifiers();
9184
9185 if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf(
9186 SourceType.getQualifiers()))
9187 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9188 << NonRefType << SourceType << 1 /*addr space*/
9189 << Args[0]->getSourceRange();
9190 else if (DroppedQualifiers.hasQualifiers())
9191 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9192 << NonRefType << SourceType << 0 /*cv quals*/
9193 << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers())
9194 << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange();
9195 else
9196 // FIXME: Consider decomposing the type and explaining which qualifiers
9197 // were dropped where, or on which level a 'const' is missing, etc.
9198 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
9199 << NonRefType << SourceType << 2 /*incompatible quals*/
9200 << Args[0]->getSourceRange();
9201 break;
9202 }
9203
9204 case FK_ReferenceInitFailed:
9205 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
9206 << DestType.getNonReferenceType()
9207 << DestType.getNonReferenceType()->isIncompleteType()
9208 << OnlyArg->isLValue()
9209 << OnlyArg->getType()
9210 << Args[0]->getSourceRange();
9211 emitBadConversionNotes(S, Entity, Args[0]);
9212 break;
9213
9214 case FK_ConversionFailed: {
9215 QualType FromType = OnlyArg->getType();
9216 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
9217 << (int)Entity.getKind()
9218 << DestType
9219 << OnlyArg->isLValue()
9220 << FromType
9221 << Args[0]->getSourceRange();
9222 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
9223 S.Diag(Kind.getLocation(), PDiag);
9224 emitBadConversionNotes(S, Entity, Args[0]);
9225 break;
9226 }
9227
9228 case FK_ConversionFromPropertyFailed:
9229 // No-op. This error has already been reported.
9230 break;
9231
9232 case FK_TooManyInitsForScalar: {
9233 SourceRange R;
9234
9235 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
9236 if (InitList && InitList->getNumInits() >= 1) {
9237 R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc());
9238 } else {
9239 assert(Args.size() > 1 && "Expected multiple initializers!")(static_cast <bool> (Args.size() > 1 && "Expected multiple initializers!"
) ? void (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9239, __extension__ __PRETTY_FUNCTION__))
;
9240 R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc());
9241 }
9242
9243 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
9244 if (Kind.isCStyleOrFunctionalCast())
9245 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
9246 << R;
9247 else
9248 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
9249 << /*scalar=*/2 << R;
9250 break;
9251 }
9252
9253 case FK_ParenthesizedListInitForScalar:
9254 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
9255 << 0 << Entity.getType() << Args[0]->getSourceRange();
9256 break;
9257
9258 case FK_ReferenceBindingToInitList:
9259 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
9260 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
9261 break;
9262
9263 case FK_InitListBadDestinationType:
9264 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
9265 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
9266 break;
9267
9268 case FK_ListConstructorOverloadFailed:
9269 case FK_ConstructorOverloadFailed: {
9270 SourceRange ArgsRange;
9271 if (Args.size())
9272 ArgsRange =
9273 SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc());
9274
9275 if (Failure == FK_ListConstructorOverloadFailed) {
9276 assert(Args.size() == 1 &&(static_cast <bool> (Args.size() == 1 && "List construction from other than 1 argument."
) ? void (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9277, __extension__ __PRETTY_FUNCTION__))
9277 "List construction from other than 1 argument.")(static_cast <bool> (Args.size() == 1 && "List construction from other than 1 argument."
) ? void (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9277, __extension__ __PRETTY_FUNCTION__))
;
9278 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9279 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
9280 }
9281
9282 // FIXME: Using "DestType" for the entity we're printing is probably
9283 // bad.
9284 switch (FailedOverloadResult) {
9285 case OR_Ambiguous:
9286 FailedCandidateSet.NoteCandidates(
9287 PartialDiagnosticAt(Kind.getLocation(),
9288 S.PDiag(diag::err_ovl_ambiguous_init)
9289 << DestType << ArgsRange),
9290 S, OCD_AmbiguousCandidates, Args);
9291 break;
9292
9293 case OR_No_Viable_Function:
9294 if (Kind.getKind() == InitializationKind::IK_Default &&
9295 (Entity.getKind() == InitializedEntity::EK_Base ||
9296 Entity.getKind() == InitializedEntity::EK_Member) &&
9297 isa<CXXConstructorDecl>(S.CurContext)) {
9298 // This is implicit default initialization of a member or
9299 // base within a constructor. If no viable function was
9300 // found, notify the user that they need to explicitly
9301 // initialize this base/member.
9302 CXXConstructorDecl *Constructor
9303 = cast<CXXConstructorDecl>(S.CurContext);
9304 const CXXRecordDecl *InheritedFrom = nullptr;
9305 if (auto Inherited = Constructor->getInheritedConstructor())
9306 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
9307 if (Entity.getKind() == InitializedEntity::EK_Base) {
9308 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9309 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9310 << S.Context.getTypeDeclType(Constructor->getParent())
9311 << /*base=*/0
9312 << Entity.getType()
9313 << InheritedFrom;
9314
9315 RecordDecl *BaseDecl
9316 = Entity.getBaseSpecifier()->getType()->castAs<RecordType>()
9317 ->getDecl();
9318 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
9319 << S.Context.getTagDeclType(BaseDecl);
9320 } else {
9321 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
9322 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
9323 << S.Context.getTypeDeclType(Constructor->getParent())
9324 << /*member=*/1
9325 << Entity.getName()
9326 << InheritedFrom;
9327 S.Diag(Entity.getDecl()->getLocation(),
9328 diag::note_member_declared_at);
9329
9330 if (const RecordType *Record
9331 = Entity.getType()->getAs<RecordType>())
9332 S.Diag(Record->getDecl()->getLocation(),
9333 diag::note_previous_decl)
9334 << S.Context.getTagDeclType(Record->getDecl());
9335 }
9336 break;
9337 }
9338
9339 FailedCandidateSet.NoteCandidates(
9340 PartialDiagnosticAt(
9341 Kind.getLocation(),
9342 S.PDiag(diag::err_ovl_no_viable_function_in_init)
9343 << DestType << ArgsRange),
9344 S, OCD_AllCandidates, Args);
9345 break;
9346
9347 case OR_Deleted: {
9348 OverloadCandidateSet::iterator Best;
9349 OverloadingResult Ovl
9350 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9351 if (Ovl != OR_Deleted) {
9352 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9353 << DestType << ArgsRange;
9354 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9354)
;
9355 break;
9356 }
9357
9358 // If this is a defaulted or implicitly-declared function, then
9359 // it was implicitly deleted. Make it clear that the deletion was
9360 // implicit.
9361 if (S.isImplicitlyDeleted(Best->Function))
9362 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
9363 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
9364 << DestType << ArgsRange;
9365 else
9366 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
9367 << DestType << ArgsRange;
9368
9369 S.NoteDeletedFunction(Best->Function);
9370 break;
9371 }
9372
9373 case OR_Success:
9374 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9374)
;
9375 }
9376 }
9377 break;
9378
9379 case FK_DefaultInitOfConst:
9380 if (Entity.getKind() == InitializedEntity::EK_Member &&
9381 isa<CXXConstructorDecl>(S.CurContext)) {
9382 // This is implicit default-initialization of a const member in
9383 // a constructor. Complain that it needs to be explicitly
9384 // initialized.
9385 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
9386 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
9387 << (Constructor->getInheritedConstructor() ? 2 :
9388 Constructor->isImplicit() ? 1 : 0)
9389 << S.Context.getTypeDeclType(Constructor->getParent())
9390 << /*const=*/1
9391 << Entity.getName();
9392 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
9393 << Entity.getName();
9394 } else {
9395 S.Diag(Kind.getLocation(), diag::err_default_init_const)
9396 << DestType << (bool)DestType->getAs<RecordType>();
9397 }
9398 break;
9399
9400 case FK_Incomplete:
9401 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
9402 diag::err_init_incomplete_type);
9403 break;
9404
9405 case FK_ListInitializationFailed: {
9406 // Run the init list checker again to emit diagnostics.
9407 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
9408 diagnoseListInit(S, Entity, InitList);
9409 break;
9410 }
9411
9412 case FK_PlaceholderType: {
9413 // FIXME: Already diagnosed!
9414 break;
9415 }
9416
9417 case FK_ExplicitConstructor: {
9418 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
9419 << Args[0]->getSourceRange();
9420 OverloadCandidateSet::iterator Best;
9421 OverloadingResult Ovl
9422 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
9423 (void)Ovl;
9424 assert(Ovl == OR_Success && "Inconsistent overload resolution")(static_cast <bool> (Ovl == OR_Success && "Inconsistent overload resolution"
) ? void (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9424, __extension__ __PRETTY_FUNCTION__))
;
9425 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
9426 S.Diag(CtorDecl->getLocation(),
9427 diag::note_explicit_ctor_deduction_guide_here) << false;
9428 break;
9429 }
9430 }
9431
9432 PrintInitLocationNote(S, Entity);
9433 return true;
9434}
9435
9436void InitializationSequence::dump(raw_ostream &OS) const {
9437 switch (SequenceKind) {
9438 case FailedSequence: {
9439 OS << "Failed sequence: ";
9440 switch (Failure) {
9441 case FK_TooManyInitsForReference:
9442 OS << "too many initializers for reference";
9443 break;
9444
9445 case FK_ParenthesizedListInitForReference:
9446 OS << "parenthesized list init for reference";
9447 break;
9448
9449 case FK_ArrayNeedsInitList:
9450 OS << "array requires initializer list";
9451 break;
9452
9453 case FK_AddressOfUnaddressableFunction:
9454 OS << "address of unaddressable function was taken";
9455 break;
9456
9457 case FK_ArrayNeedsInitListOrStringLiteral:
9458 OS << "array requires initializer list or string literal";
9459 break;
9460
9461 case FK_ArrayNeedsInitListOrWideStringLiteral:
9462 OS << "array requires initializer list or wide string literal";
9463 break;
9464
9465 case FK_NarrowStringIntoWideCharArray:
9466 OS << "narrow string into wide char array";
9467 break;
9468
9469 case FK_WideStringIntoCharArray:
9470 OS << "wide string into char array";
9471 break;
9472
9473 case FK_IncompatWideStringIntoWideChar:
9474 OS << "incompatible wide string into wide char array";
9475 break;
9476
9477 case FK_PlainStringIntoUTF8Char:
9478 OS << "plain string literal into char8_t array";
9479 break;
9480
9481 case FK_UTF8StringIntoPlainChar:
9482 OS << "u8 string literal into char array";
9483 break;
9484
9485 case FK_ArrayTypeMismatch:
9486 OS << "array type mismatch";
9487 break;
9488
9489 case FK_NonConstantArrayInit:
9490 OS << "non-constant array initializer";
9491 break;
9492
9493 case FK_AddressOfOverloadFailed:
9494 OS << "address of overloaded function failed";
9495 break;
9496
9497 case FK_ReferenceInitOverloadFailed:
9498 OS << "overload resolution for reference initialization failed";
9499 break;
9500
9501 case FK_NonConstLValueReferenceBindingToTemporary:
9502 OS << "non-const lvalue reference bound to temporary";
9503 break;
9504
9505 case FK_NonConstLValueReferenceBindingToBitfield:
9506 OS << "non-const lvalue reference bound to bit-field";
9507 break;
9508
9509 case FK_NonConstLValueReferenceBindingToVectorElement:
9510 OS << "non-const lvalue reference bound to vector element";
9511 break;
9512
9513 case FK_NonConstLValueReferenceBindingToMatrixElement:
9514 OS << "non-const lvalue reference bound to matrix element";
9515 break;
9516
9517 case FK_NonConstLValueReferenceBindingToUnrelated:
9518 OS << "non-const lvalue reference bound to unrelated type";
9519 break;
9520
9521 case FK_RValueReferenceBindingToLValue:
9522 OS << "rvalue reference bound to an lvalue";
9523 break;
9524
9525 case FK_ReferenceInitDropsQualifiers:
9526 OS << "reference initialization drops qualifiers";
9527 break;
9528
9529 case FK_ReferenceAddrspaceMismatchTemporary:
9530 OS << "reference with mismatching address space bound to temporary";
9531 break;
9532
9533 case FK_ReferenceInitFailed:
9534 OS << "reference initialization failed";
9535 break;
9536
9537 case FK_ConversionFailed:
9538 OS << "conversion failed";
9539 break;
9540
9541 case FK_ConversionFromPropertyFailed:
9542 OS << "conversion from property failed";
9543 break;
9544
9545 case FK_TooManyInitsForScalar:
9546 OS << "too many initializers for scalar";
9547 break;
9548
9549 case FK_ParenthesizedListInitForScalar:
9550 OS << "parenthesized list init for reference";
9551 break;
9552
9553 case FK_ReferenceBindingToInitList:
9554 OS << "referencing binding to initializer list";
9555 break;
9556
9557 case FK_InitListBadDestinationType:
9558 OS << "initializer list for non-aggregate, non-scalar type";
9559 break;
9560
9561 case FK_UserConversionOverloadFailed:
9562 OS << "overloading failed for user-defined conversion";
9563 break;
9564
9565 case FK_ConstructorOverloadFailed:
9566 OS << "constructor overloading failed";
9567 break;
9568
9569 case FK_DefaultInitOfConst:
9570 OS << "default initialization of a const variable";
9571 break;
9572
9573 case FK_Incomplete:
9574 OS << "initialization of incomplete type";
9575 break;
9576
9577 case FK_ListInitializationFailed:
9578 OS << "list initialization checker failure";
9579 break;
9580
9581 case FK_VariableLengthArrayHasInitializer:
9582 OS << "variable length array has an initializer";
9583 break;
9584
9585 case FK_PlaceholderType:
9586 OS << "initializer expression isn't contextually valid";
9587 break;
9588
9589 case FK_ListConstructorOverloadFailed:
9590 OS << "list constructor overloading failed";
9591 break;
9592
9593 case FK_ExplicitConstructor:
9594 OS << "list copy initialization chose explicit constructor";
9595 break;
9596 }
9597 OS << '\n';
9598 return;
9599 }
9600
9601 case DependentSequence:
9602 OS << "Dependent sequence\n";
9603 return;
9604
9605 case NormalSequence:
9606 OS << "Normal sequence: ";
9607 break;
9608 }
9609
9610 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
9611 if (S != step_begin()) {
9612 OS << " -> ";
9613 }
9614
9615 switch (S->Kind) {
9616 case SK_ResolveAddressOfOverloadedFunction:
9617 OS << "resolve address of overloaded function";
9618 break;
9619
9620 case SK_CastDerivedToBasePRValue:
9621 OS << "derived-to-base (prvalue)";
9622 break;
9623
9624 case SK_CastDerivedToBaseXValue:
9625 OS << "derived-to-base (xvalue)";
9626 break;
9627
9628 case SK_CastDerivedToBaseLValue:
9629 OS << "derived-to-base (lvalue)";
9630 break;
9631
9632 case SK_BindReference:
9633 OS << "bind reference to lvalue";
9634 break;
9635
9636 case SK_BindReferenceToTemporary:
9637 OS << "bind reference to a temporary";
9638 break;
9639
9640 case SK_FinalCopy:
9641 OS << "final copy in class direct-initialization";
9642 break;
9643
9644 case SK_ExtraneousCopyToTemporary:
9645 OS << "extraneous C++03 copy to temporary";
9646 break;
9647
9648 case SK_UserConversion:
9649 OS << "user-defined conversion via " << *S->Function.Function;
9650 break;
9651
9652 case SK_QualificationConversionPRValue:
9653 OS << "qualification conversion (prvalue)";
9654 break;
9655
9656 case SK_QualificationConversionXValue:
9657 OS << "qualification conversion (xvalue)";
9658 break;
9659
9660 case SK_QualificationConversionLValue:
9661 OS << "qualification conversion (lvalue)";
9662 break;
9663
9664 case SK_FunctionReferenceConversion:
9665 OS << "function reference conversion";
9666 break;
9667
9668 case SK_AtomicConversion:
9669 OS << "non-atomic-to-atomic conversion";
9670 break;
9671
9672 case SK_ConversionSequence:
9673 OS << "implicit conversion sequence (";
9674 S->ICS->dump(); // FIXME: use OS
9675 OS << ")";
9676 break;
9677
9678 case SK_ConversionSequenceNoNarrowing:
9679 OS << "implicit conversion sequence with narrowing prohibited (";
9680 S->ICS->dump(); // FIXME: use OS
9681 OS << ")";
9682 break;
9683
9684 case SK_ListInitialization:
9685 OS << "list aggregate initialization";
9686 break;
9687
9688 case SK_UnwrapInitList:
9689 OS << "unwrap reference initializer list";
9690 break;
9691
9692 case SK_RewrapInitList:
9693 OS << "rewrap reference initializer list";
9694 break;
9695
9696 case SK_ConstructorInitialization:
9697 OS << "constructor initialization";
9698 break;
9699
9700 case SK_ConstructorInitializationFromList:
9701 OS << "list initialization via constructor";
9702 break;
9703
9704 case SK_ZeroInitialization:
9705 OS << "zero initialization";
9706 break;
9707
9708 case SK_CAssignment:
9709 OS << "C assignment";
9710 break;
9711
9712 case SK_StringInit:
9713 OS << "string initialization";
9714 break;
9715
9716 case SK_ObjCObjectConversion:
9717 OS << "Objective-C object conversion";
9718 break;
9719
9720 case SK_ArrayLoopIndex:
9721 OS << "indexing for array initialization loop";
9722 break;
9723
9724 case SK_ArrayLoopInit:
9725 OS << "array initialization loop";
9726 break;
9727
9728 case SK_ArrayInit:
9729 OS << "array initialization";
9730 break;
9731
9732 case SK_GNUArrayInit:
9733 OS << "array initialization (GNU extension)";
9734 break;
9735
9736 case SK_ParenthesizedArrayInit:
9737 OS << "parenthesized array initialization";
9738 break;
9739
9740 case SK_PassByIndirectCopyRestore:
9741 OS << "pass by indirect copy and restore";
9742 break;
9743
9744 case SK_PassByIndirectRestore:
9745 OS << "pass by indirect restore";
9746 break;
9747
9748 case SK_ProduceObjCObject:
9749 OS << "Objective-C object retension";
9750 break;
9751
9752 case SK_StdInitializerList:
9753 OS << "std::initializer_list from initializer list";
9754 break;
9755
9756 case SK_StdInitializerListConstructorCall:
9757 OS << "list initialization from std::initializer_list";
9758 break;
9759
9760 case SK_OCLSamplerInit:
9761 OS << "OpenCL sampler_t from integer constant";
9762 break;
9763
9764 case SK_OCLZeroOpaqueType:
9765 OS << "OpenCL opaque type from zero";
9766 break;
9767 }
9768
9769 OS << " [" << S->Type.getAsString() << ']';
9770 }
9771
9772 OS << '\n';
9773}
9774
9775void InitializationSequence::dump() const {
9776 dump(llvm::errs());
9777}
9778
9779static bool NarrowingErrs(const LangOptions &L) {
9780 return L.CPlusPlus11 &&
9781 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
9782}
9783
9784static void DiagnoseNarrowingInInitList(Sema &S,
9785 const ImplicitConversionSequence &ICS,
9786 QualType PreNarrowingType,
9787 QualType EntityType,
9788 const Expr *PostInit) {
9789 const StandardConversionSequence *SCS = nullptr;
9790 switch (ICS.getKind()) {
9791 case ImplicitConversionSequence::StandardConversion:
9792 SCS = &ICS.Standard;
9793 break;
9794 case ImplicitConversionSequence::UserDefinedConversion:
9795 SCS = &ICS.UserDefined.After;
9796 break;
9797 case ImplicitConversionSequence::AmbiguousConversion:
9798 case ImplicitConversionSequence::EllipsisConversion:
9799 case ImplicitConversionSequence::BadConversion:
9800 return;
9801 }
9802
9803 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
9804 APValue ConstantValue;
9805 QualType ConstantType;
9806 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
9807 ConstantType)) {
9808 case NK_Not_Narrowing:
9809 case NK_Dependent_Narrowing:
9810 // No narrowing occurred.
9811 return;
9812
9813 case NK_Type_Narrowing:
9814 // This was a floating-to-integer conversion, which is always considered a
9815 // narrowing conversion even if the value is a constant and can be
9816 // represented exactly as an integer.
9817 S.Diag(PostInit->getBeginLoc(), NarrowingErrs(S.getLangOpts())
9818 ? diag::ext_init_list_type_narrowing
9819 : diag::warn_init_list_type_narrowing)
9820 << PostInit->getSourceRange()
9821 << PreNarrowingType.getLocalUnqualifiedType()
9822 << EntityType.getLocalUnqualifiedType();
9823 break;
9824
9825 case NK_Constant_Narrowing:
9826 // A constant value was narrowed.
9827 S.Diag(PostInit->getBeginLoc(),
9828 NarrowingErrs(S.getLangOpts())
9829 ? diag::ext_init_list_constant_narrowing
9830 : diag::warn_init_list_constant_narrowing)
9831 << PostInit->getSourceRange()
9832 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
9833 << EntityType.getLocalUnqualifiedType();
9834 break;
9835
9836 case NK_Variable_Narrowing:
9837 // A variable's value may have been narrowed.
9838 S.Diag(PostInit->getBeginLoc(),
9839 NarrowingErrs(S.getLangOpts())
9840 ? diag::ext_init_list_variable_narrowing
9841 : diag::warn_init_list_variable_narrowing)
9842 << PostInit->getSourceRange()
9843 << PreNarrowingType.getLocalUnqualifiedType()
9844 << EntityType.getLocalUnqualifiedType();
9845 break;
9846 }
9847
9848 SmallString<128> StaticCast;
9849 llvm::raw_svector_ostream OS(StaticCast);
9850 OS << "static_cast<";
9851 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
9852 // It's important to use the typedef's name if there is one so that the
9853 // fixit doesn't break code using types like int64_t.
9854 //
9855 // FIXME: This will break if the typedef requires qualification. But
9856 // getQualifiedNameAsString() includes non-machine-parsable components.
9857 OS << *TT->getDecl();
9858 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
9859 OS << BT->getName(S.getLangOpts());
9860 else {
9861 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
9862 // with a broken cast.
9863 return;
9864 }
9865 OS << ">(";
9866 S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence)
9867 << PostInit->getSourceRange()
9868 << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str())
9869 << FixItHint::CreateInsertion(
9870 S.getLocForEndOfToken(PostInit->getEndLoc()), ")");
9871}
9872
9873//===----------------------------------------------------------------------===//
9874// Initialization helper functions
9875//===----------------------------------------------------------------------===//
9876bool
9877Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
9878 ExprResult Init) {
9879 if (Init.isInvalid())
9880 return false;
9881
9882 Expr *InitE = Init.get();
9883 assert(InitE && "No initialization expression")(static_cast <bool> (InitE && "No initialization expression"
) ? void (0) : __assert_fail ("InitE && \"No initialization expression\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9883, __extension__ __PRETTY_FUNCTION__))
;
9884
9885 InitializationKind Kind =
9886 InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation());
9887 InitializationSequence Seq(*this, Entity, Kind, InitE);
9888 return !Seq.Failed();
9889}
9890
9891ExprResult
9892Sema::PerformCopyInitialization(const InitializedEntity &Entity,
9893 SourceLocation EqualLoc,
9894 ExprResult Init,
9895 bool TopLevelOfInitList,
9896 bool AllowExplicit) {
9897 if (Init.isInvalid())
9898 return ExprError();
9899
9900 Expr *InitE = Init.get();
9901 assert(InitE && "No initialization expression?")(static_cast <bool> (InitE && "No initialization expression?"
) ? void (0) : __assert_fail ("InitE && \"No initialization expression?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9901, __extension__ __PRETTY_FUNCTION__))
;
9902
9903 if (EqualLoc.isInvalid())
9904 EqualLoc = InitE->getBeginLoc();
9905
9906 InitializationKind Kind = InitializationKind::CreateCopy(
9907 InitE->getBeginLoc(), EqualLoc, AllowExplicit);
9908 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
9909
9910 // Prevent infinite recursion when performing parameter copy-initialization.
9911 const bool ShouldTrackCopy =
9912 Entity.isParameterKind() && Seq.isConstructorInitialization();
9913 if (ShouldTrackCopy) {
9914 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
9915 CurrentParameterCopyTypes.end()) {
9916 Seq.SetOverloadFailure(
9917 InitializationSequence::FK_ConstructorOverloadFailed,
9918 OR_No_Viable_Function);
9919
9920 // Try to give a meaningful diagnostic note for the problematic
9921 // constructor.
9922 const auto LastStep = Seq.step_end() - 1;
9923 assert(LastStep->Kind ==(static_cast <bool> (LastStep->Kind == InitializationSequence
::SK_ConstructorInitialization) ? void (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9924, __extension__ __PRETTY_FUNCTION__))
9924 InitializationSequence::SK_ConstructorInitialization)(static_cast <bool> (LastStep->Kind == InitializationSequence
::SK_ConstructorInitialization) ? void (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9924, __extension__ __PRETTY_FUNCTION__))
;
9925 const FunctionDecl *Function = LastStep->Function.Function;
9926 auto Candidate =
9927 llvm::find_if(Seq.getFailedCandidateSet(),
9928 [Function](const OverloadCandidate &Candidate) -> bool {
9929 return Candidate.Viable &&
9930 Candidate.Function == Function &&
9931 Candidate.Conversions.size() > 0;
9932 });
9933 if (Candidate != Seq.getFailedCandidateSet().end() &&
9934 Function->getNumParams() > 0) {
9935 Candidate->Viable = false;
9936 Candidate->FailureKind = ovl_fail_bad_conversion;
9937 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
9938 InitE,
9939 Function->getParamDecl(0)->getType());
9940 }
9941 }
9942 CurrentParameterCopyTypes.push_back(Entity.getType());
9943 }
9944
9945 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
9946
9947 if (ShouldTrackCopy)
9948 CurrentParameterCopyTypes.pop_back();
9949
9950 return Result;
9951}
9952
9953/// Determine whether RD is, or is derived from, a specialization of CTD.
9954static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
9955 ClassTemplateDecl *CTD) {
9956 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
9957 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
9958 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
9959 };
9960 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
9961}
9962
9963QualType Sema::DeduceTemplateSpecializationFromInitializer(
9964 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
9965 const InitializationKind &Kind, MultiExprArg Inits) {
9966 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
9967 TSInfo->getType()->getContainedDeducedType());
9968 assert(DeducedTST && "not a deduced template specialization type")(static_cast <bool> (DeducedTST && "not a deduced template specialization type"
) ? void (0) : __assert_fail ("DeducedTST && \"not a deduced template specialization type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/lib/Sema/SemaInit.cpp"
, 9968, __extension__ __PRETTY_FUNCTION__))
;
9969
9970 auto TemplateName = DeducedTST->getTemplateName();
9971 if (TemplateName.isDependent())
9972 return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9973
9974 // We can only perform deduction for class templates.
9975 auto *Template =
9976 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
9977 if (!Template) {
9978 Diag(Kind.getLocation(),
9979 diag::err_deduced_non_class_template_specialization_type)
9980 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
9981 if (auto *TD = TemplateName.getAsTemplateDecl())
9982 Diag(TD->getLocation(), diag::note_template_decl_here);
9983 return QualType();
9984 }
9985
9986 // Can't deduce from dependent arguments.
9987 if (Expr::hasAnyTypeDependentArguments(Inits)) {
9988 Diag(TSInfo->getTypeLoc().getBeginLoc(),
9989 diag::warn_cxx14_compat_class_template_argument_deduction)
9990 << TSInfo->getTypeLoc().getSourceRange() << 0;
9991 return SubstAutoType(TSInfo->getType(), Context.DependentTy);
9992 }
9993
9994 // FIXME: Perform "exact type" matching first, per CWG discussion?
9995 // Or implement this via an implied 'T(T) -> T' deduction guide?
9996
9997 // FIXME: Do we need/want a std::initializer_list<T> special case?
9998
9999 // Look up deduction guides, including those synthesized from constructors.
10000 //
10001 // C++1z [over.match.class.deduct]p1:
10002 // A set of functions and function templates is formed comprising:
10003 // - For each constructor of the class template designated by the
10004 // template-name, a function template [...]
10005 // - For each deduction-guide, a function or function template [...]
10006 DeclarationNameInfo NameInfo(
10007 Context.DeclarationNames.getCXXDeductionGuideName(Template),
10008 TSInfo->getTypeLoc().getEndLoc());
10009 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
10010 LookupQualifiedName(Guides, Template->getDeclContext());
10011
10012 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
10013 // clear on this, but they're not found by name so access does not apply.
10014 Guides.suppressDiagnostics();
10015
10016 // Figure out if this is list-initialization.
10017 InitListExpr *ListInit =
10018 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
10019 ? dyn_cast<InitListExpr>(Inits[0])
10020 : nullptr;
10021
10022 // C++1z [over.match.class.deduct]p1:
10023 // Initialization and overload resolution are performed as described in
10024 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
10025 // (as appropriate for the type of initialization performed) for an object
10026 // of a hypothetical class type, where the selected functions and function
10027 // templates are considered to be the constructors of that class type
10028 //
10029 // Since we know we're initializing a class type of a type unrelated to that
10030 // of the initializer, this reduces to something fairly reasonable.
10031 OverloadCandidateSet Candidates(Kind.getLocation(),
10032 OverloadCandidateSet::CSK_Normal);
10033 OverloadCandidateSet::iterator Best;
10034
10035 bool HasAnyDeductionGuide = false;
10036 bool AllowExplicit = !Kind.isCopyInit() || ListInit;
10037
10038 auto tryToResolveOverload =
10039 [&](bool OnlyListConstructors) -> OverloadingResult {
10040 Candidates.clear(OverloadCandidateSet::CSK_Normal);
10041 HasAnyDeductionGuide = false;
10042
10043 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
10044 NamedDecl *D = (*I)->getUnderlyingDecl();
10045 if (D->isInvalidDecl())
10046 continue;
10047
10048 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
10049 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
10050 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
10051 if (!GD)
10052 continue;
10053
10054 if (!GD->isImplicit())
10055 HasAnyDeductionGuide = true;
10056
10057 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
10058 // For copy-initialization, the candidate functions are all the
10059 // converting constructors (12.3.1) of that class.
10060 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
10061 // The converting constructors of T are candidate functions.
10062 if (!AllowExplicit) {
10063 // Overload resolution checks whether the deduction guide is declared
10064 // explicit for us.
10065
10066 // When looking for a converting constructor, deduction guides that
10067 // could never be called with one argument are not interesting to
10068 // check or note.
10069 if (GD->getMinRequiredArguments() > 1 ||
10070 (GD->getNumParams() == 0 && !GD->isVariadic()))
10071 continue;
10072 }
10073
10074 // C++ [over.match.list]p1.1: (first phase list initialization)
10075 // Initially, the candidate functions are the initializer-list
10076 // constructors of the class T
10077 if (OnlyListConstructors && !isInitListConstructor(GD))
10078 continue;
10079
10080 // C++ [over.match.list]p1.2: (second phase list initialization)
10081 // the candidate functions are all the constructors of the class T
10082 // C++ [over.match.ctor]p1: (all other cases)
10083 // the candidate functions are all the constructors of the class of
10084 // the object being initialized
10085
10086 // C++ [over.best.ics]p4:
10087 // When [...] the constructor [...] is a candidate by
10088 // - [over.match.copy] (in all cases)
10089 // FIXME: The "second phase of [over.match.list] case can also
10090 // theoretically happen here, but it's not clear whether we can
10091 // ever have a parameter of the right type.
10092 bool SuppressUserConversions = Kind.isCopyInit();
10093
10094 if (TD)
10095 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
10096 Inits, Candidates, SuppressUserConversions,
10097 /*PartialOverloading*/ false,
10098 AllowExplicit);
10099 else
10100 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
10101 SuppressUserConversions,
10102 /*PartialOverloading*/ false, AllowExplicit);
10103 }
10104 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
10105 };
10106
10107 OverloadingResult Result = OR_No_Viable_Function;
10108
10109 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
10110 // try initializer-list constructors.
10111 if (ListInit) {
10112 bool TryListConstructors = true;
10113
10114 // Try list constructors unless the list is empty and the class has one or
10115 // more default constructors, in which case those constructors win.
10116 if (!ListInit->getNumInits()) {
10117 for (NamedDecl *D : Guides) {
10118 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
10119 if (FD && FD->getMinRequiredArguments() == 0) {
10120 TryListConstructors = false;
10121 break;
10122 }
10123 }
10124 } else if (ListInit->getNumInits() == 1) {
10125 // C++ [over.match.class.deduct]:
10126 // As an exception, the first phase in [over.match.list] (considering
10127 // initializer-list constructors) is omitted if the initializer list
10128 // consists of a single expression of type cv U, where U is a
10129 // specialization of C or a class derived from a specialization of C.
10130 Expr *E = ListInit->getInit(0);
10131 auto *RD = E->getType()->getAsCXXRecordDecl();
10132 if (!isa<InitListExpr>(E) && RD &&
10133 isCompleteType(Kind.getLocation(), E->getType()) &&
10134 isOrIsDerivedFromSpecializationOf(RD, Template))
10135 TryListConstructors = false;
10136 }
10137
10138 if (TryListConstructors)
10139 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
10140 // Then unwrap the initializer list and try again considering all
10141 // constructors.
10142 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
10143 }
10144
10145 // If list-initialization fails, or if we're doing any other kind of
10146 // initialization, we (eventually) consider constructors.
10147 if (Result == OR_No_Viable_Function)
10148 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
10149
10150 switch (Result) {
10151 case OR_Ambiguous:
10152 // FIXME: For list-initialization candidates, it'd usually be better to
10153 // list why they were not viable when given the initializer list itself as
10154 // an argument.
10155 Candidates.NoteCandidates(
10156 PartialDiagnosticAt(
10157 Kind.getLocation(),
10158 PDiag(diag::err_deduced_class_template_ctor_ambiguous)
10159 << TemplateName),
10160 *this, OCD_AmbiguousCandidates, Inits);
10161 return QualType();
10162
10163 case OR_No_Viable_Function: {
10164 CXXRecordDecl *Primary =
10165 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
10166 bool Complete =
10167 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
10168 Candidates.NoteCandidates(
10169 PartialDiagnosticAt(
10170 Kind.getLocation(),
10171 PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable
10172 : diag::err_deduced_class_template_incomplete)
10173 << TemplateName << !Guides.empty()),
10174 *this, OCD_AllCandidates, Inits);
10175 return QualType();
10176 }
10177
10178 case OR_Deleted: {
10179 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
10180 << TemplateName;
10181 NoteDeletedFunction(Best->Function);
10182 return QualType();
10183 }
10184
10185 case OR_Success:
10186 // C++ [over.match.list]p1:
10187 // In copy-list-initialization, if an explicit constructor is chosen, the
10188 // initialization is ill-formed.
10189 if (Kind.isCopyInit() && ListInit &&
10190 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
10191 bool IsDeductionGuide = !Best->Function->isImplicit();
10192 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
10193 << TemplateName << IsDeductionGuide;
10194 Diag(Best->Function->getLocation(),
10195 diag::note_explicit_ctor_deduction_guide_here)
10196 << IsDeductionGuide;
10197 return QualType();
10198 }
10199
10200 // Make sure we didn't select an unusable deduction guide, and mark it
10201 // as referenced.
10202 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
10203 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
10204 break;
10205 }
10206
10207 // C++ [dcl.type.class.deduct]p1:
10208 // The placeholder is replaced by the return type of the function selected
10209 // by overload resolution for class template deduction.
10210 QualType DeducedType =
10211 SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
10212 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10213 diag::warn_cxx14_compat_class_template_argument_deduction)
10214 << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType;
10215
10216 // Warn if CTAD was used on a type that does not have any user-defined
10217 // deduction guides.
