Bug Summary

File:tools/clang/lib/Sema/SemaInit.cpp
Warning:line 5043, column 8
Called C++ object pointer is null

Annotated Source Code

1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ExprObjC.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Sema/Designator.h"
21#include "clang/Sema/Initialization.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// \brief Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38 if (Context.typesAreCompatible(Context.getWideCharType(), T))
39 return true;
40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41 return Context.typesAreCompatible(Context.Char16Ty, T) ||
42 Context.typesAreCompatible(Context.Char32Ty, T);
43 }
44 return false;
45}
46
47enum StringInitFailureKind {
48 SIF_None,
49 SIF_NarrowStringIntoWideChar,
50 SIF_WideStringIntoChar,
51 SIF_IncompatWideStringIntoWideChar,
52 SIF_Other
53};
54
55/// \brief Check whether the array of type AT can be initialized by the Init
56/// expression by means of string initialization. Returns SIF_None if so,
57/// otherwise returns a StringInitFailureKind that describes why the
58/// initialization would not work.
59static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60 ASTContext &Context) {
61 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62 return SIF_Other;
63
64 // See if this is a string literal or @encode.
65 Init = Init->IgnoreParens();
66
67 // Handle @encode, which is a narrow string.
68 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69 return SIF_None;
70
71 // Otherwise we can only handle string literals.
72 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73 if (!SL)
74 return SIF_Other;
75
76 const QualType ElemTy =
77 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78
79 switch (SL->getKind()) {
80 case StringLiteral::Ascii:
81 case StringLiteral::UTF8:
82 // char array can be initialized with a narrow string.
83 // Only allow char x[] = "foo"; not char x[] = L"foo";
84 if (ElemTy->isCharType())
85 return SIF_None;
86 if (IsWideCharCompatible(ElemTy, Context))
87 return SIF_NarrowStringIntoWideChar;
88 return SIF_Other;
89 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90 // "An array with element type compatible with a qualified or unqualified
91 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92 // string literal with the corresponding encoding prefix (L, u, or U,
93 // respectively), optionally enclosed in braces.
94 case StringLiteral::UTF16:
95 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96 return SIF_None;
97 if (ElemTy->isCharType())
98 return SIF_WideStringIntoChar;
99 if (IsWideCharCompatible(ElemTy, Context))
100 return SIF_IncompatWideStringIntoWideChar;
101 return SIF_Other;
102 case StringLiteral::UTF32:
103 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104 return SIF_None;
105 if (ElemTy->isCharType())
106 return SIF_WideStringIntoChar;
107 if (IsWideCharCompatible(ElemTy, Context))
108 return SIF_IncompatWideStringIntoWideChar;
109 return SIF_Other;
110 case StringLiteral::Wide:
111 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112 return SIF_None;
113 if (ElemTy->isCharType())
114 return SIF_WideStringIntoChar;
115 if (IsWideCharCompatible(ElemTy, Context))
116 return SIF_IncompatWideStringIntoWideChar;
117 return SIF_Other;
118 }
119
120 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 120)
;
121}
122
123static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124 ASTContext &Context) {
125 const ArrayType *arrayType = Context.getAsArrayType(declType);
126 if (!arrayType)
127 return SIF_Other;
128 return IsStringInit(init, arrayType, Context);
129}
130
131/// Update the type of a string literal, including any surrounding parentheses,
132/// to match the type of the object which it is initializing.
133static void updateStringLiteralType(Expr *E, QualType Ty) {
134 while (true) {
135 E->setType(Ty);
136 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137 break;
138 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139 E = PE->getSubExpr();
140 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141 E = UO->getSubExpr();
142 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143 E = GSE->getResultExpr();
144 else
145 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 145)
;
146 }
147}
148
149static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150 Sema &S) {
151 // Get the length of the string as parsed.
152 auto *ConstantArrayTy =
153 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
154 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
155
156 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157 // C99 6.7.8p14. We have an array of character type with unknown size
158 // being initialized to a string literal.
159 llvm::APInt ConstVal(32, StrLength);
160 // Return a new array type (C99 6.7.8p22).
161 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162 ConstVal,
163 ArrayType::Normal, 0);
164 updateStringLiteralType(Str, DeclT);
165 return;
166 }
167
168 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169
170 // We have an array of character type with known size. However,
171 // the size may be smaller or larger than the string we are initializing.
172 // FIXME: Avoid truncation for 64-bit length strings.
173 if (S.getLangOpts().CPlusPlus) {
174 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175 // For Pascal strings it's OK to strip off the terminating null character,
176 // so the example below is valid:
177 //
178 // unsigned char a[2] = "\pa";
179 if (SL->isPascal())
180 StrLength--;
181 }
182
183 // [dcl.init.string]p2
184 if (StrLength > CAT->getSize().getZExtValue())
185 S.Diag(Str->getLocStart(),
186 diag::err_initializer_string_for_char_array_too_long)
187 << Str->getSourceRange();
188 } else {
189 // C99 6.7.8p14.
190 if (StrLength-1 > CAT->getSize().getZExtValue())
191 S.Diag(Str->getLocStart(),
192 diag::ext_initializer_string_for_char_array_too_long)
193 << Str->getSourceRange();
194 }
195
196 // Set the type to the actual size that we are initializing. If we have
197 // something like:
198 // char x[1] = "foo";
199 // then this will set the string literal's type to char[1].
200 updateStringLiteralType(Str, DeclT);
201}
202
203//===----------------------------------------------------------------------===//
204// Semantic checking for initializer lists.
205//===----------------------------------------------------------------------===//
206
207namespace {
208
209/// @brief Semantic checking for initializer lists.
210///
211/// The InitListChecker class contains a set of routines that each
212/// handle the initialization of a certain kind of entity, e.g.,
213/// arrays, vectors, struct/union types, scalars, etc. The
214/// InitListChecker itself performs a recursive walk of the subobject
215/// structure of the type to be initialized, while stepping through
216/// the initializer list one element at a time. The IList and Index
217/// parameters to each of the Check* routines contain the active
218/// (syntactic) initializer list and the index into that initializer
219/// list that represents the current initializer. Each routine is
220/// responsible for moving that Index forward as it consumes elements.
221///
222/// Each Check* routine also has a StructuredList/StructuredIndex
223/// arguments, which contains the current "structured" (semantic)
224/// initializer list and the index into that initializer list where we
225/// are copying initializers as we map them over to the semantic
226/// list. Once we have completed our recursive walk of the subobject
227/// structure, we will have constructed a full semantic initializer
228/// list.
229///
230/// C99 designators cause changes in the initializer list traversal,
231/// because they make the initialization "jump" into a specific
232/// subobject and then continue the initialization from that
233/// point. CheckDesignatedInitializer() recursively steps into the
234/// designated subobject and manages backing out the recursion to
235/// initialize the subobjects after the one designated.
236class InitListChecker {
237 Sema &SemaRef;
238 bool hadError;
239 bool VerifyOnly; // no diagnostics, no structure building
240 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
241 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
242 InitListExpr *FullyStructuredList;
243
244 void CheckImplicitInitList(const InitializedEntity &Entity,
245 InitListExpr *ParentIList, QualType T,
246 unsigned &Index, InitListExpr *StructuredList,
247 unsigned &StructuredIndex);
248 void CheckExplicitInitList(const InitializedEntity &Entity,
249 InitListExpr *IList, QualType &T,
250 InitListExpr *StructuredList,
251 bool TopLevelObject = false);
252 void CheckListElementTypes(const InitializedEntity &Entity,
253 InitListExpr *IList, QualType &DeclType,
254 bool SubobjectIsDesignatorContext,
255 unsigned &Index,
256 InitListExpr *StructuredList,
257 unsigned &StructuredIndex,
258 bool TopLevelObject = false);
259 void CheckSubElementType(const InitializedEntity &Entity,
260 InitListExpr *IList, QualType ElemType,
261 unsigned &Index,
262 InitListExpr *StructuredList,
263 unsigned &StructuredIndex);
264 void CheckComplexType(const InitializedEntity &Entity,
265 InitListExpr *IList, QualType DeclType,
266 unsigned &Index,
267 InitListExpr *StructuredList,
268 unsigned &StructuredIndex);
269 void CheckScalarType(const InitializedEntity &Entity,
270 InitListExpr *IList, QualType DeclType,
271 unsigned &Index,
272 InitListExpr *StructuredList,
273 unsigned &StructuredIndex);
274 void CheckReferenceType(const InitializedEntity &Entity,
275 InitListExpr *IList, QualType DeclType,
276 unsigned &Index,
277 InitListExpr *StructuredList,
278 unsigned &StructuredIndex);
279 void CheckVectorType(const InitializedEntity &Entity,
280 InitListExpr *IList, QualType DeclType, unsigned &Index,
281 InitListExpr *StructuredList,
282 unsigned &StructuredIndex);
283 void CheckStructUnionTypes(const InitializedEntity &Entity,
284 InitListExpr *IList, QualType DeclType,
285 CXXRecordDecl::base_class_range Bases,
286 RecordDecl::field_iterator Field,
287 bool SubobjectIsDesignatorContext, unsigned &Index,
288 InitListExpr *StructuredList,
289 unsigned &StructuredIndex,
290 bool TopLevelObject = false);
291 void CheckArrayType(const InitializedEntity &Entity,
292 InitListExpr *IList, QualType &DeclType,
293 llvm::APSInt elementIndex,
294 bool SubobjectIsDesignatorContext, unsigned &Index,
295 InitListExpr *StructuredList,
296 unsigned &StructuredIndex);
297 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
298 InitListExpr *IList, DesignatedInitExpr *DIE,
299 unsigned DesigIdx,
300 QualType &CurrentObjectType,
301 RecordDecl::field_iterator *NextField,
302 llvm::APSInt *NextElementIndex,
303 unsigned &Index,
304 InitListExpr *StructuredList,
305 unsigned &StructuredIndex,
306 bool FinishSubobjectInit,
307 bool TopLevelObject);
308 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
309 QualType CurrentObjectType,
310 InitListExpr *StructuredList,
311 unsigned StructuredIndex,
312 SourceRange InitRange,
313 bool IsFullyOverwritten = false);
314 void UpdateStructuredListElement(InitListExpr *StructuredList,
315 unsigned &StructuredIndex,
316 Expr *expr);
317 int numArrayElements(QualType DeclType);
318 int numStructUnionElements(QualType DeclType);
319
320 static ExprResult PerformEmptyInit(Sema &SemaRef,
321 SourceLocation Loc,
322 const InitializedEntity &Entity,
323 bool VerifyOnly,
324 bool TreatUnavailableAsInvalid);
325
326 // Explanation on the "FillWithNoInit" mode:
327 //
328 // Assume we have the following definitions (Case#1):
329 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
330 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
331 //
332 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
333 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
334 //
335 // But if we have (Case#2):
336 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
337 //
338 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
339 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
340 //
341 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
342 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
343 // initializers but with special "NoInitExpr" place holders, which tells the
344 // CodeGen not to generate any initializers for these parts.
345 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
346 const InitializedEntity &ParentEntity,
347 InitListExpr *ILE, bool &RequiresSecondPass,
348 bool FillWithNoInit);
349 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
350 const InitializedEntity &ParentEntity,
351 InitListExpr *ILE, bool &RequiresSecondPass,
352 bool FillWithNoInit = false);
353 void FillInEmptyInitializations(const InitializedEntity &Entity,
354 InitListExpr *ILE, bool &RequiresSecondPass,
355 bool FillWithNoInit = false);
356 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
357 Expr *InitExpr, FieldDecl *Field,
358 bool TopLevelObject);
359 void CheckEmptyInitializable(const InitializedEntity &Entity,
360 SourceLocation Loc);
361
362public:
363 InitListChecker(Sema &S, const InitializedEntity &Entity,
364 InitListExpr *IL, QualType &T, bool VerifyOnly,
365 bool TreatUnavailableAsInvalid);
366 bool HadError() { return hadError; }
367
368 // @brief Retrieves the fully-structured initializer list used for
369 // semantic analysis and code generation.
370 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
371};
372
373} // end anonymous namespace
374
375ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
376 SourceLocation Loc,
377 const InitializedEntity &Entity,
378 bool VerifyOnly,
379 bool TreatUnavailableAsInvalid) {
380 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
381 true);
382 MultiExprArg SubInit;
383 Expr *InitExpr;
384 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
385
386 // C++ [dcl.init.aggr]p7:
387 // If there are fewer initializer-clauses in the list than there are
388 // members in the aggregate, then each member not explicitly initialized
389 // ...
390 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
391 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
392 if (EmptyInitList) {
393 // C++1y / DR1070:
394 // shall be initialized [...] from an empty initializer list.
395 //
396 // We apply the resolution of this DR to C++11 but not C++98, since C++98
397 // does not have useful semantics for initialization from an init list.
398 // We treat this as copy-initialization, because aggregate initialization
399 // always performs copy-initialization on its elements.
400 //
401 // Only do this if we're initializing a class type, to avoid filling in
402 // the initializer list where possible.
403 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
404 InitListExpr(SemaRef.Context, Loc, None, Loc);
405 InitExpr->setType(SemaRef.Context.VoidTy);
406 SubInit = InitExpr;
407 Kind = InitializationKind::CreateCopy(Loc, Loc);
408 } else {
409 // C++03:
410 // shall be value-initialized.
411 }
412
413 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
414 // libstdc++4.6 marks the vector default constructor as explicit in
415 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
416 // stlport does so too. Look for std::__debug for libstdc++, and for
417 // std:: for stlport. This is effectively a compiler-side implementation of
418 // LWG2193.
419 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
420 InitializationSequence::FK_ExplicitConstructor) {
421 OverloadCandidateSet::iterator Best;
422 OverloadingResult O =
423 InitSeq.getFailedCandidateSet()
424 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
425 (void)O;
426 assert(O == OR_Success && "Inconsistent overload resolution")((O == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 426, __PRETTY_FUNCTION__))
;
427 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
428 CXXRecordDecl *R = CtorDecl->getParent();
429
430 if (CtorDecl->getMinRequiredArguments() == 0 &&
431 CtorDecl->isExplicit() && R->getDeclName() &&
432 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
433 bool IsInStd = false;
434 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
435 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
436 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
437 IsInStd = true;
438 }
439
440 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
441 .Cases("basic_string", "deque", "forward_list", true)
442 .Cases("list", "map", "multimap", "multiset", true)
443 .Cases("priority_queue", "queue", "set", "stack", true)
444 .Cases("unordered_map", "unordered_set", "vector", true)
445 .Default(false)) {
446 InitSeq.InitializeFrom(
447 SemaRef, Entity,
448 InitializationKind::CreateValue(Loc, Loc, Loc, true),
449 MultiExprArg(), /*TopLevelOfInitList=*/false,
450 TreatUnavailableAsInvalid);
451 // Emit a warning for this. System header warnings aren't shown
452 // by default, but people working on system headers should see it.
453 if (!VerifyOnly) {
454 SemaRef.Diag(CtorDecl->getLocation(),
455 diag::warn_invalid_initializer_from_system_header);
456 if (Entity.getKind() == InitializedEntity::EK_Member)
457 SemaRef.Diag(Entity.getDecl()->getLocation(),
458 diag::note_used_in_initialization_here);
459 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
460 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
461 }
462 }
463 }
464 }
465 if (!InitSeq) {
466 if (!VerifyOnly) {
467 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
468 if (Entity.getKind() == InitializedEntity::EK_Member)
469 SemaRef.Diag(Entity.getDecl()->getLocation(),
470 diag::note_in_omitted_aggregate_initializer)
471 << /*field*/1 << Entity.getDecl();
472 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
473 bool IsTrailingArrayNewMember =
474 Entity.getParent() &&
475 Entity.getParent()->isVariableLengthArrayNew();
476 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
477 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
478 << Entity.getElementIndex();
479 }
480 }
481 return ExprError();
482 }
483
484 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
485 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
486}
487
488void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
489 SourceLocation Loc) {
490 assert(VerifyOnly &&((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 491, __PRETTY_FUNCTION__))
491 "CheckEmptyInitializable is only inteded for verification mode.")((VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? static_cast<void> (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 491, __PRETTY_FUNCTION__))
;
492 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
493 TreatUnavailableAsInvalid).isInvalid())
494 hadError = true;
495}
496
497void InitListChecker::FillInEmptyInitForBase(
498 unsigned Init, const CXXBaseSpecifier &Base,
499 const InitializedEntity &ParentEntity, InitListExpr *ILE,
500 bool &RequiresSecondPass, bool FillWithNoInit) {
501 assert(Init < ILE->getNumInits() && "should have been expanded")((Init < ILE->getNumInits() && "should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 501, __PRETTY_FUNCTION__))
;
502
503 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
504 SemaRef.Context, &Base, false, &ParentEntity);
505
506 if (!ILE->getInit(Init)) {
507 ExprResult BaseInit =
508 FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType())
509 : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity,
510 /*VerifyOnly*/ false,
511 TreatUnavailableAsInvalid);
512 if (BaseInit.isInvalid()) {
513 hadError = true;
514 return;
515 }
516
517 ILE->setInit(Init, BaseInit.getAs<Expr>());
518 } else if (InitListExpr *InnerILE =
519 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
520 FillInEmptyInitializations(BaseEntity, InnerILE,
521 RequiresSecondPass, FillWithNoInit);
522 } else if (DesignatedInitUpdateExpr *InnerDIUE =
523 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
524 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
525 RequiresSecondPass, /*FillWithNoInit =*/true);
526 }
527}
528
529void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
530 const InitializedEntity &ParentEntity,
531 InitListExpr *ILE,
532 bool &RequiresSecondPass,
533 bool FillWithNoInit) {
534 SourceLocation Loc = ILE->getLocEnd();
535 unsigned NumInits = ILE->getNumInits();
536 InitializedEntity MemberEntity
537 = InitializedEntity::InitializeMember(Field, &ParentEntity);
538
539 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
540 if (!RType->getDecl()->isUnion())
541 assert(Init < NumInits && "This ILE should have been expanded")((Init < NumInits && "This ILE should have been expanded"
) ? static_cast<void> (0) : __assert_fail ("Init < NumInits && \"This ILE should have been expanded\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 541, __PRETTY_FUNCTION__))
;
542
543 if (Init >= NumInits || !ILE->getInit(Init)) {
544 if (FillWithNoInit) {
545 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
546 if (Init < NumInits)
547 ILE->setInit(Init, Filler);
548 else
549 ILE->updateInit(SemaRef.Context, Init, Filler);
550 return;
551 }
552 // C++1y [dcl.init.aggr]p7:
553 // If there are fewer initializer-clauses in the list than there are
554 // members in the aggregate, then each member not explicitly initialized
555 // shall be initialized from its brace-or-equal-initializer [...]
556 if (Field->hasInClassInitializer()) {
557 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
558 if (DIE.isInvalid()) {
559 hadError = true;
560 return;
561 }
562 if (Init < NumInits)
563 ILE->setInit(Init, DIE.get());
564 else {
565 ILE->updateInit(SemaRef.Context, Init, DIE.get());
566 RequiresSecondPass = true;
567 }
568 return;
569 }
570
571 if (Field->getType()->isReferenceType()) {
572 // C++ [dcl.init.aggr]p9:
573 // If an incomplete or empty initializer-list leaves a
574 // member of reference type uninitialized, the program is
575 // ill-formed.
576 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
577 << Field->getType()
578 << ILE->getSyntacticForm()->getSourceRange();
579 SemaRef.Diag(Field->getLocation(),
580 diag::note_uninit_reference_member);
581 hadError = true;
582 return;
583 }
584
585 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
586 /*VerifyOnly*/false,
587 TreatUnavailableAsInvalid);
588 if (MemberInit.isInvalid()) {
589 hadError = true;
590 return;
591 }
592
593 if (hadError) {
594 // Do nothing
595 } else if (Init < NumInits) {
596 ILE->setInit(Init, MemberInit.getAs<Expr>());
597 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
598 // Empty initialization requires a constructor call, so
599 // extend the initializer list to include the constructor
600 // call and make a note that we'll need to take another pass
601 // through the initializer list.
602 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
603 RequiresSecondPass = true;
604 }
605 } else if (InitListExpr *InnerILE
606 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
607 FillInEmptyInitializations(MemberEntity, InnerILE,
608 RequiresSecondPass, FillWithNoInit);
609 else if (DesignatedInitUpdateExpr *InnerDIUE
610 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
611 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
612 RequiresSecondPass, /*FillWithNoInit =*/ true);
613}
614
615/// Recursively replaces NULL values within the given initializer list
616/// with expressions that perform value-initialization of the
617/// appropriate type.
618void
619InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
620 InitListExpr *ILE,
621 bool &RequiresSecondPass,
622 bool FillWithNoInit) {
623 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 624, __PRETTY_FUNCTION__))
624 "Should not have void type")(((ILE->getType() != SemaRef.Context.VoidTy) && "Should not have void type"
) ? static_cast<void> (0) : __assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 624, __PRETTY_FUNCTION__))
;
625
626 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
627 const RecordDecl *RDecl = RType->getDecl();
628 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
629 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
630 Entity, ILE, RequiresSecondPass, FillWithNoInit);
631 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
632 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
633 for (auto *Field : RDecl->fields()) {
634 if (Field->hasInClassInitializer()) {
635 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
636 FillWithNoInit);
637 break;
638 }
639 }
640 } else {
641 // The fields beyond ILE->getNumInits() are default initialized, so in
642 // order to leave them uninitialized, the ILE is expanded and the extra
643 // fields are then filled with NoInitExpr.
644 unsigned NumElems = numStructUnionElements(ILE->getType());
645 if (RDecl->hasFlexibleArrayMember())
646 ++NumElems;
647 if (ILE->getNumInits() < NumElems)
648 ILE->resizeInits(SemaRef.Context, NumElems);
649
650 unsigned Init = 0;
651
652 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
653 for (auto &Base : CXXRD->bases()) {
654 if (hadError)
655 return;
656
657 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
658 FillWithNoInit);
659 ++Init;
660 }
661 }
662
663 for (auto *Field : RDecl->fields()) {
664 if (Field->isUnnamedBitfield())
665 continue;
666
667 if (hadError)
668 return;
669
670 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
671 FillWithNoInit);
672 if (hadError)
673 return;
674
675 ++Init;
676
677 // Only look at the first initialization of a union.
678 if (RDecl->isUnion())
679 break;
680 }
681 }
682
683 return;
684 }
685
686 QualType ElementType;
687
688 InitializedEntity ElementEntity = Entity;
689 unsigned NumInits = ILE->getNumInits();
690 unsigned NumElements = NumInits;
691 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
692 ElementType = AType->getElementType();
693 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
694 NumElements = CAType->getSize().getZExtValue();
695 // For an array new with an unknown bound, ask for one additional element
696 // in order to populate the array filler.
697 if (Entity.isVariableLengthArrayNew())
698 ++NumElements;
699 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
700 0, Entity);
701 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
702 ElementType = VType->getElementType();
703 NumElements = VType->getNumElements();
704 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
705 0, Entity);
706 } else
707 ElementType = ILE->getType();
708
709 for (unsigned Init = 0; Init != NumElements; ++Init) {
710 if (hadError)
711 return;
712
713 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
714 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
715 ElementEntity.setElementIndex(Init);
716
717 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
718 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
719 ILE->setInit(Init, ILE->getArrayFiller());
720 else if (!InitExpr && !ILE->hasArrayFiller()) {
721 Expr *Filler = nullptr;
722
723 if (FillWithNoInit)
724 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
725 else {
726 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
727 ElementEntity,
728 /*VerifyOnly*/false,
729 TreatUnavailableAsInvalid);
730 if (ElementInit.isInvalid()) {
731 hadError = true;
732 return;
733 }
734
735 Filler = ElementInit.getAs<Expr>();
736 }
737
738 if (hadError) {
739 // Do nothing
740 } else if (Init < NumInits) {
741 // For arrays, just set the expression used for value-initialization
742 // of the "holes" in the array.
743 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
744 ILE->setArrayFiller(Filler);
745 else
746 ILE->setInit(Init, Filler);
747 } else {
748 // For arrays, just set the expression used for value-initialization
749 // of the rest of elements and exit.
750 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
751 ILE->setArrayFiller(Filler);
752 return;
753 }
754
755 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
756 // Empty initialization requires a constructor call, so
757 // extend the initializer list to include the constructor
758 // call and make a note that we'll need to take another pass
759 // through the initializer list.
760 ILE->updateInit(SemaRef.Context, Init, Filler);
761 RequiresSecondPass = true;
762 }
763 }
764 } else if (InitListExpr *InnerILE
765 = dyn_cast_or_null<InitListExpr>(InitExpr))
766 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
767 FillWithNoInit);
768 else if (DesignatedInitUpdateExpr *InnerDIUE
769 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
770 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
771 RequiresSecondPass, /*FillWithNoInit =*/ true);
772 }
773}
774
775InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
776 InitListExpr *IL, QualType &T,
777 bool VerifyOnly,
778 bool TreatUnavailableAsInvalid)
779 : SemaRef(S), VerifyOnly(VerifyOnly),
780 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
781 // FIXME: Check that IL isn't already the semantic form of some other
782 // InitListExpr. If it is, we'd create a broken AST.
783
784 hadError = false;
785
786 FullyStructuredList =
787 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
788 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
789 /*TopLevelObject=*/true);
790
791 if (!hadError && !VerifyOnly) {
792 bool RequiresSecondPass = false;
793 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
794 if (RequiresSecondPass && !hadError)
795 FillInEmptyInitializations(Entity, FullyStructuredList,
796 RequiresSecondPass);
797 }
798}
799
800int InitListChecker::numArrayElements(QualType DeclType) {
801 // FIXME: use a proper constant
802 int maxElements = 0x7FFFFFFF;
803 if (const ConstantArrayType *CAT =
804 SemaRef.Context.getAsConstantArrayType(DeclType)) {
805 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
806 }
807 return maxElements;
808}
809
810int InitListChecker::numStructUnionElements(QualType DeclType) {
811 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
812 int InitializableMembers = 0;
813 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
814 InitializableMembers += CXXRD->getNumBases();
815 for (const auto *Field : structDecl->fields())
816 if (!Field->isUnnamedBitfield())
817 ++InitializableMembers;
818
819 if (structDecl->isUnion())
820 return std::min(InitializableMembers, 1);
821 return InitializableMembers - structDecl->hasFlexibleArrayMember();
822}
823
824/// Check whether the range of the initializer \p ParentIList from element
825/// \p Index onwards can be used to initialize an object of type \p T. Update
826/// \p Index to indicate how many elements of the list were consumed.
827///
828/// This also fills in \p StructuredList, from element \p StructuredIndex
829/// onwards, with the fully-braced, desugared form of the initialization.
830void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
831 InitListExpr *ParentIList,
832 QualType T, unsigned &Index,
833 InitListExpr *StructuredList,
834 unsigned &StructuredIndex) {
835 int maxElements = 0;
836
837 if (T->isArrayType())
838 maxElements = numArrayElements(T);
839 else if (T->isRecordType())
840 maxElements = numStructUnionElements(T);
841 else if (T->isVectorType())
842 maxElements = T->getAs<VectorType>()->getNumElements();
843 else
844 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 844)
;
845
846 if (maxElements == 0) {
847 if (!VerifyOnly)
848 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
849 diag::err_implicit_empty_initializer);
850 ++Index;
851 hadError = true;
852 return;
853 }
854
855 // Build a structured initializer list corresponding to this subobject.
856 InitListExpr *StructuredSubobjectInitList
857 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
858 StructuredIndex,
859 SourceRange(ParentIList->getInit(Index)->getLocStart(),
860 ParentIList->getSourceRange().getEnd()));
861 unsigned StructuredSubobjectInitIndex = 0;
862
863 // Check the element types and build the structural subobject.
864 unsigned StartIndex = Index;
865 CheckListElementTypes(Entity, ParentIList, T,
866 /*SubobjectIsDesignatorContext=*/false, Index,
867 StructuredSubobjectInitList,
868 StructuredSubobjectInitIndex);
869
870 if (!VerifyOnly) {
871 StructuredSubobjectInitList->setType(T);
872
873 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
874 // Update the structured sub-object initializer so that it's ending
875 // range corresponds with the end of the last initializer it used.
876 if (EndIndex < ParentIList->getNumInits() &&
877 ParentIList->getInit(EndIndex)) {
878 SourceLocation EndLoc
879 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
880 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
881 }
882
883 // Complain about missing braces.
884 if (T->isArrayType() || T->isRecordType()) {
885 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
886 diag::warn_missing_braces)
887 << StructuredSubobjectInitList->getSourceRange()
888 << FixItHint::CreateInsertion(
889 StructuredSubobjectInitList->getLocStart(), "{")
890 << FixItHint::CreateInsertion(
891 SemaRef.getLocForEndOfToken(
892 StructuredSubobjectInitList->getLocEnd()),
893 "}");
894 }
895 }
896}
897
898/// Warn that \p Entity was of scalar type and was initialized by a
899/// single-element braced initializer list.
900static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
901 SourceRange Braces) {
902 // Don't warn during template instantiation. If the initialization was
903 // non-dependent, we warned during the initial parse; otherwise, the
904 // type might not be scalar in some uses of the template.
905 if (!S.ActiveTemplateInstantiations.empty())
906 return;
907
908 unsigned DiagID = 0;
909
910 switch (Entity.getKind()) {
911 case InitializedEntity::EK_VectorElement:
912 case InitializedEntity::EK_ComplexElement:
913 case InitializedEntity::EK_ArrayElement:
914 case InitializedEntity::EK_Parameter:
915 case InitializedEntity::EK_Parameter_CF_Audited:
916 case InitializedEntity::EK_Result:
917 // Extra braces here are suspicious.
918 DiagID = diag::warn_braces_around_scalar_init;
919 break;
920
921 case InitializedEntity::EK_Member:
922 // Warn on aggregate initialization but not on ctor init list or
923 // default member initializer.
924 if (Entity.getParent())
925 DiagID = diag::warn_braces_around_scalar_init;
926 break;
927
928 case InitializedEntity::EK_Variable:
929 case InitializedEntity::EK_LambdaCapture:
930 // No warning, might be direct-list-initialization.
931 // FIXME: Should we warn for copy-list-initialization in these cases?
932 break;
933
934 case InitializedEntity::EK_New:
935 case InitializedEntity::EK_Temporary:
936 case InitializedEntity::EK_CompoundLiteralInit:
937 // No warning, braces are part of the syntax of the underlying construct.
938 break;
939
940 case InitializedEntity::EK_RelatedResult:
941 // No warning, we already warned when initializing the result.
942 break;
943
944 case InitializedEntity::EK_Exception:
945 case InitializedEntity::EK_Base:
946 case InitializedEntity::EK_Delegating:
947 case InitializedEntity::EK_BlockElement:
948 case InitializedEntity::EK_Binding:
949 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 949)
;
950 }
951
952 if (DiagID) {
953 S.Diag(Braces.getBegin(), DiagID)
954 << Braces
955 << FixItHint::CreateRemoval(Braces.getBegin())
956 << FixItHint::CreateRemoval(Braces.getEnd());
957 }
958}
959
960/// Check whether the initializer \p IList (that was written with explicit
961/// braces) can be used to initialize an object of type \p T.
962///
963/// This also fills in \p StructuredList with the fully-braced, desugared
964/// form of the initialization.
965void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
966 InitListExpr *IList, QualType &T,
967 InitListExpr *StructuredList,
968 bool TopLevelObject) {
969 if (!VerifyOnly) {
970 SyntacticToSemantic[IList] = StructuredList;
971 StructuredList->setSyntacticForm(IList);
972 }
973
974 unsigned Index = 0, StructuredIndex = 0;
975 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
976 Index, StructuredList, StructuredIndex, TopLevelObject);
977 if (!VerifyOnly) {
978 QualType ExprTy = T;
979 if (!ExprTy->isArrayType())
980 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
981 IList->setType(ExprTy);
982 StructuredList->setType(ExprTy);
983 }
984 if (hadError)
985 return;
986
987 if (Index < IList->getNumInits()) {
988 // We have leftover initializers
989 if (VerifyOnly) {
990 if (SemaRef.getLangOpts().CPlusPlus ||
991 (SemaRef.getLangOpts().OpenCL &&
992 IList->getType()->isVectorType())) {
993 hadError = true;
994 }
995 return;
996 }
997
998 if (StructuredIndex == 1 &&
999 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1000 SIF_None) {
1001 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1002 if (SemaRef.getLangOpts().CPlusPlus) {
1003 DK = diag::err_excess_initializers_in_char_array_initializer;
1004 hadError = true;
1005 }
1006 // Special-case
1007 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1008 << IList->getInit(Index)->getSourceRange();
1009 } else if (!T->isIncompleteType()) {
1010 // Don't complain for incomplete types, since we'll get an error
1011 // elsewhere
1012 QualType CurrentObjectType = StructuredList->getType();
1013 int initKind =
1014 CurrentObjectType->isArrayType()? 0 :
1015 CurrentObjectType->isVectorType()? 1 :
1016 CurrentObjectType->isScalarType()? 2 :
1017 CurrentObjectType->isUnionType()? 3 :
1018 4;
1019
1020 unsigned DK = diag::ext_excess_initializers;
1021 if (SemaRef.getLangOpts().CPlusPlus) {
1022 DK = diag::err_excess_initializers;
1023 hadError = true;
1024 }
1025 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1026 DK = diag::err_excess_initializers;
1027 hadError = true;
1028 }
1029
1030 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1031 << initKind << IList->getInit(Index)->getSourceRange();
1032 }
1033 }
1034
1035 if (!VerifyOnly && T->isScalarType() &&
1036 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
1037 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1038}
1039
1040void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1041 InitListExpr *IList,
1042 QualType &DeclType,
1043 bool SubobjectIsDesignatorContext,
1044 unsigned &Index,
1045 InitListExpr *StructuredList,
1046 unsigned &StructuredIndex,
1047 bool TopLevelObject) {
1048 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1049 // Explicitly braced initializer for complex type can be real+imaginary
1050 // parts.
