Bug Summary

File:tools/clang/lib/Sema/SemaInit.cpp
Warning:line 3592, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaInit.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn337204/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn337204/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn337204/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn337204/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn337204/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn337204/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-17-043059-5239-1 -x c++ /build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp

/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp

1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ExprObjC.h"
18#include "clang/AST/TypeLoc.h"
19#include "clang/Basic/TargetInfo.h"
20#include "clang/Sema/Designator.h"
21#include "clang/Sema/Initialization.h"
22#include "clang/Sema/Lookup.h"
23#include "clang/Sema/SemaInternal.h"
24#include "llvm/ADT/APInt.h"
25#include "llvm/ADT/SmallString.h"
26#include "llvm/Support/ErrorHandling.h"
27#include "llvm/Support/raw_ostream.h"
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// Sema Initialization Checking
33//===----------------------------------------------------------------------===//
34
35/// Check whether T is compatible with a wide character type (wchar_t,
36/// char16_t or char32_t).
37static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38 if (Context.typesAreCompatible(Context.getWideCharType(), T))
39 return true;
40 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41 return Context.typesAreCompatible(Context.Char16Ty, T) ||
42 Context.typesAreCompatible(Context.Char32Ty, T);
43 }
44 return false;
45}
46
47enum StringInitFailureKind {
48 SIF_None,
49 SIF_NarrowStringIntoWideChar,
50 SIF_WideStringIntoChar,
51 SIF_IncompatWideStringIntoWideChar,
52 SIF_UTF8StringIntoPlainChar,
53 SIF_PlainStringIntoUTF8Char,
54 SIF_Other
55};
56
57/// Check whether the array of type AT can be initialized by the Init
58/// expression by means of string initialization. Returns SIF_None if so,
59/// otherwise returns a StringInitFailureKind that describes why the
60/// initialization would not work.
61static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
62 ASTContext &Context) {
63 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
64 return SIF_Other;
65
66 // See if this is a string literal or @encode.
67 Init = Init->IgnoreParens();
68
69 // Handle @encode, which is a narrow string.
70 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
71 return SIF_None;
72
73 // Otherwise we can only handle string literals.
74 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
75 if (!SL)
76 return SIF_Other;
77
78 const QualType ElemTy =
79 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
80
81 switch (SL->getKind()) {
82 case StringLiteral::UTF8:
83 // char8_t array can be initialized with a UTF-8 string.
84 if (ElemTy->isChar8Type())
85 return SIF_None;
86 LLVM_FALLTHROUGH[[clang::fallthrough]];
87 case StringLiteral::Ascii:
88 // char array can be initialized with a narrow string.
89 // Only allow char x[] = "foo"; not char x[] = L"foo";
90 if (ElemTy->isCharType())
91 return (SL->getKind() == StringLiteral::UTF8 &&
92 Context.getLangOpts().Char8)
93 ? SIF_UTF8StringIntoPlainChar
94 : SIF_None;
95 if (ElemTy->isChar8Type())
96 return SIF_PlainStringIntoUTF8Char;
97 if (IsWideCharCompatible(ElemTy, Context))
98 return SIF_NarrowStringIntoWideChar;
99 return SIF_Other;
100 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
101 // "An array with element type compatible with a qualified or unqualified
102 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
103 // string literal with the corresponding encoding prefix (L, u, or U,
104 // respectively), optionally enclosed in braces.
105 case StringLiteral::UTF16:
106 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
107 return SIF_None;
108 if (ElemTy->isCharType() || ElemTy->isChar8Type())
109 return SIF_WideStringIntoChar;
110 if (IsWideCharCompatible(ElemTy, Context))
111 return SIF_IncompatWideStringIntoWideChar;
112 return SIF_Other;
113 case StringLiteral::UTF32:
114 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
115 return SIF_None;
116 if (ElemTy->isCharType() || ElemTy->isChar8Type())
117 return SIF_WideStringIntoChar;
118 if (IsWideCharCompatible(ElemTy, Context))
119 return SIF_IncompatWideStringIntoWideChar;
120 return SIF_Other;
121 case StringLiteral::Wide:
122 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
123 return SIF_None;
124 if (ElemTy->isCharType() || ElemTy->isChar8Type())
125 return SIF_WideStringIntoChar;
126 if (IsWideCharCompatible(ElemTy, Context))
127 return SIF_IncompatWideStringIntoWideChar;
128 return SIF_Other;
129 }
130
131 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 131)
;
132}
133
134static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
135 ASTContext &Context) {
136 const ArrayType *arrayType = Context.getAsArrayType(declType);
137 if (!arrayType)
138 return SIF_Other;
139 return IsStringInit(init, arrayType, Context);
140}
141
142/// Update the type of a string literal, including any surrounding parentheses,
143/// to match the type of the object which it is initializing.
144static void updateStringLiteralType(Expr *E, QualType Ty) {
145 while (true) {
146 E->setType(Ty);
147 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
148 break;
149 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
150 E = PE->getSubExpr();
151 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
152 E = UO->getSubExpr();
153 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
154 E = GSE->getResultExpr();
155 else
156 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 156)
;
157 }
158}
159
160static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
161 Sema &S) {
162 // Get the length of the string as parsed.
163 auto *ConstantArrayTy =
164 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
165 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
166
167 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
168 // C99 6.7.8p14. We have an array of character type with unknown size
169 // being initialized to a string literal.
170 llvm::APInt ConstVal(32, StrLength);
171 // Return a new array type (C99 6.7.8p22).
172 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
173 ConstVal,
174 ArrayType::Normal, 0);
175 updateStringLiteralType(Str, DeclT);
176 return;
177 }
178
179 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
180
181 // We have an array of character type with known size. However,
182 // the size may be smaller or larger than the string we are initializing.
183 // FIXME: Avoid truncation for 64-bit length strings.
184 if (S.getLangOpts().CPlusPlus) {
185 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
186 // For Pascal strings it's OK to strip off the terminating null character,
187 // so the example below is valid:
188 //
189 // unsigned char a[2] = "\pa";
190 if (SL->isPascal())
191 StrLength--;
192 }
193
194 // [dcl.init.string]p2
195 if (StrLength > CAT->getSize().getZExtValue())
196 S.Diag(Str->getLocStart(),
197 diag::err_initializer_string_for_char_array_too_long)
198 << Str->getSourceRange();
199 } else {
200 // C99 6.7.8p14.
201 if (StrLength-1 > CAT->getSize().getZExtValue())
202 S.Diag(Str->getLocStart(),
203 diag::ext_initializer_string_for_char_array_too_long)
204 << Str->getSourceRange();
205 }
206
207 // Set the type to the actual size that we are initializing. If we have
208 // something like:
209 // char x[1] = "foo";
210 // then this will set the string literal's type to char[1].
211 updateStringLiteralType(Str, DeclT);
212}
213
214//===----------------------------------------------------------------------===//
215// Semantic checking for initializer lists.
216//===----------------------------------------------------------------------===//
217
218namespace {
219
220/// Semantic checking for initializer lists.
221///
222/// The InitListChecker class contains a set of routines that each
223/// handle the initialization of a certain kind of entity, e.g.,
224/// arrays, vectors, struct/union types, scalars, etc. The
225/// InitListChecker itself performs a recursive walk of the subobject
226/// structure of the type to be initialized, while stepping through
227/// the initializer list one element at a time. The IList and Index
228/// parameters to each of the Check* routines contain the active
229/// (syntactic) initializer list and the index into that initializer
230/// list that represents the current initializer. Each routine is
231/// responsible for moving that Index forward as it consumes elements.
232///
233/// Each Check* routine also has a StructuredList/StructuredIndex
234/// arguments, which contains the current "structured" (semantic)
235/// initializer list and the index into that initializer list where we
236/// are copying initializers as we map them over to the semantic
237/// list. Once we have completed our recursive walk of the subobject
238/// structure, we will have constructed a full semantic initializer
239/// list.
240///
241/// C99 designators cause changes in the initializer list traversal,
242/// because they make the initialization "jump" into a specific
243/// subobject and then continue the initialization from that
244/// point. CheckDesignatedInitializer() recursively steps into the
245/// designated subobject and manages backing out the recursion to
246/// initialize the subobjects after the one designated.
247class InitListChecker {
248 Sema &SemaRef;
249 bool hadError;
250 bool VerifyOnly; // no diagnostics, no structure building
251 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
252 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
253 InitListExpr *FullyStructuredList;
254
255 void CheckImplicitInitList(const InitializedEntity &Entity,
256 InitListExpr *ParentIList, QualType T,
257 unsigned &Index, InitListExpr *StructuredList,
258 unsigned &StructuredIndex);
259 void CheckExplicitInitList(const InitializedEntity &Entity,
260 InitListExpr *IList, QualType &T,
261 InitListExpr *StructuredList,
262 bool TopLevelObject = false);
263 void CheckListElementTypes(const InitializedEntity &Entity,
264 InitListExpr *IList, QualType &DeclType,
265 bool SubobjectIsDesignatorContext,
266 unsigned &Index,
267 InitListExpr *StructuredList,
268 unsigned &StructuredIndex,
269 bool TopLevelObject = false);
270 void CheckSubElementType(const InitializedEntity &Entity,
271 InitListExpr *IList, QualType ElemType,
272 unsigned &Index,
273 InitListExpr *StructuredList,
274 unsigned &StructuredIndex);
275 void CheckComplexType(const InitializedEntity &Entity,
276 InitListExpr *IList, QualType DeclType,
277 unsigned &Index,
278 InitListExpr *StructuredList,
279 unsigned &StructuredIndex);
280 void CheckScalarType(const InitializedEntity &Entity,
281 InitListExpr *IList, QualType DeclType,
282 unsigned &Index,
283 InitListExpr *StructuredList,
284 unsigned &StructuredIndex);
285 void CheckReferenceType(const InitializedEntity &Entity,
286 InitListExpr *IList, QualType DeclType,
287 unsigned &Index,
288 InitListExpr *StructuredList,
289 unsigned &StructuredIndex);
290 void CheckVectorType(const InitializedEntity &Entity,
291 InitListExpr *IList, QualType DeclType, unsigned &Index,
292 InitListExpr *StructuredList,
293 unsigned &StructuredIndex);
294 void CheckStructUnionTypes(const InitializedEntity &Entity,
295 InitListExpr *IList, QualType DeclType,
296 CXXRecordDecl::base_class_range Bases,
297 RecordDecl::field_iterator Field,
298 bool SubobjectIsDesignatorContext, unsigned &Index,
299 InitListExpr *StructuredList,
300 unsigned &StructuredIndex,
301 bool TopLevelObject = false);
302 void CheckArrayType(const InitializedEntity &Entity,
303 InitListExpr *IList, QualType &DeclType,
304 llvm::APSInt elementIndex,
305 bool SubobjectIsDesignatorContext, unsigned &Index,
306 InitListExpr *StructuredList,
307 unsigned &StructuredIndex);
308 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
309 InitListExpr *IList, DesignatedInitExpr *DIE,
310 unsigned DesigIdx,
311 QualType &CurrentObjectType,
312 RecordDecl::field_iterator *NextField,
313 llvm::APSInt *NextElementIndex,
314 unsigned &Index,
315 InitListExpr *StructuredList,
316 unsigned &StructuredIndex,
317 bool FinishSubobjectInit,
318 bool TopLevelObject);
319 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
320 QualType CurrentObjectType,
321 InitListExpr *StructuredList,
322 unsigned StructuredIndex,
323 SourceRange InitRange,
324 bool IsFullyOverwritten = false);
325 void UpdateStructuredListElement(InitListExpr *StructuredList,
326 unsigned &StructuredIndex,
327 Expr *expr);
328 int numArrayElements(QualType DeclType);
329 int numStructUnionElements(QualType DeclType);
330
331 static ExprResult PerformEmptyInit(Sema &SemaRef,
332 SourceLocation Loc,
333 const InitializedEntity &Entity,
334 bool VerifyOnly,
335 bool TreatUnavailableAsInvalid);
336
337 // Explanation on the "FillWithNoInit" mode:
338 //
339 // Assume we have the following definitions (Case#1):
340 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
341 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
342 //
343 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
344 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
345 //
346 // But if we have (Case#2):
347 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
348 //
349 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
350 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
351 //
352 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
353 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
354 // initializers but with special "NoInitExpr" place holders, which tells the
355 // CodeGen not to generate any initializers for these parts.
356 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
357 const InitializedEntity &ParentEntity,
358 InitListExpr *ILE, bool &RequiresSecondPass,
359 bool FillWithNoInit);
360 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
361 const InitializedEntity &ParentEntity,
362 InitListExpr *ILE, bool &RequiresSecondPass,
363 bool FillWithNoInit = false);
364 void FillInEmptyInitializations(const InitializedEntity &Entity,
365 InitListExpr *ILE, bool &RequiresSecondPass,
366 InitListExpr *OuterILE, unsigned OuterIndex,
367 bool FillWithNoInit = false);
368 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
369 Expr *InitExpr, FieldDecl *Field,
370 bool TopLevelObject);
371 void CheckEmptyInitializable(const InitializedEntity &Entity,
372 SourceLocation Loc);
373
374public:
375 InitListChecker(Sema &S, const InitializedEntity &Entity,
376 InitListExpr *IL, QualType &T, bool VerifyOnly,
377 bool TreatUnavailableAsInvalid);
378 bool HadError() { return hadError; }
379
380 // Retrieves the fully-structured initializer list used for
381 // semantic analysis and code generation.
382 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
383};
384
385} // end anonymous namespace
386
387ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
388 SourceLocation Loc,
389 const InitializedEntity &Entity,
390 bool VerifyOnly,
391 bool TreatUnavailableAsInvalid) {
392 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
393 true);
394 MultiExprArg SubInit;
395 Expr *InitExpr;
396 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
397
398 // C++ [dcl.init.aggr]p7:
399 // If there are fewer initializer-clauses in the list than there are
400 // members in the aggregate, then each member not explicitly initialized
401 // ...
402 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
403 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
404 if (EmptyInitList) {
405 // C++1y / DR1070:
406 // shall be initialized [...] from an empty initializer list.
407 //
408 // We apply the resolution of this DR to C++11 but not C++98, since C++98
409 // does not have useful semantics for initialization from an init list.
410 // We treat this as copy-initialization, because aggregate initialization
411 // always performs copy-initialization on its elements.
412 //
413 // Only do this if we're initializing a class type, to avoid filling in
414 // the initializer list where possible.
415 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
416 InitListExpr(SemaRef.Context, Loc, None, Loc);
417 InitExpr->setType(SemaRef.Context.VoidTy);
418 SubInit = InitExpr;
419 Kind = InitializationKind::CreateCopy(Loc, Loc);
420 } else {
421 // C++03:
422 // shall be value-initialized.
423 }
424
425 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
426 // libstdc++4.6 marks the vector default constructor as explicit in
427 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
428 // stlport does so too. Look for std::__debug for libstdc++, and for
429 // std:: for stlport. This is effectively a compiler-side implementation of
430 // LWG2193.
431 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
432 InitializationSequence::FK_ExplicitConstructor) {
433 OverloadCandidateSet::iterator Best;
434 OverloadingResult O =
435 InitSeq.getFailedCandidateSet()
436 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
437 (void)O;
438 assert(O == OR_Success && "Inconsistent overload resolution")(static_cast <bool> (O == OR_Success && "Inconsistent overload resolution"
) ? void (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 438, __extension__ __PRETTY_FUNCTION__))
;
439 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
440 CXXRecordDecl *R = CtorDecl->getParent();
441
442 if (CtorDecl->getMinRequiredArguments() == 0 &&
443 CtorDecl->isExplicit() && R->getDeclName() &&
444 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
445 bool IsInStd = false;
446 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
447 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
448 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
449 IsInStd = true;
450 }
451
452 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
453 .Cases("basic_string", "deque", "forward_list", true)
454 .Cases("list", "map", "multimap", "multiset", true)
455 .Cases("priority_queue", "queue", "set", "stack", true)
456 .Cases("unordered_map", "unordered_set", "vector", true)
457 .Default(false)) {
458 InitSeq.InitializeFrom(
459 SemaRef, Entity,
460 InitializationKind::CreateValue(Loc, Loc, Loc, true),
461 MultiExprArg(), /*TopLevelOfInitList=*/false,
462 TreatUnavailableAsInvalid);
463 // Emit a warning for this. System header warnings aren't shown
464 // by default, but people working on system headers should see it.
465 if (!VerifyOnly) {
466 SemaRef.Diag(CtorDecl->getLocation(),
467 diag::warn_invalid_initializer_from_system_header);
468 if (Entity.getKind() == InitializedEntity::EK_Member)
469 SemaRef.Diag(Entity.getDecl()->getLocation(),
470 diag::note_used_in_initialization_here);
471 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
472 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
473 }
474 }
475 }
476 }
477 if (!InitSeq) {
478 if (!VerifyOnly) {
479 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
480 if (Entity.getKind() == InitializedEntity::EK_Member)
481 SemaRef.Diag(Entity.getDecl()->getLocation(),
482 diag::note_in_omitted_aggregate_initializer)
483 << /*field*/1 << Entity.getDecl();
484 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
485 bool IsTrailingArrayNewMember =
486 Entity.getParent() &&
487 Entity.getParent()->isVariableLengthArrayNew();
488 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
489 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
490 << Entity.getElementIndex();
491 }
492 }
493 return ExprError();
494 }
495
496 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
497 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
498}
499
500void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
501 SourceLocation Loc) {
502 assert(VerifyOnly &&(static_cast <bool> (VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? void (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 503, __extension__ __PRETTY_FUNCTION__))
503 "CheckEmptyInitializable is only inteded for verification mode.")(static_cast <bool> (VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? void (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 503, __extension__ __PRETTY_FUNCTION__))
;
504 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
505 TreatUnavailableAsInvalid).isInvalid())
506 hadError = true;
507}
508
509void InitListChecker::FillInEmptyInitForBase(
510 unsigned Init, const CXXBaseSpecifier &Base,
511 const InitializedEntity &ParentEntity, InitListExpr *ILE,
512 bool &RequiresSecondPass, bool FillWithNoInit) {
513 assert(Init < ILE->getNumInits() && "should have been expanded")(static_cast <bool> (Init < ILE->getNumInits() &&
"should have been expanded") ? void (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 513, __extension__ __PRETTY_FUNCTION__))
;
514
515 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
516 SemaRef.Context, &Base, false, &ParentEntity);
517
518 if (!ILE->getInit(Init)) {
519 ExprResult BaseInit =
520 FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType())
521 : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity,
522 /*VerifyOnly*/ false,
523 TreatUnavailableAsInvalid);
524 if (BaseInit.isInvalid()) {
525 hadError = true;
526 return;
527 }
528
529 ILE->setInit(Init, BaseInit.getAs<Expr>());
530 } else if (InitListExpr *InnerILE =
531 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
532 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
533 ILE, Init, FillWithNoInit);
534 } else if (DesignatedInitUpdateExpr *InnerDIUE =
535 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
536 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
537 RequiresSecondPass, ILE, Init,
538 /*FillWithNoInit =*/true);
539 }
540}
541
542void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
543 const InitializedEntity &ParentEntity,
544 InitListExpr *ILE,
545 bool &RequiresSecondPass,
546 bool FillWithNoInit) {
547 SourceLocation Loc = ILE->getLocEnd();
548 unsigned NumInits = ILE->getNumInits();
549 InitializedEntity MemberEntity
550 = InitializedEntity::InitializeMember(Field, &ParentEntity);
551
552 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
553 if (!RType->getDecl()->isUnion())
554 assert(Init < NumInits && "This ILE should have been expanded")(static_cast <bool> (Init < NumInits && "This ILE should have been expanded"
) ? void (0) : __assert_fail ("Init < NumInits && \"This ILE should have been expanded\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 554, __extension__ __PRETTY_FUNCTION__))
;
555
556 if (Init >= NumInits || !ILE->getInit(Init)) {
557 if (FillWithNoInit) {
558 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
559 if (Init < NumInits)
560 ILE->setInit(Init, Filler);
561 else
562 ILE->updateInit(SemaRef.Context, Init, Filler);
563 return;
564 }
565 // C++1y [dcl.init.aggr]p7:
566 // If there are fewer initializer-clauses in the list than there are
567 // members in the aggregate, then each member not explicitly initialized
568 // shall be initialized from its brace-or-equal-initializer [...]
569 if (Field->hasInClassInitializer()) {
570 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
571 if (DIE.isInvalid()) {
572 hadError = true;
573 return;
574 }
575 if (Init < NumInits)
576 ILE->setInit(Init, DIE.get());
577 else {
578 ILE->updateInit(SemaRef.Context, Init, DIE.get());
579 RequiresSecondPass = true;
580 }
581 return;
582 }
583
584 if (Field->getType()->isReferenceType()) {
585 // C++ [dcl.init.aggr]p9:
586 // If an incomplete or empty initializer-list leaves a
587 // member of reference type uninitialized, the program is
588 // ill-formed.
589 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
590 << Field->getType()
591 << ILE->getSyntacticForm()->getSourceRange();
592 SemaRef.Diag(Field->getLocation(),
593 diag::note_uninit_reference_member);
594 hadError = true;
595 return;
596 }
597
598 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
599 /*VerifyOnly*/false,
600 TreatUnavailableAsInvalid);
601 if (MemberInit.isInvalid()) {
602 hadError = true;
603 return;
604 }
605
606 if (hadError) {
607 // Do nothing
608 } else if (Init < NumInits) {
609 ILE->setInit(Init, MemberInit.getAs<Expr>());
610 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
611 // Empty initialization requires a constructor call, so
612 // extend the initializer list to include the constructor
613 // call and make a note that we'll need to take another pass
614 // through the initializer list.
615 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
616 RequiresSecondPass = true;
617 }
618 } else if (InitListExpr *InnerILE
619 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
620 FillInEmptyInitializations(MemberEntity, InnerILE,
621 RequiresSecondPass, ILE, Init, FillWithNoInit);
622 else if (DesignatedInitUpdateExpr *InnerDIUE
623 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
624 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
625 RequiresSecondPass, ILE, Init,
626 /*FillWithNoInit =*/true);
627}
628
629/// Recursively replaces NULL values within the given initializer list
630/// with expressions that perform value-initialization of the
631/// appropriate type, and finish off the InitListExpr formation.
632void
633InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
634 InitListExpr *ILE,
635 bool &RequiresSecondPass,
636 InitListExpr *OuterILE,
637 unsigned OuterIndex,
638 bool FillWithNoInit) {
639 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(static_cast <bool> ((ILE->getType() != SemaRef.Context
.VoidTy) && "Should not have void type") ? void (0) :
__assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 640, __extension__ __PRETTY_FUNCTION__))
640 "Should not have void type")(static_cast <bool> ((ILE->getType() != SemaRef.Context
.VoidTy) && "Should not have void type") ? void (0) :
__assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 640, __extension__ __PRETTY_FUNCTION__))
;
641
642 // If this is a nested initializer list, we might have changed its contents
643 // (and therefore some of its properties, such as instantiation-dependence)
644 // while filling it in. Inform the outer initializer list so that its state
645 // can be updated to match.
646 // FIXME: We should fully build the inner initializers before constructing
647 // the outer InitListExpr instead of mutating AST nodes after they have
648 // been used as subexpressions of other nodes.
649 struct UpdateOuterILEWithUpdatedInit {
650 InitListExpr *Outer;
651 unsigned OuterIndex;
652 ~UpdateOuterILEWithUpdatedInit() {
653 if (Outer)
654 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
655 }
656 } UpdateOuterRAII = {OuterILE, OuterIndex};
657
658 // A transparent ILE is not performing aggregate initialization and should
659 // not be filled in.
660 if (ILE->isTransparent())
661 return;
662
663 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
664 const RecordDecl *RDecl = RType->getDecl();
665 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
666 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
667 Entity, ILE, RequiresSecondPass, FillWithNoInit);
668 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
669 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
670 for (auto *Field : RDecl->fields()) {
671 if (Field->hasInClassInitializer()) {
672 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
673 FillWithNoInit);
674 break;
675 }
676 }
677 } else {
678 // The fields beyond ILE->getNumInits() are default initialized, so in
679 // order to leave them uninitialized, the ILE is expanded and the extra
680 // fields are then filled with NoInitExpr.
681 unsigned NumElems = numStructUnionElements(ILE->getType());
682 if (RDecl->hasFlexibleArrayMember())
683 ++NumElems;
684 if (ILE->getNumInits() < NumElems)
685 ILE->resizeInits(SemaRef.Context, NumElems);
686
687 unsigned Init = 0;
688
689 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
690 for (auto &Base : CXXRD->bases()) {
691 if (hadError)
692 return;
693
694 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
695 FillWithNoInit);
696 ++Init;
697 }
698 }
699
700 for (auto *Field : RDecl->fields()) {
701 if (Field->isUnnamedBitfield())
702 continue;
703
704 if (hadError)
705 return;
706
707 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
708 FillWithNoInit);
709 if (hadError)
710 return;
711
712 ++Init;
713
714 // Only look at the first initialization of a union.
715 if (RDecl->isUnion())
716 break;
717 }
718 }
719
720 return;
721 }
722
723 QualType ElementType;
724
725 InitializedEntity ElementEntity = Entity;
726 unsigned NumInits = ILE->getNumInits();
727 unsigned NumElements = NumInits;
728 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
729 ElementType = AType->getElementType();
730 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
731 NumElements = CAType->getSize().getZExtValue();
732 // For an array new with an unknown bound, ask for one additional element
733 // in order to populate the array filler.
