Bug Summary

File:tools/clang/lib/Sema/SemaInit.cpp
Warning:line 5120, column 22
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaInit.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp -faddrsig
1//===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for initializers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ExprObjC.h"
18#include "clang/AST/ExprOpenMP.h"
19#include "clang/AST/TypeLoc.h"
20#include "clang/Basic/TargetInfo.h"
21#include "clang/Sema/Designator.h"
22#include "clang/Sema/Initialization.h"
23#include "clang/Sema/Lookup.h"
24#include "clang/Sema/SemaInternal.h"
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/SmallString.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/raw_ostream.h"
29
30using namespace clang;
31
32//===----------------------------------------------------------------------===//
33// Sema Initialization Checking
34//===----------------------------------------------------------------------===//
35
36/// Check whether T is compatible with a wide character type (wchar_t,
37/// char16_t or char32_t).
38static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
39 if (Context.typesAreCompatible(Context.getWideCharType(), T))
40 return true;
41 if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
42 return Context.typesAreCompatible(Context.Char16Ty, T) ||
43 Context.typesAreCompatible(Context.Char32Ty, T);
44 }
45 return false;
46}
47
48enum StringInitFailureKind {
49 SIF_None,
50 SIF_NarrowStringIntoWideChar,
51 SIF_WideStringIntoChar,
52 SIF_IncompatWideStringIntoWideChar,
53 SIF_UTF8StringIntoPlainChar,
54 SIF_PlainStringIntoUTF8Char,
55 SIF_Other
56};
57
58/// Check whether the array of type AT can be initialized by the Init
59/// expression by means of string initialization. Returns SIF_None if so,
60/// otherwise returns a StringInitFailureKind that describes why the
61/// initialization would not work.
62static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
63 ASTContext &Context) {
64 if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
65 return SIF_Other;
66
67 // See if this is a string literal or @encode.
68 Init = Init->IgnoreParens();
69
70 // Handle @encode, which is a narrow string.
71 if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
72 return SIF_None;
73
74 // Otherwise we can only handle string literals.
75 StringLiteral *SL = dyn_cast<StringLiteral>(Init);
76 if (!SL)
77 return SIF_Other;
78
79 const QualType ElemTy =
80 Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
81
82 switch (SL->getKind()) {
83 case StringLiteral::UTF8:
84 // char8_t array can be initialized with a UTF-8 string.
85 if (ElemTy->isChar8Type())
86 return SIF_None;
87 LLVM_FALLTHROUGH[[clang::fallthrough]];
88 case StringLiteral::Ascii:
89 // char array can be initialized with a narrow string.
90 // Only allow char x[] = "foo"; not char x[] = L"foo";
91 if (ElemTy->isCharType())
92 return (SL->getKind() == StringLiteral::UTF8 &&
93 Context.getLangOpts().Char8)
94 ? SIF_UTF8StringIntoPlainChar
95 : SIF_None;
96 if (ElemTy->isChar8Type())
97 return SIF_PlainStringIntoUTF8Char;
98 if (IsWideCharCompatible(ElemTy, Context))
99 return SIF_NarrowStringIntoWideChar;
100 return SIF_Other;
101 // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
102 // "An array with element type compatible with a qualified or unqualified
103 // version of wchar_t, char16_t, or char32_t may be initialized by a wide
104 // string literal with the corresponding encoding prefix (L, u, or U,
105 // respectively), optionally enclosed in braces.
106 case StringLiteral::UTF16:
107 if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
108 return SIF_None;
109 if (ElemTy->isCharType() || ElemTy->isChar8Type())
110 return SIF_WideStringIntoChar;
111 if (IsWideCharCompatible(ElemTy, Context))
112 return SIF_IncompatWideStringIntoWideChar;
113 return SIF_Other;
114 case StringLiteral::UTF32:
115 if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
116 return SIF_None;
117 if (ElemTy->isCharType() || ElemTy->isChar8Type())
118 return SIF_WideStringIntoChar;
119 if (IsWideCharCompatible(ElemTy, Context))
120 return SIF_IncompatWideStringIntoWideChar;
121 return SIF_Other;
122 case StringLiteral::Wide:
123 if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
124 return SIF_None;
125 if (ElemTy->isCharType() || ElemTy->isChar8Type())
126 return SIF_WideStringIntoChar;
127 if (IsWideCharCompatible(ElemTy, Context))
128 return SIF_IncompatWideStringIntoWideChar;
129 return SIF_Other;
130 }
131
132 llvm_unreachable("missed a StringLiteral kind?")::llvm::llvm_unreachable_internal("missed a StringLiteral kind?"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 132)
;
133}
134
135static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
136 ASTContext &Context) {
137 const ArrayType *arrayType = Context.getAsArrayType(declType);
138 if (!arrayType)
139 return SIF_Other;
140 return IsStringInit(init, arrayType, Context);
141}
142
143/// Update the type of a string literal, including any surrounding parentheses,
144/// to match the type of the object which it is initializing.
145static void updateStringLiteralType(Expr *E, QualType Ty) {
146 while (true) {
147 E->setType(Ty);
148 if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
149 break;
150 else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
151 E = PE->getSubExpr();
152 else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
153 E = UO->getSubExpr();
154 else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
155 E = GSE->getResultExpr();
156 else
157 llvm_unreachable("unexpected expr in string literal init")::llvm::llvm_unreachable_internal("unexpected expr in string literal init"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 157)
;
158 }
159}
160
161static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
162 Sema &S) {
163 // Get the length of the string as parsed.
164 auto *ConstantArrayTy =
165 cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe());
166 uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue();
167
168 if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
169 // C99 6.7.8p14. We have an array of character type with unknown size
170 // being initialized to a string literal.
171 llvm::APInt ConstVal(32, StrLength);
172 // Return a new array type (C99 6.7.8p22).
173 DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
174 ConstVal,
175 ArrayType::Normal, 0);
176 updateStringLiteralType(Str, DeclT);
177 return;
178 }
179
180 const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
181
182 // We have an array of character type with known size. However,
183 // the size may be smaller or larger than the string we are initializing.
184 // FIXME: Avoid truncation for 64-bit length strings.
185 if (S.getLangOpts().CPlusPlus) {
186 if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
187 // For Pascal strings it's OK to strip off the terminating null character,
188 // so the example below is valid:
189 //
190 // unsigned char a[2] = "\pa";
191 if (SL->isPascal())
192 StrLength--;
193 }
194
195 // [dcl.init.string]p2
196 if (StrLength > CAT->getSize().getZExtValue())
197 S.Diag(Str->getLocStart(),
198 diag::err_initializer_string_for_char_array_too_long)
199 << Str->getSourceRange();
200 } else {
201 // C99 6.7.8p14.
202 if (StrLength-1 > CAT->getSize().getZExtValue())
203 S.Diag(Str->getLocStart(),
204 diag::ext_initializer_string_for_char_array_too_long)
205 << Str->getSourceRange();
206 }
207
208 // Set the type to the actual size that we are initializing. If we have
209 // something like:
210 // char x[1] = "foo";
211 // then this will set the string literal's type to char[1].
212 updateStringLiteralType(Str, DeclT);
213}
214
215//===----------------------------------------------------------------------===//
216// Semantic checking for initializer lists.
217//===----------------------------------------------------------------------===//
218
219namespace {
220
221/// Semantic checking for initializer lists.
222///
223/// The InitListChecker class contains a set of routines that each
224/// handle the initialization of a certain kind of entity, e.g.,
225/// arrays, vectors, struct/union types, scalars, etc. The
226/// InitListChecker itself performs a recursive walk of the subobject
227/// structure of the type to be initialized, while stepping through
228/// the initializer list one element at a time. The IList and Index
229/// parameters to each of the Check* routines contain the active
230/// (syntactic) initializer list and the index into that initializer
231/// list that represents the current initializer. Each routine is
232/// responsible for moving that Index forward as it consumes elements.
233///
234/// Each Check* routine also has a StructuredList/StructuredIndex
235/// arguments, which contains the current "structured" (semantic)
236/// initializer list and the index into that initializer list where we
237/// are copying initializers as we map them over to the semantic
238/// list. Once we have completed our recursive walk of the subobject
239/// structure, we will have constructed a full semantic initializer
240/// list.
241///
242/// C99 designators cause changes in the initializer list traversal,
243/// because they make the initialization "jump" into a specific
244/// subobject and then continue the initialization from that
245/// point. CheckDesignatedInitializer() recursively steps into the
246/// designated subobject and manages backing out the recursion to
247/// initialize the subobjects after the one designated.
248class InitListChecker {
249 Sema &SemaRef;
250 bool hadError;
251 bool VerifyOnly; // no diagnostics, no structure building
252 bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode.
253 llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
254 InitListExpr *FullyStructuredList;
255
256 void CheckImplicitInitList(const InitializedEntity &Entity,
257 InitListExpr *ParentIList, QualType T,
258 unsigned &Index, InitListExpr *StructuredList,
259 unsigned &StructuredIndex);
260 void CheckExplicitInitList(const InitializedEntity &Entity,
261 InitListExpr *IList, QualType &T,
262 InitListExpr *StructuredList,
263 bool TopLevelObject = false);
264 void CheckListElementTypes(const InitializedEntity &Entity,
265 InitListExpr *IList, QualType &DeclType,
266 bool SubobjectIsDesignatorContext,
267 unsigned &Index,
268 InitListExpr *StructuredList,
269 unsigned &StructuredIndex,
270 bool TopLevelObject = false);
271 void CheckSubElementType(const InitializedEntity &Entity,
272 InitListExpr *IList, QualType ElemType,
273 unsigned &Index,
274 InitListExpr *StructuredList,
275 unsigned &StructuredIndex);
276 void CheckComplexType(const InitializedEntity &Entity,
277 InitListExpr *IList, QualType DeclType,
278 unsigned &Index,
279 InitListExpr *StructuredList,
280 unsigned &StructuredIndex);
281 void CheckScalarType(const InitializedEntity &Entity,
282 InitListExpr *IList, QualType DeclType,
283 unsigned &Index,
284 InitListExpr *StructuredList,
285 unsigned &StructuredIndex);
286 void CheckReferenceType(const InitializedEntity &Entity,
287 InitListExpr *IList, QualType DeclType,
288 unsigned &Index,
289 InitListExpr *StructuredList,
290 unsigned &StructuredIndex);
291 void CheckVectorType(const InitializedEntity &Entity,
292 InitListExpr *IList, QualType DeclType, unsigned &Index,
293 InitListExpr *StructuredList,
294 unsigned &StructuredIndex);
295 void CheckStructUnionTypes(const InitializedEntity &Entity,
296 InitListExpr *IList, QualType DeclType,
297 CXXRecordDecl::base_class_range Bases,
298 RecordDecl::field_iterator Field,
299 bool SubobjectIsDesignatorContext, unsigned &Index,
300 InitListExpr *StructuredList,
301 unsigned &StructuredIndex,
302 bool TopLevelObject = false);
303 void CheckArrayType(const InitializedEntity &Entity,
304 InitListExpr *IList, QualType &DeclType,
305 llvm::APSInt elementIndex,
306 bool SubobjectIsDesignatorContext, unsigned &Index,
307 InitListExpr *StructuredList,
308 unsigned &StructuredIndex);
309 bool CheckDesignatedInitializer(const InitializedEntity &Entity,
310 InitListExpr *IList, DesignatedInitExpr *DIE,
311 unsigned DesigIdx,
312 QualType &CurrentObjectType,
313 RecordDecl::field_iterator *NextField,
314 llvm::APSInt *NextElementIndex,
315 unsigned &Index,
316 InitListExpr *StructuredList,
317 unsigned &StructuredIndex,
318 bool FinishSubobjectInit,
319 bool TopLevelObject);
320 InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
321 QualType CurrentObjectType,
322 InitListExpr *StructuredList,
323 unsigned StructuredIndex,
324 SourceRange InitRange,
325 bool IsFullyOverwritten = false);
326 void UpdateStructuredListElement(InitListExpr *StructuredList,
327 unsigned &StructuredIndex,
328 Expr *expr);
329 int numArrayElements(QualType DeclType);
330 int numStructUnionElements(QualType DeclType);
331
332 static ExprResult PerformEmptyInit(Sema &SemaRef,
333 SourceLocation Loc,
334 const InitializedEntity &Entity,
335 bool VerifyOnly,
336 bool TreatUnavailableAsInvalid);
337
338 // Explanation on the "FillWithNoInit" mode:
339 //
340 // Assume we have the following definitions (Case#1):
341 // struct P { char x[6][6]; } xp = { .x[1] = "bar" };
342 // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' };
343 //
344 // l.lp.x[1][0..1] should not be filled with implicit initializers because the
345 // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf".
346 //
347 // But if we have (Case#2):
348 // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } };
349 //
350 // l.lp.x[1][0..1] are implicitly initialized and do not use values from the
351 // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0".
352 //
353 // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes"
354 // in the InitListExpr, the "holes" in Case#1 are filled not with empty
355 // initializers but with special "NoInitExpr" place holders, which tells the
356 // CodeGen not to generate any initializers for these parts.
357 void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base,
358 const InitializedEntity &ParentEntity,
359 InitListExpr *ILE, bool &RequiresSecondPass,
360 bool FillWithNoInit);
361 void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
362 const InitializedEntity &ParentEntity,
363 InitListExpr *ILE, bool &RequiresSecondPass,
364 bool FillWithNoInit = false);
365 void FillInEmptyInitializations(const InitializedEntity &Entity,
366 InitListExpr *ILE, bool &RequiresSecondPass,
367 InitListExpr *OuterILE, unsigned OuterIndex,
368 bool FillWithNoInit = false);
369 bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
370 Expr *InitExpr, FieldDecl *Field,
371 bool TopLevelObject);
372 void CheckEmptyInitializable(const InitializedEntity &Entity,
373 SourceLocation Loc);
374
375public:
376 InitListChecker(Sema &S, const InitializedEntity &Entity,
377 InitListExpr *IL, QualType &T, bool VerifyOnly,
378 bool TreatUnavailableAsInvalid);
379 bool HadError() { return hadError; }
380
381 // Retrieves the fully-structured initializer list used for
382 // semantic analysis and code generation.
383 InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
384};
385
386} // end anonymous namespace
387
388ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
389 SourceLocation Loc,
390 const InitializedEntity &Entity,
391 bool VerifyOnly,
392 bool TreatUnavailableAsInvalid) {
393 InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
394 true);
395 MultiExprArg SubInit;
396 Expr *InitExpr;
397 InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
398
399 // C++ [dcl.init.aggr]p7:
400 // If there are fewer initializer-clauses in the list than there are
401 // members in the aggregate, then each member not explicitly initialized
402 // ...
403 bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
404 Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
405 if (EmptyInitList) {
406 // C++1y / DR1070:
407 // shall be initialized [...] from an empty initializer list.
408 //
409 // We apply the resolution of this DR to C++11 but not C++98, since C++98
410 // does not have useful semantics for initialization from an init list.
411 // We treat this as copy-initialization, because aggregate initialization
412 // always performs copy-initialization on its elements.
413 //
414 // Only do this if we're initializing a class type, to avoid filling in
415 // the initializer list where possible.
416 InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
417 InitListExpr(SemaRef.Context, Loc, None, Loc);
418 InitExpr->setType(SemaRef.Context.VoidTy);
419 SubInit = InitExpr;
420 Kind = InitializationKind::CreateCopy(Loc, Loc);
421 } else {
422 // C++03:
423 // shall be value-initialized.
424 }
425
426 InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
427 // libstdc++4.6 marks the vector default constructor as explicit in
428 // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
429 // stlport does so too. Look for std::__debug for libstdc++, and for
430 // std:: for stlport. This is effectively a compiler-side implementation of
431 // LWG2193.
432 if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
433 InitializationSequence::FK_ExplicitConstructor) {
434 OverloadCandidateSet::iterator Best;
435 OverloadingResult O =
436 InitSeq.getFailedCandidateSet()
437 .BestViableFunction(SemaRef, Kind.getLocation(), Best);
438 (void)O;
439 assert(O == OR_Success && "Inconsistent overload resolution")(static_cast <bool> (O == OR_Success && "Inconsistent overload resolution"
) ? void (0) : __assert_fail ("O == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 439, __extension__ __PRETTY_FUNCTION__))
;
440 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
441 CXXRecordDecl *R = CtorDecl->getParent();
442
443 if (CtorDecl->getMinRequiredArguments() == 0 &&
444 CtorDecl->isExplicit() && R->getDeclName() &&
445 SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
446 bool IsInStd = false;
447 for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
448 ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
449 if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
450 IsInStd = true;
451 }
452
453 if (IsInStd && llvm::StringSwitch<bool>(R->getName())
454 .Cases("basic_string", "deque", "forward_list", true)
455 .Cases("list", "map", "multimap", "multiset", true)
456 .Cases("priority_queue", "queue", "set", "stack", true)
457 .Cases("unordered_map", "unordered_set", "vector", true)
458 .Default(false)) {
459 InitSeq.InitializeFrom(
460 SemaRef, Entity,
461 InitializationKind::CreateValue(Loc, Loc, Loc, true),
462 MultiExprArg(), /*TopLevelOfInitList=*/false,
463 TreatUnavailableAsInvalid);
464 // Emit a warning for this. System header warnings aren't shown
465 // by default, but people working on system headers should see it.
466 if (!VerifyOnly) {
467 SemaRef.Diag(CtorDecl->getLocation(),
468 diag::warn_invalid_initializer_from_system_header);
469 if (Entity.getKind() == InitializedEntity::EK_Member)
470 SemaRef.Diag(Entity.getDecl()->getLocation(),
471 diag::note_used_in_initialization_here);
472 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
473 SemaRef.Diag(Loc, diag::note_used_in_initialization_here);
474 }
475 }
476 }
477 }
478 if (!InitSeq) {
479 if (!VerifyOnly) {
480 InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
481 if (Entity.getKind() == InitializedEntity::EK_Member)
482 SemaRef.Diag(Entity.getDecl()->getLocation(),
483 diag::note_in_omitted_aggregate_initializer)
484 << /*field*/1 << Entity.getDecl();
485 else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) {
486 bool IsTrailingArrayNewMember =
487 Entity.getParent() &&
488 Entity.getParent()->isVariableLengthArrayNew();
489 SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
490 << (IsTrailingArrayNewMember ? 2 : /*array element*/0)
491 << Entity.getElementIndex();
492 }
493 }
494 return ExprError();
495 }
496
497 return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
498 : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
499}
500
501void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
502 SourceLocation Loc) {
503 assert(VerifyOnly &&(static_cast <bool> (VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? void (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 504, __extension__ __PRETTY_FUNCTION__))
504 "CheckEmptyInitializable is only inteded for verification mode.")(static_cast <bool> (VerifyOnly && "CheckEmptyInitializable is only inteded for verification mode."
) ? void (0) : __assert_fail ("VerifyOnly && \"CheckEmptyInitializable is only inteded for verification mode.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 504, __extension__ __PRETTY_FUNCTION__))
;
505 if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true,
506 TreatUnavailableAsInvalid).isInvalid())
507 hadError = true;
508}
509
510void InitListChecker::FillInEmptyInitForBase(
511 unsigned Init, const CXXBaseSpecifier &Base,
512 const InitializedEntity &ParentEntity, InitListExpr *ILE,
513 bool &RequiresSecondPass, bool FillWithNoInit) {
514 assert(Init < ILE->getNumInits() && "should have been expanded")(static_cast <bool> (Init < ILE->getNumInits() &&
"should have been expanded") ? void (0) : __assert_fail ("Init < ILE->getNumInits() && \"should have been expanded\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 514, __extension__ __PRETTY_FUNCTION__))
;
515
516 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
517 SemaRef.Context, &Base, false, &ParentEntity);
518
519 if (!ILE->getInit(Init)) {
520 ExprResult BaseInit =
521 FillWithNoInit ? new (SemaRef.Context) NoInitExpr(Base.getType())
522 : PerformEmptyInit(SemaRef, ILE->getLocEnd(), BaseEntity,
523 /*VerifyOnly*/ false,
524 TreatUnavailableAsInvalid);
525 if (BaseInit.isInvalid()) {
526 hadError = true;
527 return;
528 }
529
530 ILE->setInit(Init, BaseInit.getAs<Expr>());
531 } else if (InitListExpr *InnerILE =
532 dyn_cast<InitListExpr>(ILE->getInit(Init))) {
533 FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass,
534 ILE, Init, FillWithNoInit);
535 } else if (DesignatedInitUpdateExpr *InnerDIUE =
536 dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) {
537 FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(),
538 RequiresSecondPass, ILE, Init,
539 /*FillWithNoInit =*/true);
540 }
541}
542
543void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
544 const InitializedEntity &ParentEntity,
545 InitListExpr *ILE,
546 bool &RequiresSecondPass,
547 bool FillWithNoInit) {
548 SourceLocation Loc = ILE->getLocEnd();
549 unsigned NumInits = ILE->getNumInits();
550 InitializedEntity MemberEntity
551 = InitializedEntity::InitializeMember(Field, &ParentEntity);
552
553 if (const RecordType *RType = ILE->getType()->getAs<RecordType>())
554 if (!RType->getDecl()->isUnion())
555 assert(Init < NumInits && "This ILE should have been expanded")(static_cast <bool> (Init < NumInits && "This ILE should have been expanded"
) ? void (0) : __assert_fail ("Init < NumInits && \"This ILE should have been expanded\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 555, __extension__ __PRETTY_FUNCTION__))
;
556
557 if (Init >= NumInits || !ILE->getInit(Init)) {
558 if (FillWithNoInit) {
559 Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType());
560 if (Init < NumInits)
561 ILE->setInit(Init, Filler);
562 else
563 ILE->updateInit(SemaRef.Context, Init, Filler);
564 return;
565 }
566 // C++1y [dcl.init.aggr]p7:
567 // If there are fewer initializer-clauses in the list than there are
568 // members in the aggregate, then each member not explicitly initialized
569 // shall be initialized from its brace-or-equal-initializer [...]
570 if (Field->hasInClassInitializer()) {
571 ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field);
572 if (DIE.isInvalid()) {
573 hadError = true;
574 return;
575 }
576 SemaRef.checkInitializerLifetime(MemberEntity, DIE.get());
577 if (Init < NumInits)
578 ILE->setInit(Init, DIE.get());
579 else {
580 ILE->updateInit(SemaRef.Context, Init, DIE.get());
581 RequiresSecondPass = true;
582 }
583 return;
584 }
585
586 if (Field->getType()->isReferenceType()) {
587 // C++ [dcl.init.aggr]p9:
588 // If an incomplete or empty initializer-list leaves a
589 // member of reference type uninitialized, the program is
590 // ill-formed.
591 SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
592 << Field->getType()
593 << ILE->getSyntacticForm()->getSourceRange();
594 SemaRef.Diag(Field->getLocation(),
595 diag::note_uninit_reference_member);
596 hadError = true;
597 return;
598 }
599
600 ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
601 /*VerifyOnly*/false,
602 TreatUnavailableAsInvalid);
603 if (MemberInit.isInvalid()) {
604 hadError = true;
605 return;
606 }
607
608 if (hadError) {
609 // Do nothing
610 } else if (Init < NumInits) {
611 ILE->setInit(Init, MemberInit.getAs<Expr>());
612 } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
613 // Empty initialization requires a constructor call, so
614 // extend the initializer list to include the constructor
615 // call and make a note that we'll need to take another pass
616 // through the initializer list.
617 ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
618 RequiresSecondPass = true;
619 }
620 } else if (InitListExpr *InnerILE
621 = dyn_cast<InitListExpr>(ILE->getInit(Init)))
622 FillInEmptyInitializations(MemberEntity, InnerILE,
623 RequiresSecondPass, ILE, Init, FillWithNoInit);
624 else if (DesignatedInitUpdateExpr *InnerDIUE
625 = dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init)))
626 FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(),
627 RequiresSecondPass, ILE, Init,
628 /*FillWithNoInit =*/true);
629}
630
631/// Recursively replaces NULL values within the given initializer list
632/// with expressions that perform value-initialization of the
633/// appropriate type, and finish off the InitListExpr formation.
634void
635InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
636 InitListExpr *ILE,
637 bool &RequiresSecondPass,
638 InitListExpr *OuterILE,
639 unsigned OuterIndex,
640 bool FillWithNoInit) {
641 assert((ILE->getType() != SemaRef.Context.VoidTy) &&(static_cast <bool> ((ILE->getType() != SemaRef.Context
.VoidTy) && "Should not have void type") ? void (0) :
__assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 642, __extension__ __PRETTY_FUNCTION__))
642 "Should not have void type")(static_cast <bool> ((ILE->getType() != SemaRef.Context
.VoidTy) && "Should not have void type") ? void (0) :
__assert_fail ("(ILE->getType() != SemaRef.Context.VoidTy) && \"Should not have void type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 642, __extension__ __PRETTY_FUNCTION__))
;
643
644 // If this is a nested initializer list, we might have changed its contents
645 // (and therefore some of its properties, such as instantiation-dependence)
646 // while filling it in. Inform the outer initializer list so that its state
647 // can be updated to match.
648 // FIXME: We should fully build the inner initializers before constructing
649 // the outer InitListExpr instead of mutating AST nodes after they have
650 // been used as subexpressions of other nodes.
651 struct UpdateOuterILEWithUpdatedInit {
652 InitListExpr *Outer;
653 unsigned OuterIndex;
654 ~UpdateOuterILEWithUpdatedInit() {
655 if (Outer)
656 Outer->setInit(OuterIndex, Outer->getInit(OuterIndex));
657 }
658 } UpdateOuterRAII = {OuterILE, OuterIndex};
659
660 // A transparent ILE is not performing aggregate initialization and should
661 // not be filled in.
662 if (ILE->isTransparent())
663 return;
664
665 if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
666 const RecordDecl *RDecl = RType->getDecl();
667 if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
668 FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
669 Entity, ILE, RequiresSecondPass, FillWithNoInit);
670 else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
671 cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
672 for (auto *Field : RDecl->fields()) {
673 if (Field->hasInClassInitializer()) {
674 FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass,
675 FillWithNoInit);
676 break;
677 }
678 }
679 } else {
680 // The fields beyond ILE->getNumInits() are default initialized, so in
681 // order to leave them uninitialized, the ILE is expanded and the extra
682 // fields are then filled with NoInitExpr.
683 unsigned NumElems = numStructUnionElements(ILE->getType());
684 if (RDecl->hasFlexibleArrayMember())
685 ++NumElems;
686 if (ILE->getNumInits() < NumElems)
687 ILE->resizeInits(SemaRef.Context, NumElems);
688
689 unsigned Init = 0;
690
691 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) {
692 for (auto &Base : CXXRD->bases()) {
693 if (hadError)
694 return;
695
696 FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass,
697 FillWithNoInit);
698 ++Init;
699 }
700 }
701
702 for (auto *Field : RDecl->fields()) {
703 if (Field->isUnnamedBitfield())
704 continue;
705
706 if (hadError)
707 return;
708
709 FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass,
710 FillWithNoInit);
711 if (hadError)
712 return;
713
714 ++Init;
715
716 // Only look at the first initialization of a union.
717 if (RDecl->isUnion())
718 break;
719 }
720 }
721
722 return;
723 }
724
725 QualType ElementType;
726
727 InitializedEntity ElementEntity = Entity;
728 unsigned NumInits = ILE->getNumInits();
729 unsigned NumElements = NumInits;
730 if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
731 ElementType = AType->getElementType();
732 if (const auto *CAType = dyn_cast<ConstantArrayType>(AType))
733 NumElements = CAType->getSize().getZExtValue();
734 // For an array new with an unknown bound, ask for one additional element
735 // in order to populate the array filler.
736 if (Entity.isVariableLengthArrayNew())
737 ++NumElements;
738 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
739 0, Entity);
740 } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
741 ElementType = VType->getElementType();
742 NumElements = VType->getNumElements();
743 ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
744 0, Entity);
745 } else
746 ElementType = ILE->getType();
747
748 for (unsigned Init = 0; Init != NumElements; ++Init) {
749 if (hadError)
750 return;
751
752 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
753 ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
754 ElementEntity.setElementIndex(Init);
755
756 if (Init >= NumInits && ILE->hasArrayFiller())
757 return;
758
759 Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
760 if (!InitExpr && Init < NumInits && ILE->hasArrayFiller())
761 ILE->setInit(Init, ILE->getArrayFiller());
762 else if (!InitExpr && !ILE->hasArrayFiller()) {
763 Expr *Filler = nullptr;
764
765 if (FillWithNoInit)
766 Filler = new (SemaRef.Context) NoInitExpr(ElementType);
767 else {
768 ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
769 ElementEntity,
770 /*VerifyOnly*/false,
771 TreatUnavailableAsInvalid);
772 if (ElementInit.isInvalid()) {
773 hadError = true;
774 return;
775 }
776
777 Filler = ElementInit.getAs<Expr>();
778 }
779
780 if (hadError) {
781 // Do nothing
782 } else if (Init < NumInits) {
783 // For arrays, just set the expression used for value-initialization
784 // of the "holes" in the array.
785 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
786 ILE->setArrayFiller(Filler);
787 else
788 ILE->setInit(Init, Filler);
789 } else {
790 // For arrays, just set the expression used for value-initialization
791 // of the rest of elements and exit.
792 if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
793 ILE->setArrayFiller(Filler);
794 return;
795 }
796
797 if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) {
798 // Empty initialization requires a constructor call, so
799 // extend the initializer list to include the constructor
800 // call and make a note that we'll need to take another pass
801 // through the initializer list.
802 ILE->updateInit(SemaRef.Context, Init, Filler);
803 RequiresSecondPass = true;
804 }
805 }
806 } else if (InitListExpr *InnerILE
807 = dyn_cast_or_null<InitListExpr>(InitExpr))
808 FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass,
809 ILE, Init, FillWithNoInit);
810 else if (DesignatedInitUpdateExpr *InnerDIUE
811 = dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr))
812 FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(),
813 RequiresSecondPass, ILE, Init,
814 /*FillWithNoInit =*/true);
815 }
816}
817
818InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
819 InitListExpr *IL, QualType &T,
820 bool VerifyOnly,
821 bool TreatUnavailableAsInvalid)
822 : SemaRef(S), VerifyOnly(VerifyOnly),
823 TreatUnavailableAsInvalid(TreatUnavailableAsInvalid) {
824 // FIXME: Check that IL isn't already the semantic form of some other
825 // InitListExpr. If it is, we'd create a broken AST.
826
827 hadError = false;
828
829 FullyStructuredList =
830 getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
831 CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
832 /*TopLevelObject=*/true);
833
834 if (!hadError && !VerifyOnly) {
835 bool RequiresSecondPass = false;
836 FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass,
837 /*OuterILE=*/nullptr, /*OuterIndex=*/0);
838 if (RequiresSecondPass && !hadError)
839 FillInEmptyInitializations(Entity, FullyStructuredList,
840 RequiresSecondPass, nullptr, 0);
841 }
842}
843
844int InitListChecker::numArrayElements(QualType DeclType) {
845 // FIXME: use a proper constant
846 int maxElements = 0x7FFFFFFF;
847 if (const ConstantArrayType *CAT =
848 SemaRef.Context.getAsConstantArrayType(DeclType)) {
849 maxElements = static_cast<int>(CAT->getSize().getZExtValue());
850 }
851 return maxElements;
852}
853
854int InitListChecker::numStructUnionElements(QualType DeclType) {
855 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
856 int InitializableMembers = 0;
857 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl))
858 InitializableMembers += CXXRD->getNumBases();
859 for (const auto *Field : structDecl->fields())
860 if (!Field->isUnnamedBitfield())
861 ++InitializableMembers;
862
863 if (structDecl->isUnion())
864 return std::min(InitializableMembers, 1);
865 return InitializableMembers - structDecl->hasFlexibleArrayMember();
866}
867
868/// Determine whether Entity is an entity for which it is idiomatic to elide
869/// the braces in aggregate initialization.
870static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) {
871 // Recursive initialization of the one and only field within an aggregate
872 // class is considered idiomatic. This case arises in particular for
873 // initialization of std::array, where the C++ standard suggests the idiom of
874 //
875 // std::array<T, N> arr = {1, 2, 3};
876 //
877 // (where std::array is an aggregate struct containing a single array field.
878
879 // FIXME: Should aggregate initialization of a struct with a single
880 // base class and no members also suppress the warning?
881 if (Entity.getKind() != InitializedEntity::EK_Member || !Entity.getParent())
882 return false;
883
884 auto *ParentRD =
885 Entity.getParent()->getType()->castAs<RecordType>()->getDecl();
886 if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD))
887 if (CXXRD->getNumBases())
888 return false;
889
890 auto FieldIt = ParentRD->field_begin();
891 assert(FieldIt != ParentRD->field_end() &&(static_cast <bool> (FieldIt != ParentRD->field_end(
) && "no fields but have initializer for member?") ? void
(0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 892, __extension__ __PRETTY_FUNCTION__))
892 "no fields but have initializer for member?")(static_cast <bool> (FieldIt != ParentRD->field_end(
) && "no fields but have initializer for member?") ? void
(0) : __assert_fail ("FieldIt != ParentRD->field_end() && \"no fields but have initializer for member?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 892, __extension__ __PRETTY_FUNCTION__))
;
893 return ++FieldIt == ParentRD->field_end();
894}
895
896/// Check whether the range of the initializer \p ParentIList from element
897/// \p Index onwards can be used to initialize an object of type \p T. Update
898/// \p Index to indicate how many elements of the list were consumed.
899///
900/// This also fills in \p StructuredList, from element \p StructuredIndex
901/// onwards, with the fully-braced, desugared form of the initialization.
902void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
903 InitListExpr *ParentIList,
904 QualType T, unsigned &Index,
905 InitListExpr *StructuredList,
906 unsigned &StructuredIndex) {
907 int maxElements = 0;
908
909 if (T->isArrayType())
910 maxElements = numArrayElements(T);
911 else if (T->isRecordType())
912 maxElements = numStructUnionElements(T);
913 else if (T->isVectorType())
914 maxElements = T->getAs<VectorType>()->getNumElements();
915 else
916 llvm_unreachable("CheckImplicitInitList(): Illegal type")::llvm::llvm_unreachable_internal("CheckImplicitInitList(): Illegal type"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 916)
;
917
918 if (maxElements == 0) {
919 if (!VerifyOnly)
920 SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
921 diag::err_implicit_empty_initializer);
922 ++Index;
923 hadError = true;
924 return;
925 }
926
927 // Build a structured initializer list corresponding to this subobject.
928 InitListExpr *StructuredSubobjectInitList
929 = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
930 StructuredIndex,
931 SourceRange(ParentIList->getInit(Index)->getLocStart(),
932 ParentIList->getSourceRange().getEnd()));
933 unsigned StructuredSubobjectInitIndex = 0;
934
935 // Check the element types and build the structural subobject.
936 unsigned StartIndex = Index;
937 CheckListElementTypes(Entity, ParentIList, T,
938 /*SubobjectIsDesignatorContext=*/false, Index,
939 StructuredSubobjectInitList,
940 StructuredSubobjectInitIndex);
941
942 if (!VerifyOnly) {
943 StructuredSubobjectInitList->setType(T);
944
945 unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
946 // Update the structured sub-object initializer so that it's ending
947 // range corresponds with the end of the last initializer it used.
948 if (EndIndex < ParentIList->getNumInits() &&
949 ParentIList->getInit(EndIndex)) {
950 SourceLocation EndLoc
951 = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
952 StructuredSubobjectInitList->setRBraceLoc(EndLoc);
953 }
954
955 // Complain about missing braces.
956 if ((T->isArrayType() || T->isRecordType()) &&
957 !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) &&
958 !isIdiomaticBraceElisionEntity(Entity)) {
959 SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
960 diag::warn_missing_braces)
961 << StructuredSubobjectInitList->getSourceRange()
962 << FixItHint::CreateInsertion(
963 StructuredSubobjectInitList->getLocStart(), "{")
964 << FixItHint::CreateInsertion(
965 SemaRef.getLocForEndOfToken(
966 StructuredSubobjectInitList->getLocEnd()),
967 "}");
968 }
969 }
970}
971
972/// Warn that \p Entity was of scalar type and was initialized by a
973/// single-element braced initializer list.
974static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity,
975 SourceRange Braces) {
976 // Don't warn during template instantiation. If the initialization was
977 // non-dependent, we warned during the initial parse; otherwise, the
978 // type might not be scalar in some uses of the template.
979 if (S.inTemplateInstantiation())
980 return;
981
982 unsigned DiagID = 0;
983
984 switch (Entity.getKind()) {
985 case InitializedEntity::EK_VectorElement:
986 case InitializedEntity::EK_ComplexElement:
987 case InitializedEntity::EK_ArrayElement:
988 case InitializedEntity::EK_Parameter:
989 case InitializedEntity::EK_Parameter_CF_Audited:
990 case InitializedEntity::EK_Result:
991 // Extra braces here are suspicious.
992 DiagID = diag::warn_braces_around_scalar_init;
993 break;
994
995 case InitializedEntity::EK_Member:
996 // Warn on aggregate initialization but not on ctor init list or
997 // default member initializer.
998 if (Entity.getParent())
999 DiagID = diag::warn_braces_around_scalar_init;
1000 break;
1001
1002 case InitializedEntity::EK_Variable:
1003 case InitializedEntity::EK_LambdaCapture:
1004 // No warning, might be direct-list-initialization.
1005 // FIXME: Should we warn for copy-list-initialization in these cases?
1006 break;
1007
1008 case InitializedEntity::EK_New:
1009 case InitializedEntity::EK_Temporary:
1010 case InitializedEntity::EK_CompoundLiteralInit:
1011 // No warning, braces are part of the syntax of the underlying construct.
1012 break;
1013
1014 case InitializedEntity::EK_RelatedResult:
1015 // No warning, we already warned when initializing the result.
1016 break;
1017
1018 case InitializedEntity::EK_Exception:
1019 case InitializedEntity::EK_Base:
1020 case InitializedEntity::EK_Delegating:
1021 case InitializedEntity::EK_BlockElement:
1022 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
1023 case InitializedEntity::EK_Binding:
1024 case InitializedEntity::EK_StmtExprResult:
1025 llvm_unreachable("unexpected braced scalar init")::llvm::llvm_unreachable_internal("unexpected braced scalar init"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1025)
;
1026 }
1027
1028 if (DiagID) {
1029 S.Diag(Braces.getBegin(), DiagID)
1030 << Braces
1031 << FixItHint::CreateRemoval(Braces.getBegin())
1032 << FixItHint::CreateRemoval(Braces.getEnd());
1033 }
1034}
1035
1036/// Check whether the initializer \p IList (that was written with explicit
1037/// braces) can be used to initialize an object of type \p T.
1038///
1039/// This also fills in \p StructuredList with the fully-braced, desugared
1040/// form of the initialization.
1041void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
1042 InitListExpr *IList, QualType &T,
1043 InitListExpr *StructuredList,
1044 bool TopLevelObject) {
1045 if (!VerifyOnly) {
1046 SyntacticToSemantic[IList] = StructuredList;
1047 StructuredList->setSyntacticForm(IList);
1048 }
1049
1050 unsigned Index = 0, StructuredIndex = 0;
1051 CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
1052 Index, StructuredList, StructuredIndex, TopLevelObject);
1053 if (!VerifyOnly) {
1054 QualType ExprTy = T;
1055 if (!ExprTy->isArrayType())
1056 ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
1057 IList->setType(ExprTy);
1058 StructuredList->setType(ExprTy);
1059 }
1060 if (hadError)
1061 return;
1062
1063 if (Index < IList->getNumInits()) {
1064 // We have leftover initializers
1065 if (VerifyOnly) {
1066 if (SemaRef.getLangOpts().CPlusPlus ||
1067 (SemaRef.getLangOpts().OpenCL &&
1068 IList->getType()->isVectorType())) {
1069 hadError = true;
1070 }
1071 return;
1072 }
1073
1074 if (StructuredIndex == 1 &&
1075 IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
1076 SIF_None) {
1077 unsigned DK = diag::ext_excess_initializers_in_char_array_initializer;
1078 if (SemaRef.getLangOpts().CPlusPlus) {
1079 DK = diag::err_excess_initializers_in_char_array_initializer;
1080 hadError = true;
1081 }
1082 // Special-case
1083 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1084 << IList->getInit(Index)->getSourceRange();
1085 } else if (!T->isIncompleteType()) {
1086 // Don't complain for incomplete types, since we'll get an error
1087 // elsewhere
1088 QualType CurrentObjectType = StructuredList->getType();
1089 int initKind =
1090 CurrentObjectType->isArrayType()? 0 :
1091 CurrentObjectType->isVectorType()? 1 :
1092 CurrentObjectType->isScalarType()? 2 :
1093 CurrentObjectType->isUnionType()? 3 :
1094 4;
1095
1096 unsigned DK = diag::ext_excess_initializers;
1097 if (SemaRef.getLangOpts().CPlusPlus) {
1098 DK = diag::err_excess_initializers;
1099 hadError = true;
1100 }
1101 if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
1102 DK = diag::err_excess_initializers;
1103 hadError = true;
1104 }
1105
1106 SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
1107 << initKind << IList->getInit(Index)->getSourceRange();
1108 }
1109 }
1110
1111 if (!VerifyOnly && T->isScalarType() &&
1112 IList->getNumInits() == 1 && !isa<InitListExpr>(IList->getInit(0)))
1113 warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange());
1114}
1115
1116void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
1117 InitListExpr *IList,
1118 QualType &DeclType,
1119 bool SubobjectIsDesignatorContext,
1120 unsigned &Index,
1121 InitListExpr *StructuredList,
1122 unsigned &StructuredIndex,
1123 bool TopLevelObject) {
1124 if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
1125 // Explicitly braced initializer for complex type can be real+imaginary
1126 // parts.
1127 CheckComplexType(Entity, IList, DeclType, Index,
1128 StructuredList, StructuredIndex);
1129 } else if (DeclType->isScalarType()) {
1130 CheckScalarType(Entity, IList, DeclType, Index,
1131 StructuredList, StructuredIndex);
1132 } else if (DeclType->isVectorType()) {
1133 CheckVectorType(Entity, IList, DeclType, Index,
1134 StructuredList, StructuredIndex);
1135 } else if (DeclType->isRecordType()) {
1136 assert(DeclType->isAggregateType() &&(static_cast <bool> (DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
) ? void (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1137, __extension__ __PRETTY_FUNCTION__))
1137 "non-aggregate records should be handed in CheckSubElementType")(static_cast <bool> (DeclType->isAggregateType() &&
"non-aggregate records should be handed in CheckSubElementType"
) ? void (0) : __assert_fail ("DeclType->isAggregateType() && \"non-aggregate records should be handed in CheckSubElementType\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1137, __extension__ __PRETTY_FUNCTION__))
;
1138 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1139 auto Bases =
1140 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
1141 CXXRecordDecl::base_class_iterator());
1142 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1143 Bases = CXXRD->bases();
1144 CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(),
1145 SubobjectIsDesignatorContext, Index, StructuredList,
1146 StructuredIndex, TopLevelObject);
1147 } else if (DeclType->isArrayType()) {
1148 llvm::APSInt Zero(
1149 SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
1150 false);
1151 CheckArrayType(Entity, IList, DeclType, Zero,
1152 SubobjectIsDesignatorContext, Index,
1153 StructuredList, StructuredIndex);
1154 } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
1155 // This type is invalid, issue a diagnostic.