1051 CheckComplexType(Entity, IList, DeclType, Index,
1052 StructuredList, StructuredIndex);
1053 } else if (DeclType->isScalarType()) {
1054 CheckScalarType(Entity, IList, DeclType, Index,
1055 StructuredList, StructuredIndex);
1056 } else if (DeclType->isVectorType()) {
1057 CheckVectorType(Entity, IList, DeclType, Index,
1058 StructuredList, StructuredIndex);
1059 } else if (DeclType->isRecordType()) {
1060 assert(DeclType->isAggregateType() &&((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1061, __PRETTY_FUNCTION__))
1061 "non-aggregate records should be handed in CheckSubElementType")((DeclType->isAggregateType() && "non-aggregate records should be handed in CheckSubElementType"
) ? static_cast<void> (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1061, __PRETTY_FUNCTION__))
;
1062 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1063 auto Bases =
1064 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1065 CXXRecordDecl::base_class_iterator());
1066 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1067 Bases = CXXRD->bases();
1068 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1069 SubobjectIsDesignatorContext, Index, StructuredList,
1070 StructuredIndex, TopLevelObject);
1071 } else if (DeclType->isArrayType()) {
1072 llvm::APSInt Zero(
1073 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1074 false);
1075 CheckArrayType(Entity, IList, DeclType, Zero,
1076 SubobjectIsDesignatorContext, Index,
1077 StructuredList, StructuredIndex);
1078 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1079 // This type is invalid, issue a diagnostic.
1080 ++Index;
1081 if (!VerifyOnly)
1082 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1083 << DeclType;
1084 hadError = true;
1085 } else if (DeclType->isReferenceType()) {
1086 CheckReferenceType(Entity, IList, DeclType, Index,
1087 StructuredList, StructuredIndex);
1088 } else if (DeclType->isObjCObjectType()) {
1089 if (!VerifyOnly)
1090 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1091 << DeclType;
1092 hadError = true;
1093 } else {
1094 if (!VerifyOnly)
1095 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1096 << DeclType;
1097 hadError = true;
1098 }
1099}
1100
1101void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1102 InitListExpr *IList,
1103 QualType ElemType,
1104 unsigned &Index,
1105 InitListExpr *StructuredList,
1106 unsigned &StructuredIndex) {
1107 Expr *expr = IList->getInit(Index);
1108
1109 if (ElemType->isReferenceType())
1110 return CheckReferenceType(Entity, IList, ElemType, Index,
1111 StructuredList, StructuredIndex);
1112
1113 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1114 if (SubInitList->getNumInits() == 1 &&
1115 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1116 SIF_None) {
1117 expr = SubInitList->getInit(0);
1118 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1119 InitListExpr *InnerStructuredList
1120 = getStructuredSubobjectInit(IList, Index, ElemType,
1121 StructuredList, StructuredIndex,
1122 SubInitList->getSourceRange(), true);
1123 CheckExplicitInitList(Entity, SubInitList, ElemType,
1124 InnerStructuredList);
1125
1126 if (!hadError && !VerifyOnly) {
1127 bool RequiresSecondPass = false;
1128 FillInEmptyInitializations(Entity, InnerStructuredList,
1129 RequiresSecondPass);
1130 if (RequiresSecondPass && !hadError)
1131 FillInEmptyInitializations(Entity, InnerStructuredList,
1132 RequiresSecondPass);
1133 }
1134 ++StructuredIndex;
1135 ++Index;
1136 return;
1137 }
1138 // C++ initialization is handled later.
1139 } else if (isa<ImplicitValueInitExpr>(expr)) {
1140 // This happens during template instantiation when we see an InitListExpr
1141 // that we've already checked once.
1142 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1143, __PRETTY_FUNCTION__))
1143 "found implicit initialization for the wrong type")((SemaRef.Context.hasSameType(expr->getType(), ElemType) &&
"found implicit initialization for the wrong type") ? static_cast
<void> (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1143, __PRETTY_FUNCTION__))
;
1144 if (!VerifyOnly)
1145 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1146 ++Index;
1147 return;
1148 }
1149
1150 if (SemaRef.getLangOpts().CPlusPlus) {
1151 // C++ [dcl.init.aggr]p2:
1152 // Each member is copy-initialized from the corresponding
1153 // initializer-clause.
1154
1155 // FIXME: Better EqualLoc?
1156 InitializationKind Kind =
1157 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1158 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1159 /*TopLevelOfInitList*/ true);
1160
1161 // C++14 [dcl.init.aggr]p13:
1162 // If the assignment-expression can initialize a member, the member is
1163 // initialized. Otherwise [...] brace elision is assumed
1164 //
1165 // Brace elision is never performed if the element is not an
1166 // assignment-expression.
1167 if (Seq || isa<InitListExpr>(expr)) {
1168 if (!VerifyOnly) {
1169 ExprResult Result =
1170 Seq.Perform(SemaRef, Entity, Kind, expr);
1171 if (Result.isInvalid())
1172 hadError = true;
1173
1174 UpdateStructuredListElement(StructuredList, StructuredIndex,
1175 Result.getAs<Expr>());
1176 } else if (!Seq)
1177 hadError = true;
1178 ++Index;
1179 return;
1180 }
1181
1182 // Fall through for subaggregate initialization
1183 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1184 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1185 return CheckScalarType(Entity, IList, ElemType, Index,
1186 StructuredList, StructuredIndex);
1187 } else if (const ArrayType *arrayType =
1188 SemaRef.Context.getAsArrayType(ElemType)) {
1189 // arrayType can be incomplete if we're initializing a flexible
1190 // array member. There's nothing we can do with the completed
1191 // type here, though.
1192
1193 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1194 if (!VerifyOnly) {
1195 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1196 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1197 }
1198 ++Index;
1199 return;
1200 }
1201
1202 // Fall through for subaggregate initialization.
1203
1204 } else {
1205 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isClkEventT()) && "Unexpected type")
? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isClkEventT()) && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1206, __PRETTY_FUNCTION__))
1206 ElemType->isClkEventT()) && "Unexpected type")(((ElemType->isRecordType() || ElemType->isVectorType()
|| ElemType->isClkEventT()) && "Unexpected type")
? static_cast<void> (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isClkEventT()) && \"Unexpected type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1206, __PRETTY_FUNCTION__))
;
1207
1208 // C99 6.7.8p13:
1209 //
1210 // The initializer for a structure or union object that has
1211 // automatic storage duration shall be either an initializer
1212 // list as described below, or a single expression that has
1213 // compatible structure or union type. In the latter case, the
1214 // initial value of the object, including unnamed members, is
1215 // that of the expression.
1216 ExprResult ExprRes = expr;
1217 if (SemaRef.CheckSingleAssignmentConstraints(
1218 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1219 if (ExprRes.isInvalid())
1220 hadError = true;
1221 else {
1222 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1223 if (ExprRes.isInvalid())
1224 hadError = true;
1225 }
1226 UpdateStructuredListElement(StructuredList, StructuredIndex,
1227 ExprRes.getAs<Expr>());
1228 ++Index;
1229 return;
1230 }
1231 ExprRes.get();
1232 // Fall through for subaggregate initialization
1233 }
1234
1235 // C++ [dcl.init.aggr]p12:
1236 //
1237 // [...] Otherwise, if the member is itself a non-empty
1238 // subaggregate, brace elision is assumed and the initializer is
1239 // considered for the initialization of the first member of
1240 // the subaggregate.
1241 // OpenCL vector initializer is handled elsewhere.
1242 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1243 ElemType->isAggregateType()) {
1244 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1245 StructuredIndex);
1246 ++StructuredIndex;
1247 } else {
1248 if (!VerifyOnly) {
1249 // We cannot initialize this element, so let
1250 // PerformCopyInitialization produce the appropriate diagnostic.
1251 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1252 /*TopLevelOfInitList=*/true);
1253 }
1254 hadError = true;
1255 ++Index;
1256 ++StructuredIndex;
1257 }
1258}
1259
1260void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1261 InitListExpr *IList, QualType DeclType,
1262 unsigned &Index,
1263 InitListExpr *StructuredList,
1264 unsigned &StructuredIndex) {
1265 assert(Index == 0 && "Index in explicit init list must be zero")((Index == 0 && "Index in explicit init list must be zero"
) ? static_cast<void> (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1265, __PRETTY_FUNCTION__))
;
1266
1267 // As an extension, clang supports complex initializers, which initialize
1268 // a complex number component-wise. When an explicit initializer list for
1269 // a complex number contains two two initializers, this extension kicks in:
1270 // it exepcts the initializer list to contain two elements convertible to
1271 // the element type of the complex type. The first element initializes
1272 // the real part, and the second element intitializes the imaginary part.
1273
1274 if (IList->getNumInits() != 2)
1275 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1276 StructuredIndex);
1277
1278 // This is an extension in C. (The builtin _Complex type does not exist
1279 // in the C++ standard.)
1280 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1281 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1282 << IList->getSourceRange();
1283
1284 // Initialize the complex number.
1285 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1286 InitializedEntity ElementEntity =
1287 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1288
1289 for (unsigned i = 0; i < 2; ++i) {
1290 ElementEntity.setElementIndex(Index);
1291 CheckSubElementType(ElementEntity, IList, elementType, Index,
1292 StructuredList, StructuredIndex);
1293 }
1294}
1295
1296void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1297 InitListExpr *IList, QualType DeclType,
1298 unsigned &Index,
1299 InitListExpr *StructuredList,
1300 unsigned &StructuredIndex) {
1301 if (Index >= IList->getNumInits()) {
1302 if (!VerifyOnly)
1303 SemaRef.Diag(IList->getLocStart(),
1304 SemaRef.getLangOpts().CPlusPlus11 ?
1305 diag::warn_cxx98_compat_empty_scalar_initializer :
1306 diag::err_empty_scalar_initializer)
1307 << IList->getSourceRange();
1308 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1309 ++Index;
1310 ++StructuredIndex;
1311 return;
1312 }
1313
1314 Expr *expr = IList->getInit(Index);
1315 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1316 // FIXME: This is invalid, and accepting it causes overload resolution
1317 // to pick the wrong overload in some corner cases.
1318 if (!VerifyOnly)
1319 SemaRef.Diag(SubIList->getLocStart(),
1320 diag::ext_many_braces_around_scalar_init)
1321 << SubIList->getSourceRange();
1322
1323 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1324 StructuredIndex);
1325 return;
1326 } else if (isa<DesignatedInitExpr>(expr)) {
1327 if (!VerifyOnly)
1328 SemaRef.Diag(expr->getLocStart(),
1329 diag::err_designator_for_scalar_init)
1330 << DeclType << expr->getSourceRange();
1331 hadError = true;
1332 ++Index;
1333 ++StructuredIndex;
1334 return;
1335 }
1336
1337 if (VerifyOnly) {
1338 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1339 hadError = true;
1340 ++Index;
1341 return;
1342 }
1343
1344 ExprResult Result =
1345 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1346 /*TopLevelOfInitList=*/true);
1347
1348 Expr *ResultExpr = nullptr;
1349
1350 if (Result.isInvalid())
1351 hadError = true; // types weren't compatible.
1352 else {
1353 ResultExpr = Result.getAs<Expr>();
1354
1355 if (ResultExpr != expr) {
1356 // The type was promoted, update initializer list.
1357 IList->setInit(Index, ResultExpr);
1358 }
1359 }
1360 if (hadError)
1361 ++StructuredIndex;
1362 else
1363 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1364 ++Index;
1365}
1366
1367void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1368 InitListExpr *IList, QualType DeclType,
1369 unsigned &Index,
1370 InitListExpr *StructuredList,
1371 unsigned &StructuredIndex) {
1372 if (Index >= IList->getNumInits()) {
1373 // FIXME: It would be wonderful if we could point at the actual member. In
1374 // general, it would be useful to pass location information down the stack,
1375 // so that we know the location (or decl) of the "current object" being
1376 // initialized.
1377 if (!VerifyOnly)
1378 SemaRef.Diag(IList->getLocStart(),
1379 diag::err_init_reference_member_uninitialized)
1380 << DeclType
1381 << IList->getSourceRange();
1382 hadError = true;
1383 ++Index;
1384 ++StructuredIndex;
1385 return;
1386 }
1387
1388 Expr *expr = IList->getInit(Index);
1389 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1390 if (!VerifyOnly)
1391 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1392 << DeclType << IList->getSourceRange();
1393 hadError = true;
1394 ++Index;
1395 ++StructuredIndex;
1396 return;
1397 }
1398
1399 if (VerifyOnly) {
1400 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1401 hadError = true;
1402 ++Index;
1403 return;
1404 }
1405
1406 ExprResult Result =
1407 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1408 /*TopLevelOfInitList=*/true);
1409
1410 if (Result.isInvalid())
1411 hadError = true;
1412
1413 expr = Result.getAs<Expr>();
1414 IList->setInit(Index, expr);
1415
1416 if (hadError)
1417 ++StructuredIndex;
1418 else
1419 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1420 ++Index;
1421}
1422
1423void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1424 InitListExpr *IList, QualType DeclType,
1425 unsigned &Index,
1426 InitListExpr *StructuredList,
1427 unsigned &StructuredIndex) {
1428 const VectorType *VT = DeclType->getAs<VectorType>();
1429 unsigned maxElements = VT->getNumElements();
1430 unsigned numEltsInit = 0;
1431 QualType elementType = VT->getElementType();
1432
1433 if (Index >= IList->getNumInits()) {
1434 // Make sure the element type can be value-initialized.
1435 if (VerifyOnly)
1436 CheckEmptyInitializable(
1437 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1438 IList->getLocEnd());
1439 return;
1440 }
1441
1442 if (!SemaRef.getLangOpts().OpenCL) {
1443 // If the initializing element is a vector, try to copy-initialize
1444 // instead of breaking it apart (which is doomed to failure anyway).
1445 Expr *Init = IList->getInit(Index);
1446 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1447 if (VerifyOnly) {
1448 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1449 hadError = true;
1450 ++Index;
1451 return;
1452 }
1453
1454 ExprResult Result =
1455 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1456 /*TopLevelOfInitList=*/true);
1457
1458 Expr *ResultExpr = nullptr;
1459 if (Result.isInvalid())
1460 hadError = true; // types weren't compatible.
1461 else {
1462 ResultExpr = Result.getAs<Expr>();
1463
1464 if (ResultExpr != Init) {
1465 // The type was promoted, update initializer list.
1466 IList->setInit(Index, ResultExpr);
1467 }
1468 }
1469 if (hadError)
1470 ++StructuredIndex;
1471 else
1472 UpdateStructuredListElement(StructuredList, StructuredIndex,
1473 ResultExpr);
1474 ++Index;
1475 return;
1476 }
1477
1478 InitializedEntity ElementEntity =
1479 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1480
1481 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1482 // Don't attempt to go past the end of the init list
1483 if (Index >= IList->getNumInits()) {
1484 if (VerifyOnly)
1485 CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1486 break;
1487 }
1488
1489 ElementEntity.setElementIndex(Index);
1490 CheckSubElementType(ElementEntity, IList, elementType, Index,
1491 StructuredList, StructuredIndex);
1492 }
1493
1494 if (VerifyOnly)
1495 return;
1496
1497 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1498 const VectorType *T = Entity.getType()->getAs<VectorType>();
1499 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1500 T->getVectorKind() == VectorType::NeonPolyVector)) {
1501 // The ability to use vector initializer lists is a GNU vector extension
1502 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1503 // endian machines it works fine, however on big endian machines it
1504 // exhibits surprising behaviour:
1505 //
1506 // uint32x2_t x = {42, 64};
1507 // return vget_lane_u32(x, 0); // Will return 64.
1508 //
1509 // Because of this, explicitly call out that it is non-portable.
1510 //
1511 SemaRef.Diag(IList->getLocStart(),
1512 diag::warn_neon_vector_initializer_non_portable);
1513
1514 const char *typeCode;
1515 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1516
1517 if (elementType->isFloatingType())
1518 typeCode = "f";
1519 else if (elementType->isSignedIntegerType())
1520 typeCode = "s";
1521 else if (elementType->isUnsignedIntegerType())
1522 typeCode = "u";
1523 else
1524 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1524)
;
1525
1526 SemaRef.Diag(IList->getLocStart(),
1527 SemaRef.Context.getTypeSize(VT) > 64 ?
1528 diag::note_neon_vector_initializer_non_portable_q :
1529 diag::note_neon_vector_initializer_non_portable)
1530 << typeCode << typeSize;
1531 }
1532
1533 return;
1534 }
1535
1536 InitializedEntity ElementEntity =
1537 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1538
1539 // OpenCL initializers allows vectors to be constructed from vectors.
1540 for (unsigned i = 0; i < maxElements; ++i) {
1541 // Don't attempt to go past the end of the init list
1542 if (Index >= IList->getNumInits())
1543 break;
1544
1545 ElementEntity.setElementIndex(Index);
1546
1547 QualType IType = IList->getInit(Index)->getType();
1548 if (!IType->isVectorType()) {
1549 CheckSubElementType(ElementEntity, IList, elementType, Index,
1550 StructuredList, StructuredIndex);
1551 ++numEltsInit;
1552 } else {
1553 QualType VecType;
1554 const VectorType *IVT = IType->getAs<VectorType>();
1555 unsigned numIElts = IVT->getNumElements();
1556
1557 if (IType->isExtVectorType())
1558 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1559 else
1560 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1561 IVT->getVectorKind());
1562 CheckSubElementType(ElementEntity, IList, VecType, Index,
1563 StructuredList, StructuredIndex);
1564 numEltsInit += numIElts;
1565 }
1566 }
1567
1568 // OpenCL requires all elements to be initialized.
1569 if (numEltsInit != maxElements) {
1570 if (!VerifyOnly)
1571 SemaRef.Diag(IList->getLocStart(),
1572 diag::err_vector_incorrect_num_initializers)
1573 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1574 hadError = true;
1575 }
1576}
1577
1578void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1579 InitListExpr *IList, QualType &DeclType,
1580 llvm::APSInt elementIndex,
1581 bool SubobjectIsDesignatorContext,
1582 unsigned &Index,
1583 InitListExpr *StructuredList,
1584 unsigned &StructuredIndex) {
1585 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1586
1587 // Check for the special-case of initializing an array with a string.
1588 if (Index < IList->getNumInits()) {
1589 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1590 SIF_None) {
1591 // We place the string literal directly into the resulting
1592 // initializer list. This is the only place where the structure
1593 // of the structured initializer list doesn't match exactly,
1594 // because doing so would involve allocating one character
1595 // constant for each string.
1596 if (!VerifyOnly) {
1597 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1598 UpdateStructuredListElement(StructuredList, StructuredIndex,
1599 IList->getInit(Index));
1600 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1601 }
1602 ++Index;
1603 return;
1604 }
1605 }
1606 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1607 // Check for VLAs; in standard C it would be possible to check this
1608 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1609 // them in all sorts of strange places).
1610 if (!VerifyOnly)
1611 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1612 diag::err_variable_object_no_init)
1613 << VAT->getSizeExpr()->getSourceRange();
1614 hadError = true;
1615 ++Index;
1616 ++StructuredIndex;
1617 return;
1618 }
1619
1620 // We might know the maximum number of elements in advance.
1621 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1622 elementIndex.isUnsigned());
1623 bool maxElementsKnown = false;
1624 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1625 maxElements = CAT->getSize();
1626 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1627 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1628 maxElementsKnown = true;
1629 }
1630
1631 QualType elementType = arrayType->getElementType();
1632 while (Index < IList->getNumInits()) {
1633 Expr *Init = IList->getInit(Index);
1634 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1635 // If we're not the subobject that matches up with the '{' for
1636 // the designator, we shouldn't be handling the
1637 // designator. Return immediately.
1638 if (!SubobjectIsDesignatorContext)
1639 return;
1640
1641 // Handle this designated initializer. elementIndex will be
1642 // updated to be the next array element we'll initialize.
1643 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1644 DeclType, nullptr, &elementIndex, Index,
1645 StructuredList, StructuredIndex, true,
1646 false)) {
1647 hadError = true;
1648 continue;
1649 }
1650
1651 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1652 maxElements = maxElements.extend(elementIndex.getBitWidth());
1653 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1654 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1655 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1656
1657 // If the array is of incomplete type, keep track of the number of
1658 // elements in the initializer.
1659 if (!maxElementsKnown && elementIndex > maxElements)
1660 maxElements = elementIndex;
1661
1662 continue;
1663 }
1664
1665 // If we know the maximum number of elements, and we've already
1666 // hit it, stop consuming elements in the initializer list.
1667 if (maxElementsKnown && elementIndex == maxElements)
1668 break;
1669
1670 InitializedEntity ElementEntity =
1671 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1672 Entity);
1673 // Check this element.
1674 CheckSubElementType(ElementEntity, IList, elementType, Index,
1675 StructuredList, StructuredIndex);
1676 ++elementIndex;
1677
1678 // If the array is of incomplete type, keep track of the number of
1679 // elements in the initializer.
1680 if (!maxElementsKnown && elementIndex > maxElements)
1681 maxElements = elementIndex;
1682 }
1683 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1684 // If this is an incomplete array type, the actual type needs to
1685 // be calculated here.
1686 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1687 if (maxElements == Zero) {
1688 // Sizing an array implicitly to zero is not allowed by ISO C,
1689 // but is supported by GNU.
1690 SemaRef.Diag(IList->getLocStart(),
1691 diag::ext_typecheck_zero_array_size);
1692 }
1693
1694 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1695 ArrayType::Normal, 0);
1696 }
1697 if (!hadError && VerifyOnly) {
1698 // If there are any members of the array that get value-initialized, check
1699 // that is possible. That happens if we know the bound and don't have
1700 // enough elements, or if we're performing an array new with an unknown
1701 // bound.
1702 // FIXME: This needs to detect holes left by designated initializers too.
1703 if ((maxElementsKnown && elementIndex < maxElements) ||
1704 Entity.isVariableLengthArrayNew())
1705 CheckEmptyInitializable(InitializedEntity::InitializeElement(
1706 SemaRef.Context, 0, Entity),
1707 IList->getLocEnd());
1708 }
1709}
1710
1711bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1712 Expr *InitExpr,
1713 FieldDecl *Field,
1714 bool TopLevelObject) {
1715 // Handle GNU flexible array initializers.
1716 unsigned FlexArrayDiag;
1717 if (isa<InitListExpr>(InitExpr) &&
1718 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1719 // Empty flexible array init always allowed as an extension
1720 FlexArrayDiag = diag::ext_flexible_array_init;
1721 } else if (SemaRef.getLangOpts().CPlusPlus) {
1722 // Disallow flexible array init in C++; it is not required for gcc
1723 // compatibility, and it needs work to IRGen correctly in general.
1724 FlexArrayDiag = diag::err_flexible_array_init;
1725 } else if (!TopLevelObject) {
1726 // Disallow flexible array init on non-top-level object
1727 FlexArrayDiag = diag::err_flexible_array_init;
1728 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1729 // Disallow flexible array init on anything which is not a variable.
1730 FlexArrayDiag = diag::err_flexible_array_init;
1731 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1732 // Disallow flexible array init on local variables.
1733 FlexArrayDiag = diag::err_flexible_array_init;
1734 } else {
1735 // Allow other cases.
1736 FlexArrayDiag = diag::ext_flexible_array_init;
1737 }
1738
1739 if (!VerifyOnly) {
1740 SemaRef.Diag(InitExpr->getLocStart(),
1741 FlexArrayDiag)
1742 << InitExpr->getLocStart();
1743 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1744 << Field;
1745 }
1746
1747 return FlexArrayDiag != diag::ext_flexible_array_init;
1748}
1749
1750void InitListChecker::CheckStructUnionTypes(
1751 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1752 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1753 bool SubobjectIsDesignatorContext, unsigned &Index,
1754 InitListExpr *StructuredList, unsigned &StructuredIndex,
1755 bool TopLevelObject) {
1756 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1757
1758 // If the record is invalid, some of it's members are invalid. To avoid
1759 // confusion, we forgo checking the intializer for the entire record.
1760 if (structDecl->isInvalidDecl()) {
1761 // Assume it was supposed to consume a single initializer.
1762 ++Index;
1763 hadError = true;
1764 return;
1765 }
1766
1767 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1768 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1769
1770 // If there's a default initializer, use it.
1771 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1772 if (VerifyOnly)
1773 return;
1774 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1775 Field != FieldEnd; ++Field) {
1776 if (Field->hasInClassInitializer()) {
1777 StructuredList->setInitializedFieldInUnion(*Field);
1778 // FIXME: Actually build a CXXDefaultInitExpr?
1779 return;
1780 }
1781 }
1782 }
1783
1784 // Value-initialize the first member of the union that isn't an unnamed
1785 // bitfield.
1786 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1787 Field != FieldEnd; ++Field) {
1788 if (!Field->isUnnamedBitfield()) {
1789 if (VerifyOnly)
1790 CheckEmptyInitializable(
1791 InitializedEntity::InitializeMember(*Field, &Entity),
1792 IList->getLocEnd());
1793 else
1794 StructuredList->setInitializedFieldInUnion(*Field);
1795 break;
1796 }
1797 }
1798 return;
1799 }
1800
1801 bool InitializedSomething = false;
1802
1803 // If we have any base classes, they are initialized prior to the fields.
1804 for (auto &Base : Bases) {
1805 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1806 SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd();
1807
1808 // Designated inits always initialize fields, so if we see one, all
1809 // remaining base classes have no explicit initializer.
1810 if (Init && isa<DesignatedInitExpr>(Init))
1811 Init = nullptr;
1812
1813 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1814 SemaRef.Context, &Base, false, &Entity);
1815 if (Init) {
1816 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1817 StructuredList, StructuredIndex);
1818 InitializedSomething = true;
1819 } else if (VerifyOnly) {
1820 CheckEmptyInitializable(BaseEntity, InitLoc);
1821 }
1822 }
1823
1824 // If structDecl is a forward declaration, this loop won't do
1825 // anything except look at designated initializers; That's okay,
1826 // because an error should get printed out elsewhere. It might be
1827 // worthwhile to skip over the rest of the initializer, though.
1828 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1829 RecordDecl::field_iterator FieldEnd = RD->field_end();
1830 bool CheckForMissingFields = true;
1831 while (Index < IList->getNumInits()) {
1832 Expr *Init = IList->getInit(Index);
1833
1834 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1835 // If we're not the subobject that matches up with the '{' for
1836 // the designator, we shouldn't be handling the
1837 // designator. Return immediately.
1838 if (!SubobjectIsDesignatorContext)
1839 return;
1840
1841 // Handle this designated initializer. Field will be updated to
1842 // the next field that we'll be initializing.
1843 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1844 DeclType, &Field, nullptr, Index,
1845 StructuredList, StructuredIndex,
1846 true, TopLevelObject))
1847 hadError = true;
1848
1849 InitializedSomething = true;
1850
1851 // Disable check for missing fields when designators are used.
1852 // This matches gcc behaviour.
1853 CheckForMissingFields = false;
1854 continue;
1855 }
1856
1857 if (Field == FieldEnd) {
1858 // We've run out of fields. We're done.
1859 break;
1860 }
1861
1862 // We've already initialized a member of a union. We're done.
1863 if (InitializedSomething && DeclType->isUnionType())
1864 break;
1865
1866 // If we've hit the flexible array member at the end, we're done.
1867 if (Field->getType()->isIncompleteArrayType())
1868 break;
1869
1870 if (Field->isUnnamedBitfield()) {
1871 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1872 ++Field;
1873 continue;
1874 }
1875
1876 // Make sure we can use this declaration.
1877 bool InvalidUse;
1878 if (VerifyOnly)
1879 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
1880 else
1881 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1882 IList->getInit(Index)->getLocStart());
1883 if (InvalidUse) {
1884 ++Index;
1885 ++Field;
1886 hadError = true;
1887 continue;
1888 }
1889
1890 InitializedEntity MemberEntity =
1891 InitializedEntity::InitializeMember(*Field, &Entity);
1892 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1893 StructuredList, StructuredIndex);
1894 InitializedSomething = true;
1895
1896 if (DeclType->isUnionType() && !VerifyOnly) {
1897 // Initialize the first field within the union.
1898 StructuredList->setInitializedFieldInUnion(*Field);
1899 }
1900
1901 ++Field;
1902 }
1903
1904 // Emit warnings for missing struct field initializers.
1905 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1906 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1907 !DeclType->isUnionType()) {
1908 // It is possible we have one or more unnamed bitfields remaining.
1909 // Find first (if any) named field and emit warning.
1910 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1911 it != end; ++it) {
1912 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1913 SemaRef.Diag(IList->getSourceRange().getEnd(),
1914 diag::warn_missing_field_initializers) << *it;
1915 break;
1916 }
1917 }
1918 }
1919
1920 // Check that any remaining fields can be value-initialized.
1921 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1922 !Field->getType()->isIncompleteArrayType()) {
1923 // FIXME: Should check for holes left by designated initializers too.
1924 for (; Field != FieldEnd && !hadError; ++Field) {
1925 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1926 CheckEmptyInitializable(
1927 InitializedEntity::InitializeMember(*Field, &Entity),
1928 IList->getLocEnd());
1929 }
1930 }
1931
1932 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1933 Index >= IList->getNumInits())
1934 return;
1935
1936 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1937 TopLevelObject)) {
1938 hadError = true;
1939 ++Index;
1940 return;
1941 }
1942
1943 InitializedEntity MemberEntity =
1944 InitializedEntity::InitializeMember(*Field, &Entity);
1945
1946 if (isa<InitListExpr>(IList->getInit(Index)))
1947 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1948 StructuredList, StructuredIndex);
1949 else
1950 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1951 StructuredList, StructuredIndex);
1952}
1953
1954/// \brief Expand a field designator that refers to a member of an
1955/// anonymous struct or union into a series of field designators that
1956/// refers to the field within the appropriate subobject.
1957///
1958static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1959 DesignatedInitExpr *DIE,
1960 unsigned DesigIdx,
1961 IndirectFieldDecl *IndirectField) {
1962 typedef DesignatedInitExpr::Designator Designator;
1963
1964 // Build the replacement designators.
1965 SmallVector<Designator, 4> Replacements;
1966 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1967 PE = IndirectField->chain_end(); PI != PE; ++PI) {
1968 if (PI + 1 == PE)
1969 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1970 DIE->getDesignator(DesigIdx)->getDotLoc(),
1971 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1972 else
1973 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1974 SourceLocation(), SourceLocation()));
1975 assert(isa<FieldDecl>(*PI))((isa<FieldDecl>(*PI)) ? static_cast<void> (0) : __assert_fail
("isa<FieldDecl>(*PI)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 1975, __PRETTY_FUNCTION__))
;
1976 Replacements.back().setField(cast<FieldDecl>(*PI));
1977 }
1978
1979 // Expand the current designator into the set of replacement
1980 // designators, so we have a full subobject path down to where the
1981 // member of the anonymous struct/union is actually stored.
1982 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1983 &Replacements[0] + Replacements.size());
1984}
1985
1986static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1987 DesignatedInitExpr *DIE) {
1988 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1989 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1990 for (unsigned I = 0; I < NumIndexExprs; ++I)
1991 IndexExprs[I] = DIE->getSubExpr(I + 1);
1992 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
1993 IndexExprs,
1994 DIE->getEqualOrColonLoc(),
1995 DIE->usesGNUSyntax(), DIE->getInit());
1996}
1997
1998namespace {
1999
2000// Callback to only accept typo corrections that are for field members of
2001// the given struct or union.
2002class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2003 public:
2004 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2005 : Record(RD) {}
2006
2007 bool ValidateCandidate(const TypoCorrection &candidate) override {
2008 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2009 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2010 }
2011
2012 private:
2013 RecordDecl *Record;
2014};
2015
2016} // end anonymous namespace
2017
2018/// @brief Check the well-formedness of a C99 designated initializer.
2019///
2020/// Determines whether the designated initializer @p DIE, which
2021/// resides at the given @p Index within the initializer list @p
2022/// IList, is well-formed for a current object of type @p DeclType
2023/// (C99 6.7.8). The actual subobject that this designator refers to
2024/// within the current subobject is returned in either
2025/// @p NextField or @p NextElementIndex (whichever is appropriate).
2026///
2027/// @param IList The initializer list in which this designated
2028/// initializer occurs.
2029///
2030/// @param DIE The designated initializer expression.
2031///
2032/// @param DesigIdx The index of the current designator.
2033///
2034/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2035/// into which the designation in @p DIE should refer.
2036///
2037/// @param NextField If non-NULL and the first designator in @p DIE is
2038/// a field, this will be set to the field declaration corresponding
2039/// to the field named by the designator.
2040///
2041/// @param NextElementIndex If non-NULL and the first designator in @p
2042/// DIE is an array designator or GNU array-range designator, this
2043/// will be set to the last index initialized by this designator.
2044///
2045/// @param Index Index into @p IList where the designated initializer
2046/// @p DIE occurs.
2047///
2048/// @param StructuredList The initializer list expression that
2049/// describes all of the subobject initializers in the order they'll
2050/// actually be initialized.
2051///
2052/// @returns true if there was an error, false otherwise.