10218 if (!HasAnyDeductionGuide) {
10219 Diag(TSInfo->getTypeLoc().getBeginLoc(),
10220 diag::warn_ctad_maybe_unsupported)
10221 << TemplateName;
10222 Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported);
10223 }
10224
10225 return DeducedType;
10226}

/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/DependenceFlags.h"
21#include "clang/AST/NestedNameSpecifier.h"
22#include "clang/AST/TemplateName.h"
23#include "clang/Basic/AddressSpaces.h"
24#include "clang/Basic/AttrKinds.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/ExceptionSpecificationType.h"
27#include "clang/Basic/LLVM.h"
28#include "clang/Basic/Linkage.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceLocation.h"
31#include "clang/Basic/Specifiers.h"
32#include "clang/Basic/Visibility.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/APSInt.h"
35#include "llvm/ADT/ArrayRef.h"
36#include "llvm/ADT/FoldingSet.h"
37#include "llvm/ADT/None.h"
38#include "llvm/ADT/Optional.h"
39#include "llvm/ADT/PointerIntPair.h"
40#include "llvm/ADT/PointerUnion.h"
41#include "llvm/ADT/StringRef.h"
42#include "llvm/ADT/Twine.h"
43#include "llvm/ADT/iterator_range.h"
44#include "llvm/Support/Casting.h"
45#include "llvm/Support/Compiler.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Support/PointerLikeTypeTraits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include "llvm/Support/type_traits.h"
50#include <cassert>
51#include <cstddef>
52#include <cstdint>
53#include <cstring>
54#include <string>
55#include <type_traits>
56#include <utility>
57
58namespace clang {
59
60class ExtQuals;
61class QualType;
62class ConceptDecl;
63class TagDecl;
64class TemplateParameterList;
65class Type;
66
67enum {
68 TypeAlignmentInBits = 4,
69 TypeAlignment = 1 << TypeAlignmentInBits
70};
71
72namespace serialization {
73 template <class T> class AbstractTypeReader;
74 template <class T> class AbstractTypeWriter;
75}
76
77} // namespace clang
78
79namespace llvm {
80
81 template <typename T>
82 struct PointerLikeTypeTraits;
83 template<>
84 struct PointerLikeTypeTraits< ::clang::Type*> {
85 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
86
87 static inline ::clang::Type *getFromVoidPointer(void *P) {
88 return static_cast< ::clang::Type*>(P);
89 }
90
91 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
92 };
93
94 template<>
95 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
96 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
97
98 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
99 return static_cast< ::clang::ExtQuals*>(P);
100 }
101
102 static constexpr int NumLowBitsAvailable = clang::TypeAlignmentInBits;
103 };
104
105} // namespace llvm
106
107namespace clang {
108
109class ASTContext;
110template <typename> class CanQual;
111class CXXRecordDecl;
112class DeclContext;
113class EnumDecl;
114class Expr;
115class ExtQualsTypeCommonBase;
116class FunctionDecl;
117class IdentifierInfo;
118class NamedDecl;
119class ObjCInterfaceDecl;
120class ObjCProtocolDecl;
121class ObjCTypeParamDecl;
122struct PrintingPolicy;
123class RecordDecl;
124class Stmt;
125class TagDecl;
126class TemplateArgument;
127class TemplateArgumentListInfo;
128class TemplateArgumentLoc;
129class TemplateTypeParmDecl;
130class TypedefNameDecl;
131class UnresolvedUsingTypenameDecl;
132
133using CanQualType = CanQual<Type>;
134
135// Provide forward declarations for all of the *Type classes.
136#define TYPE(Class, Base) class Class##Type;
137#include "clang/AST/TypeNodes.inc"
138
139/// The collection of all-type qualifiers we support.
140/// Clang supports five independent qualifiers:
141/// * C99: const, volatile, and restrict
142/// * MS: __unaligned
143/// * Embedded C (TR18037): address spaces
144/// * Objective C: the GC attributes (none, weak, or strong)
145class Qualifiers {
146public:
147 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
148 Const = 0x1,
149 Restrict = 0x2,
150 Volatile = 0x4,
151 CVRMask = Const | Volatile | Restrict
152 };
153
154 enum GC {
155 GCNone = 0,
156 Weak,
157 Strong
158 };
159
160 enum ObjCLifetime {
161 /// There is no lifetime qualification on this type.
162 OCL_None,
163
164 /// This object can be modified without requiring retains or
165 /// releases.
166 OCL_ExplicitNone,
167
168 /// Assigning into this object requires the old value to be
169 /// released and the new value to be retained. The timing of the
170 /// release of the old value is inexact: it may be moved to
171 /// immediately after the last known point where the value is
172 /// live.
173 OCL_Strong,
174
175 /// Reading or writing from this object requires a barrier call.
176 OCL_Weak,
177
178 /// Assigning into this object requires a lifetime extension.
179 OCL_Autoreleasing
180 };
181
182 enum {
183 /// The maximum supported address space number.
184 /// 23 bits should be enough for anyone.
185 MaxAddressSpace = 0x7fffffu,
186
187 /// The width of the "fast" qualifier mask.
188 FastWidth = 3,
189
190 /// The fast qualifier mask.
191 FastMask = (1 << FastWidth) - 1
192 };
193
194 /// Returns the common set of qualifiers while removing them from
195 /// the given sets.
196 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
197 // If both are only CVR-qualified, bit operations are sufficient.
198 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
199 Qualifiers Q;
200 Q.Mask = L.Mask & R.Mask;
201 L.Mask &= ~Q.Mask;
202 R.Mask &= ~Q.Mask;
203 return Q;
204 }
205
206 Qualifiers Q;
207 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
208 Q.addCVRQualifiers(CommonCRV);
209 L.removeCVRQualifiers(CommonCRV);
210 R.removeCVRQualifiers(CommonCRV);
211
212 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
213 Q.setObjCGCAttr(L.getObjCGCAttr());
214 L.removeObjCGCAttr();
215 R.removeObjCGCAttr();
216 }
217
218 if (L.getObjCLifetime() == R.getObjCLifetime()) {
219 Q.setObjCLifetime(L.getObjCLifetime());
220 L.removeObjCLifetime();
221 R.removeObjCLifetime();
222 }
223
224 if (L.getAddressSpace() == R.getAddressSpace()) {
225 Q.setAddressSpace(L.getAddressSpace());
226 L.removeAddressSpace();
227 R.removeAddressSpace();
228 }
229 return Q;
230 }
231
232 static Qualifiers fromFastMask(unsigned Mask) {
233 Qualifiers Qs;
234 Qs.addFastQualifiers(Mask);
235 return Qs;
236 }
237
238 static Qualifiers fromCVRMask(unsigned CVR) {
239 Qualifiers Qs;
240 Qs.addCVRQualifiers(CVR);
241 return Qs;
242 }
243
244 static Qualifiers fromCVRUMask(unsigned CVRU) {
245 Qualifiers Qs;
246 Qs.addCVRUQualifiers(CVRU);
247 return Qs;
248 }
249
250 // Deserialize qualifiers from an opaque representation.
251 static Qualifiers fromOpaqueValue(unsigned opaque) {
252 Qualifiers Qs;
253 Qs.Mask = opaque;
254 return Qs;
255 }
256
257 // Serialize these qualifiers into an opaque representation.
258 unsigned getAsOpaqueValue() const {
259 return Mask;
260 }
261
262 bool hasConst() const { return Mask & Const; }
263 bool hasOnlyConst() const { return Mask == Const; }
264 void removeConst() { Mask &= ~Const; }
265 void addConst() { Mask |= Const; }
266
267 bool hasVolatile() const { return Mask & Volatile; }
268 bool hasOnlyVolatile() const { return Mask == Volatile; }
269 void removeVolatile() { Mask &= ~Volatile; }
270 void addVolatile() { Mask |= Volatile; }
271
272 bool hasRestrict() const { return Mask & Restrict; }
273 bool hasOnlyRestrict() const { return Mask == Restrict; }
274 void removeRestrict() { Mask &= ~Restrict; }
275 void addRestrict() { Mask |= Restrict; }
276
277 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
278 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
279 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
280
281 void setCVRQualifiers(unsigned mask) {
282 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 282, __extension__ __PRETTY_FUNCTION__))
;
283 Mask = (Mask & ~CVRMask) | mask;
284 }
285 void removeCVRQualifiers(unsigned mask) {
286 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 286, __extension__ __PRETTY_FUNCTION__))
;
287 Mask &= ~mask;
288 }
289 void removeCVRQualifiers() {
290 removeCVRQualifiers(CVRMask);
291 }
292 void addCVRQualifiers(unsigned mask) {
293 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")(static_cast <bool> (!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? void (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 293, __extension__ __PRETTY_FUNCTION__))
;
294 Mask |= mask;
295 }
296 void addCVRUQualifiers(unsigned mask) {
297 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")(static_cast <bool> (!(mask & ~CVRMask & ~UMask
) && "bitmask contains non-CVRU bits") ? void (0) : __assert_fail
("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 297, __extension__ __PRETTY_FUNCTION__))
;
298 Mask |= mask;
299 }
300
301 bool hasUnaligned() const { return Mask & UMask; }
302 void setUnaligned(bool flag) {
303 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
304 }
305 void removeUnaligned() { Mask &= ~UMask; }
306 void addUnaligned() { Mask |= UMask; }
307
308 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
309 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
310 void setObjCGCAttr(GC type) {
311 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
312 }
313 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
314 void addObjCGCAttr(GC type) {
315 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 315, __extension__ __PRETTY_FUNCTION__))
;
316 setObjCGCAttr(type);
317 }
318 Qualifiers withoutObjCGCAttr() const {
319 Qualifiers qs = *this;
320 qs.removeObjCGCAttr();
321 return qs;
322 }
323 Qualifiers withoutObjCLifetime() const {
324 Qualifiers qs = *this;
325 qs.removeObjCLifetime();
326 return qs;
327 }
328 Qualifiers withoutAddressSpace() const {
329 Qualifiers qs = *this;
330 qs.removeAddressSpace();
331 return qs;
332 }
333
334 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
335 ObjCLifetime getObjCLifetime() const {
336 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
337 }
338 void setObjCLifetime(ObjCLifetime type) {
339 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
340 }
341 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
342 void addObjCLifetime(ObjCLifetime type) {
343 assert(type)(static_cast <bool> (type) ? void (0) : __assert_fail (
"type", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 343, __extension__ __PRETTY_FUNCTION__))
;
344 assert(!hasObjCLifetime())(static_cast <bool> (!hasObjCLifetime()) ? void (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 344, __extension__ __PRETTY_FUNCTION__))
;
345 Mask |= (type << LifetimeShift);
346 }
347
348 /// True if the lifetime is neither None or ExplicitNone.
349 bool hasNonTrivialObjCLifetime() const {
350 ObjCLifetime lifetime = getObjCLifetime();
351 return (lifetime > OCL_ExplicitNone);
352 }
353
354 /// True if the lifetime is either strong or weak.
355 bool hasStrongOrWeakObjCLifetime() const {
356 ObjCLifetime lifetime = getObjCLifetime();
357 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
358 }
359
360 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
361 LangAS getAddressSpace() const {
362 return static_cast<LangAS>(Mask >> AddressSpaceShift);
363 }
364 bool hasTargetSpecificAddressSpace() const {
365 return isTargetAddressSpace(getAddressSpace());
366 }
367 /// Get the address space attribute value to be printed by diagnostics.
368 unsigned getAddressSpaceAttributePrintValue() const {
369 auto Addr = getAddressSpace();
370 // This function is not supposed to be used with language specific
371 // address spaces. If that happens, the diagnostic message should consider
372 // printing the QualType instead of the address space value.
373 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())(static_cast <bool> (Addr == LangAS::Default || hasTargetSpecificAddressSpace
()) ? void (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 373, __extension__ __PRETTY_FUNCTION__))
;
374 if (Addr != LangAS::Default)
375 return toTargetAddressSpace(Addr);
376 // TODO: The diagnostic messages where Addr may be 0 should be fixed
377 // since it cannot differentiate the situation where 0 denotes the default
378 // address space or user specified __attribute__((address_space(0))).
379 return 0;
380 }
381 void setAddressSpace(LangAS space) {
382 assert((unsigned)space <= MaxAddressSpace)(static_cast <bool> ((unsigned)space <= MaxAddressSpace
) ? void (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 382, __extension__ __PRETTY_FUNCTION__))
;
383 Mask = (Mask & ~AddressSpaceMask)
384 | (((uint32_t) space) << AddressSpaceShift);
385 }
386 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
387 void addAddressSpace(LangAS space) {
388 assert(space != LangAS::Default)(static_cast <bool> (space != LangAS::Default) ? void (
0) : __assert_fail ("space != LangAS::Default", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 388, __extension__ __PRETTY_FUNCTION__))
;
389 setAddressSpace(space);
390 }
391
392 // Fast qualifiers are those that can be allocated directly
393 // on a QualType object.
394 bool hasFastQualifiers() const { return getFastQualifiers(); }
395 unsigned getFastQualifiers() const { return Mask & FastMask; }
396 void setFastQualifiers(unsigned mask) {
397 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 397, __extension__ __PRETTY_FUNCTION__))
;
398 Mask = (Mask & ~FastMask) | mask;
399 }
400 void removeFastQualifiers(unsigned mask) {
401 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 401, __extension__ __PRETTY_FUNCTION__))
;
402 Mask &= ~mask;
403 }
404 void removeFastQualifiers() {
405 removeFastQualifiers(FastMask);
406 }
407 void addFastQualifiers(unsigned mask) {
408 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")(static_cast <bool> (!(mask & ~FastMask) &&
"bitmask contains non-fast qualifier bits") ? void (0) : __assert_fail
("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 408, __extension__ __PRETTY_FUNCTION__))
;
409 Mask |= mask;
410 }
411
412 /// Return true if the set contains any qualifiers which require an ExtQuals
413 /// node to be allocated.
414 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
415 Qualifiers getNonFastQualifiers() const {
416 Qualifiers Quals = *this;
417 Quals.setFastQualifiers(0);
418 return Quals;
419 }
420
421 /// Return true if the set contains any qualifiers.
422 bool hasQualifiers() const { return Mask; }
423 bool empty() const { return !Mask; }
424
425 /// Add the qualifiers from the given set to this set.
426 void addQualifiers(Qualifiers Q) {
427 // If the other set doesn't have any non-boolean qualifiers, just
428 // bit-or it in.
429 if (!(Q.Mask & ~CVRMask))
430 Mask |= Q.Mask;
431 else {
432 Mask |= (Q.Mask & CVRMask);
433 if (Q.hasAddressSpace())
434 addAddressSpace(Q.getAddressSpace());
435 if (Q.hasObjCGCAttr())
436 addObjCGCAttr(Q.getObjCGCAttr());
437 if (Q.hasObjCLifetime())
438 addObjCLifetime(Q.getObjCLifetime());
439 }
440 }
441
442 /// Remove the qualifiers from the given set from this set.
443 void removeQualifiers(Qualifiers Q) {
444 // If the other set doesn't have any non-boolean qualifiers, just
445 // bit-and the inverse in.
446 if (!(Q.Mask & ~CVRMask))
447 Mask &= ~Q.Mask;
448 else {
449 Mask &= ~(Q.Mask & CVRMask);
450 if (getObjCGCAttr() == Q.getObjCGCAttr())
451 removeObjCGCAttr();
452 if (getObjCLifetime() == Q.getObjCLifetime())
453 removeObjCLifetime();
454 if (getAddressSpace() == Q.getAddressSpace())
455 removeAddressSpace();
456 }
457 }
458
459 /// Add the qualifiers from the given set to this set, given that
460 /// they don't conflict.
461 void addConsistentQualifiers(Qualifiers qs) {
462 assert(getAddressSpace() == qs.getAddressSpace() ||(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 463, __extension__ __PRETTY_FUNCTION__))
463 !hasAddressSpace() || !qs.hasAddressSpace())(static_cast <bool> (getAddressSpace() == qs.getAddressSpace
() || !hasAddressSpace() || !qs.hasAddressSpace()) ? void (0)
: __assert_fail ("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 463, __extension__ __PRETTY_FUNCTION__))
;
464 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 465, __extension__ __PRETTY_FUNCTION__))
465 !hasObjCGCAttr() || !qs.hasObjCGCAttr())(static_cast <bool> (getObjCGCAttr() == qs.getObjCGCAttr
() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()) ? void (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 465, __extension__ __PRETTY_FUNCTION__))
;
466 assert(getObjCLifetime() == qs.getObjCLifetime() ||(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 467, __extension__ __PRETTY_FUNCTION__))
467 !hasObjCLifetime() || !qs.hasObjCLifetime())(static_cast <bool> (getObjCLifetime() == qs.getObjCLifetime
() || !hasObjCLifetime() || !qs.hasObjCLifetime()) ? void (0)
: __assert_fail ("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 467, __extension__ __PRETTY_FUNCTION__))
;
468 Mask |= qs.Mask;
469 }
470
471 /// Returns true if address space A is equal to or a superset of B.
472 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
473 /// overlapping address spaces.
474 /// CL1.1 or CL1.2:
475 /// every address space is a superset of itself.
476 /// CL2.0 adds:
477 /// __generic is a superset of any address space except for __constant.
478 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
479 // Address spaces must match exactly.
480 return A == B ||
481 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
482 // for __constant can be used as __generic.
483 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
484 // We also define global_device and global_host address spaces,
485 // to distinguish global pointers allocated on host from pointers
486 // allocated on device, which are a subset of __global.
487 (A == LangAS::opencl_global && (B == LangAS::opencl_global_device ||
488 B == LangAS::opencl_global_host)) ||
489 (A == LangAS::sycl_global && (B == LangAS::sycl_global_device ||
490 B == LangAS::sycl_global_host)) ||
491 // Consider pointer size address spaces to be equivalent to default.
492 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
493 (isPtrSizeAddressSpace(B) || B == LangAS::Default)) ||
494 // Default is a superset of SYCL address spaces.
495 (A == LangAS::Default &&
496 (B == LangAS::sycl_private || B == LangAS::sycl_local ||
497 B == LangAS::sycl_global || B == LangAS::sycl_global_device ||
498 B == LangAS::sycl_global_host)) ||
499 // In HIP device compilation, any cuda address space is allowed
500 // to implicitly cast into the default address space.
501 (A == LangAS::Default &&
502 (B == LangAS::cuda_constant || B == LangAS::cuda_device ||
503 B == LangAS::cuda_shared));
504 }
505
506 /// Returns true if the address space in these qualifiers is equal to or
507 /// a superset of the address space in the argument qualifiers.
508 bool isAddressSpaceSupersetOf(Qualifiers other) const {
509 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
510 }
511
512 /// Determines if these qualifiers compatibly include another set.
513 /// Generally this answers the question of whether an object with the other
514 /// qualifiers can be safely used as an object with these qualifiers.
515 bool compatiblyIncludes(Qualifiers other) const {
516 return isAddressSpaceSupersetOf(other) &&
517 // ObjC GC qualifiers can match, be added, or be removed, but can't
518 // be changed.
519 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
520 !other.hasObjCGCAttr()) &&
521 // ObjC lifetime qualifiers must match exactly.
522 getObjCLifetime() == other.getObjCLifetime() &&
523 // CVR qualifiers may subset.
524 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
525 // U qualifier may superset.
526 (!other.hasUnaligned() || hasUnaligned());
527 }
528
529 /// Determines if these qualifiers compatibly include another set of
530 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
531 ///
532 /// One set of Objective-C lifetime qualifiers compatibly includes the other
533 /// if the lifetime qualifiers match, or if both are non-__weak and the
534 /// including set also contains the 'const' qualifier, or both are non-__weak
535 /// and one is None (which can only happen in non-ARC modes).
536 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
537 if (getObjCLifetime() == other.getObjCLifetime())
538 return true;
539
540 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
541 return false;
542
543 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
544 return true;
545
546 return hasConst();
547 }
548
549 /// Determine whether this set of qualifiers is a strict superset of
550 /// another set of qualifiers, not considering qualifier compatibility.
551 bool isStrictSupersetOf(Qualifiers Other) const;
552
553 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
554 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
555
556 explicit operator bool() const { return hasQualifiers(); }
557
558 Qualifiers &operator+=(Qualifiers R) {
559 addQualifiers(R);
560 return *this;
561 }
562
563 // Union two qualifier sets. If an enumerated qualifier appears
564 // in both sets, use the one from the right.
565 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
566 L += R;
567 return L;
568 }
569
570 Qualifiers &operator-=(Qualifiers R) {
571 removeQualifiers(R);
572 return *this;
573 }
574
575 /// Compute the difference between two qualifier sets.
576 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
577 L -= R;
578 return L;
579 }
580
581 std::string getAsString() const;
582 std::string getAsString(const PrintingPolicy &Policy) const;
583
584 static std::string getAddrSpaceAsString(LangAS AS);
585
586 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
587 void print(raw_ostream &OS, const PrintingPolicy &Policy,
588 bool appendSpaceIfNonEmpty = false) const;
589
590 void Profile(llvm::FoldingSetNodeID &ID) const {
591 ID.AddInteger(Mask);
592 }
593
594private:
595 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
596 // |C R V|U|GCAttr|Lifetime|AddressSpace|
597 uint32_t Mask = 0;
598
599 static const uint32_t UMask = 0x8;
600 static const uint32_t UShift = 3;
601 static const uint32_t GCAttrMask = 0x30;
602 static const uint32_t GCAttrShift = 4;
603 static const uint32_t LifetimeMask = 0x1C0;
604 static const uint32_t LifetimeShift = 6;
605 static const uint32_t AddressSpaceMask =
606 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
607 static const uint32_t AddressSpaceShift = 9;
608};
609
610/// A std::pair-like structure for storing a qualified type split
611/// into its local qualifiers and its locally-unqualified type.
612struct SplitQualType {
613 /// The locally-unqualified type.
614 const Type *Ty = nullptr;
615
616 /// The local qualifiers.
617 Qualifiers Quals;
618
619 SplitQualType() = default;
620 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
621
622 SplitQualType getSingleStepDesugaredType() const; // end of this file
623
624 // Make std::tie work.
625 std::pair<const Type *,Qualifiers> asPair() const {
626 return std::pair<const Type *, Qualifiers>(Ty, Quals);
627 }
628
629 friend bool operator==(SplitQualType a, SplitQualType b) {
630 return a.Ty == b.Ty && a.Quals == b.Quals;
631 }
632 friend bool operator!=(SplitQualType a, SplitQualType b) {
633 return a.Ty != b.Ty || a.Quals != b.Quals;
634 }
635};
636
637/// The kind of type we are substituting Objective-C type arguments into.
638///
639/// The kind of substitution affects the replacement of type parameters when
640/// no concrete type information is provided, e.g., when dealing with an
641/// unspecialized type.
642enum class ObjCSubstitutionContext {
643 /// An ordinary type.
644 Ordinary,
645
646 /// The result type of a method or function.
647 Result,
648
649 /// The parameter type of a method or function.
650 Parameter,
651
652 /// The type of a property.
653 Property,
654
655 /// The superclass of a type.
656 Superclass,
657};
658
659/// A (possibly-)qualified type.
660///
661/// For efficiency, we don't store CV-qualified types as nodes on their
662/// own: instead each reference to a type stores the qualifiers. This
663/// greatly reduces the number of nodes we need to allocate for types (for
664/// example we only need one for 'int', 'const int', 'volatile int',
665/// 'const volatile int', etc).
666///
667/// As an added efficiency bonus, instead of making this a pair, we
668/// just store the two bits we care about in the low bits of the
669/// pointer. To handle the packing/unpacking, we make QualType be a
670/// simple wrapper class that acts like a smart pointer. A third bit
671/// indicates whether there are extended qualifiers present, in which
672/// case the pointer points to a special structure.
673class QualType {
674 friend class QualifierCollector;
675
676 // Thankfully, these are efficiently composable.
677 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
678 Qualifiers::FastWidth> Value;
679
680 const ExtQuals *getExtQualsUnsafe() const {
681 return Value.getPointer().get<const ExtQuals*>();
682 }
683
684 const Type *getTypePtrUnsafe() const {
685 return Value.getPointer().get<const Type*>();
686 }
687
688 const ExtQualsTypeCommonBase *getCommonPtr() const {
689 assert(!isNull() && "Cannot retrieve a NULL type pointer")(static_cast <bool> (!isNull() && "Cannot retrieve a NULL type pointer"
) ? void (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 689, __extension__ __PRETTY_FUNCTION__))
;
690 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
691 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
692 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
693 }
694
695public:
696 QualType() = default;
697 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
698 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
699
700 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
701 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
702
703 /// Retrieves a pointer to the underlying (unqualified) type.
704 ///
705 /// This function requires that the type not be NULL. If the type might be
706 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
707 const Type *getTypePtr() const;
708
709 const Type *getTypePtrOrNull() const;
710
711 /// Retrieves a pointer to the name of the base type.
712 const IdentifierInfo *getBaseTypeIdentifier() const;
713
714 /// Divides a QualType into its unqualified type and a set of local
715 /// qualifiers.
716 SplitQualType split() const;
717
718 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
719
720 static QualType getFromOpaquePtr(const void *Ptr) {
721 QualType T;
722 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
723 return T;
724 }
725
726 const Type &operator*() const {
727 return *getTypePtr();
728 }
729
730 const Type *operator->() const {
731 return getTypePtr();
732 }
733
734 bool isCanonical() const;
735 bool isCanonicalAsParam() const;
736
737 /// Return true if this QualType doesn't point to a type yet.
738 bool isNull() const {
739 return Value.getPointer().isNull();
740 }
741
742 /// Determine whether this particular QualType instance has the
743 /// "const" qualifier set, without looking through typedefs that may have
744 /// added "const" at a different level.
745 bool isLocalConstQualified() const {
746 return (getLocalFastQualifiers() & Qualifiers::Const);
747 }
748
749 /// Determine whether this type is const-qualified.
750 bool isConstQualified() const;
751
752 /// Determine whether this particular QualType instance has the
753 /// "restrict" qualifier set, without looking through typedefs that may have
754 /// added "restrict" at a different level.
755 bool isLocalRestrictQualified() const {
756 return (getLocalFastQualifiers() & Qualifiers::Restrict);
757 }
758
759 /// Determine whether this type is restrict-qualified.
760 bool isRestrictQualified() const;
761
762 /// Determine whether this particular QualType instance has the
763 /// "volatile" qualifier set, without looking through typedefs that may have
764 /// added "volatile" at a different level.
765 bool isLocalVolatileQualified() const {
766 return (getLocalFastQualifiers() & Qualifiers::Volatile);
767 }
768
769 /// Determine whether this type is volatile-qualified.
770 bool isVolatileQualified() const;
771
772 /// Determine whether this particular QualType instance has any
773 /// qualifiers, without looking through any typedefs that might add
774 /// qualifiers at a different level.
775 bool hasLocalQualifiers() const {
776 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
777 }
778
779 /// Determine whether this type has any qualifiers.
780 bool hasQualifiers() const;
781
782 /// Determine whether this particular QualType instance has any
783 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
784 /// instance.
785 bool hasLocalNonFastQualifiers() const {
786 return Value.getPointer().is<const ExtQuals*>();
787 }
788
789 /// Retrieve the set of qualifiers local to this particular QualType
790 /// instance, not including any qualifiers acquired through typedefs or
791 /// other sugar.
792 Qualifiers getLocalQualifiers() const;
793
794 /// Retrieve the set of qualifiers applied to this type.
795 Qualifiers getQualifiers() const;
796
797 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
798 /// local to this particular QualType instance, not including any qualifiers
799 /// acquired through typedefs or other sugar.
800 unsigned getLocalCVRQualifiers() const {
801 return getLocalFastQualifiers();
802 }
803
804 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
805 /// applied to this type.
806 unsigned getCVRQualifiers() const;
807
808 bool isConstant(const ASTContext& Ctx) const {
809 return QualType::isConstant(*this, Ctx);
810 }
811
812 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
813 bool isPODType(const ASTContext &Context) const;
814
815 /// Return true if this is a POD type according to the rules of the C++98
816 /// standard, regardless of the current compilation's language.
817 bool isCXX98PODType(const ASTContext &Context) const;
818
819 /// Return true if this is a POD type according to the more relaxed rules
820 /// of the C++11 standard, regardless of the current compilation's language.
821 /// (C++0x [basic.types]p9). Note that, unlike
822 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
823 bool isCXX11PODType(const ASTContext &Context) const;
824
825 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
826 bool isTrivialType(const ASTContext &Context) const;
827
828 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
829 bool isTriviallyCopyableType(const ASTContext &Context) const;
830
831
832 /// Returns true if it is a class and it might be dynamic.
833 bool mayBeDynamicClass() const;
834
835 /// Returns true if it is not a class or if the class might not be dynamic.
836 bool mayBeNotDynamicClass() const;
837
838 // Don't promise in the API that anything besides 'const' can be
839 // easily added.
840
841 /// Add the `const` type qualifier to this QualType.
842 void addConst() {
843 addFastQualifiers(Qualifiers::Const);
844 }
845 QualType withConst() const {
846 return withFastQualifiers(Qualifiers::Const);
847 }
848
849 /// Add the `volatile` type qualifier to this QualType.
850 void addVolatile() {
851 addFastQualifiers(Qualifiers::Volatile);
852 }
853 QualType withVolatile() const {
854 return withFastQualifiers(Qualifiers::Volatile);
855 }
856
857 /// Add the `restrict` qualifier to this QualType.
858 void addRestrict() {
859 addFastQualifiers(Qualifiers::Restrict);
860 }
861 QualType withRestrict() const {
862 return withFastQualifiers(Qualifiers::Restrict);
863 }
864
865 QualType withCVRQualifiers(unsigned CVR) const {
866 return withFastQualifiers(CVR);
867 }
868
869 void addFastQualifiers(unsigned TQs) {
870 assert(!(TQs & ~Qualifiers::FastMask)(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 871, __extension__ __PRETTY_FUNCTION__))
871 && "non-fast qualifier bits set in mask!")(static_cast <bool> (!(TQs & ~Qualifiers::FastMask)
&& "non-fast qualifier bits set in mask!") ? void (0
) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 871, __extension__ __PRETTY_FUNCTION__))
;
872 Value.setInt(Value.getInt() | TQs);
873 }
874
875 void removeLocalConst();
876 void removeLocalVolatile();
877 void removeLocalRestrict();
878 void removeLocalCVRQualifiers(unsigned Mask);
879
880 void removeLocalFastQualifiers() { Value.setInt(0); }
881 void removeLocalFastQualifiers(unsigned Mask) {
882 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")(static_cast <bool> (!(Mask & ~Qualifiers::FastMask
) && "mask has non-fast qualifiers") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 882, __extension__ __PRETTY_FUNCTION__))
;
883 Value.setInt(Value.getInt() & ~Mask);
884 }
885
886 // Creates a type with the given qualifiers in addition to any
887 // qualifiers already on this type.
888 QualType withFastQualifiers(unsigned TQs) const {
889 QualType T = *this;
890 T.addFastQualifiers(TQs);
891 return T;
892 }
893
894 // Creates a type with exactly the given fast qualifiers, removing
895 // any existing fast qualifiers.
896 QualType withExactLocalFastQualifiers(unsigned TQs) const {
897 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
898 }
899
900 // Removes fast qualifiers, but leaves any extended qualifiers in place.
901 QualType withoutLocalFastQualifiers() const {
902 QualType T = *this;
903 T.removeLocalFastQualifiers();
904 return T;
905 }
906
907 QualType getCanonicalType() const;
908
909 /// Return this type with all of the instance-specific qualifiers
910 /// removed, but without removing any qualifiers that may have been applied
911 /// through typedefs.
912 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
913
914 /// Retrieve the unqualified variant of the given type,
915 /// removing as little sugar as possible.
916 ///
917 /// This routine looks through various kinds of sugar to find the
918 /// least-desugared type that is unqualified. For example, given:
919 ///
920 /// \code
921 /// typedef int Integer;
922 /// typedef const Integer CInteger;
923 /// typedef CInteger DifferenceType;
924 /// \endcode
925 ///
926 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
927 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
928 ///
929 /// The resulting type might still be qualified if it's sugar for an array
930 /// type. To strip qualifiers even from within a sugared array type, use
931 /// ASTContext::getUnqualifiedArrayType.
932 inline QualType getUnqualifiedType() const;
933
934 /// Retrieve the unqualified variant of the given type, removing as little
935 /// sugar as possible.
936 ///
937 /// Like getUnqualifiedType(), but also returns the set of
938 /// qualifiers that were built up.
939 ///
940 /// The resulting type might still be qualified if it's sugar for an array
941 /// type. To strip qualifiers even from within a sugared array type, use
942 /// ASTContext::getUnqualifiedArrayType.
943 inline SplitQualType getSplitUnqualifiedType() const;
944
945 /// Determine whether this type is more qualified than the other
946 /// given type, requiring exact equality for non-CVR qualifiers.
947 bool isMoreQualifiedThan(QualType Other) const;
948
949 /// Determine whether this type is at least as qualified as the other
950 /// given type, requiring exact equality for non-CVR qualifiers.
951 bool isAtLeastAsQualifiedAs(QualType Other) const;
952
953 QualType getNonReferenceType() const;
954
955 /// Determine the type of a (typically non-lvalue) expression with the
956 /// specified result type.
957 ///
958 /// This routine should be used for expressions for which the return type is
959 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
960 /// an lvalue. It removes a top-level reference (since there are no
961 /// expressions of reference type) and deletes top-level cvr-qualifiers
962 /// from non-class types (in C++) or all types (in C).
963 QualType getNonLValueExprType(const ASTContext &Context) const;
964
965 /// Remove an outer pack expansion type (if any) from this type. Used as part
966 /// of converting the type of a declaration to the type of an expression that
967 /// references that expression. It's meaningless for an expression to have a
968 /// pack expansion type.
969 QualType getNonPackExpansionType() const;
970
971 /// Return the specified type with any "sugar" removed from
972 /// the type. This takes off typedefs, typeof's etc. If the outer level of
973 /// the type is already concrete, it returns it unmodified. This is similar
974 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
975 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
976 /// concrete.
977 ///
978 /// Qualifiers are left in place.
979 QualType getDesugaredType(const ASTContext &Context) const {
980 return getDesugaredType(*this, Context);
981 }
982
983 SplitQualType getSplitDesugaredType() const {
984 return getSplitDesugaredType(*this);
985 }
986
987 /// Return the specified type with one level of "sugar" removed from
988 /// the type.
989 ///
990 /// This routine takes off the first typedef, typeof, etc. If the outer level
991 /// of the type is already concrete, it returns it unmodified.
992 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
993 return getSingleStepDesugaredTypeImpl(*this, Context);
994 }
995
996 /// Returns the specified type after dropping any
997 /// outer-level parentheses.
998 QualType IgnoreParens() const {
999 if (isa<ParenType>(*this))
1000 return QualType::IgnoreParens(*this);
1001 return *this;
1002 }
1003
1004 /// Indicate whether the specified types and qualifiers are identical.