1156 ++Index;
1157 if (!VerifyOnly)
1158 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1159 << DeclType;
1160 hadError = true;
1161 } else if (DeclType->isReferenceType()) {
1162 CheckReferenceType(Entity, IList, DeclType, Index,
1163 StructuredList, StructuredIndex);
1164 } else if (DeclType->isObjCObjectType()) {
1165 if (!VerifyOnly)
1166 SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
1167 << DeclType;
1168 hadError = true;
1169 } else {
1170 if (!VerifyOnly)
1171 SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
1172 << DeclType;
1173 hadError = true;
1174 }
1175}
1176
1177void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
1178 InitListExpr *IList,
1179 QualType ElemType,
1180 unsigned &Index,
1181 InitListExpr *StructuredList,
1182 unsigned &StructuredIndex) {
1183 Expr *expr = IList->getInit(Index);
1184
1185 if (ElemType->isReferenceType())
1186 return CheckReferenceType(Entity, IList, ElemType, Index,
1187 StructuredList, StructuredIndex);
1188
1189 if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
1190 if (SubInitList->getNumInits() == 1 &&
1191 IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) ==
1192 SIF_None) {
1193 expr = SubInitList->getInit(0);
1194 } else if (!SemaRef.getLangOpts().CPlusPlus) {
1195 InitListExpr *InnerStructuredList
1196 = getStructuredSubobjectInit(IList, Index, ElemType,
1197 StructuredList, StructuredIndex,
1198 SubInitList->getSourceRange(), true);
1199 CheckExplicitInitList(Entity, SubInitList, ElemType,
1200 InnerStructuredList);
1201
1202 if (!hadError && !VerifyOnly) {
1203 bool RequiresSecondPass = false;
1204 FillInEmptyInitializations(Entity, InnerStructuredList,
1205 RequiresSecondPass, StructuredList,
1206 StructuredIndex);
1207 if (RequiresSecondPass && !hadError)
1208 FillInEmptyInitializations(Entity, InnerStructuredList,
1209 RequiresSecondPass, StructuredList,
1210 StructuredIndex);
1211 }
1212 ++StructuredIndex;
1213 ++Index;
1214 return;
1215 }
1216 // C++ initialization is handled later.
1217 } else if (isa<ImplicitValueInitExpr>(expr)) {
1218 // This happens during template instantiation when we see an InitListExpr
1219 // that we've already checked once.
1220 assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) &&(static_cast <bool> (SemaRef.Context.hasSameType(expr->
getType(), ElemType) && "found implicit initialization for the wrong type"
) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1221, __extension__ __PRETTY_FUNCTION__))
1221 "found implicit initialization for the wrong type")(static_cast <bool> (SemaRef.Context.hasSameType(expr->
getType(), ElemType) && "found implicit initialization for the wrong type"
) ? void (0) : __assert_fail ("SemaRef.Context.hasSameType(expr->getType(), ElemType) && \"found implicit initialization for the wrong type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1221, __extension__ __PRETTY_FUNCTION__))
;
1222 if (!VerifyOnly)
1223 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1224 ++Index;
1225 return;
1226 }
1227
1228 if (SemaRef.getLangOpts().CPlusPlus) {
1229 // C++ [dcl.init.aggr]p2:
1230 // Each member is copy-initialized from the corresponding
1231 // initializer-clause.
1232
1233 // FIXME: Better EqualLoc?
1234 InitializationKind Kind =
1235 InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
1236 InitializationSequence Seq(SemaRef, Entity, Kind, expr,
1237 /*TopLevelOfInitList*/ true);
1238
1239 // C++14 [dcl.init.aggr]p13:
1240 // If the assignment-expression can initialize a member, the member is
1241 // initialized. Otherwise [...] brace elision is assumed
1242 //
1243 // Brace elision is never performed if the element is not an
1244 // assignment-expression.
1245 if (Seq || isa<InitListExpr>(expr)) {
1246 if (!VerifyOnly) {
1247 ExprResult Result =
1248 Seq.Perform(SemaRef, Entity, Kind, expr);
1249 if (Result.isInvalid())
1250 hadError = true;
1251
1252 UpdateStructuredListElement(StructuredList, StructuredIndex,
1253 Result.getAs<Expr>());
1254 } else if (!Seq)
1255 hadError = true;
1256 ++Index;
1257 return;
1258 }
1259
1260 // Fall through for subaggregate initialization
1261 } else if (ElemType->isScalarType() || ElemType->isAtomicType()) {
1262 // FIXME: Need to handle atomic aggregate types with implicit init lists.
1263 return CheckScalarType(Entity, IList, ElemType, Index,
1264 StructuredList, StructuredIndex);
1265 } else if (const ArrayType *arrayType =
1266 SemaRef.Context.getAsArrayType(ElemType)) {
1267 // arrayType can be incomplete if we're initializing a flexible
1268 // array member. There's nothing we can do with the completed
1269 // type here, though.
1270
1271 if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
1272 if (!VerifyOnly) {
1273 CheckStringInit(expr, ElemType, arrayType, SemaRef);
1274 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1275 }
1276 ++Index;
1277 return;
1278 }
1279
1280 // Fall through for subaggregate initialization.
1281
1282 } else {
1283 assert((ElemType->isRecordType() || ElemType->isVectorType() ||(static_cast <bool> ((ElemType->isRecordType() || ElemType
->isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1284, __extension__ __PRETTY_FUNCTION__))
1284 ElemType->isOpenCLSpecificType()) && "Unexpected type")(static_cast <bool> ((ElemType->isRecordType() || ElemType
->isVectorType() || ElemType->isOpenCLSpecificType()) &&
"Unexpected type") ? void (0) : __assert_fail ("(ElemType->isRecordType() || ElemType->isVectorType() || ElemType->isOpenCLSpecificType()) && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1284, __extension__ __PRETTY_FUNCTION__))
;
1285
1286 // C99 6.7.8p13:
1287 //
1288 // The initializer for a structure or union object that has
1289 // automatic storage duration shall be either an initializer
1290 // list as described below, or a single expression that has
1291 // compatible structure or union type. In the latter case, the
1292 // initial value of the object, including unnamed members, is
1293 // that of the expression.
1294 ExprResult ExprRes = expr;
1295 if (SemaRef.CheckSingleAssignmentConstraints(
1296 ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) {
1297 if (ExprRes.isInvalid())
1298 hadError = true;
1299 else {
1300 ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
1301 if (ExprRes.isInvalid())
1302 hadError = true;
1303 }
1304 UpdateStructuredListElement(StructuredList, StructuredIndex,
1305 ExprRes.getAs<Expr>());
1306 ++Index;
1307 return;
1308 }
1309 ExprRes.get();
1310 // Fall through for subaggregate initialization
1311 }
1312
1313 // C++ [dcl.init.aggr]p12:
1314 //
1315 // [...] Otherwise, if the member is itself a non-empty
1316 // subaggregate, brace elision is assumed and the initializer is
1317 // considered for the initialization of the first member of
1318 // the subaggregate.
1319 // OpenCL vector initializer is handled elsewhere.
1320 if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) ||
1321 ElemType->isAggregateType()) {
1322 CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1323 StructuredIndex);
1324 ++StructuredIndex;
1325 } else {
1326 if (!VerifyOnly) {
1327 // We cannot initialize this element, so let
1328 // PerformCopyInitialization produce the appropriate diagnostic.
1329 SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1330 /*TopLevelOfInitList=*/true);
1331 }
1332 hadError = true;
1333 ++Index;
1334 ++StructuredIndex;
1335 }
1336}
1337
1338void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1339 InitListExpr *IList, QualType DeclType,
1340 unsigned &Index,
1341 InitListExpr *StructuredList,
1342 unsigned &StructuredIndex) {
1343 assert(Index == 0 && "Index in explicit init list must be zero")(static_cast <bool> (Index == 0 && "Index in explicit init list must be zero"
) ? void (0) : __assert_fail ("Index == 0 && \"Index in explicit init list must be zero\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1343, __extension__ __PRETTY_FUNCTION__))
;
1344
1345 // As an extension, clang supports complex initializers, which initialize
1346 // a complex number component-wise. When an explicit initializer list for
1347 // a complex number contains two two initializers, this extension kicks in:
1348 // it exepcts the initializer list to contain two elements convertible to
1349 // the element type of the complex type. The first element initializes
1350 // the real part, and the second element intitializes the imaginary part.
1351
1352 if (IList->getNumInits() != 2)
1353 return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1354 StructuredIndex);
1355
1356 // This is an extension in C. (The builtin _Complex type does not exist
1357 // in the C++ standard.)
1358 if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1359 SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1360 << IList->getSourceRange();
1361
1362 // Initialize the complex number.
1363 QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1364 InitializedEntity ElementEntity =
1365 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1366
1367 for (unsigned i = 0; i < 2; ++i) {
1368 ElementEntity.setElementIndex(Index);
1369 CheckSubElementType(ElementEntity, IList, elementType, Index,
1370 StructuredList, StructuredIndex);
1371 }
1372}
1373
1374void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1375 InitListExpr *IList, QualType DeclType,
1376 unsigned &Index,
1377 InitListExpr *StructuredList,
1378 unsigned &StructuredIndex) {
1379 if (Index >= IList->getNumInits()) {
1380 if (!VerifyOnly)
1381 SemaRef.Diag(IList->getLocStart(),
1382 SemaRef.getLangOpts().CPlusPlus11 ?
1383 diag::warn_cxx98_compat_empty_scalar_initializer :
1384 diag::err_empty_scalar_initializer)
1385 << IList->getSourceRange();
1386 hadError = !SemaRef.getLangOpts().CPlusPlus11;
1387 ++Index;
1388 ++StructuredIndex;
1389 return;
1390 }
1391
1392 Expr *expr = IList->getInit(Index);
1393 if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1394 // FIXME: This is invalid, and accepting it causes overload resolution
1395 // to pick the wrong overload in some corner cases.
1396 if (!VerifyOnly)
1397 SemaRef.Diag(SubIList->getLocStart(),
1398 diag::ext_many_braces_around_scalar_init)
1399 << SubIList->getSourceRange();
1400
1401 CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1402 StructuredIndex);
1403 return;
1404 } else if (isa<DesignatedInitExpr>(expr)) {
1405 if (!VerifyOnly)
1406 SemaRef.Diag(expr->getLocStart(),
1407 diag::err_designator_for_scalar_init)
1408 << DeclType << expr->getSourceRange();
1409 hadError = true;
1410 ++Index;
1411 ++StructuredIndex;
1412 return;
1413 }
1414
1415 if (VerifyOnly) {
1416 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1417 hadError = true;
1418 ++Index;
1419 return;
1420 }
1421
1422 ExprResult Result =
1423 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1424 /*TopLevelOfInitList=*/true);
1425
1426 Expr *ResultExpr = nullptr;
1427
1428 if (Result.isInvalid())
1429 hadError = true; // types weren't compatible.
1430 else {
1431 ResultExpr = Result.getAs<Expr>();
1432
1433 if (ResultExpr != expr) {
1434 // The type was promoted, update initializer list.
1435 IList->setInit(Index, ResultExpr);
1436 }
1437 }
1438 if (hadError)
1439 ++StructuredIndex;
1440 else
1441 UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1442 ++Index;
1443}
1444
1445void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1446 InitListExpr *IList, QualType DeclType,
1447 unsigned &Index,
1448 InitListExpr *StructuredList,
1449 unsigned &StructuredIndex) {
1450 if (Index >= IList->getNumInits()) {
1451 // FIXME: It would be wonderful if we could point at the actual member. In
1452 // general, it would be useful to pass location information down the stack,
1453 // so that we know the location (or decl) of the "current object" being
1454 // initialized.
1455 if (!VerifyOnly)
1456 SemaRef.Diag(IList->getLocStart(),
1457 diag::err_init_reference_member_uninitialized)
1458 << DeclType
1459 << IList->getSourceRange();
1460 hadError = true;
1461 ++Index;
1462 ++StructuredIndex;
1463 return;
1464 }
1465
1466 Expr *expr = IList->getInit(Index);
1467 if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1468 if (!VerifyOnly)
1469 SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1470 << DeclType << IList->getSourceRange();
1471 hadError = true;
1472 ++Index;
1473 ++StructuredIndex;
1474 return;
1475 }
1476
1477 if (VerifyOnly) {
1478 if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1479 hadError = true;
1480 ++Index;
1481 return;
1482 }
1483
1484 ExprResult Result =
1485 SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1486 /*TopLevelOfInitList=*/true);
1487
1488 if (Result.isInvalid())
1489 hadError = true;
1490
1491 expr = Result.getAs<Expr>();
1492 IList->setInit(Index, expr);
1493
1494 if (hadError)
1495 ++StructuredIndex;
1496 else
1497 UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1498 ++Index;
1499}
1500
1501void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1502 InitListExpr *IList, QualType DeclType,
1503 unsigned &Index,
1504 InitListExpr *StructuredList,
1505 unsigned &StructuredIndex) {
1506 const VectorType *VT = DeclType->getAs<VectorType>();
1507 unsigned maxElements = VT->getNumElements();
1508 unsigned numEltsInit = 0;
1509 QualType elementType = VT->getElementType();
1510
1511 if (Index >= IList->getNumInits()) {
1512 // Make sure the element type can be value-initialized.
1513 if (VerifyOnly)
1514 CheckEmptyInitializable(
1515 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1516 IList->getLocEnd());
1517 return;
1518 }
1519
1520 if (!SemaRef.getLangOpts().OpenCL) {
1521 // If the initializing element is a vector, try to copy-initialize
1522 // instead of breaking it apart (which is doomed to failure anyway).
1523 Expr *Init = IList->getInit(Index);
1524 if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1525 if (VerifyOnly) {
1526 if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1527 hadError = true;
1528 ++Index;
1529 return;
1530 }
1531
1532 ExprResult Result =
1533 SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1534 /*TopLevelOfInitList=*/true);
1535
1536 Expr *ResultExpr = nullptr;
1537 if (Result.isInvalid())
1538 hadError = true; // types weren't compatible.
1539 else {
1540 ResultExpr = Result.getAs<Expr>();
1541
1542 if (ResultExpr != Init) {
1543 // The type was promoted, update initializer list.
1544 IList->setInit(Index, ResultExpr);
1545 }
1546 }
1547 if (hadError)
1548 ++StructuredIndex;
1549 else
1550 UpdateStructuredListElement(StructuredList, StructuredIndex,
1551 ResultExpr);
1552 ++Index;
1553 return;
1554 }
1555
1556 InitializedEntity ElementEntity =
1557 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1558
1559 for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1560 // Don't attempt to go past the end of the init list
1561 if (Index >= IList->getNumInits()) {
1562 if (VerifyOnly)
1563 CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1564 break;
1565 }
1566
1567 ElementEntity.setElementIndex(Index);
1568 CheckSubElementType(ElementEntity, IList, elementType, Index,
1569 StructuredList, StructuredIndex);
1570 }
1571
1572 if (VerifyOnly)
1573 return;
1574
1575 bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1576 const VectorType *T = Entity.getType()->getAs<VectorType>();
1577 if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1578 T->getVectorKind() == VectorType::NeonPolyVector)) {
1579 // The ability to use vector initializer lists is a GNU vector extension
1580 // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1581 // endian machines it works fine, however on big endian machines it
1582 // exhibits surprising behaviour:
1583 //
1584 // uint32x2_t x = {42, 64};
1585 // return vget_lane_u32(x, 0); // Will return 64.
1586 //
1587 // Because of this, explicitly call out that it is non-portable.
1588 //
1589 SemaRef.Diag(IList->getLocStart(),
1590 diag::warn_neon_vector_initializer_non_portable);
1591
1592 const char *typeCode;
1593 unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1594
1595 if (elementType->isFloatingType())
1596 typeCode = "f";
1597 else if (elementType->isSignedIntegerType())
1598 typeCode = "s";
1599 else if (elementType->isUnsignedIntegerType())
1600 typeCode = "u";
1601 else
1602 llvm_unreachable("Invalid element type!")::llvm::llvm_unreachable_internal("Invalid element type!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 1602)
;
1603
1604 SemaRef.Diag(IList->getLocStart(),
1605 SemaRef.Context.getTypeSize(VT) > 64 ?
1606 diag::note_neon_vector_initializer_non_portable_q :
1607 diag::note_neon_vector_initializer_non_portable)
1608 << typeCode << typeSize;
1609 }
1610
1611 return;
1612 }
1613
1614 InitializedEntity ElementEntity =
1615 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1616
1617 // OpenCL initializers allows vectors to be constructed from vectors.
1618 for (unsigned i = 0; i < maxElements; ++i) {
1619 // Don't attempt to go past the end of the init list
1620 if (Index >= IList->getNumInits())
1621 break;
1622
1623 ElementEntity.setElementIndex(Index);
1624
1625 QualType IType = IList->getInit(Index)->getType();
1626 if (!IType->isVectorType()) {
1627 CheckSubElementType(ElementEntity, IList, elementType, Index,
1628 StructuredList, StructuredIndex);
1629 ++numEltsInit;
1630 } else {
1631 QualType VecType;
1632 const VectorType *IVT = IType->getAs<VectorType>();
1633 unsigned numIElts = IVT->getNumElements();
1634
1635 if (IType->isExtVectorType())
1636 VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1637 else
1638 VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1639 IVT->getVectorKind());
1640 CheckSubElementType(ElementEntity, IList, VecType, Index,
1641 StructuredList, StructuredIndex);
1642 numEltsInit += numIElts;
1643 }
1644 }
1645
1646 // OpenCL requires all elements to be initialized.
1647 if (numEltsInit != maxElements) {
1648 if (!VerifyOnly)
1649 SemaRef.Diag(IList->getLocStart(),
1650 diag::err_vector_incorrect_num_initializers)
1651 << (numEltsInit < maxElements) << maxElements << numEltsInit;
1652 hadError = true;
1653 }
1654}
1655
1656void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1657 InitListExpr *IList, QualType &DeclType,
1658 llvm::APSInt elementIndex,
1659 bool SubobjectIsDesignatorContext,
1660 unsigned &Index,
1661 InitListExpr *StructuredList,
1662 unsigned &StructuredIndex) {
1663 const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1664
1665 // Check for the special-case of initializing an array with a string.
1666 if (Index < IList->getNumInits()) {
1667 if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1668 SIF_None) {
1669 // We place the string literal directly into the resulting
1670 // initializer list. This is the only place where the structure
1671 // of the structured initializer list doesn't match exactly,
1672 // because doing so would involve allocating one character
1673 // constant for each string.
1674 if (!VerifyOnly) {
1675 CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1676 UpdateStructuredListElement(StructuredList, StructuredIndex,
1677 IList->getInit(Index));
1678 StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1679 }
1680 ++Index;
1681 return;
1682 }
1683 }
1684 if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1685 // Check for VLAs; in standard C it would be possible to check this
1686 // earlier, but I don't know where clang accepts VLAs (gcc accepts
1687 // them in all sorts of strange places).
1688 if (!VerifyOnly)
1689 SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1690 diag::err_variable_object_no_init)
1691 << VAT->getSizeExpr()->getSourceRange();
1692 hadError = true;
1693 ++Index;
1694 ++StructuredIndex;
1695 return;
1696 }
1697
1698 // We might know the maximum number of elements in advance.
1699 llvm::APSInt maxElements(elementIndex.getBitWidth(),
1700 elementIndex.isUnsigned());
1701 bool maxElementsKnown = false;
1702 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1703 maxElements = CAT->getSize();
1704 elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1705 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1706 maxElementsKnown = true;
1707 }
1708
1709 QualType elementType = arrayType->getElementType();
1710 while (Index < IList->getNumInits()) {
1711 Expr *Init = IList->getInit(Index);
1712 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1713 // If we're not the subobject that matches up with the '{' for
1714 // the designator, we shouldn't be handling the
1715 // designator. Return immediately.
1716 if (!SubobjectIsDesignatorContext)
1717 return;
1718
1719 // Handle this designated initializer. elementIndex will be
1720 // updated to be the next array element we'll initialize.
1721 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1722 DeclType, nullptr, &elementIndex, Index,
1723 StructuredList, StructuredIndex, true,
1724 false)) {
1725 hadError = true;
1726 continue;
1727 }
1728
1729 if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1730 maxElements = maxElements.extend(elementIndex.getBitWidth());
1731 else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1732 elementIndex = elementIndex.extend(maxElements.getBitWidth());
1733 elementIndex.setIsUnsigned(maxElements.isUnsigned());
1734
1735 // If the array is of incomplete type, keep track of the number of
1736 // elements in the initializer.
1737 if (!maxElementsKnown && elementIndex > maxElements)
1738 maxElements = elementIndex;
1739
1740 continue;
1741 }
1742
1743 // If we know the maximum number of elements, and we've already
1744 // hit it, stop consuming elements in the initializer list.
1745 if (maxElementsKnown && elementIndex == maxElements)
1746 break;
1747
1748 InitializedEntity ElementEntity =
1749 InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1750 Entity);
1751 // Check this element.
1752 CheckSubElementType(ElementEntity, IList, elementType, Index,
1753 StructuredList, StructuredIndex);
1754 ++elementIndex;
1755
1756 // If the array is of incomplete type, keep track of the number of
1757 // elements in the initializer.
1758 if (!maxElementsKnown && elementIndex > maxElements)
1759 maxElements = elementIndex;
1760 }
1761 if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1762 // If this is an incomplete array type, the actual type needs to
1763 // be calculated here.
1764 llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1765 if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) {
1766 // Sizing an array implicitly to zero is not allowed by ISO C,
1767 // but is supported by GNU.
1768 SemaRef.Diag(IList->getLocStart(),
1769 diag::ext_typecheck_zero_array_size);
1770 }
1771
1772 DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1773 ArrayType::Normal, 0);
1774 }
1775 if (!hadError && VerifyOnly) {
1776 // If there are any members of the array that get value-initialized, check
1777 // that is possible. That happens if we know the bound and don't have
1778 // enough elements, or if we're performing an array new with an unknown
1779 // bound.
1780 // FIXME: This needs to detect holes left by designated initializers too.
1781 if ((maxElementsKnown && elementIndex < maxElements) ||
1782 Entity.isVariableLengthArrayNew())
1783 CheckEmptyInitializable(InitializedEntity::InitializeElement(
1784 SemaRef.Context, 0, Entity),
1785 IList->getLocEnd());
1786 }
1787}
1788
1789bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1790 Expr *InitExpr,
1791 FieldDecl *Field,
1792 bool TopLevelObject) {
1793 // Handle GNU flexible array initializers.
1794 unsigned FlexArrayDiag;
1795 if (isa<InitListExpr>(InitExpr) &&
1796 cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1797 // Empty flexible array init always allowed as an extension
1798 FlexArrayDiag = diag::ext_flexible_array_init;
1799 } else if (SemaRef.getLangOpts().CPlusPlus) {
1800 // Disallow flexible array init in C++; it is not required for gcc
1801 // compatibility, and it needs work to IRGen correctly in general.
1802 FlexArrayDiag = diag::err_flexible_array_init;
1803 } else if (!TopLevelObject) {
1804 // Disallow flexible array init on non-top-level object
1805 FlexArrayDiag = diag::err_flexible_array_init;
1806 } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1807 // Disallow flexible array init on anything which is not a variable.
1808 FlexArrayDiag = diag::err_flexible_array_init;
1809 } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1810 // Disallow flexible array init on local variables.
1811 FlexArrayDiag = diag::err_flexible_array_init;
1812 } else {
1813 // Allow other cases.
1814 FlexArrayDiag = diag::ext_flexible_array_init;
1815 }
1816
1817 if (!VerifyOnly) {
1818 SemaRef.Diag(InitExpr->getLocStart(),
1819 FlexArrayDiag)
1820 << InitExpr->getLocStart();
1821 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1822 << Field;
1823 }
1824
1825 return FlexArrayDiag != diag::ext_flexible_array_init;
1826}
1827
1828void InitListChecker::CheckStructUnionTypes(
1829 const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType,
1830 CXXRecordDecl::base_class_range Bases, RecordDecl::field_iterator Field,
1831 bool SubobjectIsDesignatorContext, unsigned &Index,
1832 InitListExpr *StructuredList, unsigned &StructuredIndex,
1833 bool TopLevelObject) {
1834 RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
1835
1836 // If the record is invalid, some of it's members are invalid. To avoid
1837 // confusion, we forgo checking the intializer for the entire record.
1838 if (structDecl->isInvalidDecl()) {
1839 // Assume it was supposed to consume a single initializer.
1840 ++Index;
1841 hadError = true;
1842 return;
1843 }
1844
1845 if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1846 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1847
1848 // If there's a default initializer, use it.
1849 if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1850 if (VerifyOnly)
1851 return;
1852 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1853 Field != FieldEnd; ++Field) {
1854 if (Field->hasInClassInitializer()) {
1855 StructuredList->setInitializedFieldInUnion(*Field);
1856 // FIXME: Actually build a CXXDefaultInitExpr?
1857 return;
1858 }
1859 }
1860 }
1861
1862 // Value-initialize the first member of the union that isn't an unnamed
1863 // bitfield.
1864 for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1865 Field != FieldEnd; ++Field) {
1866 if (!Field->isUnnamedBitfield()) {
1867 if (VerifyOnly)
1868 CheckEmptyInitializable(
1869 InitializedEntity::InitializeMember(*Field, &Entity),
1870 IList->getLocEnd());
1871 else
1872 StructuredList->setInitializedFieldInUnion(*Field);
1873 break;
1874 }
1875 }
1876 return;
1877 }
1878
1879 bool InitializedSomething = false;
1880
1881 // If we have any base classes, they are initialized prior to the fields.
1882 for (auto &Base : Bases) {
1883 Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr;
1884 SourceLocation InitLoc = Init ? Init->getLocStart() : IList->getLocEnd();
1885
1886 // Designated inits always initialize fields, so if we see one, all
1887 // remaining base classes have no explicit initializer.
1888 if (Init && isa<DesignatedInitExpr>(Init))
1889 Init = nullptr;
1890
1891 InitializedEntity BaseEntity = InitializedEntity::InitializeBase(
1892 SemaRef.Context, &Base, false, &Entity);
1893 if (Init) {
1894 CheckSubElementType(BaseEntity, IList, Base.getType(), Index,
1895 StructuredList, StructuredIndex);
1896 InitializedSomething = true;
1897 } else if (VerifyOnly) {
1898 CheckEmptyInitializable(BaseEntity, InitLoc);
1899 }
1900 }
1901
1902 // If structDecl is a forward declaration, this loop won't do
1903 // anything except look at designated initializers; That's okay,
1904 // because an error should get printed out elsewhere. It might be
1905 // worthwhile to skip over the rest of the initializer, though.
1906 RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1907 RecordDecl::field_iterator FieldEnd = RD->field_end();
1908 bool CheckForMissingFields =
1909 !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts());
1910
1911 while (Index < IList->getNumInits()) {
1912 Expr *Init = IList->getInit(Index);
1913
1914 if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1915 // If we're not the subobject that matches up with the '{' for
1916 // the designator, we shouldn't be handling the
1917 // designator. Return immediately.
1918 if (!SubobjectIsDesignatorContext)
1919 return;
1920
1921 // Handle this designated initializer. Field will be updated to
1922 // the next field that we'll be initializing.
1923 if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1924 DeclType, &Field, nullptr, Index,
1925 StructuredList, StructuredIndex,
1926 true, TopLevelObject))
1927 hadError = true;
1928
1929 InitializedSomething = true;
1930
1931 // Disable check for missing fields when designators are used.
1932 // This matches gcc behaviour.
1933 CheckForMissingFields = false;
1934 continue;
1935 }
1936
1937 if (Field == FieldEnd) {
1938 // We've run out of fields. We're done.
1939 break;
1940 }
1941
1942 // We've already initialized a member of a union. We're done.
1943 if (InitializedSomething && DeclType->isUnionType())
1944 break;
1945
1946 // If we've hit the flexible array member at the end, we're done.
1947 if (Field->getType()->isIncompleteArrayType())
1948 break;
1949
1950 if (Field->isUnnamedBitfield()) {
1951 // Don't initialize unnamed bitfields, e.g. "int : 20;"
1952 ++Field;
1953 continue;
1954 }
1955
1956 // Make sure we can use this declaration.
1957 bool InvalidUse;
1958 if (VerifyOnly)
1959 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
1960 else
1961 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1962 IList->getInit(Index)->getLocStart());
1963 if (InvalidUse) {
1964 ++Index;
1965 ++Field;
1966 hadError = true;
1967 continue;
1968 }
1969
1970 InitializedEntity MemberEntity =
1971 InitializedEntity::InitializeMember(*Field, &Entity);
1972 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1973 StructuredList, StructuredIndex);
1974 InitializedSomething = true;
1975
1976 if (DeclType->isUnionType() && !VerifyOnly) {
1977 // Initialize the first field within the union.
1978 StructuredList->setInitializedFieldInUnion(*Field);
1979 }
1980
1981 ++Field;
1982 }
1983
1984 // Emit warnings for missing struct field initializers.
1985 if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1986 Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1987 !DeclType->isUnionType()) {
1988 // It is possible we have one or more unnamed bitfields remaining.
1989 // Find first (if any) named field and emit warning.
1990 for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1991 it != end; ++it) {
1992 if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1993 SemaRef.Diag(IList->getSourceRange().getEnd(),
1994 diag::warn_missing_field_initializers) << *it;
1995 break;
1996 }
1997 }
1998 }
1999
2000 // Check that any remaining fields can be value-initialized.
2001 if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
2002 !Field->getType()->isIncompleteArrayType()) {
2003 // FIXME: Should check for holes left by designated initializers too.
2004 for (; Field != FieldEnd && !hadError; ++Field) {
2005 if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
2006 CheckEmptyInitializable(
2007 InitializedEntity::InitializeMember(*Field, &Entity),
2008 IList->getLocEnd());
2009 }
2010 }
2011
2012 if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
2013 Index >= IList->getNumInits())
2014 return;
2015
2016 if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
2017 TopLevelObject)) {
2018 hadError = true;
2019 ++Index;
2020 return;
2021 }
2022
2023 InitializedEntity MemberEntity =
2024 InitializedEntity::InitializeMember(*Field, &Entity);
2025
2026 if (isa<InitListExpr>(IList->getInit(Index)))
2027 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2028 StructuredList, StructuredIndex);
2029 else
2030 CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
2031 StructuredList, StructuredIndex);
2032}
2033
2034/// Expand a field designator that refers to a member of an
2035/// anonymous struct or union into a series of field designators that
2036/// refers to the field within the appropriate subobject.
2037///
2038static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
2039 DesignatedInitExpr *DIE,
2040 unsigned DesigIdx,
2041 IndirectFieldDecl *IndirectField) {
2042 typedef DesignatedInitExpr::Designator Designator;
2043
2044 // Build the replacement designators.
2045 SmallVector<Designator, 4> Replacements;
2046 for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
2047 PE = IndirectField->chain_end(); PI != PE; ++PI) {
2048 if (PI + 1 == PE)
2049 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2050 DIE->getDesignator(DesigIdx)->getDotLoc(),
2051 DIE->getDesignator(DesigIdx)->getFieldLoc()));
2052 else
2053 Replacements.push_back(Designator((IdentifierInfo *)nullptr,
2054 SourceLocation(), SourceLocation()));
2055 assert(isa<FieldDecl>(*PI))(static_cast <bool> (isa<FieldDecl>(*PI)) ? void (
0) : __assert_fail ("isa<FieldDecl>(*PI)", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 2055, __extension__ __PRETTY_FUNCTION__))
;
2056 Replacements.back().setField(cast<FieldDecl>(*PI));
2057 }
2058
2059 // Expand the current designator into the set of replacement
2060 // designators, so we have a full subobject path down to where the
2061 // member of the anonymous struct/union is actually stored.
2062 DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
2063 &Replacements[0] + Replacements.size());
2064}
2065
2066static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
2067 DesignatedInitExpr *DIE) {
2068 unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
2069 SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
2070 for (unsigned I = 0; I < NumIndexExprs; ++I)
2071 IndexExprs[I] = DIE->getSubExpr(I + 1);
2072 return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(),
2073 IndexExprs,
2074 DIE->getEqualOrColonLoc(),
2075 DIE->usesGNUSyntax(), DIE->getInit());
2076}
2077
2078namespace {
2079
2080// Callback to only accept typo corrections that are for field members of
2081// the given struct or union.
2082class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
2083 public:
2084 explicit FieldInitializerValidatorCCC(RecordDecl *RD)
2085 : Record(RD) {}
2086
2087 bool ValidateCandidate(const TypoCorrection &candidate) override {
2088 FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
2089 return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
2090 }
2091
2092 private:
2093 RecordDecl *Record;
2094};
2095
2096} // end anonymous namespace
2097
2098/// Check the well-formedness of a C99 designated initializer.
2099///
2100/// Determines whether the designated initializer @p DIE, which
2101/// resides at the given @p Index within the initializer list @p
2102/// IList, is well-formed for a current object of type @p DeclType
2103/// (C99 6.7.8). The actual subobject that this designator refers to
2104/// within the current subobject is returned in either
2105/// @p NextField or @p NextElementIndex (whichever is appropriate).
2106///
2107/// @param IList The initializer list in which this designated
2108/// initializer occurs.
2109///
2110/// @param DIE The designated initializer expression.
2111///
2112/// @param DesigIdx The index of the current designator.
2113///
2114/// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
2115/// into which the designation in @p DIE should refer.
2116///
2117/// @param NextField If non-NULL and the first designator in @p DIE is
2118/// a field, this will be set to the field declaration corresponding
2119/// to the field named by the designator.
2120///
2121/// @param NextElementIndex If non-NULL and the first designator in @p
2122/// DIE is an array designator or GNU array-range designator, this
2123/// will be set to the last index initialized by this designator.
2124///
2125/// @param Index Index into @p IList where the designated initializer
2126/// @p DIE occurs.
2127///
2128/// @param StructuredList The initializer list expression that
2129/// describes all of the subobject initializers in the order they'll
2130/// actually be initialized.
2131///
2132/// @returns true if there was an error, false otherwise.
2133bool
2134InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
2135 InitListExpr *IList,
2136 DesignatedInitExpr *DIE,
2137 unsigned DesigIdx,
2138 QualType &CurrentObjectType,
2139 RecordDecl::field_iterator *NextField,
2140 llvm::APSInt *NextElementIndex,
2141 unsigned &Index,
2142 InitListExpr *StructuredList,
2143 unsigned &StructuredIndex,
2144 bool FinishSubobjectInit,
2145 bool TopLevelObject) {
2146 if (DesigIdx == DIE->size()) {
2147 // Check the actual initialization for the designated object type.
2148 bool prevHadError = hadError;
2149
2150 // Temporarily remove the designator expression from the
2151 // initializer list that the child calls see, so that we don't try
2152 // to re-process the designator.
2153 unsigned OldIndex = Index;
2154 IList->setInit(OldIndex, DIE->getInit());
2155
2156 CheckSubElementType(Entity, IList, CurrentObjectType, Index,
2157 StructuredList, StructuredIndex);
2158
2159 // Restore the designated initializer expression in the syntactic
2160 // form of the initializer list.
2161 if (IList->getInit(OldIndex) != DIE->getInit())
2162 DIE->setInit(IList->getInit(OldIndex));
2163 IList->setInit(OldIndex, DIE);
2164
2165 return hadError && !prevHadError;
2166 }
2167
2168 DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
2169 bool IsFirstDesignator = (DesigIdx == 0);
2170 if (!VerifyOnly) {
2171 assert((IsFirstDesignator || StructuredList) &&(static_cast <bool> ((IsFirstDesignator || StructuredList
) && "Need a non-designated initializer list to start from"
) ? void (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 2172, __extension__ __PRETTY_FUNCTION__))
2172 "Need a non-designated initializer list to start from")(static_cast <bool> ((IsFirstDesignator || StructuredList
) && "Need a non-designated initializer list to start from"
) ? void (0) : __assert_fail ("(IsFirstDesignator || StructuredList) && \"Need a non-designated initializer list to start from\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 2172, __extension__ __PRETTY_FUNCTION__))
;
2173
2174 // Determine the structural initializer list that corresponds to the
2175 // current subobject.
2176 if (IsFirstDesignator)
2177 StructuredList = SyntacticToSemantic.lookup(IList);
2178 else {
2179 Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ?
2180 StructuredList->getInit(StructuredIndex) : nullptr;
2181 if (!ExistingInit && StructuredList->hasArrayFiller())
2182 ExistingInit = StructuredList->getArrayFiller();
2183
2184 if (!ExistingInit)
2185 StructuredList =
2186 getStructuredSubobjectInit(IList, Index, CurrentObjectType,
2187 StructuredList, StructuredIndex,
2188 SourceRange(D->getLocStart(),
2189 DIE->getLocEnd()));
2190 else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit))
2191 StructuredList = Result;
2192 else {
2193 if (DesignatedInitUpdateExpr *E =
2194 dyn_cast<DesignatedInitUpdateExpr>(ExistingInit))
2195 StructuredList = E->getUpdater();
2196 else {
2197 DesignatedInitUpdateExpr *DIUE =
2198 new (SemaRef.Context) DesignatedInitUpdateExpr(SemaRef.Context,
2199 D->getLocStart(), ExistingInit,
2200 DIE->getLocEnd());
2201 StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE);
2202 StructuredList = DIUE->getUpdater();
2203 }
2204
2205 // We need to check on source range validity because the previous
2206 // initializer does not have to be an explicit initializer. e.g.,
2207 //
2208 // struct P { int a, b; };
2209 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2210 //
2211 // There is an overwrite taking place because the first braced initializer
2212 // list "{ .a = 2 }" already provides value for .p.b (which is zero).
2213 if (ExistingInit->getSourceRange().isValid()) {
2214 // We are creating an initializer list that initializes the
2215 // subobjects of the current object, but there was already an
2216 // initialization that completely initialized the current
2217 // subobject, e.g., by a compound literal:
2218 //
2219 // struct X { int a, b; };
2220 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2221 //
2222 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2223 // designated initializer re-initializes the whole
2224 // subobject [0], overwriting previous initializers.
2225 SemaRef.Diag(D->getLocStart(),
2226 diag::warn_subobject_initializer_overrides)
2227 << SourceRange(D->getLocStart(), DIE->getLocEnd());
2228
2229 SemaRef.Diag(ExistingInit->getLocStart(),
2230 diag::note_previous_initializer)
2231 << /*FIXME:has side effects=*/0
2232 << ExistingInit->getSourceRange();
2233 }
2234 }
2235 }
2236 assert(StructuredList && "Expected a structured initializer list")(static_cast <bool> (StructuredList && "Expected a structured initializer list"
) ? void (0) : __assert_fail ("StructuredList && \"Expected a structured initializer list\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 2236, __extension__ __PRETTY_FUNCTION__))
;
2237 }
2238
2239 if (D->isFieldDesignator()) {
2240 // C99 6.7.8p7:
2241 //
2242 // If a designator has the form
2243 //
2244 // . identifier
2245 //
2246 // then the current object (defined below) shall have
2247 // structure or union type and the identifier shall be the
2248 // name of a member of that type.
2249 const RecordType *RT = CurrentObjectType->getAs<RecordType>();
2250 if (!RT) {
2251 SourceLocation Loc = D->getDotLoc();
2252 if (Loc.isInvalid())
2253 Loc = D->getFieldLoc();
2254 if (!VerifyOnly)
2255 SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
2256 << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
2257 ++Index;
2258 return true;
2259 }
2260
2261 FieldDecl *KnownField = D->getField();
2262 if (!KnownField) {
2263 IdentifierInfo *FieldName = D->getFieldName();
2264 DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
2265 for (NamedDecl *ND : Lookup) {
2266 if (auto *FD = dyn_cast<FieldDecl>(ND)) {
2267 KnownField = FD;
2268 break;
2269 }
2270 if (auto *IFD = dyn_cast<IndirectFieldDecl>(ND)) {
2271 // In verify mode, don't modify the original.
2272 if (VerifyOnly)
2273 DIE = CloneDesignatedInitExpr(SemaRef, DIE);
2274 ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD);
2275 D = DIE->getDesignator(DesigIdx);
2276 KnownField = cast<FieldDecl>(*IFD->chain_begin());
2277 break;
2278 }
2279 }
2280 if (!KnownField) {
2281 if (VerifyOnly) {
2282 ++Index;
2283 return true; // No typo correction when just trying this out.
2284 }
2285
2286 // Name lookup found something, but it wasn't a field.
2287 if (!Lookup.empty()) {
2288 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
2289 << FieldName;
2290 SemaRef.Diag(Lookup.front()->getLocation(),
2291 diag::note_field_designator_found);
2292 ++Index;
2293 return true;
2294 }
2295
2296 // Name lookup didn't find anything.
2297 // Determine whether this was a typo for another field name.
2298 if (TypoCorrection Corrected = SemaRef.CorrectTypo(
2299 DeclarationNameInfo(FieldName, D->getFieldLoc()),
2300 Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr,
2301 llvm::make_unique<FieldInitializerValidatorCCC>(RT->getDecl()),
2302 Sema::CTK_ErrorRecovery, RT->getDecl())) {
2303 SemaRef.diagnoseTypo(
2304 Corrected,
2305 SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
2306 << FieldName << CurrentObjectType);
2307 KnownField = Corrected.getCorrectionDeclAs<FieldDecl>();
2308 hadError = true;
2309 } else {
2310 // Typo correction didn't find anything.
2311 SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
2312 << FieldName << CurrentObjectType;
2313 ++Index;
2314 return true;
2315 }
2316 }
2317 }
2318
2319 unsigned FieldIndex = 0;
2320
2321 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2322 FieldIndex = CXXRD->getNumBases();
2323
2324 for (auto *FI : RT->getDecl()->fields()) {
2325 if (FI->isUnnamedBitfield())
2326 continue;
2327 if (declaresSameEntity(KnownField, FI)) {
2328 KnownField = FI;
2329 break;
2330 }
2331 ++FieldIndex;
2332 }
2333
2334 RecordDecl::field_iterator Field =
2335 RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField));
2336
2337 // All of the fields of a union are located at the same place in
2338 // the initializer list.
2339 if (RT->getDecl()->isUnion()) {
2340 FieldIndex = 0;
2341 if (!VerifyOnly) {
2342 FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
2343 if (CurrentField && !declaresSameEntity(CurrentField, *Field)) {
2344 assert(StructuredList->getNumInits() == 1(static_cast <bool> (StructuredList->getNumInits() ==
1 && "A union should never have more than one initializer!"
) ? void (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 2345, __extension__ __PRETTY_FUNCTION__))
2345 && "A union should never have more than one initializer!")(static_cast <bool> (StructuredList->getNumInits() ==
1 && "A union should never have more than one initializer!"
) ? void (0) : __assert_fail ("StructuredList->getNumInits() == 1 && \"A union should never have more than one initializer!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 2345, __extension__ __PRETTY_FUNCTION__))
;
2346
2347 Expr *ExistingInit = StructuredList->getInit(0);
2348 if (ExistingInit) {
2349 // We're about to throw away an initializer, emit warning.