2053bool
2054InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2055 InitListExpr *IList,
2056 DesignatedInitExpr *DIE,
2057 unsigned DesigIdx,
2058 QualType &CurrentObjectType,
2059 RecordDecl::field_iterator *NextField,
2060 llvm::APSInt *NextElementIndex,
2061 unsigned &Index,
2062 InitListExpr *StructuredList,
2063 unsigned &StructuredIndex,
2064 bool FinishSubobjectInit,
2065 bool TopLevelObject) {
2066 if (DesigIdx == DIE->size()) {
2067 // Check the actual initialization for the designated object type.
2068 bool prevHadError = hadError;
2069
2070 // Temporarily remove the designator expression from the
2071 // initializer list that the child calls see, so that we don't try
2072 // to re-process the designator.
2073 unsigned OldIndex = Index;
2074 IList->setInit(OldIndex, DIE->getInit());
2075
2076 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2077 StructuredList, StructuredIndex);
2078
2079 // Restore the designated initializer expression in the syntactic
2080 // form of the initializer list.
2081 if (IList->getInit(OldIndex) != DIE->getInit())
2082 DIE->setInit(IList->getInit(OldIndex));
2083 IList->setInit(OldIndex, DIE);
2084
2085 return hadError && !prevHadError;
2086 }
2087
2088 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2089 bool IsFirstDesignator = (DesigIdx == 0);
2090 if (!VerifyOnly) {
2091 assert((IsFirstDesignator || StructuredList) &&(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2092, __PRETTY_FUNCTION__))
2092 "Need a non-designated initializer list to start from")(((IsFirstDesignator || StructuredList) && "Need a non-designated initializer list to start from"
) ? static_cast<void> (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2092, __PRETTY_FUNCTION__))
;
2093
2094 // Determine the structural initializer list that corresponds to the
2095 // current subobject.
2096 if (IsFirstDesignator)
2097 StructuredList = SyntacticToSemantic.lookup(IList);
2098 else {
2099 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2100 StructuredList->getInit(StructuredIndex) : nullptr;
2101 if (!ExistingInit && StructuredList->hasArrayFiller())
2102 ExistingInit = StructuredList->getArrayFiller();
2103
2104 if (!ExistingInit)
2105 StructuredList =
2106 getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2107 StructuredList, StructuredIndex,
2108 SourceRange(D->getLocStart(),
2109 DIE->getLocEnd()));
2110 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2111 StructuredList = Result;
2112 else {
2113 if (DesignatedInitUpdateExpr *E =
2114 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2115 StructuredList = E->getUpdater();
2116 else {
2117 DesignatedInitUpdateExpr *DIUE =
2118 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2119 D->getLocStart(), ExistingInit,
2120 DIE->getLocEnd());
2121 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2122 StructuredList = DIUE->getUpdater();
2123 }
2124
2125 // We need to check on source range validity because the previous
2126 // initializer does not have to be an explicit initializer. e.g.,
2127 //
2128 // struct P { int a, b; };
2129 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2130 //
2131 // There is an overwrite taking place because the first braced initializer
2132 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2133 if (ExistingInit->getSourceRange().isValid()) {
2134 // We are creating an initializer list that initializes the
2135 // subobjects of the current object, but there was already an
2136 // initialization that completely initialized the current
2137 // subobject, e.g., by a compound literal:
2138 //
2139 // struct X { int a, b; };
2140 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2141 //
2142 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2143 // designated initializer re-initializes the whole
2144 // subobject [0], overwriting previous initializers.
2145 SemaRef.Diag(D->getLocStart(),
2146 diag::warn_subobject_initializer_overrides)
2147 << SourceRange(D->getLocStart(), DIE->getLocEnd());
2148
2149 SemaRef.Diag(ExistingInit->getLocStart(),
2150 diag::note_previous_initializer)
2151 << /*FIXME:has side effects=*/0
2152 << ExistingInit->getSourceRange();
2153 }
2154 }
2155 }
2156 assert(StructuredList && "Expected a structured initializer list")((StructuredList && "Expected a structured initializer list"
) ? static_cast<void> (0) : __assert_fail ("StructuredList && \"Expected a structured initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2156, __PRETTY_FUNCTION__))
;
2157 }
2158
2159 if (D->isFieldDesignator()) {
2160 // C99 6.7.8p7:
2161 //
2162 // If a designator has the form
2163 //
2164 // . identifier
2165 //
2166 // then the current object (defined below) shall have
2167 // structure or union type and the identifier shall be the
2168 // name of a member of that type.
2169 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2170 if (!RT) {
2171 SourceLocation Loc = D->getDotLoc();
2172 if (Loc.isInvalid())
2173 Loc = D->getFieldLoc();
2174 if (!VerifyOnly)
2175 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2176 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2177 ++Index;
2178 return true;
2179 }
2180
2181 FieldDecl *KnownField = D->getField();
2182 if (!KnownField) {
2183 IdentifierInfo *FieldName = D->getFieldName();
2184 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2185 for (NamedDecl *ND : Lookup) {
2186 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2187 KnownField = FD;
2188 break;
2189 }
2190 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2191 // In verify mode, don't modify the original.
2192 if (VerifyOnly)
2193 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2194 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2195 D = DIE->getDesignator(DesigIdx);
2196 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2197 break;
2198 }
2199 }
2200 if (!KnownField) {
2201 if (VerifyOnly) {
2202 ++Index;
2203 return true; // No typo correction when just trying this out.
2204 }
2205
2206 // Name lookup found something, but it wasn't a field.
2207 if (!Lookup.empty()) {
2208 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2209 << FieldName;
2210 SemaRef.Diag(Lookup.front()->getLocation(),
2211 diag::note_field_designator_found);
2212 ++Index;
2213 return true;
2214 }
2215
2216 // Name lookup didn't find anything.
2217 // Determine whether this was a typo for another field name.
2218 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2219 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2220 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2221 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2222 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2223 SemaRef.diagnoseTypo(
2224 Corrected,
2225 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2226 << FieldName << CurrentObjectType);
2227 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2228 hadError = true;
2229 } else {
2230 // Typo correction didn't find anything.
2231 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2232 << FieldName << CurrentObjectType;
2233 ++Index;
2234 return true;
2235 }
2236 }
2237 }
2238
2239 unsigned FieldIndex = 0;
2240
2241 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2242 FieldIndex = CXXRD->getNumBases();
2243
2244 for (auto *FI : RT->getDecl()->fields()) {
2245 if (FI->isUnnamedBitfield())
2246 continue;
2247 if (declaresSameEntity(KnownField, FI)) {
2248 KnownField = FI;
2249 break;
2250 }
2251 ++FieldIndex;
2252 }
2253
2254 RecordDecl::field_iterator Field =
2255 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2256
2257 // All of the fields of a union are located at the same place in
2258 // the initializer list.
2259 if (RT->getDecl()->isUnion()) {
2260 FieldIndex = 0;
2261 if (!VerifyOnly) {
2262 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2263 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2264 assert(StructuredList->getNumInits() == 1((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2265, __PRETTY_FUNCTION__))
2265 && "A union should never have more than one initializer!")((StructuredList->getNumInits() == 1 && "A union should never have more than one initializer!"
) ? static_cast<void> (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2265, __PRETTY_FUNCTION__))
;
2266
2267 // We're about to throw away an initializer, emit warning.
2268 SemaRef.Diag(D->getFieldLoc(),
2269 diag::warn_initializer_overrides)
2270 << D->getSourceRange();
2271 Expr *ExistingInit = StructuredList->getInit(0);
2272 SemaRef.Diag(ExistingInit->getLocStart(),
2273 diag::note_previous_initializer)
2274 << /*FIXME:has side effects=*/0
2275 << ExistingInit->getSourceRange();
2276
2277 // remove existing initializer
2278 StructuredList->resizeInits(SemaRef.Context, 0);
2279 StructuredList->setInitializedFieldInUnion(nullptr);
2280 }
2281
2282 StructuredList->setInitializedFieldInUnion(*Field);
2283 }
2284 }
2285
2286 // Make sure we can use this declaration.
2287 bool InvalidUse;
2288 if (VerifyOnly)
2289 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2290 else
2291 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2292 if (InvalidUse) {
2293 ++Index;
2294 return true;
2295 }
2296
2297 if (!VerifyOnly) {
2298 // Update the designator with the field declaration.
2299 D->setField(*Field);
2300
2301 // Make sure that our non-designated initializer list has space
2302 // for a subobject corresponding to this field.
2303 if (FieldIndex >= StructuredList->getNumInits())
2304 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2305 }
2306
2307 // This designator names a flexible array member.
2308 if (Field->getType()->isIncompleteArrayType()) {
2309 bool Invalid = false;
2310 if ((DesigIdx + 1) != DIE->size()) {
2311 // We can't designate an object within the flexible array
2312 // member (because GCC doesn't allow it).
2313 if (!VerifyOnly) {
2314 DesignatedInitExpr::Designator *NextD
2315 = DIE->getDesignator(DesigIdx + 1);
2316 SemaRef.Diag(NextD->getLocStart(),
2317 diag::err_designator_into_flexible_array_member)
2318 << SourceRange(NextD->getLocStart(),
2319 DIE->getLocEnd());
2320 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2321 << *Field;
2322 }
2323 Invalid = true;
2324 }
2325
2326 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2327 !isa<StringLiteral>(DIE->getInit())) {
2328 // The initializer is not an initializer list.
2329 if (!VerifyOnly) {
2330 SemaRef.Diag(DIE->getInit()->getLocStart(),
2331 diag::err_flexible_array_init_needs_braces)
2332 << DIE->getInit()->getSourceRange();
2333 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2334 << *Field;
2335 }
2336 Invalid = true;
2337 }
2338
2339 // Check GNU flexible array initializer.
2340 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2341 TopLevelObject))
2342 Invalid = true;
2343
2344 if (Invalid) {
2345 ++Index;
2346 return true;
2347 }
2348
2349 // Initialize the array.
2350 bool prevHadError = hadError;
2351 unsigned newStructuredIndex = FieldIndex;
2352 unsigned OldIndex = Index;
2353 IList->setInit(Index, DIE->getInit());
2354
2355 InitializedEntity MemberEntity =
2356 InitializedEntity::InitializeMember(*Field, &Entity);
2357 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2358 StructuredList, newStructuredIndex);
2359
2360 IList->setInit(OldIndex, DIE);
2361 if (hadError && !prevHadError) {
2362 ++Field;
2363 ++FieldIndex;
2364 if (NextField)
2365 *NextField = Field;
2366 StructuredIndex = FieldIndex;
2367 return true;
2368 }
2369 } else {
2370 // Recurse to check later designated subobjects.
2371 QualType FieldType = Field->getType();
2372 unsigned newStructuredIndex = FieldIndex;
2373
2374 InitializedEntity MemberEntity =
2375 InitializedEntity::InitializeMember(*Field, &Entity);
2376 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2377 FieldType, nullptr, nullptr, Index,
2378 StructuredList, newStructuredIndex,
2379 FinishSubobjectInit, false))
2380 return true;
2381 }
2382
2383 // Find the position of the next field to be initialized in this
2384 // subobject.
2385 ++Field;
2386 ++FieldIndex;
2387
2388 // If this the first designator, our caller will continue checking
2389 // the rest of this struct/class/union subobject.
2390 if (IsFirstDesignator) {
2391 if (NextField)
2392 *NextField = Field;
2393 StructuredIndex = FieldIndex;
2394 return false;
2395 }
2396
2397 if (!FinishSubobjectInit)
2398 return false;
2399
2400 // We've already initialized something in the union; we're done.
2401 if (RT->getDecl()->isUnion())
2402 return hadError;
2403
2404 // Check the remaining fields within this class/struct/union subobject.
2405 bool prevHadError = hadError;
2406
2407 auto NoBases =
2408 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2409 CXXRecordDecl::base_class_iterator());
2410 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2411 false, Index, StructuredList, FieldIndex);
2412 return hadError && !prevHadError;
2413 }
2414
2415 // C99 6.7.8p6:
2416 //
2417 // If a designator has the form
2418 //
2419 // [ constant-expression ]
2420 //
2421 // then the current object (defined below) shall have array
2422 // type and the expression shall be an integer constant
2423 // expression. If the array is of unknown size, any
2424 // nonnegative value is valid.
2425 //
2426 // Additionally, cope with the GNU extension that permits
2427 // designators of the form
2428 //
2429 // [ constant-expression ... constant-expression ]
2430 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2431 if (!AT) {
2432 if (!VerifyOnly)
2433 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2434 << CurrentObjectType;
2435 ++Index;
2436 return true;
2437 }
2438
2439 Expr *IndexExpr = nullptr;
2440 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2441 if (D->isArrayDesignator()) {
2442 IndexExpr = DIE->getArrayIndex(*D);
2443 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2444 DesignatedEndIndex = DesignatedStartIndex;
2445 } else {
2446 assert(D->isArrayRangeDesignator() && "Need array-range designator")((D->isArrayRangeDesignator() && "Need array-range designator"
) ? static_cast<void> (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2446, __PRETTY_FUNCTION__))
;
2447
2448 DesignatedStartIndex =
2449 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2450 DesignatedEndIndex =
2451 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2452 IndexExpr = DIE->getArrayRangeEnd(*D);
2453
2454 // Codegen can't handle evaluating array range designators that have side
2455 // effects, because we replicate the AST value for each initialized element.
2456 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2457 // elements with something that has a side effect, so codegen can emit an
2458 // "error unsupported" error instead of miscompiling the app.
2459 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2460 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2461 FullyStructuredList->sawArrayRangeDesignator();
2462 }
2463
2464 if (isa<ConstantArrayType>(AT)) {
2465 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2466 DesignatedStartIndex
2467 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2468 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2469 DesignatedEndIndex
2470 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2471 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2472 if (DesignatedEndIndex >= MaxElements) {
2473 if (!VerifyOnly)
2474 SemaRef.Diag(IndexExpr->getLocStart(),
2475 diag::err_array_designator_too_large)
2476 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2477 << IndexExpr->getSourceRange();
2478 ++Index;
2479 return true;
2480 }
2481 } else {
2482 unsigned DesignatedIndexBitWidth =
2483 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2484 DesignatedStartIndex =
2485 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2486 DesignatedEndIndex =
2487 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2488 DesignatedStartIndex.setIsUnsigned(true);
2489 DesignatedEndIndex.setIsUnsigned(true);
2490 }
2491
2492 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2493 // We're modifying a string literal init; we have to decompose the string
2494 // so we can modify the individual characters.
2495 ASTContext &Context = SemaRef.Context;
2496 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2497
2498 // Compute the character type
2499 QualType CharTy = AT->getElementType();
2500
2501 // Compute the type of the integer literals.
2502 QualType PromotedCharTy = CharTy;
2503 if (CharTy->isPromotableIntegerType())
2504 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2505 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2506
2507 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2508 // Get the length of the string.
2509 uint64_t StrLen = SL->getLength();
2510 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2511 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2512 StructuredList->resizeInits(Context, StrLen);
2513
2514 // Build a literal for each character in the string, and put them into
2515 // the init list.
2516 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2517 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2518 Expr *Init = new (Context) IntegerLiteral(
2519 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2520 if (CharTy != PromotedCharTy)
2521 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2522 Init, nullptr, VK_RValue);
2523 StructuredList->updateInit(Context, i, Init);
2524 }
2525 } else {
2526 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2527 std::string Str;
2528 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2529
2530 // Get the length of the string.
2531 uint64_t StrLen = Str.size();
2532 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2533 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2534 StructuredList->resizeInits(Context, StrLen);
2535
2536 // Build a literal for each character in the string, and put them into
2537 // the init list.
2538 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2539 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2540 Expr *Init = new (Context) IntegerLiteral(
2541 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2542 if (CharTy != PromotedCharTy)
2543 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2544 Init, nullptr, VK_RValue);
2545 StructuredList->updateInit(Context, i, Init);
2546 }
2547 }
2548 }
2549
2550 // Make sure that our non-designated initializer list has space
2551 // for a subobject corresponding to this array element.
2552 if (!VerifyOnly &&
2553 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2554 StructuredList->resizeInits(SemaRef.Context,
2555 DesignatedEndIndex.getZExtValue() + 1);
2556
2557 // Repeatedly perform subobject initializations in the range
2558 // [DesignatedStartIndex, DesignatedEndIndex].
2559
2560 // Move to the next designator
2561 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2562 unsigned OldIndex = Index;
2563
2564 InitializedEntity ElementEntity =
2565 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2566
2567 while (DesignatedStartIndex <= DesignatedEndIndex) {
2568 // Recurse to check later designated subobjects.
2569 QualType ElementType = AT->getElementType();
2570 Index = OldIndex;
2571
2572 ElementEntity.setElementIndex(ElementIndex);
2573 if (CheckDesignatedInitializer(
2574 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2575 nullptr, Index, StructuredList, ElementIndex,
2576 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2577 false))
2578 return true;
2579
2580 // Move to the next index in the array that we'll be initializing.
2581 ++DesignatedStartIndex;
2582 ElementIndex = DesignatedStartIndex.getZExtValue();
2583 }
2584
2585 // If this the first designator, our caller will continue checking
2586 // the rest of this array subobject.
2587 if (IsFirstDesignator) {
2588 if (NextElementIndex)
2589 *NextElementIndex = DesignatedStartIndex;
2590 StructuredIndex = ElementIndex;
2591 return false;
2592 }
2593
2594 if (!FinishSubobjectInit)
2595 return false;
2596
2597 // Check the remaining elements within this array subobject.
2598 bool prevHadError = hadError;
2599 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2600 /*SubobjectIsDesignatorContext=*/false, Index,
2601 StructuredList, ElementIndex);
2602 return hadError && !prevHadError;
2603}
2604
2605// Get the structured initializer list for a subobject of type
2606// @p CurrentObjectType.
2607InitListExpr *
2608InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2609 QualType CurrentObjectType,
2610 InitListExpr *StructuredList,
2611 unsigned StructuredIndex,
2612 SourceRange InitRange,
2613 bool IsFullyOverwritten) {
2614 if (VerifyOnly)
2615 return nullptr; // No structured list in verification-only mode.
2616 Expr *ExistingInit = nullptr;
2617 if (!StructuredList)
2618 ExistingInit = SyntacticToSemantic.lookup(IList);
2619 else if (StructuredIndex < StructuredList->getNumInits())
2620 ExistingInit = StructuredList->getInit(StructuredIndex);
2621
2622 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2623 // There might have already been initializers for subobjects of the current
2624 // object, but a subsequent initializer list will overwrite the entirety
2625 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2626 //
2627 // struct P { char x[6]; };
2628 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2629 //
2630 // The first designated initializer is ignored, and l.x is just "f".
2631 if (!IsFullyOverwritten)
2632 return Result;
2633
2634 if (ExistingInit) {
2635 // We are creating an initializer list that initializes the
2636 // subobjects of the current object, but there was already an
2637 // initialization that completely initialized the current
2638 // subobject, e.g., by a compound literal:
2639 //
2640 // struct X { int a, b; };
2641 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2642 //
2643 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2644 // designated initializer re-initializes the whole
2645 // subobject [0], overwriting previous initializers.
2646 SemaRef.Diag(InitRange.getBegin(),
2647 diag::warn_subobject_initializer_overrides)
2648 << InitRange;
2649 SemaRef.Diag(ExistingInit->getLocStart(),
2650 diag::note_previous_initializer)
2651 << /*FIXME:has side effects=*/0
2652 << ExistingInit->getSourceRange();
2653 }
2654
2655 InitListExpr *Result
2656 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2657 InitRange.getBegin(), None,
2658 InitRange.getEnd());
2659
2660 QualType ResultType = CurrentObjectType;
2661 if (!ResultType->isArrayType())
2662 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2663 Result->setType(ResultType);
2664
2665 // Pre-allocate storage for the structured initializer list.
2666 unsigned NumElements = 0;
2667 unsigned NumInits = 0;
2668 bool GotNumInits = false;
2669 if (!StructuredList) {
2670 NumInits = IList->getNumInits();
2671 GotNumInits = true;
2672 } else if (Index < IList->getNumInits()) {
2673 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2674 NumInits = SubList->getNumInits();
2675 GotNumInits = true;
2676 }
2677 }
2678
2679 if (const ArrayType *AType
2680 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2681 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2682 NumElements = CAType->getSize().getZExtValue();
2683 // Simple heuristic so that we don't allocate a very large
2684 // initializer with many empty entries at the end.
2685 if (GotNumInits && NumElements > NumInits)
2686 NumElements = 0;
2687 }
2688 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2689 NumElements = VType->getNumElements();
2690 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2691 RecordDecl *RDecl = RType->getDecl();
2692 if (RDecl->isUnion())
2693 NumElements = 1;
2694 else
2695 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2696 }
2697
2698 Result->reserveInits(SemaRef.Context, NumElements);
2699
2700 // Link this new initializer list into the structured initializer
2701 // lists.
2702 if (StructuredList)
2703 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2704 else {
2705 Result->setSyntacticForm(IList);
2706 SyntacticToSemantic[IList] = Result;
2707 }
2708
2709 return Result;
2710}
2711
2712/// Update the initializer at index @p StructuredIndex within the
2713/// structured initializer list to the value @p expr.
2714void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2715 unsigned &StructuredIndex,
2716 Expr *expr) {
2717 // No structured initializer list to update
2718 if (!StructuredList)
2719 return;
2720
2721 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2722 StructuredIndex, expr)) {
2723 // This initializer overwrites a previous initializer. Warn.
2724 // We need to check on source range validity because the previous
2725 // initializer does not have to be an explicit initializer.
2726 // struct P { int a, b; };
2727 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2728 // There is an overwrite taking place because the first braced initializer
2729 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2730 if (PrevInit->getSourceRange().isValid()) {
2731 SemaRef.Diag(expr->getLocStart(),
2732 diag::warn_initializer_overrides)
2733 << expr->getSourceRange();
2734
2735 SemaRef.Diag(PrevInit->getLocStart(),
2736 diag::note_previous_initializer)
2737 << /*FIXME:has side effects=*/0
2738 << PrevInit->getSourceRange();
2739 }
2740 }
2741
2742 ++StructuredIndex;
2743}
2744
2745/// Check that the given Index expression is a valid array designator
2746/// value. This is essentially just a wrapper around
2747/// VerifyIntegerConstantExpression that also checks for negative values
2748/// and produces a reasonable diagnostic if there is a
2749/// failure. Returns the index expression, possibly with an implicit cast
2750/// added, on success. If everything went okay, Value will receive the
2751/// value of the constant expression.
2752static ExprResult
2753CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2754 SourceLocation Loc = Index->getLocStart();
2755
2756 // Make sure this is an integer constant expression.
2757 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2758 if (Result.isInvalid())
2759 return Result;
2760
2761 if (Value.isSigned() && Value.isNegative())
2762 return S.Diag(Loc, diag::err_array_designator_negative)
2763 << Value.toString(10) << Index->getSourceRange();
2764
2765 Value.setIsUnsigned(true);
2766 return Result;
2767}
2768
2769ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2770 SourceLocation Loc,
2771 bool GNUSyntax,
2772 ExprResult Init) {
2773 typedef DesignatedInitExpr::Designator ASTDesignator;
2774
2775 bool Invalid = false;
2776 SmallVector<ASTDesignator, 32> Designators;
2777 SmallVector<Expr *, 32> InitExpressions;
2778
2779 // Build designators and check array designator expressions.
2780 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2781 const Designator &D = Desig.getDesignator(Idx);
2782 switch (D.getKind()) {
2783 case Designator::FieldDesignator:
2784 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2785 D.getFieldLoc()));
2786 break;
2787
2788 case Designator::ArrayDesignator: {
2789 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2790 llvm::APSInt IndexValue;
2791 if (!Index->isTypeDependent() && !Index->isValueDependent())
2792 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2793 if (!Index)
2794 Invalid = true;
2795 else {
2796 Designators.push_back(ASTDesignator(InitExpressions.size(),
2797 D.getLBracketLoc(),
2798 D.getRBracketLoc()));
2799 InitExpressions.push_back(Index);
2800 }
2801 break;
2802 }
2803
2804 case Designator::ArrayRangeDesignator: {
2805 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2806 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2807 llvm::APSInt StartValue;
2808 llvm::APSInt EndValue;
2809 bool StartDependent = StartIndex->isTypeDependent() ||
2810 StartIndex->isValueDependent();
2811 bool EndDependent = EndIndex->isTypeDependent() ||
2812 EndIndex->isValueDependent();
2813 if (!StartDependent)
2814 StartIndex =
2815 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2816 if (!EndDependent)
2817 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2818
2819 if (!StartIndex || !EndIndex)
2820 Invalid = true;
2821 else {
2822 // Make sure we're comparing values with the same bit width.
2823 if (StartDependent || EndDependent) {
2824 // Nothing to compute.
2825 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2826 EndValue = EndValue.extend(StartValue.getBitWidth());
2827 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2828 StartValue = StartValue.extend(EndValue.getBitWidth());
2829
2830 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2831 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2832 << StartValue.toString(10) << EndValue.toString(10)
2833 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2834 Invalid = true;
2835 } else {
2836 Designators.push_back(ASTDesignator(InitExpressions.size(),
2837 D.getLBracketLoc(),
2838 D.getEllipsisLoc(),
2839 D.getRBracketLoc()));
2840 InitExpressions.push_back(StartIndex);
2841 InitExpressions.push_back(EndIndex);
2842 }
2843 }
2844 break;
2845 }
2846 }
2847 }
2848
2849 if (Invalid || Init.isInvalid())
2850 return ExprError();
2851
2852 // Clear out the expressions within the designation.
2853 Desig.ClearExprs(*this);
2854
2855 DesignatedInitExpr *DIE
2856 = DesignatedInitExpr::Create(Context,
2857 Designators,
2858 InitExpressions, Loc, GNUSyntax,
2859 Init.getAs<Expr>());
2860
2861 if (!getLangOpts().C99)
2862 Diag(DIE->getLocStart(), diag::ext_designated_init)
2863 << DIE->getSourceRange();
2864
2865 return DIE;
2866}
2867
2868//===----------------------------------------------------------------------===//
2869// Initialization entity
2870//===----------------------------------------------------------------------===//
2871
2872InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2873 const InitializedEntity &Parent)
2874 : Parent(&Parent), Index(Index)
2875{
2876 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2877 Kind = EK_ArrayElement;
2878 Type = AT->getElementType();
2879 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2880 Kind = EK_VectorElement;
2881 Type = VT->getElementType();
2882 } else {
2883 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2884 assert(CT && "Unexpected type")((CT && "Unexpected type") ? static_cast<void> (
0) : __assert_fail ("CT && \"Unexpected type\"", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2884, __PRETTY_FUNCTION__))
;
2885 Kind = EK_ComplexElement;
2886 Type = CT->getElementType();
2887 }
2888}
2889
2890InitializedEntity
2891InitializedEntity::InitializeBase(ASTContext &Context,
2892 const CXXBaseSpecifier *Base,
2893 bool IsInheritedVirtualBase,
2894 const InitializedEntity *Parent) {
2895 InitializedEntity Result;
2896 Result.Kind = EK_Base;
2897 Result.Parent = Parent;
2898 Result.Base = reinterpret_cast<uintptr_t>(Base);
2899 if (IsInheritedVirtualBase)
2900 Result.Base |= 0x01;
2901
2902 Result.Type = Base->getType();
2903 return Result;
2904}
2905
2906DeclarationName InitializedEntity::getName() const {
2907 switch (getKind()) {
2908 case EK_Parameter:
2909 case EK_Parameter_CF_Audited: {
2910 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2911 return (D ? D->getDeclName() : DeclarationName());
2912 }
2913
2914 case EK_Variable:
2915 case EK_Member:
2916 case EK_Binding:
2917 return Variable.VariableOrMember->getDeclName();
2918
2919 case EK_LambdaCapture:
2920 return DeclarationName(Capture.VarID);
2921
2922 case EK_Result:
2923 case EK_Exception:
2924 case EK_New:
2925 case EK_Temporary:
2926 case EK_Base:
2927 case EK_Delegating:
2928 case EK_ArrayElement:
2929 case EK_VectorElement:
2930 case EK_ComplexElement:
2931 case EK_BlockElement:
2932 case EK_CompoundLiteralInit:
2933 case EK_RelatedResult:
2934 return DeclarationName();
2935 }
2936
2937 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2937)
;
2938}
2939
2940ValueDecl *InitializedEntity::getDecl() const {
2941 switch (getKind()) {
2942 case EK_Variable:
2943 case EK_Member:
2944 case EK_Binding:
2945 return Variable.VariableOrMember;
2946
2947 case EK_Parameter:
2948 case EK_Parameter_CF_Audited:
2949 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2950
2951 case EK_Result:
2952 case EK_Exception:
2953 case EK_New:
2954 case EK_Temporary:
2955 case EK_Base:
2956 case EK_Delegating:
2957 case EK_ArrayElement:
2958 case EK_VectorElement:
2959 case EK_ComplexElement:
2960 case EK_BlockElement:
2961 case EK_LambdaCapture:
2962 case EK_CompoundLiteralInit:
2963 case EK_RelatedResult:
2964 return nullptr;
2965 }
2966
2967 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2967)
;
2968}
2969
2970bool InitializedEntity::allowsNRVO() const {
2971 switch (getKind()) {
2972 case EK_Result:
2973 case EK_Exception:
2974 return LocAndNRVO.NRVO;
2975
2976 case EK_Variable:
2977 case EK_Parameter:
2978 case EK_Parameter_CF_Audited:
2979 case EK_Member:
2980 case EK_Binding:
2981 case EK_New:
2982 case EK_Temporary:
2983 case EK_CompoundLiteralInit:
2984 case EK_Base:
2985 case EK_Delegating:
2986 case EK_ArrayElement:
2987 case EK_VectorElement:
2988 case EK_ComplexElement:
2989 case EK_BlockElement:
2990 case EK_LambdaCapture:
2991 case EK_RelatedResult:
2992 break;
2993 }
2994
2995 return false;
2996}
2997
2998unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2999 assert(getParent() != this)((getParent() != this) ? static_cast<void> (0) : __assert_fail
("getParent() != this", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 2999, __PRETTY_FUNCTION__))
;
3000 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3001 for (unsigned I = 0; I != Depth; ++I)
3002 OS << "`-";
3003
3004 switch (getKind()) {
3005 case EK_Variable: OS << "Variable"; break;
3006 case EK_Parameter: OS << "Parameter"; break;
3007 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3008 break;
3009 case EK_Result: OS << "Result"; break;
3010 case EK_Exception: OS << "Exception"; break;
3011 case EK_Member: OS << "Member"; break;
3012 case EK_Binding: OS << "Binding"; break;
3013 case EK_New: OS << "New"; break;
3014 case EK_Temporary: OS << "Temporary"; break;
3015 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3016 case EK_RelatedResult: OS << "RelatedResult"; break;
3017 case EK_Base: OS << "Base"; break;
3018 case EK_Delegating: OS << "Delegating"; break;
3019 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3020 case EK_VectorElement: OS << "VectorElement " << Index; break;
3021 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3022 case EK_BlockElement: OS << "Block"; break;
3023 case EK_LambdaCapture:
3024 OS << "LambdaCapture ";
3025 OS << DeclarationName(Capture.VarID);
3026 break;
3027 }
3028
3029 if (auto *D = getDecl()) {
3030 OS << " ";
3031 D->printQualifiedName(OS);
3032 }
3033
3034 OS << " '" << getType().getAsString() << "'\n";
3035
3036 return Depth + 1;
3037}
3038
3039LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3040 dumpImpl(llvm::errs());
3041}
3042
3043//===----------------------------------------------------------------------===//
3044// Initialization sequence
3045//===----------------------------------------------------------------------===//
3046
3047void InitializationSequence::Step::Destroy() {
3048 switch (Kind) {
3049 case SK_ResolveAddressOfOverloadedFunction:
3050 case SK_CastDerivedToBaseRValue:
3051 case SK_CastDerivedToBaseXValue:
3052 case SK_CastDerivedToBaseLValue:
3053 case SK_BindReference:
3054 case SK_BindReferenceToTemporary:
3055 case SK_FinalCopy:
3056 case SK_ExtraneousCopyToTemporary:
3057 case SK_UserConversion:
3058 case SK_QualificationConversionRValue:
3059 case SK_QualificationConversionXValue:
3060 case SK_QualificationConversionLValue:
3061 case SK_AtomicConversion:
3062 case SK_LValueToRValue:
3063 case SK_ListInitialization:
3064 case SK_UnwrapInitList:
3065 case SK_RewrapInitList:
3066 case SK_ConstructorInitialization:
3067 case SK_ConstructorInitializationFromList:
3068 case SK_ZeroInitialization:
3069 case SK_CAssignment:
3070 case SK_StringInit:
3071 case SK_ObjCObjectConversion:
3072 case SK_ArrayLoopIndex:
3073 case SK_ArrayLoopInit:
3074 case SK_ArrayInit:
3075 case SK_GNUArrayInit:
3076 case SK_ParenthesizedArrayInit:
3077 case SK_PassByIndirectCopyRestore:
3078 case SK_PassByIndirectRestore:
3079 case SK_ProduceObjCObject:
3080 case SK_StdInitializerList:
3081 case SK_StdInitializerListConstructorCall:
3082 case SK_OCLSamplerInit:
3083 case SK_OCLZeroEvent:
3084 case SK_OCLZeroQueue:
3085 break;
3086
3087 case SK_ConversionSequence:
3088 case SK_ConversionSequenceNoNarrowing:
3089 delete ICS;
3090 }
3091}
3092
3093bool InitializationSequence::isDirectReferenceBinding() const {
3094 // There can be some lvalue adjustments after the SK_BindReference step.