1005 friend bool operator==(const QualType &LHS, const QualType &RHS) {
1006 return LHS.Value == RHS.Value;
1007 }
1008 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
1009 return LHS.Value != RHS.Value;
1010 }
1011 friend bool operator<(const QualType &LHS, const QualType &RHS) {
1012 return LHS.Value < RHS.Value;
1013 }
1014
1015 static std::string getAsString(SplitQualType split,
1016 const PrintingPolicy &Policy) {
1017 return getAsString(split.Ty, split.Quals, Policy);
1018 }
1019 static std::string getAsString(const Type *ty, Qualifiers qs,
1020 const PrintingPolicy &Policy);
1021
1022 std::string getAsString() const;
1023 std::string getAsString(const PrintingPolicy &Policy) const;
1024
1025 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1026 const Twine &PlaceHolder = Twine(),
1027 unsigned Indentation = 0) const;
1028
1029 static void print(SplitQualType split, raw_ostream &OS,
1030 const PrintingPolicy &policy, const Twine &PlaceHolder,
1031 unsigned Indentation = 0) {
1032 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1033 }
1034
1035 static void print(const Type *ty, Qualifiers qs,
1036 raw_ostream &OS, const PrintingPolicy &policy,
1037 const Twine &PlaceHolder,
1038 unsigned Indentation = 0);
1039
1040 void getAsStringInternal(std::string &Str,
1041 const PrintingPolicy &Policy) const;
1042
1043 static void getAsStringInternal(SplitQualType split, std::string &out,
1044 const PrintingPolicy &policy) {
1045 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1046 }
1047
1048 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1049 std::string &out,
1050 const PrintingPolicy &policy);
1051
1052 class StreamedQualTypeHelper {
1053 const QualType &T;
1054 const PrintingPolicy &Policy;
1055 const Twine &PlaceHolder;
1056 unsigned Indentation;
1057
1058 public:
1059 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1060 const Twine &PlaceHolder, unsigned Indentation)
1061 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1062 Indentation(Indentation) {}
1063
1064 friend raw_ostream &operator<<(raw_ostream &OS,
1065 const StreamedQualTypeHelper &SQT) {
1066 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1067 return OS;
1068 }
1069 };
1070
1071 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1072 const Twine &PlaceHolder = Twine(),
1073 unsigned Indentation = 0) const {
1074 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1075 }
1076
1077 void dump(const char *s) const;
1078 void dump() const;
1079 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
1080
1081 void Profile(llvm::FoldingSetNodeID &ID) const {
1082 ID.AddPointer(getAsOpaquePtr());
1083 }
1084
1085 /// Check if this type has any address space qualifier.
1086 inline bool hasAddressSpace() const;
1087
1088 /// Return the address space of this type.
1089 inline LangAS getAddressSpace() const;
1090
1091 /// Returns true if address space qualifiers overlap with T address space
1092 /// qualifiers.
1093 /// OpenCL C defines conversion rules for pointers to different address spaces
1094 /// and notion of overlapping address spaces.
1095 /// CL1.1 or CL1.2:
1096 /// address spaces overlap iff they are they same.
1097 /// OpenCL C v2.0 s6.5.5 adds:
1098 /// __generic overlaps with any address space except for __constant.
1099 bool isAddressSpaceOverlapping(QualType T) const {
1100 Qualifiers Q = getQualifiers();
1101 Qualifiers TQ = T.getQualifiers();
1102 // Address spaces overlap if at least one of them is a superset of another
1103 return Q.isAddressSpaceSupersetOf(TQ) || TQ.isAddressSpaceSupersetOf(Q);
1104 }
1105
1106 /// Returns gc attribute of this type.
1107 inline Qualifiers::GC getObjCGCAttr() const;
1108
1109 /// true when Type is objc's weak.
1110 bool isObjCGCWeak() const {
1111 return getObjCGCAttr() == Qualifiers::Weak;
1112 }
1113
1114 /// true when Type is objc's strong.
1115 bool isObjCGCStrong() const {
1116 return getObjCGCAttr() == Qualifiers::Strong;
1117 }
1118
1119 /// Returns lifetime attribute of this type.
1120 Qualifiers::ObjCLifetime getObjCLifetime() const {
1121 return getQualifiers().getObjCLifetime();
1122 }
1123
1124 bool hasNonTrivialObjCLifetime() const {
1125 return getQualifiers().hasNonTrivialObjCLifetime();
1126 }
1127
1128 bool hasStrongOrWeakObjCLifetime() const {
1129 return getQualifiers().hasStrongOrWeakObjCLifetime();
1130 }
1131
1132 // true when Type is objc's weak and weak is enabled but ARC isn't.
1133 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1134
1135 enum PrimitiveDefaultInitializeKind {
1136 /// The type does not fall into any of the following categories. Note that
1137 /// this case is zero-valued so that values of this enum can be used as a
1138 /// boolean condition for non-triviality.
1139 PDIK_Trivial,
1140
1141 /// The type is an Objective-C retainable pointer type that is qualified
1142 /// with the ARC __strong qualifier.
1143 PDIK_ARCStrong,
1144
1145 /// The type is an Objective-C retainable pointer type that is qualified
1146 /// with the ARC __weak qualifier.
1147 PDIK_ARCWeak,
1148
1149 /// The type is a struct containing a field whose type is not PCK_Trivial.
1150 PDIK_Struct
1151 };
1152
1153 /// Functions to query basic properties of non-trivial C struct types.
1154
1155 /// Check if this is a non-trivial type that would cause a C struct
1156 /// transitively containing this type to be non-trivial to default initialize
1157 /// and return the kind.
1158 PrimitiveDefaultInitializeKind
1159 isNonTrivialToPrimitiveDefaultInitialize() const;
1160
1161 enum PrimitiveCopyKind {
1162 /// The type does not fall into any of the following categories. Note that
1163 /// this case is zero-valued so that values of this enum can be used as a
1164 /// boolean condition for non-triviality.
1165 PCK_Trivial,
1166
1167 /// The type would be trivial except that it is volatile-qualified. Types
1168 /// that fall into one of the other non-trivial cases may additionally be
1169 /// volatile-qualified.
1170 PCK_VolatileTrivial,
1171
1172 /// The type is an Objective-C retainable pointer type that is qualified
1173 /// with the ARC __strong qualifier.
1174 PCK_ARCStrong,
1175
1176 /// The type is an Objective-C retainable pointer type that is qualified
1177 /// with the ARC __weak qualifier.
1178 PCK_ARCWeak,
1179
1180 /// The type is a struct containing a field whose type is neither
1181 /// PCK_Trivial nor PCK_VolatileTrivial.
1182 /// Note that a C++ struct type does not necessarily match this; C++ copying
1183 /// semantics are too complex to express here, in part because they depend
1184 /// on the exact constructor or assignment operator that is chosen by
1185 /// overload resolution to do the copy.
1186 PCK_Struct
1187 };
1188
1189 /// Check if this is a non-trivial type that would cause a C struct
1190 /// transitively containing this type to be non-trivial to copy and return the
1191 /// kind.
1192 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1193
1194 /// Check if this is a non-trivial type that would cause a C struct
1195 /// transitively containing this type to be non-trivial to destructively
1196 /// move and return the kind. Destructive move in this context is a C++-style
1197 /// move in which the source object is placed in a valid but unspecified state
1198 /// after it is moved, as opposed to a truly destructive move in which the
1199 /// source object is placed in an uninitialized state.
1200 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1201
1202 enum DestructionKind {
1203 DK_none,
1204 DK_cxx_destructor,
1205 DK_objc_strong_lifetime,
1206 DK_objc_weak_lifetime,
1207 DK_nontrivial_c_struct
1208 };
1209
1210 /// Returns a nonzero value if objects of this type require
1211 /// non-trivial work to clean up after. Non-zero because it's
1212 /// conceivable that qualifiers (objc_gc(weak)?) could make
1213 /// something require destruction.
1214 DestructionKind isDestructedType() const {
1215 return isDestructedTypeImpl(*this);
1216 }
1217
1218 /// Check if this is or contains a C union that is non-trivial to
1219 /// default-initialize, which is a union that has a member that is non-trivial
1220 /// to default-initialize. If this returns true,
1221 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1222 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1223
1224 /// Check if this is or contains a C union that is non-trivial to destruct,
1225 /// which is a union that has a member that is non-trivial to destruct. If
1226 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1227 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1228
1229 /// Check if this is or contains a C union that is non-trivial to copy, which
1230 /// is a union that has a member that is non-trivial to copy. If this returns
1231 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1232 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1233
1234 /// Determine whether expressions of the given type are forbidden
1235 /// from being lvalues in C.
1236 ///
1237 /// The expression types that are forbidden to be lvalues are:
1238 /// - 'void', but not qualified void
1239 /// - function types
1240 ///
1241 /// The exact rule here is C99 6.3.2.1:
1242 /// An lvalue is an expression with an object type or an incomplete
1243 /// type other than void.
1244 bool isCForbiddenLValueType() const;
1245
1246 /// Substitute type arguments for the Objective-C type parameters used in the
1247 /// subject type.
1248 ///
1249 /// \param ctx ASTContext in which the type exists.
1250 ///
1251 /// \param typeArgs The type arguments that will be substituted for the
1252 /// Objective-C type parameters in the subject type, which are generally
1253 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1254 /// parameters will be replaced with their bounds or id/Class, as appropriate
1255 /// for the context.
1256 ///
1257 /// \param context The context in which the subject type was written.
1258 ///
1259 /// \returns the resulting type.
1260 QualType substObjCTypeArgs(ASTContext &ctx,
1261 ArrayRef<QualType> typeArgs,
1262 ObjCSubstitutionContext context) const;
1263
1264 /// Substitute type arguments from an object type for the Objective-C type
1265 /// parameters used in the subject type.
1266 ///
1267 /// This operation combines the computation of type arguments for
1268 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1269 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1270 /// callers that need to perform a single substitution in isolation.
1271 ///
1272 /// \param objectType The type of the object whose member type we're
1273 /// substituting into. For example, this might be the receiver of a message
1274 /// or the base of a property access.
1275 ///
1276 /// \param dc The declaration context from which the subject type was
1277 /// retrieved, which indicates (for example) which type parameters should
1278 /// be substituted.
1279 ///
1280 /// \param context The context in which the subject type was written.
1281 ///
1282 /// \returns the subject type after replacing all of the Objective-C type
1283 /// parameters with their corresponding arguments.
1284 QualType substObjCMemberType(QualType objectType,
1285 const DeclContext *dc,
1286 ObjCSubstitutionContext context) const;
1287
1288 /// Strip Objective-C "__kindof" types from the given type.
1289 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1290
1291 /// Remove all qualifiers including _Atomic.
1292 QualType getAtomicUnqualifiedType() const;
1293
1294private:
1295 // These methods are implemented in a separate translation unit;
1296 // "static"-ize them to avoid creating temporary QualTypes in the
1297 // caller.
1298 static bool isConstant(QualType T, const ASTContext& Ctx);
1299 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1300 static SplitQualType getSplitDesugaredType(QualType T);
1301 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1302 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1303 const ASTContext &C);
1304 static QualType IgnoreParens(QualType T);
1305 static DestructionKind isDestructedTypeImpl(QualType type);
1306
1307 /// Check if \param RD is or contains a non-trivial C union.
1308 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1309 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1310 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1311};
1312
1313} // namespace clang
1314
1315namespace llvm {
1316
1317/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1318/// to a specific Type class.
1319template<> struct simplify_type< ::clang::QualType> {
1320 using SimpleType = const ::clang::Type *;
1321
1322 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1323 return Val.getTypePtr();
1324 }
1325};
1326
1327// Teach SmallPtrSet that QualType is "basically a pointer".
1328template<>
1329struct PointerLikeTypeTraits<clang::QualType> {
1330 static inline void *getAsVoidPointer(clang::QualType P) {
1331 return P.getAsOpaquePtr();
1332 }
1333
1334 static inline clang::QualType getFromVoidPointer(void *P) {
1335 return clang::QualType::getFromOpaquePtr(P);
1336 }
1337
1338 // Various qualifiers go in low bits.
1339 static constexpr int NumLowBitsAvailable = 0;
1340};
1341
1342} // namespace llvm
1343
1344namespace clang {
1345
1346/// Base class that is common to both the \c ExtQuals and \c Type
1347/// classes, which allows \c QualType to access the common fields between the
1348/// two.
1349class ExtQualsTypeCommonBase {
1350 friend class ExtQuals;
1351 friend class QualType;
1352 friend class Type;
1353
1354 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1355 /// a self-referential pointer (for \c Type).
1356 ///
1357 /// This pointer allows an efficient mapping from a QualType to its
1358 /// underlying type pointer.
1359 const Type *const BaseType;
1360
1361 /// The canonical type of this type. A QualType.
1362 QualType CanonicalType;
1363
1364 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1365 : BaseType(baseType), CanonicalType(canon) {}
1366};
1367
1368/// We can encode up to four bits in the low bits of a
1369/// type pointer, but there are many more type qualifiers that we want
1370/// to be able to apply to an arbitrary type. Therefore we have this
1371/// struct, intended to be heap-allocated and used by QualType to
1372/// store qualifiers.
1373///
1374/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1375/// in three low bits on the QualType pointer; a fourth bit records whether
1376/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1377/// Objective-C GC attributes) are much more rare.
1378class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1379 // NOTE: changing the fast qualifiers should be straightforward as
1380 // long as you don't make 'const' non-fast.
1381 // 1. Qualifiers:
1382 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1383 // Fast qualifiers must occupy the low-order bits.
1384 // b) Update Qualifiers::FastWidth and FastMask.
1385 // 2. QualType:
1386 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1387 // b) Update remove{Volatile,Restrict}, defined near the end of
1388 // this header.
1389 // 3. ASTContext:
1390 // a) Update get{Volatile,Restrict}Type.
1391
1392 /// The immutable set of qualifiers applied by this node. Always contains
1393 /// extended qualifiers.
1394 Qualifiers Quals;
1395
1396 ExtQuals *this_() { return this; }
1397
1398public:
1399 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1400 : ExtQualsTypeCommonBase(baseType,
1401 canon.isNull() ? QualType(this_(), 0) : canon),
1402 Quals(quals) {
1403 assert(Quals.hasNonFastQualifiers()(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1404, __extension__ __PRETTY_FUNCTION__))
1404 && "ExtQuals created with no fast qualifiers")(static_cast <bool> (Quals.hasNonFastQualifiers() &&
"ExtQuals created with no fast qualifiers") ? void (0) : __assert_fail
("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1404, __extension__ __PRETTY_FUNCTION__))
;
1405 assert(!Quals.hasFastQualifiers()(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1406, __extension__ __PRETTY_FUNCTION__))
1406 && "ExtQuals created with fast qualifiers")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"ExtQuals created with fast qualifiers") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1406, __extension__ __PRETTY_FUNCTION__))
;
1407 }
1408
1409 Qualifiers getQualifiers() const { return Quals; }
1410
1411 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1412 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1413
1414 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1415 Qualifiers::ObjCLifetime getObjCLifetime() const {
1416 return Quals.getObjCLifetime();
1417 }
1418
1419 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1420 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1421
1422 const Type *getBaseType() const { return BaseType; }
1423
1424public:
1425 void Profile(llvm::FoldingSetNodeID &ID) const {
1426 Profile(ID, getBaseType(), Quals);
1427 }
1428
1429 static void Profile(llvm::FoldingSetNodeID &ID,
1430 const Type *BaseType,
1431 Qualifiers Quals) {
1432 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")(static_cast <bool> (!Quals.hasFastQualifiers() &&
"fast qualifiers in ExtQuals hash!") ? void (0) : __assert_fail
("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1432, __extension__ __PRETTY_FUNCTION__))
;
1433 ID.AddPointer(BaseType);
1434 Quals.Profile(ID);
1435 }
1436};
1437
1438/// The kind of C++11 ref-qualifier associated with a function type.
1439/// This determines whether a member function's "this" object can be an
1440/// lvalue, rvalue, or neither.
1441enum RefQualifierKind {
1442 /// No ref-qualifier was provided.
1443 RQ_None = 0,
1444
1445 /// An lvalue ref-qualifier was provided (\c &).
1446 RQ_LValue,
1447
1448 /// An rvalue ref-qualifier was provided (\c &&).
1449 RQ_RValue
1450};
1451
1452/// Which keyword(s) were used to create an AutoType.
1453enum class AutoTypeKeyword {
1454 /// auto
1455 Auto,
1456
1457 /// decltype(auto)
1458 DecltypeAuto,
1459
1460 /// __auto_type (GNU extension)
1461 GNUAutoType
1462};
1463
1464/// The base class of the type hierarchy.
1465///
1466/// A central concept with types is that each type always has a canonical
1467/// type. A canonical type is the type with any typedef names stripped out
1468/// of it or the types it references. For example, consider:
1469///
1470/// typedef int foo;
1471/// typedef foo* bar;
1472/// 'int *' 'foo *' 'bar'
1473///
1474/// There will be a Type object created for 'int'. Since int is canonical, its
1475/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1476/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1477/// there is a PointerType that represents 'int*', which, like 'int', is
1478/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1479/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1480/// is also 'int*'.
1481///
1482/// Non-canonical types are useful for emitting diagnostics, without losing
1483/// information about typedefs being used. Canonical types are useful for type
1484/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1485/// about whether something has a particular form (e.g. is a function type),
1486/// because they implicitly, recursively, strip all typedefs out of a type.
1487///
1488/// Types, once created, are immutable.
1489///
1490class alignas(8) Type : public ExtQualsTypeCommonBase {
1491public:
1492 enum TypeClass {
1493#define TYPE(Class, Base) Class,
1494#define LAST_TYPE(Class) TypeLast = Class
1495#define ABSTRACT_TYPE(Class, Base)
1496#include "clang/AST/TypeNodes.inc"
1497 };
1498
1499private:
1500 /// Bitfields required by the Type class.
1501 class TypeBitfields {
1502 friend class Type;
1503 template <class T> friend class TypePropertyCache;
1504
1505 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1506 unsigned TC : 8;
1507
1508 /// Store information on the type dependency.
1509 unsigned Dependence : llvm::BitWidth<TypeDependence>;
1510
1511 /// True if the cache (i.e. the bitfields here starting with
1512 /// 'Cache') is valid.
1513 mutable unsigned CacheValid : 1;
1514
1515 /// Linkage of this type.
1516 mutable unsigned CachedLinkage : 3;
1517
1518 /// Whether this type involves and local or unnamed types.
1519 mutable unsigned CachedLocalOrUnnamed : 1;
1520
1521 /// Whether this type comes from an AST file.
1522 mutable unsigned FromAST : 1;
1523
1524 bool isCacheValid() const {
1525 return CacheValid;
1526 }
1527
1528 Linkage getLinkage() const {
1529 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1529, __extension__ __PRETTY_FUNCTION__))
;
1530 return static_cast<Linkage>(CachedLinkage);
1531 }
1532
1533 bool hasLocalOrUnnamedType() const {
1534 assert(isCacheValid() && "getting linkage from invalid cache")(static_cast <bool> (isCacheValid() && "getting linkage from invalid cache"
) ? void (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 1534, __extension__ __PRETTY_FUNCTION__))
;
1535 return CachedLocalOrUnnamed;
1536 }
1537 };
1538 enum { NumTypeBits = 8 + llvm::BitWidth<TypeDependence> + 6 };
1539
1540protected:
1541 // These classes allow subclasses to somewhat cleanly pack bitfields
1542 // into Type.
1543
1544 class ArrayTypeBitfields {
1545 friend class ArrayType;
1546
1547 unsigned : NumTypeBits;
1548
1549 /// CVR qualifiers from declarations like
1550 /// 'int X[static restrict 4]'. For function parameters only.
1551 unsigned IndexTypeQuals : 3;
1552
1553 /// Storage class qualifiers from declarations like
1554 /// 'int X[static restrict 4]'. For function parameters only.
1555 /// Actually an ArrayType::ArraySizeModifier.
1556 unsigned SizeModifier : 3;
1557 };
1558
1559 class ConstantArrayTypeBitfields {
1560 friend class ConstantArrayType;
1561
1562 unsigned : NumTypeBits + 3 + 3;
1563
1564 /// Whether we have a stored size expression.
1565 unsigned HasStoredSizeExpr : 1;
1566 };
1567
1568 class BuiltinTypeBitfields {
1569 friend class BuiltinType;
1570
1571 unsigned : NumTypeBits;
1572
1573 /// The kind (BuiltinType::Kind) of builtin type this is.
1574 unsigned Kind : 8;
1575 };
1576
1577 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1578 /// Only common bits are stored here. Additional uncommon bits are stored
1579 /// in a trailing object after FunctionProtoType.
1580 class FunctionTypeBitfields {
1581 friend class FunctionProtoType;
1582 friend class FunctionType;
1583
1584 unsigned : NumTypeBits;
1585
1586 /// Extra information which affects how the function is called, like
1587 /// regparm and the calling convention.
1588 unsigned ExtInfo : 13;
1589
1590 /// The ref-qualifier associated with a \c FunctionProtoType.
1591 ///
1592 /// This is a value of type \c RefQualifierKind.
1593 unsigned RefQualifier : 2;
1594
1595 /// Used only by FunctionProtoType, put here to pack with the
1596 /// other bitfields.
1597 /// The qualifiers are part of FunctionProtoType because...
1598 ///
1599 /// C++ 8.3.5p4: The return type, the parameter type list and the
1600 /// cv-qualifier-seq, [...], are part of the function type.
1601 unsigned FastTypeQuals : Qualifiers::FastWidth;
1602 /// Whether this function has extended Qualifiers.
1603 unsigned HasExtQuals : 1;
1604
1605 /// The number of parameters this function has, not counting '...'.
1606 /// According to [implimits] 8 bits should be enough here but this is
1607 /// somewhat easy to exceed with metaprogramming and so we would like to
1608 /// keep NumParams as wide as reasonably possible.
1609 unsigned NumParams : 16;
1610
1611 /// The type of exception specification this function has.
1612 unsigned ExceptionSpecType : 4;
1613
1614 /// Whether this function has extended parameter information.
1615 unsigned HasExtParameterInfos : 1;
1616
1617 /// Whether the function is variadic.
1618 unsigned Variadic : 1;
1619
1620 /// Whether this function has a trailing return type.
1621 unsigned HasTrailingReturn : 1;
1622 };
1623
1624 class ObjCObjectTypeBitfields {
1625 friend class ObjCObjectType;
1626
1627 unsigned : NumTypeBits;
1628
1629 /// The number of type arguments stored directly on this object type.
1630 unsigned NumTypeArgs : 7;
1631
1632 /// The number of protocols stored directly on this object type.
1633 unsigned NumProtocols : 6;
1634
1635 /// Whether this is a "kindof" type.
1636 unsigned IsKindOf : 1;
1637 };
1638
1639 class ReferenceTypeBitfields {
1640 friend class ReferenceType;
1641
1642 unsigned : NumTypeBits;
1643
1644 /// True if the type was originally spelled with an lvalue sigil.
1645 /// This is never true of rvalue references but can also be false
1646 /// on lvalue references because of C++0x [dcl.typedef]p9,
1647 /// as follows:
1648 ///
1649 /// typedef int &ref; // lvalue, spelled lvalue
1650 /// typedef int &&rvref; // rvalue
1651 /// ref &a; // lvalue, inner ref, spelled lvalue
1652 /// ref &&a; // lvalue, inner ref
1653 /// rvref &a; // lvalue, inner ref, spelled lvalue
1654 /// rvref &&a; // rvalue, inner ref
1655 unsigned SpelledAsLValue : 1;
1656
1657 /// True if the inner type is a reference type. This only happens
1658 /// in non-canonical forms.
1659 unsigned InnerRef : 1;
1660 };
1661
1662 class TypeWithKeywordBitfields {
1663 friend class TypeWithKeyword;
1664
1665 unsigned : NumTypeBits;
1666
1667 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1668 unsigned Keyword : 8;
1669 };
1670
1671 enum { NumTypeWithKeywordBits = 8 };
1672
1673 class ElaboratedTypeBitfields {
1674 friend class ElaboratedType;
1675
1676 unsigned : NumTypeBits;
1677 unsigned : NumTypeWithKeywordBits;
1678
1679 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1680 unsigned HasOwnedTagDecl : 1;
1681 };
1682
1683 class VectorTypeBitfields {
1684 friend class VectorType;
1685 friend class DependentVectorType;
1686
1687 unsigned : NumTypeBits;
1688
1689 /// The kind of vector, either a generic vector type or some
1690 /// target-specific vector type such as for AltiVec or Neon.
1691 unsigned VecKind : 3;
1692 /// The number of elements in the vector.
1693 uint32_t NumElements;
1694 };
1695
1696 class AttributedTypeBitfields {
1697 friend class AttributedType;
1698
1699 unsigned : NumTypeBits;
1700
1701 /// An AttributedType::Kind
1702 unsigned AttrKind : 32 - NumTypeBits;
1703 };
1704
1705 class AutoTypeBitfields {
1706 friend class AutoType;
1707
1708 unsigned : NumTypeBits;
1709
1710 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1711 /// or '__auto_type'? AutoTypeKeyword value.
1712 unsigned Keyword : 2;
1713
1714 /// The number of template arguments in the type-constraints, which is
1715 /// expected to be able to hold at least 1024 according to [implimits].
1716 /// However as this limit is somewhat easy to hit with template
1717 /// metaprogramming we'd prefer to keep it as large as possible.
1718 /// At the moment it has been left as a non-bitfield since this type
1719 /// safely fits in 64 bits as an unsigned, so there is no reason to
1720 /// introduce the performance impact of a bitfield.
1721 unsigned NumArgs;
1722 };
1723
1724 class SubstTemplateTypeParmPackTypeBitfields {
1725 friend class SubstTemplateTypeParmPackType;
1726
1727 unsigned : NumTypeBits;
1728
1729 /// The number of template arguments in \c Arguments, which is
1730 /// expected to be able to hold at least 1024 according to [implimits].
1731 /// However as this limit is somewhat easy to hit with template
1732 /// metaprogramming we'd prefer to keep it as large as possible.
1733 /// At the moment it has been left as a non-bitfield since this type
1734 /// safely fits in 64 bits as an unsigned, so there is no reason to
1735 /// introduce the performance impact of a bitfield.
1736 unsigned NumArgs;
1737 };
1738
1739 class TemplateSpecializationTypeBitfields {
1740 friend class TemplateSpecializationType;
1741
1742 unsigned : NumTypeBits;
1743
1744 /// Whether this template specialization type is a substituted type alias.
1745 unsigned TypeAlias : 1;
1746
1747 /// The number of template arguments named in this class template
1748 /// specialization, which is expected to be able to hold at least 1024
1749 /// according to [implimits]. However, as this limit is somewhat easy to
1750 /// hit with template metaprogramming we'd prefer to keep it as large
1751 /// as possible. At the moment it has been left as a non-bitfield since
1752 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1753 /// to introduce the performance impact of a bitfield.
1754 unsigned NumArgs;
1755 };
1756
1757 class DependentTemplateSpecializationTypeBitfields {
1758 friend class DependentTemplateSpecializationType;
1759
1760 unsigned : NumTypeBits;
1761 unsigned : NumTypeWithKeywordBits;
1762
1763 /// The number of template arguments named in this class template
1764 /// specialization, which is expected to be able to hold at least 1024
1765 /// according to [implimits]. However, as this limit is somewhat easy to
1766 /// hit with template metaprogramming we'd prefer to keep it as large
1767 /// as possible. At the moment it has been left as a non-bitfield since
1768 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1769 /// to introduce the performance impact of a bitfield.
1770 unsigned NumArgs;
1771 };
1772
1773 class PackExpansionTypeBitfields {
1774 friend class PackExpansionType;
1775
1776 unsigned : NumTypeBits;
1777
1778 /// The number of expansions that this pack expansion will
1779 /// generate when substituted (+1), which is expected to be able to
1780 /// hold at least 1024 according to [implimits]. However, as this limit
1781 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1782 /// keep it as large as possible. At the moment it has been left as a
1783 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1784 /// there is no reason to introduce the performance impact of a bitfield.
1785 ///
1786 /// This field will only have a non-zero value when some of the parameter
1787 /// packs that occur within the pattern have been substituted but others
1788 /// have not.
1789 unsigned NumExpansions;
1790 };
1791
1792 union {
1793 TypeBitfields TypeBits;
1794 ArrayTypeBitfields ArrayTypeBits;
1795 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1796 AttributedTypeBitfields AttributedTypeBits;
1797 AutoTypeBitfields AutoTypeBits;
1798 BuiltinTypeBitfields BuiltinTypeBits;
1799 FunctionTypeBitfields FunctionTypeBits;
1800 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1801 ReferenceTypeBitfields ReferenceTypeBits;
1802 TypeWithKeywordBitfields TypeWithKeywordBits;
1803 ElaboratedTypeBitfields ElaboratedTypeBits;
1804 VectorTypeBitfields VectorTypeBits;
1805 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1806 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1807 DependentTemplateSpecializationTypeBitfields
1808 DependentTemplateSpecializationTypeBits;
1809 PackExpansionTypeBitfields PackExpansionTypeBits;
1810 };
1811
1812private:
1813 template <class T> friend class TypePropertyCache;
1814
1815 /// Set whether this type comes from an AST file.
1816 void setFromAST(bool V = true) const {
1817 TypeBits.FromAST = V;
1818 }
1819
1820protected:
1821 friend class ASTContext;
1822
1823 Type(TypeClass tc, QualType canon, TypeDependence Dependence)
1824 : ExtQualsTypeCommonBase(this,
1825 canon.isNull() ? QualType(this_(), 0) : canon) {
1826 static_assert(sizeof(*this) <= 8 + sizeof(ExtQualsTypeCommonBase),
1827 "changing bitfields changed sizeof(Type)!");
1828 static_assert(alignof(decltype(*this)) % sizeof(void *) == 0,
1829 "Insufficient alignment!");
1830 TypeBits.TC = tc;
1831 TypeBits.Dependence = static_cast<unsigned>(Dependence);
1832 TypeBits.CacheValid = false;
1833 TypeBits.CachedLocalOrUnnamed = false;
1834 TypeBits.CachedLinkage = NoLinkage;
1835 TypeBits.FromAST = false;
1836 }
1837
1838 // silence VC++ warning C4355: 'this' : used in base member initializer list
1839 Type *this_() { return this; }
1840
1841 void setDependence(TypeDependence D) {
1842 TypeBits.Dependence = static_cast<unsigned>(D);
1843 }
1844
1845 void addDependence(TypeDependence D) { setDependence(getDependence() | D); }
1846
1847public:
1848 friend class ASTReader;
1849 friend class ASTWriter;
1850 template <class T> friend class serialization::AbstractTypeReader;
1851 template <class T> friend class serialization::AbstractTypeWriter;
1852
1853 Type(const Type &) = delete;
1854 Type(Type &&) = delete;
1855 Type &operator=(const Type &) = delete;
1856 Type &operator=(Type &&) = delete;
1857
1858 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1859
1860 /// Whether this type comes from an AST file.
1861 bool isFromAST() const { return TypeBits.FromAST; }
1862
1863 /// Whether this type is or contains an unexpanded parameter
1864 /// pack, used to support C++0x variadic templates.
1865 ///
1866 /// A type that contains a parameter pack shall be expanded by the
1867 /// ellipsis operator at some point. For example, the typedef in the
1868 /// following example contains an unexpanded parameter pack 'T':
1869 ///
1870 /// \code
1871 /// template<typename ...T>
1872 /// struct X {
1873 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1874 /// };
1875 /// \endcode
1876 ///
1877 /// Note that this routine does not specify which
1878 bool containsUnexpandedParameterPack() const {
1879 return getDependence() & TypeDependence::UnexpandedPack;
1880 }
1881
1882 /// Determines if this type would be canonical if it had no further
1883 /// qualification.
1884 bool isCanonicalUnqualified() const {
1885 return CanonicalType == QualType(this, 0);
1886 }
1887
1888 /// Pull a single level of sugar off of this locally-unqualified type.
1889 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1890 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1891 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1892
1893 /// As an extension, we classify types as one of "sized" or "sizeless";
1894 /// every type is one or the other. Standard types are all sized;
1895 /// sizeless types are purely an extension.
1896 ///
1897 /// Sizeless types contain data with no specified size, alignment,
1898 /// or layout.
1899 bool isSizelessType() const;
1900 bool isSizelessBuiltinType() const;
1901
1902 /// Determines if this is a sizeless type supported by the
1903 /// 'arm_sve_vector_bits' type attribute, which can be applied to a single
1904 /// SVE vector or predicate, excluding tuple types such as svint32x4_t.
1905 bool isVLSTBuiltinType() const;
1906
1907 /// Returns the representative type for the element of an SVE builtin type.
1908 /// This is used to represent fixed-length SVE vectors created with the
1909 /// 'arm_sve_vector_bits' type attribute as VectorType.
1910 QualType getSveEltType(const ASTContext &Ctx) const;
1911
1912 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1913 /// object types, function types, and incomplete types.
1914
1915 /// Return true if this is an incomplete type.
1916 /// A type that can describe objects, but which lacks information needed to
1917 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1918 /// routine will need to determine if the size is actually required.
1919 ///
1920 /// Def If non-null, and the type refers to some kind of declaration
1921 /// that can be completed (such as a C struct, C++ class, or Objective-C
1922 /// class), will be set to the declaration.
1923 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1924
1925 /// Return true if this is an incomplete or object
1926 /// type, in other words, not a function type.
1927 bool isIncompleteOrObjectType() const {
1928 return !isFunctionType();
1929 }
1930
1931 /// Determine whether this type is an object type.
1932 bool isObjectType() const {
1933 // C++ [basic.types]p8:
1934 // An object type is a (possibly cv-qualified) type that is not a
1935 // function type, not a reference type, and not a void type.
1936 return !isReferenceType() && !isFunctionType() && !isVoidType();
1937 }
1938
1939 /// Return true if this is a literal type
1940 /// (C++11 [basic.types]p10)
1941 bool isLiteralType(const ASTContext &Ctx) const;
1942
1943 /// Determine if this type is a structural type, per C++20 [temp.param]p7.
1944 bool isStructuralType() const;
1945
1946 /// Test if this type is a standard-layout type.
1947 /// (C++0x [basic.type]p9)
1948 bool isStandardLayoutType() const;
1949
1950 /// Helper methods to distinguish type categories. All type predicates
1951 /// operate on the canonical type, ignoring typedefs and qualifiers.
1952
1953 /// Returns true if the type is a builtin type.
1954 bool isBuiltinType() const;
1955
1956 /// Test for a particular builtin type.
1957 bool isSpecificBuiltinType(unsigned K) const;
1958
1959 /// Test for a type which does not represent an actual type-system type but
1960 /// is instead used as a placeholder for various convenient purposes within
1961 /// Clang. All such types are BuiltinTypes.
1962 bool isPlaceholderType() const;
1963 const BuiltinType *getAsPlaceholderType() const;
1964
1965 /// Test for a specific placeholder type.
1966 bool isSpecificPlaceholderType(unsigned K) const;
1967
1968 /// Test for a placeholder type other than Overload; see
1969 /// BuiltinType::isNonOverloadPlaceholderType.
1970 bool isNonOverloadPlaceholderType() const;
1971
1972 /// isIntegerType() does *not* include complex integers (a GCC extension).
1973 /// isComplexIntegerType() can be used to test for complex integers.
1974 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1975 bool isEnumeralType() const;
1976
1977 /// Determine whether this type is a scoped enumeration type.
1978 bool isScopedEnumeralType() const;
1979 bool isBooleanType() const;
1980 bool isCharType() const;
1981 bool isWideCharType() const;
1982 bool isChar8Type() const;
1983 bool isChar16Type() const;
1984 bool isChar32Type() const;
1985 bool isAnyCharacterType() const;
1986 bool isIntegralType(const ASTContext &Ctx) const;
1987
1988 /// Determine whether this type is an integral or enumeration type.
1989 bool isIntegralOrEnumerationType() const;
1990
1991 /// Determine whether this type is an integral or unscoped enumeration type.
1992 bool isIntegralOrUnscopedEnumerationType() const;
1993 bool isUnscopedEnumerationType() const;
1994
1995 /// Floating point categories.
1996 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1997 /// isComplexType() does *not* include complex integers (a GCC extension).
1998 /// isComplexIntegerType() can be used to test for complex integers.
1999 bool isComplexType() const; // C99 6.2.5p11 (complex)
2000 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
2001 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
2002 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
2003 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
2004 bool isBFloat16Type() const;
2005 bool isFloat128Type() const;
2006 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
2007 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
2008 bool isVoidType() const; // C99 6.2.5p19
2009 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
2010 bool isAggregateType() const;
2011 bool isFundamentalType() const;
2012 bool isCompoundType() const;
2013
2014 // Type Predicates: Check to see if this type is structurally the specified
2015 // type, ignoring typedefs and qualifiers.
