Bug Summary

File:tools/clang/lib/Sema/SemaLookup.cpp
Warning:line 3819, column 37
Called C++ object pointer is null

Annotated Source Code

1//===--------------------- SemaLookup.cpp - Name Lookup ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements name lookup for C, C++, Objective-C, and
11// Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclLookups.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "clang/Lex/ModuleLoader.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/Overload.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/Sema.h"
35#include "clang/Sema/SemaInternal.h"
36#include "clang/Sema/TemplateDeduction.h"
37#include "clang/Sema/TypoCorrection.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallPtrSet.h"
40#include "llvm/ADT/TinyPtrVector.h"
41#include "llvm/ADT/edit_distance.h"
42#include "llvm/Support/ErrorHandling.h"
43#include <algorithm>
44#include <iterator>
45#include <list>
46#include <set>
47#include <utility>
48#include <vector>
49
50using namespace clang;
51using namespace sema;
52
53namespace {
54 class UnqualUsingEntry {
55 const DeclContext *Nominated;
56 const DeclContext *CommonAncestor;
57
58 public:
59 UnqualUsingEntry(const DeclContext *Nominated,
60 const DeclContext *CommonAncestor)
61 : Nominated(Nominated), CommonAncestor(CommonAncestor) {
62 }
63
64 const DeclContext *getCommonAncestor() const {
65 return CommonAncestor;
66 }
67
68 const DeclContext *getNominatedNamespace() const {
69 return Nominated;
70 }
71
72 // Sort by the pointer value of the common ancestor.
73 struct Comparator {
74 bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
75 return L.getCommonAncestor() < R.getCommonAncestor();
76 }
77
78 bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
79 return E.getCommonAncestor() < DC;
80 }
81
82 bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
83 return DC < E.getCommonAncestor();
84 }
85 };
86 };
87
88 /// A collection of using directives, as used by C++ unqualified
89 /// lookup.
90 class UnqualUsingDirectiveSet {
91 typedef SmallVector<UnqualUsingEntry, 8> ListTy;
92
93 ListTy list;
94 llvm::SmallPtrSet<DeclContext*, 8> visited;
95
96 public:
97 UnqualUsingDirectiveSet() {}
98
99 void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
100 // C++ [namespace.udir]p1:
101 // During unqualified name lookup, the names appear as if they
102 // were declared in the nearest enclosing namespace which contains
103 // both the using-directive and the nominated namespace.
104 DeclContext *InnermostFileDC = InnermostFileScope->getEntity();
105 assert(InnermostFileDC && InnermostFileDC->isFileContext())((InnermostFileDC && InnermostFileDC->isFileContext
()) ? static_cast<void> (0) : __assert_fail ("InnermostFileDC && InnermostFileDC->isFileContext()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 105, __PRETTY_FUNCTION__))
;
106
107 for (; S; S = S->getParent()) {
108 // C++ [namespace.udir]p1:
109 // A using-directive shall not appear in class scope, but may
110 // appear in namespace scope or in block scope.
111 DeclContext *Ctx = S->getEntity();
112 if (Ctx && Ctx->isFileContext()) {
113 visit(Ctx, Ctx);
114 } else if (!Ctx || Ctx->isFunctionOrMethod()) {
115 for (auto *I : S->using_directives())
116 visit(I, InnermostFileDC);
117 }
118 }
119 }
120
121 // Visits a context and collect all of its using directives
122 // recursively. Treats all using directives as if they were
123 // declared in the context.
124 //
125 // A given context is only every visited once, so it is important
126 // that contexts be visited from the inside out in order to get
127 // the effective DCs right.
128 void visit(DeclContext *DC, DeclContext *EffectiveDC) {
129 if (!visited.insert(DC).second)
130 return;
131
132 addUsingDirectives(DC, EffectiveDC);
133 }
134
135 // Visits a using directive and collects all of its using
136 // directives recursively. Treats all using directives as if they
137 // were declared in the effective DC.
138 void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
139 DeclContext *NS = UD->getNominatedNamespace();
140 if (!visited.insert(NS).second)
141 return;
142
143 addUsingDirective(UD, EffectiveDC);
144 addUsingDirectives(NS, EffectiveDC);
145 }
146
147 // Adds all the using directives in a context (and those nominated
148 // by its using directives, transitively) as if they appeared in
149 // the given effective context.
150 void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
151 SmallVector<DeclContext*, 4> queue;
152 while (true) {
153 for (auto UD : DC->using_directives()) {
154 DeclContext *NS = UD->getNominatedNamespace();
155 if (visited.insert(NS).second) {
156 addUsingDirective(UD, EffectiveDC);
157 queue.push_back(NS);
158 }
159 }
160
161 if (queue.empty())
162 return;
163
164 DC = queue.pop_back_val();
165 }
166 }
167
168 // Add a using directive as if it had been declared in the given
169 // context. This helps implement C++ [namespace.udir]p3:
170 // The using-directive is transitive: if a scope contains a
171 // using-directive that nominates a second namespace that itself
172 // contains using-directives, the effect is as if the
173 // using-directives from the second namespace also appeared in
174 // the first.
175 void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
176 // Find the common ancestor between the effective context and
177 // the nominated namespace.
178 DeclContext *Common = UD->getNominatedNamespace();
179 while (!Common->Encloses(EffectiveDC))
180 Common = Common->getParent();
181 Common = Common->getPrimaryContext();
182
183 list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
184 }
185
186 void done() {
187 std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
188 }
189
190 typedef ListTy::const_iterator const_iterator;
191
192 const_iterator begin() const { return list.begin(); }
193 const_iterator end() const { return list.end(); }
194
195 llvm::iterator_range<const_iterator>
196 getNamespacesFor(DeclContext *DC) const {
197 return llvm::make_range(std::equal_range(begin(), end(),
198 DC->getPrimaryContext(),
199 UnqualUsingEntry::Comparator()));
200 }
201 };
202} // end anonymous namespace
203
204// Retrieve the set of identifier namespaces that correspond to a
205// specific kind of name lookup.
206static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
207 bool CPlusPlus,
208 bool Redeclaration) {
209 unsigned IDNS = 0;
210 switch (NameKind) {
211 case Sema::LookupObjCImplicitSelfParam:
212 case Sema::LookupOrdinaryName:
213 case Sema::LookupRedeclarationWithLinkage:
214 case Sema::LookupLocalFriendName:
215 IDNS = Decl::IDNS_Ordinary;
216 if (CPlusPlus) {
217 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
218 if (Redeclaration)
219 IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
220 }
221 if (Redeclaration)
222 IDNS |= Decl::IDNS_LocalExtern;
223 break;
224
225 case Sema::LookupOperatorName:
226 // Operator lookup is its own crazy thing; it is not the same
227 // as (e.g.) looking up an operator name for redeclaration.
228 assert(!Redeclaration && "cannot do redeclaration operator lookup")((!Redeclaration && "cannot do redeclaration operator lookup"
) ? static_cast<void> (0) : __assert_fail ("!Redeclaration && \"cannot do redeclaration operator lookup\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 228, __PRETTY_FUNCTION__))
;
229 IDNS = Decl::IDNS_NonMemberOperator;
230 break;
231
232 case Sema::LookupTagName:
233 if (CPlusPlus) {
234 IDNS = Decl::IDNS_Type;
235
236 // When looking for a redeclaration of a tag name, we add:
237 // 1) TagFriend to find undeclared friend decls
238 // 2) Namespace because they can't "overload" with tag decls.
239 // 3) Tag because it includes class templates, which can't
240 // "overload" with tag decls.
241 if (Redeclaration)
242 IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
243 } else {
244 IDNS = Decl::IDNS_Tag;
245 }
246 break;
247
248 case Sema::LookupLabel:
249 IDNS = Decl::IDNS_Label;
250 break;
251
252 case Sema::LookupMemberName:
253 IDNS = Decl::IDNS_Member;
254 if (CPlusPlus)
255 IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
256 break;
257
258 case Sema::LookupNestedNameSpecifierName:
259 IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
260 break;
261
262 case Sema::LookupNamespaceName:
263 IDNS = Decl::IDNS_Namespace;
264 break;
265
266 case Sema::LookupUsingDeclName:
267 assert(Redeclaration && "should only be used for redecl lookup")((Redeclaration && "should only be used for redecl lookup"
) ? static_cast<void> (0) : __assert_fail ("Redeclaration && \"should only be used for redecl lookup\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 267, __PRETTY_FUNCTION__))
;
268 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
269 Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend |
270 Decl::IDNS_LocalExtern;
271 break;
272
273 case Sema::LookupObjCProtocolName:
274 IDNS = Decl::IDNS_ObjCProtocol;
275 break;
276
277 case Sema::LookupOMPReductionName:
278 IDNS = Decl::IDNS_OMPReduction;
279 break;
280
281 case Sema::LookupAnyName:
282 IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
283 | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
284 | Decl::IDNS_Type;
285 break;
286 }
287 return IDNS;
288}
289
290void LookupResult::configure() {
291 IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus,
292 isForRedeclaration());
293
294 // If we're looking for one of the allocation or deallocation
295 // operators, make sure that the implicitly-declared new and delete
296 // operators can be found.
297 switch (NameInfo.getName().getCXXOverloadedOperator()) {
298 case OO_New:
299 case OO_Delete:
300 case OO_Array_New:
301 case OO_Array_Delete:
302 getSema().DeclareGlobalNewDelete();
303 break;
304
305 default:
306 break;
307 }
308
309 // Compiler builtins are always visible, regardless of where they end
310 // up being declared.
311 if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) {
312 if (unsigned BuiltinID = Id->getBuiltinID()) {
313 if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
314 AllowHidden = true;
315 }
316 }
317}
318
319bool LookupResult::sanity() const {
320 // This function is never called by NDEBUG builds.
321 assert(ResultKind != NotFound || Decls.size() == 0)((ResultKind != NotFound || Decls.size() == 0) ? static_cast<
void> (0) : __assert_fail ("ResultKind != NotFound || Decls.size() == 0"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 321, __PRETTY_FUNCTION__))
;
322 assert(ResultKind != Found || Decls.size() == 1)((ResultKind != Found || Decls.size() == 1) ? static_cast<
void> (0) : __assert_fail ("ResultKind != Found || Decls.size() == 1"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 322, __PRETTY_FUNCTION__))
;
323 assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __PRETTY_FUNCTION__))
324 (Decls.size() == 1 &&((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __PRETTY_FUNCTION__))
325 isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())))((ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls
.size() == 1 && isa<FunctionTemplateDecl>((*begin
())->getUnderlyingDecl()))) ? static_cast<void> (0) :
__assert_fail ("ResultKind != FoundOverloaded || Decls.size() > 1 || (Decls.size() == 1 && isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 325, __PRETTY_FUNCTION__))
;
326 assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved())((ResultKind != FoundUnresolvedValue || sanityCheckUnresolved
()) ? static_cast<void> (0) : __assert_fail ("ResultKind != FoundUnresolvedValue || sanityCheckUnresolved()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 326, __PRETTY_FUNCTION__))
;
327 assert(ResultKind != Ambiguous || Decls.size() > 1 ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
328 (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
329 Ambiguity == AmbiguousBaseSubobjectTypes)))((ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size
() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity
== AmbiguousBaseSubobjectTypes))) ? static_cast<void> (
0) : __assert_fail ("ResultKind != Ambiguous || Decls.size() > 1 || (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || Ambiguity == AmbiguousBaseSubobjectTypes))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 329, __PRETTY_FUNCTION__))
;
330 assert((Paths != nullptr) == (ResultKind == Ambiguous &&(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
331 (Ambiguity == AmbiguousBaseSubobjectTypes ||(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
332 Ambiguity == AmbiguousBaseSubobjects)))(((Paths != nullptr) == (ResultKind == Ambiguous && (
Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects
))) ? static_cast<void> (0) : __assert_fail ("(Paths != nullptr) == (ResultKind == Ambiguous && (Ambiguity == AmbiguousBaseSubobjectTypes || Ambiguity == AmbiguousBaseSubobjects))"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 332, __PRETTY_FUNCTION__))
;
333 return true;
334}
335
336// Necessary because CXXBasePaths is not complete in Sema.h
337void LookupResult::deletePaths(CXXBasePaths *Paths) {
338 delete Paths;
339}
340
341/// Get a representative context for a declaration such that two declarations
342/// will have the same context if they were found within the same scope.
343static DeclContext *getContextForScopeMatching(Decl *D) {
344 // For function-local declarations, use that function as the context. This
345 // doesn't account for scopes within the function; the caller must deal with
346 // those.
347 DeclContext *DC = D->getLexicalDeclContext();
348 if (DC->isFunctionOrMethod())
349 return DC;
350
351 // Otherwise, look at the semantic context of the declaration. The
352 // declaration must have been found there.
353 return D->getDeclContext()->getRedeclContext();
354}
355
356/// \brief Determine whether \p D is a better lookup result than \p Existing,
357/// given that they declare the same entity.
358static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind,
359 NamedDecl *D, NamedDecl *Existing) {
360 // When looking up redeclarations of a using declaration, prefer a using
361 // shadow declaration over any other declaration of the same entity.
362 if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) &&
363 !isa<UsingShadowDecl>(Existing))
364 return true;
365
366 auto *DUnderlying = D->getUnderlyingDecl();
367 auto *EUnderlying = Existing->getUnderlyingDecl();
368
369 // If they have different underlying declarations, prefer a typedef over the
370 // original type (this happens when two type declarations denote the same
371 // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef
372 // might carry additional semantic information, such as an alignment override.
373 // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag
374 // declaration over a typedef.
375 if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) {
376 assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying))((isa<TypeDecl>(DUnderlying) && isa<TypeDecl
>(EUnderlying)) ? static_cast<void> (0) : __assert_fail
("isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 376, __PRETTY_FUNCTION__))
;
377 bool HaveTag = isa<TagDecl>(EUnderlying);
378 bool WantTag = Kind == Sema::LookupTagName;
379 return HaveTag != WantTag;
380 }
381
382 // Pick the function with more default arguments.
383 // FIXME: In the presence of ambiguous default arguments, we should keep both,
384 // so we can diagnose the ambiguity if the default argument is needed.
385 // See C++ [over.match.best]p3.
386 if (auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) {
387 auto *EFD = cast<FunctionDecl>(EUnderlying);
388 unsigned DMin = DFD->getMinRequiredArguments();
389 unsigned EMin = EFD->getMinRequiredArguments();
390 // If D has more default arguments, it is preferred.
391 if (DMin != EMin)
392 return DMin < EMin;
393 // FIXME: When we track visibility for default function arguments, check
394 // that we pick the declaration with more visible default arguments.
395 }
396
397 // Pick the template with more default template arguments.
398 if (auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) {
399 auto *ETD = cast<TemplateDecl>(EUnderlying);
400 unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments();
401 unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments();
402 // If D has more default arguments, it is preferred. Note that default
403 // arguments (and their visibility) is monotonically increasing across the
404 // redeclaration chain, so this is a quick proxy for "is more recent".
405 if (DMin != EMin)
406 return DMin < EMin;
407 // If D has more *visible* default arguments, it is preferred. Note, an
408 // earlier default argument being visible does not imply that a later
409 // default argument is visible, so we can't just check the first one.
410 for (unsigned I = DMin, N = DTD->getTemplateParameters()->size();
411 I != N; ++I) {
412 if (!S.hasVisibleDefaultArgument(
413 ETD->getTemplateParameters()->getParam(I)) &&
414 S.hasVisibleDefaultArgument(
415 DTD->getTemplateParameters()->getParam(I)))
416 return true;
417 }
418 }
419
420 // VarDecl can have incomplete array types, prefer the one with more complete
421 // array type.
422 if (VarDecl *DVD = dyn_cast<VarDecl>(DUnderlying)) {
423 VarDecl *EVD = cast<VarDecl>(EUnderlying);
424 if (EVD->getType()->isIncompleteType() &&
425 !DVD->getType()->isIncompleteType()) {
426 // Prefer the decl with a more complete type if visible.
427 return S.isVisible(DVD);
428 }
429 return false; // Avoid picking up a newer decl, just because it was newer.
430 }
431
432 // For most kinds of declaration, it doesn't really matter which one we pick.
433 if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) {
434 // If the existing declaration is hidden, prefer the new one. Otherwise,
435 // keep what we've got.
436 return !S.isVisible(Existing);
437 }
438
439 // Pick the newer declaration; it might have a more precise type.
440 for (Decl *Prev = DUnderlying->getPreviousDecl(); Prev;
441 Prev = Prev->getPreviousDecl())
442 if (Prev == EUnderlying)
443 return true;
444 return false;
445}
446
447/// Determine whether \p D can hide a tag declaration.
448static bool canHideTag(NamedDecl *D) {
449 // C++ [basic.scope.declarative]p4:
450 // Given a set of declarations in a single declarative region [...]
451 // exactly one declaration shall declare a class name or enumeration name
452 // that is not a typedef name and the other declarations shall all refer to
453 // the same variable, non-static data member, or enumerator, or all refer
454 // to functions and function templates; in this case the class name or
455 // enumeration name is hidden.
456 // C++ [basic.scope.hiding]p2:
457 // A class name or enumeration name can be hidden by the name of a
458 // variable, data member, function, or enumerator declared in the same
459 // scope.
460 // An UnresolvedUsingValueDecl always instantiates to one of these.
461 D = D->getUnderlyingDecl();
462 return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) ||
463 isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) ||
464 isa<UnresolvedUsingValueDecl>(D);
465}
466
467/// Resolves the result kind of this lookup.
468void LookupResult::resolveKind() {
469 unsigned N = Decls.size();
470
471 // Fast case: no possible ambiguity.
472 if (N == 0) {
473 assert(ResultKind == NotFound ||((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 474, __PRETTY_FUNCTION__))
474 ResultKind == NotFoundInCurrentInstantiation)((ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation
) ? static_cast<void> (0) : __assert_fail ("ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 474, __PRETTY_FUNCTION__))
;
475 return;
476 }
477
478 // If there's a single decl, we need to examine it to decide what
479 // kind of lookup this is.
480 if (N == 1) {
481 NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
482 if (isa<FunctionTemplateDecl>(D))
483 ResultKind = FoundOverloaded;
484 else if (isa<UnresolvedUsingValueDecl>(D))
485 ResultKind = FoundUnresolvedValue;
486 return;
487 }
488
489 // Don't do any extra resolution if we've already resolved as ambiguous.
490 if (ResultKind == Ambiguous) return;
491
492 llvm::SmallDenseMap<NamedDecl*, unsigned, 16> Unique;
493 llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes;
494
495 bool Ambiguous = false;
496 bool HasTag = false, HasFunction = false;
497 bool HasFunctionTemplate = false, HasUnresolved = false;
498 NamedDecl *HasNonFunction = nullptr;
499
500 llvm::SmallVector<NamedDecl*, 4> EquivalentNonFunctions;
501
502 unsigned UniqueTagIndex = 0;
503
504 unsigned I = 0;
505 while (I < N) {
506 NamedDecl *D = Decls[I]->getUnderlyingDecl();
507 D = cast<NamedDecl>(D->getCanonicalDecl());
508
509 // Ignore an invalid declaration unless it's the only one left.
510 if (D->isInvalidDecl() && !(I == 0 && N == 1)) {
511 Decls[I] = Decls[--N];
512 continue;
513 }
514
515 llvm::Optional<unsigned> ExistingI;
516
517 // Redeclarations of types via typedef can occur both within a scope
518 // and, through using declarations and directives, across scopes. There is
519 // no ambiguity if they all refer to the same type, so unique based on the
520 // canonical type.
521 if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
522 QualType T = getSema().Context.getTypeDeclType(TD);
523 auto UniqueResult = UniqueTypes.insert(
524 std::make_pair(getSema().Context.getCanonicalType(T), I));
525 if (!UniqueResult.second) {
526 // The type is not unique.
527 ExistingI = UniqueResult.first->second;
528 }
529 }
530
531 // For non-type declarations, check for a prior lookup result naming this
532 // canonical declaration.
533 if (!ExistingI) {
534 auto UniqueResult = Unique.insert(std::make_pair(D, I));
535 if (!UniqueResult.second) {
536 // We've seen this entity before.
537 ExistingI = UniqueResult.first->second;
538 }
539 }
540
541 if (ExistingI) {
542 // This is not a unique lookup result. Pick one of the results and
543 // discard the other.
544 if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I],
545 Decls[*ExistingI]))
546 Decls[*ExistingI] = Decls[I];
547 Decls[I] = Decls[--N];
548 continue;
549 }
550
551 // Otherwise, do some decl type analysis and then continue.
552
553 if (isa<UnresolvedUsingValueDecl>(D)) {
554 HasUnresolved = true;
555 } else if (isa<TagDecl>(D)) {
556 if (HasTag)
557 Ambiguous = true;
558 UniqueTagIndex = I;
559 HasTag = true;
560 } else if (isa<FunctionTemplateDecl>(D)) {
561 HasFunction = true;
562 HasFunctionTemplate = true;
563 } else if (isa<FunctionDecl>(D)) {
564 HasFunction = true;
565 } else {
566 if (HasNonFunction) {
567 // If we're about to create an ambiguity between two declarations that
568 // are equivalent, but one is an internal linkage declaration from one
569 // module and the other is an internal linkage declaration from another
570 // module, just skip it.
571 if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction,
572 D)) {
573 EquivalentNonFunctions.push_back(D);
574 Decls[I] = Decls[--N];
575 continue;
576 }
577
578 Ambiguous = true;
579 }
580 HasNonFunction = D;
581 }
582 I++;
583 }
584
585 // C++ [basic.scope.hiding]p2:
586 // A class name or enumeration name can be hidden by the name of
587 // an object, function, or enumerator declared in the same
588 // scope. If a class or enumeration name and an object, function,
589 // or enumerator are declared in the same scope (in any order)
590 // with the same name, the class or enumeration name is hidden
591 // wherever the object, function, or enumerator name is visible.
592 // But it's still an error if there are distinct tag types found,
593 // even if they're not visible. (ref?)
594 if (N > 1 && HideTags && HasTag && !Ambiguous &&
595 (HasFunction || HasNonFunction || HasUnresolved)) {
596 NamedDecl *OtherDecl = Decls[UniqueTagIndex ? 0 : N - 1];
597 if (isa<TagDecl>(Decls[UniqueTagIndex]->getUnderlyingDecl()) &&
598 getContextForScopeMatching(Decls[UniqueTagIndex])->Equals(
599 getContextForScopeMatching(OtherDecl)) &&
600 canHideTag(OtherDecl))
601 Decls[UniqueTagIndex] = Decls[--N];
602 else
603 Ambiguous = true;
604 }
605
606 // FIXME: This diagnostic should really be delayed until we're done with
607 // the lookup result, in case the ambiguity is resolved by the caller.
608 if (!EquivalentNonFunctions.empty() && !Ambiguous)
609 getSema().diagnoseEquivalentInternalLinkageDeclarations(
610 getNameLoc(), HasNonFunction, EquivalentNonFunctions);
611
612 Decls.set_size(N);
613
614 if (HasNonFunction && (HasFunction || HasUnresolved))
615 Ambiguous = true;
616
617 if (Ambiguous)
618 setAmbiguous(LookupResult::AmbiguousReference);
619 else if (HasUnresolved)
620 ResultKind = LookupResult::FoundUnresolvedValue;
621 else if (N > 1 || HasFunctionTemplate)
622 ResultKind = LookupResult::FoundOverloaded;
623 else
624 ResultKind = LookupResult::Found;
625}
626
627void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
628 CXXBasePaths::const_paths_iterator I, E;
629 for (I = P.begin(), E = P.end(); I != E; ++I)
630 for (DeclContext::lookup_iterator DI = I->Decls.begin(),
631 DE = I->Decls.end(); DI != DE; ++DI)
632 addDecl(*DI);
633}
634
635void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
636 Paths = new CXXBasePaths;
637 Paths->swap(P);
638 addDeclsFromBasePaths(*Paths);
639 resolveKind();
640 setAmbiguous(AmbiguousBaseSubobjects);
641}
642
643void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
644 Paths = new CXXBasePaths;
645 Paths->swap(P);
646 addDeclsFromBasePaths(*Paths);
647 resolveKind();
648 setAmbiguous(AmbiguousBaseSubobjectTypes);
649}
650
651void LookupResult::print(raw_ostream &Out) {
652 Out << Decls.size() << " result(s)";
653 if (isAmbiguous()) Out << ", ambiguous";
654 if (Paths) Out << ", base paths present";
655
656 for (iterator I = begin(), E = end(); I != E; ++I) {
657 Out << "\n";
658 (*I)->print(Out, 2);
659 }
660}
661
662LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void LookupResult::dump() {
663 llvm::errs() << "lookup results for " << getLookupName().getAsString()
664 << ":\n";
665 for (NamedDecl *D : *this)
666 D->dump();
667}
668
669/// \brief Lookup a builtin function, when name lookup would otherwise
670/// fail.