3095 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3096 if (I->Kind == SK_BindReference)
3097 return true;
3098 if (I->Kind == SK_BindReferenceToTemporary)
3099 return false;
3100 }
3101 return false;
3102}
3103
3104bool InitializationSequence::isAmbiguous() const {
3105 if (!Failed())
3106 return false;
3107
3108 switch (getFailureKind()) {
3109 case FK_TooManyInitsForReference:
3110 case FK_ArrayNeedsInitList:
3111 case FK_ArrayNeedsInitListOrStringLiteral:
3112 case FK_ArrayNeedsInitListOrWideStringLiteral:
3113 case FK_NarrowStringIntoWideCharArray:
3114 case FK_WideStringIntoCharArray:
3115 case FK_IncompatWideStringIntoWideChar:
3116 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3117 case FK_NonConstLValueReferenceBindingToTemporary:
3118 case FK_NonConstLValueReferenceBindingToBitfield:
3119 case FK_NonConstLValueReferenceBindingToVectorElement:
3120 case FK_NonConstLValueReferenceBindingToUnrelated:
3121 case FK_RValueReferenceBindingToLValue:
3122 case FK_ReferenceInitDropsQualifiers:
3123 case FK_ReferenceInitFailed:
3124 case FK_ConversionFailed:
3125 case FK_ConversionFromPropertyFailed:
3126 case FK_TooManyInitsForScalar:
3127 case FK_ReferenceBindingToInitList:
3128 case FK_InitListBadDestinationType:
3129 case FK_DefaultInitOfConst:
3130 case FK_Incomplete:
3131 case FK_ArrayTypeMismatch:
3132 case FK_NonConstantArrayInit:
3133 case FK_ListInitializationFailed:
3134 case FK_VariableLengthArrayHasInitializer:
3135 case FK_PlaceholderType:
3136 case FK_ExplicitConstructor:
3137 case FK_AddressOfUnaddressableFunction:
3138 return false;
3139
3140 case FK_ReferenceInitOverloadFailed:
3141 case FK_UserConversionOverloadFailed:
3142 case FK_ConstructorOverloadFailed:
3143 case FK_ListConstructorOverloadFailed:
3144 return FailedOverloadResult == OR_Ambiguous;
3145 }
3146
3147 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3147)
;
3148}
3149
3150bool InitializationSequence::isConstructorInitialization() const {
3151 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3152}
3153
3154void
3155InitializationSequence
3156::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3157 DeclAccessPair Found,
3158 bool HadMultipleCandidates) {
3159 Step S;
3160 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3161 S.Type = Function->getType();
3162 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3163 S.Function.Function = Function;
3164 S.Function.FoundDecl = Found;
3165 Steps.push_back(S);
3166}
3167
3168void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3169 ExprValueKind VK) {
3170 Step S;
3171 switch (VK) {
3172 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3173 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3174 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3175 }
3176 S.Type = BaseType;
3177 Steps.push_back(S);
3178}
3179
3180void InitializationSequence::AddReferenceBindingStep(QualType T,
3181 bool BindingTemporary) {
3182 Step S;
3183 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3184 S.Type = T;
3185 Steps.push_back(S);
3186}
3187
3188void InitializationSequence::AddFinalCopy(QualType T) {
3189 Step S;
3190 S.Kind = SK_FinalCopy;
3191 S.Type = T;
3192 Steps.push_back(S);
3193}
3194
3195void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3196 Step S;
3197 S.Kind = SK_ExtraneousCopyToTemporary;
3198 S.Type = T;
3199 Steps.push_back(S);
3200}
3201
3202void
3203InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3204 DeclAccessPair FoundDecl,
3205 QualType T,
3206 bool HadMultipleCandidates) {
3207 Step S;
3208 S.Kind = SK_UserConversion;
3209 S.Type = T;
3210 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3211 S.Function.Function = Function;
3212 S.Function.FoundDecl = FoundDecl;
3213 Steps.push_back(S);
3214}
3215
3216void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3217 ExprValueKind VK) {
3218 Step S;
3219 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3220 switch (VK) {
3221 case VK_RValue:
3222 S.Kind = SK_QualificationConversionRValue;
3223 break;
3224 case VK_XValue:
3225 S.Kind = SK_QualificationConversionXValue;
3226 break;
3227 case VK_LValue:
3228 S.Kind = SK_QualificationConversionLValue;
3229 break;
3230 }
3231 S.Type = Ty;
3232 Steps.push_back(S);
3233}
3234
3235void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3236 Step S;
3237 S.Kind = SK_AtomicConversion;
3238 S.Type = Ty;
3239 Steps.push_back(S);
3240}
3241
3242void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3243 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")((!Ty.hasQualifiers() && "rvalues may not have qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3243, __PRETTY_FUNCTION__))
;
3244
3245 Step S;
3246 S.Kind = SK_LValueToRValue;
3247 S.Type = Ty;
3248 Steps.push_back(S);
3249}
3250
3251void InitializationSequence::AddConversionSequenceStep(
3252 const ImplicitConversionSequence &ICS, QualType T,
3253 bool TopLevelOfInitList) {
3254 Step S;
3255 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3256 : SK_ConversionSequence;
3257 S.Type = T;
3258 S.ICS = new ImplicitConversionSequence(ICS);
3259 Steps.push_back(S);
3260}
3261
3262void InitializationSequence::AddListInitializationStep(QualType T) {
3263 Step S;
3264 S.Kind = SK_ListInitialization;
3265 S.Type = T;
3266 Steps.push_back(S);
3267}
3268
3269void InitializationSequence::AddConstructorInitializationStep(
3270 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3271 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3272 Step S;
3273 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3274 : SK_ConstructorInitializationFromList
3275 : SK_ConstructorInitialization;
3276 S.Type = T;
3277 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3278 S.Function.Function = Constructor;
3279 S.Function.FoundDecl = FoundDecl;
3280 Steps.push_back(S);
3281}
3282
3283void InitializationSequence::AddZeroInitializationStep(QualType T) {
3284 Step S;
3285 S.Kind = SK_ZeroInitialization;
3286 S.Type = T;
3287 Steps.push_back(S);
3288}
3289
3290void InitializationSequence::AddCAssignmentStep(QualType T) {
3291 Step S;
3292 S.Kind = SK_CAssignment;
3293 S.Type = T;
3294 Steps.push_back(S);
3295}
3296
3297void InitializationSequence::AddStringInitStep(QualType T) {
3298 Step S;
3299 S.Kind = SK_StringInit;
3300 S.Type = T;
3301 Steps.push_back(S);
3302}
3303
3304void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3305 Step S;
3306 S.Kind = SK_ObjCObjectConversion;
3307 S.Type = T;
3308 Steps.push_back(S);
3309}
3310
3311void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3312 Step S;
3313 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3314 S.Type = T;
3315 Steps.push_back(S);
3316}
3317
3318void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3319 Step S;
3320 S.Kind = SK_ArrayLoopIndex;
3321 S.Type = EltT;
3322 Steps.insert(Steps.begin(), S);
3323
3324 S.Kind = SK_ArrayLoopInit;
3325 S.Type = T;
3326 Steps.push_back(S);
3327}
3328
3329void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3330 Step S;
3331 S.Kind = SK_ParenthesizedArrayInit;
3332 S.Type = T;
3333 Steps.push_back(S);
3334}
3335
3336void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3337 bool shouldCopy) {
3338 Step s;
3339 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3340 : SK_PassByIndirectRestore);
3341 s.Type = type;
3342 Steps.push_back(s);
3343}
3344
3345void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3346 Step S;
3347 S.Kind = SK_ProduceObjCObject;
3348 S.Type = T;
3349 Steps.push_back(S);
3350}
3351
3352void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3353 Step S;
3354 S.Kind = SK_StdInitializerList;
3355 S.Type = T;
3356 Steps.push_back(S);
3357}
3358
3359void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3360 Step S;
3361 S.Kind = SK_OCLSamplerInit;
3362 S.Type = T;
3363 Steps.push_back(S);
3364}
3365
3366void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3367 Step S;
3368 S.Kind = SK_OCLZeroEvent;
3369 S.Type = T;
3370 Steps.push_back(S);
3371}
3372
3373void InitializationSequence::AddOCLZeroQueueStep(QualType T) {
3374 Step S;
3375 S.Kind = SK_OCLZeroQueue;
3376 S.Type = T;
3377 Steps.push_back(S);
3378}
3379
3380void InitializationSequence::RewrapReferenceInitList(QualType T,
3381 InitListExpr *Syntactic) {
3382 assert(Syntactic->getNumInits() == 1 &&((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3383, __PRETTY_FUNCTION__))
3383 "Can only rewrap trivial init lists.")((Syntactic->getNumInits() == 1 && "Can only rewrap trivial init lists."
) ? static_cast<void> (0) : __assert_fail ("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3383, __PRETTY_FUNCTION__))
;
3384 Step S;
3385 S.Kind = SK_UnwrapInitList;
3386 S.Type = Syntactic->getInit(0)->getType();
3387 Steps.insert(Steps.begin(), S);
3388
3389 S.Kind = SK_RewrapInitList;
3390 S.Type = T;
3391 S.WrappingSyntacticList = Syntactic;
3392 Steps.push_back(S);
3393}
3394
3395void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3396 OverloadingResult Result) {
3397 setSequenceKind(FailedSequence);
3398 this->Failure = Failure;
3399 this->FailedOverloadResult = Result;
3400}
3401
3402//===----------------------------------------------------------------------===//
3403// Attempt initialization
3404//===----------------------------------------------------------------------===//
3405
3406/// Tries to add a zero initializer. Returns true if that worked.
3407static bool
3408maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3409 const InitializedEntity &Entity) {
3410 if (Entity.getKind() != InitializedEntity::EK_Variable)
3411 return false;
3412
3413 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3414 if (VD->getInit() || VD->getLocEnd().isMacroID())
3415 return false;
3416
3417 QualType VariableTy = VD->getType().getCanonicalType();
3418 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3419 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3420 if (!Init.empty()) {
3421 Sequence.AddZeroInitializationStep(Entity.getType());
3422 Sequence.SetZeroInitializationFixit(Init, Loc);
3423 return true;
3424 }
3425 return false;
3426}
3427
3428static void MaybeProduceObjCObject(Sema &S,
3429 InitializationSequence &Sequence,
3430 const InitializedEntity &Entity) {
3431 if (!S.getLangOpts().ObjCAutoRefCount) return;
3432
3433 /// When initializing a parameter, produce the value if it's marked
3434 /// __attribute__((ns_consumed)).
3435 if (Entity.isParameterKind()) {
3436 if (!Entity.isParameterConsumed())
3437 return;
3438
3439 assert(Entity.getType()->isObjCRetainableType() &&((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3440, __PRETTY_FUNCTION__))
3440 "consuming an object of unretainable type?")((Entity.getType()->isObjCRetainableType() && "consuming an object of unretainable type?"
) ? static_cast<void> (0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3440, __PRETTY_FUNCTION__))
;
3441 Sequence.AddProduceObjCObjectStep(Entity.getType());
3442
3443 /// When initializing a return value, if the return type is a
3444 /// retainable type, then returns need to immediately retain the
3445 /// object. If an autorelease is required, it will be done at the
3446 /// last instant.
3447 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3448 if (!Entity.getType()->isObjCRetainableType())
3449 return;
3450
3451 Sequence.AddProduceObjCObjectStep(Entity.getType());
3452 }
3453}
3454
3455static void TryListInitialization(Sema &S,
3456 const InitializedEntity &Entity,
3457 const InitializationKind &Kind,
3458 InitListExpr *InitList,
3459 InitializationSequence &Sequence,
3460 bool TreatUnavailableAsInvalid);
3461
3462/// \brief When initializing from init list via constructor, handle
3463/// initialization of an object of type std::initializer_list<T>.
3464///
3465/// \return true if we have handled initialization of an object of type
3466/// std::initializer_list<T>, false otherwise.
3467static bool TryInitializerListConstruction(Sema &S,
3468 InitListExpr *List,
3469 QualType DestType,
3470 InitializationSequence &Sequence,
3471 bool TreatUnavailableAsInvalid) {
3472 QualType E;
3473 if (!S.isStdInitializerList(DestType, &E))
3474 return false;
3475
3476 if (!S.isCompleteType(List->getExprLoc(), E)) {
3477 Sequence.setIncompleteTypeFailure(E);
3478 return true;
3479 }
3480
3481 // Try initializing a temporary array from the init list.
3482 QualType ArrayType = S.Context.getConstantArrayType(
3483 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3484 List->getNumInits()),
3485 clang::ArrayType::Normal, 0);
3486 InitializedEntity HiddenArray =
3487 InitializedEntity::InitializeTemporary(ArrayType);
3488 InitializationKind Kind =
3489 InitializationKind::CreateDirectList(List->getExprLoc());
3490 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3491 TreatUnavailableAsInvalid);
3492 if (Sequence)
3493 Sequence.AddStdInitializerListConstructionStep(DestType);
3494 return true;
3495}
3496
3497/// Determine if the constructor has the signature of a copy or move
3498/// constructor for the type T of the class in which it was found. That is,
3499/// determine if its first parameter is of type T or reference to (possibly
3500/// cv-qualified) T.
3501static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3502 const ConstructorInfo &Info) {
3503 if (Info.Constructor->getNumParams() == 0)
3504 return false;
3505
3506 QualType ParmT =
3507 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3508 QualType ClassT =
3509 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3510
3511 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3512}
3513
3514static OverloadingResult
3515ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3516 MultiExprArg Args,
3517 OverloadCandidateSet &CandidateSet,
3518 DeclContext::lookup_result Ctors,
3519 OverloadCandidateSet::iterator &Best,
3520 bool CopyInitializing, bool AllowExplicit,
3521 bool OnlyListConstructors, bool IsListInit,
3522 bool SecondStepOfCopyInit = false) {
3523 CandidateSet.clear();
3524
3525 for (NamedDecl *D : Ctors) {
3526 auto Info = getConstructorInfo(D);
3527 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3528 continue;
3529
3530 if (!AllowExplicit && Info.Constructor->isExplicit())
3531 continue;
3532
3533 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3534 continue;
3535
3536 // C++11 [over.best.ics]p4:
3537 // ... and the constructor or user-defined conversion function is a
3538 // candidate by
3539 // - 13.3.1.3, when the argument is the temporary in the second step
3540 // of a class copy-initialization, or
3541 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3542 // - the second phase of 13.3.1.7 when the initializer list has exactly
3543 // one element that is itself an initializer list, and the target is
3544 // the first parameter of a constructor of class X, and the conversion
3545 // is to X or reference to (possibly cv-qualified X),
3546 // user-defined conversion sequences are not considered.
3547 bool SuppressUserConversions =
3548 SecondStepOfCopyInit ||
3549 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3550 hasCopyOrMoveCtorParam(S.Context, Info));
3551
3552 if (Info.ConstructorTmpl)
3553 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3554 /*ExplicitArgs*/ nullptr, Args,
3555 CandidateSet, SuppressUserConversions);
3556 else {
3557 // C++ [over.match.copy]p1:
3558 // - When initializing a temporary to be bound to the first parameter
3559 // of a constructor [for type T] that takes a reference to possibly
3560 // cv-qualified T as its first argument, called with a single
3561 // argument in the context of direct-initialization, explicit
3562 // conversion functions are also considered.
3563 // FIXME: What if a constructor template instantiates to such a signature?
3564 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3565 Args.size() == 1 &&
3566 hasCopyOrMoveCtorParam(S.Context, Info);
3567 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3568 CandidateSet, SuppressUserConversions,
3569 /*PartialOverloading=*/false,
3570 /*AllowExplicit=*/AllowExplicitConv);
3571 }
3572 }
3573
3574 // Perform overload resolution and return the result.
3575 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3576}
3577
3578/// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3579/// enumerates the constructors of the initialized entity and performs overload
3580/// resolution to select the best.
3581/// \param DestType The destination class type.
3582/// \param DestArrayType The destination type, which is either DestType or
3583/// a (possibly multidimensional) array of DestType.
3584/// \param IsListInit Is this list-initialization?
3585/// \param IsInitListCopy Is this non-list-initialization resulting from a
3586/// list-initialization from {x} where x is the same
3587/// type as the entity?
3588static void TryConstructorInitialization(Sema &S,
3589 const InitializedEntity &Entity,
3590 const InitializationKind &Kind,
3591 MultiExprArg Args, QualType DestType,
3592 QualType DestArrayType,
3593 InitializationSequence &Sequence,
3594 bool IsListInit = false,
3595 bool IsInitListCopy = false) {
3596 assert(((!IsListInit && !IsInitListCopy) ||((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3599, __PRETTY_FUNCTION__))
3597 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3599, __PRETTY_FUNCTION__))
3598 "IsListInit/IsInitListCopy must come with a single initializer list "((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3599, __PRETTY_FUNCTION__))
3599 "argument.")((((!IsListInit && !IsInitListCopy) || (Args.size() ==
1 && isa<InitListExpr>(Args[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? static_cast<void> (0) : __assert_fail (
"((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3599, __PRETTY_FUNCTION__))
;
3600 InitListExpr *ILE =
3601 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3602 MultiExprArg UnwrappedArgs =
3603 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3604
3605 // The type we're constructing needs to be complete.
3606 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3607 Sequence.setIncompleteTypeFailure(DestType);
3608 return;
3609 }
3610
3611 // C++1z [dcl.init]p17:
3612 // - If the initializer expression is a prvalue and the cv-unqualified
3613 // version of the source type is the same class as the class of the
3614 // destination, the initializer expression is used to initialize the
3615 // destination object.
3616 // Per DR (no number yet), this does not apply when initializing a base
3617 // class or delegating to another constructor from a mem-initializer.
3618 if (S.getLangOpts().CPlusPlus1z &&
3619 Entity.getKind() != InitializedEntity::EK_Base &&
3620 Entity.getKind() != InitializedEntity::EK_Delegating &&
3621 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3622 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3623 // Convert qualifications if necessary.
3624 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3625 if (ILE)
3626 Sequence.RewrapReferenceInitList(DestType, ILE);
3627 return;
3628 }
3629
3630 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3631 assert(DestRecordType && "Constructor initialization requires record type")((DestRecordType && "Constructor initialization requires record type"
) ? static_cast<void> (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 3631, __PRETTY_FUNCTION__))
;
3632 CXXRecordDecl *DestRecordDecl
3633 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3634
3635 // Build the candidate set directly in the initialization sequence
3636 // structure, so that it will persist if we fail.
3637 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3638
3639 // Determine whether we are allowed to call explicit constructors or
3640 // explicit conversion operators.
3641 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3642 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3643
3644 // - Otherwise, if T is a class type, constructors are considered. The
3645 // applicable constructors are enumerated, and the best one is chosen
3646 // through overload resolution.
3647 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3648
3649 OverloadingResult Result = OR_No_Viable_Function;
3650 OverloadCandidateSet::iterator Best;
3651 bool AsInitializerList = false;
3652
3653 // C++11 [over.match.list]p1, per DR1467:
3654 // When objects of non-aggregate type T are list-initialized, such that
3655 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3656 // according to the rules in this section, overload resolution selects
3657 // the constructor in two phases:
3658 //
3659 // - Initially, the candidate functions are the initializer-list
3660 // constructors of the class T and the argument list consists of the
3661 // initializer list as a single argument.
3662 if (IsListInit) {
3663 AsInitializerList = true;
3664
3665 // If the initializer list has no elements and T has a default constructor,
3666 // the first phase is omitted.
3667 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3668 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3669 CandidateSet, Ctors, Best,
3670 CopyInitialization, AllowExplicit,
3671 /*OnlyListConstructor=*/true,
3672 IsListInit);
3673 }
3674
3675 // C++11 [over.match.list]p1:
3676 // - If no viable initializer-list constructor is found, overload resolution
3677 // is performed again, where the candidate functions are all the
3678 // constructors of the class T and the argument list consists of the
3679 // elements of the initializer list.
3680 if (Result == OR_No_Viable_Function) {
3681 AsInitializerList = false;
3682 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3683 CandidateSet, Ctors, Best,
3684 CopyInitialization, AllowExplicit,
3685 /*OnlyListConstructors=*/false,
3686 IsListInit);
3687 }
3688 if (Result) {
3689 Sequence.SetOverloadFailure(IsListInit ?
3690 InitializationSequence::FK_ListConstructorOverloadFailed :
3691 InitializationSequence::FK_ConstructorOverloadFailed,
3692 Result);
3693 return;
3694 }
3695
3696 // C++11 [dcl.init]p6:
3697 // If a program calls for the default initialization of an object
3698 // of a const-qualified type T, T shall be a class type with a
3699 // user-provided default constructor.
3700 // C++ core issue 253 proposal:
3701 // If the implicit default constructor initializes all subobjects, no
3702 // initializer should be required.
3703 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3704 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3705 if (Kind.getKind() == InitializationKind::IK_Default &&
3706 Entity.getType().isConstQualified()) {
3707 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3708 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3709 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3710 return;
3711 }
3712 }
3713
3714 // C++11 [over.match.list]p1:
3715 // In copy-list-initialization, if an explicit constructor is chosen, the
3716 // initializer is ill-formed.
3717 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3718 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3719 return;
3720 }
3721
3722 // Add the constructor initialization step. Any cv-qualification conversion is
3723 // subsumed by the initialization.
3724 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3725 Sequence.AddConstructorInitializationStep(
3726 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3727 IsListInit | IsInitListCopy, AsInitializerList);
3728}
3729
3730static bool
3731ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3732 Expr *Initializer,
3733 QualType &SourceType,
3734 QualType &UnqualifiedSourceType,
3735 QualType UnqualifiedTargetType,
3736 InitializationSequence &Sequence) {
3737 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3738 S.Context.OverloadTy) {
3739 DeclAccessPair Found;
3740 bool HadMultipleCandidates = false;
3741 if (FunctionDecl *Fn
3742 = S.ResolveAddressOfOverloadedFunction(Initializer,
3743 UnqualifiedTargetType,
3744 false, Found,
3745 &HadMultipleCandidates)) {
3746 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3747 HadMultipleCandidates);
3748 SourceType = Fn->getType();
3749 UnqualifiedSourceType = SourceType.getUnqualifiedType();
3750 } else if (!UnqualifiedTargetType->isRecordType()) {
3751 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3752 return true;
3753 }
3754 }
3755 return false;
3756}
3757
3758static void TryReferenceInitializationCore(Sema &S,
3759 const InitializedEntity &Entity,
3760 const InitializationKind &Kind,
3761 Expr *Initializer,
3762 QualType cv1T1, QualType T1,
3763 Qualifiers T1Quals,
3764 QualType cv2T2, QualType T2,
3765 Qualifiers T2Quals,
3766 InitializationSequence &Sequence);
3767
3768static void TryValueInitialization(Sema &S,
3769 const InitializedEntity &Entity,
3770 const InitializationKind &Kind,
3771 InitializationSequence &Sequence,
3772 InitListExpr *InitList = nullptr);
3773
3774/// \brief Attempt list initialization of a reference.
3775static void TryReferenceListInitialization(Sema &S,
3776 const InitializedEntity &Entity,
3777 const InitializationKind &Kind,
3778 InitListExpr *InitList,
3779 InitializationSequence &Sequence,
3780 bool TreatUnavailableAsInvalid) {
3781 // First, catch C++03 where this isn't possible.
3782 if (!S.getLangOpts().CPlusPlus11) {
3783 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3784 return;
3785 }
3786 // Can't reference initialize a compound literal.
3787 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3788 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3789 return;
3790 }
3791
3792 QualType DestType = Entity.getType();
3793 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3794 Qualifiers T1Quals;
3795 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3796
3797 // Reference initialization via an initializer list works thus:
3798 // If the initializer list consists of a single element that is
3799 // reference-related to the referenced type, bind directly to that element
3800 // (possibly creating temporaries).
3801 // Otherwise, initialize a temporary with the initializer list and
3802 // bind to that.
3803 if (InitList->getNumInits() == 1) {
3804 Expr *Initializer = InitList->getInit(0);
3805 QualType cv2T2 = Initializer->getType();
3806 Qualifiers T2Quals;
3807 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3808
3809 // If this fails, creating a temporary wouldn't work either.
3810 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3811 T1, Sequence))
3812 return;
3813
3814 SourceLocation DeclLoc = Initializer->getLocStart();
3815 bool dummy1, dummy2, dummy3;
3816 Sema::ReferenceCompareResult RefRelationship
3817 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3818 dummy2, dummy3);
3819 if (RefRelationship >= Sema::Ref_Related) {
3820 // Try to bind the reference here.
3821 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3822 T1Quals, cv2T2, T2, T2Quals, Sequence);
3823 if (Sequence)
3824 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3825 return;
3826 }
3827
3828 // Update the initializer if we've resolved an overloaded function.
3829 if (Sequence.step_begin() != Sequence.step_end())
3830 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3831 }
3832
3833 // Not reference-related. Create a temporary and bind to that.
3834 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3835
3836 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
3837 TreatUnavailableAsInvalid);
3838 if (Sequence) {
3839 if (DestType->isRValueReferenceType() ||
3840 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3841 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3842 else
3843 Sequence.SetFailed(
3844 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3845 }
3846}
3847
3848/// \brief Attempt list initialization (C++0x [dcl.init.list])
3849static void TryListInitialization(Sema &S,
3850 const InitializedEntity &Entity,
3851 const InitializationKind &Kind,
3852 InitListExpr *InitList,
3853 InitializationSequence &Sequence,
3854 bool TreatUnavailableAsInvalid) {
3855 QualType DestType = Entity.getType();
3856
3857 // C++ doesn't allow scalar initialization with more than one argument.
3858 // But C99 complex numbers are scalars and it makes sense there.
3859 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3860 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3861 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3862 return;
3863 }
3864 if (DestType->isReferenceType()) {
3865 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
3866 TreatUnavailableAsInvalid);
3867 return;
3868 }
3869
3870 if (DestType->isRecordType() &&
3871 !S.isCompleteType(InitList->getLocStart(), DestType)) {
3872 Sequence.setIncompleteTypeFailure(DestType);
3873 return;
3874 }
3875
3876 // C++11 [dcl.init.list]p3, per DR1467:
3877 // - If T is a class type and the initializer list has a single element of
3878 // type cv U, where U is T or a class derived from T, the object is
3879 // initialized from that element (by copy-initialization for
3880 // copy-list-initialization, or by direct-initialization for
3881 // direct-list-initialization).
3882 // - Otherwise, if T is a character array and the initializer list has a
3883 // single element that is an appropriately-typed string literal
3884 // (8.5.2 [dcl.init.string]), initialization is performed as described
3885 // in that section.
3886 // - Otherwise, if T is an aggregate, [...] (continue below).
3887 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
3888 if (DestType->isRecordType()) {
3889 QualType InitType = InitList->getInit(0)->getType();
3890 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
3891 S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
3892 Expr *InitListAsExpr = InitList;
3893 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3894 DestType, Sequence,
3895 /*InitListSyntax*/false,
3896 /*IsInitListCopy*/true);
3897 return;
3898 }
3899 }
3900 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
3901 Expr *SubInit[1] = {InitList->getInit(0)};
3902 if (!isa<VariableArrayType>(DestAT) &&
3903 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
3904 InitializationKind SubKind =
3905 Kind.getKind() == InitializationKind::IK_DirectList
3906 ? InitializationKind::CreateDirect(Kind.getLocation(),
3907 InitList->getLBraceLoc(),
3908 InitList->getRBraceLoc())
3909 : Kind;
3910 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3911 /*TopLevelOfInitList*/ true,
3912 TreatUnavailableAsInvalid);
3913
3914 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
3915 // the element is not an appropriately-typed string literal, in which
3916 // case we should proceed as in C++11 (below).
3917 if (Sequence) {
3918 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3919 return;
3920 }
3921 }
3922 }
3923 }
3924
3925 // C++11 [dcl.init.list]p3:
3926 // - If T is an aggregate, aggregate initialization is performed.
3927 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
3928 (S.getLangOpts().CPlusPlus11 &&
3929 S.isStdInitializerList(DestType, nullptr))) {
3930 if (S.getLangOpts().CPlusPlus11) {
3931 // - Otherwise, if the initializer list has no elements and T is a
3932 // class type with a default constructor, the object is
3933 // value-initialized.
3934 if (InitList->getNumInits() == 0) {
3935 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3936 if (RD->hasDefaultConstructor()) {
3937 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3938 return;
3939 }
3940 }
3941
3942 // - Otherwise, if T is a specialization of std::initializer_list<E>,
3943 // an initializer_list object constructed [...]
3944 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
3945 TreatUnavailableAsInvalid))
3946 return;
3947
3948 // - Otherwise, if T is a class type, constructors are considered.
3949 Expr *InitListAsExpr = InitList;
3950 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3951 DestType, Sequence, /*InitListSyntax*/true);
3952 } else
3953 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
3954 return;
3955 }
3956
3957 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3958 InitList->getNumInits() == 1) {
3959 Expr *E = InitList->getInit(0);
3960
3961 // - Otherwise, if T is an enumeration with a fixed underlying type,
3962 // the initializer-list has a single element v, and the initialization
3963 // is direct-list-initialization, the object is initialized with the
3964 // value T(v); if a narrowing conversion is required to convert v to
3965 // the underlying type of T, the program is ill-formed.
3966 auto *ET = DestType->getAs<EnumType>();
3967 if (S.getLangOpts().CPlusPlus1z &&
3968 Kind.getKind() == InitializationKind::IK_DirectList &&
3969 ET && ET->getDecl()->isFixed() &&
3970 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
3971 (E->getType()->isIntegralOrEnumerationType() ||
3972 E->getType()->isFloatingType())) {
3973 // There are two ways that T(v) can work when T is an enumeration type.
3974 // If there is either an implicit conversion sequence from v to T or
3975 // a conversion function that can convert from v to T, then we use that.
3976 // Otherwise, if v is of integral, enumeration, or floating-point type,
3977 // it is converted to the enumeration type via its underlying type.
3978 // There is no overlap possible between these two cases (except when the
3979 // source value is already of the destination type), and the first
3980 // case is handled by the general case for single-element lists below.
3981 ImplicitConversionSequence ICS;
3982 ICS.setStandard();
3983 ICS.Standard.setAsIdentityConversion();
3984 // If E is of a floating-point type, then the conversion is ill-formed
3985 // due to narrowing, but go through the motions in order to produce the
3986 // right diagnostic.
3987 ICS.Standard.Second = E->getType()->isFloatingType()
3988 ? ICK_Floating_Integral
3989 : ICK_Integral_Conversion;
3990 ICS.Standard.setFromType(E->getType());
3991 ICS.Standard.setToType(0, E->getType());
3992 ICS.Standard.setToType(1, DestType);
3993 ICS.Standard.setToType(2, DestType);
3994 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
3995 /*TopLevelOfInitList*/true);
3996 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3997 return;
3998 }
3999
4000 // - Otherwise, if the initializer list has a single element of type E
4001 // [...references are handled above...], the object or reference is
4002 // initialized from that element (by copy-initialization for
4003 // copy-list-initialization, or by direct-initialization for
4004 // direct-list-initialization); if a narrowing conversion is required
4005 // to convert the element to T, the program is ill-formed.
4006 //
4007 // Per core-24034, this is direct-initialization if we were performing
4008 // direct-list-initialization and copy-initialization otherwise.
4009 // We can't use InitListChecker for this, because it always performs
4010 // copy-initialization. This only matters if we might use an 'explicit'
4011 // conversion operator, so we only need to handle the cases where the source
4012 // is of record type.
4013 if (InitList->getInit(0)->getType()->isRecordType()) {
4014 InitializationKind SubKind =
4015 Kind.getKind() == InitializationKind::IK_DirectList
4016 ? InitializationKind::CreateDirect(Kind.getLocation(),
4017 InitList->getLBraceLoc(),
4018 InitList->getRBraceLoc())
4019 : Kind;
4020 Expr *SubInit[1] = { InitList->getInit(0) };
4021 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4022 /*TopLevelOfInitList*/true,
4023 TreatUnavailableAsInvalid);
4024 if (Sequence)
4025 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4026 return;
4027 }
4028 }
4029
4030 InitListChecker CheckInitList(S, Entity, InitList,
4031 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4032 if (CheckInitList.HadError()) {
4033 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4034 return;
4035 }
4036
4037 // Add the list initialization step with the built init list.
4038 Sequence.AddListInitializationStep(DestType);
4039}
4040
4041/// \brief Try a reference initialization that involves calling a conversion
4042/// function.
4043static OverloadingResult TryRefInitWithConversionFunction(
4044 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4045 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4046 InitializationSequence &Sequence) {
4047 QualType DestType = Entity.getType();
4048 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4049 QualType T1 = cv1T1.getUnqualifiedType();
4050 QualType cv2T2 = Initializer->getType();
4051 QualType T2 = cv2T2.getUnqualifiedType();
4052
4053 bool DerivedToBase;
4054 bool ObjCConversion;
4055 bool ObjCLifetimeConversion;
4056 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4060, __PRETTY_FUNCTION__))
4057 T1, T2, DerivedToBase,((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4060, __PRETTY_FUNCTION__))
4058 ObjCConversion,((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4060, __PRETTY_FUNCTION__))
4059 ObjCLifetimeConversion) &&((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4060, __PRETTY_FUNCTION__))
4060 "Must have incompatible references when binding via conversion")((!S.CompareReferenceRelationship(Initializer->getLocStart
(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? static_cast<void> (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4060, __PRETTY_FUNCTION__))
;
4061 (void)DerivedToBase;
4062 (void)ObjCConversion;
4063 (void)ObjCLifetimeConversion;
4064
4065 // Build the candidate set directly in the initialization sequence
4066 // structure, so that it will persist if we fail.
4067 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4068 CandidateSet.clear();
4069
4070 // Determine whether we are allowed to call explicit constructors or
4071 // explicit conversion operators.