2016 bool isFunctionType() const;
2017 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2018 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2019 bool isPointerType() const;
2020 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2021 bool isBlockPointerType() const;
2022 bool isVoidPointerType() const;
2023 bool isReferenceType() const;
2024 bool isLValueReferenceType() const;
2025 bool isRValueReferenceType() const;
2026 bool isObjectPointerType() const;
2027 bool isFunctionPointerType() const;
2028 bool isFunctionReferenceType() const;
2029 bool isMemberPointerType() const;
2030 bool isMemberFunctionPointerType() const;
2031 bool isMemberDataPointerType() const;
2032 bool isArrayType() const;
2033 bool isConstantArrayType() const;
2034 bool isIncompleteArrayType() const;
2035 bool isVariableArrayType() const;
2036 bool isDependentSizedArrayType() const;
2037 bool isRecordType() const;
2038 bool isClassType() const;
2039 bool isStructureType() const;
2040 bool isObjCBoxableRecordType() const;
2041 bool isInterfaceType() const;
2042 bool isStructureOrClassType() const;
2043 bool isUnionType() const;
2044 bool isComplexIntegerType() const; // GCC _Complex integer type.
2045 bool isVectorType() const; // GCC vector type.
2046 bool isExtVectorType() const; // Extended vector type.
2047 bool isMatrixType() const; // Matrix type.
2048 bool isConstantMatrixType() const; // Constant matrix type.
2049 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2050 bool isObjCObjectPointerType() const; // pointer to ObjC object
2051 bool isObjCRetainableType() const; // ObjC object or block pointer
2052 bool isObjCLifetimeType() const; // (array of)* retainable type
2053 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2054 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2055 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2056 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2057 // for the common case.
2058 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2059 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2060 bool isObjCQualifiedIdType() const; // id<foo>
2061 bool isObjCQualifiedClassType() const; // Class<foo>
2062 bool isObjCObjectOrInterfaceType() const;
2063 bool isObjCIdType() const; // id
2064 bool isDecltypeType() const;
2065 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2066 /// qualifier?
2067 ///
2068 /// This approximates the answer to the following question: if this
2069 /// translation unit were compiled in ARC, would this type be qualified
2070 /// with __unsafe_unretained?
2071 bool isObjCInertUnsafeUnretainedType() const {
2072 return hasAttr(attr::ObjCInertUnsafeUnretained);
2073 }
2074
2075 /// Whether the type is Objective-C 'id' or a __kindof type of an
2076 /// object type, e.g., __kindof NSView * or __kindof id
2077 /// <NSCopying>.
2078 ///
2079 /// \param bound Will be set to the bound on non-id subtype types,
2080 /// which will be (possibly specialized) Objective-C class type, or
2081 /// null for 'id.
2082 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2083 const ObjCObjectType *&bound) const;
2084
2085 bool isObjCClassType() const; // Class
2086
2087 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2088 /// Class type, e.g., __kindof Class <NSCopying>.
2089 ///
2090 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2091 /// here because Objective-C's type system cannot express "a class
2092 /// object for a subclass of NSFoo".
2093 bool isObjCClassOrClassKindOfType() const;
2094
2095 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2096 bool isObjCSelType() const; // Class
2097 bool isObjCBuiltinType() const; // 'id' or 'Class'
2098 bool isObjCARCBridgableType() const;
2099 bool isCARCBridgableType() const;
2100 bool isTemplateTypeParmType() const; // C++ template type parameter
2101 bool isNullPtrType() const; // C++11 std::nullptr_t
2102 bool isNothrowT() const; // C++ std::nothrow_t
2103 bool isAlignValT() const; // C++17 std::align_val_t
2104 bool isStdByteType() const; // C++17 std::byte
2105 bool isAtomicType() const; // C11 _Atomic()
2106 bool isUndeducedAutoType() const; // C++11 auto or
2107 // C++14 decltype(auto)
2108 bool isTypedefNameType() const; // typedef or alias template
2109
2110#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2111 bool is##Id##Type() const;
2112#include "clang/Basic/OpenCLImageTypes.def"
2113
2114 bool isImageType() const; // Any OpenCL image type
2115
2116 bool isSamplerT() const; // OpenCL sampler_t
2117 bool isEventT() const; // OpenCL event_t
2118 bool isClkEventT() const; // OpenCL clk_event_t
2119 bool isQueueT() const; // OpenCL queue_t
2120 bool isReserveIDT() const; // OpenCL reserve_id_t
2121
2122#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2123 bool is##Id##Type() const;
2124#include "clang/Basic/OpenCLExtensionTypes.def"
2125 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2126 bool isOCLIntelSubgroupAVCType() const;
2127 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2128
2129 bool isPipeType() const; // OpenCL pipe type
2130 bool isExtIntType() const; // Extended Int Type
2131 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2132
2133 /// Determines if this type, which must satisfy
2134 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2135 /// than implicitly __strong.
2136 bool isObjCARCImplicitlyUnretainedType() const;
2137
2138 /// Check if the type is the CUDA device builtin surface type.
2139 bool isCUDADeviceBuiltinSurfaceType() const;
2140 /// Check if the type is the CUDA device builtin texture type.
2141 bool isCUDADeviceBuiltinTextureType() const;
2142
2143 /// Return the implicit lifetime for this type, which must not be dependent.
2144 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2145
2146 enum ScalarTypeKind {
2147 STK_CPointer,
2148 STK_BlockPointer,
2149 STK_ObjCObjectPointer,
2150 STK_MemberPointer,
2151 STK_Bool,
2152 STK_Integral,
2153 STK_Floating,
2154 STK_IntegralComplex,
2155 STK_FloatingComplex,
2156 STK_FixedPoint
2157 };
2158
2159 /// Given that this is a scalar type, classify it.
2160 ScalarTypeKind getScalarTypeKind() const;
2161
2162 TypeDependence getDependence() const {
2163 return static_cast<TypeDependence>(TypeBits.Dependence);
2164 }
2165
2166 /// Whether this type is an error type.
2167 bool containsErrors() const {
2168 return getDependence() & TypeDependence::Error;
2169 }
2170
2171 /// Whether this type is a dependent type, meaning that its definition
2172 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2173 bool isDependentType() const {
2174 return getDependence() & TypeDependence::Dependent;
2175 }
2176
2177 /// Determine whether this type is an instantiation-dependent type,
2178 /// meaning that the type involves a template parameter (even if the
2179 /// definition does not actually depend on the type substituted for that
2180 /// template parameter).
2181 bool isInstantiationDependentType() const {
2182 return getDependence() & TypeDependence::Instantiation;
2183 }
2184
2185 /// Determine whether this type is an undeduced type, meaning that
2186 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2187 /// deduced.
2188 bool isUndeducedType() const;
2189
2190 /// Whether this type is a variably-modified type (C99 6.7.5).
2191 bool isVariablyModifiedType() const {
2192 return getDependence() & TypeDependence::VariablyModified;
2193 }
2194
2195 /// Whether this type involves a variable-length array type
2196 /// with a definite size.
2197 bool hasSizedVLAType() const;
2198
2199 /// Whether this type is or contains a local or unnamed type.
2200 bool hasUnnamedOrLocalType() const;
2201
2202 bool isOverloadableType() const;
2203
2204 /// Determine wither this type is a C++ elaborated-type-specifier.
2205 bool isElaboratedTypeSpecifier() const;
2206
2207 bool canDecayToPointerType() const;
2208
2209 /// Whether this type is represented natively as a pointer. This includes
2210 /// pointers, references, block pointers, and Objective-C interface,
2211 /// qualified id, and qualified interface types, as well as nullptr_t.
2212 bool hasPointerRepresentation() const;
2213
2214 /// Whether this type can represent an objective pointer type for the
2215 /// purpose of GC'ability
2216 bool hasObjCPointerRepresentation() const;
2217
2218 /// Determine whether this type has an integer representation
2219 /// of some sort, e.g., it is an integer type or a vector.
2220 bool hasIntegerRepresentation() const;
2221
2222 /// Determine whether this type has an signed integer representation
2223 /// of some sort, e.g., it is an signed integer type or a vector.
2224 bool hasSignedIntegerRepresentation() const;
2225
2226 /// Determine whether this type has an unsigned integer representation
2227 /// of some sort, e.g., it is an unsigned integer type or a vector.
2228 bool hasUnsignedIntegerRepresentation() const;
2229
2230 /// Determine whether this type has a floating-point representation
2231 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2232 bool hasFloatingRepresentation() const;
2233
2234 // Type Checking Functions: Check to see if this type is structurally the
2235 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2236 // the best type we can.
2237 const RecordType *getAsStructureType() const;
2238 /// NOTE: getAs*ArrayType are methods on ASTContext.
2239 const RecordType *getAsUnionType() const;
2240 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2241 const ObjCObjectType *getAsObjCInterfaceType() const;
2242
2243 // The following is a convenience method that returns an ObjCObjectPointerType
2244 // for object declared using an interface.
2245 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2246 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2247 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2248 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2249
2250 /// Retrieves the CXXRecordDecl that this type refers to, either
2251 /// because the type is a RecordType or because it is the injected-class-name
2252 /// type of a class template or class template partial specialization.
2253 CXXRecordDecl *getAsCXXRecordDecl() const;
2254
2255 /// Retrieves the RecordDecl this type refers to.
2256 RecordDecl *getAsRecordDecl() const;
2257
2258 /// Retrieves the TagDecl that this type refers to, either
2259 /// because the type is a TagType or because it is the injected-class-name
2260 /// type of a class template or class template partial specialization.
2261 TagDecl *getAsTagDecl() const;
2262
2263 /// If this is a pointer or reference to a RecordType, return the
2264 /// CXXRecordDecl that the type refers to.
2265 ///
2266 /// If this is not a pointer or reference, or the type being pointed to does
2267 /// not refer to a CXXRecordDecl, returns NULL.
2268 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2269
2270 /// Get the DeducedType whose type will be deduced for a variable with
2271 /// an initializer of this type. This looks through declarators like pointer
2272 /// types, but not through decltype or typedefs.
2273 DeducedType *getContainedDeducedType() const;
2274
2275 /// Get the AutoType whose type will be deduced for a variable with
2276 /// an initializer of this type. This looks through declarators like pointer
2277 /// types, but not through decltype or typedefs.
2278 AutoType *getContainedAutoType() const {
2279 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2280 }
2281
2282 /// Determine whether this type was written with a leading 'auto'
2283 /// corresponding to a trailing return type (possibly for a nested
2284 /// function type within a pointer to function type or similar).
2285 bool hasAutoForTrailingReturnType() const;
2286
2287 /// Member-template getAs<specific type>'. Look through sugar for
2288 /// an instance of \<specific type>. This scheme will eventually
2289 /// replace the specific getAsXXXX methods above.
2290 ///
2291 /// There are some specializations of this member template listed
2292 /// immediately following this class.
2293 template <typename T> const T *getAs() const;
2294
2295 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2296 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2297 /// This is used when you need to walk over sugar nodes that represent some
2298 /// kind of type adjustment from a type that was written as a \<specific type>
2299 /// to another type that is still canonically a \<specific type>.
2300 template <typename T> const T *getAsAdjusted() const;
2301
2302 /// A variant of getAs<> for array types which silently discards
2303 /// qualifiers from the outermost type.
2304 const ArrayType *getAsArrayTypeUnsafe() const;
2305
2306 /// Member-template castAs<specific type>. Look through sugar for
2307 /// the underlying instance of \<specific type>.
2308 ///
2309 /// This method has the same relationship to getAs<T> as cast<T> has
2310 /// to dyn_cast<T>; which is to say, the underlying type *must*
2311 /// have the intended type, and this method will never return null.
2312 template <typename T> const T *castAs() const;
2313
2314 /// A variant of castAs<> for array type which silently discards
2315 /// qualifiers from the outermost type.
2316 const ArrayType *castAsArrayTypeUnsafe() const;
2317
2318 /// Determine whether this type had the specified attribute applied to it
2319 /// (looking through top-level type sugar).
2320 bool hasAttr(attr::Kind AK) const;
2321
2322 /// Get the base element type of this type, potentially discarding type
2323 /// qualifiers. This should never be used when type qualifiers
2324 /// are meaningful.
2325 const Type *getBaseElementTypeUnsafe() const;
2326
2327 /// If this is an array type, return the element type of the array,
2328 /// potentially with type qualifiers missing.
2329 /// This should never be used when type qualifiers are meaningful.
2330 const Type *getArrayElementTypeNoTypeQual() const;
2331
2332 /// If this is a pointer type, return the pointee type.
2333 /// If this is an array type, return the array element type.
2334 /// This should never be used when type qualifiers are meaningful.
2335 const Type *getPointeeOrArrayElementType() const;
2336
2337 /// If this is a pointer, ObjC object pointer, or block
2338 /// pointer, this returns the respective pointee.
2339 QualType getPointeeType() const;
2340
2341 /// Return the specified type with any "sugar" removed from the type,
2342 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2343 const Type *getUnqualifiedDesugaredType() const;
2344
2345 /// More type predicates useful for type checking/promotion
2346 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2347
2348 /// Return true if this is an integer type that is
2349 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2350 /// or an enum decl which has a signed representation.
2351 bool isSignedIntegerType() const;
2352
2353 /// Return true if this is an integer type that is
2354 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2355 /// or an enum decl which has an unsigned representation.
2356 bool isUnsignedIntegerType() const;
2357
2358 /// Determines whether this is an integer type that is signed or an
2359 /// enumeration types whose underlying type is a signed integer type.
2360 bool isSignedIntegerOrEnumerationType() const;
2361
2362 /// Determines whether this is an integer type that is unsigned or an
2363 /// enumeration types whose underlying type is a unsigned integer type.
2364 bool isUnsignedIntegerOrEnumerationType() const;
2365
2366 /// Return true if this is a fixed point type according to
2367 /// ISO/IEC JTC1 SC22 WG14 N1169.
2368 bool isFixedPointType() const;
2369
2370 /// Return true if this is a fixed point or integer type.
2371 bool isFixedPointOrIntegerType() const;
2372
2373 /// Return true if this is a saturated fixed point type according to
2374 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2375 bool isSaturatedFixedPointType() const;
2376
2377 /// Return true if this is a saturated fixed point type according to
2378 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2379 bool isUnsaturatedFixedPointType() const;
2380
2381 /// Return true if this is a fixed point type that is signed according
2382 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2383 bool isSignedFixedPointType() const;
2384
2385 /// Return true if this is a fixed point type that is unsigned according
2386 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2387 bool isUnsignedFixedPointType() const;
2388
2389 /// Return true if this is not a variable sized type,
2390 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2391 /// incomplete types.
2392 bool isConstantSizeType() const;
2393
2394 /// Returns true if this type can be represented by some
2395 /// set of type specifiers.
2396 bool isSpecifierType() const;
2397
2398 /// Determine the linkage of this type.
2399 Linkage getLinkage() const;
2400
2401 /// Determine the visibility of this type.
2402 Visibility getVisibility() const {
2403 return getLinkageAndVisibility().getVisibility();
2404 }
2405
2406 /// Return true if the visibility was explicitly set is the code.
2407 bool isVisibilityExplicit() const {
2408 return getLinkageAndVisibility().isVisibilityExplicit();
2409 }
2410
2411 /// Determine the linkage and visibility of this type.
2412 LinkageInfo getLinkageAndVisibility() const;
2413
2414 /// True if the computed linkage is valid. Used for consistency
2415 /// checking. Should always return true.
2416 bool isLinkageValid() const;
2417
2418 /// Determine the nullability of the given type.
2419 ///
2420 /// Note that nullability is only captured as sugar within the type
2421 /// system, not as part of the canonical type, so nullability will
2422 /// be lost by canonicalization and desugaring.
2423 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2424
2425 /// Determine whether the given type can have a nullability
2426 /// specifier applied to it, i.e., if it is any kind of pointer type.
2427 ///
2428 /// \param ResultIfUnknown The value to return if we don't yet know whether
2429 /// this type can have nullability because it is dependent.
2430 bool canHaveNullability(bool ResultIfUnknown = true) const;
2431
2432 /// Retrieve the set of substitutions required when accessing a member
2433 /// of the Objective-C receiver type that is declared in the given context.
2434 ///
2435 /// \c *this is the type of the object we're operating on, e.g., the
2436 /// receiver for a message send or the base of a property access, and is
2437 /// expected to be of some object or object pointer type.
2438 ///
2439 /// \param dc The declaration context for which we are building up a
2440 /// substitution mapping, which should be an Objective-C class, extension,
2441 /// category, or method within.
2442 ///
2443 /// \returns an array of type arguments that can be substituted for
2444 /// the type parameters of the given declaration context in any type described
2445 /// within that context, or an empty optional to indicate that no
2446 /// substitution is required.
2447 Optional<ArrayRef<QualType>>
2448 getObjCSubstitutions(const DeclContext *dc) const;
2449
2450 /// Determines if this is an ObjC interface type that may accept type
2451 /// parameters.
2452 bool acceptsObjCTypeParams() const;
2453
2454 const char *getTypeClassName() const;
2455
2456 QualType getCanonicalTypeInternal() const {
2457 return CanonicalType;
2458 }
2459
2460 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2461 void dump() const;
2462 void dump(llvm::raw_ostream &OS, const ASTContext &Context) const;
2463};
2464
2465/// This will check for a TypedefType by removing any existing sugar
2466/// until it reaches a TypedefType or a non-sugared type.
2467template <> const TypedefType *Type::getAs() const;
2468
2469/// This will check for a TemplateSpecializationType by removing any
2470/// existing sugar until it reaches a TemplateSpecializationType or a
2471/// non-sugared type.
2472template <> const TemplateSpecializationType *Type::getAs() const;
2473
2474/// This will check for an AttributedType by removing any existing sugar
2475/// until it reaches an AttributedType or a non-sugared type.
2476template <> const AttributedType *Type::getAs() const;
2477
2478// We can do canonical leaf types faster, because we don't have to
2479// worry about preserving child type decoration.
2480#define TYPE(Class, Base)
2481#define LEAF_TYPE(Class) \
2482template <> inline const Class##Type *Type::getAs() const { \
2483 return dyn_cast<Class##Type>(CanonicalType); \
2484} \
2485template <> inline const Class##Type *Type::castAs() const { \
2486 return cast<Class##Type>(CanonicalType); \
2487}
2488#include "clang/AST/TypeNodes.inc"
2489
2490/// This class is used for builtin types like 'int'. Builtin
2491/// types are always canonical and have a literal name field.
2492class BuiltinType : public Type {
2493public:
2494 enum Kind {
2495// OpenCL image types
2496#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2497#include "clang/Basic/OpenCLImageTypes.def"
2498// OpenCL extension types
2499#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2500#include "clang/Basic/OpenCLExtensionTypes.def"
2501// SVE Types
2502#define SVE_TYPE(Name, Id, SingletonId) Id,
2503#include "clang/Basic/AArch64SVEACLETypes.def"
2504// PPC MMA Types
2505#define PPC_VECTOR_TYPE(Name, Id, Size) Id,
2506#include "clang/Basic/PPCTypes.def"
2507// RVV Types
2508#define RVV_TYPE(Name, Id, SingletonId) Id,
2509#include "clang/Basic/RISCVVTypes.def"
2510// All other builtin types
2511#define BUILTIN_TYPE(Id, SingletonId) Id,
2512#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2513#include "clang/AST/BuiltinTypes.def"
2514 };
2515
2516private:
2517 friend class ASTContext; // ASTContext creates these.
2518
2519 BuiltinType(Kind K)
2520 : Type(Builtin, QualType(),
2521 K == Dependent ? TypeDependence::DependentInstantiation
2522 : TypeDependence::None) {
2523 BuiltinTypeBits.Kind = K;
2524 }
2525
2526public:
2527 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2528 StringRef getName(const PrintingPolicy &Policy) const;
2529
2530 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2531 // The StringRef is null-terminated.
2532 StringRef str = getName(Policy);
2533 assert(!str.empty() && str.data()[str.size()] == '\0')(static_cast <bool> (!str.empty() && str.data()
[str.size()] == '\0') ? void (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 2533, __extension__ __PRETTY_FUNCTION__))
;
2534 return str.data();
2535 }
2536
2537 bool isSugared() const { return false; }
2538 QualType desugar() const { return QualType(this, 0); }
2539
2540 bool isInteger() const {
2541 return getKind() >= Bool && getKind() <= Int128;
2542 }
2543
2544 bool isSignedInteger() const {
2545 return getKind() >= Char_S && getKind() <= Int128;
2546 }
2547
2548 bool isUnsignedInteger() const {
2549 return getKind() >= Bool && getKind() <= UInt128;
2550 }
2551
2552 bool isFloatingPoint() const {
2553 return getKind() >= Half && getKind() <= Float128;
2554 }
2555
2556 /// Determines whether the given kind corresponds to a placeholder type.
2557 static bool isPlaceholderTypeKind(Kind K) {
2558 return K >= Overload;
2559 }
2560
2561 /// Determines whether this type is a placeholder type, i.e. a type
2562 /// which cannot appear in arbitrary positions in a fully-formed
2563 /// expression.
2564 bool isPlaceholderType() const {
2565 return isPlaceholderTypeKind(getKind());
2566 }
2567
2568 /// Determines whether this type is a placeholder type other than
2569 /// Overload. Most placeholder types require only syntactic
2570 /// information about their context in order to be resolved (e.g.
2571 /// whether it is a call expression), which means they can (and
2572 /// should) be resolved in an earlier "phase" of analysis.
2573 /// Overload expressions sometimes pick up further information
2574 /// from their context, like whether the context expects a
2575 /// specific function-pointer type, and so frequently need
2576 /// special treatment.
2577 bool isNonOverloadPlaceholderType() const {
2578 return getKind() > Overload;
2579 }
2580
2581 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2582};
2583
2584/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2585/// types (_Complex float etc) as well as the GCC integer complex extensions.
2586class ComplexType : public Type, public llvm::FoldingSetNode {
2587 friend class ASTContext; // ASTContext creates these.
2588
2589 QualType ElementType;
2590
2591 ComplexType(QualType Element, QualType CanonicalPtr)
2592 : Type(Complex, CanonicalPtr, Element->getDependence()),
2593 ElementType(Element) {}
2594
2595public:
2596 QualType getElementType() const { return ElementType; }
2597
2598 bool isSugared() const { return false; }
2599 QualType desugar() const { return QualType(this, 0); }
2600
2601 void Profile(llvm::FoldingSetNodeID &ID) {
2602 Profile(ID, getElementType());
2603 }
2604
2605 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2606 ID.AddPointer(Element.getAsOpaquePtr());
2607 }
2608
2609 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2610};
2611
2612/// Sugar for parentheses used when specifying types.
2613class ParenType : public Type, public llvm::FoldingSetNode {
2614 friend class ASTContext; // ASTContext creates these.
2615
2616 QualType Inner;
2617
2618 ParenType(QualType InnerType, QualType CanonType)
2619 : Type(Paren, CanonType, InnerType->getDependence()), Inner(InnerType) {}
2620
2621public:
2622 QualType getInnerType() const { return Inner; }
2623
2624 bool isSugared() const { return true; }
2625 QualType desugar() const { return getInnerType(); }
2626
2627 void Profile(llvm::FoldingSetNodeID &ID) {
2628 Profile(ID, getInnerType());
2629 }
2630
2631 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2632 Inner.Profile(ID);
2633 }
2634
2635 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2636};
2637
2638/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2639class PointerType : public Type, public llvm::FoldingSetNode {
2640 friend class ASTContext; // ASTContext creates these.
2641
2642 QualType PointeeType;
2643
2644 PointerType(QualType Pointee, QualType CanonicalPtr)
2645 : Type(Pointer, CanonicalPtr, Pointee->getDependence()),
2646 PointeeType(Pointee) {}
2647
2648public:
2649 QualType getPointeeType() const { return PointeeType; }
2650
2651 bool isSugared() const { return false; }
2652 QualType desugar() const { return QualType(this, 0); }
2653
2654 void Profile(llvm::FoldingSetNodeID &ID) {
2655 Profile(ID, getPointeeType());
2656 }
2657
2658 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2659 ID.AddPointer(Pointee.getAsOpaquePtr());
2660 }
2661
2662 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2663};
2664
2665/// Represents a type which was implicitly adjusted by the semantic
2666/// engine for arbitrary reasons. For example, array and function types can
2667/// decay, and function types can have their calling conventions adjusted.
2668class AdjustedType : public Type, public llvm::FoldingSetNode {
2669 QualType OriginalTy;
2670 QualType AdjustedTy;
2671
2672protected:
2673 friend class ASTContext; // ASTContext creates these.
2674
2675 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2676 QualType CanonicalPtr)
2677 : Type(TC, CanonicalPtr, OriginalTy->getDependence()),
2678 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2679
2680public:
2681 QualType getOriginalType() const { return OriginalTy; }
2682 QualType getAdjustedType() const { return AdjustedTy; }
2683
2684 bool isSugared() const { return true; }
2685 QualType desugar() const { return AdjustedTy; }
2686
2687 void Profile(llvm::FoldingSetNodeID &ID) {
2688 Profile(ID, OriginalTy, AdjustedTy);
2689 }
2690
2691 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2692 ID.AddPointer(Orig.getAsOpaquePtr());
2693 ID.AddPointer(New.getAsOpaquePtr());
2694 }
2695
2696 static bool classof(const Type *T) {
2697 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2698 }
2699};
2700
2701/// Represents a pointer type decayed from an array or function type.
2702class DecayedType : public AdjustedType {
2703 friend class ASTContext; // ASTContext creates these.
2704
2705 inline
2706 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2707
2708public:
2709 QualType getDecayedType() const { return getAdjustedType(); }
2710
2711 inline QualType getPointeeType() const;
2712
2713 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2714};
2715
2716/// Pointer to a block type.
2717/// This type is to represent types syntactically represented as
2718/// "void (^)(int)", etc. Pointee is required to always be a function type.
2719class BlockPointerType : public Type, public llvm::FoldingSetNode {
2720 friend class ASTContext; // ASTContext creates these.
2721
2722 // Block is some kind of pointer type
2723 QualType PointeeType;
2724
2725 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2726 : Type(BlockPointer, CanonicalCls, Pointee->getDependence()),
2727 PointeeType(Pointee) {}
2728
2729public:
2730 // Get the pointee type. Pointee is required to always be a function type.
2731 QualType getPointeeType() const { return PointeeType; }
2732
2733 bool isSugared() const { return false; }
2734 QualType desugar() const { return QualType(this, 0); }
2735
2736 void Profile(llvm::FoldingSetNodeID &ID) {
2737 Profile(ID, getPointeeType());
2738 }
2739
2740 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2741 ID.AddPointer(Pointee.getAsOpaquePtr());
2742 }
2743
2744 static bool classof(const Type *T) {
2745 return T->getTypeClass() == BlockPointer;
2746 }
2747};
2748
2749/// Base for LValueReferenceType and RValueReferenceType
2750class ReferenceType : public Type, public llvm::FoldingSetNode {
2751 QualType PointeeType;
2752
2753protected:
2754 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2755 bool SpelledAsLValue)
2756 : Type(tc, CanonicalRef, Referencee->getDependence()),
2757 PointeeType(Referencee) {
2758 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2759 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2760 }
2761
2762public:
2763 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2764 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2765
2766 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2767
2768 QualType getPointeeType() const {
2769 // FIXME: this might strip inner qualifiers; okay?
2770 const ReferenceType *T = this;
2771 while (T->isInnerRef())
2772 T = T->PointeeType->castAs<ReferenceType>();
2773 return T->PointeeType;
2774 }
2775
2776 void Profile(llvm::FoldingSetNodeID &ID) {
2777 Profile(ID, PointeeType, isSpelledAsLValue());
2778 }
2779
2780 static void Profile(llvm::FoldingSetNodeID &ID,
2781 QualType Referencee,
2782 bool SpelledAsLValue) {
2783 ID.AddPointer(Referencee.getAsOpaquePtr());
2784 ID.AddBoolean(SpelledAsLValue);
2785 }
2786
2787 static bool classof(const Type *T) {
2788 return T->getTypeClass() == LValueReference ||
2789 T->getTypeClass() == RValueReference;
2790 }
2791};
2792
2793/// An lvalue reference type, per C++11 [dcl.ref].
2794class LValueReferenceType : public ReferenceType {
2795 friend class ASTContext; // ASTContext creates these
2796
2797 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2798 bool SpelledAsLValue)
2799 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2800 SpelledAsLValue) {}
2801
2802public:
2803 bool isSugared() const { return false; }
2804 QualType desugar() const { return QualType(this, 0); }
2805
2806 static bool classof(const Type *T) {
2807 return T->getTypeClass() == LValueReference;
2808 }
2809};
2810
2811/// An rvalue reference type, per C++11 [dcl.ref].
2812class RValueReferenceType : public ReferenceType {
2813 friend class ASTContext; // ASTContext creates these
2814
2815 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2816 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2817
2818public:
2819 bool isSugared() const { return false; }
2820 QualType desugar() const { return QualType(this, 0); }
2821
2822 static bool classof(const Type *T) {
2823 return T->getTypeClass() == RValueReference;
2824 }
2825};
2826
2827/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2828///
2829/// This includes both pointers to data members and pointer to member functions.
2830class MemberPointerType : public Type, public llvm::FoldingSetNode {
2831 friend class ASTContext; // ASTContext creates these.
2832
2833 QualType PointeeType;
2834
2835 /// The class of which the pointee is a member. Must ultimately be a
2836 /// RecordType, but could be a typedef or a template parameter too.
2837 const Type *Class;
2838
2839 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2840 : Type(MemberPointer, CanonicalPtr,
2841 (Cls->getDependence() & ~TypeDependence::VariablyModified) |
2842 Pointee->getDependence()),
2843 PointeeType(Pointee), Class(Cls) {}
2844
2845public:
2846 QualType getPointeeType() const { return PointeeType; }
2847
2848 /// Returns true if the member type (i.e. the pointee type) is a
2849 /// function type rather than a data-member type.
2850 bool isMemberFunctionPointer() const {
2851 return PointeeType->isFunctionProtoType();
2852 }
2853
2854 /// Returns true if the member type (i.e. the pointee type) is a
2855 /// data type rather than a function type.
2856 bool isMemberDataPointer() const {
2857 return !PointeeType->isFunctionProtoType();
2858 }
2859
2860 const Type *getClass() const { return Class; }
2861 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2862
2863 bool isSugared() const { return false; }
2864 QualType desugar() const { return QualType(this, 0); }
2865
2866 void Profile(llvm::FoldingSetNodeID &ID) {
2867 Profile(ID, getPointeeType(), getClass());
2868 }
2869
2870 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2871 const Type *Class) {
2872 ID.AddPointer(Pointee.getAsOpaquePtr());
2873 ID.AddPointer(Class);
2874 }
2875
2876 static bool classof(const Type *T) {
2877 return T->getTypeClass() == MemberPointer;
2878 }
2879};
2880
2881/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2882class ArrayType : public Type, public llvm::FoldingSetNode {
2883public:
2884 /// Capture whether this is a normal array (e.g. int X[4])
2885 /// an array with a static size (e.g. int X[static 4]), or an array
2886 /// with a star size (e.g. int X[*]).
2887 /// 'static' is only allowed on function parameters.
2888 enum ArraySizeModifier {
2889 Normal, Static, Star
2890 };
2891
2892private:
2893 /// The element type of the array.
2894 QualType ElementType;
2895
2896protected:
2897 friend class ASTContext; // ASTContext creates these.
2898
2899 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2900 unsigned tq, const Expr *sz = nullptr);
2901
2902public:
2903 QualType getElementType() const { return ElementType; }
2904
2905 ArraySizeModifier getSizeModifier() const {
2906 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2907 }
2908
2909 Qualifiers getIndexTypeQualifiers() const {
2910 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2911 }
2912
2913 unsigned getIndexTypeCVRQualifiers() const {
2914 return ArrayTypeBits.IndexTypeQuals;
2915 }
2916
2917 static bool classof(const Type *T) {
2918 return T->getTypeClass() == ConstantArray ||
2919 T->getTypeClass() == VariableArray ||
2920 T->getTypeClass() == IncompleteArray ||
2921 T->getTypeClass() == DependentSizedArray;
2922 }
2923};
2924
2925/// Represents the canonical version of C arrays with a specified constant size.
2926/// For example, the canonical type for 'int A[4 + 4*100]' is a
2927/// ConstantArrayType where the element type is 'int' and the size is 404.
2928class ConstantArrayType final
2929 : public ArrayType,
2930 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2931 friend class ASTContext; // ASTContext creates these.
2932 friend TrailingObjects;
2933
2934 llvm::APInt Size; // Allows us to unique the type.
2935
2936 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2937 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2938 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2939 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2940 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2941 assert(!can.isNull() && "canonical constant array should not have size")(static_cast <bool> (!can.isNull() && "canonical constant array should not have size"
) ? void (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 2941, __extension__ __PRETTY_FUNCTION__))
;
2942 *getTrailingObjects<const Expr*>() = sz;
2943 }
2944 }
2945
2946 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2947 return ConstantArrayTypeBits.HasStoredSizeExpr;
2948 }
2949
2950public:
2951 const llvm::APInt &getSize() const { return Size; }
2952 const Expr *getSizeExpr() const {
2953 return ConstantArrayTypeBits.HasStoredSizeExpr
2954 ? *getTrailingObjects<const Expr *>()
2955 : nullptr;
2956 }
2957 bool isSugared() const { return false; }
2958 QualType desugar() const { return QualType(this, 0); }
2959
2960 /// Determine the number of bits required to address a member of
2961 // an array with the given element type and number of elements.
2962 static unsigned getNumAddressingBits(const ASTContext &Context,
2963 QualType ElementType,
2964 const llvm::APInt &NumElements);
2965
2966 /// Determine the maximum number of active bits that an array's size
2967 /// can require, which limits the maximum size of the array.
2968 static unsigned getMaxSizeBits(const ASTContext &Context);
2969
2970 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2971 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2972 getSizeModifier(), getIndexTypeCVRQualifiers());
2973 }
2974
2975 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2976 QualType ET, const llvm::APInt &ArraySize,
2977 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2978 unsigned TypeQuals);
2979
2980 static bool classof(const Type *T) {
2981 return T->getTypeClass() == ConstantArray;
2982 }
2983};
2984
2985/// Represents a C array with an unspecified size. For example 'int A[]' has
2986/// an IncompleteArrayType where the element type is 'int' and the size is
2987/// unspecified.
2988class IncompleteArrayType : public ArrayType {
2989 friend class ASTContext; // ASTContext creates these.
2990
2991 IncompleteArrayType(QualType et, QualType can,
2992 ArraySizeModifier sm, unsigned tq)
2993 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2994
2995public:
2996 friend class StmtIteratorBase;
2997
2998 bool isSugared() const { return false; }
2999 QualType desugar() const { return QualType(this, 0); }
3000
3001 static bool classof(const Type *T) {
3002 return T->getTypeClass() == IncompleteArray;
3003 }
3004
3005 void Profile(llvm::FoldingSetNodeID &ID) {
3006 Profile(ID, getElementType(), getSizeModifier(),
3007 getIndexTypeCVRQualifiers());
3008 }
3009
3010 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3011 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3012 ID.AddPointer(ET.getAsOpaquePtr());
3013 ID.AddInteger(SizeMod);
3014 ID.AddInteger(TypeQuals);
3015 }
3016};
3017
3018/// Represents a C array with a specified size that is not an
3019/// integer-constant-expression. For example, 'int s[x+foo()]'.
3020/// Since the size expression is an arbitrary expression, we store it as such.
3021///
3022/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3023/// should not be: two lexically equivalent variable array types could mean
3024/// different things, for example, these variables do not have the same type
3025/// dynamically:
3026///
3027/// void foo(int x) {
3028/// int Y[x];
3029/// ++x;
3030/// int Z[x];
3031/// }
3032class VariableArrayType : public ArrayType {
3033 friend class ASTContext; // ASTContext creates these.
3034
3035 /// An assignment-expression. VLA's are only permitted within
3036 /// a function block.
3037 Stmt *SizeExpr;
3038
3039 /// The range spanned by the left and right array brackets.