671static bool LookupBuiltin(Sema &S, LookupResult &R) {
672 Sema::LookupNameKind NameKind = R.getLookupKind();
673
674 // If we didn't find a use of this identifier, and if the identifier
675 // corresponds to a compiler builtin, create the decl object for the builtin
676 // now, injecting it into translation unit scope, and return it.
677 if (NameKind == Sema::LookupOrdinaryName ||
678 NameKind == Sema::LookupRedeclarationWithLinkage) {
679 IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
680 if (II) {
681 if (S.getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) {
682 if (II == S.getASTContext().getMakeIntegerSeqName()) {
683 R.addDecl(S.getASTContext().getMakeIntegerSeqDecl());
684 return true;
685 } else if (II == S.getASTContext().getTypePackElementName()) {
686 R.addDecl(S.getASTContext().getTypePackElementDecl());
687 return true;
688 }
689 }
690
691 // If this is a builtin on this (or all) targets, create the decl.
692 if (unsigned BuiltinID = II->getBuiltinID()) {
693 // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined
694 // library functions like 'malloc'. Instead, we'll just error.
695 if ((S.getLangOpts().CPlusPlus || S.getLangOpts().OpenCL) &&
696 S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
697 return false;
698
699 if (NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II,
700 BuiltinID, S.TUScope,
701 R.isForRedeclaration(),
702 R.getNameLoc())) {
703 R.addDecl(D);
704 return true;
705 }
706 }
707 }
708 }
709
710 return false;
711}
712
713/// \brief Determine whether we can declare a special member function within
714/// the class at this point.
715static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) {
716 // We need to have a definition for the class.
717 if (!Class->getDefinition() || Class->isDependentContext())
718 return false;
719
720 // We can't be in the middle of defining the class.
721 return !Class->isBeingDefined();
722}
723
724void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
725 if (!CanDeclareSpecialMemberFunction(Class))
726 return;
727
728 // If the default constructor has not yet been declared, do so now.
729 if (Class->needsImplicitDefaultConstructor())
730 DeclareImplicitDefaultConstructor(Class);
731
732 // If the copy constructor has not yet been declared, do so now.
733 if (Class->needsImplicitCopyConstructor())
734 DeclareImplicitCopyConstructor(Class);
735
736 // If the copy assignment operator has not yet been declared, do so now.
737 if (Class->needsImplicitCopyAssignment())
738 DeclareImplicitCopyAssignment(Class);
739
740 if (getLangOpts().CPlusPlus11) {
741 // If the move constructor has not yet been declared, do so now.
742 if (Class->needsImplicitMoveConstructor())
743 DeclareImplicitMoveConstructor(Class);
744
745 // If the move assignment operator has not yet been declared, do so now.
746 if (Class->needsImplicitMoveAssignment())
747 DeclareImplicitMoveAssignment(Class);
748 }
749
750 // If the destructor has not yet been declared, do so now.
751 if (Class->needsImplicitDestructor())
752 DeclareImplicitDestructor(Class);
753}
754
755/// \brief Determine whether this is the name of an implicitly-declared
756/// special member function.
757static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
758 switch (Name.getNameKind()) {
759 case DeclarationName::CXXConstructorName:
760 case DeclarationName::CXXDestructorName:
761 return true;
762
763 case DeclarationName::CXXOperatorName:
764 return Name.getCXXOverloadedOperator() == OO_Equal;
765
766 default:
767 break;
768 }
769
770 return false;
771}
772
773/// \brief If there are any implicit member functions with the given name
774/// that need to be declared in the given declaration context, do so.
775static void DeclareImplicitMemberFunctionsWithName(Sema &S,
776 DeclarationName Name,
777 SourceLocation Loc,
778 const DeclContext *DC) {
779 if (!DC)
780 return;
781
782 switch (Name.getNameKind()) {
783 case DeclarationName::CXXConstructorName:
784 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
785 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
786 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
787 if (Record->needsImplicitDefaultConstructor())
788 S.DeclareImplicitDefaultConstructor(Class);
789 if (Record->needsImplicitCopyConstructor())
790 S.DeclareImplicitCopyConstructor(Class);
791 if (S.getLangOpts().CPlusPlus11 &&
792 Record->needsImplicitMoveConstructor())
793 S.DeclareImplicitMoveConstructor(Class);
794 }
795 break;
796
797 case DeclarationName::CXXDestructorName:
798 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
799 if (Record->getDefinition() && Record->needsImplicitDestructor() &&
800 CanDeclareSpecialMemberFunction(Record))
801 S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
802 break;
803
804 case DeclarationName::CXXOperatorName:
805 if (Name.getCXXOverloadedOperator() != OO_Equal)
806 break;
807
808 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) {
809 if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) {
810 CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record);
811 if (Record->needsImplicitCopyAssignment())
812 S.DeclareImplicitCopyAssignment(Class);
813 if (S.getLangOpts().CPlusPlus11 &&
814 Record->needsImplicitMoveAssignment())
815 S.DeclareImplicitMoveAssignment(Class);
816 }
817 }
818 break;
819
820 case DeclarationName::CXXDeductionGuideName:
821 S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc);
822 break;
823
824 default:
825 break;
826 }
827}
828
829// Adds all qualifying matches for a name within a decl context to the
830// given lookup result. Returns true if any matches were found.
831static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
832 bool Found = false;
833
834 // Lazily declare C++ special member functions.
835 if (S.getLangOpts().CPlusPlus)
836 DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(),
837 DC);
838
839 // Perform lookup into this declaration context.
840 DeclContext::lookup_result DR = DC->lookup(R.getLookupName());
841 for (DeclContext::lookup_iterator I = DR.begin(), E = DR.end(); I != E;
842 ++I) {
843 NamedDecl *D = *I;
844 if ((D = R.getAcceptableDecl(D))) {
845 R.addDecl(D);
846 Found = true;
847 }
848 }
849
850 if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
851 return true;
852
853 if (R.getLookupName().getNameKind()
854 != DeclarationName::CXXConversionFunctionName ||
855 R.getLookupName().getCXXNameType()->isDependentType() ||
856 !isa<CXXRecordDecl>(DC))
857 return Found;
858
859 // C++ [temp.mem]p6:
860 // A specialization of a conversion function template is not found by
861 // name lookup. Instead, any conversion function templates visible in the
862 // context of the use are considered. [...]
863 const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
864 if (!Record->isCompleteDefinition())
865 return Found;
866
867 for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(),
868 UEnd = Record->conversion_end(); U != UEnd; ++U) {
869 FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
870 if (!ConvTemplate)
871 continue;
872
873 // When we're performing lookup for the purposes of redeclaration, just
874 // add the conversion function template. When we deduce template
875 // arguments for specializations, we'll end up unifying the return
876 // type of the new declaration with the type of the function template.
877 if (R.isForRedeclaration()) {
878 R.addDecl(ConvTemplate);
879 Found = true;
880 continue;
881 }
882
883 // C++ [temp.mem]p6:
884 // [...] For each such operator, if argument deduction succeeds
885 // (14.9.2.3), the resulting specialization is used as if found by
886 // name lookup.
887 //
888 // When referencing a conversion function for any purpose other than
889 // a redeclaration (such that we'll be building an expression with the
890 // result), perform template argument deduction and place the
891 // specialization into the result set. We do this to avoid forcing all
892 // callers to perform special deduction for conversion functions.
893 TemplateDeductionInfo Info(R.getNameLoc());
894 FunctionDecl *Specialization = nullptr;
895
896 const FunctionProtoType *ConvProto
897 = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
898 assert(ConvProto && "Nonsensical conversion function template type")((ConvProto && "Nonsensical conversion function template type"
) ? static_cast<void> (0) : __assert_fail ("ConvProto && \"Nonsensical conversion function template type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 898, __PRETTY_FUNCTION__))
;
899
900 // Compute the type of the function that we would expect the conversion
901 // function to have, if it were to match the name given.
902 // FIXME: Calling convention!
903 FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo();
904 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C);
905 EPI.ExceptionSpec = EST_None;
906 QualType ExpectedType
907 = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
908 None, EPI);
909
910 // Perform template argument deduction against the type that we would
911 // expect the function to have.
912 if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType,
913 Specialization, Info)
914 == Sema::TDK_Success) {
915 R.addDecl(Specialization);
916 Found = true;
917 }
918 }
919
920 return Found;
921}
922
923// Performs C++ unqualified lookup into the given file context.
924static bool
925CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
926 DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
927
928 assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!")((NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"
) ? static_cast<void> (0) : __assert_fail ("NS && NS->isFileContext() && \"CppNamespaceLookup() requires namespace!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 928, __PRETTY_FUNCTION__))
;
929
930 // Perform direct name lookup into the LookupCtx.
931 bool Found = LookupDirect(S, R, NS);
932
933 // Perform direct name lookup into the namespaces nominated by the
934 // using directives whose common ancestor is this namespace.
935 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS))
936 if (LookupDirect(S, R, UUE.getNominatedNamespace()))
937 Found = true;
938
939 R.resolveKind();
940
941 return Found;
942}
943
944static bool isNamespaceOrTranslationUnitScope(Scope *S) {
945 if (DeclContext *Ctx = S->getEntity())
946 return Ctx->isFileContext();
947 return false;
948}
949
950// Find the next outer declaration context from this scope. This
951// routine actually returns the semantic outer context, which may
952// differ from the lexical context (encoded directly in the Scope
953// stack) when we are parsing a member of a class template. In this
954// case, the second element of the pair will be true, to indicate that
955// name lookup should continue searching in this semantic context when
956// it leaves the current template parameter scope.
957static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
958 DeclContext *DC = S->getEntity();
959 DeclContext *Lexical = nullptr;
960 for (Scope *OuterS = S->getParent(); OuterS;
961 OuterS = OuterS->getParent()) {
962 if (OuterS->getEntity()) {
963 Lexical = OuterS->getEntity();
964 break;
965 }
966 }
967
968 // C++ [temp.local]p8:
969 // In the definition of a member of a class template that appears
970 // outside of the namespace containing the class template
971 // definition, the name of a template-parameter hides the name of
972 // a member of this namespace.
973 //
974 // Example:
975 //
976 // namespace N {
977 // class C { };
978 //
979 // template<class T> class B {
980 // void f(T);
981 // };
982 // }
983 //
984 // template<class C> void N::B<C>::f(C) {
985 // C b; // C is the template parameter, not N::C
986 // }
987 //
988 // In this example, the lexical context we return is the
989 // TranslationUnit, while the semantic context is the namespace N.
990 if (!Lexical || !DC || !S->getParent() ||
991 !S->getParent()->isTemplateParamScope())
992 return std::make_pair(Lexical, false);
993
994 // Find the outermost template parameter scope.
995 // For the example, this is the scope for the template parameters of
996 // template<class C>.
997 Scope *OutermostTemplateScope = S->getParent();
998 while (OutermostTemplateScope->getParent() &&
999 OutermostTemplateScope->getParent()->isTemplateParamScope())
1000 OutermostTemplateScope = OutermostTemplateScope->getParent();
1001
1002 // Find the namespace context in which the original scope occurs. In
1003 // the example, this is namespace N.
1004 DeclContext *Semantic = DC;
1005 while (!Semantic->isFileContext())
1006 Semantic = Semantic->getParent();
1007
1008 // Find the declaration context just outside of the template
1009 // parameter scope. This is the context in which the template is
1010 // being lexically declaration (a namespace context). In the
1011 // example, this is the global scope.
1012 if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
1013 Lexical->Encloses(Semantic))
1014 return std::make_pair(Semantic, true);
1015
1016 return std::make_pair(Lexical, false);
1017}
1018
1019namespace {
1020/// An RAII object to specify that we want to find block scope extern
1021/// declarations.
1022struct FindLocalExternScope {
1023 FindLocalExternScope(LookupResult &R)
1024 : R(R), OldFindLocalExtern(R.getIdentifierNamespace() &
1025 Decl::IDNS_LocalExtern) {
1026 R.setFindLocalExtern(R.getIdentifierNamespace() & Decl::IDNS_Ordinary);
1027 }
1028 void restore() {
1029 R.setFindLocalExtern(OldFindLocalExtern);
1030 }
1031 ~FindLocalExternScope() {
1032 restore();
1033 }
1034 LookupResult &R;
1035 bool OldFindLocalExtern;
1036};
1037} // end anonymous namespace
1038
1039bool Sema::CppLookupName(LookupResult &R, Scope *S) {
1040 assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup")((getLangOpts().CPlusPlus && "Can perform only C++ lookup"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"Can perform only C++ lookup\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1040, __PRETTY_FUNCTION__))
;
1041
1042 DeclarationName Name = R.getLookupName();
1043 Sema::LookupNameKind NameKind = R.getLookupKind();
1044
1045 // If this is the name of an implicitly-declared special member function,
1046 // go through the scope stack to implicitly declare
1047 if (isImplicitlyDeclaredMemberFunctionName(Name)) {
1048 for (Scope *PreS = S; PreS; PreS = PreS->getParent())
1049 if (DeclContext *DC = PreS->getEntity())
1050 DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC);
1051 }
1052
1053 // Implicitly declare member functions with the name we're looking for, if in
1054 // fact we are in a scope where it matters.
1055
1056 Scope *Initial = S;
1057 IdentifierResolver::iterator
1058 I = IdResolver.begin(Name),
1059 IEnd = IdResolver.end();
1060
1061 // First we lookup local scope.
1062 // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
1063 // ...During unqualified name lookup (3.4.1), the names appear as if
1064 // they were declared in the nearest enclosing namespace which contains
1065 // both the using-directive and the nominated namespace.
1066 // [Note: in this context, "contains" means "contains directly or
1067 // indirectly".
1068 //
1069 // For example:
1070 // namespace A { int i; }
1071 // void foo() {
1072 // int i;
1073 // {
1074 // using namespace A;
1075 // ++i; // finds local 'i', A::i appears at global scope
1076 // }
1077 // }
1078 //
1079 UnqualUsingDirectiveSet UDirs;
1080 bool VisitedUsingDirectives = false;
1081 bool LeftStartingScope = false;
1082 DeclContext *OutsideOfTemplateParamDC = nullptr;
1083
1084 // When performing a scope lookup, we want to find local extern decls.
1085 FindLocalExternScope FindLocals(R);
1086
1087 for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
1088 DeclContext *Ctx = S->getEntity();
1089 bool SearchNamespaceScope = true;
1090 // Check whether the IdResolver has anything in this scope.
1091 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1092 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1093 if (NameKind == LookupRedeclarationWithLinkage &&
1094 !(*I)->isTemplateParameter()) {
1095 // If it's a template parameter, we still find it, so we can diagnose
1096 // the invalid redeclaration.
1097
1098 // Determine whether this (or a previous) declaration is
1099 // out-of-scope.
1100 if (!LeftStartingScope && !Initial->isDeclScope(*I))
1101 LeftStartingScope = true;
1102
1103 // If we found something outside of our starting scope that
1104 // does not have linkage, skip it.
1105 if (LeftStartingScope && !((*I)->hasLinkage())) {
1106 R.setShadowed();
1107 continue;
1108 }
1109 } else {
1110 // We found something in this scope, we should not look at the
1111 // namespace scope
1112 SearchNamespaceScope = false;
1113 }
1114 R.addDecl(ND);
1115 }
1116 }
1117 if (!SearchNamespaceScope) {
1118 R.resolveKind();
1119 if (S->isClassScope())
1120 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
1121 R.setNamingClass(Record);
1122 return true;
1123 }
1124
1125 if (NameKind == LookupLocalFriendName && !S->isClassScope()) {
1126 // C++11 [class.friend]p11:
1127 // If a friend declaration appears in a local class and the name
1128 // specified is an unqualified name, a prior declaration is
1129 // looked up without considering scopes that are outside the
1130 // innermost enclosing non-class scope.
1131 return false;
1132 }
1133
1134 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1135 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1136 // We've just searched the last template parameter scope and
1137 // found nothing, so look into the contexts between the
1138 // lexical and semantic declaration contexts returned by
1139 // findOuterContext(). This implements the name lookup behavior
1140 // of C++ [temp.local]p8.
1141 Ctx = OutsideOfTemplateParamDC;
1142 OutsideOfTemplateParamDC = nullptr;
1143 }
1144
1145 if (Ctx) {
1146 DeclContext *OuterCtx;
1147 bool SearchAfterTemplateScope;
1148 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1149 if (SearchAfterTemplateScope)
1150 OutsideOfTemplateParamDC = OuterCtx;
1151
1152 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1153 // We do not directly look into transparent contexts, since
1154 // those entities will be found in the nearest enclosing
1155 // non-transparent context.
1156 if (Ctx->isTransparentContext())
1157 continue;
1158
1159 // We do not look directly into function or method contexts,
1160 // since all of the local variables and parameters of the
1161 // function/method are present within the Scope.
1162 if (Ctx->isFunctionOrMethod()) {
1163 // If we have an Objective-C instance method, look for ivars
1164 // in the corresponding interface.
1165 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
1166 if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
1167 if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
1168 ObjCInterfaceDecl *ClassDeclared;
1169 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
1170 Name.getAsIdentifierInfo(),
1171 ClassDeclared)) {
1172 if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) {
1173 R.addDecl(ND);
1174 R.resolveKind();
1175 return true;
1176 }
1177 }
1178 }
1179 }
1180
1181 continue;
1182 }
1183
1184 // If this is a file context, we need to perform unqualified name
1185 // lookup considering using directives.
1186 if (Ctx->isFileContext()) {
1187 // If we haven't handled using directives yet, do so now.
1188 if (!VisitedUsingDirectives) {
1189 // Add using directives from this context up to the top level.
1190 for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) {
1191 if (UCtx->isTransparentContext())
1192 continue;
1193
1194 UDirs.visit(UCtx, UCtx);
1195 }
1196
1197 // Find the innermost file scope, so we can add using directives
1198 // from local scopes.
1199 Scope *InnermostFileScope = S;
1200 while (InnermostFileScope &&
1201 !isNamespaceOrTranslationUnitScope(InnermostFileScope))
1202 InnermostFileScope = InnermostFileScope->getParent();
1203 UDirs.visitScopeChain(Initial, InnermostFileScope);
1204
1205 UDirs.done();
1206
1207 VisitedUsingDirectives = true;
1208 }
1209
1210 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) {
1211 R.resolveKind();
1212 return true;
1213 }
1214
1215 continue;
1216 }
1217
1218 // Perform qualified name lookup into this context.
1219 // FIXME: In some cases, we know that every name that could be found by
1220 // this qualified name lookup will also be on the identifier chain. For
1221 // example, inside a class without any base classes, we never need to
1222 // perform qualified lookup because all of the members are on top of the
1223 // identifier chain.
1224 if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
1225 return true;
1226 }
1227 }
1228 }
1229
1230 // Stop if we ran out of scopes.
1231 // FIXME: This really, really shouldn't be happening.
1232 if (!S) return false;
1233
1234 // If we are looking for members, no need to look into global/namespace scope.
1235 if (NameKind == LookupMemberName)
1236 return false;
1237
1238 // Collect UsingDirectiveDecls in all scopes, and recursively all
1239 // nominated namespaces by those using-directives.
1240 //
1241 // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
1242 // don't build it for each lookup!
1243 if (!VisitedUsingDirectives) {
1244 UDirs.visitScopeChain(Initial, S);
1245 UDirs.done();
1246 }
1247
1248 // If we're not performing redeclaration lookup, do not look for local
1249 // extern declarations outside of a function scope.
1250 if (!R.isForRedeclaration())
1251 FindLocals.restore();
1252
1253 // Lookup namespace scope, and global scope.
1254 // Unqualified name lookup in C++ requires looking into scopes
1255 // that aren't strictly lexical, and therefore we walk through the
1256 // context as well as walking through the scopes.
1257 for (; S; S = S->getParent()) {
1258 // Check whether the IdResolver has anything in this scope.
1259 bool Found = false;
1260 for (; I != IEnd && S->isDeclScope(*I); ++I) {
1261 if (NamedDecl *ND = R.getAcceptableDecl(*I)) {
1262 // We found something. Look for anything else in our scope
1263 // with this same name and in an acceptable identifier
1264 // namespace, so that we can construct an overload set if we
1265 // need to.
1266 Found = true;
1267 R.addDecl(ND);
1268 }
1269 }
1270
1271 if (Found && S->isTemplateParamScope()) {
1272 R.resolveKind();
1273 return true;
1274 }
1275
1276 DeclContext *Ctx = S->getEntity();
1277 if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
1278 S->getParent() && !S->getParent()->isTemplateParamScope()) {
1279 // We've just searched the last template parameter scope and
1280 // found nothing, so look into the contexts between the
1281 // lexical and semantic declaration contexts returned by
1282 // findOuterContext(). This implements the name lookup behavior
1283 // of C++ [temp.local]p8.
1284 Ctx = OutsideOfTemplateParamDC;
1285 OutsideOfTemplateParamDC = nullptr;
1286 }
1287
1288 if (Ctx) {
1289 DeclContext *OuterCtx;
1290 bool SearchAfterTemplateScope;
1291 std::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
1292 if (SearchAfterTemplateScope)
1293 OutsideOfTemplateParamDC = OuterCtx;
1294
1295 for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
1296 // We do not directly look into transparent contexts, since
1297 // those entities will be found in the nearest enclosing
1298 // non-transparent context.
1299 if (Ctx->isTransparentContext())
1300 continue;
1301
1302 // If we have a context, and it's not a context stashed in the
1303 // template parameter scope for an out-of-line definition, also
1304 // look into that context.
1305 if (!(Found && S->isTemplateParamScope())) {
1306 assert(Ctx->isFileContext() &&((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1307, __PRETTY_FUNCTION__))
1307 "We should have been looking only at file context here already.")((Ctx->isFileContext() && "We should have been looking only at file context here already."
) ? static_cast<void> (0) : __assert_fail ("Ctx->isFileContext() && \"We should have been looking only at file context here already.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1307, __PRETTY_FUNCTION__))
;
1308
1309 // Look into context considering using-directives.
1310 if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
1311 Found = true;
1312 }
1313
1314 if (Found) {
1315 R.resolveKind();
1316 return true;
1317 }
1318
1319 if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1320 return false;
1321 }
1322 }
1323
1324 if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1325 return false;
1326 }
1327
1328 return !R.empty();
1329}
1330
1331/// \brief Find the declaration that a class temploid member specialization was
1332/// instantiated from, or the member itself if it is an explicit specialization.
1333static Decl *getInstantiatedFrom(Decl *D, MemberSpecializationInfo *MSInfo) {
1334 return MSInfo->isExplicitSpecialization() ? D : MSInfo->getInstantiatedFrom();
1335}
1336
1337Module *Sema::getOwningModule(Decl *Entity) {
1338 // If it's imported, grab its owning module.
1339 Module *M = Entity->getImportedOwningModule();
1340 if (M || !isa<NamedDecl>(Entity) || !cast<NamedDecl>(Entity)->isHidden())
1341 return M;
1342 assert(!Entity->isFromASTFile() &&((!Entity->isFromASTFile() && "hidden entity from AST file has no owning module"
) ? static_cast<void> (0) : __assert_fail ("!Entity->isFromASTFile() && \"hidden entity from AST file has no owning module\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1343, __PRETTY_FUNCTION__))
1343 "hidden entity from AST file has no owning module")((!Entity->isFromASTFile() && "hidden entity from AST file has no owning module"
) ? static_cast<void> (0) : __assert_fail ("!Entity->isFromASTFile() && \"hidden entity from AST file has no owning module\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1343, __PRETTY_FUNCTION__))
;
1344
1345 if (!getLangOpts().ModulesLocalVisibility) {
1346 // If we're not tracking visibility locally, the only way a declaration
1347 // can be hidden and local is if it's hidden because it's parent is (for
1348 // instance, maybe this is a lazily-declared special member of an imported
1349 // class).
1350 auto *Parent = cast<NamedDecl>(Entity->getDeclContext());
1351 assert(Parent->isHidden() && "unexpectedly hidden decl")((Parent->isHidden() && "unexpectedly hidden decl"
) ? static_cast<void> (0) : __assert_fail ("Parent->isHidden() && \"unexpectedly hidden decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1351, __PRETTY_FUNCTION__))
;
1352 return getOwningModule(Parent);
1353 }
1354
1355 // It's local and hidden; grab or compute its owning module.