4072 bool AllowExplicit = Kind.AllowExplicit();
4073 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4074
4075 const RecordType *T1RecordType = nullptr;
4076 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4077 S.isCompleteType(Kind.getLocation(), T1)) {
4078 // The type we're converting to is a class type. Enumerate its constructors
4079 // to see if there is a suitable conversion.
4080 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4081
4082 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4083 auto Info = getConstructorInfo(D);
4084 if (!Info.Constructor)
4085 continue;
4086
4087 if (!Info.Constructor->isInvalidDecl() &&
4088 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4089 if (Info.ConstructorTmpl)
4090 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4091 /*ExplicitArgs*/ nullptr,
4092 Initializer, CandidateSet,
4093 /*SuppressUserConversions=*/true);
4094 else
4095 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4096 Initializer, CandidateSet,
4097 /*SuppressUserConversions=*/true);
4098 }
4099 }
4100 }
4101 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4102 return OR_No_Viable_Function;
4103
4104 const RecordType *T2RecordType = nullptr;
4105 if ((T2RecordType = T2->getAs<RecordType>()) &&
4106 S.isCompleteType(Kind.getLocation(), T2)) {
4107 // The type we're converting from is a class type, enumerate its conversion
4108 // functions.
4109 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4110
4111 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4112 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4113 NamedDecl *D = *I;
4114 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4115 if (isa<UsingShadowDecl>(D))
4116 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4117
4118 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4119 CXXConversionDecl *Conv;
4120 if (ConvTemplate)
4121 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4122 else
4123 Conv = cast<CXXConversionDecl>(D);
4124
4125 // If the conversion function doesn't return a reference type,
4126 // it can't be considered for this conversion unless we're allowed to
4127 // consider rvalues.
4128 // FIXME: Do we need to make sure that we only consider conversion
4129 // candidates with reference-compatible results? That might be needed to
4130 // break recursion.
4131 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4132 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4133 if (ConvTemplate)
4134 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4135 ActingDC, Initializer,
4136 DestType, CandidateSet,
4137 /*AllowObjCConversionOnExplicit=*/
4138 false);
4139 else
4140 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4141 Initializer, DestType, CandidateSet,
4142 /*AllowObjCConversionOnExplicit=*/false);
4143 }
4144 }
4145 }
4146 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4147 return OR_No_Viable_Function;
4148
4149 SourceLocation DeclLoc = Initializer->getLocStart();
4150
4151 // Perform overload resolution. If it fails, return the failed result.
4152 OverloadCandidateSet::iterator Best;
4153 if (OverloadingResult Result
4154 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
4155 return Result;
4156
4157 FunctionDecl *Function = Best->Function;
4158 // This is the overload that will be used for this initialization step if we
4159 // use this initialization. Mark it as referenced.
4160 Function->setReferenced();
4161
4162 // Compute the returned type and value kind of the conversion.
4163 QualType cv3T3;
4164 if (isa<CXXConversionDecl>(Function))
4165 cv3T3 = Function->getReturnType();
4166 else
4167 cv3T3 = T1;
4168
4169 ExprValueKind VK = VK_RValue;
4170 if (cv3T3->isLValueReferenceType())
4171 VK = VK_LValue;
4172 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4173 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4174 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4175
4176 // Add the user-defined conversion step.
4177 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4178 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4179 HadMultipleCandidates);
4180
4181 // Determine whether we'll need to perform derived-to-base adjustments or
4182 // other conversions.
4183 bool NewDerivedToBase = false;
4184 bool NewObjCConversion = false;
4185 bool NewObjCLifetimeConversion = false;
4186 Sema::ReferenceCompareResult NewRefRelationship
4187 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4188 NewDerivedToBase, NewObjCConversion,
4189 NewObjCLifetimeConversion);
4190
4191 // Add the final conversion sequence, if necessary.
4192 if (NewRefRelationship == Sema::Ref_Incompatible) {
4193 assert(!isa<CXXConstructorDecl>(Function) &&((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4194, __PRETTY_FUNCTION__))
4194 "should not have conversion after constructor")((!isa<CXXConstructorDecl>(Function) && "should not have conversion after constructor"
) ? static_cast<void> (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4194, __PRETTY_FUNCTION__))
;
4195
4196 ImplicitConversionSequence ICS;
4197 ICS.setStandard();
4198 ICS.Standard = Best->FinalConversion;
4199 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4200
4201 // Every implicit conversion results in a prvalue, except for a glvalue
4202 // derived-to-base conversion, which we handle below.
4203 cv3T3 = ICS.Standard.getToType(2);
4204 VK = VK_RValue;
4205 }
4206
4207 // If the converted initializer is a prvalue, its type T4 is adjusted to
4208 // type "cv1 T4" and the temporary materialization conversion is applied.
4209 //
4210 // We adjust the cv-qualifications to match the reference regardless of
4211 // whether we have a prvalue so that the AST records the change. In this
4212 // case, T4 is "cv3 T3".
4213 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4214 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4215 Sequence.AddQualificationConversionStep(cv1T4, VK);
4216 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4217 VK = IsLValueRef ? VK_LValue : VK_XValue;
4218
4219 if (NewDerivedToBase)
4220 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4221 else if (NewObjCConversion)
4222 Sequence.AddObjCObjectConversionStep(cv1T1);
4223
4224 return OR_Success;
4225}
4226
4227static void CheckCXX98CompatAccessibleCopy(Sema &S,
4228 const InitializedEntity &Entity,
4229 Expr *CurInitExpr);
4230
4231/// \brief Attempt reference initialization (C++0x [dcl.init.ref])
4232static void TryReferenceInitialization(Sema &S,
4233 const InitializedEntity &Entity,
4234 const InitializationKind &Kind,
4235 Expr *Initializer,
4236 InitializationSequence &Sequence) {
4237 QualType DestType = Entity.getType();
4238 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4239 Qualifiers T1Quals;
4240 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4241 QualType cv2T2 = Initializer->getType();
4242 Qualifiers T2Quals;
4243 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4244
4245 // If the initializer is the address of an overloaded function, try
4246 // to resolve the overloaded function. If all goes well, T2 is the
4247 // type of the resulting function.
4248 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4249 T1, Sequence))
4250 return;
4251
4252 // Delegate everything else to a subfunction.
4253 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4254 T1Quals, cv2T2, T2, T2Quals, Sequence);
4255}
4256
4257/// Determine whether an expression is a non-referenceable glvalue (one to
4258/// which a reference can never bind). Attemting to bind a reference to
4259/// such a glvalue will always create a temporary.
4260static bool isNonReferenceableGLValue(Expr *E) {
4261 return E->refersToBitField() || E->refersToVectorElement();
4262}
4263
4264/// \brief Reference initialization without resolving overloaded functions.
4265static void TryReferenceInitializationCore(Sema &S,
4266 const InitializedEntity &Entity,
4267 const InitializationKind &Kind,
4268 Expr *Initializer,
4269 QualType cv1T1, QualType T1,
4270 Qualifiers T1Quals,
4271 QualType cv2T2, QualType T2,
4272 Qualifiers T2Quals,
4273 InitializationSequence &Sequence) {
4274 QualType DestType = Entity.getType();
4275 SourceLocation DeclLoc = Initializer->getLocStart();
4276 // Compute some basic properties of the types and the initializer.
4277 bool isLValueRef = DestType->isLValueReferenceType();
4278 bool isRValueRef = !isLValueRef;
4279 bool DerivedToBase = false;
4280 bool ObjCConversion = false;
4281 bool ObjCLifetimeConversion = false;
4282 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4283 Sema::ReferenceCompareResult RefRelationship
4284 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4285 ObjCConversion, ObjCLifetimeConversion);
4286
4287 // C++0x [dcl.init.ref]p5:
4288 // A reference to type "cv1 T1" is initialized by an expression of type
4289 // "cv2 T2" as follows:
4290 //
4291 // - If the reference is an lvalue reference and the initializer
4292 // expression
4293 // Note the analogous bullet points for rvalue refs to functions. Because
4294 // there are no function rvalues in C++, rvalue refs to functions are treated
4295 // like lvalue refs.
4296 OverloadingResult ConvOvlResult = OR_Success;
4297 bool T1Function = T1->isFunctionType();
4298 if (isLValueRef || T1Function) {
4299 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4300 (RefRelationship == Sema::Ref_Compatible ||
4301 (Kind.isCStyleOrFunctionalCast() &&
4302 RefRelationship == Sema::Ref_Related))) {
4303 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4304 // reference-compatible with "cv2 T2," or
4305 if (T1Quals != T2Quals)
4306 // Convert to cv1 T2. This should only add qualifiers unless this is a
4307 // c-style cast. The removal of qualifiers in that case notionally
4308 // happens after the reference binding, but that doesn't matter.
4309 Sequence.AddQualificationConversionStep(
4310 S.Context.getQualifiedType(T2, T1Quals),
4311 Initializer->getValueKind());
4312 if (DerivedToBase)
4313 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4314 else if (ObjCConversion)
4315 Sequence.AddObjCObjectConversionStep(cv1T1);
4316
4317 // We only create a temporary here when binding a reference to a
4318 // bit-field or vector element. Those cases are't supposed to be
4319 // handled by this bullet, but the outcome is the same either way.
4320 Sequence.AddReferenceBindingStep(cv1T1, false);
4321 return;
4322 }
4323
4324 // - has a class type (i.e., T2 is a class type), where T1 is not
4325 // reference-related to T2, and can be implicitly converted to an
4326 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4327 // with "cv3 T3" (this conversion is selected by enumerating the
4328 // applicable conversion functions (13.3.1.6) and choosing the best
4329 // one through overload resolution (13.3)),
4330 // If we have an rvalue ref to function type here, the rhs must be
4331 // an rvalue. DR1287 removed the "implicitly" here.
4332 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4333 (isLValueRef || InitCategory.isRValue())) {
4334 ConvOvlResult = TryRefInitWithConversionFunction(
4335 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4336 /*IsLValueRef*/ isLValueRef, Sequence);
4337 if (ConvOvlResult == OR_Success)
4338 return;
4339 if (ConvOvlResult != OR_No_Viable_Function)
4340 Sequence.SetOverloadFailure(
4341 InitializationSequence::FK_ReferenceInitOverloadFailed,
4342 ConvOvlResult);
4343 }
4344 }
4345
4346 // - Otherwise, the reference shall be an lvalue reference to a
4347 // non-volatile const type (i.e., cv1 shall be const), or the reference
4348 // shall be an rvalue reference.
4349 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4350 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4351 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4352 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4353 Sequence.SetOverloadFailure(
4354 InitializationSequence::FK_ReferenceInitOverloadFailed,
4355 ConvOvlResult);
4356 else if (!InitCategory.isLValue())
4357 Sequence.SetFailed(
4358 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4359 else {
4360 InitializationSequence::FailureKind FK;
4361 switch (RefRelationship) {
4362 case Sema::Ref_Compatible:
4363 if (Initializer->refersToBitField())
4364 FK = InitializationSequence::
4365 FK_NonConstLValueReferenceBindingToBitfield;
4366 else if (Initializer->refersToVectorElement())
4367 FK = InitializationSequence::
4368 FK_NonConstLValueReferenceBindingToVectorElement;
4369 else
4370 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4370)
;
4371 break;
4372 case Sema::Ref_Related:
4373 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4374 break;
4375 case Sema::Ref_Incompatible:
4376 FK = InitializationSequence::
4377 FK_NonConstLValueReferenceBindingToUnrelated;
4378 break;
4379 }
4380 Sequence.SetFailed(FK);
4381 }
4382 return;
4383 }
4384
4385 // - If the initializer expression
4386 // - is an
4387 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4388 // [1z] rvalue (but not a bit-field) or
4389 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4390 //
4391 // Note: functions are handled above and below rather than here...
4392 if (!T1Function &&
4393 (RefRelationship == Sema::Ref_Compatible ||
4394 (Kind.isCStyleOrFunctionalCast() &&
4395 RefRelationship == Sema::Ref_Related)) &&
4396 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4397 (InitCategory.isPRValue() &&
4398 (S.getLangOpts().CPlusPlus1z || T2->isRecordType() ||
4399 T2->isArrayType())))) {
4400 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4401 if (InitCategory.isPRValue() && T2->isRecordType()) {
4402 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4403 // compiler the freedom to perform a copy here or bind to the
4404 // object, while C++0x requires that we bind directly to the
4405 // object. Hence, we always bind to the object without making an
4406 // extra copy. However, in C++03 requires that we check for the
4407 // presence of a suitable copy constructor:
4408 //
4409 // The constructor that would be used to make the copy shall
4410 // be callable whether or not the copy is actually done.
4411 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4412 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4413 else if (S.getLangOpts().CPlusPlus11)
4414 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4415 }
4416
4417 // C++1z [dcl.init.ref]/5.2.1.2:
4418 // If the converted initializer is a prvalue, its type T4 is adjusted
4419 // to type "cv1 T4" and the temporary materialization conversion is
4420 // applied.
4421 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4422 if (T1Quals != T2Quals)
4423 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4424 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4425 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4426
4427 // In any case, the reference is bound to the resulting glvalue (or to
4428 // an appropriate base class subobject).
4429 if (DerivedToBase)
4430 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4431 else if (ObjCConversion)
4432 Sequence.AddObjCObjectConversionStep(cv1T1);
4433 return;
4434 }
4435
4436 // - has a class type (i.e., T2 is a class type), where T1 is not
4437 // reference-related to T2, and can be implicitly converted to an
4438 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4439 // where "cv1 T1" is reference-compatible with "cv3 T3",
4440 //
4441 // DR1287 removes the "implicitly" here.
4442 if (T2->isRecordType()) {
4443 if (RefRelationship == Sema::Ref_Incompatible) {
4444 ConvOvlResult = TryRefInitWithConversionFunction(
4445 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4446 /*IsLValueRef*/ isLValueRef, Sequence);
4447 if (ConvOvlResult)
4448 Sequence.SetOverloadFailure(
4449 InitializationSequence::FK_ReferenceInitOverloadFailed,
4450 ConvOvlResult);
4451
4452 return;
4453 }
4454
4455 if (RefRelationship == Sema::Ref_Compatible &&
4456 isRValueRef && InitCategory.isLValue()) {
4457 Sequence.SetFailed(
4458 InitializationSequence::FK_RValueReferenceBindingToLValue);
4459 return;
4460 }
4461
4462 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4463 return;
4464 }
4465
4466 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4467 // from the initializer expression using the rules for a non-reference
4468 // copy-initialization (8.5). The reference is then bound to the
4469 // temporary. [...]
4470
4471 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4472
4473 // FIXME: Why do we use an implicit conversion here rather than trying
4474 // copy-initialization?
4475 ImplicitConversionSequence ICS
4476 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4477 /*SuppressUserConversions=*/false,
4478 /*AllowExplicit=*/false,
4479 /*FIXME:InOverloadResolution=*/false,
4480 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4481 /*AllowObjCWritebackConversion=*/false);
4482
4483 if (ICS.isBad()) {
4484 // FIXME: Use the conversion function set stored in ICS to turn
4485 // this into an overloading ambiguity diagnostic. However, we need
4486 // to keep that set as an OverloadCandidateSet rather than as some
4487 // other kind of set.
4488 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4489 Sequence.SetOverloadFailure(
4490 InitializationSequence::FK_ReferenceInitOverloadFailed,
4491 ConvOvlResult);
4492 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4493 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4494 else
4495 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4496 return;
4497 } else {
4498 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4499 }
4500
4501 // [...] If T1 is reference-related to T2, cv1 must be the
4502 // same cv-qualification as, or greater cv-qualification
4503 // than, cv2; otherwise, the program is ill-formed.
4504 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4505 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4506 if (RefRelationship == Sema::Ref_Related &&
4507 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4508 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4509 return;
4510 }
4511
4512 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4513 // reference, the initializer expression shall not be an lvalue.
4514 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4515 InitCategory.isLValue()) {
4516 Sequence.SetFailed(
4517 InitializationSequence::FK_RValueReferenceBindingToLValue);
4518 return;
4519 }
4520
4521 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4522}
4523
4524/// \brief Attempt character array initialization from a string literal
4525/// (C++ [dcl.init.string], C99 6.7.8).
4526static void TryStringLiteralInitialization(Sema &S,
4527 const InitializedEntity &Entity,
4528 const InitializationKind &Kind,
4529 Expr *Initializer,
4530 InitializationSequence &Sequence) {
4531 Sequence.AddStringInitStep(Entity.getType());
4532}
4533
4534/// \brief Attempt value initialization (C++ [dcl.init]p7).
4535static void TryValueInitialization(Sema &S,
4536 const InitializedEntity &Entity,
4537 const InitializationKind &Kind,
4538 InitializationSequence &Sequence,
4539 InitListExpr *InitList) {
4540 assert((!InitList || InitList->getNumInits() == 0) &&(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4541, __PRETTY_FUNCTION__))
4541 "Shouldn't use value-init for non-empty init lists")(((!InitList || InitList->getNumInits() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? static_cast<void> (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4541, __PRETTY_FUNCTION__))
;
4542
4543 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4544 //
4545 // To value-initialize an object of type T means:
4546 QualType T = Entity.getType();
4547
4548 // -- if T is an array type, then each element is value-initialized;
4549 T = S.Context.getBaseElementType(T);
4550
4551 if (const RecordType *RT = T->getAs<RecordType>()) {
4552 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4553 bool NeedZeroInitialization = true;
4554 // C++98:
4555 // -- if T is a class type (clause 9) with a user-declared constructor
4556 // (12.1), then the default constructor for T is called (and the
4557 // initialization is ill-formed if T has no accessible default
4558 // constructor);
4559 // C++11:
4560 // -- if T is a class type (clause 9) with either no default constructor
4561 // (12.1 [class.ctor]) or a default constructor that is user-provided
4562 // or deleted, then the object is default-initialized;
4563 //
4564 // Note that the C++11 rule is the same as the C++98 rule if there are no
4565 // defaulted or deleted constructors, so we just use it unconditionally.
4566 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4567 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4568 NeedZeroInitialization = false;
4569
4570 // -- if T is a (possibly cv-qualified) non-union class type without a
4571 // user-provided or deleted default constructor, then the object is
4572 // zero-initialized and, if T has a non-trivial default constructor,
4573 // default-initialized;
4574 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4575 // constructor' part was removed by DR1507.
4576 if (NeedZeroInitialization)
4577 Sequence.AddZeroInitializationStep(Entity.getType());
4578
4579 // C++03:
4580 // -- if T is a non-union class type without a user-declared constructor,
4581 // then every non-static data member and base class component of T is
4582 // value-initialized;
4583 // [...] A program that calls for [...] value-initialization of an
4584 // entity of reference type is ill-formed.
4585 //
4586 // C++11 doesn't need this handling, because value-initialization does not
4587 // occur recursively there, and the implicit default constructor is
4588 // defined as deleted in the problematic cases.
4589 if (!S.getLangOpts().CPlusPlus11 &&
4590 ClassDecl->hasUninitializedReferenceMember()) {
4591 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4592 return;
4593 }
4594
4595 // If this is list-value-initialization, pass the empty init list on when
4596 // building the constructor call. This affects the semantics of a few
4597 // things (such as whether an explicit default constructor can be called).
4598 Expr *InitListAsExpr = InitList;
4599 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4600 bool InitListSyntax = InitList;
4601
4602 // FIXME: Instead of creating a CXXConstructExpr of array type here,
4603 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4604 return TryConstructorInitialization(
4605 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4606 }
4607 }
4608
4609 Sequence.AddZeroInitializationStep(Entity.getType());
4610}
4611
4612/// \brief Attempt default initialization (C++ [dcl.init]p6).
4613static void TryDefaultInitialization(Sema &S,
4614 const InitializedEntity &Entity,
4615 const InitializationKind &Kind,
4616 InitializationSequence &Sequence) {
4617 assert(Kind.getKind() == InitializationKind::IK_Default)((Kind.getKind() == InitializationKind::IK_Default) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4617, __PRETTY_FUNCTION__))
;
4618
4619 // C++ [dcl.init]p6:
4620 // To default-initialize an object of type T means:
4621 // - if T is an array type, each element is default-initialized;
4622 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4623
4624 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4625 // constructor for T is called (and the initialization is ill-formed if
4626 // T has no accessible default constructor);
4627 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4628 TryConstructorInitialization(S, Entity, Kind, None, DestType,
4629 Entity.getType(), Sequence);
4630 return;
4631 }
4632
4633 // - otherwise, no initialization is performed.
4634
4635 // If a program calls for the default initialization of an object of
4636 // a const-qualified type T, T shall be a class type with a user-provided
4637 // default constructor.
4638 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4639 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4640 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4641 return;
4642 }
4643
4644 // If the destination type has a lifetime property, zero-initialize it.
4645 if (DestType.getQualifiers().hasObjCLifetime()) {
4646 Sequence.AddZeroInitializationStep(Entity.getType());
4647 return;
4648 }
4649}
4650
4651/// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4652/// which enumerates all conversion functions and performs overload resolution
4653/// to select the best.
4654static void TryUserDefinedConversion(Sema &S,
4655 QualType DestType,
4656 const InitializationKind &Kind,
4657 Expr *Initializer,
4658 InitializationSequence &Sequence,
4659 bool TopLevelOfInitList) {
4660 assert(!DestType->isReferenceType() && "References are handled elsewhere")((!DestType->isReferenceType() && "References are handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4660, __PRETTY_FUNCTION__))
;
4661 QualType SourceType = Initializer->getType();
4662 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4663, __PRETTY_FUNCTION__))
4663 "Must have a class type to perform a user-defined conversion")(((DestType->isRecordType() || SourceType->isRecordType
()) && "Must have a class type to perform a user-defined conversion"
) ? static_cast<void> (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4663, __PRETTY_FUNCTION__))
;
4664
4665 // Build the candidate set directly in the initialization sequence
4666 // structure, so that it will persist if we fail.
4667 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4668 CandidateSet.clear();
4669
4670 // Determine whether we are allowed to call explicit constructors or
4671 // explicit conversion operators.
4672 bool AllowExplicit = Kind.AllowExplicit();
4673
4674 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4675 // The type we're converting to is a class type. Enumerate its constructors
4676 // to see if there is a suitable conversion.
4677 CXXRecordDecl *DestRecordDecl
4678 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4679
4680 // Try to complete the type we're converting to.
4681 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4682 DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4683 // The container holding the constructors can under certain conditions
4684 // be changed while iterating. To be safe we copy the lookup results
4685 // to a new container.
4686 SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4687 for (SmallVectorImpl<NamedDecl *>::iterator
4688 Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4689 Con != ConEnd; ++Con) {
4690 NamedDecl *D = *Con;
4691 auto Info = getConstructorInfo(D);
4692 if (!Info.Constructor)
4693 continue;
4694
4695 if (!Info.Constructor->isInvalidDecl() &&
4696 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4697 if (Info.ConstructorTmpl)
4698 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4699 /*ExplicitArgs*/ nullptr,
4700 Initializer, CandidateSet,
4701 /*SuppressUserConversions=*/true);
4702 else
4703 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4704 Initializer, CandidateSet,
4705 /*SuppressUserConversions=*/true);
4706 }
4707 }
4708 }
4709 }
4710
4711 SourceLocation DeclLoc = Initializer->getLocStart();
4712
4713 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4714 // The type we're converting from is a class type, enumerate its conversion
4715 // functions.
4716
4717 // We can only enumerate the conversion functions for a complete type; if
4718 // the type isn't complete, simply skip this step.
4719 if (S.isCompleteType(DeclLoc, SourceType)) {
4720 CXXRecordDecl *SourceRecordDecl
4721 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4722
4723 const auto &Conversions =
4724 SourceRecordDecl->getVisibleConversionFunctions();
4725 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4726 NamedDecl *D = *I;
4727 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4728 if (isa<UsingShadowDecl>(D))
4729 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4730
4731 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4732 CXXConversionDecl *Conv;
4733 if (ConvTemplate)
4734 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4735 else
4736 Conv = cast<CXXConversionDecl>(D);
4737
4738 if (AllowExplicit || !Conv->isExplicit()) {
4739 if (ConvTemplate)
4740 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4741 ActingDC, Initializer, DestType,
4742 CandidateSet, AllowExplicit);
4743 else
4744 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4745 Initializer, DestType, CandidateSet,
4746 AllowExplicit);
4747 }
4748 }
4749 }
4750 }
4751
4752 // Perform overload resolution. If it fails, return the failed result.
4753 OverloadCandidateSet::iterator Best;
4754 if (OverloadingResult Result
4755 = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4756 Sequence.SetOverloadFailure(
4757 InitializationSequence::FK_UserConversionOverloadFailed,
4758 Result);
4759 return;
4760 }
4761
4762 FunctionDecl *Function = Best->Function;
4763 Function->setReferenced();
4764 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4765
4766 if (isa<CXXConstructorDecl>(Function)) {
4767 // Add the user-defined conversion step. Any cv-qualification conversion is
4768 // subsumed by the initialization. Per DR5, the created temporary is of the
4769 // cv-unqualified type of the destination.
4770 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4771 DestType.getUnqualifiedType(),
4772 HadMultipleCandidates);
4773
4774 // C++14 and before:
4775 // - if the function is a constructor, the call initializes a temporary
4776 // of the cv-unqualified version of the destination type. The [...]
4777 // temporary [...] is then used to direct-initialize, according to the
4778 // rules above, the object that is the destination of the
4779 // copy-initialization.
4780 // Note that this just performs a simple object copy from the temporary.
4781 //
4782 // C++1z:
4783 // - if the function is a constructor, the call is a prvalue of the
4784 // cv-unqualified version of the destination type whose return object
4785 // is initialized by the constructor. The call is used to
4786 // direct-initialize, according to the rules above, the object that
4787 // is the destination of the copy-initialization.
4788 // Therefore we need to do nothing further.
4789 //
4790 // FIXME: Mark this copy as extraneous.
4791 if (!S.getLangOpts().CPlusPlus1z)
4792 Sequence.AddFinalCopy(DestType);
4793 else if (DestType.hasQualifiers())
4794 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4795 return;
4796 }
4797
4798 // Add the user-defined conversion step that calls the conversion function.
4799 QualType ConvType = Function->getCallResultType();
4800 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4801 HadMultipleCandidates);
4802
4803 if (ConvType->getAs<RecordType>()) {
4804 // The call is used to direct-initialize [...] the object that is the
4805 // destination of the copy-initialization.
4806 //
4807 // In C++1z, this does not call a constructor if we enter /17.6.1:
4808 // - If the initializer expression is a prvalue and the cv-unqualified
4809 // version of the source type is the same as the class of the
4810 // destination [... do not make an extra copy]
4811 //
4812 // FIXME: Mark this copy as extraneous.
4813 if (!S.getLangOpts().CPlusPlus1z ||
4814 Function->getReturnType()->isReferenceType() ||
4815 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
4816 Sequence.AddFinalCopy(DestType);
4817 else if (!S.Context.hasSameType(ConvType, DestType))
4818 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4819 return;
4820 }
4821
4822 // If the conversion following the call to the conversion function
4823 // is interesting, add it as a separate step.
4824 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4825 Best->FinalConversion.Third) {
4826 ImplicitConversionSequence ICS;
4827 ICS.setStandard();
4828 ICS.Standard = Best->FinalConversion;
4829 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4830 }
4831}
4832
4833/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4834/// a function with a pointer return type contains a 'return false;' statement.
4835/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4836/// code using that header.
4837///
4838/// Work around this by treating 'return false;' as zero-initializing the result
4839/// if it's used in a pointer-returning function in a system header.
4840static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4841 const InitializedEntity &Entity,
4842 const Expr *Init) {
4843 return S.getLangOpts().CPlusPlus11 &&
4844 Entity.getKind() == InitializedEntity::EK_Result &&
4845 Entity.getType()->isPointerType() &&
4846 isa<CXXBoolLiteralExpr>(Init) &&
4847 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4848 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4849}
4850
4851/// The non-zero enum values here are indexes into diagnostic alternatives.
4852enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4853
4854/// Determines whether this expression is an acceptable ICR source.
4855static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4856 bool isAddressOf, bool &isWeakAccess) {
4857 // Skip parens.
4858 e = e->IgnoreParens();
4859
4860 // Skip address-of nodes.
4861 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4862 if (op->getOpcode() == UO_AddrOf)
4863 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4864 isWeakAccess);
4865
4866 // Skip certain casts.
4867 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4868 switch (ce->getCastKind()) {
4869 case CK_Dependent:
4870 case CK_BitCast:
4871 case CK_LValueBitCast:
4872 case CK_NoOp:
4873 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4874
4875 case CK_ArrayToPointerDecay:
4876 return IIK_nonscalar;
4877
4878 case CK_NullToPointer:
4879 return IIK_okay;
4880
4881 default:
4882 break;
4883 }
4884
4885 // If we have a declaration reference, it had better be a local variable.
4886 } else if (isa<DeclRefExpr>(e)) {
4887 // set isWeakAccess to true, to mean that there will be an implicit
4888 // load which requires a cleanup.
4889 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4890 isWeakAccess = true;
4891
4892 if (!isAddressOf) return IIK_nonlocal;
4893
4894 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4895 if (!var) return IIK_nonlocal;
4896
4897 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4898
4899 // If we have a conditional operator, check both sides.
4900 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4901 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4902 isWeakAccess))
4903 return iik;
4904
4905 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4906
4907 // These are never scalar.
4908 } else if (isa<ArraySubscriptExpr>(e)) {
4909 return IIK_nonscalar;
4910
4911 // Otherwise, it needs to be a null pointer constant.
4912 } else {
4913 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4914 ? IIK_okay : IIK_nonlocal);
4915 }
4916
4917 return IIK_nonlocal;
4918}
4919
4920/// Check whether the given expression is a valid operand for an
4921/// indirect copy/restore.
4922static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4923 assert(src->isRValue())((src->isRValue()) ? static_cast<void> (0) : __assert_fail
("src->isRValue()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 4923, __PRETTY_FUNCTION__))
;
4924 bool isWeakAccess = false;
4925 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4926 // If isWeakAccess to true, there will be an implicit
4927 // load which requires a cleanup.
4928 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4929 S.Cleanup.setExprNeedsCleanups(true);
4930
4931 if (iik == IIK_okay) return;
4932
4933 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4934 << ((unsigned) iik - 1) // shift index into diagnostic explanations
4935 << src->getSourceRange();
4936}
4937
4938/// \brief Determine whether we have compatible array types for the
4939/// purposes of GNU by-copy array initialization.
4940static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
4941 const ArrayType *Source) {
4942 // If the source and destination array types are equivalent, we're
4943 // done.
4944 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4945 return true;
4946
4947 // Make sure that the element types are the same.
4948 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4949 return false;
4950
4951 // The only mismatch we allow is when the destination is an
4952 // incomplete array type and the source is a constant array type.
4953 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4954}
4955
4956static bool tryObjCWritebackConversion(Sema &S,
4957 InitializationSequence &Sequence,
4958 const InitializedEntity &Entity,
4959 Expr *Initializer) {
4960 bool ArrayDecay = false;
4961 QualType ArgType = Initializer->getType();
4962 QualType ArgPointee;
4963 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4964 ArrayDecay = true;
4965 ArgPointee = ArgArrayType->getElementType();
4966 ArgType = S.Context.getPointerType(ArgPointee);
4967 }
4968
4969 // Handle write-back conversion.
4970 QualType ConvertedArgType;
4971 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4972 ConvertedArgType))
4973 return false;
4974
4975 // We should copy unless we're passing to an argument explicitly
4976 // marked 'out'.
4977 bool ShouldCopy = true;
4978 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4979 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4980
4981 // Do we need an lvalue conversion?
4982 if (ArrayDecay || Initializer->isGLValue()) {
4983 ImplicitConversionSequence ICS;
4984 ICS.setStandard();
4985 ICS.Standard.setAsIdentityConversion();
4986
4987 QualType ResultType;
4988 if (ArrayDecay) {
4989 ICS.Standard.First = ICK_Array_To_Pointer;
4990 ResultType = S.Context.getPointerType(ArgPointee);
4991 } else {
4992 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4993 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4994 }
4995
4996 Sequence.AddConversionSequenceStep(ICS, ResultType);
4997 }
4998
4999 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5000 return true;
5001}
5002
5003static bool TryOCLSamplerInitialization(Sema &S,
5004 InitializationSequence &Sequence,
5005 QualType DestType,
5006 Expr *Initializer) {
5007 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5008 (!Initializer->isIntegerConstantExpr(S.Context) &&
5009 !Initializer->getType()->isSamplerT()))
5010 return false;
5011
5012 Sequence.AddOCLSamplerInitStep(DestType);
5013 return true;
5014}
5015
5016//
5017// OpenCL 1.2 spec, s6.12.10
5018//
5019// The event argument can also be used to associate the
5020// async_work_group_copy with a previous async copy allowing
5021// an event to be shared by multiple async copies; otherwise
5022// event should be zero.
5023//
5024static bool TryOCLZeroEventInitialization(Sema &S,
5025 InitializationSequence &Sequence,
5026 QualType DestType,
5027 Expr *Initializer) {
5028 if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
5029 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5030 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5031 return false;
5032
5033 Sequence.AddOCLZeroEventStep(DestType);
5034 return true;
5035}
5036
5037static bool TryOCLZeroQueueInitialization(Sema &S,
5038 InitializationSequence &Sequence,
5039 QualType DestType,
5040 Expr *Initializer) {
5041 if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 ||
23
Assuming the condition is false
5042 !DestType->isQueueT() ||
5043 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
24
Called C++ object pointer is null
5044 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5045 return false;
5046
5047 Sequence.AddOCLZeroQueueStep(DestType);
5048 return true;
5049}
5050
5051InitializationSequence::InitializationSequence(Sema &S,
5052 const InitializedEntity &Entity,
5053 const InitializationKind &Kind,
5054 MultiExprArg Args,
5055 bool TopLevelOfInitList,
5056 bool TreatUnavailableAsInvalid)
5057 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5058 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5059 TreatUnavailableAsInvalid);
5060}
5061
5062/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5063/// address of that function, this returns true. Otherwise, it returns false.