2350 SemaRef.Diag(D->getFieldLoc(),
2351 diag::warn_initializer_overrides)
2352 << D->getSourceRange();
2353 SemaRef.Diag(ExistingInit->getLocStart(),
2354 diag::note_previous_initializer)
2355 << /*FIXME:has side effects=*/0
2356 << ExistingInit->getSourceRange();
2357 }
2358
2359 // remove existing initializer
2360 StructuredList->resizeInits(SemaRef.Context, 0);
2361 StructuredList->setInitializedFieldInUnion(nullptr);
2362 }
2363
2364 StructuredList->setInitializedFieldInUnion(*Field);
2365 }
2366 }
2367
2368 // Make sure we can use this declaration.
2369 bool InvalidUse;
2370 if (VerifyOnly)
2371 InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid);
2372 else
2373 InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2374 if (InvalidUse) {
2375 ++Index;
2376 return true;
2377 }
2378
2379 if (!VerifyOnly) {
2380 // Update the designator with the field declaration.
2381 D->setField(*Field);
2382
2383 // Make sure that our non-designated initializer list has space
2384 // for a subobject corresponding to this field.
2385 if (FieldIndex >= StructuredList->getNumInits())
2386 StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2387 }
2388
2389 // This designator names a flexible array member.
2390 if (Field->getType()->isIncompleteArrayType()) {
2391 bool Invalid = false;
2392 if ((DesigIdx + 1) != DIE->size()) {
2393 // We can't designate an object within the flexible array
2394 // member (because GCC doesn't allow it).
2395 if (!VerifyOnly) {
2396 DesignatedInitExpr::Designator *NextD
2397 = DIE->getDesignator(DesigIdx + 1);
2398 SemaRef.Diag(NextD->getLocStart(),
2399 diag::err_designator_into_flexible_array_member)
2400 << SourceRange(NextD->getLocStart(),
2401 DIE->getLocEnd());
2402 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2403 << *Field;
2404 }
2405 Invalid = true;
2406 }
2407
2408 if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2409 !isa<StringLiteral>(DIE->getInit())) {
2410 // The initializer is not an initializer list.
2411 if (!VerifyOnly) {
2412 SemaRef.Diag(DIE->getInit()->getLocStart(),
2413 diag::err_flexible_array_init_needs_braces)
2414 << DIE->getInit()->getSourceRange();
2415 SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2416 << *Field;
2417 }
2418 Invalid = true;
2419 }
2420
2421 // Check GNU flexible array initializer.
2422 if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2423 TopLevelObject))
2424 Invalid = true;
2425
2426 if (Invalid) {
2427 ++Index;
2428 return true;
2429 }
2430
2431 // Initialize the array.
2432 bool prevHadError = hadError;
2433 unsigned newStructuredIndex = FieldIndex;
2434 unsigned OldIndex = Index;
2435 IList->setInit(Index, DIE->getInit());
2436
2437 InitializedEntity MemberEntity =
2438 InitializedEntity::InitializeMember(*Field, &Entity);
2439 CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2440 StructuredList, newStructuredIndex);
2441
2442 IList->setInit(OldIndex, DIE);
2443 if (hadError && !prevHadError) {
2444 ++Field;
2445 ++FieldIndex;
2446 if (NextField)
2447 *NextField = Field;
2448 StructuredIndex = FieldIndex;
2449 return true;
2450 }
2451 } else {
2452 // Recurse to check later designated subobjects.
2453 QualType FieldType = Field->getType();
2454 unsigned newStructuredIndex = FieldIndex;
2455
2456 InitializedEntity MemberEntity =
2457 InitializedEntity::InitializeMember(*Field, &Entity);
2458 if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2459 FieldType, nullptr, nullptr, Index,
2460 StructuredList, newStructuredIndex,
2461 FinishSubobjectInit, false))
2462 return true;
2463 }
2464
2465 // Find the position of the next field to be initialized in this
2466 // subobject.
2467 ++Field;
2468 ++FieldIndex;
2469
2470 // If this the first designator, our caller will continue checking
2471 // the rest of this struct/class/union subobject.
2472 if (IsFirstDesignator) {
2473 if (NextField)
2474 *NextField = Field;
2475 StructuredIndex = FieldIndex;
2476 return false;
2477 }
2478
2479 if (!FinishSubobjectInit)
2480 return false;
2481
2482 // We've already initialized something in the union; we're done.
2483 if (RT->getDecl()->isUnion())
2484 return hadError;
2485
2486 // Check the remaining fields within this class/struct/union subobject.
2487 bool prevHadError = hadError;
2488
2489 auto NoBases =
2490 CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(),
2491 CXXRecordDecl::base_class_iterator());
2492 CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field,
2493 false, Index, StructuredList, FieldIndex);
2494 return hadError && !prevHadError;
2495 }
2496
2497 // C99 6.7.8p6:
2498 //
2499 // If a designator has the form
2500 //
2501 // [ constant-expression ]
2502 //
2503 // then the current object (defined below) shall have array
2504 // type and the expression shall be an integer constant
2505 // expression. If the array is of unknown size, any
2506 // nonnegative value is valid.
2507 //
2508 // Additionally, cope with the GNU extension that permits
2509 // designators of the form
2510 //
2511 // [ constant-expression ... constant-expression ]
2512 const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2513 if (!AT) {
2514 if (!VerifyOnly)
2515 SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2516 << CurrentObjectType;
2517 ++Index;
2518 return true;
2519 }
2520
2521 Expr *IndexExpr = nullptr;
2522 llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2523 if (D->isArrayDesignator()) {
2524 IndexExpr = DIE->getArrayIndex(*D);
2525 DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2526 DesignatedEndIndex = DesignatedStartIndex;
2527 } else {
2528 assert(D->isArrayRangeDesignator() && "Need array-range designator")(static_cast <bool> (D->isArrayRangeDesignator() &&
"Need array-range designator") ? void (0) : __assert_fail ("D->isArrayRangeDesignator() && \"Need array-range designator\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 2528, __extension__ __PRETTY_FUNCTION__))
;
2529
2530 DesignatedStartIndex =
2531 DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2532 DesignatedEndIndex =
2533 DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2534 IndexExpr = DIE->getArrayRangeEnd(*D);
2535
2536 // Codegen can't handle evaluating array range designators that have side
2537 // effects, because we replicate the AST value for each initialized element.
2538 // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2539 // elements with something that has a side effect, so codegen can emit an
2540 // "error unsupported" error instead of miscompiling the app.
2541 if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2542 DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2543 FullyStructuredList->sawArrayRangeDesignator();
2544 }
2545
2546 if (isa<ConstantArrayType>(AT)) {
2547 llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2548 DesignatedStartIndex
2549 = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2550 DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2551 DesignatedEndIndex
2552 = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2553 DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2554 if (DesignatedEndIndex >= MaxElements) {
2555 if (!VerifyOnly)
2556 SemaRef.Diag(IndexExpr->getLocStart(),
2557 diag::err_array_designator_too_large)
2558 << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2559 << IndexExpr->getSourceRange();
2560 ++Index;
2561 return true;
2562 }
2563 } else {
2564 unsigned DesignatedIndexBitWidth =
2565 ConstantArrayType::getMaxSizeBits(SemaRef.Context);
2566 DesignatedStartIndex =
2567 DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth);
2568 DesignatedEndIndex =
2569 DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth);
2570 DesignatedStartIndex.setIsUnsigned(true);
2571 DesignatedEndIndex.setIsUnsigned(true);
2572 }
2573
2574 if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2575 // We're modifying a string literal init; we have to decompose the string
2576 // so we can modify the individual characters.
2577 ASTContext &Context = SemaRef.Context;
2578 Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2579
2580 // Compute the character type
2581 QualType CharTy = AT->getElementType();
2582
2583 // Compute the type of the integer literals.
2584 QualType PromotedCharTy = CharTy;
2585 if (CharTy->isPromotableIntegerType())
2586 PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2587 unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2588
2589 if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2590 // Get the length of the string.
2591 uint64_t StrLen = SL->getLength();
2592 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2593 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2594 StructuredList->resizeInits(Context, StrLen);
2595
2596 // Build a literal for each character in the string, and put them into
2597 // the init list.
2598 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2599 llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2600 Expr *Init = new (Context) IntegerLiteral(
2601 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2602 if (CharTy != PromotedCharTy)
2603 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2604 Init, nullptr, VK_RValue);
2605 StructuredList->updateInit(Context, i, Init);
2606 }
2607 } else {
2608 ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2609 std::string Str;
2610 Context.getObjCEncodingForType(E->getEncodedType(), Str);
2611
2612 // Get the length of the string.
2613 uint64_t StrLen = Str.size();
2614 if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2615 StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2616 StructuredList->resizeInits(Context, StrLen);
2617
2618 // Build a literal for each character in the string, and put them into
2619 // the init list.
2620 for (unsigned i = 0, e = StrLen; i != e; ++i) {
2621 llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2622 Expr *Init = new (Context) IntegerLiteral(
2623 Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2624 if (CharTy != PromotedCharTy)
2625 Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2626 Init, nullptr, VK_RValue);
2627 StructuredList->updateInit(Context, i, Init);
2628 }
2629 }
2630 }
2631
2632 // Make sure that our non-designated initializer list has space
2633 // for a subobject corresponding to this array element.
2634 if (!VerifyOnly &&
2635 DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2636 StructuredList->resizeInits(SemaRef.Context,
2637 DesignatedEndIndex.getZExtValue() + 1);
2638
2639 // Repeatedly perform subobject initializations in the range
2640 // [DesignatedStartIndex, DesignatedEndIndex].
2641
2642 // Move to the next designator
2643 unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2644 unsigned OldIndex = Index;
2645
2646 InitializedEntity ElementEntity =
2647 InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2648
2649 while (DesignatedStartIndex <= DesignatedEndIndex) {
2650 // Recurse to check later designated subobjects.
2651 QualType ElementType = AT->getElementType();
2652 Index = OldIndex;
2653
2654 ElementEntity.setElementIndex(ElementIndex);
2655 if (CheckDesignatedInitializer(
2656 ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr,
2657 nullptr, Index, StructuredList, ElementIndex,
2658 FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex),
2659 false))
2660 return true;
2661
2662 // Move to the next index in the array that we'll be initializing.
2663 ++DesignatedStartIndex;
2664 ElementIndex = DesignatedStartIndex.getZExtValue();
2665 }
2666
2667 // If this the first designator, our caller will continue checking
2668 // the rest of this array subobject.
2669 if (IsFirstDesignator) {
2670 if (NextElementIndex)
2671 *NextElementIndex = DesignatedStartIndex;
2672 StructuredIndex = ElementIndex;
2673 return false;
2674 }
2675
2676 if (!FinishSubobjectInit)
2677 return false;
2678
2679 // Check the remaining elements within this array subobject.
2680 bool prevHadError = hadError;
2681 CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2682 /*SubobjectIsDesignatorContext=*/false, Index,
2683 StructuredList, ElementIndex);
2684 return hadError && !prevHadError;
2685}
2686
2687// Get the structured initializer list for a subobject of type
2688// @p CurrentObjectType.
2689InitListExpr *
2690InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2691 QualType CurrentObjectType,
2692 InitListExpr *StructuredList,
2693 unsigned StructuredIndex,
2694 SourceRange InitRange,
2695 bool IsFullyOverwritten) {
2696 if (VerifyOnly)
2697 return nullptr; // No structured list in verification-only mode.
2698 Expr *ExistingInit = nullptr;
2699 if (!StructuredList)
2700 ExistingInit = SyntacticToSemantic.lookup(IList);
2701 else if (StructuredIndex < StructuredList->getNumInits())
2702 ExistingInit = StructuredList->getInit(StructuredIndex);
2703
2704 if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2705 // There might have already been initializers for subobjects of the current
2706 // object, but a subsequent initializer list will overwrite the entirety
2707 // of the current object. (See DR 253 and C99 6.7.8p21). e.g.,
2708 //
2709 // struct P { char x[6]; };
2710 // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } };
2711 //
2712 // The first designated initializer is ignored, and l.x is just "f".
2713 if (!IsFullyOverwritten)
2714 return Result;
2715
2716 if (ExistingInit) {
2717 // We are creating an initializer list that initializes the
2718 // subobjects of the current object, but there was already an
2719 // initialization that completely initialized the current
2720 // subobject, e.g., by a compound literal:
2721 //
2722 // struct X { int a, b; };
2723 // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2724 //
2725 // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2726 // designated initializer re-initializes the whole
2727 // subobject [0], overwriting previous initializers.
2728 SemaRef.Diag(InitRange.getBegin(),
2729 diag::warn_subobject_initializer_overrides)
2730 << InitRange;
2731 SemaRef.Diag(ExistingInit->getLocStart(),
2732 diag::note_previous_initializer)
2733 << /*FIXME:has side effects=*/0
2734 << ExistingInit->getSourceRange();
2735 }
2736
2737 InitListExpr *Result
2738 = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2739 InitRange.getBegin(), None,
2740 InitRange.getEnd());
2741
2742 QualType ResultType = CurrentObjectType;
2743 if (!ResultType->isArrayType())
2744 ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2745 Result->setType(ResultType);
2746
2747 // Pre-allocate storage for the structured initializer list.
2748 unsigned NumElements = 0;
2749 unsigned NumInits = 0;
2750 bool GotNumInits = false;
2751 if (!StructuredList) {
2752 NumInits = IList->getNumInits();
2753 GotNumInits = true;
2754 } else if (Index < IList->getNumInits()) {
2755 if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2756 NumInits = SubList->getNumInits();
2757 GotNumInits = true;
2758 }
2759 }
2760
2761 if (const ArrayType *AType
2762 = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2763 if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2764 NumElements = CAType->getSize().getZExtValue();
2765 // Simple heuristic so that we don't allocate a very large
2766 // initializer with many empty entries at the end.
2767 if (GotNumInits && NumElements > NumInits)
2768 NumElements = 0;
2769 }
2770 } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2771 NumElements = VType->getNumElements();
2772 else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2773 RecordDecl *RDecl = RType->getDecl();
2774 if (RDecl->isUnion())
2775 NumElements = 1;
2776 else
2777 NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2778 }
2779
2780 Result->reserveInits(SemaRef.Context, NumElements);
2781
2782 // Link this new initializer list into the structured initializer
2783 // lists.
2784 if (StructuredList)
2785 StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2786 else {
2787 Result->setSyntacticForm(IList);
2788 SyntacticToSemantic[IList] = Result;
2789 }
2790
2791 return Result;
2792}
2793
2794/// Update the initializer at index @p StructuredIndex within the
2795/// structured initializer list to the value @p expr.
2796void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2797 unsigned &StructuredIndex,
2798 Expr *expr) {
2799 // No structured initializer list to update
2800 if (!StructuredList)
2801 return;
2802
2803 if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2804 StructuredIndex, expr)) {
2805 // This initializer overwrites a previous initializer. Warn.
2806 // We need to check on source range validity because the previous
2807 // initializer does not have to be an explicit initializer.
2808 // struct P { int a, b; };
2809 // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 };
2810 // There is an overwrite taking place because the first braced initializer
2811 // list "{ .a = 2 }' already provides value for .p.b (which is zero).
2812 if (PrevInit->getSourceRange().isValid()) {
2813 SemaRef.Diag(expr->getLocStart(),
2814 diag::warn_initializer_overrides)
2815 << expr->getSourceRange();
2816
2817 SemaRef.Diag(PrevInit->getLocStart(),
2818 diag::note_previous_initializer)
2819 << /*FIXME:has side effects=*/0
2820 << PrevInit->getSourceRange();
2821 }
2822 }
2823
2824 ++StructuredIndex;
2825}
2826
2827/// Check that the given Index expression is a valid array designator
2828/// value. This is essentially just a wrapper around
2829/// VerifyIntegerConstantExpression that also checks for negative values
2830/// and produces a reasonable diagnostic if there is a
2831/// failure. Returns the index expression, possibly with an implicit cast
2832/// added, on success. If everything went okay, Value will receive the
2833/// value of the constant expression.
2834static ExprResult
2835CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2836 SourceLocation Loc = Index->getLocStart();
2837
2838 // Make sure this is an integer constant expression.
2839 ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2840 if (Result.isInvalid())
2841 return Result;
2842
2843 if (Value.isSigned() && Value.isNegative())
2844 return S.Diag(Loc, diag::err_array_designator_negative)
2845 << Value.toString(10) << Index->getSourceRange();
2846
2847 Value.setIsUnsigned(true);
2848 return Result;
2849}
2850
2851ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2852 SourceLocation Loc,
2853 bool GNUSyntax,
2854 ExprResult Init) {
2855 typedef DesignatedInitExpr::Designator ASTDesignator;
2856
2857 bool Invalid = false;
2858 SmallVector<ASTDesignator, 32> Designators;
2859 SmallVector<Expr *, 32> InitExpressions;
2860
2861 // Build designators and check array designator expressions.
2862 for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2863 const Designator &D = Desig.getDesignator(Idx);
2864 switch (D.getKind()) {
2865 case Designator::FieldDesignator:
2866 Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2867 D.getFieldLoc()));
2868 break;
2869
2870 case Designator::ArrayDesignator: {
2871 Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2872 llvm::APSInt IndexValue;
2873 if (!Index->isTypeDependent() && !Index->isValueDependent())
2874 Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2875 if (!Index)
2876 Invalid = true;
2877 else {
2878 Designators.push_back(ASTDesignator(InitExpressions.size(),
2879 D.getLBracketLoc(),
2880 D.getRBracketLoc()));
2881 InitExpressions.push_back(Index);
2882 }
2883 break;
2884 }
2885
2886 case Designator::ArrayRangeDesignator: {
2887 Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2888 Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2889 llvm::APSInt StartValue;
2890 llvm::APSInt EndValue;
2891 bool StartDependent = StartIndex->isTypeDependent() ||
2892 StartIndex->isValueDependent();
2893 bool EndDependent = EndIndex->isTypeDependent() ||
2894 EndIndex->isValueDependent();
2895 if (!StartDependent)
2896 StartIndex =
2897 CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2898 if (!EndDependent)
2899 EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2900
2901 if (!StartIndex || !EndIndex)
2902 Invalid = true;
2903 else {
2904 // Make sure we're comparing values with the same bit width.
2905 if (StartDependent || EndDependent) {
2906 // Nothing to compute.
2907 } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2908 EndValue = EndValue.extend(StartValue.getBitWidth());
2909 else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2910 StartValue = StartValue.extend(EndValue.getBitWidth());
2911
2912 if (!StartDependent && !EndDependent && EndValue < StartValue) {
2913 Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2914 << StartValue.toString(10) << EndValue.toString(10)
2915 << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2916 Invalid = true;
2917 } else {
2918 Designators.push_back(ASTDesignator(InitExpressions.size(),
2919 D.getLBracketLoc(),
2920 D.getEllipsisLoc(),
2921 D.getRBracketLoc()));
2922 InitExpressions.push_back(StartIndex);
2923 InitExpressions.push_back(EndIndex);
2924 }
2925 }
2926 break;
2927 }
2928 }
2929 }
2930
2931 if (Invalid || Init.isInvalid())
2932 return ExprError();
2933
2934 // Clear out the expressions within the designation.
2935 Desig.ClearExprs(*this);
2936
2937 DesignatedInitExpr *DIE
2938 = DesignatedInitExpr::Create(Context,
2939 Designators,
2940 InitExpressions, Loc, GNUSyntax,
2941 Init.getAs<Expr>());
2942
2943 if (!getLangOpts().C99)
2944 Diag(DIE->getLocStart(), diag::ext_designated_init)
2945 << DIE->getSourceRange();
2946
2947 return DIE;
2948}
2949
2950//===----------------------------------------------------------------------===//
2951// Initialization entity
2952//===----------------------------------------------------------------------===//
2953
2954InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2955 const InitializedEntity &Parent)
2956 : Parent(&Parent), Index(Index)
2957{
2958 if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2959 Kind = EK_ArrayElement;
2960 Type = AT->getElementType();
2961 } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2962 Kind = EK_VectorElement;
2963 Type = VT->getElementType();
2964 } else {
2965 const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2966 assert(CT && "Unexpected type")(static_cast <bool> (CT && "Unexpected type") ?
void (0) : __assert_fail ("CT && \"Unexpected type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 2966, __extension__ __PRETTY_FUNCTION__))
;
2967 Kind = EK_ComplexElement;
2968 Type = CT->getElementType();
2969 }
2970}
2971
2972InitializedEntity
2973InitializedEntity::InitializeBase(ASTContext &Context,
2974 const CXXBaseSpecifier *Base,
2975 bool IsInheritedVirtualBase,
2976 const InitializedEntity *Parent) {
2977 InitializedEntity Result;
2978 Result.Kind = EK_Base;
2979 Result.Parent = Parent;
2980 Result.Base = reinterpret_cast<uintptr_t>(Base);
2981 if (IsInheritedVirtualBase)
2982 Result.Base |= 0x01;
2983
2984 Result.Type = Base->getType();
2985 return Result;
2986}
2987
2988DeclarationName InitializedEntity::getName() const {
2989 switch (getKind()) {
2990 case EK_Parameter:
2991 case EK_Parameter_CF_Audited: {
2992 ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2993 return (D ? D->getDeclName() : DeclarationName());
2994 }
2995
2996 case EK_Variable:
2997 case EK_Member:
2998 case EK_Binding:
2999 return Variable.VariableOrMember->getDeclName();
3000
3001 case EK_LambdaCapture:
3002 return DeclarationName(Capture.VarID);
3003
3004 case EK_Result:
3005 case EK_StmtExprResult:
3006 case EK_Exception:
3007 case EK_New:
3008 case EK_Temporary:
3009 case EK_Base:
3010 case EK_Delegating:
3011 case EK_ArrayElement:
3012 case EK_VectorElement:
3013 case EK_ComplexElement:
3014 case EK_BlockElement:
3015 case EK_LambdaToBlockConversionBlockElement:
3016 case EK_CompoundLiteralInit:
3017 case EK_RelatedResult:
3018 return DeclarationName();
3019 }
3020
3021 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3021)
;
3022}
3023
3024ValueDecl *InitializedEntity::getDecl() const {
3025 switch (getKind()) {
3026 case EK_Variable:
3027 case EK_Member:
3028 case EK_Binding:
3029 return Variable.VariableOrMember;
3030
3031 case EK_Parameter:
3032 case EK_Parameter_CF_Audited:
3033 return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
3034
3035 case EK_Result:
3036 case EK_StmtExprResult:
3037 case EK_Exception:
3038 case EK_New:
3039 case EK_Temporary:
3040 case EK_Base:
3041 case EK_Delegating:
3042 case EK_ArrayElement:
3043 case EK_VectorElement:
3044 case EK_ComplexElement:
3045 case EK_BlockElement:
3046 case EK_LambdaToBlockConversionBlockElement:
3047 case EK_LambdaCapture:
3048 case EK_CompoundLiteralInit:
3049 case EK_RelatedResult:
3050 return nullptr;
3051 }
3052
3053 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3053)
;
3054}
3055
3056bool InitializedEntity::allowsNRVO() const {
3057 switch (getKind()) {
3058 case EK_Result:
3059 case EK_Exception:
3060 return LocAndNRVO.NRVO;
3061
3062 case EK_StmtExprResult:
3063 case EK_Variable:
3064 case EK_Parameter:
3065 case EK_Parameter_CF_Audited:
3066 case EK_Member:
3067 case EK_Binding:
3068 case EK_New:
3069 case EK_Temporary:
3070 case EK_CompoundLiteralInit:
3071 case EK_Base:
3072 case EK_Delegating:
3073 case EK_ArrayElement:
3074 case EK_VectorElement:
3075 case EK_ComplexElement:
3076 case EK_BlockElement:
3077 case EK_LambdaToBlockConversionBlockElement:
3078 case EK_LambdaCapture:
3079 case EK_RelatedResult:
3080 break;
3081 }
3082
3083 return false;
3084}
3085
3086unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
3087 assert(getParent() != this)(static_cast <bool> (getParent() != this) ? void (0) : __assert_fail
("getParent() != this", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3087, __extension__ __PRETTY_FUNCTION__))
;
3088 unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
3089 for (unsigned I = 0; I != Depth; ++I)
3090 OS << "`-";
3091
3092 switch (getKind()) {
3093 case EK_Variable: OS << "Variable"; break;
3094 case EK_Parameter: OS << "Parameter"; break;
3095 case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
3096 break;
3097 case EK_Result: OS << "Result"; break;
3098 case EK_StmtExprResult: OS << "StmtExprResult"; break;
3099 case EK_Exception: OS << "Exception"; break;
3100 case EK_Member: OS << "Member"; break;
3101 case EK_Binding: OS << "Binding"; break;
3102 case EK_New: OS << "New"; break;
3103 case EK_Temporary: OS << "Temporary"; break;
3104 case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
3105 case EK_RelatedResult: OS << "RelatedResult"; break;
3106 case EK_Base: OS << "Base"; break;
3107 case EK_Delegating: OS << "Delegating"; break;
3108 case EK_ArrayElement: OS << "ArrayElement " << Index; break;
3109 case EK_VectorElement: OS << "VectorElement " << Index; break;
3110 case EK_ComplexElement: OS << "ComplexElement " << Index; break;
3111 case EK_BlockElement: OS << "Block"; break;
3112 case EK_LambdaToBlockConversionBlockElement:
3113 OS << "Block (lambda)";
3114 break;
3115 case EK_LambdaCapture:
3116 OS << "LambdaCapture ";
3117 OS << DeclarationName(Capture.VarID);
3118 break;
3119 }
3120
3121 if (auto *D = getDecl()) {
3122 OS << " ";
3123 D->printQualifiedName(OS);
3124 }
3125
3126 OS << " '" << getType().getAsString() << "'\n";
3127
3128 return Depth + 1;
3129}
3130
3131LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void InitializedEntity::dump() const {
3132 dumpImpl(llvm::errs());
3133}
3134
3135//===----------------------------------------------------------------------===//
3136// Initialization sequence
3137//===----------------------------------------------------------------------===//
3138
3139void InitializationSequence::Step::Destroy() {
3140 switch (Kind) {
3141 case SK_ResolveAddressOfOverloadedFunction:
3142 case SK_CastDerivedToBaseRValue:
3143 case SK_CastDerivedToBaseXValue:
3144 case SK_CastDerivedToBaseLValue:
3145 case SK_BindReference:
3146 case SK_BindReferenceToTemporary:
3147 case SK_FinalCopy:
3148 case SK_ExtraneousCopyToTemporary:
3149 case SK_UserConversion:
3150 case SK_QualificationConversionRValue:
3151 case SK_QualificationConversionXValue:
3152 case SK_QualificationConversionLValue:
3153 case SK_AtomicConversion:
3154 case SK_LValueToRValue:
3155 case SK_ListInitialization:
3156 case SK_UnwrapInitList:
3157 case SK_RewrapInitList:
3158 case SK_ConstructorInitialization:
3159 case SK_ConstructorInitializationFromList:
3160 case SK_ZeroInitialization:
3161 case SK_CAssignment:
3162 case SK_StringInit:
3163 case SK_ObjCObjectConversion:
3164 case SK_ArrayLoopIndex:
3165 case SK_ArrayLoopInit:
3166 case SK_ArrayInit:
3167 case SK_GNUArrayInit:
3168 case SK_ParenthesizedArrayInit:
3169 case SK_PassByIndirectCopyRestore:
3170 case SK_PassByIndirectRestore:
3171 case SK_ProduceObjCObject:
3172 case SK_StdInitializerList:
3173 case SK_StdInitializerListConstructorCall:
3174 case SK_OCLSamplerInit:
3175 case SK_OCLZeroEvent:
3176 case SK_OCLZeroQueue:
3177 break;
3178
3179 case SK_ConversionSequence:
3180 case SK_ConversionSequenceNoNarrowing:
3181 delete ICS;
3182 }
3183}
3184
3185bool InitializationSequence::isDirectReferenceBinding() const {
3186 // There can be some lvalue adjustments after the SK_BindReference step.
3187 for (auto I = Steps.rbegin(); I != Steps.rend(); ++I) {
3188 if (I->Kind == SK_BindReference)
3189 return true;
3190 if (I->Kind == SK_BindReferenceToTemporary)
3191 return false;
3192 }
3193 return false;
3194}
3195
3196bool InitializationSequence::isAmbiguous() const {
3197 if (!Failed())
3198 return false;
3199
3200 switch (getFailureKind()) {
3201 case FK_TooManyInitsForReference:
3202 case FK_ParenthesizedListInitForReference:
3203 case FK_ArrayNeedsInitList:
3204 case FK_ArrayNeedsInitListOrStringLiteral:
3205 case FK_ArrayNeedsInitListOrWideStringLiteral:
3206 case FK_NarrowStringIntoWideCharArray:
3207 case FK_WideStringIntoCharArray:
3208 case FK_IncompatWideStringIntoWideChar:
3209 case FK_PlainStringIntoUTF8Char:
3210 case FK_UTF8StringIntoPlainChar:
3211 case FK_AddressOfOverloadFailed: // FIXME: Could do better
3212 case FK_NonConstLValueReferenceBindingToTemporary:
3213 case FK_NonConstLValueReferenceBindingToBitfield:
3214 case FK_NonConstLValueReferenceBindingToVectorElement:
3215 case FK_NonConstLValueReferenceBindingToUnrelated:
3216 case FK_RValueReferenceBindingToLValue:
3217 case FK_ReferenceInitDropsQualifiers:
3218 case FK_ReferenceInitFailed:
3219 case FK_ConversionFailed:
3220 case FK_ConversionFromPropertyFailed:
3221 case FK_TooManyInitsForScalar:
3222 case FK_ParenthesizedListInitForScalar:
3223 case FK_ReferenceBindingToInitList:
3224 case FK_InitListBadDestinationType:
3225 case FK_DefaultInitOfConst:
3226 case FK_Incomplete:
3227 case FK_ArrayTypeMismatch:
3228 case FK_NonConstantArrayInit:
3229 case FK_ListInitializationFailed:
3230 case FK_VariableLengthArrayHasInitializer:
3231 case FK_PlaceholderType:
3232 case FK_ExplicitConstructor:
3233 case FK_AddressOfUnaddressableFunction:
3234 return false;
3235
3236 case FK_ReferenceInitOverloadFailed:
3237 case FK_UserConversionOverloadFailed:
3238 case FK_ConstructorOverloadFailed:
3239 case FK_ListConstructorOverloadFailed:
3240 return FailedOverloadResult == OR_Ambiguous;
3241 }
3242
3243 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3243)
;
3244}
3245
3246bool InitializationSequence::isConstructorInitialization() const {
3247 return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
3248}
3249
3250void
3251InitializationSequence
3252::AddAddressOverloadResolutionStep(FunctionDecl *Function,
3253 DeclAccessPair Found,
3254 bool HadMultipleCandidates) {
3255 Step S;
3256 S.Kind = SK_ResolveAddressOfOverloadedFunction;
3257 S.Type = Function->getType();
3258 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3259 S.Function.Function = Function;
3260 S.Function.FoundDecl = Found;
3261 Steps.push_back(S);
3262}
3263
3264void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
3265 ExprValueKind VK) {
3266 Step S;
3267 switch (VK) {
3268 case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
3269 case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
3270 case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
3271 }
3272 S.Type = BaseType;
3273 Steps.push_back(S);
3274}
3275
3276void InitializationSequence::AddReferenceBindingStep(QualType T,
3277 bool BindingTemporary) {
3278 Step S;
3279 S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
3280 S.Type = T;
3281 Steps.push_back(S);
3282}
3283
3284void InitializationSequence::AddFinalCopy(QualType T) {
3285 Step S;
3286 S.Kind = SK_FinalCopy;
3287 S.Type = T;
3288 Steps.push_back(S);
3289}
3290
3291void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
3292 Step S;
3293 S.Kind = SK_ExtraneousCopyToTemporary;
3294 S.Type = T;
3295 Steps.push_back(S);
3296}
3297
3298void
3299InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
3300 DeclAccessPair FoundDecl,
3301 QualType T,
3302 bool HadMultipleCandidates) {
3303 Step S;
3304 S.Kind = SK_UserConversion;
3305 S.Type = T;
3306 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3307 S.Function.Function = Function;
3308 S.Function.FoundDecl = FoundDecl;
3309 Steps.push_back(S);
3310}
3311
3312void InitializationSequence::AddQualificationConversionStep(QualType Ty,
3313 ExprValueKind VK) {
3314 Step S;
3315 S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
3316 switch (VK) {
3317 case VK_RValue:
3318 S.Kind = SK_QualificationConversionRValue;
3319 break;
3320 case VK_XValue:
3321 S.Kind = SK_QualificationConversionXValue;
3322 break;
3323 case VK_LValue:
3324 S.Kind = SK_QualificationConversionLValue;
3325 break;
3326 }
3327 S.Type = Ty;
3328 Steps.push_back(S);
3329}
3330
3331void InitializationSequence::AddAtomicConversionStep(QualType Ty) {
3332 Step S;
3333 S.Kind = SK_AtomicConversion;
3334 S.Type = Ty;
3335 Steps.push_back(S);
3336}
3337
3338void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
3339 assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers")(static_cast <bool> (!Ty.hasQualifiers() && "rvalues may not have qualifiers"
) ? void (0) : __assert_fail ("!Ty.hasQualifiers() && \"rvalues may not have qualifiers\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3339, __extension__ __PRETTY_FUNCTION__))
;
3340
3341 Step S;
3342 S.Kind = SK_LValueToRValue;
3343 S.Type = Ty;
3344 Steps.push_back(S);
3345}
3346
3347void InitializationSequence::AddConversionSequenceStep(
3348 const ImplicitConversionSequence &ICS, QualType T,
3349 bool TopLevelOfInitList) {
3350 Step S;
3351 S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
3352 : SK_ConversionSequence;
3353 S.Type = T;
3354 S.ICS = new ImplicitConversionSequence(ICS);
3355 Steps.push_back(S);
3356}
3357
3358void InitializationSequence::AddListInitializationStep(QualType T) {
3359 Step S;
3360 S.Kind = SK_ListInitialization;
3361 S.Type = T;
3362 Steps.push_back(S);
3363}
3364
3365void InitializationSequence::AddConstructorInitializationStep(
3366 DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T,
3367 bool HadMultipleCandidates, bool FromInitList, bool AsInitList) {
3368 Step S;
3369 S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall
3370 : SK_ConstructorInitializationFromList
3371 : SK_ConstructorInitialization;
3372 S.Type = T;
3373 S.Function.HadMultipleCandidates = HadMultipleCandidates;
3374 S.Function.Function = Constructor;
3375 S.Function.FoundDecl = FoundDecl;
3376 Steps.push_back(S);
3377}
3378
3379void InitializationSequence::AddZeroInitializationStep(QualType T) {
3380 Step S;
3381 S.Kind = SK_ZeroInitialization;
3382 S.Type = T;
3383 Steps.push_back(S);
3384}
3385
3386void InitializationSequence::AddCAssignmentStep(QualType T) {
3387 Step S;
3388 S.Kind = SK_CAssignment;
3389 S.Type = T;
3390 Steps.push_back(S);
3391}
3392
3393void InitializationSequence::AddStringInitStep(QualType T) {
3394 Step S;
3395 S.Kind = SK_StringInit;
3396 S.Type = T;
3397 Steps.push_back(S);
3398}
3399
3400void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
3401 Step S;
3402 S.Kind = SK_ObjCObjectConversion;
3403 S.Type = T;
3404 Steps.push_back(S);
3405}
3406
3407void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) {
3408 Step S;
3409 S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit;
3410 S.Type = T;
3411 Steps.push_back(S);
3412}
3413
3414void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) {
3415 Step S;
3416 S.Kind = SK_ArrayLoopIndex;
3417 S.Type = EltT;
3418 Steps.insert(Steps.begin(), S);
3419
3420 S.Kind = SK_ArrayLoopInit;
3421 S.Type = T;
3422 Steps.push_back(S);
3423}
3424
3425void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
3426 Step S;
3427 S.Kind = SK_ParenthesizedArrayInit;
3428 S.Type = T;
3429 Steps.push_back(S);
3430}
3431
3432void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
3433 bool shouldCopy) {
3434 Step s;
3435 s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3436 : SK_PassByIndirectRestore);
3437 s.Type = type;
3438 Steps.push_back(s);
3439}
3440
3441void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3442 Step S;
3443 S.Kind = SK_ProduceObjCObject;
3444 S.Type = T;
3445 Steps.push_back(S);
3446}
3447
3448void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3449 Step S;
3450 S.Kind = SK_StdInitializerList;
3451 S.Type = T;
3452 Steps.push_back(S);
3453}
3454
3455void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3456 Step S;
3457 S.Kind = SK_OCLSamplerInit;
3458 S.Type = T;
3459 Steps.push_back(S);
3460}
3461
3462void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3463 Step S;
3464 S.Kind = SK_OCLZeroEvent;
3465 S.Type = T;
3466 Steps.push_back(S);
3467}
3468
3469void InitializationSequence::AddOCLZeroQueueStep(QualType T) {
3470 Step S;
3471 S.Kind = SK_OCLZeroQueue;
3472 S.Type = T;
3473 Steps.push_back(S);
3474}
3475
3476void InitializationSequence::RewrapReferenceInitList(QualType T,
3477 InitListExpr *Syntactic) {
3478 assert(Syntactic->getNumInits() == 1 &&(static_cast <bool> (Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists.") ? void (0) : __assert_fail
("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3479, __extension__ __PRETTY_FUNCTION__))
3479 "Can only rewrap trivial init lists.")(static_cast <bool> (Syntactic->getNumInits() == 1 &&
"Can only rewrap trivial init lists.") ? void (0) : __assert_fail
("Syntactic->getNumInits() == 1 && \"Can only rewrap trivial init lists.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3479, __extension__ __PRETTY_FUNCTION__))
;
3480 Step S;
3481 S.Kind = SK_UnwrapInitList;
3482 S.Type = Syntactic->getInit(0)->getType();
3483 Steps.insert(Steps.begin(), S);
3484
3485 S.Kind = SK_RewrapInitList;
3486 S.Type = T;
3487 S.WrappingSyntacticList = Syntactic;
3488 Steps.push_back(S);
3489}
3490
3491void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3492 OverloadingResult Result) {
3493 setSequenceKind(FailedSequence);
3494 this->Failure = Failure;
3495 this->FailedOverloadResult = Result;
3496}
3497
3498//===----------------------------------------------------------------------===//
3499// Attempt initialization
3500//===----------------------------------------------------------------------===//
3501
3502/// Tries to add a zero initializer. Returns true if that worked.
3503static bool
3504maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence,
3505 const InitializedEntity &Entity) {
3506 if (Entity.getKind() != InitializedEntity::EK_Variable)
3507 return false;
3508
3509 VarDecl *VD = cast<VarDecl>(Entity.getDecl());
3510 if (VD->getInit() || VD->getLocEnd().isMacroID())
3511 return false;
3512
3513 QualType VariableTy = VD->getType().getCanonicalType();
3514 SourceLocation Loc = S.getLocForEndOfToken(VD->getLocEnd());
3515 std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc);
3516 if (!Init.empty()) {
3517 Sequence.AddZeroInitializationStep(Entity.getType());
3518 Sequence.SetZeroInitializationFixit(Init, Loc);
3519 return true;
3520 }
3521 return false;
3522}
3523
3524static void MaybeProduceObjCObject(Sema &S,
3525 InitializationSequence &Sequence,
3526 const InitializedEntity &Entity) {
3527 if (!S.getLangOpts().ObjCAutoRefCount) return;
3528
3529 /// When initializing a parameter, produce the value if it's marked
3530 /// __attribute__((ns_consumed)).
3531 if (Entity.isParameterKind()) {
3532 if (!Entity.isParameterConsumed())
3533 return;
3534
3535 assert(Entity.getType()->isObjCRetainableType() &&(static_cast <bool> (Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?") ? void
(0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3536, __extension__ __PRETTY_FUNCTION__))
3536 "consuming an object of unretainable type?")(static_cast <bool> (Entity.getType()->isObjCRetainableType
() && "consuming an object of unretainable type?") ? void
(0) : __assert_fail ("Entity.getType()->isObjCRetainableType() && \"consuming an object of unretainable type?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3536, __extension__ __PRETTY_FUNCTION__))
;
3537 Sequence.AddProduceObjCObjectStep(Entity.getType());
3538
3539 /// When initializing a return value, if the return type is a
3540 /// retainable type, then returns need to immediately retain the
3541 /// object. If an autorelease is required, it will be done at the
3542 /// last instant.
3543 } else if (Entity.getKind() == InitializedEntity::EK_Result ||
3544 Entity.getKind() == InitializedEntity::EK_StmtExprResult) {
3545 if (!Entity.getType()->isObjCRetainableType())
3546 return;
3547
3548 Sequence.AddProduceObjCObjectStep(Entity.getType());
3549 }
3550}
3551
3552static void TryListInitialization(Sema &S,
3553 const InitializedEntity &Entity,
3554 const InitializationKind &Kind,
3555 InitListExpr *InitList,
3556 InitializationSequence &Sequence,
3557 bool TreatUnavailableAsInvalid);
3558
3559/// When initializing from init list via constructor, handle
3560/// initialization of an object of type std::initializer_list<T>.
3561///
3562/// \return true if we have handled initialization of an object of type
3563/// std::initializer_list<T>, false otherwise.
3564static bool TryInitializerListConstruction(Sema &S,
3565 InitListExpr *List,
3566 QualType DestType,
3567 InitializationSequence &Sequence,
3568 bool TreatUnavailableAsInvalid) {
3569 QualType E;
3570 if (!S.isStdInitializerList(DestType, &E))
3571 return false;
3572
3573 if (!S.isCompleteType(List->getExprLoc(), E)) {
3574 Sequence.setIncompleteTypeFailure(E);
3575 return true;
3576 }
3577
3578 // Try initializing a temporary array from the init list.
3579 QualType ArrayType = S.Context.getConstantArrayType(
3580 E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3581 List->getNumInits()),
3582 clang::ArrayType::Normal, 0);
3583 InitializedEntity HiddenArray =
3584 InitializedEntity::InitializeTemporary(ArrayType);
3585 InitializationKind Kind = InitializationKind::CreateDirectList(
3586 List->getExprLoc(), List->getLocStart(), List->getLocEnd());
3587 TryListInitialization(S, HiddenArray, Kind, List, Sequence,
3588 TreatUnavailableAsInvalid);
3589 if (Sequence)
3590 Sequence.AddStdInitializerListConstructionStep(DestType);
3591 return true;
3592}
3593
3594/// Determine if the constructor has the signature of a copy or move
3595/// constructor for the type T of the class in which it was found. That is,
3596/// determine if its first parameter is of type T or reference to (possibly
3597/// cv-qualified) T.