1356 M = Entity->getLocalOwningModule();
1357 if (M)
1358 return M;
1359
1360 if (auto *Containing =
1361 PP.getModuleContainingLocation(Entity->getLocation())) {
1362 M = Containing;
1363 } else if (Entity->isInvalidDecl() || Entity->getLocation().isInvalid()) {
1364 // Don't bother tracking visibility for invalid declarations with broken
1365 // locations.
1366 cast<NamedDecl>(Entity)->setHidden(false);
1367 } else {
1368 // We need to assign a module to an entity that exists outside of any
1369 // module, so that we can hide it from modules that we textually enter.
1370 // Invent a fake module for all such entities.
1371 if (!CachedFakeTopLevelModule) {
1372 CachedFakeTopLevelModule =
1373 PP.getHeaderSearchInfo().getModuleMap().findOrCreateModule(
1374 "<top-level>", nullptr, false, false).first;
1375
1376 auto &SrcMgr = PP.getSourceManager();
1377 SourceLocation StartLoc =
1378 SrcMgr.getLocForStartOfFile(SrcMgr.getMainFileID());
1379 auto &TopLevel = ModuleScopes.empty()
1380 ? VisibleModules
1381 : ModuleScopes[0].OuterVisibleModules;
1382 TopLevel.setVisible(CachedFakeTopLevelModule, StartLoc);
1383 }
1384
1385 M = CachedFakeTopLevelModule;
1386 }
1387
1388 if (M)
1389 Entity->setLocalOwningModule(M);
1390 return M;
1391}
1392
1393void Sema::makeMergedDefinitionVisible(NamedDecl *ND, SourceLocation Loc) {
1394 if (auto *M = PP.getModuleContainingLocation(Loc))
1395 Context.mergeDefinitionIntoModule(ND, M);
1396 else
1397 // We're not building a module; just make the definition visible.
1398 ND->setHidden(false);
1399
1400 // If ND is a template declaration, make the template parameters
1401 // visible too. They're not (necessarily) within a mergeable DeclContext.
1402 if (auto *TD = dyn_cast<TemplateDecl>(ND))
1403 for (auto *Param : *TD->getTemplateParameters())
1404 makeMergedDefinitionVisible(Param, Loc);
1405}
1406
1407/// \brief Find the module in which the given declaration was defined.
1408static Module *getDefiningModule(Sema &S, Decl *Entity) {
1409 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) {
1410 // If this function was instantiated from a template, the defining module is
1411 // the module containing the pattern.
1412 if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern())
1413 Entity = Pattern;
1414 } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) {
1415 if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern())
1416 Entity = Pattern;
1417 } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) {
1418 if (MemberSpecializationInfo *MSInfo = ED->getMemberSpecializationInfo())
1419 Entity = getInstantiatedFrom(ED, MSInfo);
1420 } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) {
1421 // FIXME: Map from variable template specializations back to the template.
1422 if (MemberSpecializationInfo *MSInfo = VD->getMemberSpecializationInfo())
1423 Entity = getInstantiatedFrom(VD, MSInfo);
1424 }
1425
1426 // Walk up to the containing context. That might also have been instantiated
1427 // from a template.
1428 DeclContext *Context = Entity->getDeclContext();
1429 if (Context->isFileContext())
1430 return S.getOwningModule(Entity);
1431 return getDefiningModule(S, cast<Decl>(Context));
1432}
1433
1434llvm::DenseSet<Module*> &Sema::getLookupModules() {
1435 unsigned N = CodeSynthesisContexts.size();
1436 for (unsigned I = CodeSynthesisContextLookupModules.size();
1437 I != N; ++I) {
1438 Module *M = getDefiningModule(*this, CodeSynthesisContexts[I].Entity);
1439 if (M && !LookupModulesCache.insert(M).second)
1440 M = nullptr;
1441 CodeSynthesisContextLookupModules.push_back(M);
1442 }
1443 return LookupModulesCache;
1444}
1445
1446bool Sema::hasVisibleMergedDefinition(NamedDecl *Def) {
1447 for (Module *Merged : Context.getModulesWithMergedDefinition(Def))
1448 if (isModuleVisible(Merged))
1449 return true;
1450 return false;
1451}
1452
1453template<typename ParmDecl>
1454static bool
1455hasVisibleDefaultArgument(Sema &S, const ParmDecl *D,
1456 llvm::SmallVectorImpl<Module *> *Modules) {
1457 if (!D->hasDefaultArgument())
1458 return false;
1459
1460 while (D) {
1461 auto &DefaultArg = D->getDefaultArgStorage();
1462 if (!DefaultArg.isInherited() && S.isVisible(D))
1463 return true;
1464
1465 if (!DefaultArg.isInherited() && Modules) {
1466 auto *NonConstD = const_cast<ParmDecl*>(D);
1467 Modules->push_back(S.getOwningModule(NonConstD));
1468 const auto &Merged = S.Context.getModulesWithMergedDefinition(NonConstD);
1469 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1470 }
1471
1472 // If there was a previous default argument, maybe its parameter is visible.
1473 D = DefaultArg.getInheritedFrom();
1474 }
1475 return false;
1476}
1477
1478bool Sema::hasVisibleDefaultArgument(const NamedDecl *D,
1479 llvm::SmallVectorImpl<Module *> *Modules) {
1480 if (auto *P = dyn_cast<TemplateTypeParmDecl>(D))
1481 return ::hasVisibleDefaultArgument(*this, P, Modules);
1482 if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D))
1483 return ::hasVisibleDefaultArgument(*this, P, Modules);
1484 return ::hasVisibleDefaultArgument(*this, cast<TemplateTemplateParmDecl>(D),
1485 Modules);
1486}
1487
1488bool Sema::hasVisibleMemberSpecialization(
1489 const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) {
1490 assert(isa<CXXRecordDecl>(D->getDeclContext()) &&((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1491, __PRETTY_FUNCTION__))
1491 "not a member specialization")((isa<CXXRecordDecl>(D->getDeclContext()) &&
"not a member specialization") ? static_cast<void> (0)
: __assert_fail ("isa<CXXRecordDecl>(D->getDeclContext()) && \"not a member specialization\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1491, __PRETTY_FUNCTION__))
;
1492 for (auto *Redecl : D->redecls()) {
1493 // If the specialization is declared at namespace scope, then it's a member
1494 // specialization declaration. If it's lexically inside the class
1495 // definition then it was instantiated.
1496 //
1497 // FIXME: This is a hack. There should be a better way to determine this.
1498 // FIXME: What about MS-style explicit specializations declared within a
1499 // class definition?
1500 if (Redecl->getLexicalDeclContext()->isFileContext()) {
1501 auto *NonConstR = const_cast<NamedDecl*>(cast<NamedDecl>(Redecl));
1502
1503 if (isVisible(NonConstR))
1504 return true;
1505
1506 if (Modules) {
1507 Modules->push_back(getOwningModule(NonConstR));
1508 const auto &Merged = Context.getModulesWithMergedDefinition(NonConstR);
1509 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1510 }
1511 }
1512 }
1513
1514 return false;
1515}
1516
1517/// \brief Determine whether a declaration is visible to name lookup.
1518///
1519/// This routine determines whether the declaration D is visible in the current
1520/// lookup context, taking into account the current template instantiation
1521/// stack. During template instantiation, a declaration is visible if it is
1522/// visible from a module containing any entity on the template instantiation
1523/// path (by instantiating a template, you allow it to see the declarations that
1524/// your module can see, including those later on in your module).
1525bool LookupResult::isVisibleSlow(Sema &SemaRef, NamedDecl *D) {
1526 assert(D->isHidden() && "should not call this: not in slow case")((D->isHidden() && "should not call this: not in slow case"
) ? static_cast<void> (0) : __assert_fail ("D->isHidden() && \"should not call this: not in slow case\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1526, __PRETTY_FUNCTION__))
;
1527 Module *DeclModule = nullptr;
1528
1529 if (SemaRef.getLangOpts().ModulesLocalVisibility) {
1530 DeclModule = SemaRef.getOwningModule(D);
1531 if (!DeclModule) {
1532 // getOwningModule() may have decided the declaration should not be hidden.
1533 assert(!D->isHidden() && "hidden decl not from a module")((!D->isHidden() && "hidden decl not from a module"
) ? static_cast<void> (0) : __assert_fail ("!D->isHidden() && \"hidden decl not from a module\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1533, __PRETTY_FUNCTION__))
;
1534 return true;
1535 }
1536
1537 // If the owning module is visible, and the decl is not module private,
1538 // then the decl is visible too. (Module private is ignored within the same
1539 // top-level module.)
1540 if ((!D->isFromASTFile() || !D->isModulePrivate()) &&
1541 (SemaRef.isModuleVisible(DeclModule) ||
1542 SemaRef.hasVisibleMergedDefinition(D)))
1543 return true;
1544 }
1545
1546 // If this declaration is not at namespace scope nor module-private,
1547 // then it is visible if its lexical parent has a visible definition.
1548 DeclContext *DC = D->getLexicalDeclContext();
1549 if (!D->isModulePrivate() && DC && !DC->isFileContext() &&
1550 !isa<LinkageSpecDecl>(DC) && !isa<ExportDecl>(DC)) {
1551 // For a parameter, check whether our current template declaration's
1552 // lexical context is visible, not whether there's some other visible
1553 // definition of it, because parameters aren't "within" the definition.
1554 //
1555 // In C++ we need to check for a visible definition due to ODR merging,
1556 // and in C we must not because each declaration of a function gets its own
1557 // set of declarations for tags in prototype scope.
1558 if ((D->isTemplateParameter() || isa<ParmVarDecl>(D)
1559 || (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus))
1560 ? isVisible(SemaRef, cast<NamedDecl>(DC))
1561 : SemaRef.hasVisibleDefinition(cast<NamedDecl>(DC))) {
1562 if (SemaRef.CodeSynthesisContexts.empty() &&
1563 // FIXME: Do something better in this case.
1564 !SemaRef.getLangOpts().ModulesLocalVisibility) {
1565 // Cache the fact that this declaration is implicitly visible because
1566 // its parent has a visible definition.
1567 D->setHidden(false);
1568 }
1569 return true;
1570 }
1571 return false;
1572 }
1573
1574 // Find the extra places where we need to look.
1575 llvm::DenseSet<Module*> &LookupModules = SemaRef.getLookupModules();
1576 if (LookupModules.empty())
1577 return false;
1578
1579 if (!DeclModule) {
1580 DeclModule = SemaRef.getOwningModule(D);
1581 assert(DeclModule && "hidden decl not from a module")((DeclModule && "hidden decl not from a module") ? static_cast
<void> (0) : __assert_fail ("DeclModule && \"hidden decl not from a module\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1581, __PRETTY_FUNCTION__))
;
1582 }
1583
1584 // If our lookup set contains the decl's module, it's visible.
1585 if (LookupModules.count(DeclModule))
1586 return true;
1587
1588 // If the declaration isn't exported, it's not visible in any other module.
1589 if (D->isModulePrivate())
1590 return false;
1591
1592 // Check whether DeclModule is transitively exported to an import of
1593 // the lookup set.
1594 return std::any_of(LookupModules.begin(), LookupModules.end(),
1595 [&](Module *M) { return M->isModuleVisible(DeclModule); });
1596}
1597
1598bool Sema::isVisibleSlow(const NamedDecl *D) {
1599 return LookupResult::isVisible(*this, const_cast<NamedDecl*>(D));
1600}
1601
1602bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) {
1603 for (auto *D : R) {
1604 if (isVisible(D))
1605 return true;
1606 }
1607 return New->isExternallyVisible();
1608}
1609
1610/// \brief Retrieve the visible declaration corresponding to D, if any.
1611///
1612/// This routine determines whether the declaration D is visible in the current
1613/// module, with the current imports. If not, it checks whether any
1614/// redeclaration of D is visible, and if so, returns that declaration.
1615///
1616/// \returns D, or a visible previous declaration of D, whichever is more recent
1617/// and visible. If no declaration of D is visible, returns null.
1618static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D) {
1619 assert(!LookupResult::isVisible(SemaRef, D) && "not in slow case")((!LookupResult::isVisible(SemaRef, D) && "not in slow case"
) ? static_cast<void> (0) : __assert_fail ("!LookupResult::isVisible(SemaRef, D) && \"not in slow case\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1619, __PRETTY_FUNCTION__))
;
1620
1621 for (auto RD : D->redecls()) {
1622 // Don't bother with extra checks if we already know this one isn't visible.
1623 if (RD == D)
1624 continue;
1625
1626 auto ND = cast<NamedDecl>(RD);
1627 // FIXME: This is wrong in the case where the previous declaration is not
1628 // visible in the same scope as D. This needs to be done much more
1629 // carefully.
1630 if (LookupResult::isVisible(SemaRef, ND))
1631 return ND;
1632 }
1633
1634 return nullptr;
1635}
1636
1637bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D,
1638 llvm::SmallVectorImpl<Module *> *Modules) {
1639 assert(!isVisible(D) && "not in slow case")((!isVisible(D) && "not in slow case") ? static_cast<
void> (0) : __assert_fail ("!isVisible(D) && \"not in slow case\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1639, __PRETTY_FUNCTION__))
;
1640
1641 for (auto *Redecl : D->redecls()) {
1642 auto *NonConstR = const_cast<NamedDecl*>(cast<NamedDecl>(Redecl));
1643 if (isVisible(NonConstR))
1644 return true;
1645
1646 if (Modules) {
1647 Modules->push_back(getOwningModule(NonConstR));
1648 const auto &Merged = Context.getModulesWithMergedDefinition(NonConstR);
1649 Modules->insert(Modules->end(), Merged.begin(), Merged.end());
1650 }
1651 }
1652
1653 return false;
1654}
1655
1656NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const {
1657 if (auto *ND = dyn_cast<NamespaceDecl>(D)) {
1658 // Namespaces are a bit of a special case: we expect there to be a lot of
1659 // redeclarations of some namespaces, all declarations of a namespace are
1660 // essentially interchangeable, all declarations are found by name lookup
1661 // if any is, and namespaces are never looked up during template
1662 // instantiation. So we benefit from caching the check in this case, and
1663 // it is correct to do so.
1664 auto *Key = ND->getCanonicalDecl();
1665 if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key))
1666 return Acceptable;
1667 auto *Acceptable =
1668 isVisible(getSema(), Key) ? Key : findAcceptableDecl(getSema(), Key);
1669 if (Acceptable)
1670 getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable));
1671 return Acceptable;
1672 }
1673
1674 return findAcceptableDecl(getSema(), D);
1675}
1676
1677/// @brief Perform unqualified name lookup starting from a given
1678/// scope.
1679///
1680/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1681/// used to find names within the current scope. For example, 'x' in
1682/// @code
1683/// int x;
1684/// int f() {
1685/// return x; // unqualified name look finds 'x' in the global scope
1686/// }
1687/// @endcode
1688///
1689/// Different lookup criteria can find different names. For example, a
1690/// particular scope can have both a struct and a function of the same
1691/// name, and each can be found by certain lookup criteria. For more
1692/// information about lookup criteria, see the documentation for the
1693/// class LookupCriteria.
1694///
1695/// @param S The scope from which unqualified name lookup will
1696/// begin. If the lookup criteria permits, name lookup may also search
1697/// in the parent scopes.
1698///
1699/// @param [in,out] R Specifies the lookup to perform (e.g., the name to
1700/// look up and the lookup kind), and is updated with the results of lookup
1701/// including zero or more declarations and possibly additional information
1702/// used to diagnose ambiguities.
1703///
1704/// @returns \c true if lookup succeeded and false otherwise.
1705bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1706 DeclarationName Name = R.getLookupName();
1707 if (!Name) return false;
1708
1709 LookupNameKind NameKind = R.getLookupKind();
1710
1711 if (!getLangOpts().CPlusPlus) {
1712 // Unqualified name lookup in C/Objective-C is purely lexical, so
1713 // search in the declarations attached to the name.
1714 if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1715 // Find the nearest non-transparent declaration scope.
1716 while (!(S->getFlags() & Scope::DeclScope) ||
1717 (S->getEntity() && S->getEntity()->isTransparentContext()))
1718 S = S->getParent();
1719 }
1720
1721 // When performing a scope lookup, we want to find local extern decls.
1722 FindLocalExternScope FindLocals(R);
1723
1724 // Scan up the scope chain looking for a decl that matches this
1725 // identifier that is in the appropriate namespace. This search
1726 // should not take long, as shadowing of names is uncommon, and
1727 // deep shadowing is extremely uncommon.
1728 bool LeftStartingScope = false;
1729
1730 for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1731 IEnd = IdResolver.end();
1732 I != IEnd; ++I)
1733 if (NamedDecl *D = R.getAcceptableDecl(*I)) {
1734 if (NameKind == LookupRedeclarationWithLinkage) {
1735 // Determine whether this (or a previous) declaration is
1736 // out-of-scope.
1737 if (!LeftStartingScope && !S->isDeclScope(*I))
1738 LeftStartingScope = true;
1739
1740 // If we found something outside of our starting scope that
1741 // does not have linkage, skip it.
1742 if (LeftStartingScope && !((*I)->hasLinkage())) {
1743 R.setShadowed();
1744 continue;
1745 }
1746 }
1747 else if (NameKind == LookupObjCImplicitSelfParam &&
1748 !isa<ImplicitParamDecl>(*I))
1749 continue;
1750
1751 R.addDecl(D);
1752
1753 // Check whether there are any other declarations with the same name
1754 // and in the same scope.
1755 if (I != IEnd) {
1756 // Find the scope in which this declaration was declared (if it
1757 // actually exists in a Scope).
1758 while (S && !S->isDeclScope(D))
1759 S = S->getParent();
1760
1761 // If the scope containing the declaration is the translation unit,
1762 // then we'll need to perform our checks based on the matching
1763 // DeclContexts rather than matching scopes.
1764 if (S && isNamespaceOrTranslationUnitScope(S))
1765 S = nullptr;
1766
1767 // Compute the DeclContext, if we need it.
1768 DeclContext *DC = nullptr;
1769 if (!S)
1770 DC = (*I)->getDeclContext()->getRedeclContext();
1771
1772 IdentifierResolver::iterator LastI = I;
1773 for (++LastI; LastI != IEnd; ++LastI) {
1774 if (S) {
1775 // Match based on scope.
1776 if (!S->isDeclScope(*LastI))
1777 break;
1778 } else {
1779 // Match based on DeclContext.
1780 DeclContext *LastDC
1781 = (*LastI)->getDeclContext()->getRedeclContext();
1782 if (!LastDC->Equals(DC))
1783 break;
1784 }
1785
1786 // If the declaration is in the right namespace and visible, add it.
1787 if (NamedDecl *LastD = R.getAcceptableDecl(*LastI))
1788 R.addDecl(LastD);
1789 }
1790
1791 R.resolveKind();
1792 }
1793
1794 return true;
1795 }
1796 } else {
1797 // Perform C++ unqualified name lookup.
1798 if (CppLookupName(R, S))
1799 return true;
1800 }
1801
1802 // If we didn't find a use of this identifier, and if the identifier
1803 // corresponds to a compiler builtin, create the decl object for the builtin
1804 // now, injecting it into translation unit scope, and return it.
1805 if (AllowBuiltinCreation && LookupBuiltin(*this, R))
1806 return true;
1807
1808 // If we didn't find a use of this identifier, the ExternalSource
1809 // may be able to handle the situation.
1810 // Note: some lookup failures are expected!
1811 // See e.g. R.isForRedeclaration().
1812 return (ExternalSource && ExternalSource->LookupUnqualified(R, S));
1813}
1814
1815/// @brief Perform qualified name lookup in the namespaces nominated by
1816/// using directives by the given context.
1817///
1818/// C++98 [namespace.qual]p2:
1819/// Given X::m (where X is a user-declared namespace), or given \::m
1820/// (where X is the global namespace), let S be the set of all
1821/// declarations of m in X and in the transitive closure of all
1822/// namespaces nominated by using-directives in X and its used
1823/// namespaces, except that using-directives are ignored in any
1824/// namespace, including X, directly containing one or more
1825/// declarations of m. No namespace is searched more than once in
1826/// the lookup of a name. If S is the empty set, the program is
1827/// ill-formed. Otherwise, if S has exactly one member, or if the
1828/// context of the reference is a using-declaration
1829/// (namespace.udecl), S is the required set of declarations of
1830/// m. Otherwise if the use of m is not one that allows a unique
1831/// declaration to be chosen from S, the program is ill-formed.
1832///
1833/// C++98 [namespace.qual]p5:
1834/// During the lookup of a qualified namespace member name, if the
1835/// lookup finds more than one declaration of the member, and if one
1836/// declaration introduces a class name or enumeration name and the
1837/// other declarations either introduce the same object, the same
1838/// enumerator or a set of functions, the non-type name hides the
1839/// class or enumeration name if and only if the declarations are
1840/// from the same namespace; otherwise (the declarations are from
1841/// different namespaces), the program is ill-formed.
1842static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1843 DeclContext *StartDC) {
1844 assert(StartDC->isFileContext() && "start context is not a file context")((StartDC->isFileContext() && "start context is not a file context"
) ? static_cast<void> (0) : __assert_fail ("StartDC->isFileContext() && \"start context is not a file context\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1844, __PRETTY_FUNCTION__))
;
1845
1846 DeclContext::udir_range UsingDirectives = StartDC->using_directives();
1847 if (UsingDirectives.begin() == UsingDirectives.end()) return false;
1848
1849 // We have at least added all these contexts to the queue.
1850 llvm::SmallPtrSet<DeclContext*, 8> Visited;
1851 Visited.insert(StartDC);
1852
1853 // We have not yet looked into these namespaces, much less added
1854 // their "using-children" to the queue.
1855 SmallVector<NamespaceDecl*, 8> Queue;
1856
1857 // We have already looked into the initial namespace; seed the queue
1858 // with its using-children.
1859 for (auto *I : UsingDirectives) {
1860 NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace();
1861 if (Visited.insert(ND).second)
1862 Queue.push_back(ND);
1863 }
1864
1865 // The easiest way to implement the restriction in [namespace.qual]p5
1866 // is to check whether any of the individual results found a tag
1867 // and, if so, to declare an ambiguity if the final result is not
1868 // a tag.
1869 bool FoundTag = false;
1870 bool FoundNonTag = false;
1871
1872 LookupResult LocalR(LookupResult::Temporary, R);
1873
1874 bool Found = false;
1875 while (!Queue.empty()) {
1876 NamespaceDecl *ND = Queue.pop_back_val();
1877
1878 // We go through some convolutions here to avoid copying results
1879 // between LookupResults.
1880 bool UseLocal = !R.empty();
1881 LookupResult &DirectR = UseLocal ? LocalR : R;
1882 bool FoundDirect = LookupDirect(S, DirectR, ND);
1883
1884 if (FoundDirect) {
1885 // First do any local hiding.
1886 DirectR.resolveKind();
1887
1888 // If the local result is a tag, remember that.
1889 if (DirectR.isSingleTagDecl())
1890 FoundTag = true;
1891 else
1892 FoundNonTag = true;
1893
1894 // Append the local results to the total results if necessary.
1895 if (UseLocal) {
1896 R.addAllDecls(LocalR);
1897 LocalR.clear();
1898 }
1899 }
1900
1901 // If we find names in this namespace, ignore its using directives.
1902 if (FoundDirect) {
1903 Found = true;
1904 continue;
1905 }
1906
1907 for (auto I : ND->using_directives()) {
1908 NamespaceDecl *Nom = I->getNominatedNamespace();
1909 if (Visited.insert(Nom).second)
1910 Queue.push_back(Nom);
1911 }
1912 }
1913
1914 if (Found) {
1915 if (FoundTag && FoundNonTag)
1916 R.setAmbiguousQualifiedTagHiding();
1917 else
1918 R.resolveKind();
1919 }
1920
1921 return Found;
1922}
1923
1924/// \brief Callback that looks for any member of a class with the given name.
1925static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1926 CXXBasePath &Path, DeclarationName Name) {
1927 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1928
1929 Path.Decls = BaseRecord->lookup(Name);
1930 return !Path.Decls.empty();
1931}
1932
1933/// \brief Determine whether the given set of member declarations contains only
1934/// static members, nested types, and enumerators.
1935template<typename InputIterator>
1936static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1937 Decl *D = (*First)->getUnderlyingDecl();
1938 if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1939 return true;
1940
1941 if (isa<CXXMethodDecl>(D)) {
1942 // Determine whether all of the methods are static.