5064static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5065 auto *DRE = dyn_cast<DeclRefExpr>(E);
5066 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5067 return false;
5068
5069 return !S.checkAddressOfFunctionIsAvailable(
5070 cast<FunctionDecl>(DRE->getDecl()));
5071}
5072
5073/// Determine whether we can perform an elementwise array copy for this kind
5074/// of entity.
5075static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5076 switch (Entity.getKind()) {
5077 case InitializedEntity::EK_LambdaCapture:
5078 // C++ [expr.prim.lambda]p24:
5079 // For array members, the array elements are direct-initialized in
5080 // increasing subscript order.
5081 return true;
5082
5083 case InitializedEntity::EK_Variable:
5084 // C++ [dcl.decomp]p1:
5085 // [...] each element is copy-initialized or direct-initialized from the
5086 // corresponding element of the assignment-expression [...]
5087 return isa<DecompositionDecl>(Entity.getDecl());
5088
5089 case InitializedEntity::EK_Member:
5090 // C++ [class.copy.ctor]p14:
5091 // - if the member is an array, each element is direct-initialized with
5092 // the corresponding subobject of x
5093 return Entity.isImplicitMemberInitializer();
5094
5095 case InitializedEntity::EK_ArrayElement:
5096 // All the above cases are intended to apply recursively, even though none
5097 // of them actually say that.
5098 if (auto *E = Entity.getParent())
5099 return canPerformArrayCopy(*E);
5100 break;
5101
5102 default:
5103 break;
5104 }
5105
5106 return false;
5107}
5108
5109void InitializationSequence::InitializeFrom(Sema &S,
5110 const InitializedEntity &Entity,
5111 const InitializationKind &Kind,
5112 MultiExprArg Args,
5113 bool TopLevelOfInitList,
5114 bool TreatUnavailableAsInvalid) {
5115 ASTContext &Context = S.Context;
5116
5117 // Eliminate non-overload placeholder types in the arguments. We
5118 // need to do this before checking whether types are dependent
5119 // because lowering a pseudo-object expression might well give us
5120 // something of dependent type.
5121 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1
Assuming 'I' is equal to 'E'
2
Loop condition is false. Execution continues on line 5138
5122 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5123 // FIXME: should we be doing this here?
5124 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5125 if (result.isInvalid()) {
5126 SetFailed(FK_PlaceholderType);
5127 return;
5128 }
5129 Args[I] = result.get();
5130 }
5131
5132 // C++0x [dcl.init]p16:
5133 // The semantics of initializers are as follows. The destination type is
5134 // the type of the object or reference being initialized and the source
5135 // type is the type of the initializer expression. The source type is not
5136 // defined when the initializer is a braced-init-list or when it is a
5137 // parenthesized list of expressions.
5138 QualType DestType = Entity.getType();
5139
5140 if (DestType->isDependentType() ||
4
Taking false branch
5141 Expr::hasAnyTypeDependentArguments(Args)) {
3
Assuming the condition is false
5142 SequenceKind = DependentSequence;
5143 return;
5144 }
5145
5146 // Almost everything is a normal sequence.
5147 setSequenceKind(NormalSequence);
5148
5149 QualType SourceType;
5150 Expr *Initializer = nullptr;
5
'Initializer' initialized to a null pointer value
5151 if (Args.size() == 1) {
6
Assuming the condition is false
7
Taking false branch
5152 Initializer = Args[0];
5153 if (S.getLangOpts().ObjC1) {
5154 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
5155 DestType, Initializer->getType(),
5156 Initializer) ||
5157 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5158 Args[0] = Initializer;
5159 }
5160 if (!isa<InitListExpr>(Initializer))
5161 SourceType = Initializer->getType();
5162 }
5163
5164 // - If the initializer is a (non-parenthesized) braced-init-list, the
5165 // object is list-initialized (8.5.4).
5166 if (Kind.getKind() != InitializationKind::IK_Direct) {
8
Assuming the condition is false
9
Taking false branch
5167 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5168 TryListInitialization(S, Entity, Kind, InitList, *this,
5169 TreatUnavailableAsInvalid);
5170 return;
5171 }
5172 }
5173
5174 // - If the destination type is a reference type, see 8.5.3.
5175 if (DestType->isReferenceType()) {
10
Taking false branch
5176 // C++0x [dcl.init.ref]p1:
5177 // A variable declared to be a T& or T&&, that is, "reference to type T"
5178 // (8.3.2), shall be initialized by an object, or function, of type T or
5179 // by an object that can be converted into a T.
5180 // (Therefore, multiple arguments are not permitted.)
5181 if (Args.size() != 1)
5182 SetFailed(FK_TooManyInitsForReference);
5183 else
5184 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5185 return;
5186 }
5187
5188 // - If the initializer is (), the object is value-initialized.
5189 if (Kind.getKind() == InitializationKind::IK_Value ||
12
Taking false branch
5190 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
11
Assuming the condition is false
5191 TryValueInitialization(S, Entity, Kind, *this);
5192 return;
5193 }
5194
5195 // Handle default initialization.
5196 if (Kind.getKind() == InitializationKind::IK_Default) {
13
Taking false branch
5197 TryDefaultInitialization(S, Entity, Kind, *this);
5198 return;
5199 }
5200
5201 // - If the destination type is an array of characters, an array of
5202 // char16_t, an array of char32_t, or an array of wchar_t, and the
5203 // initializer is a string literal, see 8.5.2.
5204 // - Otherwise, if the destination type is an array, the program is
5205 // ill-formed.
5206 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
14
Assuming 'DestAT' is null
15
Taking false branch
5207 if (Initializer && isa<VariableArrayType>(DestAT)) {
5208 SetFailed(FK_VariableLengthArrayHasInitializer);
5209 return;
5210 }
5211
5212 if (Initializer) {
5213 switch (IsStringInit(Initializer, DestAT, Context)) {
5214 case SIF_None:
5215 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5216 return;
5217 case SIF_NarrowStringIntoWideChar:
5218 SetFailed(FK_NarrowStringIntoWideCharArray);
5219 return;
5220 case SIF_WideStringIntoChar:
5221 SetFailed(FK_WideStringIntoCharArray);
5222 return;
5223 case SIF_IncompatWideStringIntoWideChar:
5224 SetFailed(FK_IncompatWideStringIntoWideChar);
5225 return;
5226 case SIF_Other:
5227 break;
5228 }
5229 }
5230
5231 // Some kinds of initialization permit an array to be initialized from
5232 // another array of the same type, and perform elementwise initialization.
5233 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5234 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5235 Entity.getType()) &&
5236 canPerformArrayCopy(Entity)) {
5237 // If source is a prvalue, use it directly.
5238 if (Initializer->getValueKind() == VK_RValue) {
5239 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5240 return;
5241 }
5242
5243 // Emit element-at-a-time copy loop.
5244 InitializedEntity Element =
5245 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5246 QualType InitEltT =
5247 Context.getAsArrayType(Initializer->getType())->getElementType();
5248 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5249 Initializer->getValueKind(),
5250 Initializer->getObjectKind());
5251 Expr *OVEAsExpr = &OVE;
5252 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5253 TreatUnavailableAsInvalid);
5254 if (!Failed())
5255 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5256 return;
5257 }
5258
5259 // Note: as an GNU C extension, we allow initialization of an
5260 // array from a compound literal that creates an array of the same
5261 // type, so long as the initializer has no side effects.
5262 if (!S.getLangOpts().CPlusPlus && Initializer &&
5263 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5264 Initializer->getType()->isArrayType()) {
5265 const ArrayType *SourceAT
5266 = Context.getAsArrayType(Initializer->getType());
5267 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5268 SetFailed(FK_ArrayTypeMismatch);
5269 else if (Initializer->HasSideEffects(S.Context))
5270 SetFailed(FK_NonConstantArrayInit);
5271 else {
5272 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5273 }
5274 }
5275 // Note: as a GNU C++ extension, we allow list-initialization of a
5276 // class member of array type from a parenthesized initializer list.
5277 else if (S.getLangOpts().CPlusPlus &&
5278 Entity.getKind() == InitializedEntity::EK_Member &&
5279 Initializer && isa<InitListExpr>(Initializer)) {
5280 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5281 *this, TreatUnavailableAsInvalid);
5282 AddParenthesizedArrayInitStep(DestType);
5283 } else if (DestAT->getElementType()->isCharType())
5284 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5285 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5286 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5287 else
5288 SetFailed(FK_ArrayNeedsInitList);
5289
5290 return;
5291 }
5292
5293 // Determine whether we should consider writeback conversions for
5294 // Objective-C ARC.
5295 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
16
Assuming the condition is false
5296 Entity.isParameterKind();
5297
5298 // We're at the end of the line for C: it's either a write-back conversion
5299 // or it's a C assignment. There's no need to check anything else.
5300 if (!S.getLangOpts().CPlusPlus) {
17
Assuming the condition is true
18
Taking true branch
5301 // If allowed, check whether this is an Objective-C writeback conversion.
5302 if (allowObjCWritebackConversion &&
5303 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5304 return;
5305 }
5306
5307 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
19
Taking false branch
5308 return;
5309
5310 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
20
Taking false branch
5311 return;
5312
5313 if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer))
21
Passing null pointer value via 4th parameter 'Initializer'
22
Calling 'TryOCLZeroQueueInitialization'
5314 return;
5315
5316 // Handle initialization in C
5317 AddCAssignmentStep(DestType);
5318 MaybeProduceObjCObject(S, *this, Entity);
5319 return;
5320 }
5321
5322 assert(S.getLangOpts().CPlusPlus)((S.getLangOpts().CPlusPlus) ? static_cast<void> (0) : __assert_fail
("S.getLangOpts().CPlusPlus", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 5322, __PRETTY_FUNCTION__))
;
5323
5324 // - If the destination type is a (possibly cv-qualified) class type:
5325 if (DestType->isRecordType()) {
5326 // - If the initialization is direct-initialization, or if it is
5327 // copy-initialization where the cv-unqualified version of the
5328 // source type is the same class as, or a derived class of, the
5329 // class of the destination, constructors are considered. [...]
5330 if (Kind.getKind() == InitializationKind::IK_Direct ||
5331 (Kind.getKind() == InitializationKind::IK_Copy &&
5332 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5333 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5334 TryConstructorInitialization(S, Entity, Kind, Args,
5335 DestType, DestType, *this);
5336 // - Otherwise (i.e., for the remaining copy-initialization cases),
5337 // user-defined conversion sequences that can convert from the source
5338 // type to the destination type or (when a conversion function is
5339 // used) to a derived class thereof are enumerated as described in
5340 // 13.3.1.4, and the best one is chosen through overload resolution
5341 // (13.3).
5342 else
5343 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5344 TopLevelOfInitList);
5345 return;
5346 }
5347
5348 if (Args.size() > 1) {
5349 SetFailed(FK_TooManyInitsForScalar);
5350 return;
5351 }
5352 assert(Args.size() == 1 && "Zero-argument case handled above")((Args.size() == 1 && "Zero-argument case handled above"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"Zero-argument case handled above\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 5352, __PRETTY_FUNCTION__))
;
5353
5354 // - Otherwise, if the source type is a (possibly cv-qualified) class
5355 // type, conversion functions are considered.
5356 if (!SourceType.isNull() && SourceType->isRecordType()) {
5357 // For a conversion to _Atomic(T) from either T or a class type derived
5358 // from T, initialize the T object then convert to _Atomic type.
5359 bool NeedAtomicConversion = false;
5360 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5361 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5362 S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5363 Atomic->getValueType())) {
5364 DestType = Atomic->getValueType();
5365 NeedAtomicConversion = true;
5366 }
5367 }
5368
5369 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5370 TopLevelOfInitList);
5371 MaybeProduceObjCObject(S, *this, Entity);
5372 if (!Failed() && NeedAtomicConversion)
5373 AddAtomicConversionStep(Entity.getType());
5374 return;
5375 }
5376
5377 // - Otherwise, the initial value of the object being initialized is the
5378 // (possibly converted) value of the initializer expression. Standard
5379 // conversions (Clause 4) will be used, if necessary, to convert the
5380 // initializer expression to the cv-unqualified version of the
5381 // destination type; no user-defined conversions are considered.
5382
5383 ImplicitConversionSequence ICS
5384 = S.TryImplicitConversion(Initializer, DestType,
5385 /*SuppressUserConversions*/true,
5386 /*AllowExplicitConversions*/ false,
5387 /*InOverloadResolution*/ false,
5388 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5389 allowObjCWritebackConversion);
5390
5391 if (ICS.isStandard() &&
5392 ICS.Standard.Second == ICK_Writeback_Conversion) {
5393 // Objective-C ARC writeback conversion.
5394
5395 // We should copy unless we're passing to an argument explicitly
5396 // marked 'out'.
5397 bool ShouldCopy = true;
5398 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5399 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5400
5401 // If there was an lvalue adjustment, add it as a separate conversion.
5402 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5403 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5404 ImplicitConversionSequence LvalueICS;
5405 LvalueICS.setStandard();
5406 LvalueICS.Standard.setAsIdentityConversion();
5407 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5408 LvalueICS.Standard.First = ICS.Standard.First;
5409 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5410 }
5411
5412 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5413 } else if (ICS.isBad()) {
5414 DeclAccessPair dap;
5415 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5416 AddZeroInitializationStep(Entity.getType());
5417 } else if (Initializer->getType() == Context.OverloadTy &&
5418 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5419 false, dap))
5420 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5421 else if (Initializer->getType()->isFunctionType() &&
5422 isExprAnUnaddressableFunction(S, Initializer))
5423 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5424 else
5425 SetFailed(InitializationSequence::FK_ConversionFailed);
5426 } else {
5427 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5428
5429 MaybeProduceObjCObject(S, *this, Entity);
5430 }
5431}
5432
5433InitializationSequence::~InitializationSequence() {
5434 for (auto &S : Steps)
5435 S.Destroy();
5436}
5437
5438//===----------------------------------------------------------------------===//
5439// Perform initialization
5440//===----------------------------------------------------------------------===//
5441static Sema::AssignmentAction
5442getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5443 switch(Entity.getKind()) {
5444 case InitializedEntity::EK_Variable:
5445 case InitializedEntity::EK_New:
5446 case InitializedEntity::EK_Exception:
5447 case InitializedEntity::EK_Base:
5448 case InitializedEntity::EK_Delegating:
5449 return Sema::AA_Initializing;
5450
5451 case InitializedEntity::EK_Parameter:
5452 if (Entity.getDecl() &&
5453 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5454 return Sema::AA_Sending;
5455
5456 return Sema::AA_Passing;
5457
5458 case InitializedEntity::EK_Parameter_CF_Audited:
5459 if (Entity.getDecl() &&
5460 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5461 return Sema::AA_Sending;
5462
5463 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5464
5465 case InitializedEntity::EK_Result:
5466 return Sema::AA_Returning;
5467
5468 case InitializedEntity::EK_Temporary:
5469 case InitializedEntity::EK_RelatedResult:
5470 // FIXME: Can we tell apart casting vs. converting?
5471 return Sema::AA_Casting;
5472
5473 case InitializedEntity::EK_Member:
5474 case InitializedEntity::EK_Binding:
5475 case InitializedEntity::EK_ArrayElement:
5476 case InitializedEntity::EK_VectorElement:
5477 case InitializedEntity::EK_ComplexElement:
5478 case InitializedEntity::EK_BlockElement:
5479 case InitializedEntity::EK_LambdaCapture:
5480 case InitializedEntity::EK_CompoundLiteralInit:
5481 return Sema::AA_Initializing;
5482 }
5483
5484 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 5484)
;
5485}
5486
5487/// \brief Whether we should bind a created object as a temporary when
5488/// initializing the given entity.
5489static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5490 switch (Entity.getKind()) {
5491 case InitializedEntity::EK_ArrayElement:
5492 case InitializedEntity::EK_Member:
5493 case InitializedEntity::EK_Result:
5494 case InitializedEntity::EK_New:
5495 case InitializedEntity::EK_Variable:
5496 case InitializedEntity::EK_Base:
5497 case InitializedEntity::EK_Delegating:
5498 case InitializedEntity::EK_VectorElement:
5499 case InitializedEntity::EK_ComplexElement:
5500 case InitializedEntity::EK_Exception:
5501 case InitializedEntity::EK_BlockElement:
5502 case InitializedEntity::EK_LambdaCapture:
5503 case InitializedEntity::EK_CompoundLiteralInit:
5504 return false;
5505
5506 case InitializedEntity::EK_Parameter:
5507 case InitializedEntity::EK_Parameter_CF_Audited:
5508 case InitializedEntity::EK_Temporary:
5509 case InitializedEntity::EK_RelatedResult:
5510 case InitializedEntity::EK_Binding:
5511 return true;
5512 }
5513
5514 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 5514)
;
5515}
5516
5517/// \brief Whether the given entity, when initialized with an object
5518/// created for that initialization, requires destruction.
5519static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5520 switch (Entity.getKind()) {
5521 case InitializedEntity::EK_Result:
5522 case InitializedEntity::EK_New:
5523 case InitializedEntity::EK_Base:
5524 case InitializedEntity::EK_Delegating:
5525 case InitializedEntity::EK_VectorElement:
5526 case InitializedEntity::EK_ComplexElement:
5527 case InitializedEntity::EK_BlockElement:
5528 case InitializedEntity::EK_LambdaCapture:
5529 return false;
5530
5531 case InitializedEntity::EK_Member:
5532 case InitializedEntity::EK_Binding:
5533 case InitializedEntity::EK_Variable:
5534 case InitializedEntity::EK_Parameter:
5535 case InitializedEntity::EK_Parameter_CF_Audited:
5536 case InitializedEntity::EK_Temporary:
5537 case InitializedEntity::EK_ArrayElement:
5538 case InitializedEntity::EK_Exception:
5539 case InitializedEntity::EK_CompoundLiteralInit:
5540 case InitializedEntity::EK_RelatedResult:
5541 return true;
5542 }
5543
5544 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 5544)
;
5545}
5546
5547/// \brief Get the location at which initialization diagnostics should appear.
5548static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5549 Expr *Initializer) {
5550 switch (Entity.getKind()) {
5551 case InitializedEntity::EK_Result:
5552 return Entity.getReturnLoc();
5553
5554 case InitializedEntity::EK_Exception:
5555 return Entity.getThrowLoc();
5556
5557 case InitializedEntity::EK_Variable:
5558 case InitializedEntity::EK_Binding:
5559 return Entity.getDecl()->getLocation();
5560
5561 case InitializedEntity::EK_LambdaCapture:
5562 return Entity.getCaptureLoc();
5563
5564 case InitializedEntity::EK_ArrayElement:
5565 case InitializedEntity::EK_Member:
5566 case InitializedEntity::EK_Parameter:
5567 case InitializedEntity::EK_Parameter_CF_Audited:
5568 case InitializedEntity::EK_Temporary:
5569 case InitializedEntity::EK_New:
5570 case InitializedEntity::EK_Base:
5571 case InitializedEntity::EK_Delegating:
5572 case InitializedEntity::EK_VectorElement:
5573 case InitializedEntity::EK_ComplexElement:
5574 case InitializedEntity::EK_BlockElement:
5575 case InitializedEntity::EK_CompoundLiteralInit:
5576 case InitializedEntity::EK_RelatedResult:
5577 return Initializer->getLocStart();
5578 }
5579 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 5579)
;
5580}
5581
5582/// \brief Make a (potentially elidable) temporary copy of the object
5583/// provided by the given initializer by calling the appropriate copy
5584/// constructor.
5585///
5586/// \param S The Sema object used for type-checking.
5587///
5588/// \param T The type of the temporary object, which must either be
5589/// the type of the initializer expression or a superclass thereof.
5590///
5591/// \param Entity The entity being initialized.
5592///
5593/// \param CurInit The initializer expression.
5594///
5595/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5596/// is permitted in C++03 (but not C++0x) when binding a reference to
5597/// an rvalue.
5598///
5599/// \returns An expression that copies the initializer expression into
5600/// a temporary object, or an error expression if a copy could not be
5601/// created.
5602static ExprResult CopyObject(Sema &S,
5603 QualType T,
5604 const InitializedEntity &Entity,
5605 ExprResult CurInit,
5606 bool IsExtraneousCopy) {
5607 if (CurInit.isInvalid())
5608 return CurInit;
5609 // Determine which class type we're copying to.
5610 Expr *CurInitExpr = (Expr *)CurInit.get();
5611 CXXRecordDecl *Class = nullptr;
5612 if (const RecordType *Record = T->getAs<RecordType>())
5613 Class = cast<CXXRecordDecl>(Record->getDecl());
5614 if (!Class)
5615 return CurInit;
5616
5617 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5618
5619 // Make sure that the type we are copying is complete.
5620 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5621 return CurInit;
5622
5623 // Perform overload resolution using the class's constructors. Per
5624 // C++11 [dcl.init]p16, second bullet for class types, this initialization
5625 // is direct-initialization.
5626 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5627 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5628
5629 OverloadCandidateSet::iterator Best;
5630 switch (ResolveConstructorOverload(
5631 S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5632 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5633 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5634 /*SecondStepOfCopyInit=*/true)) {
5635 case OR_Success:
5636 break;
5637
5638 case OR_No_Viable_Function:
5639 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5640 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5641 : diag::err_temp_copy_no_viable)
5642 << (int)Entity.getKind() << CurInitExpr->getType()
5643 << CurInitExpr->getSourceRange();
5644 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5645 if (!IsExtraneousCopy || S.isSFINAEContext())
5646 return ExprError();
5647 return CurInit;
5648
5649 case OR_Ambiguous:
5650 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5651 << (int)Entity.getKind() << CurInitExpr->getType()
5652 << CurInitExpr->getSourceRange();
5653 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5654 return ExprError();
5655
5656 case OR_Deleted:
5657 S.Diag(Loc, diag::err_temp_copy_deleted)
5658 << (int)Entity.getKind() << CurInitExpr->getType()
5659 << CurInitExpr->getSourceRange();
5660 S.NoteDeletedFunction(Best->Function);
5661 return ExprError();
5662 }
5663
5664 bool HadMultipleCandidates = CandidateSet.size() > 1;
5665
5666 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5667 SmallVector<Expr*, 8> ConstructorArgs;
5668 CurInit.get(); // Ownership transferred into MultiExprArg, below.
5669
5670 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5671 IsExtraneousCopy);
5672
5673 if (IsExtraneousCopy) {
5674 // If this is a totally extraneous copy for C++03 reference
5675 // binding purposes, just return the original initialization
5676 // expression. We don't generate an (elided) copy operation here
5677 // because doing so would require us to pass down a flag to avoid
5678 // infinite recursion, where each step adds another extraneous,
5679 // elidable copy.
5680
5681 // Instantiate the default arguments of any extra parameters in
5682 // the selected copy constructor, as if we were going to create a
5683 // proper call to the copy constructor.
5684 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5685 ParmVarDecl *Parm = Constructor->getParamDecl(I);
5686 if (S.RequireCompleteType(Loc, Parm->getType(),
5687 diag::err_call_incomplete_argument))
5688 break;
5689
5690 // Build the default argument expression; we don't actually care
5691 // if this succeeds or not, because this routine will complain
5692 // if there was a problem.
5693 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5694 }
5695
5696 return CurInitExpr;
5697 }
5698
5699 // Determine the arguments required to actually perform the
5700 // constructor call (we might have derived-to-base conversions, or
5701 // the copy constructor may have default arguments).
5702 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5703 return ExprError();
5704
5705 // C++0x [class.copy]p32:
5706 // When certain criteria are met, an implementation is allowed to
5707 // omit the copy/move construction of a class object, even if the
5708 // copy/move constructor and/or destructor for the object have
5709 // side effects. [...]
5710 // - when a temporary class object that has not been bound to a
5711 // reference (12.2) would be copied/moved to a class object
5712 // with the same cv-unqualified type, the copy/move operation
5713 // can be omitted by constructing the temporary object
5714 // directly into the target of the omitted copy/move
5715 //
5716 // Note that the other three bullets are handled elsewhere. Copy
5717 // elision for return statements and throw expressions are handled as part
5718 // of constructor initialization, while copy elision for exception handlers
5719 // is handled by the run-time.
5720 //
5721 // FIXME: If the function parameter is not the same type as the temporary, we
5722 // should still be able to elide the copy, but we don't have a way to
5723 // represent in the AST how much should be elided in this case.
5724 bool Elidable =
5725 CurInitExpr->isTemporaryObject(S.Context, Class) &&
5726 S.Context.hasSameUnqualifiedType(
5727 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5728 CurInitExpr->getType());
5729
5730 // Actually perform the constructor call.
5731 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5732 Elidable,
5733 ConstructorArgs,
5734 HadMultipleCandidates,
5735 /*ListInit*/ false,
5736 /*StdInitListInit*/ false,
5737 /*ZeroInit*/ false,
5738 CXXConstructExpr::CK_Complete,
5739 SourceRange());
5740
5741 // If we're supposed to bind temporaries, do so.
5742 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5743 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5744 return CurInit;
5745}
5746
5747/// \brief Check whether elidable copy construction for binding a reference to
5748/// a temporary would have succeeded if we were building in C++98 mode, for
5749/// -Wc++98-compat.
5750static void CheckCXX98CompatAccessibleCopy(Sema &S,
5751 const InitializedEntity &Entity,
5752 Expr *CurInitExpr) {
5753 assert(S.getLangOpts().CPlusPlus11)((S.getLangOpts().CPlusPlus11) ? static_cast<void> (0) :
__assert_fail ("S.getLangOpts().CPlusPlus11", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 5753, __PRETTY_FUNCTION__))
;
5754
5755 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5756 if (!Record)
5757 return;
5758
5759 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5760 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5761 return;
5762
5763 // Find constructors which would have been considered.
5764 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5765 DeclContext::lookup_result Ctors =
5766 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
5767
5768 // Perform overload resolution.
5769 OverloadCandidateSet::iterator Best;
5770 OverloadingResult OR = ResolveConstructorOverload(
5771 S, Loc, CurInitExpr, CandidateSet, Ctors, Best,
5772 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5773 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5774 /*SecondStepOfCopyInit=*/true);
5775
5776 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5777 << OR << (int)Entity.getKind() << CurInitExpr->getType()
5778 << CurInitExpr->getSourceRange();
5779
5780 switch (OR) {
5781 case OR_Success:
5782 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5783 Best->FoundDecl, Entity, Diag);
5784 // FIXME: Check default arguments as far as that's possible.
5785 break;
5786
5787 case OR_No_Viable_Function:
5788 S.Diag(Loc, Diag);
5789 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5790 break;
5791
5792 case OR_Ambiguous:
5793 S.Diag(Loc, Diag);
5794 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5795 break;
5796
5797 case OR_Deleted:
5798 S.Diag(Loc, Diag);
5799 S.NoteDeletedFunction(Best->Function);
5800 break;
5801 }
5802}
5803
5804void InitializationSequence::PrintInitLocationNote(Sema &S,
5805 const InitializedEntity &Entity) {
5806 if (Entity.isParameterKind() && Entity.getDecl()) {
5807 if (Entity.getDecl()->getLocation().isInvalid())
5808 return;
5809
5810 if (Entity.getDecl()->getDeclName())
5811 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5812 << Entity.getDecl()->getDeclName();
5813 else
5814 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5815 }
5816 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5817 Entity.getMethodDecl())
5818 S.Diag(Entity.getMethodDecl()->getLocation(),
5819 diag::note_method_return_type_change)
5820 << Entity.getMethodDecl()->getDeclName();
5821}
5822
5823/// Returns true if the parameters describe a constructor initialization of
5824/// an explicit temporary object, e.g. "Point(x, y)".
5825static bool isExplicitTemporary(const InitializedEntity &Entity,
5826 const InitializationKind &Kind,
5827 unsigned NumArgs) {
5828 switch (Entity.getKind()) {
5829 case InitializedEntity::EK_Temporary:
5830 case InitializedEntity::EK_CompoundLiteralInit:
5831 case InitializedEntity::EK_RelatedResult:
5832 break;
5833 default:
5834 return false;
5835 }
5836
5837 switch (Kind.getKind()) {
5838 case InitializationKind::IK_DirectList:
5839 return true;
5840 // FIXME: Hack to work around cast weirdness.
5841 case InitializationKind::IK_Direct:
5842 case InitializationKind::IK_Value:
5843 return NumArgs != 1;
5844 default:
5845 return false;
5846 }
5847}
5848
5849static ExprResult
5850PerformConstructorInitialization(Sema &S,
5851 const InitializedEntity &Entity,
5852 const InitializationKind &Kind,
5853 MultiExprArg Args,
5854 const InitializationSequence::Step& Step,
5855 bool &ConstructorInitRequiresZeroInit,
5856 bool IsListInitialization,
5857 bool IsStdInitListInitialization,
5858 SourceLocation LBraceLoc,
5859 SourceLocation RBraceLoc) {
5860 unsigned NumArgs = Args.size();
5861 CXXConstructorDecl *Constructor
5862 = cast<CXXConstructorDecl>(Step.Function.Function);
5863 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5864
5865 // Build a call to the selected constructor.
5866 SmallVector<Expr*, 8> ConstructorArgs;
5867 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5868 ? Kind.getEqualLoc()
5869 : Kind.getLocation();
5870
5871 if (Kind.getKind() == InitializationKind::IK_Default) {
5872 // Force even a trivial, implicit default constructor to be
5873 // semantically checked. We do this explicitly because we don't build
5874 // the definition for completely trivial constructors.
5875 assert(Constructor->getParent() && "No parent class for constructor.")((Constructor->getParent() && "No parent class for constructor."
) ? static_cast<void> (0) : __assert_fail ("Constructor->getParent() && \"No parent class for constructor.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 5875, __PRETTY_FUNCTION__))
;
5876 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5877 Constructor->isTrivial() && !Constructor->isUsed(false))
5878 S.DefineImplicitDefaultConstructor(Loc, Constructor);
5879 }
5880
5881 ExprResult CurInit((Expr *)nullptr);
5882
5883 // C++ [over.match.copy]p1:
5884 // - When initializing a temporary to be bound to the first parameter
5885 // of a constructor that takes a reference to possibly cv-qualified
5886 // T as its first argument, called with a single argument in the
5887 // context of direct-initialization, explicit conversion functions
5888 // are also considered.
5889 bool AllowExplicitConv =
5890 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
5891 hasCopyOrMoveCtorParam(S.Context,
5892 getConstructorInfo(Step.Function.FoundDecl));
5893
5894 // Determine the arguments required to actually perform the constructor
5895 // call.
5896 if (S.CompleteConstructorCall(Constructor, Args,
5897 Loc, ConstructorArgs,
5898 AllowExplicitConv,
5899 IsListInitialization))
5900 return ExprError();
5901
5902
5903 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5904 // An explicitly-constructed temporary, e.g., X(1, 2).
5905 if (S.DiagnoseUseOfDecl(Constructor, Loc))
5906 return ExprError();
5907
5908 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5909 if (!TSInfo)
5910 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5911 SourceRange ParenOrBraceRange =
5912 (Kind.getKind() == InitializationKind::IK_DirectList)
5913 ? SourceRange(LBraceLoc, RBraceLoc)
5914 : Kind.getParenRange();
5915
5916 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
5917 Step.Function.FoundDecl.getDecl())) {
5918 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
5919 if (S.DiagnoseUseOfDecl(Constructor, Loc))
5920 return ExprError();
5921 }
5922 S.MarkFunctionReferenced(Loc, Constructor);
5923
5924 CurInit = new (S.Context) CXXTemporaryObjectExpr(
5925 S.Context, Constructor, TSInfo,
5926 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
5927 IsListInitialization, IsStdInitListInitialization,
5928 ConstructorInitRequiresZeroInit);
5929 } else {
5930 CXXConstructExpr::ConstructionKind ConstructKind =
5931 CXXConstructExpr::CK_Complete;
5932
5933 if (Entity.getKind() == InitializedEntity::EK_Base) {
5934 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5935 CXXConstructExpr::CK_VirtualBase :
5936 CXXConstructExpr::CK_NonVirtualBase;
5937 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5938 ConstructKind = CXXConstructExpr::CK_Delegating;
5939 }
5940
5941 // Only get the parenthesis or brace range if it is a list initialization or
5942 // direct construction.
5943 SourceRange ParenOrBraceRange;
5944 if (IsListInitialization)
5945 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5946 else if (Kind.getKind() == InitializationKind::IK_Direct)
5947 ParenOrBraceRange = Kind.getParenRange();
5948
5949 // If the entity allows NRVO, mark the construction as elidable
5950 // unconditionally.
5951 if (Entity.allowsNRVO())
5952 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5953 Step.Function.FoundDecl,
5954 Constructor, /*Elidable=*/true,
5955 ConstructorArgs,
5956 HadMultipleCandidates,
5957 IsListInitialization,
5958 IsStdInitListInitialization,
5959 ConstructorInitRequiresZeroInit,
5960 ConstructKind,
5961 ParenOrBraceRange);
5962 else
5963 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
5964 Step.Function.FoundDecl,
5965 Constructor,
5966 ConstructorArgs,
5967 HadMultipleCandidates,
5968 IsListInitialization,
5969 IsStdInitListInitialization,
5970 ConstructorInitRequiresZeroInit,
5971 ConstructKind,
5972 ParenOrBraceRange);
5973 }
5974 if (CurInit.isInvalid())
5975 return ExprError();
5976
5977 // Only check access if all of that succeeded.