734 if (Entity.isVariableLengthArrayNew())
735 ++NumElements;
736 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
737 0, Entity);
738 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
739 ElementType = VType->getElementType();
740 NumElements = VType->getNumElements();
741 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
742 0, Entity);
743 } else
744 ElementType = ILE->getType();
745
746 for (unsigned Init = 0; Init != NumElements; ++Init) {
747 if (hadError)
748 return;
749
750 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
751 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
752 ElementEntity.setElementIndex(Init);
753
754 if (Init >= NumInits && ILE->hasArrayFiller())
755 return;
756
757 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
758 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
759 ILE->setInit(Init, ILE->getArrayFiller());
760 else if (!InitExpr && !ILE->hasArrayFiller()) {
761 Expr *Filler = nullptr;
762
763 if (FillWithNoInit)
764 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
765 else {
766 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
767 ElementEntity,
768 /*VerifyOnly*/false,
769 TreatUnavailableAsInvalid);
770 if (ElementInit.isInvalid()) {
771 hadError = true;
772 return;
773 }
774
775 Filler = ElementInit.getAs<Expr>();
776 }
777
778 if (hadError) {
779 // Do nothing
780 } else if (Init < NumInits) {
781 // For arrays, just set the expression used for value-initialization
782 // of the "holes" in the array.
783 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
784 ILE->setArrayFiller(Filler);
785 else
786 ILE->setInit(Init, Filler);
787 } else {
788 // For arrays, just set the expression used for value-initialization
789 // of the rest of elements and exit.
790 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
791 ILE->setArrayFiller(Filler);
792 return;
793 }
794
795 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
796 // Empty initialization requires a constructor call, so
797 // extend the initializer list to include the constructor
798 // call and make a note that we'll need to take another pass
799 // through the initializer list.
800 ILE->updateInit(SemaRef.Context, Init, Filler);
801 RequiresSecondPass = true;
802 }
803 }
804 } else if (InitListExpr *InnerILE
805 = dyn_cast_or_null<InitListExpr>(InitExpr))
806 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
807 ILE, Init, FillWithNoInit);
808 else if (DesignatedInitUpdateExpr *InnerDIUE
809 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
810 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
811 RequiresSecondPass, ILE, Init,
812 /*FillWithNoInit =*/true);
813 }
814}
815
816InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
817 InitListExpr *IL, QualType &T,
818 bool VerifyOnly,
819 bool TreatUnavailableAsInvalid)
820 : SemaRef(S), VerifyOnly(VerifyOnly),
821 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
822 // FIXME: Check that IL isn't already the semantic form of some other
823 // InitListExpr. If it is, we'd create a broken AST.
824
825 hadError = false;
826
827 FullyStructuredList =
828 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
829 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
830 /*TopLevelObject=*/true);
831
832 if (!hadError && !VerifyOnly) {
833 bool RequiresSecondPass = false;
834 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
835 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
836 if (RequiresSecondPass && !hadError)
837 FillInEmptyInitializations(Entity, FullyStructuredList,
838 RequiresSecondPass, nullptr, 0);
839 }
840}
841
842int InitListChecker::numArrayElements(QualType DeclType) {
843 // FIXME: use a proper constant
844 int maxElements = 0x7FFFFFFF;
845 if (const ConstantArrayType *CAT =
846 SemaRef.Context.getAsConstantArrayType(DeclType)) {
847 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
848 }
849 return maxElements;
850}
851
852int InitListChecker::numStructUnionElements(QualType DeclType) {
853 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
854 int InitializableMembers = 0;
855 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
856 InitializableMembers += CXXRD->getNumBases();
857 for (const auto *Field : structDecl->fields())
858 if (!Field->isUnnamedBitfield())
859 ++InitializableMembers;
860
861 if (structDecl->isUnion())
862 return std::min(InitializableMembers, 1);
863 return InitializableMembers - structDecl->hasFlexibleArrayMember();
864}
865
866/// Determine whether Entity is an entity for which it is idiomatic to elide
867/// the braces in aggregate initialization.
868static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
869 // Recursive initialization of the one and only field within an aggregate
870 // class is considered idiomatic. This case arises in particular for
871 // initialization of std::array, where the C++ standard suggests the idiom of
872 //
873 // std::array<T, N> arr = {1, 2, 3};
874 //
875 // (where std::array is an aggregate struct containing a single array field.
876
877 // FIXME: Should aggregate initialization of a struct with a single
878 // base class and no members also suppress the warning?
879 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
880 return false;
881
882 auto *ParentRD =
883 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
884 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
885 if (CXXRD->getNumBases())
886 return false;
887
888 auto FieldIt = ParentRD->field_begin();
889 assert(FieldIt != ParentRD->field_end() &&(static_cast <bool> (FieldIt != ParentRD->field_end(
) && "no fields but have initializer for member?") ? void
(0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 890, __extension__ __PRETTY_FUNCTION__))
890 "no fields but have initializer for member?")(static_cast <bool> (FieldIt != ParentRD->field_end(
) && "no fields but have initializer for member?") ? void
(0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 890, __extension__ __PRETTY_FUNCTION__))
;
891 return ++FieldIt == ParentRD->field_end();
892}
893
894/// Check whether the range of the initializer \p ParentIList from element
895/// \p Index onwards can be used to initialize an object of type \p T. Update
896/// \p Index to indicate how many elements of the list were consumed.
897///
898/// This also fills in \p StructuredList, from element \p StructuredIndex
899/// onwards, with the fully-braced, desugared form of the initialization.
900void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
901 InitListExpr *ParentIList,
902 QualType T, unsigned &Index,
903 InitListExpr *StructuredList,
904 unsigned &StructuredIndex) {
905 int maxElements = 0;
906
907 if (T->isArrayType())
908 maxElements = numArrayElements(T);
909 else if (T->isRecordType())
910 maxElements = numStructUnionElements(T);
911 else if (T->isVectorType())
912 maxElements = T->getAs<VectorType>()->getNumElements();
913 else
914 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 914)
;
915
916 if (maxElements == 0) {
917 if (!VerifyOnly)
918 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
919 diag::err_implicit_empty_initializer);
920 ++Index;
921 hadError = true;
922 return;
923 }
924
925 // Build a structured initializer list corresponding to this subobject.
926 InitListExpr *StructuredSubobjectInitList
927 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
928 StructuredIndex,
929 SourceRange(ParentIList->getInit(Index)->getLocStart(),
930 ParentIList->getSourceRange().getEnd()));
931 unsigned StructuredSubobjectInitIndex = 0;
932
933 // Check the element types and build the structural subobject.
934 unsigned StartIndex = Index;
935 CheckListElementTypes(Entity, ParentIList, T,
936 /*SubobjectIsDesignatorContext=*/false, Index,
937 StructuredSubobjectInitList,
938 StructuredSubobjectInitIndex);
939
940 if (!VerifyOnly) {
941 StructuredSubobjectInitList->setType(T);
942
943 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
944 // Update the structured sub-object initializer so that it's ending
945 // range corresponds with the end of the last initializer it used.
946 if (EndIndex < ParentIList->getNumInits() &&
947 ParentIList->getInit(EndIndex)) {
948 SourceLocation EndLoc
949 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
950 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
951 }
952
953 // Complain about missing braces.
954 if ((T->isArrayType() || T->isRecordType()) &&
955 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
956 !isIdiomaticBraceElisionEntity(Entity)) {
957 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
958 diag::warn_missing_braces)
959 << StructuredSubobjectInitList->getSourceRange()
960 << FixItHint::CreateInsertion(
961 StructuredSubobjectInitList->getLocStart(), "{")
962 << FixItHint::CreateInsertion(
963 SemaRef.getLocForEndOfToken(
964 StructuredSubobjectInitList->getLocEnd()),
965 "}");
966 }
967 }
968}
969
970/// Warn that \p Entity was of scalar type and was initialized by a
971/// single-element braced initializer list.
972static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
973 SourceRange Braces) {
974 // Don't warn during template instantiation. If the initialization was
975 // non-dependent, we warned during the initial parse; otherwise, the
976 // type might not be scalar in some uses of the template.
977 if (S.inTemplateInstantiation())
978 return;
979
980 unsigned DiagID = 0;
981
982 switch (Entity.getKind()) {
983 case InitializedEntity::EK_VectorElement:
984 case InitializedEntity::EK_ComplexElement:
985 case InitializedEntity::EK_ArrayElement:
986 case InitializedEntity::EK_Parameter:
987 case InitializedEntity::EK_Parameter_CF_Audited:
988 case InitializedEntity::EK_Result:
989 // Extra braces here are suspicious.
990 DiagID = diag::warn_braces_around_scalar_init;
991 break;
992
993 case InitializedEntity::EK_Member:
994 // Warn on aggregate initialization but not on ctor init list or
995 // default member initializer.
996 if (Entity.getParent())
997 DiagID = diag::warn_braces_around_scalar_init;
998 break;
999
1000 case InitializedEntity::EK_Variable:
1001 case InitializedEntity::EK_LambdaCapture:
1002 // No warning, might be direct-list-initialization.
1003 // FIXME: Should we warn for copy-list-initialization in these cases?
1004 break;
1005
1006 case InitializedEntity::EK_New:
1007 case InitializedEntity::EK_Temporary:
1008 case InitializedEntity::EK_CompoundLiteralInit:
1009 // No warning, braces are part of the syntax of the underlying construct.
1010 break;
1011
1012 case InitializedEntity::EK_RelatedResult:
1013 // No warning, we already warned when initializing the result.
1014 break;
1015
1016 case InitializedEntity::EK_Exception:
1017 case InitializedEntity::EK_Base:
1018 case InitializedEntity::EK_Delegating:
1019 case InitializedEntity::EK_BlockElement:
1020 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1021 case InitializedEntity::EK_Binding:
1022 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1022)
;
1023 }
1024
1025 if (DiagID) {
1026 S.Diag(Braces.getBegin(), DiagID)
1027 << Braces
1028 << FixItHint::CreateRemoval(Braces.getBegin())
1029 << FixItHint::CreateRemoval(Braces.getEnd());
1030 }
1031}
1032
1033/// Check whether the initializer \p IList (that was written with explicit
1034/// braces) can be used to initialize an object of type \p T.
1035///
1036/// This also fills in \p StructuredList with the fully-braced, desugared
1037/// form of the initialization.
1038void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1039 InitListExpr *IList, QualType &T,
1040 InitListExpr *StructuredList,
1041 bool TopLevelObject) {
1042 if (!VerifyOnly) {
1043 SyntacticToSemantic[IList] = StructuredList;
1044 StructuredList->setSyntacticForm(IList);
1045 }
1046
1047 unsigned Index = 0, StructuredIndex = 0;
1048 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1049 Index, StructuredList, StructuredIndex, TopLevelObject);
1050 if (!VerifyOnly) {
1051 QualType ExprTy = T;
1052 if (!ExprTy->isArrayType())
1053 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1054 IList->setType(ExprTy);
1055 StructuredList->setType(ExprTy);
1056 }
1057 if (hadError)
1058 return;
1059
1060 if (Index < IList->getNumInits()) {
1061 // We have leftover initializers
1062 if (VerifyOnly) {
1063 if (SemaRef.getLangOpts().CPlusPlus ||
1064 (SemaRef.getLangOpts().OpenCL &&
1065 IList->getType()->isVectorType())) {
1066 hadError = true;
1067 }
1068 return;
1069 }
1070
1071 if (StructuredIndex == 1 &&
1072 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1073 SIF_None) {
1074 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1075 if (SemaRef.getLangOpts().CPlusPlus) {
1076 DK = diag::err_excess_initializers_in_char_array_initializer;
1077 hadError = true;
1078 }
1079 // Special-case
1080 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1081 << IList->getInit(Index)->getSourceRange();
1082 } else if (!T->isIncompleteType()) {
1083 // Don't complain for incomplete types, since we'll get an error
1084 // elsewhere
1085 QualType CurrentObjectType = StructuredList->getType();
1086 int initKind =
1087 CurrentObjectType->isArrayType()? 0 :
1088 CurrentObjectType->isVectorType()? 1 :
1089 CurrentObjectType->isScalarType()? 2 :
1090 CurrentObjectType->isUnionType()? 3 :
1091 4;
1092
1093 unsigned DK = diag::ext_excess_initializers;
1094 if (SemaRef.getLangOpts().CPlusPlus) {
1095 DK = diag::err_excess_initializers;
1096 hadError = true;
1097 }
1098 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1099 DK = diag::err_excess_initializers;
1100 hadError = true;
1101 }
1102
1103 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1104 << initKind << IList->getInit(Index)->getSourceRange();
1105 }
1106 }
1107
1108 if (!VerifyOnly && T->isScalarType() &&
1109 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
1110 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1111}
1112
1113void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1114 InitListExpr *IList,
1115 QualType &DeclType,
1116 bool SubobjectIsDesignatorContext,
1117 unsigned &Index,
1118 InitListExpr *StructuredList,
1119 unsigned &StructuredIndex,
1120 bool TopLevelObject) {
1121 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1122 // Explicitly braced initializer for complex type can be real+imaginary
1123 // parts.
1124 CheckComplexType(Entity, IList, DeclType, Index,
1125 StructuredList, StructuredIndex);
1126 } else if (DeclType->isScalarType()) {
1127 CheckScalarType(Entity, IList, DeclType, Index,
1128 StructuredList, StructuredIndex);
1129 } else if (DeclType->isVectorType()) {
1130 CheckVectorType(Entity, IList, DeclType, Index,
1131 StructuredList, StructuredIndex);
1132 } else if (DeclType->isRecordType()) {
1133 assert(DeclType->isAggregateType() &&(static_cast <bool> (DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
) ? void (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1134, __extension__ __PRETTY_FUNCTION__))
1134 "non-aggregate records should be handed in CheckSubElementType")(static_cast <bool> (DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
) ? void (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1134, __extension__ __PRETTY_FUNCTION__))
;
1135 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1136 auto Bases =
1137 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1138 CXXRecordDecl::base_class_iterator());
1139 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1140 Bases = CXXRD->bases();
1141 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1142 SubobjectIsDesignatorContext, Index, StructuredList,
1143 StructuredIndex, TopLevelObject);
1144 } else if (DeclType->isArrayType()) {
1145 llvm::APSInt Zero(
1146 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1147 false);
1148 CheckArrayType(Entity, IList, DeclType, Zero,
1149 SubobjectIsDesignatorContext, Index,
1150 StructuredList, StructuredIndex);
1151 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1152 // This type is invalid, issue a diagnostic.
1153 ++Index;
1154 if (!VerifyOnly)
1155 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1156 << DeclType;
1157 hadError = true;
1158 } else if (DeclType->isReferenceType()) {
1159 CheckReferenceType(Entity, IList, DeclType, Index,
1160 StructuredList, StructuredIndex);
1161 } else if (DeclType->isObjCObjectType()) {
1162 if (!VerifyOnly)
1163 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1164 << DeclType;
1165 hadError = true;
1166 } else {
1167 if (!VerifyOnly)
1168 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1169 << DeclType;
1170 hadError = true;
1171 }
1172}
1173
1174void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1175 InitListExpr *IList,
1176 QualType ElemType,
1177 unsigned &Index,
1178 InitListExpr *StructuredList,
1179 unsigned &StructuredIndex) {
1180 Expr *expr = IList->getInit(Index);
1181
1182 if (ElemType->isReferenceType())
1183 return CheckReferenceType(Entity, IList, ElemType, Index,
1184 StructuredList, StructuredIndex);
1185
1186 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1187 if (SubInitList->getNumInits() == 1 &&
1188 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1189 SIF_None) {
1190 expr = SubInitList->getInit(0);
1191 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1192 InitListExpr *InnerStructuredList
1193 = getStructuredSubobjectInit(IList, Index, ElemType,
1194 StructuredList, StructuredIndex,
1195 SubInitList->getSourceRange(), true);
1196 CheckExplicitInitList(Entity, SubInitList, ElemType,
1197 InnerStructuredList);
1198
1199 if (!hadError && !VerifyOnly) {
1200 bool RequiresSecondPass = false;
1201 FillInEmptyInitializations(Entity, InnerStructuredList,
1202 RequiresSecondPass, StructuredList,
1203 StructuredIndex);
1204 if (RequiresSecondPass && !hadError)
1205 FillInEmptyInitializations(Entity, InnerStructuredList,
1206 RequiresSecondPass, StructuredList,
1207 StructuredIndex);
1208 }
1209 ++StructuredIndex;
1210 ++Index;
1211 return;
1212 }
1213 // C++ initialization is handled later.
1214 } else if (isa<ImplicitValueInitExpr>(expr)) {
1215 // This happens during template instantiation when we see an InitListExpr
1216 // that we've already checked once.
1217 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&(static_cast <bool> (SemaRef.Context.hasSameType(expr->
getType(), ElemType) && "found implicit initialization for the wrong type"
) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1218, __extension__ __PRETTY_FUNCTION__))
1218 "found implicit initialization for the wrong type")(static_cast <bool> (SemaRef.Context.hasSameType(expr->
getType(), ElemType) && "found implicit initialization for the wrong type"
) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1218, __extension__ __PRETTY_FUNCTION__))
;
1219 if (!VerifyOnly)
1220 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1221 ++Index;
1222 return;
1223 }
1224
1225 if (SemaRef.getLangOpts().CPlusPlus) {
1226 // C++ [dcl.init.aggr]p2:
1227 // Each member is copy-initialized from the corresponding
1228 // initializer-clause.
1229
1230 // FIXME: Better EqualLoc?
1231 InitializationKind Kind =
1232 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1233 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1234 /*TopLevelOfInitList*/ true);
1235
1236 // C++14 [dcl.init.aggr]p13:
1237 // If the assignment-expression can initialize a member, the member is
1238 // initialized. Otherwise [...] brace elision is assumed
1239 //
1240 // Brace elision is never performed if the element is not an
1241 // assignment-expression.
1242 if (Seq || isa<InitListExpr>(expr)) {
1243 if (!VerifyOnly) {
1244 ExprResult Result =
1245 Seq.Perform(SemaRef, Entity, Kind, expr);
1246 if (Result.isInvalid())
1247 hadError = true;
1248
1249 UpdateStructuredListElement(StructuredList, StructuredIndex,
1250 Result.getAs<Expr>());
1251 } else if (!Seq)
1252 hadError = true;
1253 ++Index;
1254 return;
1255 }
1256
1257 // Fall through for subaggregate initialization
1258 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1259 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1260 return CheckScalarType(Entity, IList, ElemType, Index,
1261 StructuredList, StructuredIndex);
1262 } else if (const ArrayType *arrayType =
1263 SemaRef.Context.getAsArrayType(ElemType)) {
1264 // arrayType can be incomplete if we're initializing a flexible
1265 // array member. There's nothing we can do with the completed
1266 // type here, though.
1267
1268 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1269 if (!VerifyOnly) {
1270 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1271 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1272 }
1273 ++Index;
1274 return;
1275 }
1276
1277 // Fall through for subaggregate initialization.
1278
1279 } else {
1280 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(static_cast <bool> ((ElemType->isRecordType() || ElemType
->isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1281, __extension__ __PRETTY_FUNCTION__))
1281 ElemType->isOpenCLSpecificType()) && "Unexpected type")(static_cast <bool> ((ElemType->isRecordType() || ElemType
->isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1281, __extension__ __PRETTY_FUNCTION__))
;
1282
1283 // C99 6.7.8p13:
1284 //
1285 // The initializer for a structure or union object that has
1286 // automatic storage duration shall be either an initializer
1287 // list as described below, or a single expression that has
1288 // compatible structure or union type. In the latter case, the
1289 // initial value of the object, including unnamed members, is
1290 // that of the expression.
1291 ExprResult ExprRes = expr;
1292 if (SemaRef.CheckSingleAssignmentConstraints(
1293 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1294 if (ExprRes.isInvalid())
1295 hadError = true;
1296 else {
1297 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1298 if (ExprRes.isInvalid())
1299 hadError = true;
1300 }
1301 UpdateStructuredListElement(StructuredList, StructuredIndex,
1302 ExprRes.getAs<Expr>());
1303 ++Index;
1304 return;
1305 }
1306 ExprRes.get();
1307 // Fall through for subaggregate initialization
1308 }
1309
1310 // C++ [dcl.init.aggr]p12:
1311 //
1312 // [...] Otherwise, if the member is itself a non-empty
1313 // subaggregate, brace elision is assumed and the initializer is
1314 // considered for the initialization of the first member of
1315 // the subaggregate.
1316 // OpenCL vector initializer is handled elsewhere.
1317 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1318 ElemType->isAggregateType()) {
1319 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1320 StructuredIndex);
1321 ++StructuredIndex;
1322 } else {
1323 if (!VerifyOnly) {
1324 // We cannot initialize this element, so let
1325 // PerformCopyInitialization produce the appropriate diagnostic.
1326 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1327 /*TopLevelOfInitList=*/true);
1328 }
1329 hadError = true;
1330 ++Index;
1331 ++StructuredIndex;
1332 }
1333}
1334
1335void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1336 InitListExpr *IList, QualType DeclType,
1337 unsigned &Index,
1338 InitListExpr *StructuredList,
1339 unsigned &StructuredIndex) {
1340 assert(Index == 0 && "Index in explicit init list must be zero")(static_cast <bool> (Index == 0 && "Index in explicit init list must be zero"
) ? void (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1340, __extension__ __PRETTY_FUNCTION__))
;
1341
1342 // As an extension, clang supports complex initializers, which initialize
1343 // a complex number component-wise. When an explicit initializer list for
1344 // a complex number contains two two initializers, this extension kicks in:
1345 // it exepcts the initializer list to contain two elements convertible to
1346 // the element type of the complex type. The first element initializes
1347 // the real part, and the second element intitializes the imaginary part.
1348
1349 if (IList->getNumInits() != 2)
1350 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1351 StructuredIndex);
1352
1353 // This is an extension in C. (The builtin _Complex type does not exist
1354 // in the C++ standard.)
1355 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1356 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1357 << IList->getSourceRange();
1358
1359 // Initialize the complex number.
1360 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1361 InitializedEntity ElementEntity =
1362 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1363
1364 for (unsigned i = 0; i < 2; ++i) {
1365 ElementEntity.setElementIndex(Index);
1366 CheckSubElementType(ElementEntity, IList, elementType, Index,
1367 StructuredList, StructuredIndex);
1368 }
1369}
1370
1371void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1372 InitListExpr *IList, QualType DeclType,
1373 unsigned &Index,
1374 InitListExpr *StructuredList,
1375 unsigned &StructuredIndex) {
1376 if (Index >= IList->getNumInits()) {
1377 if (!VerifyOnly)
1378 SemaRef.Diag(IList->getLocStart(),
1379 SemaRef.getLangOpts().CPlusPlus11 ?
1380 diag::warn_cxx98_compat_empty_scalar_initializer :
1381 diag::err_empty_scalar_initializer)
1382 << IList->getSourceRange();
1383 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1384 ++Index;
1385 ++StructuredIndex;
1386 return;
1387 }
1388
1389 Expr *expr = IList->getInit(Index);
1390 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1391 // FIXME: This is invalid, and accepting it causes overload resolution
1392 // to pick the wrong overload in some corner cases.
1393 if (!VerifyOnly)
1394 SemaRef.Diag(SubIList->getLocStart(),
1395 diag::ext_many_braces_around_scalar_init)
1396 << SubIList->getSourceRange();
1397
1398 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1399 StructuredIndex);
1400 return;
1401 } else if (isa<DesignatedInitExpr>(expr)) {
1402 if (!VerifyOnly)
1403 SemaRef.Diag(expr->getLocStart(),
1404 diag::err_designator_for_scalar_init)
1405 << DeclType << expr->getSourceRange();
1406 hadError = true;
1407 ++Index;
1408 ++StructuredIndex;
1409 return;
1410 }
1411
1412 if (VerifyOnly) {
1413 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1414 hadError = true;
1415 ++Index;
1416 return;
1417 }
1418
1419 ExprResult Result =
1420 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1421 /*TopLevelOfInitList=*/true);
1422
1423 Expr *ResultExpr = nullptr;
1424
1425 if (Result.isInvalid())
1426 hadError = true; // types weren't compatible.
1427 else {
1428 ResultExpr = Result.getAs<Expr>();
1429
1430 if (ResultExpr != expr) {
1431 // The type was promoted, update initializer list.
1432 IList->setInit(Index, ResultExpr);
1433 }
1434 }
1435 if (hadError)
1436 ++StructuredIndex;
1437 else
1438 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1439 ++Index;
1440}
1441
1442void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1443 InitListExpr *IList, QualType DeclType,
1444 unsigned &Index,
1445 InitListExpr *StructuredList,
1446 unsigned &StructuredIndex) {
1447 if (Index >= IList->getNumInits()) {
1448 // FIXME: It would be wonderful if we could point at the actual member. In
1449 // general, it would be useful to pass location information down the stack,
1450 // so that we know the location (or decl) of the "current object" being
1451 // initialized.