1943 bool AllMethodsAreStatic = true;
1944 for(; First != Last; ++First) {
1945 D = (*First)->getUnderlyingDecl();
1946
1947 if (!isa<CXXMethodDecl>(D)) {
1948 assert(isa<TagDecl>(D) && "Non-function must be a tag decl")((isa<TagDecl>(D) && "Non-function must be a tag decl"
) ? static_cast<void> (0) : __assert_fail ("isa<TagDecl>(D) && \"Non-function must be a tag decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1948, __PRETTY_FUNCTION__))
;
1949 break;
1950 }
1951
1952 if (!cast<CXXMethodDecl>(D)->isStatic()) {
1953 AllMethodsAreStatic = false;
1954 break;
1955 }
1956 }
1957
1958 if (AllMethodsAreStatic)
1959 return true;
1960 }
1961
1962 return false;
1963}
1964
1965/// \brief Perform qualified name lookup into a given context.
1966///
1967/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1968/// names when the context of those names is explicit specified, e.g.,
1969/// "std::vector" or "x->member", or as part of unqualified name lookup.
1970///
1971/// Different lookup criteria can find different names. For example, a
1972/// particular scope can have both a struct and a function of the same
1973/// name, and each can be found by certain lookup criteria. For more
1974/// information about lookup criteria, see the documentation for the
1975/// class LookupCriteria.
1976///
1977/// \param R captures both the lookup criteria and any lookup results found.
1978///
1979/// \param LookupCtx The context in which qualified name lookup will
1980/// search. If the lookup criteria permits, name lookup may also search
1981/// in the parent contexts or (for C++ classes) base classes.
1982///
1983/// \param InUnqualifiedLookup true if this is qualified name lookup that
1984/// occurs as part of unqualified name lookup.
1985///
1986/// \returns true if lookup succeeded, false if it failed.
1987bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1988 bool InUnqualifiedLookup) {
1989 assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context")((LookupCtx && "Sema::LookupQualifiedName requires a lookup context"
) ? static_cast<void> (0) : __assert_fail ("LookupCtx && \"Sema::LookupQualifiedName requires a lookup context\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1989, __PRETTY_FUNCTION__))
;
1990
1991 if (!R.getLookupName())
1992 return false;
1993
1994 // Make sure that the declaration context is complete.
1995 assert((!isa<TagDecl>(LookupCtx) ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1999, __PRETTY_FUNCTION__))
1996 LookupCtx->isDependentContext() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1999, __PRETTY_FUNCTION__))
1997 cast<TagDecl>(LookupCtx)->isCompleteDefinition() ||(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1999, __PRETTY_FUNCTION__))
1998 cast<TagDecl>(LookupCtx)->isBeingDefined()) &&(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1999, __PRETTY_FUNCTION__))
1999 "Declaration context must already be complete!")(((!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext
() || cast<TagDecl>(LookupCtx)->isCompleteDefinition
() || cast<TagDecl>(LookupCtx)->isBeingDefined()) &&
"Declaration context must already be complete!") ? static_cast
<void> (0) : __assert_fail ("(!isa<TagDecl>(LookupCtx) || LookupCtx->isDependentContext() || cast<TagDecl>(LookupCtx)->isCompleteDefinition() || cast<TagDecl>(LookupCtx)->isBeingDefined()) && \"Declaration context must already be complete!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 1999, __PRETTY_FUNCTION__))
;
2000
2001 struct QualifiedLookupInScope {
2002 bool oldVal;
2003 DeclContext *Context;
2004 // Set flag in DeclContext informing debugger that we're looking for qualified name
2005 QualifiedLookupInScope(DeclContext *ctx) : Context(ctx) {
2006 oldVal = ctx->setUseQualifiedLookup();
2007 }
2008 ~QualifiedLookupInScope() {
2009 Context->setUseQualifiedLookup(oldVal);
2010 }
2011 } QL(LookupCtx);
2012
2013 if (LookupDirect(*this, R, LookupCtx)) {
2014 R.resolveKind();
2015 if (isa<CXXRecordDecl>(LookupCtx))
2016 R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
2017 return true;
2018 }
2019
2020 // Don't descend into implied contexts for redeclarations.
2021 // C++98 [namespace.qual]p6:
2022 // In a declaration for a namespace member in which the
2023 // declarator-id is a qualified-id, given that the qualified-id
2024 // for the namespace member has the form
2025 // nested-name-specifier unqualified-id
2026 // the unqualified-id shall name a member of the namespace
2027 // designated by the nested-name-specifier.
2028 // See also [class.mfct]p5 and [class.static.data]p2.
2029 if (R.isForRedeclaration())
2030 return false;
2031
2032 // If this is a namespace, look it up in the implied namespaces.
2033 if (LookupCtx->isFileContext())
2034 return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
2035
2036 // If this isn't a C++ class, we aren't allowed to look into base
2037 // classes, we're done.
2038 CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
2039 if (!LookupRec || !LookupRec->getDefinition())
2040 return false;
2041
2042 // If we're performing qualified name lookup into a dependent class,
2043 // then we are actually looking into a current instantiation. If we have any
2044 // dependent base classes, then we either have to delay lookup until
2045 // template instantiation time (at which point all bases will be available)
2046 // or we have to fail.
2047 if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
2048 LookupRec->hasAnyDependentBases()) {
2049 R.setNotFoundInCurrentInstantiation();
2050 return false;
2051 }
2052
2053 // Perform lookup into our base classes.
2054 CXXBasePaths Paths;
2055 Paths.setOrigin(LookupRec);
2056
2057 // Look for this member in our base classes
2058 bool (*BaseCallback)(const CXXBaseSpecifier *Specifier, CXXBasePath &Path,
2059 DeclarationName Name) = nullptr;
2060 switch (R.getLookupKind()) {
2061 case LookupObjCImplicitSelfParam:
2062 case LookupOrdinaryName:
2063 case LookupMemberName:
2064 case LookupRedeclarationWithLinkage:
2065 case LookupLocalFriendName:
2066 BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
2067 break;
2068
2069 case LookupTagName:
2070 BaseCallback = &CXXRecordDecl::FindTagMember;
2071 break;
2072
2073 case LookupAnyName:
2074 BaseCallback = &LookupAnyMember;
2075 break;
2076
2077 case LookupOMPReductionName:
2078 BaseCallback = &CXXRecordDecl::FindOMPReductionMember;
2079 break;
2080
2081 case LookupUsingDeclName:
2082 // This lookup is for redeclarations only.
2083
2084 case LookupOperatorName:
2085 case LookupNamespaceName:
2086 case LookupObjCProtocolName:
2087 case LookupLabel:
2088 // These lookups will never find a member in a C++ class (or base class).
2089 return false;
2090
2091 case LookupNestedNameSpecifierName:
2092 BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
2093 break;
2094 }
2095
2096 DeclarationName Name = R.getLookupName();
2097 if (!LookupRec->lookupInBases(
2098 [=](const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
2099 return BaseCallback(Specifier, Path, Name);
2100 },
2101 Paths))
2102 return false;
2103
2104 R.setNamingClass(LookupRec);
2105
2106 // C++ [class.member.lookup]p2:
2107 // [...] If the resulting set of declarations are not all from
2108 // sub-objects of the same type, or the set has a nonstatic member
2109 // and includes members from distinct sub-objects, there is an
2110 // ambiguity and the program is ill-formed. Otherwise that set is
2111 // the result of the lookup.
2112 QualType SubobjectType;
2113 int SubobjectNumber = 0;
2114 AccessSpecifier SubobjectAccess = AS_none;
2115
2116 for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
2117 Path != PathEnd; ++Path) {
2118 const CXXBasePathElement &PathElement = Path->back();
2119
2120 // Pick the best (i.e. most permissive i.e. numerically lowest) access
2121 // across all paths.
2122 SubobjectAccess = std::min(SubobjectAccess, Path->Access);
2123
2124 // Determine whether we're looking at a distinct sub-object or not.
2125 if (SubobjectType.isNull()) {
2126 // This is the first subobject we've looked at. Record its type.
2127 SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
2128 SubobjectNumber = PathElement.SubobjectNumber;
2129 continue;
2130 }
2131
2132 if (SubobjectType
2133 != Context.getCanonicalType(PathElement.Base->getType())) {
2134 // We found members of the given name in two subobjects of
2135 // different types. If the declaration sets aren't the same, this
2136 // lookup is ambiguous.
2137 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end())) {
2138 CXXBasePaths::paths_iterator FirstPath = Paths.begin();
2139 DeclContext::lookup_iterator FirstD = FirstPath->Decls.begin();
2140 DeclContext::lookup_iterator CurrentD = Path->Decls.begin();
2141
2142 while (FirstD != FirstPath->Decls.end() &&
2143 CurrentD != Path->Decls.end()) {
2144 if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
2145 (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
2146 break;
2147
2148 ++FirstD;
2149 ++CurrentD;
2150 }
2151
2152 if (FirstD == FirstPath->Decls.end() &&
2153 CurrentD == Path->Decls.end())
2154 continue;
2155 }
2156
2157 R.setAmbiguousBaseSubobjectTypes(Paths);
2158 return true;
2159 }
2160
2161 if (SubobjectNumber != PathElement.SubobjectNumber) {
2162 // We have a different subobject of the same type.
2163
2164 // C++ [class.member.lookup]p5:
2165 // A static member, a nested type or an enumerator defined in
2166 // a base class T can unambiguously be found even if an object
2167 // has more than one base class subobject of type T.
2168 if (HasOnlyStaticMembers(Path->Decls.begin(), Path->Decls.end()))
2169 continue;
2170
2171 // We have found a nonstatic member name in multiple, distinct
2172 // subobjects. Name lookup is ambiguous.
2173 R.setAmbiguousBaseSubobjects(Paths);
2174 return true;
2175 }
2176 }
2177
2178 // Lookup in a base class succeeded; return these results.
2179
2180 for (auto *D : Paths.front().Decls) {
2181 AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
2182 D->getAccess());
2183 R.addDecl(D, AS);
2184 }
2185 R.resolveKind();
2186 return true;
2187}
2188
2189/// \brief Performs qualified name lookup or special type of lookup for
2190/// "__super::" scope specifier.
2191///
2192/// This routine is a convenience overload meant to be called from contexts
2193/// that need to perform a qualified name lookup with an optional C++ scope
2194/// specifier that might require special kind of lookup.
2195///
2196/// \param R captures both the lookup criteria and any lookup results found.
2197///
2198/// \param LookupCtx The context in which qualified name lookup will
2199/// search.
2200///
2201/// \param SS An optional C++ scope-specifier.
2202///
2203/// \returns true if lookup succeeded, false if it failed.
2204bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
2205 CXXScopeSpec &SS) {
2206 auto *NNS = SS.getScopeRep();
2207 if (NNS && NNS->getKind() == NestedNameSpecifier::Super)
2208 return LookupInSuper(R, NNS->getAsRecordDecl());
2209 else
2210
2211 return LookupQualifiedName(R, LookupCtx);
2212}
2213
2214/// @brief Performs name lookup for a name that was parsed in the
2215/// source code, and may contain a C++ scope specifier.
2216///
2217/// This routine is a convenience routine meant to be called from
2218/// contexts that receive a name and an optional C++ scope specifier
2219/// (e.g., "N::M::x"). It will then perform either qualified or
2220/// unqualified name lookup (with LookupQualifiedName or LookupName,
2221/// respectively) on the given name and return those results. It will
2222/// perform a special type of lookup for "__super::" scope specifier.
2223///
2224/// @param S The scope from which unqualified name lookup will
2225/// begin.
2226///
2227/// @param SS An optional C++ scope-specifier, e.g., "::N::M".
2228///
2229/// @param EnteringContext Indicates whether we are going to enter the
2230/// context of the scope-specifier SS (if present).
2231///
2232/// @returns True if any decls were found (but possibly ambiguous)
2233bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
2234 bool AllowBuiltinCreation, bool EnteringContext) {
2235 if (SS && SS->isInvalid()) {
2236 // When the scope specifier is invalid, don't even look for
2237 // anything.
2238 return false;
2239 }
2240
2241 if (SS && SS->isSet()) {
2242 NestedNameSpecifier *NNS = SS->getScopeRep();
2243 if (NNS->getKind() == NestedNameSpecifier::Super)
2244 return LookupInSuper(R, NNS->getAsRecordDecl());
2245
2246 if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
2247 // We have resolved the scope specifier to a particular declaration
2248 // contex, and will perform name lookup in that context.
2249 if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
2250 return false;
2251
2252 R.setContextRange(SS->getRange());
2253 return LookupQualifiedName(R, DC);
2254 }
2255
2256 // We could not resolve the scope specified to a specific declaration
2257 // context, which means that SS refers to an unknown specialization.
2258 // Name lookup can't find anything in this case.
2259 R.setNotFoundInCurrentInstantiation();
2260 R.setContextRange(SS->getRange());
2261 return false;
2262 }
2263
2264 // Perform unqualified name lookup starting in the given scope.
2265 return LookupName(R, S, AllowBuiltinCreation);
2266}
2267
2268/// \brief Perform qualified name lookup into all base classes of the given
2269/// class.
2270///
2271/// \param R captures both the lookup criteria and any lookup results found.
2272///
2273/// \param Class The context in which qualified name lookup will
2274/// search. Name lookup will search in all base classes merging the results.
2275///
2276/// @returns True if any decls were found (but possibly ambiguous)
2277bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) {
2278 // The access-control rules we use here are essentially the rules for
2279 // doing a lookup in Class that just magically skipped the direct
2280 // members of Class itself. That is, the naming class is Class, and the
2281 // access includes the access of the base.
2282 for (const auto &BaseSpec : Class->bases()) {
2283 CXXRecordDecl *RD = cast<CXXRecordDecl>(
2284 BaseSpec.getType()->castAs<RecordType>()->getDecl());
2285 LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind());
2286 Result.setBaseObjectType(Context.getRecordType(Class));
2287 LookupQualifiedName(Result, RD);
2288
2289 // Copy the lookup results into the target, merging the base's access into
2290 // the path access.
2291 for (auto I = Result.begin(), E = Result.end(); I != E; ++I) {
2292 R.addDecl(I.getDecl(),
2293 CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(),
2294 I.getAccess()));
2295 }
2296
2297 Result.suppressDiagnostics();
2298 }
2299
2300 R.resolveKind();
2301 R.setNamingClass(Class);
2302
2303 return !R.empty();
2304}
2305
2306/// \brief Produce a diagnostic describing the ambiguity that resulted
2307/// from name lookup.
2308///
2309/// \param Result The result of the ambiguous lookup to be diagnosed.
2310void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
2311 assert(Result.isAmbiguous() && "Lookup result must be ambiguous")((Result.isAmbiguous() && "Lookup result must be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("Result.isAmbiguous() && \"Lookup result must be ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2311, __PRETTY_FUNCTION__))
;
2312
2313 DeclarationName Name = Result.getLookupName();
2314 SourceLocation NameLoc = Result.getNameLoc();
2315 SourceRange LookupRange = Result.getContextRange();
2316
2317 switch (Result.getAmbiguityKind()) {
2318 case LookupResult::AmbiguousBaseSubobjects: {
2319 CXXBasePaths *Paths = Result.getBasePaths();
2320 QualType SubobjectType = Paths->front().back().Base->getType();
2321 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
2322 << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
2323 << LookupRange;
2324
2325 DeclContext::lookup_iterator Found = Paths->front().Decls.begin();
2326 while (isa<CXXMethodDecl>(*Found) &&
2327 cast<CXXMethodDecl>(*Found)->isStatic())
2328 ++Found;
2329
2330 Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
2331 break;
2332 }
2333
2334 case LookupResult::AmbiguousBaseSubobjectTypes: {
2335 Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
2336 << Name << LookupRange;
2337
2338 CXXBasePaths *Paths = Result.getBasePaths();
2339 std::set<Decl *> DeclsPrinted;
2340 for (CXXBasePaths::paths_iterator Path = Paths->begin(),
2341 PathEnd = Paths->end();
2342 Path != PathEnd; ++Path) {
2343 Decl *D = Path->Decls.front();
2344 if (DeclsPrinted.insert(D).second)
2345 Diag(D->getLocation(), diag::note_ambiguous_member_found);
2346 }
2347 break;
2348 }
2349
2350 case LookupResult::AmbiguousTagHiding: {
2351 Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
2352
2353 llvm::SmallPtrSet<NamedDecl*, 8> TagDecls;
2354
2355 for (auto *D : Result)
2356 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
2357 TagDecls.insert(TD);
2358 Diag(TD->getLocation(), diag::note_hidden_tag);
2359 }
2360
2361 for (auto *D : Result)
2362 if (!isa<TagDecl>(D))
2363 Diag(D->getLocation(), diag::note_hiding_object);
2364
2365 // For recovery purposes, go ahead and implement the hiding.
2366 LookupResult::Filter F = Result.makeFilter();
2367 while (F.hasNext()) {
2368 if (TagDecls.count(F.next()))
2369 F.erase();
2370 }
2371 F.done();
2372 break;
2373 }
2374
2375 case LookupResult::AmbiguousReference: {
2376 Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
2377
2378 for (auto *D : Result)
2379 Diag(D->getLocation(), diag::note_ambiguous_candidate) << D;
2380 break;
2381 }
2382 }
2383}
2384
2385namespace {
2386 struct AssociatedLookup {
2387 AssociatedLookup(Sema &S, SourceLocation InstantiationLoc,
2388 Sema::AssociatedNamespaceSet &Namespaces,
2389 Sema::AssociatedClassSet &Classes)
2390 : S(S), Namespaces(Namespaces), Classes(Classes),
2391 InstantiationLoc(InstantiationLoc) {
2392 }
2393
2394 Sema &S;
2395 Sema::AssociatedNamespaceSet &Namespaces;
2396 Sema::AssociatedClassSet &Classes;
2397 SourceLocation InstantiationLoc;
2398 };
2399} // end anonymous namespace
2400
2401static void
2402addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
2403
2404static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
2405 DeclContext *Ctx) {
2406 // Add the associated namespace for this class.
2407
2408 // We don't use DeclContext::getEnclosingNamespaceContext() as this may
2409 // be a locally scoped record.
2410
2411 // We skip out of inline namespaces. The innermost non-inline namespace
2412 // contains all names of all its nested inline namespaces anyway, so we can
2413 // replace the entire inline namespace tree with its root.
2414 while (Ctx->isRecord() || Ctx->isTransparentContext() ||
2415 Ctx->isInlineNamespace())
2416 Ctx = Ctx->getParent();
2417
2418 if (Ctx->isFileContext())
2419 Namespaces.insert(Ctx->getPrimaryContext());
2420}
2421
2422// \brief Add the associated classes and namespaces for argument-dependent
2423// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
2424static void
2425addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2426 const TemplateArgument &Arg) {
2427 // C++ [basic.lookup.koenig]p2, last bullet:
2428 // -- [...] ;
2429 switch (Arg.getKind()) {
2430 case TemplateArgument::Null:
2431 break;
2432
2433 case TemplateArgument::Type:
2434 // [...] the namespaces and classes associated with the types of the
2435 // template arguments provided for template type parameters (excluding
2436 // template template parameters)
2437 addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
2438 break;
2439
2440 case TemplateArgument::Template:
2441 case TemplateArgument::TemplateExpansion: {
2442 // [...] the namespaces in which any template template arguments are
2443 // defined; and the classes in which any member templates used as
2444 // template template arguments are defined.
2445 TemplateName Template = Arg.getAsTemplateOrTemplatePattern();
2446 if (ClassTemplateDecl *ClassTemplate
2447 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
2448 DeclContext *Ctx = ClassTemplate->getDeclContext();
2449 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2450 Result.Classes.insert(EnclosingClass);
2451 // Add the associated namespace for this class.
2452 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2453 }
2454 break;
2455 }
2456
2457 case TemplateArgument::Declaration:
2458 case TemplateArgument::Integral:
2459 case TemplateArgument::Expression:
2460 case TemplateArgument::NullPtr:
2461 // [Note: non-type template arguments do not contribute to the set of
2462 // associated namespaces. ]
2463 break;
2464
2465 case TemplateArgument::Pack:
2466 for (const auto &P : Arg.pack_elements())
2467 addAssociatedClassesAndNamespaces(Result, P);
2468 break;
2469 }
2470}
2471
2472// \brief Add the associated classes and namespaces for
2473// argument-dependent lookup with an argument of class type
2474// (C++ [basic.lookup.koenig]p2).
2475static void
2476addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
2477 CXXRecordDecl *Class) {
2478
2479 // Just silently ignore anything whose name is __va_list_tag.
2480 if (Class->getDeclName() == Result.S.VAListTagName)
2481 return;
2482
2483 // C++ [basic.lookup.koenig]p2:
2484 // [...]
2485 // -- If T is a class type (including unions), its associated
2486 // classes are: the class itself; the class of which it is a
2487 // member, if any; and its direct and indirect base
2488 // classes. Its associated namespaces are the namespaces in
2489 // which its associated classes are defined.
2490
2491 // Add the class of which it is a member, if any.
2492 DeclContext *Ctx = Class->getDeclContext();
2493 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2494 Result.Classes.insert(EnclosingClass);
2495 // Add the associated namespace for this class.
2496 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2497
2498 // Add the class itself. If we've already seen this class, we don't
2499 // need to visit base classes.
2500 //
2501 // FIXME: That's not correct, we may have added this class only because it
2502 // was the enclosing class of another class, and in that case we won't have
2503 // added its base classes yet.
2504 if (!Result.Classes.insert(Class))
2505 return;
2506
2507 // -- If T is a template-id, its associated namespaces and classes are
2508 // the namespace in which the template is defined; for member
2509 // templates, the member template's class; the namespaces and classes
2510 // associated with the types of the template arguments provided for
2511 // template type parameters (excluding template template parameters); the
2512 // namespaces in which any template template arguments are defined; and
2513 // the classes in which any member templates used as template template
2514 // arguments are defined. [Note: non-type template arguments do not
2515 // contribute to the set of associated namespaces. ]
2516 if (ClassTemplateSpecializationDecl *Spec
2517 = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
2518 DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
2519 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2520 Result.Classes.insert(EnclosingClass);
2521 // Add the associated namespace for this class.
2522 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2523
2524 const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
2525 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2526 addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
2527 }
2528
2529 // Only recurse into base classes for complete types.
2530 if (!Result.S.isCompleteType(Result.InstantiationLoc,
2531 Result.S.Context.getRecordType(Class)))
2532 return;
2533
2534 // Add direct and indirect base classes along with their associated
2535 // namespaces.
2536 SmallVector<CXXRecordDecl *, 32> Bases;
2537 Bases.push_back(Class);
2538 while (!Bases.empty()) {
2539 // Pop this class off the stack.
2540 Class = Bases.pop_back_val();
2541
2542 // Visit the base classes.
2543 for (const auto &Base : Class->bases()) {
2544 const RecordType *BaseType = Base.getType()->getAs<RecordType>();
2545 // In dependent contexts, we do ADL twice, and the first time around,
2546 // the base type might be a dependent TemplateSpecializationType, or a
2547 // TemplateTypeParmType. If that happens, simply ignore it.
2548 // FIXME: If we want to support export, we probably need to add the
2549 // namespace of the template in a TemplateSpecializationType, or even
2550 // the classes and namespaces of known non-dependent arguments.
2551 if (!BaseType)
2552 continue;
2553 CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
2554 if (Result.Classes.insert(BaseDecl)) {
2555 // Find the associated namespace for this base class.
2556 DeclContext *BaseCtx = BaseDecl->getDeclContext();
2557 CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
2558
2559 // Make sure we visit the bases of this base class.
2560 if (BaseDecl->bases_begin() != BaseDecl->bases_end())
2561 Bases.push_back(BaseDecl);
2562 }
2563 }
2564 }
2565}
2566
2567// \brief Add the associated classes and namespaces for
2568// argument-dependent lookup with an argument of type T
2569// (C++ [basic.lookup.koenig]p2).
2570static void
2571addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
2572 // C++ [basic.lookup.koenig]p2:
2573 //
2574 // For each argument type T in the function call, there is a set
2575 // of zero or more associated namespaces and a set of zero or more
2576 // associated classes to be considered. The sets of namespaces and
2577 // classes is determined entirely by the types of the function
2578 // arguments (and the namespace of any template template
2579 // argument). Typedef names and using-declarations used to specify
2580 // the types do not contribute to this set. The sets of namespaces
2581 // and classes are determined in the following way:
2582
2583 SmallVector<const Type *, 16> Queue;
2584 const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
2585
2586 while (true) {
2587 switch (T->getTypeClass()) {
2588
2589#define TYPE(Class, Base)
2590#define DEPENDENT_TYPE(Class, Base) case Type::Class:
2591#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
2592#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
2593#define ABSTRACT_TYPE(Class, Base)
2594#include "clang/AST/TypeNodes.def"
2595 // T is canonical. We can also ignore dependent types because
2596 // we don't need to do ADL at the definition point, but if we
2597 // wanted to implement template export (or if we find some other
2598 // use for associated classes and namespaces...) this would be
2599 // wrong.