5978 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
5979 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5980 return ExprError();
5981
5982 if (shouldBindAsTemporary(Entity))
5983 CurInit = S.MaybeBindToTemporary(CurInit.get());
5984
5985 return CurInit;
5986}
5987
5988/// Determine whether the specified InitializedEntity definitely has a lifetime
5989/// longer than the current full-expression. Conservatively returns false if
5990/// it's unclear.
5991static bool
5992InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5993 const InitializedEntity *Top = &Entity;
5994 while (Top->getParent())
5995 Top = Top->getParent();
5996
5997 switch (Top->getKind()) {
5998 case InitializedEntity::EK_Variable:
5999 case InitializedEntity::EK_Result:
6000 case InitializedEntity::EK_Exception:
6001 case InitializedEntity::EK_Member:
6002 case InitializedEntity::EK_Binding:
6003 case InitializedEntity::EK_New:
6004 case InitializedEntity::EK_Base:
6005 case InitializedEntity::EK_Delegating:
6006 return true;
6007
6008 case InitializedEntity::EK_ArrayElement:
6009 case InitializedEntity::EK_VectorElement:
6010 case InitializedEntity::EK_BlockElement:
6011 case InitializedEntity::EK_ComplexElement:
6012 // Could not determine what the full initialization is. Assume it might not
6013 // outlive the full-expression.
6014 return false;
6015
6016 case InitializedEntity::EK_Parameter:
6017 case InitializedEntity::EK_Parameter_CF_Audited:
6018 case InitializedEntity::EK_Temporary:
6019 case InitializedEntity::EK_LambdaCapture:
6020 case InitializedEntity::EK_CompoundLiteralInit:
6021 case InitializedEntity::EK_RelatedResult:
6022 // The entity being initialized might not outlive the full-expression.
6023 return false;
6024 }
6025
6026 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6026)
;
6027}
6028
6029/// Determine the declaration which an initialized entity ultimately refers to,
6030/// for the purpose of lifetime-extending a temporary bound to a reference in
6031/// the initialization of \p Entity.
6032static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
6033 const InitializedEntity *Entity,
6034 const InitializedEntity *FallbackDecl = nullptr) {
6035 // C++11 [class.temporary]p5:
6036 switch (Entity->getKind()) {
6037 case InitializedEntity::EK_Variable:
6038 // The temporary [...] persists for the lifetime of the reference
6039 return Entity;
6040
6041 case InitializedEntity::EK_Member:
6042 // For subobjects, we look at the complete object.
6043 if (Entity->getParent())
6044 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6045 Entity);
6046
6047 // except:
6048 // -- A temporary bound to a reference member in a constructor's
6049 // ctor-initializer persists until the constructor exits.
6050 return Entity;
6051
6052 case InitializedEntity::EK_Binding:
6053 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6054 // type.
6055 return Entity;
6056
6057 case InitializedEntity::EK_Parameter:
6058 case InitializedEntity::EK_Parameter_CF_Audited:
6059 // -- A temporary bound to a reference parameter in a function call
6060 // persists until the completion of the full-expression containing
6061 // the call.
6062 case InitializedEntity::EK_Result:
6063 // -- The lifetime of a temporary bound to the returned value in a
6064 // function return statement is not extended; the temporary is
6065 // destroyed at the end of the full-expression in the return statement.
6066 case InitializedEntity::EK_New:
6067 // -- A temporary bound to a reference in a new-initializer persists
6068 // until the completion of the full-expression containing the
6069 // new-initializer.
6070 return nullptr;
6071
6072 case InitializedEntity::EK_Temporary:
6073 case InitializedEntity::EK_CompoundLiteralInit:
6074 case InitializedEntity::EK_RelatedResult:
6075 // We don't yet know the storage duration of the surrounding temporary.
6076 // Assume it's got full-expression duration for now, it will patch up our
6077 // storage duration if that's not correct.
6078 return nullptr;
6079
6080 case InitializedEntity::EK_ArrayElement:
6081 // For subobjects, we look at the complete object.
6082 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6083 FallbackDecl);
6084
6085 case InitializedEntity::EK_Base:
6086 // For subobjects, we look at the complete object.
6087 if (Entity->getParent())
6088 return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
6089 Entity);
6090 // Fall through.
6091 case InitializedEntity::EK_Delegating:
6092 // We can reach this case for aggregate initialization in a constructor:
6093 // struct A { int &&r; };
6094 // struct B : A { B() : A{0} {} };
6095 // In this case, use the innermost field decl as the context.
6096 return FallbackDecl;
6097
6098 case InitializedEntity::EK_BlockElement:
6099 case InitializedEntity::EK_LambdaCapture:
6100 case InitializedEntity::EK_Exception:
6101 case InitializedEntity::EK_VectorElement:
6102 case InitializedEntity::EK_ComplexElement:
6103 return nullptr;
6104 }
6105 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6105)
;
6106}
6107
6108static void performLifetimeExtension(Expr *Init,
6109 const InitializedEntity *ExtendingEntity);
6110
6111/// Update a glvalue expression that is used as the initializer of a reference
6112/// to note that its lifetime is extended.
6113/// \return \c true if any temporary had its lifetime extended.
6114static bool
6115performReferenceExtension(Expr *Init,
6116 const InitializedEntity *ExtendingEntity) {
6117 // Walk past any constructs which we can lifetime-extend across.
6118 Expr *Old;
6119 do {
6120 Old = Init;
6121
6122 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6123 if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
6124 // This is just redundant braces around an initializer. Step over it.
6125 Init = ILE->getInit(0);
6126 }
6127 }
6128
6129 // Step over any subobject adjustments; we may have a materialized
6130 // temporary inside them.
6131 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6132
6133 // Per current approach for DR1376, look through casts to reference type
6134 // when performing lifetime extension.
6135 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6136 if (CE->getSubExpr()->isGLValue())
6137 Init = CE->getSubExpr();
6138
6139 // Per the current approach for DR1299, look through array element access
6140 // when performing lifetime extension.
6141 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init))
6142 Init = ASE->getBase();
6143 } while (Init != Old);
6144
6145 if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6146 // Update the storage duration of the materialized temporary.
6147 // FIXME: Rebuild the expression instead of mutating it.
6148 ME->setExtendingDecl(ExtendingEntity->getDecl(),
6149 ExtendingEntity->allocateManglingNumber());
6150 performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
6151 return true;
6152 }
6153
6154 return false;
6155}
6156
6157/// Update a prvalue expression that is going to be materialized as a
6158/// lifetime-extended temporary.
6159static void performLifetimeExtension(Expr *Init,
6160 const InitializedEntity *ExtendingEntity) {
6161 // Dig out the expression which constructs the extended temporary.
6162 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6163
6164 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6165 Init = BTE->getSubExpr();
6166
6167 if (CXXStdInitializerListExpr *ILE =
6168 dyn_cast<CXXStdInitializerListExpr>(Init)) {
6169 performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
6170 return;
6171 }
6172
6173 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6174 if (ILE->getType()->isArrayType()) {
6175 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6176 performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
6177 return;
6178 }
6179
6180 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6181 assert(RD->isAggregate() && "aggregate init on non-aggregate")((RD->isAggregate() && "aggregate init on non-aggregate"
) ? static_cast<void> (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6181, __PRETTY_FUNCTION__))
;
6182
6183 // If we lifetime-extend a braced initializer which is initializing an
6184 // aggregate, and that aggregate contains reference members which are
6185 // bound to temporaries, those temporaries are also lifetime-extended.
6186 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6187 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6188 performReferenceExtension(ILE->getInit(0), ExtendingEntity);
6189 else {
6190 unsigned Index = 0;
6191 for (const auto *I : RD->fields()) {
6192 if (Index >= ILE->getNumInits())
6193 break;
6194 if (I->isUnnamedBitfield())
6195 continue;
6196 Expr *SubInit = ILE->getInit(Index);
6197 if (I->getType()->isReferenceType())
6198 performReferenceExtension(SubInit, ExtendingEntity);
6199 else if (isa<InitListExpr>(SubInit) ||
6200 isa<CXXStdInitializerListExpr>(SubInit))
6201 // This may be either aggregate-initialization of a member or
6202 // initialization of a std::initializer_list object. Either way,
6203 // we should recursively lifetime-extend that initializer.
6204 performLifetimeExtension(SubInit, ExtendingEntity);
6205 ++Index;
6206 }
6207 }
6208 }
6209 }
6210}
6211
6212static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
6213 const Expr *Init, bool IsInitializerList,
6214 const ValueDecl *ExtendingDecl) {
6215 // Warn if a field lifetime-extends a temporary.
6216 if (isa<FieldDecl>(ExtendingDecl)) {
6217 if (IsInitializerList) {
6218 S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
6219 << /*at end of constructor*/true;
6220 return;
6221 }
6222
6223 bool IsSubobjectMember = false;
6224 for (const InitializedEntity *Ent = Entity.getParent(); Ent;
6225 Ent = Ent->getParent()) {
6226 if (Ent->getKind() != InitializedEntity::EK_Base) {
6227 IsSubobjectMember = true;
6228 break;
6229 }
6230 }
6231 S.Diag(Init->getExprLoc(),
6232 diag::warn_bind_ref_member_to_temporary)
6233 << ExtendingDecl << Init->getSourceRange()
6234 << IsSubobjectMember << IsInitializerList;
6235 if (IsSubobjectMember)
6236 S.Diag(ExtendingDecl->getLocation(),
6237 diag::note_ref_subobject_of_member_declared_here);
6238 else
6239 S.Diag(ExtendingDecl->getLocation(),
6240 diag::note_ref_or_ptr_member_declared_here)
6241 << /*is pointer*/false;
6242 }
6243}
6244
6245static void DiagnoseNarrowingInInitList(Sema &S,
6246 const ImplicitConversionSequence &ICS,
6247 QualType PreNarrowingType,
6248 QualType EntityType,
6249 const Expr *PostInit);
6250
6251/// Provide warnings when std::move is used on construction.
6252static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
6253 bool IsReturnStmt) {
6254 if (!InitExpr)
6255 return;
6256
6257 if (!S.ActiveTemplateInstantiations.empty())
6258 return;
6259
6260 QualType DestType = InitExpr->getType();
6261 if (!DestType->isRecordType())
6262 return;
6263
6264 unsigned DiagID = 0;
6265 if (IsReturnStmt) {
6266 const CXXConstructExpr *CCE =
6267 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
6268 if (!CCE || CCE->getNumArgs() != 1)
6269 return;
6270
6271 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
6272 return;
6273
6274 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
6275 }
6276
6277 // Find the std::move call and get the argument.
6278 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
6279 if (!CE || CE->getNumArgs() != 1)
6280 return;
6281
6282 const FunctionDecl *MoveFunction = CE->getDirectCallee();
6283 if (!MoveFunction || !MoveFunction->isInStdNamespace() ||
6284 !MoveFunction->getIdentifier() ||
6285 !MoveFunction->getIdentifier()->isStr("move"))
6286 return;
6287
6288 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
6289
6290 if (IsReturnStmt) {
6291 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
6292 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
6293 return;
6294
6295 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
6296 if (!VD || !VD->hasLocalStorage())
6297 return;
6298
6299 QualType SourceType = VD->getType();
6300 if (!SourceType->isRecordType())
6301 return;
6302
6303 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
6304 return;
6305 }
6306
6307 // If we're returning a function parameter, copy elision
6308 // is not possible.
6309 if (isa<ParmVarDecl>(VD))
6310 DiagID = diag::warn_redundant_move_on_return;
6311 else
6312 DiagID = diag::warn_pessimizing_move_on_return;
6313 } else {
6314 DiagID = diag::warn_pessimizing_move_on_initialization;
6315 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6316 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6317 return;
6318 }
6319
6320 S.Diag(CE->getLocStart(), DiagID);
6321
6322 // Get all the locations for a fix-it. Don't emit the fix-it if any location
6323 // is within a macro.
6324 SourceLocation CallBegin = CE->getCallee()->getLocStart();
6325 if (CallBegin.isMacroID())
6326 return;
6327 SourceLocation RParen = CE->getRParenLoc();
6328 if (RParen.isMacroID())
6329 return;
6330 SourceLocation LParen;
6331 SourceLocation ArgLoc = Arg->getLocStart();
6332
6333 // Special testing for the argument location. Since the fix-it needs the
6334 // location right before the argument, the argument location can be in a
6335 // macro only if it is at the beginning of the macro.
6336 while (ArgLoc.isMacroID() &&
6337 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6338 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).first;
6339 }
6340
6341 if (LParen.isMacroID())
6342 return;
6343
6344 LParen = ArgLoc.getLocWithOffset(-1);
6345
6346 S.Diag(CE->getLocStart(), diag::note_remove_move)
6347 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
6348 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
6349}
6350
6351static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
6352 // Check to see if we are dereferencing a null pointer. If so, this is
6353 // undefined behavior, so warn about it. This only handles the pattern
6354 // "*null", which is a very syntactic check.
6355 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
6356 if (UO->getOpcode() == UO_Deref &&
6357 UO->getSubExpr()->IgnoreParenCasts()->
6358 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
6359 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
6360 S.PDiag(diag::warn_binding_null_to_reference)
6361 << UO->getSubExpr()->getSourceRange());
6362 }
6363}
6364
6365MaterializeTemporaryExpr *
6366Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
6367 bool BoundToLvalueReference) {
6368 auto MTE = new (Context)
6369 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
6370
6371 // Order an ExprWithCleanups for lifetime marks.
6372 //
6373 // TODO: It'll be good to have a single place to check the access of the
6374 // destructor and generate ExprWithCleanups for various uses. Currently these
6375 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
6376 // but there may be a chance to merge them.
6377 Cleanup.setExprNeedsCleanups(false);
6378 return MTE;
6379}
6380
6381ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
6382 // In C++98, we don't want to implicitly create an xvalue.
6383 // FIXME: This means that AST consumers need to deal with "prvalues" that
6384 // denote materialized temporaries. Maybe we should add another ValueKind
6385 // for "xvalue pretending to be a prvalue" for C++98 support.
6386 if (!E->isRValue() || !getLangOpts().CPlusPlus11)
6387 return E;
6388
6389 // C++1z [conv.rval]/1: T shall be a complete type.
6390 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
6391 // If so, we should check for a non-abstract class type here too.
6392 QualType T = E->getType();
6393 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
6394 return ExprError();
6395
6396 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
6397}
6398
6399ExprResult
6400InitializationSequence::Perform(Sema &S,
6401 const InitializedEntity &Entity,
6402 const InitializationKind &Kind,
6403 MultiExprArg Args,
6404 QualType *ResultType) {
6405 if (Failed()) {
6406 Diagnose(S, Entity, Kind, Args);
6407 return ExprError();
6408 }
6409 if (!ZeroInitializationFixit.empty()) {
6410 unsigned DiagID = diag::err_default_init_const;
6411 if (Decl *D = Entity.getDecl())
6412 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
6413 DiagID = diag::ext_default_init_const;
6414
6415 // The initialization would have succeeded with this fixit. Since the fixit
6416 // is on the error, we need to build a valid AST in this case, so this isn't
6417 // handled in the Failed() branch above.
6418 QualType DestType = Entity.getType();
6419 S.Diag(Kind.getLocation(), DiagID)
6420 << DestType << (bool)DestType->getAs<RecordType>()
6421 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
6422 ZeroInitializationFixit);
6423 }
6424
6425 if (getKind() == DependentSequence) {
6426 // If the declaration is a non-dependent, incomplete array type
6427 // that has an initializer, then its type will be completed once
6428 // the initializer is instantiated.
6429 if (ResultType && !Entity.getType()->isDependentType() &&
6430 Args.size() == 1) {
6431 QualType DeclType = Entity.getType();
6432 if (const IncompleteArrayType *ArrayT
6433 = S.Context.getAsIncompleteArrayType(DeclType)) {
6434 // FIXME: We don't currently have the ability to accurately
6435 // compute the length of an initializer list without
6436 // performing full type-checking of the initializer list
6437 // (since we have to determine where braces are implicitly
6438 // introduced and such). So, we fall back to making the array
6439 // type a dependently-sized array type with no specified
6440 // bound.
6441 if (isa<InitListExpr>((Expr *)Args[0])) {
6442 SourceRange Brackets;
6443
6444 // Scavange the location of the brackets from the entity, if we can.
6445 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
6446 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
6447 TypeLoc TL = TInfo->getTypeLoc();
6448 if (IncompleteArrayTypeLoc ArrayLoc =
6449 TL.getAs<IncompleteArrayTypeLoc>())
6450 Brackets = ArrayLoc.getBracketsRange();
6451 }
6452 }
6453
6454 *ResultType
6455 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
6456 /*NumElts=*/nullptr,
6457 ArrayT->getSizeModifier(),
6458 ArrayT->getIndexTypeCVRQualifiers(),
6459 Brackets);
6460 }
6461
6462 }
6463 }
6464 if (Kind.getKind() == InitializationKind::IK_Direct &&
6465 !Kind.isExplicitCast()) {
6466 // Rebuild the ParenListExpr.
6467 SourceRange ParenRange = Kind.getParenRange();
6468 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
6469 Args);
6470 }
6471 assert(Kind.getKind() == InitializationKind::IK_Copy ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6473, __PRETTY_FUNCTION__))
6472 Kind.isExplicitCast() ||((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6473, __PRETTY_FUNCTION__))
6473 Kind.getKind() == InitializationKind::IK_DirectList)((Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast
() || Kind.getKind() == InitializationKind::IK_DirectList) ? static_cast
<void> (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6473, __PRETTY_FUNCTION__))
;
6474 return ExprResult(Args[0]);
6475 }
6476
6477 // No steps means no initialization.
6478 if (Steps.empty())
6479 return ExprResult((Expr *)nullptr);
6480
6481 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
6482 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
6483 !Entity.isParameterKind()) {
6484 // Produce a C++98 compatibility warning if we are initializing a reference
6485 // from an initializer list. For parameters, we produce a better warning
6486 // elsewhere.
6487 Expr *Init = Args[0];
6488 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
6489 << Init->getSourceRange();
6490 }
6491
6492 // Diagnose cases where we initialize a pointer to an array temporary, and the
6493 // pointer obviously outlives the temporary.
6494 if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
6495 Entity.getType()->isPointerType() &&
6496 InitializedEntityOutlivesFullExpression(Entity)) {
6497 const Expr *Init = Args[0]->skipRValueSubobjectAdjustments();
6498 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init))
6499 Init = MTE->GetTemporaryExpr();
6500 Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
6501 if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
6502 S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
6503 << Init->getSourceRange();
6504 }
6505
6506 QualType DestType = Entity.getType().getNonReferenceType();
6507 // FIXME: Ugly hack around the fact that Entity.getType() is not
6508 // the same as Entity.getDecl()->getType() in cases involving type merging,
6509 // and we want latter when it makes sense.
6510 if (ResultType)
6511 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
6512 Entity.getType();
6513
6514 ExprResult CurInit((Expr *)nullptr);
6515 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
6516
6517 // For initialization steps that start with a single initializer,
6518 // grab the only argument out the Args and place it into the "current"
6519 // initializer.
6520 switch (Steps.front().Kind) {
6521 case SK_ResolveAddressOfOverloadedFunction:
6522 case SK_CastDerivedToBaseRValue:
6523 case SK_CastDerivedToBaseXValue:
6524 case SK_CastDerivedToBaseLValue:
6525 case SK_BindReference:
6526 case SK_BindReferenceToTemporary:
6527 case SK_FinalCopy:
6528 case SK_ExtraneousCopyToTemporary:
6529 case SK_UserConversion:
6530 case SK_QualificationConversionLValue:
6531 case SK_QualificationConversionXValue:
6532 case SK_QualificationConversionRValue:
6533 case SK_AtomicConversion:
6534 case SK_LValueToRValue:
6535 case SK_ConversionSequence:
6536 case SK_ConversionSequenceNoNarrowing:
6537 case SK_ListInitialization:
6538 case SK_UnwrapInitList:
6539 case SK_RewrapInitList:
6540 case SK_CAssignment:
6541 case SK_StringInit:
6542 case SK_ObjCObjectConversion:
6543 case SK_ArrayLoopIndex:
6544 case SK_ArrayLoopInit:
6545 case SK_ArrayInit:
6546 case SK_GNUArrayInit:
6547 case SK_ParenthesizedArrayInit:
6548 case SK_PassByIndirectCopyRestore:
6549 case SK_PassByIndirectRestore:
6550 case SK_ProduceObjCObject:
6551 case SK_StdInitializerList:
6552 case SK_OCLSamplerInit:
6553 case SK_OCLZeroEvent:
6554 case SK_OCLZeroQueue: {
6555 assert(Args.size() == 1)((Args.size() == 1) ? static_cast<void> (0) : __assert_fail
("Args.size() == 1", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6555, __PRETTY_FUNCTION__))
;
6556 CurInit = Args[0];
6557 if (!CurInit.get()) return ExprError();
6558 break;
6559 }
6560
6561 case SK_ConstructorInitialization:
6562 case SK_ConstructorInitializationFromList:
6563 case SK_StdInitializerListConstructorCall:
6564 case SK_ZeroInitialization:
6565 break;
6566 }
6567
6568 // Promote from an unevaluated context to an unevaluated list context in
6569 // C++11 list-initialization; we need to instantiate entities usable in
6570 // constant expressions here in order to perform narrowing checks =(
6571 EnterExpressionEvaluationContext Evaluated(
6572 S, EnterExpressionEvaluationContext::InitList,
6573 CurInit.get() && isa<InitListExpr>(CurInit.get()));
6574
6575 // C++ [class.abstract]p2:
6576 // no objects of an abstract class can be created except as subobjects
6577 // of a class derived from it
6578 auto checkAbstractType = [&](QualType T) -> bool {
6579 if (Entity.getKind() == InitializedEntity::EK_Base ||
6580 Entity.getKind() == InitializedEntity::EK_Delegating)
6581 return false;
6582 return S.RequireNonAbstractType(Kind.getLocation(), T,
6583 diag::err_allocation_of_abstract_type);
6584 };
6585
6586 // Walk through the computed steps for the initialization sequence,
6587 // performing the specified conversions along the way.
6588 bool ConstructorInitRequiresZeroInit = false;
6589 for (step_iterator Step = step_begin(), StepEnd = step_end();
6590 Step != StepEnd; ++Step) {
6591 if (CurInit.isInvalid())
6592 return ExprError();
6593
6594 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
6595
6596 switch (Step->Kind) {
6597 case SK_ResolveAddressOfOverloadedFunction:
6598 // Overload resolution determined which function invoke; update the
6599 // initializer to reflect that choice.
6600 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
6601 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
6602 return ExprError();
6603 CurInit = S.FixOverloadedFunctionReference(CurInit,
6604 Step->Function.FoundDecl,
6605 Step->Function.Function);
6606 break;
6607
6608 case SK_CastDerivedToBaseRValue:
6609 case SK_CastDerivedToBaseXValue:
6610 case SK_CastDerivedToBaseLValue: {
6611 // We have a derived-to-base cast that produces either an rvalue or an
6612 // lvalue. Perform that cast.
6613
6614 CXXCastPath BasePath;
6615
6616 // Casts to inaccessible base classes are allowed with C-style casts.
6617 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
6618 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
6619 CurInit.get()->getLocStart(),
6620 CurInit.get()->getSourceRange(),
6621 &BasePath, IgnoreBaseAccess))
6622 return ExprError();
6623
6624 ExprValueKind VK =
6625 Step->Kind == SK_CastDerivedToBaseLValue ?
6626 VK_LValue :
6627 (Step->Kind == SK_CastDerivedToBaseXValue ?
6628 VK_XValue :
6629 VK_RValue);
6630 CurInit =
6631 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
6632 CurInit.get(), &BasePath, VK);
6633 break;
6634 }
6635
6636 case SK_BindReference:
6637 // Reference binding does not have any corresponding ASTs.
6638
6639 // Check exception specifications
6640 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6641 return ExprError();
6642
6643 // Even though we didn't materialize a temporary, the binding may still
6644 // extend the lifetime of a temporary. This happens if we bind a reference
6645 // to the result of a cast to reference type.
6646 if (const InitializedEntity *ExtendingEntity =
6647 getEntityForTemporaryLifetimeExtension(&Entity))
6648 if (performReferenceExtension(CurInit.get(), ExtendingEntity))
6649 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6650 /*IsInitializerList=*/false,
6651 ExtendingEntity->getDecl());
6652
6653 CheckForNullPointerDereference(S, CurInit.get());
6654 break;
6655
6656 case SK_BindReferenceToTemporary: {
6657 // Make sure the "temporary" is actually an rvalue.
6658 assert(CurInit.get()->isRValue() && "not a temporary")((CurInit.get()->isRValue() && "not a temporary") ?
static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"not a temporary\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6658, __PRETTY_FUNCTION__))
;
6659
6660 // Check exception specifications
6661 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
6662 return ExprError();
6663
6664 // Materialize the temporary into memory.
6665 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
6666 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
6667
6668 // Maybe lifetime-extend the temporary's subobjects to match the
6669 // entity's lifetime.
6670 if (const InitializedEntity *ExtendingEntity =
6671 getEntityForTemporaryLifetimeExtension(&Entity))
6672 if (performReferenceExtension(MTE, ExtendingEntity))
6673 warnOnLifetimeExtension(S, Entity, CurInit.get(),
6674 /*IsInitializerList=*/false,
6675 ExtendingEntity->getDecl());
6676
6677 // If we're binding to an Objective-C object that has lifetime, we
6678 // need cleanups. Likewise if we're extending this temporary to automatic
6679 // storage duration -- we need to register its cleanup during the
6680 // full-expression's cleanups.
6681 if ((S.getLangOpts().ObjCAutoRefCount &&
6682 MTE->getType()->isObjCLifetimeType()) ||
6683 (MTE->getStorageDuration() == SD_Automatic &&
6684 MTE->getType().isDestructedType()))
6685 S.Cleanup.setExprNeedsCleanups(true);
6686
6687 CurInit = MTE;
6688 break;
6689 }
6690
6691 case SK_FinalCopy:
6692 if (checkAbstractType(Step->Type))
6693 return ExprError();
6694
6695 // If the overall initialization is initializing a temporary, we already
6696 // bound our argument if it was necessary to do so. If not (if we're
6697 // ultimately initializing a non-temporary), our argument needs to be
6698 // bound since it's initializing a function parameter.
6699 // FIXME: This is a mess. Rationalize temporary destruction.
6700 if (!shouldBindAsTemporary(Entity))
6701 CurInit = S.MaybeBindToTemporary(CurInit.get());
6702 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6703 /*IsExtraneousCopy=*/false);
6704 break;
6705
6706 case SK_ExtraneousCopyToTemporary:
6707 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
6708 /*IsExtraneousCopy=*/true);
6709 break;
6710
6711 case SK_UserConversion: {
6712 // We have a user-defined conversion that invokes either a constructor
6713 // or a conversion function.
6714 CastKind CastKind;
6715 FunctionDecl *Fn = Step->Function.Function;
6716 DeclAccessPair FoundFn = Step->Function.FoundDecl;
6717 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
6718 bool CreatedObject = false;
6719 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
6720 // Build a call to the selected constructor.
6721 SmallVector<Expr*, 8> ConstructorArgs;
6722 SourceLocation Loc = CurInit.get()->getLocStart();
6723
6724 // Determine the arguments required to actually perform the constructor
6725 // call.
6726 Expr *Arg = CurInit.get();
6727 if (S.CompleteConstructorCall(Constructor,
6728 MultiExprArg(&Arg, 1),
6729 Loc, ConstructorArgs))
6730 return ExprError();
6731
6732 // Build an expression that constructs a temporary.
6733 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
6734 FoundFn, Constructor,
6735 ConstructorArgs,
6736 HadMultipleCandidates,
6737 /*ListInit*/ false,
6738 /*StdInitListInit*/ false,
6739 /*ZeroInit*/ false,
6740 CXXConstructExpr::CK_Complete,
6741 SourceRange());
6742 if (CurInit.isInvalid())
6743 return ExprError();
6744
6745 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
6746 Entity);
6747 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6748 return ExprError();
6749
6750 CastKind = CK_ConstructorConversion;
6751 CreatedObject = true;
6752 } else {
6753 // Build a call to the conversion function.
6754 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
6755 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
6756 FoundFn);
6757 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
6758 return ExprError();
6759
6760 // FIXME: Should we move this initialization into a separate
6761 // derived-to-base conversion? I believe the answer is "no", because
6762 // we don't want to turn off access control here for c-style casts.
6763 CurInit = S.PerformObjectArgumentInitialization(CurInit.get(),
6764 /*Qualifier=*/nullptr,
6765 FoundFn, Conversion);
6766 if (CurInit.isInvalid())
6767 return ExprError();
6768
6769 // Build the actual call to the conversion function.
6770 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
6771 HadMultipleCandidates);
6772 if (CurInit.isInvalid())
6773 return ExprError();
6774
6775 CastKind = CK_UserDefinedConversion;
6776 CreatedObject = Conversion->getReturnType()->isRecordType();
6777 }
6778
6779 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
6780 return ExprError();
6781
6782 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6783 CastKind, CurInit.get(), nullptr,
6784 CurInit.get()->getValueKind());
6785
6786 if (shouldBindAsTemporary(Entity))
6787 // The overall entity is temporary, so this expression should be
6788 // destroyed at the end of its full-expression.
6789 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6790 else if (CreatedObject && shouldDestroyEntity(Entity)) {
6791 // The object outlasts the full-expression, but we need to prepare for
6792 // a destructor being run on it.
6793 // FIXME: It makes no sense to do this here. This should happen
6794 // regardless of how we initialized the entity.
6795 QualType T = CurInit.get()->getType();
6796 if (const RecordType *Record = T->getAs<RecordType>()) {
6797 CXXDestructorDecl *Destructor
6798 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6799 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6800 S.PDiag(diag::err_access_dtor_temp) << T);
6801 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6802 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6803 return ExprError();
6804 }
6805 }
6806 break;
6807 }
6808
6809 case SK_QualificationConversionLValue:
6810 case SK_QualificationConversionXValue:
6811 case SK_QualificationConversionRValue: {
6812 // Perform a qualification conversion; these can never go wrong.
6813 ExprValueKind VK =
6814 Step->Kind == SK_QualificationConversionLValue ?
6815 VK_LValue :
6816 (Step->Kind == SK_QualificationConversionXValue ?
6817 VK_XValue :
6818 VK_RValue);
6819 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6820 break;
6821 }
6822
6823 case SK_AtomicConversion: {
6824 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic")((CurInit.get()->isRValue() && "cannot convert glvalue to atomic"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isRValue() && \"cannot convert glvalue to atomic\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6824, __PRETTY_FUNCTION__))
;
6825 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6826 CK_NonAtomicToAtomic, VK_RValue);
6827 break;
6828 }
6829
6830 case SK_LValueToRValue: {
6831 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue")((CurInit.get()->isGLValue() && "cannot load from a prvalue"
) ? static_cast<void> (0) : __assert_fail ("CurInit.get()->isGLValue() && \"cannot load from a prvalue\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6831, __PRETTY_FUNCTION__))
;
6832 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6833 CK_LValueToRValue, CurInit.get(),
6834 /*BasePath=*/nullptr, VK_RValue);
6835 break;
6836 }
6837
6838 case SK_ConversionSequence:
6839 case SK_ConversionSequenceNoNarrowing: {
6840 Sema::CheckedConversionKind CCK
6841 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6842 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6843 : Kind.isExplicitCast()? Sema::CCK_OtherCast
6844 : Sema::CCK_ImplicitConversion;
6845 ExprResult CurInitExprRes =
6846 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6847 getAssignmentAction(Entity), CCK);
6848 if (CurInitExprRes.isInvalid())
6849 return ExprError();
6850
6851 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
6852
6853 CurInit = CurInitExprRes;
6854
6855 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6856 S.getLangOpts().CPlusPlus)
6857 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6858 CurInit.get());
6859
6860 break;
6861 }
6862
6863 case SK_ListInitialization: {
6864 if (checkAbstractType(Step->Type))
6865 return ExprError();
6866
6867 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6868 // If we're not initializing the top-level entity, we need to create an
6869 // InitializeTemporary entity for our target type.
6870 QualType Ty = Step->Type;
6871 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6872 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6873 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6874 InitListChecker PerformInitList(S, InitEntity,
6875 InitList, Ty, /*VerifyOnly=*/false,
6876 /*TreatUnavailableAsInvalid=*/false);
6877 if (PerformInitList.HadError())
6878 return ExprError();
6879
6880 // Hack: We must update *ResultType if available in order to set the
6881 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6882 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6883 if (ResultType &&
6884 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6885 if ((*ResultType)->isRValueReferenceType())
6886 Ty = S.Context.getRValueReferenceType(Ty);
6887 else if ((*ResultType)->isLValueReferenceType())
6888 Ty = S.Context.getLValueReferenceType(Ty,
6889 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6890 *ResultType = Ty;
6891 }
6892
6893 InitListExpr *StructuredInitList =
6894 PerformInitList.getFullyStructuredList();
6895 CurInit.get();
6896 CurInit = shouldBindAsTemporary(InitEntity)
6897 ? S.MaybeBindToTemporary(StructuredInitList)
6898 : StructuredInitList;
6899 break;
6900 }
6901
6902 case SK_ConstructorInitializationFromList: {
6903 if (checkAbstractType(Step->Type))
6904 return ExprError();
6905
6906 // When an initializer list is passed for a parameter of type "reference
6907 // to object", we don't get an EK_Temporary entity, but instead an
6908 // EK_Parameter entity with reference type.