1452 if (!VerifyOnly)
1453 SemaRef.Diag(IList->getLocStart(),
1454 diag::err_init_reference_member_uninitialized)
1455 << DeclType
1456 << IList->getSourceRange();
1457 hadError = true;
1458 ++Index;
1459 ++StructuredIndex;
1460 return;
1461 }
1462
1463 Expr *expr = IList->getInit(Index);
1464 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1465 if (!VerifyOnly)
1466 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1467 << DeclType << IList->getSourceRange();
1468 hadError = true;
1469 ++Index;
1470 ++StructuredIndex;
1471 return;
1472 }
1473
1474 if (VerifyOnly) {
1475 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1476 hadError = true;
1477 ++Index;
1478 return;
1479 }
1480
1481 ExprResult Result =
1482 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1483 /*TopLevelOfInitList=*/true);
1484
1485 if (Result.isInvalid())
1486 hadError = true;
1487
1488 expr = Result.getAs<Expr>();
1489 IList->setInit(Index, expr);
1490
1491 if (hadError)
1492 ++StructuredIndex;
1493 else
1494 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1495 ++Index;
1496}
1497
1498void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1499 InitListExpr *IList, QualType DeclType,
1500 unsigned &Index,
1501 InitListExpr *StructuredList,
1502 unsigned &StructuredIndex) {
1503 const VectorType *VT = DeclType->getAs<VectorType>();
1504 unsigned maxElements = VT->getNumElements();
1505 unsigned numEltsInit = 0;
1506 QualType elementType = VT->getElementType();
1507
1508 if (Index >= IList->getNumInits()) {
1509 // Make sure the element type can be value-initialized.
1510 if (VerifyOnly)
1511 CheckEmptyInitializable(
1512 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1513 IList->getLocEnd());
1514 return;
1515 }
1516
1517 if (!SemaRef.getLangOpts().OpenCL) {
1518 // If the initializing element is a vector, try to copy-initialize
1519 // instead of breaking it apart (which is doomed to failure anyway).
1520 Expr *Init = IList->getInit(Index);
1521 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1522 if (VerifyOnly) {
1523 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1524 hadError = true;
1525 ++Index;
1526 return;
1527 }
1528
1529 ExprResult Result =
1530 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1531 /*TopLevelOfInitList=*/true);
1532
1533 Expr *ResultExpr = nullptr;
1534 if (Result.isInvalid())
1535 hadError = true; // types weren't compatible.
1536 else {
1537 ResultExpr = Result.getAs<Expr>();
1538
1539 if (ResultExpr != Init) {
1540 // The type was promoted, update initializer list.
1541 IList->setInit(Index, ResultExpr);
1542 }
1543 }
1544 if (hadError)
1545 ++StructuredIndex;
1546 else
1547 UpdateStructuredListElement(StructuredList, StructuredIndex,
1548 ResultExpr);
1549 ++Index;
1550 return;
1551 }
1552
1553 InitializedEntity ElementEntity =
1554 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1555
1556 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1557 // Don't attempt to go past the end of the init list
1558 if (Index >= IList->getNumInits()) {
1559 if (VerifyOnly)
1560 CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1561 break;
1562 }
1563
1564 ElementEntity.setElementIndex(Index);
1565 CheckSubElementType(ElementEntity, IList, elementType, Index,
1566 StructuredList, StructuredIndex);
1567 }
1568
1569 if (VerifyOnly)
1570 return;
1571
1572 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1573 const VectorType *T = Entity.getType()->getAs<VectorType>();
1574 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1575 T->getVectorKind() == VectorType::NeonPolyVector)) {
1576 // The ability to use vector initializer lists is a GNU vector extension
1577 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1578 // endian machines it works fine, however on big endian machines it
1579 // exhibits surprising behaviour:
1580 //
1581 // uint32x2_t x = {42, 64};
1582 // return vget_lane_u32(x, 0); // Will return 64.
1583 //
1584 // Because of this, explicitly call out that it is non-portable.
1585 //
1586 SemaRef.Diag(IList->getLocStart(),
1587 diag::warn_neon_vector_initializer_non_portable);
1588
1589 const char *typeCode;
1590 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1591
1592 if (elementType->isFloatingType())
1593 typeCode = "f";
1594 else if (elementType->isSignedIntegerType())
1595 typeCode = "s";
1596 else if (elementType->isUnsignedIntegerType())
1597 typeCode = "u";
1598 else
1599 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 1599)
;
1600
1601 SemaRef.Diag(IList->getLocStart(),
1602 SemaRef.Context.getTypeSize(VT) > 64 ?
1603 diag::note_neon_vector_initializer_non_portable_q :
1604 diag::note_neon_vector_initializer_non_portable)
1605 << typeCode << typeSize;
1606 }
1607
1608 return;
1609 }
1610
1611 InitializedEntity ElementEntity =
1612 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1613
1614 // OpenCL initializers allows vectors to be constructed from vectors.
1615 for (unsigned i = 0; i < maxElements; ++i) {
1616 // Don't attempt to go past the end of the init list
1617 if (Index >= IList->getNumInits())
1618 break;
1619
1620 ElementEntity.setElementIndex(Index);
1621
1622 QualType IType = IList->getInit(Index)->getType();
1623 if (!IType->isVectorType()) {
1624 CheckSubElementType(ElementEntity, IList, elementType, Index,
1625 StructuredList, StructuredIndex);
1626 ++numEltsInit;
1627 } else {
1628 QualType VecType;
1629 const VectorType *IVT = IType->getAs<VectorType>();
1630 unsigned numIElts = IVT->getNumElements();
1631
1632 if (IType->isExtVectorType())
1633 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1634 else
1635 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1636 IVT->getVectorKind());
1637 CheckSubElementType(ElementEntity, IList, VecType, Index,
1638 StructuredList, StructuredIndex);
1639 numEltsInit += numIElts;
1640 }
1641 }
1642
1643 // OpenCL requires all elements to be initialized.
1644 if (numEltsInit != maxElements) {
1645 if (!VerifyOnly)
1646 SemaRef.Diag(IList->getLocStart(),
1647 diag::err_vector_incorrect_num_initializers)
1648 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1649 hadError = true;
1650 }
1651}
1652
1653void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1654 InitListExpr *IList, QualType &DeclType,
1655 llvm::APSInt elementIndex,
1656 bool SubobjectIsDesignatorContext,
1657 unsigned &Index,
1658 InitListExpr *StructuredList,
1659 unsigned &StructuredIndex) {
1660 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1661
1662 // Check for the special-case of initializing an array with a string.
1663 if (Index < IList->getNumInits()) {
1664 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1665 SIF_None) {
1666 // We place the string literal directly into the resulting
1667 // initializer list. This is the only place where the structure
1668 // of the structured initializer list doesn't match exactly,
1669 // because doing so would involve allocating one character
1670 // constant for each string.
1671 if (!VerifyOnly) {
1672 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1673 UpdateStructuredListElement(StructuredList, StructuredIndex,
1674 IList->getInit(Index));
1675 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1676 }
1677 ++Index;
1678 return;
1679 }
1680 }
1681 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1682 // Check for VLAs; in standard C it would be possible to check this
1683 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1684 // them in all sorts of strange places).
1685 if (!VerifyOnly)
1686 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1687 diag::err_variable_object_no_init)
1688 << VAT->getSizeExpr()->getSourceRange();
1689 hadError = true;
1690 ++Index;
1691 ++StructuredIndex;
1692 return;
1693 }
1694
1695 // We might know the maximum number of elements in advance.
1696 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1697 elementIndex.isUnsigned());
1698 bool maxElementsKnown = false;
1699 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1700 maxElements = CAT->getSize();
1701 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1702 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1703 maxElementsKnown = true;
1704 }
1705
1706 QualType elementType = arrayType->getElementType();
1707 while (Index < IList->getNumInits()) {
1708 Expr *Init = IList->getInit(Index);
1709 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1710 // If we're not the subobject that matches up with the '{' for
1711 // the designator, we shouldn't be handling the
1712 // designator. Return immediately.
1713 if (!SubobjectIsDesignatorContext)
1714 return;
1715
1716 // Handle this designated initializer. elementIndex will be
1717 // updated to be the next array element we'll initialize.
1718 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1719 DeclType, nullptr, &elementIndex, Index,
1720 StructuredList, StructuredIndex, true,
1721 false)) {
1722 hadError = true;
1723 continue;
1724 }
1725
1726 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1727 maxElements = maxElements.extend(elementIndex.getBitWidth());
1728 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1729 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1730 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1731
1732 // If the array is of incomplete type, keep track of the number of
1733 // elements in the initializer.
1734 if (!maxElementsKnown && elementIndex > maxElements)
1735 maxElements = elementIndex;
1736
1737 continue;
1738 }
1739
1740 // If we know the maximum number of elements, and we've already
1741 // hit it, stop consuming elements in the initializer list.
1742 if (maxElementsKnown && elementIndex == maxElements)
1743 break;
1744
1745 InitializedEntity ElementEntity =
1746 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1747 Entity);
1748 // Check this element.
1749 CheckSubElementType(ElementEntity, IList, elementType, Index,
1750 StructuredList, StructuredIndex);
1751 ++elementIndex;
1752
1753 // If the array is of incomplete type, keep track of the number of
1754 // elements in the initializer.
1755 if (!maxElementsKnown && elementIndex > maxElements)
1756 maxElements = elementIndex;
1757 }
1758 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1759 // If this is an incomplete array type, the actual type needs to
1760 // be calculated here.
1761 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1762 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1763 // Sizing an array implicitly to zero is not allowed by ISO C,
1764 // but is supported by GNU.
1765 SemaRef.Diag(IList->getLocStart(),
1766 diag::ext_typecheck_zero_array_size);
1767 }
1768
1769 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1770 ArrayType::Normal, 0);
1771 }
1772 if (!hadError && VerifyOnly) {
1773 // If there are any members of the array that get value-initialized, check
1774 // that is possible. That happens if we know the bound and don't have
1775 // enough elements, or if we're performing an array new with an unknown
1776 // bound.
1777 // FIXME: This needs to detect holes left by designated initializers too.
1778 if ((maxElementsKnown && elementIndex < maxElements) ||
1779 Entity.isVariableLengthArrayNew())
1780 CheckEmptyInitializable(InitializedEntity::InitializeElement(
1781 SemaRef.Context, 0, Entity),
1782 IList->getLocEnd());
1783 }
1784}
1785
1786bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1787 Expr *InitExpr,
1788 FieldDecl *Field,
1789 bool TopLevelObject) {
1790 // Handle GNU flexible array initializers.
1791 unsigned FlexArrayDiag;
1792 if (isa<InitListExpr>(InitExpr) &&
1793 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1794 // Empty flexible array init always allowed as an extension
1795 FlexArrayDiag = diag::ext_flexible_array_init;
1796 } else if (SemaRef.getLangOpts().CPlusPlus) {
1797 // Disallow flexible array init in C++; it is not required for gcc
1798 // compatibility, and it needs work to IRGen correctly in general.
1799 FlexArrayDiag = diag::err_flexible_array_init;
1800 } else if (!TopLevelObject) {
1801 // Disallow flexible array init on non-top-level object
1802 FlexArrayDiag = diag::err_flexible_array_init;
1803 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1804 // Disallow flexible array init on anything which is not a variable.
1805 FlexArrayDiag = diag::err_flexible_array_init;
1806 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1807 // Disallow flexible array init on local variables.
1808 FlexArrayDiag = diag::err_flexible_array_init;
1809 } else {
1810 // Allow other cases.
1811 FlexArrayDiag = diag::ext_flexible_array_init;
1812 }
1813
1814 if (!VerifyOnly) {
1815 SemaRef.Diag(InitExpr->getLocStart(),
1816 FlexArrayDiag)
1817 << InitExpr->getLocStart();
1818 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1819 << Field;
1820 }
1821
1822 return FlexArrayDiag != diag::ext_flexible_array_init;
1823}
1824
1825void InitListChecker::CheckStructUnionTypes(
1826 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1827 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1828 bool SubobjectIsDesignatorContext, unsigned &Index,
1829 InitListExpr *StructuredList, unsigned &StructuredIndex,
1830 bool TopLevelObject) {
1831 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1832
1833 // If the record is invalid, some of it's members are invalid. To avoid
1834 // confusion, we forgo checking the intializer for the entire record.
1835 if (structDecl->isInvalidDecl()) {
1836 // Assume it was supposed to consume a single initializer.
1837 ++Index;
1838 hadError = true;
1839 return;
1840 }
1841
1842 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1843 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1844
1845 // If there's a default initializer, use it.
1846 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1847 if (VerifyOnly)
1848 return;
1849 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1850 Field != FieldEnd; ++Field) {
1851 if (Field->hasInClassInitializer()) {
1852 StructuredList->setInitializedFieldInUnion(*Field);
1853 // FIXME: Actually build a CXXDefaultInitExpr?
1854 return;
1855 }
1856 }
1857 }
1858
1859 // Value-initialize the first member of the union that isn't an unnamed
1860 // bitfield.
1861 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1862 Field != FieldEnd; ++Field) {
1863 if (!Field->isUnnamedBitfield()) {
1864 if (VerifyOnly)
1865 CheckEmptyInitializable(
1866 InitializedEntity::InitializeMember(*Field, &Entity),
1867 IList->getLocEnd());
1868 else
1869 StructuredList->setInitializedFieldInUnion(*Field);
1870 break;
1871 }
1872 }
1873 return;
1874 }
1875
1876 bool InitializedSomething = false;
1877
1878 // If we have any base classes, they are initialized prior to the fields.
1879 for (auto &Base : Bases) {
1880 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1881 SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd();
1882
1883 // Designated inits always initialize fields, so if we see one, all
1884 // remaining base classes have no explicit initializer.
1885 if (Init && isa<DesignatedInitExpr>(Init))
1886 Init = nullptr;
1887
1888 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1889 SemaRef.Context, &Base, false, &Entity);
1890 if (Init) {
1891 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1892 StructuredList, StructuredIndex);
1893 InitializedSomething = true;
1894 } else if (VerifyOnly) {
1895 CheckEmptyInitializable(BaseEntity, InitLoc);
1896 }
1897 }
1898
1899 // If structDecl is a forward declaration, this loop won't do
1900 // anything except look at designated initializers; That's okay,
1901 // because an error should get printed out elsewhere. It might be
1902 // worthwhile to skip over the rest of the initializer, though.
1903 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1904 RecordDecl::field_iterator FieldEnd = RD->field_end();
1905 bool CheckForMissingFields =
1906 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
1907
1908 while (Index < IList->getNumInits()) {
1909 Expr *Init = IList->getInit(Index);
1910
1911 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1912 // If we're not the subobject that matches up with the '{' for
1913 // the designator, we shouldn't be handling the
1914 // designator. Return immediately.
1915 if (!SubobjectIsDesignatorContext)
1916 return;
1917
1918 // Handle this designated initializer. Field will be updated to
1919 // the next field that we'll be initializing.
1920 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1921 DeclType, &Field, nullptr, Index,
1922 StructuredList, StructuredIndex,
1923 true, TopLevelObject))
1924 hadError = true;
1925
1926 InitializedSomething = true;
1927
1928 // Disable check for missing fields when designators are used.
1929 // This matches gcc behaviour.
1930 CheckForMissingFields = false;
1931 continue;
1932 }
1933
1934 if (Field == FieldEnd) {
1935 // We've run out of fields. We're done.
1936 break;
1937 }
1938
1939 // We've already initialized a member of a union. We're done.
1940 if (InitializedSomething && DeclType->isUnionType())
1941 break;
1942
1943 // If we've hit the flexible array member at the end, we're done.
1944 if (Field->getType()->isIncompleteArrayType())
1945 break;
1946
1947 if (Field->isUnnamedBitfield()) {
1948 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1949 ++Field;
1950 continue;
1951 }
1952
1953 // Make sure we can use this declaration.
1954 bool InvalidUse;
1955 if (VerifyOnly)
1956 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
1957 else
1958 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1959 IList->getInit(Index)->getLocStart());
1960 if (InvalidUse) {
1961 ++Index;
1962 ++Field;
1963 hadError = true;
1964 continue;
1965 }
1966
1967 InitializedEntity MemberEntity =
1968 InitializedEntity::InitializeMember(*Field, &Entity);
1969 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1970 StructuredList, StructuredIndex);
1971 InitializedSomething = true;
1972
1973 if (DeclType->isUnionType() && !VerifyOnly) {
1974 // Initialize the first field within the union.
1975 StructuredList->setInitializedFieldInUnion(*Field);
1976 }
1977
1978 ++Field;
1979 }
1980
1981 // Emit warnings for missing struct field initializers.
1982 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1983 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1984 !DeclType->isUnionType()) {
1985 // It is possible we have one or more unnamed bitfields remaining.
1986 // Find first (if any) named field and emit warning.
1987 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1988 it != end; ++it) {
1989 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1990 SemaRef.Diag(IList->getSourceRange().getEnd(),
1991 diag::warn_missing_field_initializers) << *it;
1992 break;
1993 }
1994 }
1995 }
1996
1997 // Check that any remaining fields can be value-initialized.
1998 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1999 !Field->getType()->isIncompleteArrayType()) {
2000 // FIXME: Should check for holes left by designated initializers too.
2001 for (; Field != FieldEnd && !hadError; ++Field) {
2002 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2003 CheckEmptyInitializable(
2004 InitializedEntity::InitializeMember(*Field, &Entity),
2005 IList->getLocEnd());
2006 }
2007 }
2008
2009 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2010 Index >= IList->getNumInits())
2011 return;
2012
2013 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2014 TopLevelObject)) {
2015 hadError = true;
2016 ++Index;
2017 return;
2018 }
2019
2020 InitializedEntity MemberEntity =
2021 InitializedEntity::InitializeMember(*Field, &Entity);
2022
2023 if (isa<InitListExpr>(IList->getInit(Index)))
2024 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2025 StructuredList, StructuredIndex);
2026 else
2027 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2028 StructuredList, StructuredIndex);
2029}
2030
2031/// Expand a field designator that refers to a member of an
2032/// anonymous struct or union into a series of field designators that
2033/// refers to the field within the appropriate subobject.
2034///
2035static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2036 DesignatedInitExpr *DIE,
2037 unsigned DesigIdx,
2038 IndirectFieldDecl *IndirectField) {
2039 typedef DesignatedInitExpr::Designator Designator;
2040
2041 // Build the replacement designators.
2042 SmallVector<Designator, 4> Replacements;
2043 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2044 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2045 if (PI + 1 == PE)
2046 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2047 DIE->getDesignator(DesigIdx)->getDotLoc(),
2048 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2049 else
2050 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2051 SourceLocation(), SourceLocation()));
2052 assert(isa<FieldDecl>(*PI))(static_cast <bool> (isa<FieldDecl>(*PI)) ? void (
0) : __assert_fail ("isa<FieldDecl>(*PI)", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 2052, __extension__ __PRETTY_FUNCTION__))
;
2053 Replacements.back().setField(cast<FieldDecl>(*PI));
2054 }
2055
2056 // Expand the current designator into the set of replacement
2057 // designators, so we have a full subobject path down to where the
2058 // member of the anonymous struct/union is actually stored.
2059 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2060 &Replacements[0] + Replacements.size());
2061}
2062
2063static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2064 DesignatedInitExpr *DIE) {
2065 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2066 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2067 for (unsigned I = 0; I < NumIndexExprs; ++I)
2068 IndexExprs[I] = DIE->getSubExpr(I + 1);
2069 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2070 IndexExprs,
2071 DIE->getEqualOrColonLoc(),
2072 DIE->usesGNUSyntax(), DIE->getInit());
2073}
2074
2075namespace {
2076
2077// Callback to only accept typo corrections that are for field members of
2078// the given struct or union.
2079class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2080 public:
2081 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2082 : Record(RD) {}
2083
2084 bool ValidateCandidate(const TypoCorrection &candidate) override {
2085 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2086 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2087 }
2088
2089 private:
2090 RecordDecl *Record;
2091};
2092
2093} // end anonymous namespace
2094
2095/// Check the well-formedness of a C99 designated initializer.
2096///
2097/// Determines whether the designated initializer @p DIE, which
2098/// resides at the given @p Index within the initializer list @p
2099/// IList, is well-formed for a current object of type @p DeclType
2100/// (C99 6.7.8). The actual subobject that this designator refers to
2101/// within the current subobject is returned in either
2102/// @p NextField or @p NextElementIndex (whichever is appropriate).
2103///
2104/// @param IList The initializer list in which this designated
2105/// initializer occurs.
2106///
2107/// @param DIE The designated initializer expression.
2108///
2109/// @param DesigIdx The index of the current designator.
2110///
2111/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2112/// into which the designation in @p DIE should refer.
2113///
2114/// @param NextField If non-NULL and the first designator in @p DIE is
2115/// a field, this will be set to the field declaration corresponding
2116/// to the field named by the designator.
2117///
2118/// @param NextElementIndex If non-NULL and the first designator in @p
2119/// DIE is an array designator or GNU array-range designator, this
2120/// will be set to the last index initialized by this designator.
2121///
2122/// @param Index Index into @p IList where the designated initializer
2123/// @p DIE occurs.
2124///
2125/// @param StructuredList The initializer list expression that
2126/// describes all of the subobject initializers in the order they'll
2127/// actually be initialized.
2128///
2129/// @returns true if there was an error, false otherwise.
2130bool
2131InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2132 InitListExpr *IList,
2133 DesignatedInitExpr *DIE,
2134 unsigned DesigIdx,
2135 QualType &CurrentObjectType,
2136 RecordDecl::field_iterator *NextField,
2137 llvm::APSInt *NextElementIndex,
2138 unsigned &Index,
2139 InitListExpr *StructuredList,
2140 unsigned &StructuredIndex,
2141 bool FinishSubobjectInit,
2142 bool TopLevelObject) {
2143 if (DesigIdx == DIE->size()) {
2144 // Check the actual initialization for the designated object type.
2145 bool prevHadError = hadError;
2146
2147 // Temporarily remove the designator expression from the
2148 // initializer list that the child calls see, so that we don't try
2149 // to re-process the designator.
2150 unsigned OldIndex = Index;
2151 IList->setInit(OldIndex, DIE->getInit());
2152
2153 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2154 StructuredList, StructuredIndex);
2155
2156 // Restore the designated initializer expression in the syntactic
2157 // form of the initializer list.
2158 if (IList->getInit(OldIndex) != DIE->getInit())
2159 DIE->setInit(IList->getInit(OldIndex));
2160 IList->setInit(OldIndex, DIE);
2161
2162 return hadError && !prevHadError;
2163 }
2164
2165 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2166 bool IsFirstDesignator = (DesigIdx == 0);
2167 if (!VerifyOnly) {
2168 assert((IsFirstDesignator || StructuredList) &&(static_cast <bool> ((IsFirstDesignator || StructuredList
) && "Need a non-designated initializer list to start from"
) ? void (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 2169, __extension__ __PRETTY_FUNCTION__))
2169 "Need a non-designated initializer list to start from")(static_cast <bool> ((IsFirstDesignator || StructuredList
) && "Need a non-designated initializer list to start from"
) ? void (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 2169, __extension__ __PRETTY_FUNCTION__))
;
2170
2171 // Determine the structural initializer list that corresponds to the
2172 // current subobject.
2173 if (IsFirstDesignator)
2174 StructuredList = SyntacticToSemantic.lookup(IList);
2175 else {
2176 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2177 StructuredList->getInit(StructuredIndex) : nullptr;
2178 if (!ExistingInit && StructuredList->hasArrayFiller())
2179 ExistingInit = StructuredList->getArrayFiller();
2180
2181 if (!ExistingInit)
2182 StructuredList =
2183 getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2184 StructuredList, StructuredIndex,
2185 SourceRange(D->getLocStart(),
2186 DIE->getLocEnd()));
2187 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2188 StructuredList = Result;
2189 else {
2190 if (DesignatedInitUpdateExpr *E =
2191 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2192 StructuredList = E->getUpdater();
2193 else {
2194 DesignatedInitUpdateExpr *DIUE =
2195 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2196 D->getLocStart(), ExistingInit,
2197 DIE->getLocEnd());
2198 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2199 StructuredList = DIUE->getUpdater();
2200 }
2201
2202 // We need to check on source range validity because the previous
2203 // initializer does not have to be an explicit initializer. e.g.,
2204 //
2205 // struct P { int a, b; };
2206 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2207 //
2208 // There is an overwrite taking place because the first braced initializer
2209 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2210 if (ExistingInit->getSourceRange().isValid()) {
2211 // We are creating an initializer list that initializes the
2212 // subobjects of the current object, but there was already an
2213 // initialization that completely initialized the current
2214 // subobject, e.g., by a compound literal:
2215 //
2216 // struct X { int a, b; };
2217 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2218 //
2219 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2220 // designated initializer re-initializes the whole
2221 // subobject [0], overwriting previous initializers.
2222 SemaRef.Diag(D->getLocStart(),
2223 diag::warn_subobject_initializer_overrides)
2224 << SourceRange(D->getLocStart(), DIE->getLocEnd());
2225
2226 SemaRef.Diag(ExistingInit->getLocStart(),
2227 diag::note_previous_initializer)
2228 << /*FIXME:has side effects=*/0
2229 << ExistingInit->getSourceRange();
2230 }
2231 }
2232 }
2233 assert(StructuredList && "Expected a structured initializer list")(static_cast <bool> (StructuredList && "Expected a structured initializer list"
) ? void (0) : __assert_fail ("StructuredList && \"Expected a structured initializer list\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 2233, __extension__ __PRETTY_FUNCTION__))
;
2234 }
2235
2236 if (D->isFieldDesignator()) {
2237 // C99 6.7.8p7:
2238 //
2239 // If a designator has the form
2240 //
2241 // . identifier
2242 //
2243 // then the current object (defined below) shall have
2244 // structure or union type and the identifier shall be the
2245 // name of a member of that type.
2246 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2247 if (!RT) {
2248 SourceLocation Loc = D->getDotLoc();
2249 if (Loc.isInvalid())
2250 Loc = D->getFieldLoc();
2251 if (!VerifyOnly)
2252 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2253 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2254 ++Index;
2255 return true;
2256 }
2257
2258 FieldDecl *KnownField = D->getField();
2259 if (!KnownField) {
2260 IdentifierInfo *FieldName = D->getFieldName();
2261 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2262 for (NamedDecl *ND : Lookup) {
2263 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2264 KnownField = FD;
2265 break;
2266 }
2267 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2268 // In verify mode, don't modify the original.