2600 break;
2601
2602 // -- If T is a pointer to U or an array of U, its associated
2603 // namespaces and classes are those associated with U.
2604 case Type::Pointer:
2605 T = cast<PointerType>(T)->getPointeeType().getTypePtr();
2606 continue;
2607 case Type::ConstantArray:
2608 case Type::IncompleteArray:
2609 case Type::VariableArray:
2610 T = cast<ArrayType>(T)->getElementType().getTypePtr();
2611 continue;
2612
2613 // -- If T is a fundamental type, its associated sets of
2614 // namespaces and classes are both empty.
2615 case Type::Builtin:
2616 break;
2617
2618 // -- If T is a class type (including unions), its associated
2619 // classes are: the class itself; the class of which it is a
2620 // member, if any; and its direct and indirect base
2621 // classes. Its associated namespaces are the namespaces in
2622 // which its associated classes are defined.
2623 case Type::Record: {
2624 CXXRecordDecl *Class =
2625 cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
2626 addAssociatedClassesAndNamespaces(Result, Class);
2627 break;
2628 }
2629
2630 // -- If T is an enumeration type, its associated namespace is
2631 // the namespace in which it is defined. If it is class
2632 // member, its associated class is the member's class; else
2633 // it has no associated class.
2634 case Type::Enum: {
2635 EnumDecl *Enum = cast<EnumType>(T)->getDecl();
2636
2637 DeclContext *Ctx = Enum->getDeclContext();
2638 if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
2639 Result.Classes.insert(EnclosingClass);
2640
2641 // Add the associated namespace for this class.
2642 CollectEnclosingNamespace(Result.Namespaces, Ctx);
2643
2644 break;
2645 }
2646
2647 // -- If T is a function type, its associated namespaces and
2648 // classes are those associated with the function parameter
2649 // types and those associated with the return type.
2650 case Type::FunctionProto: {
2651 const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2652 for (const auto &Arg : Proto->param_types())
2653 Queue.push_back(Arg.getTypePtr());
2654 // fallthrough
2655 }
2656 case Type::FunctionNoProto: {
2657 const FunctionType *FnType = cast<FunctionType>(T);
2658 T = FnType->getReturnType().getTypePtr();
2659 continue;
2660 }
2661
2662 // -- If T is a pointer to a member function of a class X, its
2663 // associated namespaces and classes are those associated
2664 // with the function parameter types and return type,
2665 // together with those associated with X.
2666 //
2667 // -- If T is a pointer to a data member of class X, its
2668 // associated namespaces and classes are those associated
2669 // with the member type together with those associated with
2670 // X.
2671 case Type::MemberPointer: {
2672 const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
2673
2674 // Queue up the class type into which this points.
2675 Queue.push_back(MemberPtr->getClass());
2676
2677 // And directly continue with the pointee type.
2678 T = MemberPtr->getPointeeType().getTypePtr();
2679 continue;
2680 }
2681
2682 // As an extension, treat this like a normal pointer.
2683 case Type::BlockPointer:
2684 T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
2685 continue;
2686
2687 // References aren't covered by the standard, but that's such an
2688 // obvious defect that we cover them anyway.
2689 case Type::LValueReference:
2690 case Type::RValueReference:
2691 T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
2692 continue;
2693
2694 // These are fundamental types.
2695 case Type::Vector:
2696 case Type::ExtVector:
2697 case Type::Complex:
2698 break;
2699
2700 // Non-deduced auto types only get here for error cases.
2701 case Type::Auto:
2702 case Type::DeducedTemplateSpecialization:
2703 break;
2704
2705 // If T is an Objective-C object or interface type, or a pointer to an
2706 // object or interface type, the associated namespace is the global
2707 // namespace.
2708 case Type::ObjCObject:
2709 case Type::ObjCInterface:
2710 case Type::ObjCObjectPointer:
2711 Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl());
2712 break;
2713
2714 // Atomic types are just wrappers; use the associations of the
2715 // contained type.
2716 case Type::Atomic:
2717 T = cast<AtomicType>(T)->getValueType().getTypePtr();
2718 continue;
2719 case Type::Pipe:
2720 T = cast<PipeType>(T)->getElementType().getTypePtr();
2721 continue;
2722 }
2723
2724 if (Queue.empty())
2725 break;
2726 T = Queue.pop_back_val();
2727 }
2728}
2729
2730/// \brief Find the associated classes and namespaces for
2731/// argument-dependent lookup for a call with the given set of
2732/// arguments.
2733///
2734/// This routine computes the sets of associated classes and associated
2735/// namespaces searched by argument-dependent lookup
2736/// (C++ [basic.lookup.argdep]) for a given set of arguments.
2737void Sema::FindAssociatedClassesAndNamespaces(
2738 SourceLocation InstantiationLoc, ArrayRef<Expr *> Args,
2739 AssociatedNamespaceSet &AssociatedNamespaces,
2740 AssociatedClassSet &AssociatedClasses) {
2741 AssociatedNamespaces.clear();
2742 AssociatedClasses.clear();
2743
2744 AssociatedLookup Result(*this, InstantiationLoc,
2745 AssociatedNamespaces, AssociatedClasses);
2746
2747 // C++ [basic.lookup.koenig]p2:
2748 // For each argument type T in the function call, there is a set
2749 // of zero or more associated namespaces and a set of zero or more
2750 // associated classes to be considered. The sets of namespaces and
2751 // classes is determined entirely by the types of the function
2752 // arguments (and the namespace of any template template
2753 // argument).
2754 for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
2755 Expr *Arg = Args[ArgIdx];
2756
2757 if (Arg->getType() != Context.OverloadTy) {
2758 addAssociatedClassesAndNamespaces(Result, Arg->getType());
2759 continue;
2760 }
2761
2762 // [...] In addition, if the argument is the name or address of a
2763 // set of overloaded functions and/or function templates, its
2764 // associated classes and namespaces are the union of those
2765 // associated with each of the members of the set: the namespace
2766 // in which the function or function template is defined and the
2767 // classes and namespaces associated with its (non-dependent)
2768 // parameter types and return type.
2769 Arg = Arg->IgnoreParens();
2770 if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2771 if (unaryOp->getOpcode() == UO_AddrOf)
2772 Arg = unaryOp->getSubExpr();
2773
2774 UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2775 if (!ULE) continue;
2776
2777 for (const auto *D : ULE->decls()) {
2778 // Look through any using declarations to find the underlying function.
2779 const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction();
2780
2781 // Add the classes and namespaces associated with the parameter
2782 // types and return type of this function.
2783 addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2784 }
2785 }
2786}
2787
2788NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2789 SourceLocation Loc,
2790 LookupNameKind NameKind,
2791 RedeclarationKind Redecl) {
2792 LookupResult R(*this, Name, Loc, NameKind, Redecl);
2793 LookupName(R, S);
2794 return R.getAsSingle<NamedDecl>();
2795}
2796
2797/// \brief Find the protocol with the given name, if any.
2798ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2799 SourceLocation IdLoc,
2800 RedeclarationKind Redecl) {
2801 Decl *D = LookupSingleName(TUScope, II, IdLoc,
2802 LookupObjCProtocolName, Redecl);
2803 return cast_or_null<ObjCProtocolDecl>(D);
2804}
2805
2806void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2807 QualType T1, QualType T2,
2808 UnresolvedSetImpl &Functions) {
2809 // C++ [over.match.oper]p3:
2810 // -- The set of non-member candidates is the result of the
2811 // unqualified lookup of operator@ in the context of the
2812 // expression according to the usual rules for name lookup in
2813 // unqualified function calls (3.4.2) except that all member
2814 // functions are ignored.
2815 DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2816 LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2817 LookupName(Operators, S);
2818
2819 assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous")((!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("!Operators.isAmbiguous() && \"Operator lookup cannot be ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2819, __PRETTY_FUNCTION__))
;
2820 Functions.append(Operators.begin(), Operators.end());
2821}
2822
2823Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD,
2824 CXXSpecialMember SM,
2825 bool ConstArg,
2826 bool VolatileArg,
2827 bool RValueThis,
2828 bool ConstThis,
2829 bool VolatileThis) {
2830 assert(CanDeclareSpecialMemberFunction(RD) &&((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2831, __PRETTY_FUNCTION__))
2831 "doing special member lookup into record that isn't fully complete")((CanDeclareSpecialMemberFunction(RD) && "doing special member lookup into record that isn't fully complete"
) ? static_cast<void> (0) : __assert_fail ("CanDeclareSpecialMemberFunction(RD) && \"doing special member lookup into record that isn't fully complete\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2831, __PRETTY_FUNCTION__))
;
2832 RD = RD->getDefinition();
2833 if (RValueThis || ConstThis || VolatileThis)
2834 assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2835, __PRETTY_FUNCTION__))
2835 "constructors and destructors always have unqualified lvalue this")(((SM == CXXCopyAssignment || SM == CXXMoveAssignment) &&
"constructors and destructors always have unqualified lvalue this"
) ? static_cast<void> (0) : __assert_fail ("(SM == CXXCopyAssignment || SM == CXXMoveAssignment) && \"constructors and destructors always have unqualified lvalue this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2835, __PRETTY_FUNCTION__))
;
2836 if (ConstArg || VolatileArg)
2837 assert((SM != CXXDefaultConstructor && SM != CXXDestructor) &&(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2838, __PRETTY_FUNCTION__))
2838 "parameter-less special members can't have qualified arguments")(((SM != CXXDefaultConstructor && SM != CXXDestructor
) && "parameter-less special members can't have qualified arguments"
) ? static_cast<void> (0) : __assert_fail ("(SM != CXXDefaultConstructor && SM != CXXDestructor) && \"parameter-less special members can't have qualified arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2838, __PRETTY_FUNCTION__))
;
2839
2840 // FIXME: Get the caller to pass in a location for the lookup.
2841 SourceLocation LookupLoc = RD->getLocation();
2842
2843 llvm::FoldingSetNodeID ID;
2844 ID.AddPointer(RD);
2845 ID.AddInteger(SM);
2846 ID.AddInteger(ConstArg);
2847 ID.AddInteger(VolatileArg);
2848 ID.AddInteger(RValueThis);
2849 ID.AddInteger(ConstThis);
2850 ID.AddInteger(VolatileThis);
2851
2852 void *InsertPoint;
2853 SpecialMemberOverloadResultEntry *Result =
2854 SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint);
2855
2856 // This was already cached
2857 if (Result)
2858 return *Result;
2859
2860 Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>();
2861 Result = new (Result) SpecialMemberOverloadResultEntry(ID);
2862 SpecialMemberCache.InsertNode(Result, InsertPoint);
2863
2864 if (SM == CXXDestructor) {
2865 if (RD->needsImplicitDestructor())
2866 DeclareImplicitDestructor(RD);
2867 CXXDestructorDecl *DD = RD->getDestructor();
2868 assert(DD && "record without a destructor")((DD && "record without a destructor") ? static_cast<
void> (0) : __assert_fail ("DD && \"record without a destructor\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2868, __PRETTY_FUNCTION__))
;
2869 Result->setMethod(DD);
2870 Result->setKind(DD->isDeleted() ?
2871 SpecialMemberOverloadResult::NoMemberOrDeleted :
2872 SpecialMemberOverloadResult::Success);
2873 return *Result;
2874 }
2875
2876 // Prepare for overload resolution. Here we construct a synthetic argument
2877 // if necessary and make sure that implicit functions are declared.
2878 CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD));
2879 DeclarationName Name;
2880 Expr *Arg = nullptr;
2881 unsigned NumArgs;
2882
2883 QualType ArgType = CanTy;
2884 ExprValueKind VK = VK_LValue;
2885
2886 if (SM == CXXDefaultConstructor) {
2887 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2888 NumArgs = 0;
2889 if (RD->needsImplicitDefaultConstructor())
2890 DeclareImplicitDefaultConstructor(RD);
2891 } else {
2892 if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) {
2893 Name = Context.DeclarationNames.getCXXConstructorName(CanTy);
2894 if (RD->needsImplicitCopyConstructor())
2895 DeclareImplicitCopyConstructor(RD);
2896 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor())
2897 DeclareImplicitMoveConstructor(RD);
2898 } else {
2899 Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2900 if (RD->needsImplicitCopyAssignment())
2901 DeclareImplicitCopyAssignment(RD);
2902 if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment())
2903 DeclareImplicitMoveAssignment(RD);
2904 }
2905
2906 if (ConstArg)
2907 ArgType.addConst();
2908 if (VolatileArg)
2909 ArgType.addVolatile();
2910
2911 // This isn't /really/ specified by the standard, but it's implied
2912 // we should be working from an RValue in the case of move to ensure
2913 // that we prefer to bind to rvalue references, and an LValue in the
2914 // case of copy to ensure we don't bind to rvalue references.
2915 // Possibly an XValue is actually correct in the case of move, but
2916 // there is no semantic difference for class types in this restricted
2917 // case.
2918 if (SM == CXXCopyConstructor || SM == CXXCopyAssignment)
2919 VK = VK_LValue;
2920 else
2921 VK = VK_RValue;
2922 }
2923
2924 OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK);
2925
2926 if (SM != CXXDefaultConstructor) {
2927 NumArgs = 1;
2928 Arg = &FakeArg;
2929 }
2930
2931 // Create the object argument
2932 QualType ThisTy = CanTy;
2933 if (ConstThis)
2934 ThisTy.addConst();
2935 if (VolatileThis)
2936 ThisTy.addVolatile();
2937 Expr::Classification Classification =
2938 OpaqueValueExpr(LookupLoc, ThisTy,
2939 RValueThis ? VK_RValue : VK_LValue).Classify(Context);
2940
2941 // Now we perform lookup on the name we computed earlier and do overload
2942 // resolution. Lookup is only performed directly into the class since there
2943 // will always be a (possibly implicit) declaration to shadow any others.
2944 OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal);
2945 DeclContext::lookup_result R = RD->lookup(Name);
2946
2947 if (R.empty()) {
2948 // We might have no default constructor because we have a lambda's closure
2949 // type, rather than because there's some other declared constructor.
2950 // Every class has a copy/move constructor, copy/move assignment, and
2951 // destructor.
2952 assert(SM == CXXDefaultConstructor &&((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2953, __PRETTY_FUNCTION__))
2953 "lookup for a constructor or assignment operator was empty")((SM == CXXDefaultConstructor && "lookup for a constructor or assignment operator was empty"
) ? static_cast<void> (0) : __assert_fail ("SM == CXXDefaultConstructor && \"lookup for a constructor or assignment operator was empty\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2953, __PRETTY_FUNCTION__))
;
2954 Result->setMethod(nullptr);
2955 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
2956 return *Result;
2957 }
2958
2959 // Copy the candidates as our processing of them may load new declarations
2960 // from an external source and invalidate lookup_result.
2961 SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end());
2962
2963 for (NamedDecl *CandDecl : Candidates) {
2964 if (CandDecl->isInvalidDecl())
2965 continue;
2966
2967 DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public);
2968 auto CtorInfo = getConstructorInfo(Cand);
2969 if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) {
2970 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2971 AddMethodCandidate(M, Cand, RD, ThisTy, Classification,
2972 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2973 else if (CtorInfo)
2974 AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl,
2975 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2976 else
2977 AddOverloadCandidate(M, Cand, llvm::makeArrayRef(&Arg, NumArgs), OCS,
2978 true);
2979 } else if (FunctionTemplateDecl *Tmpl =
2980 dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) {
2981 if (SM == CXXCopyAssignment || SM == CXXMoveAssignment)
2982 AddMethodTemplateCandidate(
2983 Tmpl, Cand, RD, nullptr, ThisTy, Classification,
2984 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2985 else if (CtorInfo)
2986 AddTemplateOverloadCandidate(
2987 CtorInfo.ConstructorTmpl, CtorInfo.FoundDecl, nullptr,
2988 llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2989 else
2990 AddTemplateOverloadCandidate(
2991 Tmpl, Cand, nullptr, llvm::makeArrayRef(&Arg, NumArgs), OCS, true);
2992 } else {
2993 assert(isa<UsingDecl>(Cand.getDecl()) &&((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2994, __PRETTY_FUNCTION__))
2994 "illegal Kind of operator = Decl")((isa<UsingDecl>(Cand.getDecl()) && "illegal Kind of operator = Decl"
) ? static_cast<void> (0) : __assert_fail ("isa<UsingDecl>(Cand.getDecl()) && \"illegal Kind of operator = Decl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 2994, __PRETTY_FUNCTION__))
;
2995 }
2996 }
2997
2998 OverloadCandidateSet::iterator Best;
2999 switch (OCS.BestViableFunction(*this, LookupLoc, Best)) {
3000 case OR_Success:
3001 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3002 Result->setKind(SpecialMemberOverloadResult::Success);
3003 break;
3004
3005 case OR_Deleted:
3006 Result->setMethod(cast<CXXMethodDecl>(Best->Function));
3007 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3008 break;
3009
3010 case OR_Ambiguous:
3011 Result->setMethod(nullptr);
3012 Result->setKind(SpecialMemberOverloadResult::Ambiguous);
3013 break;
3014
3015 case OR_No_Viable_Function:
3016 Result->setMethod(nullptr);
3017 Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted);
3018 break;
3019 }
3020
3021 return *Result;
3022}
3023
3024/// \brief Look up the default constructor for the given class.
3025CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) {
3026 SpecialMemberOverloadResult Result =
3027 LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false,
3028 false, false);
3029
3030 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3031}
3032
3033/// \brief Look up the copying constructor for the given class.
3034CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class,
3035 unsigned Quals) {
3036 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3037, __PRETTY_FUNCTION__))
3037 "non-const, non-volatile qualifiers for copy ctor arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy ctor arg") ? static_cast
<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy ctor arg\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3037, __PRETTY_FUNCTION__))
;
3038 SpecialMemberOverloadResult Result =
3039 LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const,
3040 Quals & Qualifiers::Volatile, false, false, false);
3041
3042 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3043}
3044
3045/// \brief Look up the moving constructor for the given class.
3046CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class,
3047 unsigned Quals) {
3048 SpecialMemberOverloadResult Result =
3049 LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const,
3050 Quals & Qualifiers::Volatile, false, false, false);
3051
3052 return cast_or_null<CXXConstructorDecl>(Result.getMethod());
3053}
3054
3055/// \brief Look up the constructors for the given class.
3056DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
3057 // If the implicit constructors have not yet been declared, do so now.
3058 if (CanDeclareSpecialMemberFunction(Class)) {
3059 if (Class->needsImplicitDefaultConstructor())
3060 DeclareImplicitDefaultConstructor(Class);
3061 if (Class->needsImplicitCopyConstructor())
3062 DeclareImplicitCopyConstructor(Class);
3063 if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor())
3064 DeclareImplicitMoveConstructor(Class);
3065 }
3066
3067 CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
3068 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
3069 return Class->lookup(Name);
3070}
3071
3072/// \brief Look up the copying assignment operator for the given class.
3073CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class,
3074 unsigned Quals, bool RValueThis,
3075 unsigned ThisQuals) {
3076 assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3077, __PRETTY_FUNCTION__))
3077 "non-const, non-volatile qualifiers for copy assignment arg")((!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&
"non-const, non-volatile qualifiers for copy assignment arg"
) ? static_cast<void> (0) : __assert_fail ("!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment arg\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3077, __PRETTY_FUNCTION__))
;
3078 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3079, __PRETTY_FUNCTION__))
3079 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3079, __PRETTY_FUNCTION__))
;
3080 SpecialMemberOverloadResult Result =
3081 LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const,
3082 Quals & Qualifiers::Volatile, RValueThis,
3083 ThisQuals & Qualifiers::Const,
3084 ThisQuals & Qualifiers::Volatile);
3085
3086 return Result.getMethod();
3087}
3088
3089/// \brief Look up the moving assignment operator for the given class.
3090CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class,
3091 unsigned Quals,
3092 bool RValueThis,
3093 unsigned ThisQuals) {
3094 assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) &&((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3095, __PRETTY_FUNCTION__))
3095 "non-const, non-volatile qualifiers for copy assignment this")((!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile
)) && "non-const, non-volatile qualifiers for copy assignment this"
) ? static_cast<void> (0) : __assert_fail ("!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && \"non-const, non-volatile qualifiers for copy assignment this\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3095, __PRETTY_FUNCTION__))
;
3096 SpecialMemberOverloadResult Result =
3097 LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const,
3098 Quals & Qualifiers::Volatile, RValueThis,
3099 ThisQuals & Qualifiers::Const,
3100 ThisQuals & Qualifiers::Volatile);
3101
3102 return Result.getMethod();
3103}
3104
3105/// \brief Look for the destructor of the given class.
3106///
3107/// During semantic analysis, this routine should be used in lieu of
3108/// CXXRecordDecl::getDestructor().
3109///
3110/// \returns The destructor for this class.
3111CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
3112 return cast<CXXDestructorDecl>(LookupSpecialMember(Class, CXXDestructor,
3113 false, false, false,
3114 false, false).getMethod());
3115}
3116
3117/// LookupLiteralOperator - Determine which literal operator should be used for
3118/// a user-defined literal, per C++11 [lex.ext].
3119///
3120/// Normal overload resolution is not used to select which literal operator to
3121/// call for a user-defined literal. Look up the provided literal operator name,
3122/// and filter the results to the appropriate set for the given argument types.
3123Sema::LiteralOperatorLookupResult
3124Sema::LookupLiteralOperator(Scope *S, LookupResult &R,
3125 ArrayRef<QualType> ArgTys,
3126 bool AllowRaw, bool AllowTemplate,
3127 bool AllowStringTemplate) {
3128 LookupName(R, S);
3129 assert(R.getResultKind() != LookupResult::Ambiguous &&((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3130, __PRETTY_FUNCTION__))
3130 "literal operator lookup can't be ambiguous")((R.getResultKind() != LookupResult::Ambiguous && "literal operator lookup can't be ambiguous"
) ? static_cast<void> (0) : __assert_fail ("R.getResultKind() != LookupResult::Ambiguous && \"literal operator lookup can't be ambiguous\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3130, __PRETTY_FUNCTION__))
;
3131
3132 // Filter the lookup results appropriately.
3133 LookupResult::Filter F = R.makeFilter();
3134
3135 bool FoundRaw = false;
3136 bool FoundTemplate = false;
3137 bool FoundStringTemplate = false;
3138 bool FoundExactMatch = false;
3139
3140 while (F.hasNext()) {
3141 Decl *D = F.next();
3142 if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D))
3143 D = USD->getTargetDecl();
3144
3145 // If the declaration we found is invalid, skip it.
3146 if (D->isInvalidDecl()) {
3147 F.erase();
3148 continue;
3149 }
3150
3151 bool IsRaw = false;
3152 bool IsTemplate = false;
3153 bool IsStringTemplate = false;
3154 bool IsExactMatch = false;
3155
3156 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
3157 if (FD->getNumParams() == 1 &&
3158 FD->getParamDecl(0)->getType()->getAs<PointerType>())
3159 IsRaw = true;
3160 else if (FD->getNumParams() == ArgTys.size()) {
3161 IsExactMatch = true;
3162 for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) {
3163 QualType ParamTy = FD->getParamDecl(ArgIdx)->getType();
3164 if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) {
3165 IsExactMatch = false;
3166 break;
3167 }
3168 }
3169 }
3170 }
3171 if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) {
3172 TemplateParameterList *Params = FD->getTemplateParameters();
3173 if (Params->size() == 1)
3174 IsTemplate = true;
3175 else
3176 IsStringTemplate = true;
3177 }
3178
3179 if (IsExactMatch) {
3180 FoundExactMatch = true;
3181 AllowRaw = false;
3182 AllowTemplate = false;
3183 AllowStringTemplate = false;
3184 if (FoundRaw || FoundTemplate || FoundStringTemplate) {
3185 // Go through again and remove the raw and template decls we've
3186 // already found.
3187 F.restart();
3188 FoundRaw = FoundTemplate = FoundStringTemplate = false;
3189 }
3190 } else if (AllowRaw && IsRaw) {
3191 FoundRaw = true;
3192 } else if (AllowTemplate && IsTemplate) {
3193 FoundTemplate = true;
3194 } else if (AllowStringTemplate && IsStringTemplate) {
3195 FoundStringTemplate = true;
3196 } else {
3197 F.erase();
3198 }
3199 }
3200
3201 F.done();
3202
3203 // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching
3204 // parameter type, that is used in preference to a raw literal operator
3205 // or literal operator template.
3206 if (FoundExactMatch)
3207 return LOLR_Cooked;
3208
3209 // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal
3210 // operator template, but not both.