3040 SourceRange Brackets;
3041
3042 VariableArrayType(QualType et, QualType can, Expr *e,
3043 ArraySizeModifier sm, unsigned tq,
3044 SourceRange brackets)
3045 : ArrayType(VariableArray, et, can, sm, tq, e),
3046 SizeExpr((Stmt*) e), Brackets(brackets) {}
3047
3048public:
3049 friend class StmtIteratorBase;
3050
3051 Expr *getSizeExpr() const {
3052 // We use C-style casts instead of cast<> here because we do not wish
3053 // to have a dependency of Type.h on Stmt.h/Expr.h.
3054 return (Expr*) SizeExpr;
3055 }
3056
3057 SourceRange getBracketsRange() const { return Brackets; }
3058 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3059 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3060
3061 bool isSugared() const { return false; }
3062 QualType desugar() const { return QualType(this, 0); }
3063
3064 static bool classof(const Type *T) {
3065 return T->getTypeClass() == VariableArray;
3066 }
3067
3068 void Profile(llvm::FoldingSetNodeID &ID) {
3069 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 3069)
;
3070 }
3071};
3072
3073/// Represents an array type in C++ whose size is a value-dependent expression.
3074///
3075/// For example:
3076/// \code
3077/// template<typename T, int Size>
3078/// class array {
3079/// T data[Size];
3080/// };
3081/// \endcode
3082///
3083/// For these types, we won't actually know what the array bound is
3084/// until template instantiation occurs, at which point this will
3085/// become either a ConstantArrayType or a VariableArrayType.
3086class DependentSizedArrayType : public ArrayType {
3087 friend class ASTContext; // ASTContext creates these.
3088
3089 const ASTContext &Context;
3090
3091 /// An assignment expression that will instantiate to the
3092 /// size of the array.
3093 ///
3094 /// The expression itself might be null, in which case the array
3095 /// type will have its size deduced from an initializer.
3096 Stmt *SizeExpr;
3097
3098 /// The range spanned by the left and right array brackets.
3099 SourceRange Brackets;
3100
3101 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3102 Expr *e, ArraySizeModifier sm, unsigned tq,
3103 SourceRange brackets);
3104
3105public:
3106 friend class StmtIteratorBase;
3107
3108 Expr *getSizeExpr() const {
3109 // We use C-style casts instead of cast<> here because we do not wish
3110 // to have a dependency of Type.h on Stmt.h/Expr.h.
3111 return (Expr*) SizeExpr;
3112 }
3113
3114 SourceRange getBracketsRange() const { return Brackets; }
3115 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3116 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3117
3118 bool isSugared() const { return false; }
3119 QualType desugar() const { return QualType(this, 0); }
3120
3121 static bool classof(const Type *T) {
3122 return T->getTypeClass() == DependentSizedArray;
3123 }
3124
3125 void Profile(llvm::FoldingSetNodeID &ID) {
3126 Profile(ID, Context, getElementType(),
3127 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3128 }
3129
3130 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3131 QualType ET, ArraySizeModifier SizeMod,
3132 unsigned TypeQuals, Expr *E);
3133};
3134
3135/// Represents an extended address space qualifier where the input address space
3136/// value is dependent. Non-dependent address spaces are not represented with a
3137/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3138///
3139/// For example:
3140/// \code
3141/// template<typename T, int AddrSpace>
3142/// class AddressSpace {
3143/// typedef T __attribute__((address_space(AddrSpace))) type;
3144/// }
3145/// \endcode
3146class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3147 friend class ASTContext;
3148
3149 const ASTContext &Context;
3150 Expr *AddrSpaceExpr;
3151 QualType PointeeType;
3152 SourceLocation loc;
3153
3154 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3155 QualType can, Expr *AddrSpaceExpr,
3156 SourceLocation loc);
3157
3158public:
3159 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3160 QualType getPointeeType() const { return PointeeType; }
3161 SourceLocation getAttributeLoc() const { return loc; }
3162
3163 bool isSugared() const { return false; }
3164 QualType desugar() const { return QualType(this, 0); }
3165
3166 static bool classof(const Type *T) {
3167 return T->getTypeClass() == DependentAddressSpace;
3168 }
3169
3170 void Profile(llvm::FoldingSetNodeID &ID) {
3171 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3172 }
3173
3174 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3175 QualType PointeeType, Expr *AddrSpaceExpr);
3176};
3177
3178/// Represents an extended vector type where either the type or size is
3179/// dependent.
3180///
3181/// For example:
3182/// \code
3183/// template<typename T, int Size>
3184/// class vector {
3185/// typedef T __attribute__((ext_vector_type(Size))) type;
3186/// }
3187/// \endcode
3188class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3189 friend class ASTContext;
3190
3191 const ASTContext &Context;
3192 Expr *SizeExpr;
3193
3194 /// The element type of the array.
3195 QualType ElementType;
3196
3197 SourceLocation loc;
3198
3199 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3200 QualType can, Expr *SizeExpr, SourceLocation loc);
3201
3202public:
3203 Expr *getSizeExpr() const { return SizeExpr; }
3204 QualType getElementType() const { return ElementType; }
3205 SourceLocation getAttributeLoc() const { return loc; }
3206
3207 bool isSugared() const { return false; }
3208 QualType desugar() const { return QualType(this, 0); }
3209
3210 static bool classof(const Type *T) {
3211 return T->getTypeClass() == DependentSizedExtVector;
3212 }
3213
3214 void Profile(llvm::FoldingSetNodeID &ID) {
3215 Profile(ID, Context, getElementType(), getSizeExpr());
3216 }
3217
3218 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3219 QualType ElementType, Expr *SizeExpr);
3220};
3221
3222
3223/// Represents a GCC generic vector type. This type is created using
3224/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3225/// bytes; or from an Altivec __vector or vector declaration.
3226/// Since the constructor takes the number of vector elements, the
3227/// client is responsible for converting the size into the number of elements.
3228class VectorType : public Type, public llvm::FoldingSetNode {
3229public:
3230 enum VectorKind {
3231 /// not a target-specific vector type
3232 GenericVector,
3233
3234 /// is AltiVec vector
3235 AltiVecVector,
3236
3237 /// is AltiVec 'vector Pixel'
3238 AltiVecPixel,
3239
3240 /// is AltiVec 'vector bool ...'
3241 AltiVecBool,
3242
3243 /// is ARM Neon vector
3244 NeonVector,
3245
3246 /// is ARM Neon polynomial vector
3247 NeonPolyVector,
3248
3249 /// is AArch64 SVE fixed-length data vector
3250 SveFixedLengthDataVector,
3251
3252 /// is AArch64 SVE fixed-length predicate vector
3253 SveFixedLengthPredicateVector
3254 };
3255
3256protected:
3257 friend class ASTContext; // ASTContext creates these.
3258
3259 /// The element type of the vector.
3260 QualType ElementType;
3261
3262 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3263 VectorKind vecKind);
3264
3265 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3266 QualType canonType, VectorKind vecKind);
3267
3268public:
3269 QualType getElementType() const { return ElementType; }
3270 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3271
3272 bool isSugared() const { return false; }
3273 QualType desugar() const { return QualType(this, 0); }
3274
3275 VectorKind getVectorKind() const {
3276 return VectorKind(VectorTypeBits.VecKind);
3277 }
3278
3279 void Profile(llvm::FoldingSetNodeID &ID) {
3280 Profile(ID, getElementType(), getNumElements(),
3281 getTypeClass(), getVectorKind());
3282 }
3283
3284 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3285 unsigned NumElements, TypeClass TypeClass,
3286 VectorKind VecKind) {
3287 ID.AddPointer(ElementType.getAsOpaquePtr());
3288 ID.AddInteger(NumElements);
3289 ID.AddInteger(TypeClass);
3290 ID.AddInteger(VecKind);
3291 }
3292
3293 static bool classof(const Type *T) {
3294 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3295 }
3296};
3297
3298/// Represents a vector type where either the type or size is dependent.
3299////
3300/// For example:
3301/// \code
3302/// template<typename T, int Size>
3303/// class vector {
3304/// typedef T __attribute__((vector_size(Size))) type;
3305/// }
3306/// \endcode
3307class DependentVectorType : public Type, public llvm::FoldingSetNode {
3308 friend class ASTContext;
3309
3310 const ASTContext &Context;
3311 QualType ElementType;
3312 Expr *SizeExpr;
3313 SourceLocation Loc;
3314
3315 DependentVectorType(const ASTContext &Context, QualType ElementType,
3316 QualType CanonType, Expr *SizeExpr,
3317 SourceLocation Loc, VectorType::VectorKind vecKind);
3318
3319public:
3320 Expr *getSizeExpr() const { return SizeExpr; }
3321 QualType getElementType() const { return ElementType; }
3322 SourceLocation getAttributeLoc() const { return Loc; }
3323 VectorType::VectorKind getVectorKind() const {
3324 return VectorType::VectorKind(VectorTypeBits.VecKind);
3325 }
3326
3327 bool isSugared() const { return false; }
3328 QualType desugar() const { return QualType(this, 0); }
3329
3330 static bool classof(const Type *T) {
3331 return T->getTypeClass() == DependentVector;
3332 }
3333
3334 void Profile(llvm::FoldingSetNodeID &ID) {
3335 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3336 }
3337
3338 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3339 QualType ElementType, const Expr *SizeExpr,
3340 VectorType::VectorKind VecKind);
3341};
3342
3343/// ExtVectorType - Extended vector type. This type is created using
3344/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3345/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3346/// class enables syntactic extensions, like Vector Components for accessing
3347/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3348/// Shading Language).
3349class ExtVectorType : public VectorType {
3350 friend class ASTContext; // ASTContext creates these.
3351
3352 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3353 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3354
3355public:
3356 static int getPointAccessorIdx(char c) {
3357 switch (c) {
3358 default: return -1;
3359 case 'x': case 'r': return 0;
3360 case 'y': case 'g': return 1;
3361 case 'z': case 'b': return 2;
3362 case 'w': case 'a': return 3;
3363 }
3364 }
3365
3366 static int getNumericAccessorIdx(char c) {
3367 switch (c) {
3368 default: return -1;
3369 case '0': return 0;
3370 case '1': return 1;
3371 case '2': return 2;
3372 case '3': return 3;
3373 case '4': return 4;
3374 case '5': return 5;
3375 case '6': return 6;
3376 case '7': return 7;
3377 case '8': return 8;
3378 case '9': return 9;
3379 case 'A':
3380 case 'a': return 10;
3381 case 'B':
3382 case 'b': return 11;
3383 case 'C':
3384 case 'c': return 12;
3385 case 'D':
3386 case 'd': return 13;
3387 case 'E':
3388 case 'e': return 14;
3389 case 'F':
3390 case 'f': return 15;
3391 }
3392 }
3393
3394 static int getAccessorIdx(char c, bool isNumericAccessor) {
3395 if (isNumericAccessor)
3396 return getNumericAccessorIdx(c);
3397 else
3398 return getPointAccessorIdx(c);
3399 }
3400
3401 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3402 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3403 return unsigned(idx-1) < getNumElements();
3404 return false;
3405 }
3406
3407 bool isSugared() const { return false; }
3408 QualType desugar() const { return QualType(this, 0); }
3409
3410 static bool classof(const Type *T) {
3411 return T->getTypeClass() == ExtVector;
3412 }
3413};
3414
3415/// Represents a matrix type, as defined in the Matrix Types clang extensions.
3416/// __attribute__((matrix_type(rows, columns))), where "rows" specifies
3417/// number of rows and "columns" specifies the number of columns.
3418class MatrixType : public Type, public llvm::FoldingSetNode {
3419protected:
3420 friend class ASTContext;
3421
3422 /// The element type of the matrix.
3423 QualType ElementType;
3424
3425 MatrixType(QualType ElementTy, QualType CanonElementTy);
3426
3427 MatrixType(TypeClass TypeClass, QualType ElementTy, QualType CanonElementTy,
3428 const Expr *RowExpr = nullptr, const Expr *ColumnExpr = nullptr);
3429
3430public:
3431 /// Returns type of the elements being stored in the matrix
3432 QualType getElementType() const { return ElementType; }
3433
3434 /// Valid elements types are the following:
3435 /// * an integer type (as in C2x 6.2.5p19), but excluding enumerated types
3436 /// and _Bool
3437 /// * the standard floating types float or double
3438 /// * a half-precision floating point type, if one is supported on the target
3439 static bool isValidElementType(QualType T) {
3440 return T->isDependentType() ||
3441 (T->isRealType() && !T->isBooleanType() && !T->isEnumeralType());
3442 }
3443
3444 bool isSugared() const { return false; }
3445 QualType desugar() const { return QualType(this, 0); }
3446
3447 static bool classof(const Type *T) {
3448 return T->getTypeClass() == ConstantMatrix ||
3449 T->getTypeClass() == DependentSizedMatrix;
3450 }
3451};
3452
3453/// Represents a concrete matrix type with constant number of rows and columns
3454class ConstantMatrixType final : public MatrixType {
3455protected:
3456 friend class ASTContext;
3457
3458 /// Number of rows and columns.
3459 unsigned NumRows;
3460 unsigned NumColumns;
3461
3462 static constexpr unsigned MaxElementsPerDimension = (1 << 20) - 1;
3463
3464 ConstantMatrixType(QualType MatrixElementType, unsigned NRows,
3465 unsigned NColumns, QualType CanonElementType);
3466
3467 ConstantMatrixType(TypeClass typeClass, QualType MatrixType, unsigned NRows,
3468 unsigned NColumns, QualType CanonElementType);
3469
3470public:
3471 /// Returns the number of rows in the matrix.
3472 unsigned getNumRows() const { return NumRows; }
3473
3474 /// Returns the number of columns in the matrix.
3475 unsigned getNumColumns() const { return NumColumns; }
3476
3477 /// Returns the number of elements required to embed the matrix into a vector.
3478 unsigned getNumElementsFlattened() const {
3479 return getNumRows() * getNumColumns();
3480 }
3481
3482 /// Returns true if \p NumElements is a valid matrix dimension.
3483 static constexpr bool isDimensionValid(size_t NumElements) {
3484 return NumElements > 0 && NumElements <= MaxElementsPerDimension;
3485 }
3486
3487 /// Returns the maximum number of elements per dimension.
3488 static constexpr unsigned getMaxElementsPerDimension() {
3489 return MaxElementsPerDimension;
3490 }
3491
3492 void Profile(llvm::FoldingSetNodeID &ID) {
3493 Profile(ID, getElementType(), getNumRows(), getNumColumns(),
3494 getTypeClass());
3495 }
3496
3497 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3498 unsigned NumRows, unsigned NumColumns,
3499 TypeClass TypeClass) {
3500 ID.AddPointer(ElementType.getAsOpaquePtr());
3501 ID.AddInteger(NumRows);
3502 ID.AddInteger(NumColumns);
3503 ID.AddInteger(TypeClass);
3504 }
3505
3506 static bool classof(const Type *T) {
3507 return T->getTypeClass() == ConstantMatrix;
3508 }
3509};
3510
3511/// Represents a matrix type where the type and the number of rows and columns
3512/// is dependent on a template.
3513class DependentSizedMatrixType final : public MatrixType {
3514 friend class ASTContext;
3515
3516 const ASTContext &Context;
3517 Expr *RowExpr;
3518 Expr *ColumnExpr;
3519
3520 SourceLocation loc;
3521
3522 DependentSizedMatrixType(const ASTContext &Context, QualType ElementType,
3523 QualType CanonicalType, Expr *RowExpr,
3524 Expr *ColumnExpr, SourceLocation loc);
3525
3526public:
3527 QualType getElementType() const { return ElementType; }
3528 Expr *getRowExpr() const { return RowExpr; }
3529 Expr *getColumnExpr() const { return ColumnExpr; }
3530 SourceLocation getAttributeLoc() const { return loc; }
3531
3532 bool isSugared() const { return false; }
3533 QualType desugar() const { return QualType(this, 0); }
3534
3535 static bool classof(const Type *T) {
3536 return T->getTypeClass() == DependentSizedMatrix;
3537 }
3538
3539 void Profile(llvm::FoldingSetNodeID &ID) {
3540 Profile(ID, Context, getElementType(), getRowExpr(), getColumnExpr());
3541 }
3542
3543 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3544 QualType ElementType, Expr *RowExpr, Expr *ColumnExpr);
3545};
3546
3547/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3548/// class of FunctionNoProtoType and FunctionProtoType.
3549class FunctionType : public Type {
3550 // The type returned by the function.
3551 QualType ResultType;
3552
3553public:
3554 /// Interesting information about a specific parameter that can't simply
3555 /// be reflected in parameter's type. This is only used by FunctionProtoType
3556 /// but is in FunctionType to make this class available during the
3557 /// specification of the bases of FunctionProtoType.
3558 ///
3559 /// It makes sense to model language features this way when there's some
3560 /// sort of parameter-specific override (such as an attribute) that
3561 /// affects how the function is called. For example, the ARC ns_consumed
3562 /// attribute changes whether a parameter is passed at +0 (the default)
3563 /// or +1 (ns_consumed). This must be reflected in the function type,
3564 /// but isn't really a change to the parameter type.
3565 ///
3566 /// One serious disadvantage of modelling language features this way is
3567 /// that they generally do not work with language features that attempt
3568 /// to destructure types. For example, template argument deduction will
3569 /// not be able to match a parameter declared as
3570 /// T (*)(U)
3571 /// against an argument of type
3572 /// void (*)(__attribute__((ns_consumed)) id)
3573 /// because the substitution of T=void, U=id into the former will
3574 /// not produce the latter.
3575 class ExtParameterInfo {
3576 enum {
3577 ABIMask = 0x0F,
3578 IsConsumed = 0x10,
3579 HasPassObjSize = 0x20,
3580 IsNoEscape = 0x40,
3581 };
3582 unsigned char Data = 0;
3583
3584 public:
3585 ExtParameterInfo() = default;
3586
3587 /// Return the ABI treatment of this parameter.
3588 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3589 ExtParameterInfo withABI(ParameterABI kind) const {
3590 ExtParameterInfo copy = *this;
3591 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3592 return copy;
3593 }
3594
3595 /// Is this parameter considered "consumed" by Objective-C ARC?
3596 /// Consumed parameters must have retainable object type.
3597 bool isConsumed() const { return (Data & IsConsumed); }
3598 ExtParameterInfo withIsConsumed(bool consumed) const {
3599 ExtParameterInfo copy = *this;
3600 if (consumed)
3601 copy.Data |= IsConsumed;
3602 else
3603 copy.Data &= ~IsConsumed;
3604 return copy;
3605 }
3606
3607 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3608 ExtParameterInfo withHasPassObjectSize() const {
3609 ExtParameterInfo Copy = *this;
3610 Copy.Data |= HasPassObjSize;
3611 return Copy;
3612 }
3613
3614 bool isNoEscape() const { return Data & IsNoEscape; }
3615 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3616 ExtParameterInfo Copy = *this;
3617 if (NoEscape)
3618 Copy.Data |= IsNoEscape;
3619 else
3620 Copy.Data &= ~IsNoEscape;
3621 return Copy;
3622 }
3623
3624 unsigned char getOpaqueValue() const { return Data; }
3625 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3626 ExtParameterInfo result;
3627 result.Data = data;
3628 return result;
3629 }
3630
3631 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3632 return lhs.Data == rhs.Data;
3633 }
3634
3635 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3636 return lhs.Data != rhs.Data;
3637 }
3638 };
3639
3640 /// A class which abstracts out some details necessary for
3641 /// making a call.
3642 ///
3643 /// It is not actually used directly for storing this information in
3644 /// a FunctionType, although FunctionType does currently use the
3645 /// same bit-pattern.
3646 ///
3647 // If you add a field (say Foo), other than the obvious places (both,
3648 // constructors, compile failures), what you need to update is
3649 // * Operator==
3650 // * getFoo
3651 // * withFoo
3652 // * functionType. Add Foo, getFoo.
3653 // * ASTContext::getFooType
3654 // * ASTContext::mergeFunctionTypes
3655 // * FunctionNoProtoType::Profile
3656 // * FunctionProtoType::Profile
3657 // * TypePrinter::PrintFunctionProto
3658 // * AST read and write
3659 // * Codegen
3660 class ExtInfo {
3661 friend class FunctionType;
3662
3663 // Feel free to rearrange or add bits, but if you go over 16, you'll need to
3664 // adjust the Bits field below, and if you add bits, you'll need to adjust
3665 // Type::FunctionTypeBitfields::ExtInfo as well.
3666
3667 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|cmsenscall|
3668 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 | 12 |
3669 //
3670 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3671 enum { CallConvMask = 0x1F };
3672 enum { NoReturnMask = 0x20 };
3673 enum { ProducesResultMask = 0x40 };
3674 enum { NoCallerSavedRegsMask = 0x80 };
3675 enum {
3676 RegParmMask = 0x700,
3677 RegParmOffset = 8
3678 };
3679 enum { NoCfCheckMask = 0x800 };
3680 enum { CmseNSCallMask = 0x1000 };
3681 uint16_t Bits = CC_C;
3682
3683 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3684
3685 public:
3686 // Constructor with no defaults. Use this when you know that you
3687 // have all the elements (when reading an AST file for example).
3688 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3689 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck,
3690 bool cmseNSCall) {
3691 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(static_cast <bool> ((!hasRegParm || regParm < 7) &&
"Invalid regparm value") ? void (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 3691, __extension__ __PRETTY_FUNCTION__))
;
3692 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3693 (producesResult ? ProducesResultMask : 0) |
3694 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3695 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3696 (NoCfCheck ? NoCfCheckMask : 0) |
3697 (cmseNSCall ? CmseNSCallMask : 0);
3698 }
3699
3700 // Constructor with all defaults. Use when for example creating a
3701 // function known to use defaults.
3702 ExtInfo() = default;
3703
3704 // Constructor with just the calling convention, which is an important part
3705 // of the canonical type.
3706 ExtInfo(CallingConv CC) : Bits(CC) {}
3707
3708 bool getNoReturn() const { return Bits & NoReturnMask; }
3709 bool getProducesResult() const { return Bits & ProducesResultMask; }
3710 bool getCmseNSCall() const { return Bits & CmseNSCallMask; }
3711 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3712 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3713 bool getHasRegParm() const { return ((Bits & RegParmMask) >> RegParmOffset) != 0; }
3714
3715 unsigned getRegParm() const {
3716 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3717 if (RegParm > 0)
3718 --RegParm;
3719 return RegParm;
3720 }
3721
3722 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3723
3724 bool operator==(ExtInfo Other) const {
3725 return Bits == Other.Bits;
3726 }
3727 bool operator!=(ExtInfo Other) const {
3728 return Bits != Other.Bits;
3729 }
3730
3731 // Note that we don't have setters. That is by design, use
3732 // the following with methods instead of mutating these objects.
3733
3734 ExtInfo withNoReturn(bool noReturn) const {
3735 if (noReturn)
3736 return ExtInfo(Bits | NoReturnMask);
3737 else
3738 return ExtInfo(Bits & ~NoReturnMask);
3739 }
3740
3741 ExtInfo withProducesResult(bool producesResult) const {
3742 if (producesResult)
3743 return ExtInfo(Bits | ProducesResultMask);
3744 else
3745 return ExtInfo(Bits & ~ProducesResultMask);
3746 }
3747
3748 ExtInfo withCmseNSCall(bool cmseNSCall) const {
3749 if (cmseNSCall)
3750 return ExtInfo(Bits | CmseNSCallMask);
3751 else
3752 return ExtInfo(Bits & ~CmseNSCallMask);
3753 }
3754
3755 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3756 if (noCallerSavedRegs)
3757 return ExtInfo(Bits | NoCallerSavedRegsMask);
3758 else
3759 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3760 }
3761
3762 ExtInfo withNoCfCheck(bool noCfCheck) const {
3763 if (noCfCheck)
3764 return ExtInfo(Bits | NoCfCheckMask);
3765 else
3766 return ExtInfo(Bits & ~NoCfCheckMask);
3767 }
3768
3769 ExtInfo withRegParm(unsigned RegParm) const {
3770 assert(RegParm < 7 && "Invalid regparm value")(static_cast <bool> (RegParm < 7 && "Invalid regparm value"
) ? void (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 3770, __extension__ __PRETTY_FUNCTION__))
;
3771 return ExtInfo((Bits & ~RegParmMask) |
3772 ((RegParm + 1) << RegParmOffset));
3773 }
3774
3775 ExtInfo withCallingConv(CallingConv cc) const {
3776 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3777 }
3778
3779 void Profile(llvm::FoldingSetNodeID &ID) const {
3780 ID.AddInteger(Bits);
3781 }
3782 };
3783
3784 /// A simple holder for a QualType representing a type in an
3785 /// exception specification. Unfortunately needed by FunctionProtoType
3786 /// because TrailingObjects cannot handle repeated types.
3787 struct ExceptionType { QualType Type; };
3788
3789 /// A simple holder for various uncommon bits which do not fit in
3790 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3791 /// alignment of subsequent objects in TrailingObjects. You must update
3792 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3793 struct alignas(void *) FunctionTypeExtraBitfields {
3794 /// The number of types in the exception specification.
3795 /// A whole unsigned is not needed here and according to
3796 /// [implimits] 8 bits would be enough here.
3797 unsigned NumExceptionType;
3798 };
3799
3800protected:
3801 FunctionType(TypeClass tc, QualType res, QualType Canonical,
3802 TypeDependence Dependence, ExtInfo Info)
3803 : Type(tc, Canonical, Dependence), ResultType(res) {
3804 FunctionTypeBits.ExtInfo = Info.Bits;
3805 }
3806
3807 Qualifiers getFastTypeQuals() const {
3808 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3809 }
3810
3811public:
3812 QualType getReturnType() const { return ResultType; }
3813
3814 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3815 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3816
3817 /// Determine whether this function type includes the GNU noreturn
3818 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3819 /// type.
3820 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3821
3822 bool getCmseNSCallAttr() const { return getExtInfo().getCmseNSCall(); }
3823 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3824 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3825
3826 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3827 "Const, volatile and restrict are assumed to be a subset of "
3828 "the fast qualifiers.");
3829
3830 bool isConst() const { return getFastTypeQuals().hasConst(); }
3831 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3832 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3833
3834 /// Determine the type of an expression that calls a function of
3835 /// this type.
3836 QualType getCallResultType(const ASTContext &Context) const {
3837 return getReturnType().getNonLValueExprType(Context);
3838 }
3839
3840 static StringRef getNameForCallConv(CallingConv CC);
3841
3842 static bool classof(const Type *T) {
3843 return T->getTypeClass() == FunctionNoProto ||
3844 T->getTypeClass() == FunctionProto;
3845 }
3846};
3847
3848/// Represents a K&R-style 'int foo()' function, which has
3849/// no information available about its arguments.
3850class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3851 friend class ASTContext; // ASTContext creates these.
3852
3853 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3854 : FunctionType(FunctionNoProto, Result, Canonical,
3855 Result->getDependence() &
3856 ~(TypeDependence::DependentInstantiation |
3857 TypeDependence::UnexpandedPack),
3858 Info) {}
3859
3860public:
3861 // No additional state past what FunctionType provides.
3862
3863 bool isSugared() const { return false; }
3864 QualType desugar() const { return QualType(this, 0); }
3865
3866 void Profile(llvm::FoldingSetNodeID &ID) {
3867 Profile(ID, getReturnType(), getExtInfo());
3868 }
3869
3870 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3871 ExtInfo Info) {
3872 Info.Profile(ID);
3873 ID.AddPointer(ResultType.getAsOpaquePtr());
3874 }
3875
3876 static bool classof(const Type *T) {
3877 return T->getTypeClass() == FunctionNoProto;
3878 }
3879};
3880
3881/// Represents a prototype with parameter type info, e.g.
3882/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3883/// parameters, not as having a single void parameter. Such a type can have
3884/// an exception specification, but this specification is not part of the
3885/// canonical type. FunctionProtoType has several trailing objects, some of
3886/// which optional. For more information about the trailing objects see
3887/// the first comment inside FunctionProtoType.
3888class FunctionProtoType final
3889 : public FunctionType,
3890 public llvm::FoldingSetNode,
3891 private llvm::TrailingObjects<
3892 FunctionProtoType, QualType, SourceLocation,
3893 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3894 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3895 friend class ASTContext; // ASTContext creates these.
3896 friend TrailingObjects;
3897
3898 // FunctionProtoType is followed by several trailing objects, some of
3899 // which optional. They are in order:
3900 //
3901 // * An array of getNumParams() QualType holding the parameter types.
3902 // Always present. Note that for the vast majority of FunctionProtoType,
3903 // these will be the only trailing objects.
3904 //
3905 // * Optionally if the function is variadic, the SourceLocation of the
3906 // ellipsis.
3907 //
3908 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3909 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3910 // a single FunctionTypeExtraBitfields. Present if and only if
3911 // hasExtraBitfields() is true.
3912 //
3913 // * Optionally exactly one of:
3914 // * an array of getNumExceptions() ExceptionType,
3915 // * a single Expr *,
3916 // * a pair of FunctionDecl *,
3917 // * a single FunctionDecl *
3918 // used to store information about the various types of exception
3919 // specification. See getExceptionSpecSize for the details.
3920 //
3921 // * Optionally an array of getNumParams() ExtParameterInfo holding
3922 // an ExtParameterInfo for each of the parameters. Present if and
3923 // only if hasExtParameterInfos() is true.
3924 //
3925 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3926 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3927 // if hasExtQualifiers() is true.
3928 //
3929 // The optional FunctionTypeExtraBitfields has to be before the data
3930 // related to the exception specification since it contains the number
3931 // of exception types.
3932 //
3933 // We put the ExtParameterInfos last. If all were equal, it would make
3934 // more sense to put these before the exception specification, because
3935 // it's much easier to skip past them compared to the elaborate switch
3936 // required to skip the exception specification. However, all is not
3937 // equal; ExtParameterInfos are used to model very uncommon features,
3938 // and it's better not to burden the more common paths.
3939
3940public:
3941 /// Holds information about the various types of exception specification.
3942 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3943 /// used to group together the various bits of information about the
3944 /// exception specification.
3945 struct ExceptionSpecInfo {
3946 /// The kind of exception specification this is.
3947 ExceptionSpecificationType Type = EST_None;
3948
3949 /// Explicitly-specified list of exception types.
3950 ArrayRef<QualType> Exceptions;
3951
3952 /// Noexcept expression, if this is a computed noexcept specification.
3953 Expr *NoexceptExpr = nullptr;
3954
3955 /// The function whose exception specification this is, for
3956 /// EST_Unevaluated and EST_Uninstantiated.
3957 FunctionDecl *SourceDecl = nullptr;
3958
3959 /// The function template whose exception specification this is instantiated
3960 /// from, for EST_Uninstantiated.
3961 FunctionDecl *SourceTemplate = nullptr;
3962
3963 ExceptionSpecInfo() = default;
3964
3965 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3966 };
3967
3968 /// Extra information about a function prototype. ExtProtoInfo is not
3969 /// stored as such in FunctionProtoType but is used to group together
3970 /// the various bits of extra information about a function prototype.
3971 struct ExtProtoInfo {
3972 FunctionType::ExtInfo ExtInfo;
3973 bool Variadic : 1;
3974 bool HasTrailingReturn : 1;
3975 Qualifiers TypeQuals;
3976 RefQualifierKind RefQualifier = RQ_None;
3977 ExceptionSpecInfo ExceptionSpec;
3978 const ExtParameterInfo *ExtParameterInfos = nullptr;
3979 SourceLocation EllipsisLoc;
3980
3981 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3982
3983 ExtProtoInfo(CallingConv CC)
3984 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3985
3986 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3987 ExtProtoInfo Result(*this);
3988 Result.ExceptionSpec = ESI;
3989 return Result;
3990 }
3991 };
3992
3993private:
3994 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3995 return getNumParams();
3996 }
3997
3998 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3999 return isVariadic();
4000 }
4001
4002 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
4003 return hasExtraBitfields();
4004 }
4005
4006 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
4007 return getExceptionSpecSize().NumExceptionType;
4008 }
4009
4010 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
4011 return getExceptionSpecSize().NumExprPtr;
4012 }
4013
4014 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
4015 return getExceptionSpecSize().NumFunctionDeclPtr;
4016 }
4017
4018 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
4019 return hasExtParameterInfos() ? getNumParams() : 0;
4020 }
4021
4022 /// Determine whether there are any argument types that
4023 /// contain an unexpanded parameter pack.
4024 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
4025 unsigned numArgs) {
4026 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
4027 if (ArgArray[Idx]->containsUnexpandedParameterPack())
4028 return true;
4029
4030 return false;
4031 }
4032
4033 FunctionProtoType(QualType result, ArrayRef<QualType> params,
4034 QualType canonical, const ExtProtoInfo &epi);
4035
4036 /// This struct is returned by getExceptionSpecSize and is used to
4037 /// translate an ExceptionSpecificationType to the number and kind
4038 /// of trailing objects related to the exception specification.
4039 struct ExceptionSpecSizeHolder {
4040 unsigned NumExceptionType;
4041 unsigned NumExprPtr;
4042 unsigned NumFunctionDeclPtr;
4043 };
4044
4045 /// Return the number and kind of trailing objects
4046 /// related to the exception specification.
4047 static ExceptionSpecSizeHolder
4048 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
4049 switch (EST) {
4050 case EST_None:
4051 case EST_DynamicNone:
4052 case EST_MSAny:
4053 case EST_BasicNoexcept:
4054 case EST_Unparsed:
4055 case EST_NoThrow:
4056 return {0, 0, 0};
4057
4058 case EST_Dynamic:
4059 return {NumExceptions, 0, 0};
4060
4061 case EST_DependentNoexcept:
4062 case EST_NoexceptFalse:
4063 case EST_NoexceptTrue:
4064 return {0, 1, 0};
4065
4066 case EST_Uninstantiated:
4067 return {0, 0, 2};
4068
4069 case EST_Unevaluated:
4070 return {0, 0, 1};
4071 }
4072 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4072)
;
4073 }
4074
4075 /// Return the number and kind of trailing objects
4076 /// related to the exception specification.
4077 ExceptionSpecSizeHolder getExceptionSpecSize() const {
4078 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
4079 }
4080
4081 /// Whether the trailing FunctionTypeExtraBitfields is present.
4082 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
4083 // If the exception spec type is EST_Dynamic then we have > 0 exception
4084 // types and the exact number is stored in FunctionTypeExtraBitfields.
4085 return EST == EST_Dynamic;
4086 }
4087
4088 /// Whether the trailing FunctionTypeExtraBitfields is present.
4089 bool hasExtraBitfields() const {
4090 return hasExtraBitfields(getExceptionSpecType());
4091 }
4092
4093 bool hasExtQualifiers() const {
4094 return FunctionTypeBits.HasExtQuals;
4095 }
4096
4097public:
4098 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
4099
4100 QualType getParamType(unsigned i) const {
4101 assert(i < getNumParams() && "invalid parameter index")(static_cast <bool> (i < getNumParams() && "invalid parameter index"
) ? void (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4101, __extension__ __PRETTY_FUNCTION__))
;
4102 return param_type_begin()[i];
4103 }
4104
4105 ArrayRef<QualType> getParamTypes() const {
4106 return llvm::makeArrayRef(param_type_begin(), param_type_end());
4107 }
4108
4109 ExtProtoInfo getExtProtoInfo() const {
4110 ExtProtoInfo EPI;
4111 EPI.ExtInfo = getExtInfo();
4112 EPI.Variadic = isVariadic();
4113 EPI.EllipsisLoc = getEllipsisLoc();
4114 EPI.HasTrailingReturn = hasTrailingReturn();
4115 EPI.ExceptionSpec = getExceptionSpecInfo();
4116 EPI.TypeQuals = getMethodQuals();
4117 EPI.RefQualifier = getRefQualifier();
4118 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
4119 return EPI;
4120 }
4121
4122 /// Get the kind of exception specification on this function.