2269 if (VerifyOnly)
2270 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2271 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2272 D = DIE->getDesignator(DesigIdx);
2273 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2274 break;
2275 }
2276 }
2277 if (!KnownField) {
2278 if (VerifyOnly) {
2279 ++Index;
2280 return true; // No typo correction when just trying this out.
2281 }
2282
2283 // Name lookup found something, but it wasn't a field.
2284 if (!Lookup.empty()) {
2285 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2286 << FieldName;
2287 SemaRef.Diag(Lookup.front()->getLocation(),
2288 diag::note_field_designator_found);
2289 ++Index;
2290 return true;
2291 }
2292
2293 // Name lookup didn't find anything.
2294 // Determine whether this was a typo for another field name.
2295 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2296 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2297 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2298 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2299 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2300 SemaRef.diagnoseTypo(
2301 Corrected,
2302 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2303 << FieldName << CurrentObjectType);
2304 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2305 hadError = true;
2306 } else {
2307 // Typo correction didn't find anything.
2308 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2309 << FieldName << CurrentObjectType;
2310 ++Index;
2311 return true;
2312 }
2313 }
2314 }
2315
2316 unsigned FieldIndex = 0;
2317
2318 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2319 FieldIndex = CXXRD->getNumBases();
2320
2321 for (auto *FI : RT->getDecl()->fields()) {
2322 if (FI->isUnnamedBitfield())
2323 continue;
2324 if (declaresSameEntity(KnownField, FI)) {
2325 KnownField = FI;
2326 break;
2327 }
2328 ++FieldIndex;
2329 }
2330
2331 RecordDecl::field_iterator Field =
2332 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2333
2334 // All of the fields of a union are located at the same place in
2335 // the initializer list.
2336 if (RT->getDecl()->isUnion()) {
2337 FieldIndex = 0;
2338 if (!VerifyOnly) {
2339 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2340 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2341 assert(StructuredList->getNumInits() == 1(static_cast <bool> (StructuredList->getNumInits() ==
1 && "A union should never have more than one initializer!"
) ? void (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 2342, __extension__ __PRETTY_FUNCTION__))
2342 && "A union should never have more than one initializer!")(static_cast <bool> (StructuredList->getNumInits() ==
1 && "A union should never have more than one initializer!"
) ? void (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 2342, __extension__ __PRETTY_FUNCTION__))
;
2343
2344 Expr *ExistingInit = StructuredList->getInit(0);
2345 if (ExistingInit) {
2346 // We're about to throw away an initializer, emit warning.
2347 SemaRef.Diag(D->getFieldLoc(),
2348 diag::warn_initializer_overrides)
2349 << D->getSourceRange();
2350 SemaRef.Diag(ExistingInit->getLocStart(),
2351 diag::note_previous_initializer)
2352 << /*FIXME:has side effects=*/0
2353 << ExistingInit->getSourceRange();
2354 }
2355
2356 // remove existing initializer
2357 StructuredList->resizeInits(SemaRef.Context, 0);
2358 StructuredList->setInitializedFieldInUnion(nullptr);
2359 }
2360
2361 StructuredList->setInitializedFieldInUnion(*Field);
2362 }
2363 }
2364
2365 // Make sure we can use this declaration.
2366 bool InvalidUse;
2367 if (VerifyOnly)
2368 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2369 else
2370 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2371 if (InvalidUse) {
2372 ++Index;
2373 return true;
2374 }
2375
2376 if (!VerifyOnly) {
2377 // Update the designator with the field declaration.
2378 D->setField(*Field);
2379
2380 // Make sure that our non-designated initializer list has space
2381 // for a subobject corresponding to this field.
2382 if (FieldIndex >= StructuredList->getNumInits())
2383 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2384 }
2385
2386 // This designator names a flexible array member.
2387 if (Field->getType()->isIncompleteArrayType()) {
2388 bool Invalid = false;
2389 if ((DesigIdx + 1) != DIE->size()) {
2390 // We can't designate an object within the flexible array
2391 // member (because GCC doesn't allow it).
2392 if (!VerifyOnly) {
2393 DesignatedInitExpr::Designator *NextD
2394 = DIE->getDesignator(DesigIdx + 1);
2395 SemaRef.Diag(NextD->getLocStart(),
2396 diag::err_designator_into_flexible_array_member)
2397 << SourceRange(NextD->getLocStart(),
2398 DIE->getLocEnd());
2399 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2400 << *Field;
2401 }
2402 Invalid = true;
2403 }
2404
2405 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2406 !isa<StringLiteral>(DIE->getInit())) {
2407 // The initializer is not an initializer list.
2408 if (!VerifyOnly) {
2409 SemaRef.Diag(DIE->getInit()->getLocStart(),
2410 diag::err_flexible_array_init_needs_braces)
2411 << DIE->getInit()->getSourceRange();
2412 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2413 << *Field;
2414 }
2415 Invalid = true;
2416 }
2417
2418 // Check GNU flexible array initializer.
2419 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2420 TopLevelObject))
2421 Invalid = true;
2422
2423 if (Invalid) {
2424 ++Index;
2425 return true;
2426 }
2427
2428 // Initialize the array.
2429 bool prevHadError = hadError;
2430 unsigned newStructuredIndex = FieldIndex;
2431 unsigned OldIndex = Index;
2432 IList->setInit(Index, DIE->getInit());
2433
2434 InitializedEntity MemberEntity =
2435 InitializedEntity::InitializeMember(*Field, &Entity);
2436 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2437 StructuredList, newStructuredIndex);
2438
2439 IList->setInit(OldIndex, DIE);
2440 if (hadError && !prevHadError) {
2441 ++Field;
2442 ++FieldIndex;
2443 if (NextField)
2444 *NextField = Field;
2445 StructuredIndex = FieldIndex;
2446 return true;
2447 }
2448 } else {
2449 // Recurse to check later designated subobjects.
2450 QualType FieldType = Field->getType();
2451 unsigned newStructuredIndex = FieldIndex;
2452
2453 InitializedEntity MemberEntity =
2454 InitializedEntity::InitializeMember(*Field, &Entity);
2455 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2456 FieldType, nullptr, nullptr, Index,
2457 StructuredList, newStructuredIndex,
2458 FinishSubobjectInit, false))
2459 return true;
2460 }
2461
2462 // Find the position of the next field to be initialized in this
2463 // subobject.
2464 ++Field;
2465 ++FieldIndex;
2466
2467 // If this the first designator, our caller will continue checking
2468 // the rest of this struct/class/union subobject.
2469 if (IsFirstDesignator) {
2470 if (NextField)
2471 *NextField = Field;
2472 StructuredIndex = FieldIndex;
2473 return false;
2474 }
2475
2476 if (!FinishSubobjectInit)
2477 return false;
2478
2479 // We've already initialized something in the union; we're done.
2480 if (RT->getDecl()->isUnion())
2481 return hadError;
2482
2483 // Check the remaining fields within this class/struct/union subobject.
2484 bool prevHadError = hadError;
2485
2486 auto NoBases =
2487 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2488 CXXRecordDecl::base_class_iterator());
2489 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2490 false, Index, StructuredList, FieldIndex);
2491 return hadError && !prevHadError;
2492 }
2493
2494 // C99 6.7.8p6:
2495 //
2496 // If a designator has the form
2497 //
2498 // [ constant-expression ]
2499 //
2500 // then the current object (defined below) shall have array
2501 // type and the expression shall be an integer constant
2502 // expression. If the array is of unknown size, any
2503 // nonnegative value is valid.
2504 //
2505 // Additionally, cope with the GNU extension that permits
2506 // designators of the form
2507 //
2508 // [ constant-expression ... constant-expression ]
2509 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2510 if (!AT) {
2511 if (!VerifyOnly)
2512 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2513 << CurrentObjectType;
2514 ++Index;
2515 return true;
2516 }
2517
2518 Expr *IndexExpr = nullptr;
2519 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2520 if (D->isArrayDesignator()) {
2521 IndexExpr = DIE->getArrayIndex(*D);
2522 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2523 DesignatedEndIndex = DesignatedStartIndex;
2524 } else {
2525 assert(D->isArrayRangeDesignator() && "Need array-range designator")(static_cast <bool> (D->isArrayRangeDesignator() &&
"Need array-range designator") ? void (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 2525, __extension__ __PRETTY_FUNCTION__))
;
2526
2527 DesignatedStartIndex =
2528 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2529 DesignatedEndIndex =
2530 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2531 IndexExpr = DIE->getArrayRangeEnd(*D);
2532
2533 // Codegen can't handle evaluating array range designators that have side
2534 // effects, because we replicate the AST value for each initialized element.
2535 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2536 // elements with something that has a side effect, so codegen can emit an
2537 // "error unsupported" error instead of miscompiling the app.
2538 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2539 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2540 FullyStructuredList->sawArrayRangeDesignator();
2541 }
2542
2543 if (isa<ConstantArrayType>(AT)) {
2544 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2545 DesignatedStartIndex
2546 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2547 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2548 DesignatedEndIndex
2549 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2550 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2551 if (DesignatedEndIndex >= MaxElements) {
2552 if (!VerifyOnly)
2553 SemaRef.Diag(IndexExpr->getLocStart(),
2554 diag::err_array_designator_too_large)
2555 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2556 << IndexExpr->getSourceRange();
2557 ++Index;
2558 return true;
2559 }
2560 } else {
2561 unsigned DesignatedIndexBitWidth =
2562 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2563 DesignatedStartIndex =
2564 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2565 DesignatedEndIndex =
2566 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2567 DesignatedStartIndex.setIsUnsigned(true);
2568 DesignatedEndIndex.setIsUnsigned(true);
2569 }
2570
2571 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2572 // We're modifying a string literal init; we have to decompose the string
2573 // so we can modify the individual characters.
2574 ASTContext &Context = SemaRef.Context;
2575 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2576
2577 // Compute the character type
2578 QualType CharTy = AT->getElementType();
2579
2580 // Compute the type of the integer literals.
2581 QualType PromotedCharTy = CharTy;
2582 if (CharTy->isPromotableIntegerType())
2583 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2584 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2585
2586 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2587 // Get the length of the string.
2588 uint64_t StrLen = SL->getLength();
2589 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2590 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2591 StructuredList->resizeInits(Context, StrLen);
2592
2593 // Build a literal for each character in the string, and put them into
2594 // the init list.
2595 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2596 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2597 Expr *Init = new (Context) IntegerLiteral(
2598 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2599 if (CharTy != PromotedCharTy)
2600 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2601 Init, nullptr, VK_RValue);
2602 StructuredList->updateInit(Context, i, Init);
2603 }
2604 } else {
2605 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2606 std::string Str;
2607 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2608
2609 // Get the length of the string.
2610 uint64_t StrLen = Str.size();
2611 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2612 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2613 StructuredList->resizeInits(Context, StrLen);
2614
2615 // Build a literal for each character in the string, and put them into
2616 // the init list.
2617 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2618 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2619 Expr *Init = new (Context) IntegerLiteral(
2620 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2621 if (CharTy != PromotedCharTy)
2622 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2623 Init, nullptr, VK_RValue);
2624 StructuredList->updateInit(Context, i, Init);
2625 }
2626 }
2627 }
2628
2629 // Make sure that our non-designated initializer list has space
2630 // for a subobject corresponding to this array element.
2631 if (!VerifyOnly &&
2632 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2633 StructuredList->resizeInits(SemaRef.Context,
2634 DesignatedEndIndex.getZExtValue() + 1);
2635
2636 // Repeatedly perform subobject initializations in the range
2637 // [DesignatedStartIndex, DesignatedEndIndex].
2638
2639 // Move to the next designator
2640 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2641 unsigned OldIndex = Index;
2642
2643 InitializedEntity ElementEntity =
2644 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2645
2646 while (DesignatedStartIndex <= DesignatedEndIndex) {
2647 // Recurse to check later designated subobjects.
2648 QualType ElementType = AT->getElementType();
2649 Index = OldIndex;
2650
2651 ElementEntity.setElementIndex(ElementIndex);
2652 if (CheckDesignatedInitializer(
2653 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2654 nullptr, Index, StructuredList, ElementIndex,
2655 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2656 false))
2657 return true;
2658
2659 // Move to the next index in the array that we'll be initializing.
2660 ++DesignatedStartIndex;
2661 ElementIndex = DesignatedStartIndex.getZExtValue();
2662 }
2663
2664 // If this the first designator, our caller will continue checking
2665 // the rest of this array subobject.
2666 if (IsFirstDesignator) {
2667 if (NextElementIndex)
2668 *NextElementIndex = DesignatedStartIndex;
2669 StructuredIndex = ElementIndex;
2670 return false;
2671 }
2672
2673 if (!FinishSubobjectInit)
2674 return false;
2675
2676 // Check the remaining elements within this array subobject.
2677 bool prevHadError = hadError;
2678 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2679 /*SubobjectIsDesignatorContext=*/false, Index,
2680 StructuredList, ElementIndex);
2681 return hadError && !prevHadError;
2682}
2683
2684// Get the structured initializer list for a subobject of type
2685// @p CurrentObjectType.
2686InitListExpr *
2687InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2688 QualType CurrentObjectType,
2689 InitListExpr *StructuredList,
2690 unsigned StructuredIndex,
2691 SourceRange InitRange,
2692 bool IsFullyOverwritten) {
2693 if (VerifyOnly)
2694 return nullptr; // No structured list in verification-only mode.
2695 Expr *ExistingInit = nullptr;
2696 if (!StructuredList)
2697 ExistingInit = SyntacticToSemantic.lookup(IList);
2698 else if (StructuredIndex < StructuredList->getNumInits())
2699 ExistingInit = StructuredList->getInit(StructuredIndex);
2700
2701 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2702 // There might have already been initializers for subobjects of the current
2703 // object, but a subsequent initializer list will overwrite the entirety
2704 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2705 //
2706 // struct P { char x[6]; };
2707 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2708 //
2709 // The first designated initializer is ignored, and l.x is just "f".
2710 if (!IsFullyOverwritten)
2711 return Result;
2712
2713 if (ExistingInit) {
2714 // We are creating an initializer list that initializes the
2715 // subobjects of the current object, but there was already an
2716 // initialization that completely initialized the current
2717 // subobject, e.g., by a compound literal:
2718 //
2719 // struct X { int a, b; };
2720 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2721 //
2722 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2723 // designated initializer re-initializes the whole
2724 // subobject [0], overwriting previous initializers.
2725 SemaRef.Diag(InitRange.getBegin(),
2726 diag::warn_subobject_initializer_overrides)
2727 << InitRange;
2728 SemaRef.Diag(ExistingInit->getLocStart(),
2729 diag::note_previous_initializer)
2730 << /*FIXME:has side effects=*/0
2731 << ExistingInit->getSourceRange();
2732 }
2733
2734 InitListExpr *Result
2735 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2736 InitRange.getBegin(), None,
2737 InitRange.getEnd());
2738
2739 QualType ResultType = CurrentObjectType;
2740 if (!ResultType->isArrayType())
2741 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2742 Result->setType(ResultType);
2743
2744 // Pre-allocate storage for the structured initializer list.
2745 unsigned NumElements = 0;
2746 unsigned NumInits = 0;
2747 bool GotNumInits = false;
2748 if (!StructuredList) {
2749 NumInits = IList->getNumInits();
2750 GotNumInits = true;
2751 } else if (Index < IList->getNumInits()) {
2752 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2753 NumInits = SubList->getNumInits();
2754 GotNumInits = true;
2755 }
2756 }
2757
2758 if (const ArrayType *AType
2759 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2760 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2761 NumElements = CAType->getSize().getZExtValue();
2762 // Simple heuristic so that we don't allocate a very large
2763 // initializer with many empty entries at the end.
2764 if (GotNumInits && NumElements > NumInits)
2765 NumElements = 0;
2766 }
2767 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2768 NumElements = VType->getNumElements();
2769 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2770 RecordDecl *RDecl = RType->getDecl();
2771 if (RDecl->isUnion())
2772 NumElements = 1;
2773 else
2774 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2775 }
2776
2777 Result->reserveInits(SemaRef.Context, NumElements);
2778
2779 // Link this new initializer list into the structured initializer
2780 // lists.
2781 if (StructuredList)
2782 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2783 else {
2784 Result->setSyntacticForm(IList);
2785 SyntacticToSemantic[IList] = Result;
2786 }
2787
2788 return Result;
2789}
2790
2791/// Update the initializer at index @p StructuredIndex within the
2792/// structured initializer list to the value @p expr.
2793void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2794 unsigned &StructuredIndex,
2795 Expr *expr) {
2796 // No structured initializer list to update
2797 if (!StructuredList)
2798 return;
2799
2800 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2801 StructuredIndex, expr)) {
2802 // This initializer overwrites a previous initializer. Warn.
2803 // We need to check on source range validity because the previous
2804 // initializer does not have to be an explicit initializer.
2805 // struct P { int a, b; };
2806 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2807 // There is an overwrite taking place because the first braced initializer
2808 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2809 if (PrevInit->getSourceRange().isValid()) {
2810 SemaRef.Diag(expr->getLocStart(),
2811 diag::warn_initializer_overrides)
2812 << expr->getSourceRange();
2813
2814 SemaRef.Diag(PrevInit->getLocStart(),
2815 diag::note_previous_initializer)
2816 << /*FIXME:has side effects=*/0
2817 << PrevInit->getSourceRange();
2818 }
2819 }
2820
2821 ++StructuredIndex;
2822}
2823
2824/// Check that the given Index expression is a valid array designator
2825/// value. This is essentially just a wrapper around
2826/// VerifyIntegerConstantExpression that also checks for negative values
2827/// and produces a reasonable diagnostic if there is a
2828/// failure. Returns the index expression, possibly with an implicit cast
2829/// added, on success. If everything went okay, Value will receive the
2830/// value of the constant expression.
2831static ExprResult
2832CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2833 SourceLocation Loc = Index->getLocStart();
2834
2835 // Make sure this is an integer constant expression.
2836 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2837 if (Result.isInvalid())
2838 return Result;
2839
2840 if (Value.isSigned() && Value.isNegative())
2841 return S.Diag(Loc, diag::err_array_designator_negative)
2842 << Value.toString(10) << Index->getSourceRange();
2843
2844 Value.setIsUnsigned(true);
2845 return Result;
2846}
2847
2848ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2849 SourceLocation Loc,
2850 bool GNUSyntax,
2851 ExprResult Init) {
2852 typedef DesignatedInitExpr::Designator ASTDesignator;
2853
2854 bool Invalid = false;
2855 SmallVector<ASTDesignator, 32> Designators;
2856 SmallVector<Expr *, 32> InitExpressions;
2857
2858 // Build designators and check array designator expressions.
2859 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2860 const Designator &D = Desig.getDesignator(Idx);
2861 switch (D.getKind()) {
2862 case Designator::FieldDesignator:
2863 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2864 D.getFieldLoc()));
2865 break;
2866
2867 case Designator::ArrayDesignator: {
2868 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2869 llvm::APSInt IndexValue;
2870 if (!Index->isTypeDependent() && !Index->isValueDependent())
2871 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2872 if (!Index)
2873 Invalid = true;
2874 else {
2875 Designators.push_back(ASTDesignator(InitExpressions.size(),
2876 D.getLBracketLoc(),
2877 D.getRBracketLoc()));
2878 InitExpressions.push_back(Index);
2879 }
2880 break;
2881 }
2882
2883 case Designator::ArrayRangeDesignator: {
2884 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2885 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2886 llvm::APSInt StartValue;
2887 llvm::APSInt EndValue;
2888 bool StartDependent = StartIndex->isTypeDependent() ||
2889 StartIndex->isValueDependent();
2890 bool EndDependent = EndIndex->isTypeDependent() ||
2891 EndIndex->isValueDependent();
2892 if (!StartDependent)
2893 StartIndex =
2894 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2895 if (!EndDependent)
2896 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2897
2898 if (!StartIndex || !EndIndex)
2899 Invalid = true;
2900 else {
2901 // Make sure we're comparing values with the same bit width.
2902 if (StartDependent || EndDependent) {
2903 // Nothing to compute.
2904 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2905 EndValue = EndValue.extend(StartValue.getBitWidth());
2906 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2907 StartValue = StartValue.extend(EndValue.getBitWidth());
2908
2909 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2910 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2911 << StartValue.toString(10) << EndValue.toString(10)
2912 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2913 Invalid = true;
2914 } else {
2915 Designators.push_back(ASTDesignator(InitExpressions.size(),
2916 D.getLBracketLoc(),
2917 D.getEllipsisLoc(),
2918 D.getRBracketLoc()));
2919 InitExpressions.push_back(StartIndex);
2920 InitExpressions.push_back(EndIndex);
2921 }
2922 }
2923 break;
2924 }
2925 }
2926 }
2927
2928 if (Invalid || Init.isInvalid())
2929 return ExprError();
2930
2931 // Clear out the expressions within the designation.
2932 Desig.ClearExprs(*this);
2933
2934 DesignatedInitExpr *DIE
2935 = DesignatedInitExpr::Create(Context,
2936 Designators,
2937 InitExpressions, Loc, GNUSyntax,
2938 Init.getAs<Expr>());
2939
2940 if (!getLangOpts().C99)
2941 Diag(DIE->getLocStart(), diag::ext_designated_init)
2942 << DIE->getSourceRange();
2943
2944 return DIE;
2945}
2946
2947//===----------------------------------------------------------------------===//
2948// Initialization entity
2949//===----------------------------------------------------------------------===//
2950
2951InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2952 const InitializedEntity &Parent)
2953 : Parent(&Parent), Index(Index)
2954{
2955 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2956 Kind = EK_ArrayElement;
2957 Type = AT->getElementType();
2958 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2959 Kind = EK_VectorElement;
2960 Type = VT->getElementType();
2961 } else {
2962 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2963 assert(CT && "Unexpected type")(static_cast <bool> (CT && "Unexpected type") ?