3211 if (FoundRaw && FoundTemplate) {
3212 Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
3213 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3214 NoteOverloadCandidate(*I, (*I)->getUnderlyingDecl()->getAsFunction());
3215 return LOLR_Error;
3216 }
3217
3218 if (FoundRaw)
3219 return LOLR_Raw;
3220
3221 if (FoundTemplate)
3222 return LOLR_Template;
3223
3224 if (FoundStringTemplate)
3225 return LOLR_StringTemplate;
3226
3227 // Didn't find anything we could use.
3228 Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator)
3229 << R.getLookupName() << (int)ArgTys.size() << ArgTys[0]
3230 << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw
3231 << (AllowTemplate || AllowStringTemplate);
3232 return LOLR_Error;
3233}
3234
3235void ADLResult::insert(NamedDecl *New) {
3236 NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
3237
3238 // If we haven't yet seen a decl for this key, or the last decl
3239 // was exactly this one, we're done.
3240 if (Old == nullptr || Old == New) {
3241 Old = New;
3242 return;
3243 }
3244
3245 // Otherwise, decide which is a more recent redeclaration.
3246 FunctionDecl *OldFD = Old->getAsFunction();
3247 FunctionDecl *NewFD = New->getAsFunction();
3248
3249 FunctionDecl *Cursor = NewFD;
3250 while (true) {
3251 Cursor = Cursor->getPreviousDecl();
3252
3253 // If we got to the end without finding OldFD, OldFD is the newer
3254 // declaration; leave things as they are.
3255 if (!Cursor) return;
3256
3257 // If we do find OldFD, then NewFD is newer.
3258 if (Cursor == OldFD) break;
3259
3260 // Otherwise, keep looking.
3261 }
3262
3263 Old = New;
3264}
3265
3266void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc,
3267 ArrayRef<Expr *> Args, ADLResult &Result) {
3268 // Find all of the associated namespaces and classes based on the
3269 // arguments we have.
3270 AssociatedNamespaceSet AssociatedNamespaces;
3271 AssociatedClassSet AssociatedClasses;
3272 FindAssociatedClassesAndNamespaces(Loc, Args,
3273 AssociatedNamespaces,
3274 AssociatedClasses);
3275
3276 // C++ [basic.lookup.argdep]p3:
3277 // Let X be the lookup set produced by unqualified lookup (3.4.1)
3278 // and let Y be the lookup set produced by argument dependent
3279 // lookup (defined as follows). If X contains [...] then Y is
3280 // empty. Otherwise Y is the set of declarations found in the
3281 // namespaces associated with the argument types as described
3282 // below. The set of declarations found by the lookup of the name
3283 // is the union of X and Y.
3284 //
3285 // Here, we compute Y and add its members to the overloaded
3286 // candidate set.
3287 for (auto *NS : AssociatedNamespaces) {
3288 // When considering an associated namespace, the lookup is the
3289 // same as the lookup performed when the associated namespace is
3290 // used as a qualifier (3.4.3.2) except that:
3291 //
3292 // -- Any using-directives in the associated namespace are
3293 // ignored.
3294 //
3295 // -- Any namespace-scope friend functions declared in
3296 // associated classes are visible within their respective
3297 // namespaces even if they are not visible during an ordinary
3298 // lookup (11.4).
3299 DeclContext::lookup_result R = NS->lookup(Name);
3300 for (auto *D : R) {
3301 // If the only declaration here is an ordinary friend, consider
3302 // it only if it was declared in an associated classes.
3303 if ((D->getIdentifierNamespace() & Decl::IDNS_Ordinary) == 0) {
3304 // If it's neither ordinarily visible nor a friend, we can't find it.
3305 if ((D->getIdentifierNamespace() & Decl::IDNS_OrdinaryFriend) == 0)
3306 continue;
3307
3308 bool DeclaredInAssociatedClass = false;
3309 for (Decl *DI = D; DI; DI = DI->getPreviousDecl()) {
3310 DeclContext *LexDC = DI->getLexicalDeclContext();
3311 if (isa<CXXRecordDecl>(LexDC) &&
3312 AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)) &&
3313 isVisible(cast<NamedDecl>(DI))) {
3314 DeclaredInAssociatedClass = true;
3315 break;
3316 }
3317 }
3318 if (!DeclaredInAssociatedClass)
3319 continue;
3320 }
3321
3322 if (isa<UsingShadowDecl>(D))
3323 D = cast<UsingShadowDecl>(D)->getTargetDecl();
3324
3325 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D))
3326 continue;
3327
3328 if (!isVisible(D) && !(D = findAcceptableDecl(*this, D)))
3329 continue;
3330
3331 Result.insert(D);
3332 }
3333 }
3334}
3335
3336//----------------------------------------------------------------------------
3337// Search for all visible declarations.
3338//----------------------------------------------------------------------------
3339VisibleDeclConsumer::~VisibleDeclConsumer() { }
3340
3341bool VisibleDeclConsumer::includeHiddenDecls() const { return false; }
3342
3343namespace {
3344
3345class ShadowContextRAII;
3346
3347class VisibleDeclsRecord {
3348public:
3349 /// \brief An entry in the shadow map, which is optimized to store a
3350 /// single declaration (the common case) but can also store a list
3351 /// of declarations.
3352 typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry;
3353
3354private:
3355 /// \brief A mapping from declaration names to the declarations that have
3356 /// this name within a particular scope.
3357 typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
3358
3359 /// \brief A list of shadow maps, which is used to model name hiding.
3360 std::list<ShadowMap> ShadowMaps;
3361
3362 /// \brief The declaration contexts we have already visited.
3363 llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
3364
3365 friend class ShadowContextRAII;
3366
3367public:
3368 /// \brief Determine whether we have already visited this context
3369 /// (and, if not, note that we are going to visit that context now).
3370 bool visitedContext(DeclContext *Ctx) {
3371 return !VisitedContexts.insert(Ctx).second;
3372 }
3373
3374 bool alreadyVisitedContext(DeclContext *Ctx) {
3375 return VisitedContexts.count(Ctx);
3376 }
3377
3378 /// \brief Determine whether the given declaration is hidden in the
3379 /// current scope.
3380 ///
3381 /// \returns the declaration that hides the given declaration, or
3382 /// NULL if no such declaration exists.
3383 NamedDecl *checkHidden(NamedDecl *ND);
3384
3385 /// \brief Add a declaration to the current shadow map.
3386 void add(NamedDecl *ND) {
3387 ShadowMaps.back()[ND->getDeclName()].push_back(ND);
3388 }
3389};
3390
3391/// \brief RAII object that records when we've entered a shadow context.
3392class ShadowContextRAII {
3393 VisibleDeclsRecord &Visible;
3394
3395 typedef VisibleDeclsRecord::ShadowMap ShadowMap;
3396
3397public:
3398 ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
3399 Visible.ShadowMaps.emplace_back();
3400 }
3401
3402 ~ShadowContextRAII() {
3403 Visible.ShadowMaps.pop_back();
3404 }
3405};
3406
3407} // end anonymous namespace
3408
3409NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
3410 unsigned IDNS = ND->getIdentifierNamespace();
3411 std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
3412 for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
3413 SM != SMEnd; ++SM) {
3414 ShadowMap::iterator Pos = SM->find(ND->getDeclName());
3415 if (Pos == SM->end())
3416 continue;
3417
3418 for (auto *D : Pos->second) {
3419 // A tag declaration does not hide a non-tag declaration.
3420 if (D->hasTagIdentifierNamespace() &&
3421 (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
3422 Decl::IDNS_ObjCProtocol)))
3423 continue;
3424
3425 // Protocols are in distinct namespaces from everything else.
3426 if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
3427 || (IDNS & Decl::IDNS_ObjCProtocol)) &&
3428 D->getIdentifierNamespace() != IDNS)
3429 continue;
3430
3431 // Functions and function templates in the same scope overload
3432 // rather than hide. FIXME: Look for hiding based on function
3433 // signatures!
3434 if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3435 ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() &&
3436 SM == ShadowMaps.rbegin())
3437 continue;
3438
3439 // A shadow declaration that's created by a resolved using declaration
3440 // is not hidden by the same using declaration.
3441 if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) &&
3442 cast<UsingShadowDecl>(ND)->getUsingDecl() == D)
3443 continue;
3444
3445 // We've found a declaration that hides this one.
3446 return D;
3447 }
3448 }
3449
3450 return nullptr;
3451}
3452
3453static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
3454 bool QualifiedNameLookup,
3455 bool InBaseClass,
3456 VisibleDeclConsumer &Consumer,
3457 VisibleDeclsRecord &Visited) {
3458 if (!Ctx)
3459 return;
3460
3461 // Make sure we don't visit the same context twice.
3462 if (Visited.visitedContext(Ctx->getPrimaryContext()))
3463 return;
3464
3465 // Outside C++, lookup results for the TU live on identifiers.
3466 if (isa<TranslationUnitDecl>(Ctx) &&
3467 !Result.getSema().getLangOpts().CPlusPlus) {
3468 auto &S = Result.getSema();
3469 auto &Idents = S.Context.Idents;
3470
3471 // Ensure all external identifiers are in the identifier table.
3472 if (IdentifierInfoLookup *External = Idents.getExternalIdentifierLookup()) {
3473 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
3474 for (StringRef Name = Iter->Next(); !Name.empty(); Name = Iter->Next())
3475 Idents.get(Name);
3476 }
3477
3478 // Walk all lookup results in the TU for each identifier.
3479 for (const auto &Ident : Idents) {
3480 for (auto I = S.IdResolver.begin(Ident.getValue()),
3481 E = S.IdResolver.end();
3482 I != E; ++I) {
3483 if (S.IdResolver.isDeclInScope(*I, Ctx)) {
3484 if (NamedDecl *ND = Result.getAcceptableDecl(*I)) {
3485 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3486 Visited.add(ND);
3487 }
3488 }
3489 }
3490 }
3491
3492 return;
3493 }
3494
3495 if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
3496 Result.getSema().ForceDeclarationOfImplicitMembers(Class);
3497
3498 // Enumerate all of the results in this context.
3499 for (DeclContextLookupResult R : Ctx->lookups()) {
3500 for (auto *D : R) {
3501 if (auto *ND = Result.getAcceptableDecl(D)) {
3502 Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass);
3503 Visited.add(ND);
3504 }
3505 }
3506 }
3507
3508 // Traverse using directives for qualified name lookup.
3509 if (QualifiedNameLookup) {
3510 ShadowContextRAII Shadow(Visited);
3511 for (auto I : Ctx->using_directives()) {
3512 LookupVisibleDecls(I->getNominatedNamespace(), Result,
3513 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3514 }
3515 }
3516
3517 // Traverse the contexts of inherited C++ classes.
3518 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
3519 if (!Record->hasDefinition())
3520 return;
3521
3522 for (const auto &B : Record->bases()) {
3523 QualType BaseType = B.getType();
3524
3525 // Don't look into dependent bases, because name lookup can't look
3526 // there anyway.
3527 if (BaseType->isDependentType())
3528 continue;
3529
3530 const RecordType *Record = BaseType->getAs<RecordType>();
3531 if (!Record)
3532 continue;
3533
3534 // FIXME: It would be nice to be able to determine whether referencing
3535 // a particular member would be ambiguous. For example, given
3536 //
3537 // struct A { int member; };
3538 // struct B { int member; };
3539 // struct C : A, B { };
3540 //
3541 // void f(C *c) { c->### }
3542 //
3543 // accessing 'member' would result in an ambiguity. However, we
3544 // could be smart enough to qualify the member with the base
3545 // class, e.g.,
3546 //
3547 // c->B::member
3548 //
3549 // or
3550 //
3551 // c->A::member
3552
3553 // Find results in this base class (and its bases).
3554 ShadowContextRAII Shadow(Visited);
3555 LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
3556 true, Consumer, Visited);
3557 }
3558 }
3559
3560 // Traverse the contexts of Objective-C classes.
3561 if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
3562 // Traverse categories.
3563 for (auto *Cat : IFace->visible_categories()) {
3564 ShadowContextRAII Shadow(Visited);
3565 LookupVisibleDecls(Cat, Result, QualifiedNameLookup, false,
3566 Consumer, Visited);
3567 }
3568
3569 // Traverse protocols.
3570 for (auto *I : IFace->all_referenced_protocols()) {
3571 ShadowContextRAII Shadow(Visited);
3572 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3573 Visited);
3574 }
3575
3576 // Traverse the superclass.
3577 if (IFace->getSuperClass()) {
3578 ShadowContextRAII Shadow(Visited);
3579 LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
3580 true, Consumer, Visited);
3581 }
3582
3583 // If there is an implementation, traverse it. We do this to find
3584 // synthesized ivars.
3585 if (IFace->getImplementation()) {
3586 ShadowContextRAII Shadow(Visited);
3587 LookupVisibleDecls(IFace->getImplementation(), Result,
3588 QualifiedNameLookup, InBaseClass, Consumer, Visited);
3589 }
3590 } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
3591 for (auto *I : Protocol->protocols()) {
3592 ShadowContextRAII Shadow(Visited);
3593 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3594 Visited);
3595 }
3596 } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
3597 for (auto *I : Category->protocols()) {
3598 ShadowContextRAII Shadow(Visited);
3599 LookupVisibleDecls(I, Result, QualifiedNameLookup, false, Consumer,
3600 Visited);
3601 }
3602
3603 // If there is an implementation, traverse it.
3604 if (Category->getImplementation()) {
3605 ShadowContextRAII Shadow(Visited);
3606 LookupVisibleDecls(Category->getImplementation(), Result,
3607 QualifiedNameLookup, true, Consumer, Visited);
3608 }
3609 }
3610}
3611
3612static void LookupVisibleDecls(Scope *S, LookupResult &Result,
3613 UnqualUsingDirectiveSet &UDirs,
3614 VisibleDeclConsumer &Consumer,
3615 VisibleDeclsRecord &Visited) {
3616 if (!S)
3617 return;
3618
3619 if (!S->getEntity() ||
3620 (!S->getParent() &&
3621 !Visited.alreadyVisitedContext(S->getEntity())) ||
3622 (S->getEntity())->isFunctionOrMethod()) {
3623 FindLocalExternScope FindLocals(Result);
3624 // Walk through the declarations in this Scope.
3625 for (auto *D : S->decls()) {
3626 if (NamedDecl *ND = dyn_cast<NamedDecl>(D))
3627 if ((ND = Result.getAcceptableDecl(ND))) {
3628 Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false);
3629 Visited.add(ND);
3630 }
3631 }
3632 }
3633
3634 // FIXME: C++ [temp.local]p8
3635 DeclContext *Entity = nullptr;
3636 if (S->getEntity()) {
3637 // Look into this scope's declaration context, along with any of its
3638 // parent lookup contexts (e.g., enclosing classes), up to the point
3639 // where we hit the context stored in the next outer scope.
3640 Entity = S->getEntity();
3641 DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
3642
3643 for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
3644 Ctx = Ctx->getLookupParent()) {
3645 if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
3646 if (Method->isInstanceMethod()) {
3647 // For instance methods, look for ivars in the method's interface.
3648 LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
3649 Result.getNameLoc(), Sema::LookupMemberName);
3650 if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
3651 LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
3652 /*InBaseClass=*/false, Consumer, Visited);
3653 }
3654 }
3655
3656 // We've already performed all of the name lookup that we need
3657 // to for Objective-C methods; the next context will be the
3658 // outer scope.
3659 break;
3660 }
3661
3662 if (Ctx->isFunctionOrMethod())
3663 continue;
3664
3665 LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
3666 /*InBaseClass=*/false, Consumer, Visited);
3667 }
3668 } else if (!S->getParent()) {
3669 // Look into the translation unit scope. We walk through the translation
3670 // unit's declaration context, because the Scope itself won't have all of
3671 // the declarations if we loaded a precompiled header.
3672 // FIXME: We would like the translation unit's Scope object to point to the
3673 // translation unit, so we don't need this special "if" branch. However,
3674 // doing so would force the normal C++ name-lookup code to look into the
3675 // translation unit decl when the IdentifierInfo chains would suffice.
3676 // Once we fix that problem (which is part of a more general "don't look
3677 // in DeclContexts unless we have to" optimization), we can eliminate this.
3678 Entity = Result.getSema().Context.getTranslationUnitDecl();
3679 LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
3680 /*InBaseClass=*/false, Consumer, Visited);
3681 }
3682
3683 if (Entity) {
3684 // Lookup visible declarations in any namespaces found by using
3685 // directives.
3686 for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity))
3687 LookupVisibleDecls(const_cast<DeclContext *>(UUE.getNominatedNamespace()),
3688 Result, /*QualifiedNameLookup=*/false,
3689 /*InBaseClass=*/false, Consumer, Visited);
3690 }
3691
3692 // Lookup names in the parent scope.
3693 ShadowContextRAII Shadow(Visited);
3694 LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
3695}
3696
3697void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
3698 VisibleDeclConsumer &Consumer,
3699 bool IncludeGlobalScope) {
3700 // Determine the set of using directives available during
3701 // unqualified name lookup.
3702 Scope *Initial = S;
3703 UnqualUsingDirectiveSet UDirs;
3704 if (getLangOpts().CPlusPlus) {
3705 // Find the first namespace or translation-unit scope.
3706 while (S && !isNamespaceOrTranslationUnitScope(S))
3707 S = S->getParent();
3708
3709 UDirs.visitScopeChain(Initial, S);
3710 }
3711 UDirs.done();
3712
3713 // Look for visible declarations.
3714 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3715 Result.setAllowHidden(Consumer.includeHiddenDecls());
3716 VisibleDeclsRecord Visited;
3717 if (!IncludeGlobalScope)
3718 Visited.visitedContext(Context.getTranslationUnitDecl());
3719 ShadowContextRAII Shadow(Visited);
3720 ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
3721}
3722
3723void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
3724 VisibleDeclConsumer &Consumer,
3725 bool IncludeGlobalScope) {
3726 LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
3727 Result.setAllowHidden(Consumer.includeHiddenDecls());
3728 VisibleDeclsRecord Visited;
3729 if (!IncludeGlobalScope)
3730 Visited.visitedContext(Context.getTranslationUnitDecl());
3731 ShadowContextRAII Shadow(Visited);
3732 ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
3733 /*InBaseClass=*/false, Consumer, Visited);
3734}
3735
3736/// LookupOrCreateLabel - Do a name lookup of a label with the specified name.
3737/// If GnuLabelLoc is a valid source location, then this is a definition
3738/// of an __label__ label name, otherwise it is a normal label definition
3739/// or use.
3740LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc,
3741 SourceLocation GnuLabelLoc) {
3742 // Do a lookup to see if we have a label with this name already.
3743 NamedDecl *Res = nullptr;
3744
3745 if (GnuLabelLoc.isValid()) {
3746 // Local label definitions always shadow existing labels.
3747 Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc);
3748 Scope *S = CurScope;
3749 PushOnScopeChains(Res, S, true);
3750 return cast<LabelDecl>(Res);
3751 }
3752
3753 // Not a GNU local label.
3754 Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration);
3755 // If we found a label, check to see if it is in the same context as us.
3756 // When in a Block, we don't want to reuse a label in an enclosing function.
3757 if (Res && Res->getDeclContext() != CurContext)
3758 Res = nullptr;
3759 if (!Res) {
3760 // If not forward referenced or defined already, create the backing decl.
3761 Res = LabelDecl::Create(Context, CurContext, Loc, II);
3762 Scope *S = CurScope->getFnParent();
3763 assert(S && "Not in a function?")((S && "Not in a function?") ? static_cast<void>
(0) : __assert_fail ("S && \"Not in a function?\"", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 3763, __PRETTY_FUNCTION__))
;
3764 PushOnScopeChains(Res, S, true);
3765 }
3766 return cast<LabelDecl>(Res);
3767}
3768
3769//===----------------------------------------------------------------------===//
3770// Typo correction
3771//===----------------------------------------------------------------------===//
3772
3773static bool isCandidateViable(CorrectionCandidateCallback &CCC,
3774 TypoCorrection &Candidate) {
3775 Candidate.setCallbackDistance(CCC.RankCandidate(Candidate));
3776 return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance;
3777}
3778
3779static void LookupPotentialTypoResult(Sema &SemaRef,
3780 LookupResult &Res,
3781 IdentifierInfo *Name,
3782 Scope *S, CXXScopeSpec *SS,
3783 DeclContext *MemberContext,
3784 bool EnteringContext,
3785 bool isObjCIvarLookup,
3786 bool FindHidden);
3787
3788/// \brief Check whether the declarations found for a typo correction are
3789/// visible, and if none of them are, convert the correction to an 'import
3790/// a module' correction.
3791static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) {
3792 if (TC.begin() == TC.end())
14
Assuming the condition is false
15
Taking false branch
3793 return;
3794
3795 TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end();
3796
3797 for (/**/; DI != DE; ++DI)
16
Assuming 'DI' is not equal to 'DE'
17
Loop condition is true. Entering loop body
3798 if (!LookupResult::isVisible(SemaRef, *DI))
18
Assuming the condition is true
19
Taking true branch
3799 break;
20
Execution continues on line 3801
3800 // Nothing to do if all decls are visible.
3801 if (DI == DE)
21
Taking false branch
3802 return;
3803
3804 llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI);
3805 bool AnyVisibleDecls = !NewDecls.empty();
3806
3807 for (/**/; DI != DE; ++DI) {
22
Loop condition is true. Entering loop body
3808 NamedDecl *VisibleDecl = *DI;
3809 if (!LookupResult::isVisible(SemaRef, *DI))
23
Assuming the condition is false
24
Taking false branch
3810 VisibleDecl = findAcceptableDecl(SemaRef, *DI);
3811
3812 if (VisibleDecl) {
25
Assuming 'VisibleDecl' is null
26
Taking false branch
3813 if (!AnyVisibleDecls) {
3814 // Found a visible decl, discard all hidden ones.
3815 AnyVisibleDecls = true;
3816 NewDecls.clear();
3817 }
3818 NewDecls.push_back(VisibleDecl);
3819 } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate())
27
Called C++ object pointer is null
3820 NewDecls.push_back(*DI);
3821 }
3822
3823 if (NewDecls.empty())
3824 TC = TypoCorrection();
3825 else {
3826 TC.setCorrectionDecls(NewDecls);
3827 TC.setRequiresImport(!AnyVisibleDecls);
3828 }
3829}
3830
3831// Fill the supplied vector with the IdentifierInfo pointers for each piece of
3832// the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::",
3833// fill the vector with the IdentifierInfo pointers for "foo" and "bar").
3834static void getNestedNameSpecifierIdentifiers(
3835 NestedNameSpecifier *NNS,
3836 SmallVectorImpl<const IdentifierInfo*> &Identifiers) {
3837 if (NestedNameSpecifier *Prefix = NNS->getPrefix())
3838 getNestedNameSpecifierIdentifiers(Prefix, Identifiers);
3839 else
3840 Identifiers.clear();
3841
3842 const IdentifierInfo *II = nullptr;
3843
3844 switch (NNS->getKind()) {
3845 case NestedNameSpecifier::Identifier:
3846 II = NNS->getAsIdentifier();
3847 break;
3848
3849 case NestedNameSpecifier::Namespace:
3850 if (NNS->getAsNamespace()->isAnonymousNamespace())
3851 return;
3852 II = NNS->getAsNamespace()->getIdentifier();
3853 break;
3854
3855 case NestedNameSpecifier::NamespaceAlias:
3856 II = NNS->getAsNamespaceAlias()->getIdentifier();
3857 break;
3858
3859 case NestedNameSpecifier::TypeSpecWithTemplate:
3860 case NestedNameSpecifier::TypeSpec:
3861 II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier();
3862 break;
3863
3864 case NestedNameSpecifier::Global:
3865 case NestedNameSpecifier::Super:
3866 return;
3867 }
3868
3869 if (II)
3870 Identifiers.push_back(II);
3871}
3872
3873void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
3874 DeclContext *Ctx, bool InBaseClass) {
3875 // Don't consider hidden names for typo correction.
3876 if (Hiding)
3877 return;
3878
3879 // Only consider entities with identifiers for names, ignoring
3880 // special names (constructors, overloaded operators, selectors,
3881 // etc.).
3882 IdentifierInfo *Name = ND->getIdentifier();
3883 if (!Name)
3884 return;
3885
3886 // Only consider visible declarations and declarations from modules with
3887 // names that exactly match.
3888 if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo &&
3889 !findAcceptableDecl(SemaRef, ND))
3890 return;
3891
3892 FoundName(Name->getName());
3893}
3894
3895void TypoCorrectionConsumer::FoundName(StringRef Name) {
3896 // Compute the edit distance between the typo and the name of this
3897 // entity, and add the identifier to the list of results.