4123 ExceptionSpecificationType getExceptionSpecType() const {
4124 return static_cast<ExceptionSpecificationType>(
4125 FunctionTypeBits.ExceptionSpecType);
4126 }
4127
4128 /// Return whether this function has any kind of exception spec.
4129 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
4130
4131 /// Return whether this function has a dynamic (throw) exception spec.
4132 bool hasDynamicExceptionSpec() const {
4133 return isDynamicExceptionSpec(getExceptionSpecType());
4134 }
4135
4136 /// Return whether this function has a noexcept exception spec.
4137 bool hasNoexceptExceptionSpec() const {
4138 return isNoexceptExceptionSpec(getExceptionSpecType());
4139 }
4140
4141 /// Return whether this function has a dependent exception spec.
4142 bool hasDependentExceptionSpec() const;
4143
4144 /// Return whether this function has an instantiation-dependent exception
4145 /// spec.
4146 bool hasInstantiationDependentExceptionSpec() const;
4147
4148 /// Return all the available information about this type's exception spec.
4149 ExceptionSpecInfo getExceptionSpecInfo() const {
4150 ExceptionSpecInfo Result;
4151 Result.Type = getExceptionSpecType();
4152 if (Result.Type == EST_Dynamic) {
4153 Result.Exceptions = exceptions();
4154 } else if (isComputedNoexcept(Result.Type)) {
4155 Result.NoexceptExpr = getNoexceptExpr();
4156 } else if (Result.Type == EST_Uninstantiated) {
4157 Result.SourceDecl = getExceptionSpecDecl();
4158 Result.SourceTemplate = getExceptionSpecTemplate();
4159 } else if (Result.Type == EST_Unevaluated) {
4160 Result.SourceDecl = getExceptionSpecDecl();
4161 }
4162 return Result;
4163 }
4164
4165 /// Return the number of types in the exception specification.
4166 unsigned getNumExceptions() const {
4167 return getExceptionSpecType() == EST_Dynamic
4168 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4169 ->NumExceptionType
4170 : 0;
4171 }
4172
4173 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4174 QualType getExceptionType(unsigned i) const {
4175 assert(i < getNumExceptions() && "Invalid exception number!")(static_cast <bool> (i < getNumExceptions() &&
"Invalid exception number!") ? void (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4175, __extension__ __PRETTY_FUNCTION__))
;
4176 return exception_begin()[i];
4177 }
4178
4179 /// Return the expression inside noexcept(expression), or a null pointer
4180 /// if there is none (because the exception spec is not of this form).
4181 Expr *getNoexceptExpr() const {
4182 if (!isComputedNoexcept(getExceptionSpecType()))
4183 return nullptr;
4184 return *getTrailingObjects<Expr *>();
4185 }
4186
4187 /// If this function type has an exception specification which hasn't
4188 /// been determined yet (either because it has not been evaluated or because
4189 /// it has not been instantiated), this is the function whose exception
4190 /// specification is represented by this type.
4191 FunctionDecl *getExceptionSpecDecl() const {
4192 if (getExceptionSpecType() != EST_Uninstantiated &&
4193 getExceptionSpecType() != EST_Unevaluated)
4194 return nullptr;
4195 return getTrailingObjects<FunctionDecl *>()[0];
4196 }
4197
4198 /// If this function type has an uninstantiated exception
4199 /// specification, this is the function whose exception specification
4200 /// should be instantiated to find the exception specification for
4201 /// this type.
4202 FunctionDecl *getExceptionSpecTemplate() const {
4203 if (getExceptionSpecType() != EST_Uninstantiated)
4204 return nullptr;
4205 return getTrailingObjects<FunctionDecl *>()[1];
4206 }
4207
4208 /// Determine whether this function type has a non-throwing exception
4209 /// specification.
4210 CanThrowResult canThrow() const;
4211
4212 /// Determine whether this function type has a non-throwing exception
4213 /// specification. If this depends on template arguments, returns
4214 /// \c ResultIfDependent.
4215 bool isNothrow(bool ResultIfDependent = false) const {
4216 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4217 }
4218
4219 /// Whether this function prototype is variadic.
4220 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4221
4222 SourceLocation getEllipsisLoc() const {
4223 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4224 : SourceLocation();
4225 }
4226
4227 /// Determines whether this function prototype contains a
4228 /// parameter pack at the end.
4229 ///
4230 /// A function template whose last parameter is a parameter pack can be
4231 /// called with an arbitrary number of arguments, much like a variadic
4232 /// function.
4233 bool isTemplateVariadic() const;
4234
4235 /// Whether this function prototype has a trailing return type.
4236 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4237
4238 Qualifiers getMethodQuals() const {
4239 if (hasExtQualifiers())
4240 return *getTrailingObjects<Qualifiers>();
4241 else
4242 return getFastTypeQuals();
4243 }
4244
4245 /// Retrieve the ref-qualifier associated with this function type.
4246 RefQualifierKind getRefQualifier() const {
4247 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4248 }
4249
4250 using param_type_iterator = const QualType *;
4251 using param_type_range = llvm::iterator_range<param_type_iterator>;
4252
4253 param_type_range param_types() const {
4254 return param_type_range(param_type_begin(), param_type_end());
4255 }
4256
4257 param_type_iterator param_type_begin() const {
4258 return getTrailingObjects<QualType>();
4259 }
4260
4261 param_type_iterator param_type_end() const {
4262 return param_type_begin() + getNumParams();
4263 }
4264
4265 using exception_iterator = const QualType *;
4266
4267 ArrayRef<QualType> exceptions() const {
4268 return llvm::makeArrayRef(exception_begin(), exception_end());
4269 }
4270
4271 exception_iterator exception_begin() const {
4272 return reinterpret_cast<exception_iterator>(
4273 getTrailingObjects<ExceptionType>());
4274 }
4275
4276 exception_iterator exception_end() const {
4277 return exception_begin() + getNumExceptions();
4278 }
4279
4280 /// Is there any interesting extra information for any of the parameters
4281 /// of this function type?
4282 bool hasExtParameterInfos() const {
4283 return FunctionTypeBits.HasExtParameterInfos;
4284 }
4285
4286 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4287 assert(hasExtParameterInfos())(static_cast <bool> (hasExtParameterInfos()) ? void (0)
: __assert_fail ("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4287, __extension__ __PRETTY_FUNCTION__))
;
4288 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4289 getNumParams());
4290 }
4291
4292 /// Return a pointer to the beginning of the array of extra parameter
4293 /// information, if present, or else null if none of the parameters
4294 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4295 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4296 if (!hasExtParameterInfos())
4297 return nullptr;
4298 return getTrailingObjects<ExtParameterInfo>();
4299 }
4300
4301 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4302 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4302, __extension__ __PRETTY_FUNCTION__))
;
4303 if (hasExtParameterInfos())
4304 return getTrailingObjects<ExtParameterInfo>()[I];
4305 return ExtParameterInfo();
4306 }
4307
4308 ParameterABI getParameterABI(unsigned I) const {
4309 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4309, __extension__ __PRETTY_FUNCTION__))
;
4310 if (hasExtParameterInfos())
4311 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4312 return ParameterABI::Ordinary;
4313 }
4314
4315 bool isParamConsumed(unsigned I) const {
4316 assert(I < getNumParams() && "parameter index out of range")(static_cast <bool> (I < getNumParams() && "parameter index out of range"
) ? void (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4316, __extension__ __PRETTY_FUNCTION__))
;
4317 if (hasExtParameterInfos())
4318 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4319 return false;
4320 }
4321
4322 bool isSugared() const { return false; }
4323 QualType desugar() const { return QualType(this, 0); }
4324
4325 void printExceptionSpecification(raw_ostream &OS,
4326 const PrintingPolicy &Policy) const;
4327
4328 static bool classof(const Type *T) {
4329 return T->getTypeClass() == FunctionProto;
4330 }
4331
4332 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4333 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4334 param_type_iterator ArgTys, unsigned NumArgs,
4335 const ExtProtoInfo &EPI, const ASTContext &Context,
4336 bool Canonical);
4337};
4338
4339/// Represents the dependent type named by a dependently-scoped
4340/// typename using declaration, e.g.
4341/// using typename Base<T>::foo;
4342///
4343/// Template instantiation turns these into the underlying type.
4344class UnresolvedUsingType : public Type {
4345 friend class ASTContext; // ASTContext creates these.
4346
4347 UnresolvedUsingTypenameDecl *Decl;
4348
4349 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4350 : Type(UnresolvedUsing, QualType(),
4351 TypeDependence::DependentInstantiation),
4352 Decl(const_cast<UnresolvedUsingTypenameDecl *>(D)) {}
4353
4354public:
4355 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4356
4357 bool isSugared() const { return false; }
4358 QualType desugar() const { return QualType(this, 0); }
4359
4360 static bool classof(const Type *T) {
4361 return T->getTypeClass() == UnresolvedUsing;
4362 }
4363
4364 void Profile(llvm::FoldingSetNodeID &ID) {
4365 return Profile(ID, Decl);
4366 }
4367
4368 static void Profile(llvm::FoldingSetNodeID &ID,
4369 UnresolvedUsingTypenameDecl *D) {
4370 ID.AddPointer(D);
4371 }
4372};
4373
4374class TypedefType : public Type {
4375 TypedefNameDecl *Decl;
4376
4377private:
4378 friend class ASTContext; // ASTContext creates these.
4379
4380 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType underlying,
4381 QualType can);
4382
4383public:
4384 TypedefNameDecl *getDecl() const { return Decl; }
4385
4386 bool isSugared() const { return true; }
4387 QualType desugar() const;
4388
4389 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4390};
4391
4392/// Sugar type that represents a type that was qualified by a qualifier written
4393/// as a macro invocation.
4394class MacroQualifiedType : public Type {
4395 friend class ASTContext; // ASTContext creates these.
4396
4397 QualType UnderlyingTy;
4398 const IdentifierInfo *MacroII;
4399
4400 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4401 const IdentifierInfo *MacroII)
4402 : Type(MacroQualified, CanonTy, UnderlyingTy->getDependence()),
4403 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4404 assert(isa<AttributedType>(UnderlyingTy) &&(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4405, __extension__ __PRETTY_FUNCTION__))
4405 "Expected a macro qualified type to only wrap attributed types.")(static_cast <bool> (isa<AttributedType>(UnderlyingTy
) && "Expected a macro qualified type to only wrap attributed types."
) ? void (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4405, __extension__ __PRETTY_FUNCTION__))
;
4406 }
4407
4408public:
4409 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4410 QualType getUnderlyingType() const { return UnderlyingTy; }
4411
4412 /// Return this attributed type's modified type with no qualifiers attached to
4413 /// it.
4414 QualType getModifiedType() const;
4415
4416 bool isSugared() const { return true; }
4417 QualType desugar() const;
4418
4419 static bool classof(const Type *T) {
4420 return T->getTypeClass() == MacroQualified;
4421 }
4422};
4423
4424/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4425class TypeOfExprType : public Type {
4426 Expr *TOExpr;
4427
4428protected:
4429 friend class ASTContext; // ASTContext creates these.
4430
4431 TypeOfExprType(Expr *E, QualType can = QualType());
4432
4433public:
4434 Expr *getUnderlyingExpr() const { return TOExpr; }
4435
4436 /// Remove a single level of sugar.
4437 QualType desugar() const;
4438
4439 /// Returns whether this type directly provides sugar.
4440 bool isSugared() const;
4441
4442 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4443};
4444
4445/// Internal representation of canonical, dependent
4446/// `typeof(expr)` types.
4447///
4448/// This class is used internally by the ASTContext to manage
4449/// canonical, dependent types, only. Clients will only see instances
4450/// of this class via TypeOfExprType nodes.
4451class DependentTypeOfExprType
4452 : public TypeOfExprType, public llvm::FoldingSetNode {
4453 const ASTContext &Context;
4454
4455public:
4456 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4457 : TypeOfExprType(E), Context(Context) {}
4458
4459 void Profile(llvm::FoldingSetNodeID &ID) {
4460 Profile(ID, Context, getUnderlyingExpr());
4461 }
4462
4463 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4464 Expr *E);
4465};
4466
4467/// Represents `typeof(type)`, a GCC extension.
4468class TypeOfType : public Type {
4469 friend class ASTContext; // ASTContext creates these.
4470
4471 QualType TOType;
4472
4473 TypeOfType(QualType T, QualType can)
4474 : Type(TypeOf, can, T->getDependence()), TOType(T) {
4475 assert(!isa<TypedefType>(can) && "Invalid canonical type")(static_cast <bool> (!isa<TypedefType>(can) &&
"Invalid canonical type") ? void (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4475, __extension__ __PRETTY_FUNCTION__))
;
4476 }
4477
4478public:
4479 QualType getUnderlyingType() const { return TOType; }
4480
4481 /// Remove a single level of sugar.
4482 QualType desugar() const { return getUnderlyingType(); }
4483
4484 /// Returns whether this type directly provides sugar.
4485 bool isSugared() const { return true; }
4486
4487 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4488};
4489
4490/// Represents the type `decltype(expr)` (C++11).
4491class DecltypeType : public Type {
4492 Expr *E;
4493 QualType UnderlyingType;
4494
4495protected:
4496 friend class ASTContext; // ASTContext creates these.
4497
4498 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4499
4500public:
4501 Expr *getUnderlyingExpr() const { return E; }
4502 QualType getUnderlyingType() const { return UnderlyingType; }
4503
4504 /// Remove a single level of sugar.
4505 QualType desugar() const;
4506
4507 /// Returns whether this type directly provides sugar.
4508 bool isSugared() const;
4509
4510 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4511};
4512
4513/// Internal representation of canonical, dependent
4514/// decltype(expr) types.
4515///
4516/// This class is used internally by the ASTContext to manage
4517/// canonical, dependent types, only. Clients will only see instances
4518/// of this class via DecltypeType nodes.
4519class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4520 const ASTContext &Context;
4521
4522public:
4523 DependentDecltypeType(const ASTContext &Context, Expr *E);
4524
4525 void Profile(llvm::FoldingSetNodeID &ID) {
4526 Profile(ID, Context, getUnderlyingExpr());
4527 }
4528
4529 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4530 Expr *E);
4531};
4532
4533/// A unary type transform, which is a type constructed from another.
4534class UnaryTransformType : public Type {
4535public:
4536 enum UTTKind {
4537 EnumUnderlyingType
4538 };
4539
4540private:
4541 /// The untransformed type.
4542 QualType BaseType;
4543
4544 /// The transformed type if not dependent, otherwise the same as BaseType.
4545 QualType UnderlyingType;
4546
4547 UTTKind UKind;
4548
4549protected:
4550 friend class ASTContext;
4551
4552 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4553 QualType CanonicalTy);
4554
4555public:
4556 bool isSugared() const { return !isDependentType(); }
4557 QualType desugar() const { return UnderlyingType; }
4558
4559 QualType getUnderlyingType() const { return UnderlyingType; }
4560 QualType getBaseType() const { return BaseType; }
4561
4562 UTTKind getUTTKind() const { return UKind; }
4563
4564 static bool classof(const Type *T) {
4565 return T->getTypeClass() == UnaryTransform;
4566 }
4567};
4568
4569/// Internal representation of canonical, dependent
4570/// __underlying_type(type) types.
4571///
4572/// This class is used internally by the ASTContext to manage
4573/// canonical, dependent types, only. Clients will only see instances
4574/// of this class via UnaryTransformType nodes.
4575class DependentUnaryTransformType : public UnaryTransformType,
4576 public llvm::FoldingSetNode {
4577public:
4578 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4579 UTTKind UKind);
4580
4581 void Profile(llvm::FoldingSetNodeID &ID) {
4582 Profile(ID, getBaseType(), getUTTKind());
4583 }
4584
4585 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4586 UTTKind UKind) {
4587 ID.AddPointer(BaseType.getAsOpaquePtr());
4588 ID.AddInteger((unsigned)UKind);
4589 }
4590};
4591
4592class TagType : public Type {
4593 friend class ASTReader;
4594 template <class T> friend class serialization::AbstractTypeReader;
4595
4596 /// Stores the TagDecl associated with this type. The decl may point to any
4597 /// TagDecl that declares the entity.
4598 TagDecl *decl;
4599
4600protected:
4601 TagType(TypeClass TC, const TagDecl *D, QualType can);
4602
4603public:
4604 TagDecl *getDecl() const;
4605
4606 /// Determines whether this type is in the process of being defined.
4607 bool isBeingDefined() const;
4608
4609 static bool classof(const Type *T) {
4610 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4611 }
4612};
4613
4614/// A helper class that allows the use of isa/cast/dyncast
4615/// to detect TagType objects of structs/unions/classes.
4616class RecordType : public TagType {
4617protected:
4618 friend class ASTContext; // ASTContext creates these.
4619
4620 explicit RecordType(const RecordDecl *D)
4621 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4622 explicit RecordType(TypeClass TC, RecordDecl *D)
4623 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4624
4625public:
4626 RecordDecl *getDecl() const {
4627 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4628 }
4629
4630 /// Recursively check all fields in the record for const-ness. If any field
4631 /// is declared const, return true. Otherwise, return false.
4632 bool hasConstFields() const;
4633
4634 bool isSugared() const { return false; }
4635 QualType desugar() const { return QualType(this, 0); }
4636
4637 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4638};
4639
4640/// A helper class that allows the use of isa/cast/dyncast
4641/// to detect TagType objects of enums.
4642class EnumType : public TagType {
4643 friend class ASTContext; // ASTContext creates these.
4644
4645 explicit EnumType(const EnumDecl *D)
4646 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4647
4648public:
4649 EnumDecl *getDecl() const {
4650 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4651 }
4652
4653 bool isSugared() const { return false; }
4654 QualType desugar() const { return QualType(this, 0); }
4655
4656 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4657};
4658
4659/// An attributed type is a type to which a type attribute has been applied.
4660///
4661/// The "modified type" is the fully-sugared type to which the attributed
4662/// type was applied; generally it is not canonically equivalent to the
4663/// attributed type. The "equivalent type" is the minimally-desugared type
4664/// which the type is canonically equivalent to.
4665///
4666/// For example, in the following attributed type:
4667/// int32_t __attribute__((vector_size(16)))
4668/// - the modified type is the TypedefType for int32_t
4669/// - the equivalent type is VectorType(16, int32_t)
4670/// - the canonical type is VectorType(16, int)
4671class AttributedType : public Type, public llvm::FoldingSetNode {
4672public:
4673 using Kind = attr::Kind;
4674
4675private:
4676 friend class ASTContext; // ASTContext creates these
4677
4678 QualType ModifiedType;
4679 QualType EquivalentType;
4680
4681 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4682 QualType equivalent)
4683 : Type(Attributed, canon, equivalent->getDependence()),
4684 ModifiedType(modified), EquivalentType(equivalent) {
4685 AttributedTypeBits.AttrKind = attrKind;
4686 }
4687
4688public:
4689 Kind getAttrKind() const {
4690 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4691 }
4692
4693 QualType getModifiedType() const { return ModifiedType; }
4694 QualType getEquivalentType() const { return EquivalentType; }
4695
4696 bool isSugared() const { return true; }
4697 QualType desugar() const { return getEquivalentType(); }
4698
4699 /// Does this attribute behave like a type qualifier?
4700 ///
4701 /// A type qualifier adjusts a type to provide specialized rules for
4702 /// a specific object, like the standard const and volatile qualifiers.
4703 /// This includes attributes controlling things like nullability,
4704 /// address spaces, and ARC ownership. The value of the object is still
4705 /// largely described by the modified type.
4706 ///
4707 /// In contrast, many type attributes "rewrite" their modified type to
4708 /// produce a fundamentally different type, not necessarily related in any
4709 /// formalizable way to the original type. For example, calling convention
4710 /// and vector attributes are not simple type qualifiers.
4711 ///
4712 /// Type qualifiers are often, but not always, reflected in the canonical
4713 /// type.
4714 bool isQualifier() const;
4715
4716 bool isMSTypeSpec() const;
4717
4718 bool isCallingConv() const;
4719
4720 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4721
4722 /// Retrieve the attribute kind corresponding to the given
4723 /// nullability kind.
4724 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4725 switch (kind) {
4726 case NullabilityKind::NonNull:
4727 return attr::TypeNonNull;
4728
4729 case NullabilityKind::Nullable:
4730 return attr::TypeNullable;
4731
4732 case NullabilityKind::NullableResult:
4733 return attr::TypeNullableResult;
4734
4735 case NullabilityKind::Unspecified:
4736 return attr::TypeNullUnspecified;
4737 }
4738 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 4738)
;
4739 }
4740
4741 /// Strip off the top-level nullability annotation on the given
4742 /// type, if it's there.
4743 ///
4744 /// \param T The type to strip. If the type is exactly an
4745 /// AttributedType specifying nullability (without looking through
4746 /// type sugar), the nullability is returned and this type changed
4747 /// to the underlying modified type.
4748 ///
4749 /// \returns the top-level nullability, if present.
4750 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4751
4752 void Profile(llvm::FoldingSetNodeID &ID) {
4753 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4754 }
4755
4756 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4757 QualType modified, QualType equivalent) {
4758 ID.AddInteger(attrKind);
4759 ID.AddPointer(modified.getAsOpaquePtr());
4760 ID.AddPointer(equivalent.getAsOpaquePtr());
4761 }
4762
4763 static bool classof(const Type *T) {
4764 return T->getTypeClass() == Attributed;
4765 }
4766};
4767
4768class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4769 friend class ASTContext; // ASTContext creates these
4770
4771 // Helper data collector for canonical types.
4772 struct CanonicalTTPTInfo {
4773 unsigned Depth : 15;
4774 unsigned ParameterPack : 1;
4775 unsigned Index : 16;
4776 };
4777
4778 union {
4779 // Info for the canonical type.
4780 CanonicalTTPTInfo CanTTPTInfo;
4781
4782 // Info for the non-canonical type.
4783 TemplateTypeParmDecl *TTPDecl;
4784 };
4785
4786 /// Build a non-canonical type.
4787 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4788 : Type(TemplateTypeParm, Canon,
4789 TypeDependence::DependentInstantiation |
4790 (Canon->getDependence() & TypeDependence::UnexpandedPack)),
4791 TTPDecl(TTPDecl) {}
4792
4793 /// Build the canonical type.
4794 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4795 : Type(TemplateTypeParm, QualType(this, 0),
4796 TypeDependence::DependentInstantiation |
4797 (PP ? TypeDependence::UnexpandedPack : TypeDependence::None)) {
4798 CanTTPTInfo.Depth = D;
4799 CanTTPTInfo.Index = I;
4800 CanTTPTInfo.ParameterPack = PP;
4801 }
4802
4803 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4804 QualType Can = getCanonicalTypeInternal();
4805 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4806 }
4807
4808public:
4809 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4810 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4811 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4812
4813 TemplateTypeParmDecl *getDecl() const {
4814 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4815 }
4816
4817 IdentifierInfo *getIdentifier() const;
4818
4819 bool isSugared() const { return false; }
4820 QualType desugar() const { return QualType(this, 0); }
4821
4822 void Profile(llvm::FoldingSetNodeID &ID) {
4823 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4824 }
4825
4826 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4827 unsigned Index, bool ParameterPack,
4828 TemplateTypeParmDecl *TTPDecl) {
4829 ID.AddInteger(Depth);
4830 ID.AddInteger(Index);
4831 ID.AddBoolean(ParameterPack);
4832 ID.AddPointer(TTPDecl);
4833 }
4834
4835 static bool classof(const Type *T) {
4836 return T->getTypeClass() == TemplateTypeParm;
4837 }
4838};
4839
4840/// Represents the result of substituting a type for a template
4841/// type parameter.
4842///
4843/// Within an instantiated template, all template type parameters have
4844/// been replaced with these. They are used solely to record that a
4845/// type was originally written as a template type parameter;
4846/// therefore they are never canonical.
4847class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4848 friend class ASTContext;
4849
4850 // The original type parameter.
4851 const TemplateTypeParmType *Replaced;
4852
4853 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4854 : Type(SubstTemplateTypeParm, Canon, Canon->getDependence()),
4855 Replaced(Param) {}
4856
4857public:
4858 /// Gets the template parameter that was substituted for.
4859 const TemplateTypeParmType *getReplacedParameter() const {
4860 return Replaced;
4861 }
4862
4863 /// Gets the type that was substituted for the template
4864 /// parameter.
4865 QualType getReplacementType() const {
4866 return getCanonicalTypeInternal();
4867 }
4868
4869 bool isSugared() const { return true; }
4870 QualType desugar() const { return getReplacementType(); }
4871
4872 void Profile(llvm::FoldingSetNodeID &ID) {
4873 Profile(ID, getReplacedParameter(), getReplacementType());
4874 }
4875
4876 static void Profile(llvm::FoldingSetNodeID &ID,
4877 const TemplateTypeParmType *Replaced,
4878 QualType Replacement) {
4879 ID.AddPointer(Replaced);
4880 ID.AddPointer(Replacement.getAsOpaquePtr());
4881 }
4882
4883 static bool classof(const Type *T) {
4884 return T->getTypeClass() == SubstTemplateTypeParm;
4885 }
4886};
4887
4888/// Represents the result of substituting a set of types for a template
4889/// type parameter pack.
4890///
4891/// When a pack expansion in the source code contains multiple parameter packs
4892/// and those parameter packs correspond to different levels of template
4893/// parameter lists, this type node is used to represent a template type
4894/// parameter pack from an outer level, which has already had its argument pack
4895/// substituted but that still lives within a pack expansion that itself
4896/// could not be instantiated. When actually performing a substitution into
4897/// that pack expansion (e.g., when all template parameters have corresponding
4898/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4899/// at the current pack substitution index.
4900class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4901 friend class ASTContext;
4902
4903 /// The original type parameter.
4904 const TemplateTypeParmType *Replaced;
4905
4906 /// A pointer to the set of template arguments that this
4907 /// parameter pack is instantiated with.
4908 const TemplateArgument *Arguments;
4909
4910 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4911 QualType Canon,
4912 const TemplateArgument &ArgPack);
4913
4914public:
4915 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4916
4917 /// Gets the template parameter that was substituted for.
4918 const TemplateTypeParmType *getReplacedParameter() const {
4919 return Replaced;
4920 }
4921
4922 unsigned getNumArgs() const {
4923 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4924 }
4925
4926 bool isSugared() const { return false; }
4927 QualType desugar() const { return QualType(this, 0); }
4928
4929 TemplateArgument getArgumentPack() const;
4930
4931 void Profile(llvm::FoldingSetNodeID &ID);
4932 static void Profile(llvm::FoldingSetNodeID &ID,
4933 const TemplateTypeParmType *Replaced,
4934 const TemplateArgument &ArgPack);
4935
4936 static bool classof(const Type *T) {
4937 return T->getTypeClass() == SubstTemplateTypeParmPack;
4938 }
4939};
4940
4941/// Common base class for placeholders for types that get replaced by
4942/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4943/// class template types, and constrained type names.
4944///
4945/// These types are usually a placeholder for a deduced type. However, before
4946/// the initializer is attached, or (usually) if the initializer is
4947/// type-dependent, there is no deduced type and the type is canonical. In
4948/// the latter case, it is also a dependent type.
4949class DeducedType : public Type {
4950protected:
4951 DeducedType(TypeClass TC, QualType DeducedAsType,
4952 TypeDependence ExtraDependence)
4953 : Type(TC,
4954 // FIXME: Retain the sugared deduced type?
4955 DeducedAsType.isNull() ? QualType(this, 0)
4956 : DeducedAsType.getCanonicalType(),
4957 ExtraDependence | (DeducedAsType.isNull()
4958 ? TypeDependence::None
4959 : DeducedAsType->getDependence() &
4960 ~TypeDependence::VariablyModified)) {}
4961
4962public:
4963 bool isSugared() const { return !isCanonicalUnqualified(); }
4964 QualType desugar() const { return getCanonicalTypeInternal(); }
4965
4966 /// Get the type deduced for this placeholder type, or null if it's
4967 /// either not been deduced or was deduced to a dependent type.
4968 QualType getDeducedType() const {
4969 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4970 }
4971 bool isDeduced() const {
4972 return !isCanonicalUnqualified() || isDependentType();
4973 }
4974
4975 static bool classof(const Type *T) {
4976 return T->getTypeClass() == Auto ||
4977 T->getTypeClass() == DeducedTemplateSpecialization;
4978 }
4979};
4980
4981/// Represents a C++11 auto or C++14 decltype(auto) type, possibly constrained
4982/// by a type-constraint.
4983class alignas(8) AutoType : public DeducedType, public llvm::FoldingSetNode {
4984 friend class ASTContext; // ASTContext creates these
4985
4986 ConceptDecl *TypeConstraintConcept;
4987
4988 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4989 TypeDependence ExtraDependence, ConceptDecl *CD,
4990 ArrayRef<TemplateArgument> TypeConstraintArgs);
4991
4992 const TemplateArgument *getArgBuffer() const {
4993 return reinterpret_cast<const TemplateArgument*>(this+1);
4994 }
4995
4996 TemplateArgument *getArgBuffer() {
4997 return reinterpret_cast<TemplateArgument*>(this+1);
4998 }
4999
5000public:
5001 /// Retrieve the template arguments.
5002 const TemplateArgument *getArgs() const {
5003 return getArgBuffer();
5004 }
5005
5006 /// Retrieve the number of template arguments.
5007 unsigned getNumArgs() const {
5008 return AutoTypeBits.NumArgs;
5009 }
5010
5011 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5012
5013 ArrayRef<TemplateArgument> getTypeConstraintArguments() const {
5014 return {getArgs(), getNumArgs()};
5015 }
5016
5017 ConceptDecl *getTypeConstraintConcept() const {
5018 return TypeConstraintConcept;
5019 }
5020
5021 bool isConstrained() const {
5022 return TypeConstraintConcept != nullptr;
5023 }
5024
5025 bool isDecltypeAuto() const {
5026 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
5027 }
5028
5029 AutoTypeKeyword getKeyword() const {
5030 return (AutoTypeKeyword)AutoTypeBits.Keyword;
5031 }
5032
5033 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5034 Profile(ID, Context, getDeducedType(), getKeyword(), isDependentType(),
5035 getTypeConstraintConcept(), getTypeConstraintArguments());
5036 }
5037
5038 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
5039 QualType Deduced, AutoTypeKeyword Keyword,
5040 bool IsDependent, ConceptDecl *CD,
5041 ArrayRef<TemplateArgument> Arguments);
5042
5043 static bool classof(const Type *T) {
5044 return T->getTypeClass() == Auto;
5045 }
5046};
5047
5048/// Represents a C++17 deduced template specialization type.
5049class DeducedTemplateSpecializationType : public DeducedType,
5050 public llvm::FoldingSetNode {
5051 friend class ASTContext; // ASTContext creates these
5052
5053 /// The name of the template whose arguments will be deduced.
5054 TemplateName Template;
5055
5056 DeducedTemplateSpecializationType(TemplateName Template,
5057 QualType DeducedAsType,
5058 bool IsDeducedAsDependent)
5059 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
5060 toTypeDependence(Template.getDependence()) |
5061 (IsDeducedAsDependent
5062 ? TypeDependence::DependentInstantiation
5063 : TypeDependence::None)),
5064 Template(Template) {}
5065
5066public:
5067 /// Retrieve the name of the template that we are deducing.
5068 TemplateName getTemplateName() const { return Template;}
5069
5070 void Profile(llvm::FoldingSetNodeID &ID) {
5071 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
5072 }
5073
5074 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
5075 QualType Deduced, bool IsDependent) {
5076 Template.Profile(ID);
5077 ID.AddPointer(Deduced.getAsOpaquePtr());
5078 ID.AddBoolean(IsDependent);
5079 }
5080
5081 static bool classof(const Type *T) {
5082 return T->getTypeClass() == DeducedTemplateSpecialization;
5083 }
5084};
5085
5086/// Represents a type template specialization; the template
5087/// must be a class template, a type alias template, or a template
5088/// template parameter. A template which cannot be resolved to one of
5089/// these, e.g. because it is written with a dependent scope
5090/// specifier, is instead represented as a
5091/// @c DependentTemplateSpecializationType.
5092///
5093/// A non-dependent template specialization type is always "sugar",
5094/// typically for a \c RecordType. For example, a class template
5095/// specialization type of \c vector<int> will refer to a tag type for
5096/// the instantiation \c std::vector<int, std::allocator<int>>
5097///
5098/// Template specializations are dependent if either the template or
5099/// any of the template arguments are dependent, in which case the
5100/// type may also be canonical.
5101///
5102/// Instances of this type are allocated with a trailing array of
5103/// TemplateArguments, followed by a QualType representing the
5104/// non-canonical aliased type when the template is a type alias
5105/// template.
5106class alignas(8) TemplateSpecializationType
5107 : public Type,
5108 public llvm::FoldingSetNode {
5109 friend class ASTContext; // ASTContext creates these
5110
5111 /// The name of the template being specialized. This is
5112 /// either a TemplateName::Template (in which case it is a
5113 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
5114 /// TypeAliasTemplateDecl*), a
5115 /// TemplateName::SubstTemplateTemplateParmPack, or a
5116 /// TemplateName::SubstTemplateTemplateParm (in which case the
5117 /// replacement must, recursively, be one of these).
5118 TemplateName Template;
5119
5120 TemplateSpecializationType(TemplateName T,
5121 ArrayRef<TemplateArgument> Args,
5122 QualType Canon,
5123 QualType Aliased);
5124
5125public:
5126 /// Determine whether any of the given template arguments are dependent.
5127 ///
5128 /// The converted arguments should be supplied when known; whether an
5129 /// argument is dependent can depend on the conversions performed on it
5130 /// (for example, a 'const int' passed as a template argument might be
5131 /// dependent if the parameter is a reference but non-dependent if the
5132 /// parameter is an int).
5133 ///
5134 /// Note that the \p Args parameter is unused: this is intentional, to remind
5135 /// the caller that they need to pass in the converted arguments, not the
5136 /// specified arguments.
5137 static bool
5138 anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
5139 ArrayRef<TemplateArgument> Converted);
5140 static bool
5141 anyDependentTemplateArguments(const TemplateArgumentListInfo &,
5142 ArrayRef<TemplateArgument> Converted);
5143 static bool anyInstantiationDependentTemplateArguments(
5144 ArrayRef<TemplateArgumentLoc> Args);
5145
5146 /// True if this template specialization type matches a current
5147 /// instantiation in the context in which it is found.
5148 bool isCurrentInstantiation() const {
5149 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
5150 }
5151
5152 /// Determine if this template specialization type is for a type alias
5153 /// template that has been substituted.
5154 ///
5155 /// Nearly every template specialization type whose template is an alias
5156 /// template will be substituted. However, this is not the case when
5157 /// the specialization contains a pack expansion but the template alias
5158 /// does not have a corresponding parameter pack, e.g.,
5159 ///
5160 /// \code
5161 /// template<typename T, typename U, typename V> struct S;
5162 /// template<typename T, typename U> using A = S<T, int, U>;
5163 /// template<typename... Ts> struct X {
5164 /// typedef A<Ts...> type; // not a type alias
5165 /// };
5166 /// \endcode
5167 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5168
5169 /// Get the aliased type, if this is a specialization of a type alias
5170 /// template.
5171 QualType getAliasedType() const {
5172 assert(isTypeAlias() && "not a type alias template specialization")(static_cast <bool> (isTypeAlias() && "not a type alias template specialization"
) ? void (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5172, __extension__ __PRETTY_FUNCTION__))
;
5173 return *reinterpret_cast<const QualType*>(end());
5174 }
5175
5176 using iterator = const TemplateArgument *;
5177
5178 iterator begin() const { return getArgs(); }
5179 iterator end() const; // defined inline in TemplateBase.h
5180
5181 /// Retrieve the name of the template that we are specializing.
5182 TemplateName getTemplateName() const { return Template; }
5183
5184 /// Retrieve the template arguments.
5185 const TemplateArgument *getArgs() const {
5186 return reinterpret_cast<const TemplateArgument *>(this + 1);
5187 }
5188
5189 /// Retrieve the number of template arguments.