6909 // FIXME: This is a hack. What we really should do is create a user
6910 // conversion step for this case, but this makes it considerably more
6911 // complicated. For now, this will do.
6912 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6913 Entity.getType().getNonReferenceType());
6914 bool UseTemporary = Entity.getType()->isReferenceType();
6915 assert(Args.size() == 1 && "expected a single argument for list init")((Args.size() == 1 && "expected a single argument for list init"
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 6915, __PRETTY_FUNCTION__))
;
6916 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6917 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6918 << InitList->getSourceRange();
6919 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6920 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6921 Entity,
6922 Kind, Arg, *Step,
6923 ConstructorInitRequiresZeroInit,
6924 /*IsListInitialization*/true,
6925 /*IsStdInitListInit*/false,
6926 InitList->getLBraceLoc(),
6927 InitList->getRBraceLoc());
6928 break;
6929 }
6930
6931 case SK_UnwrapInitList:
6932 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6933 break;
6934
6935 case SK_RewrapInitList: {
6936 Expr *E = CurInit.get();
6937 InitListExpr *Syntactic = Step->WrappingSyntacticList;
6938 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6939 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6940 ILE->setSyntacticForm(Syntactic);
6941 ILE->setType(E->getType());
6942 ILE->setValueKind(E->getValueKind());
6943 CurInit = ILE;
6944 break;
6945 }
6946
6947 case SK_ConstructorInitialization:
6948 case SK_StdInitializerListConstructorCall: {
6949 if (checkAbstractType(Step->Type))
6950 return ExprError();
6951
6952 // When an initializer list is passed for a parameter of type "reference
6953 // to object", we don't get an EK_Temporary entity, but instead an
6954 // EK_Parameter entity with reference type.
6955 // FIXME: This is a hack. What we really should do is create a user
6956 // conversion step for this case, but this makes it considerably more
6957 // complicated. For now, this will do.
6958 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6959 Entity.getType().getNonReferenceType());
6960 bool UseTemporary = Entity.getType()->isReferenceType();
6961 bool IsStdInitListInit =
6962 Step->Kind == SK_StdInitializerListConstructorCall;
6963 Expr *Source = CurInit.get();
6964 CurInit = PerformConstructorInitialization(
6965 S, UseTemporary ? TempEntity : Entity, Kind,
6966 Source ? MultiExprArg(Source) : Args, *Step,
6967 ConstructorInitRequiresZeroInit,
6968 /*IsListInitialization*/ IsStdInitListInit,
6969 /*IsStdInitListInitialization*/ IsStdInitListInit,
6970 /*LBraceLoc*/ SourceLocation(),
6971 /*RBraceLoc*/ SourceLocation());
6972 break;
6973 }
6974
6975 case SK_ZeroInitialization: {
6976 step_iterator NextStep = Step;
6977 ++NextStep;
6978 if (NextStep != StepEnd &&
6979 (NextStep->Kind == SK_ConstructorInitialization ||
6980 NextStep->Kind == SK_ConstructorInitializationFromList)) {
6981 // The need for zero-initialization is recorded directly into
6982 // the call to the object's constructor within the next step.
6983 ConstructorInitRequiresZeroInit = true;
6984 } else if (Kind.getKind() == InitializationKind::IK_Value &&
6985 S.getLangOpts().CPlusPlus &&
6986 !Kind.isImplicitValueInit()) {
6987 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6988 if (!TSInfo)
6989 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6990 Kind.getRange().getBegin());
6991
6992 CurInit = new (S.Context) CXXScalarValueInitExpr(
6993 TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6994 Kind.getRange().getEnd());
6995 } else {
6996 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6997 }
6998 break;
6999 }
7000
7001 case SK_CAssignment: {
7002 QualType SourceType = CurInit.get()->getType();
7003 // Save off the initial CurInit in case we need to emit a diagnostic
7004 ExprResult InitialCurInit = CurInit;
7005 ExprResult Result = CurInit;
7006 Sema::AssignConvertType ConvTy =
7007 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7008 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7009 if (Result.isInvalid())
7010 return ExprError();
7011 CurInit = Result;
7012
7013 // If this is a call, allow conversion to a transparent union.
7014 ExprResult CurInitExprRes = CurInit;
7015 if (ConvTy != Sema::Compatible &&
7016 Entity.isParameterKind() &&
7017 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7018 == Sema::Compatible)
7019 ConvTy = Sema::Compatible;
7020 if (CurInitExprRes.isInvalid())
7021 return ExprError();
7022 CurInit = CurInitExprRes;
7023
7024 bool Complained;
7025 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7026 Step->Type, SourceType,
7027 InitialCurInit.get(),
7028 getAssignmentAction(Entity, true),
7029 &Complained)) {
7030 PrintInitLocationNote(S, Entity);
7031 return ExprError();
7032 } else if (Complained)
7033 PrintInitLocationNote(S, Entity);
7034 break;
7035 }
7036
7037 case SK_StringInit: {
7038 QualType Ty = Step->Type;
7039 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7040 S.Context.getAsArrayType(Ty), S);
7041 break;
7042 }
7043
7044 case SK_ObjCObjectConversion:
7045 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7046 CK_ObjCObjectLValueCast,
7047 CurInit.get()->getValueKind());
7048 break;
7049
7050 case SK_ArrayLoopIndex: {
7051 Expr *Cur = CurInit.get();
7052 Expr *BaseExpr = new (S.Context)
7053 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7054 Cur->getValueKind(), Cur->getObjectKind(), Cur);
7055 Expr *IndexExpr =
7056 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7057 CurInit = S.CreateBuiltinArraySubscriptExpr(
7058 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7059 ArrayLoopCommonExprs.push_back(BaseExpr);
7060 break;
7061 }
7062
7063 case SK_ArrayLoopInit: {
7064 assert(!ArrayLoopCommonExprs.empty() &&((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7065, __PRETTY_FUNCTION__))
7065 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")((!ArrayLoopCommonExprs.empty() && "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"
) ? static_cast<void> (0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7065, __PRETTY_FUNCTION__))
;
7066 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7067 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7068 CurInit.get());
7069 break;
7070 }
7071
7072 case SK_GNUArrayInit:
7073 // Okay: we checked everything before creating this step. Note that
7074 // this is a GNU extension.
7075 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7076 << Step->Type << CurInit.get()->getType()
7077 << CurInit.get()->getSourceRange();
7078 LLVM_FALLTHROUGH[[clang::fallthrough]];
7079 case SK_ArrayInit:
7080 // If the destination type is an incomplete array type, update the
7081 // type accordingly.
7082 if (ResultType) {
7083 if (const IncompleteArrayType *IncompleteDest
7084 = S.Context.getAsIncompleteArrayType(Step->Type)) {
7085 if (const ConstantArrayType *ConstantSource
7086 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7087 *ResultType = S.Context.getConstantArrayType(
7088 IncompleteDest->getElementType(),
7089 ConstantSource->getSize(),
7090 ArrayType::Normal, 0);
7091 }
7092 }
7093 }
7094 break;
7095
7096 case SK_ParenthesizedArrayInit:
7097 // Okay: we checked everything before creating this step. Note that
7098 // this is a GNU extension.
7099 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7100 << CurInit.get()->getSourceRange();
7101 break;
7102
7103 case SK_PassByIndirectCopyRestore:
7104 case SK_PassByIndirectRestore:
7105 checkIndirectCopyRestoreSource(S, CurInit.get());
7106 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7107 CurInit.get(), Step->Type,
7108 Step->Kind == SK_PassByIndirectCopyRestore);
7109 break;
7110
7111 case SK_ProduceObjCObject:
7112 CurInit =
7113 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7114 CurInit.get(), nullptr, VK_RValue);
7115 break;
7116
7117 case SK_StdInitializerList: {
7118 S.Diag(CurInit.get()->getExprLoc(),
7119 diag::warn_cxx98_compat_initializer_list_init)
7120 << CurInit.get()->getSourceRange();
7121
7122 // Materialize the temporary into memory.
7123 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7124 CurInit.get()->getType(), CurInit.get(),
7125 /*BoundToLvalueReference=*/false);
7126
7127 // Maybe lifetime-extend the array temporary's subobjects to match the
7128 // entity's lifetime.
7129 if (const InitializedEntity *ExtendingEntity =
7130 getEntityForTemporaryLifetimeExtension(&Entity))
7131 if (performReferenceExtension(MTE, ExtendingEntity))
7132 warnOnLifetimeExtension(S, Entity, CurInit.get(),
7133 /*IsInitializerList=*/true,
7134 ExtendingEntity->getDecl());
7135
7136 // Wrap it in a construction of a std::initializer_list<T>.
7137 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7138
7139 // Bind the result, in case the library has given initializer_list a
7140 // non-trivial destructor.
7141 if (shouldBindAsTemporary(Entity))
7142 CurInit = S.MaybeBindToTemporary(CurInit.get());
7143 break;
7144 }
7145
7146 case SK_OCLSamplerInit: {
7147 // Sampler initialzation have 5 cases:
7148 // 1. function argument passing
7149 // 1a. argument is a file-scope variable
7150 // 1b. argument is a function-scope variable
7151 // 1c. argument is one of caller function's parameters
7152 // 2. variable initialization
7153 // 2a. initializing a file-scope variable
7154 // 2b. initializing a function-scope variable
7155 //
7156 // For file-scope variables, since they cannot be initialized by function
7157 // call of __translate_sampler_initializer in LLVM IR, their references
7158 // need to be replaced by a cast from their literal initializers to
7159 // sampler type. Since sampler variables can only be used in function
7160 // calls as arguments, we only need to replace them when handling the
7161 // argument passing.
7162 assert(Step->Type->isSamplerT() &&((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7163, __PRETTY_FUNCTION__))
7163 "Sampler initialization on non-sampler type.")((Step->Type->isSamplerT() && "Sampler initialization on non-sampler type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7163, __PRETTY_FUNCTION__))
;
7164 Expr *Init = CurInit.get();
7165 QualType SourceType = Init->getType();
7166 // Case 1
7167 if (Entity.isParameterKind()) {
7168 if (!SourceType->isSamplerT()) {
7169 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
7170 << SourceType;
7171 break;
7172 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
7173 auto Var = cast<VarDecl>(DRE->getDecl());
7174 // Case 1b and 1c
7175 // No cast from integer to sampler is needed.
7176 if (!Var->hasGlobalStorage()) {
7177 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7178 CK_LValueToRValue, Init,
7179 /*BasePath=*/nullptr, VK_RValue);
7180 break;
7181 }
7182 // Case 1a
7183 // For function call with a file-scope sampler variable as argument,
7184 // get the integer literal.
7185 // Do not diagnose if the file-scope variable does not have initializer
7186 // since this has already been diagnosed when parsing the variable
7187 // declaration.
7188 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
7189 break;
7190 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
7191 Var->getInit()))->getSubExpr();
7192 SourceType = Init->getType();
7193 }
7194 } else {
7195 // Case 2
7196 // Check initializer is 32 bit integer constant.
7197 // If the initializer is taken from global variable, do not diagnose since
7198 // this has already been done when parsing the variable declaration.
7199 if (!Init->isConstantInitializer(S.Context, false))
7200 break;
7201
7202 if (!SourceType->isIntegerType() ||
7203 32 != S.Context.getIntWidth(SourceType)) {
7204 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
7205 << SourceType;
7206 break;
7207 }
7208
7209 llvm::APSInt Result;
7210 Init->EvaluateAsInt(Result, S.Context);
7211 const uint64_t SamplerValue = Result.getLimitedValue();
7212 // 32-bit value of sampler's initializer is interpreted as
7213 // bit-field with the following structure:
7214 // |unspecified|Filter|Addressing Mode| Normalized Coords|
7215 // |31 6|5 4|3 1| 0|
7216 // This structure corresponds to enum values of sampler properties
7217 // defined in SPIR spec v1.2 and also opencl-c.h
7218 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
7219 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
7220 if (FilterMode != 1 && FilterMode != 2)
7221 S.Diag(Kind.getLocation(),
7222 diag::warn_sampler_initializer_invalid_bits)
7223 << "Filter Mode";
7224 if (AddressingMode > 4)
7225 S.Diag(Kind.getLocation(),
7226 diag::warn_sampler_initializer_invalid_bits)
7227 << "Addressing Mode";
7228 }
7229
7230 // Cases 1a, 2a and 2b
7231 // Insert cast from integer to sampler.
7232 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
7233 CK_IntToOCLSampler);
7234 break;
7235 }
7236 case SK_OCLZeroEvent: {
7237 assert(Step->Type->isEventT() &&((Step->Type->isEventT() && "Event initialization on non-event type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7238, __PRETTY_FUNCTION__))
7238 "Event initialization on non-event type.")((Step->Type->isEventT() && "Event initialization on non-event type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7238, __PRETTY_FUNCTION__))
;
7239
7240 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7241 CK_ZeroToOCLEvent,
7242 CurInit.get()->getValueKind());
7243 break;
7244 }
7245 case SK_OCLZeroQueue: {
7246 assert(Step->Type->isQueueT() &&((Step->Type->isQueueT() && "Event initialization on non queue type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isQueueT() && \"Event initialization on non queue type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7247, __PRETTY_FUNCTION__))
7247 "Event initialization on non queue type.")((Step->Type->isQueueT() && "Event initialization on non queue type."
) ? static_cast<void> (0) : __assert_fail ("Step->Type->isQueueT() && \"Event initialization on non queue type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7247, __PRETTY_FUNCTION__))
;
7248
7249 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7250 CK_ZeroToOCLQueue,
7251 CurInit.get()->getValueKind());
7252 break;
7253 }
7254 }
7255 }
7256
7257 // Diagnose non-fatal problems with the completed initialization.
7258 if (Entity.getKind() == InitializedEntity::EK_Member &&
7259 cast<FieldDecl>(Entity.getDecl())->isBitField())
7260 S.CheckBitFieldInitialization(Kind.getLocation(),
7261 cast<FieldDecl>(Entity.getDecl()),
7262 CurInit.get());
7263
7264 // Check for std::move on construction.
7265 if (const Expr *E = CurInit.get()) {
7266 CheckMoveOnConstruction(S, E,
7267 Entity.getKind() == InitializedEntity::EK_Result);
7268 }
7269
7270 return CurInit;
7271}
7272
7273/// Somewhere within T there is an uninitialized reference subobject.
7274/// Dig it out and diagnose it.
7275static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
7276 QualType T) {
7277 if (T->isReferenceType()) {
7278 S.Diag(Loc, diag::err_reference_without_init)
7279 << T.getNonReferenceType();
7280 return true;
7281 }
7282
7283 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7284 if (!RD || !RD->hasUninitializedReferenceMember())
7285 return false;
7286
7287 for (const auto *FI : RD->fields()) {
7288 if (FI->isUnnamedBitfield())
7289 continue;
7290
7291 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
7292 S.Diag(Loc, diag::note_value_initialization_here) << RD;
7293 return true;
7294 }
7295 }
7296
7297 for (const auto &BI : RD->bases()) {
7298 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
7299 S.Diag(Loc, diag::note_value_initialization_here) << RD;
7300 return true;
7301 }
7302 }
7303
7304 return false;
7305}
7306
7307
7308//===----------------------------------------------------------------------===//
7309// Diagnose initialization failures
7310//===----------------------------------------------------------------------===//
7311
7312/// Emit notes associated with an initialization that failed due to a
7313/// "simple" conversion failure.
7314static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
7315 Expr *op) {
7316 QualType destType = entity.getType();
7317 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
7318 op->getType()->isObjCObjectPointerType()) {
7319
7320 // Emit a possible note about the conversion failing because the
7321 // operand is a message send with a related result type.
7322 S.EmitRelatedResultTypeNote(op);
7323
7324 // Emit a possible note about a return failing because we're
7325 // expecting a related result type.
7326 if (entity.getKind() == InitializedEntity::EK_Result)
7327 S.EmitRelatedResultTypeNoteForReturn(destType);
7328 }
7329}
7330
7331static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
7332 InitListExpr *InitList) {
7333 QualType DestType = Entity.getType();
7334
7335 QualType E;
7336 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
7337 QualType ArrayType = S.Context.getConstantArrayType(
7338 E.withConst(),
7339 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
7340 InitList->getNumInits()),
7341 clang::ArrayType::Normal, 0);
7342 InitializedEntity HiddenArray =
7343 InitializedEntity::InitializeTemporary(ArrayType);
7344 return diagnoseListInit(S, HiddenArray, InitList);
7345 }
7346
7347 if (DestType->isReferenceType()) {
7348 // A list-initialization failure for a reference means that we tried to
7349 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
7350 // inner initialization failed.
7351 QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
7352 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
7353 SourceLocation Loc = InitList->getLocStart();
7354 if (auto *D = Entity.getDecl())
7355 Loc = D->getLocation();
7356 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
7357 return;
7358 }
7359
7360 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
7361 /*VerifyOnly=*/false,
7362 /*TreatUnavailableAsInvalid=*/false);
7363 assert(DiagnoseInitList.HadError() &&((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7364, __PRETTY_FUNCTION__))
7364 "Inconsistent init list check result.")((DiagnoseInitList.HadError() && "Inconsistent init list check result."
) ? static_cast<void> (0) : __assert_fail ("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7364, __PRETTY_FUNCTION__))
;
7365}
7366
7367bool InitializationSequence::Diagnose(Sema &S,
7368 const InitializedEntity &Entity,
7369 const InitializationKind &Kind,
7370 ArrayRef<Expr *> Args) {
7371 if (!Failed())
7372 return false;
7373
7374 QualType DestType = Entity.getType();
7375 switch (Failure) {
7376 case FK_TooManyInitsForReference:
7377 // FIXME: Customize for the initialized entity?
7378 if (Args.empty()) {
7379 // Dig out the reference subobject which is uninitialized and diagnose it.
7380 // If this is value-initialization, this could be nested some way within
7381 // the target type.
7382 assert(Kind.getKind() == InitializationKind::IK_Value ||((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7383, __PRETTY_FUNCTION__))
7383 DestType->isReferenceType())((Kind.getKind() == InitializationKind::IK_Value || DestType->
isReferenceType()) ? static_cast<void> (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7383, __PRETTY_FUNCTION__))
;
7384 bool Diagnosed =
7385 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
7386 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")((Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7386, __PRETTY_FUNCTION__))
;
7387 (void)Diagnosed;
7388 } else // FIXME: diagnostic below could be better!
7389 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
7390 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
7391 break;
7392
7393 case FK_ArrayNeedsInitList:
7394 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
7395 break;
7396 case FK_ArrayNeedsInitListOrStringLiteral:
7397 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
7398 break;
7399 case FK_ArrayNeedsInitListOrWideStringLiteral:
7400 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
7401 break;
7402 case FK_NarrowStringIntoWideCharArray:
7403 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
7404 break;
7405 case FK_WideStringIntoCharArray:
7406 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
7407 break;
7408 case FK_IncompatWideStringIntoWideChar:
7409 S.Diag(Kind.getLocation(),
7410 diag::err_array_init_incompat_wide_string_into_wchar);
7411 break;
7412 case FK_ArrayTypeMismatch:
7413 case FK_NonConstantArrayInit:
7414 S.Diag(Kind.getLocation(),
7415 (Failure == FK_ArrayTypeMismatch
7416 ? diag::err_array_init_different_type
7417 : diag::err_array_init_non_constant_array))
7418 << DestType.getNonReferenceType()
7419 << Args[0]->getType()
7420 << Args[0]->getSourceRange();
7421 break;
7422
7423 case FK_VariableLengthArrayHasInitializer:
7424 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
7425 << Args[0]->getSourceRange();
7426 break;
7427
7428 case FK_AddressOfOverloadFailed: {
7429 DeclAccessPair Found;
7430 S.ResolveAddressOfOverloadedFunction(Args[0],
7431 DestType.getNonReferenceType(),
7432 true,
7433 Found);
7434 break;
7435 }
7436
7437 case FK_AddressOfUnaddressableFunction: {
7438 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(Args[0])->getDecl());
7439 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7440 Args[0]->getLocStart());
7441 break;
7442 }
7443
7444 case FK_ReferenceInitOverloadFailed:
7445 case FK_UserConversionOverloadFailed:
7446 switch (FailedOverloadResult) {
7447 case OR_Ambiguous:
7448 if (Failure == FK_UserConversionOverloadFailed)
7449 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
7450 << Args[0]->getType() << DestType
7451 << Args[0]->getSourceRange();
7452 else
7453 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
7454 << DestType << Args[0]->getType()
7455 << Args[0]->getSourceRange();
7456
7457 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7458 break;
7459
7460 case OR_No_Viable_Function:
7461 if (!S.RequireCompleteType(Kind.getLocation(),
7462 DestType.getNonReferenceType(),
7463 diag::err_typecheck_nonviable_condition_incomplete,
7464 Args[0]->getType(), Args[0]->getSourceRange()))
7465 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
7466 << (Entity.getKind() == InitializedEntity::EK_Result)
7467 << Args[0]->getType() << Args[0]->getSourceRange()
7468 << DestType.getNonReferenceType();
7469
7470 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7471 break;
7472
7473 case OR_Deleted: {
7474 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
7475 << Args[0]->getType() << DestType.getNonReferenceType()
7476 << Args[0]->getSourceRange();
7477 OverloadCandidateSet::iterator Best;
7478 OverloadingResult Ovl
7479 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
7480 true);
7481 if (Ovl == OR_Deleted) {
7482 S.NoteDeletedFunction(Best->Function);
7483 } else {
7484 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7484)
;
7485 }
7486 break;
7487 }
7488
7489 case OR_Success:
7490 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7490)
;
7491 }
7492 break;
7493
7494 case FK_NonConstLValueReferenceBindingToTemporary:
7495 if (isa<InitListExpr>(Args[0])) {
7496 S.Diag(Kind.getLocation(),
7497 diag::err_lvalue_reference_bind_to_initlist)
7498 << DestType.getNonReferenceType().isVolatileQualified()
7499 << DestType.getNonReferenceType()
7500 << Args[0]->getSourceRange();
7501 break;
7502 }
7503 // Intentional fallthrough
7504
7505 case FK_NonConstLValueReferenceBindingToUnrelated:
7506 S.Diag(Kind.getLocation(),
7507 Failure == FK_NonConstLValueReferenceBindingToTemporary
7508 ? diag::err_lvalue_reference_bind_to_temporary
7509 : diag::err_lvalue_reference_bind_to_unrelated)
7510 << DestType.getNonReferenceType().isVolatileQualified()
7511 << DestType.getNonReferenceType()
7512 << Args[0]->getType()
7513 << Args[0]->getSourceRange();
7514 break;
7515
7516 case FK_NonConstLValueReferenceBindingToBitfield: {
7517 // We don't necessarily have an unambiguous source bit-field.
7518 FieldDecl *BitField = Args[0]->getSourceBitField();
7519 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
7520 << DestType.isVolatileQualified()
7521 << (BitField ? BitField->getDeclName() : DeclarationName())
7522 << (BitField != nullptr)
7523 << Args[0]->getSourceRange();
7524 if (BitField)
7525 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
7526 break;
7527 }
7528
7529 case FK_NonConstLValueReferenceBindingToVectorElement:
7530 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
7531 << DestType.isVolatileQualified()
7532 << Args[0]->getSourceRange();
7533 break;
7534
7535 case FK_RValueReferenceBindingToLValue:
7536 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
7537 << DestType.getNonReferenceType() << Args[0]->getType()
7538 << Args[0]->getSourceRange();
7539 break;
7540
7541 case FK_ReferenceInitDropsQualifiers: {
7542 QualType SourceType = Args[0]->getType();
7543 QualType NonRefType = DestType.getNonReferenceType();
7544 Qualifiers DroppedQualifiers =
7545 SourceType.getQualifiers() - NonRefType.getQualifiers();
7546
7547 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
7548 << SourceType
7549 << NonRefType
7550 << DroppedQualifiers.getCVRQualifiers()
7551 << Args[0]->getSourceRange();
7552 break;
7553 }
7554
7555 case FK_ReferenceInitFailed:
7556 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
7557 << DestType.getNonReferenceType()
7558 << Args[0]->isLValue()
7559 << Args[0]->getType()
7560 << Args[0]->getSourceRange();
7561 emitBadConversionNotes(S, Entity, Args[0]);
7562 break;
7563
7564 case FK_ConversionFailed: {
7565 QualType FromType = Args[0]->getType();
7566 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
7567 << (int)Entity.getKind()
7568 << DestType
7569 << Args[0]->isLValue()
7570 << FromType
7571 << Args[0]->getSourceRange();
7572 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
7573 S.Diag(Kind.getLocation(), PDiag);
7574 emitBadConversionNotes(S, Entity, Args[0]);
7575 break;
7576 }
7577
7578 case FK_ConversionFromPropertyFailed:
7579 // No-op. This error has already been reported.
7580 break;
7581
7582 case FK_TooManyInitsForScalar: {
7583 SourceRange R;
7584
7585 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
7586 if (InitList && InitList->getNumInits() >= 1) {
7587 R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
7588 } else {
7589 assert(Args.size() > 1 && "Expected multiple initializers!")((Args.size() > 1 && "Expected multiple initializers!"
) ? static_cast<void> (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7589, __PRETTY_FUNCTION__))
;
7590 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
7591 }
7592
7593 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
7594 if (Kind.isCStyleOrFunctionalCast())
7595 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
7596 << R;
7597 else
7598 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
7599 << /*scalar=*/2 << R;
7600 break;
7601 }
7602
7603 case FK_ReferenceBindingToInitList:
7604 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
7605 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
7606 break;
7607
7608 case FK_InitListBadDestinationType:
7609 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
7610 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
7611 break;
7612
7613 case FK_ListConstructorOverloadFailed:
7614 case FK_ConstructorOverloadFailed: {
7615 SourceRange ArgsRange;
7616 if (Args.size())
7617 ArgsRange = SourceRange(Args.front()->getLocStart(),
7618 Args.back()->getLocEnd());
7619
7620 if (Failure == FK_ListConstructorOverloadFailed) {
7621 assert(Args.size() == 1 &&((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7622, __PRETTY_FUNCTION__))
7622 "List construction from other than 1 argument.")((Args.size() == 1 && "List construction from other than 1 argument."
) ? static_cast<void> (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7622, __PRETTY_FUNCTION__))
;
7623 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7624 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
7625 }
7626
7627 // FIXME: Using "DestType" for the entity we're printing is probably
7628 // bad.
7629 switch (FailedOverloadResult) {
7630 case OR_Ambiguous:
7631 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
7632 << DestType << ArgsRange;
7633 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
7634 break;
7635
7636 case OR_No_Viable_Function:
7637 if (Kind.getKind() == InitializationKind::IK_Default &&
7638 (Entity.getKind() == InitializedEntity::EK_Base ||
7639 Entity.getKind() == InitializedEntity::EK_Member) &&
7640 isa<CXXConstructorDecl>(S.CurContext)) {
7641 // This is implicit default initialization of a member or
7642 // base within a constructor. If no viable function was
7643 // found, notify the user that they need to explicitly
7644 // initialize this base/member.
7645 CXXConstructorDecl *Constructor
7646 = cast<CXXConstructorDecl>(S.CurContext);
7647 const CXXRecordDecl *InheritedFrom = nullptr;
7648 if (auto Inherited = Constructor->getInheritedConstructor())
7649 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
7650 if (Entity.getKind() == InitializedEntity::EK_Base) {
7651 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7652 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7653 << S.Context.getTypeDeclType(Constructor->getParent())
7654 << /*base=*/0
7655 << Entity.getType()
7656 << InheritedFrom;
7657
7658 RecordDecl *BaseDecl
7659 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
7660 ->getDecl();
7661 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
7662 << S.Context.getTagDeclType(BaseDecl);
7663 } else {
7664 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
7665 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
7666 << S.Context.getTypeDeclType(Constructor->getParent())
7667 << /*member=*/1
7668 << Entity.getName()
7669 << InheritedFrom;
7670 S.Diag(Entity.getDecl()->getLocation(),
7671 diag::note_member_declared_at);
7672
7673 if (const RecordType *Record
7674 = Entity.getType()->getAs<RecordType>())
7675 S.Diag(Record->getDecl()->getLocation(),
7676 diag::note_previous_decl)
7677 << S.Context.getTagDeclType(Record->getDecl());
7678 }
7679 break;
7680 }
7681
7682 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
7683 << DestType << ArgsRange;
7684 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
7685 break;
7686
7687 case OR_Deleted: {
7688 OverloadCandidateSet::iterator Best;
7689 OverloadingResult Ovl
7690 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7691 if (Ovl != OR_Deleted) {
7692 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7693 << true << DestType << ArgsRange;
7694 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7694)
;
7695 break;
7696 }
7697
7698 // If this is a defaulted or implicitly-declared function, then
7699 // it was implicitly deleted. Make it clear that the deletion was
7700 // implicit.
7701 if (S.isImplicitlyDeleted(Best->Function))
7702 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
7703 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
7704 << DestType << ArgsRange;
7705 else
7706 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
7707 << true << DestType << ArgsRange;
7708
7709 S.NoteDeletedFunction(Best->Function);
7710 break;
7711 }
7712
7713 case OR_Success:
7714 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7714)
;
7715 }
7716 }
7717 break;
7718
7719 case FK_DefaultInitOfConst:
7720 if (Entity.getKind() == InitializedEntity::EK_Member &&
7721 isa<CXXConstructorDecl>(S.CurContext)) {
7722 // This is implicit default-initialization of a const member in
7723 // a constructor. Complain that it needs to be explicitly
7724 // initialized.
7725 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
7726 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
7727 << (Constructor->getInheritedConstructor() ? 2 :
7728 Constructor->isImplicit() ? 1 : 0)
7729 << S.Context.getTypeDeclType(Constructor->getParent())
7730 << /*const=*/1
7731 << Entity.getName();
7732 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
7733 << Entity.getName();
7734 } else {
7735 S.Diag(Kind.getLocation(), diag::err_default_init_const)
7736 << DestType << (bool)DestType->getAs<RecordType>();
7737 }
7738 break;
7739
7740 case FK_Incomplete:
7741 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
7742 diag::err_init_incomplete_type);
7743 break;
7744
7745 case FK_ListInitializationFailed: {
7746 // Run the init list checker again to emit diagnostics.
7747 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7748 diagnoseListInit(S, Entity, InitList);
7749 break;
7750 }
7751
7752 case FK_PlaceholderType: {
7753 // FIXME: Already diagnosed!
7754 break;
7755 }
7756
7757 case FK_ExplicitConstructor: {
7758 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
7759 << Args[0]->getSourceRange();
7760 OverloadCandidateSet::iterator Best;
7761 OverloadingResult Ovl
7762 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
7763 (void)Ovl;
7764 assert(Ovl == OR_Success && "Inconsistent overload resolution")((Ovl == OR_Success && "Inconsistent overload resolution"
) ? static_cast<void> (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn292767/tools/clang/lib/Sema/SemaInit.cpp"
, 7764, __PRETTY_FUNCTION__))
;
7765 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
7766 S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
7767 break;
7768 }
7769 }
7770
7771 PrintInitLocationNote(S, Entity);
7772 return true;
7773}
7774
7775void InitializationSequence::dump(raw_ostream &OS) const {
7776 switch (SequenceKind) {
7777 case FailedSequence: {
7778 OS << "Failed sequence: ";
7779 switch (Failure) {
7780 case FK_TooManyInitsForReference:
7781 OS << "too many initializers for reference";
7782 break;
7783
7784 case FK_ArrayNeedsInitList:
7785 OS << "array requires initializer list";
7786 break;
7787
7788 case FK_AddressOfUnaddressableFunction:
7789 OS << "address of unaddressable function was taken";
7790 break;
7791
7792 case FK_ArrayNeedsInitListOrStringLiteral:
7793 OS << "array requires initializer list or string literal";
7794 break;
7795
7796 case FK_ArrayNeedsInitListOrWideStringLiteral:
7797 OS << "array requires initializer list or wide string literal";
7798 break;
7799
7800 case FK_NarrowStringIntoWideCharArray:
7801 OS << "narrow string into wide char array";
7802 break;
7803
7804 case FK_WideStringIntoCharArray:
7805 OS << "wide string into char array";
7806 break;
7807
7808 case FK_IncompatWideStringIntoWideChar:
7809 OS << "incompatible wide string into wide char array";
7810 break;
7811
7812 case FK_ArrayTypeMismatch:
7813 OS << "array type mismatch";
7814 break;
7815
7816 case FK_NonConstantArrayInit:
7817 OS << "non-constant array initializer";
7818 break;
7819
7820 case FK_AddressOfOverloadFailed:
7821 OS << "address of overloaded function failed";
7822 break;
7823
7824 case FK_ReferenceInitOverloadFailed:
7825 OS << "overload resolution for reference initialization failed";
7826 break;
7827
7828 case FK_NonConstLValueReferenceBindingToTemporary:
7829 OS << "non-const lvalue reference bound to temporary";
7830 break;
7831
7832 case FK_NonConstLValueReferenceBindingToBitfield:
7833 OS << "non-const lvalue reference bound to bit-field";
7834 break;
7835
7836 case FK_NonConstLValueReferenceBindingToVectorElement:
7837 OS << "non-const lvalue reference bound to vector element";
7838 break;
7839
7840 case FK_NonConstLValueReferenceBindingToUnrelated:
7841 OS << "non-const lvalue reference bound to unrelated type";
7842 break;
7843
7844 case FK_RValueReferenceBindingToLValue:
7845 OS << "rvalue reference bound to an lvalue";
7846 break;
7847
7848