3598static bool hasCopyOrMoveCtorParam(ASTContext &Ctx,
3599 const ConstructorInfo &Info) {
3600 if (Info.Constructor->getNumParams() == 0)
3601 return false;
3602
3603 QualType ParmT =
3604 Info.Constructor->getParamDecl(0)->getType().getNonReferenceType();
3605 QualType ClassT =
3606 Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext()));
3607
3608 return Ctx.hasSameUnqualifiedType(ParmT, ClassT);
3609}
3610
3611static OverloadingResult
3612ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3613 MultiExprArg Args,
3614 OverloadCandidateSet &CandidateSet,
3615 QualType DestType,
3616 DeclContext::lookup_result Ctors,
3617 OverloadCandidateSet::iterator &Best,
3618 bool CopyInitializing, bool AllowExplicit,
3619 bool OnlyListConstructors, bool IsListInit,
3620 bool SecondStepOfCopyInit = false) {
3621 CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor);
3622
3623 for (NamedDecl *D : Ctors) {
3624 auto Info = getConstructorInfo(D);
3625 if (!Info.Constructor || Info.Constructor->isInvalidDecl())
3626 continue;
3627
3628 if (!AllowExplicit && Info.Constructor->isExplicit())
3629 continue;
3630
3631 if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor))
3632 continue;
3633
3634 // C++11 [over.best.ics]p4:
3635 // ... and the constructor or user-defined conversion function is a
3636 // candidate by
3637 // - 13.3.1.3, when the argument is the temporary in the second step
3638 // of a class copy-initialization, or
3639 // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here]
3640 // - the second phase of 13.3.1.7 when the initializer list has exactly
3641 // one element that is itself an initializer list, and the target is
3642 // the first parameter of a constructor of class X, and the conversion
3643 // is to X or reference to (possibly cv-qualified X),
3644 // user-defined conversion sequences are not considered.
3645 bool SuppressUserConversions =
3646 SecondStepOfCopyInit ||
3647 (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
3648 hasCopyOrMoveCtorParam(S.Context, Info));
3649
3650 if (Info.ConstructorTmpl)
3651 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
3652 /*ExplicitArgs*/ nullptr, Args,
3653 CandidateSet, SuppressUserConversions);
3654 else {
3655 // C++ [over.match.copy]p1:
3656 // - When initializing a temporary to be bound to the first parameter
3657 // of a constructor [for type T] that takes a reference to possibly
3658 // cv-qualified T as its first argument, called with a single
3659 // argument in the context of direct-initialization, explicit
3660 // conversion functions are also considered.
3661 // FIXME: What if a constructor template instantiates to such a signature?
3662 bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3663 Args.size() == 1 &&
3664 hasCopyOrMoveCtorParam(S.Context, Info);
3665 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args,
3666 CandidateSet, SuppressUserConversions,
3667 /*PartialOverloading=*/false,
3668 /*AllowExplicit=*/AllowExplicitConv);
3669 }
3670 }
3671
3672 // FIXME: Work around a bug in C++17 guaranteed copy elision.
3673 //
3674 // When initializing an object of class type T by constructor
3675 // ([over.match.ctor]) or by list-initialization ([over.match.list])
3676 // from a single expression of class type U, conversion functions of
3677 // U that convert to the non-reference type cv T are candidates.
3678 // Explicit conversion functions are only candidates during
3679 // direct-initialization.
3680 //
3681 // Note: SecondStepOfCopyInit is only ever true in this case when
3682 // evaluating whether to produce a C++98 compatibility warning.
3683 if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 &&
3684 !SecondStepOfCopyInit) {
3685 Expr *Initializer = Args[0];
3686 auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl();
3687 if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) {
3688 const auto &Conversions = SourceRD->getVisibleConversionFunctions();
3689 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
3690 NamedDecl *D = *I;
3691 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3692 D = D->getUnderlyingDecl();
3693
3694 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3695 CXXConversionDecl *Conv;
3696 if (ConvTemplate)
3697 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3698 else
3699 Conv = cast<CXXConversionDecl>(D);
3700
3701 if ((AllowExplicit && !CopyInitializing) || !Conv->isExplicit()) {
3702 if (ConvTemplate)
3703 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3704 ActingDC, Initializer, DestType,
3705 CandidateSet, AllowExplicit,
3706 /*AllowResultConversion*/false);
3707 else
3708 S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer,
3709 DestType, CandidateSet, AllowExplicit,
3710 /*AllowResultConversion*/false);
3711 }
3712 }
3713 }
3714 }
3715
3716 // Perform overload resolution and return the result.
3717 return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3718}
3719
3720/// Attempt initialization by constructor (C++ [dcl.init]), which
3721/// enumerates the constructors of the initialized entity and performs overload
3722/// resolution to select the best.
3723/// \param DestType The destination class type.
3724/// \param DestArrayType The destination type, which is either DestType or
3725/// a (possibly multidimensional) array of DestType.
3726/// \param IsListInit Is this list-initialization?
3727/// \param IsInitListCopy Is this non-list-initialization resulting from a
3728/// list-initialization from {x} where x is the same
3729/// type as the entity?
3730static void TryConstructorInitialization(Sema &S,
3731 const InitializedEntity &Entity,
3732 const InitializationKind &Kind,
3733 MultiExprArg Args, QualType DestType,
3734 QualType DestArrayType,
3735 InitializationSequence &Sequence,
3736 bool IsListInit = false,
3737 bool IsInitListCopy = false) {
3738 assert(((!IsListInit && !IsInitListCopy) ||(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3741, __extension__ __PRETTY_FUNCTION__))
3739 (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3741, __extension__ __PRETTY_FUNCTION__))
3740 "IsListInit/IsInitListCopy must come with a single initializer list "(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3741, __extension__ __PRETTY_FUNCTION__))
3741 "argument.")(static_cast <bool> (((!IsListInit && !IsInitListCopy
) || (Args.size() == 1 && isa<InitListExpr>(Args
[0]))) && "IsListInit/IsInitListCopy must come with a single initializer list "
"argument.") ? void (0) : __assert_fail ("((!IsListInit && !IsInitListCopy) || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && \"IsListInit/IsInitListCopy must come with a single initializer list \" \"argument.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3741, __extension__ __PRETTY_FUNCTION__))
;
3742 InitListExpr *ILE =
3743 (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr;
3744 MultiExprArg UnwrappedArgs =
3745 ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args;
3746
3747 // The type we're constructing needs to be complete.
3748 if (!S.isCompleteType(Kind.getLocation(), DestType)) {
3749 Sequence.setIncompleteTypeFailure(DestType);
3750 return;
3751 }
3752
3753 // C++17 [dcl.init]p17:
3754 // - If the initializer expression is a prvalue and the cv-unqualified
3755 // version of the source type is the same class as the class of the
3756 // destination, the initializer expression is used to initialize the
3757 // destination object.
3758 // Per DR (no number yet), this does not apply when initializing a base
3759 // class or delegating to another constructor from a mem-initializer.
3760 // ObjC++: Lambda captured by the block in the lambda to block conversion
3761 // should avoid copy elision.
3762 if (S.getLangOpts().CPlusPlus17 &&
3763 Entity.getKind() != InitializedEntity::EK_Base &&
3764 Entity.getKind() != InitializedEntity::EK_Delegating &&
3765 Entity.getKind() !=
3766 InitializedEntity::EK_LambdaToBlockConversionBlockElement &&
3767 UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isRValue() &&
3768 S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) {
3769 // Convert qualifications if necessary.
3770 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3771 if (ILE)
3772 Sequence.RewrapReferenceInitList(DestType, ILE);
3773 return;
3774 }
3775
3776 const RecordType *DestRecordType = DestType->getAs<RecordType>();
3777 assert(DestRecordType && "Constructor initialization requires record type")(static_cast <bool> (DestRecordType && "Constructor initialization requires record type"
) ? void (0) : __assert_fail ("DestRecordType && \"Constructor initialization requires record type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3777, __extension__ __PRETTY_FUNCTION__))
;
3778 CXXRecordDecl *DestRecordDecl
3779 = cast<CXXRecordDecl>(DestRecordType->getDecl());
3780
3781 // Build the candidate set directly in the initialization sequence
3782 // structure, so that it will persist if we fail.
3783 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3784
3785 // Determine whether we are allowed to call explicit constructors or
3786 // explicit conversion operators.
3787 bool AllowExplicit = Kind.AllowExplicit() || IsListInit;
3788 bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3789
3790 // - Otherwise, if T is a class type, constructors are considered. The
3791 // applicable constructors are enumerated, and the best one is chosen
3792 // through overload resolution.
3793 DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl);
3794
3795 OverloadingResult Result = OR_No_Viable_Function;
3796 OverloadCandidateSet::iterator Best;
3797 bool AsInitializerList = false;
3798
3799 // C++11 [over.match.list]p1, per DR1467:
3800 // When objects of non-aggregate type T are list-initialized, such that
3801 // 8.5.4 [dcl.init.list] specifies that overload resolution is performed
3802 // according to the rules in this section, overload resolution selects
3803 // the constructor in two phases:
3804 //
3805 // - Initially, the candidate functions are the initializer-list
3806 // constructors of the class T and the argument list consists of the
3807 // initializer list as a single argument.
3808 if (IsListInit) {
3809 AsInitializerList = true;
3810
3811 // If the initializer list has no elements and T has a default constructor,
3812 // the first phase is omitted.
3813 if (!(UnwrappedArgs.empty() && DestRecordDecl->hasDefaultConstructor()))
3814 Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3815 CandidateSet, DestType, Ctors, Best,
3816 CopyInitialization, AllowExplicit,
3817 /*OnlyListConstructor=*/true,
3818 IsListInit);
3819 }
3820
3821 // C++11 [over.match.list]p1:
3822 // - If no viable initializer-list constructor is found, overload resolution
3823 // is performed again, where the candidate functions are all the
3824 // constructors of the class T and the argument list consists of the
3825 // elements of the initializer list.
3826 if (Result == OR_No_Viable_Function) {
3827 AsInitializerList = false;
3828 Result = ResolveConstructorOverload(S, Kind.getLocation(), UnwrappedArgs,
3829 CandidateSet, DestType, Ctors, Best,
3830 CopyInitialization, AllowExplicit,
3831 /*OnlyListConstructors=*/false,
3832 IsListInit);
3833 }
3834 if (Result) {
3835 Sequence.SetOverloadFailure(IsListInit ?
3836 InitializationSequence::FK_ListConstructorOverloadFailed :
3837 InitializationSequence::FK_ConstructorOverloadFailed,
3838 Result);
3839 return;
3840 }
3841
3842 bool HadMultipleCandidates = (CandidateSet.size() > 1);
3843
3844 // In C++17, ResolveConstructorOverload can select a conversion function
3845 // instead of a constructor.
3846 if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) {
3847 // Add the user-defined conversion step that calls the conversion function.
3848 QualType ConvType = CD->getConversionType();
3849 assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) &&(static_cast <bool> (S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
) ? void (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3850, __extension__ __PRETTY_FUNCTION__))
3850 "should not have selected this conversion function")(static_cast <bool> (S.Context.hasSameUnqualifiedType(ConvType
, DestType) && "should not have selected this conversion function"
) ? void (0) : __assert_fail ("S.Context.hasSameUnqualifiedType(ConvType, DestType) && \"should not have selected this conversion function\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 3850, __extension__ __PRETTY_FUNCTION__))
;
3851 Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType,
3852 HadMultipleCandidates);
3853 if (!S.Context.hasSameType(ConvType, DestType))
3854 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
3855 if (IsListInit)
3856 Sequence.RewrapReferenceInitList(Entity.getType(), ILE);
3857 return;
3858 }
3859
3860 // C++11 [dcl.init]p6:
3861 // If a program calls for the default initialization of an object
3862 // of a const-qualified type T, T shall be a class type with a
3863 // user-provided default constructor.
3864 // C++ core issue 253 proposal:
3865 // If the implicit default constructor initializes all subobjects, no
3866 // initializer should be required.
3867 // The 253 proposal is for example needed to process libstdc++ headers in 5.x.
3868 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3869 if (Kind.getKind() == InitializationKind::IK_Default &&
3870 Entity.getType().isConstQualified()) {
3871 if (!CtorDecl->getParent()->allowConstDefaultInit()) {
3872 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
3873 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3874 return;
3875 }
3876 }
3877
3878 // C++11 [over.match.list]p1:
3879 // In copy-list-initialization, if an explicit constructor is chosen, the
3880 // initializer is ill-formed.
3881 if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3882 Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3883 return;
3884 }
3885
3886 // Add the constructor initialization step. Any cv-qualification conversion is
3887 // subsumed by the initialization.
3888 Sequence.AddConstructorInitializationStep(
3889 Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates,
3890 IsListInit | IsInitListCopy, AsInitializerList);
3891}
3892
3893static bool
3894ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3895 Expr *Initializer,
3896 QualType &SourceType,
3897 QualType &UnqualifiedSourceType,
3898 QualType UnqualifiedTargetType,
3899 InitializationSequence &Sequence) {
3900 if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3901 S.Context.OverloadTy) {
3902 DeclAccessPair Found;
3903 bool HadMultipleCandidates = false;
3904 if (FunctionDecl *Fn
3905 = S.ResolveAddressOfOverloadedFunction(Initializer,
3906 UnqualifiedTargetType,
3907 false, Found,
3908 &HadMultipleCandidates)) {
3909 Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3910 HadMultipleCandidates);
3911 SourceType = Fn->getType();
3912 UnqualifiedSourceType = SourceType.getUnqualifiedType();
3913 } else if (!UnqualifiedTargetType->isRecordType()) {
3914 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3915 return true;
3916 }
3917 }
3918 return false;
3919}
3920
3921static void TryReferenceInitializationCore(Sema &S,
3922 const InitializedEntity &Entity,
3923 const InitializationKind &Kind,
3924 Expr *Initializer,
3925 QualType cv1T1, QualType T1,
3926 Qualifiers T1Quals,
3927 QualType cv2T2, QualType T2,
3928 Qualifiers T2Quals,
3929 InitializationSequence &Sequence);
3930
3931static void TryValueInitialization(Sema &S,
3932 const InitializedEntity &Entity,
3933 const InitializationKind &Kind,
3934 InitializationSequence &Sequence,
3935 InitListExpr *InitList = nullptr);
3936
3937/// Attempt list initialization of a reference.
3938static void TryReferenceListInitialization(Sema &S,
3939 const InitializedEntity &Entity,
3940 const InitializationKind &Kind,
3941 InitListExpr *InitList,
3942 InitializationSequence &Sequence,
3943 bool TreatUnavailableAsInvalid) {
3944 // First, catch C++03 where this isn't possible.
3945 if (!S.getLangOpts().CPlusPlus11) {
3946 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3947 return;
3948 }
3949 // Can't reference initialize a compound literal.
3950 if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) {
3951 Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3952 return;
3953 }
3954
3955 QualType DestType = Entity.getType();
3956 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3957 Qualifiers T1Quals;
3958 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3959
3960 // Reference initialization via an initializer list works thus:
3961 // If the initializer list consists of a single element that is
3962 // reference-related to the referenced type, bind directly to that element
3963 // (possibly creating temporaries).
3964 // Otherwise, initialize a temporary with the initializer list and
3965 // bind to that.
3966 if (InitList->getNumInits() == 1) {
3967 Expr *Initializer = InitList->getInit(0);
3968 QualType cv2T2 = Initializer->getType();
3969 Qualifiers T2Quals;
3970 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3971
3972 // If this fails, creating a temporary wouldn't work either.
3973 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3974 T1, Sequence))
3975 return;
3976
3977 SourceLocation DeclLoc = Initializer->getLocStart();
3978 bool dummy1, dummy2, dummy3;
3979 Sema::ReferenceCompareResult RefRelationship
3980 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3981 dummy2, dummy3);
3982 if (RefRelationship >= Sema::Ref_Related) {
3983 // Try to bind the reference here.
3984 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3985 T1Quals, cv2T2, T2, T2Quals, Sequence);
3986 if (Sequence)
3987 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3988 return;
3989 }
3990
3991 // Update the initializer if we've resolved an overloaded function.
3992 if (Sequence.step_begin() != Sequence.step_end())
3993 Sequence.RewrapReferenceInitList(cv1T1, InitList);
3994 }
3995
3996 // Not reference-related. Create a temporary and bind to that.
3997 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3998
3999 TryListInitialization(S, TempEntity, Kind, InitList, Sequence,
4000 TreatUnavailableAsInvalid);
4001 if (Sequence) {
4002 if (DestType->isRValueReferenceType() ||
4003 (T1Quals.hasConst() && !T1Quals.hasVolatile()))
4004 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4005 else
4006 Sequence.SetFailed(
4007 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4008 }
4009}
4010
4011/// Attempt list initialization (C++0x [dcl.init.list])
4012static void TryListInitialization(Sema &S,
4013 const InitializedEntity &Entity,
4014 const InitializationKind &Kind,
4015 InitListExpr *InitList,
4016 InitializationSequence &Sequence,
4017 bool TreatUnavailableAsInvalid) {
4018 QualType DestType = Entity.getType();
4019
4020 // C++ doesn't allow scalar initialization with more than one argument.
4021 // But C99 complex numbers are scalars and it makes sense there.
4022 if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
4023 !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
4024 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
4025 return;
4026 }
4027 if (DestType->isReferenceType()) {
4028 TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence,
4029 TreatUnavailableAsInvalid);
4030 return;
4031 }
4032
4033 if (DestType->isRecordType() &&
4034 !S.isCompleteType(InitList->getLocStart(), DestType)) {
4035 Sequence.setIncompleteTypeFailure(DestType);
4036 return;
4037 }
4038
4039 // C++11 [dcl.init.list]p3, per DR1467:
4040 // - If T is a class type and the initializer list has a single element of
4041 // type cv U, where U is T or a class derived from T, the object is
4042 // initialized from that element (by copy-initialization for
4043 // copy-list-initialization, or by direct-initialization for
4044 // direct-list-initialization).
4045 // - Otherwise, if T is a character array and the initializer list has a
4046 // single element that is an appropriately-typed string literal
4047 // (8.5.2 [dcl.init.string]), initialization is performed as described
4048 // in that section.
4049 // - Otherwise, if T is an aggregate, [...] (continue below).
4050 if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1) {
4051 if (DestType->isRecordType()) {
4052 QualType InitType = InitList->getInit(0)->getType();
4053 if (S.Context.hasSameUnqualifiedType(InitType, DestType) ||
4054 S.IsDerivedFrom(InitList->getLocStart(), InitType, DestType)) {
4055 Expr *InitListAsExpr = InitList;
4056 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4057 DestType, Sequence,
4058 /*InitListSyntax*/false,
4059 /*IsInitListCopy*/true);
4060 return;
4061 }
4062 }
4063 if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) {
4064 Expr *SubInit[1] = {InitList->getInit(0)};
4065 if (!isa<VariableArrayType>(DestAT) &&
4066 IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) {
4067 InitializationKind SubKind =
4068 Kind.getKind() == InitializationKind::IK_DirectList
4069 ? InitializationKind::CreateDirect(Kind.getLocation(),
4070 InitList->getLBraceLoc(),
4071 InitList->getRBraceLoc())
4072 : Kind;
4073 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4074 /*TopLevelOfInitList*/ true,
4075 TreatUnavailableAsInvalid);
4076
4077 // TryStringLiteralInitialization() (in InitializeFrom()) will fail if
4078 // the element is not an appropriately-typed string literal, in which
4079 // case we should proceed as in C++11 (below).
4080 if (Sequence) {
4081 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4082 return;
4083 }
4084 }
4085 }
4086 }
4087
4088 // C++11 [dcl.init.list]p3:
4089 // - If T is an aggregate, aggregate initialization is performed.
4090 if ((DestType->isRecordType() && !DestType->isAggregateType()) ||
4091 (S.getLangOpts().CPlusPlus11 &&
4092 S.isStdInitializerList(DestType, nullptr))) {
4093 if (S.getLangOpts().CPlusPlus11) {
4094 // - Otherwise, if the initializer list has no elements and T is a
4095 // class type with a default constructor, the object is
4096 // value-initialized.
4097 if (InitList->getNumInits() == 0) {
4098 CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
4099 if (RD->hasDefaultConstructor()) {
4100 TryValueInitialization(S, Entity, Kind, Sequence, InitList);
4101 return;
4102 }
4103 }
4104
4105 // - Otherwise, if T is a specialization of std::initializer_list<E>,
4106 // an initializer_list object constructed [...]
4107 if (TryInitializerListConstruction(S, InitList, DestType, Sequence,
4108 TreatUnavailableAsInvalid))
4109 return;
4110
4111 // - Otherwise, if T is a class type, constructors are considered.
4112 Expr *InitListAsExpr = InitList;
4113 TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
4114 DestType, Sequence, /*InitListSyntax*/true);
4115 } else
4116 Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType);
4117 return;
4118 }
4119
4120 if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
4121 InitList->getNumInits() == 1) {
4122 Expr *E = InitList->getInit(0);
4123
4124 // - Otherwise, if T is an enumeration with a fixed underlying type,
4125 // the initializer-list has a single element v, and the initialization
4126 // is direct-list-initialization, the object is initialized with the
4127 // value T(v); if a narrowing conversion is required to convert v to
4128 // the underlying type of T, the program is ill-formed.
4129 auto *ET = DestType->getAs<EnumType>();
4130 if (S.getLangOpts().CPlusPlus17 &&
4131 Kind.getKind() == InitializationKind::IK_DirectList &&
4132 ET && ET->getDecl()->isFixed() &&
4133 !S.Context.hasSameUnqualifiedType(E->getType(), DestType) &&
4134 (E->getType()->isIntegralOrEnumerationType() ||
4135 E->getType()->isFloatingType())) {
4136 // There are two ways that T(v) can work when T is an enumeration type.
4137 // If there is either an implicit conversion sequence from v to T or
4138 // a conversion function that can convert from v to T, then we use that.
4139 // Otherwise, if v is of integral, enumeration, or floating-point type,
4140 // it is converted to the enumeration type via its underlying type.
4141 // There is no overlap possible between these two cases (except when the
4142 // source value is already of the destination type), and the first
4143 // case is handled by the general case for single-element lists below.
4144 ImplicitConversionSequence ICS;
4145 ICS.setStandard();
4146 ICS.Standard.setAsIdentityConversion();
4147 if (!E->isRValue())
4148 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4149 // If E is of a floating-point type, then the conversion is ill-formed
4150 // due to narrowing, but go through the motions in order to produce the
4151 // right diagnostic.
4152 ICS.Standard.Second = E->getType()->isFloatingType()
4153 ? ICK_Floating_Integral
4154 : ICK_Integral_Conversion;
4155 ICS.Standard.setFromType(E->getType());
4156 ICS.Standard.setToType(0, E->getType());
4157 ICS.Standard.setToType(1, DestType);
4158 ICS.Standard.setToType(2, DestType);
4159 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2),
4160 /*TopLevelOfInitList*/true);
4161 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4162 return;
4163 }
4164
4165 // - Otherwise, if the initializer list has a single element of type E
4166 // [...references are handled above...], the object or reference is
4167 // initialized from that element (by copy-initialization for
4168 // copy-list-initialization, or by direct-initialization for
4169 // direct-list-initialization); if a narrowing conversion is required
4170 // to convert the element to T, the program is ill-formed.
4171 //
4172 // Per core-24034, this is direct-initialization if we were performing
4173 // direct-list-initialization and copy-initialization otherwise.
4174 // We can't use InitListChecker for this, because it always performs
4175 // copy-initialization. This only matters if we might use an 'explicit'
4176 // conversion operator, so we only need to handle the cases where the source
4177 // is of record type.
4178 if (InitList->getInit(0)->getType()->isRecordType()) {
4179 InitializationKind SubKind =
4180 Kind.getKind() == InitializationKind::IK_DirectList
4181 ? InitializationKind::CreateDirect(Kind.getLocation(),
4182 InitList->getLBraceLoc(),
4183 InitList->getRBraceLoc())
4184 : Kind;
4185 Expr *SubInit[1] = { InitList->getInit(0) };
4186 Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
4187 /*TopLevelOfInitList*/true,
4188 TreatUnavailableAsInvalid);
4189 if (Sequence)
4190 Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
4191 return;
4192 }
4193 }
4194
4195 InitListChecker CheckInitList(S, Entity, InitList,
4196 DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid);
4197 if (CheckInitList.HadError()) {
4198 Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
4199 return;
4200 }
4201
4202 // Add the list initialization step with the built init list.
4203 Sequence.AddListInitializationStep(DestType);
4204}
4205
4206/// Try a reference initialization that involves calling a conversion
4207/// function.
4208static OverloadingResult TryRefInitWithConversionFunction(
4209 Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind,
4210 Expr *Initializer, bool AllowRValues, bool IsLValueRef,
4211 InitializationSequence &Sequence) {
4212 QualType DestType = Entity.getType();
4213 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4214 QualType T1 = cv1T1.getUnqualifiedType();
4215 QualType cv2T2 = Initializer->getType();
4216 QualType T2 = cv2T2.getUnqualifiedType();
4217
4218 bool DerivedToBase;
4219 bool ObjCConversion;
4220 bool ObjCLifetimeConversion;
4221 assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4225, __extension__ __PRETTY_FUNCTION__))
4222 T1, T2, DerivedToBase,(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4225, __extension__ __PRETTY_FUNCTION__))
4223 ObjCConversion,(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4225, __extension__ __PRETTY_FUNCTION__))
4224 ObjCLifetimeConversion) &&(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4225, __extension__ __PRETTY_FUNCTION__))
4225 "Must have incompatible references when binding via conversion")(static_cast <bool> (!S.CompareReferenceRelationship(Initializer
->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion
) && "Must have incompatible references when binding via conversion"
) ? void (0) : __assert_fail ("!S.CompareReferenceRelationship(Initializer->getLocStart(), T1, T2, DerivedToBase, ObjCConversion, ObjCLifetimeConversion) && \"Must have incompatible references when binding via conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4225, __extension__ __PRETTY_FUNCTION__))
;
4226 (void)DerivedToBase;
4227 (void)ObjCConversion;
4228 (void)ObjCLifetimeConversion;
4229
4230 // Build the candidate set directly in the initialization sequence
4231 // structure, so that it will persist if we fail.
4232 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4233 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4234
4235 // Determine whether we are allowed to call explicit conversion operators.
4236 // Note that none of [over.match.copy], [over.match.conv], nor
4237 // [over.match.ref] permit an explicit constructor to be chosen when
4238 // initializing a reference, not even for direct-initialization.
4239 bool AllowExplicitCtors = false;
4240 bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
4241
4242 const RecordType *T1RecordType = nullptr;
4243 if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
4244 S.isCompleteType(Kind.getLocation(), T1)) {
4245 // The type we're converting to is a class type. Enumerate its constructors
4246 // to see if there is a suitable conversion.
4247 CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
4248
4249 for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) {
4250 auto Info = getConstructorInfo(D);
4251 if (!Info.Constructor)
4252 continue;
4253
4254 if (!Info.Constructor->isInvalidDecl() &&
4255 Info.Constructor->isConvertingConstructor(AllowExplicitCtors)) {
4256 if (Info.ConstructorTmpl)
4257 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4258 /*ExplicitArgs*/ nullptr,
4259 Initializer, CandidateSet,
4260 /*SuppressUserConversions=*/true);
4261 else
4262 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4263 Initializer, CandidateSet,
4264 /*SuppressUserConversions=*/true);
4265 }
4266 }
4267 }
4268 if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
4269 return OR_No_Viable_Function;
4270
4271 const RecordType *T2RecordType = nullptr;
4272 if ((T2RecordType = T2->getAs<RecordType>()) &&
4273 S.isCompleteType(Kind.getLocation(), T2)) {
4274 // The type we're converting from is a class type, enumerate its conversion
4275 // functions.
4276 CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
4277
4278 const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions();
4279 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4280 NamedDecl *D = *I;
4281 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4282 if (isa<UsingShadowDecl>(D))
4283 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4284
4285 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4286 CXXConversionDecl *Conv;
4287 if (ConvTemplate)
4288 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4289 else
4290 Conv = cast<CXXConversionDecl>(D);
4291
4292 // If the conversion function doesn't return a reference type,
4293 // it can't be considered for this conversion unless we're allowed to
4294 // consider rvalues.
4295 // FIXME: Do we need to make sure that we only consider conversion
4296 // candidates with reference-compatible results? That might be needed to
4297 // break recursion.
4298 if ((AllowExplicitConvs || !Conv->isExplicit()) &&
4299 (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
4300 if (ConvTemplate)
4301 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4302 ActingDC, Initializer,
4303 DestType, CandidateSet,
4304 /*AllowObjCConversionOnExplicit=*/
4305 false);
4306 else
4307 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4308 Initializer, DestType, CandidateSet,
4309 /*AllowObjCConversionOnExplicit=*/false);
4310 }
4311 }
4312 }
4313 if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
4314 return OR_No_Viable_Function;
4315
4316 SourceLocation DeclLoc = Initializer->getLocStart();
4317
4318 // Perform overload resolution. If it fails, return the failed result.
4319 OverloadCandidateSet::iterator Best;
4320 if (OverloadingResult Result
4321 = CandidateSet.BestViableFunction(S, DeclLoc, Best))
4322 return Result;
4323
4324 FunctionDecl *Function = Best->Function;
4325 // This is the overload that will be used for this initialization step if we
4326 // use this initialization. Mark it as referenced.
4327 Function->setReferenced();
4328
4329 // Compute the returned type and value kind of the conversion.
4330 QualType cv3T3;
4331 if (isa<CXXConversionDecl>(Function))
4332 cv3T3 = Function->getReturnType();
4333 else
4334 cv3T3 = T1;
4335
4336 ExprValueKind VK = VK_RValue;
4337 if (cv3T3->isLValueReferenceType())
4338 VK = VK_LValue;
4339 else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>())
4340 VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
4341 cv3T3 = cv3T3.getNonLValueExprType(S.Context);
4342
4343 // Add the user-defined conversion step.
4344 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4345 Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3,
4346 HadMultipleCandidates);
4347
4348 // Determine whether we'll need to perform derived-to-base adjustments or
4349 // other conversions.
4350 bool NewDerivedToBase = false;
4351 bool NewObjCConversion = false;
4352 bool NewObjCLifetimeConversion = false;
4353 Sema::ReferenceCompareResult NewRefRelationship
4354 = S.CompareReferenceRelationship(DeclLoc, T1, cv3T3,
4355 NewDerivedToBase, NewObjCConversion,
4356 NewObjCLifetimeConversion);
4357
4358 // Add the final conversion sequence, if necessary.
4359 if (NewRefRelationship == Sema::Ref_Incompatible) {
4360 assert(!isa<CXXConstructorDecl>(Function) &&(static_cast <bool> (!isa<CXXConstructorDecl>(Function
) && "should not have conversion after constructor") ?
void (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4361, __extension__ __PRETTY_FUNCTION__))
4361 "should not have conversion after constructor")(static_cast <bool> (!isa<CXXConstructorDecl>(Function
) && "should not have conversion after constructor") ?
void (0) : __assert_fail ("!isa<CXXConstructorDecl>(Function) && \"should not have conversion after constructor\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4361, __extension__ __PRETTY_FUNCTION__))
;
4362
4363 ImplicitConversionSequence ICS;
4364 ICS.setStandard();
4365 ICS.Standard = Best->FinalConversion;
4366 Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2));
4367
4368 // Every implicit conversion results in a prvalue, except for a glvalue
4369 // derived-to-base conversion, which we handle below.
4370 cv3T3 = ICS.Standard.getToType(2);
4371 VK = VK_RValue;
4372 }
4373
4374 // If the converted initializer is a prvalue, its type T4 is adjusted to
4375 // type "cv1 T4" and the temporary materialization conversion is applied.
4376 //
4377 // We adjust the cv-qualifications to match the reference regardless of
4378 // whether we have a prvalue so that the AST records the change. In this
4379 // case, T4 is "cv3 T3".
4380 QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers());
4381 if (cv1T4.getQualifiers() != cv3T3.getQualifiers())
4382 Sequence.AddQualificationConversionStep(cv1T4, VK);
4383 Sequence.AddReferenceBindingStep(cv1T4, VK == VK_RValue);
4384 VK = IsLValueRef ? VK_LValue : VK_XValue;
4385
4386 if (NewDerivedToBase)
4387 Sequence.AddDerivedToBaseCastStep(cv1T1, VK);
4388 else if (NewObjCConversion)
4389 Sequence.AddObjCObjectConversionStep(cv1T1);
4390
4391 return OR_Success;
4392}
4393
4394static void CheckCXX98CompatAccessibleCopy(Sema &S,
4395 const InitializedEntity &Entity,
4396 Expr *CurInitExpr);
4397
4398/// Attempt reference initialization (C++0x [dcl.init.ref])
4399static void TryReferenceInitialization(Sema &S,
4400 const InitializedEntity &Entity,
4401 const InitializationKind &Kind,
4402 Expr *Initializer,
4403 InitializationSequence &Sequence) {
4404 QualType DestType = Entity.getType();
4405 QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
4406 Qualifiers T1Quals;
4407 QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
4408 QualType cv2T2 = Initializer->getType();
4409 Qualifiers T2Quals;
4410 QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
4411
4412 // If the initializer is the address of an overloaded function, try
4413 // to resolve the overloaded function. If all goes well, T2 is the
4414 // type of the resulting function.
4415 if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
4416 T1, Sequence))
4417 return;
4418
4419 // Delegate everything else to a subfunction.
4420 TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
4421 T1Quals, cv2T2, T2, T2Quals, Sequence);
4422}
4423
4424/// Determine whether an expression is a non-referenceable glvalue (one to
4425/// which a reference can never bind). Attempting to bind a reference to
4426/// such a glvalue will always create a temporary.
4427static bool isNonReferenceableGLValue(Expr *E) {
4428 return E->refersToBitField() || E->refersToVectorElement();
4429}
4430
4431/// Reference initialization without resolving overloaded functions.
4432static void TryReferenceInitializationCore(Sema &S,
4433 const InitializedEntity &Entity,
4434 const InitializationKind &Kind,
4435 Expr *Initializer,
4436 QualType cv1T1, QualType T1,
4437 Qualifiers T1Quals,
4438 QualType cv2T2, QualType T2,
4439 Qualifiers T2Quals,
4440 InitializationSequence &Sequence) {
4441 QualType DestType = Entity.getType();
4442 SourceLocation DeclLoc = Initializer->getLocStart();
4443 // Compute some basic properties of the types and the initializer.
4444 bool isLValueRef = DestType->isLValueReferenceType();
4445 bool isRValueRef = !isLValueRef;
4446 bool DerivedToBase = false;
4447 bool ObjCConversion = false;
4448 bool ObjCLifetimeConversion = false;
4449 Expr::Classification InitCategory = Initializer->Classify(S.Context);
4450 Sema::ReferenceCompareResult RefRelationship
4451 = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
4452 ObjCConversion, ObjCLifetimeConversion);
4453
4454 // C++0x [dcl.init.ref]p5:
4455 // A reference to type "cv1 T1" is initialized by an expression of type
4456 // "cv2 T2" as follows:
4457 //
4458 // - If the reference is an lvalue reference and the initializer
4459 // expression
4460 // Note the analogous bullet points for rvalue refs to functions. Because
4461 // there are no function rvalues in C++, rvalue refs to functions are treated
4462 // like lvalue refs.
4463 OverloadingResult ConvOvlResult = OR_Success;
4464 bool T1Function = T1->isFunctionType();
4465 if (isLValueRef || T1Function) {
4466 if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) &&
4467 (RefRelationship == Sema::Ref_Compatible ||
4468 (Kind.isCStyleOrFunctionalCast() &&
4469 RefRelationship == Sema::Ref_Related))) {
4470 // - is an lvalue (but is not a bit-field), and "cv1 T1" is
4471 // reference-compatible with "cv2 T2," or
4472 if (T1Quals != T2Quals)
4473 // Convert to cv1 T2. This should only add qualifiers unless this is a
4474 // c-style cast. The removal of qualifiers in that case notionally
4475 // happens after the reference binding, but that doesn't matter.
4476 Sequence.AddQualificationConversionStep(
4477 S.Context.getQualifiedType(T2, T1Quals),
4478 Initializer->getValueKind());
4479 if (DerivedToBase)
4480 Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue);
4481 else if (ObjCConversion)
4482 Sequence.AddObjCObjectConversionStep(cv1T1);
4483
4484 // We only create a temporary here when binding a reference to a
4485 // bit-field or vector element. Those cases are't supposed to be
4486 // handled by this bullet, but the outcome is the same either way.
4487 Sequence.AddReferenceBindingStep(cv1T1, false);
4488 return;
4489 }
4490
4491 // - has a class type (i.e., T2 is a class type), where T1 is not
4492 // reference-related to T2, and can be implicitly converted to an
4493 // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
4494 // with "cv3 T3" (this conversion is selected by enumerating the
4495 // applicable conversion functions (13.3.1.6) and choosing the best
4496 // one through overload resolution (13.3)),
4497 // If we have an rvalue ref to function type here, the rhs must be
4498 // an rvalue. DR1287 removed the "implicitly" here.
4499 if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
4500 (isLValueRef || InitCategory.isRValue())) {
4501 ConvOvlResult = TryRefInitWithConversionFunction(
4502 S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef,
4503 /*IsLValueRef*/ isLValueRef, Sequence);
4504 if (ConvOvlResult == OR_Success)
4505 return;
4506 if (ConvOvlResult != OR_No_Viable_Function)
4507 Sequence.SetOverloadFailure(
4508 InitializationSequence::FK_ReferenceInitOverloadFailed,
4509 ConvOvlResult);
4510 }
4511 }
4512
4513 // - Otherwise, the reference shall be an lvalue reference to a
4514 // non-volatile const type (i.e., cv1 shall be const), or the reference
4515 // shall be an rvalue reference.
4516 if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
4517 if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4518 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4519 else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4520 Sequence.SetOverloadFailure(
4521 InitializationSequence::FK_ReferenceInitOverloadFailed,
4522 ConvOvlResult);
4523 else if (!InitCategory.isLValue())
4524 Sequence.SetFailed(
4525 InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
4526 else {
4527 InitializationSequence::FailureKind FK;
4528 switch (RefRelationship) {
4529 case Sema::Ref_Compatible:
4530 if (Initializer->refersToBitField())
4531 FK = InitializationSequence::
4532 FK_NonConstLValueReferenceBindingToBitfield;
4533 else if (Initializer->refersToVectorElement())
4534 FK = InitializationSequence::
4535 FK_NonConstLValueReferenceBindingToVectorElement;
4536 else
4537 llvm_unreachable("unexpected kind of compatible initializer")::llvm::llvm_unreachable_internal("unexpected kind of compatible initializer"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4537)
;
4538 break;
4539 case Sema::Ref_Related:
4540 FK = InitializationSequence::FK_ReferenceInitDropsQualifiers;
4541 break;
4542 case Sema::Ref_Incompatible:
4543 FK = InitializationSequence::
4544 FK_NonConstLValueReferenceBindingToUnrelated;
4545 break;
4546 }
4547 Sequence.SetFailed(FK);
4548 }
4549 return;
4550 }
4551
4552 // - If the initializer expression
4553 // - is an
4554 // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or
4555 // [1z] rvalue (but not a bit-field) or
4556 // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2"
4557 //
4558 // Note: functions are handled above and below rather than here...
4559 if (!T1Function &&
4560 (RefRelationship == Sema::Ref_Compatible ||
4561 (Kind.isCStyleOrFunctionalCast() &&
4562 RefRelationship == Sema::Ref_Related)) &&
4563 ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) ||
4564 (InitCategory.isPRValue() &&
4565 (S.getLangOpts().CPlusPlus17 || T2->isRecordType() ||
4566 T2->isArrayType())))) {
4567 ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_RValue;
4568 if (InitCategory.isPRValue() && T2->isRecordType()) {
4569 // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
4570 // compiler the freedom to perform a copy here or bind to the
4571 // object, while C++0x requires that we bind directly to the
4572 // object. Hence, we always bind to the object without making an
4573 // extra copy. However, in C++03 requires that we check for the
4574 // presence of a suitable copy constructor:
4575 //
4576 // The constructor that would be used to make the copy shall
4577 // be callable whether or not the copy is actually done.
4578 if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
4579 Sequence.AddExtraneousCopyToTemporary(cv2T2);
4580 else if (S.getLangOpts().CPlusPlus11)
4581 CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
4582 }
4583
4584 // C++1z [dcl.init.ref]/5.2.1.2:
4585 // If the converted initializer is a prvalue, its type T4 is adjusted
4586 // to type "cv1 T4" and the temporary materialization conversion is
4587 // applied.
4588 QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1Quals);
4589 if (T1Quals != T2Quals)
4590 Sequence.AddQualificationConversionStep(cv1T4, ValueKind);
4591 Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_RValue);
4592 ValueKind = isLValueRef ? VK_LValue : VK_XValue;
4593
4594 // In any case, the reference is bound to the resulting glvalue (or to
4595 // an appropriate base class subobject).
4596 if (DerivedToBase)
4597 Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind);
4598 else if (ObjCConversion)
4599 Sequence.AddObjCObjectConversionStep(cv1T1);
4600 return;
4601 }
4602
4603 // - has a class type (i.e., T2 is a class type), where T1 is not
4604 // reference-related to T2, and can be implicitly converted to an
4605 // xvalue, class prvalue, or function lvalue of type "cv3 T3",
4606 // where "cv1 T1" is reference-compatible with "cv3 T3",
4607 //
4608 // DR1287 removes the "implicitly" here.
4609 if (T2->isRecordType()) {
4610 if (RefRelationship == Sema::Ref_Incompatible) {
4611 ConvOvlResult = TryRefInitWithConversionFunction(
4612 S, Entity, Kind, Initializer, /*AllowRValues*/ true,
4613 /*IsLValueRef*/ isLValueRef, Sequence);
4614 if (ConvOvlResult)
4615 Sequence.SetOverloadFailure(
4616 InitializationSequence::FK_ReferenceInitOverloadFailed,
4617 ConvOvlResult);
4618
4619 return;
4620 }
4621
4622 if (RefRelationship == Sema::Ref_Compatible &&
4623 isRValueRef && InitCategory.isLValue()) {
4624 Sequence.SetFailed(
4625 InitializationSequence::FK_RValueReferenceBindingToLValue);
4626 return;
4627 }
4628
4629 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4630 return;
4631 }
4632
4633 // - Otherwise, a temporary of type "cv1 T1" is created and initialized
4634 // from the initializer expression using the rules for a non-reference
4635 // copy-initialization (8.5). The reference is then bound to the
4636 // temporary. [...]
4637
4638 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
4639
4640 // FIXME: Why do we use an implicit conversion here rather than trying
4641 // copy-initialization?
4642 ImplicitConversionSequence ICS
4643 = S.TryImplicitConversion(Initializer, TempEntity.getType(),
4644 /*SuppressUserConversions=*/false,
4645 /*AllowExplicit=*/false,
4646 /*FIXME:InOverloadResolution=*/false,
4647 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4648 /*AllowObjCWritebackConversion=*/false);
4649
4650 if (ICS.isBad()) {
4651 // FIXME: Use the conversion function set stored in ICS to turn
4652 // this into an overloading ambiguity diagnostic. However, we need
4653 // to keep that set as an OverloadCandidateSet rather than as some
4654 // other kind of set.
4655 if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4656 Sequence.SetOverloadFailure(
4657 InitializationSequence::FK_ReferenceInitOverloadFailed,
4658 ConvOvlResult);
4659 else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4660 Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4661 else
4662 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4663 return;
4664 } else {
4665 Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4666 }
4667
4668 // [...] If T1 is reference-related to T2, cv1 must be the
4669 // same cv-qualification as, or greater cv-qualification
4670 // than, cv2; otherwise, the program is ill-formed.