3898 addName(Name, nullptr);
3899}
3900
3901void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) {
3902 // Compute the edit distance between the typo and this keyword,
3903 // and add the keyword to the list of results.
3904 addName(Keyword, nullptr, nullptr, true);
3905}
3906
3907void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND,
3908 NestedNameSpecifier *NNS, bool isKeyword) {
3909 // Use a simple length-based heuristic to determine the minimum possible
3910 // edit distance. If the minimum isn't good enough, bail out early.
3911 StringRef TypoStr = Typo->getName();
3912 unsigned MinED = abs((int)Name.size() - (int)TypoStr.size());
3913 if (MinED && TypoStr.size() / MinED < 3)
3914 return;
3915
3916 // Compute an upper bound on the allowable edit distance, so that the
3917 // edit-distance algorithm can short-circuit.
3918 unsigned UpperBound = (TypoStr.size() + 2) / 3 + 1;
3919 unsigned ED = TypoStr.edit_distance(Name, true, UpperBound);
3920 if (ED >= UpperBound) return;
3921
3922 TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED);
3923 if (isKeyword) TC.makeKeyword();
3924 TC.setCorrectionRange(nullptr, Result.getLookupNameInfo());
3925 addCorrection(TC);
3926}
3927
3928static const unsigned MaxTypoDistanceResultSets = 5;
3929
3930void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) {
3931 StringRef TypoStr = Typo->getName();
3932 StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName();
3933
3934 // For very short typos, ignore potential corrections that have a different
3935 // base identifier from the typo or which have a normalized edit distance
3936 // longer than the typo itself.
3937 if (TypoStr.size() < 3 &&
3938 (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size()))
3939 return;
3940
3941 // If the correction is resolved but is not viable, ignore it.
3942 if (Correction.isResolved()) {
3943 checkCorrectionVisibility(SemaRef, Correction);
3944 if (!Correction || !isCandidateViable(*CorrectionValidator, Correction))
3945 return;
3946 }
3947
3948 TypoResultList &CList =
3949 CorrectionResults[Correction.getEditDistance(false)][Name];
3950
3951 if (!CList.empty() && !CList.back().isResolved())
3952 CList.pop_back();
3953 if (NamedDecl *NewND = Correction.getCorrectionDecl()) {
3954 std::string CorrectionStr = Correction.getAsString(SemaRef.getLangOpts());
3955 for (TypoResultList::iterator RI = CList.begin(), RIEnd = CList.end();
3956 RI != RIEnd; ++RI) {
3957 // If the Correction refers to a decl already in the result list,
3958 // replace the existing result if the string representation of Correction
3959 // comes before the current result alphabetically, then stop as there is
3960 // nothing more to be done to add Correction to the candidate set.
3961 if (RI->getCorrectionDecl() == NewND) {
3962 if (CorrectionStr < RI->getAsString(SemaRef.getLangOpts()))
3963 *RI = Correction;
3964 return;
3965 }
3966 }
3967 }
3968 if (CList.empty() || Correction.isResolved())
3969 CList.push_back(Correction);
3970
3971 while (CorrectionResults.size() > MaxTypoDistanceResultSets)
3972 CorrectionResults.erase(std::prev(CorrectionResults.end()));
3973}
3974
3975void TypoCorrectionConsumer::addNamespaces(
3976 const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) {
3977 SearchNamespaces = true;
3978
3979 for (auto KNPair : KnownNamespaces)
3980 Namespaces.addNameSpecifier(KNPair.first);
3981
3982 bool SSIsTemplate = false;
3983 if (NestedNameSpecifier *NNS =
3984 (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) {
3985 if (const Type *T = NNS->getAsType())
3986 SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization;
3987 }
3988 // Do not transform this into an iterator-based loop. The loop body can
3989 // trigger the creation of further types (through lazy deserialization) and
3990 // invalide iterators into this list.
3991 auto &Types = SemaRef.getASTContext().getTypes();
3992 for (unsigned I = 0; I != Types.size(); ++I) {
3993 const auto *TI = Types[I];
3994 if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) {
3995 CD = CD->getCanonicalDecl();
3996 if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() &&
3997 !CD->isUnion() && CD->getIdentifier() &&
3998 (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) &&
3999 (CD->isBeingDefined() || CD->isCompleteDefinition()))
4000 Namespaces.addNameSpecifier(CD);
4001 }
4002 }
4003}
4004
4005const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() {
4006 if (++CurrentTCIndex < ValidatedCorrections.size())
4007 return ValidatedCorrections[CurrentTCIndex];
4008
4009 CurrentTCIndex = ValidatedCorrections.size();
4010 while (!CorrectionResults.empty()) {
4011 auto DI = CorrectionResults.begin();
4012 if (DI->second.empty()) {
4013 CorrectionResults.erase(DI);
4014 continue;
4015 }
4016
4017 auto RI = DI->second.begin();
4018 if (RI->second.empty()) {
4019 DI->second.erase(RI);
4020 performQualifiedLookups();
4021 continue;
4022 }
4023
4024 TypoCorrection TC = RI->second.pop_back_val();
4025 if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) {
4026 ValidatedCorrections.push_back(TC);
4027 return ValidatedCorrections[CurrentTCIndex];
4028 }
4029 }
4030 return ValidatedCorrections[0]; // The empty correction.
4031}
4032
4033bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) {
4034 IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo();
4035 DeclContext *TempMemberContext = MemberContext;
4036 CXXScopeSpec *TempSS = SS.get();
4037retry_lookup:
4038 LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext,
4039 EnteringContext,
4040 CorrectionValidator->IsObjCIvarLookup,
4041 Name == Typo && !Candidate.WillReplaceSpecifier());
4042 switch (Result.getResultKind()) {
4043 case LookupResult::NotFound:
4044 case LookupResult::NotFoundInCurrentInstantiation:
4045 case LookupResult::FoundUnresolvedValue:
4046 if (TempSS) {
4047 // Immediately retry the lookup without the given CXXScopeSpec
4048 TempSS = nullptr;
4049 Candidate.WillReplaceSpecifier(true);
4050 goto retry_lookup;
4051 }
4052 if (TempMemberContext) {
4053 if (SS && !TempSS)
4054 TempSS = SS.get();
4055 TempMemberContext = nullptr;
4056 goto retry_lookup;
4057 }
4058 if (SearchNamespaces)
4059 QualifiedResults.push_back(Candidate);
4060 break;
4061
4062 case LookupResult::Ambiguous:
4063 // We don't deal with ambiguities.
4064 break;
4065
4066 case LookupResult::Found:
4067 case LookupResult::FoundOverloaded:
4068 // Store all of the Decls for overloaded symbols
4069 for (auto *TRD : Result)
4070 Candidate.addCorrectionDecl(TRD);
4071 checkCorrectionVisibility(SemaRef, Candidate);
4072 if (!isCandidateViable(*CorrectionValidator, Candidate)) {
4073 if (SearchNamespaces)
4074 QualifiedResults.push_back(Candidate);
4075 break;
4076 }
4077 Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4078 return true;
4079 }
4080 return false;
4081}
4082
4083void TypoCorrectionConsumer::performQualifiedLookups() {
4084 unsigned TypoLen = Typo->getName().size();
4085 for (const TypoCorrection &QR : QualifiedResults) {
4086 for (const auto &NSI : Namespaces) {
4087 DeclContext *Ctx = NSI.DeclCtx;
4088 const Type *NSType = NSI.NameSpecifier->getAsType();
4089
4090 // If the current NestedNameSpecifier refers to a class and the
4091 // current correction candidate is the name of that class, then skip
4092 // it as it is unlikely a qualified version of the class' constructor
4093 // is an appropriate correction.
4094 if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() :
4095 nullptr) {
4096 if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo())
4097 continue;
4098 }
4099
4100 TypoCorrection TC(QR);
4101 TC.ClearCorrectionDecls();
4102 TC.setCorrectionSpecifier(NSI.NameSpecifier);
4103 TC.setQualifierDistance(NSI.EditDistance);
4104 TC.setCallbackDistance(0); // Reset the callback distance
4105
4106 // If the current correction candidate and namespace combination are
4107 // too far away from the original typo based on the normalized edit
4108 // distance, then skip performing a qualified name lookup.
4109 unsigned TmpED = TC.getEditDistance(true);
4110 if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED &&
4111 TypoLen / TmpED < 3)
4112 continue;
4113
4114 Result.clear();
4115 Result.setLookupName(QR.getCorrectionAsIdentifierInfo());
4116 if (!SemaRef.LookupQualifiedName(Result, Ctx))
4117 continue;
4118
4119 // Any corrections added below will be validated in subsequent
4120 // iterations of the main while() loop over the Consumer's contents.
4121 switch (Result.getResultKind()) {
4122 case LookupResult::Found:
4123 case LookupResult::FoundOverloaded: {
4124 if (SS && SS->isValid()) {
4125 std::string NewQualified = TC.getAsString(SemaRef.getLangOpts());
4126 std::string OldQualified;
4127 llvm::raw_string_ostream OldOStream(OldQualified);
4128 SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy());
4129 OldOStream << Typo->getName();
4130 // If correction candidate would be an identical written qualified
4131 // identifer, then the existing CXXScopeSpec probably included a
4132 // typedef that didn't get accounted for properly.
4133 if (OldOStream.str() == NewQualified)
4134 break;
4135 }
4136 for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end();
4137 TRD != TRDEnd; ++TRD) {
4138 if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(),
4139 NSType ? NSType->getAsCXXRecordDecl()
4140 : nullptr,
4141 TRD.getPair()) == Sema::AR_accessible)
4142 TC.addCorrectionDecl(*TRD);
4143 }
4144 if (TC.isResolved()) {
4145 TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo());
4146 addCorrection(TC);
4147 }
4148 break;
4149 }
4150 case LookupResult::NotFound:
4151 case LookupResult::NotFoundInCurrentInstantiation:
4152 case LookupResult::Ambiguous:
4153 case LookupResult::FoundUnresolvedValue:
4154 break;
4155 }
4156 }
4157 }
4158 QualifiedResults.clear();
4159}
4160
4161TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet(
4162 ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec)
4163 : Context(Context), CurContextChain(buildContextChain(CurContext)) {
4164 if (NestedNameSpecifier *NNS =
4165 CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) {
4166 llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier);
4167 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4168
4169 getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers);
4170 }
4171 // Build the list of identifiers that would be used for an absolute
4172 // (from the global context) NestedNameSpecifier referring to the current
4173 // context.
4174 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4175 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C))
4176 CurContextIdentifiers.push_back(ND->getIdentifier());
4177 }
4178
4179 // Add the global context as a NestedNameSpecifier
4180 SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()),
4181 NestedNameSpecifier::GlobalSpecifier(Context), 1};
4182 DistanceMap[1].push_back(SI);
4183}
4184
4185auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain(
4186 DeclContext *Start) -> DeclContextList {
4187 assert(Start && "Building a context chain from a null context")((Start && "Building a context chain from a null context"
) ? static_cast<void> (0) : __assert_fail ("Start && \"Building a context chain from a null context\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 4187, __PRETTY_FUNCTION__))
;
4188 DeclContextList Chain;
4189 for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr;
4190 DC = DC->getLookupParent()) {
4191 NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC);
4192 if (!DC->isInlineNamespace() && !DC->isTransparentContext() &&
4193 !(ND && ND->isAnonymousNamespace()))
4194 Chain.push_back(DC->getPrimaryContext());
4195 }
4196 return Chain;
4197}
4198
4199unsigned
4200TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier(
4201 DeclContextList &DeclChain, NestedNameSpecifier *&NNS) {
4202 unsigned NumSpecifiers = 0;
4203 for (DeclContext *C : llvm::reverse(DeclChain)) {
4204 if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) {
4205 NNS = NestedNameSpecifier::Create(Context, NNS, ND);
4206 ++NumSpecifiers;
4207 } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) {
4208 NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(),
4209 RD->getTypeForDecl());
4210 ++NumSpecifiers;
4211 }
4212 }
4213 return NumSpecifiers;
4214}
4215
4216void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier(
4217 DeclContext *Ctx) {
4218 NestedNameSpecifier *NNS = nullptr;
4219 unsigned NumSpecifiers = 0;
4220 DeclContextList NamespaceDeclChain(buildContextChain(Ctx));
4221 DeclContextList FullNamespaceDeclChain(NamespaceDeclChain);
4222
4223 // Eliminate common elements from the two DeclContext chains.
4224 for (DeclContext *C : llvm::reverse(CurContextChain)) {
4225 if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C)
4226 break;
4227 NamespaceDeclChain.pop_back();
4228 }
4229
4230 // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain
4231 NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS);
4232
4233 // Add an explicit leading '::' specifier if needed.
4234 if (NamespaceDeclChain.empty()) {
4235 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4236 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4237 NumSpecifiers =
4238 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4239 } else if (NamedDecl *ND =
4240 dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) {
4241 IdentifierInfo *Name = ND->getIdentifier();
4242 bool SameNameSpecifier = false;
4243 if (std::find(CurNameSpecifierIdentifiers.begin(),
4244 CurNameSpecifierIdentifiers.end(),
4245 Name) != CurNameSpecifierIdentifiers.end()) {
4246 std::string NewNameSpecifier;
4247 llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier);
4248 SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers;
4249 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4250 NNS->print(SpecifierOStream, Context.getPrintingPolicy());
4251 SpecifierOStream.flush();
4252 SameNameSpecifier = NewNameSpecifier == CurNameSpecifier;
4253 }
4254 if (SameNameSpecifier ||
4255 std::find(CurContextIdentifiers.begin(), CurContextIdentifiers.end(),
4256 Name) != CurContextIdentifiers.end()) {
4257 // Rebuild the NestedNameSpecifier as a globally-qualified specifier.
4258 NNS = NestedNameSpecifier::GlobalSpecifier(Context);
4259 NumSpecifiers =
4260 buildNestedNameSpecifier(FullNamespaceDeclChain, NNS);
4261 }
4262 }
4263
4264 // If the built NestedNameSpecifier would be replacing an existing
4265 // NestedNameSpecifier, use the number of component identifiers that
4266 // would need to be changed as the edit distance instead of the number
4267 // of components in the built NestedNameSpecifier.
4268 if (NNS && !CurNameSpecifierIdentifiers.empty()) {
4269 SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers;
4270 getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers);
4271 NumSpecifiers = llvm::ComputeEditDistance(
4272 llvm::makeArrayRef(CurNameSpecifierIdentifiers),
4273 llvm::makeArrayRef(NewNameSpecifierIdentifiers));
4274 }
4275
4276 SpecifierInfo SI = {Ctx, NNS, NumSpecifiers};
4277 DistanceMap[NumSpecifiers].push_back(SI);
4278}
4279
4280/// \brief Perform name lookup for a possible result for typo correction.
4281static void LookupPotentialTypoResult(Sema &SemaRef,
4282 LookupResult &Res,
4283 IdentifierInfo *Name,
4284 Scope *S, CXXScopeSpec *SS,
4285 DeclContext *MemberContext,
4286 bool EnteringContext,
4287 bool isObjCIvarLookup,
4288 bool FindHidden) {
4289 Res.suppressDiagnostics();
4290 Res.clear();
4291 Res.setLookupName(Name);
4292 Res.setAllowHidden(FindHidden);
4293 if (MemberContext) {
4294 if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
4295 if (isObjCIvarLookup) {
4296 if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
4297 Res.addDecl(Ivar);
4298 Res.resolveKind();
4299 return;
4300 }
4301 }
4302
4303 if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(
4304 Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
4305 Res.addDecl(Prop);
4306 Res.resolveKind();
4307 return;
4308 }
4309 }
4310
4311 SemaRef.LookupQualifiedName(Res, MemberContext);
4312 return;
4313 }
4314
4315 SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
4316 EnteringContext);
4317
4318 // Fake ivar lookup; this should really be part of
4319 // LookupParsedName.
4320 if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
4321 if (Method->isInstanceMethod() && Method->getClassInterface() &&
4322 (Res.empty() ||
4323 (Res.isSingleResult() &&
4324 Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
4325 if (ObjCIvarDecl *IV
4326 = Method->getClassInterface()->lookupInstanceVariable(Name)) {
4327 Res.addDecl(IV);
4328 Res.resolveKind();
4329 }
4330 }
4331 }
4332}
4333
4334/// \brief Add keywords to the consumer as possible typo corrections.
4335static void AddKeywordsToConsumer(Sema &SemaRef,
4336 TypoCorrectionConsumer &Consumer,
4337 Scope *S, CorrectionCandidateCallback &CCC,
4338 bool AfterNestedNameSpecifier) {
4339 if (AfterNestedNameSpecifier) {
4340 // For 'X::', we know exactly which keywords can appear next.
4341 Consumer.addKeywordResult("template");
4342 if (CCC.WantExpressionKeywords)
4343 Consumer.addKeywordResult("operator");
4344 return;
4345 }
4346
4347 if (CCC.WantObjCSuper)
4348 Consumer.addKeywordResult("super");
4349
4350 if (CCC.WantTypeSpecifiers) {
4351 // Add type-specifier keywords to the set of results.
4352 static const char *const CTypeSpecs[] = {
4353 "char", "const", "double", "enum", "float", "int", "long", "short",
4354 "signed", "struct", "union", "unsigned", "void", "volatile",
4355 "_Complex", "_Imaginary",
4356 // storage-specifiers as well
4357 "extern", "inline", "static", "typedef"
4358 };
4359
4360 const unsigned NumCTypeSpecs = llvm::array_lengthof(CTypeSpecs);
4361 for (unsigned I = 0; I != NumCTypeSpecs; ++I)
4362 Consumer.addKeywordResult(CTypeSpecs[I]);
4363
4364 if (SemaRef.getLangOpts().C99)
4365 Consumer.addKeywordResult("restrict");
4366 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus)
4367 Consumer.addKeywordResult("bool");
4368 else if (SemaRef.getLangOpts().C99)
4369 Consumer.addKeywordResult("_Bool");
4370
4371 if (SemaRef.getLangOpts().CPlusPlus) {
4372 Consumer.addKeywordResult("class");
4373 Consumer.addKeywordResult("typename");
4374 Consumer.addKeywordResult("wchar_t");
4375
4376 if (SemaRef.getLangOpts().CPlusPlus11) {
4377 Consumer.addKeywordResult("char16_t");
4378 Consumer.addKeywordResult("char32_t");
4379 Consumer.addKeywordResult("constexpr");
4380 Consumer.addKeywordResult("decltype");
4381 Consumer.addKeywordResult("thread_local");
4382 }
4383 }
4384
4385 if (SemaRef.getLangOpts().GNUMode)
4386 Consumer.addKeywordResult("typeof");
4387 } else if (CCC.WantFunctionLikeCasts) {
4388 static const char *const CastableTypeSpecs[] = {
4389 "char", "double", "float", "int", "long", "short",
4390 "signed", "unsigned", "void"
4391 };
4392 for (auto *kw : CastableTypeSpecs)
4393 Consumer.addKeywordResult(kw);
4394 }
4395
4396 if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) {
4397 Consumer.addKeywordResult("const_cast");
4398 Consumer.addKeywordResult("dynamic_cast");
4399 Consumer.addKeywordResult("reinterpret_cast");
4400 Consumer.addKeywordResult("static_cast");
4401 }
4402
4403 if (CCC.WantExpressionKeywords) {
4404 Consumer.addKeywordResult("sizeof");
4405 if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) {
4406 Consumer.addKeywordResult("false");
4407 Consumer.addKeywordResult("true");
4408 }
4409
4410 if (SemaRef.getLangOpts().CPlusPlus) {
4411 static const char *const CXXExprs[] = {
4412 "delete", "new", "operator", "throw", "typeid"
4413 };
4414 const unsigned NumCXXExprs = llvm::array_lengthof(CXXExprs);
4415 for (unsigned I = 0; I != NumCXXExprs; ++I)
4416 Consumer.addKeywordResult(CXXExprs[I]);
4417
4418 if (isa<CXXMethodDecl>(SemaRef.CurContext) &&
4419 cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance())
4420 Consumer.addKeywordResult("this");
4421
4422 if (SemaRef.getLangOpts().CPlusPlus11) {
4423 Consumer.addKeywordResult("alignof");
4424 Consumer.addKeywordResult("nullptr");
4425 }
4426 }
4427
4428 if (SemaRef.getLangOpts().C11) {
4429 // FIXME: We should not suggest _Alignof if the alignof macro
4430 // is present.
4431 Consumer.addKeywordResult("_Alignof");
4432 }
4433 }
4434
4435 if (CCC.WantRemainingKeywords) {
4436 if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) {
4437 // Statements.
4438 static const char *const CStmts[] = {
4439 "do", "else", "for", "goto", "if", "return", "switch", "while" };
4440 const unsigned NumCStmts = llvm::array_lengthof(CStmts);
4441 for (unsigned I = 0; I != NumCStmts; ++I)
4442 Consumer.addKeywordResult(CStmts[I]);
4443
4444 if (SemaRef.getLangOpts().CPlusPlus) {
4445 Consumer.addKeywordResult("catch");
4446 Consumer.addKeywordResult("try");
4447 }
4448
4449 if (S && S->getBreakParent())
4450 Consumer.addKeywordResult("break");
4451
4452 if (S && S->getContinueParent())
4453 Consumer.addKeywordResult("continue");
4454
4455 if (!SemaRef.getCurFunction()->SwitchStack.empty()) {
4456 Consumer.addKeywordResult("case");
4457 Consumer.addKeywordResult("default");
4458 }
4459 } else {
4460 if (SemaRef.getLangOpts().CPlusPlus) {
4461 Consumer.addKeywordResult("namespace");
4462 Consumer.addKeywordResult("template");
4463 }
4464
4465 if (S && S->isClassScope()) {
4466 Consumer.addKeywordResult("explicit");
4467 Consumer.addKeywordResult("friend");
4468 Consumer.addKeywordResult("mutable");
4469 Consumer.addKeywordResult("private");
4470 Consumer.addKeywordResult("protected");
4471 Consumer.addKeywordResult("public");
4472 Consumer.addKeywordResult("virtual");
4473 }
4474 }
4475
4476 if (SemaRef.getLangOpts().CPlusPlus) {
4477 Consumer.addKeywordResult("using");
4478
4479 if (SemaRef.getLangOpts().CPlusPlus11)
4480 Consumer.addKeywordResult("static_assert");
4481 }
4482 }
4483}
4484
4485std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer(
4486 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4487 Scope *S, CXXScopeSpec *SS,
4488 std::unique_ptr<CorrectionCandidateCallback> CCC,
4489 DeclContext *MemberContext, bool EnteringContext,
4490 const ObjCObjectPointerType *OPT, bool ErrorRecovery) {
4491
4492 if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking ||
4493 DisableTypoCorrection)
4494 return nullptr;
4495
4496 // In Microsoft mode, don't perform typo correction in a template member
4497 // function dependent context because it interferes with the "lookup into
4498 // dependent bases of class templates" feature.
4499 if (getLangOpts().MSVCCompat && CurContext->isDependentContext() &&
4500 isa<CXXMethodDecl>(CurContext))
4501 return nullptr;
4502
4503 // We only attempt to correct typos for identifiers.
4504 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4505 if (!Typo)
4506 return nullptr;
4507
4508 // If the scope specifier itself was invalid, don't try to correct
4509 // typos.
4510 if (SS && SS->isInvalid())
4511 return nullptr;
4512
4513 // Never try to correct typos during any kind of code synthesis.
4514 if (!CodeSynthesisContexts.empty())
4515 return nullptr;
4516
4517 // Don't try to correct 'super'.
4518 if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier())
4519 return nullptr;
4520
4521 // Abort if typo correction already failed for this specific typo.
4522 IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo);
4523 if (locs != TypoCorrectionFailures.end() &&
4524 locs->second.count(TypoName.getLoc()))
4525 return nullptr;
4526
4527 // Don't try to correct the identifier "vector" when in AltiVec mode.
4528 // TODO: Figure out why typo correction misbehaves in this case, fix it, and
4529 // remove this workaround.
4530 if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector"))
4531 return nullptr;
4532
4533 // Provide a stop gap for files that are just seriously broken. Trying
4534 // to correct all typos can turn into a HUGE performance penalty, causing
4535 // some files to take minutes to get rejected by the parser.
4536 unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit;
4537 if (Limit && TyposCorrected >= Limit)
4538 return nullptr;
4539 ++TyposCorrected;
4540
4541 // If we're handling a missing symbol error, using modules, and the
4542 // special search all modules option is used, look for a missing import.
4543 if (ErrorRecovery && getLangOpts().Modules &&
4544 getLangOpts().ModulesSearchAll) {
4545 // The following has the side effect of loading the missing module.