void (0) : __assert_fail ("CT && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 2963, __extension__ __PRETTY_FUNCTION__))
;
2964 Kind = EK_ComplexElement;
2965 Type = CT->getElementType();
2966 }
2967}
2968
2969InitializedEntity
2970InitializedEntity::InitializeBase(ASTContext &Context,
2971 const CXXBaseSpecifier *Base,
2972 bool IsInheritedVirtualBase,
2973 const InitializedEntity *Parent) {
2974 InitializedEntity Result;
2975 Result.Kind = EK_Base;
2976 Result.Parent = Parent;
2977 Result.Base = reinterpret_cast<uintptr_t>(Base);
2978 if (IsInheritedVirtualBase)
2979 Result.Base |= 0x01;
2980
2981 Result.Type = Base->getType();
2982 return Result;
2983}
2984
2985DeclarationName InitializedEntity::getName() const {
2986 switch (getKind()) {
2987 case EK_Parameter:
2988 case EK_Parameter_CF_Audited: {
2989 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2990 return (D ? D->getDeclName() : DeclarationName());
2991 }
2992
2993 case EK_Variable:
2994 case EK_Member:
2995 case EK_Binding:
2996 return Variable.VariableOrMember->getDeclName();
2997
2998 case EK_LambdaCapture:
2999 return DeclarationName(Capture.VarID);
3000
3001 case EK_Result:
3002 case EK_Exception:
3003 case EK_New:
3004 case EK_Temporary:
3005 case EK_Base:
3006 case EK_Delegating:
3007 case EK_ArrayElement:
3008 case EK_VectorElement:
3009 case EK_ComplexElement:
3010 case EK_BlockElement:
3011 case EK_LambdaToBlockConversionBlockElement:
3012 case EK_CompoundLiteralInit:
3013 case EK_RelatedResult:
3014 return DeclarationName();
3015 }
3016
3017 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3017)
;
3018}
3019
3020ValueDecl *InitializedEntity::getDecl() const {
3021 switch (getKind()) {
3022 case EK_Variable:
3023 case EK_Member:
3024 case EK_Binding:
3025 return Variable.VariableOrMember;
3026
3027 case EK_Parameter:
3028 case EK_Parameter_CF_Audited:
3029 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3030
3031 case EK_Result:
3032 case EK_Exception:
3033 case EK_New:
3034 case EK_Temporary:
3035 case EK_Base:
3036 case EK_Delegating:
3037 case EK_ArrayElement:
3038 case EK_VectorElement:
3039 case EK_ComplexElement:
3040 case EK_BlockElement:
3041 case EK_LambdaToBlockConversionBlockElement:
3042 case EK_LambdaCapture:
3043 case EK_CompoundLiteralInit:
3044 case EK_RelatedResult:
3045 return nullptr;
3046 }
3047
3048 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3048)
;
3049}
3050
3051bool InitializedEntity::allowsNRVO() const {
3052 switch (getKind()) {
3053 case EK_Result:
3054 case EK_Exception:
3055 return LocAndNRVO.NRVO;
3056
3057 case EK_Variable:
3058 case EK_Parameter:
3059 case EK_Parameter_CF_Audited:
3060 case EK_Member:
3061 case EK_Binding:
3062 case EK_New:
3063 case EK_Temporary:
3064 case EK_CompoundLiteralInit:
3065 case EK_Base:
3066 case EK_Delegating:
3067 case EK_ArrayElement:
3068 case EK_VectorElement:
3069 case EK_ComplexElement:
3070 case EK_BlockElement:
3071 case EK_LambdaToBlockConversionBlockElement:
3072 case EK_LambdaCapture:
3073 case EK_RelatedResult:
3074 break;
3075 }
3076
3077 return false;
3078}
3079
3080unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3081 assert(getParent() != this)(static_cast <bool> (getParent() != this) ? void (0) : __assert_fail
("getParent() != this", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3081, __extension__ __PRETTY_FUNCTION__))
;
3082 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3083 for (unsigned I = 0; I != Depth; ++I)
3084 OS << "`-";
3085
3086 switch (getKind()) {
3087 case EK_Variable: OS << "Variable"; break;
3088 case EK_Parameter: OS << "Parameter"; break;
3089 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3090 break;
3091 case EK_Result: OS << "Result"; break;
3092 case EK_Exception: OS << "Exception"; break;
3093 case EK_Member: OS << "Member"; break;
3094 case EK_Binding: OS << "Binding"; break;
3095 case EK_New: OS << "New"; break;
3096 case EK_Temporary: OS << "Temporary"; break;
3097 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3098 case EK_RelatedResult: OS << "RelatedResult"; break;
3099 case EK_Base: OS << "Base"; break;
3100 case EK_Delegating: OS << "Delegating"; break;
3101 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3102 case EK_VectorElement: OS << "VectorElement " << Index; break;
3103 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3104 case EK_BlockElement: OS << "Block"; break;
3105 case EK_LambdaToBlockConversionBlockElement:
3106 OS << "Block (lambda)";
3107 break;
3108 case EK_LambdaCapture:
3109 OS << "LambdaCapture ";
3110 OS << DeclarationName(Capture.VarID);
3111 break;
3112 }
3113
3114 if (auto *D = getDecl()) {
3115 OS << " ";
3116 D->printQualifiedName(OS);
3117 }
3118
3119 OS << " '" << getType().getAsString() << "'\n";
3120
3121 return Depth + 1;
3122}
3123
3124LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3125 dumpImpl(llvm::errs());
3126}
3127
3128//===----------------------------------------------------------------------===//
3129// Initialization sequence
3130//===----------------------------------------------------------------------===//
3131
3132void InitializationSequence::Step::Destroy() {
3133 switch (Kind) {
3134 case SK_ResolveAddressOfOverloadedFunction:
3135 case SK_CastDerivedToBaseRValue:
3136 case SK_CastDerivedToBaseXValue:
3137 case SK_CastDerivedToBaseLValue:
3138 case SK_BindReference:
3139 case SK_BindReferenceToTemporary:
3140 case SK_FinalCopy:
3141 case SK_ExtraneousCopyToTemporary:
3142 case SK_UserConversion:
3143 case SK_QualificationConversionRValue:
3144 case SK_QualificationConversionXValue:
3145 case SK_QualificationConversionLValue:
3146 case SK_AtomicConversion:
3147 case SK_LValueToRValue:
3148 case SK_ListInitialization:
3149 case SK_UnwrapInitList:
3150 case SK_RewrapInitList:
3151 case SK_ConstructorInitialization:
3152 case SK_ConstructorInitializationFromList:
3153 case SK_ZeroInitialization:
3154 case SK_CAssignment:
3155 case SK_StringInit:
3156 case SK_ObjCObjectConversion:
3157 case SK_ArrayLoopIndex:
3158 case SK_ArrayLoopInit:
3159 case SK_ArrayInit:
3160 case SK_GNUArrayInit:
3161 case SK_ParenthesizedArrayInit:
3162 case SK_PassByIndirectCopyRestore:
3163 case SK_PassByIndirectRestore:
3164 case SK_ProduceObjCObject:
3165 case SK_StdInitializerList:
3166 case SK_StdInitializerListConstructorCall:
3167 case SK_OCLSamplerInit:
3168 case SK_OCLZeroEvent:
3169 case SK_OCLZeroQueue:
3170 break;
3171
3172 case SK_ConversionSequence:
3173 case SK_ConversionSequenceNoNarrowing:
3174 delete ICS;
3175 }
3176}
3177
3178bool InitializationSequence::isDirectReferenceBinding() const {
3179 // There can be some lvalue adjustments after the SK_BindReference step.
3180 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3181 if (I->Kind == SK_BindReference)
3182 return true;
3183 if (I->Kind == SK_BindReferenceToTemporary)
3184 return false;
3185 }
3186 return false;
3187}
3188
3189bool InitializationSequence::isAmbiguous() const {
3190 if (!Failed())
3191 return false;
3192
3193 switch (getFailureKind()) {
3194 case FK_TooManyInitsForReference:
3195 case FK_ParenthesizedListInitForReference:
3196 case FK_ArrayNeedsInitList:
3197 case FK_ArrayNeedsInitListOrStringLiteral:
3198 case FK_ArrayNeedsInitListOrWideStringLiteral:
3199 case FK_NarrowStringIntoWideCharArray:
3200 case FK_WideStringIntoCharArray:
3201 case FK_IncompatWideStringIntoWideChar:
3202 case FK_PlainStringIntoUTF8Char:
3203 case FK_UTF8StringIntoPlainChar:
3204 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3205 case FK_NonConstLValueReferenceBindingToTemporary:
3206 case FK_NonConstLValueReferenceBindingToBitfield:
3207 case FK_NonConstLValueReferenceBindingToVectorElement:
3208 case FK_NonConstLValueReferenceBindingToUnrelated:
3209 case FK_RValueReferenceBindingToLValue:
3210 case FK_ReferenceInitDropsQualifiers:
3211 case FK_ReferenceInitFailed:
3212 case FK_ConversionFailed:
3213 case FK_ConversionFromPropertyFailed:
3214 case FK_TooManyInitsForScalar:
3215 case FK_ParenthesizedListInitForScalar:
3216 case FK_ReferenceBindingToInitList:
3217 case FK_InitListBadDestinationType:
3218 case FK_DefaultInitOfConst:
3219 case FK_Incomplete:
3220 case FK_ArrayTypeMismatch:
3221 case FK_NonConstantArrayInit:
3222 case FK_ListInitializationFailed:
3223 case FK_VariableLengthArrayHasInitializer:
3224 case FK_PlaceholderType:
3225 case FK_ExplicitConstructor:
3226 case FK_AddressOfUnaddressableFunction:
3227 return false;
3228
3229 case FK_ReferenceInitOverloadFailed:
3230 case FK_UserConversionOverloadFailed:
3231 case FK_ConstructorOverloadFailed:
3232 case FK_ListConstructorOverloadFailed:
3233 return FailedOverloadResult == OR_Ambiguous;
3234 }
3235
3236 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3236)
;
3237}
3238
3239bool InitializationSequence::isConstructorInitialization() const {
3240 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3241}
3242
3243void
3244InitializationSequence
3245::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3246 DeclAccessPair Found,
3247 bool HadMultipleCandidates) {
3248 Step S;
3249 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3250 S.Type = Function->getType();
3251 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3252 S.Function.Function = Function;
3253 S.Function.FoundDecl = Found;
3254 Steps.push_back(S);
3255}
3256
3257void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3258 ExprValueKind VK) {
3259 Step S;
3260 switch (VK) {
3261 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3262 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3263 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3264 }
3265 S.Type = BaseType;
3266 Steps.push_back(S);
3267}
3268
3269void InitializationSequence::AddReferenceBindingStep(QualType T,
3270 bool BindingTemporary) {
3271 Step S;
3272 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3273 S.Type = T;
3274 Steps.push_back(S);
3275}
3276
3277void InitializationSequence::AddFinalCopy(QualType T) {
3278 Step S;
3279 S.Kind = SK_FinalCopy;
3280 S.Type = T;
3281 Steps.push_back(S);
3282}
3283
3284void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3285 Step S;
3286 S.Kind = SK_ExtraneousCopyToTemporary;
3287 S.Type = T;
3288 Steps.push_back(S);
3289}
3290
3291void
3292InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3293 DeclAccessPair FoundDecl,
3294 QualType T,
3295 bool HadMultipleCandidates) {
3296 Step S;
3297 S.Kind = SK_UserConversion;
3298 S.Type = T;
3299 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3300 S.Function.Function = Function;
3301 S.Function.FoundDecl = FoundDecl;
3302 Steps.push_back(S);
3303}
3304
3305void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3306 ExprValueKind VK) {
3307 Step S;
3308 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3309 switch (VK) {
3310 case VK_RValue:
3311 S.Kind = SK_QualificationConversionRValue;
3312 break;
3313 case VK_XValue:
3314 S.Kind = SK_QualificationConversionXValue;
3315 break;
3316 case VK_LValue:
3317 S.Kind = SK_QualificationConversionLValue;
3318 break;
3319 }
3320 S.Type = Ty;
3321 Steps.push_back(S);
3322}
3323
3324void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3325 Step S;
3326 S.Kind = SK_AtomicConversion;
3327 S.Type = Ty;
3328 Steps.push_back(S);
3329}
3330
3331void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3332 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")(static_cast <bool> (!Ty.hasQualifiers() && "rvalues may not have qualifiers"
) ? void (0) : __assert_fail ("!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3332, __extension__ __PRETTY_FUNCTION__))
;
3333
3334 Step S;
3335 S.Kind = SK_LValueToRValue;
3336 S.Type = Ty;
3337 Steps.push_back(S);
3338}
3339
3340void InitializationSequence::AddConversionSequenceStep(
3341 const ImplicitConversionSequence &ICS, QualType T,
3342 bool TopLevelOfInitList) {
3343 Step S;
3344 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3345 : SK_ConversionSequence;
3346 S.Type = T;
3347 S.ICS = new ImplicitConversionSequence(ICS);
3348 Steps.push_back(S);
3349}
3350
3351void InitializationSequence::AddListInitializationStep(QualType T) {
3352 Step S;
3353 S.Kind = SK_ListInitialization;
3354 S.Type = T;
3355 Steps.push_back(S);
3356}
3357
3358void InitializationSequence::AddConstructorInitializationStep(
3359 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3360 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3361 Step S;
3362 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3363 : SK_ConstructorInitializationFromList
3364 : SK_ConstructorInitialization;
3365 S.Type = T;
3366 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3367 S.Function.Function = Constructor;
3368 S.Function.FoundDecl = FoundDecl;
3369 Steps.push_back(S);
3370}
3371
3372void InitializationSequence::AddZeroInitializationStep(QualType T) {
3373 Step S;
3374 S.Kind = SK_ZeroInitialization;
3375 S.Type = T;
3376 Steps.push_back(S);
3377}
3378
3379void InitializationSequence::AddCAssignmentStep(QualType T) {
3380 Step S;
3381 S.Kind = SK_CAssignment;
3382 S.Type = T;
3383 Steps.push_back(S);
3384}
3385
3386void InitializationSequence::AddStringInitStep(QualType T) {
3387 Step S;
3388 S.Kind = SK_StringInit;
3389 S.Type = T;
3390 Steps.push_back(S);
3391}
3392
3393void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3394 Step S;
3395 S.Kind = SK_ObjCObjectConversion;
3396 S.Type = T;
3397 Steps.push_back(S);
3398}
3399
3400void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3401 Step S;
3402 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3403 S.Type = T;
3404 Steps.push_back(S);
3405}
3406
3407void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3408 Step S;
3409 S.Kind = SK_ArrayLoopIndex;
3410 S.Type = EltT;
3411 Steps.insert(Steps.begin(), S);
3412
3413 S.Kind = SK_ArrayLoopInit;
3414 S.Type = T;
3415 Steps.push_back(S);
3416}
3417
3418void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3419 Step S;
3420 S.Kind = SK_ParenthesizedArrayInit;
3421 S.Type = T;
3422 Steps.push_back(S);
3423}
3424
3425void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3426 bool shouldCopy) {
3427 Step s;
3428 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3429 : SK_PassByIndirectRestore);
3430 s.Type = type;
3431 Steps.push_back(s);
3432}
3433
3434void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3435 Step S;
3436 S.Kind = SK_ProduceObjCObject;
3437 S.Type = T;
3438 Steps.push_back(S);
3439}
3440
3441void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3442 Step S;
3443 S.Kind = SK_StdInitializerList;
3444 S.Type = T;
3445 Steps.push_back(S);
3446}
3447
3448void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3449 Step S;
3450 S.Kind = SK_OCLSamplerInit;
3451 S.Type = T;
3452 Steps.push_back(S);
3453}
3454
3455void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3456 Step S;
3457 S.Kind = SK_OCLZeroEvent;
3458 S.Type = T;
3459 Steps.push_back(S);
3460}
3461
3462void InitializationSequence::AddOCLZeroQueueStep(QualType T) {
3463 Step S;
3464 S.Kind = SK_OCLZeroQueue;
3465 S.Type = T;
3466 Steps.push_back(S);
3467}
3468
3469void InitializationSequence::RewrapReferenceInitList(QualType T,
3470 InitListExpr *Syntactic) {
3471 assert(Syntactic->getNumInits() == 1 &&(static_cast <bool> (Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists.") ? void (0) : __assert_fail
("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3472, __extension__ __PRETTY_FUNCTION__))
3472 "Can only rewrap trivial init lists.")(static_cast <bool> (Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists.") ? void (0) : __assert_fail
("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3472, __extension__ __PRETTY_FUNCTION__))
;
3473 Step S;
3474 S.Kind = SK_UnwrapInitList;
3475 S.Type = Syntactic->getInit(0)->getType();
3476 Steps.insert(Steps.begin(), S);
3477
3478 S.Kind = SK_RewrapInitList;
3479 S.Type = T;
3480 S.WrappingSyntacticList = Syntactic;
3481 Steps.push_back(S);
3482}
3483
3484void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3485 OverloadingResult Result) {
3486 setSequenceKind(FailedSequence);
3487 this->Failure = Failure;
3488 this->FailedOverloadResult = Result;
3489}
3490
3491//===----------------------------------------------------------------------===//
3492// Attempt initialization
3493//===----------------------------------------------------------------------===//
3494
3495/// Tries to add a zero initializer. Returns true if that worked.
3496static bool
3497maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3498 const InitializedEntity &Entity) {
3499 if (Entity.getKind() != InitializedEntity::EK_Variable)
3500 return false;
3501
3502 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3503 if (VD->getInit() || VD->getLocEnd().isMacroID())
3504 return false;
3505
3506 QualType VariableTy = VD->getType().getCanonicalType();
3507 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3508 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3509 if (!Init.empty()) {
3510 Sequence.AddZeroInitializationStep(Entity.getType());
3511 Sequence.SetZeroInitializationFixit(Init, Loc);
3512 return true;
3513 }
3514 return false;
3515}
3516
3517static void MaybeProduceObjCObject(Sema &S,
3518 InitializationSequence &Sequence,
3519 const InitializedEntity &Entity) {
3520 if (!S.getLangOpts().ObjCAutoRefCount) return;
3521
3522 /// When initializing a parameter, produce the value if it's marked
3523 /// __attribute__((ns_consumed)).
3524 if (Entity.isParameterKind()) {
3525 if (!Entity.isParameterConsumed())
3526 return;
3527
3528 assert(Entity.getType()->isObjCRetainableType() &&(static_cast <bool> (Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?") ? void
(0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3529, __extension__ __PRETTY_FUNCTION__))
3529 "consuming an object of unretainable type?")(static_cast <bool> (Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?") ? void
(0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3529, __extension__ __PRETTY_FUNCTION__))
;
3530 Sequence.AddProduceObjCObjectStep(Entity.getType());
3531
3532 /// When initializing a return value, if the return type is a
3533 /// retainable type, then returns need to immediately retain the
3534 /// object. If an autorelease is required, it will be done at the
3535 /// last instant.
3536 } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3537 if (!Entity.getType()->isObjCRetainableType())
3538 return;
3539
3540 Sequence.AddProduceObjCObjectStep(Entity.getType());
3541 }
3542}
3543
3544static void TryListInitialization(Sema &S,
3545 const InitializedEntity &Entity,
3546 const InitializationKind &Kind,
3547 InitListExpr *InitList,
3548 InitializationSequence &Sequence,
3549 bool TreatUnavailableAsInvalid);
3550
3551/// When initializing from init list via constructor, handle
3552/// initialization of an object of type std::initializer_list<T>.
3553///
3554/// \return true if we have handled initialization of an object of type
3555/// std::initializer_list<T>, false otherwise.
3556static bool TryInitializerListConstruction(Sema &S,
3557 InitListExpr *List,
3558 QualType DestType,
3559 InitializationSequence &Sequence,
3560 bool TreatUnavailableAsInvalid) {
3561 QualType E;
3562 if (!S.isStdInitializerList(DestType, &E))
3563 return false;
3564
3565 if (!S.isCompleteType(List->getExprLoc(), E)) {
3566 Sequence.setIncompleteTypeFailure(E);
3567 return true;
3568 }
3569
3570 // Try initializing a temporary array from the init list.
3571 QualType ArrayType = S.Context.getConstantArrayType(
3572 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3573 List->getNumInits()),
3574 clang::ArrayType::Normal, 0);
3575 InitializedEntity HiddenArray =
3576 InitializedEntity::InitializeTemporary(ArrayType);
3577 InitializationKind Kind = InitializationKind::CreateDirectList(
3578 List->getExprLoc(), List->getLocStart(), List->getLocEnd());
3579 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3580 TreatUnavailableAsInvalid);
3581 if (Sequence)
3582 Sequence.AddStdInitializerListConstructionStep(DestType);
3583 return true;
3584}
3585
3586/// Determine if the constructor has the signature of a copy or move
3587/// constructor for the type T of the class in which it was found. That is,
3588/// determine if its first parameter is of type T or reference to (possibly
3589/// cv-qualified) T.
3590static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3591 const ConstructorInfo &Info) {
3592 if (Info.Constructor->getNumParams() == 0)
34
Called C++ object pointer is null
3593 return false;
3594
3595 QualType ParmT =
3596 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3597 QualType ClassT =
3598 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3599
3600 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3601}
3602
3603static OverloadingResult
3604ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3605 MultiExprArg Args,
3606 OverloadCandidateSet &CandidateSet,
3607 QualType DestType,
3608 DeclContext::lookup_result Ctors,
3609 OverloadCandidateSet::iterator &Best,
3610 bool CopyInitializing, bool AllowExplicit,
3611 bool OnlyListConstructors, bool IsListInit,
3612 bool SecondStepOfCopyInit = false) {
3613 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3614
3615 for (NamedDecl *D : Ctors) {
3616 auto Info = getConstructorInfo(D);
3617 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3618 continue;
3619
3620 if (!AllowExplicit && Info.Constructor->isExplicit())
3621 continue;
3622
3623 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3624 continue;
3625
3626 // C++11 [over.best.ics]p4:
3627 // ... and the constructor or user-defined conversion function is a
3628 // candidate by
3629 // - 13.3.1.3, when the argument is the temporary in the second step
3630 // of a class copy-initialization, or
3631 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3632 // - the second phase of 13.3.1.7 when the initializer list has exactly
3633 // one element that is itself an initializer list, and the target is
3634 // the first parameter of a constructor of class X, and the conversion
3635 // is to X or reference to (possibly cv-qualified X),
3636 // user-defined conversion sequences are not considered.
3637 bool SuppressUserConversions =
3638 SecondStepOfCopyInit ||
3639 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3640 hasCopyOrMoveCtorParam(S.Context, Info));
3641
3642 if (Info.ConstructorTmpl)
3643 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3644 /*ExplicitArgs*/ nullptr, Args,
3645 CandidateSet, SuppressUserConversions);
3646 else {
3647 // C++ [over.match.copy]p1:
3648 // - When initializing a temporary to be bound to the first parameter
3649 // of a constructor [for type T] that takes a reference to possibly
3650 // cv-qualified T as its first argument, called with a single
3651 // argument in the context of direct-initialization, explicit
3652 // conversion functions are also considered.
3653 // FIXME: What if a constructor template instantiates to such a signature?
3654 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3655 Args.size() == 1 &&
3656 hasCopyOrMoveCtorParam(S.Context, Info);
3657 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3658 CandidateSet, SuppressUserConversions,
3659 /*PartialOverloading=*/false,
3660 /*AllowExplicit=*/AllowExplicitConv);
3661 }
3662 }
3663
3664 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3665 //
3666 // When initializing an object of class type T by constructor
3667 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3668 // from a single expression of class type U, conversion functions of
3669 // U that convert to the non-reference type cv T are candidates.
3670 // Explicit conversion functions are only candidates during
3671 // direct-initialization.
3672 //
3673 // Note: SecondStepOfCopyInit is only ever true in this case when
3674 // evaluating whether to produce a C++98 compatibility warning.
3675 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3676 !SecondStepOfCopyInit) {
3677 Expr *Initializer = Args[0];
3678 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3679 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3680 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3681 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3682 NamedDecl *D = *I;
3683 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3684 D = D->getUnderlyingDecl();
3685
3686 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3687 CXXConversionDecl *Conv;
3688 if (ConvTemplate)
3689 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3690 else
3691 Conv = cast<CXXConversionDecl>(D);
3692
3693 if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3694 if (ConvTemplate)
3695 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3696 ActingDC, Initializer, DestType,
3697 CandidateSet, AllowExplicit,
3698 /*AllowResultConversion*/false);
3699 else
3700 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3701 DestType, CandidateSet, AllowExplicit,
3702 /*AllowResultConversion*/false);
3703 }
3704 }
3705 }
3706 }
3707
3708 // Perform overload resolution and return the result.
3709 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3710}
3711
3712/// Attempt initialization by constructor (C++ [dcl.init]), which
3713/// enumerates the constructors of the initialized entity and performs overload
3714/// resolution to select the best.
3715/// \param DestType The destination class type.
3716/// \param DestArrayType The destination type, which is either DestType or
3717/// a (possibly multidimensional) array of DestType.
3718/// \param IsListInit Is this list-initialization?
3719/// \param IsInitListCopy Is this non-list-initialization resulting from a
3720/// list-initialization from {x} where x is the same
3721/// type as the entity?
3722static void TryConstructorInitialization(Sema &S,
3723 const InitializedEntity &Entity,
3724 const InitializationKind &Kind,
3725 MultiExprArg Args, QualType DestType,
3726 QualType DestArrayType,
3727 InitializationSequence &Sequence,
3728 bool IsListInit = false,
3729 bool IsInitListCopy = false) {
3730 assert(((!IsListInit && !IsInitListCopy) ||(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3733, __extension__ __PRETTY_FUNCTION__))
3731 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3733, __extension__ __PRETTY_FUNCTION__))
3732 "IsListInit/IsInitListCopy must come with a single initializer list "(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3733, __extension__ __PRETTY_FUNCTION__))
3733 "argument.")(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3733, __extension__ __PRETTY_FUNCTION__))
;
3734 InitListExpr *ILE =
3735 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3736 MultiExprArg UnwrappedArgs =
3737 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3738
3739 // The type we're constructing needs to be complete.
3740 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3741 Sequence.setIncompleteTypeFailure(DestType);
3742 return;
3743 }
3744
3745 // C++17 [dcl.init]p17:
3746 // - If the initializer expression is a prvalue and the cv-unqualified
3747 // version of the source type is the same class as the class of the
3748 // destination, the initializer expression is used to initialize the
3749 // destination object.
3750 // Per DR (no number yet), this does not apply when initializing a base
3751 // class or delegating to another constructor from a mem-initializer.
3752 // ObjC++: Lambda captured by the block in the lambda to block conversion
3753 // should avoid copy elision.
3754 if (S.getLangOpts().CPlusPlus17 &&
3755 Entity.getKind() != InitializedEntity::EK_Base &&
3756 Entity.getKind() != InitializedEntity::EK_Delegating &&
3757 Entity.getKind() !=
3758 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3759 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3760 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3761 // Convert qualifications if necessary.
3762 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3763 if (ILE)
3764 Sequence.RewrapReferenceInitList(DestType, ILE);
3765 return;
3766 }
3767
3768 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3769 assert(DestRecordType && "Constructor initialization requires record type")(static_cast <bool> (DestRecordType && "Constructor initialization requires record type"
) ? void (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3769, __extension__ __PRETTY_FUNCTION__))
;
3770 CXXRecordDecl *DestRecordDecl
3771 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3772
3773 // Build the candidate set directly in the initialization sequence
3774 // structure, so that it will persist if we fail.
3775 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3776
3777 // Determine whether we are allowed to call explicit constructors or
3778 // explicit conversion operators.
3779 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3780 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3781
3782 // - Otherwise, if T is a class type, constructors are considered. The
3783 // applicable constructors are enumerated, and the best one is chosen
3784 // through overload resolution.
3785 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3786
3787 OverloadingResult Result = OR_No_Viable_Function;
3788 OverloadCandidateSet::iterator Best;
3789 bool AsInitializerList = false;
3790
3791 // C++11 [over.match.list]p1, per DR1467:
3792 // When objects of non-aggregate type T are list-initialized, such that
3793 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3794 // according to the rules in this section, overload resolution selects
3795 // the constructor in two phases:
3796 //
3797 // - Initially, the candidate functions are the initializer-list
3798 // constructors of the class T and the argument list consists of the
3799 // initializer list as a single argument.
3800 if (IsListInit) {
3801 AsInitializerList = true;
3802
3803 // If the initializer list has no elements and T has a default constructor,
3804 // the first phase is omitted.
3805 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3806 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3807 CandidateSet, DestType, Ctors, Best,
3808 CopyInitialization, AllowExplicit,
3809 /*OnlyListConstructor=*/true,
3810 IsListInit);
3811 }
3812
3813 // C++11 [over.match.list]p1:
3814 // - If no viable initializer-list constructor is found, overload resolution
3815 // is performed again, where the candidate functions are all the
3816 // constructors of the class T and the argument list consists of the
3817 // elements of the initializer list.