4671 unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4672 unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4673 if (RefRelationship == Sema::Ref_Related &&
4674 (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4675 Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4676 return;
4677 }
4678
4679 // [...] If T1 is reference-related to T2 and the reference is an rvalue
4680 // reference, the initializer expression shall not be an lvalue.
4681 if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4682 InitCategory.isLValue()) {
4683 Sequence.SetFailed(
4684 InitializationSequence::FK_RValueReferenceBindingToLValue);
4685 return;
4686 }
4687
4688 Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4689}
4690
4691/// Attempt character array initialization from a string literal
4692/// (C++ [dcl.init.string], C99 6.7.8).
4693static void TryStringLiteralInitialization(Sema &S,
4694 const InitializedEntity &Entity,
4695 const InitializationKind &Kind,
4696 Expr *Initializer,
4697 InitializationSequence &Sequence) {
4698 Sequence.AddStringInitStep(Entity.getType());
4699}
4700
4701/// Attempt value initialization (C++ [dcl.init]p7).
4702static void TryValueInitialization(Sema &S,
4703 const InitializedEntity &Entity,
4704 const InitializationKind &Kind,
4705 InitializationSequence &Sequence,
4706 InitListExpr *InitList) {
4707 assert((!InitList || InitList->getNumInits() == 0) &&(static_cast <bool> ((!InitList || InitList->getNumInits
() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? void (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4708, __extension__ __PRETTY_FUNCTION__))
4708 "Shouldn't use value-init for non-empty init lists")(static_cast <bool> ((!InitList || InitList->getNumInits
() == 0) && "Shouldn't use value-init for non-empty init lists"
) ? void (0) : __assert_fail ("(!InitList || InitList->getNumInits() == 0) && \"Shouldn't use value-init for non-empty init lists\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4708, __extension__ __PRETTY_FUNCTION__))
;
4709
4710 // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4711 //
4712 // To value-initialize an object of type T means:
4713 QualType T = Entity.getType();
4714
4715 // -- if T is an array type, then each element is value-initialized;
4716 T = S.Context.getBaseElementType(T);
4717
4718 if (const RecordType *RT = T->getAs<RecordType>()) {
4719 if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4720 bool NeedZeroInitialization = true;
4721 // C++98:
4722 // -- if T is a class type (clause 9) with a user-declared constructor
4723 // (12.1), then the default constructor for T is called (and the
4724 // initialization is ill-formed if T has no accessible default
4725 // constructor);
4726 // C++11:
4727 // -- if T is a class type (clause 9) with either no default constructor
4728 // (12.1 [class.ctor]) or a default constructor that is user-provided
4729 // or deleted, then the object is default-initialized;
4730 //
4731 // Note that the C++11 rule is the same as the C++98 rule if there are no
4732 // defaulted or deleted constructors, so we just use it unconditionally.
4733 CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4734 if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4735 NeedZeroInitialization = false;
4736
4737 // -- if T is a (possibly cv-qualified) non-union class type without a
4738 // user-provided or deleted default constructor, then the object is
4739 // zero-initialized and, if T has a non-trivial default constructor,
4740 // default-initialized;
4741 // The 'non-union' here was removed by DR1502. The 'non-trivial default
4742 // constructor' part was removed by DR1507.
4743 if (NeedZeroInitialization)
4744 Sequence.AddZeroInitializationStep(Entity.getType());
4745
4746 // C++03:
4747 // -- if T is a non-union class type without a user-declared constructor,
4748 // then every non-static data member and base class component of T is
4749 // value-initialized;
4750 // [...] A program that calls for [...] value-initialization of an
4751 // entity of reference type is ill-formed.
4752 //
4753 // C++11 doesn't need this handling, because value-initialization does not
4754 // occur recursively there, and the implicit default constructor is
4755 // defined as deleted in the problematic cases.
4756 if (!S.getLangOpts().CPlusPlus11 &&
4757 ClassDecl->hasUninitializedReferenceMember()) {
4758 Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4759 return;
4760 }
4761
4762 // If this is list-value-initialization, pass the empty init list on when
4763 // building the constructor call. This affects the semantics of a few
4764 // things (such as whether an explicit default constructor can be called).
4765 Expr *InitListAsExpr = InitList;
4766 MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4767 bool InitListSyntax = InitList;
4768
4769 // FIXME: Instead of creating a CXXConstructExpr of array type here,
4770 // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr.
4771 return TryConstructorInitialization(
4772 S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax);
4773 }
4774 }
4775
4776 Sequence.AddZeroInitializationStep(Entity.getType());
4777}
4778
4779/// Attempt default initialization (C++ [dcl.init]p6).
4780static void TryDefaultInitialization(Sema &S,
4781 const InitializedEntity &Entity,
4782 const InitializationKind &Kind,
4783 InitializationSequence &Sequence) {
4784 assert(Kind.getKind() == InitializationKind::IK_Default)(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Default) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Default"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4784, __extension__ __PRETTY_FUNCTION__))
;
4785
4786 // C++ [dcl.init]p6:
4787 // To default-initialize an object of type T means:
4788 // - if T is an array type, each element is default-initialized;
4789 QualType DestType = S.Context.getBaseElementType(Entity.getType());
4790
4791 // - if T is a (possibly cv-qualified) class type (Clause 9), the default
4792 // constructor for T is called (and the initialization is ill-formed if
4793 // T has no accessible default constructor);
4794 if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4795 TryConstructorInitialization(S, Entity, Kind, None, DestType,
4796 Entity.getType(), Sequence);
4797 return;
4798 }
4799
4800 // - otherwise, no initialization is performed.
4801
4802 // If a program calls for the default initialization of an object of
4803 // a const-qualified type T, T shall be a class type with a user-provided
4804 // default constructor.
4805 if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4806 if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity))
4807 Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4808 return;
4809 }
4810
4811 // If the destination type has a lifetime property, zero-initialize it.
4812 if (DestType.getQualifiers().hasObjCLifetime()) {
4813 Sequence.AddZeroInitializationStep(Entity.getType());
4814 return;
4815 }
4816}
4817
4818/// Attempt a user-defined conversion between two types (C++ [dcl.init]),
4819/// which enumerates all conversion functions and performs overload resolution
4820/// to select the best.
4821static void TryUserDefinedConversion(Sema &S,
4822 QualType DestType,
4823 const InitializationKind &Kind,
4824 Expr *Initializer,
4825 InitializationSequence &Sequence,
4826 bool TopLevelOfInitList) {
4827 assert(!DestType->isReferenceType() && "References are handled elsewhere")(static_cast <bool> (!DestType->isReferenceType() &&
"References are handled elsewhere") ? void (0) : __assert_fail
("!DestType->isReferenceType() && \"References are handled elsewhere\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4827, __extension__ __PRETTY_FUNCTION__))
;
4828 QualType SourceType = Initializer->getType();
4829 assert((DestType->isRecordType() || SourceType->isRecordType()) &&(static_cast <bool> ((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
) ? void (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4830, __extension__ __PRETTY_FUNCTION__))
4830 "Must have a class type to perform a user-defined conversion")(static_cast <bool> ((DestType->isRecordType() || SourceType
->isRecordType()) && "Must have a class type to perform a user-defined conversion"
) ? void (0) : __assert_fail ("(DestType->isRecordType() || SourceType->isRecordType()) && \"Must have a class type to perform a user-defined conversion\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 4830, __extension__ __PRETTY_FUNCTION__))
;
4831
4832 // Build the candidate set directly in the initialization sequence
4833 // structure, so that it will persist if we fail.
4834 OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4835 CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion);
4836
4837 // Determine whether we are allowed to call explicit constructors or
4838 // explicit conversion operators.
4839 bool AllowExplicit = Kind.AllowExplicit();
4840
4841 if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4842 // The type we're converting to is a class type. Enumerate its constructors
4843 // to see if there is a suitable conversion.
4844 CXXRecordDecl *DestRecordDecl
4845 = cast<CXXRecordDecl>(DestRecordType->getDecl());
4846
4847 // Try to complete the type we're converting to.
4848 if (S.isCompleteType(Kind.getLocation(), DestType)) {
4849 for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) {
4850 auto Info = getConstructorInfo(D);
4851 if (!Info.Constructor)
4852 continue;
4853
4854 if (!Info.Constructor->isInvalidDecl() &&
4855 Info.Constructor->isConvertingConstructor(AllowExplicit)) {
4856 if (Info.ConstructorTmpl)
4857 S.AddTemplateOverloadCandidate(Info.ConstructorTmpl, Info.FoundDecl,
4858 /*ExplicitArgs*/ nullptr,
4859 Initializer, CandidateSet,
4860 /*SuppressUserConversions=*/true);
4861 else
4862 S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl,
4863 Initializer, CandidateSet,
4864 /*SuppressUserConversions=*/true);
4865 }
4866 }
4867 }
4868 }
4869
4870 SourceLocation DeclLoc = Initializer->getLocStart();
4871
4872 if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4873 // The type we're converting from is a class type, enumerate its conversion
4874 // functions.
4875
4876 // We can only enumerate the conversion functions for a complete type; if
4877 // the type isn't complete, simply skip this step.
4878 if (S.isCompleteType(DeclLoc, SourceType)) {
4879 CXXRecordDecl *SourceRecordDecl
4880 = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4881
4882 const auto &Conversions =
4883 SourceRecordDecl->getVisibleConversionFunctions();
4884 for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) {
4885 NamedDecl *D = *I;
4886 CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4887 if (isa<UsingShadowDecl>(D))
4888 D = cast<UsingShadowDecl>(D)->getTargetDecl();
4889
4890 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4891 CXXConversionDecl *Conv;
4892 if (ConvTemplate)
4893 Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4894 else
4895 Conv = cast<CXXConversionDecl>(D);
4896
4897 if (AllowExplicit || !Conv->isExplicit()) {
4898 if (ConvTemplate)
4899 S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4900 ActingDC, Initializer, DestType,
4901 CandidateSet, AllowExplicit);
4902 else
4903 S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4904 Initializer, DestType, CandidateSet,
4905 AllowExplicit);
4906 }
4907 }
4908 }
4909 }
4910
4911 // Perform overload resolution. If it fails, return the failed result.
4912 OverloadCandidateSet::iterator Best;
4913 if (OverloadingResult Result
4914 = CandidateSet.BestViableFunction(S, DeclLoc, Best)) {
4915 Sequence.SetOverloadFailure(
4916 InitializationSequence::FK_UserConversionOverloadFailed,
4917 Result);
4918 return;
4919 }
4920
4921 FunctionDecl *Function = Best->Function;
4922 Function->setReferenced();
4923 bool HadMultipleCandidates = (CandidateSet.size() > 1);
4924
4925 if (isa<CXXConstructorDecl>(Function)) {
4926 // Add the user-defined conversion step. Any cv-qualification conversion is
4927 // subsumed by the initialization. Per DR5, the created temporary is of the
4928 // cv-unqualified type of the destination.
4929 Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4930 DestType.getUnqualifiedType(),
4931 HadMultipleCandidates);
4932
4933 // C++14 and before:
4934 // - if the function is a constructor, the call initializes a temporary
4935 // of the cv-unqualified version of the destination type. The [...]
4936 // temporary [...] is then used to direct-initialize, according to the
4937 // rules above, the object that is the destination of the
4938 // copy-initialization.
4939 // Note that this just performs a simple object copy from the temporary.
4940 //
4941 // C++17:
4942 // - if the function is a constructor, the call is a prvalue of the
4943 // cv-unqualified version of the destination type whose return object
4944 // is initialized by the constructor. The call is used to
4945 // direct-initialize, according to the rules above, the object that
4946 // is the destination of the copy-initialization.
4947 // Therefore we need to do nothing further.
4948 //
4949 // FIXME: Mark this copy as extraneous.
4950 if (!S.getLangOpts().CPlusPlus17)
4951 Sequence.AddFinalCopy(DestType);
4952 else if (DestType.hasQualifiers())
4953 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4954 return;
4955 }
4956
4957 // Add the user-defined conversion step that calls the conversion function.
4958 QualType ConvType = Function->getCallResultType();
4959 Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4960 HadMultipleCandidates);
4961
4962 if (ConvType->getAs<RecordType>()) {
4963 // The call is used to direct-initialize [...] the object that is the
4964 // destination of the copy-initialization.
4965 //
4966 // In C++17, this does not call a constructor if we enter /17.6.1:
4967 // - If the initializer expression is a prvalue and the cv-unqualified
4968 // version of the source type is the same as the class of the
4969 // destination [... do not make an extra copy]
4970 //
4971 // FIXME: Mark this copy as extraneous.
4972 if (!S.getLangOpts().CPlusPlus17 ||
4973 Function->getReturnType()->isReferenceType() ||
4974 !S.Context.hasSameUnqualifiedType(ConvType, DestType))
4975 Sequence.AddFinalCopy(DestType);
4976 else if (!S.Context.hasSameType(ConvType, DestType))
4977 Sequence.AddQualificationConversionStep(DestType, VK_RValue);
4978 return;
4979 }
4980
4981 // If the conversion following the call to the conversion function
4982 // is interesting, add it as a separate step.
4983 if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4984 Best->FinalConversion.Third) {
4985 ImplicitConversionSequence ICS;
4986 ICS.setStandard();
4987 ICS.Standard = Best->FinalConversion;
4988 Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4989 }
4990}
4991
4992/// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4993/// a function with a pointer return type contains a 'return false;' statement.
4994/// In C++11, 'false' is not a null pointer, so this breaks the build of any
4995/// code using that header.
4996///
4997/// Work around this by treating 'return false;' as zero-initializing the result
4998/// if it's used in a pointer-returning function in a system header.
4999static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
5000 const InitializedEntity &Entity,
5001 const Expr *Init) {
5002 return S.getLangOpts().CPlusPlus11 &&
5003 Entity.getKind() == InitializedEntity::EK_Result &&
5004 Entity.getType()->isPointerType() &&
5005 isa<CXXBoolLiteralExpr>(Init) &&
5006 !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
5007 S.getSourceManager().isInSystemHeader(Init->getExprLoc());
5008}
5009
5010/// The non-zero enum values here are indexes into diagnostic alternatives.
5011enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
5012
5013/// Determines whether this expression is an acceptable ICR source.
5014static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
5015 bool isAddressOf, bool &isWeakAccess) {
5016 // Skip parens.
5017 e = e->IgnoreParens();
5018
5019 // Skip address-of nodes.
5020 if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
5021 if (op->getOpcode() == UO_AddrOf)
5022 return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
5023 isWeakAccess);
5024
5025 // Skip certain casts.
5026 } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
5027 switch (ce->getCastKind()) {
5028 case CK_Dependent:
5029 case CK_BitCast:
5030 case CK_LValueBitCast:
5031 case CK_NoOp:
5032 return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
5033
5034 case CK_ArrayToPointerDecay:
5035 return IIK_nonscalar;
5036
5037 case CK_NullToPointer:
5038 return IIK_okay;
5039
5040 default:
5041 break;
5042 }
5043
5044 // If we have a declaration reference, it had better be a local variable.
5045 } else if (isa<DeclRefExpr>(e)) {
5046 // set isWeakAccess to true, to mean that there will be an implicit
5047 // load which requires a cleanup.
5048 if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
5049 isWeakAccess = true;
5050
5051 if (!isAddressOf) return IIK_nonlocal;
5052
5053 VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
5054 if (!var) return IIK_nonlocal;
5055
5056 return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
5057
5058 // If we have a conditional operator, check both sides.
5059 } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
5060 if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
5061 isWeakAccess))
5062 return iik;
5063
5064 return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
5065
5066 // These are never scalar.
5067 } else if (isa<ArraySubscriptExpr>(e)) {
5068 return IIK_nonscalar;
5069
5070 // Otherwise, it needs to be a null pointer constant.
5071 } else {
5072 return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
5073 ? IIK_okay : IIK_nonlocal);
5074 }
5075
5076 return IIK_nonlocal;
5077}
5078
5079/// Check whether the given expression is a valid operand for an
5080/// indirect copy/restore.
5081static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
5082 assert(src->isRValue())(static_cast <bool> (src->isRValue()) ? void (0) : __assert_fail
("src->isRValue()", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 5082, __extension__ __PRETTY_FUNCTION__))
;
5083 bool isWeakAccess = false;
5084 InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
5085 // If isWeakAccess to true, there will be an implicit
5086 // load which requires a cleanup.
5087 if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
5088 S.Cleanup.setExprNeedsCleanups(true);
5089
5090 if (iik == IIK_okay) return;
5091
5092 S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
5093 << ((unsigned) iik - 1) // shift index into diagnostic explanations
5094 << src->getSourceRange();
5095}
5096
5097/// Determine whether we have compatible array types for the
5098/// purposes of GNU by-copy array initialization.
5099static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest,
5100 const ArrayType *Source) {
5101 // If the source and destination array types are equivalent, we're
5102 // done.
5103 if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
5104 return true;
5105
5106 // Make sure that the element types are the same.
5107 if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
5108 return false;
5109
5110 // The only mismatch we allow is when the destination is an
5111 // incomplete array type and the source is a constant array type.
5112 return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
5113}
5114
5115static bool tryObjCWritebackConversion(Sema &S,
5116 InitializationSequence &Sequence,
5117 const InitializedEntity &Entity,
5118 Expr *Initializer) {
5119 bool ArrayDecay = false;
5120 QualType ArgType = Initializer->getType();
22
Called C++ object pointer is null
5121 QualType ArgPointee;
5122 if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
5123 ArrayDecay = true;
5124 ArgPointee = ArgArrayType->getElementType();
5125 ArgType = S.Context.getPointerType(ArgPointee);
5126 }
5127
5128 // Handle write-back conversion.
5129 QualType ConvertedArgType;
5130 if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
5131 ConvertedArgType))
5132 return false;
5133
5134 // We should copy unless we're passing to an argument explicitly
5135 // marked 'out'.
5136 bool ShouldCopy = true;
5137 if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5138 ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5139
5140 // Do we need an lvalue conversion?
5141 if (ArrayDecay || Initializer->isGLValue()) {
5142 ImplicitConversionSequence ICS;
5143 ICS.setStandard();
5144 ICS.Standard.setAsIdentityConversion();
5145
5146 QualType ResultType;
5147 if (ArrayDecay) {
5148 ICS.Standard.First = ICK_Array_To_Pointer;
5149 ResultType = S.Context.getPointerType(ArgPointee);
5150 } else {
5151 ICS.Standard.First = ICK_Lvalue_To_Rvalue;
5152 ResultType = Initializer->getType().getNonLValueExprType(S.Context);
5153 }
5154
5155 Sequence.AddConversionSequenceStep(ICS, ResultType);
5156 }
5157
5158 Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
5159 return true;
5160}
5161
5162static bool TryOCLSamplerInitialization(Sema &S,
5163 InitializationSequence &Sequence,
5164 QualType DestType,
5165 Expr *Initializer) {
5166 if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
5167 (!Initializer->isIntegerConstantExpr(S.Context) &&
5168 !Initializer->getType()->isSamplerT()))
5169 return false;
5170
5171 Sequence.AddOCLSamplerInitStep(DestType);
5172 return true;
5173}
5174
5175//
5176// OpenCL 1.2 spec, s6.12.10
5177//
5178// The event argument can also be used to associate the
5179// async_work_group_copy with a previous async copy allowing
5180// an event to be shared by multiple async copies; otherwise
5181// event should be zero.
5182//
5183static bool TryOCLZeroEventInitialization(Sema &S,
5184 InitializationSequence &Sequence,
5185 QualType DestType,
5186 Expr *Initializer) {
5187 if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
5188 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5189 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5190 return false;
5191
5192 Sequence.AddOCLZeroEventStep(DestType);
5193 return true;
5194}
5195
5196static bool TryOCLZeroQueueInitialization(Sema &S,
5197 InitializationSequence &Sequence,
5198 QualType DestType,
5199 Expr *Initializer) {
5200 if (!S.getLangOpts().OpenCL || S.getLangOpts().OpenCLVersion < 200 ||
5201 !DestType->isQueueT() ||
5202 !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
5203 (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
5204 return false;
5205
5206 Sequence.AddOCLZeroQueueStep(DestType);
5207 return true;
5208}
5209
5210InitializationSequence::InitializationSequence(Sema &S,
5211 const InitializedEntity &Entity,
5212 const InitializationKind &Kind,
5213 MultiExprArg Args,
5214 bool TopLevelOfInitList,
5215 bool TreatUnavailableAsInvalid)
5216 : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
5217 InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList,
5218 TreatUnavailableAsInvalid);
5219}
5220
5221/// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the
5222/// address of that function, this returns true. Otherwise, it returns false.
5223static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) {
5224 auto *DRE = dyn_cast<DeclRefExpr>(E);
5225 if (!DRE || !isa<FunctionDecl>(DRE->getDecl()))
5226 return false;
5227
5228 return !S.checkAddressOfFunctionIsAvailable(
5229 cast<FunctionDecl>(DRE->getDecl()));
5230}
5231
5232/// Determine whether we can perform an elementwise array copy for this kind
5233/// of entity.
5234static bool canPerformArrayCopy(const InitializedEntity &Entity) {
5235 switch (Entity.getKind()) {
5236 case InitializedEntity::EK_LambdaCapture:
5237 // C++ [expr.prim.lambda]p24:
5238 // For array members, the array elements are direct-initialized in
5239 // increasing subscript order.
5240 return true;
5241
5242 case InitializedEntity::EK_Variable:
5243 // C++ [dcl.decomp]p1:
5244 // [...] each element is copy-initialized or direct-initialized from the
5245 // corresponding element of the assignment-expression [...]
5246 return isa<DecompositionDecl>(Entity.getDecl());
5247
5248 case InitializedEntity::EK_Member:
5249 // C++ [class.copy.ctor]p14:
5250 // - if the member is an array, each element is direct-initialized with
5251 // the corresponding subobject of x
5252 return Entity.isImplicitMemberInitializer();
5253
5254 case InitializedEntity::EK_ArrayElement:
5255 // All the above cases are intended to apply recursively, even though none
5256 // of them actually say that.
5257 if (auto *E = Entity.getParent())
5258 return canPerformArrayCopy(*E);
5259 break;
5260
5261 default:
5262 break;
5263 }
5264
5265 return false;
5266}
5267
5268void InitializationSequence::InitializeFrom(Sema &S,
5269 const InitializedEntity &Entity,
5270 const InitializationKind &Kind,
5271 MultiExprArg Args,
5272 bool TopLevelOfInitList,
5273 bool TreatUnavailableAsInvalid) {
5274 ASTContext &Context = S.Context;
5275
5276 // Eliminate non-overload placeholder types in the arguments. We
5277 // need to do this before checking whether types are dependent
5278 // because lowering a pseudo-object expression might well give us
5279 // something of dependent type.
5280 for (unsigned I = 0, E = Args.size(); I != E; ++I)
1
Assuming 'I' is equal to 'E'
2
Loop condition is false. Execution continues on line 5297
5281 if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
5282 // FIXME: should we be doing this here?
5283 ExprResult result = S.CheckPlaceholderExpr(Args[I]);
5284 if (result.isInvalid()) {
5285 SetFailed(FK_PlaceholderType);
5286 return;
5287 }
5288 Args[I] = result.get();
5289 }
5290
5291 // C++0x [dcl.init]p16:
5292 // The semantics of initializers are as follows. The destination type is
5293 // the type of the object or reference being initialized and the source
5294 // type is the type of the initializer expression. The source type is not
5295 // defined when the initializer is a braced-init-list or when it is a
5296 // parenthesized list of expressions.
5297 QualType DestType = Entity.getType();
5298
5299 if (DestType->isDependentType() ||
3
Assuming the condition is false
5
Taking false branch
5300 Expr::hasAnyTypeDependentArguments(Args)) {
4
Assuming the condition is false
5301 SequenceKind = DependentSequence;
5302 return;
5303 }
5304
5305 // Almost everything is a normal sequence.
5306 setSequenceKind(NormalSequence);
5307
5308 QualType SourceType;
5309 Expr *Initializer = nullptr;
6
'Initializer' initialized to a null pointer value
5310 if (Args.size() == 1) {
7
Assuming the condition is false
8
Taking false branch
5311 Initializer = Args[0];
5312 if (S.getLangOpts().ObjC1) {
5313 if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
5314 DestType, Initializer->getType(),
5315 Initializer) ||
5316 S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
5317 Args[0] = Initializer;
5318 }
5319 if (!isa<InitListExpr>(Initializer))
5320 SourceType = Initializer->getType();
5321 }
5322
5323 // - If the initializer is a (non-parenthesized) braced-init-list, the
5324 // object is list-initialized (8.5.4).
5325 if (Kind.getKind() != InitializationKind::IK_Direct) {
9
Assuming the condition is false
10
Taking false branch
5326 if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
5327 TryListInitialization(S, Entity, Kind, InitList, *this,
5328 TreatUnavailableAsInvalid);
5329 return;
5330 }
5331 }
5332
5333 // - If the destination type is a reference type, see 8.5.3.
5334 if (DestType->isReferenceType()) {
11
Taking false branch
5335 // C++0x [dcl.init.ref]p1:
5336 // A variable declared to be a T& or T&&, that is, "reference to type T"
5337 // (8.3.2), shall be initialized by an object, or function, of type T or
5338 // by an object that can be converted into a T.
5339 // (Therefore, multiple arguments are not permitted.)
5340 if (Args.size() != 1)
5341 SetFailed(FK_TooManyInitsForReference);
5342 // C++17 [dcl.init.ref]p5:
5343 // A reference [...] is initialized by an expression [...] as follows:
5344 // If the initializer is not an expression, presumably we should reject,
5345 // but the standard fails to actually say so.
5346 else if (isa<InitListExpr>(Args[0]))
5347 SetFailed(FK_ParenthesizedListInitForReference);
5348 else
5349 TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
5350 return;
5351 }
5352
5353 // - If the initializer is (), the object is value-initialized.
5354 if (Kind.getKind() == InitializationKind::IK_Value ||
13
Taking false branch
5355 (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
12
Assuming the condition is false
5356 TryValueInitialization(S, Entity, Kind, *this);
5357 return;
5358 }
5359
5360 // Handle default initialization.
5361 if (Kind.getKind() == InitializationKind::IK_Default) {
14
Taking false branch
5362 TryDefaultInitialization(S, Entity, Kind, *this);
5363 return;
5364 }
5365
5366 // - If the destination type is an array of characters, an array of
5367 // char16_t, an array of char32_t, or an array of wchar_t, and the
5368 // initializer is a string literal, see 8.5.2.
5369 // - Otherwise, if the destination type is an array, the program is
5370 // ill-formed.
5371 if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
15
Assuming 'DestAT' is null
16
Taking false branch
5372 if (Initializer && isa<VariableArrayType>(DestAT)) {
5373 SetFailed(FK_VariableLengthArrayHasInitializer);
5374 return;
5375 }
5376
5377 if (Initializer) {
5378 switch (IsStringInit(Initializer, DestAT, Context)) {
5379 case SIF_None:
5380 TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
5381 return;
5382 case SIF_NarrowStringIntoWideChar:
5383 SetFailed(FK_NarrowStringIntoWideCharArray);
5384 return;
5385 case SIF_WideStringIntoChar:
5386 SetFailed(FK_WideStringIntoCharArray);
5387 return;
5388 case SIF_IncompatWideStringIntoWideChar:
5389 SetFailed(FK_IncompatWideStringIntoWideChar);
5390 return;
5391 case SIF_PlainStringIntoUTF8Char:
5392 SetFailed(FK_PlainStringIntoUTF8Char);
5393 return;
5394 case SIF_UTF8StringIntoPlainChar:
5395 SetFailed(FK_UTF8StringIntoPlainChar);
5396 return;
5397 case SIF_Other:
5398 break;
5399 }
5400 }
5401
5402 // Some kinds of initialization permit an array to be initialized from
5403 // another array of the same type, and perform elementwise initialization.
5404 if (Initializer && isa<ConstantArrayType>(DestAT) &&
5405 S.Context.hasSameUnqualifiedType(Initializer->getType(),
5406 Entity.getType()) &&
5407 canPerformArrayCopy(Entity)) {
5408 // If source is a prvalue, use it directly.
5409 if (Initializer->getValueKind() == VK_RValue) {
5410 AddArrayInitStep(DestType, /*IsGNUExtension*/false);
5411 return;
5412 }
5413
5414 // Emit element-at-a-time copy loop.
5415 InitializedEntity Element =
5416 InitializedEntity::InitializeElement(S.Context, 0, Entity);
5417 QualType InitEltT =
5418 Context.getAsArrayType(Initializer->getType())->getElementType();
5419 OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT,
5420 Initializer->getValueKind(),
5421 Initializer->getObjectKind());
5422 Expr *OVEAsExpr = &OVE;
5423 InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList,
5424 TreatUnavailableAsInvalid);
5425 if (!Failed())
5426 AddArrayInitLoopStep(Entity.getType(), InitEltT);
5427 return;
5428 }
5429
5430 // Note: as an GNU C extension, we allow initialization of an
5431 // array from a compound literal that creates an array of the same
5432 // type, so long as the initializer has no side effects.
5433 if (!S.getLangOpts().CPlusPlus && Initializer &&
5434 isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
5435 Initializer->getType()->isArrayType()) {
5436 const ArrayType *SourceAT
5437 = Context.getAsArrayType(Initializer->getType());
5438 if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
5439 SetFailed(FK_ArrayTypeMismatch);
5440 else if (Initializer->HasSideEffects(S.Context))
5441 SetFailed(FK_NonConstantArrayInit);
5442 else {
5443 AddArrayInitStep(DestType, /*IsGNUExtension*/true);
5444 }
5445 }
5446 // Note: as a GNU C++ extension, we allow list-initialization of a
5447 // class member of array type from a parenthesized initializer list.
5448 else if (S.getLangOpts().CPlusPlus &&
5449 Entity.getKind() == InitializedEntity::EK_Member &&
5450 Initializer && isa<InitListExpr>(Initializer)) {
5451 TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
5452 *this, TreatUnavailableAsInvalid);
5453 AddParenthesizedArrayInitStep(DestType);
5454 } else if (DestAT->getElementType()->isCharType())
5455 SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
5456 else if (IsWideCharCompatible(DestAT->getElementType(), Context))
5457 SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
5458 else
5459 SetFailed(FK_ArrayNeedsInitList);
5460
5461 return;
5462 }
5463
5464 // Determine whether we should consider writeback conversions for
5465 // Objective-C ARC.
5466 bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
17
Assuming the condition is true
5467 Entity.isParameterKind();
5468
5469 // We're at the end of the line for C: it's either a write-back conversion
5470 // or it's a C assignment. There's no need to check anything else.
5471 if (!S.getLangOpts().CPlusPlus) {
18
Assuming the condition is true
19
Taking true branch
5472 // If allowed, check whether this is an Objective-C writeback conversion.
5473 if (allowObjCWritebackConversion &&
5474 tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
20
Passing null pointer value via 4th parameter 'Initializer'
21
Calling 'tryObjCWritebackConversion'
5475 return;
5476 }
5477
5478 if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
5479 return;
5480
5481 if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
5482 return;
5483
5484 if (TryOCLZeroQueueInitialization(S, *this, DestType, Initializer))
5485 return;
5486
5487 // Handle initialization in C
5488 AddCAssignmentStep(DestType);
5489 MaybeProduceObjCObject(S, *this, Entity);
5490 return;
5491 }
5492
5493 assert(S.getLangOpts().CPlusPlus)(static_cast <bool> (S.getLangOpts().CPlusPlus) ? void (
0) : __assert_fail ("S.getLangOpts().CPlusPlus", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 5493, __extension__ __PRETTY_FUNCTION__))
;
5494
5495 // - If the destination type is a (possibly cv-qualified) class type:
5496 if (DestType->isRecordType()) {
5497 // - If the initialization is direct-initialization, or if it is
5498 // copy-initialization where the cv-unqualified version of the
5499 // source type is the same class as, or a derived class of, the
5500 // class of the destination, constructors are considered. [...]
5501 if (Kind.getKind() == InitializationKind::IK_Direct ||
5502 (Kind.getKind() == InitializationKind::IK_Copy &&
5503 (Context.hasSameUnqualifiedType(SourceType, DestType) ||
5504 S.IsDerivedFrom(Initializer->getLocStart(), SourceType, DestType))))
5505 TryConstructorInitialization(S, Entity, Kind, Args,
5506 DestType, DestType, *this);
5507 // - Otherwise (i.e., for the remaining copy-initialization cases),
5508 // user-defined conversion sequences that can convert from the source
5509 // type to the destination type or (when a conversion function is
5510 // used) to a derived class thereof are enumerated as described in
5511 // 13.3.1.4, and the best one is chosen through overload resolution
5512 // (13.3).
5513 else
5514 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5515 TopLevelOfInitList);
5516 return;
5517 }
5518
5519 assert(Args.size() >= 1 && "Zero-argument case handled above")(static_cast <bool> (Args.size() >= 1 && "Zero-argument case handled above"
) ? void (0) : __assert_fail ("Args.size() >= 1 && \"Zero-argument case handled above\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 5519, __extension__ __PRETTY_FUNCTION__))
;
5520
5521 // The remaining cases all need a source type.
5522 if (Args.size() > 1) {
5523 SetFailed(FK_TooManyInitsForScalar);
5524 return;
5525 } else if (isa<InitListExpr>(Args[0])) {
5526 SetFailed(FK_ParenthesizedListInitForScalar);
5527 return;
5528 }
5529
5530 // - Otherwise, if the source type is a (possibly cv-qualified) class
5531 // type, conversion functions are considered.
5532 if (!SourceType.isNull() && SourceType->isRecordType()) {
5533 // For a conversion to _Atomic(T) from either T or a class type derived
5534 // from T, initialize the T object then convert to _Atomic type.
5535 bool NeedAtomicConversion = false;
5536 if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) {
5537 if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) ||
5538 S.IsDerivedFrom(Initializer->getLocStart(), SourceType,
5539 Atomic->getValueType())) {
5540 DestType = Atomic->getValueType();
5541 NeedAtomicConversion = true;
5542 }
5543 }
5544
5545 TryUserDefinedConversion(S, DestType, Kind, Initializer, *this,
5546 TopLevelOfInitList);
5547 MaybeProduceObjCObject(S, *this, Entity);
5548 if (!Failed() && NeedAtomicConversion)
5549 AddAtomicConversionStep(Entity.getType());
5550 return;
5551 }
5552
5553 // - Otherwise, the initial value of the object being initialized is the
5554 // (possibly converted) value of the initializer expression. Standard
5555 // conversions (Clause 4) will be used, if necessary, to convert the
5556 // initializer expression to the cv-unqualified version of the
5557 // destination type; no user-defined conversions are considered.
5558
5559 ImplicitConversionSequence ICS
5560 = S.TryImplicitConversion(Initializer, DestType,
5561 /*SuppressUserConversions*/true,
5562 /*AllowExplicitConversions*/ false,
5563 /*InOverloadResolution*/ false,
5564 /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
5565 allowObjCWritebackConversion);
5566
5567 if (ICS.isStandard() &&
5568 ICS.Standard.Second == ICK_Writeback_Conversion) {
5569 // Objective-C ARC writeback conversion.
5570
5571 // We should copy unless we're passing to an argument explicitly
5572 // marked 'out'.
5573 bool ShouldCopy = true;
5574 if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
5575 ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
5576
5577 // If there was an lvalue adjustment, add it as a separate conversion.
5578 if (ICS.Standard.First == ICK_Array_To_Pointer ||
5579 ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
5580 ImplicitConversionSequence LvalueICS;
5581 LvalueICS.setStandard();
5582 LvalueICS.Standard.setAsIdentityConversion();
5583 LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
5584 LvalueICS.Standard.First = ICS.Standard.First;
5585 AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
5586 }
5587
5588 AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy);
5589 } else if (ICS.isBad()) {
5590 DeclAccessPair dap;
5591 if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
5592 AddZeroInitializationStep(Entity.getType());
5593 } else if (Initializer->getType() == Context.OverloadTy &&
5594 !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
5595 false, dap))
5596 SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
5597 else if (Initializer->getType()->isFunctionType() &&
5598 isExprAnUnaddressableFunction(S, Initializer))
5599 SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction);
5600 else
5601 SetFailed(InitializationSequence::FK_ConversionFailed);
5602 } else {
5603 AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
5604
5605 MaybeProduceObjCObject(S, *this, Entity);
5606 }
5607}
5608
5609InitializationSequence::~InitializationSequence() {
5610 for (auto &S : Steps)
5611 S.Destroy();
5612}
5613
5614//===----------------------------------------------------------------------===//
5615// Perform initialization
5616//===----------------------------------------------------------------------===//
5617static Sema::AssignmentAction
5618getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
5619 switch(Entity.getKind()) {
5620 case InitializedEntity::EK_Variable:
5621 case InitializedEntity::EK_New:
5622 case InitializedEntity::EK_Exception:
5623 case InitializedEntity::EK_Base:
5624 case InitializedEntity::EK_Delegating:
5625 return Sema::AA_Initializing;
5626
5627 case InitializedEntity::EK_Parameter:
5628 if (Entity.getDecl() &&
5629 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5630 return Sema::AA_Sending;
5631
5632 return Sema::AA_Passing;
5633
5634 case InitializedEntity::EK_Parameter_CF_Audited:
5635 if (Entity.getDecl() &&
5636 isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
5637 return Sema::AA_Sending;
5638
5639 return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
5640
5641 case InitializedEntity::EK_Result:
5642 case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right.
5643 return Sema::AA_Returning;
5644
5645 case InitializedEntity::EK_Temporary:
5646 case InitializedEntity::EK_RelatedResult:
5647 // FIXME: Can we tell apart casting vs. converting?
5648 return Sema::AA_Casting;
5649
5650 case InitializedEntity::EK_Member:
5651 case InitializedEntity::EK_Binding:
5652 case InitializedEntity::EK_ArrayElement:
5653 case InitializedEntity::EK_VectorElement:
5654 case InitializedEntity::EK_ComplexElement:
5655 case InitializedEntity::EK_BlockElement:
5656 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5657 case InitializedEntity::EK_LambdaCapture:
5658 case InitializedEntity::EK_CompoundLiteralInit:
5659 return Sema::AA_Initializing;
5660 }
5661
5662 llvm_unreachable("Invalid EntityKind!")::llvm::llvm_unreachable_internal("Invalid EntityKind!", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 5662)
;
5663}
5664
5665/// Whether we should bind a created object as a temporary when
5666/// initializing the given entity.
5667static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
5668 switch (Entity.getKind()) {
5669 case InitializedEntity::EK_ArrayElement:
5670 case InitializedEntity::EK_Member:
5671 case InitializedEntity::EK_Result:
5672 case InitializedEntity::EK_StmtExprResult:
5673 case InitializedEntity::EK_New:
5674 case InitializedEntity::EK_Variable:
5675 case InitializedEntity::EK_Base:
5676 case InitializedEntity::EK_Delegating:
5677 case InitializedEntity::EK_VectorElement:
5678 case InitializedEntity::EK_ComplexElement:
5679 case InitializedEntity::EK_Exception:
5680 case InitializedEntity::EK_BlockElement:
5681 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5682 case InitializedEntity::EK_LambdaCapture:
5683 case InitializedEntity::EK_CompoundLiteralInit:
5684 return false;
5685
5686 case InitializedEntity::EK_Parameter:
5687 case InitializedEntity::EK_Parameter_CF_Audited:
5688 case InitializedEntity::EK_Temporary:
5689 case InitializedEntity::EK_RelatedResult:
5690 case InitializedEntity::EK_Binding:
5691 return true;
5692 }
5693
5694 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 5694)
;
5695}
5696
5697/// Whether the given entity, when initialized with an object
5698/// created for that initialization, requires destruction.
5699static bool shouldDestroyEntity(const InitializedEntity &Entity) {
5700 switch (Entity.getKind()) {
5701 case InitializedEntity::EK_Result:
5702 case InitializedEntity::EK_StmtExprResult:
5703 case InitializedEntity::EK_New:
5704 case InitializedEntity::EK_Base:
5705 case InitializedEntity::EK_Delegating:
5706 case InitializedEntity::EK_VectorElement:
5707 case InitializedEntity::EK_ComplexElement:
5708 case InitializedEntity::EK_BlockElement:
5709 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5710 case InitializedEntity::EK_LambdaCapture:
5711 return false;
5712
5713 case InitializedEntity::EK_Member:
5714 case InitializedEntity::EK_Binding:
5715 case InitializedEntity::EK_Variable:
5716 case InitializedEntity::EK_Parameter:
5717 case InitializedEntity::EK_Parameter_CF_Audited:
5718 case InitializedEntity::EK_Temporary:
5719 case InitializedEntity::EK_ArrayElement:
5720 case InitializedEntity::EK_Exception:
5721 case InitializedEntity::EK_CompoundLiteralInit:
5722 case InitializedEntity::EK_RelatedResult:
5723 return true;
5724 }
5725
5726 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 5726)
;
5727}
5728
5729/// Get the location at which initialization diagnostics should appear.
5730static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
5731 Expr *Initializer) {
5732 switch (Entity.getKind()) {
5733 case InitializedEntity::EK_Result:
5734 case InitializedEntity::EK_StmtExprResult:
5735 return Entity.getReturnLoc();
5736
5737 case InitializedEntity::EK_Exception:
5738 return Entity.getThrowLoc();
5739
5740 case InitializedEntity::EK_Variable:
5741 case InitializedEntity::EK_Binding:
5742 return Entity.getDecl()->getLocation();
5743
5744 case InitializedEntity::EK_LambdaCapture:
5745 return Entity.getCaptureLoc();
5746
5747 case InitializedEntity::EK_ArrayElement:
5748 case InitializedEntity::EK_Member:
5749 case InitializedEntity::EK_Parameter:
5750 case InitializedEntity::EK_Parameter_CF_Audited:
5751 case InitializedEntity::EK_Temporary:
5752 case InitializedEntity::EK_New:
5753 case InitializedEntity::EK_Base:
5754 case InitializedEntity::EK_Delegating:
5755 case InitializedEntity::EK_VectorElement:
5756 case InitializedEntity::EK_ComplexElement:
5757 case InitializedEntity::EK_BlockElement:
5758 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
5759 case InitializedEntity::EK_CompoundLiteralInit:
5760 case InitializedEntity::EK_RelatedResult:
5761 return Initializer->getLocStart();
5762 }
5763 llvm_unreachable("missed an InitializedEntity kind?")::llvm::llvm_unreachable_internal("missed an InitializedEntity kind?"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 5763)
;
5764}
5765
5766/// Make a (potentially elidable) temporary copy of the object
5767/// provided by the given initializer by calling the appropriate copy
5768/// constructor.
5769///
5770/// \param S The Sema object used for type-checking.
5771///
5772/// \param T The type of the temporary object, which must either be
5773/// the type of the initializer expression or a superclass thereof.
5774///
5775/// \param Entity The entity being initialized.
5776///
5777/// \param CurInit The initializer expression.
5778///
5779/// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5780/// is permitted in C++03 (but not C++0x) when binding a reference to
5781/// an rvalue.