4546 getModuleLoader().lookupMissingImports(Typo->getName(),
4547 TypoName.getLocStart());
4548 }
4549
4550 CorrectionCandidateCallback &CCCRef = *CCC;
4551 auto Consumer = llvm::make_unique<TypoCorrectionConsumer>(
4552 *this, TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4553 EnteringContext);
4554
4555 // Perform name lookup to find visible, similarly-named entities.
4556 bool IsUnqualifiedLookup = false;
4557 DeclContext *QualifiedDC = MemberContext;
4558 if (MemberContext) {
4559 LookupVisibleDecls(MemberContext, LookupKind, *Consumer);
4560
4561 // Look in qualified interfaces.
4562 if (OPT) {
4563 for (auto *I : OPT->quals())
4564 LookupVisibleDecls(I, LookupKind, *Consumer);
4565 }
4566 } else if (SS && SS->isSet()) {
4567 QualifiedDC = computeDeclContext(*SS, EnteringContext);
4568 if (!QualifiedDC)
4569 return nullptr;
4570
4571 LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer);
4572 } else {
4573 IsUnqualifiedLookup = true;
4574 }
4575
4576 // Determine whether we are going to search in the various namespaces for
4577 // corrections.
4578 bool SearchNamespaces
4579 = getLangOpts().CPlusPlus &&
4580 (IsUnqualifiedLookup || (SS && SS->isSet()));
4581
4582 if (IsUnqualifiedLookup || SearchNamespaces) {
4583 // For unqualified lookup, look through all of the names that we have
4584 // seen in this translation unit.
4585 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4586 for (const auto &I : Context.Idents)
4587 Consumer->FoundName(I.getKey());
4588
4589 // Walk through identifiers in external identifier sources.
4590 // FIXME: Re-add the ability to skip very unlikely potential corrections.
4591 if (IdentifierInfoLookup *External
4592 = Context.Idents.getExternalIdentifierLookup()) {
4593 std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers());
4594 do {
4595 StringRef Name = Iter->Next();
4596 if (Name.empty())
4597 break;
4598
4599 Consumer->FoundName(Name);
4600 } while (true);
4601 }
4602 }
4603
4604 AddKeywordsToConsumer(*this, *Consumer, S, CCCRef, SS && SS->isNotEmpty());
4605
4606 // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going
4607 // to search those namespaces.
4608 if (SearchNamespaces) {
4609 // Load any externally-known namespaces.
4610 if (ExternalSource && !LoadedExternalKnownNamespaces) {
4611 SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces;
4612 LoadedExternalKnownNamespaces = true;
4613 ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces);
4614 for (auto *N : ExternalKnownNamespaces)
4615 KnownNamespaces[N] = true;
4616 }
4617
4618 Consumer->addNamespaces(KnownNamespaces);
4619 }
4620
4621 return Consumer;
4622}
4623
4624/// \brief Try to "correct" a typo in the source code by finding
4625/// visible declarations whose names are similar to the name that was
4626/// present in the source code.
4627///
4628/// \param TypoName the \c DeclarationNameInfo structure that contains
4629/// the name that was present in the source code along with its location.
4630///
4631/// \param LookupKind the name-lookup criteria used to search for the name.
4632///
4633/// \param S the scope in which name lookup occurs.
4634///
4635/// \param SS the nested-name-specifier that precedes the name we're
4636/// looking for, if present.
4637///
4638/// \param CCC A CorrectionCandidateCallback object that provides further
4639/// validation of typo correction candidates. It also provides flags for
4640/// determining the set of keywords permitted.
4641///
4642/// \param MemberContext if non-NULL, the context in which to look for
4643/// a member access expression.
4644///
4645/// \param EnteringContext whether we're entering the context described by
4646/// the nested-name-specifier SS.
4647///
4648/// \param OPT when non-NULL, the search for visible declarations will
4649/// also walk the protocols in the qualified interfaces of \p OPT.
4650///
4651/// \returns a \c TypoCorrection containing the corrected name if the typo
4652/// along with information such as the \c NamedDecl where the corrected name
4653/// was declared, and any additional \c NestedNameSpecifier needed to access
4654/// it (C++ only). The \c TypoCorrection is empty if there is no correction.
4655TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName,
4656 Sema::LookupNameKind LookupKind,
4657 Scope *S, CXXScopeSpec *SS,
4658 std::unique_ptr<CorrectionCandidateCallback> CCC,
4659 CorrectTypoKind Mode,
4660 DeclContext *MemberContext,
4661 bool EnteringContext,
4662 const ObjCObjectPointerType *OPT,
4663 bool RecordFailure) {
4664 assert(CCC && "CorrectTypo requires a CorrectionCandidateCallback")((CCC && "CorrectTypo requires a CorrectionCandidateCallback"
) ? static_cast<void> (0) : __assert_fail ("CCC && \"CorrectTypo requires a CorrectionCandidateCallback\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 4664, __PRETTY_FUNCTION__))
;
4665
4666 // Always let the ExternalSource have the first chance at correction, even
4667 // if we would otherwise have given up.
4668 if (ExternalSource) {
1
Assuming the condition is false
2
Taking false branch
4669 if (TypoCorrection Correction = ExternalSource->CorrectTypo(
4670 TypoName, LookupKind, S, SS, *CCC, MemberContext, EnteringContext, OPT))
4671 return Correction;
4672 }
4673
4674 // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver;
4675 // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for
4676 // some instances of CTC_Unknown, while WantRemainingKeywords is true
4677 // for CTC_Unknown but not for CTC_ObjCMessageReceiver.
4678 bool ObjCMessageReceiver = CCC->WantObjCSuper && !CCC->WantRemainingKeywords;
3
Assuming the condition is false
4679
4680 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4681 auto Consumer = makeTypoCorrectionConsumer(
4682 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4683 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4
Assuming 'Mode' is not equal to CTK_ErrorRecovery
4684
4685 if (!Consumer)
5
Taking false branch
4686 return TypoCorrection();
4687
4688 // If we haven't found anything, we're done.
4689 if (Consumer->empty())
6
Taking false branch
4690 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4691
4692 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4693 // is not more that about a third of the length of the typo's identifier.
4694 unsigned ED = Consumer->getBestEditDistance(true);
4695 unsigned TypoLen = Typo->getName().size();
4696 if (ED > 0 && TypoLen / ED < 3)
7
Assuming 'ED' is <= 0
4697 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4698
4699 TypoCorrection BestTC = Consumer->getNextCorrection();
4700 TypoCorrection SecondBestTC = Consumer->getNextCorrection();
4701 if (!BestTC)
8
Assuming the condition is false
9
Taking false branch
4702 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4703
4704 ED = BestTC.getEditDistance();
4705
4706 if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) {
10
Assuming 'TypoLen' is < 3
4707 // If this was an unqualified lookup and we believe the callback
4708 // object wouldn't have filtered out possible corrections, note
4709 // that no correction was found.
4710 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4711 }
4712
4713 // If only a single name remains, return that result.
4714 if (!SecondBestTC ||
11
Assuming the condition is true
4715 SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) {
4716 const TypoCorrection &Result = BestTC;
4717
4718 // Don't correct to a keyword that's the same as the typo; the keyword
4719 // wasn't actually in scope.
4720 if (ED == 0 && Result.isKeyword())
12
Assuming 'ED' is not equal to 0
4721 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4722
4723 TypoCorrection TC = Result;
4724 TC.setCorrectionRange(SS, TypoName);
4725 checkCorrectionVisibility(*this, TC);
13
Calling 'checkCorrectionVisibility'
4726 return TC;
4727 } else if (SecondBestTC && ObjCMessageReceiver) {
4728 // Prefer 'super' when we're completing in a message-receiver
4729 // context.
4730
4731 if (BestTC.getCorrection().getAsString() != "super") {
4732 if (SecondBestTC.getCorrection().getAsString() == "super")
4733 BestTC = SecondBestTC;
4734 else if ((*Consumer)["super"].front().isKeyword())
4735 BestTC = (*Consumer)["super"].front();
4736 }
4737 // Don't correct to a keyword that's the same as the typo; the keyword
4738 // wasn't actually in scope.
4739 if (BestTC.getEditDistance() == 0 ||
4740 BestTC.getCorrection().getAsString() != "super")
4741 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure);
4742
4743 BestTC.setCorrectionRange(SS, TypoName);
4744 return BestTC;
4745 }
4746
4747 // Record the failure's location if needed and return an empty correction. If
4748 // this was an unqualified lookup and we believe the callback object did not
4749 // filter out possible corrections, also cache the failure for the typo.
4750 return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC);
4751}
4752
4753/// \brief Try to "correct" a typo in the source code by finding
4754/// visible declarations whose names are similar to the name that was
4755/// present in the source code.
4756///
4757/// \param TypoName the \c DeclarationNameInfo structure that contains
4758/// the name that was present in the source code along with its location.
4759///
4760/// \param LookupKind the name-lookup criteria used to search for the name.
4761///
4762/// \param S the scope in which name lookup occurs.
4763///
4764/// \param SS the nested-name-specifier that precedes the name we're
4765/// looking for, if present.
4766///
4767/// \param CCC A CorrectionCandidateCallback object that provides further
4768/// validation of typo correction candidates. It also provides flags for
4769/// determining the set of keywords permitted.
4770///
4771/// \param TDG A TypoDiagnosticGenerator functor that will be used to print
4772/// diagnostics when the actual typo correction is attempted.
4773///
4774/// \param TRC A TypoRecoveryCallback functor that will be used to build an
4775/// Expr from a typo correction candidate.
4776///
4777/// \param MemberContext if non-NULL, the context in which to look for
4778/// a member access expression.
4779///
4780/// \param EnteringContext whether we're entering the context described by
4781/// the nested-name-specifier SS.
4782///
4783/// \param OPT when non-NULL, the search for visible declarations will
4784/// also walk the protocols in the qualified interfaces of \p OPT.
4785///
4786/// \returns a new \c TypoExpr that will later be replaced in the AST with an
4787/// Expr representing the result of performing typo correction, or nullptr if
4788/// typo correction is not possible. If nullptr is returned, no diagnostics will
4789/// be emitted and it is the responsibility of the caller to emit any that are
4790/// needed.
4791TypoExpr *Sema::CorrectTypoDelayed(
4792 const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind,
4793 Scope *S, CXXScopeSpec *SS,
4794 std::unique_ptr<CorrectionCandidateCallback> CCC,
4795 TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode,
4796 DeclContext *MemberContext, bool EnteringContext,
4797 const ObjCObjectPointerType *OPT) {
4798 assert(CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback")((CCC && "CorrectTypoDelayed requires a CorrectionCandidateCallback"
) ? static_cast<void> (0) : __assert_fail ("CCC && \"CorrectTypoDelayed requires a CorrectionCandidateCallback\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 4798, __PRETTY_FUNCTION__))
;
4799
4800 auto Consumer = makeTypoCorrectionConsumer(
4801 TypoName, LookupKind, S, SS, std::move(CCC), MemberContext,
4802 EnteringContext, OPT, Mode == CTK_ErrorRecovery);
4803
4804 // Give the external sema source a chance to correct the typo.
4805 TypoCorrection ExternalTypo;
4806 if (ExternalSource && Consumer) {
4807 ExternalTypo = ExternalSource->CorrectTypo(
4808 TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(),
4809 MemberContext, EnteringContext, OPT);
4810 if (ExternalTypo)
4811 Consumer->addCorrection(ExternalTypo);
4812 }
4813
4814 if (!Consumer || Consumer->empty())
4815 return nullptr;
4816
4817 // Make sure the best edit distance (prior to adding any namespace qualifiers)
4818 // is not more that about a third of the length of the typo's identifier.
4819 unsigned ED = Consumer->getBestEditDistance(true);
4820 IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo();
4821 if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3)
4822 return nullptr;
4823
4824 ExprEvalContexts.back().NumTypos++;
4825 return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC));
4826}
4827
4828void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) {
4829 if (!CDecl) return;
4830
4831 if (isKeyword())
4832 CorrectionDecls.clear();
4833
4834 CorrectionDecls.push_back(CDecl);
4835
4836 if (!CorrectionName)
4837 CorrectionName = CDecl->getDeclName();
4838}
4839
4840std::string TypoCorrection::getAsString(const LangOptions &LO) const {
4841 if (CorrectionNameSpec) {
4842 std::string tmpBuffer;
4843 llvm::raw_string_ostream PrefixOStream(tmpBuffer);
4844 CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO));
4845 PrefixOStream << CorrectionName;
4846 return PrefixOStream.str();
4847 }
4848
4849 return CorrectionName.getAsString();
4850}
4851
4852bool CorrectionCandidateCallback::ValidateCandidate(
4853 const TypoCorrection &candidate) {
4854 if (!candidate.isResolved())
4855 return true;
4856
4857 if (candidate.isKeyword())
4858 return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts ||
4859 WantRemainingKeywords || WantObjCSuper;
4860
4861 bool HasNonType = false;
4862 bool HasStaticMethod = false;
4863 bool HasNonStaticMethod = false;
4864 for (Decl *D : candidate) {
4865 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
4866 D = FTD->getTemplatedDecl();
4867 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
4868 if (Method->isStatic())
4869 HasStaticMethod = true;
4870 else
4871 HasNonStaticMethod = true;
4872 }
4873 if (!isa<TypeDecl>(D))
4874 HasNonType = true;
4875 }
4876
4877 if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod &&
4878 !candidate.getCorrectionSpecifier())
4879 return false;
4880
4881 return WantTypeSpecifiers || HasNonType;
4882}
4883
4884FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs,
4885 bool HasExplicitTemplateArgs,
4886 MemberExpr *ME)
4887 : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs),
4888 CurContext(SemaRef.CurContext), MemberFn(ME) {
4889 WantTypeSpecifiers = false;
4890 WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && NumArgs == 1;
4891 WantRemainingKeywords = false;
4892}
4893
4894bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) {
4895 if (!candidate.getCorrectionDecl())
4896 return candidate.isKeyword();
4897
4898 for (auto *C : candidate) {
4899 FunctionDecl *FD = nullptr;
4900 NamedDecl *ND = C->getUnderlyingDecl();
4901 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
4902 FD = FTD->getTemplatedDecl();
4903 if (!HasExplicitTemplateArgs && !FD) {
4904 if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
4905 // If the Decl is neither a function nor a template function,
4906 // determine if it is a pointer or reference to a function. If so,
4907 // check against the number of arguments expected for the pointee.
4908 QualType ValType = cast<ValueDecl>(ND)->getType();
4909 if (ValType->isAnyPointerType() || ValType->isReferenceType())
4910 ValType = ValType->getPointeeType();
4911 if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
4912 if (FPT->getNumParams() == NumArgs)
4913 return true;
4914 }
4915 }
4916
4917 // Skip the current candidate if it is not a FunctionDecl or does not accept
4918 // the current number of arguments.
4919 if (!FD || !(FD->getNumParams() >= NumArgs &&
4920 FD->getMinRequiredArguments() <= NumArgs))
4921 continue;
4922
4923 // If the current candidate is a non-static C++ method, skip the candidate
4924 // unless the method being corrected--or the current DeclContext, if the
4925 // function being corrected is not a method--is a method in the same class
4926 // or a descendent class of the candidate's parent class.
4927 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4928 if (MemberFn || !MD->isStatic()) {
4929 CXXMethodDecl *CurMD =
4930 MemberFn
4931 ? dyn_cast_or_null<CXXMethodDecl>(MemberFn->getMemberDecl())
4932 : dyn_cast_or_null<CXXMethodDecl>(CurContext);
4933 CXXRecordDecl *CurRD =
4934 CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr;
4935 CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl();
4936 if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD)))
4937 continue;
4938 }
4939 }
4940 return true;
4941 }
4942 return false;
4943}
4944
4945void Sema::diagnoseTypo(const TypoCorrection &Correction,
4946 const PartialDiagnostic &TypoDiag,
4947 bool ErrorRecovery) {
4948 diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl),
4949 ErrorRecovery);
4950}
4951
4952/// Find which declaration we should import to provide the definition of
4953/// the given declaration.
4954static NamedDecl *getDefinitionToImport(NamedDecl *D) {
4955 if (VarDecl *VD = dyn_cast<VarDecl>(D))
4956 return VD->getDefinition();
4957 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4958 return FD->getDefinition();
4959 if (TagDecl *TD = dyn_cast<TagDecl>(D))
4960 return TD->getDefinition();
4961 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(D))
4962 return ID->getDefinition();
4963 if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl>(D))
4964 return PD->getDefinition();
4965 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
4966 return getDefinitionToImport(TD->getTemplatedDecl());
4967 return nullptr;
4968}
4969
4970void Sema::diagnoseMissingImport(SourceLocation Loc, NamedDecl *Decl,
4971 MissingImportKind MIK, bool Recover) {
4972 assert(!isVisible(Decl) && "missing import for non-hidden decl?")((!isVisible(Decl) && "missing import for non-hidden decl?"
) ? static_cast<void> (0) : __assert_fail ("!isVisible(Decl) && \"missing import for non-hidden decl?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 4972, __PRETTY_FUNCTION__))
;
4973
4974 // Suggest importing a module providing the definition of this entity, if
4975 // possible.
4976 NamedDecl *Def = getDefinitionToImport(Decl);
4977 if (!Def)
4978 Def = Decl;
4979
4980 Module *Owner = getOwningModule(Decl);
4981 assert(Owner && "definition of hidden declaration is not in a module")((Owner && "definition of hidden declaration is not in a module"
) ? static_cast<void> (0) : __assert_fail ("Owner && \"definition of hidden declaration is not in a module\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 4981, __PRETTY_FUNCTION__))
;
4982
4983 llvm::SmallVector<Module*, 8> OwningModules;
4984 OwningModules.push_back(Owner);
4985 auto Merged = Context.getModulesWithMergedDefinition(Decl);
4986 OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end());
4987
4988 diagnoseMissingImport(Loc, Decl, Decl->getLocation(), OwningModules, MIK,
4989 Recover);
4990}
4991
4992/// \brief Get a "quoted.h" or <angled.h> include path to use in a diagnostic
4993/// suggesting the addition of a #include of the specified file.
4994static std::string getIncludeStringForHeader(Preprocessor &PP,
4995 const FileEntry *E) {
4996 bool IsSystem;
4997 auto Path =
4998 PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics(E, &IsSystem);
4999 return (IsSystem ? '<' : '"') + Path + (IsSystem ? '>' : '"');
5000}
5001
5002void Sema::diagnoseMissingImport(SourceLocation UseLoc, NamedDecl *Decl,
5003 SourceLocation DeclLoc,
5004 ArrayRef<Module *> Modules,
5005 MissingImportKind MIK, bool Recover) {
5006 assert(!Modules.empty())((!Modules.empty()) ? static_cast<void> (0) : __assert_fail
("!Modules.empty()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 5006, __PRETTY_FUNCTION__))
;
5007
5008 if (Modules.size() > 1) {
5009 std::string ModuleList;
5010 unsigned N = 0;
5011 for (Module *M : Modules) {
5012 ModuleList += "\n ";
5013 if (++N == 5 && N != Modules.size()) {
5014 ModuleList += "[...]";
5015 break;
5016 }
5017 ModuleList += M->getFullModuleName();
5018 }
5019
5020 Diag(UseLoc, diag::err_module_unimported_use_multiple)
5021 << (int)MIK << Decl << ModuleList;
5022 } else if (const FileEntry *E =
5023 PP.getModuleHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) {
5024 // The right way to make the declaration visible is to include a header;
5025 // suggest doing so.
5026 //
5027 // FIXME: Find a smart place to suggest inserting a #include, and add
5028 // a FixItHint there.
5029 Diag(UseLoc, diag::err_module_unimported_use_header)
5030 << (int)MIK << Decl << Modules[0]->getFullModuleName()
5031 << getIncludeStringForHeader(PP, E);
5032 } else {
5033 // FIXME: Add a FixItHint that imports the corresponding module.
5034 Diag(UseLoc, diag::err_module_unimported_use)
5035 << (int)MIK << Decl << Modules[0]->getFullModuleName();
5036 }
5037
5038 unsigned DiagID;
5039 switch (MIK) {
5040 case MissingImportKind::Declaration:
5041 DiagID = diag::note_previous_declaration;
5042 break;
5043 case MissingImportKind::Definition:
5044 DiagID = diag::note_previous_definition;
5045 break;
5046 case MissingImportKind::DefaultArgument:
5047 DiagID = diag::note_default_argument_declared_here;
5048 break;
5049 case MissingImportKind::ExplicitSpecialization:
5050 DiagID = diag::note_explicit_specialization_declared_here;
5051 break;
5052 case MissingImportKind::PartialSpecialization:
5053 DiagID = diag::note_partial_specialization_declared_here;
5054 break;
5055 }
5056 Diag(DeclLoc, DiagID);
5057
5058 // Try to recover by implicitly importing this module.
5059 if (Recover)
5060 createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]);
5061}
5062
5063/// \brief Diagnose a successfully-corrected typo. Separated from the correction
5064/// itself to allow external validation of the result, etc.
5065///
5066/// \param Correction The result of performing typo correction.
5067/// \param TypoDiag The diagnostic to produce. This will have the corrected
5068/// string added to it (and usually also a fixit).
5069/// \param PrevNote A note to use when indicating the location of the entity to
5070/// which we are correcting. Will have the correction string added to it.
5071/// \param ErrorRecovery If \c true (the default), the caller is going to
5072/// recover from the typo as if the corrected string had been typed.
5073/// In this case, \c PDiag must be an error, and we will attach a fixit
5074/// to it.
5075void Sema::diagnoseTypo(const TypoCorrection &Correction,
5076 const PartialDiagnostic &TypoDiag,
5077 const PartialDiagnostic &PrevNote,
5078 bool ErrorRecovery) {
5079 std::string CorrectedStr = Correction.getAsString(getLangOpts());
5080 std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts());
5081 FixItHint FixTypo = FixItHint::CreateReplacement(
5082 Correction.getCorrectionRange(), CorrectedStr);
5083
5084 // Maybe we're just missing a module import.
5085 if (Correction.requiresImport()) {
5086 NamedDecl *Decl = Correction.getFoundDecl();
5087 assert(Decl && "import required but no declaration to import")((Decl && "import required but no declaration to import"
) ? static_cast<void> (0) : __assert_fail ("Decl && \"import required but no declaration to import\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 5087, __PRETTY_FUNCTION__))
;
5088
5089 diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl,
5090 MissingImportKind::Declaration, ErrorRecovery);
5091 return;
5092 }
5093
5094 Diag(Correction.getCorrectionRange().getBegin(), TypoDiag)
5095 << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint());
5096
5097 NamedDecl *ChosenDecl =
5098 Correction.isKeyword() ? nullptr : Correction.getFoundDecl();
5099 if (PrevNote.getDiagID() && ChosenDecl)
5100 Diag(ChosenDecl->getLocation(), PrevNote)
5101 << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo);
5102
5103 // Add any extra diagnostics.
5104 for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics())
5105 Diag(Correction.getCorrectionRange().getBegin(), PD);
5106}
5107
5108TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC,
5109 TypoDiagnosticGenerator TDG,
5110 TypoRecoveryCallback TRC) {
5111 assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer")((TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"
) ? static_cast<void> (0) : __assert_fail ("TCC && \"createDelayedTypo requires a valid TypoCorrectionConsumer\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 5111, __PRETTY_FUNCTION__))
;
5112 auto TE = new (Context) TypoExpr(Context.DependentTy);
5113 auto &State = DelayedTypos[TE];
5114 State.Consumer = std::move(TCC);
5115 State.DiagHandler = std::move(TDG);
5116 State.RecoveryHandler = std::move(TRC);
5117 return TE;
5118}
5119
5120const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const {
5121 auto Entry = DelayedTypos.find(TE);
5122 assert(Entry != DelayedTypos.end() &&((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 5123, __PRETTY_FUNCTION__))
5123 "Failed to get the state for a TypoExpr!")((Entry != DelayedTypos.end() && "Failed to get the state for a TypoExpr!"
) ? static_cast<void> (0) : __assert_fail ("Entry != DelayedTypos.end() && \"Failed to get the state for a TypoExpr!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn296300/tools/clang/lib/Sema/SemaLookup.cpp"
, 5123, __PRETTY_FUNCTION__))
;
5124 return Entry->second;
5125}
5126
5127void Sema::clearDelayedTypo(TypoExpr *TE) {
5128 DelayedTypos.erase(TE);
5129}
5130
5131void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) {
5132 DeclarationNameInfo Name(II, IILoc);
5133 LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration);
5134 R.suppressDiagnostics();
5135 R.setHideTags(false);
5136 LookupName(R, S);
5137 R.dump();
5138}