3818 if (Result == OR_No_Viable_Function) {
3819 AsInitializerList = false;
3820 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3821 CandidateSet, DestType, Ctors, Best,
3822 CopyInitialization, AllowExplicit,
3823 /*OnlyListConstructors=*/false,
3824 IsListInit);
3825 }
3826 if (Result) {
3827 Sequence.SetOverloadFailure(IsListInit ?
3828 InitializationSequence::FK_ListConstructorOverloadFailed :
3829 InitializationSequence::FK_ConstructorOverloadFailed,
3830 Result);
3831 return;
3832 }
3833
3834 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3835
3836 // In C++17, ResolveConstructorOverload can select a conversion function
3837 // instead of a constructor.
3838 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3839 // Add the user-defined conversion step that calls the conversion function.
3840 QualType ConvType = CD->getConversionType();
3841 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&(static_cast <bool> (S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
) ? void (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3842, __extension__ __PRETTY_FUNCTION__))
3842 "should not have selected this conversion function")(static_cast <bool> (S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
) ? void (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 3842, __extension__ __PRETTY_FUNCTION__))
;
3843 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3844 HadMultipleCandidates);
3845 if (!S.Context.hasSameType(ConvType, DestType))
3846 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3847 if (IsListInit)
3848 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3849 return;
3850 }
3851
3852 // C++11 [dcl.init]p6:
3853 // If a program calls for the default initialization of an object
3854 // of a const-qualified type T, T shall be a class type with a
3855 // user-provided default constructor.
3856 // C++ core issue 253 proposal:
3857 // If the implicit default constructor initializes all subobjects, no
3858 // initializer should be required.
3859 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3860 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3861 if (Kind.getKind() == InitializationKind::IK_Default &&
3862 Entity.getType().isConstQualified()) {
3863 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3864 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3865 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3866 return;
3867 }
3868 }
3869
3870 // C++11 [over.match.list]p1:
3871 // In copy-list-initialization, if an explicit constructor is chosen, the
3872 // initializer is ill-formed.
3873 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3874 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3875 return;
3876 }
3877
3878 // Add the constructor initialization step. Any cv-qualification conversion is
3879 // subsumed by the initialization.
3880 Sequence.AddConstructorInitializationStep(
3881 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3882 IsListInit | IsInitListCopy, AsInitializerList);
3883}
3884
3885static bool
3886ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3887 Expr *Initializer,
3888 QualType &SourceType,
3889 QualType &UnqualifiedSourceType,
3890 QualType UnqualifiedTargetType,
3891 InitializationSequence &Sequence) {
3892 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3893 S.Context.OverloadTy) {
3894 DeclAccessPair Found;
3895 bool HadMultipleCandidates = false;
3896 if (FunctionDecl *Fn
3897 = S.ResolveAddressOfOverloadedFunction(Initializer,
3898 UnqualifiedTargetType,
3899 false, Found,
3900 &HadMultipleCandidates)) {
3901 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3902 HadMultipleCandidates);
3903 SourceType = Fn->getType();
3904 UnqualifiedSourceType = SourceType.getUnqualifiedType();
3905 } else if (!UnqualifiedTargetType->isRecordType()) {
3906 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3907 return true;
3908 }
3909 }
3910 return false;
3911}
3912
3913static void TryReferenceInitializationCore(Sema &S,
3914 const InitializedEntity &Entity,
3915 const InitializationKind &Kind,
3916 Expr *Initializer,
3917 QualType cv1T1, QualType T1,
3918 Qualifiers T1Quals,
3919 QualType cv2T2, QualType T2,
3920 Qualifiers T2Quals,
3921 InitializationSequence &Sequence);
3922
3923static void TryValueInitialization(Sema &S,
3924 const InitializedEntity &Entity,
3925 const InitializationKind &Kind,
3926 InitializationSequence &Sequence,
3927 InitListExpr *InitList = nullptr);
3928
3929/// Attempt list initialization of a reference.
3930static void TryReferenceListInitialization(Sema &S,
3931 const InitializedEntity &Entity,
3932 const InitializationKind &Kind,
3933 InitListExpr *InitList,
3934 InitializationSequence &Sequence,
3935 bool TreatUnavailableAsInvalid) {
3936 // First, catch C++03 where this isn't possible.
3937 if (!S.getLangOpts().CPlusPlus11) {
3938 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3939 return;
3940 }
3941 // Can't reference initialize a compound literal.
3942 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3943 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3944 return;
3945 }
3946
3947 QualType DestType = Entity.getType();
3948 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3949 Qualifiers T1Quals;
3950 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3951
3952 // Reference initialization via an initializer list works thus:
3953 // If the initializer list consists of a single element that is
3954 // reference-related to the referenced type, bind directly to that element
3955 // (possibly creating temporaries).
3956 // Otherwise, initialize a temporary with the initializer list and
3957 // bind to that.
3958 if (InitList->getNumInits() == 1) {
3959 Expr *Initializer = InitList->getInit(0);
3960 QualType cv2T2 = Initializer->getType();
3961 Qualifiers T2Quals;
3962 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3963
3964 // If this fails, creating a temporary wouldn't work either.
3965 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3966 T1, Sequence))
3967 return;
3968
3969 SourceLocation DeclLoc = Initializer->getLocStart();
3970 bool dummy1, dummy2, dummy3;
3971 Sema::ReferenceCompareResult RefRelationship
3972 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3973 dummy2, dummy3);
3974 if (RefRelationship >= Sema::Ref_Related) {
3975 // Try to bind the reference here.
3976 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3977 T1Quals, cv2T2, T2, T2Quals, Sequence);
3978 if (Sequence)
3979 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3980 return;
3981 }
3982
3983 // Update the initializer if we've resolved an overloaded function.
3984 if (Sequence.step_begin() != Sequence.step_end())
3985 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3986 }
3987
3988 // Not reference-related. Create a temporary and bind to that.
3989 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3990
3991 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
3992 TreatUnavailableAsInvalid);
3993 if (Sequence) {
3994 if (DestType->isRValueReferenceType() ||
3995 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3996 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3997 else
3998 Sequence.SetFailed(
3999 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4000 }
4001}
4002
4003/// Attempt list initialization (C++0x [dcl.init.list])
4004static void TryListInitialization(Sema &S,
4005 const InitializedEntity &Entity,
4006 const InitializationKind &Kind,
4007 InitListExpr *InitList,
4008 InitializationSequence &Sequence,
4009 bool TreatUnavailableAsInvalid) {
4010 QualType DestType = Entity.getType();
4011
4012 // C++ doesn't allow scalar initialization with more than one argument.
4013 // But C99 complex numbers are scalars and it makes sense there.
4014 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4015 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4016 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4017 return;
4018 }
4019 if (DestType->isReferenceType()) {
4020 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4021 TreatUnavailableAsInvalid);
4022 return;
4023 }
4024
4025 if (DestType->isRecordType() &&
4026 !S.isCompleteType(InitList->getLocStart(), DestType)) {
4027 Sequence.setIncompleteTypeFailure(DestType);
4028 return;
4029 }
4030
4031 // C++11 [dcl.init.list]p3, per DR1467:
4032 // - If T is a class type and the initializer list has a single element of
4033 // type cv U, where U is T or a class derived from T, the object is
4034 // initialized from that element (by copy-initialization for
4035 // copy-list-initialization, or by direct-initialization for
4036 // direct-list-initialization).
4037 // - Otherwise, if T is a character array and the initializer list has a
4038 // single element that is an appropriately-typed string literal
4039 // (8.5.2 [dcl.init.string]), initialization is performed as described
4040 // in that section.
4041 // - Otherwise, if T is an aggregate, [...] (continue below).
4042 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4043 if (DestType->isRecordType()) {
4044 QualType InitType = InitList->getInit(0)->getType();
4045 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4046 S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
4047 Expr *InitListAsExpr = InitList;
4048 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4049 DestType, Sequence,
4050 /*InitListSyntax*/false,
4051 /*IsInitListCopy*/true);
4052 return;
4053 }
4054 }
4055 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4056 Expr *SubInit[1] = {InitList->getInit(0)};
4057 if (!isa<VariableArrayType>(DestAT) &&
4058 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4059 InitializationKind SubKind =
4060 Kind.getKind() == InitializationKind::IK_DirectList
4061 ? InitializationKind::CreateDirect(Kind.getLocation(),
4062 InitList->getLBraceLoc(),
4063 InitList->getRBraceLoc())
4064 : Kind;
4065 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4066 /*TopLevelOfInitList*/ true,
4067 TreatUnavailableAsInvalid);
4068
4069 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4070 // the element is not an appropriately-typed string literal, in which
4071 // case we should proceed as in C++11 (below).
4072 if (Sequence) {
4073 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4074 return;
4075 }
4076 }
4077 }
4078 }
4079
4080 // C++11 [dcl.init.list]p3:
4081 // - If T is an aggregate, aggregate initialization is performed.
4082 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4083 (S.getLangOpts().CPlusPlus11 &&
4084 S.isStdInitializerList(DestType, nullptr))) {
4085 if (S.getLangOpts().CPlusPlus11) {
4086 // - Otherwise, if the initializer list has no elements and T is a
4087 // class type with a default constructor, the object is
4088 // value-initialized.
4089 if (InitList->getNumInits() == 0) {
4090 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4091 if (RD->hasDefaultConstructor()) {
4092 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4093 return;
4094 }
4095 }
4096
4097 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4098 // an initializer_list object constructed [...]
4099 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4100 TreatUnavailableAsInvalid))
4101 return;
4102
4103 // - Otherwise, if T is a class type, constructors are considered.
4104 Expr *InitListAsExpr = InitList;
4105 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4106 DestType, Sequence, /*InitListSyntax*/true);
4107 } else
4108 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4109 return;
4110 }
4111
4112 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4113 InitList->getNumInits() == 1) {
4114 Expr *E = InitList->getInit(0);
4115
4116 // - Otherwise, if T is an enumeration with a fixed underlying type,
4117 // the initializer-list has a single element v, and the initialization
4118 // is direct-list-initialization, the object is initialized with the
4119 // value T(v); if a narrowing conversion is required to convert v to
4120 // the underlying type of T, the program is ill-formed.
4121 auto *ET = DestType->getAs<EnumType>();
4122 if (S.getLangOpts().CPlusPlus17 &&
4123 Kind.getKind() == InitializationKind::IK_DirectList &&
4124 ET && ET->getDecl()->isFixed() &&
4125 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4126 (E->getType()->isIntegralOrEnumerationType() ||
4127 E->getType()->isFloatingType())) {
4128 // There are two ways that T(v) can work when T is an enumeration type.
4129 // If there is either an implicit conversion sequence from v to T or
4130 // a conversion function that can convert from v to T, then we use that.
4131 // Otherwise, if v is of integral, enumeration, or floating-point type,
4132 // it is converted to the enumeration type via its underlying type.
4133 // There is no overlap possible between these two cases (except when the
4134 // source value is already of the destination type), and the first
4135 // case is handled by the general case for single-element lists below.
4136 ImplicitConversionSequence ICS;
4137 ICS.setStandard();
4138 ICS.Standard.setAsIdentityConversion();
4139 if (!E->isRValue())
4140 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4141 // If E is of a floating-point type, then the conversion is ill-formed
4142 // due to narrowing, but go through the motions in order to produce the
4143 // right diagnostic.
4144 ICS.Standard.Second = E->getType()->isFloatingType()
4145 ? ICK_Floating_Integral
4146 : ICK_Integral_Conversion;
4147 ICS.Standard.setFromType(E->getType());
4148 ICS.Standard.setToType(0, E->getType());
4149 ICS.Standard.setToType(1, DestType);
4150 ICS.Standard.setToType(2, DestType);
4151 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4152 /*TopLevelOfInitList*/true);
4153 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4154 return;
4155 }
4156
4157 // - Otherwise, if the initializer list has a single element of type E
4158 // [...references are handled above...], the object or reference is
4159 // initialized from that element (by copy-initialization for
4160 // copy-list-initialization, or by direct-initialization for
4161 // direct-list-initialization); if a narrowing conversion is required
4162 // to convert the element to T, the program is ill-formed.
4163 //
4164 // Per core-24034, this is direct-initialization if we were performing
4165 // direct-list-initialization and copy-initialization otherwise.
4166 // We can't use InitListChecker for this, because it always performs
4167 // copy-initialization. This only matters if we might use an 'explicit'
4168 // conversion operator, so we only need to handle the cases where the source
4169 // is of record type.
4170 if (InitList->getInit(0)->getType()->isRecordType()) {
4171 InitializationKind SubKind =
4172 Kind.getKind() == InitializationKind::IK_DirectList
4173 ? InitializationKind::CreateDirect(Kind.getLocation(),
4174 InitList->getLBraceLoc(),
4175 InitList->getRBraceLoc())
4176 : Kind;
4177 Expr *SubInit[1] = { InitList->getInit(0) };
4178 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4179 /*TopLevelOfInitList*/true,
4180 TreatUnavailableAsInvalid);
4181 if (Sequence)
4182 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4183 return;
4184 }
4185 }
4186
4187 InitListChecker CheckInitList(S, Entity, InitList,
4188 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4189 if (CheckInitList.HadError()) {
4190 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4191 return;
4192 }
4193
4194 // Add the list initialization step with the built init list.
4195 Sequence.AddListInitializationStep(DestType);
4196}
4197
4198/// Try a reference initialization that involves calling a conversion
4199/// function.
4200static OverloadingResult TryRefInitWithConversionFunction(
4201 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4202 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4203 InitializationSequence &Sequence) {
4204 QualType DestType = Entity.getType();
4205 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4206 QualType T1 = cv1T1.getUnqualifiedType();
4207 QualType cv2T2 = Initializer->getType();
4208 QualType T2 = cv2T2.getUnqualifiedType();
4209
4210 bool DerivedToBase;
4211 bool ObjCConversion;
4212 bool ObjCLifetimeConversion;
4213 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4217, __extension__ __PRETTY_FUNCTION__))
4214 T1, T2, DerivedToBase,(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4217, __extension__ __PRETTY_FUNCTION__))
4215 ObjCConversion,(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4217, __extension__ __PRETTY_FUNCTION__))
4216 ObjCLifetimeConversion) &&(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4217, __extension__ __PRETTY_FUNCTION__))
4217 "Must have incompatible references when binding via conversion")(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4217, __extension__ __PRETTY_FUNCTION__))
;
4218 (void)DerivedToBase;
4219 (void)ObjCConversion;
4220 (void)ObjCLifetimeConversion;
4221
4222 // Build the candidate set directly in the initialization sequence
4223 // structure, so that it will persist if we fail.
4224 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4225 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4226
4227 // Determine whether we are allowed to call explicit conversion operators.
4228 // Note that none of [over.match.copy], [over.match.conv], nor
4229 // [over.match.ref] permit an explicit constructor to be chosen when
4230 // initializing a reference, not even for direct-initialization.
4231 bool AllowExplicitCtors = false;
4232 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4233
4234 const RecordType *T1RecordType = nullptr;
4235 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4236 S.isCompleteType(Kind.getLocation(), T1)) {
4237 // The type we're converting to is a class type. Enumerate its constructors
4238 // to see if there is a suitable conversion.
4239 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4240
4241 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4242 auto Info = getConstructorInfo(D);
4243 if (!Info.Constructor)
4244 continue;
4245
4246 if (!Info.Constructor->isInvalidDecl() &&
4247 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4248 if (Info.ConstructorTmpl)
4249 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4250 /*ExplicitArgs*/ nullptr,
4251 Initializer, CandidateSet,
4252 /*SuppressUserConversions=*/true);
4253 else
4254 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4255 Initializer, CandidateSet,
4256 /*SuppressUserConversions=*/true);
4257 }
4258 }
4259 }
4260 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4261 return OR_No_Viable_Function;
4262
4263 const RecordType *T2RecordType = nullptr;
4264 if ((T2RecordType = T2->getAs<RecordType>()) &&
4265 S.isCompleteType(Kind.getLocation(), T2)) {
4266 // The type we're converting from is a class type, enumerate its conversion
4267 // functions.
4268 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4269
4270 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4271 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4272 NamedDecl *D = *I;
4273 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4274 if (isa<UsingShadowDecl>(D))
4275 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4276
4277 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4278 CXXConversionDecl *Conv;
4279 if (ConvTemplate)
4280 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4281 else
4282 Conv = cast<CXXConversionDecl>(D);
4283
4284 // If the conversion function doesn't return a reference type,
4285 // it can't be considered for this conversion unless we're allowed to
4286 // consider rvalues.
4287 // FIXME: Do we need to make sure that we only consider conversion
4288 // candidates with reference-compatible results? That might be needed to
4289 // break recursion.
4290 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4291 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4292 if (ConvTemplate)
4293 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4294 ActingDC, Initializer,
4295 DestType, CandidateSet,
4296 /*AllowObjCConversionOnExplicit=*/
4297 false);
4298 else
4299 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4300 Initializer, DestType, CandidateSet,
4301 /*AllowObjCConversionOnExplicit=*/false);
4302 }
4303 }
4304 }
4305 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4306 return OR_No_Viable_Function;
4307
4308 SourceLocation DeclLoc = Initializer->getLocStart();
4309
4310 // Perform overload resolution. If it fails, return the failed result.
4311 OverloadCandidateSet::iterator Best;
4312 if (OverloadingResult Result
4313 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4314 return Result;
4315
4316 FunctionDecl *Function = Best->Function;
4317 // This is the overload that will be used for this initialization step if we
4318 // use this initialization. Mark it as referenced.
4319 Function->setReferenced();
4320
4321 // Compute the returned type and value kind of the conversion.
4322 QualType cv3T3;
4323 if (isa<CXXConversionDecl>(Function))
4324 cv3T3 = Function->getReturnType();
4325 else
4326 cv3T3 = T1;
4327
4328 ExprValueKind VK = VK_RValue;
4329 if (cv3T3->isLValueReferenceType())
4330 VK = VK_LValue;
4331 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4332 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4333 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4334
4335 // Add the user-defined conversion step.
4336 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4337 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4338 HadMultipleCandidates);
4339
4340 // Determine whether we'll need to perform derived-to-base adjustments or
4341 // other conversions.
4342 bool NewDerivedToBase = false;
4343 bool NewObjCConversion = false;
4344 bool NewObjCLifetimeConversion = false;
4345 Sema::ReferenceCompareResult NewRefRelationship
4346 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4347 NewDerivedToBase, NewObjCConversion,
4348 NewObjCLifetimeConversion);
4349
4350 // Add the final conversion sequence, if necessary.
4351 if (NewRefRelationship == Sema::Ref_Incompatible) {
4352 assert(!isa<CXXConstructorDecl>(Function) &&(static_cast <bool> (!isa<CXXConstructorDecl>(Function
) && "should not have conversion after constructor") ?
void (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4353, __extension__ __PRETTY_FUNCTION__))
4353 "should not have conversion after constructor")(static_cast <bool> (!isa<CXXConstructorDecl>(Function
) && "should not have conversion after constructor") ?
void (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4353, __extension__ __PRETTY_FUNCTION__))
;
4354
4355 ImplicitConversionSequence ICS;
4356 ICS.setStandard();
4357 ICS.Standard = Best->FinalConversion;
4358 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4359
4360 // Every implicit conversion results in a prvalue, except for a glvalue
4361 // derived-to-base conversion, which we handle below.
4362 cv3T3 = ICS.Standard.getToType(2);
4363 VK = VK_RValue;
4364 }
4365
4366 // If the converted initializer is a prvalue, its type T4 is adjusted to
4367 // type "cv1 T4" and the temporary materialization conversion is applied.
4368 //
4369 // We adjust the cv-qualifications to match the reference regardless of
4370 // whether we have a prvalue so that the AST records the change. In this
4371 // case, T4 is "cv3 T3".
4372 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4373 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4374 Sequence.AddQualificationConversionStep(cv1T4, VK);
4375 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4376 VK = IsLValueRef ? VK_LValue : VK_XValue;
4377
4378 if (NewDerivedToBase)
4379 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4380 else if (NewObjCConversion)
4381 Sequence.AddObjCObjectConversionStep(cv1T1);
4382
4383 return OR_Success;
4384}
4385
4386static void CheckCXX98CompatAccessibleCopy(Sema &S,
4387 const InitializedEntity &Entity,
4388 Expr *CurInitExpr);
4389
4390/// Attempt reference initialization (C++0x [dcl.init.ref])
4391static void TryReferenceInitialization(Sema &S,
4392 const InitializedEntity &Entity,
4393 const InitializationKind &Kind,
4394 Expr *Initializer,
4395 InitializationSequence &Sequence) {
4396 QualType DestType = Entity.getType();
4397 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4398 Qualifiers T1Quals;
4399 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4400 QualType cv2T2 = Initializer->getType();
4401 Qualifiers T2Quals;
4402 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4403
4404 // If the initializer is the address of an overloaded function, try
4405 // to resolve the overloaded function. If all goes well, T2 is the
4406 // type of the resulting function.
4407 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4408 T1, Sequence))
4409 return;
4410
4411 // Delegate everything else to a subfunction.
4412 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4413 T1Quals, cv2T2, T2, T2Quals, Sequence);
4414}
4415
4416/// Determine whether an expression is a non-referenceable glvalue (one to
4417/// which a reference can never bind). Attempting to bind a reference to
4418/// such a glvalue will always create a temporary.
4419static bool isNonReferenceableGLValue(Expr *E) {
4420 return E->refersToBitField() || E->refersToVectorElement();
4421}
4422
4423/// Reference initialization without resolving overloaded functions.
4424static void TryReferenceInitializationCore(Sema &S,
4425 const InitializedEntity &Entity,
4426 const InitializationKind &Kind,
4427 Expr *Initializer,
4428 QualType cv1T1, QualType T1,
4429 Qualifiers T1Quals,
4430 QualType cv2T2, QualType T2,
4431 Qualifiers T2Quals,
4432 InitializationSequence &Sequence) {
4433 QualType DestType = Entity.getType();
4434 SourceLocation DeclLoc = Initializer->getLocStart();
4435 // Compute some basic properties of the types and the initializer.
4436 bool isLValueRef = DestType->isLValueReferenceType();
4437 bool isRValueRef = !isLValueRef;
4438 bool DerivedToBase = false;
4439 bool ObjCConversion = false;
4440 bool ObjCLifetimeConversion = false;
4441 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4442 Sema::ReferenceCompareResult RefRelationship
4443 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4444 ObjCConversion, ObjCLifetimeConversion);
4445
4446 // C++0x [dcl.init.ref]p5:
4447 // A reference to type "cv1 T1" is initialized by an expression of type
4448 // "cv2 T2" as follows:
4449 //
4450 // - If the reference is an lvalue reference and the initializer
4451 // expression
4452 // Note the analogous bullet points for rvalue refs to functions. Because
4453 // there are no function rvalues in C++, rvalue refs to functions are treated
4454 // like lvalue refs.
4455 OverloadingResult ConvOvlResult = OR_Success;
4456 bool T1Function = T1->isFunctionType();
4457 if (isLValueRef || T1Function) {
4458 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4459 (RefRelationship == Sema::Ref_Compatible ||
4460 (Kind.isCStyleOrFunctionalCast() &&
4461 RefRelationship == Sema::Ref_Related))) {
4462 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4463 // reference-compatible with "cv2 T2," or
4464 if (T1Quals != T2Quals)
4465 // Convert to cv1 T2. This should only add qualifiers unless this is a
4466 // c-style cast. The removal of qualifiers in that case notionally
4467 // happens after the reference binding, but that doesn't matter.
4468 Sequence.AddQualificationConversionStep(
4469 S.Context.getQualifiedType(T2, T1Quals),
4470 Initializer->getValueKind());
4471 if (DerivedToBase)
4472 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4473 else if (ObjCConversion)
4474 Sequence.AddObjCObjectConversionStep(cv1T1);
4475
4476 // We only create a temporary here when binding a reference to a
4477 // bit-field or vector element. Those cases are't supposed to be
4478 // handled by this bullet, but the outcome is the same either way.
4479 Sequence.AddReferenceBindingStep(cv1T1, false);
4480 return;
4481 }
4482
4483 // - has a class type (i.e., T2 is a class type), where T1 is not
4484 // reference-related to T2, and can be implicitly converted to an
4485 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4486 // with "cv3 T3" (this conversion is selected by enumerating the
4487 // applicable conversion functions (13.3.1.6) and choosing the best
4488 // one through overload resolution (13.3)),
4489 // If we have an rvalue ref to function type here, the rhs must be
4490 // an rvalue. DR1287 removed the "implicitly" here.
4491 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4492 (isLValueRef || InitCategory.isRValue())) {
4493 ConvOvlResult = TryRefInitWithConversionFunction(
4494 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4495 /*IsLValueRef*/ isLValueRef, Sequence);
4496 if (ConvOvlResult == OR_Success)
4497 return;
4498 if (ConvOvlResult != OR_No_Viable_Function)
4499 Sequence.SetOverloadFailure(
4500 InitializationSequence::FK_ReferenceInitOverloadFailed,
4501 ConvOvlResult);
4502 }
4503 }
4504
4505 // - Otherwise, the reference shall be an lvalue reference to a
4506 // non-volatile const type (i.e., cv1 shall be const), or the reference
4507 // shall be an rvalue reference.