5190 unsigned getNumArgs() const {
5191 return TemplateSpecializationTypeBits.NumArgs;
5192 }
5193
5194 /// Retrieve a specific template argument as a type.
5195 /// \pre \c isArgType(Arg)
5196 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5197
5198 ArrayRef<TemplateArgument> template_arguments() const {
5199 return {getArgs(), getNumArgs()};
5200 }
5201
5202 bool isSugared() const {
5203 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5204 }
5205
5206 QualType desugar() const {
5207 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5208 }
5209
5210 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5211 Profile(ID, Template, template_arguments(), Ctx);
5212 if (isTypeAlias())
5213 getAliasedType().Profile(ID);
5214 }
5215
5216 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5217 ArrayRef<TemplateArgument> Args,
5218 const ASTContext &Context);
5219
5220 static bool classof(const Type *T) {
5221 return T->getTypeClass() == TemplateSpecialization;
5222 }
5223};
5224
5225/// Print a template argument list, including the '<' and '>'
5226/// enclosing the template arguments.
5227void printTemplateArgumentList(raw_ostream &OS,
5228 ArrayRef<TemplateArgument> Args,
5229 const PrintingPolicy &Policy,
5230 const TemplateParameterList *TPL = nullptr);
5231
5232void printTemplateArgumentList(raw_ostream &OS,
5233 ArrayRef<TemplateArgumentLoc> Args,
5234 const PrintingPolicy &Policy,
5235 const TemplateParameterList *TPL = nullptr);
5236
5237void printTemplateArgumentList(raw_ostream &OS,
5238 const TemplateArgumentListInfo &Args,
5239 const PrintingPolicy &Policy,
5240 const TemplateParameterList *TPL = nullptr);
5241
5242/// The injected class name of a C++ class template or class
5243/// template partial specialization. Used to record that a type was
5244/// spelled with a bare identifier rather than as a template-id; the
5245/// equivalent for non-templated classes is just RecordType.
5246///
5247/// Injected class name types are always dependent. Template
5248/// instantiation turns these into RecordTypes.
5249///
5250/// Injected class name types are always canonical. This works
5251/// because it is impossible to compare an injected class name type
5252/// with the corresponding non-injected template type, for the same
5253/// reason that it is impossible to directly compare template
5254/// parameters from different dependent contexts: injected class name
5255/// types can only occur within the scope of a particular templated
5256/// declaration, and within that scope every template specialization
5257/// will canonicalize to the injected class name (when appropriate
5258/// according to the rules of the language).
5259class InjectedClassNameType : public Type {
5260 friend class ASTContext; // ASTContext creates these.
5261 friend class ASTNodeImporter;
5262 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5263 // currently suitable for AST reading, too much
5264 // interdependencies.
5265 template <class T> friend class serialization::AbstractTypeReader;
5266
5267 CXXRecordDecl *Decl;
5268
5269 /// The template specialization which this type represents.
5270 /// For example, in
5271 /// template <class T> class A { ... };
5272 /// this is A<T>, whereas in
5273 /// template <class X, class Y> class A<B<X,Y> > { ... };
5274 /// this is A<B<X,Y> >.
5275 ///
5276 /// It is always unqualified, always a template specialization type,
5277 /// and always dependent.
5278 QualType InjectedType;
5279
5280 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5281 : Type(InjectedClassName, QualType(),
5282 TypeDependence::DependentInstantiation),
5283 Decl(D), InjectedType(TST) {
5284 assert(isa<TemplateSpecializationType>(TST))(static_cast <bool> (isa<TemplateSpecializationType>
(TST)) ? void (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5284, __extension__ __PRETTY_FUNCTION__))
;
5285 assert(!TST.hasQualifiers())(static_cast <bool> (!TST.hasQualifiers()) ? void (0) :
__assert_fail ("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5285, __extension__ __PRETTY_FUNCTION__))
;
5286 assert(TST->isDependentType())(static_cast <bool> (TST->isDependentType()) ? void (
0) : __assert_fail ("TST->isDependentType()", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5286, __extension__ __PRETTY_FUNCTION__))
;
5287 }
5288
5289public:
5290 QualType getInjectedSpecializationType() const { return InjectedType; }
5291
5292 const TemplateSpecializationType *getInjectedTST() const {
5293 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5294 }
5295
5296 TemplateName getTemplateName() const {
5297 return getInjectedTST()->getTemplateName();
5298 }
5299
5300 CXXRecordDecl *getDecl() const;
5301
5302 bool isSugared() const { return false; }
5303 QualType desugar() const { return QualType(this, 0); }
5304
5305 static bool classof(const Type *T) {
5306 return T->getTypeClass() == InjectedClassName;
5307 }
5308};
5309
5310/// The kind of a tag type.
5311enum TagTypeKind {
5312 /// The "struct" keyword.
5313 TTK_Struct,
5314
5315 /// The "__interface" keyword.
5316 TTK_Interface,
5317
5318 /// The "union" keyword.
5319 TTK_Union,
5320
5321 /// The "class" keyword.
5322 TTK_Class,
5323
5324 /// The "enum" keyword.
5325 TTK_Enum
5326};
5327
5328/// The elaboration keyword that precedes a qualified type name or
5329/// introduces an elaborated-type-specifier.
5330enum ElaboratedTypeKeyword {
5331 /// The "struct" keyword introduces the elaborated-type-specifier.
5332 ETK_Struct,
5333
5334 /// The "__interface" keyword introduces the elaborated-type-specifier.
5335 ETK_Interface,
5336
5337 /// The "union" keyword introduces the elaborated-type-specifier.
5338 ETK_Union,
5339
5340 /// The "class" keyword introduces the elaborated-type-specifier.
5341 ETK_Class,
5342
5343 /// The "enum" keyword introduces the elaborated-type-specifier.
5344 ETK_Enum,
5345
5346 /// The "typename" keyword precedes the qualified type name, e.g.,
5347 /// \c typename T::type.
5348 ETK_Typename,
5349
5350 /// No keyword precedes the qualified type name.
5351 ETK_None
5352};
5353
5354/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5355/// The keyword in stored in the free bits of the base class.
5356/// Also provides a few static helpers for converting and printing
5357/// elaborated type keyword and tag type kind enumerations.
5358class TypeWithKeyword : public Type {
5359protected:
5360 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5361 QualType Canonical, TypeDependence Dependence)
5362 : Type(tc, Canonical, Dependence) {
5363 TypeWithKeywordBits.Keyword = Keyword;
5364 }
5365
5366public:
5367 ElaboratedTypeKeyword getKeyword() const {
5368 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5369 }
5370
5371 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5372 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5373
5374 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5375 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5376 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5377
5378 /// Converts a TagTypeKind into an elaborated type keyword.
5379 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5380
5381 /// Converts an elaborated type keyword into a TagTypeKind.
5382 /// It is an error to provide an elaborated type keyword
5383 /// which *isn't* a tag kind here.
5384 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5385
5386 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5387
5388 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5389
5390 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5391 return getKeywordName(getKeywordForTagTypeKind(Kind));
5392 }
5393
5394 class CannotCastToThisType {};
5395 static CannotCastToThisType classof(const Type *);
5396};
5397
5398/// Represents a type that was referred to using an elaborated type
5399/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5400/// or both.
5401///
5402/// This type is used to keep track of a type name as written in the
5403/// source code, including tag keywords and any nested-name-specifiers.
5404/// The type itself is always "sugar", used to express what was written
5405/// in the source code but containing no additional semantic information.
5406class ElaboratedType final
5407 : public TypeWithKeyword,
5408 public llvm::FoldingSetNode,
5409 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5410 friend class ASTContext; // ASTContext creates these
5411 friend TrailingObjects;
5412
5413 /// The nested name specifier containing the qualifier.
5414 NestedNameSpecifier *NNS;
5415
5416 /// The type that this qualified name refers to.
5417 QualType NamedType;
5418
5419 /// The (re)declaration of this tag type owned by this occurrence is stored
5420 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5421 /// it, or obtain a null pointer if there is none.
5422
5423 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5424 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5425 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5426 // Any semantic dependence on the qualifier will have
5427 // been incorporated into NamedType. We still need to
5428 // track syntactic (instantiation / error / pack)
5429 // dependence on the qualifier.
5430 NamedType->getDependence() |
5431 (NNS ? toSyntacticDependence(
5432 toTypeDependence(NNS->getDependence()))
5433 : TypeDependence::None)),
5434 NNS(NNS), NamedType(NamedType) {
5435 ElaboratedTypeBits.HasOwnedTagDecl = false;
5436 if (OwnedTagDecl) {
5437 ElaboratedTypeBits.HasOwnedTagDecl = true;
5438 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5439 }
5440 assert(!(Keyword == ETK_None && NNS == nullptr) &&(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5442, __extension__ __PRETTY_FUNCTION__))
5441 "ElaboratedType cannot have elaborated type keyword "(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5442, __extension__ __PRETTY_FUNCTION__))
5442 "and name qualifier both null.")(static_cast <bool> (!(Keyword == ETK_None && NNS
== nullptr) && "ElaboratedType cannot have elaborated type keyword "
"and name qualifier both null.") ? void (0) : __assert_fail (
"!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5442, __extension__ __PRETTY_FUNCTION__))
;
5443 }
5444
5445public:
5446 /// Retrieve the qualification on this type.
5447 NestedNameSpecifier *getQualifier() const { return NNS; }
5448
5449 /// Retrieve the type named by the qualified-id.
5450 QualType getNamedType() const { return NamedType; }
5451
5452 /// Remove a single level of sugar.
5453 QualType desugar() const { return getNamedType(); }
5454
5455 /// Returns whether this type directly provides sugar.
5456 bool isSugared() const { return true; }
5457
5458 /// Return the (re)declaration of this type owned by this occurrence of this
5459 /// type, or nullptr if there is none.
5460 TagDecl *getOwnedTagDecl() const {
5461 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5462 : nullptr;
5463 }
5464
5465 void Profile(llvm::FoldingSetNodeID &ID) {
5466 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5467 }
5468
5469 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5470 NestedNameSpecifier *NNS, QualType NamedType,
5471 TagDecl *OwnedTagDecl) {
5472 ID.AddInteger(Keyword);
5473 ID.AddPointer(NNS);
5474 NamedType.Profile(ID);
5475 ID.AddPointer(OwnedTagDecl);
5476 }
5477
5478 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5479};
5480
5481/// Represents a qualified type name for which the type name is
5482/// dependent.
5483///
5484/// DependentNameType represents a class of dependent types that involve a
5485/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5486/// name of a type. The DependentNameType may start with a "typename" (for a
5487/// typename-specifier), "class", "struct", "union", or "enum" (for a
5488/// dependent elaborated-type-specifier), or nothing (in contexts where we
5489/// know that we must be referring to a type, e.g., in a base class specifier).
5490/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5491/// mode, this type is used with non-dependent names to delay name lookup until
5492/// instantiation.
5493class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5494 friend class ASTContext; // ASTContext creates these
5495
5496 /// The nested name specifier containing the qualifier.
5497 NestedNameSpecifier *NNS;
5498
5499 /// The type that this typename specifier refers to.
5500 const IdentifierInfo *Name;
5501
5502 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5503 const IdentifierInfo *Name, QualType CanonType)
5504 : TypeWithKeyword(Keyword, DependentName, CanonType,
5505 TypeDependence::DependentInstantiation |
5506 toTypeDependence(NNS->getDependence())),
5507 NNS(NNS), Name(Name) {}
5508
5509public:
5510 /// Retrieve the qualification on this type.
5511 NestedNameSpecifier *getQualifier() const { return NNS; }
5512
5513 /// Retrieve the type named by the typename specifier as an identifier.
5514 ///
5515 /// This routine will return a non-NULL identifier pointer when the
5516 /// form of the original typename was terminated by an identifier,
5517 /// e.g., "typename T::type".
5518 const IdentifierInfo *getIdentifier() const {
5519 return Name;
5520 }
5521
5522 bool isSugared() const { return false; }
5523 QualType desugar() const { return QualType(this, 0); }
5524
5525 void Profile(llvm::FoldingSetNodeID &ID) {
5526 Profile(ID, getKeyword(), NNS, Name);
5527 }
5528
5529 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5530 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5531 ID.AddInteger(Keyword);
5532 ID.AddPointer(NNS);
5533 ID.AddPointer(Name);
5534 }
5535
5536 static bool classof(const Type *T) {
5537 return T->getTypeClass() == DependentName;
5538 }
5539};
5540
5541/// Represents a template specialization type whose template cannot be
5542/// resolved, e.g.
5543/// A<T>::template B<T>
5544class alignas(8) DependentTemplateSpecializationType
5545 : public TypeWithKeyword,
5546 public llvm::FoldingSetNode {
5547 friend class ASTContext; // ASTContext creates these
5548
5549 /// The nested name specifier containing the qualifier.
5550 NestedNameSpecifier *NNS;
5551
5552 /// The identifier of the template.
5553 const IdentifierInfo *Name;
5554
5555 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5556 NestedNameSpecifier *NNS,
5557 const IdentifierInfo *Name,
5558 ArrayRef<TemplateArgument> Args,
5559 QualType Canon);
5560
5561 const TemplateArgument *getArgBuffer() const {
5562 return reinterpret_cast<const TemplateArgument*>(this+1);
5563 }
5564
5565 TemplateArgument *getArgBuffer() {
5566 return reinterpret_cast<TemplateArgument*>(this+1);
5567 }
5568
5569public:
5570 NestedNameSpecifier *getQualifier() const { return NNS; }
5571 const IdentifierInfo *getIdentifier() const { return Name; }
5572
5573 /// Retrieve the template arguments.
5574 const TemplateArgument *getArgs() const {
5575 return getArgBuffer();
5576 }
5577
5578 /// Retrieve the number of template arguments.
5579 unsigned getNumArgs() const {
5580 return DependentTemplateSpecializationTypeBits.NumArgs;
5581 }
5582
5583 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5584
5585 ArrayRef<TemplateArgument> template_arguments() const {
5586 return {getArgs(), getNumArgs()};
5587 }
5588
5589 using iterator = const TemplateArgument *;
5590
5591 iterator begin() const { return getArgs(); }
5592 iterator end() const; // inline in TemplateBase.h
5593
5594 bool isSugared() const { return false; }
5595 QualType desugar() const { return QualType(this, 0); }
5596
5597 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5598 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5599 }
5600
5601 static void Profile(llvm::FoldingSetNodeID &ID,
5602 const ASTContext &Context,
5603 ElaboratedTypeKeyword Keyword,
5604 NestedNameSpecifier *Qualifier,
5605 const IdentifierInfo *Name,
5606 ArrayRef<TemplateArgument> Args);
5607
5608 static bool classof(const Type *T) {
5609 return T->getTypeClass() == DependentTemplateSpecialization;
5610 }
5611};
5612
5613/// Represents a pack expansion of types.
5614///
5615/// Pack expansions are part of C++11 variadic templates. A pack
5616/// expansion contains a pattern, which itself contains one or more
5617/// "unexpanded" parameter packs. When instantiated, a pack expansion
5618/// produces a series of types, each instantiated from the pattern of
5619/// the expansion, where the Ith instantiation of the pattern uses the
5620/// Ith arguments bound to each of the unexpanded parameter packs. The
5621/// pack expansion is considered to "expand" these unexpanded
5622/// parameter packs.
5623///
5624/// \code
5625/// template<typename ...Types> struct tuple;
5626///
5627/// template<typename ...Types>
5628/// struct tuple_of_references {
5629/// typedef tuple<Types&...> type;
5630/// };
5631/// \endcode
5632///
5633/// Here, the pack expansion \c Types&... is represented via a
5634/// PackExpansionType whose pattern is Types&.
5635class PackExpansionType : public Type, public llvm::FoldingSetNode {
5636 friend class ASTContext; // ASTContext creates these
5637
5638 /// The pattern of the pack expansion.
5639 QualType Pattern;
5640
5641 PackExpansionType(QualType Pattern, QualType Canon,
5642 Optional<unsigned> NumExpansions)
5643 : Type(PackExpansion, Canon,
5644 (Pattern->getDependence() | TypeDependence::Dependent |
5645 TypeDependence::Instantiation) &
5646 ~TypeDependence::UnexpandedPack),
5647 Pattern(Pattern) {
5648 PackExpansionTypeBits.NumExpansions =
5649 NumExpansions ? *NumExpansions + 1 : 0;
5650 }
5651
5652public:
5653 /// Retrieve the pattern of this pack expansion, which is the
5654 /// type that will be repeatedly instantiated when instantiating the
5655 /// pack expansion itself.
5656 QualType getPattern() const { return Pattern; }
5657
5658 /// Retrieve the number of expansions that this pack expansion will
5659 /// generate, if known.
5660 Optional<unsigned> getNumExpansions() const {
5661 if (PackExpansionTypeBits.NumExpansions)
5662 return PackExpansionTypeBits.NumExpansions - 1;
5663 return None;
5664 }
5665
5666 bool isSugared() const { return false; }
5667 QualType desugar() const { return QualType(this, 0); }
5668
5669 void Profile(llvm::FoldingSetNodeID &ID) {
5670 Profile(ID, getPattern(), getNumExpansions());
5671 }
5672
5673 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5674 Optional<unsigned> NumExpansions) {
5675 ID.AddPointer(Pattern.getAsOpaquePtr());
5676 ID.AddBoolean(NumExpansions.hasValue());
5677 if (NumExpansions)
5678 ID.AddInteger(*NumExpansions);
5679 }
5680
5681 static bool classof(const Type *T) {
5682 return T->getTypeClass() == PackExpansion;
5683 }
5684};
5685
5686/// This class wraps the list of protocol qualifiers. For types that can
5687/// take ObjC protocol qualifers, they can subclass this class.
5688template <class T>
5689class ObjCProtocolQualifiers {
5690protected:
5691 ObjCProtocolQualifiers() = default;
5692
5693 ObjCProtocolDecl * const *getProtocolStorage() const {
5694 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5695 }
5696
5697 ObjCProtocolDecl **getProtocolStorage() {
5698 return static_cast<T*>(this)->getProtocolStorageImpl();
5699 }
5700
5701 void setNumProtocols(unsigned N) {
5702 static_cast<T*>(this)->setNumProtocolsImpl(N);
5703 }
5704
5705 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5706 setNumProtocols(protocols.size());
5707 assert(getNumProtocols() == protocols.size() &&(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5708, __extension__ __PRETTY_FUNCTION__))
5708 "bitfield overflow in protocol count")(static_cast <bool> (getNumProtocols() == protocols.size
() && "bitfield overflow in protocol count") ? void (
0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5708, __extension__ __PRETTY_FUNCTION__))
;
5709 if (!protocols.empty())
5710 memcpy(getProtocolStorage(), protocols.data(),
5711 protocols.size() * sizeof(ObjCProtocolDecl*));
5712 }
5713
5714public:
5715 using qual_iterator = ObjCProtocolDecl * const *;
5716 using qual_range = llvm::iterator_range<qual_iterator>;
5717
5718 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5719 qual_iterator qual_begin() const { return getProtocolStorage(); }
5720 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5721
5722 bool qual_empty() const { return getNumProtocols() == 0; }
5723
5724 /// Return the number of qualifying protocols in this type, or 0 if
5725 /// there are none.
5726 unsigned getNumProtocols() const {
5727 return static_cast<const T*>(this)->getNumProtocolsImpl();
5728 }
5729
5730 /// Fetch a protocol by index.
5731 ObjCProtocolDecl *getProtocol(unsigned I) const {
5732 assert(I < getNumProtocols() && "Out-of-range protocol access")(static_cast <bool> (I < getNumProtocols() &&
"Out-of-range protocol access") ? void (0) : __assert_fail (
"I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5732, __extension__ __PRETTY_FUNCTION__))
;
5733 return qual_begin()[I];
5734 }
5735
5736 /// Retrieve all of the protocol qualifiers.
5737 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5738 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5739 }
5740};
5741
5742/// Represents a type parameter type in Objective C. It can take
5743/// a list of protocols.
5744class ObjCTypeParamType : public Type,
5745 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5746 public llvm::FoldingSetNode {
5747 friend class ASTContext;
5748 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5749
5750 /// The number of protocols stored on this type.
5751 unsigned NumProtocols : 6;
5752
5753 ObjCTypeParamDecl *OTPDecl;
5754
5755 /// The protocols are stored after the ObjCTypeParamType node. In the
5756 /// canonical type, the list of protocols are sorted alphabetically
5757 /// and uniqued.
5758 ObjCProtocolDecl **getProtocolStorageImpl();
5759
5760 /// Return the number of qualifying protocols in this interface type,
5761 /// or 0 if there are none.
5762 unsigned getNumProtocolsImpl() const {
5763 return NumProtocols;
5764 }
5765
5766 void setNumProtocolsImpl(unsigned N) {
5767 NumProtocols = N;
5768 }
5769
5770 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5771 QualType can,
5772 ArrayRef<ObjCProtocolDecl *> protocols);
5773
5774public:
5775 bool isSugared() const { return true; }
5776 QualType desugar() const { return getCanonicalTypeInternal(); }
5777
5778 static bool classof(const Type *T) {
5779 return T->getTypeClass() == ObjCTypeParam;
5780 }
5781
5782 void Profile(llvm::FoldingSetNodeID &ID);
5783 static void Profile(llvm::FoldingSetNodeID &ID,
5784 const ObjCTypeParamDecl *OTPDecl,
5785 QualType CanonicalType,
5786 ArrayRef<ObjCProtocolDecl *> protocols);
5787
5788 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5789};
5790
5791/// Represents a class type in Objective C.
5792///
5793/// Every Objective C type is a combination of a base type, a set of
5794/// type arguments (optional, for parameterized classes) and a list of
5795/// protocols.
5796///
5797/// Given the following declarations:
5798/// \code
5799/// \@class C<T>;
5800/// \@protocol P;
5801/// \endcode
5802///
5803/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5804/// with base C and no protocols.
5805///
5806/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5807/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5808/// protocol list.
5809/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5810/// and protocol list [P].
5811///
5812/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5813/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5814/// and no protocols.
5815///
5816/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5817/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5818/// this should get its own sugar class to better represent the source.
5819class ObjCObjectType : public Type,
5820 public ObjCProtocolQualifiers<ObjCObjectType> {
5821 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5822
5823 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5824 // after the ObjCObjectPointerType node.
5825 // ObjCObjectType.NumProtocols - the number of protocols stored
5826 // after the type arguments of ObjCObjectPointerType node.
5827 //
5828 // These protocols are those written directly on the type. If
5829 // protocol qualifiers ever become additive, the iterators will need
5830 // to get kindof complicated.
5831 //
5832 // In the canonical object type, these are sorted alphabetically
5833 // and uniqued.
5834
5835 /// Either a BuiltinType or an InterfaceType or sugar for either.
5836 QualType BaseType;
5837
5838 /// Cached superclass type.
5839 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5840 CachedSuperClassType;
5841
5842 QualType *getTypeArgStorage();
5843 const QualType *getTypeArgStorage() const {
5844 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5845 }
5846
5847 ObjCProtocolDecl **getProtocolStorageImpl();
5848 /// Return the number of qualifying protocols in this interface type,
5849 /// or 0 if there are none.
5850 unsigned getNumProtocolsImpl() const {
5851 return ObjCObjectTypeBits.NumProtocols;
5852 }
5853 void setNumProtocolsImpl(unsigned N) {
5854 ObjCObjectTypeBits.NumProtocols = N;
5855 }
5856
5857protected:
5858 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5859
5860 ObjCObjectType(QualType Canonical, QualType Base,
5861 ArrayRef<QualType> typeArgs,
5862 ArrayRef<ObjCProtocolDecl *> protocols,
5863 bool isKindOf);
5864
5865 ObjCObjectType(enum Nonce_ObjCInterface)
5866 : Type(ObjCInterface, QualType(), TypeDependence::None),
5867 BaseType(QualType(this_(), 0)) {
5868 ObjCObjectTypeBits.NumProtocols = 0;
5869 ObjCObjectTypeBits.NumTypeArgs = 0;
5870 ObjCObjectTypeBits.IsKindOf = 0;
5871 }
5872
5873 void computeSuperClassTypeSlow() const;
5874
5875public:
5876 /// Gets the base type of this object type. This is always (possibly
5877 /// sugar for) one of:
5878 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5879 /// user, which is a typedef for an ObjCObjectPointerType)
5880 /// - the 'Class' builtin type (same caveat)
5881 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5882 QualType getBaseType() const { return BaseType; }
5883
5884 bool isObjCId() const {
5885 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5886 }
5887
5888 bool isObjCClass() const {
5889 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5890 }
5891
5892 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5893 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5894 bool isObjCUnqualifiedIdOrClass() const {
5895 if (!qual_empty()) return false;
5896 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5897 return T->getKind() == BuiltinType::ObjCId ||
5898 T->getKind() == BuiltinType::ObjCClass;
5899 return false;
5900 }
5901 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5902 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5903
5904 /// Gets the interface declaration for this object type, if the base type
5905 /// really is an interface.
5906 ObjCInterfaceDecl *getInterface() const;
5907
5908 /// Determine whether this object type is "specialized", meaning
5909 /// that it has type arguments.
5910 bool isSpecialized() const;
5911
5912 /// Determine whether this object type was written with type arguments.
5913 bool isSpecializedAsWritten() const {
5914 return ObjCObjectTypeBits.NumTypeArgs > 0;
5915 }
5916
5917 /// Determine whether this object type is "unspecialized", meaning
5918 /// that it has no type arguments.
5919 bool isUnspecialized() const { return !isSpecialized(); }
5920
5921 /// Determine whether this object type is "unspecialized" as
5922 /// written, meaning that it has no type arguments.
5923 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5924
5925 /// Retrieve the type arguments of this object type (semantically).
5926 ArrayRef<QualType> getTypeArgs() const;
5927
5928 /// Retrieve the type arguments of this object type as they were
5929 /// written.
5930 ArrayRef<QualType> getTypeArgsAsWritten() const {
5931 return llvm::makeArrayRef(getTypeArgStorage(),
5932 ObjCObjectTypeBits.NumTypeArgs);
5933 }
5934
5935 /// Whether this is a "__kindof" type as written.
5936 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5937
5938 /// Whether this ia a "__kindof" type (semantically).
5939 bool isKindOfType() const;
5940
5941 /// Retrieve the type of the superclass of this object type.
5942 ///
5943 /// This operation substitutes any type arguments into the
5944 /// superclass of the current class type, potentially producing a
5945 /// specialization of the superclass type. Produces a null type if
5946 /// there is no superclass.
5947 QualType getSuperClassType() const {
5948 if (!CachedSuperClassType.getInt())
5949 computeSuperClassTypeSlow();
5950
5951 assert(CachedSuperClassType.getInt() && "Superclass not set?")(static_cast <bool> (CachedSuperClassType.getInt() &&
"Superclass not set?") ? void (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 5951, __extension__ __PRETTY_FUNCTION__))
;
5952 return QualType(CachedSuperClassType.getPointer(), 0);
5953 }
5954
5955 /// Strip off the Objective-C "kindof" type and (with it) any
5956 /// protocol qualifiers.
5957 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5958
5959 bool isSugared() const { return false; }
5960 QualType desugar() const { return QualType(this, 0); }
5961
5962 static bool classof(const Type *T) {
5963 return T->getTypeClass() == ObjCObject ||
5964 T->getTypeClass() == ObjCInterface;
5965 }
5966};
5967
5968/// A class providing a concrete implementation
5969/// of ObjCObjectType, so as to not increase the footprint of
5970/// ObjCInterfaceType. Code outside of ASTContext and the core type
5971/// system should not reference this type.
5972class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5973 friend class ASTContext;
5974
5975 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5976 // will need to be modified.
5977
5978 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5979 ArrayRef<QualType> typeArgs,
5980 ArrayRef<ObjCProtocolDecl *> protocols,
5981 bool isKindOf)
5982 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5983
5984public:
5985 void Profile(llvm::FoldingSetNodeID &ID);
5986 static void Profile(llvm::FoldingSetNodeID &ID,
5987 QualType Base,
5988 ArrayRef<QualType> typeArgs,
5989 ArrayRef<ObjCProtocolDecl *> protocols,
5990 bool isKindOf);
5991};
5992
5993inline QualType *ObjCObjectType::getTypeArgStorage() {
5994 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5995}
5996
5997inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5998 return reinterpret_cast<ObjCProtocolDecl**>(
5999 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
6000}
6001
6002inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
6003 return reinterpret_cast<ObjCProtocolDecl**>(
6004 static_cast<ObjCTypeParamType*>(this)+1);
6005}
6006
6007/// Interfaces are the core concept in Objective-C for object oriented design.
6008/// They basically correspond to C++ classes. There are two kinds of interface
6009/// types: normal interfaces like `NSString`, and qualified interfaces, which
6010/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
6011///
6012/// ObjCInterfaceType guarantees the following properties when considered
6013/// as a subtype of its superclass, ObjCObjectType:
6014/// - There are no protocol qualifiers. To reinforce this, code which
6015/// tries to invoke the protocol methods via an ObjCInterfaceType will
6016/// fail to compile.
6017/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
6018/// T->getBaseType() == QualType(T, 0).
6019class ObjCInterfaceType : public ObjCObjectType {
6020 friend class ASTContext; // ASTContext creates these.
6021 friend class ASTReader;
6022 friend class ObjCInterfaceDecl;
6023 template <class T> friend class serialization::AbstractTypeReader;
6024
6025 mutable ObjCInterfaceDecl *Decl;
6026
6027 ObjCInterfaceType(const ObjCInterfaceDecl *D)
6028 : ObjCObjectType(Nonce_ObjCInterface),
6029 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
6030
6031public:
6032 /// Get the declaration of this interface.
6033 ObjCInterfaceDecl *getDecl() const { return Decl; }
6034
6035 bool isSugared() const { return false; }
6036 QualType desugar() const { return QualType(this, 0); }
6037
6038 static bool classof(const Type *T) {
6039 return T->getTypeClass() == ObjCInterface;
6040 }
6041
6042 // Nonsense to "hide" certain members of ObjCObjectType within this
6043 // class. People asking for protocols on an ObjCInterfaceType are
6044 // not going to get what they want: ObjCInterfaceTypes are
6045 // guaranteed to have no protocols.
6046 enum {
6047 qual_iterator,
6048 qual_begin,
6049 qual_end,
6050 getNumProtocols,
6051 getProtocol
6052 };
6053};
6054
6055inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
6056 QualType baseType = getBaseType();
6057 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
6058 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
6059 return T->getDecl();
6060
6061 baseType = ObjT->getBaseType();
6062 }
6063
6064 return nullptr;
6065}
6066
6067/// Represents a pointer to an Objective C object.
6068///
6069/// These are constructed from pointer declarators when the pointee type is
6070/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
6071/// types are typedefs for these, and the protocol-qualified types 'id<P>'
6072/// and 'Class<P>' are translated into these.
6073///
6074/// Pointers to pointers to Objective C objects are still PointerTypes;
6075/// only the first level of pointer gets it own type implementation.
6076class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
6077 friend class ASTContext; // ASTContext creates these.
6078
6079 QualType PointeeType;
6080
6081 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
6082 : Type(ObjCObjectPointer, Canonical, Pointee->getDependence()),
6083 PointeeType(Pointee) {}
6084
6085public:
6086 /// Gets the type pointed to by this ObjC pointer.
6087 /// The result will always be an ObjCObjectType or sugar thereof.
6088 QualType getPointeeType() const { return PointeeType; }
6089
6090 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
6091 ///
6092 /// This method is equivalent to getPointeeType() except that
6093 /// it discards any typedefs (or other sugar) between this
6094 /// type and the "outermost" object type. So for:
6095 /// \code
6096 /// \@class A; \@protocol P; \@protocol Q;
6097 /// typedef A<P> AP;
6098 /// typedef A A1;
6099 /// typedef A1<P> A1P;
6100 /// typedef A1P<Q> A1PQ;
6101 /// \endcode
6102 /// For 'A*', getObjectType() will return 'A'.
6103 /// For 'A<P>*', getObjectType() will return 'A<P>'.
6104 /// For 'AP*', getObjectType() will return 'A<P>'.
6105 /// For 'A1*', getObjectType() will return 'A'.
6106 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
6107 /// For 'A1P*', getObjectType() will return 'A1<P>'.
6108 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
6109 /// adding protocols to a protocol-qualified base discards the
6110 /// old qualifiers (for now). But if it didn't, getObjectType()
6111 /// would return 'A1P<Q>' (and we'd have to make iterating over
6112 /// qualifiers more complicated).
6113 const ObjCObjectType *getObjectType() const {
6114 return PointeeType->castAs<ObjCObjectType>();
6115 }
6116
6117 /// If this pointer points to an Objective C
6118 /// \@interface type, gets the type for that interface. Any protocol
6119 /// qualifiers on the interface are ignored.
6120 ///
6121 /// \return null if the base type for this pointer is 'id' or 'Class'
6122 const ObjCInterfaceType *getInterfaceType() const;
6123
6124 /// If this pointer points to an Objective \@interface
6125 /// type, gets the declaration for that interface.
6126 ///
6127 /// \return null if the base type for this pointer is 'id' or 'Class'
6128 ObjCInterfaceDecl *getInterfaceDecl() const {
6129 return getObjectType()->getInterface();
6130 }
6131
6132 /// True if this is equivalent to the 'id' type, i.e. if
6133 /// its object type is the primitive 'id' type with no protocols.
6134 bool isObjCIdType() const {
6135 return getObjectType()->isObjCUnqualifiedId();
6136 }
6137
6138 /// True if this is equivalent to the 'Class' type,
6139 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
6140 bool isObjCClassType() const {
6141 return getObjectType()->isObjCUnqualifiedClass();
6142 }
6143
6144 /// True if this is equivalent to the 'id' or 'Class' type,
6145 bool isObjCIdOrClassType() const {
6146 return getObjectType()->isObjCUnqualifiedIdOrClass();
6147 }
6148
6149 /// True if this is equivalent to 'id<P>' for some non-empty set of
6150 /// protocols.
6151 bool isObjCQualifiedIdType() const {
6152 return getObjectType()->isObjCQualifiedId();
6153 }
6154
6155 /// True if this is equivalent to 'Class<P>' for some non-empty set of
6156 /// protocols.
6157 bool isObjCQualifiedClassType() const {
6158 return getObjectType()->isObjCQualifiedClass();
6159 }
6160
6161 /// Whether this is a "__kindof" type.
6162 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6163
6164 /// Whether this type is specialized, meaning that it has type arguments.
6165 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6166
6167 /// Whether this type is specialized, meaning that it has type arguments.
6168 bool isSpecializedAsWritten() const {
6169 return getObjectType()->isSpecializedAsWritten();
6170 }
6171
6172 /// Whether this type is unspecialized, meaning that is has no type arguments.
6173 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6174
6175 /// Determine whether this object type is "unspecialized" as
6176 /// written, meaning that it has no type arguments.
6177 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6178
6179 /// Retrieve the type arguments for this type.
6180 ArrayRef<QualType> getTypeArgs() const {
6181 return getObjectType()->getTypeArgs();
6182 }
6183
6184 /// Retrieve the type arguments for this type.
6185 ArrayRef<QualType> getTypeArgsAsWritten() const {
6186 return getObjectType()->getTypeArgsAsWritten();
6187 }
6188
6189 /// An iterator over the qualifiers on the object type. Provided
6190 /// for convenience. This will always iterate over the full set of
6191 /// protocols on a type, not just those provided directly.
6192 using qual_iterator = ObjCObjectType::qual_iterator;
6193 using qual_range = llvm::iterator_range<qual_iterator>;
6194
6195 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6196
6197 qual_iterator qual_begin() const {
6198 return getObjectType()->qual_begin();
6199 }
6200
6201 qual_iterator qual_end() const {
6202 return getObjectType()->qual_end();
6203 }
6204
6205 bool qual_empty() const { return getObjectType()->qual_empty(); }
6206
6207 /// Return the number of qualifying protocols on the object type.