5782///
5783/// \returns An expression that copies the initializer expression into
5784/// a temporary object, or an error expression if a copy could not be
5785/// created.
5786static ExprResult CopyObject(Sema &S,
5787 QualType T,
5788 const InitializedEntity &Entity,
5789 ExprResult CurInit,
5790 bool IsExtraneousCopy) {
5791 if (CurInit.isInvalid())
5792 return CurInit;
5793 // Determine which class type we're copying to.
5794 Expr *CurInitExpr = (Expr *)CurInit.get();
5795 CXXRecordDecl *Class = nullptr;
5796 if (const RecordType *Record = T->getAs<RecordType>())
5797 Class = cast<CXXRecordDecl>(Record->getDecl());
5798 if (!Class)
5799 return CurInit;
5800
5801 SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5802
5803 // Make sure that the type we are copying is complete.
5804 if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5805 return CurInit;
5806
5807 // Perform overload resolution using the class's constructors. Per
5808 // C++11 [dcl.init]p16, second bullet for class types, this initialization
5809 // is direct-initialization.
5810 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5811 DeclContext::lookup_result Ctors = S.LookupConstructors(Class);
5812
5813 OverloadCandidateSet::iterator Best;
5814 switch (ResolveConstructorOverload(
5815 S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best,
5816 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5817 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5818 /*SecondStepOfCopyInit=*/true)) {
5819 case OR_Success:
5820 break;
5821
5822 case OR_No_Viable_Function:
5823 S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5824 ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5825 : diag::err_temp_copy_no_viable)
5826 << (int)Entity.getKind() << CurInitExpr->getType()
5827 << CurInitExpr->getSourceRange();
5828 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5829 if (!IsExtraneousCopy || S.isSFINAEContext())
5830 return ExprError();
5831 return CurInit;
5832
5833 case OR_Ambiguous:
5834 S.Diag(Loc, diag::err_temp_copy_ambiguous)
5835 << (int)Entity.getKind() << CurInitExpr->getType()
5836 << CurInitExpr->getSourceRange();
5837 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5838 return ExprError();
5839
5840 case OR_Deleted:
5841 S.Diag(Loc, diag::err_temp_copy_deleted)
5842 << (int)Entity.getKind() << CurInitExpr->getType()
5843 << CurInitExpr->getSourceRange();
5844 S.NoteDeletedFunction(Best->Function);
5845 return ExprError();
5846 }
5847
5848 bool HadMultipleCandidates = CandidateSet.size() > 1;
5849
5850 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5851 SmallVector<Expr*, 8> ConstructorArgs;
5852 CurInit.get(); // Ownership transferred into MultiExprArg, below.
5853
5854 S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity,
5855 IsExtraneousCopy);
5856
5857 if (IsExtraneousCopy) {
5858 // If this is a totally extraneous copy for C++03 reference
5859 // binding purposes, just return the original initialization
5860 // expression. We don't generate an (elided) copy operation here
5861 // because doing so would require us to pass down a flag to avoid
5862 // infinite recursion, where each step adds another extraneous,
5863 // elidable copy.
5864
5865 // Instantiate the default arguments of any extra parameters in
5866 // the selected copy constructor, as if we were going to create a
5867 // proper call to the copy constructor.
5868 for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5869 ParmVarDecl *Parm = Constructor->getParamDecl(I);
5870 if (S.RequireCompleteType(Loc, Parm->getType(),
5871 diag::err_call_incomplete_argument))
5872 break;
5873
5874 // Build the default argument expression; we don't actually care
5875 // if this succeeds or not, because this routine will complain
5876 // if there was a problem.
5877 S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5878 }
5879
5880 return CurInitExpr;
5881 }
5882
5883 // Determine the arguments required to actually perform the
5884 // constructor call (we might have derived-to-base conversions, or
5885 // the copy constructor may have default arguments).
5886 if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5887 return ExprError();
5888
5889 // C++0x [class.copy]p32:
5890 // When certain criteria are met, an implementation is allowed to
5891 // omit the copy/move construction of a class object, even if the
5892 // copy/move constructor and/or destructor for the object have
5893 // side effects. [...]
5894 // - when a temporary class object that has not been bound to a
5895 // reference (12.2) would be copied/moved to a class object
5896 // with the same cv-unqualified type, the copy/move operation
5897 // can be omitted by constructing the temporary object
5898 // directly into the target of the omitted copy/move
5899 //
5900 // Note that the other three bullets are handled elsewhere. Copy
5901 // elision for return statements and throw expressions are handled as part
5902 // of constructor initialization, while copy elision for exception handlers
5903 // is handled by the run-time.
5904 //
5905 // FIXME: If the function parameter is not the same type as the temporary, we
5906 // should still be able to elide the copy, but we don't have a way to
5907 // represent in the AST how much should be elided in this case.
5908 bool Elidable =
5909 CurInitExpr->isTemporaryObject(S.Context, Class) &&
5910 S.Context.hasSameUnqualifiedType(
5911 Best->Function->getParamDecl(0)->getType().getNonReferenceType(),
5912 CurInitExpr->getType());
5913
5914 // Actually perform the constructor call.
5915 CurInit = S.BuildCXXConstructExpr(Loc, T, Best->FoundDecl, Constructor,
5916 Elidable,
5917 ConstructorArgs,
5918 HadMultipleCandidates,
5919 /*ListInit*/ false,
5920 /*StdInitListInit*/ false,
5921 /*ZeroInit*/ false,
5922 CXXConstructExpr::CK_Complete,
5923 SourceRange());
5924
5925 // If we're supposed to bind temporaries, do so.
5926 if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5927 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5928 return CurInit;
5929}
5930
5931/// Check whether elidable copy construction for binding a reference to
5932/// a temporary would have succeeded if we were building in C++98 mode, for
5933/// -Wc++98-compat.
5934static void CheckCXX98CompatAccessibleCopy(Sema &S,
5935 const InitializedEntity &Entity,
5936 Expr *CurInitExpr) {
5937 assert(S.getLangOpts().CPlusPlus11)(static_cast <bool> (S.getLangOpts().CPlusPlus11) ? void
(0) : __assert_fail ("S.getLangOpts().CPlusPlus11", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 5937, __extension__ __PRETTY_FUNCTION__))
;
5938
5939 const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5940 if (!Record)
5941 return;
5942
5943 SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5944 if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5945 return;
5946
5947 // Find constructors which would have been considered.
5948 OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5949 DeclContext::lookup_result Ctors =
5950 S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl()));
5951
5952 // Perform overload resolution.
5953 OverloadCandidateSet::iterator Best;
5954 OverloadingResult OR = ResolveConstructorOverload(
5955 S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best,
5956 /*CopyInitializing=*/false, /*AllowExplicit=*/true,
5957 /*OnlyListConstructors=*/false, /*IsListInit=*/false,
5958 /*SecondStepOfCopyInit=*/true);
5959
5960 PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5961 << OR << (int)Entity.getKind() << CurInitExpr->getType()
5962 << CurInitExpr->getSourceRange();
5963
5964 switch (OR) {
5965 case OR_Success:
5966 S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5967 Best->FoundDecl, Entity, Diag);
5968 // FIXME: Check default arguments as far as that's possible.
5969 break;
5970
5971 case OR_No_Viable_Function:
5972 S.Diag(Loc, Diag);
5973 CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5974 break;
5975
5976 case OR_Ambiguous:
5977 S.Diag(Loc, Diag);
5978 CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5979 break;
5980
5981 case OR_Deleted:
5982 S.Diag(Loc, Diag);
5983 S.NoteDeletedFunction(Best->Function);
5984 break;
5985 }
5986}
5987
5988void InitializationSequence::PrintInitLocationNote(Sema &S,
5989 const InitializedEntity &Entity) {
5990 if (Entity.isParameterKind() && Entity.getDecl()) {
5991 if (Entity.getDecl()->getLocation().isInvalid())
5992 return;
5993
5994 if (Entity.getDecl()->getDeclName())
5995 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5996 << Entity.getDecl()->getDeclName();
5997 else
5998 S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5999 }
6000 else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
6001 Entity.getMethodDecl())
6002 S.Diag(Entity.getMethodDecl()->getLocation(),
6003 diag::note_method_return_type_change)
6004 << Entity.getMethodDecl()->getDeclName();
6005}
6006
6007/// Returns true if the parameters describe a constructor initialization of
6008/// an explicit temporary object, e.g. "Point(x, y)".
6009static bool isExplicitTemporary(const InitializedEntity &Entity,
6010 const InitializationKind &Kind,
6011 unsigned NumArgs) {
6012 switch (Entity.getKind()) {
6013 case InitializedEntity::EK_Temporary:
6014 case InitializedEntity::EK_CompoundLiteralInit:
6015 case InitializedEntity::EK_RelatedResult:
6016 break;
6017 default:
6018 return false;
6019 }
6020
6021 switch (Kind.getKind()) {
6022 case InitializationKind::IK_DirectList:
6023 return true;
6024 // FIXME: Hack to work around cast weirdness.
6025 case InitializationKind::IK_Direct:
6026 case InitializationKind::IK_Value:
6027 return NumArgs != 1;
6028 default:
6029 return false;
6030 }
6031}
6032
6033static ExprResult
6034PerformConstructorInitialization(Sema &S,
6035 const InitializedEntity &Entity,
6036 const InitializationKind &Kind,
6037 MultiExprArg Args,
6038 const InitializationSequence::Step& Step,
6039 bool &ConstructorInitRequiresZeroInit,
6040 bool IsListInitialization,
6041 bool IsStdInitListInitialization,
6042 SourceLocation LBraceLoc,
6043 SourceLocation RBraceLoc) {
6044 unsigned NumArgs = Args.size();
6045 CXXConstructorDecl *Constructor
6046 = cast<CXXConstructorDecl>(Step.Function.Function);
6047 bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
6048
6049 // Build a call to the selected constructor.
6050 SmallVector<Expr*, 8> ConstructorArgs;
6051 SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
6052 ? Kind.getEqualLoc()
6053 : Kind.getLocation();
6054
6055 if (Kind.getKind() == InitializationKind::IK_Default) {
6056 // Force even a trivial, implicit default constructor to be
6057 // semantically checked. We do this explicitly because we don't build
6058 // the definition for completely trivial constructors.
6059 assert(Constructor->getParent() && "No parent class for constructor.")(static_cast <bool> (Constructor->getParent() &&
"No parent class for constructor.") ? void (0) : __assert_fail
("Constructor->getParent() && \"No parent class for constructor.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 6059, __extension__ __PRETTY_FUNCTION__))
;
6060 if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6061 Constructor->isTrivial() && !Constructor->isUsed(false))
6062 S.DefineImplicitDefaultConstructor(Loc, Constructor);
6063 }
6064
6065 ExprResult CurInit((Expr *)nullptr);
6066
6067 // C++ [over.match.copy]p1:
6068 // - When initializing a temporary to be bound to the first parameter
6069 // of a constructor that takes a reference to possibly cv-qualified
6070 // T as its first argument, called with a single argument in the
6071 // context of direct-initialization, explicit conversion functions
6072 // are also considered.
6073 bool AllowExplicitConv =
6074 Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 &&
6075 hasCopyOrMoveCtorParam(S.Context,
6076 getConstructorInfo(Step.Function.FoundDecl));
6077
6078 // Determine the arguments required to actually perform the constructor
6079 // call.
6080 if (S.CompleteConstructorCall(Constructor, Args,
6081 Loc, ConstructorArgs,
6082 AllowExplicitConv,
6083 IsListInitialization))
6084 return ExprError();
6085
6086
6087 if (isExplicitTemporary(Entity, Kind, NumArgs)) {
6088 // An explicitly-constructed temporary, e.g., X(1, 2).
6089 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6090 return ExprError();
6091
6092 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6093 if (!TSInfo)
6094 TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
6095 SourceRange ParenOrBraceRange = Kind.getParenOrBraceRange();
6096
6097 if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>(
6098 Step.Function.FoundDecl.getDecl())) {
6099 Constructor = S.findInheritingConstructor(Loc, Constructor, Shadow);
6100 if (S.DiagnoseUseOfDecl(Constructor, Loc))
6101 return ExprError();
6102 }
6103 S.MarkFunctionReferenced(Loc, Constructor);
6104
6105 CurInit = new (S.Context) CXXTemporaryObjectExpr(
6106 S.Context, Constructor,
6107 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
6108 ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates,
6109 IsListInitialization, IsStdInitListInitialization,
6110 ConstructorInitRequiresZeroInit);
6111 } else {
6112 CXXConstructExpr::ConstructionKind ConstructKind =
6113 CXXConstructExpr::CK_Complete;
6114
6115 if (Entity.getKind() == InitializedEntity::EK_Base) {
6116 ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
6117 CXXConstructExpr::CK_VirtualBase :
6118 CXXConstructExpr::CK_NonVirtualBase;
6119 } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
6120 ConstructKind = CXXConstructExpr::CK_Delegating;
6121 }
6122
6123 // Only get the parenthesis or brace range if it is a list initialization or
6124 // direct construction.
6125 SourceRange ParenOrBraceRange;
6126 if (IsListInitialization)
6127 ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
6128 else if (Kind.getKind() == InitializationKind::IK_Direct)
6129 ParenOrBraceRange = Kind.getParenOrBraceRange();
6130
6131 // If the entity allows NRVO, mark the construction as elidable
6132 // unconditionally.
6133 if (Entity.allowsNRVO())
6134 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6135 Step.Function.FoundDecl,
6136 Constructor, /*Elidable=*/true,
6137 ConstructorArgs,
6138 HadMultipleCandidates,
6139 IsListInitialization,
6140 IsStdInitListInitialization,
6141 ConstructorInitRequiresZeroInit,
6142 ConstructKind,
6143 ParenOrBraceRange);
6144 else
6145 CurInit = S.BuildCXXConstructExpr(Loc, Step.Type,
6146 Step.Function.FoundDecl,
6147 Constructor,
6148 ConstructorArgs,
6149 HadMultipleCandidates,
6150 IsListInitialization,
6151 IsStdInitListInitialization,
6152 ConstructorInitRequiresZeroInit,
6153 ConstructKind,
6154 ParenOrBraceRange);
6155 }
6156 if (CurInit.isInvalid())
6157 return ExprError();
6158
6159 // Only check access if all of that succeeded.
6160 S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity);
6161 if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
6162 return ExprError();
6163
6164 if (shouldBindAsTemporary(Entity))
6165 CurInit = S.MaybeBindToTemporary(CurInit.get());
6166
6167 return CurInit;
6168}
6169
6170namespace {
6171enum LifetimeKind {
6172 /// The lifetime of a temporary bound to this entity ends at the end of the
6173 /// full-expression, and that's (probably) fine.
6174 LK_FullExpression,
6175
6176 /// The lifetime of a temporary bound to this entity is extended to the
6177 /// lifeitme of the entity itself.
6178 LK_Extended,
6179
6180 /// The lifetime of a temporary bound to this entity probably ends too soon,
6181 /// because the entity is allocated in a new-expression.
6182 LK_New,
6183
6184 /// The lifetime of a temporary bound to this entity ends too soon, because
6185 /// the entity is a return object.
6186 LK_Return,
6187
6188 /// The lifetime of a temporary bound to this entity ends too soon, because
6189 /// the entity is the result of a statement expression.
6190 LK_StmtExprResult,
6191
6192 /// This is a mem-initializer: if it would extend a temporary (other than via
6193 /// a default member initializer), the program is ill-formed.
6194 LK_MemInitializer,
6195};
6196using LifetimeResult =
6197 llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>;
6198}
6199
6200/// Determine the declaration which an initialized entity ultimately refers to,
6201/// for the purpose of lifetime-extending a temporary bound to a reference in
6202/// the initialization of \p Entity.
6203static LifetimeResult getEntityLifetime(
6204 const InitializedEntity *Entity,
6205 const InitializedEntity *InitField = nullptr) {
6206 // C++11 [class.temporary]p5:
6207 switch (Entity->getKind()) {
6208 case InitializedEntity::EK_Variable:
6209 // The temporary [...] persists for the lifetime of the reference
6210 return {Entity, LK_Extended};
6211
6212 case InitializedEntity::EK_Member:
6213 // For subobjects, we look at the complete object.
6214 if (Entity->getParent())
6215 return getEntityLifetime(Entity->getParent(), Entity);
6216
6217 // except:
6218 // C++17 [class.base.init]p8:
6219 // A temporary expression bound to a reference member in a
6220 // mem-initializer is ill-formed.
6221 // C++17 [class.base.init]p11:
6222 // A temporary expression bound to a reference member from a
6223 // default member initializer is ill-formed.
6224 //
6225 // The context of p11 and its example suggest that it's only the use of a
6226 // default member initializer from a constructor that makes the program
6227 // ill-formed, not its mere existence, and that it can even be used by
6228 // aggregate initialization.
6229 return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended
6230 : LK_MemInitializer};
6231
6232 case InitializedEntity::EK_Binding:
6233 // Per [dcl.decomp]p3, the binding is treated as a variable of reference
6234 // type.
6235 return {Entity, LK_Extended};
6236
6237 case InitializedEntity::EK_Parameter:
6238 case InitializedEntity::EK_Parameter_CF_Audited:
6239 // -- A temporary bound to a reference parameter in a function call
6240 // persists until the completion of the full-expression containing
6241 // the call.
6242 return {nullptr, LK_FullExpression};
6243
6244 case InitializedEntity::EK_Result:
6245 // -- The lifetime of a temporary bound to the returned value in a
6246 // function return statement is not extended; the temporary is
6247 // destroyed at the end of the full-expression in the return statement.
6248 return {nullptr, LK_Return};
6249
6250 case InitializedEntity::EK_StmtExprResult:
6251 // FIXME: Should we lifetime-extend through the result of a statement
6252 // expression?
6253 return {nullptr, LK_StmtExprResult};
6254
6255 case InitializedEntity::EK_New:
6256 // -- A temporary bound to a reference in a new-initializer persists
6257 // until the completion of the full-expression containing the
6258 // new-initializer.
6259 return {nullptr, LK_New};
6260
6261 case InitializedEntity::EK_Temporary:
6262 case InitializedEntity::EK_CompoundLiteralInit:
6263 case InitializedEntity::EK_RelatedResult:
6264 // We don't yet know the storage duration of the surrounding temporary.
6265 // Assume it's got full-expression duration for now, it will patch up our
6266 // storage duration if that's not correct.
6267 return {nullptr, LK_FullExpression};
6268
6269 case InitializedEntity::EK_ArrayElement:
6270 // For subobjects, we look at the complete object.
6271 return getEntityLifetime(Entity->getParent(), InitField);
6272
6273 case InitializedEntity::EK_Base:
6274 // For subobjects, we look at the complete object.
6275 if (Entity->getParent())
6276 return getEntityLifetime(Entity->getParent(), InitField);
6277 return {InitField, LK_MemInitializer};
6278
6279 case InitializedEntity::EK_Delegating:
6280 // We can reach this case for aggregate initialization in a constructor:
6281 // struct A { int &&r; };
6282 // struct B : A { B() : A{0} {} };
6283 // In this case, use the outermost field decl as the context.
6284 return {InitField, LK_MemInitializer};
6285
6286 case InitializedEntity::EK_BlockElement:
6287 case InitializedEntity::EK_LambdaToBlockConversionBlockElement:
6288 case InitializedEntity::EK_LambdaCapture:
6289 case InitializedEntity::EK_VectorElement:
6290 case InitializedEntity::EK_ComplexElement:
6291 return {nullptr, LK_FullExpression};
6292
6293 case InitializedEntity::EK_Exception:
6294 // FIXME: Can we diagnose lifetime problems with exceptions?
6295 return {nullptr, LK_FullExpression};
6296 }
6297 llvm_unreachable("unknown entity kind")::llvm::llvm_unreachable_internal("unknown entity kind", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 6297)
;
6298}
6299
6300namespace {
6301enum ReferenceKind {
6302 /// Lifetime would be extended by a reference binding to a temporary.
6303 RK_ReferenceBinding,
6304 /// Lifetime would be extended by a std::initializer_list object binding to
6305 /// its backing array.
6306 RK_StdInitializerList,
6307};
6308
6309/// A temporary or local variable. This will be one of:
6310/// * A MaterializeTemporaryExpr.
6311/// * A DeclRefExpr whose declaration is a local.
6312/// * An AddrLabelExpr.
6313/// * A BlockExpr for a block with captures.
6314using Local = Expr*;
6315
6316/// Expressions we stepped over when looking for the local state. Any steps
6317/// that would inhibit lifetime extension or take us out of subexpressions of
6318/// the initializer are included.
6319struct IndirectLocalPathEntry {
6320 enum EntryKind {
6321 DefaultInit,
6322 AddressOf,
6323 VarInit,
6324 LValToRVal,
6325 } Kind;
6326 Expr *E;
6327 Decl *D = nullptr;
6328 IndirectLocalPathEntry() {}
6329 IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {}
6330 IndirectLocalPathEntry(EntryKind K, Expr *E, Decl *D) : Kind(K), E(E), D(D) {}
6331};
6332
6333using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>;
6334
6335struct RevertToOldSizeRAII {
6336 IndirectLocalPath &Path;
6337 unsigned OldSize = Path.size();
6338 RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {}
6339 ~RevertToOldSizeRAII() { Path.resize(OldSize); }
6340};
6341
6342using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L,
6343 ReferenceKind RK)>;
6344}
6345
6346static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) {
6347 for (auto E : Path)
6348 if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD)
6349 return true;
6350 return false;
6351}
6352
6353static bool pathContainsInit(IndirectLocalPath &Path) {
6354 return std::any_of(Path.begin(), Path.end(), [=](IndirectLocalPathEntry E) {
6355 return E.Kind == IndirectLocalPathEntry::DefaultInit ||
6356 E.Kind == IndirectLocalPathEntry::VarInit;
6357 });
6358}
6359
6360static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6361 Expr *Init, LocalVisitor Visit,
6362 bool RevisitSubinits);
6363
6364/// Visit the locals that would be reachable through a reference bound to the
6365/// glvalue expression \c Init.
6366static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path,
6367 Expr *Init, ReferenceKind RK,
6368 LocalVisitor Visit) {
6369 RevertToOldSizeRAII RAII(Path);
6370
6371 // Walk past any constructs which we can lifetime-extend across.
6372 Expr *Old;
6373 do {
6374 Old = Init;
6375
6376 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
6377 Init = EWC->getSubExpr();
6378
6379 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6380 // If this is just redundant braces around an initializer, step over it.
6381 if (ILE->isTransparent())
6382 Init = ILE->getInit(0);
6383 }
6384
6385 // Step over any subobject adjustments; we may have a materialized
6386 // temporary inside them.
6387 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6388
6389 // Per current approach for DR1376, look through casts to reference type
6390 // when performing lifetime extension.
6391 if (CastExpr *CE = dyn_cast<CastExpr>(Init))
6392 if (CE->getSubExpr()->isGLValue())
6393 Init = CE->getSubExpr();
6394
6395 // Per the current approach for DR1299, look through array element access
6396 // on array glvalues when performing lifetime extension.
6397 if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) {
6398 Init = ASE->getBase();
6399 auto *ICE = dyn_cast<ImplicitCastExpr>(Init);
6400 if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay)
6401 Init = ICE->getSubExpr();
6402 else
6403 // We can't lifetime extend through this but we might still find some
6404 // retained temporaries.
6405 return visitLocalsRetainedByInitializer(Path, Init, Visit, true);
6406 }
6407
6408 // Step into CXXDefaultInitExprs so we can diagnose cases where a
6409 // constructor inherits one as an implicit mem-initializer.
6410 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6411 Path.push_back(
6412 {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6413 Init = DIE->getExpr();
6414 }
6415 } while (Init != Old);
6416
6417 if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) {
6418 if (Visit(Path, Local(MTE), RK))
6419 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(), Visit,
6420 true);
6421 }
6422
6423 switch (Init->getStmtClass()) {
6424 case Stmt::DeclRefExprClass: {
6425 // If we find the name of a local non-reference parameter, we could have a
6426 // lifetime problem.
6427 auto *DRE = cast<DeclRefExpr>(Init);
6428 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6429 if (VD && VD->hasLocalStorage() &&
6430 !DRE->refersToEnclosingVariableOrCapture()) {
6431 if (!VD->getType()->isReferenceType()) {
6432 Visit(Path, Local(DRE), RK);
6433 } else if (isa<ParmVarDecl>(DRE->getDecl())) {
6434 // The lifetime of a reference parameter is unknown; assume it's OK
6435 // for now.
6436 break;
6437 } else if (VD->getInit() && !isVarOnPath(Path, VD)) {
6438 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6439 visitLocalsRetainedByReferenceBinding(Path, VD->getInit(),
6440 RK_ReferenceBinding, Visit);
6441 }
6442 }
6443 break;
6444 }
6445
6446 case Stmt::UnaryOperatorClass: {
6447 // The only unary operator that make sense to handle here
6448 // is Deref. All others don't resolve to a "name." This includes
6449 // handling all sorts of rvalues passed to a unary operator.
6450 const UnaryOperator *U = cast<UnaryOperator>(Init);
6451 if (U->getOpcode() == UO_Deref)
6452 visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true);
6453 break;
6454 }
6455
6456 case Stmt::OMPArraySectionExprClass: {
6457 visitLocalsRetainedByInitializer(
6458 Path, cast<OMPArraySectionExpr>(Init)->getBase(), Visit, true);
6459 break;
6460 }
6461
6462 case Stmt::ConditionalOperatorClass:
6463 case Stmt::BinaryConditionalOperatorClass: {
6464 auto *C = cast<AbstractConditionalOperator>(Init);
6465 if (!C->getTrueExpr()->getType()->isVoidType())
6466 visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit);
6467 if (!C->getFalseExpr()->getType()->isVoidType())
6468 visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit);
6469 break;
6470 }
6471
6472 // FIXME: Visit the left-hand side of an -> or ->*.
6473
6474 default:
6475 break;
6476 }
6477}
6478
6479/// Visit the locals that would be reachable through an object initialized by
6480/// the prvalue expression \c Init.
6481static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path,
6482 Expr *Init, LocalVisitor Visit,
6483 bool RevisitSubinits) {
6484 RevertToOldSizeRAII RAII(Path);
6485
6486 // Step into CXXDefaultInitExprs so we can diagnose cases where a
6487 // constructor inherits one as an implicit mem-initializer.
6488 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) {
6489 Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()});
6490 Init = DIE->getExpr();
6491 }
6492
6493 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
6494 Init = EWC->getSubExpr();
6495
6496 // Dig out the expression which constructs the extended temporary.
6497 Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments());
6498
6499 if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
6500 Init = BTE->getSubExpr();
6501
6502 // C++17 [dcl.init.list]p6:
6503 // initializing an initializer_list object from the array extends the
6504 // lifetime of the array exactly like binding a reference to a temporary.
6505 if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init))
6506 return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(),
6507 RK_StdInitializerList, Visit);
6508
6509 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
6510 // We already visited the elements of this initializer list while
6511 // performing the initialization. Don't visit them again unless we've
6512 // changed the lifetime of the initialized entity.
6513 if (!RevisitSubinits)
6514 return;
6515
6516 if (ILE->isTransparent())
6517 return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit,
6518 RevisitSubinits);
6519
6520 if (ILE->getType()->isArrayType()) {
6521 for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
6522 visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit,
6523 RevisitSubinits);
6524 return;
6525 }
6526
6527 if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
6528 assert(RD->isAggregate() && "aggregate init on non-aggregate")(static_cast <bool> (RD->isAggregate() && "aggregate init on non-aggregate"
) ? void (0) : __assert_fail ("RD->isAggregate() && \"aggregate init on non-aggregate\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 6528, __extension__ __PRETTY_FUNCTION__))
;
6529
6530 // If we lifetime-extend a braced initializer which is initializing an
6531 // aggregate, and that aggregate contains reference members which are
6532 // bound to temporaries, those temporaries are also lifetime-extended.
6533 if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
6534 ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
6535 visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0),
6536 RK_ReferenceBinding, Visit);
6537 else {
6538 unsigned Index = 0;
6539 for (const auto *I : RD->fields()) {
6540 if (Index >= ILE->getNumInits())
6541 break;
6542 if (I->isUnnamedBitfield())
6543 continue;
6544 Expr *SubInit = ILE->getInit(Index);
6545 if (I->getType()->isReferenceType())
6546 visitLocalsRetainedByReferenceBinding(Path, SubInit,
6547 RK_ReferenceBinding, Visit);
6548 else
6549 // This might be either aggregate-initialization of a member or
6550 // initialization of a std::initializer_list object. Regardless,
6551 // we should recursively lifetime-extend that initializer.
6552 visitLocalsRetainedByInitializer(Path, SubInit, Visit,
6553 RevisitSubinits);
6554 ++Index;
6555 }
6556 }
6557 }
6558 return;
6559 }
6560
6561 // Step over value-preserving rvalue casts.
6562 while (auto *CE = dyn_cast<CastExpr>(Init)) {
6563 switch (CE->getCastKind()) {
6564 case CK_LValueToRValue:
6565 // If we can match the lvalue to a const object, we can look at its
6566 // initializer.
6567 Path.push_back({IndirectLocalPathEntry::LValToRVal, CE});
6568 return visitLocalsRetainedByReferenceBinding(
6569 Path, Init, RK_ReferenceBinding,
6570 [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool {
6571 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6572 auto *VD = dyn_cast<VarDecl>(DRE->getDecl());
6573 if (VD && VD->getType().isConstQualified() && VD->getInit()) {
6574 Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD});
6575 visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true);
6576 }
6577 } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) {
6578 if (MTE->getType().isConstQualified())
6579 visitLocalsRetainedByInitializer(Path, MTE->GetTemporaryExpr(),
6580 Visit, true);
6581 }
6582 return false;
6583 });
6584
6585 // We assume that objects can be retained by pointers cast to integers,
6586 // but not if the integer is cast to floating-point type or to _Complex.
6587 // We assume that casts to 'bool' do not preserve enough information to
6588 // retain a local object.
6589 case CK_NoOp:
6590 case CK_BitCast:
6591 case CK_BaseToDerived:
6592 case CK_DerivedToBase:
6593 case CK_UncheckedDerivedToBase:
6594 case CK_Dynamic:
6595 case CK_ToUnion:
6596 case CK_IntegralToPointer:
6597 case CK_PointerToIntegral:
6598 case CK_VectorSplat:
6599 case CK_IntegralCast:
6600 case CK_CPointerToObjCPointerCast:
6601 case CK_BlockPointerToObjCPointerCast:
6602 case CK_AnyPointerToBlockPointerCast:
6603 case CK_AddressSpaceConversion:
6604 break;
6605
6606 case CK_ArrayToPointerDecay:
6607 // Model array-to-pointer decay as taking the address of the array
6608 // lvalue.
6609 Path.push_back({IndirectLocalPathEntry::AddressOf, CE});
6610 return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(),
6611 RK_ReferenceBinding, Visit);
6612
6613 default:
6614 return;
6615 }
6616
6617 Init = CE->getSubExpr();
6618 }
6619
6620 Init = Init->IgnoreParens();
6621 switch (Init->getStmtClass()) {
6622 case Stmt::UnaryOperatorClass: {
6623 auto *UO = cast<UnaryOperator>(Init);
6624 // If the initializer is the address of a local, we could have a lifetime
6625 // problem.
6626 if (UO->getOpcode() == UO_AddrOf) {
6627 // If this is &rvalue, then it's ill-formed and we have already diagnosed
6628 // it. Don't produce a redundant warning about the lifetime of the
6629 // temporary.
6630 if (isa<MaterializeTemporaryExpr>(UO->getSubExpr()))
6631 return;
6632
6633 Path.push_back({IndirectLocalPathEntry::AddressOf, UO});
6634 visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(),
6635 RK_ReferenceBinding, Visit);
6636 }
6637 break;
6638 }
6639
6640 case Stmt::BinaryOperatorClass: {
6641 // Handle pointer arithmetic.
6642 auto *BO = cast<BinaryOperator>(Init);
6643 BinaryOperatorKind BOK = BO->getOpcode();
6644 if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub))
6645 break;
6646
6647 if (BO->getLHS()->getType()->isPointerType())
6648 visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true);
6649 else if (BO->getRHS()->getType()->isPointerType())
6650 visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true);
6651 break;
6652 }
6653
6654 case Stmt::ConditionalOperatorClass:
6655 case Stmt::BinaryConditionalOperatorClass: {
6656 auto *C = cast<AbstractConditionalOperator>(Init);
6657 // In C++, we can have a throw-expression operand, which has 'void' type
6658 // and isn't interesting from a lifetime perspective.
6659 if (!C->getTrueExpr()->getType()->isVoidType())
6660 visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true);
6661 if (!C->getFalseExpr()->getType()->isVoidType())
6662 visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true);
6663 break;
6664 }
6665
6666 case Stmt::BlockExprClass:
6667 if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) {
6668 // This is a local block, whose lifetime is that of the function.
6669 Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding);
6670 }
6671 break;
6672
6673 case Stmt::AddrLabelExprClass:
6674 // We want to warn if the address of a label would escape the function.
6675 Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding);
6676 break;
6677
6678 default:
6679 break;
6680 }
6681}
6682
6683/// Determine whether this is an indirect path to a temporary that we are
6684/// supposed to lifetime-extend along (but don't).
6685static bool shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) {
6686 for (auto Elem : Path) {
6687 if (Elem.Kind != IndirectLocalPathEntry::DefaultInit)
6688 return false;
6689 }
6690 return true;
6691}
6692
6693/// Find the range for the first interesting entry in the path at or after I.
6694static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I,
6695 Expr *E) {
6696 for (unsigned N = Path.size(); I != N; ++I) {
6697 switch (Path[I].Kind) {
6698 case IndirectLocalPathEntry::AddressOf:
6699 case IndirectLocalPathEntry::LValToRVal:
6700 // These exist primarily to mark the path as not permitting or
6701 // supporting lifetime extension.
6702 break;
6703
6704 case IndirectLocalPathEntry::DefaultInit:
6705 case IndirectLocalPathEntry::VarInit:
6706 return Path[I].E->getSourceRange();
6707 }
6708 }
6709 return E->getSourceRange();
6710}
6711
6712void Sema::checkInitializerLifetime(const InitializedEntity &Entity,
6713 Expr *Init) {
6714 LifetimeResult LR = getEntityLifetime(&Entity);
6715 LifetimeKind LK = LR.getInt();
6716 const InitializedEntity *ExtendingEntity = LR.getPointer();
6717
6718 // If this entity doesn't have an interesting lifetime, don't bother looking
6719 // for temporaries within its initializer.
6720 if (LK == LK_FullExpression)
6721 return;
6722
6723 auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L,
6724 ReferenceKind RK) -> bool {
6725 SourceRange DiagRange = nextPathEntryRange(Path, 0, L);
6726 SourceLocation DiagLoc = DiagRange.getBegin();
6727
6728 switch (LK) {
6729 case LK_FullExpression:
6730 llvm_unreachable("already handled this")::llvm::llvm_unreachable_internal("already handled this", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 6730)
;
6731
6732 case LK_Extended: {
6733 auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L);
6734 if (!MTE) {
6735 // The initialized entity has lifetime beyond the full-expression,
6736 // and the local entity does too, so don't warn.
6737 //
6738 // FIXME: We should consider warning if a static / thread storage
6739 // duration variable retains an automatic storage duration local.
6740 return false;
6741 }
6742
6743 // Lifetime-extend the temporary.
6744 if (Path.empty()) {
6745 // Update the storage duration of the materialized temporary.
6746 // FIXME: Rebuild the expression instead of mutating it.
6747 MTE->setExtendingDecl(ExtendingEntity->getDecl(),
6748 ExtendingEntity->allocateManglingNumber());
6749 // Also visit the temporaries lifetime-extended by this initializer.
6750 return true;
6751 }
6752
6753 if (shouldLifetimeExtendThroughPath(Path)) {
6754 // We're supposed to lifetime-extend the temporary along this path (per
6755 // the resolution of DR1815), but we don't support that yet.
6756 //
6757 // FIXME: Properly handle this situation. Perhaps the easiest approach
6758 // would be to clone the initializer expression on each use that would
6759 // lifetime extend its temporaries.
6760 Diag(DiagLoc, diag::warn_unsupported_lifetime_extension)
6761 << RK << DiagRange;
6762 } else {
6763 // If the path goes through the initialization of a variable or field,
6764 // it can't possibly reach a temporary created in this full-expression.
6765 // We will have already diagnosed any problems with the initializer.
6766 if (pathContainsInit(Path))
6767 return false;
6768
6769 Diag(DiagLoc, diag::warn_dangling_variable)
6770 << RK << !Entity.getParent() << ExtendingEntity->getDecl()
6771 << Init->isGLValue() << DiagRange;
6772 }
6773 break;
6774 }
6775
6776 case LK_MemInitializer: {
6777 if (isa<MaterializeTemporaryExpr>(L)) {
6778 // Under C++ DR1696, if a mem-initializer (or a default member
6779 // initializer used by the absence of one) would lifetime-extend a
6780 // temporary, the program is ill-formed.
6781 if (auto *ExtendingDecl =
6782 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
6783 bool IsSubobjectMember = ExtendingEntity != &Entity;
6784 Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path)
6785 ? diag::err_dangling_member
6786 : diag::warn_dangling_member)
6787 << ExtendingDecl << IsSubobjectMember << RK << DiagRange;
6788 // Don't bother adding a note pointing to the field if we're inside
6789 // its default member initializer; our primary diagnostic points to
6790 // the same place in that case.
6791 if (Path.empty() ||
6792 Path.back().Kind != IndirectLocalPathEntry::DefaultInit) {
6793 Diag(ExtendingDecl->getLocation(),
6794 diag::note_lifetime_extending_member_declared_here)
6795 << RK << IsSubobjectMember;
6796 }
6797 } else {
6798 // We have a mem-initializer but no particular field within it; this
6799 // is either a base class or a delegating initializer directly
6800 // initializing the base-class from something that doesn't live long
6801 // enough.
6802 //
6803 // FIXME: Warn on this.
6804 return false;
6805 }
6806 } else {
6807 // Paths via a default initializer can only occur during error recovery
6808 // (there's no other way that a default initializer can refer to a
6809 // local). Don't produce a bogus warning on those cases.
6810 if (pathContainsInit(Path))
6811 return false;
6812
6813 auto *DRE = dyn_cast<DeclRefExpr>(L);
6814 auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr;
6815 if (!VD) {
6816 // A member was initialized to a local block.
6817 // FIXME: Warn on this.
6818 return false;
6819 }
6820
6821 if (auto *Member =
6822 ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) {
6823 bool IsPointer = Member->getType()->isAnyPointerType();
6824 Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
6825 : diag::warn_bind_ref_member_to_parameter)
6826 << Member << VD << isa<ParmVarDecl>(VD) << DiagRange;
6827 Diag(Member->getLocation(),
6828 diag::note_ref_or_ptr_member_declared_here)
6829 << (unsigned)IsPointer;
6830 }
6831 }
6832 break;
6833 }
6834
6835 case LK_New:
6836 if (isa<MaterializeTemporaryExpr>(L)) {
6837 Diag(DiagLoc, RK == RK_ReferenceBinding
6838 ? diag::warn_new_dangling_reference
6839 : diag::warn_new_dangling_initializer_list)
6840 << !Entity.getParent() << DiagRange;
6841 } else {
6842 // We can't determine if the allocation outlives the local declaration.
6843 return false;
6844 }
6845 break;
6846
6847 case LK_Return:
6848 case LK_StmtExprResult:
6849 if (auto *DRE = dyn_cast<DeclRefExpr>(L)) {
6850 // We can't determine if the local variable outlives the statement
6851 // expression.
6852 if (LK == LK_StmtExprResult)
6853 return false;
6854 Diag(DiagLoc, diag::warn_ret_stack_addr_ref)
6855 << Entity.getType()->isReferenceType() << DRE->getDecl()
6856 << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange;
6857 } else if (isa<BlockExpr>(L)) {
6858 Diag(DiagLoc, diag::err_ret_local_block) << DiagRange;
6859 } else if (isa<AddrLabelExpr>(L)) {
6860 Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange;
6861 } else {
6862 Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref)
6863 << Entity.getType()->isReferenceType() << DiagRange;
6864 }
6865 break;
6866 }
6867
6868 for (unsigned I = 0; I != Path.size(); ++I) {
6869 auto Elem = Path[I];
6870
6871 switch (Elem.Kind) {
6872 case IndirectLocalPathEntry::AddressOf:
6873 case IndirectLocalPathEntry::LValToRVal:
6874 // These exist primarily to mark the path as not permitting or
6875 // supporting lifetime extension.
6876 break;
6877
6878 case IndirectLocalPathEntry::DefaultInit: {
6879 auto *FD = cast<FieldDecl>(Elem.D);
6880 Diag(FD->getLocation(), diag::note_init_with_default_member_initalizer)
6881 << FD << nextPathEntryRange(Path, I + 1, L);
6882 break;
6883 }
6884
6885 case IndirectLocalPathEntry::VarInit:
6886 const VarDecl *VD = cast<VarDecl>(Elem.D);
6887 Diag(VD->getLocation(), diag::note_local_var_initializer)
6888 << VD->getType()->isReferenceType() << VD->getDeclName()
6889 << nextPathEntryRange(Path, I + 1, L);
6890 break;
6891 }
6892 }
6893
6894 // We didn't lifetime-extend, so don't go any further; we don't need more
6895 // warnings or errors on inner temporaries within this one's initializer.
6896 return false;
6897 };
6898
6899 llvm::SmallVector<IndirectLocalPathEntry, 8> Path;
6900 if (Init->isGLValue())
6901 visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding,
6902 TemporaryVisitor);
6903 else
6904 visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false);
6905}
6906
6907static void DiagnoseNarrowingInInitList(Sema &S,
6908 const ImplicitConversionSequence &ICS,
6909 QualType PreNarrowingType,
6910 QualType EntityType,
6911 const Expr *PostInit);
6912
6913/// Provide warnings when std::move is used on construction.
6914static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr,
6915 bool IsReturnStmt) {
6916 if (!InitExpr)
6917 return;
6918
6919 if (S.inTemplateInstantiation())
6920 return;
6921
6922 QualType DestType = InitExpr->getType();
6923 if (!DestType->isRecordType())
6924 return;
6925
6926 unsigned DiagID = 0;
6927 if (IsReturnStmt) {
6928 const CXXConstructExpr *CCE =
6929 dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens());
6930 if (!CCE || CCE->getNumArgs() != 1)
6931 return;
6932
6933 if (!CCE->getConstructor()->isCopyOrMoveConstructor())
6934 return;
6935
6936 InitExpr = CCE->getArg(0)->IgnoreImpCasts();
6937 }
6938
6939 // Find the std::move call and get the argument.
6940 const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens());
6941 if (!CE || !CE->isCallToStdMove())
6942 return;
6943
6944 const Expr *Arg = CE->getArg(0)->IgnoreImplicit();
6945
6946 if (IsReturnStmt) {
6947 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts());
6948 if (!DRE || DRE->refersToEnclosingVariableOrCapture())
6949 return;
6950
6951 const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
6952 if (!VD || !VD->hasLocalStorage())
6953 return;
6954
6955 // __block variables are not moved implicitly.