4508 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4509 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4510 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4511 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4512 Sequence.SetOverloadFailure(
4513 InitializationSequence::FK_ReferenceInitOverloadFailed,
4514 ConvOvlResult);
4515 else if (!InitCategory.isLValue())
4516 Sequence.SetFailed(
4517 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4518 else {
4519 InitializationSequence::FailureKind FK;
4520 switch (RefRelationship) {
4521 case Sema::Ref_Compatible:
4522 if (Initializer->refersToBitField())
4523 FK = InitializationSequence::
4524 FK_NonConstLValueReferenceBindingToBitfield;
4525 else if (Initializer->refersToVectorElement())
4526 FK = InitializationSequence::
4527 FK_NonConstLValueReferenceBindingToVectorElement;
4528 else
4529 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4529)
;
4530 break;
4531 case Sema::Ref_Related:
4532 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4533 break;
4534 case Sema::Ref_Incompatible:
4535 FK = InitializationSequence::
4536 FK_NonConstLValueReferenceBindingToUnrelated;
4537 break;
4538 }
4539 Sequence.SetFailed(FK);
4540 }
4541 return;
4542 }
4543
4544 // - If the initializer expression
4545 // - is an
4546 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4547 // [1z] rvalue (but not a bit-field) or
4548 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4549 //
4550 // Note: functions are handled above and below rather than here...
4551 if (!T1Function &&
4552 (RefRelationship == Sema::Ref_Compatible ||
4553 (Kind.isCStyleOrFunctionalCast() &&
4554 RefRelationship == Sema::Ref_Related)) &&
4555 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4556 (InitCategory.isPRValue() &&
4557 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4558 T2->isArrayType())))) {
4559 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4560 if (InitCategory.isPRValue() && T2->isRecordType()) {
4561 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4562 // compiler the freedom to perform a copy here or bind to the
4563 // object, while C++0x requires that we bind directly to the
4564 // object. Hence, we always bind to the object without making an
4565 // extra copy. However, in C++03 requires that we check for the
4566 // presence of a suitable copy constructor:
4567 //
4568 // The constructor that would be used to make the copy shall
4569 // be callable whether or not the copy is actually done.
4570 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4571 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4572 else if (S.getLangOpts().CPlusPlus11)
4573 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4574 }
4575
4576 // C++1z [dcl.init.ref]/5.2.1.2:
4577 // If the converted initializer is a prvalue, its type T4 is adjusted
4578 // to type "cv1 T4" and the temporary materialization conversion is
4579 // applied.
4580 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4581 if (T1Quals != T2Quals)
4582 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4583 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4584 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4585
4586 // In any case, the reference is bound to the resulting glvalue (or to
4587 // an appropriate base class subobject).
4588 if (DerivedToBase)
4589 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4590 else if (ObjCConversion)
4591 Sequence.AddObjCObjectConversionStep(cv1T1);
4592 return;
4593 }
4594
4595 // - has a class type (i.e., T2 is a class type), where T1 is not
4596 // reference-related to T2, and can be implicitly converted to an
4597 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4598 // where "cv1 T1" is reference-compatible with "cv3 T3",
4599 //
4600 // DR1287 removes the "implicitly" here.
4601 if (T2->isRecordType()) {
4602 if (RefRelationship == Sema::Ref_Incompatible) {
4603 ConvOvlResult = TryRefInitWithConversionFunction(
4604 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4605 /*IsLValueRef*/ isLValueRef, Sequence);
4606 if (ConvOvlResult)
4607 Sequence.SetOverloadFailure(
4608 InitializationSequence::FK_ReferenceInitOverloadFailed,
4609 ConvOvlResult);
4610
4611 return;
4612 }
4613
4614 if (RefRelationship == Sema::Ref_Compatible &&
4615 isRValueRef && InitCategory.isLValue()) {
4616 Sequence.SetFailed(
4617 InitializationSequence::FK_RValueReferenceBindingToLValue);
4618 return;
4619 }
4620
4621 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4622 return;
4623 }
4624
4625 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4626 // from the initializer expression using the rules for a non-reference
4627 // copy-initialization (8.5). The reference is then bound to the
4628 // temporary. [...]
4629
4630 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4631
4632 // FIXME: Why do we use an implicit conversion here rather than trying
4633 // copy-initialization?
4634 ImplicitConversionSequence ICS
4635 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4636 /*SuppressUserConversions=*/false,
4637 /*AllowExplicit=*/false,
4638 /*FIXME:InOverloadResolution=*/false,
4639 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4640 /*AllowObjCWritebackConversion=*/false);
4641
4642 if (ICS.isBad()) {
4643 // FIXME: Use the conversion function set stored in ICS to turn
4644 // this into an overloading ambiguity diagnostic. However, we need
4645 // to keep that set as an OverloadCandidateSet rather than as some
4646 // other kind of set.
4647 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4648 Sequence.SetOverloadFailure(
4649 InitializationSequence::FK_ReferenceInitOverloadFailed,
4650 ConvOvlResult);
4651 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4652 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4653 else
4654 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4655 return;
4656 } else {
4657 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4658 }
4659
4660 // [...] If T1 is reference-related to T2, cv1 must be the
4661 // same cv-qualification as, or greater cv-qualification
4662 // than, cv2; otherwise, the program is ill-formed.
4663 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4664 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4665 if (RefRelationship == Sema::Ref_Related &&
4666 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4667 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4668 return;
4669 }
4670
4671 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4672 // reference, the initializer expression shall not be an lvalue.
4673 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4674 InitCategory.isLValue()) {
4675 Sequence.SetFailed(
4676 InitializationSequence::FK_RValueReferenceBindingToLValue);
4677 return;
4678 }
4679
4680 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4681}
4682
4683/// Attempt character array initialization from a string literal
4684/// (C++ [dcl.init.string], C99 6.7.8).
4685static void TryStringLiteralInitialization(Sema &S,
4686 const InitializedEntity &Entity,
4687 const InitializationKind &Kind,
4688 Expr *Initializer,
4689 InitializationSequence &Sequence) {
4690 Sequence.AddStringInitStep(Entity.getType());
4691}
4692
4693/// Attempt value initialization (C++ [dcl.init]p7).
4694static void TryValueInitialization(Sema &S,
4695 const InitializedEntity &Entity,
4696 const InitializationKind &Kind,
4697 InitializationSequence &Sequence,
4698 InitListExpr *InitList) {
4699 assert((!InitList || InitList->getNumInits() == 0) &&(static_cast <bool> ((!InitList || InitList->getNumInits
() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? void (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4700, __extension__ __PRETTY_FUNCTION__))
4700 "Shouldn't use value-init for non-empty init lists")(static_cast <bool> ((!InitList || InitList->getNumInits
() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? void (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4700, __extension__ __PRETTY_FUNCTION__))
;
4701
4702 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4703 //
4704 // To value-initialize an object of type T means:
4705 QualType T = Entity.getType();
4706
4707 // -- if T is an array type, then each element is value-initialized;
4708 T = S.Context.getBaseElementType(T);
4709
4710 if (const RecordType *RT = T->getAs<RecordType>()) {
4711 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4712 bool NeedZeroInitialization = true;
4713 // C++98:
4714 // -- if T is a class type (clause 9) with a user-declared constructor
4715 // (12.1), then the default constructor for T is called (and the
4716 // initialization is ill-formed if T has no accessible default
4717 // constructor);
4718 // C++11:
4719 // -- if T is a class type (clause 9) with either no default constructor
4720 // (12.1 [class.ctor]) or a default constructor that is user-provided
4721 // or deleted, then the object is default-initialized;
4722 //
4723 // Note that the C++11 rule is the same as the C++98 rule if there are no
4724 // defaulted or deleted constructors, so we just use it unconditionally.
4725 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4726 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4727 NeedZeroInitialization = false;
4728
4729 // -- if T is a (possibly cv-qualified) non-union class type without a
4730 // user-provided or deleted default constructor, then the object is
4731 // zero-initialized and, if T has a non-trivial default constructor,
4732 // default-initialized;
4733 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4734 // constructor' part was removed by DR1507.
4735 if (NeedZeroInitialization)
4736 Sequence.AddZeroInitializationStep(Entity.getType());
4737
4738 // C++03:
4739 // -- if T is a non-union class type without a user-declared constructor,
4740 // then every non-static data member and base class component of T is
4741 // value-initialized;
4742 // [...] A program that calls for [...] value-initialization of an
4743 // entity of reference type is ill-formed.
4744 //
4745 // C++11 doesn't need this handling, because value-initialization does not
4746 // occur recursively there, and the implicit default constructor is
4747 // defined as deleted in the problematic cases.
4748 if (!S.getLangOpts().CPlusPlus11 &&
4749 ClassDecl->hasUninitializedReferenceMember()) {
4750 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4751 return;
4752 }
4753
4754 // If this is list-value-initialization, pass the empty init list on when
4755 // building the constructor call. This affects the semantics of a few
4756 // things (such as whether an explicit default constructor can be called).
4757 Expr *InitListAsExpr = InitList;
4758 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4759 bool InitListSyntax = InitList;
4760
4761 // FIXME: Instead of creating a CXXConstructExpr of array type here,
4762 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4763 return TryConstructorInitialization(
4764 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4765 }
4766 }
4767
4768 Sequence.AddZeroInitializationStep(Entity.getType());
4769}
4770
4771/// Attempt default initialization (C++ [dcl.init]p6).
4772static void TryDefaultInitialization(Sema &S,
4773 const InitializedEntity &Entity,
4774 const InitializationKind &Kind,
4775 InitializationSequence &Sequence) {
4776 assert(Kind.getKind() == InitializationKind::IK_Default)(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Default) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4776, __extension__ __PRETTY_FUNCTION__))
;
4777
4778 // C++ [dcl.init]p6:
4779 // To default-initialize an object of type T means:
4780 // - if T is an array type, each element is default-initialized;
4781 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4782
4783 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4784 // constructor for T is called (and the initialization is ill-formed if
4785 // T has no accessible default constructor);
4786 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4787 TryConstructorInitialization(S, Entity, Kind, None, DestType,
4788 Entity.getType(), Sequence);
4789 return;
4790 }
4791
4792 // - otherwise, no initialization is performed.
4793
4794 // If a program calls for the default initialization of an object of
4795 // a const-qualified type T, T shall be a class type with a user-provided
4796 // default constructor.
4797 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4798 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4799 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4800 return;
4801 }
4802
4803 // If the destination type has a lifetime property, zero-initialize it.
4804 if (DestType.getQualifiers().hasObjCLifetime()) {
4805 Sequence.AddZeroInitializationStep(Entity.getType());
4806 return;
4807 }
4808}
4809
4810/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4811/// which enumerates all conversion functions and performs overload resolution
4812/// to select the best.
4813static void TryUserDefinedConversion(Sema &S,
4814 QualType DestType,
4815 const InitializationKind &Kind,
4816 Expr *Initializer,
4817 InitializationSequence &Sequence,
4818 bool TopLevelOfInitList) {
4819 assert(!DestType->isReferenceType() && "References are handled elsewhere")(static_cast <bool> (!DestType->isReferenceType() &&
"References are handled elsewhere") ? void (0) : __assert_fail
("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4819, __extension__ __PRETTY_FUNCTION__))
;
4820 QualType SourceType = Initializer->getType();
4821 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(static_cast <bool> ((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
) ? void (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4822, __extension__ __PRETTY_FUNCTION__))
4822 "Must have a class type to perform a user-defined conversion")(static_cast <bool> ((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
) ? void (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 4822, __extension__ __PRETTY_FUNCTION__))
;
4823
4824 // Build the candidate set directly in the initialization sequence
4825 // structure, so that it will persist if we fail.
4826 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4827 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4828
4829 // Determine whether we are allowed to call explicit constructors or
4830 // explicit conversion operators.
4831 bool AllowExplicit = Kind.AllowExplicit();
4832
4833 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4834 // The type we're converting to is a class type. Enumerate its constructors
4835 // to see if there is a suitable conversion.
4836 CXXRecordDecl *DestRecordDecl
4837 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4838
4839 // Try to complete the type we're converting to.
4840 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4841 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4842 auto Info = getConstructorInfo(D);
4843 if (!Info.Constructor)
4844 continue;
4845
4846 if (!Info.Constructor->isInvalidDecl() &&
4847 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4848 if (Info.ConstructorTmpl)
4849 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4850 /*ExplicitArgs*/ nullptr,
4851 Initializer, CandidateSet,
4852 /*SuppressUserConversions=*/true);
4853 else
4854 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4855 Initializer, CandidateSet,
4856 /*SuppressUserConversions=*/true);
4857 }
4858 }
4859 }
4860 }
4861
4862 SourceLocation DeclLoc = Initializer->getLocStart();
4863
4864 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4865 // The type we're converting from is a class type, enumerate its conversion
4866 // functions.
4867
4868 // We can only enumerate the conversion functions for a complete type; if
4869 // the type isn't complete, simply skip this step.
4870 if (S.isCompleteType(DeclLoc, SourceType)) {
4871 CXXRecordDecl *SourceRecordDecl
4872 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4873
4874 const auto &Conversions =
4875 SourceRecordDecl->getVisibleConversionFunctions();
4876 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4877 NamedDecl *D = *I;
4878 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4879 if (isa<UsingShadowDecl>(D))
4880 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4881
4882 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4883 CXXConversionDecl *Conv;
4884 if (ConvTemplate)
4885 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4886 else
4887 Conv = cast<CXXConversionDecl>(D);
4888
4889 if (AllowExplicit || !Conv->isExplicit()) {
4890 if (ConvTemplate)
4891 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4892 ActingDC, Initializer, DestType,
4893 CandidateSet, AllowExplicit);
4894 else
4895 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4896 Initializer, DestType, CandidateSet,
4897 AllowExplicit);
4898 }
4899 }
4900 }
4901 }
4902
4903 // Perform overload resolution. If it fails, return the failed result.
4904 OverloadCandidateSet::iterator Best;
4905 if (OverloadingResult Result
4906 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4907 Sequence.SetOverloadFailure(
4908 InitializationSequence::FK_UserConversionOverloadFailed,
4909 Result);
4910 return;
4911 }
4912
4913 FunctionDecl *Function = Best->Function;
4914 Function->setReferenced();
4915 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4916
4917 if (isa<CXXConstructorDecl>(Function)) {
4918 // Add the user-defined conversion step. Any cv-qualification conversion is
4919 // subsumed by the initialization. Per DR5, the created temporary is of the
4920 // cv-unqualified type of the destination.
4921 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4922 DestType.getUnqualifiedType(),
4923 HadMultipleCandidates);
4924
4925 // C++14 and before:
4926 // - if the function is a constructor, the call initializes a temporary
4927 // of the cv-unqualified version of the destination type. The [...]
4928 // temporary [...] is then used to direct-initialize, according to the
4929 // rules above, the object that is the destination of the
4930 // copy-initialization.
4931 // Note that this just performs a simple object copy from the temporary.
4932 //
4933 // C++17:
4934 // - if the function is a constructor, the call is a prvalue of the
4935 // cv-unqualified version of the destination type whose return object
4936 // is initialized by the constructor. The call is used to
4937 // direct-initialize, according to the rules above, the object that
4938 // is the destination of the copy-initialization.
4939 // Therefore we need to do nothing further.
4940 //
4941 // FIXME: Mark this copy as extraneous.
4942 if (!S.getLangOpts().CPlusPlus17)
4943 Sequence.AddFinalCopy(DestType);
4944 else if (DestType.hasQualifiers())
4945 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4946 return;
4947 }
4948
4949 // Add the user-defined conversion step that calls the conversion function.
4950 QualType ConvType = Function->getCallResultType();
4951 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4952 HadMultipleCandidates);
4953
4954 if (ConvType->getAs<RecordType>()) {
4955 // The call is used to direct-initialize [...] the object that is the
4956 // destination of the copy-initialization.
4957 //
4958 // In C++17, this does not call a constructor if we enter /17.6.1:
4959 // - If the initializer expression is a prvalue and the cv-unqualified
4960 // version of the source type is the same as the class of the
4961 // destination [... do not make an extra copy]
4962 //
4963 // FIXME: Mark this copy as extraneous.
4964 if (!S.getLangOpts().CPlusPlus17 ||
4965 Function->getReturnType()->isReferenceType() ||
4966 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
4967 Sequence.AddFinalCopy(DestType);
4968 else if (!S.Context.hasSameType(ConvType, DestType))
4969 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4970 return;
4971 }
4972
4973 // If the conversion following the call to the conversion function
4974 // is interesting, add it as a separate step.
4975 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4976 Best->FinalConversion.Third) {
4977 ImplicitConversionSequence ICS;
4978 ICS.setStandard();
4979 ICS.Standard = Best->FinalConversion;
4980 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4981 }
4982}
4983
4984/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4985/// a function with a pointer return type contains a 'return false;' statement.
4986/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4987/// code using that header.
4988///
4989/// Work around this by treating 'return false;' as zero-initializing the result
4990/// if it's used in a pointer-returning function in a system header.
4991static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4992 const InitializedEntity &Entity,
4993 const Expr *Init) {
4994 return S.getLangOpts().CPlusPlus11 &&
4995 Entity.getKind() == InitializedEntity::EK_Result &&
4996 Entity.getType()->isPointerType() &&
4997 isa<CXXBoolLiteralExpr>(Init) &&
4998 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4999 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5000}
5001
5002/// The non-zero enum values here are indexes into diagnostic alternatives.
5003enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5004
5005/// Determines whether this expression is an acceptable ICR source.
5006static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5007 bool isAddressOf, bool &isWeakAccess) {
5008 // Skip parens.
5009 e = e->IgnoreParens();
5010
5011 // Skip address-of nodes.
5012 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5013 if (op->getOpcode() == UO_AddrOf)
5014 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5015 isWeakAccess);
5016
5017 // Skip certain casts.
5018 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5019 switch (ce->getCastKind()) {
5020 case CK_Dependent:
5021 case CK_BitCast:
5022 case CK_LValueBitCast:
5023 case CK_NoOp:
5024 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5025
5026 case CK_ArrayToPointerDecay:
5027 return IIK_nonscalar;
5028
5029 case CK_NullToPointer:
5030 return IIK_okay;
5031
5032 default:
5033 break;
5034 }
5035
5036 // If we have a declaration reference, it had better be a local variable.
5037 } else if (isa<DeclRefExpr>(e)) {
5038 // set isWeakAccess to true, to mean that there will be an implicit
5039 // load which requires a cleanup.
5040 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5041 isWeakAccess = true;
5042
5043 if (!isAddressOf) return IIK_nonlocal;
5044
5045 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5046 if (!var) return IIK_nonlocal;
5047
5048 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5049
5050 // If we have a conditional operator, check both sides.
5051 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5052 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5053 isWeakAccess))
5054 return iik;
5055
5056 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5057
5058 // These are never scalar.
5059 } else if (isa<ArraySubscriptExpr>(e)) {
5060 return IIK_nonscalar;
5061
5062 // Otherwise, it needs to be a null pointer constant.
5063 } else {
5064 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5065 ? IIK_okay : IIK_nonlocal);
5066 }
5067
5068 return IIK_nonlocal;
5069}
5070
5071/// Check whether the given expression is a valid operand for an
5072/// indirect copy/restore.
5073static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5074 assert(src->isRValue())(static_cast <bool> (src->isRValue()) ? void (0) : __assert_fail
("src->isRValue()", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 5074, __extension__ __PRETTY_FUNCTION__))
;
5075 bool isWeakAccess = false;
5076 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5077 // If isWeakAccess to true, there will be an implicit
5078 // load which requires a cleanup.
5079 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5080 S.Cleanup.setExprNeedsCleanups(true);
5081
5082 if (iik == IIK_okay) return;
5083
5084 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5085 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5086 << src->getSourceRange();
5087}
5088
5089/// Determine whether we have compatible array types for the
5090/// purposes of GNU by-copy array initialization.
5091static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5092 const ArrayType *Source) {
5093 // If the source and destination array types are equivalent, we're
5094 // done.
5095 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5096 return true;
5097
5098 // Make sure that the element types are the same.
5099 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5100 return false;
5101
5102 // The only mismatch we allow is when the destination is an
5103 // incomplete array type and the source is a constant array type.
5104 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5105}
5106
5107static bool tryObjCWritebackConversion(Sema &S,
5108 InitializationSequence &Sequence,
5109 const InitializedEntity &Entity,
5110 Expr *Initializer) {
5111 bool ArrayDecay = false;
5112 QualType ArgType = Initializer->getType();
5113 QualType ArgPointee;
5114 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5115 ArrayDecay = true;
5116 ArgPointee = ArgArrayType->getElementType();
5117 ArgType = S.Context.getPointerType(ArgPointee);
5118 }
5119
5120 // Handle write-back conversion.
5121 QualType ConvertedArgType;
5122 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5123 ConvertedArgType))
5124 return false;
5125
5126 // We should copy unless we're passing to an argument explicitly
5127 // marked 'out'.
5128 bool ShouldCopy = true;
5129 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5130 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5131
5132 // Do we need an lvalue conversion?
5133 if (ArrayDecay || Initializer->isGLValue()) {
5134 ImplicitConversionSequence ICS;
5135 ICS.setStandard();
5136 ICS.Standard.setAsIdentityConversion();
5137
5138 QualType ResultType;
5139 if (ArrayDecay) {
5140 ICS.Standard.First = ICK_Array_To_Pointer;
5141 ResultType = S.Context.getPointerType(ArgPointee);
5142 } else {
5143 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5144 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5145 }
5146
5147 Sequence.AddConversionSequenceStep(ICS, ResultType);
5148 }
5149
5150 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5151 return true;
5152}
5153
5154static bool TryOCLSamplerInitialization(Sema &S,
5155 InitializationSequence &Sequence,
5156 QualType DestType,
5157 Expr *Initializer) {
5158 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5159 (!Initializer->isIntegerConstantExpr(S.Context) &&
5160 !Initializer->getType()->isSamplerT()))
5161 return false;
5162
5163 Sequence.AddOCLSamplerInitStep(DestType);
5164 return true;
5165}
5166
5167//
5168// OpenCL 1.2 spec, s6.12.10
5169//
5170// The event argument can also be used to associate the
5171// async_work_group_copy with a previous async copy allowing
5172// an event to be shared by multiple async copies; otherwise
5173// event should be zero.
5174//
5175static bool TryOCLZeroEventInitialization(Sema &S,
5176 InitializationSequence &Sequence,
5177 QualType DestType,
5178 Expr *Initializer) {
5179 if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
5180 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5181 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5182 return false;
5183
5184 Sequence.AddOCLZeroEventStep(DestType);
5185 return true;
5186}
5187
5188static bool TryOCLZeroQueueInitialization(Sema &S,
5189 InitializationSequence &Sequence,
5190 QualType DestType,
5191 Expr *Initializer) {
5192 if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 ||
5193 !DestType->isQueueT() ||
5194 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5195 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5196 return false;
5197
5198 Sequence.AddOCLZeroQueueStep(DestType);
5199 return true;
5200}
5201
5202InitializationSequence::InitializationSequence(Sema &S,
5203 const InitializedEntity &Entity,
5204 const InitializationKind &Kind,
5205 MultiExprArg Args,
5206 bool TopLevelOfInitList,
5207 bool TreatUnavailableAsInvalid)
5208 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5209 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5210 TreatUnavailableAsInvalid);
5211}
5212
5213/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5214/// address of that function, this returns true. Otherwise, it returns false.
5215static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5216 auto *DRE = dyn_cast<DeclRefExpr>(E);
5217 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5218 return false;
5219
5220 return !S.checkAddressOfFunctionIsAvailable(
5221 cast<FunctionDecl>(DRE->getDecl()));
5222}
5223
5224/// Determine whether we can perform an elementwise array copy for this kind
5225/// of entity.
5226static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5227 switch (Entity.getKind()) {
5228 case InitializedEntity::EK_LambdaCapture:
5229 // C++ [expr.prim.lambda]p24:
5230 // For array members, the array elements are direct-initialized in
5231 // increasing subscript order.
5232 return true;
5233
5234 case InitializedEntity::EK_Variable:
5235 // C++ [dcl.decomp]p1:
5236 // [...] each element is copy-initialized or direct-initialized from the
5237 // corresponding element of the assignment-expression [...]
5238 return isa<DecompositionDecl>(Entity.getDecl());
5239
5240 case InitializedEntity::EK_Member:
5241 // C++ [class.copy.ctor]p14:
5242 // - if the member is an array, each element is direct-initialized with
5243 // the corresponding subobject of x
5244 return Entity.isImplicitMemberInitializer();
5245
5246 case InitializedEntity::EK_ArrayElement:
5247 // All the above cases are intended to apply recursively, even though none
5248 // of them actually say that.
5249 if (auto *E = Entity.getParent())
5250 return canPerformArrayCopy(*E);
5251 break;
5252
5253 default:
5254 break;
5255 }
5256
5257 return false;
5258}
5259
5260void InitializationSequence::InitializeFrom(Sema &S,
5261 const InitializedEntity &Entity,
5262 const InitializationKind &Kind,
5263 MultiExprArg Args,
5264 bool TopLevelOfInitList,
5265 bool TreatUnavailableAsInvalid) {
5266 ASTContext &Context = S.Context;
5267
5268 // Eliminate non-overload placeholder types in the arguments. We
5269 // need to do this before checking whether types are dependent
5270 // because lowering a pseudo-object expression might well give us
5271 // something of dependent type.
5272 for (unsigned I = 0, E = Args.size(); I != E; ++I)
5273 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5274 // FIXME: should we be doing this here?
5275 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5276 if (result.isInvalid()) {
5277 SetFailed(FK_PlaceholderType);
5278 return;
5279 }
5280 Args[I] = result.get();
5281 }
5282
5283 // C++0x [dcl.init]p16:
5284 // The semantics of initializers are as follows. The destination type is
5285 // the type of the object or reference being initialized and the source
5286 // type is the type of the initializer expression. The source type is not
5287 // defined when the initializer is a braced-init-list or when it is a
5288 // parenthesized list of expressions.