6208 unsigned getNumProtocols() const {
6209 return getObjectType()->getNumProtocols();
6210 }
6211
6212 /// Retrieve a qualifying protocol by index on the object type.
6213 ObjCProtocolDecl *getProtocol(unsigned I) const {
6214 return getObjectType()->getProtocol(I);
6215 }
6216
6217 bool isSugared() const { return false; }
6218 QualType desugar() const { return QualType(this, 0); }
6219
6220 /// Retrieve the type of the superclass of this object pointer type.
6221 ///
6222 /// This operation substitutes any type arguments into the
6223 /// superclass of the current class type, potentially producing a
6224 /// pointer to a specialization of the superclass type. Produces a
6225 /// null type if there is no superclass.
6226 QualType getSuperClassType() const;
6227
6228 /// Strip off the Objective-C "kindof" type and (with it) any
6229 /// protocol qualifiers.
6230 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6231 const ASTContext &ctx) const;
6232
6233 void Profile(llvm::FoldingSetNodeID &ID) {
6234 Profile(ID, getPointeeType());
6235 }
6236
6237 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6238 ID.AddPointer(T.getAsOpaquePtr());
6239 }
6240
6241 static bool classof(const Type *T) {
6242 return T->getTypeClass() == ObjCObjectPointer;
6243 }
6244};
6245
6246class AtomicType : public Type, public llvm::FoldingSetNode {
6247 friend class ASTContext; // ASTContext creates these.
6248
6249 QualType ValueType;
6250
6251 AtomicType(QualType ValTy, QualType Canonical)
6252 : Type(Atomic, Canonical, ValTy->getDependence()), ValueType(ValTy) {}
6253
6254public:
6255 /// Gets the type contained by this atomic type, i.e.
6256 /// the type returned by performing an atomic load of this atomic type.
6257 QualType getValueType() const { return ValueType; }
6258
6259 bool isSugared() const { return false; }
6260 QualType desugar() const { return QualType(this, 0); }
6261
6262 void Profile(llvm::FoldingSetNodeID &ID) {
6263 Profile(ID, getValueType());
6264 }
6265
6266 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6267 ID.AddPointer(T.getAsOpaquePtr());
6268 }
6269
6270 static bool classof(const Type *T) {
6271 return T->getTypeClass() == Atomic;
6272 }
6273};
6274
6275/// PipeType - OpenCL20.
6276class PipeType : public Type, public llvm::FoldingSetNode {
6277 friend class ASTContext; // ASTContext creates these.
6278
6279 QualType ElementType;
6280 bool isRead;
6281
6282 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6283 : Type(Pipe, CanonicalPtr, elemType->getDependence()),
6284 ElementType(elemType), isRead(isRead) {}
6285
6286public:
6287 QualType getElementType() const { return ElementType; }
6288
6289 bool isSugared() const { return false; }
6290
6291 QualType desugar() const { return QualType(this, 0); }
6292
6293 void Profile(llvm::FoldingSetNodeID &ID) {
6294 Profile(ID, getElementType(), isReadOnly());
6295 }
6296
6297 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6298 ID.AddPointer(T.getAsOpaquePtr());
6299 ID.AddBoolean(isRead);
6300 }
6301
6302 static bool classof(const Type *T) {
6303 return T->getTypeClass() == Pipe;
6304 }
6305
6306 bool isReadOnly() const { return isRead; }
6307};
6308
6309/// A fixed int type of a specified bitwidth.
6310class ExtIntType final : public Type, public llvm::FoldingSetNode {
6311 friend class ASTContext;
6312 unsigned IsUnsigned : 1;
6313 unsigned NumBits : 24;
6314
6315protected:
6316 ExtIntType(bool isUnsigned, unsigned NumBits);
6317
6318public:
6319 bool isUnsigned() const { return IsUnsigned; }
6320 bool isSigned() const { return !IsUnsigned; }
6321 unsigned getNumBits() const { return NumBits; }
6322
6323 bool isSugared() const { return false; }
6324 QualType desugar() const { return QualType(this, 0); }
6325
6326 void Profile(llvm::FoldingSetNodeID &ID) {
6327 Profile(ID, isUnsigned(), getNumBits());
6328 }
6329
6330 static void Profile(llvm::FoldingSetNodeID &ID, bool IsUnsigned,
6331 unsigned NumBits) {
6332 ID.AddBoolean(IsUnsigned);
6333 ID.AddInteger(NumBits);
6334 }
6335
6336 static bool classof(const Type *T) { return T->getTypeClass() == ExtInt; }
6337};
6338
6339class DependentExtIntType final : public Type, public llvm::FoldingSetNode {
6340 friend class ASTContext;
6341 const ASTContext &Context;
6342 llvm::PointerIntPair<Expr*, 1, bool> ExprAndUnsigned;
6343
6344protected:
6345 DependentExtIntType(const ASTContext &Context, bool IsUnsigned,
6346 Expr *NumBits);
6347
6348public:
6349 bool isUnsigned() const;
6350 bool isSigned() const { return !isUnsigned(); }
6351 Expr *getNumBitsExpr() const;
6352
6353 bool isSugared() const { return false; }
6354 QualType desugar() const { return QualType(this, 0); }
6355
6356 void Profile(llvm::FoldingSetNodeID &ID) {
6357 Profile(ID, Context, isUnsigned(), getNumBitsExpr());
6358 }
6359 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
6360 bool IsUnsigned, Expr *NumBitsExpr);
6361
6362 static bool classof(const Type *T) {
6363 return T->getTypeClass() == DependentExtInt;
6364 }
6365};
6366
6367/// A qualifier set is used to build a set of qualifiers.
6368class QualifierCollector : public Qualifiers {
6369public:
6370 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6371
6372 /// Collect any qualifiers on the given type and return an
6373 /// unqualified type. The qualifiers are assumed to be consistent
6374 /// with those already in the type.
6375 const Type *strip(QualType type) {
6376 addFastQualifiers(type.getLocalFastQualifiers());
6377 if (!type.hasLocalNonFastQualifiers())
6378 return type.getTypePtrUnsafe();
6379
6380 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6381 addConsistentQualifiers(extQuals->getQualifiers());
6382 return extQuals->getBaseType();
6383 }
6384
6385 /// Apply the collected qualifiers to the given type.
6386 QualType apply(const ASTContext &Context, QualType QT) const;
6387
6388 /// Apply the collected qualifiers to the given type.
6389 QualType apply(const ASTContext &Context, const Type* T) const;
6390};
6391
6392/// A container of type source information.
6393///
6394/// A client can read the relevant info using TypeLoc wrappers, e.g:
6395/// @code
6396/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6397/// TL.getBeginLoc().print(OS, SrcMgr);
6398/// @endcode
6399class alignas(8) TypeSourceInfo {
6400 // Contains a memory block after the class, used for type source information,
6401 // allocated by ASTContext.
6402 friend class ASTContext;
6403
6404 QualType Ty;
6405
6406 TypeSourceInfo(QualType ty) : Ty(ty) {}
6407
6408public:
6409 /// Return the type wrapped by this type source info.
6410 QualType getType() const { return Ty; }
6411
6412 /// Return the TypeLoc wrapper for the type source info.
6413 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6414
6415 /// Override the type stored in this TypeSourceInfo. Use with caution!
6416 void overrideType(QualType T) { Ty = T; }
6417};
6418
6419// Inline function definitions.
6420
6421inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6422 SplitQualType desugar =
6423 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6424 desugar.Quals.addConsistentQualifiers(Quals);
6425 return desugar;
6426}
6427
6428inline const Type *QualType::getTypePtr() const {
6429 return getCommonPtr()->BaseType;
6430}
6431
6432inline const Type *QualType::getTypePtrOrNull() const {
6433 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6434}
6435
6436inline SplitQualType QualType::split() const {
6437 if (!hasLocalNonFastQualifiers())
6438 return SplitQualType(getTypePtrUnsafe(),
6439 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6440
6441 const ExtQuals *eq = getExtQualsUnsafe();
6442 Qualifiers qs = eq->getQualifiers();
6443 qs.addFastQualifiers(getLocalFastQualifiers());
6444 return SplitQualType(eq->getBaseType(), qs);
6445}
6446
6447inline Qualifiers QualType::getLocalQualifiers() const {
6448 Qualifiers Quals;
6449 if (hasLocalNonFastQualifiers())
6450 Quals = getExtQualsUnsafe()->getQualifiers();
6451 Quals.addFastQualifiers(getLocalFastQualifiers());
6452 return Quals;
6453}
6454
6455inline Qualifiers QualType::getQualifiers() const {
6456 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6457 quals.addFastQualifiers(getLocalFastQualifiers());
6458 return quals;
6459}
6460
6461inline unsigned QualType::getCVRQualifiers() const {
6462 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6463 cvr |= getLocalCVRQualifiers();
6464 return cvr;
6465}
6466
6467inline QualType QualType::getCanonicalType() const {
6468 QualType canon = getCommonPtr()->CanonicalType;
6469 return canon.withFastQualifiers(getLocalFastQualifiers());
6470}
6471
6472inline bool QualType::isCanonical() const {
6473 return getTypePtr()->isCanonicalUnqualified();
6474}
6475
6476inline bool QualType::isCanonicalAsParam() const {
6477 if (!isCanonical()) return false;
6478 if (hasLocalQualifiers()) return false;
6479
6480 const Type *T = getTypePtr();
6481 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6482 return false;
6483
6484 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6485}
6486
6487inline bool QualType::isConstQualified() const {
6488 return isLocalConstQualified() ||
6489 getCommonPtr()->CanonicalType.isLocalConstQualified();
6490}
6491
6492inline bool QualType::isRestrictQualified() const {
6493 return isLocalRestrictQualified() ||
6494 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6495}
6496
6497
6498inline bool QualType::isVolatileQualified() const {
6499 return isLocalVolatileQualified() ||
6500 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6501}
6502
6503inline bool QualType::hasQualifiers() const {
6504 return hasLocalQualifiers() ||
6505 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6506}
6507
6508inline QualType QualType::getUnqualifiedType() const {
6509 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6510 return QualType(getTypePtr(), 0);
6511
6512 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6513}
6514
6515inline SplitQualType QualType::getSplitUnqualifiedType() const {
6516 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6517 return split();
6518
6519 return getSplitUnqualifiedTypeImpl(*this);
6520}
6521
6522inline void QualType::removeLocalConst() {
6523 removeLocalFastQualifiers(Qualifiers::Const);
6524}
6525
6526inline void QualType::removeLocalRestrict() {
6527 removeLocalFastQualifiers(Qualifiers::Restrict);
6528}
6529
6530inline void QualType::removeLocalVolatile() {
6531 removeLocalFastQualifiers(Qualifiers::Volatile);
6532}
6533
6534inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6535 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")(static_cast <bool> (!(Mask & ~Qualifiers::CVRMask)
&& "mask has non-CVR bits") ? void (0) : __assert_fail
("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 6535, __extension__ __PRETTY_FUNCTION__))
;
6536 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6537 "Fast bits differ from CVR bits!");
6538
6539 // Fast path: we don't need to touch the slow qualifiers.
6540 removeLocalFastQualifiers(Mask);
6541}
6542
6543/// Check if this type has any address space qualifier.
6544inline bool QualType::hasAddressSpace() const {
6545 return getQualifiers().hasAddressSpace();
6546}
6547
6548/// Return the address space of this type.
6549inline LangAS QualType::getAddressSpace() const {
6550 return getQualifiers().getAddressSpace();
6551}
6552
6553/// Return the gc attribute of this type.
6554inline Qualifiers::GC QualType::getObjCGCAttr() const {
6555 return getQualifiers().getObjCGCAttr();
6556}
6557
6558inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6559 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6560 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6561 return false;
6562}
6563
6564inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6565 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6566 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6567 return false;
6568}
6569
6570inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6571 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6572 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6573 return false;
6574}
6575
6576inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6577 if (const auto *PT = t.getAs<PointerType>()) {
6578 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6579 return FT->getExtInfo();
6580 } else if (const auto *FT = t.getAs<FunctionType>())
6581 return FT->getExtInfo();
6582
6583 return FunctionType::ExtInfo();
6584}
6585
6586inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6587 return getFunctionExtInfo(*t);
6588}
6589
6590/// Determine whether this type is more
6591/// qualified than the Other type. For example, "const volatile int"
6592/// is more qualified than "const int", "volatile int", and
6593/// "int". However, it is not more qualified than "const volatile
6594/// int".
6595inline bool QualType::isMoreQualifiedThan(QualType other) const {
6596 Qualifiers MyQuals = getQualifiers();
6597 Qualifiers OtherQuals = other.getQualifiers();
6598 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6599}
6600
6601/// Determine whether this type is at last
6602/// as qualified as the Other type. For example, "const volatile
6603/// int" is at least as qualified as "const int", "volatile int",
6604/// "int", and "const volatile int".
6605inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6606 Qualifiers OtherQuals = other.getQualifiers();
6607
6608 // Ignore __unaligned qualifier if this type is a void.
6609 if (getUnqualifiedType()->isVoidType())
6610 OtherQuals.removeUnaligned();
6611
6612 return getQualifiers().compatiblyIncludes(OtherQuals);
6613}
6614
6615/// If Type is a reference type (e.g., const
6616/// int&), returns the type that the reference refers to ("const
6617/// int"). Otherwise, returns the type itself. This routine is used
6618/// throughout Sema to implement C++ 5p6:
6619///
6620/// If an expression initially has the type "reference to T" (8.3.2,
6621/// 8.5.3), the type is adjusted to "T" prior to any further
6622/// analysis, the expression designates the object or function
6623/// denoted by the reference, and the expression is an lvalue.
6624inline QualType QualType::getNonReferenceType() const {
6625 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6626 return RefType->getPointeeType();
6627 else
6628 return *this;
6629}
6630
6631inline bool QualType::isCForbiddenLValueType() const {
6632 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6633 getTypePtr()->isFunctionType());
6634}
6635
6636/// Tests whether the type is categorized as a fundamental type.
6637///
6638/// \returns True for types specified in C++0x [basic.fundamental].
6639inline bool Type::isFundamentalType() const {
6640 return isVoidType() ||
6641 isNullPtrType() ||
6642 // FIXME: It's really annoying that we don't have an
6643 // 'isArithmeticType()' which agrees with the standard definition.
6644 (isArithmeticType() && !isEnumeralType());
6645}
6646
6647/// Tests whether the type is categorized as a compound type.
6648///
6649/// \returns True for types specified in C++0x [basic.compound].
6650inline bool Type::isCompoundType() const {
6651 // C++0x [basic.compound]p1:
6652 // Compound types can be constructed in the following ways:
6653 // -- arrays of objects of a given type [...];
6654 return isArrayType() ||
6655 // -- functions, which have parameters of given types [...];
6656 isFunctionType() ||
6657 // -- pointers to void or objects or functions [...];
6658 isPointerType() ||
6659 // -- references to objects or functions of a given type. [...]
6660 isReferenceType() ||
6661 // -- classes containing a sequence of objects of various types, [...];
6662 isRecordType() ||
6663 // -- unions, which are classes capable of containing objects of different
6664 // types at different times;
6665 isUnionType() ||
6666 // -- enumerations, which comprise a set of named constant values. [...];
6667 isEnumeralType() ||
6668 // -- pointers to non-static class members, [...].
6669 isMemberPointerType();
6670}
6671
6672inline bool Type::isFunctionType() const {
6673 return isa<FunctionType>(CanonicalType);
6674}
6675
6676inline bool Type::isPointerType() const {
6677 return isa<PointerType>(CanonicalType);
6678}
6679
6680inline bool Type::isAnyPointerType() const {
6681 return isPointerType() || isObjCObjectPointerType();
6682}
6683
6684inline bool Type::isBlockPointerType() const {
6685 return isa<BlockPointerType>(CanonicalType);
6686}
6687
6688inline bool Type::isReferenceType() const {
6689 return isa<ReferenceType>(CanonicalType);
12
Assuming field 'CanonicalType' is not a 'ReferenceType'
13
Returning zero, which participates in a condition later
6690}
6691
6692inline bool Type::isLValueReferenceType() const {
6693 return isa<LValueReferenceType>(CanonicalType);
6694}
6695
6696inline bool Type::isRValueReferenceType() const {
6697 return isa<RValueReferenceType>(CanonicalType);
6698}
6699
6700inline bool Type::isObjectPointerType() const {
6701 // Note: an "object pointer type" is not the same thing as a pointer to an
6702 // object type; rather, it is a pointer to an object type or a pointer to cv
6703 // void.
6704 if (const auto *T = getAs<PointerType>())
6705 return !T->getPointeeType()->isFunctionType();
6706 else
6707 return false;
6708}
6709
6710inline bool Type::isFunctionPointerType() const {
6711 if (const auto *T = getAs<PointerType>())
6712 return T->getPointeeType()->isFunctionType();
6713 else
6714 return false;
6715}
6716
6717inline bool Type::isFunctionReferenceType() const {
6718 if (const auto *T = getAs<ReferenceType>())
6719 return T->getPointeeType()->isFunctionType();
6720 else
6721 return false;
6722}
6723
6724inline bool Type::isMemberPointerType() const {
6725 return isa<MemberPointerType>(CanonicalType);
6726}
6727
6728inline bool Type::isMemberFunctionPointerType() const {
6729 if (const auto *T = getAs<MemberPointerType>())
6730 return T->isMemberFunctionPointer();
6731 else
6732 return false;
6733}
6734
6735inline bool Type::isMemberDataPointerType() const {
6736 if (const auto *T = getAs<MemberPointerType>())
6737 return T->isMemberDataPointer();
6738 else
6739 return false;
6740}
6741
6742inline bool Type::isArrayType() const {
6743 return isa<ArrayType>(CanonicalType);
6744}
6745
6746inline bool Type::isConstantArrayType() const {
6747 return isa<ConstantArrayType>(CanonicalType);
6748}
6749
6750inline bool Type::isIncompleteArrayType() const {
6751 return isa<IncompleteArrayType>(CanonicalType);
6752}
6753
6754inline bool Type::isVariableArrayType() const {
6755 return isa<VariableArrayType>(CanonicalType);
6756}
6757
6758inline bool Type::isDependentSizedArrayType() const {
6759 return isa<DependentSizedArrayType>(CanonicalType);
6760}
6761
6762inline bool Type::isBuiltinType() const {
6763 return isa<BuiltinType>(CanonicalType);
6764}
6765
6766inline bool Type::isRecordType() const {
6767 return isa<RecordType>(CanonicalType);
6768}
6769
6770inline bool Type::isEnumeralType() const {
6771 return isa<EnumType>(CanonicalType);
6772}
6773
6774inline bool Type::isAnyComplexType() const {
6775 return isa<ComplexType>(CanonicalType);
6776}
6777
6778inline bool Type::isVectorType() const {
6779 return isa<VectorType>(CanonicalType);
6780}
6781
6782inline bool Type::isExtVectorType() const {
6783 return isa<ExtVectorType>(CanonicalType);
6784}
6785
6786inline bool Type::isMatrixType() const {
6787 return isa<MatrixType>(CanonicalType);
6788}
6789
6790inline bool Type::isConstantMatrixType() const {
6791 return isa<ConstantMatrixType>(CanonicalType);
6792}
6793
6794inline bool Type::isDependentAddressSpaceType() const {
6795 return isa<DependentAddressSpaceType>(CanonicalType);
6796}
6797
6798inline bool Type::isObjCObjectPointerType() const {
6799 return isa<ObjCObjectPointerType>(CanonicalType);
6800}
6801
6802inline bool Type::isObjCObjectType() const {
6803 return isa<ObjCObjectType>(CanonicalType);
6804}
6805
6806inline bool Type::isObjCObjectOrInterfaceType() const {
6807 return isa<ObjCInterfaceType>(CanonicalType) ||
6808 isa<ObjCObjectType>(CanonicalType);
6809}
6810
6811inline bool Type::isAtomicType() const {
6812 return isa<AtomicType>(CanonicalType);
6813}
6814
6815inline bool Type::isUndeducedAutoType() const {
6816 return isa<AutoType>(CanonicalType);
6817}
6818
6819inline bool Type::isObjCQualifiedIdType() const {
6820 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6821 return OPT->isObjCQualifiedIdType();
6822 return false;
6823}
6824
6825inline bool Type::isObjCQualifiedClassType() const {
6826 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6827 return OPT->isObjCQualifiedClassType();
6828 return false;
6829}
6830
6831inline bool Type::isObjCIdType() const {
6832 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6833 return OPT->isObjCIdType();
6834 return false;
6835}
6836
6837inline bool Type::isObjCClassType() const {
6838 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6839 return OPT->isObjCClassType();
6840 return false;
6841}
6842
6843inline bool Type::isObjCSelType() const {
6844 if (const auto *OPT = getAs<PointerType>())
6845 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6846 return false;
6847}
6848
6849inline bool Type::isObjCBuiltinType() const {
6850 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6851}
6852
6853inline bool Type::isDecltypeType() const {
6854 return isa<DecltypeType>(this);
6855}
6856
6857#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6858 inline bool Type::is##Id##Type() const { \
6859 return isSpecificBuiltinType(BuiltinType::Id); \
6860 }
6861#include "clang/Basic/OpenCLImageTypes.def"
6862
6863inline bool Type::isSamplerT() const {
6864 return isSpecificBuiltinType(BuiltinType::OCLSampler);
24
Calling 'Type::isSpecificBuiltinType'
29
Returning from 'Type::isSpecificBuiltinType'
30
Returning the value 1, which participates in a condition later
6865}
6866
6867inline bool Type::isEventT() const {
6868 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6869}
6870
6871inline bool Type::isClkEventT() const {
6872 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6873}
6874
6875inline bool Type::isQueueT() const {
6876 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6877}
6878
6879inline bool Type::isReserveIDT() const {
6880 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6881}
6882
6883inline bool Type::isImageType() const {
6884#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6885 return
6886#include "clang/Basic/OpenCLImageTypes.def"
6887 false; // end boolean or operation
6888}
6889
6890inline bool Type::isPipeType() const {
6891 return isa<PipeType>(CanonicalType);
6892}
6893
6894inline bool Type::isExtIntType() const {
6895 return isa<ExtIntType>(CanonicalType);
6896}
6897
6898#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6899 inline bool Type::is##Id##Type() const { \
6900 return isSpecificBuiltinType(BuiltinType::Id); \
6901 }
6902#include "clang/Basic/OpenCLExtensionTypes.def"
6903
6904inline bool Type::isOCLIntelSubgroupAVCType() const {
6905#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6906 isOCLIntelSubgroupAVC##Id##Type() ||
6907 return
6908#include "clang/Basic/OpenCLExtensionTypes.def"
6909 false; // end of boolean or operation
6910}
6911
6912inline bool Type::isOCLExtOpaqueType() const {
6913#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6914 return
6915#include "clang/Basic/OpenCLExtensionTypes.def"
6916 false; // end of boolean or operation
6917}
6918
6919inline bool Type::isOpenCLSpecificType() const {
6920 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6921 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6922}
6923
6924inline bool Type::isTemplateTypeParmType() const {
6925 return isa<TemplateTypeParmType>(CanonicalType);
6926}
6927
6928inline bool Type::isSpecificBuiltinType(unsigned K) const {
6929 if (const BuiltinType *BT
25.1
'BT' is non-null
25.1
'BT' is non-null
= getAs<BuiltinType>()) {
25
Assuming the object is a 'BuiltinType'
26
Taking true branch
6930 return BT->getKind() == static_cast<BuiltinType::Kind>(K);
27
Assuming the condition is true
28
Returning the value 1, which participates in a condition later
6931 }
6932 return false;
6933}
6934
6935inline bool Type::isPlaceholderType() const {
6936 if (const auto *BT = dyn_cast<BuiltinType>(this))
6937 return BT->isPlaceholderType();
6938 return false;
6939}
6940
6941inline const BuiltinType *Type::getAsPlaceholderType() const {
6942 if (const auto *BT = dyn_cast<BuiltinType>(this))
6943 if (BT->isPlaceholderType())
6944 return BT;
6945 return nullptr;
6946}
6947
6948inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6949 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))(static_cast <bool> (BuiltinType::isPlaceholderTypeKind
((BuiltinType::Kind) K)) ? void (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 6949, __extension__ __PRETTY_FUNCTION__))
;
6950 return isSpecificBuiltinType(K);
6951}
6952
6953inline bool Type::isNonOverloadPlaceholderType() const {
6954 if (const auto *BT = dyn_cast<BuiltinType>(this))
6955 return BT->isNonOverloadPlaceholderType();
6956 return false;
6957}
6958
6959inline bool Type::isVoidType() const {
6960 return isSpecificBuiltinType(BuiltinType::Void);
6961}
6962
6963inline bool Type::isHalfType() const {
6964 // FIXME: Should we allow complex __fp16? Probably not.
6965 return isSpecificBuiltinType(BuiltinType::Half);
6966}
6967
6968inline bool Type::isFloat16Type() const {
6969 return isSpecificBuiltinType(BuiltinType::Float16);
6970}
6971
6972inline bool Type::isBFloat16Type() const {
6973 return isSpecificBuiltinType(BuiltinType::BFloat16);
6974}
6975
6976inline bool Type::isFloat128Type() const {
6977 return isSpecificBuiltinType(BuiltinType::Float128);
6978}
6979
6980inline bool Type::isNullPtrType() const {
6981 return isSpecificBuiltinType(BuiltinType::NullPtr);
6982}
6983
6984bool IsEnumDeclComplete(EnumDecl *);
6985bool IsEnumDeclScoped(EnumDecl *);
6986
6987inline bool Type::isIntegerType() const {
6988 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6989 return BT->getKind() >= BuiltinType::Bool &&
6990 BT->getKind() <= BuiltinType::Int128;
6991 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6992 // Incomplete enum types are not treated as integer types.
6993 // FIXME: In C++, enum types are never integer types.
6994 return IsEnumDeclComplete(ET->getDecl()) &&
6995 !IsEnumDeclScoped(ET->getDecl());
6996 }
6997 return isExtIntType();
6998}
6999
7000inline bool Type::isFixedPointType() const {
7001 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7002 return BT->getKind() >= BuiltinType::ShortAccum &&
7003 BT->getKind() <= BuiltinType::SatULongFract;
7004 }
7005 return false;
7006}
7007
7008inline bool Type::isFixedPointOrIntegerType() const {
7009 return isFixedPointType() || isIntegerType();
7010}
7011
7012inline bool Type::isSaturatedFixedPointType() const {
7013 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7014 return BT->getKind() >= BuiltinType::SatShortAccum &&
7015 BT->getKind() <= BuiltinType::SatULongFract;
7016 }
7017 return false;
7018}
7019
7020inline bool Type::isUnsaturatedFixedPointType() const {
7021 return isFixedPointType() && !isSaturatedFixedPointType();
7022}
7023
7024inline bool Type::isSignedFixedPointType() const {
7025 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
7026 return ((BT->getKind() >= BuiltinType::ShortAccum &&
7027 BT->getKind() <= BuiltinType::LongAccum) ||
7028 (BT->getKind() >= BuiltinType::ShortFract &&
7029 BT->getKind() <= BuiltinType::LongFract) ||
7030 (BT->getKind() >= BuiltinType::SatShortAccum &&
7031 BT->getKind() <= BuiltinType::SatLongAccum) ||
7032 (BT->getKind() >= BuiltinType::SatShortFract &&
7033 BT->getKind() <= BuiltinType::SatLongFract));
7034 }
7035 return false;
7036}
7037
7038inline bool Type::isUnsignedFixedPointType() const {
7039 return isFixedPointType() && !isSignedFixedPointType();
7040}
7041
7042inline bool Type::isScalarType() const {
7043 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7044 return BT->getKind() > BuiltinType::Void &&
7045 BT->getKind() <= BuiltinType::NullPtr;
7046 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
7047 // Enums are scalar types, but only if they are defined. Incomplete enums
7048 // are not treated as scalar types.
7049 return IsEnumDeclComplete(ET->getDecl());
7050 return isa<PointerType>(CanonicalType) ||
7051 isa<BlockPointerType>(CanonicalType) ||
7052 isa<MemberPointerType>(CanonicalType) ||
7053 isa<ComplexType>(CanonicalType) ||
7054 isa<ObjCObjectPointerType>(CanonicalType) ||
7055 isExtIntType();
7056}
7057
7058inline bool Type::isIntegralOrEnumerationType() const {
7059 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7060 return BT->getKind() >= BuiltinType::Bool &&
7061 BT->getKind() <= BuiltinType::Int128;
7062
7063 // Check for a complete enum type; incomplete enum types are not properly an
7064 // enumeration type in the sense required here.
7065 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
7066 return IsEnumDeclComplete(ET->getDecl());
7067
7068 return isExtIntType();
7069}
7070
7071inline bool Type::isBooleanType() const {
7072 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
7073 return BT->getKind() == BuiltinType::Bool;
7074 return false;
7075}
7076
7077inline bool Type::isUndeducedType() const {
7078 auto *DT = getContainedDeducedType();
7079 return DT && !DT->isDeduced();
7080}
7081
7082/// Determines whether this is a type for which one can define
7083/// an overloaded operator.
7084inline bool Type::isOverloadableType() const {
7085 return isDependentType() || isRecordType() || isEnumeralType();
7086}
7087
7088/// Determines whether this type is written as a typedef-name.
7089inline bool Type::isTypedefNameType() const {
7090 if (getAs<TypedefType>())
7091 return true;
7092 if (auto *TST = getAs<TemplateSpecializationType>())
7093 return TST->isTypeAlias();
7094 return false;
7095}
7096
7097/// Determines whether this type can decay to a pointer type.
7098inline bool Type::canDecayToPointerType() const {
7099 return isFunctionType() || isArrayType();
7100}
7101
7102inline bool Type::hasPointerRepresentation() const {
7103 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
7104 isObjCObjectPointerType() || isNullPtrType());
7105}
7106
7107inline bool Type::hasObjCPointerRepresentation() const {
7108 return isObjCObjectPointerType();
7109}
7110
7111inline const Type *Type::getBaseElementTypeUnsafe() const {
7112 const Type *type = this;
7113 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
7114 type = arrayType->getElementType().getTypePtr();
7115 return type;
7116}
7117
7118inline const Type *Type::getPointeeOrArrayElementType() const {
7119 const Type *type = this;
7120 if (type->isAnyPointerType())
7121 return type->getPointeeType().getTypePtr();
7122 else if (type->isArrayType())
7123 return type->getBaseElementTypeUnsafe();
7124 return type;
7125}
7126/// Insertion operator for partial diagnostics. This allows sending adress
7127/// spaces into a diagnostic with <<.
7128inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7129 LangAS AS) {
7130 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
7131 DiagnosticsEngine::ArgumentKind::ak_addrspace);
7132 return PD;
7133}
7134
7135/// Insertion operator for partial diagnostics. This allows sending Qualifiers
7136/// into a diagnostic with <<.
7137inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7138 Qualifiers Q) {
7139 PD.AddTaggedVal(Q.getAsOpaqueValue(),
7140 DiagnosticsEngine::ArgumentKind::ak_qual);
7141 return PD;
7142}
7143
7144/// Insertion operator for partial diagnostics. This allows sending QualType's
7145/// into a diagnostic with <<.
7146inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &PD,
7147 QualType T) {
7148 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
7149 DiagnosticsEngine::ak_qualtype);
7150 return PD;
7151}
7152
7153// Helper class template that is used by Type::getAs to ensure that one does
7154// not try to look through a qualified type to get to an array type.
7155template <typename T>
7156using TypeIsArrayType =
7157 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
7158 std::is_base_of<ArrayType, T>::value>;
7159
7160// Member-template getAs<specific type>'.
7161template <typename T> const T *Type::getAs() const {
7162 static_assert(!TypeIsArrayType<T>::value,
7163 "ArrayType cannot be used with getAs!");
7164
7165 // If this is directly a T type, return it.
7166 if (const auto *Ty = dyn_cast<T>(this))
7167 return Ty;
7168
7169 // If the canonical form of this type isn't the right kind, reject it.
7170 if (!isa<T>(CanonicalType))
7171 return nullptr;
7172
7173 // If this is a typedef for the type, strip the typedef off without
7174 // losing all typedef information.
7175 return cast<T>(getUnqualifiedDesugaredType());
7176}
7177
7178template <typename T> const T *Type::getAsAdjusted() const {
7179 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
7180
7181 // If this is directly a T type, return it.
7182 if (const auto *Ty = dyn_cast<T>(this))
7183 return Ty;
7184
7185 // If the canonical form of this type isn't the right kind, reject it.
7186 if (!isa<T>(CanonicalType))
7187 return nullptr;
7188
7189 // Strip off type adjustments that do not modify the underlying nature of the
7190 // type.
7191 const Type *Ty = this;
7192 while (Ty) {
7193 if (const auto *A = dyn_cast<AttributedType>(Ty))
7194 Ty = A->getModifiedType().getTypePtr();
7195 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
7196 Ty = E->desugar().getTypePtr();
7197 else if (const auto *P = dyn_cast<ParenType>(Ty))
7198 Ty = P->desugar().getTypePtr();
7199 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7200 Ty = A->desugar().getTypePtr();
7201 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7202 Ty = M->desugar().getTypePtr();
7203 else
7204 break;
7205 }
7206
7207 // Just because the canonical type is correct does not mean we can use cast<>,
7208 // since we may not have stripped off all the sugar down to the base type.
7209 return dyn_cast<T>(Ty);
7210}
7211
7212inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7213 // If this is directly an array type, return it.
7214 if (const auto *arr = dyn_cast<ArrayType>(this))
7215 return arr;
7216
7217 // If the canonical form of this type isn't the right kind, reject it.
7218 if (!isa<ArrayType>(CanonicalType))
7219 return nullptr;
7220
7221 // If this is a typedef for the type, strip the typedef off without
7222 // losing all typedef information.
7223 return cast<ArrayType>(getUnqualifiedDesugaredType());
7224}
7225
7226template <typename T> const T *Type::castAs() const {
7227 static_assert(!TypeIsArrayType<T>::value,
7228 "ArrayType cannot be used with castAs!");
7229
7230 if (const auto *ty = dyn_cast<T>(this)) return ty;
7231 assert(isa<T>(CanonicalType))(static_cast <bool> (isa<T>(CanonicalType)) ? void
(0) : __assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 7231, __extension__ __PRETTY_FUNCTION__))
;
7232 return cast<T>(getUnqualifiedDesugaredType());
7233}
7234
7235inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7236 assert(isa<ArrayType>(CanonicalType))(static_cast <bool> (isa<ArrayType>(CanonicalType
)) ? void (0) : __assert_fail ("isa<ArrayType>(CanonicalType)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 7236, __extension__ __PRETTY_FUNCTION__))
;
7237 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7238 return cast<ArrayType>(getUnqualifiedDesugaredType());
7239}
7240
7241DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7242 QualType CanonicalPtr)
7243 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7244#ifndef NDEBUG
7245 QualType Adjusted = getAdjustedType();
7246 (void)AttributedType::stripOuterNullability(Adjusted);
7247 assert(isa<PointerType>(Adjusted))(static_cast <bool> (isa<PointerType>(Adjusted)) ?
void (0) : __assert_fail ("isa<PointerType>(Adjusted)"
, "/build/llvm-toolchain-snapshot-14~++20210828111110+16086d47c0d0/clang/include/clang/AST/Type.h"
, 7247, __extension__ __PRETTY_FUNCTION__))
;
7248#endif
7249}
7250
7251QualType DecayedType::getPointeeType() const {
7252 QualType Decayed = getDecayedType();
7253 (void)AttributedType::stripOuterNullability(Decayed);
7254 return cast<PointerType>(Decayed)->getPointeeType();
7255}
7256
7257// Get the decimal string representation of a fixed point type, represented
7258// as a scaled integer.
7259// TODO: At some point, we should change the arguments to instead just accept an
7260// APFixedPoint instead of APSInt and scale.
7261void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7262 unsigned Scale);
7263
7264} // namespace clang
7265
7266#endif // LLVM_CLANG_AST_TYPE_H