6956 if (VD->hasAttr<BlocksAttr>())
6957 return;
6958
6959 QualType SourceType = VD->getType();
6960 if (!SourceType->isRecordType())
6961 return;
6962
6963 if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) {
6964 return;
6965 }
6966
6967 // If we're returning a function parameter, copy elision
6968 // is not possible.
6969 if (isa<ParmVarDecl>(VD))
6970 DiagID = diag::warn_redundant_move_on_return;
6971 else
6972 DiagID = diag::warn_pessimizing_move_on_return;
6973 } else {
6974 DiagID = diag::warn_pessimizing_move_on_initialization;
6975 const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens();
6976 if (!ArgStripped->isRValue() || !ArgStripped->getType()->isRecordType())
6977 return;
6978 }
6979
6980 S.Diag(CE->getLocStart(), DiagID);
6981
6982 // Get all the locations for a fix-it. Don't emit the fix-it if any location
6983 // is within a macro.
6984 SourceLocation CallBegin = CE->getCallee()->getLocStart();
6985 if (CallBegin.isMacroID())
6986 return;
6987 SourceLocation RParen = CE->getRParenLoc();
6988 if (RParen.isMacroID())
6989 return;
6990 SourceLocation LParen;
6991 SourceLocation ArgLoc = Arg->getLocStart();
6992
6993 // Special testing for the argument location. Since the fix-it needs the
6994 // location right before the argument, the argument location can be in a
6995 // macro only if it is at the beginning of the macro.
6996 while (ArgLoc.isMacroID() &&
6997 S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) {
6998 ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin();
6999 }
7000
7001 if (LParen.isMacroID())
7002 return;
7003
7004 LParen = ArgLoc.getLocWithOffset(-1);
7005
7006 S.Diag(CE->getLocStart(), diag::note_remove_move)
7007 << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen))
7008 << FixItHint::CreateRemoval(SourceRange(RParen, RParen));
7009}
7010
7011static void CheckForNullPointerDereference(Sema &S, const Expr *E) {
7012 // Check to see if we are dereferencing a null pointer. If so, this is
7013 // undefined behavior, so warn about it. This only handles the pattern
7014 // "*null", which is a very syntactic check.
7015 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
7016 if (UO->getOpcode() == UO_Deref &&
7017 UO->getSubExpr()->IgnoreParenCasts()->
7018 isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) {
7019 S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
7020 S.PDiag(diag::warn_binding_null_to_reference)
7021 << UO->getSubExpr()->getSourceRange());
7022 }
7023}
7024
7025MaterializeTemporaryExpr *
7026Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary,
7027 bool BoundToLvalueReference) {
7028 auto MTE = new (Context)
7029 MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference);
7030
7031 // Order an ExprWithCleanups for lifetime marks.
7032 //
7033 // TODO: It'll be good to have a single place to check the access of the
7034 // destructor and generate ExprWithCleanups for various uses. Currently these
7035 // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary,
7036 // but there may be a chance to merge them.
7037 Cleanup.setExprNeedsCleanups(false);
7038 return MTE;
7039}
7040
7041ExprResult Sema::TemporaryMaterializationConversion(Expr *E) {
7042 // In C++98, we don't want to implicitly create an xvalue.
7043 // FIXME: This means that AST consumers need to deal with "prvalues" that
7044 // denote materialized temporaries. Maybe we should add another ValueKind
7045 // for "xvalue pretending to be a prvalue" for C++98 support.
7046 if (!E->isRValue() || !getLangOpts().CPlusPlus11)
7047 return E;
7048
7049 // C++1z [conv.rval]/1: T shall be a complete type.
7050 // FIXME: Does this ever matter (can we form a prvalue of incomplete type)?
7051 // If so, we should check for a non-abstract class type here too.
7052 QualType T = E->getType();
7053 if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type))
7054 return ExprError();
7055
7056 return CreateMaterializeTemporaryExpr(E->getType(), E, false);
7057}
7058
7059ExprResult
7060InitializationSequence::Perform(Sema &S,
7061 const InitializedEntity &Entity,
7062 const InitializationKind &Kind,
7063 MultiExprArg Args,
7064 QualType *ResultType) {
7065 if (Failed()) {
7066 Diagnose(S, Entity, Kind, Args);
7067 return ExprError();
7068 }
7069 if (!ZeroInitializationFixit.empty()) {
7070 unsigned DiagID = diag::err_default_init_const;
7071 if (Decl *D = Entity.getDecl())
7072 if (S.getLangOpts().MSVCCompat && D->hasAttr<SelectAnyAttr>())
7073 DiagID = diag::ext_default_init_const;
7074
7075 // The initialization would have succeeded with this fixit. Since the fixit
7076 // is on the error, we need to build a valid AST in this case, so this isn't
7077 // handled in the Failed() branch above.
7078 QualType DestType = Entity.getType();
7079 S.Diag(Kind.getLocation(), DiagID)
7080 << DestType << (bool)DestType->getAs<RecordType>()
7081 << FixItHint::CreateInsertion(ZeroInitializationFixitLoc,
7082 ZeroInitializationFixit);
7083 }
7084
7085 if (getKind() == DependentSequence) {
7086 // If the declaration is a non-dependent, incomplete array type
7087 // that has an initializer, then its type will be completed once
7088 // the initializer is instantiated.
7089 if (ResultType && !Entity.getType()->isDependentType() &&
7090 Args.size() == 1) {
7091 QualType DeclType = Entity.getType();
7092 if (const IncompleteArrayType *ArrayT
7093 = S.Context.getAsIncompleteArrayType(DeclType)) {
7094 // FIXME: We don't currently have the ability to accurately
7095 // compute the length of an initializer list without
7096 // performing full type-checking of the initializer list
7097 // (since we have to determine where braces are implicitly
7098 // introduced and such). So, we fall back to making the array
7099 // type a dependently-sized array type with no specified
7100 // bound.
7101 if (isa<InitListExpr>((Expr *)Args[0])) {
7102 SourceRange Brackets;
7103
7104 // Scavange the location of the brackets from the entity, if we can.
7105 if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) {
7106 if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
7107 TypeLoc TL = TInfo->getTypeLoc();
7108 if (IncompleteArrayTypeLoc ArrayLoc =
7109 TL.getAs<IncompleteArrayTypeLoc>())
7110 Brackets = ArrayLoc.getBracketsRange();
7111 }
7112 }
7113
7114 *ResultType
7115 = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
7116 /*NumElts=*/nullptr,
7117 ArrayT->getSizeModifier(),
7118 ArrayT->getIndexTypeCVRQualifiers(),
7119 Brackets);
7120 }
7121
7122 }
7123 }
7124 if (Kind.getKind() == InitializationKind::IK_Direct &&
7125 !Kind.isExplicitCast()) {
7126 // Rebuild the ParenListExpr.
7127 SourceRange ParenRange = Kind.getParenOrBraceRange();
7128 return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
7129 Args);
7130 }
7131 assert(Kind.getKind() == InitializationKind::IK_Copy ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7133, __extension__ __PRETTY_FUNCTION__))
7132 Kind.isExplicitCast() ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7133, __extension__ __PRETTY_FUNCTION__))
7133 Kind.getKind() == InitializationKind::IK_DirectList)(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind
::IK_DirectList) ? void (0) : __assert_fail ("Kind.getKind() == InitializationKind::IK_Copy || Kind.isExplicitCast() || Kind.getKind() == InitializationKind::IK_DirectList"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7133, __extension__ __PRETTY_FUNCTION__))
;
7134 return ExprResult(Args[0]);
7135 }
7136
7137 // No steps means no initialization.
7138 if (Steps.empty())
7139 return ExprResult((Expr *)nullptr);
7140
7141 if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
7142 Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
7143 !Entity.isParameterKind()) {
7144 // Produce a C++98 compatibility warning if we are initializing a reference
7145 // from an initializer list. For parameters, we produce a better warning
7146 // elsewhere.
7147 Expr *Init = Args[0];
7148 S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
7149 << Init->getSourceRange();
7150 }
7151
7152 // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope
7153 QualType ETy = Entity.getType();
7154 Qualifiers TyQualifiers = ETy.getQualifiers();
7155 bool HasGlobalAS = TyQualifiers.hasAddressSpace() &&
7156 TyQualifiers.getAddressSpace() == LangAS::opencl_global;
7157
7158 if (S.getLangOpts().OpenCLVersion >= 200 &&
7159 ETy->isAtomicType() && !HasGlobalAS &&
7160 Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) {
7161 S.Diag(Args[0]->getLocStart(), diag::err_opencl_atomic_init) << 1 <<
7162 SourceRange(Entity.getDecl()->getLocStart(), Args[0]->getLocEnd());
7163 return ExprError();
7164 }
7165
7166 QualType DestType = Entity.getType().getNonReferenceType();
7167 // FIXME: Ugly hack around the fact that Entity.getType() is not
7168 // the same as Entity.getDecl()->getType() in cases involving type merging,
7169 // and we want latter when it makes sense.
7170 if (ResultType)
7171 *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
7172 Entity.getType();
7173
7174 ExprResult CurInit((Expr *)nullptr);
7175 SmallVector<Expr*, 4> ArrayLoopCommonExprs;
7176
7177 // For initialization steps that start with a single initializer,
7178 // grab the only argument out the Args and place it into the "current"
7179 // initializer.
7180 switch (Steps.front().Kind) {
7181 case SK_ResolveAddressOfOverloadedFunction:
7182 case SK_CastDerivedToBaseRValue:
7183 case SK_CastDerivedToBaseXValue:
7184 case SK_CastDerivedToBaseLValue:
7185 case SK_BindReference:
7186 case SK_BindReferenceToTemporary:
7187 case SK_FinalCopy:
7188 case SK_ExtraneousCopyToTemporary:
7189 case SK_UserConversion:
7190 case SK_QualificationConversionLValue:
7191 case SK_QualificationConversionXValue:
7192 case SK_QualificationConversionRValue:
7193 case SK_AtomicConversion:
7194 case SK_LValueToRValue:
7195 case SK_ConversionSequence:
7196 case SK_ConversionSequenceNoNarrowing:
7197 case SK_ListInitialization:
7198 case SK_UnwrapInitList:
7199 case SK_RewrapInitList:
7200 case SK_CAssignment:
7201 case SK_StringInit:
7202 case SK_ObjCObjectConversion:
7203 case SK_ArrayLoopIndex:
7204 case SK_ArrayLoopInit:
7205 case SK_ArrayInit:
7206 case SK_GNUArrayInit:
7207 case SK_ParenthesizedArrayInit:
7208 case SK_PassByIndirectCopyRestore:
7209 case SK_PassByIndirectRestore:
7210 case SK_ProduceObjCObject:
7211 case SK_StdInitializerList:
7212 case SK_OCLSamplerInit:
7213 case SK_OCLZeroEvent:
7214 case SK_OCLZeroQueue: {
7215 assert(Args.size() == 1)(static_cast <bool> (Args.size() == 1) ? void (0) : __assert_fail
("Args.size() == 1", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7215, __extension__ __PRETTY_FUNCTION__))
;
7216 CurInit = Args[0];
7217 if (!CurInit.get()) return ExprError();
7218 break;
7219 }
7220
7221 case SK_ConstructorInitialization:
7222 case SK_ConstructorInitializationFromList:
7223 case SK_StdInitializerListConstructorCall:
7224 case SK_ZeroInitialization:
7225 break;
7226 }
7227
7228 // Promote from an unevaluated context to an unevaluated list context in
7229 // C++11 list-initialization; we need to instantiate entities usable in
7230 // constant expressions here in order to perform narrowing checks =(
7231 EnterExpressionEvaluationContext Evaluated(
7232 S, EnterExpressionEvaluationContext::InitList,
7233 CurInit.get() && isa<InitListExpr>(CurInit.get()));
7234
7235 // C++ [class.abstract]p2:
7236 // no objects of an abstract class can be created except as subobjects
7237 // of a class derived from it
7238 auto checkAbstractType = [&](QualType T) -> bool {
7239 if (Entity.getKind() == InitializedEntity::EK_Base ||
7240 Entity.getKind() == InitializedEntity::EK_Delegating)
7241 return false;
7242 return S.RequireNonAbstractType(Kind.getLocation(), T,
7243 diag::err_allocation_of_abstract_type);
7244 };
7245
7246 // Walk through the computed steps for the initialization sequence,
7247 // performing the specified conversions along the way.
7248 bool ConstructorInitRequiresZeroInit = false;
7249 for (step_iterator Step = step_begin(), StepEnd = step_end();
7250 Step != StepEnd; ++Step) {
7251 if (CurInit.isInvalid())
7252 return ExprError();
7253
7254 QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
7255
7256 switch (Step->Kind) {
7257 case SK_ResolveAddressOfOverloadedFunction:
7258 // Overload resolution determined which function invoke; update the
7259 // initializer to reflect that choice.
7260 S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
7261 if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
7262 return ExprError();
7263 CurInit = S.FixOverloadedFunctionReference(CurInit,
7264 Step->Function.FoundDecl,
7265 Step->Function.Function);
7266 break;
7267
7268 case SK_CastDerivedToBaseRValue:
7269 case SK_CastDerivedToBaseXValue:
7270 case SK_CastDerivedToBaseLValue: {
7271 // We have a derived-to-base cast that produces either an rvalue or an
7272 // lvalue. Perform that cast.
7273
7274 CXXCastPath BasePath;
7275
7276 // Casts to inaccessible base classes are allowed with C-style casts.
7277 bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
7278 if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
7279 CurInit.get()->getLocStart(),
7280 CurInit.get()->getSourceRange(),
7281 &BasePath, IgnoreBaseAccess))
7282 return ExprError();
7283
7284 ExprValueKind VK =
7285 Step->Kind == SK_CastDerivedToBaseLValue ?
7286 VK_LValue :
7287 (Step->Kind == SK_CastDerivedToBaseXValue ?
7288 VK_XValue :
7289 VK_RValue);
7290 CurInit =
7291 ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
7292 CurInit.get(), &BasePath, VK);
7293 break;
7294 }
7295
7296 case SK_BindReference:
7297 // Reference binding does not have any corresponding ASTs.
7298
7299 // Check exception specifications
7300 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7301 return ExprError();
7302
7303 // We don't check for e.g. function pointers here, since address
7304 // availability checks should only occur when the function first decays
7305 // into a pointer or reference.
7306 if (CurInit.get()->getType()->isFunctionProtoType()) {
7307 if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) {
7308 if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
7309 if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
7310 DRE->getLocStart()))
7311 return ExprError();
7312 }
7313 }
7314 }
7315
7316 CheckForNullPointerDereference(S, CurInit.get());
7317 break;
7318
7319 case SK_BindReferenceToTemporary: {
7320 // Make sure the "temporary" is actually an rvalue.
7321 assert(CurInit.get()->isRValue() && "not a temporary")(static_cast <bool> (CurInit.get()->isRValue() &&
"not a temporary") ? void (0) : __assert_fail ("CurInit.get()->isRValue() && \"not a temporary\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7321, __extension__ __PRETTY_FUNCTION__))
;
7322
7323 // Check exception specifications
7324 if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
7325 return ExprError();
7326
7327 // Materialize the temporary into memory.
7328 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7329 Step->Type, CurInit.get(), Entity.getType()->isLValueReferenceType());
7330 CurInit = MTE;
7331
7332 // If we're extending this temporary to automatic storage duration -- we
7333 // need to register its cleanup during the full-expression's cleanups.
7334 if (MTE->getStorageDuration() == SD_Automatic &&
7335 MTE->getType().isDestructedType())
7336 S.Cleanup.setExprNeedsCleanups(true);
7337 break;
7338 }
7339
7340 case SK_FinalCopy:
7341 if (checkAbstractType(Step->Type))
7342 return ExprError();
7343
7344 // If the overall initialization is initializing a temporary, we already
7345 // bound our argument if it was necessary to do so. If not (if we're
7346 // ultimately initializing a non-temporary), our argument needs to be
7347 // bound since it's initializing a function parameter.
7348 // FIXME: This is a mess. Rationalize temporary destruction.
7349 if (!shouldBindAsTemporary(Entity))
7350 CurInit = S.MaybeBindToTemporary(CurInit.get());
7351 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7352 /*IsExtraneousCopy=*/false);
7353 break;
7354
7355 case SK_ExtraneousCopyToTemporary:
7356 CurInit = CopyObject(S, Step->Type, Entity, CurInit,
7357 /*IsExtraneousCopy=*/true);
7358 break;
7359
7360 case SK_UserConversion: {
7361 // We have a user-defined conversion that invokes either a constructor
7362 // or a conversion function.
7363 CastKind CastKind;
7364 FunctionDecl *Fn = Step->Function.Function;
7365 DeclAccessPair FoundFn = Step->Function.FoundDecl;
7366 bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
7367 bool CreatedObject = false;
7368 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
7369 // Build a call to the selected constructor.
7370 SmallVector<Expr*, 8> ConstructorArgs;
7371 SourceLocation Loc = CurInit.get()->getLocStart();
7372
7373 // Determine the arguments required to actually perform the constructor
7374 // call.
7375 Expr *Arg = CurInit.get();
7376 if (S.CompleteConstructorCall(Constructor,
7377 MultiExprArg(&Arg, 1),
7378 Loc, ConstructorArgs))
7379 return ExprError();
7380
7381 // Build an expression that constructs a temporary.
7382 CurInit = S.BuildCXXConstructExpr(Loc, Step->Type,
7383 FoundFn, Constructor,
7384 ConstructorArgs,
7385 HadMultipleCandidates,
7386 /*ListInit*/ false,
7387 /*StdInitListInit*/ false,
7388 /*ZeroInit*/ false,
7389 CXXConstructExpr::CK_Complete,
7390 SourceRange());
7391 if (CurInit.isInvalid())
7392 return ExprError();
7393
7394 S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn,
7395 Entity);
7396 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7397 return ExprError();
7398
7399 CastKind = CK_ConstructorConversion;
7400 CreatedObject = true;
7401 } else {
7402 // Build a call to the conversion function.
7403 CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
7404 S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
7405 FoundFn);
7406 if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
7407 return ExprError();
7408
7409 CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
7410 HadMultipleCandidates);
7411 if (CurInit.isInvalid())
7412 return ExprError();
7413
7414 CastKind = CK_UserDefinedConversion;
7415 CreatedObject = Conversion->getReturnType()->isRecordType();
7416 }
7417
7418 if (CreatedObject && checkAbstractType(CurInit.get()->getType()))
7419 return ExprError();
7420
7421 CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
7422 CastKind, CurInit.get(), nullptr,
7423 CurInit.get()->getValueKind());
7424
7425 if (shouldBindAsTemporary(Entity))
7426 // The overall entity is temporary, so this expression should be
7427 // destroyed at the end of its full-expression.
7428 CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
7429 else if (CreatedObject && shouldDestroyEntity(Entity)) {
7430 // The object outlasts the full-expression, but we need to prepare for
7431 // a destructor being run on it.
7432 // FIXME: It makes no sense to do this here. This should happen
7433 // regardless of how we initialized the entity.
7434 QualType T = CurInit.get()->getType();
7435 if (const RecordType *Record = T->getAs<RecordType>()) {
7436 CXXDestructorDecl *Destructor
7437 = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
7438 S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
7439 S.PDiag(diag::err_access_dtor_temp) << T);
7440 S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
7441 if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
7442 return ExprError();
7443 }
7444 }
7445 break;
7446 }
7447
7448 case SK_QualificationConversionLValue:
7449 case SK_QualificationConversionXValue:
7450 case SK_QualificationConversionRValue: {
7451 // Perform a qualification conversion; these can never go wrong.
7452 ExprValueKind VK =
7453 Step->Kind == SK_QualificationConversionLValue ?
7454 VK_LValue :
7455 (Step->Kind == SK_QualificationConversionXValue ?
7456 VK_XValue :
7457 VK_RValue);
7458 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
7459 break;
7460 }
7461
7462 case SK_AtomicConversion: {
7463 assert(CurInit.get()->isRValue() && "cannot convert glvalue to atomic")(static_cast <bool> (CurInit.get()->isRValue() &&
"cannot convert glvalue to atomic") ? void (0) : __assert_fail
("CurInit.get()->isRValue() && \"cannot convert glvalue to atomic\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7463, __extension__ __PRETTY_FUNCTION__))
;
7464 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7465 CK_NonAtomicToAtomic, VK_RValue);
7466 break;
7467 }
7468
7469 case SK_LValueToRValue: {
7470 assert(CurInit.get()->isGLValue() && "cannot load from a prvalue")(static_cast <bool> (CurInit.get()->isGLValue() &&
"cannot load from a prvalue") ? void (0) : __assert_fail ("CurInit.get()->isGLValue() && \"cannot load from a prvalue\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7470, __extension__ __PRETTY_FUNCTION__))
;
7471 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7472 CK_LValueToRValue, CurInit.get(),
7473 /*BasePath=*/nullptr, VK_RValue);
7474 break;
7475 }
7476
7477 case SK_ConversionSequence:
7478 case SK_ConversionSequenceNoNarrowing: {
7479 Sema::CheckedConversionKind CCK
7480 = Kind.isCStyleCast()? Sema::CCK_CStyleCast
7481 : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
7482 : Kind.isExplicitCast()? Sema::CCK_OtherCast
7483 : Sema::CCK_ImplicitConversion;
7484 ExprResult CurInitExprRes =
7485 S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
7486 getAssignmentAction(Entity), CCK);
7487 if (CurInitExprRes.isInvalid())
7488 return ExprError();
7489
7490 S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get());
7491
7492 CurInit = CurInitExprRes;
7493
7494 if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
7495 S.getLangOpts().CPlusPlus)
7496 DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
7497 CurInit.get());
7498
7499 break;
7500 }
7501
7502 case SK_ListInitialization: {
7503 if (checkAbstractType(Step->Type))
7504 return ExprError();
7505
7506 InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
7507 // If we're not initializing the top-level entity, we need to create an
7508 // InitializeTemporary entity for our target type.
7509 QualType Ty = Step->Type;
7510 bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
7511 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
7512 InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
7513 InitListChecker PerformInitList(S, InitEntity,
7514 InitList, Ty, /*VerifyOnly=*/false,
7515 /*TreatUnavailableAsInvalid=*/false);
7516 if (PerformInitList.HadError())
7517 return ExprError();
7518
7519 // Hack: We must update *ResultType if available in order to set the
7520 // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
7521 // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
7522 if (ResultType &&
7523 ResultType->getNonReferenceType()->isIncompleteArrayType()) {
7524 if ((*ResultType)->isRValueReferenceType())
7525 Ty = S.Context.getRValueReferenceType(Ty);
7526 else if ((*ResultType)->isLValueReferenceType())
7527 Ty = S.Context.getLValueReferenceType(Ty,
7528 (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
7529 *ResultType = Ty;
7530 }
7531
7532 InitListExpr *StructuredInitList =
7533 PerformInitList.getFullyStructuredList();
7534 CurInit.get();
7535 CurInit = shouldBindAsTemporary(InitEntity)
7536 ? S.MaybeBindToTemporary(StructuredInitList)
7537 : StructuredInitList;
7538 break;
7539 }
7540
7541 case SK_ConstructorInitializationFromList: {
7542 if (checkAbstractType(Step->Type))
7543 return ExprError();
7544
7545 // When an initializer list is passed for a parameter of type "reference
7546 // to object", we don't get an EK_Temporary entity, but instead an
7547 // EK_Parameter entity with reference type.
7548 // FIXME: This is a hack. What we really should do is create a user
7549 // conversion step for this case, but this makes it considerably more
7550 // complicated. For now, this will do.
7551 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7552 Entity.getType().getNonReferenceType());
7553 bool UseTemporary = Entity.getType()->isReferenceType();
7554 assert(Args.size() == 1 && "expected a single argument for list init")(static_cast <bool> (Args.size() == 1 && "expected a single argument for list init"
) ? void (0) : __assert_fail ("Args.size() == 1 && \"expected a single argument for list init\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7554, __extension__ __PRETTY_FUNCTION__))
;
7555 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
7556 S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
7557 << InitList->getSourceRange();
7558 MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
7559 CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
7560 Entity,
7561 Kind, Arg, *Step,
7562 ConstructorInitRequiresZeroInit,
7563 /*IsListInitialization*/true,
7564 /*IsStdInitListInit*/false,
7565 InitList->getLBraceLoc(),
7566 InitList->getRBraceLoc());
7567 break;
7568 }
7569
7570 case SK_UnwrapInitList:
7571 CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
7572 break;
7573
7574 case SK_RewrapInitList: {
7575 Expr *E = CurInit.get();
7576 InitListExpr *Syntactic = Step->WrappingSyntacticList;
7577 InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
7578 Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
7579 ILE->setSyntacticForm(Syntactic);
7580 ILE->setType(E->getType());
7581 ILE->setValueKind(E->getValueKind());
7582 CurInit = ILE;
7583 break;
7584 }
7585
7586 case SK_ConstructorInitialization:
7587 case SK_StdInitializerListConstructorCall: {
7588 if (checkAbstractType(Step->Type))
7589 return ExprError();
7590
7591 // When an initializer list is passed for a parameter of type "reference
7592 // to object", we don't get an EK_Temporary entity, but instead an
7593 // EK_Parameter entity with reference type.
7594 // FIXME: This is a hack. What we really should do is create a user
7595 // conversion step for this case, but this makes it considerably more
7596 // complicated. For now, this will do.
7597 InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
7598 Entity.getType().getNonReferenceType());
7599 bool UseTemporary = Entity.getType()->isReferenceType();
7600 bool IsStdInitListInit =
7601 Step->Kind == SK_StdInitializerListConstructorCall;
7602 Expr *Source = CurInit.get();
7603 SourceRange Range = Kind.hasParenOrBraceRange()
7604 ? Kind.getParenOrBraceRange()
7605 : SourceRange();
7606 CurInit = PerformConstructorInitialization(
7607 S, UseTemporary ? TempEntity : Entity, Kind,
7608 Source ? MultiExprArg(Source) : Args, *Step,
7609 ConstructorInitRequiresZeroInit,
7610 /*IsListInitialization*/ IsStdInitListInit,
7611 /*IsStdInitListInitialization*/ IsStdInitListInit,
7612 /*LBraceLoc*/ Range.getBegin(),
7613 /*RBraceLoc*/ Range.getEnd());
7614 break;
7615 }
7616
7617 case SK_ZeroInitialization: {
7618 step_iterator NextStep = Step;
7619 ++NextStep;
7620 if (NextStep != StepEnd &&
7621 (NextStep->Kind == SK_ConstructorInitialization ||
7622 NextStep->Kind == SK_ConstructorInitializationFromList)) {
7623 // The need for zero-initialization is recorded directly into
7624 // the call to the object's constructor within the next step.
7625 ConstructorInitRequiresZeroInit = true;
7626 } else if (Kind.getKind() == InitializationKind::IK_Value &&
7627 S.getLangOpts().CPlusPlus &&
7628 !Kind.isImplicitValueInit()) {
7629 TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
7630 if (!TSInfo)
7631 TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
7632 Kind.getRange().getBegin());
7633
7634 CurInit = new (S.Context) CXXScalarValueInitExpr(
7635 Entity.getType().getNonLValueExprType(S.Context), TSInfo,
7636 Kind.getRange().getEnd());
7637 } else {
7638 CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
7639 }
7640 break;
7641 }
7642
7643 case SK_CAssignment: {
7644 QualType SourceType = CurInit.get()->getType();
7645 // Save off the initial CurInit in case we need to emit a diagnostic
7646 ExprResult InitialCurInit = CurInit;
7647 ExprResult Result = CurInit;
7648 Sema::AssignConvertType ConvTy =
7649 S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
7650 Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
7651 if (Result.isInvalid())
7652 return ExprError();
7653 CurInit = Result;
7654
7655 // If this is a call, allow conversion to a transparent union.
7656 ExprResult CurInitExprRes = CurInit;
7657 if (ConvTy != Sema::Compatible &&
7658 Entity.isParameterKind() &&
7659 S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
7660 == Sema::Compatible)
7661 ConvTy = Sema::Compatible;
7662 if (CurInitExprRes.isInvalid())
7663 return ExprError();
7664 CurInit = CurInitExprRes;
7665
7666 bool Complained;
7667 if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
7668 Step->Type, SourceType,
7669 InitialCurInit.get(),
7670 getAssignmentAction(Entity, true),
7671 &Complained)) {
7672 PrintInitLocationNote(S, Entity);
7673 return ExprError();
7674 } else if (Complained)
7675 PrintInitLocationNote(S, Entity);
7676 break;
7677 }
7678
7679 case SK_StringInit: {
7680 QualType Ty = Step->Type;
7681 CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
7682 S.Context.getAsArrayType(Ty), S);
7683 break;
7684 }
7685
7686 case SK_ObjCObjectConversion:
7687 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7688 CK_ObjCObjectLValueCast,
7689 CurInit.get()->getValueKind());
7690 break;
7691
7692 case SK_ArrayLoopIndex: {
7693 Expr *Cur = CurInit.get();
7694 Expr *BaseExpr = new (S.Context)
7695 OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(),
7696 Cur->getValueKind(), Cur->getObjectKind(), Cur);
7697 Expr *IndexExpr =
7698 new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType());
7699 CurInit = S.CreateBuiltinArraySubscriptExpr(
7700 BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation());
7701 ArrayLoopCommonExprs.push_back(BaseExpr);
7702 break;
7703 }
7704
7705 case SK_ArrayLoopInit: {
7706 assert(!ArrayLoopCommonExprs.empty() &&(static_cast <bool> (!ArrayLoopCommonExprs.empty() &&
"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit") ? void (
0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7707, __extension__ __PRETTY_FUNCTION__))
7707 "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit")(static_cast <bool> (!ArrayLoopCommonExprs.empty() &&
"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit") ? void (
0) : __assert_fail ("!ArrayLoopCommonExprs.empty() && \"mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7707, __extension__ __PRETTY_FUNCTION__))
;
7708 Expr *Common = ArrayLoopCommonExprs.pop_back_val();
7709 CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common,
7710 CurInit.get());
7711 break;
7712 }
7713
7714 case SK_GNUArrayInit:
7715 // Okay: we checked everything before creating this step. Note that
7716 // this is a GNU extension.
7717 S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
7718 << Step->Type << CurInit.get()->getType()
7719 << CurInit.get()->getSourceRange();
7720 LLVM_FALLTHROUGH[[clang::fallthrough]];
7721 case SK_ArrayInit:
7722 // If the destination type is an incomplete array type, update the
7723 // type accordingly.
7724 if (ResultType) {
7725 if (const IncompleteArrayType *IncompleteDest
7726 = S.Context.getAsIncompleteArrayType(Step->Type)) {
7727 if (const ConstantArrayType *ConstantSource
7728 = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
7729 *ResultType = S.Context.getConstantArrayType(
7730 IncompleteDest->getElementType(),
7731 ConstantSource->getSize(),
7732 ArrayType::Normal, 0);
7733 }
7734 }
7735 }
7736 break;
7737
7738 case SK_ParenthesizedArrayInit:
7739 // Okay: we checked everything before creating this step. Note that
7740 // this is a GNU extension.
7741 S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
7742 << CurInit.get()->getSourceRange();
7743 break;
7744
7745 case SK_PassByIndirectCopyRestore:
7746 case SK_PassByIndirectRestore:
7747 checkIndirectCopyRestoreSource(S, CurInit.get());
7748 CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
7749 CurInit.get(), Step->Type,
7750 Step->Kind == SK_PassByIndirectCopyRestore);
7751 break;
7752
7753 case SK_ProduceObjCObject:
7754 CurInit =
7755 ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
7756 CurInit.get(), nullptr, VK_RValue);
7757 break;
7758
7759 case SK_StdInitializerList: {
7760 S.Diag(CurInit.get()->getExprLoc(),
7761 diag::warn_cxx98_compat_initializer_list_init)
7762 << CurInit.get()->getSourceRange();
7763
7764 // Materialize the temporary into memory.
7765 MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr(
7766 CurInit.get()->getType(), CurInit.get(),
7767 /*BoundToLvalueReference=*/false);
7768
7769 // Wrap it in a construction of a std::initializer_list<T>.
7770 CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
7771
7772 // Bind the result, in case the library has given initializer_list a
7773 // non-trivial destructor.
7774 if (shouldBindAsTemporary(Entity))
7775 CurInit = S.MaybeBindToTemporary(CurInit.get());
7776 break;
7777 }
7778
7779 case SK_OCLSamplerInit: {
7780 // Sampler initialzation have 5 cases:
7781 // 1. function argument passing
7782 // 1a. argument is a file-scope variable
7783 // 1b. argument is a function-scope variable
7784 // 1c. argument is one of caller function's parameters
7785 // 2. variable initialization
7786 // 2a. initializing a file-scope variable
7787 // 2b. initializing a function-scope variable
7788 //
7789 // For file-scope variables, since they cannot be initialized by function
7790 // call of __translate_sampler_initializer in LLVM IR, their references
7791 // need to be replaced by a cast from their literal initializers to
7792 // sampler type. Since sampler variables can only be used in function
7793 // calls as arguments, we only need to replace them when handling the
7794 // argument passing.
7795 assert(Step->Type->isSamplerT() &&(static_cast <bool> (Step->Type->isSamplerT() &&
"Sampler initialization on non-sampler type.") ? void (0) : __assert_fail
("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7796, __extension__ __PRETTY_FUNCTION__))
7796 "Sampler initialization on non-sampler type.")(static_cast <bool> (Step->Type->isSamplerT() &&
"Sampler initialization on non-sampler type.") ? void (0) : __assert_fail
("Step->Type->isSamplerT() && \"Sampler initialization on non-sampler type.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7796, __extension__ __PRETTY_FUNCTION__))
;
7797 Expr *Init = CurInit.get();
7798 QualType SourceType = Init->getType();
7799 // Case 1
7800 if (Entity.isParameterKind()) {
7801 if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) {
7802 S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
7803 << SourceType;
7804 break;
7805 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) {
7806 auto Var = cast<VarDecl>(DRE->getDecl());
7807 // Case 1b and 1c
7808 // No cast from integer to sampler is needed.
7809 if (!Var->hasGlobalStorage()) {
7810 CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
7811 CK_LValueToRValue, Init,
7812 /*BasePath=*/nullptr, VK_RValue);
7813 break;
7814 }
7815 // Case 1a
7816 // For function call with a file-scope sampler variable as argument,
7817 // get the integer literal.
7818 // Do not diagnose if the file-scope variable does not have initializer
7819 // since this has already been diagnosed when parsing the variable
7820 // declaration.
7821 if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit()))
7822 break;
7823 Init = cast<ImplicitCastExpr>(const_cast<Expr*>(
7824 Var->getInit()))->getSubExpr();
7825 SourceType = Init->getType();
7826 }
7827 } else {
7828 // Case 2
7829 // Check initializer is 32 bit integer constant.
7830 // If the initializer is taken from global variable, do not diagnose since
7831 // this has already been done when parsing the variable declaration.
7832 if (!Init->isConstantInitializer(S.Context, false))
7833 break;
7834
7835 if (!SourceType->isIntegerType() ||
7836 32 != S.Context.getIntWidth(SourceType)) {
7837 S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer)
7838 << SourceType;
7839 break;
7840 }
7841
7842 llvm::APSInt Result;
7843 Init->EvaluateAsInt(Result, S.Context);
7844 const uint64_t SamplerValue = Result.getLimitedValue();
7845 // 32-bit value of sampler's initializer is interpreted as
7846 // bit-field with the following structure:
7847 // |unspecified|Filter|Addressing Mode| Normalized Coords|
7848 // |31 6|5 4|3 1| 0|
7849 // This structure corresponds to enum values of sampler properties
7850 // defined in SPIR spec v1.2 and also opencl-c.h
7851 unsigned AddressingMode = (0x0E & SamplerValue) >> 1;
7852 unsigned FilterMode = (0x30 & SamplerValue) >> 4;
7853 if (FilterMode != 1 && FilterMode != 2)
7854 S.Diag(Kind.getLocation(),
7855 diag::warn_sampler_initializer_invalid_bits)
7856 << "Filter Mode";
7857 if (AddressingMode > 4)
7858 S.Diag(Kind.getLocation(),
7859 diag::warn_sampler_initializer_invalid_bits)
7860 << "Addressing Mode";
7861 }
7862
7863 // Cases 1a, 2a and 2b
7864 // Insert cast from integer to sampler.
7865 CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy,
7866 CK_IntToOCLSampler);
7867 break;
7868 }
7869 case SK_OCLZeroEvent: {
7870 assert(Step->Type->isEventT() &&(static_cast <bool> (Step->Type->isEventT() &&
"Event initialization on non-event type.") ? void (0) : __assert_fail
("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7871, __extension__ __PRETTY_FUNCTION__))
7871 "Event initialization on non-event type.")(static_cast <bool> (Step->Type->isEventT() &&
"Event initialization on non-event type.") ? void (0) : __assert_fail
("Step->Type->isEventT() && \"Event initialization on non-event type.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7871, __extension__ __PRETTY_FUNCTION__))
;
7872
7873 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7874 CK_ZeroToOCLEvent,
7875 CurInit.get()->getValueKind());
7876 break;
7877 }
7878 case SK_OCLZeroQueue: {
7879 assert(Step->Type->isQueueT() &&(static_cast <bool> (Step->Type->isQueueT() &&
"Event initialization on non queue type.") ? void (0) : __assert_fail
("Step->Type->isQueueT() && \"Event initialization on non queue type.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7880, __extension__ __PRETTY_FUNCTION__))
7880 "Event initialization on non queue type.")(static_cast <bool> (Step->Type->isQueueT() &&
"Event initialization on non queue type.") ? void (0) : __assert_fail
("Step->Type->isQueueT() && \"Event initialization on non queue type.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 7880, __extension__ __PRETTY_FUNCTION__))
;
7881
7882 CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
7883 CK_ZeroToOCLQueue,
7884 CurInit.get()->getValueKind());
7885 break;
7886 }
7887 }
7888 }
7889
7890 // Check whether the initializer has a shorter lifetime than the initialized
7891 // entity, and if not, either lifetime-extend or warn as appropriate.
7892 if (auto *Init = CurInit.get())
7893 S.checkInitializerLifetime(Entity, Init);
7894
7895 // Diagnose non-fatal problems with the completed initialization.
7896 if (Entity.getKind() == InitializedEntity::EK_Member &&
7897 cast<FieldDecl>(Entity.getDecl())->isBitField())
7898 S.CheckBitFieldInitialization(Kind.getLocation(),
7899 cast<FieldDecl>(Entity.getDecl()),
7900 CurInit.get());
7901
7902 // Check for std::move on construction.
7903 if (const Expr *E = CurInit.get()) {
7904 CheckMoveOnConstruction(S, E,
7905 Entity.getKind() == InitializedEntity::EK_Result);
7906 }
7907
7908 return CurInit;
7909}
7910
7911/// Somewhere within T there is an uninitialized reference subobject.
7912/// Dig it out and diagnose it.
7913static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
7914 QualType T) {
7915 if (T->isReferenceType()) {
7916 S.Diag(Loc, diag::err_reference_without_init)
7917 << T.getNonReferenceType();
7918 return true;
7919 }
7920
7921 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
7922 if (!RD || !RD->hasUninitializedReferenceMember())
7923 return false;
7924
7925 for (const auto *FI : RD->fields()) {
7926 if (FI->isUnnamedBitfield())
7927 continue;
7928
7929 if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
7930 S.Diag(Loc, diag::note_value_initialization_here) << RD;
7931 return true;
7932 }
7933 }
7934
7935 for (const auto &BI : RD->bases()) {
7936 if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
7937 S.Diag(Loc, diag::note_value_initialization_here) << RD;
7938 return true;
7939 }
7940 }
7941
7942 return false;
7943}
7944
7945
7946//===----------------------------------------------------------------------===//
7947// Diagnose initialization failures
7948//===----------------------------------------------------------------------===//
7949
7950/// Emit notes associated with an initialization that failed due to a
7951/// "simple" conversion failure.
7952static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
7953 Expr *op) {
7954 QualType destType = entity.getType();
7955 if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
7956 op->getType()->isObjCObjectPointerType()) {
7957
7958 // Emit a possible note about the conversion failing because the
7959 // operand is a message send with a related result type.
7960 S.EmitRelatedResultTypeNote(op);
7961
7962 // Emit a possible note about a return failing because we're
7963 // expecting a related result type.
7964 if (entity.getKind() == InitializedEntity::EK_Result)
7965 S.EmitRelatedResultTypeNoteForReturn(destType);
7966 }
7967}
7968
7969static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
7970 InitListExpr *InitList) {
7971 QualType DestType = Entity.getType();
7972
7973 QualType E;
7974 if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
7975 QualType ArrayType = S.Context.getConstantArrayType(
7976 E.withConst(),
7977 llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
7978 InitList->getNumInits()),
7979 clang::ArrayType::Normal, 0);
7980 InitializedEntity HiddenArray =
7981 InitializedEntity::InitializeTemporary(ArrayType);
7982 return diagnoseListInit(S, HiddenArray, InitList);
7983 }
7984
7985 if (DestType->isReferenceType()) {
7986 // A list-initialization failure for a reference means that we tried to
7987 // create a temporary of the inner type (per [dcl.init.list]p3.6) and the
7988 // inner initialization failed.
7989 QualType T = DestType->getAs<ReferenceType>()->getPointeeType();
7990 diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList);
7991 SourceLocation Loc = InitList->getLocStart();
7992 if (auto *D = Entity.getDecl())
7993 Loc = D->getLocation();
7994 S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T;
7995 return;
7996 }
7997
7998 InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
7999 /*VerifyOnly=*/false,
8000 /*TreatUnavailableAsInvalid=*/false);
8001 assert(DiagnoseInitList.HadError() &&(static_cast <bool> (DiagnoseInitList.HadError() &&
"Inconsistent init list check result.") ? void (0) : __assert_fail
("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8002, __extension__ __PRETTY_FUNCTION__))
8002 "Inconsistent init list check result.")(static_cast <bool> (DiagnoseInitList.HadError() &&
"Inconsistent init list check result.") ? void (0) : __assert_fail
("DiagnoseInitList.HadError() && \"Inconsistent init list check result.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8002, __extension__ __PRETTY_FUNCTION__))
;
8003}
8004
8005bool InitializationSequence::Diagnose(Sema &S,
8006 const InitializedEntity &Entity,
8007 const InitializationKind &Kind,
8008 ArrayRef<Expr *> Args) {
8009 if (!Failed())
8010 return false;
8011
8012 // When we want to diagnose only one element of a braced-init-list,
8013 // we need to factor it out.
8014 Expr *OnlyArg;
8015 if (Args.size() == 1) {
8016 auto *List = dyn_cast<InitListExpr>(Args[0]);
8017 if (List && List->getNumInits() == 1)
8018 OnlyArg = List->getInit(0);
8019 else
8020 OnlyArg = Args[0];
8021 }
8022 else
8023 OnlyArg = nullptr;
8024
8025 QualType DestType = Entity.getType();
8026 switch (Failure) {
8027 case FK_TooManyInitsForReference:
8028 // FIXME: Customize for the initialized entity?