5289 QualType DestType = Entity.getType();
5290
5291 if (DestType->isDependentType() ||
5292 Expr::hasAnyTypeDependentArguments(Args)) {
5293 SequenceKind = DependentSequence;
5294 return;
5295 }
5296
5297 // Almost everything is a normal sequence.
5298 setSequenceKind(NormalSequence);
5299
5300 QualType SourceType;
5301 Expr *Initializer = nullptr;
5302 if (Args.size() == 1) {
5303 Initializer = Args[0];
5304 if (S.getLangOpts().ObjC1) {
5305 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
5306 DestType, Initializer->getType(),
5307 Initializer) ||
5308 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5309 Args[0] = Initializer;
5310 }
5311 if (!isa<InitListExpr>(Initializer))
5312 SourceType = Initializer->getType();
5313 }
5314
5315 // - If the initializer is a (non-parenthesized) braced-init-list, the
5316 // object is list-initialized (8.5.4).
5317 if (Kind.getKind() != InitializationKind::IK_Direct) {
5318 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5319 TryListInitialization(S, Entity, Kind, InitList, *this,
5320 TreatUnavailableAsInvalid);
5321 return;
5322 }
5323 }
5324
5325 // - If the destination type is a reference type, see 8.5.3.
5326 if (DestType->isReferenceType()) {
5327 // C++0x [dcl.init.ref]p1:
5328 // A variable declared to be a T& or T&&, that is, "reference to type T"
5329 // (8.3.2), shall be initialized by an object, or function, of type T or
5330 // by an object that can be converted into a T.
5331 // (Therefore, multiple arguments are not permitted.)
5332 if (Args.size() != 1)
5333 SetFailed(FK_TooManyInitsForReference);
5334 // C++17 [dcl.init.ref]p5:
5335 // A reference [...] is initialized by an expression [...] as follows:
5336 // If the initializer is not an expression, presumably we should reject,
5337 // but the standard fails to actually say so.
5338 else if (isa<InitListExpr>(Args[0]))
5339 SetFailed(FK_ParenthesizedListInitForReference);
5340 else
5341 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5342 return;
5343 }
5344
5345 // - If the initializer is (), the object is value-initialized.
5346 if (Kind.getKind() == InitializationKind::IK_Value ||
5347 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
5348 TryValueInitialization(S, Entity, Kind, *this);
5349 return;
5350 }
5351
5352 // Handle default initialization.
5353 if (Kind.getKind() == InitializationKind::IK_Default) {
5354 TryDefaultInitialization(S, Entity, Kind, *this);
5355 return;
5356 }
5357
5358 // - If the destination type is an array of characters, an array of
5359 // char16_t, an array of char32_t, or an array of wchar_t, and the
5360 // initializer is a string literal, see 8.5.2.
5361 // - Otherwise, if the destination type is an array, the program is
5362 // ill-formed.
5363 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
5364 if (Initializer && isa<VariableArrayType>(DestAT)) {
5365 SetFailed(FK_VariableLengthArrayHasInitializer);
5366 return;
5367 }
5368
5369 if (Initializer) {
5370 switch (IsStringInit(Initializer, DestAT, Context)) {
5371 case SIF_None:
5372 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5373 return;
5374 case SIF_NarrowStringIntoWideChar:
5375 SetFailed(FK_NarrowStringIntoWideCharArray);
5376 return;
5377 case SIF_WideStringIntoChar:
5378 SetFailed(FK_WideStringIntoCharArray);
5379 return;
5380 case SIF_IncompatWideStringIntoWideChar:
5381 SetFailed(FK_IncompatWideStringIntoWideChar);
5382 return;
5383 case SIF_PlainStringIntoUTF8Char:
5384 SetFailed(FK_PlainStringIntoUTF8Char);
5385 return;
5386 case SIF_UTF8StringIntoPlainChar:
5387 SetFailed(FK_UTF8StringIntoPlainChar);
5388 return;
5389 case SIF_Other:
5390 break;
5391 }
5392 }
5393
5394 // Some kinds of initialization permit an array to be initialized from
5395 // another array of the same type, and perform elementwise initialization.
5396 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5397 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5398 Entity.getType()) &&
5399 canPerformArrayCopy(Entity)) {
5400 // If source is a prvalue, use it directly.
5401 if (Initializer->getValueKind() == VK_RValue) {
5402 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5403 return;
5404 }
5405
5406 // Emit element-at-a-time copy loop.
5407 InitializedEntity Element =
5408 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5409 QualType InitEltT =
5410 Context.getAsArrayType(Initializer->getType())->getElementType();
5411 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5412 Initializer->getValueKind(),
5413 Initializer->getObjectKind());
5414 Expr *OVEAsExpr = &OVE;
5415 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5416 TreatUnavailableAsInvalid);
5417 if (!Failed())
5418 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5419 return;
5420 }
5421
5422 // Note: as an GNU C extension, we allow initialization of an
5423 // array from a compound literal that creates an array of the same
5424 // type, so long as the initializer has no side effects.
5425 if (!S.getLangOpts().CPlusPlus && Initializer &&
5426 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5427 Initializer->getType()->isArrayType()) {
5428 const ArrayType *SourceAT
5429 = Context.getAsArrayType(Initializer->getType());
5430 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5431 SetFailed(FK_ArrayTypeMismatch);
5432 else if (Initializer->HasSideEffects(S.Context))
5433 SetFailed(FK_NonConstantArrayInit);
5434 else {
5435 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5436 }
5437 }
5438 // Note: as a GNU C++ extension, we allow list-initialization of a
5439 // class member of array type from a parenthesized initializer list.
5440 else if (S.getLangOpts().CPlusPlus &&
5441 Entity.getKind() == InitializedEntity::EK_Member &&
5442 Initializer && isa<InitListExpr>(Initializer)) {
5443 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5444 *this, TreatUnavailableAsInvalid);
5445 AddParenthesizedArrayInitStep(DestType);
5446 } else if (DestAT->getElementType()->isCharType())
5447 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5448 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5449 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5450 else
5451 SetFailed(FK_ArrayNeedsInitList);
5452
5453 return;
5454 }
5455
5456 // Determine whether we should consider writeback conversions for
5457 // Objective-C ARC.
5458 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
5459 Entity.isParameterKind();
5460
5461 // We're at the end of the line for C: it's either a write-back conversion
5462 // or it's a C assignment. There's no need to check anything else.
5463 if (!S.getLangOpts().CPlusPlus) {
5464 // If allowed, check whether this is an Objective-C writeback conversion.
5465 if (allowObjCWritebackConversion &&
5466 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
5467 return;
5468 }
5469
5470 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5471 return;
5472
5473 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
5474 return;
5475
5476 if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer))
5477 return;
5478
5479 // Handle initialization in C
5480 AddCAssignmentStep(DestType);
5481 MaybeProduceObjCObject(S, *this, Entity);
5482 return;
5483 }
5484
5485 assert(S.getLangOpts().CPlusPlus)(static_cast <bool> (S.getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("S.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 5485, __extension__ __PRETTY_FUNCTION__))
;
5486
5487 // - If the destination type is a (possibly cv-qualified) class type:
5488 if (DestType->isRecordType()) {
5489 // - If the initialization is direct-initialization, or if it is
5490 // copy-initialization where the cv-unqualified version of the
5491 // source type is the same class as, or a derived class of, the
5492 // class of the destination, constructors are considered. [...]
5493 if (Kind.getKind() == InitializationKind::IK_Direct ||
5494 (Kind.getKind() == InitializationKind::IK_Copy &&
5495 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5496 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5497 TryConstructorInitialization(S, Entity, Kind, Args,
5498 DestType, DestType, *this);
5499 // - Otherwise (i.e., for the remaining copy-initialization cases),
5500 // user-defined conversion sequences that can convert from the source
5501 // type to the destination type or (when a conversion function is
5502 // used) to a derived class thereof are enumerated as described in
5503 // 13.3.1.4, and the best one is chosen through overload resolution
5504 // (13.3).
5505 else
5506 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5507 TopLevelOfInitList);
5508 return;
5509 }
5510
5511 assert(Args.size() >= 1 && "Zero-argument case handled above")(static_cast <bool> (Args.size() >= 1 && "Zero-argument case handled above"
) ? void (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\""
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 5511, __extension__ __PRETTY_FUNCTION__))
;
5512
5513 // The remaining cases all need a source type.
5514 if (Args.size() > 1) {
5515 SetFailed(FK_TooManyInitsForScalar);
5516 return;
5517 } else if (isa<InitListExpr>(Args[0])) {
5518 SetFailed(FK_ParenthesizedListInitForScalar);
5519 return;
5520 }
5521
5522 // - Otherwise, if the source type is a (possibly cv-qualified) class
5523 // type, conversion functions are considered.
5524 if (!SourceType.isNull() && SourceType->isRecordType()) {
5525 // For a conversion to _Atomic(T) from either T or a class type derived
5526 // from T, initialize the T object then convert to _Atomic type.
5527 bool NeedAtomicConversion = false;
5528 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5529 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5530 S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5531 Atomic->getValueType())) {
5532 DestType = Atomic->getValueType();
5533 NeedAtomicConversion = true;
5534 }
5535 }
5536
5537 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5538 TopLevelOfInitList);
5539 MaybeProduceObjCObject(S, *this, Entity);
5540 if (!Failed() && NeedAtomicConversion)
5541 AddAtomicConversionStep(Entity.getType());
5542 return;
5543 }
5544
5545 // - Otherwise, the initial value of the object being initialized is the
5546 // (possibly converted) value of the initializer expression. Standard
5547 // conversions (Clause 4) will be used, if necessary, to convert the
5548 // initializer expression to the cv-unqualified version of the
5549 // destination type; no user-defined conversions are considered.
5550
5551 ImplicitConversionSequence ICS
5552 = S.TryImplicitConversion(Initializer, DestType,
5553 /*SuppressUserConversions*/true,
5554 /*AllowExplicitConversions*/ false,
5555 /*InOverloadResolution*/ false,
5556 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5557 allowObjCWritebackConversion);
5558
5559 if (ICS.isStandard() &&
5560 ICS.Standard.Second == ICK_Writeback_Conversion) {
5561 // Objective-C ARC writeback conversion.
5562
5563 // We should copy unless we're passing to an argument explicitly
5564 // marked 'out'.
5565 bool ShouldCopy = true;
5566 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5567 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5568
5569 // If there was an lvalue adjustment, add it as a separate conversion.
5570 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5571 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5572 ImplicitConversionSequence LvalueICS;
5573 LvalueICS.setStandard();
5574 LvalueICS.Standard.setAsIdentityConversion();
5575 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5576 LvalueICS.Standard.First = ICS.Standard.First;
5577 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5578 }
5579
5580 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5581 } else if (ICS.isBad()) {
5582 DeclAccessPair dap;
5583 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5584 AddZeroInitializationStep(Entity.getType());
5585 } else if (Initializer->getType() == Context.OverloadTy &&
5586 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5587 false, dap))
5588 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5589 else if (Initializer->getType()->isFunctionType() &&
5590 isExprAnUnaddressableFunction(S, Initializer))
5591 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5592 else
5593 SetFailed(InitializationSequence::FK_ConversionFailed);
5594 } else {
5595 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5596
5597 MaybeProduceObjCObject(S, *this, Entity);
5598 }
5599}
5600
5601InitializationSequence::~InitializationSequence() {
5602 for (auto &S : Steps)
5603 S.Destroy();
5604}
5605
5606//===----------------------------------------------------------------------===//
5607// Perform initialization
5608//===----------------------------------------------------------------------===//
5609static Sema::AssignmentAction
5610getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5611 switch(Entity.getKind()) {
5612 case InitializedEntity::EK_Variable:
5613 case InitializedEntity::EK_New:
5614 case InitializedEntity::EK_Exception:
5615 case InitializedEntity::EK_Base:
5616 case InitializedEntity::EK_Delegating:
5617 return Sema::AA_Initializing;
5618
5619 case InitializedEntity::EK_Parameter:
5620 if (Entity.getDecl() &&
5621 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5622 return Sema::AA_Sending;
5623
5624 return Sema::AA_Passing;
5625
5626 case InitializedEntity::EK_Parameter_CF_Audited:
5627 if (Entity.getDecl() &&
5628 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5629 return Sema::AA_Sending;
5630
5631 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5632
5633 case InitializedEntity::EK_Result:
5634 return Sema::AA_Returning;
5635
5636 case InitializedEntity::EK_Temporary:
5637 case InitializedEntity::EK_RelatedResult:
5638 // FIXME: Can we tell apart casting vs. converting?
5639 return Sema::AA_Casting;
5640
5641 case InitializedEntity::EK_Member:
5642 case InitializedEntity::EK_Binding:
5643 case InitializedEntity::EK_ArrayElement:
5644 case InitializedEntity::EK_VectorElement:
5645 case InitializedEntity::EK_ComplexElement:
5646 case InitializedEntity::EK_BlockElement:
5647 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5648 case InitializedEntity::EK_LambdaCapture:
5649 case InitializedEntity::EK_CompoundLiteralInit:
5650 return Sema::AA_Initializing;
5651 }
5652
5653 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 5653)
;
5654}
5655
5656/// Whether we should bind a created object as a temporary when
5657/// initializing the given entity.
5658static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5659 switch (Entity.getKind()) {
5660 case InitializedEntity::EK_ArrayElement:
5661 case InitializedEntity::EK_Member:
5662 case InitializedEntity::EK_Result:
5663 case InitializedEntity::EK_New:
5664 case InitializedEntity::EK_Variable:
5665 case InitializedEntity::EK_Base:
5666 case InitializedEntity::EK_Delegating:
5667 case InitializedEntity::EK_VectorElement:
5668 case InitializedEntity::EK_ComplexElement:
5669 case InitializedEntity::EK_Exception:
5670 case InitializedEntity::EK_BlockElement:
5671 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5672 case InitializedEntity::EK_LambdaCapture:
5673 case InitializedEntity::EK_CompoundLiteralInit:
5674 return false;
5675
5676 case InitializedEntity::EK_Parameter:
5677 case InitializedEntity::EK_Parameter_CF_Audited:
5678 case InitializedEntity::EK_Temporary:
5679 case InitializedEntity::EK_RelatedResult:
5680 case InitializedEntity::EK_Binding:
5681 return true;
5682 }
5683
5684 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 5684)
;
5685}
5686
5687/// Whether the given entity, when initialized with an object
5688/// created for that initialization, requires destruction.
5689static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5690 switch (Entity.getKind()) {
5691 case InitializedEntity::EK_Result:
5692 case InitializedEntity::EK_New:
5693 case InitializedEntity::EK_Base:
5694 case InitializedEntity::EK_Delegating:
5695 case InitializedEntity::EK_VectorElement:
5696 case InitializedEntity::EK_ComplexElement:
5697 case InitializedEntity::EK_BlockElement:
5698 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5699 case InitializedEntity::EK_LambdaCapture:
5700 return false;
5701
5702 case InitializedEntity::EK_Member:
5703 case InitializedEntity::EK_Binding:
5704 case InitializedEntity::EK_Variable:
5705 case InitializedEntity::EK_Parameter:
5706 case InitializedEntity::EK_Parameter_CF_Audited:
5707 case InitializedEntity::EK_Temporary:
5708 case InitializedEntity::EK_ArrayElement:
5709 case InitializedEntity::EK_Exception:
5710 case InitializedEntity::EK_CompoundLiteralInit:
5711 case InitializedEntity::EK_RelatedResult:
5712 return true;
5713 }
5714
5715 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 5715)
;
5716}
5717
5718/// Get the location at which initialization diagnostics should appear.
5719static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5720 Expr *Initializer) {
5721 switch (Entity.getKind()) {
5722 case InitializedEntity::EK_Result:
5723 return Entity.getReturnLoc();
5724
5725 case InitializedEntity::EK_Exception:
5726 return Entity.getThrowLoc();
5727
5728 case InitializedEntity::EK_Variable:
5729 case InitializedEntity::EK_Binding:
5730 return Entity.getDecl()->getLocation();
5731
5732 case InitializedEntity::EK_LambdaCapture:
5733 return Entity.getCaptureLoc();
5734
5735 case InitializedEntity::EK_ArrayElement:
5736 case InitializedEntity::EK_Member:
5737 case InitializedEntity::EK_Parameter:
5738 case InitializedEntity::EK_Parameter_CF_Audited:
5739 case InitializedEntity::EK_Temporary:
5740 case InitializedEntity::EK_New:
5741 case InitializedEntity::EK_Base:
5742 case InitializedEntity::EK_Delegating:
5743 case InitializedEntity::EK_VectorElement:
5744 case InitializedEntity::EK_ComplexElement:
5745 case InitializedEntity::EK_BlockElement:
5746 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5747 case InitializedEntity::EK_CompoundLiteralInit:
5748 case InitializedEntity::EK_RelatedResult:
5749 return Initializer->getLocStart();
5750 }
5751 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 5751)
;
5752}
5753
5754/// Make a (potentially elidable) temporary copy of the object
5755/// provided by the given initializer by calling the appropriate copy
5756/// constructor.
5757///
5758/// \param S The Sema object used for type-checking.
5759///
5760/// \param T The type of the temporary object, which must either be
5761/// the type of the initializer expression or a superclass thereof.
5762///
5763/// \param Entity The entity being initialized.
5764///
5765/// \param CurInit The initializer expression.
5766///
5767/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5768/// is permitted in C++03 (but not C++0x) when binding a reference to
5769/// an rvalue.
5770///
5771/// \returns An expression that copies the initializer expression into
5772/// a temporary object, or an error expression if a copy could not be
5773/// created.
5774static ExprResult CopyObject(Sema &S,
5775 QualType T,
5776 const InitializedEntity &Entity,
5777 ExprResult CurInit,
5778 bool IsExtraneousCopy) {
5779 if (CurInit.isInvalid())
5780 return CurInit;
5781 // Determine which class type we're copying to.
5782 Expr *CurInitExpr = (Expr *)CurInit.get();
5783 CXXRecordDecl *Class = nullptr;
5784 if (const RecordType *Record = T->getAs<RecordType>())
5785 Class = cast<CXXRecordDecl>(Record->getDecl());
5786 if (!Class)
5787 return CurInit;
5788
5789 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5790
5791 // Make sure that the type we are copying is complete.
5792 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5793 return CurInit;
5794
5795 // Perform overload resolution using the class's constructors. Per
5796 // C++11 [dcl.init]p16, second bullet for class types, this initialization
5797 // is direct-initialization.
5798 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5799 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5800
5801 OverloadCandidateSet::iterator Best;
5802 switch (ResolveConstructorOverload(
5803 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5804 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5805 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5806 /*SecondStepOfCopyInit=*/true)) {
5807 case OR_Success:
5808 break;
5809
5810 case OR_No_Viable_Function:
5811 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5812 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5813 : diag::err_temp_copy_no_viable)
5814 << (int)Entity.getKind() << CurInitExpr->getType()
5815 << CurInitExpr->getSourceRange();
5816 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5817 if (!IsExtraneousCopy || S.isSFINAEContext())
5818 return ExprError();
5819 return CurInit;
5820
5821 case OR_Ambiguous:
5822 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5823 << (int)Entity.getKind() << CurInitExpr->getType()
5824 << CurInitExpr->getSourceRange();
5825 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5826 return ExprError();
5827
5828 case OR_Deleted:
5829 S.Diag(Loc, diag::err_temp_copy_deleted)
5830 << (int)Entity.getKind() << CurInitExpr->getType()
5831 << CurInitExpr->getSourceRange();
5832 S.NoteDeletedFunction(Best->Function);
5833 return ExprError();
5834 }
5835
5836 bool HadMultipleCandidates = CandidateSet.size() > 1;
5837
5838 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5839 SmallVector<Expr*, 8> ConstructorArgs;
5840 CurInit.get(); // Ownership transferred into MultiExprArg, below.
5841
5842 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5843 IsExtraneousCopy);
5844
5845 if (IsExtraneousCopy) {
5846 // If this is a totally extraneous copy for C++03 reference
5847 // binding purposes, just return the original initialization
5848 // expression. We don't generate an (elided) copy operation here
5849 // because doing so would require us to pass down a flag to avoid
5850 // infinite recursion, where each step adds another extraneous,
5851 // elidable copy.
5852
5853 // Instantiate the default arguments of any extra parameters in
5854 // the selected copy constructor, as if we were going to create a
5855 // proper call to the copy constructor.
5856 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5857 ParmVarDecl *Parm = Constructor->getParamDecl(I);
5858 if (S.RequireCompleteType(Loc, Parm->getType(),
5859 diag::err_call_incomplete_argument))
5860 break;
5861
5862 // Build the default argument expression; we don't actually care
5863 // if this succeeds or not, because this routine will complain
5864 // if there was a problem.
5865 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5866 }
5867
5868 return CurInitExpr;
5869 }
5870
5871 // Determine the arguments required to actually perform the
5872 // constructor call (we might have derived-to-base conversions, or
5873 // the copy constructor may have default arguments).
5874 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5875 return ExprError();
5876
5877 // C++0x [class.copy]p32:
5878 // When certain criteria are met, an implementation is allowed to
5879 // omit the copy/move construction of a class object, even if the
5880 // copy/move constructor and/or destructor for the object have
5881 // side effects. [...]
5882 // - when a temporary class object that has not been bound to a
5883 // reference (12.2) would be copied/moved to a class object
5884 // with the same cv-unqualified type, the copy/move operation
5885 // can be omitted by constructing the temporary object
5886 // directly into the target of the omitted copy/move
5887 //
5888 // Note that the other three bullets are handled elsewhere. Copy
5889 // elision for return statements and throw expressions are handled as part
5890 // of constructor initialization, while copy elision for exception handlers
5891 // is handled by the run-time.
5892 //
5893 // FIXME: If the function parameter is not the same type as the temporary, we
5894 // should still be able to elide the copy, but we don't have a way to
5895 // represent in the AST how much should be elided in this case.
5896 bool Elidable =
5897 CurInitExpr->isTemporaryObject(S.Context, Class) &&
5898 S.Context.hasSameUnqualifiedType(
5899 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5900 CurInitExpr->getType());
5901
5902 // Actually perform the constructor call.
5903 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5904 Elidable,
5905 ConstructorArgs,
5906 HadMultipleCandidates,
5907 /*ListInit*/ false,
5908 /*StdInitListInit*/ false,
5909 /*ZeroInit*/ false,
5910 CXXConstructExpr::CK_Complete,
5911 SourceRange());
5912
5913 // If we're supposed to bind temporaries, do so.
5914 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5915 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5916 return CurInit;
5917}
5918
5919/// Check whether elidable copy construction for binding a reference to
5920/// a temporary would have succeeded if we were building in C++98 mode, for
5921/// -Wc++98-compat.
5922static void CheckCXX98CompatAccessibleCopy(Sema &S,
5923 const InitializedEntity &Entity,
5924 Expr *CurInitExpr) {
5925 assert(S.getLangOpts().CPlusPlus11)(static_cast <bool> (S.getLangOpts().CPlusPlus11) ? void
(0) : __assert_fail ("S.getLangOpts().CPlusPlus11", "/build/llvm-toolchain-snapshot-7~svn337204/tools/clang/lib/Sema/SemaInit.cpp"
, 5925, __extension__ __PRETTY_FUNCTION__))
;
5926
5927 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5928 if (!Record)
5929 return;
5930
5931 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5932 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5933 return;
5934
5935 // Find constructors which would have been considered.
5936 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5937 DeclContext::lookup_result Ctors =
5938 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
5939
5940 // Perform overload resolution.
5941 OverloadCandidateSet::iterator Best;
5942 OverloadingResult OR = ResolveConstructorOverload(
5943 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
5944 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5945 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5946 /*SecondStepOfCopyInit=*/true);
5947
5948 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5949 << OR << (int)Entity.getKind() << CurInitExpr->getType()
5950 << CurInitExpr->getSourceRange();
5951
5952 switch (OR) {
5953 case OR_Success:
5954 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5955 Best->FoundDecl, Entity, Diag);
5956 // FIXME: Check default arguments as far as that's possible.
5957 break;
5958
5959 case OR_No_Viable_Function:
5960 S.Diag(Loc, Diag);
5961 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5962 break;
5963
5964 case OR_Ambiguous:
5965 S.Diag(Loc, Diag);
5966 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5967 break;
5968
5969 case OR_Deleted:
5970 S.Diag(Loc, Diag);
5971 S.NoteDeletedFunction(Best->Function);
5972 break;
5973 }
5974}
5975
5976void InitializationSequence::PrintInitLocationNote(Sema &S,
5977 const InitializedEntity &Entity) {
5978 if (Entity.isParameterKind() && Entity.getDecl()) {
5979 if (Entity.getDecl()->getLocation().isInvalid())
5980 return;
5981
5982 if (Entity.getDecl()->getDeclName())
5983 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5984 << Entity.getDecl()->getDeclName();
5985 else
5986 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5987 }
5988 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5989 Entity.getMethodDecl())
5990 S.Diag(Entity.getMethodDecl()->getLocation(),
5991 diag::note_method_return_type_change)
5992 << Entity.getMethodDecl()->getDeclName();
5993}
5994
5995/// Returns true if the parameters describe a constructor initialization of
5996/// an explicit temporary object, e.g. "Point(x, y)".
5997static bool isExplicitTemporary(const InitializedEntity &Entity,
5998 const InitializationKind &Kind,
5999 unsigned NumArgs) {
6000 switch (Entity.getKind()) {
6001 case InitializedEntity::EK_Temporary:
6002 case InitializedEntity::EK_CompoundLiteralInit:
6003 case InitializedEntity::EK_RelatedResult:
6004 break;
6005 default:
6006