8029 if (Args.empty()) {
8030 // Dig out the reference subobject which is uninitialized and diagnose it.
8031 // If this is value-initialization, this could be nested some way within
8032 // the target type.
8033 assert(Kind.getKind() == InitializationKind::IK_Value ||(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Value || DestType->isReferenceType()) ? void (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8034, __extension__ __PRETTY_FUNCTION__))
8034 DestType->isReferenceType())(static_cast <bool> (Kind.getKind() == InitializationKind
::IK_Value || DestType->isReferenceType()) ? void (0) : __assert_fail
("Kind.getKind() == InitializationKind::IK_Value || DestType->isReferenceType()"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8034, __extension__ __PRETTY_FUNCTION__))
;
8035 bool Diagnosed =
8036 DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
8037 assert(Diagnosed && "couldn't find uninitialized reference to diagnose")(static_cast <bool> (Diagnosed && "couldn't find uninitialized reference to diagnose"
) ? void (0) : __assert_fail ("Diagnosed && \"couldn't find uninitialized reference to diagnose\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8037, __extension__ __PRETTY_FUNCTION__))
;
8038 (void)Diagnosed;
8039 } else // FIXME: diagnostic below could be better!
8040 S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
8041 << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
8042 break;
8043 case FK_ParenthesizedListInitForReference:
8044 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8045 << 1 << Entity.getType() << Args[0]->getSourceRange();
8046 break;
8047
8048 case FK_ArrayNeedsInitList:
8049 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
8050 break;
8051 case FK_ArrayNeedsInitListOrStringLiteral:
8052 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
8053 break;
8054 case FK_ArrayNeedsInitListOrWideStringLiteral:
8055 S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
8056 break;
8057 case FK_NarrowStringIntoWideCharArray:
8058 S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
8059 break;
8060 case FK_WideStringIntoCharArray:
8061 S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
8062 break;
8063 case FK_IncompatWideStringIntoWideChar:
8064 S.Diag(Kind.getLocation(),
8065 diag::err_array_init_incompat_wide_string_into_wchar);
8066 break;
8067 case FK_PlainStringIntoUTF8Char:
8068 S.Diag(Kind.getLocation(),
8069 diag::err_array_init_plain_string_into_char8_t);
8070 S.Diag(Args.front()->getLocStart(),
8071 diag::note_array_init_plain_string_into_char8_t)
8072 << FixItHint::CreateInsertion(Args.front()->getLocStart(), "u8");
8073 break;
8074 case FK_UTF8StringIntoPlainChar:
8075 S.Diag(Kind.getLocation(),
8076 diag::err_array_init_utf8_string_into_char);
8077 break;
8078 case FK_ArrayTypeMismatch:
8079 case FK_NonConstantArrayInit:
8080 S.Diag(Kind.getLocation(),
8081 (Failure == FK_ArrayTypeMismatch
8082 ? diag::err_array_init_different_type
8083 : diag::err_array_init_non_constant_array))
8084 << DestType.getNonReferenceType()
8085 << OnlyArg->getType()
8086 << Args[0]->getSourceRange();
8087 break;
8088
8089 case FK_VariableLengthArrayHasInitializer:
8090 S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
8091 << Args[0]->getSourceRange();
8092 break;
8093
8094 case FK_AddressOfOverloadFailed: {
8095 DeclAccessPair Found;
8096 S.ResolveAddressOfOverloadedFunction(OnlyArg,
8097 DestType.getNonReferenceType(),
8098 true,
8099 Found);
8100 break;
8101 }
8102
8103 case FK_AddressOfUnaddressableFunction: {
8104 auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl());
8105 S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
8106 OnlyArg->getLocStart());
8107 break;
8108 }
8109
8110 case FK_ReferenceInitOverloadFailed:
8111 case FK_UserConversionOverloadFailed:
8112 switch (FailedOverloadResult) {
8113 case OR_Ambiguous:
8114 if (Failure == FK_UserConversionOverloadFailed)
8115 S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
8116 << OnlyArg->getType() << DestType
8117 << Args[0]->getSourceRange();
8118 else
8119 S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
8120 << DestType << OnlyArg->getType()
8121 << Args[0]->getSourceRange();
8122
8123 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8124 break;
8125
8126 case OR_No_Viable_Function:
8127 if (!S.RequireCompleteType(Kind.getLocation(),
8128 DestType.getNonReferenceType(),
8129 diag::err_typecheck_nonviable_condition_incomplete,
8130 OnlyArg->getType(), Args[0]->getSourceRange()))
8131 S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
8132 << (Entity.getKind() == InitializedEntity::EK_Result)
8133 << OnlyArg->getType() << Args[0]->getSourceRange()
8134 << DestType.getNonReferenceType();
8135
8136 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8137 break;
8138
8139 case OR_Deleted: {
8140 S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
8141 << OnlyArg->getType() << DestType.getNonReferenceType()
8142 << Args[0]->getSourceRange();
8143 OverloadCandidateSet::iterator Best;
8144 OverloadingResult Ovl
8145 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8146 if (Ovl == OR_Deleted) {
8147 S.NoteDeletedFunction(Best->Function);
8148 } else {
8149 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8149)
;
8150 }
8151 break;
8152 }
8153
8154 case OR_Success:
8155 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8155)
;
8156 }
8157 break;
8158
8159 case FK_NonConstLValueReferenceBindingToTemporary:
8160 if (isa<InitListExpr>(Args[0])) {
8161 S.Diag(Kind.getLocation(),
8162 diag::err_lvalue_reference_bind_to_initlist)
8163 << DestType.getNonReferenceType().isVolatileQualified()
8164 << DestType.getNonReferenceType()
8165 << Args[0]->getSourceRange();
8166 break;
8167 }
8168 LLVM_FALLTHROUGH[[clang::fallthrough]];
8169
8170 case FK_NonConstLValueReferenceBindingToUnrelated:
8171 S.Diag(Kind.getLocation(),
8172 Failure == FK_NonConstLValueReferenceBindingToTemporary
8173 ? diag::err_lvalue_reference_bind_to_temporary
8174 : diag::err_lvalue_reference_bind_to_unrelated)
8175 << DestType.getNonReferenceType().isVolatileQualified()
8176 << DestType.getNonReferenceType()
8177 << OnlyArg->getType()
8178 << Args[0]->getSourceRange();
8179 break;
8180
8181 case FK_NonConstLValueReferenceBindingToBitfield: {
8182 // We don't necessarily have an unambiguous source bit-field.
8183 FieldDecl *BitField = Args[0]->getSourceBitField();
8184 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
8185 << DestType.isVolatileQualified()
8186 << (BitField ? BitField->getDeclName() : DeclarationName())
8187 << (BitField != nullptr)
8188 << Args[0]->getSourceRange();
8189 if (BitField)
8190 S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
8191 break;
8192 }
8193
8194 case FK_NonConstLValueReferenceBindingToVectorElement:
8195 S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
8196 << DestType.isVolatileQualified()
8197 << Args[0]->getSourceRange();
8198 break;
8199
8200 case FK_RValueReferenceBindingToLValue:
8201 S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
8202 << DestType.getNonReferenceType() << OnlyArg->getType()
8203 << Args[0]->getSourceRange();
8204 break;
8205
8206 case FK_ReferenceInitDropsQualifiers: {
8207 QualType SourceType = OnlyArg->getType();
8208 QualType NonRefType = DestType.getNonReferenceType();
8209 Qualifiers DroppedQualifiers =
8210 SourceType.getQualifiers() - NonRefType.getQualifiers();
8211
8212 S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
8213 << SourceType
8214 << NonRefType
8215 << DroppedQualifiers.getCVRQualifiers()
8216 << Args[0]->getSourceRange();
8217 break;
8218 }
8219
8220 case FK_ReferenceInitFailed:
8221 S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
8222 << DestType.getNonReferenceType()
8223 << OnlyArg->isLValue()
8224 << OnlyArg->getType()
8225 << Args[0]->getSourceRange();
8226 emitBadConversionNotes(S, Entity, Args[0]);
8227 break;
8228
8229 case FK_ConversionFailed: {
8230 QualType FromType = OnlyArg->getType();
8231 PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
8232 << (int)Entity.getKind()
8233 << DestType
8234 << OnlyArg->isLValue()
8235 << FromType
8236 << Args[0]->getSourceRange();
8237 S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
8238 S.Diag(Kind.getLocation(), PDiag);
8239 emitBadConversionNotes(S, Entity, Args[0]);
8240 break;
8241 }
8242
8243 case FK_ConversionFromPropertyFailed:
8244 // No-op. This error has already been reported.
8245 break;
8246
8247 case FK_TooManyInitsForScalar: {
8248 SourceRange R;
8249
8250 auto *InitList = dyn_cast<InitListExpr>(Args[0]);
8251 if (InitList && InitList->getNumInits() >= 1) {
8252 R = SourceRange(InitList->getInit(0)->getLocEnd(), InitList->getLocEnd());
8253 } else {
8254 assert(Args.size() > 1 && "Expected multiple initializers!")(static_cast <bool> (Args.size() > 1 && "Expected multiple initializers!"
) ? void (0) : __assert_fail ("Args.size() > 1 && \"Expected multiple initializers!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8254, __extension__ __PRETTY_FUNCTION__))
;
8255 R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
8256 }
8257
8258 R.setBegin(S.getLocForEndOfToken(R.getBegin()));
8259 if (Kind.isCStyleOrFunctionalCast())
8260 S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
8261 << R;
8262 else
8263 S.Diag(Kind.getLocation(), diag::err_excess_initializers)
8264 << /*scalar=*/2 << R;
8265 break;
8266 }
8267
8268 case FK_ParenthesizedListInitForScalar:
8269 S.Diag(Kind.getLocation(), diag::err_list_init_in_parens)
8270 << 0 << Entity.getType() << Args[0]->getSourceRange();
8271 break;
8272
8273 case FK_ReferenceBindingToInitList:
8274 S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
8275 << DestType.getNonReferenceType() << Args[0]->getSourceRange();
8276 break;
8277
8278 case FK_InitListBadDestinationType:
8279 S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
8280 << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
8281 break;
8282
8283 case FK_ListConstructorOverloadFailed:
8284 case FK_ConstructorOverloadFailed: {
8285 SourceRange ArgsRange;
8286 if (Args.size())
8287 ArgsRange = SourceRange(Args.front()->getLocStart(),
8288 Args.back()->getLocEnd());
8289
8290 if (Failure == FK_ListConstructorOverloadFailed) {
8291 assert(Args.size() == 1 &&(static_cast <bool> (Args.size() == 1 && "List construction from other than 1 argument."
) ? void (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8292, __extension__ __PRETTY_FUNCTION__))
8292 "List construction from other than 1 argument.")(static_cast <bool> (Args.size() == 1 && "List construction from other than 1 argument."
) ? void (0) : __assert_fail ("Args.size() == 1 && \"List construction from other than 1 argument.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8292, __extension__ __PRETTY_FUNCTION__))
;
8293 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8294 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
8295 }
8296
8297 // FIXME: Using "DestType" for the entity we're printing is probably
8298 // bad.
8299 switch (FailedOverloadResult) {
8300 case OR_Ambiguous:
8301 S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
8302 << DestType << ArgsRange;
8303 FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
8304 break;
8305
8306 case OR_No_Viable_Function:
8307 if (Kind.getKind() == InitializationKind::IK_Default &&
8308 (Entity.getKind() == InitializedEntity::EK_Base ||
8309 Entity.getKind() == InitializedEntity::EK_Member) &&
8310 isa<CXXConstructorDecl>(S.CurContext)) {
8311 // This is implicit default initialization of a member or
8312 // base within a constructor. If no viable function was
8313 // found, notify the user that they need to explicitly
8314 // initialize this base/member.
8315 CXXConstructorDecl *Constructor
8316 = cast<CXXConstructorDecl>(S.CurContext);
8317 const CXXRecordDecl *InheritedFrom = nullptr;
8318 if (auto Inherited = Constructor->getInheritedConstructor())
8319 InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass();
8320 if (Entity.getKind() == InitializedEntity::EK_Base) {
8321 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8322 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8323 << S.Context.getTypeDeclType(Constructor->getParent())
8324 << /*base=*/0
8325 << Entity.getType()
8326 << InheritedFrom;
8327
8328 RecordDecl *BaseDecl
8329 = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
8330 ->getDecl();
8331 S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
8332 << S.Context.getTagDeclType(BaseDecl);
8333 } else {
8334 S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
8335 << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0)
8336 << S.Context.getTypeDeclType(Constructor->getParent())
8337 << /*member=*/1
8338 << Entity.getName()
8339 << InheritedFrom;
8340 S.Diag(Entity.getDecl()->getLocation(),
8341 diag::note_member_declared_at);
8342
8343 if (const RecordType *Record
8344 = Entity.getType()->getAs<RecordType>())
8345 S.Diag(Record->getDecl()->getLocation(),
8346 diag::note_previous_decl)
8347 << S.Context.getTagDeclType(Record->getDecl());
8348 }
8349 break;
8350 }
8351
8352 S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
8353 << DestType << ArgsRange;
8354 FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
8355 break;
8356
8357 case OR_Deleted: {
8358 OverloadCandidateSet::iterator Best;
8359 OverloadingResult Ovl
8360 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8361 if (Ovl != OR_Deleted) {
8362 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8363 << true << DestType << ArgsRange;
8364 llvm_unreachable("Inconsistent overload resolution?")::llvm::llvm_unreachable_internal("Inconsistent overload resolution?"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8364)
;
8365 break;
8366 }
8367
8368 // If this is a defaulted or implicitly-declared function, then
8369 // it was implicitly deleted. Make it clear that the deletion was
8370 // implicit.
8371 if (S.isImplicitlyDeleted(Best->Function))
8372 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
8373 << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
8374 << DestType << ArgsRange;
8375 else
8376 S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
8377 << true << DestType << ArgsRange;
8378
8379 S.NoteDeletedFunction(Best->Function);
8380 break;
8381 }
8382
8383 case OR_Success:
8384 llvm_unreachable("Conversion did not fail!")::llvm::llvm_unreachable_internal("Conversion did not fail!",
"/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8384)
;
8385 }
8386 }
8387 break;
8388
8389 case FK_DefaultInitOfConst:
8390 if (Entity.getKind() == InitializedEntity::EK_Member &&
8391 isa<CXXConstructorDecl>(S.CurContext)) {
8392 // This is implicit default-initialization of a const member in
8393 // a constructor. Complain that it needs to be explicitly
8394 // initialized.
8395 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
8396 S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
8397 << (Constructor->getInheritedConstructor() ? 2 :
8398 Constructor->isImplicit() ? 1 : 0)
8399 << S.Context.getTypeDeclType(Constructor->getParent())
8400 << /*const=*/1
8401 << Entity.getName();
8402 S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
8403 << Entity.getName();
8404 } else {
8405 S.Diag(Kind.getLocation(), diag::err_default_init_const)
8406 << DestType << (bool)DestType->getAs<RecordType>();
8407 }
8408 break;
8409
8410 case FK_Incomplete:
8411 S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
8412 diag::err_init_incomplete_type);
8413 break;
8414
8415 case FK_ListInitializationFailed: {
8416 // Run the init list checker again to emit diagnostics.
8417 InitListExpr *InitList = cast<InitListExpr>(Args[0]);
8418 diagnoseListInit(S, Entity, InitList);
8419 break;
8420 }
8421
8422 case FK_PlaceholderType: {
8423 // FIXME: Already diagnosed!
8424 break;
8425 }
8426
8427 case FK_ExplicitConstructor: {
8428 S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
8429 << Args[0]->getSourceRange();
8430 OverloadCandidateSet::iterator Best;
8431 OverloadingResult Ovl
8432 = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
8433 (void)Ovl;
8434 assert(Ovl == OR_Success && "Inconsistent overload resolution")(static_cast <bool> (Ovl == OR_Success && "Inconsistent overload resolution"
) ? void (0) : __assert_fail ("Ovl == OR_Success && \"Inconsistent overload resolution\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8434, __extension__ __PRETTY_FUNCTION__))
;
8435 CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
8436 S.Diag(CtorDecl->getLocation(),
8437 diag::note_explicit_ctor_deduction_guide_here) << false;
8438 break;
8439 }
8440 }
8441
8442 PrintInitLocationNote(S, Entity);
8443 return true;
8444}
8445
8446void InitializationSequence::dump(raw_ostream &OS) const {
8447 switch (SequenceKind) {
8448 case FailedSequence: {
8449 OS << "Failed sequence: ";
8450 switch (Failure) {
8451 case FK_TooManyInitsForReference:
8452 OS << "too many initializers for reference";
8453 break;
8454
8455 case FK_ParenthesizedListInitForReference:
8456 OS << "parenthesized list init for reference";
8457 break;
8458
8459 case FK_ArrayNeedsInitList:
8460 OS << "array requires initializer list";
8461 break;
8462
8463 case FK_AddressOfUnaddressableFunction:
8464 OS << "address of unaddressable function was taken";
8465 break;
8466
8467 case FK_ArrayNeedsInitListOrStringLiteral:
8468 OS << "array requires initializer list or string literal";
8469 break;
8470
8471 case FK_ArrayNeedsInitListOrWideStringLiteral:
8472 OS << "array requires initializer list or wide string literal";
8473 break;
8474
8475 case FK_NarrowStringIntoWideCharArray:
8476 OS << "narrow string into wide char array";
8477 break;
8478
8479 case FK_WideStringIntoCharArray:
8480 OS << "wide string into char array";
8481 break;
8482
8483 case FK_IncompatWideStringIntoWideChar:
8484 OS << "incompatible wide string into wide char array";
8485 break;
8486
8487 case FK_PlainStringIntoUTF8Char:
8488 OS << "plain string literal into char8_t array";
8489 break;
8490
8491 case FK_UTF8StringIntoPlainChar:
8492 OS << "u8 string literal into char array";
8493 break;
8494
8495 case FK_ArrayTypeMismatch:
8496 OS << "array type mismatch";
8497 break;
8498
8499 case FK_NonConstantArrayInit:
8500 OS << "non-constant array initializer";
8501 break;
8502
8503 case FK_AddressOfOverloadFailed:
8504 OS << "address of overloaded function failed";
8505 break;
8506
8507 case FK_ReferenceInitOverloadFailed:
8508 OS << "overload resolution for reference initialization failed";
8509 break;
8510
8511 case FK_NonConstLValueReferenceBindingToTemporary:
8512 OS << "non-const lvalue reference bound to temporary";
8513 break;
8514
8515 case FK_NonConstLValueReferenceBindingToBitfield:
8516 OS << "non-const lvalue reference bound to bit-field";
8517 break;
8518
8519 case FK_NonConstLValueReferenceBindingToVectorElement:
8520 OS << "non-const lvalue reference bound to vector element";
8521 break;
8522
8523 case FK_NonConstLValueReferenceBindingToUnrelated:
8524 OS << "non-const lvalue reference bound to unrelated type";
8525 break;
8526
8527 case FK_RValueReferenceBindingToLValue:
8528 OS << "rvalue reference bound to an lvalue";
8529 break;
8530
8531 case FK_ReferenceInitDropsQualifiers:
8532 OS << "reference initialization drops qualifiers";
8533 break;
8534
8535 case FK_ReferenceInitFailed:
8536 OS << "reference initialization failed";
8537 break;
8538
8539 case FK_ConversionFailed:
8540 OS << "conversion failed";
8541 break;
8542
8543 case FK_ConversionFromPropertyFailed:
8544 OS << "conversion from property failed";
8545 break;
8546
8547 case FK_TooManyInitsForScalar:
8548 OS << "too many initializers for scalar";
8549 break;
8550
8551 case FK_ParenthesizedListInitForScalar:
8552 OS << "parenthesized list init for reference";
8553 break;
8554
8555 case FK_ReferenceBindingToInitList:
8556 OS << "referencing binding to initializer list";
8557 break;
8558
8559 case FK_InitListBadDestinationType:
8560 OS << "initializer list for non-aggregate, non-scalar type";
8561 break;
8562
8563 case FK_UserConversionOverloadFailed:
8564 OS << "overloading failed for user-defined conversion";
8565 break;
8566
8567 case FK_ConstructorOverloadFailed:
8568 OS << "constructor overloading failed";
8569 break;
8570
8571 case FK_DefaultInitOfConst:
8572 OS << "default initialization of a const variable";
8573 break;
8574
8575 case FK_Incomplete:
8576 OS << "initialization of incomplete type";
8577 break;
8578
8579 case FK_ListInitializationFailed:
8580 OS << "list initialization checker failure";
8581 break;
8582
8583 case FK_VariableLengthArrayHasInitializer:
8584 OS << "variable length array has an initializer";
8585 break;
8586
8587 case FK_PlaceholderType:
8588 OS << "initializer expression isn't contextually valid";
8589 break;
8590
8591 case FK_ListConstructorOverloadFailed:
8592 OS << "list constructor overloading failed";
8593 break;
8594
8595 case FK_ExplicitConstructor:
8596 OS << "list copy initialization chose explicit constructor";
8597 break;
8598 }
8599 OS << '\n';
8600 return;
8601 }
8602
8603 case DependentSequence:
8604 OS << "Dependent sequence\n";
8605 return;
8606
8607 case NormalSequence:
8608 OS << "Normal sequence: ";
8609 break;
8610 }
8611
8612 for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
8613 if (S != step_begin()) {
8614 OS << " -> ";
8615 }
8616
8617 switch (S->Kind) {
8618 case SK_ResolveAddressOfOverloadedFunction:
8619 OS << "resolve address of overloaded function";
8620 break;
8621
8622 case SK_CastDerivedToBaseRValue:
8623 OS << "derived-to-base (rvalue)";
8624 break;
8625
8626 case SK_CastDerivedToBaseXValue:
8627 OS << "derived-to-base (xvalue)";
8628 break;
8629
8630 case SK_CastDerivedToBaseLValue:
8631 OS << "derived-to-base (lvalue)";
8632 break;
8633
8634 case SK_BindReference:
8635 OS << "bind reference to lvalue";
8636 break;
8637
8638 case SK_BindReferenceToTemporary:
8639 OS << "bind reference to a temporary";
8640 break;
8641
8642 case SK_FinalCopy:
8643 OS << "final copy in class direct-initialization";
8644 break;
8645
8646 case SK_ExtraneousCopyToTemporary:
8647 OS << "extraneous C++03 copy to temporary";
8648 break;
8649
8650 case SK_UserConversion:
8651 OS << "user-defined conversion via " << *S->Function.Function;
8652 break;
8653
8654 case SK_QualificationConversionRValue:
8655 OS << "qualification conversion (rvalue)";
8656 break;
8657
8658 case SK_QualificationConversionXValue:
8659 OS << "qualification conversion (xvalue)";
8660 break;
8661
8662 case SK_QualificationConversionLValue:
8663 OS << "qualification conversion (lvalue)";
8664 break;
8665
8666 case SK_AtomicConversion:
8667 OS << "non-atomic-to-atomic conversion";
8668 break;
8669
8670 case SK_LValueToRValue:
8671 OS << "load (lvalue to rvalue)";
8672 break;
8673
8674 case SK_ConversionSequence:
8675 OS << "implicit conversion sequence (";
8676 S->ICS->dump(); // FIXME: use OS
8677 OS << ")";
8678 break;
8679
8680 case SK_ConversionSequenceNoNarrowing:
8681 OS << "implicit conversion sequence with narrowing prohibited (";
8682 S->ICS->dump(); // FIXME: use OS
8683 OS << ")";
8684 break;
8685
8686 case SK_ListInitialization:
8687 OS << "list aggregate initialization";
8688 break;
8689
8690 case SK_UnwrapInitList:
8691 OS << "unwrap reference initializer list";
8692 break;
8693
8694 case SK_RewrapInitList:
8695 OS << "rewrap reference initializer list";
8696 break;
8697
8698 case SK_ConstructorInitialization:
8699 OS << "constructor initialization";
8700 break;
8701
8702 case SK_ConstructorInitializationFromList:
8703 OS << "list initialization via constructor";
8704 break;
8705
8706 case SK_ZeroInitialization:
8707 OS << "zero initialization";
8708 break;
8709
8710 case SK_CAssignment:
8711 OS << "C assignment";
8712 break;
8713
8714 case SK_StringInit:
8715 OS << "string initialization";
8716 break;
8717
8718 case SK_ObjCObjectConversion:
8719 OS << "Objective-C object conversion";
8720 break;
8721
8722 case SK_ArrayLoopIndex:
8723 OS << "indexing for array initialization loop";
8724 break;
8725
8726 case SK_ArrayLoopInit:
8727 OS << "array initialization loop";
8728 break;
8729
8730 case SK_ArrayInit:
8731 OS << "array initialization";
8732 break;
8733
8734 case SK_GNUArrayInit:
8735 OS << "array initialization (GNU extension)";
8736 break;
8737
8738 case SK_ParenthesizedArrayInit:
8739 OS << "parenthesized array initialization";
8740 break;
8741
8742 case SK_PassByIndirectCopyRestore:
8743 OS << "pass by indirect copy and restore";
8744 break;
8745
8746 case SK_PassByIndirectRestore:
8747 OS << "pass by indirect restore";
8748 break;
8749
8750 case SK_ProduceObjCObject:
8751 OS << "Objective-C object retension";
8752 break;
8753
8754 case SK_StdInitializerList:
8755 OS << "std::initializer_list from initializer list";
8756 break;
8757
8758 case SK_StdInitializerListConstructorCall:
8759 OS << "list initialization from std::initializer_list";
8760 break;
8761
8762 case SK_OCLSamplerInit:
8763 OS << "OpenCL sampler_t from integer constant";
8764 break;
8765
8766 case SK_OCLZeroEvent:
8767 OS << "OpenCL event_t from zero";
8768 break;
8769
8770 case SK_OCLZeroQueue:
8771 OS << "OpenCL queue_t from zero";
8772 break;
8773 }
8774
8775 OS << " [" << S->Type.getAsString() << ']';
8776 }
8777
8778 OS << '\n';
8779}
8780
8781void InitializationSequence::dump() const {
8782 dump(llvm::errs());
8783}
8784
8785static bool NarrowingErrs(const LangOptions &L) {
8786 return L.CPlusPlus11 &&
8787 (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015));
8788}
8789
8790static void DiagnoseNarrowingInInitList(Sema &S,
8791 const ImplicitConversionSequence &ICS,
8792 QualType PreNarrowingType,
8793 QualType EntityType,
8794 const Expr *PostInit) {
8795 const StandardConversionSequence *SCS = nullptr;
8796 switch (ICS.getKind()) {
8797 case ImplicitConversionSequence::StandardConversion:
8798 SCS = &ICS.Standard;
8799 break;
8800 case ImplicitConversionSequence::UserDefinedConversion:
8801 SCS = &ICS.UserDefined.After;
8802 break;
8803 case ImplicitConversionSequence::AmbiguousConversion:
8804 case ImplicitConversionSequence::EllipsisConversion:
8805 case ImplicitConversionSequence::BadConversion:
8806 return;
8807 }
8808
8809 // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
8810 APValue ConstantValue;
8811 QualType ConstantType;
8812 switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
8813 ConstantType)) {
8814 case NK_Not_Narrowing:
8815 case NK_Dependent_Narrowing:
8816 // No narrowing occurred.
8817 return;
8818
8819 case NK_Type_Narrowing:
8820 // This was a floating-to-integer conversion, which is always considered a
8821 // narrowing conversion even if the value is a constant and can be
8822 // represented exactly as an integer.
8823 S.Diag(PostInit->getLocStart(), NarrowingErrs(S.getLangOpts())
8824 ? diag::ext_init_list_type_narrowing
8825 : diag::warn_init_list_type_narrowing)
8826 << PostInit->getSourceRange()
8827 << PreNarrowingType.getLocalUnqualifiedType()
8828 << EntityType.getLocalUnqualifiedType();
8829 break;
8830
8831 case NK_Constant_Narrowing:
8832 // A constant value was narrowed.
8833 S.Diag(PostInit->getLocStart(),
8834 NarrowingErrs(S.getLangOpts())
8835 ? diag::ext_init_list_constant_narrowing
8836 : diag::warn_init_list_constant_narrowing)
8837 << PostInit->getSourceRange()
8838 << ConstantValue.getAsString(S.getASTContext(), ConstantType)
8839 << EntityType.getLocalUnqualifiedType();
8840 break;
8841
8842 case NK_Variable_Narrowing:
8843 // A variable's value may have been narrowed.
8844 S.Diag(PostInit->getLocStart(),
8845 NarrowingErrs(S.getLangOpts())
8846 ? diag::ext_init_list_variable_narrowing
8847 : diag::warn_init_list_variable_narrowing)
8848 << PostInit->getSourceRange()
8849 << PreNarrowingType.getLocalUnqualifiedType()
8850 << EntityType.getLocalUnqualifiedType();
8851 break;
8852 }
8853
8854 SmallString<128> StaticCast;
8855 llvm::raw_svector_ostream OS(StaticCast);
8856 OS << "static_cast<";
8857 if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
8858 // It's important to use the typedef's name if there is one so that the
8859 // fixit doesn't break code using types like int64_t.
8860 //
8861 // FIXME: This will break if the typedef requires qualification. But
8862 // getQualifiedNameAsString() includes non-machine-parsable components.
8863 OS << *TT->getDecl();
8864 } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
8865 OS << BT->getName(S.getLangOpts());
8866 else {
8867 // Oops, we didn't find the actual type of the variable. Don't emit a fixit
8868 // with a broken cast.
8869 return;
8870 }
8871 OS << ">(";
8872 S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
8873 << PostInit->getSourceRange()
8874 << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
8875 << FixItHint::CreateInsertion(
8876 S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
8877}
8878
8879//===----------------------------------------------------------------------===//
8880// Initialization helper functions
8881//===----------------------------------------------------------------------===//
8882bool
8883Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
8884 ExprResult Init) {
8885 if (Init.isInvalid())
8886 return false;
8887
8888 Expr *InitE = Init.get();
8889 assert(InitE && "No initialization expression")(static_cast <bool> (InitE && "No initialization expression"
) ? void (0) : __assert_fail ("InitE && \"No initialization expression\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8889, __extension__ __PRETTY_FUNCTION__))
;
8890
8891 InitializationKind Kind
8892 = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
8893 InitializationSequence Seq(*this, Entity, Kind, InitE);
8894 return !Seq.Failed();
8895}
8896
8897ExprResult
8898Sema::PerformCopyInitialization(const InitializedEntity &Entity,
8899 SourceLocation EqualLoc,
8900 ExprResult Init,
8901 bool TopLevelOfInitList,
8902 bool AllowExplicit) {
8903 if (Init.isInvalid())
8904 return ExprError();
8905
8906 Expr *InitE = Init.get();
8907 assert(InitE && "No initialization expression?")(static_cast <bool> (InitE && "No initialization expression?"
) ? void (0) : __assert_fail ("InitE && \"No initialization expression?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8907, __extension__ __PRETTY_FUNCTION__))
;
8908
8909 if (EqualLoc.isInvalid())
8910 EqualLoc = InitE->getLocStart();
8911
8912 InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
8913 EqualLoc,
8914 AllowExplicit);
8915 InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
8916
8917 // Prevent infinite recursion when performing parameter copy-initialization.
8918 const bool ShouldTrackCopy =
8919 Entity.isParameterKind() && Seq.isConstructorInitialization();
8920 if (ShouldTrackCopy) {
8921 if (llvm::find(CurrentParameterCopyTypes, Entity.getType()) !=
8922 CurrentParameterCopyTypes.end()) {
8923 Seq.SetOverloadFailure(
8924 InitializationSequence::FK_ConstructorOverloadFailed,
8925 OR_No_Viable_Function);
8926
8927 // Try to give a meaningful diagnostic note for the problematic
8928 // constructor.
8929 const auto LastStep = Seq.step_end() - 1;
8930 assert(LastStep->Kind ==(static_cast <bool> (LastStep->Kind == InitializationSequence
::SK_ConstructorInitialization) ? void (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8931, __extension__ __PRETTY_FUNCTION__))
8931 InitializationSequence::SK_ConstructorInitialization)(static_cast <bool> (LastStep->Kind == InitializationSequence
::SK_ConstructorInitialization) ? void (0) : __assert_fail ("LastStep->Kind == InitializationSequence::SK_ConstructorInitialization"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8931, __extension__ __PRETTY_FUNCTION__))
;
8932 const FunctionDecl *Function = LastStep->Function.Function;
8933 auto Candidate =
8934 llvm::find_if(Seq.getFailedCandidateSet(),
8935 [Function](const OverloadCandidate &Candidate) -> bool {
8936 return Candidate.Viable &&
8937 Candidate.Function == Function &&
8938 Candidate.Conversions.size() > 0;
8939 });
8940 if (Candidate != Seq.getFailedCandidateSet().end() &&
8941 Function->getNumParams() > 0) {
8942 Candidate->Viable = false;
8943 Candidate->FailureKind = ovl_fail_bad_conversion;
8944 Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion,
8945 InitE,
8946 Function->getParamDecl(0)->getType());
8947 }
8948 }
8949 CurrentParameterCopyTypes.push_back(Entity.getType());
8950 }
8951
8952 ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
8953
8954 if (ShouldTrackCopy)
8955 CurrentParameterCopyTypes.pop_back();
8956
8957 return Result;
8958}
8959
8960/// Determine whether RD is, or is derived from, a specialization of CTD.
8961static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD,
8962 ClassTemplateDecl *CTD) {
8963 auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) {
8964 auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate);
8965 return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD);
8966 };
8967 return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization));
8968}
8969
8970QualType Sema::DeduceTemplateSpecializationFromInitializer(
8971 TypeSourceInfo *TSInfo, const InitializedEntity &Entity,
8972 const InitializationKind &Kind, MultiExprArg Inits) {
8973 auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>(
8974 TSInfo->getType()->getContainedDeducedType());
8975 assert(DeducedTST && "not a deduced template specialization type")(static_cast <bool> (DeducedTST && "not a deduced template specialization type"
) ? void (0) : __assert_fail ("DeducedTST && \"not a deduced template specialization type\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaInit.cpp"
, 8975, __extension__ __PRETTY_FUNCTION__))
;
8976
8977 // We can only perform deduction for class templates.
8978 auto TemplateName = DeducedTST->getTemplateName();
8979 auto *Template =
8980 dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl());
8981 if (!Template) {
8982 Diag(Kind.getLocation(),
8983 diag::err_deduced_non_class_template_specialization_type)
8984 << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName;
8985 if (auto *TD = TemplateName.getAsTemplateDecl())
8986 Diag(TD->getLocation(), diag::note_template_decl_here);
8987 return QualType();
8988 }
8989
8990 // Can't deduce from dependent arguments.
8991 if (Expr::hasAnyTypeDependentArguments(Inits))
8992 return Context.DependentTy;
8993
8994 // FIXME: Perform "exact type" matching first, per CWG discussion?
8995 // Or implement this via an implied 'T(T) -> T' deduction guide?
8996
8997 // FIXME: Do we need/want a std::initializer_list<T> special case?
8998
8999 // Look up deduction guides, including those synthesized from constructors.
9000 //
9001 // C++1z [over.match.class.deduct]p1:
9002 // A set of functions and function templates is formed comprising:
9003 // - For each constructor of the class template designated by the
9004 // template-name, a function template [...]
9005 // - For each deduction-guide, a function or function template [...]
9006 DeclarationNameInfo NameInfo(
9007 Context.DeclarationNames.getCXXDeductionGuideName(Template),
9008 TSInfo->getTypeLoc().getEndLoc());
9009 LookupResult Guides(*this, NameInfo, LookupOrdinaryName);
9010 LookupQualifiedName(Guides, Template->getDeclContext());
9011
9012 // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't
9013 // clear on this, but they're not found by name so access does not apply.
9014 Guides.suppressDiagnostics();
9015
9016 // Figure out if this is list-initialization.
9017 InitListExpr *ListInit =
9018 (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct)
9019 ? dyn_cast<InitListExpr>(Inits[0])
9020 : nullptr;
9021
9022 // C++1z [over.match.class.deduct]p1:
9023 // Initialization and overload resolution are performed as described in
9024 // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list]
9025 // (as appropriate for the type of initialization performed) for an object
9026 // of a hypothetical class type, where the selected functions and function
9027 // templates are considered to be the constructors of that class type
9028 //
9029 // Since we know we're initializing a class type of a type unrelated to that
9030 // of the initializer, this reduces to something fairly reasonable.
9031 OverloadCandidateSet Candidates(Kind.getLocation(),
9032 OverloadCandidateSet::CSK_Normal);
9033 OverloadCandidateSet::iterator Best;
9034 auto tryToResolveOverload =
9035 [&](bool OnlyListConstructors) -> OverloadingResult {
9036 Candidates.clear(OverloadCandidateSet::CSK_Normal);
9037 for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) {
9038 NamedDecl *D = (*I)->getUnderlyingDecl();
9039 if (D->isInvalidDecl())
9040 continue;
9041
9042 auto *TD = dyn_cast<FunctionTemplateDecl>(D);
9043 auto *GD = dyn_cast_or_null<CXXDeductionGuideDecl>(
9044 TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D));
9045 if (!GD)
9046 continue;
9047
9048 // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class)
9049 // For copy-initialization, the candidate functions are all the
9050 // converting constructors (12.3.1) of that class.
9051 // C++ [over.match.copy]p1: (non-list copy-initialization from class)
9052 // The converting constructors of T are candidate functions.
9053 if (Kind.isCopyInit() && !ListInit) {
9054 // Only consider converting constructors.
9055 if (GD->isExplicit())
9056 continue;
9057
9058 // When looking for a converting constructor, deduction guides that
9059 // could never be called with one argument are not interesting to
9060 // check or note.
9061 if (GD->getMinRequiredArguments() > 1 ||
9062 (GD->getNumParams() == 0 && !GD->isVariadic()))
9063 continue;
9064 }
9065
9066 // C++ [over.match.list]p1.1: (first phase list initialization)
9067 // Initially, the candidate functions are the initializer-list
9068 // constructors of the class T
9069 if (OnlyListConstructors && !isInitListConstructor(GD))
9070 continue;
9071
9072 // C++ [over.match.list]p1.2: (second phase list initialization)
9073 // the candidate functions are all the constructors of the class T
9074 // C++ [over.match.ctor]p1: (all other cases)
9075 // the candidate functions are all the constructors of the class of
9076 // the object being initialized
9077
9078 // C++ [over.best.ics]p4:
9079 // When [...] the constructor [...] is a candidate by
9080 // - [over.match.copy] (in all cases)
9081 // FIXME: The "second phase of [over.match.list] case can also
9082 // theoretically happen here, but it's not clear whether we can
9083 // ever have a parameter of the right type.
9084 bool SuppressUserConversions = Kind.isCopyInit();
9085
9086 if (TD)
9087 AddTemplateOverloadCandidate(TD, I.getPair(), /*ExplicitArgs*/ nullptr,
9088 Inits, Candidates,
9089 SuppressUserConversions);
9090 else
9091 AddOverloadCandidate(GD, I.getPair(), Inits, Candidates,
9092 SuppressUserConversions);
9093 }
9094 return Candidates.BestViableFunction(*this, Kind.getLocation(), Best);
9095 };
9096
9097 OverloadingResult Result = OR_No_Viable_Function;
9098
9099 // C++11 [over.match.list]p1, per DR1467: for list-initialization, first
9100 // try initializer-list constructors.
9101 if (ListInit) {
9102 bool TryListConstructors = true;
9103
9104 // Try list constructors unless the list is empty and the class has one or
9105 // more default constructors, in which case those constructors win.
9106 if (!ListInit->getNumInits()) {
9107 for (NamedDecl *D : Guides) {
9108 auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl());
9109 if (FD && FD->getMinRequiredArguments() == 0) {
9110 TryListConstructors = false;
9111 break;
9112 }
9113 }
9114 } else if (ListInit->getNumInits() == 1) {
9115 // C++ [over.match.class.deduct]:
9116 // As an exception, the first phase in [over.match.list] (considering
9117 // initializer-list constructors) is omitted if the initializer list
9118 // consists of a single expression of type cv U, where U is a
9119 // specialization of C or a class derived from a specialization of C.
9120 Expr *E = ListInit->getInit(0);
9121 auto *RD = E->getType()->getAsCXXRecordDecl();
9122 if (!isa<InitListExpr>(E) && RD &&
9123 isCompleteType(Kind.getLocation(), E->getType()) &&
9124 isOrIsDerivedFromSpecializationOf(RD, Template))
9125 TryListConstructors = false;
9126 }
9127
9128 if (TryListConstructors)
9129 Result = tryToResolveOverload(/*OnlyListConstructor*/true);
9130 // Then unwrap the initializer list and try again considering all
9131 // constructors.
9132 Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits());
9133 }
9134
9135 // If list-initialization fails, or if we're doing any other kind of
9136 // initialization, we (eventually) consider constructors.
9137 if (Result == OR_No_Viable_Function)
9138 Result = tryToResolveOverload(/*OnlyListConstructor*/false);
9139
9140 switch (Result) {
9141 case OR_Ambiguous:
9142 Diag(Kind.getLocation(), diag::err_deduced_class_template_ctor_ambiguous)
9143 << TemplateName;
9144 // FIXME: For list-initialization candidates, it'd usually be better to
9145 // list why they were not viable when given the initializer list itself as
9146 // an argument.
9147 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Inits);
9148 return QualType();
9149
9150 case OR_No_Viable_Function: {
9151 CXXRecordDecl *Primary =
9152 cast<ClassTemplateDecl>(Template)->getTemplatedDecl();
9153 bool Complete =
9154 isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary));
9155 Diag(Kind.getLocation(),
9156 Complete ? diag::err_deduced_class_template_ctor_no_viable
9157 : diag::err_deduced_class_template_incomplete)
9158 << TemplateName << !Guides.empty();
9159 Candidates.NoteCandidates(*this, OCD_AllCandidates, Inits);
9160 return QualType();
9161 }
9162
9163 case OR_Deleted: {
9164 Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted)
9165 << TemplateName;
9166 NoteDeletedFunction(Best->Function);
9167 return QualType();
9168 }
9169
9170 case OR_Success:
9171 // C++ [over.match.list]p1:
9172 // In copy-list-initialization, if an explicit constructor is chosen, the
9173 // initialization is ill-formed.
9174 if (Kind.isCopyInit() && ListInit &&
9175 cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) {
9176 bool IsDeductionGuide = !Best->Function->isImplicit();
9177 Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit)
9178 << TemplateName << IsDeductionGuide;
9179 Diag(Best->Function->getLocation(),
9180 diag::note_explicit_ctor_deduction_guide_here)
9181 << IsDeductionGuide;
9182 return QualType();
9183 }
9184
9185 // Make sure we didn't select an unusable deduction guide, and mark it
9186 // as referenced.
9187 DiagnoseUseOfDecl(Best->Function, Kind.getLocation());
9188 MarkFunctionReferenced(Kind.getLocation(), Best->Function);
9189 break;
9190 }
9191
9192 // C++ [dcl.type.class.deduct]p1:
9193 // The placeholder is replaced by the return type of the function selected
9194 // by overload resolution for class template deduction.
9195 return SubstAutoType(TSInfo->getType(), Best->Function->getReturnType());
9196}